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Abstract—Statistics of particles (smoke aerosol in the atmosphere) reaching a prescribed spatial region are
analyzed. The effects of both regular and random forces acting on the particles are taken into account. A method
is proposed for calculating the probability distributions of various quantities (time required to reach a prescribed
location, particle velocity in its vicinity, etc.), and its scope is determined as depending on the parameters of the
problem. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The increasingly heavy atmospheric and water pol-
lution motivates studies of the physics of smoke aerosol
precipitation in the ground layer. In particular, the con-
tent of several chemical elements in soil have been
measured in the vicinity of an industrial facility [1].
The analysis was focused on gravitational precipitation
of aerosol affected by the geoelectric field at the
ground. However, diffusion should also be taken into
account as a mechanism contributing to the motion of a
particulate contaminant in an air flow. Diffusive mixing
leads to stochastic behavior of particle trajectories, so
that one may consider the statistics of both the domain
that can be reached by a particle and the time required
to reach it. This paper provides a description of aerosol
particle motion allowing for both regular (considered in
[1]) and stochastic forces.

STATEMENT OF THE PROBLEM

To analyze the diffusion of a passive contaminant in
the atmosphere or ocean, it is frequently required to
know the probabilistic characteristics of the contami-
nant particles contained in a certain spatial domain
(e.g., the mean or most probable time required to reach
a certain surface domain or the particle velocity statis-
tics near the surface). In fluid dynamics, analysis of
flow characteristics at fixed points is based on the Eule-
rian approach. Accordingly, the problem in question
should naturally be described in terms of Eulerian sta-
tistics. Note that direct calculation of Eulerian statistics
is a difficult task, because the particle velocity at a
given point in space is a stochastic function of a random
argument (the time required to reach the point).

At the same time, the Lagrangian approach is com-
monly used in studies of contaminant motion to obtain
a probabilistic characterization of a certain particle at a
current moment. The corresponding characteristics
1063-7842/00/4509- $20.00 © 21099
should naturally be referred to as Lagrangian. Gener-
ally, a Lagrangian statistical description is simpler,
since it can be reduced to an analysis of the statistical
properties of well-known solutions to Langevin sto-
chastic equations [2]. In particular, one can readily cal-
culate the Lagrangian statistics for passive contaminant
particles. For this reason, we use known Lagrangian
probability distributions to construct Eulerian ones in
this paper.

Consider a contaminant particle driven by a stochas-
tic force x(t) (e.g., by collisions with ambient particles)
and a regular force x0(t). Henceforth, both x(t) and x0(t)
are interpreted as forces per unit mass. The force x0(t)
may be of a different nature, depending on the particu-
lar problem under analysis. For example, the force con-
sidered in [1] represents the effects of gravity, the Cou-
lomb force exerted by the geoelectric field on a charged
particle, and advection by the wind. When a statistical
characterization of the motion of charged aerosol parti-
cles includes effects of the geomagnetic field, x0(t) is
interpreted as an electromagnetic force. It is well
known (see [2]) that the motion of a particle is
described by the Langevin equations

(1)

supplemented by the initial conditions

where V(t) and R(t) are the instantaneous velocity and
location of the particle at a moment t.

The variables V(t) and R(t) are Lagrangian charac-
teristics of diffusion, since they are associated with a
specific moving particle. In seeking a statistical
description, for example, of the velocities of the parti-
cles that reach a certain surface (referred to as a detec-
tor here), we establish the relationship between
Lagrangian and Eulerian statistics. To provide a

dR
dt
------- V,

dV
dt
------- x0 R V t, ,( ) x t( )+= =

R t 0=( ) R0, V t 0=( ) V0,= =
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graphic illustration of the basic principles that deter-
mine this relationship, we simplify the physical setting
and geometry of the problem as much as possible.

Consider a point source in space. At the initial
moment, a particle having zero velocity (V0 = 0) is
issued by the source, which is placed at the origin of the
coordinate system (R0 = 0).

We introduce the following two assumptions con-
cerning the interaction of the particle with the environ-
ment. First, we assume that the regular force is con-
stant: x0(t) = x0. (Note that the case when x0(t) is a fric-
tion force of the form x0(t) = k(U – V), where k is the
effective friction coefficient and U is the wind velocity,
was discussed in detail in [3, 4].) Second, x(t) is treated
as a zero-mean Gaussian stochastic process with the
correlation tensor

(2)

where D is diffusivity.
The latter assumption means that, following [5], we

consider a Brownian motion here.
We define a coordinate system r = {r⊥ , z}, where the

z-axis is aligned with x0 and r⊥  = {x, y} denotes the
transverse coordinates. As a detector, we choose the
plane located at z = L. We seek the probability density
functions for the moment t* when the detector is
reached by the particle and for the coordinates and
velocity of the particle reaching the detector.

The simplifications concerning x0 and x(t), com-
bined with the chosen geometry (with an infinite plane
perpendicular to the direction of the regular force used
as a detector), make it possible to avoid the introduction
of parameters that are not essential for the desired rela-
tionship between the statistics [3, 4].

Since displacements in different directions are sta-
tistically independent by virtue of (2), the joint proba-
bility density function of the particle coordinates and
velocity can be represented as

(3)

Here, f⊥  and fz are functions defined as

(4)

(with averaging over realizations of the stochastic force
x(t)) and satisfying the Fokker–Planck equations [2, 6]

(5)

subject to the initial condition

ξ i t( )ξ j t t'+( )〈 〉 2Dδijδ t'( ) i j 1 2 3, ,=,( ),=

f r v; t,( ) f ⊥ r⊥ v⊥ ; t,( ) f z z v z; t,( ).=

f ⊥ r⊥ v⊥ ; t,( ) δ r⊥ R⊥ t( )–[ ]δ v⊥ V⊥ t( )–[ ]〈 〉 ,=

f z z v z; t,( ) δ z Z t( )–[ ]δ v z Vz t( )–[ ]〈 〉=

∂ f ⊥

∂t
--------- v⊥

∂ f ⊥

∂r⊥
---------+ D

∂2 f ⊥

∂v⊥
2

-----------,=

∂ f z

∂t
-------- v z

∂ f z

∂z
-------- ξ0

∂ f z

∂v z

---------++ D
∂2 f z

∂v z
2

----------=

f r v; t 0=,( ) δ r R0–( )δ v V0–( ).=
The solution to (5) for R0 = 0 and V0 = 0 is expressed
as

Note that the probability density function f(r, v; t)
provides a Lagrangian statistical characterization of the
coordinates and velocities of the particle at an arbitrary
moment, whereas we seek Eulerian probability density
functions for the coordinates (r⊥ ; L) and velocities

(v⊥ ; L) and (vz; L) of a particle at the detector.
(It is obvious that the time required to reach the detector
is a random variable.) In what follows, we use the
known Lagrangian statistical characterization to find
the desired Eulerian probability densities.

RELATIONSHIP BETWEEN LAGRANGIAN 
AND EULERIAN STATISTICS FOR A BROWNIAN 

PARTICLE

We define an auxiliary function F(t, r⊥ , v; L) as

(6)

Using (3) and (4) and invoking the representation of
the delta function (e.g., see [7])

where ti is a root of the equation Z(t) = L and the sum
over all roots is taken, we rewrite (6) as

(7)

Now, let us consider the Eulerian probabilistic char-
acteristics of detected particles that can be found by
using F(t, r⊥ , v; L).

As a separate case, we consider the situation when
the equation Z(t) = L has a unique root t*. Then, the sum
to be averaged in (7) contains a single term and the

f ⊥ x y v x v y; t, , ,( ) 3

2πDt2( )2
----------------------=

× 3
Dt
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t2
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xv x

t
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δ L Z t( )–[ ] δ t ti–( )/ Ż
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average, by definition, is the joint probability density
function

(8)

of the time when a particle reaches the detector and the
particle’s transverse coordinate and velocity at that
moment. Averaging (8) over every pair of variables, we
obtain the desired Eulerian probability density func-
tions for the detected particle. In particular,

for the moment when the detector plane is crossed,

for the coordinates of the particle reaching the detector,
and

for the velocity components.
To find out when the sum in (7) effectively contains

a single term, we apply the expression for the total
probability

(9)

Here, gi(t, r⊥ , v; L|N) is the conditional joint probability
density function for the moment ti of the ith crossing of
the detector plane and the coordinates and velocity of
the detected particle subject to the condition that N
crossings have occurred by the moment t, and P(N; L)
is the probability that the number of crossings is N. It is
obvious that (9) is identical with (8) when P(N; L) = 0
for N > 1. In this case, (9) yields w(t, r⊥ , v; L) = g1(t, r1,
v; L|1) and the Eulerian probability density functions
enumerated above are expressed as

(10)

(11)

(12)

(13)

w t r⊥ v; L, ,( )
=  δ t t*–( )δ r⊥ R⊥ t*( )–[ ]δ v V t*( )–[ ]〈 〉

wt t; L( ) δ t t* L( )–[ ]〈 〉=

wr⊥
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wv⊥
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wv z
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F t r⊥ v; L, ,( ) P N ; L( ) gi t r⊥ v; L N, ,( ).
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The conditions under which the assumption ensur-
ing the validity of (10)–(13) holds with sufficient accu-
racy is discussed below.

PARAMETRIC DEPENDENCE 
OF THE SOLUTION

The derivation of (10)–(13) was based on the
assumption that the particle can cross the detector plane
only once. To check if this assumption actually holds,
one must know how to calculate P(N; L) for any N.

Unfortunately, we cannot calculate the probability
P(N; L) in the general case. The approximate method
for evaluating P(1; L) and P(2; L) proposed in [3, 4] is
actually based on the assumption that any probability
corresponding to N > 2 can be neglected. According to
the numerical simulation of particle motion reported in
[4], this is the case when advection in the positive direc-
tion of the z-axis is so strong that the particle cannot
return to the detector from the half-plane z ≥ L. Then,
the probability P(N; L) of N crossings of the detector
plane satisfies the inequality P(M; L) ! P(1; L), and the
corresponding expressions in (10)–(13) are approxi-
mately valid. However, the problem remains open to
discussion in the case when the diffusivity D and
advection ξ0 have arbitrary values. Here, we formulate
a somewhat different condition (perhaps more amena-
ble to analysis) under which the formulas obtained
above are valid.

Let us use the fact that the problem involves the

characteristic time t0 =  required for a particle
to reach the detector in the absence of random forcing,

the velocity scale v0 = ξ0t0 = , and the single
dimensionless parameter α = ξ0v0/D. This parameter
characterizes the relative contributions of regular and
random displacements; in particular, the case of advec-
tion playing a dominant role considered in [3] corre-
sponds to α @ 1. We must determine the values of α for
which the average number 〈N〉  of crossings of the detec-
tor plane is close to unity. The condition 〈N〉  ≈ 1 (inter-
preted in a probabilistic sense) means precisely that the
particle reaches the detector only once.

To calculate 〈N〉 , we return to expression (9). Calcu-
lating the integral over all variables and using the fact
that the conditional probability density functions are
normalized to unity, we find the average number 〈N〉  of
crossings of the detector by the particle:

(14)

Incidentally, we note that the right-hand side of (14)
can be interpreted as a normalization condition for the

2L/ξ0

2Lξ0

N〈 〉 dt dv dr⊥ F t r⊥ v; L, ,( )
∞–

∞

∫
∞–

∞

∫
0

∞

∫=

=  dt dv v z dr^ f r^ L v; t, ,( ).

∞–

∞

∫
∞–

∞

∫
0

∞

∫
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probability density functions given by (10)–(13). In
particular, if the particle actually crosses the detector
plane only once, then 〈N〉  = 1 and (10)–(13) are exact
expressions for conventional (normalized to unity)
probability distributions.

Figure 1 shows the dependence of 〈N〉  on the loga-
rithm of α derived from (14). This result is quite obvi-
ous: in the case of strong advection (α @ 1), a particle
driven by the constant force x0 crosses the detector

12

8

4

20–2–4 log α

Fig. 1. Mean number of detector crossings versus the
parameter α representing the relative contributions of
advection and diffusion.
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τ

Fig. 2. Probability density function of the time required for
a particle to reach the detector for α = (1) 1 and (2) 10.
plane and “escapes” into the domain z > L; in the oppo-
site case (α ! 1, diffusion is much stronger than advec-
tion), the particle reaches the detector and crosses it
many times. The results obtained here are in complete
agreement with a qualitative understanding of the par-
ticle motion (trajectories corresponding to various α
were presented in [4]). Thus, the single-crossing condi-
tion is fulfilled a fortiori when α ≥ 1.

Note that the relation derived here differs from that
obtained in [3], where the probability of two crossings
was found to be low, irrespective of the value of α. This
is explained by the fact that the detector standby time is
not limited in the present analysis, and the particle
eventually reaches the detector even if advection is very
weak (which may take infinite time). In [3], the detector
standby time was assumed to be finite. Therefore, the
particle was “late” in arriving at the detector: with α ! 1,
even the probability of a single crossing was much less
than unity, and the probability of two crossings was
negligible (a numerical simulation of the particle
motion predicts P(2; L) ≅  10–1P(1; L) in this case for
any detector standby time consistent with the approxi-
mate normalization P(1; L) + P(2; L) ≈ 1.

In the case of precipitation of soot emitted by a
chimney stack (with an average density of 1800 kg/m3)
under real atmospheric conditions, the parameter α can
be estimated as follows. Using the data presented in [1]
(geoelectric field strength E ≈ 100 V/m) and [8] (diffu-
sivity D ~ (0.3…30) m2/s3 for a wind velocity varying
from 1 to 10 m/s) for precipitating particles of radius
~100 µm emitted by a chimney stack 50 m high, we
obtain α ≥ 10; i.e., relations (10)–(13) actually do hold.

EXAMPLES OF CALCULATED EULERIAN 
DISTRIBUTIONS

We now give some examples of the application of
relations (10)–(13). For convenience, we change to the
dimensionless variables τ = t/t0, u = v/v0, and r = r⊥ /L
and consider the dimensionless probability density
functions

(the probability densities are identical as functions of
transverse coordinates χ = x/L and ζ = y/L and trans-
verse velocity components uχ and uζ). Integrating (10),
(12), and (13) with respect to the coordinates and (10),
(11), and (13) with respect to the transverse velocity
components, we obtain

(15)

ωτ τ ; α( ) t0wt t; L( ), ωρ ρ; α( ) L2wr⊥
r⊥ ; L( ),= =

ωuz
uz; α( ) v 0wv z

v z; L( ),=

ωuχ
uχ; α( ) v 0wv x

v z; L( )=

ωτ τ ; α( ) duz uz ϕ z uz; τ ; α( ),

∞–

∞

∫=
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Fig. 3. (a) Probability density function of the transverse coordinate of a particle reaching the detector and (b) the logarithm of the
probability for α = (1) 1 and (2) 10.
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Fig. 4. (a) Probability density functions of (a) the transverse and (b) longitudinal components of the velocity of a detected particle
for α = (1) 1 and (2) 10.
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(18)

where

The results of calculations of (15)–(18) performed
for two values of α are shown in Figs. 2–4, where
curves 1 and 2 correspond to α = 1 and α = 10, respec-
tively. The figures demonstrate that an increase in α
(with decreasing diffusivity D) results in decreasing
variances of the transverse coordinate and velocity
components at the detector (see Figs. 3a and 4), which
could be expected for a Brownian particle. An increas-
ing velocity variance is associated with a long “tail”
appearing in the probability distribution of the detector-
crossing time (Fig. 2) when α = 1: when α is large, the
particles are characterized by a narrower velocity scat-
ter, reaching the detector “simultaneously.” In addition,
Figure 3b demonstrates the deviation of the distribution
of the transverse coordinate from a Gaussian shape,
which increases with α.

CONCLUSIONS

We have found the solution to a problem that is
important for applications: we have obtained the prob-
ability distributions for a Brownian particle reaching a
detector. In doing so, we used a well-known solution to
a classical problem: the joint probability density func-
tion for particle coordinates and velocity at an arbitrary
moment. The simplest possible case considered here
provides a suitable framework for formulating a condi-
tion under which the relations between the probability
density functions are valid. Numerical results are in
complete agreement with a qualitative understanding of
Brownian motion.

Note that formulas relating the Eulerian and
Lagrangian statistics of a Brownian particle can readily
be established for multivariate probability densities.
For example, when the joint distribution of coordinates
is known, probability density functions analogous to
(10)–(13) can be found by invoking some properties of
the delta function 

ωuz
uz; α( ) uz dτϕ z uz; τ ; α( ),

0

∞

∫=

ϕ z uz; τ ; α( ) v 0 f z L, v z; t( ) 3α
2πτ2
----------- 3α

8τ
-------–





exp= =

× 1 τ2–( )2

2τ2
--------------------

1 τ2–( ) uz τ–( )
τ

------------------------------------–
2 uz τ–( )2

3
-----------------------+





.

f 2 L r⊥' r⊥'' v' v'' t' t'', , , , , ,( )

=  δ L Z t'( )–[ ]δ L Z t''( )–[ ]δ r⊥' R⊥ t'( )–[ ]〈

× δ r⊥'' R⊥ t''( )–[ ]δ v' V t'( )–[ ]δ v'' V t''( )–[ ]〉 ,
Moreover, if a particle crosses the detector plane
many times, the function f2 can be used to express a
quantity that is important for practical applications: the
mean square number of detector crossings

It is obvious that a change in the law of particle–
environment interaction (e.g., allowance for nonzero
correlation time of the stochastic process x(t) or parti-
cle-velocity relaxation time when x0(t) is a viscous fric-
tion force) or in the geometry of the problem (finite size
or curvature radius of the detector) will lead to a depen-
dence on additional parameters. However, since the
relationship established above relies only on general
properties of the delta function, it should be expected
that the relations obtained here remain valid under
more stringent conditions.
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Abstract—The depth distribution of light ions under grazing incidence on the surface of a semi-infinite layer
was analytically derived. It was assumed that the interaction between the ions and atoms of the medium is
described by potentials in the form of an inverse power function: (V(r) ~ r–1/ν). Calculations showed that the ion
distribution (ion density) peaks at some depth, rather than being a monotonic function. The more slowly the
potential decreases (the larger the value of ν), the more distinct the ion density peak and the deeper its position.
At large depths, the ion density drops according to a power law. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

When a target is irradiated by medium-energy ions
at grazing angles, the reflected flux consists largely of
ions that have undergone multiple small-angle scatter-
ing. The problem of small-angle scattering has been
comprehensively treated over the last few decades.
Using the Fokker–Planck approximation, Firsov
derived the angular spectrum of reflected ions (regard-
less of azimuth) for purely elastic scattering [1, 2].
Without using the diffusion approximation, he also
obtained the angular spectrum of reflected radiation for
the case when the interaction potential has the form of
an inverse quadratic function (V(r) ~ r–2) [3]. Subse-
quently, Firsov’s results were repeatedly extended.
Within the Fokker–Planck approximation, the distribu-
tions of reflected ions over both (polar and azimuth)
exit angles [4] and range [5] were deduced. In [6], the
angular spectrum of reflected radiation was found for
purely elastic scattering of ions (regardless of azimuth)
for inverse power interaction potentials without using
the Fokker–Planck approximation.

In treating solid-state-related phenomena, such as
sputtering and defect formation, it is, however, insuffi-
cient to know the distribution of ions only at the target
surface. Since recoil atoms are produced inside the tar-
get, the depth distribution of ions, which specifies the
density of recoil atoms knocked out by an ion flux, is of
great importance. To this point, the stopped ion distri-
butions over ranges and penetration depths have been
studied, most extensively [7]. However, not only
stopped but also moving particles generate defects.
Therefore, new information on depth distributions of
ions is needed. Of particular interest is grazing inci-
dence of an ion beam on the target. In this case, most of
today’s theories of sputtering [8, 9] fail, so that analysis
of sputtering spectra for grazing incidence of ions still
remains topical [10].
1063-7842/00/4509- $20.00 © 21105
While particle reflection at grazing incidence has
been extensively discussed in the literature, the depth
distribution of the particle density has remained practi-
cally untouched. In this work, an analytical depth
dependence of the volumetric ion density is derived for
the case when ion–medium interaction is described by
potentials in the form of an inverse power function
(V(r) ~ r–1/ν). In what follows, by particles in the
medium, we mean moving ions. It is worth noting that
the ratio of ion fluxes moving into and out of the
medium does not depend on the depth and is specified
by the parameter exponent ν. We found the characteris-
tic depth where the reflected ion flux forms. For small
glancing angles, this depth turns out to be much smaller
than the final ion range. Thus, the purely elastic ion
scattering approximation can be used in calculations.

STATEMENT OF THE PROBLEM: ION FLUX 
DENSITY VS. DEPTH

Let a broad ion beam with an initial energy T0 strike
the surface of a semi-infinite homogeneous target z ≥ 0
(the z-axis is directed normally to the surface and
inward into the medium) at an angle ζ0. The grazing
angle ζ0 is assumed to be small: ζ0 ! 1. Ion movement
is defined by the angles ζ and ϕ, where ζ is the angle
between the ion velocity vector and the surface and ϕ is
the azimuth angle (the initial azimuth is ϕ0 = 0). The
outward- and inward-directed fluxes correspond to
angles ζ > 0 and ζ = –|ζ| < 0, respectively. Medium-
energy ions are scattered at small angles ϑeff ! 1 (ϑeff is
the effective angle of single scattering). Therefore,
under grazing incidence of the ions (ζ0 ! 1), the angles ζ
and ϕ will also be small [1–6, 11]. For the motion of
light ions (M1 ! M2, where M1 and M2 are the masses
of a light ion and an atom of the medium, respectively),
energy losses due to elastic collisions can be neglected.
000 MAIK “Nauka/Interperiodica”
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Assume that ionization losses of ions in the medium
can also be neglected (this assumption will be justified
below). Then, the transport equation for ion flux den-
sity N( , ζ, ϕ) takes the form [6]

(1)

(2)

Here, N0 is the density of an incident ion flux;  =
wel(T0)z, a depth in free path units; wel(T0), the probabil-
ity of an ion with an energy T0 being scattered per unit
path length; Iν(γ2), the probability per collision that an
ion with the state (ζ', ϕ') will pass to the state (ζ, ϕ); and
γ2 ≈ (ζ – ζ')2 + (ϕ + ϕ')2. Within the small-angle approx-
imation, ζ and ϕ are usually allowed to vary infinitely.
For Iν(γ2), we will use the two-parameter expression [6]

(3a)

For highly anisotropic scattering (ϑeff, γ2 ! 1),
expression (3a) yields

(3b)

The parameter ν specifies the rate of decrease of the
scattering probability with increasing γ. For Rutherford
scattering, ν = 1. It was shown [6] that, if ν > 1 [that is,
Iν(γ2) falls faster than γ–4], computations agree with
results obtained using the Fokker–Planck approxima-
tion for the angular variables. If 0 < ν < 1 [Iν(γ2) falls
more slowly than γ–4], the expression obtained for the
angular spectrum of backscattered ions essentially dif-
fers from Firsov’s results and the Fokker–Planck
approximation becomes invalid. The case ν = 0 is sin-
gular. Formally, the normalizing integral for small-
angle scattering indicatrix (3b) diverges at its upper
limit in this case. This means that, for such ν, the small-
angle approximation has virtually no domain of appli-
cability and deserves special consideration [12].

z̃

ζ∂N z̃ ζ ϕ, ,( )
∂z̃

--------------------------- dϕ' dζ'Iν ζ ζ'–( )2 ϕ ϕ'–( )2+( )
∞–

∞

∫
∞–

∞

∫=

× N z̃ ζ' ϕ', ,( ) N z̃ ζ ϕ, ,( )–{ } ,

N z̃ 0, ζ 0, ϕ>=( ) N0δ ζ ζ0–( ) δ ϕ( )( );=

N z̃ ∞ ζ ϕ, ,( ) 0.

z̃

Iν γcos( )

=  
νϑ eff

2ν 4 ϑ eff
2+( )ν

π 4 ϑ eff
2+( )ν ϑ eff

2ν–[ ] ϑ eff
2 2 1 γcos–( )+[ ]1 ν+

--------------------------------------------------------------------------------------------------------,

2π γIν γcos( )sin γd

0

π

∫ 1.=

Iν γ2( ) 1
π
---

νϑ eff
2ν

ϑ eff
2 γ2+[ ]1 ν+

-------------------------------- ν 0>( ),=

2π γIν γ2( ) γd

0

∞

∫ 1.=
The parameter ϑeff specifies the scattering anisot-
ropy. If ν < 1, ϑeff is related to the mean square of the
single-scattering angle as

(4)

For small ϑeff, indicatrix (3b) describes the small-
angle scattering probability for an inverse power poten-
tial V(r) ~ r–1/ν [6, 11].

Using the method of eigenfunctions, one of the
authors [6] derived a simple analytical expression for
the distribution of reflected ions over polar exit angles
(regardless of azimuth) in a quasi-diffusion approxima-
tion (ζ0, |ζ| @ ϑeff):

(5)

Here, Sν(|ψ|) is the integral of the ion reflection function
over azimuth angles and |ψ| = |ζ|/ζ0 is the reduced
reflection angle.

The quantity Sν(|ψ|)d|ψ| is the number of ions leav-
ing a unit surface area in a unit time at angles between
|ψ| and |ψ| + d|ψ|. The integrated-over-azimuth ion flux
density at an arbitrary depth is given by

(6)

Expression (6) is the expansion of the solution of
transport equation (1) over a complete set of orthonor-
mal eigenfunctions Φλ(ζ) at grazing angles. In the
posed problem, the eigenfunctions Φλ(ζ) have the
form [6]

(7a)

(7b)

Here, Γ(x) is the Euler gamma function [13].
Using orthogonality condition (7b) for the functions

Φλ(ζ), one can find the expansion coefficients Cν(λ):

(8)

γ2〈 〉 ν 2 1 γcos–〈 〉 ν
4ν

1 ν–
------------

ϑ eff

2
-------- 

 
2ν

 0 ν 1< <( ).≈≈

Sν ψ( ) ζ dϕN z̃ 0, ζ , ϕ–=( )
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∞
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1 2ν+
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2 πν/ 1 ν+( )( ) ψ
1 2ν+
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ψ
1 2ν+
1 ν+

---------------–

+ +cos

---------------------------------------------------------------------------------------------.

N z̃ ζ,( ) λCν λ( ) λ3z̃–( )Φλ ζ( )exp λ .d

0

∞
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Φλ ζ( ) 3/πλ( ) dω ωζ
aν

λ3
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0
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1
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where the reflection function Sν(|ψ|) is defined by (5).
To explicitly find the expansion coefficients Cν(λ), it

is convenient to use the Mellin transformation [14].
Eventually, we have

(9)

The integral in (9) is taken along any straight line
lying in the domain of analyticity of the integrand,
−(1 + ν)–1 < Res < (1 + ν)–1.Thus, using formulas (6),
(7b), and (9), we can find the integrated-over-azimuth
ion flux density N( , ζ) at any depth inside the medium.

DISTRIBUTION OF IONS WITH DEPTH

The calculation of the space–angular ion distribu-
tion N( , ζ) at an arbitrary depth is a challenge. It was
noted, however, that sometimes we need only know the
ion distribution with depth, that is, their volumetric
density ρ( ) (hereafter, the ion density), regardless of
the direction of their movement:

(10)

The ion distribution function f( , ζ) is related to the
flux density N( , ζ) as N( , ζ) = ν0 f( , ζ), where ν0 is
the ion velocity [15].

Let us distinguish ions moving inward into the
medium (inward-directed flux) and those moving in the
opposite direction, i.e., to the boundary (outward-
directed flux). Then, the ion density at a depth  can be
represented in the form

(11)

The parameters ρ+( ) and ρ–( ) stand for the depth
ion distributions in the inward- and outward-directed
fluxes, respectively:

(12)

When substituting expression (7a) for the eigen-
functions Φλ(±ζ) into (12), one should bear in mind
that the order of integration with respect to ω and ζ can-
not be changed. Therefore, we will proceed as follows.
Multiply Φλ(±ζ), introduced by (7a), by exp(–ζδ) and
take the integral with respect to ζ from zero to infinity,

Cν λ( ) π 3
λ

---------- ds
2πi
--------

aν

ζ0
2ν 1+ λ3

------------------- 
  s–

C

∫=

× 1
Γ 1 s–( )Γ 2ν 1+( )s( ) π ν 1+( )s( )sin
-----------------------------------------------------------------------------------------.

z̃

z̃

z̃

ρ z̃( ) dζ f z̃ ζ,( ).

∞–

∞

∫=

z̃
z̃ z̃ z̃

z̃

ρ z̃( ) ρ+ z̃( ) ρ– z̃( ).+=

z̃ z̃

ρ± z̃( ) ν0
1– dζN z̃, ζ±( )

0

∞

∫=

=  N0ν0
1– λCν λ( ) λ3z̃–( )exp λ Φλ ζ±( ) ζ .d

0

∞

∫d

0

∞

∫
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changing the order of integration with respect to ω
and ζ. Then, proceeding to the limit δ  +0 under the
integral with respect to ω, we will eventually obtain

(13)

From (13), (12), and (11), we have

(14)

(15)

Thus, the density of outward-moving ions is (ν +
1)/ν times less than that of inward-moving ions at any
depth. The ratio ρ–( )/ρ+( ) does not depend on depth
and monotonically decreases from 1/2 at ν = 1 to zero
at ν  0.

Using the explicit form (9) of the expansion coeffi-
cients Cν(λ), one easily finds the depth distribution of
the ion density from (14):

(16)

where

(17)

(ρ0 is the incident ion density).
In (16), the integral is taken along any straight line

parallel to the imaginary axis in the range 0 < Res <
(ν + 1)–1 in the complex plane. As follows from (16),
the problem has the property of self-similarity: all the
problem parameters (except ν) are combined into the
single reduced depth τ, which governs the ion density.
In view of (4), the reduced depth [see (17)] can be writ-
ten as

(18)

where 〈 (T0)〉  = wel(T0)〈γ2〉  is the mean square of
angle of scattering for an ion with an energy T0 over a
unit length.
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∞

∫ 3
2λ
------- 1
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1ν 1+
---------------± 

  .=
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---------------ρ z̃( ),=
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z̃ z̃
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ds
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C
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Γ 1 s–( )Γ 2ν 1+( )s( ) π ν 1+( )s( )sin
-----------------------------------------------------------------------------------------,

τ
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Γ 1 ν–( )

2ν 1+( )Γ 1 ν+( )
------------------------------------------
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2
-------- 
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Expressions (16)–(18) show that the quantity

(19)

is the only problem parameter that has the dimension of
length. It is the characteristic depth of formation of the

reflected ion flux (ltr ≈ 2/〈 (T0)〉  is the transport length
of elastic scattering [15]).

From (16), one easily obtains the asymptotic
expression for ion density at small and large depths.
The poles of the integrand in (16) all lie on the real axis.
Therefore, the contour of integration can be deformed
in such a way that it does not intersect the poles. Bend-
ing the contour to the left and using the residue theo-
rem, one can expand ρ(τ) in a generalized power series
in terms of positive powers of τ. Bending the contour of
integration to the right yields the expansion of ρ(τ) in a
series in terms of negative powers of τ. From (16), the
ions density at small depths (τ ! 1) depends on the res-
idues of the integrand at the poles s = 0 and s = –(1 +
ν)–1; at large depths (τ @ 1), the density depends on the
residue at the pole s = (1 + ν)–1. Hence,

(20)

Thus, if 0 < ν ≤ 1, the near-surface ion density grows
with depth. The larger the value of ν, the faster the
growth. At large depths, the smaller the value of ν, the

zr ζ0
2ν 1+ / Θs

2 T0( )〈 〉 ζ0
2ν 1+ ltr∼∼
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Ion density vs. depth (in terms of zr = /〈 (T0)〉 for

ν = (1) 1 and (2) 1/2.

ζ0
2ν 1+ Θs

2

faster the decrease in the ion density. Such behavior can
be explained as follows. For steady-state target irradia-
tion and purely elastic scattering, the number of ions
striking a unit area per unit time equals that of ions
leaving the target (the total reflection coefficient is
unity [6, 15]). Before leaving the target, the ions must
undergo multiple scattering in order to “face” the
boundary. To do this, they must travel some distance,
i.e., penetrate to some depth. Therefore, the majority of
the ions will be concentrated at some depth rather than
on the surface.

The rate with which ρ(τ) grows (at small depths) or
drops (at large depths) depends on ν. The larger the
value of ν, the more anisotropic scattering. Conse-
quently, the smaller the value of ν, the more probable
large-angle scattering becomes and the faster the ions
turn about to leave the medium. That is why, as ν
decreases, the ion density grows more slowly at small
depths and drops faster at large depths.

To conclude this section, we note the following.
Energy loss of ions due to ionization can be

neglected until the ion path in the medium is less than
the maximum ion range R0. Therefore, it should be
required that the characteristic depth of reflection zr

[see (19)] be much smaller than the depth ζ0R0 at which
the ions lose a considerable part of their energy; that is,
the inequality

(21)

must be met.
With condition (21) fulfilled, the ion density ρ(τ)

has time to become asymptotic (τ @ 1, or z @ zr) at
depths where ion deceleration can still be neglected.
Neglecting inelastic loss of ion energy in calculating
reflection spectra within the Fokker–Planck approxi-
mation (ν = 1) was discussed in [5]. It was shown that,

if 〈 (T0)〉R0/  @ 1, the reflected flux consists mainly
of purely elastically scattered ions. Thus, inequality (21)
is the generalization of this condition for inverse power
potentials that decay faster than the Coulomb potential.

ION DISTRIBUTION WITH DEPTH 
FOR SEVERAL INVERSE POWER INTERACTION 

POTENTIALS

Consider specific values of the parameter ν that sim-
plify analytic representations for ρ(τ). The value ν =
1/2 corresponds to the Firsov inverse quadratic poten-
tial (V(r) ~ r–2). In this case, expression (16) is reduced to

(22)

Θs
2 T0( )〈 〉 R0

ζ0
2ν----------------------------- @ 1.

Θs
2 ζ0

2

ρν 1/2= τ( ) 2 πρ0
ds

2πi
-------- 4τ( ) s–

C

∫=

× Γ s( )
Γ s 1/2+( )
------------------------- πssin

3πs/2( )sin
---------------------------.
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The integrand here is the product of two functions:
[Γ(s)/Γ(s + 1/2)] and [sinπs/sin(3πs/2)], the Mellin
inverse being known for each [16]. Then, applying the
convolution theorem to the Mellin transformation, one
can write the integral in (22) in the form

(23)

At ν = 1/2, the reduced depth [see (18)] is τ =

〈 (T0)〉z/4 .

The integral in (16) can also be simplified at ν = 1.
In this case, indicatrix (3b) stands for the probability of
single scattering for the Coulomb potential (V(r) ~ r–1).
Ion density (16) can then be written in the easy-to-use
form

(24)

Since the Mellin inverses of the functions Γ(s +
1/2)Γ(1/2 – s)[Γ(s + 1/3)Γ(s + 2/3)]–1 and Γ(s) are tab-
ulated [14], the application of the convolution theorem
to ρν = 1(τ) yields

(25)

where

is the Anger function [13].
Substituting the integral representation for the

Anger function into (25) and changing the order of inte-
gration, we obtain

(26)

For ν = 1, reduced depth (18) is τ = 〈 (T0)〉z/12 .

The figure plots the ion densities given by (23) and

(26) with depth [in units of /〈 (T0)〉 for ν = 1
and 1/2. As ν decreases, the peak of the distribution is
seen to become less pronounced and shift toward
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smaller depths. The explanation is, as before, that at
smaller values of ν the ions turn about and leave the
medium faster.

Some concluding remarks. At small depths (z ! zr),
the number of ions inside the medium grows, peaks at
z ~ zr, and then (z @ zr) drops with depth according to a
power law. At z ~ ζ0R0, expression (16) for ion density
fails, because it does not take into account the energy
loss of the ions. For z > ζ0R0, the ion density vs. depth
dependence is essentially defined by ionization decel-
eration.
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Abstract—In the framework of classical physics, the formation of the intrinsic angular momentum of an elec-
tron is described and the correct value of the gyromagnetic ratio is obtained. The Maslov–Leray quasi-classical
quantization rules result in the exact values of Landau levels obtained from the Pauli equation. © 2000 MAIK
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Goudsmit and Uhlenbeck [1], in putting forward the
hypothesis for electron spin, thought of an electron as a
rigid body rotating about its axis. Afterwards, this
model was rejected, since the rotational velocity turned
out to exceed the velocity of light. In the course of time,
physicists began to regard spin as a fundamental quan-
tum feature of an electron that still cannot be explained
physically. However, the expression for the gyromag-
netic ratio does not include Planck’s constant; there-
fore, the correct result can be obtained in terms of clas-
sical physics. The aim of this study is to elucidate a for-
mation mechanism of electron spin in classical physics.

In this paper, the term “electron” refers to a point
particle that has a charge but does not have higher order
moments (electric and magnetic dipole moments, qua-
drupole moments, etc.). We will also show that the
Maslov–Leray quasi-classical quantization rules [2, 3]
allow one to obtain the exact Landau spectrum that fol-
lows from the Pauli equation.

1. OBSERVABLES AS TRANSFORMATION 
GENERATORS

Let us consider a canonical transformation due to a
close-to-identical generating function S [4]:

(1)

Hereafter, we assume summation over i from 1 to n.
Under transformation (1), an arbitrary observable
g(P, q) turns into g'(P, Q), so that

(2)

where {f, g} is the Poisson bracket of the functions f
and g:

(3)

S q P,( ) qiPi εf q P,( ), 0 ε ! 1.<+=

δg ε f g,{ } ,=

f g,{ } ∂f
∂pi

-------- ∂g

∂qi
------- ∂f

∂qi
------- ∂g

∂pi

--------.–=
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Formulas (1)–(3) show that observables play a two-
fold part. First, they are smooth real-valued functions
of the system state; second, they are canonical transfor-
mation generators.

Indeed, putting f(p, q) = Pi, we find that Qi = qi + ε;
i.e., the ith momentum component generates translation
along the ith coordinate axis, etc. Such a correspon-
dence between observables and canonical transforms
allows for the determination of observables in classical
mechanics through their associated canonical trans-
forms. Moreover, one should take into account the
Noether theorem, which relates classical integrals of
motion (energy, momentum, and angular momentum)
of a mechanical system to fundamental properties of
space and time [4].

Thus, we define momentum as a conserved quantity
that is the generator of translation in space; angular
momentum, as the generator of rotation; and energy, as
the generator of translation in time. Note that these def-
initions are absolutely general. They apply not only to
discrete mechanics but to arbitrary (classical or quan-
tum) field theories as well.

2. ELECTRON MOMENTUM IN A MAGNETIC 
FIELD

Consider a nonrelativistic point particle of mass m
and charge e that moves in a homogeneous static mag-
netic field B. The vector potential may be chosen in the
form A = B × r/2. Directing the third Cartesian coordi-
nate axis along B, we obtain the Lagrangian function

(4)

and the Hamiltonian function

(5)

L
m
2
---- ẋ1

2 ẋ2
2 ẋ3

2+ +( ) eB
2c
------ x1 ẋ2 ẋ1x2–( )+=

H
1

2m
-------= π1

eB
2c
------x2+ 

 
2 1

2m
------- π2

eB
2c
------x1– 

 
2 1

2m
-------π3

2,+ +
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where π1 = m  – (eB/2c)x2, π2 = m  + (eB/2c)x1, and

π3 = m  are the components of the generalized
momentum.

The quantities m , p = m , and p, which coincide
for a free particle, differ in the presence of the field.
Hence, we face the problem of determining a quantity
that for a charged particle plays the same role as
momentum for an uncharged one.

According to the definition in Sect. 1, neither m
nor p can be the electron momentum. However, using
the second Noether theorem [4], one can easily find the
integral of motion corresponding to the transformation
of translation in space:

(6)

Note that (6) is an evident integral of motion due to
the Lorentz force. In this case, the Poisson bracket
{H, p} = 0, which corresponds to the momentum con-
servation law. In contrast to p, quantity (6) is gauge-
invariant.

Thus, the quantity p meets all of the requirements in
Sect. 1 and should be considered as the momentum of
a charged particle in a static homogeneous magnetic
field. However, the transition from p to p is not canon-
ical, and the Hamiltonian function cannot be expressed
in terms of p. The complexity of describing magnetic
moment (spin) through the Lagrangian and Hamilto-
nian functions was noted as early as in 1934 by Fren-
kel’ [5] and has still not been overcome.

Conventional analysis of the interaction between a
charged particle and a magnetic field that uses the
Hamiltonian function expressed in terms of the gener-
alized momentum p is incorrect. Indeed, the energy of
a charged particle moving in a magnetic field (Hamilto-
nian function) expressed in terms of velocity coincides
with that of a free particle (the particle energy is con-
served in a magnetic field) [5].

The incorrect interpretation results from the uncer-
tain definition of dynamic systems in physics literature.
A Hamiltonian mechanical system is defined by an
even-dimensional manifold (phase space); a closed
nondegenerate 2-form Ω on it, which takes the canoni-

cal form Ω = piΛdxi in simplectic coordinates x
and p; and a smooth function (the Hamiltonian func-
tion) on this manifold [6]. Of the three required ele-
ments that specify Hamiltonian systems, physicists
commonly pay attention to the last one alone, i.e., the
Hamiltonian function. However, according to the defi-
nition, a Hamiltonian system changes when the phase
space M and/or differential form Ω defined on this
space change, even if the Hamiltonian function is
invariable.

Consider an additional closed 2-form F on a config-

urational manifold N: F = dxiΛdxj (dF = 0).

ẋ1 ẋ2

ẋ3

ṙ ṙ

ṙ

p mṙ
e
c
--B r.×+=

d
i∑

Fiji j,∑
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This form is referred to as the form of gyroscopic
forces. The sum Ω + F introduces a new simplectic
structure on the space of the cotangent bundle of the
configurational manifold N. If H(q, p) is some Hamil-
tonian function on M, the pair (Ω + F, H) defines a new
Hamiltonian system (with the same Hamiltonian func-
tion) on M. The form Ω + F may be represented canon-
ically by using the Darboux theorem [4]. To do this, we
write locally F = dA and A = (x)dxk, since F is

the closed form. Finally, we obtain Q + F = piΛdxi +

AiΛdxi = (pi + Ai)Λdxi in terms of the x and

p variables. Consequently, the variables  = xk and
πk = pk = Ak(x) are new canonical coordinates on M. The
Hamiltonian equations in these new coordinates have
the canonical form with the Hamiltonian function
H(x', π' – A) = H(x, p).

The Lagrangian description of a point particle with
a magnetic moment does not exist, since the state space
of such a system R6 × S2 is not the cotangent bundle of
any configurational manifold.

In electrodynamics, F is the Faraday 2-form, Fik is
the electromagnetic field tensor, and Ak are the compo-
nents of the vector potential. The closure of F (dF = 0)
is the consequence of the homogeneous Maxwell equa-
tions.

3. ANGULAR ELECTRON MOMENTUM 
IN A MAGNETIC FIELD

Let us apply the Noether theorem to system (4) of
the Lagrangian functions to find the integrals of motion
that correspond to rotations about the coordinate axes.
The Lagrangian function is found to vary under rotation
about the first and second coordinate axes. The addi-
tional term in the Lagrangian function is not reduced to
the total time derivative; i.e., there are no integrals of
motion corresponding to these transformations.

The integral of motion for rotation about the third
axis is defined and has the form

(7)

Thus, the situation is entirely similar to the quantum
mechanical case. The components of the angular
momentum cannot simultaneously be canonical
momenta. Only the projection of the angular momen-
tum onto a specified direction (quantization axis) is
conserved (defined). On the other hand, one can easily
verify that {J2, H} = 0 and {J2, Ji} = 0, so that the mag-
nitude of the total angular momentum is defined and
can be the canonical momentum simultaneously with
one of its components.

Akk∑
d∑

d
i∑ d∑

xk'

J3 m x1 ẋ2 x2 ẋ1–( ) eB
2c
------ x1

2 x2
2+( ).+=
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The augend in (7) is not an orbital angular momen-
tum, since p ≠ m . Having expressed the total angular
momentum J3 through orbital angular momentum L3 =
x1p2 – x2p1, we obtain

(8)

i.e., only the total angular momentum is conserved just
as in the Dirac theory. The addend S3 in (8) should be
identified with the projection of the intrinsic angular
momentum (spin) on the third axis. In the vector form,
the corresponding quantity is given by

(9)

but only the quantity Sn (n = B/B) is defined (con-
served).

4. ELECTRON GYROMAGNETIC RATIO

We will derive the expression for the electron gyro-
magnetic ratio using the relationships obtained in Sec-
tions 1–3. The third projection of the electron magnetic
moment is

(10)

Having expressed M3 in terms of the projection of
orbital angular momentum L3, we obtain

(11)

Thus, the orbital and spin gyromagnetic ratios are
equal to e/2mc and e/mc, respectively.

It is worth noting that, as in the Dirac theory, the
obtained results are valid only for elementary (not com-
posite) particles which have no internal charged struc-
ture. The term added to the momentum mv of an
uncharged particle should be considered as an attribute
of a charged particle just as the spin term in the expres-
sion for angular momentum. The origin of the additive
terms is evident. In a nonrelativistic approximation, the
field near an electron can be considered as Coulomb if
one disregards radiation processes. Then a circulating
energy flux appears around the particle in the plane
orthogonal to the B direction. This flux is responsible
for field terms added to the observables of a “bare”
(having no eigenfield) particle.

ṙ

J3 L3
eB
2c
------ x1

2 x2
2+( )– L3 S3;+= =

S
e

2c
------r B r×( ),×=

M( )3 = 
e

2mc
---------- r mṙ×( )3 = 

e
2mc
----------J3

e2B

4mc2
------------ x1

2 x2
2+( ).–

M3
e

2mc
----------L3

e2B

2mc2
------------ x1

2 x2
2+( )–=

=  
e

2mc
----------L3

e
mc
-------S3+ Morb Mspin.+=
The field additive to the momentum mv of a bare
particle is calculated by the formula

(12)

where E0 = e(r – r0(t))/|r – r0(t)|2 is the eigenfield of the
particle, r0(t) is the electron radius vector, B is a homo-
geneous external field, and V is the volume of a sphere
centered at the electron position.

The field term added to the momentum gives, in its
turn, the field contribution to the orbital angular
momentum:

which exactly coincides with field term (9).

5. QUASI-CLASSICAL QUANTIZATION 
OF ELECTRON ENERGY

In cylindrical coordinates ρ, α, and z that is directed
along B, the Hamilton–Jacobi equation for the charac-
teristic action function S has the form

(13)

The coordinates α and z are cyclic, and hence, the
solution of equation (13) can be represented in the form

(14)

where bα and bz are arbitrary constants.

Substituting (14) into (13), we obtain

(15)

The principal Hamiltonian function V(ρ, α, z; E, πα,
πz; t) = –Et + S is a function of canonical transformation
from the variables ρ, α, z; πα, πz to the variables t0, aα,
az, E, ba, and bz, which are constants. The new and old
variables are related as

p f
1

4πc
--------- E0 B× Vd

V∫=

=  
1

2πc
--------- AdivE Vd

V∫
2e
c

------A r0 t( )( ),=

L f r0 p f× e
c
--r0 B r0×( ),×= =

∂S
∂ρ
------ 

 
2 1

ρ
---∂S

∂ρ
------ 1

2
---mωρ– 

 
2 ∂S

∂z
------ 

 
2

+ + 2mE,=

ω eB
mc
-------.=

S R ρ( ) bαα bzz,+ +=

R ρ( ) 2mE bz
2– bα /ρ mωρ/2–( )2–[ ]1/2 ρ.d∫±=

t t0– ∂S/∂E=

=  m 2mE bz
2– bα /ρ mωρ/2–( )2–[ ] 1/2– ρd∫±

aα ∂S/∂bk mω/2 bα /ρ2–( )∫±= =

× 2mE bz
2– bα /ρ mωρ/2–( )2–[ ] 1/2–

dρ α ,+
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(16)

According to [4], instead of the generalized
momenta πρ and πα, we introduce new constant
momenta 

(17)

(18)

where integration is over the period of the associated
coordinate.

Expression (17) then takes the form

where  are the zeros of the integrand.

Taking the integral with the theory of residues, we
come to 

(19)

Note that this expression differs from those used in
electrodynamics earlier [7].

Projecting the particle trajectory onto the plane (ρ, α),
we obtain a circle that either encloses, or does not
enclose, the origin, depending on the initial conditions.
Here, a positively charged particle moves clockwise in
this plane. The expression for bα is given in the follow-
ing form:

(20)

If the circle does not enclose the origin, there exist
points A and B on this circle where  = 0. Then, as fol-
lows from (20), bα > 0 in these points.

In the second case, there exist points C and D such
that vρ =  = 0. At the point D, Dvα = –ωRL, where RL

is the circle radius, and vα = |OD|, where |OD| < 2RL

is the distance of the point D to the origin. In this case,
 < –ω/2 and bα < 0.

az ∂S/∂z=

=  2mE bz
2– bα /ρ mωρ/2–( )2–[ ] 1/2– ρ z,+d∫+−

πρ ∂S/∂ρ=

=  2mE bz
2– bα /ρ mωρ/2–( )2–[ ]1/2

,±

πα ∂S/∂α bα ,= =

πz ∂S/∂s bz.= =

Iρ
1

2π
------ πρdρ,∫°=

Iα
1

2π
------ παdα ,∫°=

Iρ
1
π
--- 2mE bz

2– bα /ρ mωρ/2–( )2–[ ]1/2 ρ,d
ρ1*

ρ2*
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ρ1 2,*

Iρ
E
ω
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bz
2

2mω
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2
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bα

2
--------.–+=

bα πα mρ2α̇ mωρ2/2+ mρ2 α̇ ω/2+( ).= = =

α̇

ρ̇
α̇

α̇
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We will consider the case where the circle encloses
the origin more carefully. In this case, Iα = –bα, since
bα = πα = const and the coordinate α changes by 2π
over the period. Then, the Hamiltonian function has the
form

(21)

The rates of variation of ρ and α coincide (degener-
acy), since Iρ and Iα add up. It is common practice in
this case to introduce the momenta I = Iρ + Iα and P =
Iρ instead of the nonexistent momenta Iρ and Iα. Then,
the Hamiltonian depends only on I and bz:

(22)

The canonically conjugate variable Ψ that corre-
sponds to the action I is a linear function of time: Ψ =
ωt + Ψ0. The canonically conjugate variable Q = αL

corresponding to the new momentum P is a constant
and has the meaning of the angular coordinate of the
Larmor circle center. The momentum P is given by P =

mω /2, where ρL is the coordinate of the Larmor cir-
cle center.

If the circular projection of the particle trajectory
onto the (ρ, α) plane does not enclose the origin, we
have, instead of (21),

(23)

Considering I = Iρ, P = I + bα, and bz as new
momenta, one arrives at the same expression for Hamil-
tonian function (22). However, one should take into
account that other variables are used. Using the
Maslov–Leray quantization rules [2, 3], we obtain

(24)

and using (19), 

(25)

The latter exactly coincides with the Landau spec-
trum [8] resulting from the Pauli Hamiltonian.

The coincidence of the Maslov quasi-classical
quantization rules [3] with the exact quantum results
was first mentioned by J. Leray [2]. Maslov himself did
not point clearly to such a way of applying his quanti-
zation method. He studied only the case of infinitely
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large quantum numbers, i.e., the “correspondence prin-
ciple” of quantum mechanics.
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Abstract—Based on the available experimental data and the results of calculations carried out in this paper,

cross sections are estimated for single-electron stripping of  (Z = 1–7) ions with energies in the range E =
0.5–200 MeV/u due to collisions with H, He, N, O, or Ar atoms. Analytical approximations of the cross sections
are presented. © 2000 MAIK “Nauka/Interperiodica”.

OZ+
INTRODUCTION
Processes in which positive ions colliding with

atoms or molecules change their charge (ionization or
charge transfer) play an important role in many problems
of atomic-collision physics [1–3], plasma physics [4],
developing methods for accumulating heavy ions in
accelerators [5], the physics of cosmic rays and the
earth’s magnetosphere [6], etc. For example, such pro-
cesses occur in the interaction of ions from an anoma-
lous component of cosmic rays (ACCR) (H, He, C, N,
O, Ne, and Ar ions) with ions and molecules of the
earth’s upper atmosphere and determine the formation
and dynamics of the nuclear component of the earth’s
radiation belt. In spite of extensive experimental and
theoretical studies of the mechanisms for capturing
ACCR ions by the geomagnetic field and the dynamics
of ion fluxes in the earth’s radiation belt, these pro-
cesses have not yet been investigated quantitatively.
Information on the charge-state distribution of captured
ions, the spatial distribution of ion fluxes along the geo-
magnetic field lines, etc. is still lacking. This informa-
tion can be obtained by numerically simulating the
propagation of ACCR ions in the earth’s magnetic field,
subsequent capture of these ions by a geomagnetic trap,
and their motion in the radiation belt. In order to per-
form such calculations, one needs to know the cross
sections for stripping and charge transfer of ACCR ions
with energies in the range of 1–200 MeV/u in their
interaction with atoms and molecules of the upper
atmosphere.

In this paper, we determine the cross sections for
stripping of oxygen ions (the most abundant ions in the
ACCR) with energies in the range E = 1–200 MeV/u
due to collisions with atoms of light elements:

(1)
OZ+ A O Z 1+( )+ A e–; Z+ + + 1–7;=

A H, He, N, O, Ar.=
1063-7842/00/4509- $20.00 © 21115
The stripping cross sections (1) are calculated
numerically in the Bohr–Born approximation using the
Atom code. On the basis of the calculated cross sec-
tions, available experimental data, and scalings for the
stripping cross sections, we estimate the stripping cross
sections for processes (1) at energies in the range E =
0.5–200 MeV/u, accurate to a factor of 2. These cross
sections can be used to numerically simulate the cap-
ture of ACCR ions by the earth’s magnetosphere; the
results of the simulations will be published in a separate
paper.

BASIC PROCESSES RESULTING IN A CHANGE 
IN THE ION CHARGE STATE: CHARGE 

TRANSFER AND IONIZATION

Charge transfer and ionization are the basic pro-
cesses resulting in a change in the charge state of an
incident ion colliding with an atom or molecule. Such
processes were considered in [1–8] for a wide energy
range; a bibliography on the effective cross sections (up
to 1997) is presented in [9].

The charge of an ion colliding with a neutral atom
or molecule can either increase due to stripping (ion-
ization),

(2)

or decrease due to charge transfer (the capture of the
target electrons),

(3)

Here,  is the incident ion and A is the target atom or
molecule. The dots in processes (2) and (3) mean that
processes resulting in the excitation and ionization of
the target A can also occur. The total cross section for
the change in the charge of the incident ion is deter-

XZ+ A X Z a+( )+ …, a 1,≥++

XZ+ A X Z b–( )+ …, b 1.≥++

XZ+
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mined by the sum of the cross sections for the single-
electron and multielectron ionization (ion) and electron
capture (ec) processes, respectively:

(4)

As a rule, single-electron processes (a = b = 1) make
the major contribution to sum (4). Nevertheless, the
contribution from multielectron processes to the total
cross section may reach 30–50% under certain condi-
tions (see, e.g., [10, 11]).

In general, the cross sections for ionization and
charge transfer of an incident ion have different depen-
dences on such atomic parameters as the relative veloc-
ity v, the charge of the incident ion Z, and the charge of
the target nucleus ZT. Therefore, the relative contribu-
tion from each process is determined by the energies
and charges of the colliding particles. For high collision
energies v/Z > 1 au (1 au of velocity = 2.2 × 108 cm/s),
the cross section for the ionization of an incident ion
colliding with a neutral atom has the asymptotic form

(5)

and the charge-transfer cross section is determined by
the sum of the cross sections for radiative electron cap-
ture (REC) and nonradiative capture (NRC),

(6)

where C1 and C2 are constants. The charge-transfer pro-
cesses (3) are of great importance when a bare nucleus
is used as an incident ion and the capture of the target
electrons is a single process that changes the ion
charge. The sNRC cross sections are generally calculated
in the Brinckman–Cramers approximation, or its mod-
ifications [2], or approximated by semiempirical for-
mulas [12], whereas the sREC cross sections are calcu-
lated by the Stobbe formula [13–15]. The processes of
radiative and nonradiative charge transfer and their rel-
ative contribution to the total cross section are consid-
ered, e.g., in [15]. For fast oxygen ions with energies
E = 1–200 MeV/u, the charge-transfer cross sections (3)
are small compared to the stripping cross sections (2).
Therefore, the former are not considered in this paper.

METHODS FOR CALCULATING THE STRIPPING 
CROSS SECTIONS AT HIGH COLLISION 

ENERGIES

At high collision energies, the Born approximation
[16, 17] is used to calculate the cross section for the
ionization of incident ions (stripping cross section). In
this method, the scattering amplitude is given by the
product of the form factors of the incident ion and tar-

σtot σion
a( ) σec

b( ).
b 1≥
∑+

a 1≥
∑=

σion ZT
2 / ZP

4v 2( ),∼

σec σNRC σREC+ C1ZT
5 ZP

5 /v 11 C2ZT ZP
5 /v 5/2,+∼=
get atom in the representation of the transferred
momentum (q-representation):

(7)

where a0 is the Bohr radius, q is the transferred momen-
tum, FP, T(q) are the form factors of the incident ion and
target atom, and ε is the energy of the knocked-out elec-
tron.

The sum over P denotes summation over all electron
shells of the incident ion; and the sum over i(T) denotes
summation over all the final target states i, including
excitation and ionization. The minimum transferred
momentum is defined by the expression

(8)

where IP is the binding energy of an escaped electron
and ∆E is the excitation electron energy in the target
atom. The form factors F(q) have the form

(9)

(10)

where |0〉P and |0〉 j denote the electron wave functions
in the incident ion and the target atom, respectively, and
NT is the total number of target electrons.

For neutral atoms, we have NT = ZT.

The form factor |FT(q)|2 =  for bare nuclei and the
form factor for targets with 1s electrons (H or He) are
[17]

(11)

where d is a constant determining the degree of screen-
ing of a nucleus by 1s electrons.

For hydrogen atoms, we have NT = ZT = 1 and d = 1,
and for helium atoms, we have NT = ZT = 2 and d = 1.69.
The form factors FT(q) for other atomic shells are tabu-
lated in [18].

The calculation of the cross sections for stripping an
incident ion by formula (7) is rather complicated even
for single-electron targets because of the intricate
dependence of the lower limit of integration in (7) on
the energy of the knocked-out electron and the excita-
tion energy of the target-atom electron. Formulas (7)–
(10) are substantially reduced when the kinetic energy
of the incident ion is much higher than the excitation
energy of the target atom, i.e., v2 @ ∆E. In this case,
one can take

(12)

σion

8πa0
2

v 2
------------ dε dq

q3
------ Fp q( ) 2 FT q( ) 2,

qmin

∞

∫
i T( )
∑

0

∞

∫
P

∑=

qmin IP ε ∆ET+ +( )/v ,=

FP q( ) 2 ε eiqr 0〈 〉 P
2
,=

FT q( ) 2 ZTδi0 i eiqr 0〈 〉 j

j 1=

Nr

∑–

2

,=

ZT
2

F1s 1s, q( ) ZT NT
1

1 q/2d( )2+[ ]2
-----------------------------------,–=

qmin IP ε+( )/v ,≈
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i.e., the target electrons may be treated as motionless.
Under condition (12), formulas (7)–(10) are simplified
and the stripping cross section takes the form [19, 20]

(13)

(14)

(15)

From the physical point of view, the two terms in
sum (14) correspond to ionization by the screened tar-
get nucleus ZT and screened electrons NT. For ST(q) ≡ 1,
Eqs. (13) and (15) correspond to the Born approxima-
tion for ionization of an atom or ion by electron (or pro-
ton) impact (see, e.g., [16]).

Interaction between the electrons of the incident ion
and the target electrons may increase or decrease the
total stripping cross section, depending on the trans-
ferred momentum q. As q  0 (large impact parame-
ters), the form factor is FjT  1, whereas for q  ∞
(small impact parameters), we have FjT  0 [cf. (11)].
Accordingly, the effective screening is minimum
(ST(q)  0) as q  0 and is maximum for large
transfers of momentum q:

(16)

Therefore, the maximum cross section for stripping
of an incident ion by an atom is approximately propor-

tional to  + NT for high collision energies, where 
corresponds to the contribution from the interaction
with the nucleus, whereas NT stems from the interaction
with the target electrons. Thus, at high collision ener-
gies, the target electrons do not screen the nucleus and
even make an additional contribution to the stripping
cross section that is proportional to NT. The heavier the
target atom, the larger the cross section for stripping the
incident ion. For example, Smax(H) = 2 for ionization by
hydrogen atoms, whereas Smax(Ar) = 342 for argon
atoms. For intermediate and low collision energies,
scaling law (16) is no longer valid due to considerable
screening effects and the stripping cross sections are

scaled according to the semiempirical law σion ~ ,
which was obtained in [7].

Note that, for ST(q) =  + NT, the stripping cross
section (13) can be represented as a linear combination
of cross sections σe(v) and σp(v) for ionization by elec-
tron and proton impacts, respectively:

(17)

σion

8πa0
2

v 2
------------ dε dq

q3
------ FP q( ) 2ST q( ),

qmin

∞

∫
T

∑
0

∞

∫
P

∑=

ST q( ) = ZT F jT q( )
j

NT

∑–

2

NT F jT q( ) 2

j

NT

∑– ,+

F jT q( ) j eiqr j〈 〉 , qmin IP ε+( )/v .= =

Smax q( ) ZT
2 NT , q ∞.+

ZT
2 ZT

2

ZT
3/2

ZT
2

σion v( ) ZT
2 σp v( ) NTσe v( ),+=

σp v( ) σe v( ), v  @ I1/2,≈
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where I is the binding energy of the incident-ion elec-
tron.

Equation (17) corresponds to the Bohr approxima-
tion [21], where the velocity of the incident ion is so
high that the nucleus and electrons of the target can be
considered to be immobile [cf. (12)]. The Bohr approx-
imation (17) is applicable at sufficiently high collision
energies, when the velocity of an incident particle
exceeds the velocity of the K-electron of a target atom.

Another (ad hoc) approximation was proposed in
[20]. In this approximation, the dependence of the dis-
turbing charge ST(q) on the transferred momentum q
and the threshold dependence on the cross section for
electron-impact ionization σe(v) is presented in the
form

(18)

Thus, the calculation of the cross section for strip-
ping an incident ion colliding with a structural particle
is a rather laborious problem even in the Born approxi-
mation.

CALCULATION OF THE EFFECTIVE CROSS 
SECTIONS FOR STRIPPING OF OXYGEN IONS 

BY LIGHT ATOMS

Experimental data on the cross sections for stripping
of fast ions by atomic and molecular targets are
reported in a number of papers (see, e.g., [22–34]), and
the results of numerical calculations are presented in
[29, 31, 35, 36]. It is worth noting that experimental
data on stripping of light ions by light atoms (ZT < 10)
for energies E > 5 MeV/u are still lacking. However, it
is the energy range E = 0.5–30 MeV/u that is of practi-
cal interest for various applications, because the strip-
ping cross sections are maximum in this case. The cross
sections for stripping of oxygen ions by gas targets (H2,
He, N2, or Ar) were measured only for the energy range
0.1 < E < 5 MeV/u [22, 27, 28, 31], and the calculations
of the cross sections for O7+ + H2 and O7+ + He colli-
sions in the same energy range were performed in
[29, 31].

In this paper, we present the cross sections for
stripping of oxygen ions by light atoms for E = 1–
200 MeV/u. For this purpose, we used the experimental
data for E < 5 MeV/u and performed numerical calcu-
lations for higher energies. The cross sections were cal-
culated in the Bohr–Born approximation (17), in which
the experimental cross sections σe(v) for electron-
impact ionization of oxygen ions were taken from [37]
and the cross sections σp(v) for proton-impact ioniza-

ST q( ) ZT F jT q( )
j

NT

∑–

2

=

+ NT F jT q( ) 2 σe v( )/σp v( )( )
j

NT

∑– .
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tion were calculated in the Born approximation by the
Atom code (see [38]). The total cross sections for ion-
ization by protons were calculated taking into account
ionization involving electrons from all the shells of an
oxygen ion and the contribution from the processes of
excitation of inner electrons to autoionization states.
The wave functions of the outer and inner electrons of
an oxygen ion in both discrete and continuous spectra
were calculated by numerically solving the radial
Shrödinger equation with the effective potential of the
atomic residual [38]. The total cross sections σp(v) for
proton-impact ionization of oxygen ions for E = 1–
200 MeV/u are listed in Table 1.

H

O1+

O2+

O3+

O4+

O5+

O6+

O7+

100 101 102

10–20

10–19

10–18

10–17

σ, cm2

E, MeV/u

Fig. 1. Cross sections for stripping of  ions by H atoms.O
Z+
The calculated cross sections for stripping of oxy-
gen ions (17) by atoms of light elements in the energy
range E < 5 MeV/u exceeds the experimental data by a
factor of 5. This is not surprising, because the Born
approximation is no longer valid in this energy range.
Therefore, we used the experimental data [22, 27–31]
to estimate the cross sections for low energies, whereas
for high energies, the stripping cross sections were cal-
culated by formula (17). In the intermediate energy
range and in cases where experimental data were lack-

ing (e.g., for  + O collisions), the cross sections

were estimated by the semiempirical scaling  pro-
posed in [7] for the intermediate energy range. The

OZ+

ZT
3/2

100 101 102

10–17

10–18

10–19

10–20

He

O1+

O2+

O3+

O4+

O5+

O6+

O7+

E, MeV/u

σ, cm2

Fig. 2. Cross sections for stripping of  ions by He
atoms.

O
Z+
Table 1.  Total cross sections (cm2) for ionization of oxygen ions by protons as a function of proton energy

E, MeV O1+ O2+ O3+ O4+ O5+ O6+ O7+

1.56 1.8 × 10–17 9.5 × 10–18 4.5 × 10–18 2.3 × 10–18 1.1 × 10–18 1.5 × 10–19 5.5 × 10–20

3.12 1.0 × 10–17 5.0 × 10–18 2.6 × 10–18 1.3 × 10–18 6.9 × 10–19 1.3 × 10–19 4.7 × 10–20

6.24 5.9 × 10–18 2.8 × 10–18 1.5 × 10–18 7.8 × 10–19 4.1 × 10–19 8.4 × 10–20 3.2 × 10–20

12.5 3.2 × 10–18 1.6 × 10–18 8.0 × 10–19 4.5 × 10–19 2.3 × 10–19 5.1 × 10–20 1.9 × 10–20

25. 1.8 × 10–18 8.6 × 10–19 4.4 × 10–19 2.5 × 10–19 1.3 × 10–19 2.9 × 10–20 1.1 × 10–20

50. 9.5 × 10–19 4.7 × 10–19 2.3 × 10–19 1.3 × 10–19 7.4 × 10–20 1.6 × 10–20 6.2 × 10–21

100. 5.2 × 10–19 2.5 × 10–19 1.3 × 10–19 7.8 × 10–20 3.8 × 10–20 8.9 × 10–21 3.4 × 10–21

200. 2.8 × 10–19 1.3 × 10–19 6.9 × 10–19 3.8 × 10–20 2.1 × 10–20 4.8 × 10–21 1.8 × 10–21
TECHNICAL PHYSICS      Vol. 45      No. 9      2000
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cross sections for stripping the oxygen ions colliding
with H, He, N, O, or Ar atoms are presented in Figs. 1–5
for the energy range E = 0.5–200 MeV/u. The esti-
mated error in the cross sections is about a factor of 2.

Similar estimations of the cross sections for strip-

ping of  ions (Z = 1–7) by H, N, or Ar atoms in the
energy range E = 0.1–200 MeV/u were obtained in
[39]. In this case, the cross sections at high energies
were normalized using asymptotic semiempirical for-
mulas [40], which were obtained for the K-electron ion-
ization of H- and He-like ions. In general, the stripping
cross sections obtained in [39] for ion energies E >
50 MeV/u are from three to five times greater than
those calculated in this paper. Apparently, this stems
from the fact that, in this paper, the stripping cross sec-
tions are calculated taking into account the shell struc-
ture of oxygen ions, i.e., ionization of all the electrons
of an incident ion, including direct ionization and the
contribution from the excitation of inner electrons to
autoionization states.

To numerically simulate the dynamics of the ele-
mentary processes occurring in laboratory and astro-
physical plasmas, self-contained analytical formulas
for the cross sections are preferable. In this paper, the
effective cross sections for single-collision stripping of
oxygen ions in gases for energies of 0.5–200 MeV/u

OZ+
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100 101 102

E, MeV/u

O1+

O2+

O3+

O4+

O5+

O6+

O7+

10–19

10–18

10–17

10–16

σ, cm2

Fig. 3. Cross sections for stripping of  ions by N atoms.O
Z+
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Fig. 4. Cross sections for stripping of  ions by O atoms.O
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Fig. 5. Cross sections for stripping of  ions by Ar atoms.O
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Table 2.  Approximation parameters of cross sections for

stripping of oxygen ions (19) by hydrogen atoms (  + H)
for energies E = 0.5–200 MeV/u

Ion a1 a2 a3 a4 a5

O1+ –16.88 –0.4012 –0.07731 0 0

O2+ –16.94 –0.4730 –0.1080 0 0

O3+ –17.11 –0.5510 –0.1138 0 0

O4+ –17.40 –0.6154 –0.06562 0 0

O5+ –17.72 –0.4767 –0.1184 0 0

O6+ –18.69 0.3595 –0.7577 0.1542 0

O7+ –19.32 0.6130 –0.7524 0.1146 0

OZ+

Table 3.  Same as in Table 2 for stripping of  ions by
He atoms

Ion a1 a2 a3 a4 a5

O1+ –16.63 –0.3736 –0.04589 0 0

O2+ –16.70 –0.5054 –0.05561 0 0

O3+ –16.85 –0.6032 –0.05757 0 0

O4+ –17.12 –0.6255 –0.02963 0 0

O5+ –17.48 –0.3852 –0.1135 0 0

O6+ –18.12 0.3076 –0.8090 0.1814 0

O7+ –18.73 0.4927 –0.7582 0.1336 0

OZ+

Table 4.  Same as in Table 2 for stripping of  ions by
N atoms

Ion a1 a2 a3 a4 a5

O1+ –16.02 –0.2178 –0.0561 0 0

O2+ –16.13 –0.3785 –0.0462 0 0

O3+ –16.22 –0.5522 –0.02178 0 0

O4+ –16.44 –0.4742 –0.04067 0 0

O5+ –16.68 –0.4403 –0.03870 0 0

O6+ –17.36 0.6971 –1.250 0.4670 –0.0670

O7+ –18.30 1.723 –1.673 0.3476 0

OZ+ Table 5.  Same as in Table 2 for stripping of  ions by
O atoms

Ion a1 a2 a3 a4 a5

O1+ –15.99 –0.2146 –0.04480 0 0

O2+ –16.10 –0.3791 –0.03430 0 0

O3+ –16.20 –0.4777 –0.04310 0 0

O4+ –16.41 –0.4526 –0.03131 0 0

O5+ –16.66 –0.4057 –0.03462 0 0

O6+ –17.30 0.7231 –1.282 0.5093 –0.07984

O7+ –18.24 1.557 –1.409 0.2659 0

OZ+

Table 6.  Same as in Table 2 for stripping of  ions by Ar atoms

Ion a1 a2 a3 a4 a5

O1+ –15.91 –0.2102 –0.01757 0 0

O2+ –15.96 –0.2132 –0.03263 0 0

O3+ –16.05 –0.2849 –0.03587 0 0

O4+ –16.23 –0.1885 –0.05909 0 0

O5+ –16.52 0.04542 –0.1375 0 0

O6+ –17.21 1.085 –1.032 0.1971 0

O7+ –18.54 4.342 –4.627 1.824 –0.2635

OZ+
were approximated by the expression

(19)

where σ(E) is the stripping cross section in cm2/atom,
E is the kinetic energy of oxygen ions in MeV/u, and ai

are the approximation coefficients.

The approximation coefficients ai obtained for strip-
ping of oxygen ions by light elements are listed in
Tables 2–6.

σ E( ) 10
a1 a2 E( ) a3 E( ) a4 E( )log

3
a5 E( )log

4
+ +log

2
+log+

= ,
CONCLUSION

In this paper, based on the available experimental
data, numerical calculations, and scalings, we have
obtained the cross sections for the single-collision

stripping of  oxygen ions (Z = 1–7) colliding with
H, He, O, Ne, or Ar atoms in the energy range E = 0.5–
200 MeV/u. These data may be used for a number of
physical applications, e.g., for numerical simulations of
ion capture from the ACCR by a geomagnetic trap and
the determination of the lifetime of oxygen-ion beams

OZ+
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in accelerators in which the atoms of light elements are
the basic components of the residual gas in a vacuum
system.
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Abstract—The theory of separation in a Zippe gas centrifuge based on the radial averaging method has been
developed. A more general way of deriving the one-dimensional diffusion equation is proposed. The applica-
bility of the averaging method for an arbitrary distribution of the circulation flow along the centrifuge axis has
been demonstrated. The general solution has been obtained, and the optimal internal circulation, that is, a per-
fect centrifuge, has been defined. The maximum separative power of the perfect centrifuge is expressed as a
function of the external parameters. © 2000 MAIK “Nauka/Interperiodica”.
To design new effective gas centrifuges (GCs) for
isotope separation, it is necessary to have an accurate
evaluation of the reserves of the centrifuge output. At
present, the main efforts to describe GCs are directed at
developing calculation and simulation programs (see,
for example [1, 5]), although the GC efficiency limit
remains unknown. The GC efficiency is usually
expressed in units of the separative work done in a unit
time, that is, in units of the separative power of a GC:

(1)

where δU is the separative power of a GC; F, P, and W
are the feed, product, and waste flows in a GC, respec-
tively; NF, NP, and NW are the concentration in the flows
of feed, product, and waste of a GC, respectively; and
V is the value function

The separative power of GCs is governed by many
factors. One important factor is an internal gas flow in
the separation chamber of the GC rotor (Fig. 1). The
limiting estimate of the separative power of a GC
according to Dirac [6] is used rather widely:

(2)

where H is the GC rotor length, D is the diffusion coef-
ficient, ρ is the density of the gas being separated,
∆m is the difference between the molecular masses of
the isotopes (∆m = |m1 – m2|)), R is the inner radius of
the GC rotor, Ω is the angular rotation speed of the GC
rotor, k is Boltzmann’s constant, and T is the gas tem-
perature.

It follows from (2) that the separative power of mod-
ern centrifuges is several times less than the maximum
possible one. Attempts to achieve a GC efficiency com-
parable with the estimate in (2) have so far turned out
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to be futile. There are also other disagreements between
experiment and the results of (2). For example, the
experimental dependence of δU on the GC rotor length
is nonlinear. On the other hand, modern centrifuges
demonstrate an efficiency which is 10–20% higher than
predicted by the more detailed analytical Cohen model.
This gives cause to consider this model unusable.

The estimate in (2) has one more major drawback;
namely, it does not give any connection between the
separative power of a GC and the external (feed, prod-
uct, and waste) and internal (circulation) flows. The lat-
ter flow makes this estimate applicable only to a limit-
ing operation regime of a GC, namely, that of infinite
feed and circulation flows in the rotor. Centrifuges are
unable to operate in such a regime, one of the reasons
being that the separation factor in this limiting regime
tends to zero. Working parameters of the flows in GCs
are chosen as a trade-off between the requirements of
stability of the circulation in the rotor and a finite value
of the separation factor. Thus, the problem of defining
a set of parameters that ensure maximum efficiency of
GCs is of great importance.

In this article, we attempt a new approach to an ana-
lytical description of the separation process in a GC
using the radial averaging method in order to (1) prove
its applicability to an arbitrary distribution of the circu-
lation flow in the GC rotor and (2) find an optimal rela-
tion between the internal circulation in the rotor and the
external parameters of a GC, that is, to design a perfect
centrifuge (PC).

In Cohen’s method [7] the problem of two-dimen-
sional distribution of the concentration in the rotor is
reduced to a one-dimensional problem of the concen-
tration distribution along the GC axis. An advantage of
the method is its simplicity and the possibility of deriv-
ing analytical relations between the gas flow in the rotor
and the GC efficiency.

In Cohen’s original derivation of the one-dimen-
sional diffusion equation, the gas flow pattern in the
000 MAIK “Nauka/Interperiodica”
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rotor has been significantly simplified: (i) It was
assumed that the circulation flow in the rotor did not
vary along the GC and that flow closure occurred in
negligibly thin layers near the rotor ends. (ii) The feed
flow was assumed to be negligible in comparison with
the circulation flow in the rotor. It was therefore errone-
ously believed that Cohen’s one-dimensional diffusion
equation was inapplicable to a quantitative description
of the separation in GCs under the conditions of non-
uniform circulation flow along the rotor and finite feed
flow. For example, it was affirmed that a flow in the
radial direction would reduce the GC efficiency
because of convective mixing [6].

We will show that the one-dimensional diffusion
equation adequately describes an arbitrary circulation
flow in the GC rotor without sacrificing description
accuracy. In Fig. 1, a cylindrical coordinate system is
shown. The GC rotation axis corresponds to r = 0, and
the point z = 0 coincides with the feeding point. It is
assumed that the problem is two-dimensional and that
an isotopic approximation can be used; that is, the iso-
tope concentration does not affect the gas flow as a
whole.

Let us divide the flow inside the rotor into two com-
ponents: (1) the circulation (closed stream lines) and
(2) the transit flow (open stream lines). Mathematically,
this is equivalent to decomposition of the mass flux
vector field into vortex and potential components. Such
a decomposition exists and is unique for any continu-
ous vector field [8]:

(3)

where Y =  is the vector potential of the circula-

tion flow; ϕ is the scalar potential of the transit flow; VΨ
and Vϕ are the corresponding flow velocities; the
factor  ρD is introduced for convenience, and it is
assumed that ρD does not depend on the coordinates;
and the single nonzero component of Y is due to the
two-dimensionality of the flow.

In a regime with no product withdrawal (F = 0) and
zero radial mass flux (ρVr = 0), ρDΨr = ψ, where ψ is
the Cohen stream function [6]. In other cases, the circu-
lation potential does not coincide with the stream func-
tion. The main distinction is that the feed flow does not
make a direct contribution to ψ. This does not mean that
the feed flow does not affect the circulation. The feed
can still be considered as one of the mechanisms induc-
ing the vortex gas flow in the GC rotor (along with the
temperature gradient and mechanical agitation).

Cohen ignored the distinction between the two
kinds of flows in the rotor, on the assumption that the
feed flow is small. In real GCs, the feed and circulation
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flows are comparable, which is a necessary condition
for optimal operation, as shown below.

Similar to the expression for the mass flux, the iso-
tope mass flux F can be represented as

(4)

The vector potential YD defines the vortex isotope
mass flux, and the scalar potential ϕD defines the transit
isotope mass flux.

On the other hand, by definition, the isotope mass
flux is

(5)

where N is the molar concentration of the isotope and
f = (∆mΩ2)/(kT).

It is possible to represent (4) in the form

(6)

where ρVϕ is the vector of the potential component of
the mass flux in a GC and i is an index equal to P for
the enriching section of a GC and to W for the extract-
ing one.

With expression (6), the diffusion equation

(7)
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Fig. 1. Schematic diagram of a centrifuge.
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is reduced to an identity. Taking YD in the form YD =
(ρDYN + δf), where δf is an unknown function, gives
by implication the deviation of the vortex of the isotope
mass flux from the vortex of the average mass flux.
Equating expressions (5) and (6) to each other allows
one to transform Eq. (7) into the set of equations

(8)

The following substitutions were made in (5):
NρV = NρVΨ + NρVφ and

Thus, the terms containing NρVΨ cancel out and no
derivatives of Ψ remain in the equations, whereas the
terms involving ρVϕ remain. Eliminating the terms
containing ∂N/∂z from the first equation of (8) and the
terms containing ∂N/∂r from the second equation gives

(9)

where J = (Vϕ/D).

Up to now, no simplifications have been made;
therefore, set (9) is equivalent to Eq. (7). The second
equation in (9) can be subjected to radial averaging
under the conventional assumption that the concentra-
tion depends weakly on r, that is, by the substitution
〈N(r)X(r)〉 ≈ 〈N(r)〉〈 X(r)〉 . At the same time,

due to imperviousness of the boundaries to the isotope
flow (δϕ(R) = 0), and the term

∂N
∂r
------- frN 1 N–( )+–

ρVϕ ri

ρD
------------- N Ni–( )+

– Ψ∂N
∂z
------- 1

ρD
-------

∂δφi

∂z
----------- 

 – 0,=

∂N
∂z
-------–

ρVϕ zi

ρD
------------- N Ni–( ) Ψ∂N

∂r
------- 1

ρDr
----------

∂ rδφi( )
∂r

------------------–+ + 0.=

curl YD( ) = Ncurl ρDΨ( ) + ρDYgrad N( ) + curl δφ( )
=  NρVΨ ρDYgrad N( ) curl δφ( ).+ +

1 Ψ2
+( )–

∂N
∂r
------- frN 1 N–( ) ϑ r N Ni–( )+–

–
Ψ
r
----∂ rδφ( )

∂r
----------------- ∂δφ

∂z
---------+ 

  0,=

1 Ψ2
+( )–

∂N
∂z
------- frΨN 1 N–( ) ϑ z Ψϑ r+( )+–

× N Ni–( ) 1
r
---∂ rδφ( )

∂r
----------------- Ψ∂δφ

∂z
---------– 

 + 0,=

2πr
r

---------∂ rδφ( )
∂r

----------------- rd

0

R

∫ 2πrδφ 0
R 2πRδφ R( ) 0= = =

2πrΨ∂δφ
∂z

--------- r 0,≈d

0

R

∫

because the deviation of the vortex of the isotope mass
flux from the vortex of the average mass flux is small.
Now we obtain an equation similar to that of Cohen:

(10)

Here, 

Equation (10) differs from Cohen’s original equa-
tion in that it is applicable to an arbitrary distribution of
the circulation flow, and in the absence of circulation in
the rotor (Ψ = 0), the concentration gradient along the
0z-axis becomes equal to zero, although the feed flow
may be nonzero (ϑ z ≠ 0).

The radial velocity component ϑ r = ϑ r(z) related to
the feed flow depends on the feeding method. If feeding
is implemented near the centrifuge axis, then ϑ r > 0 and
the GC efficiency may be higher. Here, we will not
elaborate on this point. Let us suppose that the feed
flow does not give rise to the radial velocity component
(ϑ r = 0). This will not affect the radial velocity related
to circulation. In this case, the term containing ϑ r van-
ishes from Eq. (10) and it becomes entirely identical in
form to Cohen’s equation.

To integrate Eq. (10), it is necessary either to know
the circulation potential or to make some assumption
concerning its form. Let us introduce the following
assumption: Ψ = Ψ(r)Ψ(z). Then one can introduce the

circulation amplitude in the form Ψ0(z) = , as
well as the profile coefficient

(11)

where A is a constant characterizing the flow profile

along the 0r-axis; its maximum value is A =  when
Ψ = Ψ0(z)r.

Taking into account assumption (11), Eq. (10) takes
the form

(12)

To solve equation (12), it should be linearized.
Cohen linearized it on the assumption that the isotope
concentration is small (N ! 1). A more general linear-
ized form can be obtained by requiring only that the

∂N
∂z
-------–

f rΨ〈 〉
1 Ψ2〈 〉+
---------------------N 1 N–( )–

ϑ z

1 Ψ2〈 〉+
----------------------+

× 1
Ψϑ r〈 〉
ϑ z

----------------+ 
  N Ni–( ) 0.=

X〈 〉 1

πR2
--------- 2πrX r( ) r.d

0

R

∫=

Ψ2 z( )〈 〉

a AR
Ψr〈 〉

Ψ2〈 〉
----------------,= =

1/2

d
dz
-----–

N
1 N–
------------- 

 ln 
  faΨ0 z( )

1 Ψ0 z( )2+
-------------------------+

–
ϑ z

1 Ψ0 z( )2+
-------------------------

N Ni–
N 1 N–( )
---------------------- 0.=
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concentration difference be small (∆N ! 1) and taking
into account that

(13)

that is, 

is the first term of the expansion of the separation factor
αi into a series in N in the vicinity of Ni, where

To within the next series term ~(N – Ni)2 one can
obtain1

(14)

The general integral of Eq. (14) is

(15)

and the total separation factor of a GC is

Integral (15) can be expressed analytically in two
important cases: (1) when the circulation does not
depend on z and (2) for the case of optimal circulation.
For circulation flow Ψ0 constant along the z-axis we
have

(16)

1 For linearization one can also use the function

  and derive an analogous equation

The solution of the initial nonlinear equation is in between these
two approximations.

N Ni–( ) d
dN
-------

N 1 Ni–( )
Ni 1 N–( )
------------------------ 

 ln 
  N Ni–

N 1 N–( )
----------------------;=

N Ni–
N 1 N–( )
----------------------

α i

N 1 Ni–( )
Ni 1 N–( )
------------------------.=

Y N( )
N Ni–

N 1 N–( )
----------------------=

dY
dz
------–

faΨ0

1 Ψ0
2

+
----------------

ϑ z

1 Ψ0
2

+
----------------Y–+ 0.=

d
dz
----- α iln( )–

faΨ0

1 Ψ0
2+

----------------
ϑ z

1 Ψ0
2+

---------------- α iln–+ 0.=

α i z( )ln fa ϑ z
dz

1 Ψ0
2+

----------------

Hi

z

∫–
 
 
 

exp=

×
Ψ0

1 Ψ0
2+

---------------- ϑ z
dz

1 Ψ0
2+

----------------

Hi

z

∫ 
 
 

exp z,d

Hi

z

∫

χln αP 0( ) αW 0( ).ln–ln=

χln
πaΨ0ρD∆m ΩR( )2

kTFΘ 1 Θ–( )
----------------------------------------------=

× 1 1 Θ–( )e
ΘK HP– Θe

1 Θ–( )K HW–( ),
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where

and Θ = P/F is the ratio of the product/feed flows in a
GC (flow division factor).

A detailed analysis of the solution for constant cir-
culation is outside the scope of this article.

In addition, Eq. (12) can be compared with the equa-
tion for a symmetrical cascade

(17)

where the cascade stage number s corresponds to the
z coordinate, the enrichment factor ε is given by

(18)

the feed flow is ϑ z, and the stage waste flow L'' is
given by

(19)

The main difference between a centrifuge and a cas-
cade is that in the former a connection exists between
the waste flow (19) and the enrichment factor (18) via
the circulation potential Ψ0, making possible a varia-
tion of the enrichment factor in a GC along its inner
cascade, whereas in a conventional cascade the enrich-
ment factor is considered to be independent of the stage
number.

An optimization task can be set for the inner cascade
of a centrifuge. For an ideal cascade, the goal is a cas-
cade with minimum power consumption for a given
separation regime (for given F, P, NF, and NP), that is, a
cascade consisting of the minimum number of centri-
fuges. For an isolated centrifuge, minimization of the
power expended on maintaining the circulation flow
inside the rotor appears senseless. However, it is possi-
ble to state the problem of defining the circulation in the
rotor in such a way that the separative power is maxi-
mum for the given external parameters (the separation
regime). Below, this centrifuge will be called a perfect
centrifuge (PC).

There are four external parameters in both a centri-
fuge and a cascade: (1) concentration NF in the feed
flow, (2) concentration N0 at the feeding point (a more
convenient parameter for a GC than the product con-
centration), (3) the feed flow F, and (4) the flow divi-
sion factor Θ. A relation between two of these for the
ideal case can be indicated at once: N0 = NF. Relations
between the others should be established from the con-
dition of maximum separative power. The only internal
parameter in the proposed centrifuge model is the cir-
culation potential Ψ0(z). It is necessary to define Ψ0(z)
in such a way as to obtain the maximum separative
power for the given external parameters.

K
F

πR2ρD 1 Ψ0
2+( )

---------------------------------------,–=

dN
ds
------- εN 1 N–( ) P

L'' s( )
------------- NP N–( ),–=

ε
faΨ0

1 Ψ0
2+

----------------,=

L'' s( ) 1 Ψ0 z( )2.+=
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For a given feed flow F and the flow division fac-
tor Θ, the separative work [9] is

(20)

and will be a maximum along with the enrichment fac-
tor χ. A maximum of lnχ is attained if dlnχ/dz is a max-
imum at every point on the z-axis. The only remaining
arbitrary parameter in Eq. (14) is ψ0. By differentiat-
ing2 (14) with respect to Ψ0 (this step is analogous to
searching for the distribution of the flows in the ideal
cascade [6]), we obtain

(21)

from which it follows that

(22)

Let us note that lnαi(z = 0) = lnαP and lnαi(z = HP) = 0.
Consequently, the optimal Ψ0opt(z) has a maximum at
the feeding point and decreases down to

(23)

at the rotor ends.

Since the circulation flow is common to the enrich-
ing and extracting centrifuge sections, the centrifuge
optimization with respect to the circulation flow

2 From (14) it follows that

  The condition for the extremum is

  or

  In turn,

However, we should have obtained (dlnαi)/(dΨ0) = 0, because
lnαi is the extremal separation factor.

δU Θ 1 Θ–( )F χln( )2=

d
dz
----- α iln( )

faΨ0 ϑ z α iln–

1 Ψ0
2

+
------------------------------------.=

d
dΨ0
---------- d

dz
----- α iln( ) 

  0=

d
dΨ0
----------

faΨ0 ϑ z α iln–

1 Ψ0
2

+
------------------------------------

 
 
 

0.=

d
dΨ0
----------

faΨ0 ϑ z α iln–

1 Ψ0
2

+
------------------------------------

 
 
  ∂

∂Ψ0
----------

faΨ0 ϑ z α iln–

1 Ψ0
2

+
------------------------------------

 
 
 

=

+
∂

∂ α iln
--------------

faΨ0 ϑ z α iln–

1 Ψ0
2

+
------------------------------------

 
 
  d α iln

dΨ0
--------------.

d
dΨ0
----------

faΨ0 ϑ z α iln–

1 Ψ0
2+

----------------------------------- 
 

=  
fa 1 Ψ0

2–( ) 2ϑ zΨ0 α iln+

1 Ψ0
2+( )2

------------------------------------------------------------ 0,=

Ψ0 opt
ϑ z α iln

fa
----------------

ϑ z α iln
fa

---------------- 
 

2

1+ .+=

Ψ0 opt z H p, HW=( ) 1=
imposes one more relation on the parameters:

(24)

Thus, at HP = HW it is necessary that Θ = 0.5.
Substituting expression (22) into Eq. (14) gives the

following relation for the PC:

(25)

Equation (25) leads to the conclusion that long cen-
trifuges are rather inefficient. This follows from the
observation that the central part of a centrifuge in the
optimal regime makes a smaller contribution to the sep-
aration factor than the end parts (Ψ0 is maximal and
d(lnα)/dz minimal).

Equation (25) can be integrated in order to derive an
expression for the maximum attainable separation fac-
tor in a GC.

By introducing the denotations

(26)

the solution of Eq. (25) can be represented in the fol-
lowing form:

(27)

It is impossible to derive an analytical expression
for βi(li) from function (27).

The optimal circulation potential (22) can be written
in the same notation:

(28)

The relation

does not explicitly depend on the feed flow and can be
considered as the normalized separation factor per unit
length of the centrifuge, and quantity li can be consid-
ered as the effective length of a GC. An ideal depen-
dence of the separation factor on the feed flow and the
centrifuge length is plotted in Fig. 2. A data point of a
real centrifuge cannot occur above the curve presented
in the figure. For comparison, in the same plot, the
maximum separation factor is given for an optimized
GC with a constant circulation flow along the 0z-axis.
The points for real centrifuges presumably fall between
these two curves. Figure 2 shows that an increase in l,
that is, in either the rotor length (H) or the feed
flow (ϑ z), reduces the separation factor per unit length
of the GC.

The maximum separative power of a GC is plotted
in Fig. 3. The present theory allows one to more accu-

Θ
1 Θ–
-------------

αWln
αPln

------------.=

d α iln
dz

--------------
fa

2Ψ0 opt
----------------.=

βi

ϑ zi α iln
fa

-----------------; l zϑ zi; li Hiϑ zi,= = =

li βi 1 βi
2+ βi+( ) 1 βi

2+ βi+( ).ln+=

Ψ0 opt 1 βi
2+ βi.+=

βi

li

----
α i( )ln

faHi

---------------=
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rately estimate the maximum separative power of a GC
by taking into account the influence of the feed flow.

An ideal Ψ0opt(l) dependence is given in Fig. 4.
According to expression (11) for Ψ0, the optimal

1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0
li

βi/li

0 1 2 3 4 5 6 7 8 9 10

0.6

0.4

0.2

li

βi/li

1 2 3 4 5 6 7 8 9 100

2

4

6
ψ0

l

2

1

Fig. 2. The normalized separation factor per unit length of
the rotor of a perfect centrifuge (see Eq. (27) and definition
(26)). The solid line represents the perfect centrifuge; the
dashed one represents an optimized centrifuge with constant
circulation flow along the 0z-axis (see Eq. (16)).

Fig. 3. The normalized separative power per unit length of
the rotor for the perfect centrifuge (see Eqs. (27) and (20),
as well as definition (26)).

Fig. 4. The ideal profile of the intrarotor circulation poten-
tial (see Eqs. (27) and (28), as well as definition (26)). The
reference point for l values is the rotor cover.
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dependence of the flux ρVz on l coincides with Ψ0(l)
everywhere except for thin layers near the rotor covers.
To obtain a finite magnitude of Ψ0 at z = 0, it is neces-
sary to have a deltalike flow profile (ρVz(l) ~ δ(l – li))
near the cover.

CONCLUSIONS

(1) The radial averaging method is applicable, with-
out sacrificing accuracy, for describing the separation
in GCs for an essentially nonuniform distribution of the
circulation flow along the rotor length.

(2) The radial mass fluxes in GCs do not inadvert-
ently cause a decrease in the separative power.

(3) For the internal circulation in a GC there exists
an ideal distribution of the circulation potential and a
corresponding ideal distribution of the mass flux along
the rotor axis.
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Abstract—A nonlinear integral equation describing the evolution of spheroidal deformation of a drop that is
unstable with respect to its intrinsic charge is derived and solved for arbitrary values of viscosity. It was shown
that, due to an essentially nonlinear character of the phenomenon, the characteristic time of instability develop-
ment equals the time of tenfold increase in the amplitude of an initial, physically infinitesimal spheroidal defor-
mation of an unstable drop. The dependence of the instability characteristic time on the drop viscosity is
described by an increasing linear function. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Theoretical estimation of the characteristic time of
the instability of a highly charged drop is of interest for
various applications of the phenomenon in geophysics
and technical physics. It is also important, because the
instability development is difficult to observe directly
in experiments. In the numerous experiments con-
ducted to verify Rayleigh’s stability criterion for a
highly charged drop, observers have detected only the
initial and final states of the drops (see [1, 2] and refer-
ences therein). Theoretical estimates of the instability
development time for a highly charged drop were
obtained in [3–6] for an inviscid liquid, in which case
the characteristic time scale of the process depends
only on the relation between the unstable drop defor-
mation and the extent of drop charge supercriticality.
Using the same approach as in [3–5] and taking into
account the decrease in the instability growth rate due
to the viscous damping of liquid capillary motion in
spherical and spheroidal drops [7, 8], one can estimate
the influence of viscosity.

1. The spectrum of capillary oscillation of an iso-
lated drop of a conducting inviscid liquid of radius R
carrying a charge Q and characterized by a surface ten-
sion σ has the form

(1)

where n is the number of a capillary oscillation eigen-
mode and ρ is the liquid density [9].

It follows from (1) that, when W > 4, the principal
mode (n = 2) becomes unstable and its amplitude ζ

ωn
2 σ

ρR3
---------n n 1–( ) n 2+( ) W–[ ] , W

Q2

4πσR3
----------------,= =
1063-7842/00/4509- $20.00 © 21128
grows with time as ζ ~ exp(γ0t), where

and W2* = 4 is the critical value of parameter W for the
onset of the principal-mode instability.

If the liquid is characterized by a kinematic viscos-
ity ν∗ , then the growth rate of the principal-mode insta-
bility is lower by the value of the viscous damping dec-
rement (see Appendix):

(2)

where γg is the instability growth rate for a viscous
spherical drop and ν is the dimensionless viscosity nor-
malized to its characteristic value (Rσ/ρ)1/2. The
denominator of the last term in the expression for k(W)
characterizes the degree of drop charge subcriticality.

2. When W = 4, the drop is unstable with respect to
an infinitesimal surface deformation of the form ζ =
ζ0P2(cosΘ), which corresponds to excitation of the
principal mode of capillary oscillation. Such a capillary
oscillation can be excited, for example, by thermal
motion of liquid molecules. In this case, the amplitude
ζ0 is expressed as ζ0 = (σ/kT)1/2, where k is the Boltz-
mann constant and T is the absolute temperature of the
liquid. The excitation of a capillary wave ~P2(cosΘ)
corresponds to the elongation of the drop into a spher-

γ0
2σ
ρR3
--------- W W2*–( )

 
 
  1/2

,=

ηg γ0 γg
2σ
ρR3
--------- W W2*–( )

 
 
 

≡
1/2

1 1
1 νk W( )+
--------------------------–

 
 
 

,–≡

γg γ0 1 νk W( )+[ ] 1– ,≈

k W( ) 1 16
W 4+
-------------- 1

2 W W2*–( )
------------------------------+ + ,=
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oid of eccentricity e0 = (3ζ0/R)1/2 [3–5]. For a spheroid,
the critical value of W for the onset of the principal-
mode instability is known to be a decreasing function
of eccentricity [10]. In the linear approximation with
respect to the squared eccentricity e2, this function has
the form

(3)

where α = 1/3 [10].
Therefore, when W = 4, the amplitude ζ =

ζ0P2(cosΘ) of a thermal perturbation of an initially
spherical drop grows with time as an exponential with
the growth rate

where k(W) for W = 4 is rewritten by using (3) as fol-
lows:

An increase in the amplitude of a perturbation
~P2(cosΘ) corresponds to a further elongation of the
drop. Its eccentricity grows, the critical value of W
decreases according to (3) (i.e., the degree of charge
supercriticality increases), and the instability growth
rate increases. As the drop geometry changes from
spherical to spheroidal, the growth rate of the principal-
mode instability becomes a function of the extent of
spheroidal deformation, i.e., the squared eccentricity
e2. As shown in the Appendix, this function is

(4)

where χ denotes the instability growth rate for a
charged viscous spheroidal drop.

Thus, the amplitude ζ of a spherical surface pertur-
bation ~P2(cosΘ) grows with time as

(5)

3. Note that (5) is valid only when the relation
between the perturbation growth rate dζ/dt and the per-
turbation amplitude ζ is linear. To find the value of ζ at
any moment, we consider the sequence of values of ζ
taken after time intervals ∆ti (i = 1, 2, 3, 4, …) during
each of which expression (5) can be assumed to be
valid. The growth rate χ is a function of the spheroidal
deformation e2 increasing with time, where χ depends
on time. The interval ∆ti is determined by the condition
that change in the growth rate over the interval χi – χi – 1

W2* 4 1 αe2–( ),=

γd γ0 ηg–≡ 8σ
ρR3
---------αe0

2

 
 
  1/2

1
1 νk W( )+
--------------------------,=

k W( ) k e0
2( )≡ 3 1

8αe0
2

------------+ .=

χ γgd≡ γg 1
2

1 0.8ν+
--------------------e2– ,=

ζ ζ0eχ t

=

=  ζ0
8σ
ρR

3
---------αe2 1

1 νk e2( )+
------------------------- 1

2
1 0.8ν+
--------------------e2– t 

  .exp
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is much less than the growth rate at the end of the pre-
ceding time interval:

Then, the value of χi can be treated as constant and
equal to χi – 1 within the interval ∆t, and expression (5)
can be used to calculate the increase in amplitude ∆ζi.

Suppose that an initially spherical drop is unstable
and begins to elongate with growth rate χ0. The pertur-
bation amplitude will increase over an interval ∆t1 from
ζ0 to

This will cause an increase in e2 and, according to
(4), raise the growth rate to χ1. Over the next interval
∆t2, the perturbation amplitude will vary as

By the end of the interval ∆t2, the perturbation
amplitude, and hence e2, will have grown; accordingly,
the growth rate χ will become χ2 at the end of ∆t2. Dur-
ing the next time interval ∆t3, the perturbation ampli-
tude will increase as

Thus, for the ith interval, we write

(6)

In (6), ζi – 1 can be expressed in terms of ζi – 2, ζi – 3,
and all the preceeding values of the amplitude up to ζ0.
As a result, expression (6) becomes

In the limit of ∆tk  0 and i  ∞, we have

Substituting (4) for χ(e2(t)) in the last expression,
we obtain

In the linear approximation with respect to e2, valid
when e2 ! 1, we can write

∆χ χ i χ i 1–  ! χ i 1– .–≡

ζ1 ζ0 χ0∆t1.exp=

ζ2 ζ1 χ1∆t2.exp=

ζ3 ζ2 χ2∆t3.exp=

ζ i ζ i 1– χ i 1– ∆ti.exp=

ζ i ζ0 χk 1– ∆tk

k 1=

i

∑
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This means that the analysis that follows is valid
provided that ζ(t)/R ! 0.3. The equation then takes the
form

(7)

Thus, we obtain a nonlinear integral equation for the
amplitude ζ(t) of the unstable principal mode of surface
oscillation for a viscous charged drop.

4. Let us rewrite the equation in the following
dimensionless form:

To find a solution, we take the logarithm of the equa-
tion:

Then, we differentiate both sides of the resulting
expression:

Separating the variables, we integrate the result to
find

(8)

The terms containing the function arctanh in (8) are
much smaller than the remaining terms when X ! 0.3.
They affect the evolution of a spheroidal deformation
of the drop only at the final stage of the instability
development, when X ~ 1. In experiments on the Ray-
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leigh breakup of drops, we had R ~ 100 µm [1, 2] and
the amplitude of thermal capillary waves was ζ0 ~
0.1 nm; therefore, X0 ~ 10–6. The breakup of a drop that
is unstable with respect to its intrinsic charge (the loss
of excessive charge) starts when X ≈ 1 [2]. Hence, the
influence of the terms containing arctanh in (8) on the
drop evolution can be neglected. This is confirmed by a
direct calculation based on (8).

In the general case, equation (8) is too cumbersome
to yield an explicit form of the amplitude ζ = ζ(t) as a
function of time. Therefore, we consider asymptotic
situations. When ν = 0 (i.e., a = 0 and b = 1), by omit-
ting the terms containing arctanh, expression (8) is
transformed into

which yields

(9)

Thus, we obtain the time dependence of the spheroi-
dal deformation amplitude for an inviscid liquid drop
that is unstable with respect to its intrinsic charge
known from [3]. In the low-viscosity approximation,

only the terms containing either ~bX–1/2 or b  can
be retained in (8), and the spheroidal deformation
amplitude for a low-viscosity liquid drop unstable with
respect to its intrinsic charge has the same time depen-
dence as in (9) but with T0 multiplied by b; i.e., viscos-
ity increases the characteristic time of instability devel-
opment.

When the kinematic viscosity ν∗ , drop radius R, liq-
uid density ρ, and surface tension σ are such that
ν∗ (ρσ–1R–1)1/2 ≥ 1, the drop can be treated as highly vis-
cous [2]. When X ! 1, the terms containing ~X–3/2 in (8)
are dominant and (8) transforms into

yielding

(10)

It is clear that the time dependence of a spheroidal
perturbation amplitude for a highly viscous drop with
ν ≥ 1 is weaker than for an inviscid drop. The charac-
teristic time Tν of instability development for a viscous

drop is a /3 times longer than T0 for an inviscid liq-
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uid drop. Since X0 is small, the effect of viscosity turns
out to be significant.

The results of numerical calculations based on the
complete version of (8) and performed for various val-
ues of viscosity are shown in Figs. 1 and 2. They dem-
onstrate that the characteristic time of spheroidal defor-
mation of an unstable viscous drop is substantially
longer compared to the case of an inviscid liquid drop
even for ν ! 1. Figure 1 shows that, due to the strongly
nonlinear character of the process, the characteristic
time of instability development for a drop that is unsta-
ble with respect to its intrinsic charge is the time

2

1

τ

0.4

0.2

0

3

2

1

τ × 10–4

1

0.5

0
0.1 0.45 1

X × 105

Fig. 1. Dimensionless time versus dimensionless amplitude
of spheroidal deformation of a drop that is unstable with
respect to intrinsic charge for α = 1/3 and X0 = 10–6 in the
case of (a) an inviscid liquid (1) and a viscous liquid with
ν = 10–5 (2) and 10–4 (3) and (b) a viscous liquid with ν =
0.25 (1) and 2.5 (2).

(b)

(a)
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required for an initial deformation to increase tenfold.
After this time period, the curve t(X) levels out.

The dependence of the characteristic growth time Tν
of a spheroidal deformation of a drop that is unstable
with respect to intrinsic charge on the dimensionless
viscosity is represented by the simple linear graph in
Fig. 2, valid for both low and high values of viscosity.
The dependence Tν on ν shown in Fig. 2 can be analyt-
ically approximated by the expression

(11)

where T0 is characteristic dimensionless time of the
instability development for an inviscid liquid drop and
g is a numerical factor.

For α = 1/3, ρ = 10–3 kg/m3, X0 = 10–6, and σ =
0.07N/m, numerical calculations predict T0 ≈ 0.0684
and g ≈ 4035. The linear behavior of Tν(ν) is in agree-
ment with the asymptotic formula (10), which is valid
only for large values of viscosity.

CONCLUSIONS

The predicted effect of viscosity on the growth rate
of the spheroidal deformation amplitude for a drop that
is unstable with respect to its intrinsic charge is quite
obvious: it is a priori clear that the viscosity must
increase the characteristic time of instability develop-
ment. However, we provided the first quantitative esti-
mate for the viscosity effect on the essentially nonlinear
growth of a very small thermal deformation of the drop
geometry at the stability threshold. It is interesting that,
despite the nonlinearity, the characteristic time of insta-

Tν T0 gν ,+=

0 50 100

2

4

ν

τ × 10–5

Fig. 2. Dimensionless time of tenfold increase in the initial
amplitude of spheroidal deformation of a drop versus the
drop’s dimensionless viscosity, calculated numerically by
using (8) with α = 1/3 and X0 = 10–6.
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bility development turns out to be a linear increasing
function of viscosity.

APPENDIX

It is known from [9, 10] that, when a spherical con-
ducting drop carries a charge slightly greater than the
critical one, the drop is unstable and the amplitude of
the principal mode of capillary oscillation grows expo-
nentially, which corresponds to the drop’s elongation
into a spheroid. This process is accompanied by charge
redistribution over the drop surface, with its surface
density increasing at the apexes and higher modes of
the drop’s capillary oscillation becoming unstable. The
instability growth rate γn of any mode of a perfectly
conducting drop depends on the Rayleigh parameter W,
dimensionless viscosity ν, and eccentricity of the sphe-
roidal drop (the extent of its elongation) [11]. This is
illustrated by Fig. 3, where growth rate γ2 of the princi-
pal mode of a spheroidal drop is shown as a function of
e2 calculated for constant W and various ν by using the
following dispersion equation obtained in [11]:

s s2 n n 1–( ) n 2+( )αn+[ ] 2ν s2 n 1–( ) 2n 1+( )+

– s
ν
--- f n

s
ν
--- 

  s2 n n 1–( ) n 2+( )αn+( )

4

3

2

0 0.25 0.50

1

2

3

4

5

γsd

e2

Fig. 3. Principal-mode (n = 2) instability growth rate γsd =
γsd(e2) calculated for a charged spheroidal drop versus
squared eccentricity by using (1A) for W = 4 and ν = (1)
0.03, (2) 0.1, (3) 0.36, (4) 0.8, and (5) 1.2.
(1A)

Here, the following notation is used: s = Res + iIms is
the complex frequency; i is the imaginary unit; n is the
number of a capillary oscillation mode; σ is surface
tension; in(ζ) is the modified spherical Bessel function
of the first kind with a complex argument, defined as

where the expression

represents the spherical Bessel function of the first
kind; In + 1/2(ζ) and Jn + 1/2(ζ) are, respectively, the mod-
ified and usual Bessel functions of half-integer order;
and W is the Rayleigh parameter characterizing the
drop’s stability with respect to its intrinsic charge [2].
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If the drop charge is greater than the critical one, i.e.,
W > Wn*, then the nth-mode frequency sn is imaginary
and the nth-mode amplitude grows exponentially.

Equation (1A) is presented here in dimensionless
form (with R = 1, ρ = 1, and σ = 1). When e2 = 0, the
dispersion equation (1A) of capillary motion in a
charged viscous spheroidal drop reduces to the equa-
tion of capillary motion in a charged viscous spherical
drop derived in [8].

When the charge is slightly supercritical (i.e., the
value of |αn| is small), the growth rate increases with the
eccentricity. This is the case when a drop exhibiting
self-charge instability carries Rayleigh’s limit charge,
as in the experiments on Rayleigh’s criterion verifica-
tion (see [1, 2] and references therein). Then, the expo-
nential elongation of the drop is initiated by a thermal
fluctuation of its geometry proportional to the Legendre
polynomial P2(cosΘ) [3, 4].

Let us analyze the effects of viscosity, charge, and
eccentricity on the instability growth rate using the dis-
persion equation above. These effects cannot be
described in analytical form by using the dispersion
equation (1). For this reason, we derive the desired ana-
lytical results by approximating numerical results.

Figure 4 shows the real part of the complex fre-
quency s of the principal mode (n = 2) of capillary
oscillation of a spherical drop (i.e., the instability
growth rate γg) as a function of dimensionless viscosity
ν plotted for several supercritical values of the Ray-
leigh parameter W (W > W2*). In the domain of W val-
ues that are supercritical for drop instability, the curves
shown in this figure can be approximated by the analyt-
ical formula

(2A)

where the expression

represents the instability growth rate for an inviscid liq-
uid drop. Thus, viscosity reduces the instability growth
rate γs compared to the growth rate γ0 for an inviscid liq-
uid drop by the viscous damping rate ng:

(3A)

In the asymptotic limit of a low-viscosity drop,
when νk(W) < 1, (2A) can be rewritten as
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and (3A) takes the form

(4A)

Figure 3 shows the principal-mode growth rate γgd

for a charged spheroidal drop of a viscous conducting
liquid as a function of the squared eccentricity e2, cal-
culated for several values of viscosity and constant
supercritical charge (W = 4). In the linear approxima-
tion with respect to e2, these curves can be approxi-
mated by the expression

(5A)

where γg is given by (2A). For low viscosity, (5A) takes
the form

Using (5A), we express the viscous damping rate
(3A) of the principal-mode oscillation of a spherical
conducting drop as

For a low-viscosity drop, this expression reduces to

where ηg is from (4A).
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Abstract—Directed ion velocities in a vacuum arc discharge plasma are measured on the basis of a study of
the ion emission current response to a rapid change of arc current. It is shown that these velocities are about
106 cm/s, are determined by the cathode material, and are almost independent of the ion charge number. Apply-
ing a magnetic field results in an increase in the directed ion velocity. As the gas pressure increases, the directed
ion velocity decreases; this is the only case where the directed velocities are observed to depend on the ion
charge number. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Cathode spots occurring in a vacuum arc discharge
emit a plasma that, being a good conductor, lets the dis-
charge current flow through the gap between the cath-
ode and anode. The main parameters and applications
of this type of discharge are described in detail in [1–5].
Although the vacuum arc discharge has long been
actively studied and is commonly used in high-current
switches and plasma–ion technology, there is no gener-
ally accepted detailed physical concept of the mecha-
nism for such a discharge. As is known [1], the electron
energy distribution in a vacuum arc plasma is close to
Maxwellian, with a temperature of Te = 3–6 eV. The ion
plasma component is determined by the cathode mate-
rial; the ion charge number is Q = 1–6 [2]. The ions
move from the cathode spots with directed velocities of
vi ~ 106 cm/s. A number of papers were devoted to
studying the dependence of the ion velocity vi on the
ion charge number Q. In [6–8], it was shown that vi

increases with increasing Q as vi ∝  Qa, where 0.5 < α < 1.
In [8], this behavior was explained by the concept of
ion acceleration due to both gas-dynamic effects and
the passage of ions through the so-called “potential
hump,” which presumably exists in the cathode region
of a vacuum arc. According to the former mechanism,
the directed ion velocity does not depend on the ion
charge number, whereas the electrostatic acceleration
in the potential hump should result in an increase in the
directed velocity vi with increasing Q. According to
[9], in some cases, the velocities of ions emitted from
cathode spots depend on Q. The authors explain this
fact by ion acceleration in the potential hump, whereas,
in other cases, the ion velocities are independent of Q,
which is explained by acceleration due solely to gas-
dynamic effects. Therefore, at present, the available
experimental data concerning the influence of the ion
1063-7842/00/4509- $20.00 © 21135
charge number on the directed ion velocity in a vacuum
arc are rather contradictory. As a result, the same phys-
ical process, namely, ion acceleration in the cathode
region of a vacuum arc discharge, has been explained
on the basis of quite different (although not mutually
exclusive) hypotheses or even their combinations.

This study is devoted to the experimental investiga-
tion of directed ion velocities in the plasma of a vacuum
arc discharge. A distinctive feature of the study is the use
of the emission technique to diagnose a vacuum arc.

EXPERIMENTAL TECHNIQUE

A schematic of the experimental setup is presented
in Fig. 1. The design and operating principles of the dis-
charge circuit are the same as in [10, 11]. A trigger
pulse from a power supply 7 with a duration of 40 µs
and current of 20 A was applied to the gap between the
cathode 1 and the enveloping trigger electrode 2.
Applying the trigger pulse led to the breakdown
between electrodes 1 and 2 over the end surface of an
insulator 3 separating the electrodes. The discharge
plasma on the dielectric surface initiated a pulse vac-
uum arc between the cathode 1 and anode 4. The dura-
tion (about 500 µs) and current (100–300 A) of the arc
discharge were determined by the power supply 9. Dur-
ing the vacuum arc discharge, a plasma of the cathode
material emitted from cathode spots occupied the
anode cavity. We investigated cathodes made from C,
Mg, Al, Ni, Ti, Zr, Nb, Cu, Pb, or Bi. On the end surface
of the anode 4, at a distance of 12.6 cm from the cath-
ode, there were holes for extracting the ions. The ions
were extracted and accelerated by a multiaperture
accelerating–decelerating electrode system 6 fed with a
dc voltage of 10–25 kV from the power supply 10.
Next, the accelerated ions entered a time-of-flight mass
spectrometer with a 1.2-m base. The operating princi-
000 MAIK “Nauka/Interperiodica”
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ples, design, and parameters of the mass spectrometer
are described in detail in [12, 13]. The discharge cham-
ber and mass spectrometer were pumped out to P ~
(0.8–1.5) × 10–5 torr with a 500-l/s turbopump. To test
the mass spectrometer, the measured ion charge com-
position was compared with the results from other
experiments. Thus, our results are in excellent agree-
ment with the well-known and reliable data of Brown
[14] (see Table 1).

The emission methods for investigating a vacuum
arc discharge that are used in this study are based on
examining the response of the ion emission current
from the plasma boundary to a short-time influence of
external factors on the vacuum arc. Such a factor can be
a rapid change in the arc current, which leads to either
the disappearance or the additional creation of cathode
spots. In this study, we either short-circuited the vac-
uum-arc power supply with a high-speed switch (short-

+ –+–

+–

109

8

7

4
6

5321

Fig. 1. Schematic of the experimental setup: (1) cathode, (2)
trigger electrode, (3) ceramic insulator, (4) anode, (5) mag-
netic coil, (6) multiaperture acceleration–deceleration elec-
trode system, (7) trigger-pulse power supply, (8) switch or
jump-current power supply, (9) vacuum-arc power supply,
and (10) accelerating voltage source.
current mode) or applied an additional current pulse to
the discharge gap (jump-current mode). In the first
case, the vacuum arc current dropped from 100–300 A
to zero in 1.4 µs and the discharge voltage dropped
from Uarc = 25–50 V, which is typical of vacuum arcs,
to less than 10 V, which is insufficient to maintain the
discharge. In the second case, the current increased by
100–800 A in 2–4 µs. The power supply used to form
the additional current pulse included a 0.1-µF capaci-
tor, which discharged through the gap between the
cathode 1 and anode 4 when a control pulse was applied
to the high-voltage switch. Applying an additional cur-
rent pulse resulted in an increase in the discharge volt-
age to 100 V or even higher. Then, in about 5 µs, the
discharge voltage decayed exponentially to the usual
Uarc value. Both jump- and short-current modes were
switched on within 150–200 µs after the ignition of a
vacuum arc, when the basic parameters of the arc had
already reached their steady-state values. The response
of both the ion emission current and ion charge compo-
sition to this switching was somewhat delayed. The
time delay was determined mainly by the time required
for the ions to cover the distance from the cathode to the
emissive plasma boundary. Thus, the directed ion
velocity was found from the time required for ions to
cross the discharge gap.

ANALYSIS OF THE EXPERIMENTAL
RESULTS

Figure 2 presents the time evolution of the ion cur-
rent Ii through the vacuum arc after switching off the
power supply (short-current mode) for Al and Bi cath-
odes. It is worth noting that, for ions with different
charge numbers, the currents vary in proportion to each
other and the time evolutions are almost the same. Sim-
ilar results were obtained for all the cathode materials
we investigated. When a magnetic field from a short
magnetic coil 5 was applied to the discharge gap
(Fig. 1), the ion current decayed more rapidly (Fig. 3).
It is seen from Fig. 3 that, in the presence of a magnetic
Table 1.  Comparison of the measured charge composition of a vacuum arc plasma with the data from [14]

Cathode 
material

Data from [14] Our measurements Comparison

charge number composition, % average 
charge 

number 〈Q〉

 charge number composition, %  average 
charge 

number 〈Qm〉
, 

%1+ 2+ 3+ 4+ 5+ 1+ 2+ 3+ 4+ 5+

C 100 – – – – 1.00 98 2 – – – 1.04 +4.0

Mg 37 63 – – – 1.63 30 70 – – – 1.70 +4.3

Ti 6 82 12 – – 2.06 14 58 27 1 – 2.15 +6.4

Zr 9 55 30 6 – 2.33 8 48 34 10 – 2.46 +5.6

Nb 5 46 37 12 – 2.56 7 40 35 15 3 2.67 +4.3

W 8 34 36 19 3 2.75 7 29 33 25 6 2.94 +6.9

Ta 13 39 28 18 2 2.57 9 40 30 16 5 2.68 +4.2

Qm〈 〉 Q〈 〉–

Q〈 〉
----------------------------
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field, the time evolutions for ions with different charge
numbers are almost identical. As in [15], the magnetic
field resulted in an increase in both the discharge volt-
age and the fraction of multiply charged ions in the vac-
uum arc plasma.

Variations in the distance between the cathode and
emissive plasma boundary resulted in proportional
variations in the characteristic decay time of the ion
current. Thus, reduction of the spacing Lca between the
Pb cathode and the emitting electrode from 12.6 to
7.8 cm led to a proportional drop in the time in which
the ion current fell by one-half (from 39 to 24 µs for Pb+

and from 35 to 22 µs for Pb2+ ions).
In the jump-current mode, the delay of the ion emis-

sion current response was generally determined by the
cathode material and the spacing between the cathode
and emitting electrode. The time evolution of the ion
current through the vacuum arc for a Mg cathode after
triggering the jump-current mode is presented in Fig. 4.
Note that the currents of ions with different charge
numbers reach their maxima simultaneously. This was
true for all the cathode materials included in the study.

In both the short-current and jump-current modes,
the ion emission current response to a rapid change in
the arc current took place after a certain time interval t.
Since ionization of the cathode material in a vacuum
arc occurs mainly near cathode spots (no more than
1 mm from the cathode surface, which is much less
than the spacing Lca) and then the resulting plasma only
expands, the time t can be represented as

(1)

where tp, tacc, and tg are the time intervals during which
ions pass from the cathode to the emissive boundary,
cross the accelerating gap, and pass from the accelerat-
ing gap to the spectrometer shutter, respectively.

The times tacc and tg for ions with different charges
and masses can be easily calculated from the known
length of the accelerating gap, the spacing between the
emissive plasma boundary and the mass-spectrometer
shutter Lg, and the accelerating voltage Uacc. Simple
estimates of the time tacc + tg carried out for different
ions and a typical value of Uacc (21 kV in most of the
experiments) show that the time t is one order of mag-
nitude longer than tacc + tg. Thus, the delay in the ion
current response is determined mainly by the time
required for ions to cross the discharge gap rather than
either the accelerating gap or the distance from the
emissive boundary to the spectrometer shutter. Never-
theless, the minor discrepancy between the time evolu-
tions in Fig. 2 may be related to a scatter in tacc + tg val-
ues for ions with different charge numbers.

Thus, from the measured cathode–emitting elec-
trode spacing Lac, for the directed plasma ion velocity
vi, we obtain

(2)

t t p tacc tg,+ +=

v i Lac/ t tacc tg+( )–( ).=
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In the jump-current mode, the time t was defined as
the time interval between the maxima of the discharge
current and ion current Ii. In the short-current mode, the
time t was defined as the time interval between the
maxima of the time derivatives of those currents. The
ion velocities determined by both these methods are
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presented in Table 2 for different cathode materials. It
is seen that the difference between the directed ion
velocities determined by the two methods is relatively
small (within ±35%). It is also seen from the table that
the light (e.g., Mg) ions are faster than the heavy (e.g.,
Bi) ions. We point out again the important result that

2
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Fig. 4. Time dependences of the ion emission currents in the
jump-current mode (600 A, 2 µs).
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Fig. 5. Ion velocity distribution functions for a vacuum arc
with (a) Al and (b) Bi cathodes.
the velocity, and hence the kinetic energy, of the
directed motion of the ions of a given element is almost
independent of the ion charge number.

A decrease in the distance between the cathode and
the emissive boundary results in an almost proportional
drop in the ion current decay time. Indeed, taking into
account the value of tacc + tg, which is included in the
measured t value, we find that a decrease in Lca by a fac-
tor of 1.6 (from 12.6 to 7.8 cm) leads to exactly the
same decrease in the time in which the Pb+ ion current
falls by one-half. For Pb2+ ions, the decay time
decreases by a factor of 1.5. This experimental fact is
additional evidence that the ion velocity in the expand-
ing plasma of a vacuum arc is constant and that the size
of the ionization zone is much less than the characteris-
tic length of the discharge gap. The close values of t for
Pb+ and Pb2+ ions show that, for ions of a given ele-
ment, the ion velocity as a function of the ion charge
number (vi = f(Q)) is almost constant.

By differentiating the ion current with respect to
time and taking into account the value of tacc + tg for the
ions with different charge numbers, we can obtain the
distribution function over the directed ion velocities in
the short-current mode. The results of applying this
procedure to the dependences from Fig. 2 are shown in
Fig. 5. It is seen that, for Al and Bi ions, not only the
maxima of the distribution functions, but also the distri-
bution functions themselves match each other fairly
well. On the assumption that the ion velocity distribu-
tion is isotropic, we find that the kinetic energy is
equally shared among ions with different charge num-
bers. Note that the distribution function obtained in this
way decreases with increasing ion velocity much more
slowly than the Maxwellian distribution.

Applying a magnetic field to the discharge gap
results in an increase in the arc voltage Uarc and the
appearance of ions with a higher charge number in the
plasma. In this case, however, the decay time of the ion
current in the short-current mode and the time in which
the ion emission current reaches its maximum in the
jump-current mode both decrease. Figure 6 shows the
dependence of the measured ion velocity vi for differ-
ent materials on the arc voltage Uarc. For each specific
material, the leftmost point in Fig. 6 corresponds to the
usual arc voltage Uarc without a magnetic field, whereas
the rightmost point corresponds to the increased value
of Uarc when a magnetic field is applied. It is seen that
the directed ion velocity increases with increasing arc
voltage. At the same time, the fact that, in the presence
of a magnetic field, the values of t for ions with differ-
ent charge numbers are almost the same indicates that
the increase in the ion velocities is independent of Q.
Thus, the additional energy supplied to the cathode
region of a vacuum arc due to increasing arc voltage is
equally shared among the ions with different charge
numbers; i.e. the velocity, and hence the kinetic energy,
TECHNICAL PHYSICS      Vol. 45      No. 9      2000
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of each ion increases by approximately the same quan-
tity independently of the ion charge.

The above results do not fully agree with the results
of [7], where the directed ion velocity vi was observed
to depend on the ion charge number Q. It was suggested
in [7] that the cathode drop in the potential of a vacuum
arc plasma was followed by a “potential hump” that
was higher than the arc voltage. The ions moving from
the cathode region of the vacuum arc acquired directed
velocities due to electrostatic acceleration when sliding
down this hump. Clearly, the kinetic energy of an ion in
this case is proportional to its charge number Q, and, on
the assumption that the ion motion is collisionless, the
ion velocity is proportional to Q0.5 .

In experiments [7], the duration of the vacuum arc
discharge was 0.5 s and a 20-l/s magnetic-discharge
pump was used to evacuate the discharge gap. In this
case, because of the long duration of the discharge and
the relatively low pumping rate (which decreases even
more with decreasing gas pressure), the actual pressure
in the system during the arc discharge might have been
much higher than that reported in [7]. In order to verify
this hypothesis, we carried out measurements of the ion
velocities at an elevated gas pressure in the discharge
gap. The experiments showed that the increase in the
gas pressure in the discharge gap during forced gas
puffing led to an increase in the time in which the ion
current decayed (see Fig. 7). In this case (as in [16]), the
fraction of multiply charged ions decreased. The effect
of a decrease in the fraction of multiply charged ions
with increasing pressure was thoroughly studied in
[17]. At the same time, the influence of an increase in
pressure on the above dependences was different for
ions with different charge numbers. Thus, for the ions
with lesser charge numbers, the increase in the time in
which the ion current decayed was more pronounced
than for the ions with greater charge numbers. As an
example of the influence of an elevated gas pressure on
the ion velocities, we present the time dependence of
the ion current in the short-current mode for a copper
cathode during forced argon puffing into the discharge
system (Fig. 8).

The shift of the dependences in Fig. 7 toward longer
times is clear evidence of a decrease in the directed ion
velocities. The dependences presented in Fig. 8 show
that the time in which the ion current falls by one-half
is 9 µs for doubly charged copper ions, whereas for sin-
gly charged ions, this time is 7 µs. The figure also pre-
sents the dependences calculated using the distribution
function over directed velocities of copper ions
obtained in [4], based on an analysis of data from [7].
One can see the tendency toward a disproportional
change in the velocities of singly and doubly charged
ions with increasing gas pressure. As the pressure
increases, the time dependences of the ion current
approach those described in [4]. The above influence of
an increase in the pressure on the velocities of ions with
different charge numbers was confirmed by measure-
TECHNICAL PHYSICS      Vol. 45      No. 9      2000
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ments of vi in the jump-current mode. Unfortunately, in
our case, because of the requirements related to the
electric strength of the accelerating gap, the gas pres-
sure was limited to a value of (4–7) × 10–4 torr. How-
ever, the fact of a disproportional change in the veloci-
ties of ions with different charge numbers was estab-
lished for different cathode materials and different
gases puffed into the discharge gap. As in [17], in order
to observe this effect, the pressure of heavier gases
(xenon or argon) can be lower than for lighter gases
(nitrogen or air). Therefore, the difference between our
results and the results of [7] can be explained by the dif-
ferent gas pressures in the discharge gap of the vacuum
arc. At the same time, for a pressure of 10–5 torr, the
directed ion velocities are observed to depend on the
ion charge number.

CONCLUSIONS

(1) The directed ion velocity in a vacuum arc dis-
charge plasma can be deduced from the time evolution
of the parameters of the ion current extracted from the
discharge plasma after a rapid change in the arc current.

(2) The directed ion velocity is on the order of
106 cm/s, is determined by the cathode material, and is
almost the same for ions with different charge numbers.

(3) When a magnetic field is applied to the vacuum
arc, the directed ion velocity increases, which corre-
lates with an increase in the arc voltage.

Table 2.  Directed ion velocities vi in a vacuum arc mea-
sured in (1) the jump-current and (2) short-current modes

Ions Q vi, 106 cm/s (1) vi , 106 cm/s (2) Velocity ratio

Mg 1+ 1.8 2.0 0.90

2+ 1.7 2.1 0.81

Al 1+ 1.8 2.5 0.72

2+ 1.8 2.6 0.69

3+ 1.6 2.5 0.64

Ti 1+ 1.6 1.5 1.07

2+ 1.5 1.4 1.07

3+ 1.4 1.5 0.93

Pb 1+ 0.5 0.4 1.25

2+ 0.5 0.4 1.25

Bi 1+ 0.4 0.3 1.33

2+ 0.4 0.3 1.33
(4) An increase in the pressure of the residual gas in
the discharge gap of a vacuum arc results in a decrease
in the directed ion velocity; this decrease is more pro-
nounced for ions with lower charge numbers.
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Abstract—A study is undertaken into radiation-induced conductivity of alkali halide crystals under X-ray exci-
tation and sequential excitation with X-ray and laser pulses within the absorption band of F- and F–-centers.
The basic conduction parameters (concentration and lifetime of carriers upon X-ray and photoexcitation) are
estimated. The possible processes responsible for the nonlinearity of the current–voltage characteristics are dis-
cussed. It is shown that an increase in the conductivity in strong electric fields may be due to a decrease in the
spatial localization of electrons in the conduction band of the insulator. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Investigations into radiation-induced conductivity
provide important information on the mechanisms of
generation, transfer, and recombination of carriers.
This information is needed for a deeper insight into the
behavior of insulator materials under ionizing radia-
tion. Of particular interest is the study of radiation-
induced conductivity in strong electric fields, which, as
was shown experimentally, exhibits substantial devia-
tions from Ohm’s law [1, 2]. The origin of the nonlinear
behavior of the current–voltage characteristics still
remains unclear. Some authors [1] suppose that the
nonlinearity is due to the presence of nonohmic con-
tacts. According to [2, 3], the superlinear behavior of
the current–voltage characteristics of crystalline
quartz, glasses, and alkali halide crystals under X-ray
irradiation is associated with the Onsager effect. More-
over, the above nonlinearity can stem from phenomena
such as charge carrier injection from metallic elec-
trodes, electrostatic and collisional ionization of color
centers in ionic crystals, and variations in the carrier
mobility in electric fields.

The purpose of the present work was to investigate
the nonlinearity of current–voltage characteristics in
alkali halide crystals at 104–105 V/cm. The alkali halide
crystals were chosen for our study owing to the known
mechanisms of radiation-induced carrier generation
and defect formation. We examined X-ray induced con-
ductivity and the photoconductivity induced by laser
excitation of F and F– color centers (the F- and F–-cen-
ters are the positively charged anionic vacancies with
one and two trapped electrons, respectively). Two exci-
tation methods were appropriate for use in our experi-
ments by the following reasoning. First, X-ray excita-
tion produces oppositely charged carrier pairs coupled
with each other through the Coulomb interaction. The
Onsager effect reduces the probability of their recom-
1063-7842/00/4509- $20.00 © 21141
bination due to the spatial separation of carriers in the
external electric field. Upon photoexcitation, a similar
situation can arise when the ionization of an F-center
creates a photoelectron and a positively charged
anionic vacancy. A different situation is observed upon
excitation of an F–-center, when the formation of a pho-
toelectron and a neutral F-center prevents the Onsager
effect. Thus, application of two excitation methods
makes it possible to determine how the Onsager mech-
anism affects the behavior of current–voltage charac-
teristics. Second, it should be expected that the mecha-
nism of electron–hole recombination upon X-ray exci-
tation differs from the mechanism of photoelectron
recombination at lattice defects under light excitation
of color centers. The difference in carrier recombina-
tion can be used as a guideline in distinguishing elec-
trons created through band-to-band generation and
electrons released from traps. Identification of the elec-
tron origin is of prime interest for the determination of
the contribution from carriers generated by collisional
ionization of color centers to the conductivity.

In this work, we evaluated the lifetime and concen-
tration of carriers under X-ray and photoexcitation. The
possible approaches to the estimation of carrier lifetime
are of considerable interest, because, in most cases, the
lifetime measurements from conductivity decay are
limited by instrumental temporal resolution [4].

EXPERIMENTAL TECHNIQUE

The schematic diagram of the experiment is shown
in the inset of Fig. 1. We studied single crystals of KBr,
KCl, NaCl, KI, and CsI grown from the salt melts
(high-purity grade). Thin plates with a cross section of
15 × 15 mm and a thickness of ≈150–350 µm were used
as samples. Platinum electrodes and a guard ring were
evaporated onto the samples to exclude the surface cur-
rent.
000 MAIK “Nauka/Interperiodica”
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X radiation was produced by exposure of an Al
target about 300 µm thick to a high-current electron
beam. The parameters of the electron beam were as fol-
lows: maximum electron energy ~0.3 MeV, pulse dura-
tion (at half-height) τi ≈ 200 ns, and current density
≈400 A/cm2.

Photoexcitation was achieved with a single mode
Q-switched YAG : Nd laser. The interelectrode space of
the sample was irradiated through a lateral face. The
energy fluence of laser radiation at a fundamental
wavelength of 1.06 µm at the sample location was
equal to 0.2 J/cm2 (half-height duration τl ≈ 30 ns). The
F–-centers were excited at the fundamental wavelength.
For excitation of the F-centers, the laser radiation was
converted with the use of a lithium niobate crystal into
the second harmonic with a wavelength of 0.53 µm.
The conversion efficiency was about 10%.

In order to compare the results of X-ray and photo-
conductivity measurements, it was expedient to per-
form cascade excitation. For this purpose, the crystal
subjected to X-ray coloration with the first pulse was
further excited under laser radiation. The effect of cas-
cade excitation on the KBr crystal is illustrated in
Fig. 2a by the oscillogram of optical transmission of
the sample at a He–Ne laser wavelength (λ = 0.63 µm)
(upper inset) and conduction currents. Note that light
pulse excitation within the absorption F-band results in
complete decay of the F-centers. The concentrations of
F- and F–-centers under X-ray irradiation were deter-
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Fig. 1. Current–voltage characteristics of crystals (1) CsI,
(2) KBr, (3) KCl, (4) KI, (5) NaCl, and (6) CsI–Tl (X-ray
excitation). The inset shows the schematic diagram of the
experiment: (1) X-ray radiation, (2) sample, (3) electrodes,
(4) guard ring, and (5) oscillograph.
mined from the optical transmission data (Fig. 2a)
according to the Smakula formula.

The current–voltage characteristics were measured
in air at room temperature. Negative pulsed voltage V
with a duration of 20 µs was applied across the sample
electrodes (Fig. 1). An electron accelerator was
switched on within 8 µs after the voltage application.

The time constant τRC, which is related to recharging
of the sample capacitance with a change in the sample
resistance, has been determined as τRC = (R1 + R2)C1,
where C1 = 10–11F is the interelectrode capacitance of
the sample, R1 = 100 Ω , and R2 = 50 Ω (Fig. 1a). In this
case, τRC (~1 ns) is less than the pulse rise time of the X
and laser radiation (~5 ns) and the signal is not dis-
torted. The current–voltage curves were plotted as the
current pulse amplitudes vs. the corresponding volt-
ages.

The absorbed X-ray energy of the samples was
determined from the dependence of the luminescence
of the CsI crystal on the excitation energy density. The
CsI sample was irradiated with electron beams of dif-
ferent powers, and the luminescence intensity was mea-
sured. The electron beam energy incident on the sample
was measured with an IMO-2N calorimeter. Then,
upon X-ray excitation of CsI, the energy W absorbed by
the sample was determined from the luminescence
intensity.

RESULTS

The dependences of the current density i and con-
ductivity σ on the electric field strength E upon excita-
tion of alkali halide crystals with X and laser radiation
are shown in Figs. 1 and 2. It is seen from Fig. 1 that,
under irradiation with equal doses, the current density
decreases in the series CsI, KBr, KCl, KI, and NaCl. In
CsI, the current is one order of magnitude larger than
that in the other crystals. However, the conductivity in
the CsI–Tl crystal is rather small, which is likely due to
the capture of carriers by the activator ions [5]. For KBr
and KCl crystals (Fig. 2), the current density upon exci-
tation with green light (λ = 0.53 µm), which ionizes
F-centers, exceeds the current density upon excitation
of the F–-centers with the first harmonic of laser radia-
tion (λ = 1.06 µm) by a factor of three or four.

For all the studied samples, the current–voltage
characteristics are significantly nonlinear upon X-ray
and photoexcitation. In the range of electric field
strength E ~ 104–105 V/cm, four portions could be dis-
tinguished in the current–voltage curves. In the first
portion (at E < 104 V/cm), the current–voltage charac-
teristics are almost linear, whereas in the second por-
tion (E ~ 104–2 × 104 V/cm), a superlinear increase in
the current is observed with an increase in the electric
field strength (i ~ E2). In the third portion, the depen-
dence of i on E becomes more gently sloping, and in the
fourth portion (at large E), the current–voltage charac-
TECHNICAL PHYSICS      Vol. 45      No. 9      2000
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teristics are close to linear again. The threshold field
strengths Em, which correspond to the transition of cur-
rent–voltage characteristics to the linear current
regime, differ slightly for different crystals and fall in
the range (4–6) × 10 V/cm. The dependences of the cur-
rent density on E upon X-ray and photoexcitation
(Fig. 2a) are similar in identical materials. Figure 2b
demonstrates the conductivity as a function of the field
strength. As can be seen, these dependences reach sat-
uration in the range (1–6) × 104 V/cm.

The radiation-induced conductivity of KBr and CsI
crystals was studied at different absorbed energy densi-
ties upon X-ray excitation and photoexcitation within
the absorption band of F- and F–-centers in KBr and
KCl crystals. The X-ray-induced conductivity is pro-

portional to the excitation energy density; i.e., σ ~ .
The photoconductivity excited within the absorption
band of F- and F–-centers changes linearly with a
change in the laser fluence. The results obtained con-
firm a fundamental difference in carrier recombination:
it follows the quadratic law under X-ray excitation and
exhibits a linear behavior under photoexcitation. This is
in reasonable agreement with the available data [6, 7].

DISCUSSION

According to [5, 8, 9], holes in alkali halide crystals
exposed to ionizing irradiation undergo a fast autolo-
calization (10–12 s). These holes and the neighboring

atoms form an -type configuration (X is a halogen
atom). This is the so-called Vk-center. The hole mobility
is close to zero, and only free electrons contribute to the
conductivity, either from their recombination with
Vk-centers or by their trapping. The main mechanism of
free electron capture in alkali halide crystals is capture
in F-centers with the formation of F–-centers.

The concentration and lifetime of carriers can be
determined from the experimental data in the following
way. The electron concentration in the conduction band
of alkali halide crystals under homogeneous excitation
with X and laser radiation in the bulk is given by the
equation

(1)

where n1 and n2 are the electron concentrations; G1 and
G2 are the generation rates of carrier pairs; τ1 and τ2 are
the lifetimes of electrons under X-ray and photoexcita-
tion, respectively; and t is time.

In the case of X-ray excitation, Eq. (1) holds without
regard for electron capture in trapping centers (i.e., at a
low concentration of color centers).

In alkali halide crystals at different excitation
energy densities, τ1 ~ 10–10–10–11 s [8], which is consid-
erably less than the X-ray and laser pulse lengths
(~10−8 s). Therefore, as a first approximation, we can

W

X2
–

∂n1 2, /∂t G1 2, n1 2, /τ1 2, ,–=
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consider the quasi-stationary case and rewrite Eq. (1) in
the form

(2)

On the other hand, n1, 2 can be determined from the
experimental current–voltage characteristics by using
the relationship

(3)

where e is electron charge and µ is the mobility.
For X-ray excitation, the generation rate of elec-

tron–hole pairs per unit volume can be derived from the
condition G1 = W/Aτi, where A = 1.5Eg is the energy
spent in generating one electron–hole pair in the mate-
rial (Eg is the band gap). In the case when the KBr sam-
ple absorbs the X-ray energy W = 0.6 × 10–2 J/cm3, µ =

n1 2, G1 2, τ1 2, .=

i en1 2, µE,=
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tivity on the electric field strength upon (1) X-ray and laser
excitation within the absorption bands of (2) F- and
(3) F−-centers in a KBr crystal. The insets show cascade
excitation of a KBr crystal with X-ray and laser (λ =
0.53 µm) pulses and the oscillogram of optical transmission
of the F-centers: (1) X-ray current and (2) photocurrent
pulses.



1144 KULIKOV, LISYUK
10 cm2/(V s) [5], and E = 104 V/cm, from relationships
(2) and (3), we obtain n1 = 1.1 × 1013 cm–3, G1 = 3.4 ×
1023 cm–3 s–1, and τ1 = 3 × 10–11 s.

Upon photoexcitation in the absorption F-band of
the KBr sample (E = 104 V/cm), from formula (3), we
have n2 = 2.25 × 1013 cm–3. According to the experi-
mental data, X-ray excitation results in the concentra-
tion of F-centers NF = 3 × 1014 cm–3. In the limiting case
when all the F-centers are assumed to be excited by
light, we obtain G2 = NF/τl = 1022 cm–3 s–1 and τ2 = 2 ×
10–9 s. The values of τ1 and τ2 agree well with carrier
recombination, which follows the quadratic law upon
X-ray excitation and exhibits a linear behavior upon
photoexcitation.

The nonlinearity of the current–voltage characteris-
tics can be explained by the mechanism known as the
space-charge-limited current [10]. According to this
mechanism, a potential difference applied across a thin
layer of a high-resistivity sample induces a current in
the material due to charge carrier injection from a
metallic electrode. In this case, i ~ E2.

In our case (Fig. 1), the metal–insulator contact is
nonohmic. The second insulator–metal contact is not
electron-blocking. The absence of contact-limited con-
duction leads to the fact that, at the instant of irradia-
tion, a positively charged layer of holes is formed at the
metal–insulator interface due to electrons traveling into
the bulk of the sample. Although the external field is
screened in the bulk of the insulator, tunnel injection of
electrons from the metal can occur in the transition
region in large electric fields ≥106 V/cm, which, in turn,
brings about an increase in the current in the sample.

The degree of spatial inhomogeneity of the electric
field in the bulk of the sample can be estimated from the
concentration and lifetime of carriers. The thickness of
the positively charged layer d is limited by the low
mobility and short lifetime of carriers τ ~ 10–10 s and is
estimated as d = µEτ = 0.1 µm (E = 104 V/cm). At the
electron–hole pair concentration n = 1013 cm–3, this
layer corresponds to the surface density of holes N =
108 cm–2. For a KBr sample 350 µm thick at E =
104 V/cm, the negative charge density in a metallic
electrode is N0 = 1011 cm–2. Therefore, in our case, the
layer of holes compensates for the external field by less
than 1%. This suggests that no strong electric fields
occur in the sample and the spatial distribution of E is
nearly uniform.

Electron injection from the contact is disproved by
the fact that photoionization of F–-centers should not
result in the formation of positive charge layers,
because the F-centers are electrically neutral. However,
the current–voltage characteristics remain nonlinear,
even though the F-centers are induced without applied
voltage. It should be noted that, in the case of the space-
charge-limited current mechanism, the voltage is
mainly applied across the region of carrier drift. In our
case, when carrier injection occurs from the contact and
the penetration depth of carriers is considerably less
than the sample thickness, the current will be limited by
the bulk resistance of the sample.

The experimental dependences observed allow us to
exclude the contribution of the Onsager effect to the
nonlinearity of the current–voltage characteristics by
the following reasoning. First, as noted above, the cur-
rent–voltage characteristics are similar for all three
excitation methods (excitations of F-centers, F–-cen-
ters, and interband excitation). However, it could be
expected that neutrality of the F-centers excludes the
Onsager effect and results in linearity of the photocur-
rent upon excitation of F–-centers. Second, according
to the estimates [11], the field strength that corresponds
to the complete separation of charges due to the
Onsager effect is approximately equal to 106 V/cm.
This value significantly exceeds our experimental esti-
mate when the linear dependence is observed in the
field range 4–5 × 104 V/cm.

Under electric fields higher than 104 V/cm, the prob-
ability of electrostatic ionization is rather high [12],
i.e., a decrease in the energy of ionizing electrons at F-
and F–-centers due to a decrease in the potential barrier
of the center. However, the electrostatic effect should
increase the conductivity with an increase in the elec-

tric field ~exp( ), which disagrees with the behavior
of radiation-induced conductivity in electric fields
(Fig. 2).

For the current–voltage characteristics i ~ E2, the
conductivity increment in the electric field ∆σ can be
written as

(4)

Relationship (4) for radiation-induced conductivity
is similar to that for carrier scattering by polar optical
lattice phonons or dipoles [13]. For this type of scatter-
ing, the mean free time of carriers is τp ~ (W0 +
W(E))1/2, where W0 is the thermal energy of an electron,
W(E) = el0, and E is the energy increment of carriers in
the electric field (l0 is the mean free path of an electron
between collisions with phonons). At W0 ! W(E), we

can assume that τp ~  + W(E)/2 . This result
agrees well with the inference that, in ionic crystals,
electron scattering by optical lattice phonons predomi-
nates if the energies of the carriers are less than 2–3 eV
[14, 15].

In the third portion of the current–voltage character-
istics, σ(E) can be represented by the empirical formula

(5)

where σ0 is the conductivity in a field less than E ≈
104 V/cm; b1 and b2 are the parameters specifying the
slopes of flattened and steep portions of the σ(E) curve;

E

∆σ E.∼

W W0

σ E( ) σ0 Σσ j b j/E–( ),exp+=
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and σ1 and σ2 are the conductivity increments in these
portions, respectively.

The experimental curves σ(E) in ln(σ(E) – σ0) vs.
1/E coordinates are depicted in Fig. 3. For KBr, KCl,
CsI, and KI crystals, the σ(E) dependence is quite well
linearized by using the b1 parameter. For NaCl, CsI–Tl,
crystalline quartz, and K208 glass [2], the electric field
dependence of the conductivity is more complex and
contains two (flattened and steep) portions. Since the
slopes of the linear portions for the former group of
materials are close to those of the flattened portions for
the latter group, these slopes can be characterized by
the same parameter b1.

The b1 and b2 parameters for the studied materials
are presented in the table. The maximum difference in
b1 for alkali halide crystals is no more than 30%. The
b1 parameter for SiO2 and the glass deviates from the
mean value for alkali halide crystals by ~50%. For
X-ray and photostimulated conductivity in KBr and
KCl crystals, the b1 values are equal to within 10%. The
dispersion of b2 for materials of the second group is
rather large (approximately three or four times). There
is a tendency for b2 and Em to increase in going from
NaCl and CsI–Tl crystals to oxide compounds such as
crystalline quartz and glass. The conductivity incre-
ments are σ1 ≈ (0.7–1.5)σ0 and σ2 ≈ σ0.

It can be assumed that dependence (5) corresponds
to activation-type conductivity. Indeed, in electric fields
of 104–105 V/cm, the field-accelerated carriers, whose
mean free path l is more than l0, likely overcome the
energy barrier. The fraction of these electrons β ~
(−l/l0) ≈ (Wb/el0E) [16], where Wb = elE is the activation
energy of over-the-barrier motion.

For ionic crystals, according to the data of [5], l0 ≈ 10a,
where a is the lattice constant. By comparing Eq. (5)
and the dependence for β, we obtain Wb1, 2 = el0b1, 2. For
all the materials, the Wb1 values are almost identical and
are of the order ~kT, even though a and b1 are some-
what different. The ionization energy Wb2, which corre-
sponds to the steep portion of the experimental depen-
dence σ(E), considerably exceeds kT in the electric
fields E ~ (4–8) × 104 V/cm and falls in the range from
0.05 eV for NaCl to 0.19 eV for K208 glass (see table).

The dependence of σ on E can be very similar to that
described by formula (5) in the case of carrier release
from traps under collisional ionization. According to
[12], the collisional ionization coefficient α is propor-
tional to exp(–Wi/el0E), where Wi is the ionization
energy.

A nonlinear increase in the conductivity in the KBr
and KCl crystals can be attributed to ionization of F-
and F–-centers. However, the energy, Wi1 = 0.025 eV, is
considerably less than the ionization energies of F- and
F–-centers in the ground (~1.5 eV) and excited (0.1 eV
[8, 9]) states. The ionization mechanism in these crys-
tals is also disproved by the fact that, upon X-ray exci-
TECHNICAL PHYSICS      Vol. 45      No. 9      2000
tation in strong fields E ~ 5 × 104 V/cm, the quadratic
character of recombination does not change to the lin-
ear recombination which is observed upon light excita-
tion of F–- and F-centers.

In our opinion, the above regularities can be inter-
preted in terms of density-of-states function tails
observed both for crystals and (even more probably) for
glasses. These tails arise from the modulation of
allowed-band edges by fluctuations of the density or
internal electric field strengths [12, 17, 18].

As follows from the table, the Wb1 values for all the
materials are close to one another and equal to
~0.025 eV. The energy barrier height is of the same
order of magnitude as kT and, most likely, is deter-
mined by either the optical phonon energy (0.03 eV) or
density fluctuations caused by lattice vibrations [12].

Among materials, such as NaCl, CsI–Tl, crystalline
quartz, and K208 glass, in electric fields of (4–8) ×
104 V/cm, the glass exhibits the highest activation
energy ~0.19 eV. This value agrees well with an esti-
mate of 0.2–0.4 eV [18], which was obtained for the
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1.0
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34

Fig. 3. Dependences of radiation-induced conductivity on
the electric field strength: (1) KBr, (2) KCl, (3) NaCl, and
(4) crystalline quartz.
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modulation depth of the conduction band in glass. Most
probably, the ionization of F-centers occurs in the NaCl
crystal, whereas in CsI–Tl, the electric field of a
charged impurity locally changes the energy distribu-
tion of the density of states [17]. In oxide compounds,
the density fluctuations caused by variations in chemi-
cal bonds can make a certain contribution, which
results in the formation of conduction band tails [18].
Consequently, an increase in the conductivity at E ~ (1–
5) × 104 V/cm can be due to an increase in the carrier
mobility, whereas at higher fields (E ≥ 5 × 104 V/cm),
the release of localized electrons occurs through the
electron–electron interaction according to the mecha-
nism of collisional ionization.

Thus, we can conclude that, in alkali halide crystals
(KBr, KCl, NaCl, and CsI), crystalline SiO2, and K208
glass in electric fields of 104–105 V/cm, the nonlinearity
of the current–voltage characteristics is most likely
associated with the decrease in spatial localization of
charge carriers in the conduction band of the insulator.
An increase in the conductivity can be caused by both
a decrease in the scattering by lattice vibrations due to
over-the-barrier motion of carriers and an increase in
the number of free carriers due to electron transport
from the band tail to higher energy levels. This conclu-
sion is confirmed by two characteristic activation ener-
gies: the lower energy (~kT), whose values are close for
all the studied materials, and the higher energy (>kT),
which is higher in disordered materials compared to
crystals.

Parameters b1, 2, Wb1, 2, and Em characterizing radiation-induced
conductivity in strong electric fields

Material
b1 b2 Wb1 Wb2 Em

104 V/cm eV 104 V/cm

KBr 3.7 0.024 4.5

KCl 3.9 0.025 4.5

CsI 5.1 0.023 4.5

KI 6.1 0.043 4.0

NaCl 5.1 9.2 0.029 0.052 5.5

CsI–Tl 5.3 21.0 0.024 0.096 5.7

Crystalline quartz 7.6 23.0 0.037 0.11 7.5

Glass K208 7.8 38.4 0.038 0.19 8.0
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Adsorption of Water Molecules on Yttrium Barium Cuprate 
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Abstract—Gravimetry and thermogravimetric analysis were used to study the adsorption of water molecules
on the high temperature superconductor YBa2Cu3O7 at room temperature. It was found that water adsorption
subdivides into surface adsorption and bulk adsorption, which starts after the formation at the surface of a phys-
ically bound water layer no less than 65–100 Å thick. During bulk adsorption, H2O molecules diffuse from this
surface layer to the lattice, where they form four bound states with desorption temperatures of ~208, 330, 370,
and 775°C and heats of formation of 38, 99, 72, and 68 kJ/mol, respectively, and mainly occupy interstitial sites
of the intermediate layers. The presence of molecules in the lattice does not affect either the superconducting
transition temperature or resistance to direct current; however, it results in an increase in the surface resistance.
The resistance to direct current increases due to the formation of dielectric inclusions of other phases. © 2000
MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is known [1–5] that high-temperature supercon-
ductors degenerate when exposed to water. Their deg-
radation depends on the activity of atoms at the crystal
surface and interface (superconductor–liquid, super-
conductor–vapor), ceramic density, and impurities in
crystallites or the medium. Thus, under standard condi-
tions, monocrystals and ceramics of YBa2Cu3O7 with a
density exceeding 4.5 g/cm3 hardly interact at all with
water vapor, while less dense samples can decompose
and their degradation is enhanced in the presence of
carbon dioxide or halogen impurities. This process
includes fast and slow stages [6] and results in a
decrease in the superconducting phase content.

In addition, water molecules can enter the crystal
lattice of YBa2Cu3O7 without causing decomposition of
the compound [7, 8]. H2O molecules can occupy more
than ten nonequivalent interstitial sites in the lattice,
and because of the pronounced layered structure of the
lattice, the barriers to diffusion along and at the normal
to the c-axis are fundamentally different; therefore, the
distribution of molecules in the layers can be character-
ized by nonuniform filling of interstitial sites. The
incorporation of H2O molecules into the YBa2Cu3O7
crystal lattice can result in an increase in the critical
temperature (Tc) [8], although the influence of the mol-
ecules occupying different lattice sites on the behavior
of Tc appears to be different. Since the roles of the
cuprate and intermediate layers in high-temperature
superconductivity are different, preferential filling of
interstitial sites in CuO2 or Ba–O and Cu1–O layers by
H2O molecules can be used to determine their role in
superconductivity.
1063-7842/00/4509- $20.00 © 21147
It should be noted that penetration and diffusion of
H2O molecules into the lattice and degradation during
adsorption occur after chemical bonding of the mole-
cules with atoms at the YBa2Cu3O7 surface and appar-
ently exhibit different rates, since decomposition is
determined by the reactive diffusion rate, whereas pen-
etration is determined by the rate of diffusion into the
lattice. A study of water adsorption can identify the
conditions for initial incorporation and diffusion of the
molecules into the lattice, localization sites, the num-
bers and evolution of the bound states, their influence
on Tc, and the emergence of other phases.

The objective of this work is to study the adsorption
of water molecules onto YBa2Cu3O7, the conditions for
initial incorporation into the crystal lattice, the kinetics
and localization sites of the bound states of molecules
in the lattice, and their influence on the critical temper-
ature and resistance. To this end, we investigated sur-
face and bulk adsorption of H2O molecules onto
YBa2Cu3O7 at different pressures and constant temper-
ature, and onto CuO, Y2O3, BaO2, and BaO com-
pounds, which were used to simulate the interaction of
H2O molecules with the superconductor atoms. The
conditions for bulk adsorption of water molecules and
their penetration into the crystal lattice, bound states of
the molecules in the lattice, and their effect on Tc and
the resistance were also studied. The investigations
were carried out using gravimetry and thermogravime-
try methods, as well as measurements of the resistance
to direct and alternating current.
000 MAIK “Nauka/Interperiodica”
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SAMPLES AND EXPERIMENTAL 
PROCEDURE

Samples of dispersed YBa2Cu3O7 and single-phase
ceramics (checked by X-ray studies) with a density of
5.5 g/cm3 and lattice parameters a = 3.821 Å, b =
3.889 Å, and c = 11.667 Å were studied. The dispersed
samples were obtained by dispersing ceramics and sub-
sequently annealing the powder in oxygen for 6–8 h at
420°C. The scale-shaped powder particles had a diam-
eter of 17–20 µm, a thickness of ~10 µm, and a specific
surface of 1 m2/g. The nonstoichiometric compounds
YBa2Cu3O7 – δ with δ > 0, which were obtained by vac-
uum annealing of samples with δ = 0, were used as
well.

For the simulation experiments, high-purity pow-
ders of copper, yttrium, and barium oxides, as well as
of barium peroxide, were used. The specific surface of
CuO and Y2O3 was 1 m2/g, while that of BaO and BaO2

was 5–10 m2/g. Adsorption was carried out at room
temperature on samples that were preliminarily
annealed in vacuum (10–3 torr) at a temperature of
~150°C for 2.5–3 h. Double-distilled water was used as
an adsorbate. The adsorption measurements were
carried out using McBain scales with a sensitivity of
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t, min
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34
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Fig. 1. Kinetics of water adsorption onto YBa2Cu3O7 at
vapor pressures β = (1) 3, (2) 6, (3) 10, (4) 13, (5) 16, and
(6) 18.7 torr. The insert shows the adsorption kinetics of
water for samples of YBa2Cu3O7 ceramics at 18.7 torr.
2 × 10–5 g. Thermogravimetric (TG) and differential
thermal analysis (DTA) were performed using a
Q-1500 drift gauge at a heating rate of 5°C/min. The dc
resistance was measured by the four-contact technique,
and the resistance at a frequency of 10 GHz, by the res-
onant cavity technique with the H011 oscillation mode.

EXPERIMENTAL RESULTS 
AND DISCUSSION

The adsorption kinetics a at different water vapor
pressures is presented in Fig. 1. At pressures p ≤ 16 torr,
a shows fast growth to the saturation value a∞ in a time
t ≤ 18–20 min. The kinetics can be described by the
expression

(1)

where a∞ is the adsorption limit at t  ∞.
The magnitude of a∞ is proportional to pressure, and

at p ≤ 16 torr, a∞ ≤ 1 mmol/g and K ≤ 4.7 × 10–4 s–1

(Fig. 1, curves 1–5). In the pressure range p ≥ 16 torr
after fast growth of the adsorbed water quantity for a
time t ≥ 20 min, bulk adsorption is observed; it is char-
acterized by weak growth of a with a tendency toward
saturation at t > 1800 min and shows a threshold behav-
ior beginning at a pressure p ≥ 16 torr and an adsorption
time t > 60 min (Fig. 1, curves 5, 6).

In the ceramic samples, the adsorption behavior is
similar but a∞ is considerably smaller and bulk adsorp-
tion starts at p = 18.7 torr (Fig. 1, insert).

The results of thermogravimetric and differential
thermal analysis of the YBa2Cu3O7 samples before and
after adsorption of H2O molecules are presented in
Fig. 2. In the starting samples, the weight decrease at
T ≥ 420°C is due to desorption of O1 oxygen (Fig. 2a).
After adsorption at p < 16 torr, the loss of weight seen
in the TG and DTA curves and the endothermic signal
at temperatures 85–105°C indicate evaporation of
water adsorbed at the surface and absorption of the
evaporation heat Qa . 26 kJ/mol (Fig. 2b). After
adsorption at p ≥ 16 torr, with a greater number of
H2O molecules adsorbed at the surface, heating of the
samples reveals a narrow exothermic DTA peak at
~82°C (Fig. 2c). This signal is related to energy release
by the H2O molecules and indicates a first-order phase
transition in the water layer at the surface on heating. The
amount of released heat is ~3–5 kJ/mol, and the amount of
absorbed heat increases to 32–36 kJ/mol. The resulting Qa

values correspond to the heat of physical adsorption [9].
As bulk adsorption begins, first three, and then four,

bound states of water molecules become apparent in the
TG and DTA curves, corresponding to a decrease in m
and absorption of desorption heat Qd . 38, 99, 72, and
68 kJ/mol with temperatures of the DTA signal maxima
of Td . 208, 330, 370, and 775°C, respectively
(Fig. 2d). The Qd and Td values give an indication of the
coordination hydrogen bond of H2O molecules with the

a a∞ 1 Kt–( )exp–[ ] ,=
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lattice atoms. Note that the states with Td . 208 and
330°C were observed after adsorption at temperatures
T ≥ 127°C [10, 11].

Thus, water molecules penetrate and diffuse into the
YBa2Cu3O7 lattice after formation of the polylayer of
physically bound water at the particle surface. The
thickness (h) of the polylayer of physically bound H2O
molecules, at which diffusion starts, can be evaluated
using the relationship

(2)

where µa, m, and M are the weight of adsorbed water,
the weight of the sample, and the gram-molecular
weight of water, respectively; s is the specific surface of
the sample; ρ is the density of water;  is the area
occupied by an H2O molecule at the surface; and NA is
Avogadro’s number.

At  = 10.2 A2 [12] and ρ = 1 g/cm3, the poly-
layer thickness is h . 100 Å and the minimum h value
at which diffusion can be observed is equal to ~65 Å.

The phase transition in the polylayer of adsorbed
water is similar to the order–disorder transition in liq-
uid crystals and the orientation transitions at the surface
[13, 14]; therefore, it can be related to the transition
from the ordered state of dipoles at T < 82°C to the dis-
ordered state at T > 82°C. The ordering of dipoles sets
in at a polylayer thickness of h > 40 Å and is possible
through interaction with YBa2Cu3O7 cations, which
binds the dipoles at the surface, and through the dipole
interaction in the polylayer, which aligns the dipoles [9].

It should be noted that for YBa2Cu3O7 – δ com-
pounds with δ ≥ 0.3 the exothermic DTA signal is not
observed when the water polylayer is heated. This
shows that dipoles in the adsorbed polylayer are not
ordered, probably due to reduction of the orientation
interaction energy with increasing δ as the distance
between the lattice cations and bound dipoles in the
polylayer increases.

The beginning of penetration and diffusion of the
H2O molecules into the YBa2Cu3O7 lattice after the for-
mation of a polylayer with a thickness h ≥ 65 Å can be
related to lowering of the barrier to molecular chemi-
sorption as h increases and the monolayer of physically
adsorbed water transforms into a polylayer. The possi-
bility of such a relation follows from the lowering of the
interaction energy of atoms of the high-temperature

semiconductor of species α in the charge state  with
atoms of H2O molecules:

(3)

h µa ms( ) 1– ωH2ONA
2/3M 2/3– ρ 1/3– ,=

ωH2O

ωH2O

qα
0

U
1

8πε0ε
-------------- qα

0 Vα
i ,

i α,
∑=
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where ε0 is the dielectric constant of vacuum,

is the electrostatic potential created by the jth atoms of
β-H2O molecules at the location of an ith atom as the
polylayer is formed, and ε is the dielectric constant of
the polylayer.

The diffusion coefficient D of water molecules into
the particle bulk can be determined from the relation-
ship [15]

(4)

where V is the volume of particles, S1 = ρVs is the outer
surface area of the particles (ρ is the density of the sam-

Vα
i qβ

i

riα r jβ–
---------------------

j β,
∑=

D πV2Γ 4S1
2t( ) 1–
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Fig. 2. Temperature dependence of (1) the weight loss and
(2) DTA signal of YBa2Cu3O7 samples prior to water
adsorption (a) and after surface adsorption of H2O mole-
cules at 18.7 torr for 10 (b), 50 min (c), and after bulk
adsorption (d) with subsequent annealing of the states at 250
(DTA, 3), 400 (DTA, 4), 450 (DTA, 5). The insert shows the
occupation kinetics of the state by H2O molecules for des-
orption temperatures of ~208 (1), 330 (2), 370 (3), and
775°C (4).
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ples), and Γ = a∞/c0 (c0 is the amount of adsorbate at the
boundary of the samples).

Assuming that the YBa2Cu3O7 particles are of uni-
form size, a∞ = a = 10.2 mmol/g at t  3000 min and
the surface reaction rate, that is, the transition rate of
H2O molecules from free to bound state, is consider-
ably higher than the diffusion rate, one can obtain D =
2.6 × 10–12 cm2/s.

With increasing bulk adsorption time, the number of
molecules in bound states increases and the occupation
of different states is different (insert in Fig. 2d). The
molecules localized in the lattice do not interact with
each other, since in successive annealings at ~250, 340,
400, and 800°C, each type of state is annealed without
affecting Qd of the other types of states. In addition,
DTA curves of the samples held in an atmosphere of
water vapor for t > 300 min have two peaks at temper-
atures Tmax . 240 and 445°C, which are not accompa-
nied by any change of weight (Fig. 2d). This can imply
that, in YBa2Cu3O7, compounds of different phase
composition form, which absorb heat in the process of
melting or decomposition.
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Fig. 3. Kinetics of adsorption of water molecules (a) on
Y2O3 at pressures of 3, 6, 10, 15, and 18.7 torr and (b) on
CuO at p = 3, 6, 10, 13, 16, and 19 torr. Numbers near the
curves denote p values.
Thus, the water molecules adsorbed in the
YBa2Cu3O7 lattice are found in four bound states.

To determine the positions where water molecules
are localized in the YBa2Cu3O7 lattice, adsorption on
yttrium and copper oxides, barium peroxide, and nons-
toichiometric cuprates YBa2Cu3O7 – δ with δ = 0.27 and
0.7 was studied. In Y2O3, CuO, and BaO2, the charge
states of Y3+, Cu2–, Ba2+, O2–, and O– ions are compara-
ble with the atomic charges in YBa2Cu3O7, namely,
Y3.05+, Cu22+, Cu11.46+, O22.01–, O32.16–, Ba1.45+, O40.67–,
and O11.76– [16], and the peroxide bond O=O in BaO2 is
similar to the bond between O4 and O1 atoms. There-
fore, the charge states of atoms of such compounds can
simulate the barrier to chemisorption and diffusion of
H2O molecules in the YBa2Cu3O7 – δ lattice. In addition,
by varying δ, the atomic charge states in Ba–O and
Cu1–O layers can be changed, while keeping
unchanged those in the Y and Cu2–O layers [16, 17],
which allows the Qd values of H2O molecules in the
intermediate layers to be varied and the positions of the
molecules in the YBa2Cu3O7 lattice to be determined.

The adsorption kinetics of water molecules on
oxides of yttrium and copper are similar, with a
increasing until saturation at t ≤ 20 min and a constant
value of a at t > 20 min (Fig. 3). In the pressure range
p ≤ 19 torr, the behavior of a can be described by
expression (1) with parameters a∞ ≤ 0.97 mmol/g, K ≤
3.5 × 10–4 s–1 and a∞ ≤ 0.47, K ≤ 4.6 × 10–4 s–1 for
adsorption on Y2O3 and CuO, respectively. The TG and
DTA curves of Y2O3 and CuO samples after water
adsorption at p = 18.7 torr are identical to those pre-
sented in Fig. 2b and indicate the formation at the
oxides’ surface of a layer of physically bound water
with h . 100 Å and the absence of penetration of the
H2O molecules into the lattice.

The adsorption behavior on BaO2 and YBa2Cu3O7 is
essentially similar (Fig. 4). At pressures p ≤ 16 torr, a
reaches saturation in the time interval t ≤ 20 min and
stays constant for t > 20 min, with parameters a∞ ≤
1 mmol/g and K ≤ 4.1 × 10–4 s–1. At p ≥ 16 torr, bulk
adsorption is observed, which features a slow increase
in a with time and a tendency to saturation for t 
1800–2000 min. The fast increase in a corresponds to
the formation on the BaO2 surface of a physically
bound water layer, whose evaporation heat Qa =
18 kJ/mol (Fig. 5b); the slow increase corresponds to
diffusion of the H2O molecules into the lattice, where
in a short period of time t they form one state (Fig. 5c)
and, at a later time t, form a second state with parame-
ters Qd = 23 and 21 kJ/mol and Td = 95 and 125°C,
respectively (Fig. 5d). Molecules diffuse into the lattice
after a polylayer of thickness h . 10–20 Å has been
formed on the surface. In addition, in the DTA curves,
two signals are present at Tmax . 240 and 380°C
(Fig. 5d), which are not accompanied by a change of m
and are possibly related to the formation of compounds
TECHNICAL PHYSICS      Vol. 45      No. 9      2000
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of different phase compositions. The values of Tmax of
the first signal are identical in BaO2 and YBa2Cu3O7;
and those of the second are close, which is evidence of
identical or close compositions of the phases formed in
the two compounds on contact with water.

Thus, the identical behavior of bulk adsorption of
H2O molecules in BaO2 and YBa2Cu3O7 and its absence

8

a, mmol/g

p, torr16

4

8

0

(a)
4

3

2

1

3

4

2

1

4

8

0

(b)

Fig. 4. Isotherms of adsorption of water molecules on (a)
BaO2 and (b) YBa2Cu3O7 for exposures of (1) 15, (2) 60,
(3) 1100, and (4) 1400 min.
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Fig. 5. Temperature dependences of (1) the weight loss and
(2) DTA signal for BaO2 samples before (a) and after
adsorption of water molecules at 18 torr for (b) 25, (c) 70,
and (d) 360 min.
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in Y2O3 and CuO may be evidence that the formation of
bound states in YBa2Cu3O7 is due to interaction of the
H2O dipoles with barium and oxygen atoms in the
Ba−O layer.

In YBa2Cu3O7 – δ, with a decreasing number of
O1 oxygen atoms, the values of the heat of formation
Qd of the four bound states of the H2O molecules
change (see table). Thus, as δ is increased, Qd of the
states with Td . 200 and 770°C varies nonmonotoni-
cally, while Qd of the states with Td . 310 and 360°C
smoothly increases and decreases, respectively. Since
the heat of formation Qd is released on breakage of the
bond between atoms of the water molecule in charge

states  and lattice atoms in charge states  with
energy U (equation (3)), the behavior of Qd(δ) is pre-

sumably determined by variation of  with increasing δ.
If at δ  1 the charge state of Cu1 smoothly
decreases from +1.5 to +0.8 and that of Ba increases
from +1.5 to +2 [16, 18], the variation of Qd of the
states with Td ~ 310 and 360°C is related to variation of
qBa and qCu1, respectively, and can be an indication that
the H2O molecules in these states are located near Ba
and Cu1 atoms (Fig. 6). The desorption heat of the state
with Td . 310°C exceeds the Qd of the other states by a
factor of 1.4–3.5, which points to stronger binding of
the molecules with the surrounding atoms. In this state,
the molecules are presumably located in the interstitial

qβ
j qα

0

qα
0
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O2

Ba

O1

H2O

I

I

II

IV

II

IV
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O3

O4

Cu1

Cu2

O4

Fig. 6. Positions of H2O molecules in the YBa2Cu3O7
lattice: states with Td . (I) 208, (II) 330, (III) 370, and
(IV) 775°C.
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sites of the Ba–O layer and have semipolar bonds with
Ba and O4 atoms (state II in Fig. 6), and the increase in
Qd at δ  1 is due to the increase in qBa, qO4, and
energy U. H2O molecules in the states with Td . 360°C
are bound with Cu1, O4, and O1 atoms by semipolar
bonds (state III in Fig. 6); and the decrease in Qd at
δ  1 is caused by the reduction in U, because of the
decrease in both qCu1 and the number of O1 atoms. The
H2O molecules in the other two states are probably
located in the interstitial sites of Ba–O, Cu1–O and Ba–

30
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0 400 t, min

R(t)/R(300)

100 200 300
T, K

1.5

0.5

1.0

1.0

(a)

(b)

Rs, Ω

Fig. 7. Temperature dependences of the direct current resis-
tance (a) of YBa2Cu3O7 ceramics before and after adsorp-
tion at 18.7 torr for t ≤ 240 min (insert shows the depen-
dence of the resistance at room temperature on adsorption
time) and of the surface resistance (b) before (1) and after
adsorption of H2O molecules for (2) 240 and (3) 480 min.

Desorption heats of the bound states of water in the
YBa2Cu3O7–δ lattice

Compound

Desorption heat (kJ/mol) of 
the states with Td (°C)

208 ± 10 330 + 20 370 + 10 775 ± 5

YBa2Cu3O7 38 79 72 68

YBa2Cu3O6.73 23 81 51 51

YBa2Cu3O6.3 56 125 42 75

1

2

3

O, Cu2–O layers and interact with O4, Cu2, Cu1, and
Ba atoms. The variation of Qd(δ) of these states as
δ  1 is probably determined by the nonmonotonic
change of qO4 from −0.67 to –2.07 and the electron den-
sity distribution between Cu2 orbitals as carriers from
the intermediate layers enter cuprate layers [16, 19]
(state IV in Fig. 6), as well as by the decrease in the
Cu1–O4 distance [20] and the weakening of repulsion
as O1 atoms leave the lattice (state I in Fig. 6).

It should be noted that the dependence of Qd of the
four states on the oxygen content in Cu1–O layers indi-
cates that water molecules are not localized in the inter-
stitial sites of the Y and Cu2–O layers. This can be
explained by the fact that the repulsion between
Y atoms and the H atoms in the H2O molecule exceeds
the attraction between Y and O atoms hindering the for-
mation of stable states. The lack of correlation between
the number of O1 atoms and H2O molecules in the lat-
tice at δ  1 suggests that the localization site of the
molecules is determined by the interaction of cations
and oxygen of the molecule, while the orientation is
determined by the interaction of O4 anions with hydro-
gen atoms.

Thus, in the YBa2Cu3O7 lattice, the water molecules
are mainly found at the interstitial sites of the interme-
diate layers and are bound with Ba, Cu1, and O4 atoms
by semipolar bonds.

For adsorption times t ≤ 240 min, penetration of the
H2O molecules into the YBa2Cu3O7 lattice does not
change the temperature dependence of direct current
resistance or the critical temperature (Fig. 7a). How-
ever, with increasing t, R is rising (Fig. 7a, insert). The
increase in R is presumably due to inclusions of dielec-
tric phases emerging and growing in number at t >
300 min, which give rise to DTA signals at Tmax . 240
and 445°C as they decompose.

In contrast to R, after penetration of H2O molecules
(up to ~2.6 × 1021 cm–3) into the crystal lattice of
YBa2Cu3O7, its surface resistance Rs increases at both
T > Tc and T < Tc. The temperature of the superconduct-
ing transition is not changed by water adsorption
(Fig. 7b). Since at T > Tc, Rs = (µ0µωρ/2)1/2, where µ0
and µ are the permeabilities of vacuum and the sample,
respectively; ω is the circular frequency; and ρ is the
specific resistance

(5)

Here ρi, ρd, ρph, and ρe are contributions to the specific
resistance due to scattering by impurities, defects,
phonons, and electrons, the increase in Rs following
penetration of H2O molecules into the lattice can be
explained by the greater contribution from ρd because
of additional scattering of carriers on atoms of H2O

molecules. At T < Tc, when Rs = –µ0ωIm  (  is the
complex penetration depth [21]) is determined by car-

ρ ρi ρd ρph ρe.+ + +=

λ λ
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rier energy dissipation in the layer of depth ; the
increase in Rs is presumably related to the increase in
dissipated energy due to scattering by atoms of the
H2O molecules.

In conclusion, the water molecules adsorbed on the
surface of YBa2Cu3O7 form a polylayer of physically
bound H2O molecules. When a layer thickness of h ≥
65–100 Å is reached, the molecules diffuse into the lat-
tice, localizing mainly at the interstitial sites of the
intermediate layers and forming four bound states.
Such molecules do not affect the temperature of the
superconducting transition and direct current resis-
tance; however, they cause an increase in the surface
resistance. The increase in the surface resistance to
direct current is presumably related to the formation of
dielectric compounds of different phase compositions.
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Abstract—Tetragonal-to-monoclinic martensite transformation due to water adsorption was found on the sur-
face of both dispersed and ceramic oxide-stabilized zirconia. The transformation is due to local stretching
strains arising in the lattice when the charge state of a stabilizer changes because of water molecules that are
chemisorbed on the powder or ceramic surface. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The structure and properties of powder (tetragonal β
phase) and ceramic zirconia stabilized by metal oxides
(Y2O3, CaO, MgO, etc.) are sensitive to temperature,
pressure, and various reactive gaseous and liquid
media. When exposed to external effects, the high-tem-
perature β phase may transform to the monoclinic α
phase [1–3], which changes the properties of the mate-
rial. Specifically, the physical, mechanical, and service
properties of β-ZrO2, used in the production of cutting
tools, machine parts, medical prostheses, refractory
materials, and ceramic materials for electronics, are
severely degraded. Note that the low-temperature mon-
oclinic α phase of crystalline unstabilized zirconia is
stable to 1170°C; its high-temperature β phase,
between 1170 and 2277°C; and the high-temperature
cubic γ phase, between 2277 and 2690°C [2]. The sta-
bilized β and γ phases may exist at near-room tempera-
tures.

Today, the stabilization of ZrO2 powder and ceramic
is a key issue, since their properties are highly unstable
under various environmental conditions. The solution
to the problem is difficult, because stabilization mech-
anisms for the high-temperature phases are poorly
understood. As a result, the physics of instability of dis-
persed and sintered materials is still unknown. In other
words, microscopic mechanisms that relate external
effects to the phase transformations responsible for the
material structure and properties have not been found.

In this work, we studied the β-to-α transformation
mechanism in Y2O3-stabilized zirconia. This transfor-
mation occurs when the surface of the β material (pow-
der or ceramic) adsorbs water molecules.

Before discussing the mechanisms of high-tempera-
ture phase modification, we will outline the current
concepts of structure stabilization. This information
should be useful for studying structure instability and
phase transformation. In [4–6], the stabilization of
cubic ZrO2 due to nonstoichiometry of oxygen vacan-
1063-7842/00/4509- $20.00 © 21154
cies was suggested and experimentally proved. In this
case, the material is stabilized through generation of the
necessary concentration of anion vacancies in the lat-
tice. Resulting local stresses may “hold” the high-tem-
perature cubic phase down to room temperature. Such
an explanation obviously applies to β-ZrO2 as well.
Thus, in [4–6], nonstoichiometry appears as the deci-
sive factor in high-temperature phase stability.

Stabilization of high-temperature ZrO2 phases may
be treated in terms of the energy theory [7, 8]. The
internal energy U of a crystal is the sum of the volume,
Uv, and surface, σS, energies (σ is the specific surface
energy): U = Uv + σS. Since Uvα < Uvβ < Uvγ and σα >
σβ > σγ, the high-temperature phase may become ener-
getically favorable at room temperature if S < Scr; that
is, the smaller the grain size of the high-temperature
phase, the more stable the phase.

A number of authors believe that the high-tempera-
ture ZrO2 phases may exist under normal conditions
owing to the stabilizing action of impurities. It was
noted [9] that the interaction of Zr4+, Hf4+, Th4+, and
U4+ ions with water or hydroxyl ions promotes the for-
mation and existence of the high-temperature phases of
the associated oxides. This assumption was also sup-
ported in [10]. Metal oxides dissolved in ZrO2 exert a
similar stabilizing effect. Their presence in the lattice
also generates oxygen vacancies [1]. It is believed that
the structure is stabilized by vacancy-induced stresses,
as in the case of nonstoichiometric stabilization.

RESULTS AND DISCUSSION

We investigated the structure and properties of pow-
der and ceramic Y2O3-stabilized β-ZrO2 samples. They
were subjected to hydrothermal treatment by dipping
them into distilled water and boiling water for a certain
time. The grain size of the β modification was 120 Å,
and the specific surface area measured by the
Brunauer–Emmett–Teller method was found to be
000 MAIK “Nauka/Interperiodica”
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100 m2/g. β-ZrO2 ceramic samples sintered at 1500°C
have accessible porosities from 5% to 0, depending on
the hydrostatic pressure applied to the extrusion billets.
The grain size was about 0.4 µm. After such treatment,
the powder and ceramic samples undergo β-to-α trans-
formation. Of special importance is the fact that the
transformation proceeds on the surface, as evidenced
by layer-by-layer polishing of the ceramic samples.
The thickness (hence, amount) of the surface α phase is
obviously independent of the time of hydrothermal
treatment. For example, in the above range of accessi-
ble porosity, the amount of the α phase did not change
when the time of hydrothermal treatment was varied
from 60 min to several days. The α phase amount, how-
ever, depends on the porosity, which is in direct propor-
tion to the specific surface area of that part of the sam-
ple absorbing X-ray radiation during phase analysis.
The amount of α phase vs. porosity dependence is
given in Fig. 1.

The same surface transformation is observed in the
powders. This follows from X-ray diffraction studies
(a DRON-3 diffractometer, CuKα radiation) of powders
with different α phase contents (to 16%). It was shown
that, for the α phase, the region of coherent X-ray scat-
tering, which characterizes the grain size, is always less
than for the β phase, although the energy theory implies
the reverse relationship. In our opinion, this finding is
of paramount importance and calls for special investi-
gation, since it is believed today that phase transforma-
tion in dispersed systems proceeds in the entire volume,
not only in part of it, as follows from our work. This is
a possible reason why the energy theory disagrees with
experiments [12].

The results for hydrothermally treated samples are
in conflict with ideas put forward in [9, 10], where it is
argued that water stabilizes the high-temperature ZrO2
phases. Neither can they be explained by the concept [3],
according to which the diffusion of surface-adsorbed
water quasi-molecules (hydroxyl ions) into the yttria-
stabilized β-ZrO2 lattice is responsible for the phase
transformation. The above ideas rely on the following
experimental data: (1) ceramic disordering takes place
in the surface layers. (2) Disordering is observed in air
at temperatures between 200 and 300°C. (3) Water
favors the β-to-α transformation. We nevertheless
guess that the existing ideas of transformation mecha-
nism are insufficiently advanced. They cannot answer
two questions: (1) why does the diffusion of water
quasi-molecules proceed only at the surface of powder
grains or a ceramic sample? (2) Why does this diffusion
have an optimum temperature range? Within the model
in [3], the transformation rate must be proportional to
the time and temperature of hydrothermal treatment.
However, this is not confirmed by results obtained in
[3], much less by our results. The list of questions can
be extended. The lack of answers initiates a search for
alternative models for β-to-α transformation due to
adsorption.
TECHNICAL PHYSICS      Vol. 45      No. 9      2000
We will discuss an electrophysical adsorption
mechanism of β-to-α transformation in stabilized
ZrO2. In this mechanism, β-ZrO2 is stabilized by Y2O3,
whose dissolution in the zirconia lattice, having ionic–
covalent bonds, generates substitutional ions Y3+ and
oxygen vacancies V [11, 13].

Using the band diagram, we will consider the elec-
tronic structure of β-ZrO2 when Y3+ ions are substituted
for Zr4+ ions to generate oxygen vacancies (vacancies
replace oxygen atoms). Trivalent Y3+ ions present in the
forbidden gap of the β-ZrO2 wide-gap dielectric pro-
duce acceptors with an ionization energy Ea. Then, the
Fermi energy EF would have to lie closer to the valence
band (Fig. 2a). Oxygen vacancies in β-ZrO2 produce
donors with an ionization energy Ed, since the concen-
tration of electrons exceeds that necessary to provide
ionic bonds. In this case, the Fermi level tends to the
conduction-band bottom (Fig. 2b). The simultaneous
presence of acceptors (Y3+) and donors (oxygen vacan-
cies) in β-ZrO2 was verified in [14]. In this case, vacan-
cies donate electrons to Y3+ acceptors, turning into V(+)

and converting Y3+ into Y2+ (or Y3+(–)). The resulting
unlike charges neutralize each other due to ionic bond-
ing, which, in our opinion, serves as the lattice stabi-
lizer. In addition, the concentrations of the donors and
acceptors are counterbalanced, so that there is no deficit
(or excess) of electrons needed to produce ionic bonds.
That is why stabilized β-ZrO2 is a nonconducting
dielectric. In the last case, when β-ZrO2 has V(+) and
Y3+(–) (ionized donors and acceptors), the Fermi level is
near the midgap (Fig. 2c).

Thus, Fig. 2c is a qualitative picture of the initial
electronic structure of stabilized β-ZrO2. Our next step
is to consider β-to-α transformation due to water
adsorption.
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Fig. 1. Amount of nonoriented α phase in hydrothermally
treated β-ZrO2 vs. accessible porosity. The treatment time
was 60 min.
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Fig. 2. Qualitative band diagram of β-ZrO2 with (a) yttrium,
(b) oxygen vacancies, and (c) yttrium and oxygen vacan-
cies. I, conduction band; II, valence band.

(a)

(b)

I

II

I

II

EF

EF

V(+)
V(+)

Y3+
Y3+(–)

Ea H2O

L

L1

Fig. 3. Qualitative band diagram of the β-ZrO2 surface with
a chemisorbed water quasi-molecule: (a) electroneutral sur-
face and (b) negatively charged surface. I and II, the same as
in Fig. 2.

II
A real solid surface has a high density of surface
states. The energy spectrum of nonadsorption states
and that of local levels of chemisorbed species super-
impose on one another [15]. At equilibrium, the occu-
pation of the levels is uniquely defined by the position
of the Fermi level on the surface.

Let water molecules and quasi-molecules physically
and chemically adsorbing on the β-ZrO2 powder and
ceramic surfaces act as sorbents [16]. At chemisorption
on the surface, the wave functions of the lattice and
quasi-molecules overlap so much that the latter can be
thought of as impurities locally disturbing the lattice
potential periodicity [17]. Such a periodicity distur-
bance causes discrete donor or acceptor levels to arise
in the β-ZrO2 forbidden gap. Acceptor levels attract
electrons, and the surface gains a local negative charge.
When examined in a JEM-200A electron microscope,
dispersed β-ZrO2 powder with adsorbed quasi-mole-
cules shows up as negatively charged. In terms of the
elaborated concept, this allows us to argue that the sur-
face layer of the adsorbed water is of an acceptor
nature. Figure 3a qualitatively shows the band diagram
of the electroneutral β-ZrO2 surface with a chemi-
sorbed water molecule. The position of the surface
acceptor with an energy Ea in the forbidden gap
depends on the type of lattice and sorbed molecule, as
well as the distance of the molecule to the surface [17].
Note that the occupation of a surface level by a carrier
is of a probabilistic nature and is described by Fermi–
Dirac statistics. The probability of a local surface level
being occupied is given by [17]

(1)

Let N0 be the number of adsorbed molecules per unit
surface area; then, the number of charged molecules
on it is

(2)

Assuming that each of the molecules has a charge
equal to the electron charge e, one can determine the
surface charge density:

(3)

As follows from (3), the larger the value of (EF – Ea)
or the farther Ea is from EF, the smaller the surface
charge density. Such a situation occurs when the
adsorbed molecule is far away from the surface, thus
causing the local level to tend to the forbidden gap.

According to the electroneutrality condition, charg-
ing of the surface must lead to the formation of a near-
surface space charge region (SCR) to neutralize the sur-
face charge. Neutralization implies that charges of sign
opposite to that of the surface are attracted to the sur-
face and like charges are repulsed. The SCR thickness
L, depending on the material permittivity ε and carrier

f 1 EF Ea–( )/kT[ ]exp+{ } 1–= .

N– N0 1 EF Ea–( )/kT[ ]exp+{ } 1– .=

σ– eN– eN0 1 EF Ea–( )/kT[ ]exp+{ } 1– .= =
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concentration n, is expressed as [17]

(4)

The SCR results in a potential difference between
the surface and interior and, eventually, in band (level)
bending. If the surface is negative, the energy levels
bend up, since the energy of an electron moving from
the bulk to the surface grows (Fig. 3b). The bend
extends a distance L into the material. Of interest is the
near-surface region of thickness L1, where, as seen in
Fig. 3b, the yttrium acceptor lies above the Fermi level
and, hence, releases an electron captured from the
donor level of the vacancy. Its charge state thus changes
from Y3+(–) to Y3+, which changes the strength of the
vacancy–yttrium ionic bond. As a result, the distance
between zirconium and yttrium atoms in an Y–V–Zr
chain will also change. Thus, the material will experi-
ence local stretching strains (∆l), causing the β-to-α
martensite transformation to occur and the lattice vol-
ume to increase (Fig. 4). This strain is not a mere lattice
distortion; instead, it is locally directed along the spe-
cific crystallographic direction. Thus, we can suppose
that the α phase resulting from the β-to-α transforma-
tion in β-ZrO2 will have a certain crystallographic ori-
entation. This point will be touched upon below. It
should be noted that the occurrence of local strains due
to a change in the charge state of ions is also predicted
by the theory of lattice symmetry [18].

Thus, the near-surface region of size L1 is just that
region where the β-to-α transformation in β-ZrO2 takes
place owing to the chemisorption of water quasi-mole-
cules. Accordingly, the amount of the α phase is pro-
portional to its volume. Note that the α phase volume
increases with the charge surface density (or surface
density of adsorbed species), since the number of ions
changing their charge state and, hence, causing local
strains also grows with the charge density on the sur-
face. It becomes obvious from the aforesaid that the
amount of the α phase on the surface can be analyti-
cally estimated. Its volume Vα in a powder grain is

(5)

where S is the grain surface area and N–/N0 is the rela-
tive surface density of charged adsorbed quasi-mole-
cules.

Passing from the grain surface area to the total sur-
face area Sc of a powder or ceramic sample of mass mc,
we rearrange (5) to the more convenient form

(6)

Here, we used the classical expressions Sc = S0mc (S0 is
the specific surface area) and mc = ρβVβ (ρβ is the
β phase density, and Vβ is the β phase volume where the
transformation takes place).

L εε0kT e2n( )[ ]1/2
.=

Vα L1S N–/N0( ),=

Vα /Vβ L1S0ρβ 1 EF Ea–( )/kT[ ]exp+{ } 1– .=
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Since the surface charge is distributed statistically,
the parameter L1 in (6) can be replaced by L from (4).
Expression (6) implies the following.

(1) The amount of the resulting α phase depends
largely on the difference between the Fermi level and
the ionization energy of a surface level. Hence, by vary-
ing the Fermi level position (for example, by doping),
we can precisely control the stability of high-tempera-
ture β-ZrO2 under adsorption. The ionization energy of
a surface level can also be changed, for example, by
varying the molecule–adsorbent distance.

(2) At physical adsorption of molecules, when Ea

tends to zero, the high-temperature phase is expected to
be more stable than at chemisorption.

(3) If kT ! (EF – Ea), the possibility of the transfor-
mation is low but grows with temperature.

Also noteworthy is the fact that L generally does not
depend on the dispersity of the material, i.e., on S0. It is
related to the degree of charge carrier compensation.
For high ionization densities (deep yttrium and vacancy
levels), the compensation is the highest and the thick-
ness of the unstable surface α layer, the smallest.

The validity of expression (6) can be judged from
Fig. 1. The amount of the α phase is seen to grow with
accessible porosity, the latter being proportional to S0.
We were also interested in how the degree of hydration
(the amount of water bonded to grains) of β-ZrO2 pow-
der affects the β-to-α transformation. The experiments
were aimed at verifying expression (6). In particular, it
was of interest to see whether such a Vα vs. (EF – Ea)
dependence does exist. For this purpose, variously
hydrated powders were subjected to a hydrostatic pres-
sure of 1 GPa (10 kbar), and the α amount was mea-
sured with X-ray diffraction. Different degrees of
hydration were needed to discover the role of water in
the transformation. Pressure served as the parameter
that controls the (EF – Ea) value, changing the distance
between an adsorbed molecule and the grain surface
and thus changing Ea.

Figure 5 plots Vα against hydrostatic pressure P in
variously hydrated β-ZrO2 powders. It is seen that the

(a)

Zr

Zr

V+

V+

Y3+(–)

Y3+

∆l

(b)

Fig. 4. Crystallographically oriented local stretching strain
in the β-ZrO2 lattice. The strain arises when an yttrium ion
changes its charge state because of water adsorption: (a)
neutral surface and (b) charged region.



1158 ALEKSEENKO, VOLKOVA
α amount rises with the degree of hydration. In addi-
tion, for more highly hydrated samples, Vα depends
more strongly on P. The effect of water on the transfor-
mation is thus obvious. An increase in Vα and (dVα/dP)
with degree of hydration can be associated with a
decrease in EF – Ea under pressure. Recall that Ea rises
under pressure, because adsorbed water molecules are
brought close to the grain surface, which strengthens
surface–molecule bonds.

Expression (6) also offers a satisfactory explanation
of the weak dependence of Vα on temperature (room
temperature and boiling point at hydrothermal treat-
ments). This dependence may be insignificant if the
condition kT > (EF – Ea) is fulfilled.

The most important argument in favor of the dis-
cussed transformation mechanism seems to be the near-
surface crystallographically oriented α phase, which
was found in the hydrothermally treated powder and
ceramic β-ZrO2 samples. It was revealed with X-ray
topography (URS-2.0 equipment, CoKα radiation).
Morphologically, this phase, unlike the ordinary (non-
oriented) α phase, exists as thin lamellas orientation-
ally related to the (111) plane of the β phase. Its volume
is no more than 5% of the total β volume, while that of
the nonoriented α phase may be much larger. It should
be emphasized that both α phases arise simultaneously
under hydrothermal treatments. This is not surprising,
since the oriented α phase forms on the surface, where
the bond density is relatively low. In the bulk, where the
bond density is higher, elastic strain energy is scattered
over many more crystallographic directions, which pre-
vents the oriented transformation. In other words, the
transformation due to adsorption is directly related to
the formation of the oriented α phase. In the grains, the
thickness of the oriented α layer on the surface was
estimated at 3–5 Å. The experimentally discovered
presence of the orientated α phase is of paramount

2

1

2 4

6

8 10

2

4

8

6

10

12

14

16

P, kbar

Vα,%

Fig. 5. Amount of nonoriented α phase in variously
hydrated β-ZrO2 powders vs. hydrostatic pressure: (1) 5 and
(2) 15 wt% water.
value, since it was predicted within the suggested
mechanism.

CONCLUSIONS
(1) It was found experimentally that the β-to-α mar-

tensite transformation due to water adsorption takes
place on the surface of powder and ceramic stabilized
β-ZrO2 samples.

(2) A possible mechanism of the transformation is
advanced.

(3) An analytic expression for predicting the stabil-
ity of the dispersed and ceramic systems and control-
ling their properties was obtained.

(4) If the suggested electrophysical mechanism is
valid, the structure and phase composition of the stabilized
materials can be controlled in wide limits by applying, for
example, an electric or electromagnetic field. This prob-
lem will be highlighted in forthcoming papers.
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Abstract—The integro-differential equation for the dynamics of the phase difference with temporal and spatial
nonlocality for a Josephson junction in a superconducting three-dimensional magnetic thin film is derived. The
equation is valid for any type of magnetic ordering. The magnetic subsystem is shown to significantly renor-
malize the spectrum of small-amplitude electromagnetic excitations, which, as a result, are damped. © 2000
MAIK “Nauka/Interperiodica”.
(1) By now, equations of the nonlocal Josephson
electrodynamics have been derived and investigated in
the following six cases: 1) the butted tunneling junction
formed by two superconducting ultrathin films with
thicknesses much less than the London penetration
depth; 2) the tunneling junction formed by bulk super-
conductors with thicknesses much greater than the
London penetration depth; 3) the tunneling junction
formed by superconducting layers of finite thickness in
the direction orthogonal to a magnetic field; 4) the
butted tunneling junction formed by superconducting
plates of finite thickness along a magnetic field; 5) the
inclined (sloped) Josephson junction formed by super-
conducting plates of finite thickness along a magnetic
field; 6) the Josephson junction in a superconducting
magnetic (two-dimensional) thin film with a thickness
much less than the London penetration depth.

As is shown in [1–8], the nonlocality effects may be
significant even in contacts with large thickness d (d @
λ, where λ is the London penetration depth) along the
magnetic field (in the vortex direction), i.e., in the situ-
ations previously considered in the local approxima-
tion. In the opposite extreme case of thin-film contacts,
when d ! λ, nonlocality is very significant and
becomes a dominant factor. The corresponding equa-
tions were derived and studied in [9–12]. A Josephson
junction formed by two superconducting layers of finite
thickness in the orthogonal direction to a magnetic field
of vortices was studied in [13]. The butted contact and
the inclined (sloped) junction of finite thickness along
the magnetic field of vortices for an arbitrary ratio d/λ
were considered in [14, 15], respectively. In a recent
study [16], an integro-differential equation for the
phase difference dynamics with spatial and temporal
nonlocality was derived for the Josephson junction in a
superconducting magnetic (two-dimensional) thin film.
1063-7842/00/4509- $20.00 © 21159
At the present time, there are a large number of
magnetic superconductors exhibiting new unique prop-
erties [17–19]. In addition to ternary compounds [20],
superconductivity and magnetism coexist in high-tem-
perature superconductors (HTS), such as REBaCuO
and RECuO, where RE is a rare-earth ion. The strong
antiferromagnetic correlation of copper spins in CuO2-
planes is one of the most important features of HTS
materials [21].

(2) The investigation of the nonlocal electrodynam-
ics of Josephson junctions in ultrathin magnetic super-
conducting films (for which d ! λ) has become an
urgent problem. In this case, the problem may be
reduced to that of an infinite thin two-dimensional
superconducting plane where the superconducting
physical characteristics of a contact are independent of
the coordinate perpendicular to the film plane; i.e., the
current and magnetic field are assumed to alter slightly
along the plate thickness [22]. Suppose, however, that
the magnetic properties of the system under consider-
ation are nevertheless three-dimensional; i.e., the per-
meability of the film depends on three spatial and tem-
poral coordinates µ(r – r', t – t'), where r = (x, y, z).

Let the geometry of the problem be the following:
the film plane coincides with the X0Y plane, the current
flows along the y-axis, and a line of weak links lies
along the x-axis. Following [23, 24], we consider the
Maxwell equations for the magnetic induction B(r, t) =
curlA(r, t) (A(r, t) is the vector potential) defined by the
sum of the magnetic field H(r, t) produced by the super-
conducting current j(r, t) and the magnetization M(r, t):

(1)

The relation between the current, the potential, and
the phase of the order parameter Θ(r, t) (for the London

curlB r t,( ) 4π
c

------ j r t,( ) 4πcurlM r t,( ).+=
000 MAIK “Nauka/Interperiodica”
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calibration of the potential divA(r, t) = 0) is determined
by the expression

(2)

where r = (x, y) and the vector S(r, t) is defined by the
phase gradient

(3)

Here, Φ0 is the flux quantum. The phase of the order
parameter satisfies the condition

(4)

where  is a unit vector along the z-axis, δ(y) is the
Dirac delta function, and ϕ(x, t) is determined by the
phase difference of the order parameter across a junc-
tion:

(5)

The system of Eqs. (1) and (2) leads to the relation-
ship

(6)

which can be written for an ultrathin film d ! λ in the
form

(7)

where λeff = λ2/d is the effective Pearl penetration
depth.

The magnetic field H(r, t) is related to the magnetic
induction B(r, t) by the integral relationship

(8)

From the system of relationships (7) and (8), we
obtain the equation for the vector potential

(9)

which is expressed by means of the source field S(r, t).
From the continuity equation divj(r, t) = 0 and

Eq. (2), it follows that divS(r, t) = 0. Consequently, the
vector field S(r, t) may be represented as the curl of a
solenoidal vector field F(r, t) in the form

(10)

where

(11)

Substituting expression (10) with allowance for (11)
into relationship (4), we obtain an equation describing

j r t,( ) c/4πλ2( ) S r t,( ) A r t,( )–[ ] ,=

S r t,( )
Φ0

2π
------ ∇ Θ r t,( ).=

curlS r t,( ) ẑ
Φ0

2π
------∂ϕ x t,( )

∂x
-------------------δ y( ),–=

ẑ

ϕ x t,( ) Θ x +0 t,,( ) Θ x 0 t,–,( ).–=

curlH r t,( ) λ 2– S r t,( ) A r t,( )–[ ] ,=

curlH r t,( ) λeff
1– S r t,( ) A r t,( )–[ ]δ z( ),=

H r t,( ) dt' dr'µ 1– r r'– t t'–,( )B r' t',( ).

∞–

∞

∫
∞–

t

∫=

curl dt' dr'µ 1– r r'– t t'–,( )curlA r' t',( )
∞–

∞

∫
∞–

t

∫ 
 
 

=  λ eff
1– S r t,( ) A r z t, ,( )–[ ]δ z( ),

S r t,( ) curlF r t,( ),=

F r t,( ) ẑF r r,( ), divF r t,( ) 0,= =
the function F(r, t):

(12)

On the one hand, the current density across the
Josephson junction jy(x, 0, t) is equal to the sum, for
example, of three terms: the Josephson supercurrent
density, the normal (quasiparticle) current, and the
capacitive displacement current

(13)

where β is the dissipative parameter and jc and ωJ are
the critical current and the Josephson frequency,
respectively.

On the other hand, it follows from Eq. (2) that the
same current density jy(x, 0, t) may be represented in
the form

(14)

Equating the expressions for the current density (13)
and (14), we see that

(15)

In order to derive a closed equation for the phase
difference dynamics ϕ(x, t), it is necessary to find a
functional relationship between

(16)

and ϕ(x, t). To solve the system of equations (9), we
introduce the Fourier transforms for the vectors A(r, t)
and S(r, t) and the scalar function µ–1(r, t) in the form

(17)

(18)

and

(19)

∆F r t,( )
Φ0

2π
------∂ϕ x t,( )

∂t
-------------------δ y( ).=

jy x 0 t, ,( )

=  jc ϕ x t,( ) β
ωJ

2
------∂ϕ x t,( )

∂t
------------------- 1

ωJ
2

------∂2ϕ x t,( )
∂t2

---------------------+ +sin dδ z( ),

jy x 0 t, ,( )

=  
c

4πλ eff
-------------- Sy x 0 t, ,( ) Ay x 0 0 t, , ,( )–[ ]δ z( ).

jc ϕ x t,( )sin
β
ωJ

2
------∂ϕ x t,( )

∂t
------------------- 1

ωJ
2

------∂2ϕ x t,( )
∂t2

---------------------+ +

=  
c

4πλ2
------------ Sy x 0 t, ,( ) Ay x 0 0 t, , ,( )–[ ] .

∆y x t,( ) Sy x 0 t, ,( ) Ay x 0 0 t, , ,( )–=

A r z t, ,( )

=  
d2qdqω

2π( )4
------------------- iqr ipz iωt–+( )A q p ω, ,( ),exp∫

S r t,( ) d2qdω
2π( )3

---------------- iqr iωt–( )S q ω,( )exp∫=

µ 1– r t,( )

=  
d2qd pqω

2π( )4
----------------------- iqr ipz iωt–+( )µ 1– q p ω, ,( ).exp∫
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Using relationships (17) and (18), we represent the
quantity ∆y(x, t) in the integral form

(20)

where q = (  + )1/2, ϑ  is the polar angle on the plane
(qx, qy), and

(21)

We now represent the solution of Eq. (9) in the form

(22)

As follows from definition (21) and Eq. (22), the
relation between S(q, ω) and A(q, ω) can be written in
the form

(23)

where R(q, ω) is determined by the integral

(24)

therefore,

(25)

To find Sy(q, ω), it is necessary to differentiate
Eq. (12) with respect to the coordinate x, since Sy(r, t)
is equal to ∂F(r, t)/∂x. As a result, we have

(26)

The relationship written below is the corollary of
this equation:

(27)

Combining expressions (27), (25), (20), and (15),
we obtain the integro-differential equation for the phase
difference dynamics across the Josephson junction,
valid for any type of magnetic ordering in a supercon-

∆y x t,( ) = 
1

2π( )2
------------- dω q q dϑ Sy q ω,( ) Ay q ω,( )–[ ]

π–

π

∫d

0

∞

∫
∞–

∞

∫
× iqx ϑ iωt–cos( ),exp

qx
2 qy

2

A q ω,( ) d p
2π
------A q p ω, ,( ).

∞–

∞

∫=

A q p ω, ,( ) λ eff
1– µ q p ω, ,( )

p2 q2+( )
------------------------- S q ω,( ) A q ω,( )–[ ] .=

A q ω,( ) 1
λeff

R q ω,( )
-------------------+ 

 
1–

S q ω,( ),=

R q ω,( ) d p
2π
------µ q p ω, ,( )

p2 q2+
-------------------------;

∞–

∞

∫=

Sy q ω,( ) Ay q ω,( )–
λ eff

R q ω,( ) λ eff+
---------------------------------Sy q ω,( ).=

∆Sy r t,( )
Φ0

2π
------∂2ϕ x t,( )

∂x2
---------------------δ y( ).–=

Sy q ω,( )
Φ0

2πq2
------------ dx dt

∞–

∞

∫
∞–

∞

∫=

× iq ϑ x iωt+cos–( )∂
2ϕ x t,( )

∂x2
---------------------.exp
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ducting film:

(28)

where IJ = /λ, λJ is the Josephson penetration depth
and the integral kernel 

,

which is nonlocal over spatial and temporal variables,
takes the form

(29)

Here J0 is the zeroth-order Bessel function. In view of
(29), the temporal nonlocality of Eq. (28) is governed
by the frequency dispersion of the permeability µ(q, p,
ω) (through the function R(q, ω).

(3). Since λ @ a (a is the crystal lattice constant), it
is natural to use a hydrodynamic description of the
magnetic subsystem. Considering only the paramag-
netic temperature range for the permeability, we have
the expression [24, 25]

(30)

where χ0 is the static permeability and D is the coeffi-
cient of the spin diffusion for three-dimensional
Heisenberg magnetic substances.

In a strict sense, the superconducting currents shield
the long-wavelength part of the exchange and electro-
magnetic interactions, renormalizing the parameters of
the magnetic subsystem [26]. However, this circum-
stance is not taken into account, since we are dealing
with the paramagnetic temperature range and are inter-
ested in evaluating only the order of magnitude.

According to formula (24) and in view of (30), the
function R(q, ω) takes the form

(31)

where, in its turn, the function f0(q, ω) is equal to

(32)

ϕ x t,( )sin
β
ωJ

2
------∂ϕ x t,( )

∂t
------------------- 1

ωJ
2

------∂2ϕ x t,( )
∂t2

---------------------+ +

=  IJ dx' dt'K
x x'–
2λ eff
------------ t t'–, 

  ∂2ϕ x' t',( )
∂x'2

-----------------------,

∞–

∞

∫
∞–

∞

∫

λ J
2

K
x x'–
2λ eff
------------ t t'–, 

 

K
x x'–
2λeff
------------ t t'–, 

  dq
π

------ dω
2π
-------

∞–

∞

∫
0

∞

∫=

×
λ effJ0 q x x'–( )[ ] iω t t'–( )–[ ]exp

q R q w,( ) λeff+[ ]
-------------------------------------------------------------------------------.

µ q p ω, ,( ) 1 i4π
χ0D q2 p2+( )

ω iD q2 p2+( )+
--------------------------------------,+=

R q ω,( )
f 0 q ω,( ) i4πχ0q+

2q f 0 q ω,( )
--------------------------------------------,=

f 0 q ω,( ) q4 ω2/D2+( )1/2
/2 q2/2–[ ]

1/2
=

+ i q4 ω2/D2+( )1/2
/2 q2/2+[ ]

1/2
.
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We consider the spectrum of small-amplitude elec-
tromagnetic excitations with the wave vector Q and the
frequency Ω ,

(33)

propagating along the Josephson junction.
From Eq. (28), with allowance for (29), (31), and

(32) for solutions (33) in the nondissipative limit (at β =
0) and in the absence of the transport current and an
external magnetic field, we obtain the dispersion equa-

tion  = ( ):

(34)

where

(35)

and

(36)

Here, the dimensionless quantities  = 2λeffQ and  =
Ω/ωJ are introduced, and the following designations I =
IJ/2λeff, η = ωJ/Ωeff, and Ωeff = D/(2λeff)2 are used.

At χ0 = 0 (for a nonmagnetic superconductor),
Eq. (34), with allowance for (35) and (36), leads to the
well-known spectrum of small-amplitude electromag-
netic waves derived in [12] for the long-wave and short-

wave ranges. The frequency  is a real function of the

wave vector , and the damping of modes in the non-

ϕ x t,( ) ϕ0 i Qx Ωt–( )[ ] , ϕ0  ! 1,exp=

Ω̂ Ω̂ Q̂

Ω̂2
1

2
π
--- IQ̂

2
I Q̂ Ω̂,( ),+=

I Q̂ Ω̂,( )

=  
dxF0 Q̂ xcosh Ω̂,( )

F0 Q̂ xcosh Ω̂,( ) 1 Q̂ xcosh+( ) i4πχ0Q̂ xcosh+
----------------------------------------------------------------------------------------------------------------

0

∞

∫

F0 x y,( ) x4 η2y2+( )1/2
/2 x2/2–[ ]

1/2
=

+ i x4 η2y2+( )1/2
/2 x2/2+[ ]

1/2
.
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Fig. 1. 
dissipative limit (at β = 0) is absent. The other situation
is observed for a magnetic superconductor at χ0 = 0. For
antiferromagnetics, a typical value of χ0 lies between
10–5 and 10–3. Numerical simulations have shown that,
for χ0 = 10–3 (compared with the susceptibility of the
copper subsystem in HTS materials), I = 1 and η = 103

from Eq. (34) (implicit relative to ), and with allow-
ance for (35) and (36), we obtain the complex solution

 = ( ) = Re ( ) + iIm ( ) with a small neg-
ative imaginary part satisfying the condition

(37)

This indicates that, due to the effect of the magnetic
subsystem, damping of small-amplitude electromag-
netic excitations exists. However, no rising solutions
were observed.

It is clear from the above that the nonlocality over
spatial variables for the Josephson electrodynamics of
magnetic superconducting thin films is very significant
and becomes the main factor determining its specific
features. The temporal nonlocality of the Josephson
electrodynamics of magnetic superconducting thin
films is associated with the frequency dispersion of the
material permeability, which is finally produced by the
delay processes.

According to (30), damping of the electromagnetic
excitations in a Josephson junction in magnetic super-
conducting thin films is related to the complexity of the
material permeability functions. The physical mecha-
nism of such damping is a process of spin diffusion
with a finite relaxation time, during which a small part
of the electromagnetic field energy is irreversibly dissi-
pated. The presence itself of the damping of linear elec-
tromagnetic waves in a Josephson junction (in the non-
dissipative limit) may provide information about
whether or not the superconductor is magnetic.

Ω̂

Ω̂ Ω̂ Q̂ Ω̂ Q̂ Ω̂ Q̂

ImΩ̂ Q̂( )/ReΩ̂ Q̂( ) ! 1.

0 20 40 60 80 100
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4

0

0

–1

–2

2λeffQ

Re(Ω/ωj) – 1

Im(Ω/ωj) 

Fig. 2.
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For the wave vector values 0 ≤  ≤ 1 and 1 ≤  ≤
100, the spectrum renormalized by the magnetic sub-
system and the damping decrement of electromagnetic
waves in a Josephson junction are shown in Figs. 1
and 2, respectively.
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Abstract—The propagation of laser radiation in a nonlinear directional coupler with identical optical
waveguides is studied theoretically. Account is taken of refractive index saturation. Bifurcations of the intensity
distribution and transmission characteristic are revealed, and respective regions in the parameter plane are delineated.
Two points of input intensity self-switching are found. A coupling length vs. normalized input intensity is investigated
for different values of the nonlinearity parameter. Distinctive features of the coupler with saturated nonlinearity com-
pared with Kerr-type couplers are highlighted. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Research on nonlinear directional couplers
(NLDCs) with distributed coupling of copropagating
light waves sets the stage for the progress toward
ultrafast all-optical switches [1–3]. Under nonlinear
conditions, when the refractive index depends on light
intensity, the transmission loss of each wave depends
on input intensity. Furthermore, the self-switching of
the waves was predicted [1]. The phenomenon shows
up as sharp changes in the intensities of both waves at
the output in response to a slight variation in the inten-
sity of one of them at the input. A satisfactory theory
has been developed for the propagation in NLDCs
where the intensity-dependent refractive index or prop-
agation constant obeys the Kerr model. Exact analytical
solutions to the nonlinear equations for wave intensities
have been obtained in terms of elliptic functions, and
key features of switching processes have been investi-
gated. However, Kerr-type NLDCs are of limited prac-
tical value, because their switching power has turned
out to be rather high. Much lower switching powers are
offered by semiconductor NLDCs, which are remark-
able for their giant resonant-type nonlinearities. Semi-
conductors are basically non-Kerr-type media,
although they can be regarded as Kerr-type materials as
long as the susceptibility is expanded in powers of
intensity up to a linear term. Such an approximation
may, however, fail at high excitation levels. For exam-
ple, a medium modeled by two-level atoms exhibits sat-
uration, which considerably changes the refractive
index and absorption coefficient. In [4–12], the effect of
refractive-index saturation was studied numerically. It
was shown that the performance of such NLDCs quali-
tatively differs from that of Kerr-type NLDCs. A non-
Kerr-type NLDC with a power-law index–intensity
characteristic was considered in [13]. Yet, works [4–13]
give no exact analytical solutions of the nonlinear equa-
tions in the non-Kerr-type case.
1063-7842/00/4509- $20.00 © 21164
Even more promising seem to be materials with
excitonic and biexcitonic optical nonlinearities [14–
16]. They offer a wealth of coherent nonlinear effects.
On the other hand, their index–intensity characteristic,
which can self-consistently be derived from Bloch-like
equations, may be rather complicated.

In view of the foregoing, it seems worthwhile to
seek analytical solutions of the NLDC equations for
non-Kerr-type media. This paper presents such solu-
tions, the equations being solved in quadrature. Expo-
nential saturation of the refractive index (propagation
constant) is taken into account.

BASIC EQUATIONS

Consider an NLDC with two identical optical
waveguides. Following [5, 9], the dependence of the
propagation constant β on the wave intensity J is
defined as

(1)

where β0 and α are constants and JS is the saturation
intensity.

Formula (1) will be used for modeling the nonlinear
medium with a saturable refractive index (propagation
constant). As J increases from zero to J @ JS, β(J)
decreases monotonically from β0 + α, approaching β0.
Expanding (1) in powers of J/JS up to a linear term, we
obtain an expression for β in the Kerr limit for a self-
defocusing medium. As is usually the case, the cou-
pling constant γ of the waveguides is independent of J
[1–13]. Optical absorption in the medium is assumed to
be negligible.

Then, the amplitudes E1 and E2 of coupled waves
propagating through the respective waveguides along
their axes obey the following nonlinear differential

β β0 α J
JS

-----– 
  ,exp+=
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equations [1–13]:

(2)

(3)

It is usually assumed that the fields differ in ampli-
tude and phase. System (2)–(3) is then replaced by non-
linear equations for amplitudes and phase difference [1].
We suggest another approach that seems to be more
convenient and enables one to solve system (2)–(3) by
quadrature. Let us define new functions

(4)

Using (2), (3), and the conjugate equations, we
obtain the following system of coupled nonlinear dif-
ferential equations:

(5)

(6)

(7)

Let us solve the system for the case where one of the
waveguides (waveguide 1) is fed by laser radiation of
amplitude E0 and intensity J0. Then the boundary con-
ditions for (5)–(7) are

(8)

From equations (5), one easily obtains the integral
of motion

(9)

according to the energy conservation law. As suggested
by (5), (7), and (8), the second integral of motion is

(10)

Substituting (10) into (6) and using (5), we come to
the third integral:

(11)

From (9)–(11), one easily finds the fourth integral,

dE1

dx
--------- i β0 α

J1

JS

-----– 
 exp+ 

  E1– iγE2,+=

dE2

dx
--------- i β0 α

J2

JS

-----– 
 exp+ 

  E2– iγE1.+=

J1
c

8π
------ E1

2, J2
c

8π
------ E2

2,= =

Q
c

8π
------ E1*E2 E2*E1–( ), R

c
8π
------ E1*E2 E2*E1+( ).= =

dJ1

dx
-------- iγQ,

dJ2

dx
-------- iγQ,–= =

dQ
dx
------- = iα

J1

JS

-----– 
  J2

JS

-----– 
 exp–exp 

  R 2iγ J1 J2–( ),+

dR
dx
------- iα

J1

JS

-----– 
 exp

J2

JS

-----– 
 exp– 

  Q.=

J1 x 0= J0,   J 2 x 0= 0,   Q | x 0= R | x 0= 0.= = = =

J1 J2+ J0,=

R
α
γ
---JS 1

J1

JS

-----– 
 exp– 

  1
J2

JS

-----– 
 exp– 

  .=

Q2 4J1 J0 J1–( ) α2

γ2
-----JS

2+–=

× 1
J1

JS

-----– 
 exp– 

  2

1
J2

JS

-----– 
 exp– 

  2

.
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which involves all of the functions:

(12)

Finally, substituting (11) into (5) immediately gives
the nonlinear differential equation for intensity distri-
bution over the length of waveguide 1:

(13)

Having found 

 

J

 

1

 

(

 

x

 

) from (13), one determines 

 

J

 

2

 

(

 

x

 

)
with the help of (9). Let us define normalized quantities

(14)

Then (13) is solved by quadrature as follows:

(15)

To facilitate the qualitative analysis of solutions, we
rewrite (13) in the form

(16)

where

(17)

We thus arrive at the equation of nonlinear conser-
vative oscillator with the potential energy 

 

W

 

(

 

Y

 

1

 

). The
motion of the oscillator is confined to the region where

 

W

 

(

 

Y

 

1

 

) < 0. Formulas (15) and (17) indicate that the
behavior of the solutions is governed by two system
parameters, 

 

Y

 

0

 

 and 

 

a

 

. The former is the normalized
intensity at the input of waveguide 1, and the latter
characterizes nonlinearity.

It follows from (15) and (17) that the intensity in
waveguide 1 varies periodically from the upper limit 

 

Y

 

0

 

to the minimum 

 

Y

 

m

 

. The latter can be found from the
equation

(18)

by taking the positive root closest to 

 

Y

 

0

 

.

R2 Q2 4J1 J 2.+=

dJ1

dx
-------- 2γ J1 J0 J1–( ) α2

4γ2
--------JS

2–




–=

× 1
J1

JS

-----– 
 exp– 

  2

1
J2

JS

-----– 
 exp– 

  2





1/2

.

Y1
J1

JS

-----= , Y2

J2

JS

-----, Y0

J0

JS

-----,= =

z 2γx, a
α2

4γ2
--------.==

Y Y0 Y–( ) a 1 Y–( )exp–( )2–[
Y1

Y0

∫

× 1 Y Y0–( )exp–( )2 ] 1/2–
dY 2γx.=

dY1

dz
--------- 

 
2

W Y1( )+ 0,=

W Y1( ) Y1 Y0 Y1–( )– a 1 Y1( )exp–( )2+=

× 1 Y1 Y0–( )exp–( )2.

Ym Y0 Ym–( )

=  a 1 Ym( )exp–( )2 1 Ym Y0–( )exp–( )2
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Fig. 1. Potential energy W of the equivalent nonlinear oscillator vs. Y1 for different values of a. In panel (a), a = (1) 0.3, (2) 0.5, (3)
0.5988, and (4) 0.7. In panel (b), a = (1) 13, (2) 12, (3) 10.5, (4) 9.5537, (5) 9, (6) 8, and (7) 7.

W/Y0
BIFURCATIONS OF THE OSCILLATOR 
POTENTIAL ENERGY

The properties of intensity distributions in NLDC
waveguides can be explained by investigating the
behavior of the oscillator potential energy W(Y1) at dif-
ferent values of a and Y0 (Fig. 1) and by plotting bifur-
cation curves in the (Y0, a) plane (Fig. 2). These curves
separate the plane into regions where the behavior of
W(Y1) qualitatively differs. It follows from (17) that
W(Y1) has the zeros Y1 = 0 and Y1 = Y0. Based on the
requirement that W(Y1) and its derivative be zero, we
infer that there exists a critical value of Y0, Y0C at which
the behavior of W(Y1) changes qualitatively. This value
can be determined from the equation

(19)

Equation (19) has a single positive real root: Y0C ≈
5.97. The corresponding value of a,

, (20)

equals a0C = 10.98. In the (Y0, a) plane, Y0C and a0C are
represented by point D (see Fig. 2).

Equation (16) implies that, with 0 ≤ Y0 ≤ Y0C,
increasing a produces a smoothly growing peak in the
curve W(Y1) at Y1 = Y0/2 (Fig. 1a). If a is below a certain
critical value aC, max W(Y1) < 0; then, the permissible
(allowed) region of Y1 lies between the turning points
Y1 = 0 and Y1 = Y0, at which W(Y1) = 0. This means that
the intensity Y1 in waveguide 1 varies periodically
between Y0 and zero. If a = aC, then the peak of W(Y1)
is at the point Y1 = Y0/2, for which W(Y0/2) = 0. Conse-
quently, when a ≥ aC, a new turning point arises in the
region Y0/2 < Y1 < Y0(< YC) and the periodically varying
intensity Y1 is above zero at any z. The critical (or bifur-

Y0C

2
-------- 

 cosh 1
1
2
---Y0C.+=

a0C Y0
2– Y0( )exp=
cation) value aC is determined by Y0 as follows:

(21)

In Fig. 2, equation (21) is represented by the con-
cave curve that separates region B from the rest of the
plane. The bifurcation curve aC(Y0) has a valley at the
point Y0min ≈ 2.514, which is found from the equation
exp(Y0/2) = 1 + Y0. This indicates that switching occurs
at progressively decreasing values of a as Y0 increases
within the range 0 < Y0 < Y0min. Since switching is a
nonlinear phenomenon, a decrease in the nonlinearity
parameter a must be compensated for by an increase
in Y0. Qualitatively, this agrees with the behavior of
switching intensity in a system of two coupled identical
waveguides with Kerr-type nonlinearity [1]. Under sat-
uration, such behavior occurs only for aC < aCmin. Also
note that switching is impossible at any Y0 if a < aCmin =

(1 + Y0min)4/4 ≈ 6.029. Even more intriguing is
that, if Y0 > Y0min in region B, switching occurs at pro-
gressively increasing values of a as Y0 grows, which is
in sharp contrast to the properties of Kerr-type media [1].
The point is that, if Y0 ! 1, the NLDC obviously tends
to a linear regime. If Y0 @ 1, the effect of the exponen-
tial term in (1) becomes negligible, so that the NLDC
goes to a linear regime in an unconventional fashion
as Y0 increases. The nonlinearity at high Y0’s can be
enhanced by raising a.

Thus, only a fraction of power is transferred from
waveguide 1 to waveguide 2 if the NLDC operates in
region B (Fig. 2). At Y0 ≥ Y0C, another bifurcation
arises. When a is small and lies in region A (Fig. 2), the
curve W(Y1) has two peaks symmetric about Y1 = Y0/2.
Their height grows with a (Fig. 1b). If a takes on a new
critical value, which can be found from the system of
equations

(22)

aC

Y0
2

4 1 Y0 /2–( )exp–( )4
-----------------------------------------------.=

Y0 min
2

Y0
2

4
----- z2 4a Y0–( )

Y0

2
----- 

  z( )cosh–cosh 
 

2

,exp+=
TECHNICAL PHYSICS      Vol. 45      No. 9      2000



LIGHT PROPAGATION IN A DIRECTIONAL COUPLER 1167
(23)

by eliminating z at Y0 > Y0C, where Y0C is determined by
(19), W(Y1) vanishes at two points symmetric about
Y1 = Y0/2 (curve 4 in Fig. 1b). A new turning point Y1
thus appears in the potential well W(Y1), where Y0/2 <
Y1 < Y0. Look at the narrow region C in the (Y0, a) plane
(Fig. 2). It forms when the initial curve [formula (21)]
splits at the point D. This region is analogous to region
B in the sense that only a fraction of the power is trans-
ferred from waveguide 1 to waveguide 2. However,
regions B and C are of differing origins. In gradually
passing from region A to region C, the NLDC stepwise
switches from the total to partial power transfer mode,
so that less than half of the input power is transferred to
waveguide 2. A similar effect is observed for the A-to-
B transition except that precisely half of the power is
transferred. Remarkably, while a representative point
moves from region C to region B, the transferred frac-
tion of power rises gradually, reaches Y0/2 at the divid-
ing line, and then falls.

As Y0 increases at a fixed a, the point goes from A to
B and then enters A directly or by crossing C. Accord-
ingly, the NLDC goes from the total to partial power
transfer mode and then returns to the former (Fig. 2). As
a increases at a fixed Y0, the NLDC goes from the total
to partial power transfer mode. For comparison, Fig. 2
includes the bifurcation curve for the Kerr-type nonlin-
earity β = β0 + αJ controlled by a (see the dashed
curve).

The properties presented above also follow from
phase trajectories in the (Y1, dY1/dz) plane for variable
a and Y0.

INTENSITY DISTRIBUTION ALONG 
WAVEGUIDE 1: COUPLING LENGTH

Figure 3 shows the minimum intensity Ym in
waveguide 1 as a function of Y0 at various a’s. The
graphs were computed from (18). If a < aCmin, Ym = 0
for any Y0. If aCmin < a < a0C, Ym equals zero while Y0 is
sufficiently small. At a certain Y0 such that the represen-
tative point lies on the bifurcation curve between
regions A and B (Fig. 2), Ym jumps to Y0/2 and then
grows with Y0. When the right-hand segment of the
bifurcation curve is reached, Ym equals Y0/2 again. As
soon as the point enters the region A, Ym drops to zero
and stays at that level while Y0 grows further. If a > a0C,
Ym in regions A and B varies in the same fashion with
increasing Y0. In region C, the growth of Ym continues.
Note that Ym > Y0/2 at the boundary between C and A.
Looking at Fig. 3, one can see a short falling segment
on each of the curves for large Y0. When the point
enters region A (Fig. 2), Ym again turns to zero. Thus,
Ym = 0 everywhere in region A: the power can be totally

1 4a Y0–( ) z( )sinh
z

------------------
Y0

2
----- 

  z( )cosh–cosh 
 exp=
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transferred to waveguide 2. In B and C, the power trans-
fer is partial: Y0/2 < Ym < Y0.

Now, consider the intensity distribution along
waveguide 1, the intensity in waveguide 2 being deter-
mined by the relation Y2 = Y0 – Y1 [see (9)]. Figure 4
shows distribution curves for different values of a
and Y0. It is seen that the power transfer to waveguide 2
may be total if the representative point lies in region A
(Fig. 2). The coupling length L, i.e., the length along
which Y1 goes from Y0 to zero, can be found from

(24)

As Y0 increases, L(Y0) first rises to a maximum and
then falls (Fig. 5a). In the linear-medium limit (a = 0),
formula (24) gives L = L0 = π(2γ).

For regions B and C (Fig. 2), the distribution of Y1 is
much more complicated (Fig. 4b). When the point
crosses the bifurcation curve a(Y0), the distribution
changes radically. If Y0 is so small that the representa-
tive point moves in region A (total transfer), L rises
monotonically to infinity as the point approaches the
bifurcation curve in Fig. 2, formula (24) remaining
valid. In regions B and C, the function Y1(z) is also peri-

L
1

2γ
------ Y Y0 Y–( ) a 1 Y–( )exp–( )2–[

0

Y0

∫=

× 1 Y Y0–( )exp–( )2 ] 1/2–
dY .
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Fig. 3. Minimum intensity Ym(Y0) for a = (1) 6.1, (2) 7, (3)
9, (4) 11, (5) 13, (6) 15, and (7) 20.
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Y1/Y0

L

odic but the transfer cannot be total (Fig. 4b) and the
coupling length is expressed as

(25)

where Ym is determined from (18).

In B and C, L first rapidly goes down to a minimum
with increasing Y0 and then tends to infinity as the rep-
resentative point approaches the right-hand segment of
the bifurcation curve a(Y0). The higher a, the lower the
minimum value of L(Y0). When the point enters region
A, the conditions for total transfer are reestablished.
The coupling length obeys (24) again and decreases
monotonically as Y0 goes up (Fig. 5b).

TRANSMISSION FUNCTION

Figure 6 depicts the transmission function T1 = Y1/Y0
of waveguide 1 as a function of Y0 at various a’s. The
NLDC length l is 5 and exceeds the coupling length of
a linear coupler, L0. It is seen that NLDCs with satura-

L
1

2γ
------ Y Y0 Y–( ) a 1 Y–( )exp–( )2–[

Ym

Y0

∫=

× 1 Y Y0–( )exp–( )2 ] 1/2–
dY ,
ble nonlinearity offer a much wider variety of transmis-
sion functions than Kerr-type NLDCs [1]. If a < aCmin,
the curve T1(Y0) has smoothly falling and smoothly ris-
ing segments for small Y0 (Fig. 6a). The fall results
from an increase in L with increasing Y0. When Y0 is
such that L = l, the entire power is transferred to
waveguide 2, so that T1 = 0. It is important to note that,
unlike Kerr-type NLDCs [1], the segment oscillating
near a level of 1.0 for large Y0 here is absent.

If a > aCmin, the curve T1(Y0) has two zeros and oscil-
lates near T1 ≈ 1 in between (Fig. 6b). The number of
oscillation periods grows with a. The curve includes
two steep segments. They respectively correspond to
the left- and right-hand segments of the bifurcation
curve a(Y0) (see Fig. 2). At such values of Y0 and a, one
has L = l. The steepness of the two segments of T1(Y0)
(Fig. 6b) corresponds to that of L(Y0) (Fig. 5b). If l < L0,
T1(Y0) has a single zero at larger Y0’s. Thus, the trans-
mission function of a waveguide in a saturable NLDC
is essentially governed by the normalized input inten-
sity, nonlinearity parameter, and NLDC length.

Comparing the above results with the properties of
Kerr-type NLDCs [1] suggests that self-switching is
possible in saturable NLDCs as well. In contrast to the
TECHNICAL PHYSICS      Vol. 45      No. 9      2000
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no-saturation case [1], the transmission characteristic
of a saturable device has two points of self-switching
(Fig. 6b). Either lies in the middle of the respective
steep and almost linear segment. If the input intensity is
slightly higher or lower than the switching (critical)
level, the input power is almost entirely applied to one
or the other waveguide. Thus, a small variation in the
input intensity around its critical value causes a sharp
change in the output intensity. The effect may find
application in all-optical switches, small-signal ampli-
fiers, optical transistors, and other integrated-optics
devices [1].

CONCLUSION

This study revealed high functionality of a simple
symmetric saturable NLDC that is built around two
optical waveguides and is fed at one of the inputs.
Obviously, an asymmetric NLDC would exhibit more
useful properties. Although NLDC performance is
affected by optical absorption as well [5], our results
seem to provide a fairly deep understanding of the sub-
ject. More comprehensive analysis will be reported at a
later time.
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Abstract—Reflection and transmission of light in medium/cholesteric/substrate and glass (1)/cholesteric/glass (2)
systems are discussed. These systems can be viewed as a cholesteric-filled Fabry–Perot resonator. A modified
layer-addition method is used. Rigorous explicit expressions for the elements of the Jones matrices for these
systems are derived. Reflection, transmission, Faraday-rotation, and polarization-ellipticity spectra were stud-
ied. The effect of quasi-monochromatism and degree of polarization of light on the reflection properties was
treated in terms of Müller matrices. The influence of the dielectric boundaries on intrinsic cholesteric polariza-
tions was investigated. It is shown that initially quasi-circular intrinsic polarizations turn to quasi-linear as the
difference between the cholesteric mean permittivity and the permittivity of the surrounding medium increases.
Features of the Borrmann effect in the presence of dielectric boundaries are discussed. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION
The optical properties of structures based on liquid

crystals, in particular, cholesteric liquid crystals, are
attracting much attention. Most often used in practice
are medium/cholesteric/substrate (MCS) and glass (1)/
cholesteric/glass (2) (GCG) systems. In the former,
cholesteric is applied on an isotropic substrate, while,
in the latter, it is sandwiched in isotropic plates. This
work is concerned with the optical properties of these
systems under normal incidence of light (the choles-
teric axis is normal to the plate surfaces).

The properties of cholesterics can be simulated by
artificial helical media with desired parameters and also
ferromagnetic helical media, which simulate their
properties at high frequencies. This greatly extends
investigations and applications of the systems. Since a
GCG system can be considered as a cholesteric-filled
Fabry–Perot resonator, the derivation of explicit analyt-
ical expressions for Jones matrix elements seems to be
topical. In cholesteric-filled Fabry–Perot resonators,
the number of control parameters grows; in addition,
they perform not only frequency but also polarization
selection [1, 2].

The propagation of plane monochromatic waves in
homogeneous helical media has been the subject of
investigation in many reports (see, e.g., [3–12]). The
boundary-value problem of light transmission through
a layer of a finite thickness was solved both analytically
and numerically. However, the obtained solutions were
approximate. In [13], this problem was rigorously
solved for light transmission through a cholesteric
layer. This allows cholesteric-based multilayer struc-
1063-7842/00/4509- $20.00 © 1170
tures to be treated analytically. Yet, it is known that a
problem of interaction of electromagnetic waves with
multilayer structures with three or more interfaces can-
not adequately be solved by immediately applying the
boundary conditions method. An example is works
[1, 2], where the optical properties of a GCG structure
were numerically analyzed by immediately applying
boundary conditions. Thirty-two linear equations with
32 unknowns were eventually derived. Various layer-
addition methods are available in the literature (see
[7, 14–18], and references therein). Here, an elegant
and efficient method developed in [14, 16, 17] will be
used. In [17], it was applied in solving the problems of
light reflection and transmission in choles-
teric/glass/cholesteric and cholesteric(1)/cholesteric(2)
systems. In this work, the application of this method to
solve the same problems in MCS and GCG systems is
discussed.

REFLECTION AND TRANSMISSION OF LIGHT 
IN MCS SYSTEM

The situation where polarized light is reflected from
or transmitted through a substrate covered by a homo-
geneous cholesteric layer is of considerable interest for
ellipsometry. The substrate is assumed to be of a finite
thickness. Outer media (0 and 3) and substrate (2) are
homogeneous, optically isotropic, and have complex
refractive indexes n0, n3 = n0, and n2, respectively. The
cholesteric layer will be joint together with an isotropic
plate. The solution method also leaves room for a sub-
strate to be an anisotropic (or gyrotropic) plate. In this
case, the Jones matrices for an isotropic substrate are
2000 MAIK “Nauka/Interperiodica”
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replaced by those for an anisotropic (or gyrotropic)
plate.

Let a wave with an amplitude Ei be incident on the
system. Designating the reflected and transmitted field
amplitudes as Er and Et and expanding them in basis
circular polarizations

(n+ and n– are the unit vectors of circular polarizations),
we will represent the solution in the form

(1)

where  and  are the Jones matrices for the system.
If there exists a system consisting of two layers A

and B applied to each other “from left to right,” then,
according to [17], the Jones matrices of the system A +

B A + B and A + B are represented through the matrices
of the component layers with the matrix equations [17]

(2)

where  is the unity matrix. The Jones matrices marked
with a tilde refer to backward light propagation.

For example, if a cholesteric layer is between the
same media, the Jones matrices for light incident “from
the right” and “from the left” are related as

(3)

where 

for circular basis polarizations.
Let A be a cholesteric layer and B be a substrate.

Then, using the Jones matrices for a glass plate [18] and
a cholesteric [13], we obtain from (1)–(3) the expres-
sions for the elements of the Jones matrices for the cho-
lesteric/substrate system:

(4)

Ei r t, , Ei r t, ,
+ n+ Ei r t, ,

– n–+
Ei r t, ,

+

Ei r t, ,
–

= =

Er R̂Ei, Et T̂Ei,= =

R̂ T̂

R̂ T̂

R̂A B+ R̂A T̂
˜

AR̂B Î R̂
˜

AR̂B–[ ]
1–
T̂ A,+=

T̂ A B+ T̂ B Î R̂
˜

AR̂B–[ ]
1–
T̂ A,=

Î

T̂̃ F̂
1–
T̂ F̂, R̂̃ F̂

1–
R̂F̂,= =

F̂ 0 1

1 0 
 
 

=

Tii
a t2 Tii

c r2 T ji
c R ji

c Tii
c Rii

c–( )+[ ] /∆1,=

Tij
a t2 Tij

c r2 T jj
c R ji

c Tij
c Rii

c–( )+[ ] /∆1,=

Rii
a Rii

c r2 1 r2Rii
c–( ) Tii

c T jj
c T ji

c T ji
c+( )[+=

+ r2T ji
c T22

c R21
c T11

c R12
c+( ) ] /∆1,

Rij
a Rij

c r2 T jj
c Tij

c T ji
c+( ) 1 r2Rii

c–( )[+=

+ r2 T jj
c T jj

c R ji
c T ji

c Tij
c Rij

c+( ) ] /∆1,
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where

β2 = 2πd2n2/λ, λ is the wavelength in a vacuum, σ is the
helix pitch, ε1 and ε2 are the principal values of the cho-
lesteric permittivity tensor in the plane normal to the

i j, 1 2, i j,≠,=

∆1 1 r2R11
c–( )2

r2
2R12

c R21
c , R11

c– R22
c H ,= = =

R12
c Q iF, R21

c+ Q iF,–= =

T11
c S iN–( ) iΘ( ), T12

cexp V iΘ( ),exp= =

T21
c V iΘ–( ), T22

cexp S iN+( ) iΘ–( ),exp= =

H χ2 f 2 f 1 c1c2 1–( ) 2u2 f 2 f 1 2χ2m1 γ2–( )[+{=

– α2δ2γ2 ]s1s2 iu αγ p1s1c2 p2s2c1+( ) } /∆,–

F δχ α 2uγ α s1c2 s2c1–( )– i f 2 c1c2 1–( )[–{=

+ 4u2 m1 f 2 αγ2+( ) ]s1s2 } /∆,

Q uγδ α 4u αγs1s2 i g1s2c1 g2s1c2–( )+[ ] /∆,=

S γ α γ α c1 c2+( ) iu b1s1 b2s2+( )–[ ] /∆,=

V γ αδ α c2 c1–( ) iu q2s2 q1s1–( )–[ ] /∆,=

N γ αχ i f 1 c2 c1–( ) 2u α l1s1 l2s2+( )–[ ] /∆,=

∆ χ2 f 2
2– χ2 f 2

2 2αγ2+( )c1c2+=

+ 2u2 α2δ2γ2 f 1
2 2χ2m2 δ2+( )– 4αχ2 δ2 2m2–( )+[ ]

× s1s2 2uiγ α b1s1c2 b2s2c1+( ),–

b1 2, f 1w1 2, αδ2, p1 2,± f 2w1 2, αδ2,+−= =

q1 2, f 1 αγ,±=

g1 2, f 2 αγ, w1 2,± γ 2χ2,±= =

l1 2, γ 2, f 1 2,± 1 α ,±= =

s1 2, k1 2, d( )/ k1 2, d( ), c1 2,sin k1 2, d( ),cos= =

k1 2, 2u m1 γ± /d , m1 2, 1 χ2,±= =

α εm/εν, εν n0
2, χ λ / σ εm( ),= = =

εm ε1 ε2+( )/2, εa ε1 ε2–( )/2, δ εa/εm,= = =

Θ 2πd/σ, u πd εm/λ , γ δ2 4χ2+ ,= = =

r2 τ2 1 i2β2–( )exp–[ ] / 1 τ2
2 i2β2–( )exp–[ ] ,=

t2 = 4n2n0 iβ2–( )/ 1 τ2
2 i2β2–( )exp+[ ] n2 n0+( )

2{ } ,exp

τ2 n0 n2–( )/ n0 n2+( ),=
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Fig. 1. Reflection coefficient R vs. wavelength for light incidence on the glass (1)/cholesteric/glass (2) system. (a) n1 = 2.5 and n2 =
1.5; (b) n1 = 1.5 and n2 = 2.5. Cholesteric layer parameters are ε1 = 2.29, ε2 = 2.143, σ = 0.42 µm, and d = 20σ. Other parameters:
d1 = d2 = 1000 µm and n0 = 1.
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the glass (1)/cholesteric/glass (2) system. (a) n1 = 2.5 and n2 = 1.5; (b) n1 = 1.5 and n2 = 2.5. Other parameters as in Fig. 1.
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axis of the medium, d is the cholesteric thickness, and
d2 is the substrate thickness.

When calculating the transmission coefficient T
(from the intensity values), one should bear in mind
that, when the refractive indexes n3 and n0 diverge, T =
n3|Et|2/(n0|Ei|2) [18].

Consider the important specific case α = 1; that is,
the permittivity of medium 0 equals the mean permit-
tivity of the cholesteric. Then, the explicit expressions

for the matrices  and  are greatly simplified:R̂ T̂

Tii
a t2 h2ai h1a j iur2δ s2 s1–( )+ +[ ] / ∆∆1( ),=
(5)

Tij
a t2δ a2 a1– iur2 h1si h2s j+( )+[ ] / ∆∆1( ),=

Rii
a iuδ2 a2s1 a1s2–( ) 2r2 δ2 a2 a1–( )2[+{=

+  γ∆  +  iur 2 δ 
2 γ a 2 s 2 a 1 s 1 – ( ) ] / ∆∆ 1 ( ) } / ∆ ,

Rij
a iuδ h1ais j h2a jsi+( ){=

+ 2r2δ a2 a1–( ) h2a j h1ai+( )[
+ iur2γ h ja2s2 hia1s1+( ) ] / ∆∆1( ) } ∆,

i j, 1 2; i j,≠,=
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Fig. 3. Wavelength dependence of (a) IP ellipticity e and azi-
muths (b) Ψ1 and (c) Ψ2 at α = (1) 8.87, (2) 1, and (3)
0.0222. d = 50σ. Other parameters as in Fig. 1.

–3.0

0.60 0.61

ψ2, rad

λ, µm

(Ò)

0.65

1

2

3

0.62 0.63 0.64

0.1

0.60 0.61

e (a)

0.65

1

2

3

0.62 0.63 0.64

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0
0.59

–3.5
0.60 0.61

ψ1, rad
(b)

0.65

1

2

3

0.62 0.63 0.64

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

0

0.5

–2.5

–2.0

–1.5

–1.0

–0.5

0

–3.5

λ, µm

λ, µm
TECHNICAL PHYSICS      Vol. 45      No. 9      2000
where

REFLECTION AND TRANSMISSION 
OF LIGHT IN GCG SYSTEM

Consider normal incidence of light on a glass
(1)/cholesteric/glass (2) system. The glasses can obvi-
ously be dissimilar with different refractive indexes.
The problem is to mathematically join an isotropic
glass plate to the left side of an MCS system. Let us
designate the first glass (the plate to be joined) by A and
the MCS system (where the substrate has the properties
of the second glass) by B. Then, from (1)–(3), we
obtain for the glass (1)–cholesteric–glass (2) system

∆1 = 1 r2uδ 2r2us2s1 i s1a2 s2a1–( )/ 4γ( )–[ ] / a1a2( ),–

∆ 2γa1a2, a1 2, c1 2, uil1 2, s1 2, ,= = =

h1 2, γ 2χ .±=

Tii t1 Tii
a r1 Tij

a R ji
a Tii

a Rii
a–( )+[ ] /∆2,=
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Fig. 4. Reflection coefficient R vs. wavelength. Curves 1–3
refer to the values of α in Figs. 3a, 3b. Other parameters as
in Fig. 1. (a) First IP and (b) second IP.

0.59 0.60 0.61 0.62 0.63 0.64 0.65



1174 GEVORGYAN
0.7

0.60 0.61

(a)

λ, µm

Q

0.62 0.63 0.64 0.65

0.6

0.5

0.4

0.3

0.2

0.1

0

1

2

3

4

5

0.8

0.60 0.61

(b)

Q

0.62 0.63 0.64 0.65

0.6

0.5

0.4

0.3

0.2

0.1

0

1, 3

2, 4
5, 6

6

0.7
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y-axis. Imε1 = 0.01 and Imε2 = 0. Other parameters as in Fig. 1.
(6)

where

and d1 is the thickness of glass 1.

The reflection, transmission, and polarization char-
acteristics of glass/cholesteric/glass systems were
given a detailed numerical analysis in [1, 2], where the
isotropic glasses were assumed to be identical. Of inter-
est is also the case when they are dissimilar. Figure 1
shows the wavelength dependence of the refractive
index for incident light with linear polarization
(curve 1), as well as diffraction (2) and counterclock-
wise circular polarizations (3). The wavelength depen-

Tij t1 Tij
a r1 Tii

a Rij
a Tij

a Rii
a–( )+[ ] /∆2,=

Rii r1 t1
2 R11

a r1 R12
a R21

a R11
a R11

a–( )+[ ] /∆2,+=

Rij t1
2Rij

a /∆2,=

∆2 1 r1R11
a–( )2

r1
2R12

a R21
a ,–=

r1 τ1 1 i2β1–( )exp–[ ] / 1 τ1
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dences of the Faraday rotation γ and polarization ellip-
ticity e for linearly polarized light are depicted in Fig. 2
(curves 1 and 2, respectively).
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Fig. 6. IP ellipticity e vs. wavelength for n1 = (1) 0.5, (2) 1.5,
and (3) 10; n2 = n1, d1 = d2 = 1000 µm, and n0 = 1. Other
parameters as in Fig. 1.
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INTRINSIC POLARIZATIONS

As is known, intrinsic polarizations (IPs) are two
polarization remaining unchanged when light passes
through a system. Intrinsic polarizations and their val-
ues are convenient for the classification of optical
devices [15]. Therefore, the study of IPs in these sys-
tems is of certain interest. The IPs of cholesterics were
considered, e.g., in [19], where the associated values
were calculated using exact boundary conditions. It
was found that, if the anisotropy is weak (δ ! 1) and
absorption is absent, IPs are two orthogonal circular
polarizations. Light with one of them undergoes dif-
fraction reflection, while light with the other does not.
If a cholesteric is highly anisotropic (δ @ 1), IPs are
orthogonal quasi-linear polarizations. In what follows,
we will first describe the effect dielectric boundaries
have on the IPs of the cholesteric and then discuss the
reflection of optical waves having polarizations coinci-
dent with the IPs. Subsequently, IPs of the glass
(1)/cholesteric/glass (2) system will be considered.

In the presence of dielectric boundaries (α ≠ 1), IPs
cease to be orthogonal, as follows from calculations.
The same is also observed in the presence of absorp-
tion. It is known [20] that the IPs of normal gyrotropic
media are also nonorthogonal. For α ≠ 1, the IPs are
nonorthogonal but their ellipticities differ only by sign.
At α ≈ 1, the IPs of weakly anisotropic cholesterics are
two, clock- and counterclockwise, quasi-circular polar-
izations. As α increases (decreases), the IP ellipticities
decrease (in magnitude) and tend to zero in the limits
α @ 1 and α ! 1. Thus, for α @ 1 and α ! 1, IPs are
quasi-linear polarizations, as in the case of high anisot-
ropy.

Figure 3 shows the wavelength dependences of the
ellipticity (the ellipticity of the other polarization dif-
fers only by sign). Also given are the wavelength
dependences of the IP azimuths at different α’s. The
high dispersion of the IP ellipticity at α ≠ 1 is notewor-
thy. It is due to multiple reflections from the dielectric
boundaries and increases as α deviates more and more
from unity. The wavelength dependence of the reflec-
tion coefficient for the same range of α as in Fig. 3 and
both IPs is shown in Fig. 4.

Since the IP changes with α, so does the nature of
absorption. For example, at α ≈ 1, absorption is totally
suppressed (Borrmann effect) when incident light has
quasi-circular polarization. At α @ 1 or α ! 1, the Bor-
rmann effect is observed at quasi-linear polarization.
This is explained by the fact that absorption is com-
pletely suppressed when light incident on the choles-
teric layer has diffraction polarization rather than circu-
lar or linear polarization. Figure 5 plots the quantity
Q = 1 – (R + T), which characterizes absorbed optical
energy, against wavelength for various incident polar-
izations at α = 0.1128 and 1. Under inclined incidence
of light on a highly anisotropic cholesteric layer,
absorption features were similar [21]. The observed
large-amplitude oscillations of Q are associated with
TECHNICAL PHYSICS      Vol. 45      No. 9      2000
multiple reflections from the dielectric boundaries.
These oscillations demonstrate the interference charac-
ter of optical absorption in the medium. Unlike the case
when the dielectric boundaries are absent, an oscilla-
tory wavelength dependence of Q was also observed for
light with nondiffraction IP.

Now turn to IPs of the glass (1)/cholesteric/glass (2)
system. Figure 6 plots the IP ellipticity (the ellipticity
of the other IP differs only in sign) against wavelength
for glasses with various refractive indexes. The wave-
length dependence of the reflection coefficient for the
same refractive indexes as in Fig. 6 and both IPs is
depicted in Fig. 7.

MÜLLER MATRICES

The interaction of quasi-monochromatic partially
polarized light with optical systems is usually
described by Müller matrices. In this case, the solution
of the problem is represented as

(7)St M̂tSi, Sr M̂rSi,= =

1.0
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Fig. 7. R vs. wavelength. The refractive indexes and other
glass parameters as in Fig. 6. (a) First and (b) second IP.
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where Si, St, and Sr are 4 × 1 Stokes column vectors for
incident, reflected, and transmitted waves, respectively;
Si = I{1, Pcos(2Fi)cos(2Yi), Pcos(2Fi)sin(2Yi),
Psin(2Fi)}; I is the total intensity of the incidence
wave; Yi is azimuth; Fi is the ellipticity angle of the
polarization ellipse for a completely polarized compo-
nent in the incident wave; P is the degree of polariza-

tion of the incident wave; and  and  are 4 × 4
Müller matrices for the transmitted and reflected
waves, respectively.

Müller matrices can conventionally be obtained
from Jones matrices [15]. Explicit expressions for the
Müller matrix elements are very tedious and are omit-
ted here.

The wavelength dependence of the reflection coeffi-
cient R for various degree of polarization P of the inci-
dent wave is given in Fig. 8. Light passes through the
glass (1)/cholesteric/glass (2) system. The completely
polarized component in the incident wave has counter-
clockwise circular polarization.
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Fig. 8. R vs. wavelength at the degree of polarization of inci-
dent wave P = (1) 0, (2) 0.5, and (3) 1. Other parameters as
in Fig. 6.
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Abstract—Spectroscopic measurements in the near-infrared region are suggested to determine the octane num-
ber of petroleum products. Statistical regression analysis of the absorption spectra of hydrocarbons is used for
calculating the gasoline octane number and several other physicotechnical parameters of fuel. The knock rating
of commercial gasoline was determined with a specially designed analyzer. Its working parameters and limiting
capabilities in determining the octane number are discussed. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION AND STATEMENT 
OF THE PROBLEM

The development of analytical spectroscopic meth-
ods for studying petrochemical compounds is nowa-
days a topical problem. Of special importance are near-
infrared spectroscopy methods for optical control of the
knock rating of organic fuel [1, 2]. This property (i.e.,
the stability of fuel against spontaneous combustion) is
conventionally characterized by octane number. Under
laboratory conditions, the octane number is usually
determined with special motor setups, where the knock
rating of tested fuel (gasoline) is compared with that of
calibrating mixtures of isooctane and heptane. The
octane number is, by definition, the percentage (volume
fraction) of isooctane in the calibrating mixture where
knock is initiated at the same compression ratio as in
the gasoline. The method has significant drawbacks,
which are expensive and bulky setups, long-term test
procedure, consumption of expensive chemicals, and
the need for a special-purpose room. An alternative
approach based on analytical spectroscopy holds much
promise for developing express petroleum product test-
ing, which will lead to fundamentally new opportuni-
ties for knock rating control [2, 3].

A physicochemical parameter of gasoline (octane
number, in our case) can be calculated from its spectral
characteristics by relating the parameter value to the
absorption factors at a number of wavelengths [1, 4].
This optical method is one of the promising techniques
recently developed for the investigation of petroleum
products. However, its experimental implementation
requires a number of problems to be solved. They are
the determination of the applicability of the method to
petroleum products with various compositions, search
for optimal spectral ranges, the design of optical
devices suited to gasoline analysis, etc.

Applying spectral analysis to gasoline, one should
take into account that it may contain up to 100 different
1063-7842/00/4509- $20.00 © 21177
chemical components (hydrocarbons), each influenc-
ing the knock rating of the fuel. Therefore, traditional
analytical methods, which determine the physicochem-
ical characteristics of a fuel (in particular, octane num-
ber) from its exact composition, fail in this case
because of the complex composition of petroleum
products and the necessity to determine the knock rat-
ing of all constituents with allowance for their interac-
tion. Consequently, spectral methods that do not
involve the intermediate determination of the exact
composition of the fuel are required.

In this paper, we apply regression analysis to the
absorption spectra of the fuel to determine its octane
number and check the accuracy of the determined
parameters depending on the measuring techniques.
The prospects of such analytical systems will be briefly
outlined.

ANALYSIS OF ABSORPTION SPECTRA 
BY LINEAR REGRESSION METHOD

We calculated the octane number of gasoline from
the absorption spectra by means of linear regression
analysis [5, 6], which, as was noted, makes it possible
to relate the octane number of gasoline to its spectral
characteristics without the intermediate determination
of its composition. In the simplest form, this relation
can be represented as a linear combination of the gaso-
line absorption factors at various wavelengths. Physi-
cally, this relation stems from the fact that the absorp-
tion spectrum of gasoline is uniquely determined by its
composition, which also governs the knock rating of
the fuel. Consequently, to the absorption factor of gas-
oline at a particular wavelength, there corresponds a
numerical coefficient that reflects the integrated contri-
bution of gasoline components to the octane number.
The linear regression analysis of spectral data is based
000 MAIK “Nauka/Interperiodica”
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on the assumption that the octane number of a gasoline
sample can be written, with a certain accuracy, as

(1)

where i is the number of a gasoline sample, yi is the cal-
culated (predicted) octane number of the ith sample,
aj are linear regression coefficients, and xij are the
absorption factors of the ith sample at a wavelength λj.

The regression coefficient aj accounts for the influ-
ence of the components responsible for absorption at
the wavelength λj on the octane number. We assume
that a set of the coefficients ai is the same for all of the
gasoline samples. This assumption is valid, since gaso-
lines are chemically similar petroleum products and,
hence, exhibit similar relations between the absorption
spectrum and knock rating. Therefore, in order to find
the gasoline octane number from the absorption spec-
trum, the set of the regression coefficients aj should be
determined.

The regression coefficients are calculated in several
steps. At the initial stage, one makes up a set of differ-
ent gasoline samples with known (laboratory-found)

octane numbers , where i is the sample number.
Next, the absorption factors of the samples ai are mea-
sured at wavelengths λj to obtain the coefficients xij.
Finally, the coefficients aj are determined by the least-
squares method: to do this, one performs a computer
search for those aj’s minimizing the root-mean-square
deviation of the regression-predicted octane numbers
from the laboratory values, i.e., minimizing the quan-

yi a0 a jxij,
j 1=

k

∑+=

yi
lab
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Fig. 1. Absorption spectrum of gasoline in the near-infrared
region.
tity W given by

(2)

where n is the number of gasoline samples used in
experiment.

Clearly, the unambiguous determination of the
regression coefficients aj requires the number of sam-
ples to exceed the number of wavelengths λj used for
the absorption measurements. In this work, the stan-
dard linear regression analysis was performed to calcu-
late aj by the least-squares method [6]. Once the initial
stage of calibration is complete and aj’s are calculated,
the octane number of a gasoline sample under test can
be determined from its absorption spectra.

EXPERIMENTAL SETUP

To control the gasoline characteristics, its absorp-
tion spectrum is best taken in the near-infrared region
at about 1 µm, where several absorption peaks are
observed (Fig. 1) [2]. As will be shown later, for the
correct calculation of the octane number, the optical
absorption (density) of a gasoline should be measured
with an accuracy of about 10–4 [4]. In order to attain
such an accuracy with thermal sources of radiation, one
should use special spectral devices, since conventional
grating spectrophotometers (for example, SP-6) cannot
ensure the required accuracy.

To remedy the situation, we developed a spectral
octanometer, which is actually an optical spectrum ana-
lyzer adapted to measuring the gasoline parameters in
the near-infrared range. The experimental setup is
shown in Fig. 2. It is a variant of the two-beam config-
uration, where one channel is measuring and the other
provides referencing to the zero absorption level. The
radiation from thermal source 1 is shaped into a narrow
parallel beam and passes through a time-variable set of
15 narrow (spectral width ∆λ ~ 10 nm) interference fil-
ters 2, which select the spectral range of the probing
radiation. Next, passing through an optical power
divider, the beam bifurcates, and one of its part falls on
chopper–commutator 3, which eliminates drift in the
optical arm at every measuring cycle. The optical
absorption of gasoline in each spectral range is varied
with an optical cell of length L = 5 cm that contains a
gasoline sample. Then, the parts of the initial beam
combine, and the integral beam is sensed by a silicon
photodetector (PD). The PD signal is applied to an elec-
tronic processing unit consisting of an input amplifier,
analog-to-digital converter, and digital signal processor
realizing an algorithm of linear multicomponent analy-
sis.

The described optical arrangement, combined with
digital processing of the signals, enables one to mea-
sure the optical density accurate to 3 × 10–5. Then, with
the use of the 5-cm-long cell for gasoline samples, the

W2 1
n 1–
----------- yi

lab yi–( )2
,

i 1=

n

∑=
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absorption factor can be measured with an accuracy of
approximately 6 × 10–6 cm–1. This value can be consid-
ered as ultimate for optical systems based on thermal
radiation sources. A further improvement of the accu-
racy needs laser sources of radiation.

RESULTS AND DISCUSSION

Our system was applied to study commercial gaso-
lines A-92 and A-76 with different octane numbers. The
results for A-92 and A-76 are shown in Figs. 3 and 4,
respectively. Here, the abscissa is the octane number
measured with a UIT-85 test bench, and the ordinate is
the octane number calculated by the regression algo-
rithm from the spectral data obtained on the developed
setup. The regression coefficients aj obtained for the
corresponding wavelengths are given in Table 1.

It should be pointed out that a more sophisticated
treatment of the obtained regression coefficients aj is
impossible because of the complex chemical composi-
tion of the fuel. They represent the integral effect of the
gasoline components (which absorb at the correspond-
ing wavelengths) on fuel detonation.

The analysis shows that, with the optical analyzer
developed to study the knock rating of fuels, the octane
number can be measured with a standard deviation of
W ≈ 0.1 for A-92 and W ≈ 0.3 for A-76 gasolines. This
difference can be attributed to the various chemical
compositions of the gasolines. A-76 gasoline usually
has more components than A-92; hence, the octane
number of A-76 is less accurate than that of chemically
more homogeneous A-92.

In choosing the spectral range for measuring the
octane number, one should take into account the
required accuracy of measurements, the hardware com-
plexity of an optical setup, the chemical composition of
a fuel, etc. In practice, the number of wavelengths used
for absorption measurements with a spectral octanom-
eter is limited primarily by the need to use simple mea-
suring systems. On the other hand, the use of few wave-
lengths limits the spectral range or spectral resolution
of the system. In this connection, it is of interest to
determine a probing radiation spectrum that is optimal
for obtaining the absorption spectra, i.e., the spectrum
that provides sufficiently accurate octane numbers at a
small number of wavelengths employed for the spectral
measurements. Note that the maximum permissible
number of wavelengths needed for regression analysis
is limited by special features of the gasoline absorption
spectra. As is seen from a typical absorption spectrum
of gasoline (Fig. 1), peaks in the 880–1050 nm range
are several times lower than the one between 1100 and
1200 nm. Consequently, the measurements of the gaso-
line absorption will be effective if the optical system is
tuned to only one of the two ranges. In this study, the
880–1050 nm range was chosen as it is wider and more
suitable for photorecording.
TECHNICAL PHYSICS      Vol. 45      No. 9      2000
The greatest possible number of wavelengths
involved in regression analysis is defined by a relation-
ship between the characteristic spectral width ∆λp of
absorption peaks and the selected spectral range. The
absorption spectrum will obviously be measured cor-
rectly if ∆λp/∆λf > 1, where ∆λf is the spectral gap
between wavelengths of measurement. For the gasoline
spectra, ∆λp ≈ 20–30 nm; hence, ∆λf can be estimated
as ~10–15 nm with some margin. For our octanometer,
∆λf ≈ 12 nm, and the absorption is measured at
15 wavelengths. It was found, however, that an increase
in the number of wavelengths does not provide addi-
tional information but considerably complicates the

1

2 3

4

5 6 7
8

α(L)

Fig. 2. Spectrum analyzer operating in the near-infrared
region. (1) radiation source, (2) interference filters, (3)
chopper–commutator, (4) power supply, (5) computer, (6)
ADC, (7) amplifier, and (8) photodetector.

Table 1.  Regression coefficients aj for various wavelengths λ

λ, nm Coefficient 
no. aj

Coefficient 
value for A-92

Coefficient 
value for A-76

– a0 87 109

880 a1 –223 283

890 a2 164 460

905 a3 –95 –315

916 a4 170 –221

928 a5 197 167

940 a6 259 –223

952 a7 –181 –121

964 a8 –146 75

978 a9 118 243

990 a10 218 315

1000 a11 –193 –219

1014 a12 –267 139

1026 a13 47 –72

1038 a14 –101 104

1050 a15 160 284



1180 KOROLEV et al.
optical part of the setup. With an eye to the simplifica-
tion of the measuring setup, we studied the dependence
of the octane number accuracy on the number of wave-
lengths used in experiment. For this purpose, the octane
number was predicted with a reduced number of wave-
lengths in regression analysis. The results of this study
are shown in Fig. 5. The standard error in octane num-
ber evaluation W versus the number of wavelengths M
is plotted for A-76 and A-92 gasolines for the uniform
distribution of measuring channels within the spectral
range. Note that such a reduction in the number of
wavelengths is equivalent to an increase in the spectral
gap ∆λf. Figure 5 shows that an almost ultimate accu-
racy is attained at eight wavelengths. Moreover, for the
A-92 gasoline, the accuracy was better than 0.2 (in
units of octane number) even at five wavelengths used
in the measurements.

The octane numbers obtained by regression analysis
of the absorption factors at five wavelengths in the 890–
940 nm range were compared with those obtained in
the entire spectral range of 880–1050 nm (the wave-
lengths are listed in Table 1). The associated results are
presented in Table 2.

As follows from Table 2, for both gasolines, the
octane number evaluated in the range of 890–950 nm is
less accurate as compared to the case when five wave-

90 91 92 93 94 95

95

94

93

92

91

90

Laboratory value

Predicted value

Fig. 3. Predicted versus laboratory values of the octane
number for A-92 gasoline.

Table 2.  Standard error W of the octane number estimated in
the two spectral ranges

Range A-76 A-92

880–1050 nm W = 0.28 W = 0.09

890–940 nm W = 0.49 W = 0.18
lengths are uniformly spaced in the entire spectral
range.

Thus, the number of wavelengths to be used in anal-
ysis should be determined for each specific problem;
i.e., it depends on the petroleum product and the given
prediction accuracy. Note that octane number control of
high-octane A-92 gasoline with an accuracy of 0.2–0.3
(an important applied problem) can be performed with
five wavelengths in the short-wavelength part of the
range. Such conditions are optimum in terms of analy-
sis and instrument simplicity.

Thus, we can design a laser analyzer of petroleum
products that consists of a set of injection lasers with
specific wavelengths. Laser spectral octanometers are
of particular interest due to their potentially high per-
formance (accuracy, etc.) and small dimensions [7, 8].
Remote control of petroleum products during produc-
tion is another possible application of laser systems,
since fiberoptic elements are readily compatible with
injection lasers.

The range of 890–940 nm, corresponding to the
short-wavelength peak of gasoline absorption, seems to
be promising for the optimization of the optical system.
It is in this range where practically feasible injection
lasers, which are considered as candidates for radiation
sources in new versions of the optical analyzer for gas-
olines, can operate. In particular, injection lasers with
multiple quantum wells may cover the considered spec-
tral range by a set of InGaAs and AlGaAs radiators
[9, 10]. Superluminescent (light-emitting) diodes with
the emission spectrum corresponding to the above ∆λp

values may also act as efficient radiation sources for
spectral analyzers. However, the manufacturing of
semiconductor lasing crystals with appropriate spectral
parameters is as yet a challenge, thus making the imple-

70 72 74 76 95
70

72

74

76

78

Laboratory value

Predicted value

Fig. 4. Predicted versus laboratory values of the octane
number for A-76 gasoline.
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mentation of the laser systems difficult. It is hoped that
the rapid progress in semiconductor materials technol-
ogy will provide us with the materials and component
basis that are necessary for laser analyzer prototyping.

Along with the proper selection of the spectral
range, the correct estimation of the octane number
strongly depends on the accuracy with which the gaso-
line absorption factor is measured. Inexact measure-
ment of the absorption factor causes errors in the octane
number obtained by repetitive measurements of the
same sample, thus giving a large spread of the octane
number. The absolute error in octane number estima-
tion ∆Q can be approximated by

(3)

where ∆xj is the absolute error involved in the absorp-
tion factor of a sample.

Let us assume that the errors in the absorption factor
measured at different wavelengths are approximately
equal. The experimentally found coefficients aj lie typ-
ically between 100 and 300 (Table 1). The number of
wavelengths k is between 5 and 15. Then, it follows
from (3) that the octane number can be measured with
an accuracy of 0.1 or better (which is foreseen to be an
industrial requirement in the future) if the error in the
absorption factor should not exceed 10–4.

∆Q a j∆x j( )2

j 1=

k

∑
1/2

,≈

0.8
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0.2
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M

W

Fig. 5. Standard error W of the octane number versus the
number of wavelengths M for (j) A-76 and (d) A-92 gaso-
lines.

0.0
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Such an estimation is confirmed experimentally. As
was noted, the spectrometer with a thermal radiator
measures the absorption factor accurate to about 3 ×
10–5 (for a 5-cm-long optical cell). In such a spectro-
scopic scheme, the standard deviation ∆Q of the octane
number is about 0.03.

CONCLUSIONS

The developed spectrum-selective system, com-
bined with multicomponent regression analysis, allows
us to obtain the octane numbers of gasolines with a high
accuracy. The key factors having an effect on the result-
ing error in octane number evaluation were discovered.

Note that the potentialities of the technique extend
beyond gasoline analysis. It can be applied to nearly all
kinds of petroleum products absorbing in the near-
infrared region. However, the use of the spectral sys-
tems for estimating other physicochemical parameters
of condensed media depends on the problem posed, the
nature of the products to be studied, and their spectral
characteristics. However, based on the experimental
data, we may say that our optical system enables the
control of the knock rating of fuels and can be thought
of as the starting point for the development of rapid
analysis methods.
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Abstract—Attenuation of leaky modes in LiNbO3 channel H-waveguides is studied theoretically. It is shown
that leakage significantly affects the parameters of waveguides made of X- and Y-cut crystals. An approximate
expression for attenuation coefficients is obtained from the solution to the scalar eigenvalue problem. © 2000
MAIK “Nauka/Interperiodica”.
Proton exchange is a promising technology for fab-
ricating LiNbO3 optical waveguides [1]. However, in
some cases, their modes experience significant attenu-
ation [2]. While, in planar waveguides with the basic
cuts, the attenuation can be minimized by selecting
appropriate exchange conditions [2–4], in channel
waveguides, losses are unavoidable. The reason is that
channel devices guide only the modes whose propaga-

tion constants β satisfy the condition  < Re( β2) <

, where k0 = 2π  is the wave number in free space

and  and  are the eigenvalues of the crystal per-
mittivity tensor outside the waveguide. Such modes are
leaky because of the hybrid nature of their fields [5]. In
contrast to absorption or scattering, the leakage effect is
the result of two-dimensional restrictions imposed on
the mode fields in channel waveguides. Leakage is also
associated with crystal anisotropy. Hence, at the given
distribution of the waveguide permittivity, the leakage
cannot be minimized by technological means. There-
fore, evaluating the leaky-wave attenuation coefficients
is equivalent to estimating the lower boundary of |Imβ|.
Although these estimates are of fundamental impor-
tance, they have not been made so far. This gap can be
bridged with the recent rigorous method for calculating
the characteristics of leaky modes in anisotropic chan-
nel waveguides [6]. In this paper, we use this method to
study the leaky-wave attenuation coefficients in proton-
exchanged and annealed proton-exchanged channel
waveguides made of X-, Y-, and Z-cut LiNbO3 crystals.
Leakage is shown to significantly affect the character-
istics of the X- and Y-cut waveguides. An approximate
analytical estimate of their attenuation coefficients is
obtained from the solution to the scalar eigenvalue
problem.

Figure 1 illustrates the cross section of the studied
waveguides. The region y > 0 is occupied by a homoge-
neous isotropic dielectric with a permittivity εd, and the
region y < 0 is a LiNbO3 crystal having a permittivity
tensor ε. We will restrict the discussion to the basic cuts

εe
s( ) k0

2–

εo
s( ) λ0

1–

εo
s( ) εe

s( )
1063-7842/00/4509- $20.00 © 21182
under the assumption that the tensor ε is diagonal and

has the eigenvalues εo, e(x, y) =  + ∆εϕo, e(ξ, η),
where ∆ε is a constant and the functions ϕo, e(ξ, η) spec-
ify the waveguide shape. Their arguments are ξ = xM–1

and η = yM–1, where M is a scaling factor. If the fields
depend on time and z coordinate as exp[i(ωt – βz)], the
transverse magnetic field components of the channel
waveguide modes are given by [7]

(1)

throughout the space, where εjj are the components of
the tensor ε, which are equal to εd at y > 0.

In the region y < 0, εzz = εo and the εxx and εyy com-
ponents depend on the crystal cut: εxx = εe and εyy = εo

for the X and Y cuts, while εxx = εo and εyy = εe for the Z
cut.

Leaky modes are more conveniently found if system
(1) is replaced by an equivalent system of integro-dif-
ferential equations for field components inside the
waveguide [6]. Curves 1 and 2 in Figs. 1 and 2 show
results of its numerical solution. In our calculations, we
use the model ϕo = αϕ e,

(2)
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which approximately describes the annealed proton-
exchanged waveguides [8, 9]. Here, B = MD–1, and D
and γ are the coefficients depending on annealing tem-
perature and time and also on the anisotropy of proton
diffusion [9]. According to (2), when D  0 and
B  ∞ (no annealing), ϕe ≡ 1 in the region bounded
by |x| < 0.5FM and |y| < M; outside this region, ϕe ≡ 0.
Thus, the parameters M and F define the dimensions of
the unannealed proton-exchange waveguides, which
are rectangular in the framework of model (2). In our
calculations, we set γ = 0.84 for the X and Y cuts of the

crystal and 1.2 for the Z cut, εd = 1,  = 5.2,  =

4.84, V = k0M  = 2.5, ∆ε = 0.45, and α = –0.25
[2, 9]. Figure 1 plots the normalized attenuation coeffi-

cients Im  (  = β) of leaky modes against the rel-
ative width F of the unannealed waveguides. These
curves refer to the single-mode waveguides (the single-
mode range is 0.86 < F < 3.11 for the X and Y cuts and
1.05 < F < 3.79 for the Z cut). As shown in Fig. 1, the
attenuation decreases as the waveguide becomes wider
(this behavior could be expected, because the modes of
planar waveguides described by the diagonal tensor ε
are not leaky [5]), or when F approaches the critical
values. However, these features can hardly be used to
minimize the attenuation, since either the waveguides
become multimode (which is undesirable) or their
parameters approach the critical values. A more effi-
cient means to lower |Imβ| is annealing. From Fig. 2, as
D grows and, hence, the maximum increment in εe,
equal to ∆εerf(0.5FBγ–1)erf(B), decreases, the attenua-
tion rapidly declines. This can qualitatively be

εo
s( ) εe

s( )

∆ε

β β k0
1–

–5

–6

–7

1 2 3

2

3

1

y

εd

ε
x

log[lmβ]

F

–

Fig. 1. Cross section of the waveguides (insert) and propa-
gation coefficients in the unannealed waveguides vs. their
relative width: (1) X, (2) Z, and (3) Y cuts of LiNbO3.
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explained by weaker coupling between the extraordi-
nary and ordinary waves, which causes leakage [10].

According to Figs. 1 and 2, modes generated in the
X- and Y-cut LiNbO3 waveguides experience a much
higher attenuation than those in the Z-cut crystals (in
particular, at λ0 = 0.63 µm and F = 2, curves 1 and 2 in
Fig. 1 correspond to the attenuations 9.6 and
0.15 dB/cm, respectively). This feature results from the
inequalities

which are valid for these waveguides. This allows us to
analyze system (1) asymptotically by a technique sim-
ilar to that applied in [5, 10] to optical fibers. Eventu-
ally, we obtain the approximation

(3)

where Imb depends on the crystal cut.

For the Z cut,

(4)
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where A = (  – )(∆ε)–1.

For the X and Y cuts,

(5)

In formulas (4) and (5), the values of Hx, y mean the
leaky-wave magnetic field components determined in
the principal order of perturbation theory. They obey
the integral equations

(6)

(7)

(8)

where (z) is a Hankel function of the second kind.

The function u(ξ, η), which enters into expressions
(4), (5), (7), and (8), is the solution of the scalar eigen-
value problem for the guided waves:

(9)

Note that, in LiNbO3 H-waveguides, the refractive
index of the extraordinary wave increases to the great-
est extent [1]. This means that |ϕo| ! ϕe. If an increase
in the refractive index of the ordinary wave is com-
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pletely neglected (assuming that ϕo ≡ 0), then expres-
sions (3), (4), (6), and (8) yield Hy ≡ 0 and Imβ = 0. In
this approximation, modes of the Z-cut channel
waveguides do not leak. This conclusion can also be
derived rigorously by virtue of the fact that, for the Z
cut at ∂ϕo/∂ξ = 0, the extraordinary and ordinary waves
are uncoupled [11]. At the same time, the condition
ϕo ≡ 0 does not eliminate leakage in the X- and Y-cut
waveguides. Here, these waves are coupled through
mutual transformation on reflection from the interface
y = 0 [12]. This coupling is taken into account by the
first term in (7). As a result, when |ϕo|  0, equation
(6) for Hx(ξ, η) turns into the direct computational for-
mula

(10)

Thus, the attenuation of the leaky modes in the Z-cut
channel LiNbO3 H-waveguides is relatively low,
because |ϕ0| is small. At the same time, the smallness of
|ϕ0| provides a simple approximation for the attenua-
tions of the modes in the X- and Y-cut waveguides. One
should solve problem (9) and then take advantage of
formulas (3), (5), and (10). Curves 3 in Figs. 1 and 2
were calculated in this approximation. The values of b0
and functions u(ξ, η) were found by the method of vari-
ational separation of variables [13]. An increased error
near the critical conditions is typical of this method
[13], which explains the noticeable divergence between
curves 1 and 3 in Fig. 1 near the critical F’s. Neverthe-
less, expressions (3), (5), and (10) can be thought of as
good estimates.

Note in conclusion that the results presented above
are only tentative, because the components of the per-
mittivity tensor were described in terms of the approx-
imate model. A more adequate model should allow for
the presence of several crystal phases in the waveguide
[2, 3, 14]. However, at present, an appropriate model of
this kind is absent.
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Abstract—An acousto-optic tunable filter that is insensitive to the polarization of incident light is studied both
theoretically and experimentally. The fundamental possibility of designing an acousto-optic filter of nonpolar-
ized light is demonstrated. The filter operates in the visible range of electromagnetic waves with λ = 480–
750 nm and provides a high spatial and temporal resolution. The number of resolvable spots of the filtered
image reaches a value of 400 × 400 with the spectral bandwidth of the device being ∆λ = 1.7 nm. The results
of the processing of optical images formed by arbitrarily polarized light beams are discussed. An acousto-optic
filter based on a TeO2 crystal can be used in optics and spectroscopy in the processing of light beams with an
arbitrary polarization, as well as in analyzing optical images formed by light beams whose polarization varies
with time. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is well known that acousto-optic filters provide
spectral filtering and optoelectronic processing of col-
limated and uncollimated light beams and optical
images [1–4]. The interest in acousto-optic filters is
explained by the diversity of possible applications of
these devices, their simple structure, narrow spectral
bandwidth, and their ability to be easily electronically
tuned in a wide range of optical wavelengths. Unfortu-
nately, not all characteristics of acousto-optic filters
satisfy the practical needs. For example, tunable filters
are sensitive to the polarization of incident light,
because, for the operation of these devices, it is neces-
sary to use linearly polarized radiation [4–7]. However,
the use of polarizers often leads to a decrease in the
incident light beam power by 50% or more [8, 9]. The
problem of filtering nonpolarized light can be solved in
several ways [8–10]. One of the possible methods is
based on the use of two detectors and an additional
electron processing of two optical images at the filter
output. This method requires a fairly complicated filter-
ing system and is rather time-consuming.

In this paper, we propose a scheme of filtering for
arbitrarily polarized optical signals. Our method is free
of the disadvantages characteristic of other methods. It
is based on the use of additional passive optical ele-
ments such as prisms and mirrors. These optical ele-
ments divide an arbitrarily polarized incident light
beam into ordinary and extraordinary components and
direct them to the acoustic cell at angles that satisfy the
Bragg conditions for the ordinary (o) and extraordinary
1063-7842/00/4509- $20.00 © 21186
(e) polarized light beams, respectively. As a result, at
the filter output, we obtain a single diffracted light
beam, which is quite convenient from the practical
point of view.

PRINCIPLE OF OPERATION 
OF PARATELLURITE-BASED FILTERS

The mechanism of electromagnetic radiation filter-
ing in tunable acousto-optic filters is based on the selec-
tivity of the anisotropic Bragg scattering of light by an
acoustic wave [1–4]. The spectral filtering of optical
signals is possible with the use of a filter made on the
basis of a paratellurite crystal and characterized by a
noncollinear geometry of the acousto-optic interaction
[4–7]. The selection of the light wavelengths occurs as
a result of the Bragg scattering of the optical beam by
the acoustic wave propagating in paratellurite near the

[110] direction in the ( ) plane. With the use of this
acoustic mode, one obtains a high acousto-optical qual-
ity M2 of the crystal [1–3] and a diffraction efficiency
close to unity at low levels of the control electric power P.

The Bragg diffraction can be considered as the scat-
tering of photons by phonons, which satisfies the
energy and momentum conservation laws. For the
scheme of filtering in use, the wave vector relationships
have the form [1–3]

(1)

110

ki
o K ∆K– ∆k–– kd

e ,=

ki
e K ∆K ∆k+ + + kd

o,=
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where ki and kd are the wave vectors of the incident and
diffracted light for the ordinary and extraordinary
polarized beams, respectively; K denotes the acoustic
wave vectors; and ∆K and ∆k are the variations of the
acoustic vector and the mismatch vectors.

According to Eqs. (1), the vector  is formed as the
sum of the wave vectors of the incident light wave and

the acoustic wave, and the vector  is formed as the
difference between these wave vectors. The wave vec-
tor diagram illustrating Eqs. (1) is shown in Fig. 1. In
this diagram, one can see the [001] optical axis of the

crystal and the Bragg angles  and . The acoustic
waves propagate in the crystal at an angle α to the [110]
axis in the plane of the acousto-optic interaction, as
shown in Fig. 1.

For the magnitudes of the wave vectors of the inter-
acting beams, the following relationships are valid: kd =
2πn0/λ, K = 2πf/V, and ∆K = 2π∆f/V, where V is the
phase velocity of sound and f and ∆f are the frequency
of the acoustic wave and its variation in the case of the
violation of the matching conditions [5]. In the experi-
ment, we used a filter with the ultrasound propagation
direction making an angle α = 10° with the [110]-axis.
For the selected cut of the TeO2 crystal and the light
wavelength λ = 0.63 µm, the refraction indices are no =
2.26 and ne = 2.41 for the ordinary and extraordinary
waves, respectively; the phase velocity of sound
reaches the value V = 7.08 × 104 m/s.

The wave number of incident light has the form

 = 2πni/λ, where ni is the refraction index of the
extraordinary light wave (n0 ≤ ni ≤ ne). For the geometry
of the acousto-optic interaction under study, the param-
eter ni is expressed as [7]

(2)

For light with the extraordinary polarization, the
dependence of the acoustic frequency on the Bragg
angle has the form [8]

(3)

From the wave vector diagram, one can calculate the

diffraction angle :

(4)

Using Eqs. (3) and (4) for light with the wavelength
λ = 0.63 nm, we can plot the frequency dependences of

the Bragg angle (f) and the diffraction angle (f)
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for the case of an extraordinary polarized incident light
beam. These dependences are shown in Fig. 2, where
curve 1 refers to the incident light beam, and curve 2
refers to the diffracted beam. The plots correspond to
the fulfillment of the Bragg condition, i.e., to the zero
mismatch. In the same way, one can calculate the fre-
quency dependences for the ordinary polarized incident
light. In this case, the dependence of the Bragg angle of
incidence will have the form similar to that shown in
Fig. 2, but curve 1 will correspond to diffracted light,
and curve 2 will be for the incident light.
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Fig. 1. Wave vector diagram of the acousto-optic interaction
for extraordinary polarized light.
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Fig. 2. Frequency dependence of the Bragg angle and the
diffraction angle for extraordinary polarized incident light.
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DIFFRACTION OF ARBITRARILY 
POLARIZED LIGHT

From Fig. 2 and the results of the analysis, we can
infer that the frequency dependences of the angles of
incidence of the ordinary and extraordinary polarized
light beams intersect when the frequency of ultrasound
is f1 = 120.3 MHz. The intersection occurs at the angle
of incidence of light Θ1 = 13°. If light propagates at this
angle to the acoustic wave front, the Bragg matching
condition is automatically fulfilled for both ordinary
and extraordinary polarized light [8, 9]. In this case, the
acousto-optic cell becomes insensitive to the polariza-
tion of light, because the light beams with each of the
two polarizations simultaneously satisfy the Bragg
condition and interact with ultrasound with maximum
efficiency [8–10]. The described diffraction regime is
used in the known acousto-optic filter intended for ana-
lyzing arbitrarily polarized light beams [8]. The spe-
cific feature of this filter is the presence of two dif-
fracted light beams propagating at the output of the
acousto-optic cell symmetrically with respect to the
transmitted light beam. From Fig. 2, one can see that,
when the sound frequency is f = f1, the diffraction angle

of the ordinary polarized diffracted light beam is  =
10.4°, while the extraordinary polarized diffracted light

beam propagates at the angle  = 15.6° to the acoustic
wave front.

At the frequency of the acoustic wave f = f1, one
more diffraction regime that is of practical interest can
be realized [9]. This regime was used in our study
described below. From Fig. 2, it follows that, at f = f1,
the Bragg condition is fulfilled for the extraordinary
polarized incident light when the angle of incidence is

 = 15.6°. Evidently, in this case the diffraction angle

is equal to  = Θ1 = 13°. On the other hand, for the
ordinary polarized incident light, the Bragg condition is
fulfilled at the same ultrasonic frequency when the

angle of incidence is equal to  = 10.4°. In this case,

the diffraction angle is also equal to  = 13°. Thus,
the diffraction angles for the ordinary and extraordinary
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Fig. 3. Schematic diagram of the experimental setup.
polarized light beams will be equal. Hence, in Fig. 1,
both diffracted light beams will have collinear wave
vectors directed along the dashed line. Therefore, we
can conclude that the diffracted light beams propagate
in the crystal in one direction [9].

Thus, by directing two orthogonally polarized light

beams to the cell at the angles  = 10.4° and  =
15.6° and using ultrasound of frequency f1 = 120.3 MHz,
one can observe a simultaneous diffraction of the ordi-
nary and extraordinary polarized incident light beams.
As a result of the diffraction, three light beams will
emerge at the output of the acousto-optic cell. Two of
them are transmitted light beams of zero diffraction
order, and the third beam consists of two diffracted
beams of +1 and –1 diffraction orders. The diffracted
beam has an arbitrary polarization, because it is a sum
of the diffracted components of two initial waves, and
the direction of its polarization always coincides with
that of the initial light beam.

INTERACTION IN THE CASE 
OF THE VIOLATION OF THE MATCHING 

CONDITION

One of the most important characteristics of
acousto-optic filtering is the spectral bandwidth ∆λ of
the acousto-optic filter [1]. It is known that the spectral
resolution R = λ/∆λ of an acousto-optic device depends
on the divergence of the optical beam and the bounded-
ness of the region in which the diffraction of light
occurs [1–3]. In the case of a noncollinear acousto-
optic interaction, this region is determined by the width
of the acoustic column l, which in turn depends on the
length of the piezoelectric transducer l0. The spectral
bandwidth of the acousto-optic filter is calculated by
the formula ∆λ(∆f/f), where ∆f is the diffraction fre-
quency bandwidth near the acoustic frequency of the
Bragg matching condition [1]. The frequency band-
width ∆f can be most easily calculated at a fixed wave-
length of light λ with the use of the wave vector dia-
grams shown in Fig. 1 that allow for the mismatch vec-
tors ∆k [8].

In the acousto-optic interaction, the mismatch vec-
tors ∆k, being orthogonal to the boundaries of the
acoustic column, are related to the acoustic column
width l by the condition ∆k ≤ 0.8π/l [1]. The width of
the acoustic column depends on the angle ψ between
the vectors of the phase and group velocities of sound,
l = l0cosψ. When the sound wave vector is oriented
along the direction α = 10°, the acoustic energy “walk-
off” angle is equal to ψ = 57° [7]. Evidently, the limita-
tion for the magnitude of the mismatch vector takes the
form

(5)

ΘB
o ΘB

e

∆k 0.8π/l0 ψ.cos≤
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From the wave vector diagrams of Fig. 1, we obtain
the relation between the magnitude of the vector ∆k
and the vector ∆K. Thus, the wave vector diagram and
Eq. (5) provide the expression for the acoustic fre-
quency bandwidth

(6)

Assuming that the birefringence of the material is
small and taking into account the condition ∆K @ K,
from Eq. (6) we derive the expression for the acoustic
frequency bandwidth ∆f and for the spectral bandwidth
of the filter

(7)

where ∆n = ne – no.
Estimates by Eq. (7) show that, for the selected

geometry of the interaction and for the transducer
length l0 = 1.2 cm, the spectral bandwidth of the filter is
∆λ = 1.7 nm.

It should be noted that the regime of acousto-optic
interaction under study is close to the case of a wide-
aperture diffraction [4]. Therefore, the selected geome-
try of interaction provides not only narrow bandwidths,
but also sufficiently wide angular apertures for the fil-
tering of light beams. In principle, this makes it possi-
ble to process the light beams forming the image with-
out a loss in the optical radiation power. However, the
main advantage of the regime of interaction used in our
study is that it is insensitive to the polarization of the
incident light.

EXPERIMENTAL STUDY 
OF DIFFRACTION

The acousto-optic cell used for filtering of optical
images was made on the basis of a paratellurite single
crystal. Evidently, for such purposes, any birefringent
material can be used if the desired diffraction regime
can be realized in it. Our choice of a paratellurite crys-
tal was determined by the high acousto-optical quality
of this material [1–4].

The acoustic waves were generated in paratellurite
by a piezoelectric transducer made of an x-cut lithium
niobate crystal; the length of the transducer was l0 =
1.5 cm, and its width was d = 0.5 cm. The experimental
setup is schematically represented in Fig. 3. To study
the acousto-optic cell, we used a He-Ne laser with the
wavelength λ = 0.63 µm as a source of light. In the pro-
cessing of incoherent images, the source of light was an
incandescent lamp 1 with a continuous spectrum of
optical frequencies. The light beam from the laser or
the lamp was broadened by an optical system 2 and
directed to a transparency 3. A lens 4 formed the image
of the transparency on the screen 5 or on the window of

∆f
0.8K

l0 ψcos
-----------------

niV ψ ΘB
e–( )cos λ f ψsin–

niV ΘB
e λ f–sin

----------------------------------------------------------------.≤

∆λ 0.8λ2

l0 ψ∆n ΘB
2 α+( )sin

2
cos

--------------------------------------------------------,≤
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a matrix image detector. In the path of the light beam, a
polarizing beam splitter 6 was placed. Upon transmis-
sion through the splitter, the ordinary polarized light
beams were directed to the acousto-optic cell 7, and the
extraordinary polarized components of incident light
were directed first to a mirror 8 and then to the crystal.
The mirror and the cell of the filter were tuned in such
a way that the Bragg matching condition was automat-
ically fulfilled for each of the two orthogonally polar-
ized incident light beams at the same ultrasonic fre-
quency.

The transparency was illuminated with a light beam,
and an electric signal of frequency f1 = 120.3 MHz was
supplied from a high-frequency oscillator to the cell. As
a result, two diffracted light beams propagating in one
direction were observed at the output of the acousto-
optic cell, as shown in Fig. 3. The polarization of this
light coincided with the initial one, which demon-
strated the ability of the filter to provide the processing
of arbitrarily polarized light beams.

The preliminary experimental studies carried out
with the source of coherent light with λ = 0.63 µm
showed that, when the control high-frequency power
was P = 1.2 W, the diffraction efficiency was T = 90%.
In the experiment, we determined the dependence of
the Bragg angles of incidence on the acoustic frequency
for the ordinary and extraordinary polarized incident
light. The experimental points shown in Fig. 2 agree
well with the computational data. Thus, the experiment
confirmed that a wide-aperture geometry of acousto-
optic interaction was realized in the cell, and the
selected crystal cut allowed one to work with arbitrarily
polarized light beams. Using a laser, we measured the
diffraction frequency bandwidth ∆f by the level of a
3-dB decrease in the diffraction efficiency. The fre-
quency bandwidth was found to be equal to ∆f =
320 Hz, which at the acoustic frequency f = 120.3 MHz
corresponded to the spectral bandwidth of the filter
∆λ = 1.7 nm.

ACOUSTO-OPTIC PROCESSING OF IMAGES 
IN NONPOLARIZED LIGHT

In the processing of optical beams in the case of
incoherent light, the transparency 3 was a photographic
film with a recorded pattern. The lens that formed the
optical image had the focal length F = 7.5 cm. If the
angular divergence of light was less than 6°, the trans-
mitted and diffracted light beams did not overlap at the
filter output. In this case, the matrix detector at the filter
output recorded only filtered light beams.

At the ultrasonic frequency f1 = 120 MHz, the screen
displayed a filtered optical image formed by optical
beams with the wavelengths corresponding to the red
spectral region. The variations in the acoustic fre-
quency caused changes in the color of the processed
image. For example, green optical beams were
observed at the ultrasonic frequency f = 150 MHz,



1190 VOLOSHINOV et al.
while, at f = 200 MHz, violet beams dominated in the
filtered image. When the acoustic frequency was
smoothly varied from 100 to 200 MHz, a continuous
change of color from red to violet was observed on the
screen.

It is known that the maximal number of resolvable
spots N of the optical image depends on the angular ∆Θ
and linear a apertures of the filtering device, as well as
on the mean wavelength of the spectral bandwidth
[11−14]:

(8)

It should be noted that formula (8) is valid when the
transparency is illuminated by coherent light. The cal-
culation by this formula shows that, for the filter under
study with the angular and linear apertures ∆Θ = 6° and
a = 0.8 cm and for the light wavelength λ = 633 nm, the
number of resolvable spots is N ≤ 1250. On the other
hand, in the case of incoherent light, the maximal num-
ber of resolvable spots will decrease with increasing
spectral bandwidth of the filter ∆λ [10, 13]. If the band-
width of the filtering device is known, one can calculate
the angular range of the light beams forming a single
spot of the image:

(9)

N a∆Θ/λ .≤

∆ϕ
ne n0–( )∆λ

λ
----------------------------≈

× ΘB
e α+( )sin

4
2 ΘB

e α+( )sin
2

+ .

Fig. 4. Example of a filtered optical image.
It was found that, for the type of acousto-optic inter-
action under study, this angular range is ∆ϕ = 3 × 10–4.
Therefore, the real number of resolvable spots of the fil-
tered image obtained at the output of the acousto-optic
filter does not exceed the value N ≤ ∆ϕ = 330; i.e., it is
several times less than in the case of coherent light. In
spite of this fact, the filtering device studied in this
paper allows one to obtain optical images of a suffi-
ciently good quality.

Figure 4 shows an image obtained with the proposed
acousto-optic filter. The quality of the filtered image is
reasonably good. It is evident that the resulting picture
is largely determined by the spectral bandwidth of the
acousto-optic filter. Hence, for the acousto-optic filter-
ing of images, it is expedient to use filters with a narrow
spectral bandwidth ∆λ. In the case of the high spectral
resolution of the filter, the described method of
real-time image processing is most attractive for practi-
cal use.

SUMMARY

Thus, we have studied a special regime of acousto-
optic interaction in a paratellurite crystal. This regime
provides the filtering of an arbitrarily polarized light
beam. Owing to the use of additional optical elements
and a special scheme of the light beam propagation in
the crystal, the fulfillment of the Bragg conditions is
simultaneously provided for ordinary and extraordi-
nary polarized light beams. This method allows the fil-
tering of an arbitrarily polarized light beam forming the
optical image. The spectral resolution obtained in the
visible range R > 300 proves to be sufficiently high for
obtaining good-quality images. The advantage of the
proposed method over the known methods is that a sin-
gle diffracted light beam is observed at the output of the
filtering device. Therefore, the filtered image can be
recorded with the use of only one detecting device. This
fact considerably simplifies both the filtering system as
a whole and the subsequent work with the filtered opti-
cal images.
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Abstract—The conditions for thermostability of the group velocity and frequency of magnetostatic waves in a
ferromagnetic layer were studied theoretically. The temperature dependence of the bias field parameters was
determined from the conditions for simultaneous thermostability of the frequency and group velocity. Particular
emphasis was placed on ferrite films with cubic anisotropy. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Thermostability of magnetostatic wave (MSW)
devices based on ferrite films (FF) is a serious problem
that should be solved during development of these
devices [1]. The temperature drift of MSW device per-
formance is mainly due to the temperature dependence
of the magnetic parameters of FF [2, 3]. A method for
thermostabilizing the operating frequencies of MSW
devices based on the effect of FF demagnetization was
developed in [4–6]. In addition, compensating changes
in the bias field were used to decrease the temperature
drift of the frequency [7, 8].

In this work, we consider a method of simultaneous
thermostabilization of the group velocity (GV) and fre-
quency of MSW. The method is based on compensating
changes in the bias field intensity and inclination with
respect to the film plane. An FF model with cubic
uniaxial magnetic anisotropy is used for the theoretical
analysis. The analysis is performed for wave vector
magnitudes falling within a so-called magnetostatic
range [9], which is of particular practical importance.

GEOMETRY OF THE MODEL AND BASIC 
RELATIONSHIPS FOR AN ANISOTROPIC FILM

We consider a cubic crystal FF with one of the sym-
metry planes and the axis of uniaxial magnetic anisot-
ropy perpendicular to the film. Let the film be magne-
tized to saturation by an external magnetic field H
directed parallel to this plane of symmetry. Thus, all
vectors used in the calculations lie in the same plane,
which facilitates solution of the problem. It should be
noted, however, that a continuous series of crystallo-
graphic directions lying in the symmetry planes of the
cubic crystal can be considered within the context of
this model.

The geometry of the model is shown in Fig. 1. The
equilibrium magnetization vector M, the field H, the
crystallographic direction [001], and the normal n to
1063-7842/00/4509- $20.00 © 21192
the film are in the same crystallographic plane (either
(010) or (110)). A right-handed orthogonal coordinate
system xyz is used. The z-axis is directed along the vec-
tor M; the y-axis is parallel to the film. Thus, the angle
γ between the y-axis and the crystallographic direction
[010] is either 0 or π/4. The angles of inclination of the
vectors M, H, and the crystallographic direction [001]
to the plane of the film are denoted as Θ, ΘH, and δ,
respectively.

Let the energy of the FF magnetic anisotropy be

described by the expression [Kc(  +  + ) +
Kusin2ψ], where Kc and Ku are the first constants of
cubic and uniaxial anisotropy, respectively; β1, β2, and
β3 are the cosines of the angles between the vector M
and the cubic crystal axes [100], [010], and [001],
respectively; and ψ is the angle between M and the axis
of uniaxial normal anisotropy (ψ = π/2 – Θ). The aniso-
tropic properties of FF are taken into account using the
tensor of effective demagnetizing factors of anisotropy
[9]. Standard calculations give the following expres-
sions for the nonzero tensor components:
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where Hc = Kc/M and Hu = 2Ku/M are the intensities of
the cubic and uniaxial anisotropy fields, respectively,
and r = (1/2)(1 – cos4γ).

The temperature drift of the equilibrium orientation
of the vector M is described by the derivative dΘ/dT,
where T is the temperature. The angle Θ is determined
from the equation for the external field projection onto
the x-axis:

(2)

Differentiation with respect to T yields

(3)

where

(4)

αH(1/H)(dH/dT) is the temperature coefficient of the
bias field, 4πMeff = (4πM – Hu) is the effective magne-
tization, the derivative dHc/dT describes the tempera-
ture dependence of the cubic anisotropy field, and the
derivative d(4πMeff)/dT allows the temperature depen-
dences of both the saturation magnetization and the
uniaxial anisotropy field to be taken into account.

In the dispersion equations considered below, the
magnitude and direction of the external magnetic field
are specified by the parameters Hz and Θ. Equations (2)
and (4) relate these values to H and ΘH.

To perform calculations, we need to know the deriv-
ative dHz/dT. Differentiating Eq. (4) and taking into
account Eqs. (2) and (1d), we obtain

(5)

TEMPERATURE COEFFICIENTS 
OF FREQUENCY AND GROUP VELOCITY

We consider the MSW with the wave vector k
directed along the y-axis. In the exchangeless approxi-
mation, the dispersion equations are derived from the
magnetostatic equations, taking into account the elec-
trodynamic boundary conditions at the film surface [10].
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Two types of dispersion equations are obtained from
the calculations.

The value of the angle Θ sets no limits on the prop-
agation of volume MSW (VMSW) in the film. The dis-
persion equation for VMSW is

(6)

where

(7)

(8)

(9)

d is the FF thickness; f is the frequency of the nth wave
mode (n = 0, 1, …); g = 2.8 MHz/Oe is the gyromag-
netic ratio; if ft > fl (forward VMSW), L = 1; if ft < fl
(backward VMSW), L = –1; if 2f2 ≤  +  + , p = 0;
otherwise, p = π. The arc tangent function is taken on
the interval (–π/2, π/2), where it is continuous. The fre-
quencies of VMSW fall in the range from fl to ft.

If  > |  – |, surface MSW (SMSW) can prop-
agate in the film. The dispersion equation for SMSW is

(10)

The frequencies of SMSW fall within the range

max{fl, ft} < f < (1/2fm)[(  +  + )2 – 4 ]1/2. If
ft > fl, the magnitude of the wave vector corresponding
to the lower limit of this frequency interval (i.e., f = ft)

is kd = 2(  – )/(  –  + ). For a frequency f
corresponding to the given magnitude of the wave vec-
tor, the temperature coefficient is determined as αf =
(1/f)(df/dT).
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The expression for αf can be derived from the dis-
persion equation:

(11)

where j = ν, s for VMSW and SMSW, respectively. For
the sake of brevity, the arguments of the functions Uj

are omitted. The partial derivatives of Uj are calculated
from Eqs. (6) and (10), and the derivatives with respect
to temperature, from Eqs. (7)–(9). The derivatives
d(MNqq)/dT (q = x, y, z) are calculated from Eqs. (1a)–
(1c) (taking into account dHc/dT, dHu/dT, dΘ/dT),
whereas dΘ/dT and dHz/dT are calculated from Eqs. (3)
and (5), respectively. Analytic expressions for αf are
obtained by substituting the obtained expressions into
Eq. (11). The parameters αH and dΘΗ/dT enter into
these analytic expressions as linear functions.

The group velocity is determined from the disper-
sion relation f(k) by the formula Vg = 2π(∂f/∂k) [11].
Taking into account that the dispersion equations are
given in the form kd(f), we can write the expression for
GV:

(12)

The temperature coefficient for GV is given by the
formula αg = (1/Vg)(dVg/dT), which can be easily
brought to the form
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Fig. 1. Model of an anisotropic ferromagnetic film.
Thus, analytic expressions for αg can be obtained
from the expressions for αf. It should be noted that the
dependences of αf and αg on kd are given in parametric
form (through the parameter f and the dispersion equa-
tion relating kd to f). Computational investigation of the
conditions for thermostability was performed using the
formulas obtained above.

ANALYSIS OF THE CONDITIONS 
FOR THERMOSTABILITY

The conditions for simultaneous thermostability of
the frequency and GV can be written as a set of two
simultaneous equations in two variables αH and
dΘΗ/dT:

(14)

The variables αH and dΘΗ/dT enter into the expres-
sion for αf and αg as linear combinations. Therefore,
the given set of simultaneous equations can be solved
analytically as a set of two linear equations. However,
the expressions thus obtained are rather cumbersome,
so that numerical solution is preferable.

As an example, we consider the conditions for ther-
mostability when the frequency and GV of an MSW are
specified, whereas the wave vector magnitude can be
assigned arbitrarily. Thus, the parameter kd can be
regarded as variable, and the field parameters can be
sought for as functions of kd. To simplify the analysis
of the problem and still obtain some information on the
effect of cubic anisotropy, we considered only two
crystallographic orientations of the magnetization vec-
tor M: along the fourth-order symmetry axis and along
the third-order symmetry axis (in a cubic crystal, these
are the hard and easy magnetic axes, respectively).
Conditions (14) are met in these two directions. Thus,
according to the model geometry (Fig. 1), the possible
values of parameters r and (Θ – δ) in Eqs. (1a)–(1d) are
(1) for M || 〈100〉 , either r = 0 and (Θ – δ) = 0, π/2, π,
(3/2)π or r = 1 and (Θ – δ) = 0, π; (2) for M || 〈111〉 r = 1
and (Θ – δ) = ±1/31/2), ±1/31/2) + π.

For numerical calculations, the values of the mag-
netic parameters of yttrium iron garnet (Y3Fe5O12)
films were selected (these films are widely used in
MSW devices) [2]: 4πMeff = 1750 G, Hc = –42 Oe,
d(4πMeff)/dT = –4.15 G/K, dHc/dT = 0.46 Oe/K (here
and in Fig. 2, K is degrees Kelvin).

The fundamental mode of forward VMSW was con-
sidered, and the frequency and GV were taken to be f =
104 MHz and Vg/(2πd) = 6 × 108 s–1. First, the depen-
dences Θ(kd) and Hz(kd) were calculated. For this pur-
pose, the set of two simultaneous equations Uν = kd and
(∂Uν/∂f)–1 = Vg/(2πd) in two variables Θ and Hz and
with the variable parameter kd was solved. The func-
tion Uν was determined by Eq. (6) for the fundamental
mode. The expressions (7)–(9) for fl, ft, and fm were sub-
stituted into the equations. The dependences Θ(kd) and

α f 0, αg 0.= =

(arccos (arccos
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Hz(kd) thus obtained were further substituted into
Eqs. (14) for calculating the parameters ΘH and dΘH/dT
and into Eqs. (2) and (4) for calculating the parameters
H and ΘH.

The results of the calculations are shown in Fig. 2.
On the interval 0 ≤ ΘH ≤ π, the function ΘΗ(kd) has two
branches symmetric about the straight line ΘH = π/2
(curve 4 for M || 〈100〉  and curve 3 for M || 〈111〉). It
should be noted that a single curve H(kd) corresponds
to each pair of symmetric branches ΘH(kd) (curve 1 for
M || 〈100〉  and curve 2 for M || 〈111〉). In addition, the
curves αH(kd) for M || 〈1000〉  (curve 7) corresponding
to symmetric curves ΘH(kd) are identical, whereas the
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Fig. 2. Dependence of the external magnetic field parame-
ters on kd for given values of the frequency and group veloc-
ity of the fundamental mode of the forward volume MSW
(solid lines, M || 〈111〉; dashed lines M || 〈100〉).
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curves αH(kd) differ at both dΘH(kd) ≤ π/2 (curves 5
and 10, respectively) and π/2 < ΘH(kd) < π (curves 6
and 8, respectively; curve 8 corresponds to the function
(–1)dΘH(kd)/dT).

Thus, calculations based on actual values of the
magnetic parameters of FF showed that simultaneous
thermostabilization of the frequency and GV of an
MSW by the proposed method is theoretically possible.
The equations obtained in this work allow various mod-
ifications of the method for thermostabilization of
MSW characteristics to be analyzed and the most effec-
tive and practicable of these to be selected. It should be
noted that these equations were derived under the
assumption of relatively large anisotropy fields. This
makes the model described in this work applicable to
cubic crystal films regardless of the values of their mag-
netic parameters.
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Abstract—A self-similar solution to the self-consistent gasdynamics equations is used to derive envelope equa-
tions for a thin curvilinear charged beam propagating in an external electromagnetic field. © 2000 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The necessity of developing self-consistent models
of charged-particle beam motion in external electro-
magnetic fields arises in connection with practical
problems of the formation and transportation of beams
and electron rings. One method that allows for the
effect of a self-induced field on the transverse beam
dynamics is based on envelope equations. These equa-
tions are known for straight and ring-shaped charged-
particle beams [1–3]. In this paper, we derive the gen-
eral envelope equations for curvilinear charged-particle
beams subjected to an external electromagnetic field.
A particular example of this beam configuration is an
electron beam injected at a nonzero angle with respect
to the geomagnetic field. This problem is of practical
interest, because electron beams are used to study the
ionosphere [4].

Here, we will construct a model of a steady-state
low-current beam, i.e., a beam whose current is much
less than the Alfvén limiting current. In this case, the
particle motion is relativistic only in the longitudinal
direction. The macroscopic beam description uses the
stationary Euler equation for a charged fluid in an exter-
nal electromagnetic field [5]

(1)

Here, e and m are the particle charge and mass, respec-
tively; γ = (1 – u2/c2)–1/2, where u is the longitudinal
beam velocity; n is the particle number density; p is the
fluid pressure due to the beam emittance; and E and B
are the self-induced electric and magnetic fields,
respectively. In the steady state, one can neglect the
effect of the collective field on the longitudinal particle
motion and allow for its effect on the transverse motion
alone. This problem can be solved analytically only for
a thin beam where the ratios of the maximum cross-sec-
tional dimension to the beam curvature radius and to its

V∇( )γV
1

mn
-------∇ p+

=  
e
m
---- E Eexp

1
c
--- V B Bexp+( )[ ]+ + 

  .
1063-7842/00/4509- $20.00 © 21196
torsion radius are small. In this case, an approximate
solution to the Euler equation (1), accurate to first-order
terms in a small parameter, exists. This solution
belongs to the class of self-similar solutions to the gas-
dynamics equations that describe charged fluid motion
with particle velocities proportional to the distance
from the center of symmetry [6].

CURVILINEAR STRIP BEAM

First, we illustrate the method by a relatively simple
problem of the propagation of a cold strip beam of non-
relativistic charged particles in crossed electric and
magnetic fields E0 = E0ey and B0 = B0ey . In this case, the
trajectory Y(s) of the axial particle is a trochoid.

It is convenient to solve the problem in terms of the
curvilinear coordinates s, q, and z:

where s is the length of the trajectory measured from
the place of the beam injection and t, n, and ez are the
Frénet trihedral vectors connected with curve Y(s).

Substitution of the expression for the velocity v = ut
into the particle motion equation in the orthogonal
fields yields the following formula for the trochoid
curvature: k1 = k – eB0/mcu, where k = eE01/mu2 and E01
is the external electric field component along the vector
n, i.e.,

The E02 component determines the variation in the
axial particle velocity during beam propagation: mu  =
eE02; here and below, the dot symbol denotes differen-
tiation with respect to s.

Writing Eq. (1) in curvilinear coordinates yields the
following equations for the components of the gasdy-
namic beam velocity V = Ut + Wn:

(2)

x Y s( ) qn zez,+ +=

E0 E01n E02t.+=

u̇

U
σ
---- ∂U

∂s
------- k1W– 

  W
∂U
∂q
-------+

e
m
----E02 kuW ,–=
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(3)

where σ = 1 – k1q.
For the class of charged fluid motion under consid-

eration, the particle velocity is proportional to the dis-
tance from the center of symmetry; i.e., the beam veloc-
ity components should be sought for in the form

(4)

A similar representation can be used for the particle
number density:

(5)

where ϑ(x) is the Heaviside step function and the con-
stants n0, a0, and u0 are determined by the beam injec-
tion conditions. Here, ξ = q/a is the self-similar vari-
able, 2a is the cross-sectional beam dimension, and Γ
and ν are certain functions of s. Within the accuracy of
our approach, the collective field can be assumed to be
equal to the electric field of a uniform beam E = 4πenq.
Corrections that would allow for the beam curvature
and particle number density are terms of the second
order of smallness.

We substitute expressions (4) into Eqs. (2) and (3)
and expressions (5) into the continuity equation
divnV = 0. As result, we obtain the following equations
for functions a, Γ, and ν accurate to first-order terms:

(6)

(7)

(8)

where ω =  is the plasma frequency of the
beam.

This result illustrates the familiar advantage of the
approach based on the self-similarity principle, which
reduces the problem from solving a system of partial
differential equations to a simpler problem of integrat-
ing a system of ordinary differential equations.

Equation (7) can be formally integrated in the gen-
eral form

where the initial characteristics u0 and Γ0 of the longi-
tudinal beam velocity are governed by the beam injec-
tion conditions. Therefore, in this case, the cross-sec-
tional beam dimension can be found as a solution to a
single integro-differential equation.

U
σ
----∂W

∂s
-------- W

∂W
∂q
--------

k1

σ
----U2+ +

e
m
---- E E01+( ) kuU ,–=

U u 1 Γξ+( ), W uȧξ .= =

n n0

a0u0

au
---------- 1 νξ+( )ϑ 1 ξ2–( ),=

ȧ̇
u̇
u
--- ȧ k1

2a k1 k+( )Γ+ + + ω2u0

u3
-----a0,=

Γ̇ 2
u̇
u
---Γ+ kȧ k1a

u̇
u
---,–=

ν̇ Γ̇ 2
ȧ
a
---Γ–+ 2k1ȧ,=

4πn0e2/m

Γ 1
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2 kȧu2 k1auu̇–( ) sd

0

s

∫+ ,=
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EXPANSION OF THE EXTERNAL FIELD

Before constructing an approximate solution to the
Euler equation (1) in the general case, let us analyze the
structure of the external electromagnetic field near the
beam axis. The beam axis, defined as the trajectory of
the axial particle Y(s), is determined as a solution to the
equation of motion of a single particle in the given
external field. We assume that this solution is known.

It is convenient to consider the beam motion in
terms of the curvilinear coordinates q1, q2, and s:

Here, t, n, and b are the Frénet trihedral vectors con-
nected with the curve Y(s). Let us consider the expan-
sion of the external field in the Taylor series about this
curve. If a vector field A is represented as

then, in the curvilinear coordinates introduced above,
the conditions divA = 0 and curlA = 0 take the form

(9)

(10)

(11)

(12)

where σ = 1 – k1q1; k1 and k2 are the curvature and tor-
sion of curve Y(s), respectively; and L stands for the
operator

Conditions (9) and (10) reveal the structure of the
expansion of functions Ai about the curve Y(s):

where Ci, ai, αi, and βi are certain functions of s.
In order to solve the problem, it is sufficient to find

the functions ai. When substituted into conditions (9)–
(12), these expansions yield the functions a3 and a4 in
the general case:

x Y s( ) q1n q2b.++=

A A1n A2b A3t,+ +=

k1A1 Ȧ3– LA3– σ
∂A1

∂q1
---------

∂A2

∂q2
---------+ 

  ,=
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∂q2
---------

∂A2

∂q1
---------,=

LA1 Ȧ1 k2A2– k1A3+ + σ
∂A3

∂q1
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k2A1 LA2 Ȧ2+ + σ
∂A3

∂q2
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L k2 q2
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+ α2q1
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2,+ + + + +=
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Therefore, accurate to first-order terms, the expan-
sion of the external field about the beam axis has the
form

Functions f1, f2, g1, and g2 are determined by the
particular external field configuration. For example, for
a ring-shaped beam in a modified betatron, we have f1 =
nk1B02 and f2 = 0, and for a double spiral stellatron, we
have f1 = k1C0sinχ and f2 = k1C0cosχ. Here, n is the
external field index; C0 is a constant; and χ = lk1s,
where l is an integer.

SOLUTION OF THE GASDYNAMICS 
EQUATIONS

Substituting the expression for the gasdynamic
beam velocity

into Eq. (1) leads to the following equations for the
functions Vi and U:

(13)

(14)

(15)

where the terms Fn and Fb are due to the self-induced
field and emittance of the beam and

As for a strip beam, the collective field can be
approximated by the electromagnetic field of a uniform
beam. In the general case, we should consider a beam
with an elliptical cross section. As a result, in the trans-

B1 B01 f 1q1 f 2q2,+ +=
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  .+=
verse coordinates xi related to the axes of symmetry of
the beam cross section, Fi take the form [7]

Here, h = 4|e|I/mu3γ3 and H = E/u, where I, E, a, and b
are the beam current, emittance, and cross-section
semiaxes, respectively. As the beam propagates, the ori-
entation of its cross section changes; hence, the coordi-
nate axes xi rotate with respect to the unit vectors n and
b by a certain angle ψ:

Accordingly, Vi should be represented in terms of
the gas velocity components Λi in the new coordinate
system as

where Ω = u  is the angular velocity of the beam rota-
tion as a whole with respect to the Frénet trihedral.

As the beam propagates in the external field, not
only do its cross-sectional dimensions change, but an
internal transverse rotational motion of the beam in
coordinates xi may also occur. Therefore, one should
use the following expressions for Λi in terms of self-
similar variables χ = x1/a and η = x2/b:

(16)

Here, κ is a function of s, which characterizes the
charged-particle motion along the elliptic stream lines
within the beam. The self-similar expressions for the
longitudinal beam velocity and particle number density
have the form

(17)

(18)

where Γi and νi are certain functions of s.

BEAM ENVELOPE EQUATIONS
Substituting the expression for the velocity v = ut

into the relativistic equation of motion of a charged par-
ticle in an external electromagnetic field leads to the
following formula for the curvature of the trajectory
Y(s): k1 = τ1E01 + τ2B02, where E01 and B02 are the exter-
nal field components at the beam axis, τ1 = e/γmu2, and
τ2 = –uτ1/c. During beam propagation, the component
E03 determines the variation in the axial particle veloc-
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Λ1 u ȧξ κaη–( ), Λ2 u ḃη κbξ+( ).= =
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ity (mu(γ  + u ) = eE03) and the relationship E02 =
−uB01/c is kept.

If we substitute expressions (16) and (17) into Eqs.
(13)–(15) and take into account only the first-order
terms, then we obtain the following system of ordinary
differential equations for the functions a, b, ψ, κ, and
Γi, which govern the variations in the dimensions and
velocity of the beam as it propagates in the external
field:

(19)

(20)

(21)

(22)

(23)

(24)

Here, we use the following notation:
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Equations for the functions νi, which characterize
the variation in the degree of inhomogeneity of the par-
ticle number density as the beam propagates in the exter-
nal field, can be derived by substituting expression (18)
into the continuity equation; for the sake of brevity,
these equations are omitted.

When there is no external electric field, Eqs. (23)
and (24) have the trivial solution Γi = 0; i.e., accurate to
terms of the first order of smallness, a possible solution
to Eq. (15) has the form U = u, where u is the longitu-
dinal beam velocity. Therefore, the equations for the
envelope of a monoenergetic beam in an inhomoge-
neous magnetic field have a simpler form.

A further possibility of simplifying the problem
occurs when the drift approximation can be applied to
a beam propagating in a weakly inhomogeneous mag-
netic field. In this case, the contribution from the terms
produced by the gradient of the external field is of the
second order of smallness. Indeed, the drift approxima-
tion condition |∇ Bexp|/k1Bexp ~ ε implies that r|∇ Bexp| ~
εk1rBexp, where r is the characteristic cross-sectional
beam dimension. Therefore, the equations for the enve-
lope of a monoenergetic beam in a weakly inhomoge-
neous field are much simpler than system (19)–(24):

(25)

(26)

(27)

(28)

When the magnetic field is uniform, the beam axis
is a helical line whose curvature and torsion are inde-
pendent of s: k1 = |k0|sinα and k2 = k0cosα = κ3, where
k0 = τ2B0 and α is the angle between the magnetic field
and the direction of the beam injection. Equation (27)
provides a relationship between the rotation of the heli-
cal beam as a whole with respect to the Frénet trihedral
and the internal motion of the charged fluid:

The envelope equations can be used to estimate the
characteristics of a beam injected into an external elec-
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tromagnetic field. The results obtained above remain
applicable in the region where the cross-sectional beam
dimensions increase insignificantly due to the effect of
the space charge.
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Abstract—Investigations of the general characteristics and distinctive features of sputtering of A3B5 materials
(GaP, GaAs, GaSb, InP and InSb) under bombardment with  ions have been carried out. From the experi-
mental data, dependences of the sputtering yield of these materials on the incidence angle and ion energy have
been obtained and the surface relief patterns produced by target etching have been studied. It has been shown
that the dependence on energy of the sputtering yield for GaP, GaAs, and InP can be adequately described by
the Haffa–Switkovski formula for binary materials and Yudin’s approximation for elemental targets. Sputtering
of GaSb and InSb proceeds in the surface layer recrystallization mode, and the sputtering yield agrees with cal-
culations based on Onderlinden’s model. From a comparison of the experimental and calculated dependences,
the surface bonding energies have been determined. © 2000 MAIK “Nauka/Interperiodica”.
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The processes involved in irradiation of A3B5 mate-
rials (GaP, GaAs, GaSb, InP, and InSb) with nitrogen
ions, and ion sputtering in particular, attract consider-
able attention of researchers [1], which is explained by
the prospects of employing them in various technolo-
gies. Special attention is paid to modifying the proper-
ties and structure of the irradiated targets and the syn-
thesis of new materials [1–4]. At the same time, little is
known so far about the dependence of the sputtering
yield of A3B5 materials on the incidence angle and
energy of nitrogen ions and surface relief patterns,
which are indispensable for understanding the distinc-
tive features of the processes involved and important
for many applications (for example, preparing samples
for transmission microscopy and forming topological
patterns) [5].

In this work, we present the results of investigations
of the dependence of the sputtering yield of GaP, GaAs,
GaSb, InP, and InSb on energy (E) in the 2- to 14-keV

range and the incidence angle of  ions, as well as the
surface relief patterns formed as a result of sputtering.

For the experiments, single crystal samples of area
S ~ 0.3–1.5 cm2 were cut from standard wafers of gal-
lium phosphide, gallium arsenide, gallium antimonide
indium phosphide with a (100) surface orientation, and
indium antimonide with a (111) surface orientation.
After degreasing and removal of the defect layer, the

samples were placed in a monochromatic beam of 
ions of energy from 1 to 15 keV and density j ~ 100–
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250 µA/cm2 and irradiated to fluences of Φ ~ 1018–
1019 ion/cm2. It should be noted that compared to
the installation described earlier [6, 7] the ion sputter-
ing installation in this study was supplemented with a
Wien filter at the output of the ion source, which pre-

vented other ions (N+, ) from striking the sample
surface. The temperature of the control samples, mea-
sured with a thermocouple immediately after turning
off the ion beam, was usually found to be in the interval
50–70°C.

The sputtering yield Y was determined by measur-
ing the thickness of the sputtered layer [7–9]. For mea-
surements of the sputtered layer thickness, part of the
sample was masked prior to sputtering. After exposure,
the mask was removed and the step of height h that was
produced at the boundary between the masked and irra-
diated regions was measured using electron micros-
copy and interference optical microscopy. The relation
between the sputtered layer thickness h and the sputter-
ing coefficient Y can be fitted with expression

(1)

where j is the ion current density measured with a Fara-
day cup, τ is the time of exposure to the ion beam, Θ is
the ion incidence angle measured relative to the normal
to the target surface, ρ is the density of the target mate-
rial, M is the molar mass of the target, NA is Avogadro’s
number, and e is the elementary charge.
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Fig. 1. Angular dependence of sputtering yield under bombardment with 5-keV molecular nitrogen ions: (a) gallium phosphide;
(b) gallium arsenide; (c) gallium antimonide; (d) indium phosphide; (e) indium antimonide.
Note that the incidence angle was changed by tilting
the sample about the (110) crystallographic axis (Fig. 1).

The surface morphology of the samples was studied
using scanning electron microscopy methods [10].

The results of measuring the angular dependences
of the sputtering yield of the materials studied are pre-
sented in Fig. 2. For combinations target–GaP ion 

, GaAs  , and InP  , the dependences
have the shape typical of amorphous targets, with one
peak at 65–75° relative to the normal to the surface. In
the range of angles Θ ≤ 75°, the dependences are
closely approximated by curves calculated by Yama-

N2
+ N2

+ N2
+

mura’s formula [11]

(2)

where f and g are parameters defined by the expressions

Θmax is the maximum angle of sputtered particles; and
p is an exponent in the approximate expression Y ~
cospΘ for the interval close to the normal to the surface.

Values obtained from a comparison of theory and
experiment are given in Table 1.

Y Θ( )/Y 0( ) Θ g 1 Θcos
1–

–( )[ ] ,expcos
f–

=

f 1 Θmaxcos–( ) 1– , g p 1 Θmaxcos–( ) 1– ;= =
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Y = f(Θ) curves for the combinations GaSb  

and InSb   have deviations whose minimums lie
in the range of ion incidence angles corresponding to
low-index crystallographic directions [100], [211], and
[111]. This type of angular dependence indicates that
the surface being sputtered is monocrystalline; i.e., the
recrystallization temperature of the systems GaSb 

 and InSb   is lower than the minimum con-
trol temperature T = 50°C. From a comparison of sput-
tering patterns for bombardments with argon ions [5, 7,
9, 12] and molecular nitrogen, it is seen that the recrys-
tallization temperature of gallium antimonide and
indium antimonide is lower for bombardment with
lighter ions. This result agrees with existing concepts of
the dependence of the critical temperature on the mass
of the incident particles [13].

Apparently, different types of sputtering produce
the specific surface topologies observed in experi-
ments. On the surfaces of GaP, GaAs, and InP, bom-
bardment produces isolated cones characteristic of
sputtering of amorphous semiconductor targets. An
example of this surface relief is shown in Fig. 2a. The
density and size of the cones produced by sputtering

with  ions are significantly less than in the case of
the inert gases argon and xenon [5, 7, 8, 14–18]. At the
same time, multifaceted pyramids forming on the sur-
face of gallium antimonide and indium antimonide are
typical of sputtering of monocrystalline targets [19]. In
addition, it should be noted that sputtering of gallium
antimonide at angles Θ ~ 40° ± 3° produces a facet-type
relief (Fig. 2c) with a characteristic direction perpen-
dicular to the ion beam projection. In [20], formation of
a similar specific morphology was observed for ion–

target combinations GaP   as a result of irradia-
tion at angles around 40° ± 3°. Results of measuring the
sputtering yield as a function of the energy of incident
particles for the systems being studied are shown in
Fig. 3. For gallium arsenide and phosphides of gallium
and indium, the sputtering yield in the range of energies

of  ions from 2 to 14 keV is a monotonically
increasing function. This type of energy dependence of
the sputtering yield also agrees with theoretical predic-
tions for GaP, GaAs, and InP and is described by the
Haffa–Switkovski formula [21]

(3)

where Y is the net sputtering yield; Us is the averaged

surface bonding energy; ,  are surface atomic
concentrations; and (Us)a, (Us)b and (Y)a, (Y)b are the
surface bonding energies and sputtering yields of ele-
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mental materials a and b. The product (Us)i(Y)i was cal-
culated using Yudin’s approximation [22]

(4)

where Emax is the energy of bombarding particles for
which a maximum value of the sputtering yield Ymax is
observed; the quantities Emax and Ymax are determined
by the formulas

(5)

Y
2Ymax E/Emax( )1/2

1 E/Emax+
----------------------------------------,=

Emax 0.3Etf

0.3Z1Z2 1 Mi/Mt+( )

6.92 10
6
a×

-------------------------------------------------,= =

0.5 µm

5 µm

5 µm

(‡)

(b)

(c)

Fig. 2. Surface relief of GaAs (a, b) and InSb (c) targets after

bombardment with  ions. E = 5 keV; Φ ~ 0.5 ×

1019 ion/cm2 at angles Θ = 0°, 75°, and 40°, respectively.
Arrows (b, c) indicate projections of the ion incidence direc-
tion.
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(6)

where Etf is the Thomas–Fermi energy; a is a screening
radius of the interaction potential; and Λ is the material
constant defined by the formula

(7)

(8)

where Z0 = 8, Z = 0 at Z2 ≤ 18 and Z0 = 18, Z = 2 at
Z0 > 18.

The surface concentrations  and  were esti-
mated using the known Petterson–Shirn–Zigmund
equation [23, 24]

(9)

where  and Mi (i = a, b) are bulk concentrations and

Ymax Λ Z1 Z2,( )
nπa2Etf

Us

------------------,=

Λ Z1 Z2,( ) Λ Z2( ) 4.65 10 12– Z1 18–( ),×–=

Λ Z2( ) 1.3 10 10– Z2
1/2×=

× 1 0.25 2π
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Fig. 3. Dependence on energy of the sputtering yield under

bombardment with  ions. Squares, GaP; diamonds,

GaAs; triangles, InP; plus signs, GaSb; solid circles, InSb.
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masses of the target atoms and m is a parameter of the
Coulomb screening potential.

For estimates, values of the surface bonding ener-
gies of the target atoms (Us)a and (Us)b were taken equal
to the corresponding energies for compound materials
(Us)a and (Us)b [25, 26]. The average energy of the sur-
face barrier was determined as a fitting parameter Us.
The values of Us obtained from a comparison of exper-
iment and theory are given in Table 2. Comparison of
these values shows that the averaged surface bonding
energies for GaAs and InP are approximately equal to
the atomization energies and exceed the values
obtained earlier for sputtering by argon ions [8]. For
gallium phosphide, the experimental value of the sur-
face barrier height is larger than the atomization energy
of this material and is close to the atomization energy
of GaN crystals (Us = 4.4 eV). The observed difference
in energy values for GaP, GaAs, and InP is apparently
related to the formation on the target surface of a layer
containing A3–N compounds, in which the bonds are
stronger than in the initial sample material.

Because sputtering of gallium antimonide and
indium antimonide has features typical of crystalline
structures, sputtering of these materials was analyzed
using Onderlinden’s theory [27, 28], which takes into
account the effect of surface crystallinity on sputtering
processes:

(10)

where ηuvw is a fitting parameter; its values for low-
index crystallographic directions [100], [110], and
[111] are equal to η100 = η111 = 1.3 and η110 = 1.6 [27];
χuvw is the noncanalized part of the beam, which,
neglecting thermal oscillations, can be determined by
the formula [27, 28]

(11)

where tuvw is the interatomic distance along the [uvw]
direction; pm is the minimum parameter of impact for
canalization; Ψuvw is the critical canalization angle

along the [uvw] direction;  is the characteristic
canalization energy along the [uvw] direction below
which canalization has no influence on sputtering; a is
the potential screening radius; and e is the electron
charge.

In the calculations, the charge numbers were taken
as Z1 = 14 and Z2 = (Za + Zb)/2 and the surface concen-
trations of atoms were equal to bulk concentrations. In
the energy range above 3 keV, the considered combina-
tion of theories gives results that are in fair agreement
with experiment (Fig. 3b). The best agreement between
calculations and experiment is obtained for (Us)GaSb =
2.4 eV and (Us)InSb = 2.1 eV, which is lower than the
values for sputtering by argon ions [5, 8]. This discrep-

Yuvw E( ) χuvw E( )ηuvwŶ E( ),=

χuvw πntuvw pm
2 πntuvw

3 Ψuvw
2= =

=  πntuvw
3/2 3a2Z1Z2e2/E Euvw

c /E,=

Euvw
c
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ancy is possibly caused by dependence of the surface
bonding energy on the crystallographic orientation of
the target surface and/or formation of volatile com-
pounds on the sputtered surface.

In this work, experimental investigations of the
dependence of the sputtering yield of A4B5 materials on

energy and incidence angle of  ions have been car-
ried out, and the surface relief patterns formed in the
sputtering process have been determined. Analysis of
the experimental data has shown that for GaP, GaAs,
and InP the Haffa–Switkovski model provides a good
description of the dependence on energy of the sputter-
ing yield, with the use of Yudin’s approximation for
sputtering of elemental materials.

It has been found that sputtering of indium anti-
monide and gallium antimonide at temperatures >50°C
proceeds with recrystallization of the surface. It has

been shown that for  ions in the energy range above
3 keV Onderlinden’s model can be used to describe the
sputtering yield of gallium antimonide and indium anti-
monide. Values of the surface bonding energies for tar-

gets sputtered by  ions in the amorphous mode
obtained from a comparison of theory with experiment
exceed the analogous values in the case of bombard-
ment with ions of the inert gases Ar+ and Xe+, which is

N2
+

N2
+

N2
+

Table 2.  Energies of atomization Ud, amorphization Uam,
sputtering threshold Uth, and surface bonding U0

Material Ua , eV
U0, eV U0, eV

Ar+ Uam, eV Uth, eV 
(theory)

GaP 3.56 4.2 2.2 0.6 ~25

GaAs 3.28 3.4 2.8 0.5 ~25

GaSb 3.02 2.4 2.65 0.39 ~20

InP 3.29 3.4 2.8 0.45 ~30

InSb 2.75 2.1 2.5 0.25 ~25

N2
+

Table 1.  Parameters of the angular dependence of sputtering

yield for A3B5 materials under bombardment with  ions of
energy E = 5 keV

Material p Θmax, deg f g

GaP 3.9 63 7.2 3.32

GaAs 2.2 67 3.72 1.42

InP 1.9 65 3.29 1.39

N2
+
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apparently due to the formation of A3–N bonds with
implanted nitrogen atoms. At the same time, values of
the surface bonding energies obtained for InSb and

GaSb sputtered by bombardment with  ions in the
mode of radiation defect anneal are, on the contrary,
lower than the analogous values determined from anal-
ysis of sputtering of these materials by ions of the inert
gases Ar– and Xe+ in the surface amorphization mode.
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Abstract—A spread in electrophysical parameters of solid solutions based on PZT and niobium oxides is con-
sidered for a wide range of component concentration. It is shown that composition fluctuations and their asso-
ciated solution imperfection cause a significant deviation of the parameters from their mean values. The fluctu-
ations are most pronounced when the crystal structure is unstable (e.g., at morphotropic transitions and near the
solubility limits of the components). The optimization of methods for solid solution preparation greatly reduces
the effect of process variables on parameter reproducibility. © 2000 MAIK “Nauka/Interperiodica”.
Parameter reproducibility of active elements in
piezoelectric devices is of crucial importance in mass
production. An insignificant spread in their parameters
within a lot or from lot to lot eliminates the need for
tuning individual elements and provides the reliable
operation of equipment. These elements are usually
made of composite ferroelectrics, such as solid solu-
tions (SS) based on PZT and niobium oxides. The func-
tionality of the material depends on its chemical and
physical compositions. Therefore, it is of interest to
trace the interrelation between variations of composi-
tion and parameter spread.

In this work, we give the statistical treatment of a
parameter spread in PZT- and sodium niobate–based
systems when the concentration of one component is
varied. The statistical characteristics are rms deviation
of the mean

(1)

absolute deviation

(2)

and relative deviation

(3)

where x is the mean value of a parameter (  = /n),

xi is its current value, n is the number of samples in a
lot, and tnα is Student’s ratio. The characteristics were
estimated at a confidence probability of 0.95 [1].

Sn
1

n n 1–( )
-------------------- x1 x–( )2

i 1=

n

∑ ,=

∆x Sntnα ,=

δx
∆x
x

------ 100%( ),=

x xi

i 1=

n

∑
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We studied NaNbO3–PbTiO3 (Fig. 1) and PbZrO3–
PbTiO3–PbW1/2Cd1/2O3 (Fig. 2) samples obtained in

laboratory conditions1. Figures 1 and 2 plot , , and

 vs. PbTiO3 concentration (curves a, b, and c,
respectively). These quantities were calculated for
three electrophysical parameters: relative permittivity

/ε0 (A), piezoelectric coupling coefficient Kp(B),
and mechanical Q-factor QM(C).

It is seen that, in some ranges of PbTiO3 concentra-

tion,  curves run parallel to the abscissa axis; i.e., the
relative deviations are nearly the same (within a little
spread). For the most fully studied NaNbO3–PbTiO3

system (Fig. 1), such portions are observed for the tet-
ragonal phase T2 adjacent to the morphotropic region
MR2 (for all of the parameters), for the very MR2 (for

/ε0 and Kp), and for rhombic phase R1 adjacent to
MR1 (for QM, this also takes place in a considerable part

of MR1)
2. In Fig. 1, the ranges where  runs parallel

to the abscissa are hatched3. Here, the concentration

curves for the absolute deviations  qualitatively
coincide with those for the electrophysical parameters.

1 Solid solutions were obtained by solid-phase synthesis (800°C,
1.8 × 104 s, 850°C, 1.8 × 104 s) with subsequent individual rapid
hot pressing of samples (∅  12 × 4 mm) at temperatures between
1150 and 1200°C (depending on the composition), a pressure of
19.6 MPa, and isothermal hold for 2.4 × 103 s. Hot pressing meth-
ods and equipment are described in [2]. SS parameters were
determined with lots of ten samples of each of the compositions.

2 Phases in NaNbO3–PbTiO3 system are designated in Fig. 1
according to [3].

3 Double hatching means some spread in  for QM.

x ∆x

δx

ε33
T

δx

ε33
T

δx

δx

∆x
000 MAIK “Nauka/Interperiodica”



 

1208

        

REZNICHENKO

 

 

 

et al

 

.

                       
(a)

0.17 0.21 0.250.230.19 α

a

b

c

R1 MR1 T1 MR2 T2

δxε33
, %T

––

∆xε33
T

––

ε33/ε0
T

40
30
20
10

200
160
120
80
40
0

800
700
600
500
400

0.17 0.21 0.250.230.19 α

160
120
80
40
0

120
80
40
0

0.25
0.20
0.15
0.10

δxKp
, %

––

R1 MR1 T1 MR2 T2

(b)

∆xKp

––

× 103

Kp

a

b

c

0.17 0.21 0.250.230.19 α

R1 MR1 T1 MR2 T2

(c)

c

b

a

200
150
100
50
0

1000

500

0

2000

1000

0

δxQM
, %

––

∆xQM

––

QM

Fig. 1. (a) , (b) , and (c)  vs. PbTiO3 content in (1 – α)NaNbO3–αPbTiO3 systems for (a) /ε0, (b) Kp, and (c) QM.x ∆x δx ε33
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Fig. 2. The same as in Fig. 1 for αPbTiO3–βPbZrO3–γPbW1/2Cd1/2O3 systems.
This also follows from analytic expression (3): at  =

/  ≈ const,  ≈ const ; that is,  ~ .
In the rest of the PbTiO3 concentration ranges in

Fig. 1,  varies considerably: up to 24% for /ε0

and 130% for Kp (inside MR1), as well as 200% for QM

(inside MR2). Note that the  variations far exceed
those of the parameters within the morphotropic

δx

∆x x ∆x x ∆x x

δx ε33
T

δx
regions. Therefore, the absolute deviations of the

parameters  vary in the same manner as  in these

ranges. This also qualitatively follows from (3): at  =

/  ≠ const,  = ; i.e., for a slowly varying

 ~ . This is also supported by the coincidence of

the positions of  and  maxima and minima. For

∆x δx

δx

∆x x ∆x xδx

x∆x δx

δx ∆x
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the electrophysical parameters, however, the maxima

of /ε0 and Kp coincide with the minima of  and

; and the minima of Kp and QM, with the maxima of

 and . Such an unusual (in our opinion) run of 

and  is likely to arise from specific features of SS
formation in the morphotropic regions.

Also noteworthy is a narrow range of PbTiO3 con-

centration in the phase T2 away from MR where ,
being hitherto almost constant, sharply grows. In this

range,  behaves in the same manner, whereas /ε0

and Kp continue to decrease monotonically.

Similar concentration dependences of parameter
spread are also typical of other SS system. For example,
in the compositionally simpler PbZrO3–PbTiO3–

PbW1/2Cd1 /2O3 system (Fig. 2), ranges with  ≈ const
(phase T, adjacent to the morphotropic region) are
observed for the same parameters. As in Fig. 1, the
associated ranges are hatched. Their width is 15 mol %
PbTiO3 (cf. 2.5 mol % in the phase T2 for the former

system). The concentration dependences of  (at

 ≈ const) and electrophysical parameters are close to
each other (for each of the parameters). Beyond the

hatched range of PbTiO3 content,  grows consider-
ably (the sharpest growth for QM), as in the case of

NaNbO3–PbTiO3. Here,  also increases, while the
parameters continue to decrease monotonically. Note
that, in the NaNbO3–PbTiO3 system with the heterova-
lent substitution of ions in both cation sublattices, the

ranges of constant  in the single-phase regions,
where the solid solutions are structurally unstable, are
narrower than in the PZT system. A possible explana-
tion is the disordering of cations that occupy equivalent
crystallographic sites, which eventually causes SS
inhomogeneity and imperfection. The morphotropic
region in the PZT-based system has been studied less
extensively than the niobate one.

When treating experimental data, one should take
into account that a parameter spread involves the error
in parameter determination, which depends on measur-
ing techniques and equipment, environmental condi-
tions, and operator’s skill. For PZT-based SS, the asso-
ciated values are usually several percent [4] (they reach
10–20% only for QM) and remain almost unchanged
when the parameters are varied in wide limits (Table 1
[4]). In sodium niobate–based SS, the errors are some-
what larger than those given in [4] (Table 2), yet

remaining much lower than . Thus, the errors have
an insignificant effect on the parameter spread, which
depends on the SS position in the phase diagram.

The spread is apparently due to composition fluctu-
ations, which show up most vividly in the regions of

ε33
T δx

∆x

δx ∆x δx

∆x

δx

∆x ε33
T

δx

∆x

δx

δx

∆x

δx

δx
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phase coexistence [5, 6]. In morphotropic regions,
where the parameter values quickly respond to compo-
sition variations, any stoichiometry violation leads to a
marked change in the phase state and structure. This, in
turn, causes noticeable variations of the electrophysical
properties, because oxide materials are highly sensitive
to composition uniformity and perturbation [7, 8]. As is
known, solid-state reactions usually do not proceed to
completion; hence, SS are inhomogeneous in composi-
tion. After subsequent sintering according to conven-
tional ceramic technology, the reproducibility of

Table 3.  Phase ratio in solid solutions of composition (1 –
α) NaNbO3–αPbTiO3 at α = 0.225

Preparation 
technique

Sample 
no. P/q Preparation 

technique
Sample 

no. P/q

Hot pressing 1 1.2 Conventional 
ceramic 

technology

1 1.7

2 1.3 2 1.4

3 1.1 3 1.3

4 1.2 4 1.4

5 1.3 5 1.3

6 1.2 6 1.6

7 1.1 7up 1.4

7down 1.7

Table 1.  Relative deviations of the electrophysical parame-
ters for PZT-based solid solutions

Parameter Value Relative deviation, %

250–5000 1

Kp 0.3–0.4 2

0.4–0.5 1.5

0.5–0.7 1

QM 50–600 10

600–5000 20

ε33
T /ε0

Table 2.  Relative deviations of the electrophysical parame-
ters for mass-produced niobate materials

Parameter Value Relative deviation, %

120–460 1

Kp 0.30–0.30 5–6

0.30–0.40 3

Qm 100–200 15

200–1000 20

ε33
T /ε0
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Table 4.  Electrophysical parameters of samples made of different PKR-34 hot-pressed material blocks

Lot no. Block no.
Parameters*

Kp d31, pC/N g31, mV m/N  × 10–11 N/m2 ρ, g/cm3 TC °C , pC/N , mV m/N

I 1 450 0.33 36 9.2 1.14 4.5 390 85 21.3

2 460 0.34 37 9.0 1.15 4.5 388 85 20.3

3 490 0.32 36 8.2 1.30 4.5 390 85 19.6

II 4 465 0.33 37 9.1 1.17 4.5 390 90 21.3

5 450 0.32 35 8.8 1.20 4.5 385 85 21.3

6 400 0.30 37 10.4 1.32 4.5 380 85 24.0

III 7 390 0.31 37 10.7 1.17 4.5 390 90 26.0

8 385 0.30 36 10.6 1.15 4.5 388 85 24.9

  * d31 and d33, piezoelectric constants; g31 and g33, piezoelectric sensitivities; , Young's modulus; ρ, density; and TC, Curie point.
** g33 and d33 are obtained by the quasi-static method.

ε33
T /ε0 Y11

E d33
** g33

**

Y11
E

Table 5.  Statistical characteristics of hot-pressed samples made of the same PKR-34 material block

Kp d31, pC/N g31, mV m/N Kp d31, pC/N g31, mV m/N

425 0.388 41 10.8 4.2 0.009 1.2 0.4

Sn 2.0 0.004 0.6 0.2 1.0 2.3 2.9 3.7

ε33
T /ε0 ε33

T /ε0

x ∆x

δx %,
the  properties worsens still further. This is illustrated
by   data represented in Table 3. It lists the values
of   the   parameter P/q [9] for SS of composition
(1 − α)NaNbO3–αPbTiO3 at α = 0.225. This parameter
was suggested as a measure of the tetragonal distortion
of the SS perovskite lattice and the amount of tetrago-
nal phase when the cell parameter ratio c/a is impossi-
ble to determine because of an uncertain split of asso-
ciated diffraction lines. As follows from Table 3, the
spread of P/q for various samples and for various areas
within the morphotropic region is rather large and
depends on the production technology. Samples pre-
pared by hot pressing have the lesser spread of P/q. For
samples prepared by this method, a distinct tendency to
decreasing the spread of the parameters is observed in
going from the laboratory [10] to large-scale produc-
tion technology [11]. In the latter case, the spread is
minimal within a lot and when samples are made of the
same block of the material (Tables 4, 5).

Such an effect is explained by the stabilized compo-
sition and more perfect crystal structure of the SS.

CONCLUSIONS

(1) The behavior of the absolute, , and relative,

, parameter deviations depends on the SS position in

the phase diagram. In single-phase regions,  varia-

∆x

δx

∆x
tions are similar to those of  and  is constant. In
multiphase regions, the increased sensitivity of the SS

to chemical inhomogeneity causes variations of 

and  much greater than in the former case. Here, 

varies in the same manner as  and, as a rule, in the
direction opposite to the direction of  variation, while

 depends on component concentration in an intricate
way.

(2) Heterovalent substitutions of ions in both cation
sublattices of niobate-based SS make their composition
still more nonuniform and their structure still more
imperfect. This extends the parameter spread in com-
parison with the PZT-based systems.

(3) The spread can be minimized by optimizing the
SS production process.
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Abstract—The texture of polysilicon films as a function of doping impurities and growth temperature was
studied. © 2000 MAIK “Nauka/Interperiodica”.
Polysilicon films (PSFs) are a promising material
for micro- and optoelectronic applications. Of special
value are the films with preferential grain orientation
[1, 2]. PSFs, which are obtained by low-temperature
methods, are used in thin-film transistors. Such transis-
tors have a higher carrier mobility in the channel than
those based on the films with randomly oriented grains.
MBE appears to be one promising low-temperature
technique for PSF growth [3–5]. The properties of
MBE-grown PSFs are known to depend on various fac-
tors, specifically, dopant type [4, 5]. Therefore, it would
be of interest to trace the dopant effect on texture type.

Silicon films ~1.5 µm thick were MBE-grown using
volatilizable silicon sources doped by phosphorus or
gallium to a concentration of ~1 × 1019 cm–3. PSFs
lightly doped by boron (NB ≈ 1016 cm–3) were also
grown for comparison. Silicon wafers covered by
~0.5-µm-thick thermally grown SiO2 were used as sub-
strates. The PSF growth rate was ~2 µm/h, and the sub-
strate temperature was varied from 500 to 800°C.

The films were studied by X-ray diffractometry.
A part of the volume oriented in an (hkl) direction was
estimated with the orientation factor fhkl:

where Ihkl and Fhkl are, respectively, the scattering inten-
sity and factor measured for each (hkl) diffraction
plane. The scattering factor was determined for texture-
free samples.

Figure 1a shows the degree of texturing (fractions of
texture components) vs. substrate temperature TS for
the films grown with the use of the lightly doped
source. For TS between 500 and 550°C, the prevailing
direction of texture orientation is 〈110〉 . Note that, at
TS = 550°C, about 90% of the grain volume is oriented
in the direction 〈110〉 . As TS increases further, the frac-
tion of the 〈110〉  orientation drops and the rate of 〈111〉

f hkl

Ihkl/Fhkl

Ihkl/Fhkl

hkl

 

∑
--------------------------,=
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texture formation rises. For the films heavily doped by
phosphorus, the temperature dependence of film orien-
tation is similar (Fig. 1b). Here, the maximum of the
〈110〉  orientation and the minimum of the 〈111〉  orien-

0.4
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I110/I111
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Degree of PSF texturing vs. substrate temperature for the
films doped by (a) boron (NB = 1016 cm–3), (b) phosphorus

(NP ~ 1019 cm–3), and (c) gallium (NGa ~ 1019 cm–3). (I and
II) references.
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tation are shifted by about 50°C toward higher temper-
atures as compared with Fig. 1a. For the films heavily
doped by gallium (Fig. 1c), the 〈110〉  maximum shifts
toward lower temperatures and the volume fraction of
grains with this orientation is smaller than in the previ-
ous cases.

The table lists the grain sizes in the variously doped
films for different growth temperatures. The grains are
seen to coarsen with increasing temperature. For the
films lightly doped by boron, coarsening is noticeable
at high temperatures. For the phosphorus-doped PSFs,
the grains grow faster. In the boron-doped PSFs,
intense grain growth occurs at lower temperatures.

Our results suggest that the formation of 〈110〉  tex-
ture becomes significant in the gallium-doped films. In
the films doped by phosphorus, the formation of this
texture slows down at low temperatures. This observa-
tion may be considered within a model where dopant
atoms are viewed as surfactants [6]. It appears that
dopants influence the grain orientation and size through
their tendency to surface segregation: phosphorus is
less prone to segregation on the growth surface than
gallium; hence, the former activates grain boundary
migration to a lesser extent.

Thus, PSFs grown by MBE with volatilizable sili-
con sources exhibit 〈110〉  and 〈111〉  textures. At low
temperatures (500–600°C), the former orientation pre-
vails, while the latter is dominant in the high-tempera-
ture range. As for the effect of the dopants, the lowest
temperature of 〈110〉  texture formation either rises
TECHNICAL PHYSICS      Vol. 45      No. 9      2000
(phosphorus) or decreases (gallium) in comparison
with PSFs lightly doped by boron.
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Abstract—Calculations for a one-dimensional model of RF heating of a cylindrical graphite conductor have
been carried out. The heating dynamics are analyzed in the general form. Conductor temperature profiles and
the times for heating up to the graphite sublimation temperature as a function of current and frequency have
been obtained. A model of conductor heating with partial return of the energy irradiated by the conductor sur-
face has been considered. Frequency and current ranges have been determined to carry out this graphite subli-
mation method in a chamber with reflecting walls. The problem is associated with carbon vapor production and
subsequent synthesis of fullerenes and other carbon structures. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Metals in the form of finely dispersed powders find
an ever expanding use in technology. Heating conduc-
tors in the form of wires by passing high pulsed cur-
rents [1] is one of the effective ways of obtaining these
materials. In 1990, arc sputtering of carbon was
employed by a group of German physicists, which led
them to the discovery of a method for fullerene synthe-
sis [2]. The method consisted in the sputtering of car-
bon by a direct or alternating current arc in a helium
atmosphere at a pressure of 100 torr. Afterwards, many
other fullerene synthesis methods were developed. But
in spite of the great diversity of these methods, their
productivity did not exceed several grams per hour [3–
9]. The common feature of all these methods is that car-
bon is first transformed into a plasma at a temperature
of 6000–7000 K and then, during subsequent cooling
(usually in a helium gas atmosphere), fullerene mole-
cules are formed. The sublimation temperature of
graphite in vacuum is about 4000 K. Unfortunately, the
carbon plasma temperature at which fullerene mole-
cules can be formed is unknown. We assume that this
temperature is below 6000 K and that fullerenes can be
synthesized from carbon vapor produced by graphite
sublimation. The heating necessary for graphite subli-
mation can be effected by passing a current through a
graphite rod.

It is evident that, when a direct current is passed
through a graphite rod, the temperature near its axis
exceeds that at the surface due to radiation losses. Sub-
limation will start first in cracks and voids in the graph-
ite before expanding to other regions, which will lead
to mechanical destruction of the graphite rod. There-
fore, RF heating should be used, because due to the skin
1063-7842/00/4509- $20.00 © 21214
effect the joule heat will then be released mostly in the
conductor surface layer [10].

In this paper, we consider the dynamics of heating a
cylindrical conductor by RF currents to the temperature
at which sublimation starts.

THE MODEL

Heating a conductor in vacuum is described by a
nonstationary equation for heat conductivity in cylin-
drical coordinates [11]

(1)

where c = cv is the specific heat, ρ is the density, λ is the
heat conductivity, and qv(r) is the power of the volume
heat sources.

Let us denote the boundary conditions at the con-
ductor axis as

(2)

and at the conductor surface as

(3)

where qr(T) = εσcT 4 is the radiation flux density from
the conductor surface; σc is the Stefan–Boltzmann con-
stant; ε is the integrated emittance; and the initial con-
dition is T(r, t = 0) = T0 where T0 = 293 K.

cρ∂T
∂t
------ 1

r
--- ∂

∂r
----- λr

∂T
∂r
------ 

  qV r( ),+=

λ∂T
∂r
------

r 0=

– 0=

λ∂T
∂r
------–

r r0=
qr T( ) r r0= ,–=
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In equation (1), the joule power of volume sources
is determined as follows [10]:

(4)

where δ =  is the skin layer thickness, Q =
I2/(2πσδr0) is the thermal power per unit length of the
conductor, r0 is the conductor radius, σ is the electrical
conductivity, µ ≈ µ0 is the magnetic permeability, I is
the effective current, and ω is the current frequency.

Let us introduce normalized variables of the transfer
process

(5)

where R and F are the spatial and time coordinates (a =
λ/cρ is the thermal diffusivity); Θ is the relative temper-
ature; ∆ is the relative skin layer thickness; and K and ξ
are parameters characterizing the specific power Q and
the density qr of the radiation flux from the surface,
respectively.

In this way, the number of initial parameters can be
reduced, and a solution in a general form can be
obtained. With the new variables, the system (1)–(3)
can be written as

(6)

qV r( ) j2 r( )
σ

------------
Q

πrδ
--------- 2 r0 r–( )/δ–( ),exp= =

2/ µσω( )

R
r
r0
----, F

at

r0
2

-----, Θ T
Te

-----, ∆ δ
r0
----,= = = =

K
Q

λTe

---------, ξ Θ( )
r0

λTe

---------qr T( ),= =

∂Θ
∂F
-------

1
R
--- ∂

∂R
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∂Θ
∂R
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  K
πR∆
----------- 2 1 R–( )/∆–( ),exp+=

6
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F

Fig. 1. Time for reaching the sublimation temperature F as
a function of the dimensionless parameter K (r0 = 5 × 10–2 m,
∆ = 0.14, α = 0, and F is time in arb. units).

3.5
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(7)

The solution contains two parameters, K and ∆. The
current, frequency, and time can be expressed through
the generalized parameters as follows:

(8)

CALCULATION RESULTS

Computer calculations were performed by the
finite-difference method. The iteration algorithm pro-
vided second-order accuracy of the spatial and time
steps [11]. Profiles of the conductor temperature at the
moment when sublimation started on its surface and the
time elapsed until this moment were calculated for dif-
ferent values of K and ∆. As the parameter K and, cor-
respondingly, the power Q is increased, the time of
heating to the sublimation temperature Te decreases
(Fig. 1). The radial temperature gradient rises (Fig. 2).
Under these conditions, overheating of the conductor’s
central region does not occur when the sublimation
temperature is reached on the surface.

Due to radiation losses, the temperature maximum
occurs not at the conductor surface but close to it

∂Θ
∂R
-------

R 0=

0, ∂Θ
∂R
-------

R 1=

ξ Θ( ) R 1= .–= =

I r0 2πσ∆KλTe,=

ω 2

r0∆( )2µσ
-----------------------= ,

t
Fr0
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--------.=
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Fig. 2. Temperature profiles at the start of sublimation for
different values of the parameter K (r0 = 5 × 10–2 m, ∆ =
0.14, α = 0). The portion in the rectangle is shown scaled up
in Fig. 3.
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(Fig. 3). As the parameter K increases, the maximum
shifts towards the surface because of increasing heat
release.

To evaluate the experimental potentialities of graph-
ite sublimation as a means of synthesizing new carbon
structures, we used the following values of the thermo-
physical parameters [12] for carbon, which were
assumed to be constant during heating: specific heat c =
2.1 J/(g K), density ρ = 2.1 g/cm3, heat conductivity λ =

1.000
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0.992

0.998

0.984
0.88 0.92 0.96 1.00

0.6
1.4
2.2
3.0

K
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Θ

Fig. 3. Temperature profiles near the surface at the start of
sublimation for different values of the parameter K (r0 = 5 ×
10–2 m, ∆ = 0.14, α = 0).
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Fig. 5. Temperature profiles at the start of sublimation for
different values of the parameter ∆ (K = 0.7, r0 = 5 × 10–2 m,
α = 0).
2.66 W/(cm K), integrated emittance ε = 0.56, electrical
conductivity σ = 1.13 × 104 S/cm2, and sublimation
temperature Te = 4473 K. For a graphite conductor of
radius 5 × 10–2 m, the parameter range K = 0.4–3.4,
according to (8), corresponds to a current range of 3.5–
10.0 kA, and the time necessary to reach sublimation is
3.0–0.5 s (Fig. 1). If the current is reduced, by the time
the sublimation temperature is reached at the surface,
the conductor will be heated almost uniformly through-
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Fig. 4. Time taken to reach the sublimation temperature F as
a function of the dimensionless parameter ∆ (K = 0.7, r0 =
5 × 10–2 m, α = 0, and F is time in arb. units).
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Fig. 6. Time taken for reaching the sublimation temperature
F as a function of the coefficient α (K = 0.7, ∆ = 0.14, r0 =
5 × 10–2 m, and F is time in arb. units).
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out its volume. If the current is increased, the heating
time becomes too short and the process approaches the
pulse heating described in [1, 13].

With increasing parameter ∆ (which corresponds to
decreasing frequency ω), the rod heating time
increases, since both the volume heat release (see equa-
tion (6)) and the radial temperature gradient (Fig. 5)
decrease due to the fact that with decreasing frequency
the skin layer spreads over the conductor volume.

For a graphite conductor of radius 5 × 10–2 m, the
range of 0.1–0.5 of the parameter ∆ corresponds to the
frequency range of 900–35 kHz. The calculations show
that even when skin layer thickness is 0.4–0.5 of the
conductor radius the inner conductor regions are con-
siderably overheated (Fig. 5). Thus, a further decrease
in the current frequency will result in an increase in the
skin layer thickness that will make the use of RF heat-
ing unwarranted.

The calculations and estimations presented have
shown that to produce the high currents corresponding
to sublimation is, in practice, a very complicated task.
Therefore, we changed the model of heating and calcu-
lated temperature profiles for a system with the follow-
ing boundary condition at the surface:

(9)

Experimentally, this boundary condition can be cre-
ated, for example, using a cylindrical heating chamber
in which the walls have reflectance α.

The higher the reflectance of the walls, the shorter
the time of heating to the sublimation temperature Te

(Fig. 6) and the higher the radial temperature gradient
(Fig. 7). Moreover, at higher values of the reflectance α,

λ∂T
∂r
------

r r0=

– 1 α–( )qr T( ) r r0= .–=

α = 0
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1.00
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0 0.2 0.4 0.6 0.8 1.0
R

Θ

Fig. 7. Temperature profiles at the start of sublimation for
different values of the parameter α (K = 0.7, ∆ = 0.14, r0 =
5 × 10–2 m). The portion in the rectangle is shown scaled up
in Fig. 8.
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the temperature maximum approaches the surface
(Fig. 8); and at α = 0.6–0.8, it is found at the conductor
surface.

The partial heat recovery also reduces power con-
sumption. Thus, for a conductor of radius 5 × 10–2 m at
α = 0.8, the reasonable range of the parameter K is
0.15–2.2, corresponding to a current of 2.0–8.0 kA and
a time necessary to reach sublimation of 8.0–0.5 s.

CONCLUSIONS

(1) The dynamics of conductor RF heating has been
analyzed in the general form as a function of the gener-
alized parameters.

(2) Conductor temperature profiles and the times of
heating to the sublimation temperature for currents of
2–10 kA in the frequency range of 35–900 kHz have
been calculated using parameters corresponding to arti-
ficial graphite.

(3) Specific ranges of the control parameters have
been determined to carry out graphite sublimation with
reflecting walls at α = 0.8.
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Abstract—The chemical analysis of a laser jet was performed with a combination of laser back mass transfer
and X-ray photoelectron spectroscopy (XPS). It was revealed that, as compared to the source material, films
deposited from the jet under laser mass transfer in air show increased oxidizability and changed chemical com-
position. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Ablation in a broad sense means mass removal from
a solid surface (for instance, a decrease in the glacier
mass due to thawing, thinning of a spacecraft body as it
passes through the Earth atmosphere, and so on). This
term has become common in the literature concerned
with different fields of laser technology, microelectron-
ics, and medicine, as well as with fundamental physical
research.

Laser ablation is a phenomenon of removing a
microscopic amount of material from the surface under
the action of laser emission. It may proceed through
different mechanisms. They are primarily evaporation,
thermoelastic damage, shock wave propagation, photo-
dynamic mechanism [1], photochemical mechanism
[2], and others.

The nature of ablation processes depends to some
extent on the target material and environment composi-
tion. However, more heavily they depend on the laser
radiation characteristics: intensity, pulse duration,
wavelength, number of pulses, etc. In certain ranges of
laser parameters (for instance, at short pulses and high
intensities), the fundamental physical mechanisms of
laser ablation are yet to be fully understood.

Pulse laser ablation is a powerful method of surface
treatment. High rates of heating and cooling along with
the possibility to scan the focused radiation both over
the surface and in the bulk, make it possible to carry out
specific treatments in air. Under certain irradiation con-
ditions, thermochemical processes in the vapor phase
may have a profound effect on the result of ablation. In
this paper, we study vapor-phase redox processes dur-
ing short-pulse laser ablation in air. Metals and non-
transparent semiconductor films are ablated due to
evaporation and the formation of a near-surface plasma.
The chemical composition of a laser jet resulting when
sharp-focused pulsed laser radiation scans the target
surface is also investigated.
1063-7842/00/4509- $20.00 © 21219
EXPERIMENTAL METHODS 
AND RESULTS

In recent years, the laser ablation of a target material
and its subsequent transfer to and condensation on a
substrate placed at a small distance away from or
directly against the target are the subject of much inves-
tigation. This technology is applied for fabricating film
elements. Two types of laser transfer are recognized.
The first type is direct transfer, when a radiation, having
passed through a transparent substrate, evaporates a
material deposited on it and the evaporated material
condenses on the second substrate (acceptor) posi-
tioned in the direction of the laser beam. The second
type is back laser transfer, where, after passing through
a transparent acceptor, the laser radiation is focused on
the target surface and the evaporated material flows in
the direction opposite to that of the beam and con-
denses on the acceptor. In the former case, only thin
films on a transparent substrate can be used, while, in
the latter, both thin films and massive wafers are
applied.

In this work, we employed back laser oblation to
study vapor-phase redox processes. These processes
attend the short-pulse laser ablation of such materials
as massive titanium and aluminum plates, as well as
chromium films and films of iron oxide deposited on
glass substrates.

The experimental setup is presented in Fig. 1. After
passing through a transparent acceptor mounted 50 µm
above the target surface, a pulse single-mode YAG : Nd
laser radiation was focused on the target surface to a
spot 50 µm in diameter and uniformly scanned an area
of 7 × 7 mm. The pulse width was 250 ns.

For each of the materials, the ablation power thresh-
olds were estimated. In order of increasing thresholds,
the materials are arranged as follows: chromium, tita-
nium, iron oxide, and aluminum. In experiments, the
luminous flux densities were 2–2.5 times greater than
000 MAIK “Nauka/Interperiodica”
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the ablation threshold of the material. The irradiation
causes the formation of an intense jet. The acceptor was
positioned in the region of its maximum intensity.

The chemical composition of the films deposited on
the acceptor was examined with XPS. This places cer-
tain constraints on the size of the films (the irradiated
area should be no less than 5 mm in diameter in view of
the low spatial resolution of the XPS technique). The
required area was delineated by scanning the laser spot
over the sample surface. The scan rate was chosen in
such a way as to prevent spot overlapping in “rows” and
“columns.”

YAG-Nd

1

2 3

H
e-

N
e

4

5

6

7
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8
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Fig. 1. Experimental setup: (1) pulse driver, (2) Fresnel
attenuator, (3) transparent plate, (4) power meter, (5) optical
system, (6) computer, (7) scanner, (8) substrate (acceptor),
(9) target, and (10) operating table.
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Fig. 2. Electronic spectra of the deposited films: (a) titanium
target resolved Ti components) and (b) aluminum foil
(resolved Al components).
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The electronic spectra were obtained with an
ESCA-5400 Perkin–Elmer spectrometer. The operating
pressure was kept at 10–9 torr.

As is known, chemical analysis of dielectrics may
distort the electronic spectra because of charging the
material. This charge should be neutralized. To esti-
mate the possible distortion of the spectrum, the spectra
from the glass acceptor were obtained with and without
charge neutralization. The neutralization was accom-
plished through bombarding the samples by low-
energy (~20 eV) electrons. In the former case, the
broadening of the spectral lines at the base was
observed. In the latter case, the spectrum only shifted
along the energy scale. Thus, the measurements with-
out charge neutralization allowed us to find the undis-
torted spectral lines and resolve their components.

We obtained the electronic spectra for the source
massive titanium and source aluminum foil, as well as
for the films condensed from these sources, and
resolved their components.

Similar spectra were obtained for the source films of
iron oxide and chromium, as well as for the associated
films produced by laser ablation.

Depth profiling by means of XPS and ion etching
was made. It was found that Ar+ ion etching to a depth
of 2000 Å removes carboniferous contaminants and
metal oxides from the metal surface.

For the massive samples, the depth of ablation per
pulse was as great as 2–3 µm; that is, not only the con-

589.0

N(E), arb. units

eV

(b)

725.0 722.2

(a)

586.8 584.6 582.4 580.2 578.0

CrO3
41%

Cr2O0
45%

CrO2
13%

719.4 716.6 713.8 711.8

Fe2O3
65%

27%
FeOOH

Fig. 3. Electronic spectra of the deposited films. Target is (a)
iron oxide film on glass substrate (resolved Fe components)
and (b) chromium film on glass substrate (resolved Cr com-
ponents).
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taminants but also the pure metal are removed from the
surface in this case.

The photoelectron spectra of the titanium and alu-
minum films deposited in the jet area showed a great
concentration of oxygen (O ≈ 50–56%), the metals (Al,
Ti ≈ 12–25%), carbon (C ≈ 12–14%), and the substrate
elements (the deposited films replicated the spatial
structure of the scan area and were not continuous).

The resolution of the spectral components allowed
the determination of the degree of oxidation of metals
that combined with oxygen in the deposited films.

The Ti and Al components of the electronic spectra
taken from the deposited titanium and aluminum films
are presented in Fig. 2. Titanium is present in different
oxidized forms (TiO2 ≈ 50% and TixOn ≈ 30%), and Al
is mainly oxidized to Al2O3 (the effect of charging is
ignored) [3, 4].

The XPS spectra taken from the source iron oxide
film show that it consists of different oxides and the
pure metal (31% Fe2O3, 27% FeO, and 29% Fe).

The composition of the film produced by the short-
pulse laser ablation of the source iron oxide film in air
was radically different. The resolved spectrum of the
deposited film is shown in Fig. 3a. In this film, pure iron
was absent, the fraction of iron oxidized to the greatest
extent (Fe+3) doubled, and compounds of iron with a
hydroxyl group appeared (27% FeOOH and 65%
Fe2O3).

The XPS spectrum from the evaporated chromium
film (Fig. 3b) revealed not only stable chromium oxide
(Cr2O3), typical of thermal oxidation, but also unstable
oxides of maximum valence: Cr+4 and Cr+6 (46%
Cr2O3, 41% CrO3, and 13% CrO2).

DISCUSSION

Short-pulse laser ablation in air, which is attended
by vapor-phase reactions, was found to promote the
oxidation of the products deposited from the erosion
jet. It is remarkable that each of the examined materials
behaves in a different manner (Fig. 4).

The chromium film contains several oxides up to the
one with the deepest degree of oxidation: very unstable
chromic anhydride CrO3, which rapidly decomposes
under the conditions of thermal oxidation.

The composite semiconductor iron oxide film radi-
cally changes its composition after laser ablation in air.
The metallic component completely oxidizes, the oxide
components present in the source film oxidize to the
maximum degree, and the compounds containing
hydroxyl groups appear.

It appear that the plasma favors the oxidation pro-
cess. As a result, the source chromium film takes on the
semiconducting properties, and the source semicon-
ductor film becomes dielectric.
TECHNICAL PHYSICS      Vol. 45      No. 9      2000
For the massive materials, the tendency is the same
but less obvious. Namely, the evaporated films are free
of the pure metal (Ti or Al) component. The aluminum
fully oxidizes to the higher oxide Al2O3, while the tita-
nium may have lower oxides as well.

Thus, laser ablation in air is accompanied by exten-
sive vapor-phase redox processes. Their essential role
in the development of instabilities along the scanning
path [5] is also confirmed. In fact, a decrease in the vol-
ume occupied by the oxide molecules as compared to
that of the corresponding atoms decreases the near-sur-
face pressure and causes the backward flow of the
vapor-phase-reaction products onto the irradiated sur-
face. In turn, this produces absorptivity feedback;
hence, the instabilities along the beam path.

Within the concept put forward in [5], the situation
with the oxide films remained unclear: they have initial
oxide components but demonstrate distinct structure
self-organization. Our data show that all of the compo-
nents of the iron oxide film oxidize to higher oxides.
Thus, the model of reactive laser ablation with partial
condensation of products obtained by jet–air interac-
tion applies to this material as well.

CONCLUSIONS

Note that the method of laser back transfer, used to
study the chemical composition of the erosion jet, is
efficient in controlling the degree of oxidation of films.
In [6], the highest degree of oxidation/reduction under
instability was achieved on laser-irradiated silicon–
molybdenum films. It is noteworthy that the chemical
composition of the films formed by reactive laser abla-
tion differs from that of the source film. Moreover, it
cannot be obtained under conditions of steady-state
thermal oxidation.
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TiO2

Ti

K-8

CH, CO2

Al2O3

Al

K-8

Cr2O3

Cr

50% TiO2
30% TixOn

75% Al2O3

65% Fe2O3
27% FeOOH

30% Fe2O3
30% FeO
30% Fe

46% Cr2O3
41% CrO3
13% CrO2

Fig. 4. Chemical compositions of the target and deposited
films.
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It should be noted that the results were obtained for
single-pulse target irradiation. Multipulse irradiation
may drastically change the situation, which calls for
specific investigation.
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Abstract—A new experimental technique for measuring magnetic characteristics of high-temperature super-
conducting (HTS) films is described. The measurement system includes a laser providing for local measure-
ments. The measured magnetic characteristics of the HTS films are of scientific and practical interest. © 2000
MAIK “Nauka/Interperiodica”.
The magneto-optical investigation technique is cur-
rently widely used to study processes of penetration
and capture of the magnetic flux in high-temperature
superconducting (HTS) films. The operating principle
and design of the polarization-optical microscope are
described in several papers [1–4].

The capabilities of this method depend primarily on
the choice of magneto-optical film (MOF). The first
studies utilized domain films in which the easy magne-
tization axis was perpendicular to the film plane. Thus,
only the normal component of the magnetic induction
can be observed in such a configuration. In further stud-
ies, ferrite-garnet films with “easy plane” anisotropy
were used. The easy magnetization axis in these films
lies in the film plane or at a certain small angle to it. By
using such films, it is possible to observe both the nor-
mal and tangential components of the magnetic induc-
tion.

The magneto-optical method made it possible to
directly observe magnetic-flux penetration into a sam-
ple, to investigate the effect of the defect structure in a
superconductor on the distribution and value of the cap-
tured magnetic flux, and to study the distribution of sur-
face currents. However, in order to comprehensively
understand the influence of defects on the processes of
interaction of high-temperature superconductors (HTS)
with a magnetic field, local measurements of their mag-
netic characteristics should be made. A diaphragm
which cut a part of the pattern was used for this purpose
in [5, 6], and the intensity of the light interacting with
an MOF and passing through the diaphragm was mea-
sured with a photodetector (PD). However, a feature of
this system is that, when the region in which the mea-
surements are conducted is reduced, the light intensity
incident on the PD decreases because of a decrease in
the diaphragm diameter, leading to a deteriorating sig-
nal-to-noise ratio.

In this paper, a somewhat different method for local
measurements of HTS magnetic characteristics is pro-
1063-7842/00/4509- $20.00 © 21223
posed. The setup described below has a number of
advantages. An additional light source (a laser) is used
for measurements. Good noise characteristics are
achieved with a He–Ne laser with a power of several
milliwatts.

Moreover, this setup makes it possible to direct the
laser beam to the necessary region of an HTS sample by
directly observing the beam adjustment on a monitor
screen, and the monitoring can be carried out during the
entire experiment.

Finally, the laser beam can be focused, so that mea-
surements can be made in a region with dimensions of
15–20 µm.

SETUP DESIGN

Figure 1 shows a schematic diagram of the setup. It
included a nitrogen optical cryostat, a magneto-optical
visualizer of magnetic fields, a PD unit, a temperature
sensor, a magnetic-field source, and a measurement
system. An HTS film was pasted onto a heat sink of the
vacuum nitrogen cryostat with Ramsay grease. A
reflecting silver layer was deposited by evaporation
onto a magneto-optical ferrite-garnet film grown on a
substrate of gallium–gadolinium garnet. The magneto-
optical transducer manufactured in this way was
pressed mechanically to the HTS film. The temperature
sensor and heater coil were mounted in the heat sink,
making it possible to control and measure the tempera-
ture in a wide range (77–300 K).

The optical part of the setup included an OSV-1
white-light source 1, beam-splitting cubes 2 and 15, a
polarizer 3, a semitransparent mirror 4, and an analyzer 5.
After passing through the entrance window 6 of the
nitrogen cryostat 7 and passing twice through the MOF 8,
the light beam was reflected by the silver coating and
entered the lens 9, which formed a full or partial MOF
image on the array of a video camera 10. The signal
from the video camera was fed to the input of a video
000 MAIK “Nauka/Interperiodica”
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tape recorder 11 and then to a TV set 12 or a PC video
port.

The measuring part consisted of the following com-
ponents. The beam of the He–Ne laser 13 was focused
by a lens 14. Its further path coincided with that of the
white-light beam, and, on being reflected by the beam-
splitter 15, the beam passed through a red filter 16. The
laser light intensity was detected by the PD 17, whose
signal was measured by a PB7-32 selective microvolt-
meter 18. The laser beam was modulated using a sys-
tem consisting of a GZ-33 generator 19, an electric
motor 20, and a disk 21 with four holes. The modula-
tion frequency was 40 Hz. Thus, it was possible to
direct the laser beam to the local HTS region of interest
and to control the adjustment procedure by the image
on the screen. The PD signal was proportional to the
rms density of the magnetic flux in the region deter-
mined by the area of the laser-beam cross section. This
area was approximately 1 mm in size without addi-
tional focusing for possible sample dimensions of 10 ×
10 mm.

The magnetic field H, which was normal to the sam-
ple surface, was formed by Helmholtz coils 22 ensuring
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Fig. 1. Schematic diagram of the setup: (1) OSV-1 white-
light source; (2) beam-splitting cube; (3) polarizer; (4) semi-
transparent mirror; (5) analyzer; (6) entrance window;
(7) nitrogen cryostat; (8) magneto-optical film; (9) lens;
(10) video camera; (11) video tape recorder; (12) TV set;
(13) He–Ne laser; (14) lens; (15) beam-splitting cube;
(16) red-light filter; (17) photodetector; (18) RV7-32 selec-
tive microvoltmeter; (19) GZ-33 generator; (20) electric
motor; (21) disk with four holes; (22) Helmholtz coils; and
(23) TEK-5020 power supply or GZ-109 sound generator.
a field inhomogeneity over the sample of no higher than
0.1%. The coils were energized by a TEK-5020 power
supply unit 23 and provided magnetic fields of up to
300 Oe. An exciting ac field with a frequency f = 20–
1000 Hz was produced by connecting the coils to a
GZ-109 sound generator.

EXPERIMENT

Similar to other works, we observed the dynamics
of magnetic-flux penetration into the sample. We found
that the magnetic flux penetrates into it primarily at the
sample edges and at defect locations. When the mag-
netic field is removed, the flux is captured most
strongly in defect-free regions, whereas defective
regions capture almost no magnetic flux.

An Y1Ba2Cu3O7 film (0.3 µm thick, deposited by
evaporation onto a 0.5-µm-thick strontium titanate sub-
strate using the pulsed laser technique) was studied
experimentally. The sample’s dimensions were 10 ×
5 mm. Figure 2 shows the magneto-optical pattern of
the sample corresponding the state of a superconductor
with a captured magnetic flux. Light regions corre-
spond to the areas where the magneto-optical film is
magnetized. The three most typical regions were inves-
tigated. The strongest capture was observed in regions
1 and 2, and region 3 was defective.

As an example, we present the results of studying
magnetic-flux shielding by an HTS sample. The sample
was cooled to T = 78 K at H = 0. Experiments were per-
formed at an ac magnetic field H = 2.4 Oe at f = 40 Hz,
and the laser beam was not modulated. A signal from
the PD was measured by the selective microvoltmeter
at the second harmonic.

Figure 3 presents the data obtained for regions 1–3
and the integral characteristic, which were obtained by
illuminating the entire sample with the white-light
beam with subsequent focusing of the MOF-reflected
radiation at the PD. The integral characteristic, which is
usually measured, shows that the width of the transition
from the state in which the sample fully shields the
magnetic field to the state in which the magnetic flux
fully penetrates into the sample is ≈4 K (between the
levels of 0.1 and 0.9). However, the transition is much
narrower for each local region. Thus, the wide transi-
tion in the integral characteristic is determined by the
fact that the magnetic flux penetrates into different HTS
regions at different temperatures and regions with wide
transitions also being present.

Let us analyze the dependences for regions 1–3. Fig-
ure 3 shows that the shielding properties of regions 1
and 2 are almost identical. The flux begins penetrating
at T = 88 K, and the transition width is ≈1 K. In the
defective region, the magnetic flux penetrates into the
sample at 87 K (i.e., one degree lower compared to
regions 1 and 2), and the transition is wider (≈2 K). This
indicates that the shielding properties of the defective
region are inferior to those of regions 1 and 2. Note that,
TECHNICAL PHYSICS      Vol. 45      No. 9      2000
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1

2 3

Fig. 2. Magneto-optical pattern of the sample under study corresponding to the state of a superconductor with a captured magnetic
flux. The sample’s dimensions are 10 × 5 mm. 
in measurements in region 3, the signal at first rises and,
approximately at 88.5 K, begins falling. This occurs
due to the fact that, at the moment when region 3 of the
HTS stops shielding the magnetic field, there are still
some regions in the sample that continue shielding.
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Fig. 3. Amplitude A of the photodetector signal vs. temper-
ature. The signal amplitude is proportional to the r.m.s.
value of the magnetic flux density in the region irradiated by
the laser beam: (1) defect region, (2) first region, (3) second
region, and (4) integral characteristic.
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Therefore, the magnetic flux concentrates in the defec-
tive region. At T = 89 K, “stronger” regions stop shield-
ing the field and the magnetic flux spreads over the
entire sample. Since regions 1 and 2 have the highest
shielding characteristics and are the last to let the mag-
netic flux penetrate into them, no drops in the curves
are observed. A similar behavior of superconductors
was observed in [4].
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Abstract—Optical bistability based on the temperature dependence of the absorption coefficient in a semicon-
ductor is considered. It is theoretically demonstrated that the upper bound of the thermostat temperatures at
which the bistability is possible can be raised by a factor of three as against its conventional value reported in
the literature. This can be achieved in the case of the Auger recombination of free electrons in semiconductors.
© 2000 MAIK “Nauka/Interperiodica”.
Optical bistability received much attention in the lit-
erature, being regarded as a potential basis for creating
optical switches (processors) [1–4]. In recent years, we
have seen the revival of interest in the phenomenon
owing to efforts in the field of “optical” winchesters
and the recognition of the fact that the speed of elec-
tronic processors is likely to reach its physical limit in
the coming years. Accordingly, it seems worthwhile to
seek new ways of implementing optical bistability and
to analyze the potential of well-known strategies. One
of the strategies rests on absorptive optical bistability
(AOB), i.e., the temperature dependence of the absorp-
tion coefficient. Its main disadvantage is higher power
consumption per state transition compared with other
types of optical bistability [1, 4]. Another demerit is
that AOB requires heat removal, depending on thermo-
stat temperature and other factors. On the other hand, if
optical absorption and subsequent heat release are neg-
ligible, the switching time may be as short as 10–9 s [1].
Furthermore, it is possible to organize parallel opera-
tion of many thousands of optical processors. Such a
system could compete with existing electronic comput-
ers if the power consumption per state transition were
sufficiently low. Indeed, a shorter switching time can be
achieved in a semiconductor with optical bistability
based on the dependence of the absorption coefficient
on free electron concentration, compared with bistability
based on the temperature shift of the fundamental-
absorption edge. However, in the former approach, the
problem of heat removal may arise if indirect transitions
are involved. In our opinion, the difficulty would be even
more serious if exciton transitions were used. Finally, the
mathematical model employed in this study allows one
to extend the results to the effect of short laser pulses that
change the free-electron concentration and vibrational
1063-7842/00/4509- $20.00 © 21226
temperature of a semiconductor. Thus, the results
reported below may find fairly wide application.

This study demonstrates that the range of the ther-
mostat temperatures at which AOB is possible can be
expanded threefold, compared with the well-known
values [4]. This considerably alleviates heat removal
and reduces power consumption per state transition,
since the temperature of the bistable element is allowed
to increase appreciably. This is achieved due to nonlin-
ear recombination of free electrons, which is common
in practice [5, 6]. The relaxation time of free electrons
is assumed to be a linear or quadratic function of the
concentration. The results for nonlinear relaxation rate
are compared with those for constant relaxation rate,
the latter corresponding to a weakly excited semicon-
ductor [5, 6].

Consider the interaction of laser radiation with a
thin layer of a semiconductor, assuming that the pro-
cess goes uniformly across the width. We examine only
the near-axis region of the beam, transverse diffusion
and heat conduction being approximated by a heat-sink
term. This approximation is frequently used [1–4] for
qualitatively analyzing such systems. Also, we take into
account the optical generation of free electrons from,
e.g., an impurity level. It is assumed that the depletion
of the level is negligible and that the transition is satu-
rated due to the dynamic Burstein–Moss effect [5, 6].
The free carriers are generated under the action of laser
radiation whose wavelength is close to the fundamental
absorption edge. Conduction band electrons recombine
through indirect transitions, which heats up the semi-
conductor. It is precisely such semiconductors that are
examined in experiments on temperature-dependent
AOB.
000 MAIK “Nauka/Interperiodica”
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The above assumptions lead to a lumped-parameter
model described by the dimensionless equations

(1)

subject to the initial conditions

(2)

Here, τpm is the free-carrier relaxation time, and T is the
difference between the actual temperature of the semi-
conductor and its unperturbed value T0. The tempera-
ture difference is normalized to the energy gap
expressed in units of temperature. The parameter z con-
trols the dependence of the recombination time on the
free-carrier concentration: if z = 1, the dependence is
flat, and if z = 3, it corresponds to Auger recombination.

dn
dt
------ δ n T,( )I

nz

τ pm

--------
n
τD

-----,––=

dT
dt
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Fig. 1. AOB region I in the (T0, ζz) plane, where ζz =

z(τD/q)(q/τpm)1/z. Panel (a) refers to the absence of transi-

tion saturation. The solid curves depict (T0) for z = 2 and

z = 3. The broken curve is the boundary of the AOB region
in the case of “linear” recombination. Panel (b) refers to the
presence of the saturation with z = 3. The curves depict

(T0) for different values of ξz, indicated by the numerals.

ζz*

ξz*
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The heat-sink term in the second equation of system (1)
refers to heat removal from the laser-beam axis. The
variable t is time normalized to the characteristic time
of the heat removal. The variable n is the free-carrier
concentration normalized to its maximum attainable
value under the stated conditions (at t = 0). The quantity q
indicates what fraction of absorbed energy is converted
into heat during electron recombination. The parameter
τD refers to the diffusive withdrawal of free carriers
from the near-axis irradiated region. The function I(t)
describes the waveform of the laser pulse.

Depending on irradiation conditions, the absorption
coefficient may have one of the following forms [5, 6]:

The second form allows for the dynamic saturation
of the transition.

δ n T,( )
e

1
T T0–
---------------–

1 n–( )e

1
T T0+
---------------–

.
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Fig. 2. Bistable T–I characteristics for the (a) absence and
(b) presence of the dynamic saturation of the transition. The
parameter values, corresponding to the cross in Fig. 1, are
τpm = 0.3, T0 = 0.4, β = 1, τD = 1, and q = 10. The solid
curves refer to stationary states, whereas the broken curves
depict the response to the trapezoidal pulse.
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Fig. 3. Effect of a trapezoidal laser pulse: (a) the evolution of the temperature and (b) the intensity waveform of the pulse. The param-
eter values are the same as in Fig. 2. 
With absorption coefficient (3a), AOB arises if

(4)

where (T0) is the limit value of ζz(T0) for which the
inequality

(5)

has a solution.

Inequality (5) indicates that a nonzero value of
(T0) exists if the thermostat temperature T0 meets

the constraint

(6)

Consequently, with a constant relaxation time (z =
1), AOB exists if T0 < 0.25 [4]. Note that the T–I char-
acteristic is bistable for any z ≥ 1, τpm, τD, and q if the
ambient temperature T0 is below 0.25, which is a well-
known fact. More importantly, AOB may occur also for
0.25 ≤ T0 < z/4 (0.25 ≤ T0 < 0.75 at z = 3) provided that
the interaction parameters satisfy conditions (4), (5),
and

(7)

The dramatic expansion of the AOB region is illus-
trated by Fig. 1a. It shows the dependences (T0) at
z = 2 and z = 3. Note that, in the presence of dynamic
transition saturation [with absorption coefficient (3b)],
the energy fraction needed q for AOB to occur is larger.
For example, at a fixed value of the parameter ζz =
(τpm/q)1/z, AOB exists if condition (4) is met, but (T0)

ζ z z τD/q( ) q/τ pm( )1/z ζ z* T0( ),<=
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ζ zT
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1 T

T T0+( )2
----------------------– 

  1 z
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ζ z*
now denotes the limit value of ζz(T0) for which the ine-
quality

(8)

has a solution. In (8), the parameter ξz refers to the den-
sity of the optical energy that is released during free-
electron relaxation.

To clarify the picture, Fig. 1b shows the boundaries
of the AOB region at z = 3 and different values of ξz.

Figure 2 substantiates the possibility of switching
by presenting T–I characteristics in the (a) absence and
(b) presence of dynamic saturation of the transition for
the parameter values corresponding to the cross in
Fig. 1. Both of the curves are bistable, but the presence
of the saturation is characterized by a smaller differ-
ence between the switching temperatures and higher
switching intensities.

Switching is also evidenced by Fig. 3a. It depicts the
evolution of the temperature T when a trapezoidal pulse
(Fig. 3b) is incident on the semiconductor. For conve-
nience, Fig. 2b includes the corresponding T–I depen-
dence (broken curves). The graphs testify to the exist-
ence of AOB and switching waves provided that condi-
tions (5) and (6) are satisfied.

To sum up, the nonlinear dependence of recombina-
tion on concentration makes it possible to dramatically
expand the range of the ambient temperatures at which
AOB occurs. This may lead to designing more efficient
devices. Also, one can reduce power consumption per
state transition, since less power is required to maintain
a given temperature of the thermostat.
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