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Abstract—This review presents the theoretical and experimental foundations of very low-energy electron dif-
fraction (VLEED) spectroscopy, which is the most direct method of studying the band structure E(k) of unoc-
cupied higher-lying electronic states. The experimental results presented here indicate that, contrary to the gen-
erally accepted point of view, these states may differ significantly from free-electron dispersion and may expe-
rience considerable many-electron effects. It is shown that the higher-lying states observed in the experiment
can be used directly in photoelectron spectroscopy, which is the basic method for studying valence states. This
makes it possible to solve the basic problem of resolving the band structure in the three-dimensional quasi-wave
vector. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The electronic band structure E(k), viz., the depen-
dence of energy on the wave vector, is a fundamental
characteristic of solids, which determines, for example,
optical properties and transport phenomena. Not only
the energies of electron states, but also their position in
the k space, play an important role. For example, wide
application of GaAs in modern optoelectronics [1] is
due to the fact that it is a direct-band semiconductor;
i.e., the top of its valence band and the bottom of the
conduction band coincide in k.

Photoemission (PE) spectroscopy with angular res-
olution is the basic experimental method of studying
E(k) of the valence band with resolution in k (see, for
example, [2–5]). In this method, the sample is exposed
to monochromatic light in the UV range. Figure 1
shows that light induces electronic transitions from
occupied valence states to unoccupied higher-lying
states (HSs) (above the vacuum level Evac), followed by
the emission of photoelectrons to vacuum. The measur-
able quantity is the photocurrent Iph for a certain emis-
sion angle and the kinetic energy of the photoelectrons.
The E(k) dependence for the conduction band is stud-
ied by using the inverse PE [6], which is a time-
reversed analog of PE (the sample is bombarded by
electrons, and the intensity of radiation is measured).
The subsequent analysis will be carried out for PE with
an obvious generalization for inverse PE.

The physical foundations for determining E(k) by
using PE are illustrated in Fig. 1. The energy Ei of the
initial state in the valence band is determined directly
1063-7834/00/4211- $20.00 © 1973
as the energy E f of the final higher-lying state for the
PE spectrum peak minus the energy hν of the quantum:

The determination of the corresponding ki of the initial
state is based on the fact that photoinduced transitions
in the crystal are direct, i.e., are made with the conser-
vation of the three-dimensional k in the reduced Bril-
louin zone (BZ):

ki = k f.

When an electron is emitted to vacuum, the k|| com-
ponent of k, which is parallel to the surface, is con-
served due to the two-dimensional translational sym-
metry of the surface. This component is determined
directly in the experiment as the parallel component K||
of the wave vector in vacuum (accurate to the vector g
of the surface reciprocal lattice):

k|| = K|| + g.

However, the perpendicular component k⊥  is distorted
as the electron escapes to vacuum. In order to find this
component, we must return to the dispersion E(k⊥ ) for
HS in the bulk of the crystal, which is usually simulated
by using the empirical free-electron (FE) approxima-
tion.

In PE experiments, the dependence E(k) in the
valence band can be determined by plotting the energy
Ei of spectral peaks as a function of k. In this case, the
value of k is varied either in k|| (by changing the emis-
sion angle) or in k⊥  (by changing hν). Modern sources
of radiation used are usually synchrotrons ensuring a

Ei E f hν .–=
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wide range of hν, high intensity, and a high degree of
polarization of radiation.

The main problem in PE spectroscopy is the control
of k⊥  (and hence the three-dimensional k). Its solution
requires the knowledge of E(k⊥ ) for HS. The applicabil-
ity of the FE approximation can be limited in this case
by overly strong scattering from the crystal potential.
Attempts to solve this problem in PE spectroscopy
(e.g., by using the triangulation method) are impracti-
cal and confined to individual points in the k space. It
has been proven recently that very low-energy electron
diffraction (VLEED) is an optimal method for indepen-
dent analysis of E(k) for HS with a resolution in k. The
application of VLEED together with PE spectroscopy
is based on the fact that electron diffraction states are
time-inverted final states of PE.

The VLEED spectroscopy involves the measure-
ment of the coefficient of elastic electron reflection
from the crystal surface in the primary electron energy
range up to ~40 eV. This energy range is characterized
by the following two features. (1) The inelastic electron
absorption characterized by the absorption potential Vi

is relatively weak. The VLEED spectra are formed by
elastic scattering, and, moreover, since the mean free
path is increased, they reflect E(k) of HS in the bulk of
the crystal. However, the sensitivity to the geometrical
structure of the surface is reduced as compared to the
conventional low-energy electron diffraction (LEED),
which employs higher energies [7, 8]. (2) This energy
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Fig. 1. Principles of PE spectroscopy: valence electrons
undergo photoinduced transitions to HSs in the bulk of the
crystal (left) and are emitted from these states into vacuum,
forming the PE spectrum (right). The photoinduced transi-
tions are made so that the three-dimensional wave vector k
is conserved, but, when the electrons are emitted into vac-
uum, only the component parallel to the surface is con-
served (inset).
P

range is suitable for PE spectroscopy since it corre-
sponds to typical final-state energies employed in the
regime of measuring E(k) with resolution in k.

This review is devoted to the VLEED spectroscopy
as a method of investigating E(k) for higher-lying states
and to its applications, together with PE spectroscopy,
for studying E(k) in the valence band with a resolution
in three-dimensional k.

2. PRINCIPLES OF VLEED SPECTROSCOPY

2.1. Relation between VLEED and E(k)

Elastic reflection of electrons from the crystal sur-
face can be described by matching (on the crystal sur-
face) the wave function Φvac in vacuum and the wave
function Φc excited in the crystal [7–11]. The former is
the sum of plane waves

corresponding to the primary beam and all diffracted
beams characterized by the surface reciprocal lattice
vectors g (including the specularly reflected beam with
g = 0). The latter wave function is the sum of Bloch
waves

with quasi-wave vectors k; their k|| being determined by
the conservation of the wave vector component K|| of
the primary beam, which is parallel to the surface (k|| =
K|| + g), while k⊥  is determined by the band structure
E(k⊥ ) along BZ directions specified by this condition
and perpendicular to the surface. Consequently, elastic
scattering is formed by the set of φk corresponding to
E(k⊥ ) along the BZ directions k|| = K|| + g. At the critical
points (CPs) of E(k⊥ ), such as the edge of the local band
gap or the inflection point of the band dispersion curve,
the composition of the φk changes abruptly. The elastic
reflection coefficient R integrated over all diffraction
beams also changes sharply (henceforth, we will use
the elastic transmission coefficient T = 1 – R instead of
R). This is manifested as extrema of the derivative
dT/dE of its energy dependence, viz., the VLEED spec-
trum. Consequently, as shown in Figs. 2a and 2b, the
extrema of the VLEED spectra reveal the energy posi-
tion of CPs in E(k⊥ ) along the BZ directions k|| = K|| +
g perpendicular to the surface. This relationship forms
the basis of an experimental investigation of HSs using
VLEED [12, 13].

This somewhat simplified pattern should be supple-
mented with a number of important amendments.

Contributions of individual Bloch waves. The
effect of individual φk constituting the overall wave
function in the crystal on the formation of the VLEED
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Fig. 2. Relationship between VLEED and band structure (model calculations): (a) the derivative dT/dE of the elastic transmission
coefficient and (b, c) the corresponding E(k⊥ ) with and without the absorption Vi, respectively. The extrema of dT/dE reveal the crit-
ical points in the bands whose Bloch waves are effectively coupled with the primary plane wave and take up significant absorbed

currents  (shown by greyscale).Ik
abs
spectrum is determined primarily by (1) the effective-
ness of their matching with the primary plane wave,
i.e., the excitation amplitude Tk, and (2) the effective-
ness of their propagation to the bulk of the crystal, i.e.,
the group velocity vg⊥  normal to the surface. These
two factors are combined in partially absorbed currents
[14, 15]

which comprise the total current Iabs in the crystal. Con-
sequently, the main contribution to the VLEED spec-

trum will come from φk associated with significant .
The bands in E(k⊥ ) corresponding to them are referred
to as coupling bands. It can be seen from Figs. 2a and
2b that it is only the CPs of coupling bands that are
manifested as dT/dE extrema, while the remaining CPs
are not seen. (The same coupling bands also dominate
in PE; see Subsection 5.1). The coupling bands can be
identified qualitatively by using the Fourier expansion
of φk in the vectors of the three-dimensional reciprocal

lattice; the Fourier component φk = 
similar to the primary plane wave must be large
[11−13] (see Subsection 4.2.2 for more details).

Effect of inelastic scattering. The inelastic scatter-
ing characterized by absorption Vi has not been taken
into account thus far. In fact, it efficiently “washes out”
electrons from the elastic scattering channel. This leads
to the exponential attenuation of all φk into the bulk of
the crystal (but attenuation along the surface is absent
in view of the translational invariance of the VLEED
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process in this direction). Such a behavior of φk can be
described by a complex-valued k⊥  and a real-valued k||.
As compared to E(k⊥ ) with Vi = 0 (see Fig. 2b), the band
dispersions E(Rek⊥ ) (Fig. 2c) are smoothed and close,
without local band gaps, coming closer to being FE dis-
persion. On account of all these factors, we must gen-
eralize the concepts of CPs and partial currents [15].
We now define critical points as points of extremal cur-
vature of band dispersion, which can be conveniently
identified as extrema of d2Rek⊥ /dE2. In this case, the

currents  can no longer be treated as currents in the
conventional sense (associated with a propagating
wave) since all φk attenuate. However, currents are gen-
erated due to electron absorption from coherent φk with
subsequent cascade transitions to the Fermi level,
where electrons can carry current to the bulk of the
crystal through the conventional mechanism since Vi =

0. In this case, the currents  become proportional to
electron densities integrated over the entire crystal vol-
ume:

(the total current Iabs also includes the interference

terms  vanishing for Vi  0).

These two generalizations allow us to extend the above
relationship between VLEED and E(k) to the real situ-
ation taking inelastic scattering into consideration. It
should be noted that, under the influence of Vi, the CPs
are slightly shifted in energy and k relative to their posi-
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tion for Vi = 0; however, such displacements are small
for moderate values of Vi. Consequently, the structure
of the VLEED spectrum can be related to CPs in E(k⊥ )
for Vi = 0. This simplified approach is known as the Vi

= 0 approximation, which is usually highly applicable
in the energy range of VLEED.

Influence of the surface. The surface potential bar-
rier mainly affects the form of the VLEED spectrum,
while the change in the energy corresponding to its
dominating features associated with the bulk E(k) is
relatively small [15, 16]. The spectra may acquire a
weaker structure associated with surface resonances
[17]. This structure can be easily distinguished due to
its small energy broadening (the electron density and,
accordingly, Vi decrease near the surface) and its posi-
tion immediately under diffraction thresholds.

2.2. Methods of Determining E(k)

The VLEED data analysis is based on determination
of CPs in E(k⊥ ). The energy corresponding to the CPs
can be determined directly as the energy of the dT/dE
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Fig. 3. Identification of the VLEED spectrum with specific
CPs using model calculations, the H–Si (111) surface (1 × 1):

(a) model E(k) (Vi = 0) along ΓL,  are shown by grey-
scale, and (b) the corresponding normal-incidence experi-
mental VLEED spectrum. The obvious correspondence of
the CPs of coupling bands to dT/dE extrema makes it possi-
ble to determine the experimental position of these CPs.
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extrema. However, it is difficult to identify these
extrema with specific CPs, since the E(k) dependence
in the HS range is normally characterized by a large
number of bands and, hence, by a large number of CPs.
This difficulty can be overcome by identifying a few
(usually, one or two) bands in this multitude which are
coupling bands and actually form the VLEED spectrum
[12, 13]. In actual practice, such an analysis involves

model calculations of E(k) and  for individual
bands and often makes use of simplified methods (see
Subsection 4.2). The application of such calculations
for tracing the VLEED spectrum to individual CPs is
shown in Fig. 3 for the 1 × 1 surface of Si(111) (unre-
constructed surface prepared by saturation of dangling
bonds of Si surface atoms by H atoms, leading to an
almost undistorted bulk E(k)) [18]. The VLEED spec-
trum for the normal incidence of the primary beam cor-
responds to E(k⊥ ) along the ΓL direction of the BZ. It
can be seen from the figure that all the extrema of the
dT/dE spectrum correspond to the CPs of the coupling
bands. For such a large number of bands, the tracing of
the experimental spectrum to specific CPs is hardly
possible without identifying the coupling bands.

It must be remarked that, like any other spectros-
copy, the VLEED spectroscopy has its own intrinsic
accuracy: the dT/dE extrema may be displaced insignif-
icantly (usually by 0.1–0.3 eV) as a result of monotonic
variations in T(E), the influence of the surface barrier,
and, above all, the overlapping of the effects of adjacent
CPs. The magnitude of this displacement is quite small
in comparison with the bandwidth and is smaller than
the analogous displacements in the PE spectroscopy.
The compensation of such displacements requires a
correction of the experimental energies of the extrema
by an amount equal to the displacements obtained in
model calculations [12, 18].

The continuous dispersion dependences in E(k) can
be obtained from the experimental CPs by using the
following methods.

2.2.1. Determination of E(k) as E(k⊥ ) (band fit-
ting method). This method [15] is used for determin-
ing E(k) as a function of k⊥  for a fixed k||. It is based on
the model calculation of E(k⊥ ) (e.g., by the empirical
pseudopotential method) and the corresponding
VLEED spectrum. Through optimization of the crystal
potential parameters, the extremal energies of the
model dT/dE are fitted to the experimental values by
minimizing the standard deviation of energies of N

extrema, . The obtained model

dependence E(k⊥ ) optimally conforms to the experi-
mental data: its CPs are in their experimental positions
and connected by optimally smooth dispersion
branches (any peculiarity of dispersion would be man-
ifested in the spectrum). It should be noted that such a
procedure does not ensure the exact position of the
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bands with  ~ 0 which are not manifested in the
VLEED spectrum. However, this is not important in sub-
sequent applications of PE spectroscopy, as such bands
are not manifested therein either (see Subsection 5.1).

The band fitting method can be illustrated as applied
to determining E(k) for copper along the ΓX direction
from the VLEED spectrum for the normal incidence on
the (001) surface [15]. Model calculations were made
using actual values for Vi [19] with the help of the
empirical pseudopotential method with subsequent
determining of dT/dE by the matching method (see
Subsection 4.2.1). Fitting was carried out using global
optimization with the variation of principal Fourier
components of the pseudopotential. The obtained
experimental E(k) is presented in Fig. 4. It will be
shown below that it differs radically from the FE dis-
persion.

2.2.2. Determination of E(k) as E(k||) (direct band
mapping method). This method [13, 20, 21] is used for
constructing E(k) as a function of k|| for a fixed k⊥ . In
contrast to the previous method based on the modeling
of E(k), this method is direct. The idea of the method is
illustrated in Fig. 5a. The VLEED spectra are measured
upon variation of the angle of incidence of the primary
beam. Then, the energies corresponding to CPs lying
along a BZ symmetry direction parallel to the surface
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Fig. 4. Determination of E(k) as E(k⊥ ) (band fitting method)
from the VLEED spectrum for normal incidence on the
Cu (100) surface. (a) E(k) obtained along the ΓX direction
(for Vi). The bands ∆1 of the allowed symmetry are shown.
(b) Experimental spectrum (bold curves) and the theoretical
spectrum with the energies of extrema fitted to the experi-
ment. The correspondence of CPs to the dT/dE extrema is
indicated. The doublet of coupling bands radically distin-
guishes the experimental E(k) from the FE dispersion
(dashed curve).
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are plotted as functions of k||. Such a construction
directly maps E(k) along this direction. In this case,
complete localization in the k space is attained: k|| is
fixed by the K|| component of the primary beam,
whereas k⊥  is specified by the position on the symmetry
direction (in fact, the influence of Vi leads to a certain

k⊥
k|| = K||
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Fig. 5. Determination of E(k) as E(k||) from VLEED angular
dependences (direct band mapping method). (a) The idea of
the method and (b) its application for the Cu (110) surface;
experimental K|| dispersion of the dT/dE. Dots correspond
to dT/dE extrema (projections of the CPs of coupling bands
of E(k⊥ ) along the directions k|| = K|| + g, and the shaded
segments are the dT/dE maximum–minimum intervals
(internal parts of these bands). Extrema are shown by the
greyscale representing their amplitude and sharpness as

. (c) Experimental E(k) along the ΓX direc-

tion (dots). This was obtained from (b) by identification of
the CPs lying on this symmetry direction. The theoretical
E(k) calculated in the DFT framework is also shown. The
shifts of experimental points reflect many-electron effects of
the excited VLEED state, which depend on the spatial local-
ization of φk (see Subsection 3.2).
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displacement of CPs (see Fig. 2c), but this effect is
insignificant).

The direct band mapping method can be illustrated
as applied to the determination of E(k) for copper along
the ΓX direction [21]. This dependence was constructed
from the data obtained on the (110) surface, and the

angle of incidence was varied in the  azimuth on the
surface BZ.

The K|| dispersion of the VLEED spectra presented
in Fig. 5b is the prototype of E(k). Here, the dT/dE
extrema are shown by dots and the intervals between
the maxima and the next minima on the energy scale
are shaded. It should be noted that such a representation
has a direct physical meaning. Indeed, the dots are the
projections of CPs of coupling bands lying along the
BZ directions defined by the condition k|| = K|| + g,
while the shading corresponds to the interior of these
bands. In this case, the K|| dispersion of the VLEED
spectra actually maps (with intrinsic accuracy) the pro-
jection of E(k) of the coupling bands onto the surface.

The E(k) mapping with resolution in three-dimen-
sional k is now reduced to a separation from the projec-
tion of CPs lying on a symmetry direction parallel to
the surface (ΓX in our case). Such CPs were identified

by using simple model calculations of E(k) and 
(see Subsection 4.2), which allowed us to analyze the
entire body of experimental data rapidly and, in addi-
tion, to take into account the insignificant displacement
of the CPs due to the effect of Vi. The experimental
dependence E(k) obtained in this way is presented in
Fig. 5c. It is shifted relative to the theoretical curve cal-
culated using the formalism of the density functional
theory, which reflects many-electron effects in the
excited state (see Subsection 3.2 for details).

The experimental dependence E(k) illustrates two
interesting aspects of the VLEED spectroscopy. First,
the bands manifested in this E(k) differ from those
obtained along the same direction ΓX from the spectra
for the normal incidence on the (100) surface (see
Fig. 4). This is due to the different experimental geom-
etries and, hence, to the different coupling properties of
the bands. Second, the obtained E(k) preserves the
band gaps (at points Γ and X), although one should
expect that they would vanish due to the action of Vi.
This is a consequence of the fact that the given E(k)
dependence was measured as a function of k||, which
remains real-valued, in contrast to k⊥ , in view of the
translational invariance of the VLEED process in a
direction parallel to the surface.

2.3. Determination of Absorption Potential Vi

In addition to the determination of E(k), VLEED
spectroscopy provides information on Vi. This is impor-
tant for subsequent applications in PE since Vi in fact
determines the k⊥  resolution of PE experiments (see
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Subsection 5.2). The effect of Vi is manifested in the
VLEED spectra as a broadening of spectral structures
and a suppression of their amplitudes. The values of Vi

can be determined directly from this broadening, but
their simulation on the basis of calculations with the
variation of Vi [18, 22] makes it possible to compensate
the effect of intraband changes in T(E) and gives a
higher accuracy. A typical energy dependence of Vi is a
smoothly increasing function corresponding to elec-
tron–electron scattering combined with a pronounced
threshold at the excitation energy "ωp of a bulk plas-
mon (if the latter is well defined as a quasiparticle).

2.4. Comparison with Other Methods

The traditional methods used for studying HSs are
x-ray absorption spectroscopy (XAS) and bremsstrahl-
ung isochromat spectroscopy (BIS) [6, 23]. However,
these methods give only the characteristic integrated
over the k space (like the density of states) and draw on
the matrix element of photoinduced transitions, since
they inherently involve two electron states. Inverse PE,
which is a version of BIS in the UV range, ensures, in
principle, a resolution in k||, but determination of k⊥
again requires the knowledge of E(k⊥ ) for one of the
two states. Another traditional method is secondary
electron emission spectroscopy. In this case, however,
the information on E(k) is strongly distorted due to the
combined effect of the one-dimensional density of
states (which increases at band edges), the transmission
coefficient of the surface for secondary electrons emit-
ted to vacuum (which, on the contrary, decreases at
band edges), and the complex dynamics of many-elec-
tron relaxation.

The advantages of VLEED spectroscopy over tradi-
tional methods are obvious (resolution in the three-
dimensional wave vector k and independent access to
the one electron state). A practical advantage is its
exceptionally simple experimental technique (see Sub-
section 4.1). However, the most important feature is its
direct relationship with the PE spectroscopy, which is
the main tool for studying the valence band.

3. PROPERTIES OF THE HIGHER LYING STATES

The application of VLEED spectroscopy to a wide
class of materials has made it possible to study in detail
the peculiarities of their HSs, such as deviation from
the FE dispersion and many-electron effects in the
excited state.

3.1. Deviations from Free-Electron States

Under the action of Vi, the dispersion of HSs is
smoothed and comes closer to being FE dispersion.
However, contrary to the generally accepted point of
view, the difference can remain significant in the case
of strong scattering from the crystal potential. Usually,
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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by FE dispersion we mean an optimal approximation of
the actual E(k) using the relation

where the effective mass m* and the inner potential V000
are empirical parameters, which to a certain extent take
into account the influence of the crystal potential and
many-electron effects. This dispersion has only one
coupling band, the k + G of which corresponds to the
primary plane wave.

Metals. The deviations from the FE dispersion for
metals are usually insignificant, because the crystal
potential is only slightly modulated in view of a strong
screening of ionic potential by valence electrons. How-
ever, deviations can be significant in some regions of
the k space. For example, the experimental E(k) depen-
dence for copper in the ΓX direction (see Fig. 4) is char-
acterized by a multiband composition: between 15 and
25 eV, it contains two coupling bands with almost iden-

tical values of  [15]. In the case of photoemission,
such a feature of HSs forms spectral multiplet peaks
reflecting different values of k⊥  for various coupling
bands (see Subsection 5.3). Moreover, the dispersion of
each band differs significantly from a parabolic depen-
dence even though it is smoothed due to the action of
Vi. It should be noted that the multiband composition of
E(k) is formed by the lower, and, hence, most signifi-
cant, Fourier components of the potential (V111 in the
present case). For high energies, this type of composi-
tion becomes the main manifestation of the difference
between HS and FE dispersion. For other symmetry
directions of the BZ, the deviation of E(k) for copper
from the FE dispersion is less significant [15, 21].

For the off-symmetry directions of the BZ, the devi-
ations are usually stronger in view of the removal of the
band degeneracy. For example, the deviations in the
experimental K|| dispersion of the VLEED spectra on
the Cu(110) surface (see Fig. 5b) are manifested as
nonparabolicity and discontinuities of dispersions in
some regions of k||.

Nonmetals. In the case of nonmetals, the screening
of the ionic potential is normally weaker and the devia-
tions from the FE dispersion increase. For example,
E(k) of silicon along the ΓL direction [18] exhibits a
clearly manifested multiband composition in a much
wider energy range. Such a composition of HS is also
inherent in other diamond-like semiconductors (Ge,
GaAs, etc.).

Layered materials. The most significant deviations
from the FE dispersion are observed for layered mate-
rials like graphite and chalcogenides of transition met-
als [22, 24, 25], in which the weak interlayer coupling
leads to a considerable potential modulation in the
direction perpendicular to the layers. By way of an
example, Fig. 6 illustrates the determination of E(k) for
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VSe2 along the ΓA direction, which corresponds to the
VLEED spectrum for normal incidence on the (0001)
surface. We employed the band fitting method with cer-
tain modifications dictated by the complexity of the
E(k) calculations for VSe2 associated with a large unit
cell and the presence of d bands. First, the fitting itself
was carried out by using the Vi = 0 approximation. We
used a model calculation of E(k) in which the values of

 were determined within the CFC–vg approxima-
tion (see Subsection 4.2.2). The critical points of cou-
pling bands for the model E(k) (see Fig. 6a) were iden-
tified with the extrema of the experimental spectrum
(see Fig. 6b), which determined the energies of these
CPs. The E(k) dispersions between these points were
then determined by interpolation between the experi-
mental CPs. Second, the energy dependence of Vi was
determined from the broadening of the extrema (see the
inset to Fig. 6b). The pronounced threshold is associ-
ated with the excitation of a volume plasmon with
"ωp ~ 21.5 eV. Above the threshold, the values of Vi are
much larger than the separation between individual
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Fig. 6. Determination of HSs for VSe2 (a) Model E(k) (Vi =

0);  are shown by greyscale. (b) Experimental VLEED
spectrum whose extrema are identified with the CPs of the
coupling bands; the inset shows the experimental depen-
dence Vi(E). (c) Experimental E(k) (main coupling bands)
taking Vi into account. Imk⊥  is depicted by shading. This
E(k) represents the photoemission FS, and Imk⊥  shows
their k⊥  broadening. The experimental E(k) differs radically
from the FE dispersion.
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CPs, and the spectral structure is suppressed due to the
averaging of their effects. Third, we simulated the
effect of Vi by smoothing the main coupling bands
using a Lorentzian with a half-width Vi. The obtained
E(k) dependence is presented together with Imk⊥  ~
Vi/vg⊥  in Fig. 6c.

The experimental E(k) dependence differs signifi-
cantly from the FE dispersion: (1) it displays a clear
two-band character above 20 eV; (2) the FE approxima-
tion for each band is only local; the value of V000 varies
up to 10 eV in the indicated energy range and up to
20 eV within the BZ. These peculiarities in HSs
strongly affect the results of the PE experiment (see
Subsection 5.3.1).

3.2. Many-Electron Effects

The experimental E(k) dependence usually displays
significant and regular displacements relative to the
theoretical curve obtained using the standard density
functional theory (DFT) [26]. Indeed, the experiments
reflect an excited state of a system of interacting elec-
trons in a crystal, which is created by an external factor
(e.g., an outer electron in VLEED). However, the static
exchange–correlation potential VXC used in the DFT
reflects many-electron effects only in the ground state.
An excited state is usually described by a dynamic
exchange–correlation potential, which is a complex
nonlocal self-energy operator S [2, 6, 23, 27]:

The deviation of quasiparticle energy levels E(k) from
the DFT energy levels is determined by the matrix ele-
ment Re〈φk|S – VXC |φk〉 , where φk is the one-electron
wave function. It is referred to as the self-energy cor-
rection Re∆Σ (for the uppermost occupied state,

Sφk r( ) Σ r r' E, ,( )φk r( ) r'.d∫=

+ + +

+++

6

4

2

0

–2
0 1 2 3 4 5

Low density

High density

E/EF

R
e 

∆Σ
, e

V

Fig. 7. Re∆Σ for a homogeneous electron gas. In a real crys-
tal, the local electron density n(r) is modulated. In this case,
the plasmon minimum is suppressed (dashed curve) and the
effective density and, hence, Re∆Σ depend on the spatial
localization of φk (on the right).
PH
Re∆Σ = 0 by virtue of the DFT analog of the Koop-
mans theorem [28]). Energy level broadening is deter-
mined by Im S = Vi. It should be noted that a rigorous
description of dynamic many-electron effects does not
exist; only various poorly controlled approximations of
the GW type have been proposed [27, 29].

The value of Re∆Σ for HSs can differ considerably
from the monotonic energy shift, displaying a depen-
dence on k and the specific band. A comparison of the
experimental E(k) of copper with the DFT calculation
(see Fig. 5c) reveals a clear Re∆Σ anomaly in the upper
∆1 band on top of an average shift of about +1 eV. It
should be noted that these calculations correspond to a
practically “ideal” E(k), since they were carried out
using the most advanced method of full potential lin-
earized augmented plane waves (FLAPW) [30] and
were almost independent of the form of approximation
for the static VXC. Similar Re∆Σ anomalies were also
detected for Ni [20].

The Re∆Σ anomalies for HSs are largely associated
with the spatial localization effect [31, 32], i.e., the
dependence of Re∆Σ on the distribution of |φk |2 within
the unit cell. In order to elucidate the mechanism of this
effect, we consider the model of a homogeneous elec-
tron gas. The corresponding energy dependences of
Re∆Σ obtained from the calculations [33] are presented
in Fig. 7. A characteristic feature of these dependences
is an increase in Re∆Σ with the electron density n. A
generalization for a real crystal with a modulated elec-
tron density n(r) can be obtained by introducing the
effective φk-weighted electron density

,

where the integration is carried out over the unit cell. In
the region of ion cores, the value of n(r) increases due
to core electrons. In this case, the φk that have a larger
weight in this region (right diagram in Fig. 7) are char-
acterized by a larger 〈n〉k and, hence, a larger Re∆Σ as
compared to φk, with a considerable weight between
the cores since Re∆Σ depends on the spatial localization
of φk. This effect determines, for example, Re∆Σ anom-
alies for the E(k) of copper in Fig. 5c [31] (the mono-
tonic part of Re∆Σ is also affected by interband transi-
tions and plasmon excitation). It is interesting to note
that, in keeping with 〈n〉k, the effective Vi also increases,
which is manifested in a larger broadening of the corre-
sponding structures of the VLEED spectrum [34]. The
spatial localization effect is also manifested in the
valence band (see Subsection 5.3.2).

4. TECHNIQUE OF VLEED SPECTROSCOPY

4.1. Experimental Technique

In VLEED spectroscopy, the dependence R(E) of
the integral elastic reflection coefficient on the primary
beam energy is measured (for interpreting experimental
data, T(E) = 1 – R(E) is normally used). This experi-

n〈 〉 k φk* r( )n r( )φk r( ) rd∫=
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VERY LOW-ENERGY ELECTRON DIFFRACTION 1981
ment is characterized by remarkable simplicity. It can
be made on any experimental setup with a low-energy
electron gun. Figure 8 schematically shows the experi-
ment with a standard LEED module. Instead of taking
the R(E) measurements, it is sufficient to measure the
total reflection coefficient Rtot(E), including elastic and
inelastic reflection, since the inelastic component has a
smooth energy dependence. Such measurements are
most conveniently carried out by measuring the current
through the sample, which is complementary to the cur-
rent of reflected electrons if the gun output current is
constant [35, 36] (total current spectroscopy tech-
nique).

The optimal operation of the electron gun down to
zero energy is ensured by the retarding field mode. For
this purpose, the required accelerating voltages (usu-
ally, 100–300 V at the last electrode) relative to the
cathode are fed to all the electrodes of the gun (Fig. 8)
and the energy of the primary beam, with the grounded
sample, is controlled by the voltage on the cathode
(practical aspects, including electron optics adjust-
ments, are considered in [22, 36, 37]). The retarding
field created between the gun and the sample deceler-
ates the electrons to the required primary energy. Since
the energy of the electrons over the main part of their
path remains quite high, the effect of the stray magnetic
fields is minimized and the beam spot can be kept
<1.5 mm even when the standard LEED optics are
used. Moreover, such a regime ensures the energy inde-
pendence of the beam, which is of particularly impor-
tance in measuring the current targets.

Measurements of angular dependences in the retard-
ing field mode have some peculiarities [37]. The rota-
tion of the sample through an angle α gives rise to the
distortion of the field in the region near the sample,
where primary electrons incident at a certain angle to
equipotential lines are deflected from the rectilinear
path (Fig. 9a). This leads to a displacement of the beam
over the surface, which depends on the angle α and
energy of primary electrons, and, most importantly, to
a distortion of the vector K|| determining the BZ direc-
tion being probed. These effects can be taken into
account by explicit ray-tracing calculations, which
involve the computation of the electrostatic field U(x, y, z)
through the solution of the three-dimensional Laplace

equation  = 0 (xi = x, y, z) and the subsequent

integration of the equations of motion  = −

(details and a particular implementation are described
in [37]). Figure 9 shows typical results for such compu-
tations. The displacement of the beam (see Fig. 9b) is
quite large, but the compensating shift of the axis of
rotation by 1–3 mm below the sample surface makes it
possible to reduce it to less than ±1 mm. As compared
to the zero-field mode, K|| (Fig. 9c) increases and

∂2U

∂xi
2

---------
i∑

∂2xi

∂t2
--------- e

m
----∂U

∂xi

-------
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depends on energy less strongly. In this case, the depen-
dence K||(α, E) can be parametrized to within an accept-
able accuracy by the biquadratic function K||(α, E) =
A1α + A2α2 + A3αE + A4α2E. Application of this for-
mula allows one to avoid cumbersome ray-tracing com-
putations: K||(α, E) can be easily found by fitting the
coefficients A1–A4 to some experimental points for
which K|| is fixed by characteristic spectral structures
and diffraction patterns [37].

4.2. Theoretical Approaches

Model computations in which E(k) and  are
determined form an important component of data pro-
cessing in VLEED spectroscopy, since they are used to
identify the structures in the experimental spectra with
specific CPs in E(k). In such computations, one can use
either rigorous approaches within the semi-infinite
crystal model or approximations within the bulk crys-
tals model suitable for a qualitative description.

4.2.1. Model of a semi-infinite crystal. This model
takes into account the confinement of the crystal by the
surface. The wave function in such a crystal includes
both the bulk φk propagating to the bulk of the crystal
and characterized by real-valued k⊥  and the surface
wave functions attenuating away from the surface and
having complex-valued k⊥ . When Vi is taken into con-
sideration, the bulk φk also become attenuating, but
their damping is weaker than that for surface wave
functions. In the model calculations, one first calculates
E(k) depending on the complex k⊥  and then determines

the excitation amplitudes φk, and hence their , using
the matching technique (see Subsection 2.1). It should
be noted that the methods of the multiple scattering the-
ory [7, 8] are more efficient in numerical calculations
than the matching method, but they are less suitable for
analyzing E(k), since they yield the total wave field in
the crystal without its decomposition in φk.

Ik
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Fig. 8. Schematic diagram of a VLEED experiment with
standard four-grid LEED optics. The spectra are measured
in the target current. Optimal operation of the electron gun
is ensured by applying the required focussing voltages rela-
tive to the cathode. This results in a retarding field between
the gun and the sample.
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In order to find E(k), we must solve the Schrödinger
equation [7, 15]

For this purpose, use is normally made of the pseudo-
potential method, which leads to a secular equation of
the form

connecting E and k. In conventional computations of
E(k) for an infinite crystal with real k, this equation is
solved for E at a fixed k, which can be reduced to the
simple eigenvalue problem for the Hamiltonian matrix.
However, for E(k) of a semi-infinite crystal with a com-
plex k, the energy remains real-valued only along defi-
nite lines in the complex k space even for Vi = 0. Con-
sequently, we must solve the secular equation for k for
a fixed E, which is much more difficult from the com-
putational point of view [9, 10, 38, 39]. In actual prac-
tice, this is possible (requiring a reasonable computa-
tional effort) only with a local pseudopotential; in this
case, the problem is reduced to determining k⊥  as a
spectrum of a complex-valued matrix with doubled
dimensionality [10, 39]. The k–p expansion [39, 40],
which makes it possible to use any standard computa-
tional procedure for E(k) (e.g., the LAPW method), is
a promising approach for solving the secular equation.

The matching procedure itself, with known E(k) and
φk, is quite trivial. By expanding the wave functions in

vacuum and in the crystal in the plane waves 
parallel to the surface, matching can be reduced to the
solution of the system of linear equations with a dimen-
sionality equal to the doubled number of the included
g. The criterion for the accuracy of the computations is
the conservation of current, which includes partial cur-

rents  in the crystal and interference terms for Vi ≠
0 (see Subsection 2.1).

The model for a semi-infinite crystal (naturally,
including Vi ≠ 0) ensures the most accurate description
of the VLEED process. However, the calculations
based on this model involve considerable computa-
tional difficulties [40].

4.2.2. Approximations of a bulk crystal. These
approximations presume that Vi = 0 and deal only with
the bulk φk. Model calculations in this case are consid-
erably simplified since they are, in fact, reduced to the
standard calculation of the bulk E(k) on a grid of real-
valued k.

An effective method of this type is the coupling
Fourier component–group velocity (CFC–vg) approxi-
mation [14]. It is based on an analysis of the Fourier

expansion φk = . The currents  are
considered as monotonic functions of two variables:
(1) the partial content of the so-called coupling Fourier

"
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VERY LOW-ENERGY ELECTRON DIFFRACTION 1983
components, which resemble the primary plane wave
eiKr in the sense of the equivalence of the parallel wave
vectors and the codirectionality of the perpendicular
wave vectors

and (2) the surface-perpendicular group velocity vg⊥ .

The dependence of  on these factors can be
expressed as an empirical formula whose parameters
are determined by fitting to matching computations for
a model semi-infinite crystal. It is shown in Fig. 10 that,
despite certain amplitude errors, the CFC–vg approxi-
mation very accurately reproduces the energy positions

of the  features corresponding to the CPs deter-
mined in the experiments. This makes it possible to
successfully use this approximation in analyzing the
VLEED spectroscopic data.

Another promising method is the asymptotic
approximation based on the multiple scattering theory
[41]. In this case, the wave functions in the vacuum and
in the crystal are replaced by their asymptotic represen-
tations, which makes it possible to derive an analytic

expression for . The accuracy of this approximation
is higher than that of the CFC–vg approximation, but it
requires an extension of the unit cell in some cases,
which slightly increases the computation time.

The implementation of the bulk crystal approxima-
tion can employ any standard code for E(k) computa-
tions, e.g., the pseudopotential method [18] or the
LAPW method [21, 22]. In this case, the functions φk
are generated as a byproduct of the computations. The
run time is reduced by several orders of magnitude
(especially if the CFC–vg approximation is used) as
compared to the semi-infinite crystal approach. This
makes it possible to easily carry out an analysis of the
VLEED data for materials with a large number of
atoms in the unit cell, even HTSC. A considerable dis-
advantage of this method is that the influence of Vi on
E(k) cannot be taken into account, although the effect
on the VLEED spectrum can be simulated by its convo-
lution with a Lorentzian having a half-width Vi and the
corresponding suppression of spectral structure.

5. APPLICATIONS IN PHOTOEMISSION 
SPECTROSCOPY

The dispersion E(k) of the valence band near the
Fermi level is of particular interest when considering
the physicochemical properties of solids. This disper-
sion is studied using PE spectroscopy, but resolution in
this case, i.e., in the three-dimensional k, requires the
knowledge of E(k) for HSs (see Introduction). This is
the main field of application of VLEED spectroscopy.
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Its applications for studying the conduction band by
inverse PE are analogous.

5.1. Relationship between VLEED and Photoemission

A close connection between VLEED and photoe-
mission is observed in the one-step theory of PE in
which photoexcitation, photoelectron transport, and its
emission to vacuum are regarded as a single quantum-
mechanical process [2–4]. The photocurrent is propor-
tional to the matrix element of the operator A · p (A is
the vector potential of the electromagnetic field) for a
transition between the initial one-electron state (IS) Φi

and the final state (FS) Φ f:

Here, Φf is the time-reversed VLEED state which
would be excited in the crystal by an electron gun
mounted in place of the PE analyzer (if we neglect the
electron–hole interaction). Henceforth, we refer to
these states alternatively as final states in connection
with PE and, as before, higher-lying states in connec-
tion with VLEED.

The connection between VLEED and photoemis-
sion also extends to the contributions from individual
φk constituting the FS. Indeed, the partial photocurrents

 are proportional to , where Tk is the sur-
face transmission coefficient equal to the excitation

Iph Φ f * A p⋅ Φi 2
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amplitude of φk in VLEED [4]. Expressing  in

terms of , we obtain [15]

Consequently, the values of  for PE are propor-

tional to  for VLEED. This means that, in both pro-
cesses, the same coupling bands dominate in a multi-
tude of bands.

Such a detailed connection makes it possible to use
the experimental HSs determined by VLEED as FSs in
PE spectroscopy. Such a combined VLEED–PE
method ensures an absolute (with complete control
over three-dimensional k) determination of the valence
band E(k) [21, 22]. Since the experimental HSs already
contain true deviations from the FE dispersion, as well
as the dynamic many-electron effects, this method
ensures a fundamentally higher accuracy as compared
to the traditional approaches based on empirical or cal-
culated HSs.

5.2. Intrinsic k⊥  Resolution of PE Spectroscopy

Apart from the knowledge of E(k) for the FS, the
exact determination of the valence bands E(k) requires
a sufficiently high resolution in k⊥ , which is limited by
the very physics of the PE process. Let us consider the
mechanism of PE peak broadening based on the bulk
E(k) picture [2, 3, 25, 42].
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Fig. 11. Development of the PE peak profile as a result of k⊥
broadening ∆k⊥  in the FS combined with the energy broad-
ening ∆E in the IS.
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The spectral function A(E, k) of the Bloch wave for
the FS is reduced in energy (in spite of Vi) to a fixed Ef

detected by the PE analyzer. However, because of
attenuation of φk, it has a Lorentzian distribution of

real-valued k⊥  centered at  and having a half-

width :

In contrast to this, the function A(E, k) of the Bloch
wave for the initial state is reduced in k⊥  to a real-valued

 because φk almost does not attenuate in view of a
large light absorption length. However, because of the

hole absorption , it has a Lorentzian energy distribu-
tion centered on the Ei(k⊥ ) band dispersion and with a

half-width :

It is shown in Fig. 11 that the PE current is formed at
the initial energy Ei = Ef – hν as a result of the integra-
tion of the elementary currents from the intervals dk⊥ :

(the amplitude factors  and Tk are assumed to be
constant). The profile of the PE peak is then formed by
the k⊥  broadening of the FS together with the energy

broadening of the IS. Since Af(k⊥  – ) determines
the weight of the dk⊥  states in the k space, its half-width

 is the intrinsic k⊥  resolution of the PE experiment
[25]. In contrast to the k|| resolution limited by the aper-
ture of the PE analyzer, the k⊥  resolution cannot be
improved instrumentally.

The maxima of PE peaks correspond in principle to

the direct transitions  = ; this fact forms the
basis for determining E(k) with the help of PE. How-
ever, an insufficient intrinsic resolution might lead to a
displacement of the peaks from these positions (intrin-
sic shifts) [21, 22, 43]. For example, if the initial-state
E(k⊥ ) is nonlinear, the total numbers of the dk⊥  states
lying above and below the direct transition energy are
different and the peak becomes asymmetric and dis-
placed towards the larger number of states. In the band
interior, the shift is directed to the bottom of the band
(see Fig. 11), while at the bottom of the band it is
directed into the band (there are no states below the bot-
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tom) [21]. Intrinsic shifts can also be due to sharp

changes in  within the PE profile [22].

The intrinsic shifts can be minimized by reducing

 (the remaining factors are the inherent properties
of the valence states) to

 ! ,

where  is the size of the BZ along the normal to the
surface. It is this condition that ensures the correct anal-
ysis of E(k) with a resolution in k⊥  (the band structure

regime) [4, 43]. Under the opposite condition  @

, averaging over k⊥  takes place and PE spectra
reflect the one-dimensional density of states (density-
of-states regime).

Tuning of the k⊥  resolution can be carried out by
varying the FS energy. Tendencies of the corresponding
dependence are described by the well-known “univer-
sal curve” as the energy dependence of the mean free
path λ = (2Imk⊥ )–1 [2, 4]. For Ef smaller than ~30 eV,
the band-structure regime usually takes place (λ is
large). It is gradually transformed into the density-of-
states regime, which sets in near 100 eV. Starting from
~1000 eV, the band-structure regime sets in again, but,
in this region, technical difficulties associated with the
k|| resolution are encountered. The PE experiments at
the minimal Ef (below ~20 eV) make it possible to
ensure the best resolution both in k⊥  and in k||. In view
of the large value of λ, the contribution of the surface
region in which E(k) might be distorted also decreases
[44]. In this energy range, final states differ consider-
ably from the FE dispersion, thus, the application of the
VLEED–PE technique is required.

The k⊥  resolution can be controlled by using the

VLEED experimental data on E(k) and Vi (  is

determined from these data as ~ ). It should be

noted that the range of the most accurate determination
of the FS in VLEED spectroscopy (where Vi remains
smaller than the separation between CPs) almost coin-
cides with the range of the best resolution in PE spec-
troscopy.

5.3. Examples of Absolute Determination of E(k) by the 
VLEED–PE Method

In PE spectroscopy, the E(k) dispersions can be
determined either as (E(k⊥ ), when the value of k⊥  is var-
ied by changing hν, or as E(k||), when k|| is varied by
changing the emission angle. In accordance with these
two methods, the VLEED determination of E(k) for the
FSs is carried out either by the band fitting method or
by direct band mapping (see Subsection 2.2).
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5.3.1. Determination of E(k) as E(k^) by varying hn.
In this method of determining E(k), the VLEED–PE
approach was demonstrated for the first time [22] for
VSe2 (ΓA direction) as a representative of the layered
materials characterized by strong deviations of HSs
from FE dispersion. Indeed, the VLEED experiments
(see Subsection 3.1) revealed a multiband composition

of E(k) and, in addition, a sharp increase in 
above "ωp (see Fig. 6c).

Optimization of the PE experiment. Knowledge
of the HS peculiarities has made it possible to optimize
PE experiments for accurate determination of E(k⊥ ). In

order to ensure the band-structure regime  ! 
(this condition is critical for layered materials in view
of the small size of the BZ along the normal to the sur-
face), it was found expedient to choose values of Ef

below the plasmon energy. For higher values of Ef, con-
siderable intrinsic shifts could be expected, along with
difficulties associated with resolving PE peaks from
different FS bands.

Determination of the valence band. The corre-
sponding PE experiments were made under normal
emission using synchrotron radiation tunable in hν.
The results are presented in Fig. 12a as a map of the PE
intensity as a function of hν and Ei. Such a representa-
tion makes it possible to easily determine the nature of
spectral structures. For example, the descending
straight lines correspond to secondary emission peaks
with Ef = const, while the ascending lines correspond to
core energy levels excited by higher-order light (they
have nothing to do with the valence band). The remain-
ing peaks correspond to different valence bands, with
their hν dispersion reflecting the k⊥  dispersion of these
bands. The doublet structure of the FSs (see Fig. 6c) is
manifested, for example, as two peaks in the Se 4

band near hν = 30 eV. In the deeper Se 4  band, anal-
ogous peaks merge into one broad peak due to the

strong broadening associated with an increase in .

The energy Ee–h of the electron–hole interaction was
estimated as the difference between the FS energies and
the corresponding HS energies (in VLEED). For this
purpose, we used the points of extremal dispersion of
the PE peaks for which k⊥  lies at the symmetry points
of the BZ. In this case, it was found that Ee–h ~ 0, indi-
cating a considerable delocalization of electrons and
holes.

Direct determination of E(k⊥ ) for the valence band
involved the standard construction of Ei corresponding
to spectral peaks as a function of k⊥  (see Introduction).
In this procedure, k⊥  was determined from the experi-
mental FSs shown in Fig. 6c. The obtained E(k) is pre-
sented in Fig. 12b. The same figure shows the theoreti-
cal E(k) calculated in the DFT framework by the
LAPW method. All points in the band structure regime
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f k ⊥
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h
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Fig. 12. Absolute determination of the valence band E(k) of VSe2 by the VLEED–PE method varying hν. (a) Dependence of the PE
intensity on hν and the IS energy, shown in greyscale (white corresponds to the maximum intensity). Secondary emission and core
level peaks are indicated. The remaining peaks correspond to the valence band, and their hν dispersion reflects the k⊥  dispersion of
these bands. (b) Experimental valence-band E(k). Black points correspond to the region of the band structure regime and grey ones
lie outside this region. This E(k) was obtained from the FSs determined by VLEED (Fig. 6c). Its integrity is contrasted with the
results of the FE approximation of FSs (with V000 at the valence band bottom), which are presented on the right.

*

Ef < "ωp (black points) demonstrate truly consistent
dispersions, although they are displaced relative to the-
oretical E(k) (presumably, because of the many-elec-
tron effects). The sharp contrast with the results of the
application of the FE approximation (see the inset)
PH
demonstrates the importance of using correct FSs.
Moreover, the points outside the region of the band
structure regime (grey points) for the same ISs are dis-
placed to the interior of the band, demonstrating the
importance of a sufficiently high k⊥  resolution (see
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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Fig. 13. Absolute determination of E(k) for the valence band of Cu by the VLEED–PE method of angular dependences on the (110)
surface. (a) The idea of the method. The wave vector k⊥  is localized on the AA' symmetry direction if the FS energy is at the middle
of the band gap E(k⊥ ) (minimum–maximum of dT/dE). (b) Experimental dispersion of the VLEED spectra, presented as in Fig. 5b.

The dashed curve corresponds to E f localizing k⊥  on the ΓX and ΓKX of the bulk BZ. (c) The experimental valence-band E(k),

obtained with the chosen E f, which is presented as –  > 0 (shown by greyscale). The A–D peaks are not connected directly with

E(k). The DFT theoretical E(k) is also shown. The signs of Re∆Σ in the d and sp bands are opposite due to the different spatial
localizations of the corresponding φk.
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Subsection 5.2). It should be noted that the VLEED–PE
method has made it possible to attain, for the first time,
a consistent resolution of the valence band in k⊥  for the
class of layered materials characterized by strong devi-
ations of HSs from the FE dispersion.

Similarly, E(k) was determined for TiS2 [22]. Con-
siderable intrinsic shifts were observed due to strong

variations of .

5.3.2. Determination of E(k) as E(k||) by varying
the emission angle. In this method of determining
E(k), the VLEED–PE approach is also referred to as the
VLEED–PE method of angular dependences [21]. It is
most effective in measurements of the PE spectra in the
constant-final-state mode as a function of hν with a
fixed Ef. The idea of the method is illustrated in

Mk
fi
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Fig. 13a. Let AA' be a certain symmetry direction of the
BZ parallel to the surface. First, the E(k) of the HSs
along AA' is constructed from the angular dependences
of VLEED using the direct band mapping method (see
Subsection 2.2.2). The pair of its bands corresponds to
local band gaps of E(k⊥ ) (minimum–maximum of
dT/dE) in this symmetry direction. For the energy lying
between these two bands, k⊥  is localized on AA' (taking
into account the smoothing effect of Vi; see Fig. 2c).
Second, these energies Ef are chosen as constant FS
energies and the PE angular dependences are measured.
Then, k⊥  is localized on the chosen direction and the K||
dispersions of the PE peaks directly form the valence
band E(k), the three-dimensional k being completely
fixed. Such a determination of E(k) is direct. It should
be noted that the attenuation of φk associated with the
00
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emission from energy gaps is not a specific feature of
the method, since Vi also leads to the attenuation of φk
outside the band gaps. The method was tested on Cu
using the (110) surface, which gives access to all BZ
directions in the symmetry plane ΓKLUX [21].

Determination of FS. The determination of E(k)
for HSs was discussed earlier in connection with
VLEED band mapping (see Subsection 2.2.2). The
experimental K|| dispersion of dT/dE extrema in azi-

muths  and  of the surface BZ is presented in
Fig. 13b. As before, the bands corresponding to the
symmetry directions of the bulk BZ were identified in
them (ΓX and ΓKX in this case). In addition, the pairs
corresponding to the E(k⊥ ) extrema of the opposite cur-
vature were identified in them (otherwise, the effect of
Vi would lead to a certain displacement of k⊥  from the
symmetry direction; see Fig. 2c). It is these pairs that
gave the Ef values localizing k⊥  on symmetry directions
for the PE experiments. In Fig. 13b, these energies are
shown by dashed curves. It is worth noting that the
Ef(K||) dispersions have discontinuities in the regions of
strong multiband hybridization, where E(k⊥ ) deviates
considerably from the FE dispersion.

Determination of the valence-band E(k). The cor-
responding PE experiment was carried out using syn-
chrotron radiation, which makes it possible to scan hν.
The results of such an experiment are presented in Fig.
13c as the dispersion of negative values of the second

derivative of the PE intensity,  < 0. Such a repre-

sentation makes it possible to identify the spectral
structure against the background of monotonic varia-
tions of Iph and, in fact, directly maps the valence-band

E(k) (except the bands with too small values of ).

Indeed, the peaks –  reveal the peaks and shoul-

ders of the energy dependence of the Iph corresponding
to the E(k) bands. The obtained E(k) perfectly agrees
with the entire body of previous experimental data (see
the review [5]) obtained by traditional PE methods. The
experimental data exhibit exceptional internal consis-
tency: dispersion remains smooth even at Ef disconti-
nuities occurring in regions of strong hybridization of
HSs. Moreover, the energy of the PE peaks was found
to remain constant upon a change in Ef through the dis-
continuities (only the intensity changes due to the vari-

ation of ), which can be explained by the almost
vertical k⊥  dispersion of corresponding FSs.

The theoretical valence-band E(k), which was cal-
culated in the DFT framework using the LAPW
method, is also shown in Fig. 13c. The experimental
E(k) agrees well with it (the A–D peaks are connected
with the surface states, the maxima of the one-dimen-
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dE2
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Mk
fi
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dE2
-----------

Mk
fi
PH
sional density of states, and the multiband composition
of the FSs). However, regular deviations amounting to
–0.5 eV for the d bands and +0.4 eV for the bottom of
the sp band can be clearly seen. These deviations are
due to many-electron effects in the excited PE state. As
in the case of HSs (see Subsection 3.2), these Re∆Σ
anomalies are connected with different spatial localiza-
tions of φk in the d and sp bands [31, 32].

Peculiarities of the method. The intrinsic accuracy
of the method [21] may seem limited since the value of
Imk⊥  increases slightly in the band gap, thus deteriorat-
ing the k⊥  resolution (see Subsection 5.2). In fact, such
an increase is much smaller than the main contribution
to Imk⊥  due to Vi. Moreover, the possibility of using low
Ef characterized by small values of Vi makes it possible
even to improve the k⊥  resolution comparatively with
traditional methods. However, the main factor deter-
mining the high accuracy of the VLEED–PE method of
angular dependences is the direct mapping of E(k).

A practical advantage of this method is the possibil-
ity of analyzing several BZ directions using a single
crystalline surface. For example, the present experi-
ment alone covers almost the entire previous experi-
mental data on Cu [5]. This is especially important for
materials with only one stable surface (such as layered
materials). The method is most efficient in cases where
deviations of FSs from FE dispersion are strong.

6. CONCLUSIONS

Photoemission spectroscopy is the main tool for
analyzing the E(k) band structure with k resolution.
However, controlling k⊥ , which is distorted during the
photoelectron emission to vacuum, and, thus, three-
dimensional k requires knowledge of E(k) for unoccu-
pied higher-lying states.

Very low-energy electron diffraction spectroscopy
is the most direct method for studying HSs. It is based
on the connection between the elastic electron reflec-
tion spectra and the critical points in the E(k⊥ ) disper-
sion of the Bloch states that are effectively coupled
with the wave function in vacuum. This makes it possi-
ble to find the experimental positions of such points and
to use them to determine E(k) itself by fitting the model
calculations or by direct mapping of VLEED angular
dependences.

According to experimental data, HSs (1) can be
characterized by strong deviations from the free-elec-
tron dispersion, especially for nonmetals, and (2) can
experience noticeable shifts relative to the ground state
E(k) due to excited-state many-electron effects. The
experimental technique of VLEED spectroscopy is
extremely simple, but data processing requires a certain
numerical simulation.

The VLEED states are the time-reversed PE states.
This makes it possible to employ VLEED spectroscopy
for determining the final-state E(k) for PE spectros-
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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copy, which ensures the resolution of the valence-band
E(k) in the three-dimensional vector k in the PE deter-
mination. Such a combined VLEED–PE method is
most efficient when one uses angular dependences and
the constant-final-state mode of the PE measurements;
this permits a direct determination of E(k). The advan-
tage of this method is that it allows one to use low hν in
attaining the best k resolution of the PE experiment.

The fundamentals of VLEED spectroscopy as a
method of band structure investigation E(k) and the
principles of its application in PE spectroscopy have
been developed quite recently. Having demonstrated its
potential, VLEED spectroscopy passes over to a stage
of wide application, providing information on the elec-
tronic structure of solids which was not previously
available.

ACKNOWLEDGMENTS

The author is grateful to H. I. Starnberg and
P.-O. Nilsson (Chalmers University of Technology),
R. Claessen (Universität, Augsburg), and S. A. Komo-
lov (Physical Research Institute, St. Petersburg State
University), who took part in the development of
VLEED spectroscopy as a band structure method.

REFERENCES
1. Zh. I. Alferov, Fiz. Tekh. Poluprovodn. (St. Petersburg)

32 (1), 3 (1999) [Semiconductors 32, 1 (1998)].
2. Angle-Resolved Photoemission, Ed. by S. D. Kevan

(Elsevier, Amsterdam, 1992).
3. S. Hüfner, Photoelectron Spectroscopy (Springer-Ver-

lag, Berlin, 1995).
4. P. J. Feibelman and D. E. Eastman, Phys. Rev. B 10,

4932 (1974).
5. R. Courths and S. Hüfner, Phys. Rep. 112, 53 (1984).
6. Unoccupied Electronic States, Ed. by J. C. Fuggle and

J. E. Inglesfield (Springer-Verlag, Berlin, 1992).
7. J. B. Pendry, Low Energy Electron Diffraction (Aca-

demic, London, 1974).
8. M. A. van Hove and S. Y. Tong, Surface Crystallography

by LEED (Springer-Verlag, Berlin, 1979).
9. G. Capart, Surf. Sci. 13, 361 (1969).

10. J. B. Pendry, J. Phys. C 2, 2273 (1969).
11. R. C. Jaklevic and L. C. Davis, Phys. Rev. B 26, 5391

(1982).
12. V. N. Strocov, Solid State Commun. 78, 545 (1991);

V. N. Strocov and S. A. Komolov, Phys. Status Solidi B
167, 605 (1991).

13. V. N. Strocov, Int. J. Mod. Phys. B 9, 1755 (1995).
14. V. N. Strocov, Solid State Commun. 106, 101 (1998).
15. V. N. Strocov, H. I. Starnberg, and P. O. Nilsson, J. Phys.:

Condens. Matter 8, 7539 (1996); Phys. Rev. B 56, 1717
(1997).

16. J.-V. Peetz, W. Schattke, H. Carstensen, et al., Phys. Rev.
B 46, 10127 (1992).

17. E. G. McRae, Rev. Mod. Phys. 51, 541 (1979); R. O. Jones
and P. J. Jennings, Surf. Sci. Rep. 9, 165 (1988).
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      200
18. V. N. Strocov, S. Mankefors, P. O. Nilsson, et al., Phys.
Rev. B 59, 5296 (1999).

19. A. Goldmann, W. Altmann, and V. Dose, Solid State
Commun. 79, 511 (1991).

20. V. N. Strocov, Int. J. Mod. Phys. B 7, 2813 (1993).
21. V. N. Strocov, R. Claessen, C. Nicolay, et al., Phys. Rev.

Lett. 81, 4943 (1998); Phys. Rev. B (2000) (in press).
22. V. N. Strocov, H. I. Statnberg, P. O. Nilsson, et al., Phys.

Rev. Lett. 79, 467 (1997); J. Phys.: Condens. Matter 10,
5749 (1998).

23. W. B. Jackson and J. W. Allen, Phys. Rev. B 37, 4618
(1988).

24. V. N. Strocov, P. Blaha, H. I. Starnberg, et al., Phys. Rev.
B 61, 4994 (2000).

25. V. N. Strocov, in Electron Spectroscopies Applied to
Low-Dimensional Materials, Ed. by H. I. Starnberg and
H. P. Hughes (Kluwer, Dordrecht, 2000).

26. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864
(1964); W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133
(1965); W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).

27. L. Hedin and S. Lundquist, in Solid State Physics, Ed. by
H. Ehrenreich, F. Seitz, and D. Turnbull (Academic,
New York, 1969), Vol. 23.

28. M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A 30,
2745 (1984); C.-O. Almbladh and U. von Barth, Phys.
Rev. B 31, 3231 (1985).

29. M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett. 55,
1418 (1985); Phys. Rev. B 34, 5390 (1986).

30. P. Blaha, K. Schwarz, and J. Luitz, WIEN97, A Full
Potential Linearized Augmented Plane Wave Package
for Calculating Crystal Properties (Techn. Univ. Vienna,
Vienna, 1999).

31. V. N. Strocov, P. O. Nilsson, P. Blaha, et al. (in press).
32. P. O. Nilsson and C. G. Larsson, Phys. Rev. B 27, 6143

(1983).
33. L. Hedin and B. I. Lundquist, J. Phys. C 4, 2064 (1971).
34. I. Barto , M. A. van Hove, and M. S. Altmann, Surf. Sci.

352–354, 660 (1996).
35. V. Heinrich, Rev. Sci. Instrum. 44, 456 (1973).
36. S. A. Komolov, Total Current Spectroscopy of Surfaces

(Gordon and Breach, Philadelphia, 1992).
37. V. N. Strocov, Meas. Sci. Technol. 7, 1636 (1996).
38. H. Bross, Surf. Sci. 213, 215 (1989).
39. D. L. Smith and C. Mailhiot, Rev. Mod. Phys. 62, 173

(1990).
40. E. E. Krasovskii and W. Schattke, Phys. Rev. B 56,

12874 (1997); Phys. Rev. B 59, R15609 (1999).
41. G. V. Vol’f, Yu. P. Chuburin, D. V. Fedorov, and

V. N. Strocov, Fiz. Tverd. Tela (St. Petersburg) 41 (12),
2105 (1999) [Phys. Solid State 41, 1929 (1999)].

42. R. Matzdorf, Appl. Phys. A A63, 549 (1996); Surf. Sci.
Rep. 30, 153 (1998).

43. E. Pehlke and W. Schattke, Solid State Commun. 69, 419
(1989).

44. E. Pehlke and W. Schattke, J. Phys. C 20, 4437 (1987).

Translated by N. Wadhwa

s∨
0



  

Physics of the Solid State, Vol. 42, No. 11, 2000, pp. 1990–1994. Translated from Fizika Tverdogo Tela, Vol. 42, No. 11, 2000, pp. 1938–1942.
Original Russian Text Copyright © 2000 by Golubkov, Parfen’eva, Smirnov, Misiorek, Mucha, Jezowski.

                                                                                                                     

METALS 
AND SUPERCONDUCTORS
Heat Conductivity of LuAgCu4

A. V. Golubkov*, L. S. Parfen’eva*, I. A. Smirnov*, H. Misiorek**,
J. Mucha**, and A. Jezowski**

*Ioffe Physicotechnical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, St. Petersburg, 194021 Russia
e-mail: Igor.Smirnov@shuvpop.ioffe.rssi.ru

**Institute of Low-Temperature and Structural Studies, Polish Academy of Sciences, Wroclaw, 53-529 Poland
Received March 30, 2000

Abstract—The electrical resistivity and heat conductivity of LuAgCu4 have been studied within the 4.2–300-K
range. An additional contribution to heat conductivity, most probably due to the bipolar component, has been
revealed at T ≥ 100 K. The conclusion is drawn that LuAgCu4 is apparently a semimetal. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

This work is a continuation of studies of the heat
conductivity of LnMCu4 intermetallic compounds
(here, Ln stands for a rare-earth metal and M, for a tran-
sition metal) crystallizing in an AuBe5 fcc lattice [C15b

structure, space group F 3m( )] [1, 2].

LnMCu4 compounds exhibit interesting and some-
times unusual physical properties. Two representatives
of this class of materials, YbInCu4 and YbAgCu4, have
recently been attracting considerable attention from
both experimenters and theorists. The former material
initiated interest because of a specific isostructural
phase transition of the first kind that it undergoes at
Tv ~ 40–80 K and at atmospheric pressure. For T > Tv,
YbInCu4 is a Curie–Weiss paramagnet (a state with
localized magnetic moments), while for T < Tv, it is a
Pauli paramagnet (a nonmagnetic Fermi-liquid state); it
is a compound with a mixed valence of the rare-earth
ion called the light heavy-fermion system. The refer-
ences to most experimental and theoretical works deal-
ing with YbInCu4 are summarized in [1, 3, 4].

YbAgCu4 is a representative of the nonmagnetic
moderately heavy-fermion system possessing proper-
ties characteristic of dense Kondo lattices [4–6]. This
compound has been dealt with in an enormous number
of publications. To isolate the lattice, electric, and mag-
netic effects in YbAgCu4 (heat conductivity [4, 7–9],
magnetic susceptibility [4, 10], neutron scattering [11],
electrical conductivity [8, 12], x-ray LIII absorption
spectra [4, 13, 14], volume expansion coefficient [13],
and XPS spectra [15]), one used LuAgCu4 as a refer-
ence material, which has the structure of YbAgCu4 and
similar lattice parameters. Yb and Lu occupy adjacent
places in the periodic table.

In addition to the above parameters, there are litera-
ture data on such characteristics of LuAgCu4 as the lat-

4 Td
2
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tice constant [4], the γ and β parameters in the C = γT +
βT2 relation for heat capacity (different authors quote
values of γ ranging from 8.7 to 11 mJ/mol K [4, 7, 8,
13], and those of β, from 0.55 to 0.58 mJ/K4 mol [7, 8]),
Debye temperature Θ (from 205 to 257 K [4, 8, 12]),
and the Hall constant [4, 13]. Electronic band structure
calculations can be found in [17, 18]. Unfortunately, we
have not been able to locate any literature data on the
heat conductivity of LuAgCu4. They may, however, be
of interest in a number of areas. They are needed for
thermodynamic calculations and estimation of thermal
regimes for single-crystal growth, and they could also
be employed as a reference when analyzing heat con-
ductivity data for YbAgCu4. A study of the electronic
component of the heat conductivity of LuAgCu4 could
yield additional information on specific features of the
electronic band structure of this compound.

We have performed measurements of the heat con-
ductivity (κtot) and electrical resistivity (ρtot) on a cast
polycrystalline sample of LuAgCu4 in the temperature
range 4.2–300 K.

2. EXPERIMENTAL

The metals used in preparing LuAgCu4 were
0-grade Lu, 99.99%-pure Ag, and OSCh V3-grade Cu.
The components taken in the stoichiometric ratio were
melted in a thin-walled (wall thickness ~0.1 mm)
sealed tantalum container evacuated to 10–4 mm Hg.
The samples were melted in an RF-heated furnace. The
ingot thus obtained was annealed at 800°C for 75 h.
The technique used to synthesize RE-based compounds
is described in considerable detail in [19, 20].

The LuAgCu4 sample to be studied was subjected to
x-ray diffraction analysis on a DRON-2 setup (with
CuKα radiation). The lattice constant was found to be
7.070(4) Å. The value of a for LuAgCu4 is quoted [4]
as 7.094 Å. The available data on the lattice constants
000 MAIK “Nauka/Interperiodica”
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of a number of LnMCu4 compounds, where Ln stands
for Yb or Lu, and M is Ag, Au, In, Zn, Cd, Tl, or Mg,
were analyzed in [4]. The variation of the parameter

B =  for various M was

studied. Except for the YbAgCu4–LuAgCu4 pair, the
parameter B was positive (the constant a for lutetium
compounds is always smaller than that for ytterbium,
which correlates with the variation of the ionic radii of
these elements). The parameter B was found [4] to be
negative (B = –0.155%) only for the YbAgCu4–
LuAgCu4 pair. No satisfactory explanation was pre-
sented in [4] for the observed anomaly. The assumption
as to the band structure of LuAgCu4 proposed appears
fairly exotic. The value of a used in [4] to calculate B
for YbAgCu4 was 7.083 Å (the numerous literature data
place the value of a for YbAgCu4 within the interval
from 7.054 to 7.087 Å [5, 6, 11, 16, 17, 21–26]), and for
LuAgCu4, a = 7.094 Å [4]. We have not been able to
find any publication, except [4], with a measurement of
a for LuAgCu4.

Taking the value of a obtained here for LuAgCu4,
and that for YbAgCu4 from [4], one finds a positive
value of 0.183% for B. According to [4], the values of
B, for instance, for the YbZnCu4–LuZnCu4, YbInCu4–
LuInCu4, and YbCdCu4–LuCdCu4 pairs, are 0.171,
0.140, and 0.168%, respectively. Thus, the anomaly
found in [4] for the YbAgCu4–LuAgCu4 pair appar-
ently does not exist. It may be conjectured that the
parameter a quoted in [4] for LuAgCu4 was overesti-
mated for some reason.

The total heat conductivity κbot and total electrical
resistivity ρtot were measured on a setup similar to that
described in [26].

3. RESULTS AND DISCUSSION

Figure 1 presents our data and the figures quoted in
[12] for ρtot(T) of the LuAgCu4 samples. For T * 25 K,
ρtot depends linearly on the temperature, which is char-
acteristic of metals (and semimetals). For T & 25 K
(down to 4.2 K), ρtot . ρ0 (ρ0 is the residual electrical
resistivity). As is seen from Fig. 1, ρ0 turned out to be
larger for the sample studied here than for the sample
used in [12].

Figure 2 displays data on κtot(T) for LuAgCu4. For
metals, one can write

(1)

where κph and κe are the lattice and electronic heat con-
ductivity components, respectively. By the classical
theory of heat conductivity of metals [27, 28], κe obeys
the Wiedemann–Franz relation

(2)

a YbMCu4( ) a LuMCu4( )–
a LuMCu4( )

-----------------------------------------------------------------

κ tot κ ph κ e,+=

κ e LT /ρtot,=
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where L is the Lorenz number. For moderate tempera-
tures and “clean” metals, as well as for low and high
temperatures and “dirty” metals, L = L0, where L0 is the
Sommerfeld value of the Lorenz number (L0 = 2.45 ×
10–8 WΩ/K2). The LuAgCu4 sample we studied has a
fairly large value of ρ0. This suggests that we are deal-
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Fig. 1. Temperature dependence of ρtot: (1) our data,
(2) data from [12].
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Fig. 2. Temperature dependence of κtot for the LuAgCu4
sample studied.
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ing with a not very “clean” metal, so that one may
accept L = L0 throughout the temperature range studied
in this paper.
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Fig. 3. Temperature dependence of κph for the LuAgCu4
sample studied. κe was calculated under the assumption
L = L0.
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Fig. 4. Temperature dependence of L/L0 for LuAgCu4. Cal-
culation made according to [32–34].
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Figure 3 presents data for κph obtained using
Eqs. (1) and (2). In calculating κe, we assumed L = L0.
As is seen from the figure, in the low-temperature
domain, κph ~ T1.6, while in the interval from 30 to
100 K, we have κph ~ T–0.5. Such temperature depen-
dences for κph are characteristic of materials with
defects. The defects present in the sample studied by us
are probably not associated with the purity of the start-
ing materials used to prepare LuInCu4, but rather form
as a result of Ag occupying Lu sites or Cu substituting
for Ag, as was the case with YbInCu4, where the exper-
imentally observed “amorphous” behavior of κph(T) for
T > Tv [1] is connected either with In occupying Yb
sites [29] or with Cu substituting for In [30].

For T > 100 K, LuAgCu4 exhibits a deviation from
the κph ~ T–0.5 relation. The heat conductivity κph

increases fairly strongly with temperature. This behav-
ior of κph(T) could be accounted for by the emergence
of a bipolar heat-conductivity component (κbip), char-
acteristic of semimetals [2, 27, 32], for T * 100 K. This
conclusion is, however, at odds with the available liter-
ature data on measurements of the Hall constant [4, 13]
and with theoretical calculations of the LuAgCu4 band
structure [17, 18], which suggest that this compound is
apparently a metal (rather than a semimetal).

How else could one explain (other than by the semi-
metal concept proposed above and the emergence of
κbip) the observed increase in κ for T * 100 K in a
metallic LuAgCu4?

We have not been able to relate it to any effects
exhibited within this temperature interval by the lattice
component of heat conductivity. The only way out is to
conjecture that it may be due to some errors made in the
calculation of κe, namely, that L in the Wiedemann–
Franz relation is not equal to L0.

Consider some cases in which L may not equal L0.

1. In order for LuAgCu4 not to exhibit this effect of
increase in κ, L for T * 100 K must be larger than L0.
In metals, this can be observed under the conditions of
interband interaction between heavy and light carriers
in crossing subbands that form, for instance, the con-
duction band, when the heavy subband containing the
Fermi level lies higher than the light one [27, 31, 32].

This situation can hardly be realized in LuAgCu4,
because it appears impossible that within a fairly broad
temperature range (4.2–100 K) L = L0, while for T *

100 K, L > L0. Such a behavior of L(T) has not been
observed thus far for any material, and it is not antici-
pated to occur within the above model [31].

2. It is possible that L ≠ L0 throughout the tempera-
ture range studied. For metals both above and below the
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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Debye temperature Θ, the ratio L/L0 can be presented in
the form [32–34]

(3)

where ρ0 is the residual electrical resistivity;

(4)

ξ is the Fermi energy for the carriers; I5(Θ/T) and
I7(Θ/T) are integrals tabulated in [35, 36]; and A0 is a
constant including the electron–phonon coupling con-
stant and depending on the lattice constant, Fermi
energy, atomic mass, and Debye temperature. D is also
a constant. The quantities D/ξ and A0 can be roughly
estimated from the following relations [32, 34]:

(5)

(6)

where Na is the number of free electrons per atom and
ρi is the part of the electrical resistivity due to scattering
from lattice vibrations.

A very rough estimate of L/L0 made using Eqs. (3)–
(6) for the LuAgCu4 sample studied by us is shown
graphically in Fig. 4. The Debye temperature accepted
in the calculations is 257 K [4]. One readily sees that,
within the 25–300-K range, L is even somewhat smaller
than L0. Figure 5 (curve 1) plots κph calculated from
Eqs. (1) and (2), with κe in the Wiedemann–Franz rela-
tion obtained using the values of L from Fig. 4. Shown
also for comparison are data for κph(T) obtained in the
calculation of κe with L = L0 from Fig. 3. The two κph(T)
plots (curves 1, 2 in Fig. 5) do not differ qualitatively
from one another. In both cases, an additional contribu-
tion to κ is seen to exist for T * 100 K.

It should be pointed out that the κph(T) relation con-
structed using data for L from Fig. 4 (curve 1 in Fig. 5)
is consistent with the real pattern of behavior of lattice
heat conductivity.

One might question the weak temperature depen-
dence for the linear region, κph ~ T–0.2, within the 30–
100-K interval and the very approximate and, possibly,
not fully valid estimation of the L/L0 ratio from expres-
sions (3)–(6) for such a complex metal as LuAgCu4.

We believe that the data obtained in the calculation
of κph(T) made under the assumption of L = L0 are more
trustworthy.

L/L0

=  
ρ0

4A0
---------

T
Θ
---- 

 
5

I5
Θ
T
---- 

 + /
ρ0

4A0
--------- χ T

Θ
---- D

ξ
----, 

 + ,

χ T
Θ
---- D

ξ
----, 

  T
Θ
---- 

 
5

=

× 1
3

2π2
-------- ξ

D
---- Θ

T
---- 

 
2

+ I5
Θ
T
---- 

  1

2π2
-------- I7

Θ
T
---- 

 –
 
 
 

;

D/ξ 2 1/3– Na
2/3– ,=

ρi ρtot ρ0–
A0T
Θ

---------- at T /Θ * 0.6( ),= =
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Thus, the above reasoning suggests that LuAgCu4 is
a semimetal. The related compounds LuInCu4,
YbInCu4 (for T > Tv), and YInCu4 are also known to be
semimetals [2, 37–39].

4. CONCLUSIONS

We reached the following conclusions:

(1) There is apparently no anomaly associated with
the lattice constant of LuAgCu4 reported in [4].

(2) An analysis of the heat conductivity data for
LuAgCu4 suggests that this compound is a semimetal,
similar to its related compounds LuInCu4, YbInCu4 (for
T > Tv), and YInCu4.
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Abstract—The physical properties of the stoichiometric compounds in the series Ti–Zr–N are studied theoret-
ically, including electronic structure calculations by the linear augmented Slater orbitals method, as well as cal-
culation of the bulk elastic moduli and the equilibrium lattice constant. The results obtained can be used for
determining the phases of the materials used for protective coatings. © 2000 MAIK “Nauka/Interperiodica”.
Research and development of new technological
materials with unique physical properties and a com-
paratively low cost constitute one of the most important
problems of modern materials science. Considerable
attention is paid to materials that could be used for cre-
ating protective coatings. Protective coatings usually
contain metals like Ti, Mo, Cr, and Zr that have a large
number of d electrons and form well-defined covalent
bonds with the metalloids present in the coating. The
compounds obtained have a high strength and a high
melting point. Binary systems of the type Me–X (Me
stands for a d metal and X for a metalloid) have been
investigated quite comprehensively. At present, investi-
gations of ternary and more complex compounds are
being carried out.

Calculations of the energy band structure form the
basis for the theoretical investigations of the physical
and chemical properties of materials. A large number of
different methods, each with its own advantages and
drawbacks, have been developed for calculating the
electronic structure of crystalline solids [1–3]. For
example, the traditional augmented plane wave (APW)
and Korringa–Kohn–Rostocker (KKR) methods have a
high accuracy, but a low count rate, and are unsuitable
for self-consistent calculations of complex crystalline
systems with a large number of atoms in the unit cell.
Linear methods (LAPW, LMTO, etc.) are faster at the
expense of computational accuracy and are actively
used for calculating the electronic structure and physi-
cal properties of quite diverse solids with different crys-
tal structures and all kinds of chemical bonds. The
speed of the calculations depends on the available com-
putational facilities. The electronic structure of systems
containing several hundred atoms in the unit cell can be
calculated with the help of supercomputers. Such cal-
culations require high-precision and efficient methods.
1063-7834/00/4211- $20.00 © 21995
One of these is the linearized augmented Slater orbital
(LASTO) method developed by Davenport et al. [4–7].
Among other things, this method was used for a theo-
retical interpretation of the x-ray absorption spectra and
the short-range order in Au–Ta alloys [8].

The formalism of the LASTO method for an arbi-
trary number of atoms in the unit cell has not been pub-
lished in the literature thus far. In order to fill this gap,
we present in the Appendix all the expressions required
for calculating the band structure of crystalline solids
with an arbitrary basis.

The wave function in the LASTO method [4–7] is
presented in the form

(1)

where

(2)

N = {i, nlm} is the position of the ith atom in the unit
cell, Rν is the lattice vector, and φnlm(r) is the Slater
orbital outside the MT spheres joined at the MT bound-
ary with the exact solution of the Schrödinger equation
inside the MT spheres:

(3)

(4)

Ψk r( ) cNψN r( ),
N

∑=

ψN r( )
1

Nc

---------- e
ikRνφnlm r ti– Rν–( ),

Rν

∑=

φnlm r( ) Anrn 1– e ξ r– Ylm r( ),=

An 2ξ( )
n

1
2
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2n( )![ ]
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Fig. 1. Band structure of Zr0.25Ti0.75N.
The Fourier transform of Slater’s orbital is known
and has a simple form:

(5)

where Ω is the primitive unit cell volume. The integral
in Eq. (5) can easily be evaluated analytically. In light
of the above relations, the function ψN(r) can be pre-
sented in the form

(6)

where q = k + g. The function ψ(r) in the form of Eq.(2)
is used only outside the MT spheres, while the numeri-
cal solution of the radial Schrödinger equation is used
inside the MT spheres. Inside the jth sphere, the basis
function is chosen in the form of a linear combination
of radial wave functions gjλ(rj) and their energy deriva-
tives :

(7)

φnL q( )
4π
Ω
------ i( ) l– YL r( ) r jl qr( )rn 1+ ξr–( ),expd

0

∞

∫=

ψN r( )
1

Nc

---------- eiq · re
iq  · tiφnL q( ),

q

∑=

ġ jλ r j( )

ψN r( ) βN jΛ, g jλ α N jΛ, ġ jλ r j( )+[ ]YΛ r j( ),
Λ
∑=
PH
where the coefficients βN, jΛ and αN, jΛ are determined
from the joining condition for the basis functions at the
surface of the MT spheres.

The matrix elements of the Hamiltonian H and the
overlapping matrix S are defined in the standard form:

(8)

(9)

The explicit form of the matrix elements is pre-
sented in the Appendix.

In this work, we present the results of calculations
for a number of compounds of the system (Ti–Zr)N,
which can also be used to determine some of their phys-
ical properties. Calculations were made for the com-
pounds TiN, Zr0.25Ti0.75N, Ti0.25Zr0.75N, and ZrN by
using the extended unit cell. This cell belongs to a
simple cubic lattice and contains eight atoms. The
compounds TiN and ZrN have two types of nonequiva-
lent atoms, while the compounds Zr0.25Ti0.75N and
Ti0.25Zr0.75N have four types of nonequivalent metal
atoms and two types of nitrogen atoms each. Calcula-
tions were made for 56 vectors of the irreducible part of
the Brillouin zone with the Barth–Hedin exchange-cor-
relation potential. The total and partial densities of
states were calculated by the method of tetrahedra. Fig-
ure 1 shows the band structure of the compound

HN N' ψN* r( )HψN' r( ) r,d∫=

SN N' ψN* r( )ψN' r( ) r.d∫=
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Zr0.25Ti0.75N calculated from the standard contour for a
simple cubic lattice. As usual, the s bands of TiN and
ZrN have a three-fold degeneracy at the point Γ, while
one band is split off in Zr0.25Ti0.75N and Ti0.25Zr0.75N,
and the s band has only a two-fold degeneracy. This can
be attributed to the emergence of a different kind of
atom in the unit cell, which lowers its local symmetry.
The bands in the vicinity of the Fermi level are flatter
for Zr0.25Ti0.75N (since they are predominantly popu-
lated by the p electrons of nitrogen) than the analogous
bands for ZrN and Ti0.25Zr0.75N, which is due to the
heavy mixture of d states in these compounds. The total
density of states for the compound Zr0.25Ti0.75N is
shown in Fig. 2. The densities of states for all the com-
pounds investigated are identical on the whole. Three
peaks can be singled out in the diagram, the first of
which is associated with the s electrons of nitrogen. The
second peak is split into two parts, which are occupied
predominantly by the p electrons of the metal and the p
electrons of nitrogen. The third peak is mainly associ-
ated with the p and d electrons of the metal. The Fermi
level is usually located on the left side of this peak. For
the materials Ti0.25Zr0.75N and ZrN, two-thirds of this
peak is due to the p electrons of nitrogen and metals,
while the remaining states are occupied by the d elec-
trons of Zr. For the two other compounds, the p states
of nitrogen mainly contribute to the density of states
near the Fermi level, while the contribution of d elec-
trons of the metals is negligible. The band structure cal-
culations were used to estimate the bulk elastic moduli
for these compounds. The diagram of state p = p(V) can
be constructed by varying the lattice constant for a
compound and calculating the electron gas pressure in
the MT spheres. The bulk moduli can then be easily
evaluated from the formula

where V0 is the equilibrium volume of a unit cell. Self-
consistent band calculations were made for various lat-
tice constants of the investigated compounds near the
equilibrium value for each compound. The results of
calculations of the bulk elastic moduli and the theoret-
ically calculated equilibrium lattice constants of the
compounds are in good agreement with the experimen-
tal values. Since this system forms a continuous series
of solutions, the values of the lattice constants depend
almost linearly on the concentration of metals in the
compound. The table contains the calculated values of
the equilibrium lattice constants of the compounds.

The theoretical values of the elastic moduli of the
compounds were found to be slightly higher than the
experimental values [9]. This is probably due to the dif-
ficulty in obtaining purely stoichiometric composi-
tions. For example, the Ti sublattice in TiN may contain
a large number of vacancies, which considerably lower
the bulk elastic modulus. The same case occurs for
other compounds in the system (Ti–Zr)N.

B V
dp
dV
------- 

 
V V0=

,=
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In a number of recent works on the sputtering tech-
nique and investigations of protective coatings based on
TiN and ZrN [10], the bulk elastic moduli were mea-
sured for the composite materials obtained. These mod-
uli were calculated from the experimental data on the
velocity of sound in film coatings. The critical review
by Kral et al. [11] contains the values of Young’s mod-
uli for TiN and ZrN, which are found to differ from the
theoretical values by not more than 10%.

Thus, the results of our investigations indicate that
this method can be used effectively for calculating the
physical properties of crystalline materials. This
method can also be modified easily for calculating the
properties of two-dimensional, quasi-one-dimensional,
and nano systems, as well as for three-dimensional
crystals with lattice defects, which is undoubtedly
interesting for the study of implanted crystals. The
LASTO method has a high accuracy and a higher speed
than the method of linearized augmented plane waves
and can be used effectively for calculating the energy
band structure of ternary stoichiometric compounds.
The inclusion of non-MT corrections in the computa-
tions should lead to a more correct description of the
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Fig. 2. Density of States of Zr0.25Ti0.75N.

Equilibrium lattice constants and bulk elastic moduli for
compounds of the system (Ti–Zr)N

Compound Lattice constant, 
nm

Bulk elastic modulus, 
GPa

TiN 0.4180 346.7

Zr0.25Ti0.75N 0.4422 224.0

Ti0.25Zr0.75N 0.4537 194.6

ZrN 0.4557 258.8
00
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peculiarities of the chemical bonds in the compounds
investigated. 

APPENDIX

The matrix elements of the Hamiltonian can be pre-
sented as the sum of matrix elements of the Hamilto-
nian with the MT potential and non-MT corrections:

(A1)

In turn, the non-MT corrections can be presented as the
sum of components for the regions inside the spheres
and between them:

(A2)

As usual, the crystal potential is expanded into a
Fourier series in the region between the spheres,

, (A3)

and is expanded into a series in spherical harmonics for
the MT spheres,

(A4)

It can be shown [5] that the contribution  has the
form

(A5)

We define the function θ(r) as follows:

The Fourier transform θ(g) of this function can be
determined easily in this case [7]:

(A6)

We can now obtain the following expression for the
interspherical part of the non-MT corrections:

HN N' HN N'
MT HN N'

NMT .+=

HN N'
NMT HN N'

sp HN N'
out .+=

V r( ) ig · r( )exp V g( )
g

∑=

V r( ) V L r j( )YL r j( ).
L

∑=

HN N'
sp

HN N'
sp YLYΛ*YΛ' ṙ βN jΛ,* βN ' jΛ', g jλV L

j g jλ'r
2 rd∫d∫

Λ Λ' L, ,
∑=

+ βN jΛ,* α N' jΛ', g jλV L
j ġ jλ'r

2 rd∫
+ α N jΛ,* βN' jΛ', ġ jλV L

j g jλ'r
2 rd∫

+ α N jΛ,* α N' jΛ', ġ jλV L
j ġ jλ'r

2 rd∫ .

θ r( )
1 in the space between spheres

0 outside it.



=

θ g( ) δg 0,
4π
Ω
------

ig · tγ–( )Rγ
3 j1 gRγ( )exp

gRγ
----------------------------------------------------------.

γ
∑–=
PH
(A7)

where f(r) = V(r)θ(r), and f(g – g') is defined with the
help of the fast Fourier transformation.

Let us now calculate the matrix elements of the
Hamiltonian with the MT potential and the elements of
the overlapping matrix. For this purpose, we compute
the matrix elements involving the functions in Eq.(7)
with the MT potential inside the MT spheres (region I)
and replace the integral over the outer region (II) by the
integral over the entire space with the Hamiltonian
HII = [–∇ 2 + V0] minus the integral over the MT spheres
with the same Hamiltonian HII. The matrix elements
can be written as the sum of three integrals:

(A8)

(A9)

(A10)

(A11)

(A12)

Let us now evaluate each integral successively:

(A13)

HN N'
int  = Ω φN* g( )Ti* g( ) f g g'–( )φN g'( )Ti g'( ),

g

∑
g

∑

HN N'
MT H1 H2 H3,+ +=

SN N'
MT S1 S2 S3,+ +=

H1 Nc ψN* r( )HIψN' r( ) rd ,

Ων

∫
ν
∑=

H2 ψN* r( )HIIψN' r( ) rd ,

V

∫=

H3 Nc ψN* r( )HIIψN' r( ) rd .

Ων

∫
ν
∑–=

H1 Nc ψN* r( )HIψN' r( ) rd

Ων

∫
ν
∑=

=  βN νΛ,* gνλ rν( ) α N νΛ,* ġνλ rν( )+[ ]YΛ* rν( )
Λ
∑ 
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 
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(A14)

(A15)

Combining all three integrals, we finally obtain the fol-
lowing expression for the matrix elements of the
Hamiltonian operator:

(A16)

=  
1

Nc

----------1
ν
--- e i k g+( )r– φN* g( )Ti* g( )

1

Nc

----------1
ν
---

g

∑
V

∫
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g'

∑

=  
1
ν
--- Ti* g( )φN* k g+( ) k g+ 2 V0+( )φN' k g+( )T j g( ),

g

∑

H3 Nc ψN* r( ) ∇ 2– V0+[ ]ψN' r( ) rd

Ων

∫
ν
∑–=

=  ψN* r( )∇ 2ψN' r( ) rd
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∫
ν
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∫
ν
∑–
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∑
g

∑–

× φN' g'( )T j g'( ) 4πRν
2 j1 g g'– Rν( )

g g'–
--------------------------------e

i g' g–( )rν

ν
∑
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Λ
∑
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2.

HN N'
MT
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+
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ν
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g
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The elements of the overlapping matrix are obtained
in an analogous manner and have the form

(A17)
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Abstract—A theoretical model for the description of the experimentally observed ([1] M.F. Chisholm,
D.A. Smith, Philos. Mag. A 59 (2) 181 (1989)) formation of split dislocations in low-angle tilt boundaries in
oxide superconductors is suggested. Conditions under which the splitting of dislocations in low-angle [100] tilt
boundaries is energetically favorable are determined theoretically. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Grain boundaries in oxide superconductors with a
high superconducting transition temperature (Tc) dra-
matically decrease the critical current in polycrystalline
samples as compared to single crystals (see, e.g., [2–
7]). To explain this effect, several models [8–16] have
been suggested, but the physical mechanism of the
influence of grain boundaries on high-temperature
superconductivity has not been determined unambigu-
ously at present (see, e.g., the discussion in the review
articles [6, 7, 17]). The most remarkable fact estab-
lished experimentally in this field is the significant dif-
ference between the character of the effect of low-angle
and high-angle grain boundaries on high-temperature
superconductivity [2–7]. Thus, the critical current den-
sity Jc through low-angle boundaries decreases sharply
with an increasing misorientation angle θ of the bound-
ary approximately by the following exponential law:
Jc(θ) = J0(0)exp(–θ/8°), where θ varies from 0° to about
15°. High-angle grain boundaries are characterized by
extremely low densities of the critical current Jc ≈ (10–

3 to 10–2)Jc(0), which depend only weakly on the mis-
orientation angle θ for angles exceeding 15°. In order to
explain the differences between the superconducting
properties of low-angle and high-angle grain bound-
aries, the models developed in [8–11, 16] relate these
properties to the effect on the high-temperature super-
conductivity exerted by the boundary cores and the
fields of mechanical stresses due to grain boundaries. In
the context of these models, it is of greatest interest to
analyze the transformations of the grain boundaries in
which the structure of the cores and the stress fields due
to the grain boundaries suffer significant changes. The
main aim of this work is to construct a theoretical
model that would describe the experimentally observed
[1] splitting of dislocations that constitute low-angle tilt
boundaries in oxide superconductors.
1063-7834/00/4211- $20.00 © 22000
1. MODEL OF A LOW-ANGLE TILT BOUNDARY 
WITH SPLIT DISLOCATIONS

Low-angle grain boundaries, which are character-
ized by misorientation angles θ ≤ 15°, are usually rep-
resented as walls of perfect lattice dislocations (with
Burgers vectors that are full vectors of the crystal lat-
tice) [18] (Fig. 1a). At the same time, it has been estab-
lished experimentally [1] that the structure of low-
angle [100] tilt boundaries in the superconducting
ceramic compound YBa2Cu3O7 differs from the “con-
ventional” structure shown in Fig. 1a. At θ = 5°, the
boundary represents a wall of partial edge dislocations
united into triples of dislocations with a net Burgers
vector B ≈ 1.17 nm [1] (Fig. 1b). Within each triple,
identical dislocations with the Burgers vector b = B/3
stand one above another and the separation p between
them is about 12b at θ = 5°. For angles θ ≤ 5°, the struc-
ture of such boundaries has virtually not been studied,
and we may assume that it also consists of either anal-
ogous triples of partial dislocations or perfect unex-
tended edge dislocations with the Burgers vector B ≈
1.17 nm.

Let us first consider under which conditions
extended dislocations can form in low-angle tilt bound-
aries. We will distinguish two main states of the struc-
ture of such boundaries: (1) a wall of unsplit edge dis-
locations with the Burgers vectors B and period h1
(Fig. 1a) and (2) a wall of split edge dislocations with
the same net Burgers vectors B, but consisting of partial
dislocations with the Burgers vectors b = B/3, separa-
tions p, and period h2 (Fig. 1b). Since we are interested
in the transition between the above two states, we will
assume that the new state (Fig. 1b) nucleates inside the
previous one shown in Fig. 1a. Then, the problem
reduces to finding the conditions under which the for-
mation of one new structural element in place of one
old element becomes energetically favorable, while all
000 MAIK “Nauka/Interperiodica”
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the other structural elements of the boundary remain
unchanged (Fig. 2).

Geometrically, to form a new structural element 2
(Fig. 2) in place of the old element 1, it is sufficient to
add to an unsplit dislocation with the Burgers vector B
two dipoles of partial edge dislocations: one (“upper”)
of the intrinsic (vacancy) type and another (“lower”) of
the extrinsic (interstitial) type. Then, the lower disloca-
tion of the upper dipole and the upper dislocation of the
lower dipole interact with the initial dislocation to
transform it into a partial dislocation of the same type
as the two remaining dislocations (the upper disloca-
tion of the upper dipole and the lower dislocation of the
lower dipole).

2. ENERGY CONDITIONS FOR THE SPLITTING 
OF DISLOCATIONS IN LOW-ANGLE TILT 

BOUNDARIES

Let us now consider what changes in the total
energy will occur upon the replacement of an old struc-
tural element with a new one (Fig. 2). The energy of the
boundary in the first state may be represented by the
sum

(1)

where R is the characteristic length for the boundary,

 is the elastic energy density per unit length of the

boundary, and  is the core energy of an undissoci-
ated grain-boundary dislocation.

The energy of the boundary in a transition state
(Fig. 2) is

(2)

where  is the elastic self-energy of the dipole of

partial dislocations,  is the core energy of the partial

dislocation,  is the energy of the interaction of the

dipoles with one another,  is the energy of the
interaction of the dipole with the initial boundary in
state 1,  is the radius of the partial-dislocation core,
and γ is the energy of the stacking fault enclosed
between the partial dislocations.

Thus, as the structure of the boundary changes from
state 1 into a transition state, the energy changes by an
amount

(3)
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the critical condition for the transition is that this differ-
ence equals zero. The core energies of the initial unsplit

dislocation  and partial dislocations  are givenW1
c W2

c

h1

(a)

h2

p

(b)

Fig. 1. Structure of low-angle tilt boundaries: (a) a wall of
perfect lattice dislocations (structure 1) and (b) a wall of
split dislocations (structure 2).

Fig. 2. Split dislocation in a low-angle boundary consisting
of perfect lattice dislocations.
0
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by the known expression [18]

(4)

where G is the shear modulus; ν is the Poisson ratio; Zi

are dimensionless constants of order unity; i = 1, 2; b1 =
B; and b2 = b. The elastic self-energy of the dipole of
partial dislocations can easily be calculated as the work
spent for the nucleation of a dipole in its self field of

elastic stresses  (x = 0, y) [18]:

(5)

The energies of interaction of dipoles with one another,

, and with the initial boundary  are calcu-
lated in a similar way. The first is determined as the
work spent on the nucleation of one dipole in the elastic
field of another:

(6)

The second is calculated as the work done on the nucle-
ation of a dipole in the elastic field of the initial bound-
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Fig. 3. Variation of (= peq/b) as a function of the misori-

entation angle θ of the boundary.

peq'
PH
ary (x, y), which is written as [18]

(7)

where the designation  = 2πt/h1 is introduced. Then,

the total energy  is determined by the expres-
sion

(8)

where  is the cutoff parameter of the elastic field of
the initial dislocation at its core.

Substituting (4)–(6) and (8) into (3), we obtain

(9)

The stacking-fault energy can be taken from [1], where
the estimate γ ≈ 7GB/[324π × (1 – ν)] was obtained.

The numerical analysis of expression (9) was per-
formed for the following values of the parameters: B =
3b, Z1 ≈ Z2 ≈ 1,  ≈ B, and  ≈ b. In the range of
small angles θ ≈ B/h1 from 0° to 7°, the change in the
total energy ∆W1–2 at 2b ≤ p ≤ 17b proved to be nega-
tive. This means that, at such misorientation angles, the
existence of triples of partial dislocations is always
more favorable energetically than the occurrence of
perfect grain-boundary dislocations. It also turned out
that, with increasing θ, the equilibrium separation peq
between the partial dislocations in the triples (i.e., such
p at which the gain in energy ∆W1–2 becomes maximum
by the absolute value) decreases (Fig. 3). Note that, for
θ = 5°, our calculations yield peq ≈ 11b, which agrees
well with the magnitude 12b observed in [1].

CONCLUSIONS

Thus, the theoretical model developed in this work
satisfactorily describes the conditions for the formation
of dissociated dislocations in low-angle tilt boundaries
in oxide superconductors. Within this model, the main
driving force for the splitting of dislocations in low-
angle boundaries is related to the decrease in the elastic
energy of the boundary that takes place upon splitting.
The splitting of dislocations in low-angle [100] tilt
boundaries in YBa2Cu3O7 – δ is energetically favorable

σxx
b1

σxx
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for boundaries with misorientation angles θ ≤ 7°, which
agrees with experimental data [1].

The critical current density Jc through low-angle tilt
boundaries in oxide superconductors drops sharply as
the misorientation angle of the boundary increases
from θ = 0° to approximately 15° [2–7]. The models
[8–16] in which the effect of grain boundaries on high-
temperature superconductivity is considered usually
employ the conventional concept of low-angle bound-
aries as walls of perfect lattice dislocations (Fig. 1a).
However, in the context of the experiments described in
[1] and of the theoretical analysis of this paper, the
results of the models [8–16] seem to be debatable in the
general case. In particular, the possibility of dislocation
splitting in low-angle [100] tilt boundaries (Figs. 1b, 2)
should necessarily be taken into account in future
works concerning the theoretical description of the
effects of the structure of cores and stress fields at grain
boundaries on high-temperature superconductivity.
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Abstract—The effect of normal phonon–phonon scattering processes on momentum relaxation in a nonequi-
librium electron–phonon system is considered. A system of rate equations for the electron and phonon distri-
bution functions has been solved with the inclusion of mutual electron–phonon drag. The kinetic coefficients
of conductors have been calculated in a linear approximation in the degeneracy parameter. The effect of normal
phonon–phonon scattering processes on the electron–phonon drag and on the kinetic phenomena in conductors
with degenerate carrier statistics is analyzed. © 2000 MAIK “Nauka/Interperiodica”.
Studies dealing with the electron–phonon drag in
metals and semiconductors published to date [1–13]
were undertaken assuming that the momentum relax-
ation of both electrons and phonons in a nonequilib-
rium electron–phonon system can be described by
introducing, in order, the total relaxation frequencies of
electrons νe(k) and phonons νph(q). This approximation
was justified by the complexity of solving coupled inte-
gral equations for nonequilibrium electron and phonon
distribution functions. These equations were solved in
a zero approximation in the electron-gas degeneracy
parameter kBT/ζ ! 1 (ζ is the Fermi energy) [10, 11].
The present author succeeded in solving coupled rate
equations for a nonequilibrium electron–phonon sys-
tem in a linear approximation in the degeneracy param-
eter and for an arbitrary degree of the mutual effect of
electrons and phonons not in equilibrium [12, 13]. This
permitted the valid determination of the effect of
mutual electron–phonon drag on the kinetic effects in
conductors with degenerate carrier statistics [12, 13]
within a one-parameter formulation.

The results obtained in [12, 13] are grounds for
reaching beyond the one-parameter description of a
nonequilibrium electron–phonon system and for taking
into consideration normal phonon–phonon scattering
(N-processes). These scattering processes do not con-
tribute to the phonon momentum relaxation or, accord-
ingly, to thermal resistance [14–18]. However, they
determine the nonequilibrium phonon distribution
function and result in the relaxation of the phonon sub-
system to a local equilibrium distribution characterized
by an average drift velocity of u [14–18]. The N-pro-
cesses redistribute the energy and momentum among
the various phonon modes, thereby inhibiting strong
deviations from the equilibrium population of each
1063-7834/00/4211- $20.00 © 2004
mode, because most of the phonon momentum relax-
ation mechanisms depend on the phonon frequency.
The part played by the N-processes in the theory of lat-
tice heat conductivity was thoroughly studied in [14–
18]. These scattering processes must be taken into
account under the conditions where the phonon relax-
ation frequency for N-processes, νphN(q), is higher than,
or comparable to, the resistive frequency νphR(q) asso-
ciated with phonon relaxation at the boundaries in
impurities, in electrons, and in Umklapp processes. We
will show that the inclusion of the N-processes is also
necessary when considering the effect of electron–
phonon drag on kinetic phenomena in solids.

The point is that thermopower, heat conductivity,
and thermomagnetic effects are determined from the
condition of vanishing total electric current through a
sample. In this case, the average velocity of ordered
electron motion in any physically small volume of a
sample is zero. Therefore, the momentum transfer from
ordered electron motion to phonons is small and arises
only in the first order in the degeneracy parameter. On
the other hand, if there is a temperature gradient, there
is also a stationary phonon flux from the hot to the cold
end of the sample and momentum transfer from
ordered phonon motion to electrons already occurs in
the zeroth approximation in the degeneracy parameter.
Note that, at low temperatures, where electron–phonon
drag contributes noticeably to the thermopower, the
phonon relaxation frequency νphN(q) > νphR(q). It thus
follows that phonon momentum relaxation in a non-
equilibrium electron–phonon system should be taken
into account more rigorously than was done in the case
of the one-parameter formulation [1–13]. In this paper,
the nonequilibrium state of the phonon subsystem is
specified by three parameters, namely, the two relax-
2000 MAIK “Nauka/Interperiodica”
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ation frequencies νphN(q) and νphR(q) and the drift
velocity u. This formulation of the problem is appropri-
ate for conductors with degenerate carrier statistics.

This paper studies the effect of normal phonon–
phonon scattering processes on mutual electron–
phonon drag and on kinetic phenomena in conductors
with degenerate carrier statistics. In Section 1, a system
of rate equations, complemented by the electron
momentum balance equation, is transformed into cou-
pled integral equations for the functions describing a
nonequilibrium state of electrons. In Section 2, this sys-
tem is solved in a linear approximation in the degener-
acy parameter. Section 3 calculates the electrical con-
ductivity and thermopower of degenerate conductors.
Section 4 contains an analysis of the Onsager symme-
try relations and of the part played by the normal
phonon scattering processes in heat conductivity.

1. COUPLED RATE EQUATIONS
FOR A NONEQUILIBRIUM ELECTRON–
PHONON SYSTEM WITH INCLUSION
OF NORMAL PHONON SCATTERING 

PROCESSES

It is well known [14–18] that normal phonon scat-
tering processes do not contribute to the phonon
momentum relaxation while driving the phonon sub-
system to a local equilibrium Planck distribution char-
acterized by an average drift velocity uλ, which can be
different for phonons with different polarizations λ:

(1)

where  is the Planck function. The figure illustrates
schematically the redistribution and relaxation of the
momentum acquired by the electron–phonon system
from an electric field and a temperature gradient. The
electron–phonon relaxation mechanisms characterized
by the frequencies νeph and νphe bring about a redistri-
bution of the momentum within an electron–phonon
system. The scattering of electrons from impurities
(νei), of phonons from the boundaries (νphL), and of
phonons from impurities (the Rayleigh mechanism,
νphi), and the phonon–phonon Umklapp scattering
(νphU) result in the relaxation of the total momentum of
the electron–phonon system. The N-processes redis-
tribute the momentum among the various phonon
modes and give rise to a drift of phonons with a velocity
of uλ.

The coupled rate equations for the nonequilibrium
electron f(k, r) and the phonon Nλ(q, r), with the distri-
bution functions taking the normal phonon–phonon
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scattering processes into account, can be written in the
form [12–18]

(2)

Here,  = sλq/q is the group velocity of acoustic
phonons with polarization λ and the relaxation fre-

quency  includes all nonelectronic resistive
mechanisms of phonon scattering, namely, phonon
scattering from phonons (Umklapp processes) from
defects and from the sample boundaries. The collision
integrals of electrons with impurities Iei and with
phonons Ie, ph and of phonons with electrons Iph, e were
specified in [3, 5, 12]. According to expression (2), the
phonon subsystem is described not by one parameter

 =  + , i.e., the total phonon
momentum relaxation frequency [1–13], but by three

parameters: the two relaxation frequencies  and

 [  =  +  +  +

 is the resistive phonon relaxation frequency]
and the average phonon drift velocity uλ. There are two
known mechanisms of normal three-phonon scattering,
one due to Herring [19] and the other to Simons [20].
The scattering mechanism of Herring, which involves
phonons of different polarizations (t + l  l, t +
l  t), tends to establish the same drift velocity for
phonons of both polarizations, ul = ut = uph. The
phonons participating in the mechanism of Simons [20]
are of the same polarization. Therefore, in the case of
normal scattering by this mechanism, the drift velocity
will be different for the longitudinal and transverse
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Scheme illustrating momentum relaxation of the electron–
phonon system with inclusion of normal phonon-scattering
processes. Here, 
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phonon relaxation due to impurities (the Rayleigh mecha-
nism), boundaries, and normal phonon–phonon scattering,
respectively.
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phonons. The resistive frequency will likewise be dif-
ferent for longitudinal and transverse phonons. There-
fore, in what follows, we will consider a more general
case of the different drift velocities for longitudinal and
transverse phonons, ul ≠ ut. Note that, in some studies,
the N-processes of phonon scattering are treated in a
fairly arbitrary manner. For instance, the authors of
[21], who studied the effect of mutual electron–phonon
drag on thermomagnetic phenomena, included the
relaxation mechanism of Simons as the only nonelec-
tronic mechanism of phonon scattering. This mecha-
nism, however, was formally included in the resistive
frequency of the phonon momentum relaxation. This
being considered, the results obtained in those studies
cannot be considered fully valid.

To find uλ, the coupled rate equations (2) should be
complemented with the phonon-momentum balance
equation obtained by multiplying Eq. (1) by the phonon
momentum vector "q and by running this summation
over all q vectors. In doing this, one should bear in
mind that, in normal phonon–phonon scattering pro-
cesses, the total phonon subsystem momentum is con-
served:

(3)

The electron and phonon distribution functions are pre-
sented in the form

(4)

where f0(εk) and  are the local equilibrium distribu-
tion functions for the electrons and phonons, respec-
tively, and δfk and gλ(q) are nonequilibrium terms (lin-
ear in external factors) added to the distribution func-
tions. Let us linearize the collision integrals in these
terms. The collision integrals Iie(δfk) and Iph, e(f0, gλ(q)),

as well as Ie, ph(δfk, ), can be expressed in terms of
the relaxation frequencies in the elastic-scattering
approximations [12, 13]. When calculating the colli-
sion integral Ie, ph(f0, gλ(q)), we take into account the
inelasticity of the electron–phonon collisions to the first
order in the inelasticity parameter "ωqλ/ζ. We present
the electron distribution function δk in the standard
form [2–13]

(5)

Substituting Eqs. (1), (4), and (5) in Eq. (2), we
obtain an equation for the phonon distribution function.
Because the corresponding manipulations are similar to

1
V
--- "qνphN

λ q( ) Nq
λ N q uλ,( )–( )

q

∑ 1
V
--- "qνphN

λ q( )
q

∑=

× gλ q( )
"quλ

kBT
-------------Nqλ

0 Nqλ
0 1+( )– 0.=

f k f 0 εk( ) δ f k, Nq
λ+ Nqλ

0 gλ q( ),+= =

Nqλ
0

Nqλ
0

δ f k
∂ f 0

∂εk

--------– 
  vkc ε( )( ).=
PH
                                                                  

those made in [12], we shall write out the expression
for the function gλ(q) directly:

(6)

Here,  =  + , where  is the fre-
quency of phonon-momentum relaxation due to elec-
trons [10–12]. The nonequilibrium term g0λ(q) is due to
the action of the temperature gradient on the phonon

subsystem, and the  function takes into account
the effect of the electrons in nonequilibrium. The quan-
tity guλ(q) originates from the normal phonon–phonon
scattering processes, which give rise to phonon drift with
a velocity of uλ. Relations (2), (3), and (6) can be used to
derive a phonon momentum balance equation, from
which the phonon drift velocity uλ can be expressed
through the c(ε) function in the following way:

(7)

In the function

mF = m(ζ) is the electron effective mass at the Fermi level
and the other functions are given by the expressions

(8)
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where zdλ = "ωdλ/kBT (ωdλ is the Debye frequency of
phonons of polarization λ). We isolated two parts of the
phonon drift velocity uλ. The first part, u0λ, is due to the
direct action of the temperature gradient on the phonon
subsystem, and the second part, ∆uλ, is associated with
the effect of the nonequilibrium electron distribution
function.

Prior to turning to further calculations, we will
insert Eq. (7) in expression (6) for the phonon distribu-
tion function gλ(q) and rearrange the terms, which will
considerably simplify the subsequent work. To do this,
we combine the g0λ(q) term in the gλ(q) function with
the guλ(q) contribution, which is proportional to the
phonon drift velocity u0λ, to obtain

(9)

(10)

where  is the effective phonon-momentum relax-
ation frequency renormalized by the normal phonon-
scattering processes. It is known [14–18] that the lattice
heat conductivity is determined by this frequency. We
will show here that the drag thermopower will likewise
be determined by the effective phonon-momentum
relaxation frequency. Obviously, when the inequality

 !  holds, the phonon drift contribution

 ≈  to the gλ(q) distribution function is
negligible. In this limiting case, the one-parameter
approximation accepted in [1–13] for the description of
the effect of the nonequilibrium phonon subsystem on
electron transport phenomena in conductors with
degenerate carrier statistics is valid. In the opposite lim-

iting case of  @ , one has to take into
account the effect of phonon drift on momentum
exchange in the nonequilibrium electron–phonon sys-
tem. Thus, under the conditions where normal pro-
cesses play a substantial role in phonon momentum
repartitioning, one has to describe the phonon sub-
system in terms of an augmented basis, i.e., within a
three-parameter approximation.

The purpose of this work is to investigate the part
played by the phonon drift, induced by the N-pro-
cesses, on electron transport phenomena. For semimet-

ΨNR
λ νphR

λ q( )νphN
λ q( )

νph
λ q( )

----------------------------------
zdλ

,=

gλ q( ) gλ
1( ) q( ) g∆uλ q( ) gλ

2( ) q( ),+ +=

g∆uλ q( )
"q∆uλ( )

kBT
---------------------Nqλ

0 Nqλ
0 1+( )

νphN
λ q( )

νph
λ q( )

----------------,=

gλ
1( ) q( )

Nqλ
0 Nqλ

0 1+( )
ν̃ph

λ
q( )

--------------------------------
"ωqλ

kBT2
------------ vq

λ ∇ T( ),–=

ν̃ph
λ

q( ) νph
λ q( ) 1 νphN

λ q( )
ΨN

λ

ΨNR
λ----------+

 
 
 

1–

,=

ν̃ph
λ

q( )

νphN
λ q( ) νphR

λ q( )

ν̃ph
λ

q( ) νphR
λ q( )

νphN
λ q( ) νphR

λ q( )
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
als and semiconductors with degenerate carrier statis-
tics with ne < na/4 (na is the number of atoms per unit
volume), the inequality 2kF < qd is met (qd is the Debye
wave vector) [22]. In this case, one can obtain an equa-
tion for the c(ε) function in much the same way as was
done in [12]. This equation is conveniently presented in
the form of Volterra’s inhomogeneous integral equation

(11)

Here,  = k/kF, "kF is the Fermi momentum, τ(ε) is the
total electron relaxation time, τ–1(εk) = νe(k) = νei(k) +
νe, ph(k), and νei(k) and νe, ph(k) are the frequencies of
electron relaxation due to impurities and phonons,
respectively. The reciprocal quantity (Φ(ε))–1 deter-
mines the time τe–ph–e during which the momentum
imparted by the electrons to the phonon subsystem is
recovered by the electrons [12]. The c2(ε) function
accounts for the effect of nonequilibrium electrons on
electrons through the phonon subsystem and is related
to mutual electron–phonon drag. The c1(ε) function
takes into account the direct action of the electric field
and the temperature gradient on the electron sub-
system, as well as the electron drag by phonons:

(12)
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The quantities  and Φ(ε) depend on energy ε
only through the upper limit of integration  [12].
The quantity cλ(ε) reflects the effect of phonon drift on
the electron distribution function. It can be written as

(13)

(14)

Expressions (11)–(14) make up a system of two inte-
gral equations for the quantities c(ε) and L(ε), charac-
terizing the nonequilibrium state of the electron sub-
system. It was shown [12] that one can construct a reg-
ular scheme for calculating the c(ε) function from the
integral equation (11) without recourse to expansion in
a small parameter related to the weakness of the elec-
tron–phonon coupling or to the smallness of the mutual
effect of electrons and phonons which have nonequilib-
rium distributions. We will now show that the coupled
equations (11)–(14), including normal phonon scatter-
ing processes, can also be solved using only the strong
degeneracy condition kBT/ζ ! 1.

2. SOLUTION OF THE RATE EQUATION
FOR ELECTRONS IN DEGENERATE 

SEMICONDUCTORS

It is convenient to look for Q(ε) rather than the func-
tion c(ε) in the solution to the integral equation (11).
Using Eqs. (11) and (12), we obtain
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The coupled integral equations (15) and (16) could be
solved using the method of Gurevich and Korenblit
[10] by introducing a replacement (–∂f0/∂ε) ≅  δ(ε – ζ)
in the integral operator (15), which is valid in strong
degeneracy conditions. However, this method allows
for the rigorous analysis of kinetic coefficients, with the
inclusion of mutual drag only in the zeroth approxima-
tion in electron gas degeneracy. Using this approxima-
tion in [21] in analyzing thermomagnetic effects led to
incorrect calculations.

Therefore, we shall use the method proposed in
[12], which is the best suited to seeking parametric
solutions to coupled integral equations. It allows one,
without specifying the Φ(ε), τ(ε), and m(ε) functions of
the electron energy ε, to find a solution to these equa-
tions in a linear approximation in the (kBT/ζ) parameter.
Using this method, a solution is found in two stages.
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|ε – ζ | ≤ kBT will provide a dominant contribution to the
integrals (15):

(17)

It was shown [12] that the energy expansion studied
actually occurs in the parameter η = (ε – ζ)/kBT. In the
vicinity of the Fermi level, the strict inequality |η | ! 1
does not hold, which does not allow one to limit the
results to a finite number of terms. Summation of the
infinite series yields [12]

(18)

where 

Note that the function f1(η) is symmetric with respect to
the replacement of η by (–η) and f2(η) is antisymmetric
with respect to this replacement, so that Q(ε) may also
be divided into two parts: a symmetric Qs(ε) and an
antisymmetric Qa(ε).

Thus, in order to solve the coupled equations (15)
and (16), we have only to determine the functions Q(ζ)
and K>(ζ), and the quantity L(ζ). We use the expansion
Φ(ε) – Φ(ζ) ≈ (ε – ζ)Φ(1)(ζ) and limit ourselves to a lin-
ear approximation in (kBT/ζ) to recast Eq. (15) in the
form
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where ε = ζ + ηkBT and DΦ = kBTd/dε[ln(Φ(ε))]ε = ζ. To
zero order in the degeneracy parameter, the second
term in (19) can be neglected, after which one easily
finds expressions for Q0(ζ) and L(ζ):
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where Γ = τF/τe–ph–e is a parameter characterizing the
degree of the mutual effect of the electron and phonon
distribution functions in nonequilibrium. This parame-
ter is equal to the ratio of the electron relaxation time τF
to the time τe–ph–e during which the momentum
imparted by electrons to phonons is recovered by the
electron system. As seen from Eq. (20), taking the nor-
mal phonon scattering into account enhances the
mutual electron–phonon drag effect.

To find the functions Q(ζ), K>(ζ), and L(ζ) to first
order in the degeneracy parameter, we insert Eq. (18) in
Eqs. (16) and (19) and integrate over η. As a result, we
come to coupled algebraic equations for the sought
functions, whose solution can be written in the form

(21)

where 

To zero order in the degeneracy parameter, the K>(ζ)
function has the form

(22)

Substituting Eqs. (21) and (22) in Eq. (18) yields a solu-
tion to the integral equation for the χ(ε) function, which
is valid in the linear approximation in the degeneracy
parameter. This solution allows one to calculate the
conduction current and the heat flux and to analyze the
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effect of normal phonon scattering on the kinetic coef-
ficients of conductors with degenerate carrier statistics
in the cases of both weak (Γ ! 1) and strong mutual
electron–phonon drag.

3. CALCULATION OF THE ELECTRICAL 
CONDUCTIVITY AND THERMOPOWER 

OF DEGENERATE CONDUCTORS
Let us calculate the conduction current j by dividing

it into three parts proportional to the nonequilibrium
terms added to the electron distribution function c(ε):

(23)

To calculate these fluxes, we insert Eqs. (18), (21), and
(22) in Eq. (23) and integrate over the parameter η to
obtain, in the linear approximation in (kBT/ζ),

(24)

Here,

In Eq. (24), the first two terms in the braces give the
current j1, the term proportional to L(ζ) determines the
current jΛ caused by the effect of the phonon system
drift on the conduction electrons, and the last two terms
in the brackets determine the mutual-drag current. Sub-
stituting Eqs. (21) and (22) in Eq. (24) yields an expres-
sion for the conduction current:

(25)

where  = e2ne /mF and  = τF(1 – Γ – Ku)–1.
From Eq. (25) one can derive expressions for the

kinetic coefficients σxx and βxx:

(26)
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PH
For  = 0, the quantity Ku(ζ) = 0 and expressions
(26) for σxx and βxx transform to the corresponding
expressions in [12]. As seen from Eq. (26), taking the
drift of the phonon subsystem associated with normal
phonon scattering into account results in an increase in
the fraction of the momentum transferred by the
phonons to the electrons. This enhances the effect of
mutual electron–phonon drag on the electrical conduc-
tivity and brings about the renormalization of the
phonon relaxation frequency by N-processes in the
expression for the thermoelectric coefficient βxx . The
appearance of a term linear in the degeneracy parame-
ter in the expression for σxx is a result of the mutual
electron–phonon drag.

Consider the effect of normal phonon–phonon scat-
tering on the thermopower of conductors with degener-
ate carrier statistics. We find from the j = 0 condition
that

(27)

For  = 0, we obtain Ku(ζ) = 0 and

, and the expression for thermopower
(27) transforms to Eq. (46) of [12]. We note first of all
that the phonon component of thermopower σph is
determined not by the total phonon relaxation fre-

quency  but rather by the resistive phonon relax-
ation frequency (10), which is renormalized by the
N-processes. In the limiting case of νphN(q) ! νphR(q),

the quantity , and one can use the
expression for the drag thermopower obtained earlier
within the one-parameter approximation [1–13]. For
νphN(q) ≥ νphR(q), normal phonon scattering processes
give rise to an increase in magnitude of the drag ther-
mopower:

(28)

Therefore, when interpreting the experimental data,
one should take into account the drift of the phonon
system and use expression (28). Thus, we have shown
that the drag thermopower, as well as the lattice heat
conductivity, contains a phonon momentum relaxation
frequency renormalized by the N-processes. As seen
from Eq. (27), mutual electron–phonon drag contrib-
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utes only to the diffusion component of the ther-
mopower. The physics of this is clear. For j = 0, the
momentum is transferred from electrons to the phonon
subsystem (see figure) through processes of diffusion
arising in first order in the degeneracy parameter kBT/ζ.
On the other hand, in the presence of a temperature gra-
dient, a steady-state phonon flux propagates through a
conductor and momentum transfer from the phonon
subsystem to electrons is already nonzero in the first
order in the degeneracy parameter. This is what follows
from Eq. (27).

In [21], the method proposed in [10] was used to
calculate thermopower, which resulted in a loss of the
ΓDQ term in Eqs. (26) and (27). When this approxima-
tion is applied in cases where a magnetic field is
present, the Nernst–Ettingshausen coefficients are
found to be erroneously magnetic-field dependent [21].
A correct calculation of these coefficients, with inclu-
sion of the mutual drag effect [23] made within a one-
parameter approach, does not show any deviation from
their classical behavior in strong magnetic fields.

4. CALCULATION OF THE ELECTRONIC
AND PHONON HEAT FLUXES AND ANALYSIS 

OF THE ONSAGER RELATIONS

Let us calculate the electronic heat flux We by divid-
ing it into three parts proportional to the nonequilib-
rium terms added to the electron distribution function
c(ε):

(29)

A calculation of this flux using Eqs. (18), (21), and (22)
yields

(30)
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One can readily verify that the Onsager relations for the
thermoelectric coefficients characterizing the fluxes of
heat We and charge j are not met. As shown in [12], one
has to take into account the heat flux transported by
phonons, but also associated with electrons, in a non-
equilibrium state.

The heat flux transported by phonons can be divided
into three parts:

(31)

The heat flux Wph1 is due to both diffusion and drift
motion of phonons driven by a temperature gradient.
The calculation of the N-processes, which result in
phonon drift, reduces to renormalization of the phonon-
momentum relaxation frequency:

(32)

Expression (32) coincides with the relation of Callaway
for lattice heat conductivity [14–18]. The heat flux W∆u

originates from the effect of electrons on the drift
motion of phonons. The heat flux Wph, e results from the
effect of nonequilibrium electrons on the phonon sub-
system. These fluxes can be written in the form

(33)

(34)

Because the nonequilibrium state of the electron sys-
tem is due not only to the effect of the electric field and
temperature gradient but also to the drag of electrons by
phonons, both the nonequilibrium electrons and the
effect of nonequilibrium phonons on phonons through
the electron subsystem contribute to the fluxes (33) and
(34). Therefore, these fluxes bring about renormaliza-
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tion of both the electron and phonon heat fluxes. These
fluxes can be calculated as

(35)

As in the analysis of the Wph, e flux made in [12, 13], we
include the drift and diffusion heat-flux components
(35) caused by nonequilibrium electrons in the total
electron heat flux:

(36)

The terms proportional to (Aph(ζ))2—T in expression
(35), which are associated with the effect of nonequi-
librium phonons on phonons through the conduction
electrons, contribute to the phonon heat flux. As a result
of this separation, the expressions for the kinetic coef-
ficients assume the form

(37)

where βxx is given by Eq. (26). Thus, we have verified
by direct calculation that the Onsager relations for the
thermoelectric coefficients βxx and γxx, calculated in a
linear approximation in the degeneracy parameter are
satisfied in the case where the nonequilibrium state of
the phonon system is described in terms of a three-
parameter approximation. Note that the Onsager rela-
tions follow from the thermodynamics of irreversible
processes and must always be satisfied. However, a
solution of the coupled rate equations and a calculation
of the kinetic coefficients are performed by making a
number of approximations, which may result in a vio-
lation of these relations. The Onsager relations are a
necessary (but not sufficient) condition to the validity
of approximate calculations. The fact that these rela-
tions are satisfied for the kinetic coefficients calculated
in this paper means that we have correctly taken into
account both the effect of nonequilibrium electrons on
electrons through the phonon subsystem and the effect
of nonequilibrium phonons on phonons through the
conduction electrons.

The electronic heat conductivity is usually found
under the condition j = 0. In this case, it can be pre-
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A comparison of expressions (26) and (39) shows that
the Wiedemann–Franz law is not satisfied. This is asso-
ciated with the inelasticity of electron–phonon scatter-
ing, which results in electron drag by phonons [
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and their subsequent mutual drag (
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). Neglecting the
terms proportional to the degeneracy parameter, we
obtain for the effective Lorenz factor 
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It is evident that the electron drag by phonons and their
subsequent mutual drag, as well as the contribution due
to normal phonon–phonon scattering, may result in a
considerable decrease in the Lorenz factor 

 

L

 

* and
should be taken into account when interpreting experi-
mental data.

5. CONCLUSIONS

Thus, we have solved coupled rate equations for the
electron and phonon distribution functions with inclu-
sion of normal phonon–phonon scattering for conduc-
tors with degenerate carrier statistics. The kinetic coef-
ficients were calculated in a linear approximation in the
degeneracy parameter. The part played by the mutual
electron–phonon drag, as well as by the normal
phonon-scattering processes, in electrical resistivity,
thermopower, and heat conductivity of degenerate con-
ductors has been analyzed. Formulating the nonequilib-
rium state of the phonon subsystem in terms of a three-
parameter approximation allowed for a more correct
analysis of the kinetic effects. It was shown that, under
the conditions where the phonon relaxation frequency
due to N-processes is of the order of or exceeds the
resistive frequency, the drift of the phonon system
caused by the N-processes brings about an enhance-
ment of the mutual drag effect on the electrical conduc-
tivity and a considerable increase in the phonon compo-
nent in the thermopower. In this case, one should use
the expressions obtained in this work when interpreting
experimental data on the electrical conductivity, ther-
mopower, and heat conductivity of conductors with
degenerate carrier statistics. Investigation into elec-
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tron–phonon drag in degenerate conductors can be
extended by considering normal electron–electron scat-
tering, which, along with the phonon N-processes, does
not contribute to the electron momentum relaxation but
results instead in the drift of the electron system.
Description of the nonequilibrium state of both elec-
trons and phonons in terms of a three-parameter
approximation would allow for a more adequate analy-
sis of electron–phonon drag and of the kinetic phenom-
ena exhibited in conductors with degenerate carrier sta-
tistics.
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Abstract—The effect of chlorine impurity on the fundamental reflection spectrum and the electronic band
structure of cadmium telluride crystals has been studied. At the impurity concentration NCl > 5.0 × 1019 cm–3,
a peak appears in the reflectance spectra. This peak is due to electron transitions at the X point of the Brillouin
zone from the upper split valence band to Cl levels lying 0.05 eV above the Γ minimum of the conduction band.
The other features in the reflectance spectra and band structure are explained as being due to the effect of
spin−orbit splitting at the X point and to indirect electronic transitions from the Cl levels to the Γ minimum.
© 2000 MAIK “Nauka/Interperiodica”.
Cadmium telluride is a wide-bandgap semiconduct-
ing material (Eg = 1.606 eV at 4.2 K) with direct transi-
tions [1]. Doping of CdTe by Group-III and Group-VII
elements of the periodic table places them in sites of the
Cd and Te sublattices, respectively, where they act as
donors. The donor levels lying below the Γ minimum of
the conduction band (CB) are mainly shallow (up to
0.02 eV) and are calculated in terms of the hydrogenic
model. A study [2] of the pressure dependences of the
electrical resistivity and the Hall coefficient of CdTe
doped by Ga, In, Cl, Br, and other donor impurities led
to the development of the model of a non-Γ center. This
model takes into account lattice rearrangement around
donor impurities, which gives rise to the formation of
states differing from the hydrogen-like ones. By [2], the
Cl impurity levels lie 0.05 eV above the CB minimum
and are not at the Γ point of the Brillouin zone (BZ).
The symmetry of the center was not specified. Taking
into account the possibility of indirect transitions, this
model was found to be applicable to the interpretation
of experimental data in studies of electron trapping cen-
ters in [3] and photoluminescence (PL) bands beyond
the fundamental absorption edge in [4]. It was proposed
[5] to place the off-center CB minimum associated with
the above-mentioned impurities at the X point of the
BZ; however, this refinement of the non-Γ center
requires experimental support.

The purpose of this work was to investigate the
effect of chlorine impurity on the fundamental reflec-
tion spectrum and electronic band structure of cad-
mium telluride, as well as to check the validity of the
non-Γ-center model.
1063-7834/00/4211- $20.00 © 22014
1. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUES

CdTe single crystals were grown from the melt by
the Bridgman method. The crystals were doped during
growth by adding a corresponding amount of CdCl2
into the ampoule with the preliminarily synthesized
CdTe. The concentration of the chlorine impurity intro-
duced into the melt was within the range of 1018–
1020 cm–3.

Measurements of the electrical conductivity σ and
the Hall constant RH were carried out within the 300–
420 K range on mechanically polished parallelepiped-
shaped samples 1.5 × 2 × 8 mm in size. The undoped
CdTe samples had hole conduction at room tempera-
ture, with carrier concentration p ≈ 1015 cm–3 and
mobility µp = 80–90 cm2/V s. The CdTe:Cl samples
exhibited electronic conduction with n ≈ 106 cm–3 and
µn = 300–400 cm2/V s. A characteristic feature of chlo-
rine-compensated CdTe single crystals is the stability
of their electrophysical parameters and the same spec-
tral response of the low-temperature PL over the length
of the ingot [6].

Fundamental reflection spectra R(λ)were obtained
at room temperature on a HITACHI-356 double-beam
spectrometer. The measurements were performed on
naturally cleaved crystals under practically normal
incidence of light on the surface of the studied sample.

2. RESULTS AND DISCUSSION

R(λ) spectra of undoped CdTe and of CdTe:Cl (inset
to Fig. 1) exhibit an E0 peak (the Γ8–Γ6 transition, see
Fig. 2). The peak positions, 1.64 and 1.65 eV, respec-
tively, agree well with the theoretical value of 1.65 eV [1].
000 MAIK “Nauka/Interperiodica”



        

FUNDAMENTAL REFLECTION SPECTRUM AND THE ELECTRONIC BAND STRUCTURE 2015

                                                                                                                             
The chlorine-induced short-wavelength shift of the E0
peak by 0.01 eV is accompanied by its spread, which
washes out the free-exciton structure Eex at 1.599 eV.
The latter is most probably associated with free-exciton
dissociation in the field of a large number of charged
centers (in our case, ClTe donors). The shift of the peak
is apparently caused by the CB shift induced by the
strong interaction of electrons with phonons emitted in
indirect transitions from the off-center CB minimum.
In this connection, we note the large value of the
Fröhlich constant (αFr = 0.39 [7]) characterizing CB
electron coupling with optical phonons in CdTe, as well
as the maximum value of the acoustic phonon energy at
the BZ edge. The assumption of a strong electron–
phonon coupling in n-CdTe:Cl crystals with a high
chlorine-impurity concentration is argued for by an
analysis of the µ ~ T α relations. For samples with NCl =
1018–1019 cm–3, α = –(1.5–1.6). This value of α is typi-
cal of n-CdTe [8] and is in accord with the theoretical
figure, –1.5, associated with scattering from acoustic
lattice vibrations. In samples with NCl = 5.0 × 1019–
1020 cm–3, α = –4.5, which implies a comparable con-
tribution of various scattering mechanisms to the total
carrier mobility. In this case, one should apparently
take into account two-phonon scattering from acoustic
vibrations with α = –3 [9] and scattering from optical
lattice vibrations, where α is determined by the quan-
tity exp("ωLO/kT – 1). Note that the energy position of
the donors can provide, in an indirect transition, the
creation of a longitudinal optical ("ωLO = 0.0213 eV
[1]) or two longitudinal acoustic phonons with the max-
imum energy "ωLA ≈ 0.014 eV. This value of "ωLA is in
good agreement with the known experimental and cal-
culated LA phonon energies at the BZ edges [1].

In the UV region, R shows the following features. In
CdTe, this is the doublet E1 and E2 (E1 + ∆1) at 3.64 and
4.27 eV, respectively (curve 1 in Fig. 1), which corre-
sponds to the L4.5–L6 and L6–L6 transitions (Fig. 2). The
magnitude of the spin–orbit splitting ∆1 = 0.63 eV is in
accord with the literature data of 0.6–0.7 eV [10],
although the doublet peak positions are somewhat
higher than the typical theoretical figures of 3.49 and
4.04 eV [1, 10]. By [1, 10], the E0 peak at 5.16 eV cor-
responds to the ∆5–∆5 transition. It should be pointed
out that the relatively weak intensity of the E0 peak
(∆5−∆5) is at odds with earlier studies of the fundamen-
tal reflectivity spectra of cadmium telluride, while
agreeing with the calculated figures quoted in the
papers where more complex models involving transi-
tions within the BZ are proposed for the nature of the
structure of R [10]. The CdTe:Cl curves (2, 3) are char-
acterized by equal intensities of the E1 and E2 peaks
resulting in some uncertainty as to their energy posi-
tions, as well as by the appearance of a W peak at
3.23 eV, which is not known from the literature. At first
glance, the overall structure of the reflectance spectrum
of CdTe:Cl crystals in the UV region is very similar to
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
the R structure for Si (curve 4). Note that the positions
of peaks 1, 2, 3, 4, and 5 at 3.2, 3.5, 3.9, 4.5, and 5.16
eV, respectively, correlate with the energies of the main

transitions in Si crystals [10], namely, –  (3.2 eV),

–  (3.5 eV), X4–X1 (4.0 eV), Σ2–Σ1 (4.4 eV), and

–L1 (5.2 eV). Hence, the similarity between the fun-
damental reflectance spectra is due to the formation of
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Fig. 1. Fundamental reflectance in the long-wavelength
(inset) and UV regions of (1) CdTe, (2, 3) CdTe:Cl, and
(4)  Si. Chlorine impurity concentration (cm–3): (2) 2–5.0 ×
1019 and (3) 1020.

Fig. 2. Chlorine energy level position at the X point in the
Brillouin zone and the main transitions corresponding to the
fundamental reflectance peaks in CdTe and CdTe:Cl single
crystals. The CdTe band structure was taken from [1].
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the W peak and the relatively weak R intensity in the
5.16- to 5.20-eV region.

The position of the chlorine energy levels at the BZ
X point, 0.05 eV above the Γ minimum (Fig. 2), permits
one to relate the nature of the W peak in crystals with
NCl > 5.0 × 1019 cm–3 to electron transitions from the
X7v point to the off-center CB minimum associated
with the donor impurity band. In addition, the valence-
band spin–orbit splitting at the X point (∆2 = 0.32–
0.46 eV [10]) results in a “superposition” of the transi-
tions L4.5–L6 (E1) and the transitions to the X6v off-cen-
ter minimum (W + ∆2). This brings about an increase in
intensity of the E1 peak; however, compared with the
case of undoped CdTe, one may observe its shift and
some washing out of the E1 and E2 doublet structure.

Thus, the band structure of CdTe doped by the chlo-
rine donor impurity undergoes substantial changes at
high enough doping levels, which becomes manifest in
a shift of the CB and the formation of a donor impurity
band with a minimum at the X point in the Brillouin
zone.
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Abstract—A new model of porous-silicon (PS) luminescence based on hot-electron generation in silicon nano-
particles is proposed. This mechanism was used earlier for interpretation of light emission in island metal films
(IMF). This paper offers a theoretical analysis of possible mechanisms capable of producing light emission in
hot-electron collisions with a surface. Experimental data are presented in support of the applicability of this
model to PS and silicon nanoparticles (the existence of electron emission in semiconductor structures and the
correlation between the electron emission current and the luminescence intensity). © 2000 MAIK
“Nauka/Interperiodica”.
Studies of the luminescence observed in porous sil-
icon (PS) and similar silicon nanostructures have been
dealt with in many publications and are summed up in
monograph [1] and reviews [2, 3]. Nevertheless, the
nature of the visible PS luminescence remains unclear.
One of the first models proposed was based on size
quantization of the energy levels in small silicon parti-
cles making up pore walls [4]. Photoluminescence (PL)
is related in this model to radiative interband transitions
through the energy gap enlarged by the quantum con-
finement (QC) effect. This model accounts well for the
shift of the PL response toward shorter wavelengths as
the pores are made progressively larger by chemical
etching and the pore walls decrease in size.

There are, however, many observations defying
explanation within the quantum model. Among them is
the temperature dependence of the PL intensity and its
quenching at temperatures of 600–800 K [5]. The width
of the PL response (about 0.6 eV) also suggests that,
according to the model of [4], the wall size scatter
should be very small, which has not been observed
experimentally [6]. The authors of [6] believe that the
red PL in PS is due to molecular recombination in the
near-surface region of the crystal rather than to a size
quantization effect.

Alternative theories relating the visible PL from PS
to molecular compounds present on the PS surface are
usually called “molecular factor” theories. Molecular
compounds capable of emitting visible PL themselves
may form on the PS surface during etching. This may
be the siloxane molecule consisting of Si, H, and O, as
well as SiHx complexes, polysilane, etc. [7]. This the-
ory accounts well for the PL temperature dependence,
because some of the above molecules are observed to
decompose at the same temperatures at which the PL
disappears [8]. It is difficult to understand within this
theory, however, why PS layers subjected to an addi-
tional treatment (passivation) of the surface in hydro-
1063-7834/00/4211- $20.00 © 2017
gen and in pure oxygen exhibit a similarly strong lumi-
nescence [7].

The so-called smart quantum model [7] is in a cer-
tain sense a combination of the preceding ones. Similar
to the quantum model, it assumes that the visible PL is
due to the increased width of the bandgap in small sili-
con particles; however, the molecules adsorbed on the
PS surface are also believed to play an important role.
More specifically, the adsorbed molecules of hydrogen,
oxygen, and hydrogen-containing compounds depos-
ited on the PS surface as a result of etching or some
other specific additional treatment passivate this sur-
face and, thus, increase the probability of radiative
interband recombination.

Observation of the visible PL in PS stimulated stud-
ies of the PS electroluminescence (EL). These studies
have a larger application potential, because they offer
the promise of developing PS-based light-emitting
devices and of the integration of optical and electronic
components on a silicon substrate.

Primarily, the electroluminescence of various vari-
ants of sandwich structures has been studied. The EL
properties of planar structures based on PS [9] and Si
nanoparticles [10, 11] have recently become the focus
of several studies. The PS EL studies are considered in
detail in review paper [3]. In contrast to photolumines-
cence investigations, the results quoted by various
authors on EL are more contradictory even in the case
where the same object is studied. No common opinion
has thus far been formed on the nature of the discrete
pattern of luminescence of the sample surface and on
the shape of the I–V curves, which determines effective
luminescence. The need of electroforming for the for-
mation of local luminescence centers likewise remains
unclear. In some cases, the maxima of the EL and PL
spectral responses coincide [12], while in others they
differ in position [13]. The position of the maxima can
also be affected by interference effects [14]. 
2000 MAIK “Nauka/Interperiodica”
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While the first PS-based light-emitting devices were
Schottky diodes, further research led to the develop-
ment of PS p–n junctions characterized by a much more
efficient carrier injection into the region of the p–n
junction [12]. The mechanism of the emission was
believed [12] to consist in the injection of electrons
from the n-layer and of holes from the p-layer into the
region of the p–n junction, where they underwent radi-
ative recombination. The PS bandgap width in the
region of the p–n junction was increased by the QC
effect. The observed luminescence degradation with
time is assigned [12] to depassivation of the emitting
layers. The breaking of the passivating bonds may take
place as the sample is heated in the course of work. 

We noticed that the spectral response of the lumi-
nescence of current-carrying island metal films [10]
reveals a close similarity with those of PS-based struc-
tures. This is seen, for instance, from Figs. 1 and 2
showing the spectra of luminescence of Au island films
and of the PS EL when a current is passed through them
[12, 15, 16]. The observations of the emission from
island metal films (IMF) were interpreted by us in
terms of a model which takes into account the possibil-
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Fig. 1. Radiation spectrum of current-carrying gold island
films. (1), (2) Relate to emission from individual centers.
(3) Plots the emission of a chain-structured island film. 
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Fig. 2. Electroluminescence spectra of porous-silicon-based
structures. (1) Refers to [15], (2) to [12], and (3) to [16]. 
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ity of strong nonequilibrium electron-gas heating in
nanoobjects [17, 18]. A weighty argument for a model
involving hot electrons and for the luminescence
excited by them in islands came from the experiments
that showed that the luminescence and electron emis-
sion are produced by the same centers and that the
luminescence intensity and the electron emission cur-
rent are correlated [19]. We suggested that the lumines-
cence in island films and in PS may occur by the same
mechanism [20]. This paper develops theoretical con-
cepts on hot electrons in PS and reports a number of
new experiments. Among them is an investigation of
electron emission from PS and Si nanoparticles and of
the correlation between electroluminescence and elec-
tron emission. 

1. THEORY

IMFs on dielectric substrates (glass, SiO2, SiO, sap-
phires, etc.) are known to emit electrons and photons
when power is delivered to the islands by a variety of
means, for example, by passing a electric current [19,
21] or by irradiation by electrons [22], laser light [23],
or microwaves [24]. The characteristics of the elec-
tronic and photon emission allow the simplest and least
contradictory interpretation within the hot-electron
model [17, 18]. 

Hot-electron generation in IMFs is initiated by a
combination of three factors: (i) a sharp decrease in the
electron–lattice coupling in islands whose size is less
than the electron mean free path, (ii) the possibility of
injecting large power fluxes into a particular island, and
(iii) the thermal stability of small islands on dielectric
substrates with a good thermal contact. 

Note that, when electrons are heated by an electric
current, injection of high power fluxes into a particular
island is made possible by the creation of high current-
density channels in the course of electroforming. In
laser heating, this possibility is associated with efficient
light absorption by small particles [18, 25]. The
increase in the thermal stability of an island with a
decrease in its size is due to the increased ratio of the
surface area of an island to its volume [17]. All the
above factors are also characteristic, in various degrees,
of porous silicon. The luminescence observed in IMFs
may be connected with the bremsstrahlung of hot elec-
trons and the inverse surface photoeffect in collisions of
hot electrons with the island surface, as well as with
inelastic tunneling from one island to another. The effi-
ciency of light emission from an IMF is determined by
two factors, namely, by the presence of hot electrons
and by an extended surface. Both these factors are
inherent in PS. Hot electrons produced in photolumi-
nescence in semiconductors are capable of initiating an
internal photoeffect. In this case, the hot-electron distri-
bution function in energy is determined by the interac-
tion of the primary nonequilibrium electrons with lat-
tice vibrations. In the case of electroluminescence, the
electron distribution function in energy is formed by
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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the competing effects of the electric field and electron
scattering from the lattice vibrations. 

By the model proposed here, the luminescence will
appear if the presence of hot electrons in the size-quan-
tized components of a silicon structure (islands, walls,
filaments, etc.) is combined with the structure surface
being in a specific condition. 

When a hot nonequilibrium electron is scattered by
a potential barrier, the component of the electron veloc-
ity normal to the barrier changes abruptly from ν⊥
to −ν⊥ . 

The bremsstrahlung spectrum is given by the
expression [17] 

(1)

where e and m are the electronic charge and mass,
respectively, and c is the velocity of light. 

Expression (1) is valid if

ε⊥  > "ω. (2)

As is seen from Eq. (1), the spectral distribution of
the radiation emitted by any one electron depends only
weakly on the frequency. However, condition (2)
imposes a stronger frequency dependence on an elec-
tron ensemble, because it relates the radiation spectrum
to the distribution of hot electrons by the energy in the
conduction band. In particular, if one accepts a Max-
wellian function with an effective electron temperature
Te for the hot-electron distribution in energy, the
bremsstrahlung spectrum due to collisions with the sur-
face can be written as [1] 

(3)

Here, Sc is the surface area and µ is the Fermi energy. 
We see that, in the case of a Maxwellian distribution

function, the bremsstrahlung at the boundary should
pass through a maximum in intensity at the frequency
"ω = kTe. For other mechanisms of light emission by
hot electrons (for instance, for an effect inverse to the
Drude absorption), this maximum can be shifted
toward higher frequencies. Its position can also be
affected by a deviation of the electron energy distribu-
tion from the Maxwellian function. 

The energy distribution function of excited valence-
band electrons in the PS conduction band usually has
two maxima. One of them is due to the distribution of
the electronic density of states in the valence band. The
specific features of this maximum are determined by
the electrons that did not have enough time to emit
acoustic and optical phonons more than once. The other
maximum lies at moderate energies, which in this case
are not equal to the lattice temperature. 

We believe that the presence of hot electrons and of
an extended PS surface should favor bremsstrahlung

ε ω( ) 16e2

3πmc3
---------------- ε⊥ ε⊥ "ω–( ),=

E ω( ) Sc
2e2µ2

3 πc"( )3
--------------------"ωe

"ω/kTe–
 at "ω µ<( ).≈
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generation and the onset of the inverse photoeffect
when electrons hit the inner surface of the pores
(Fig. 3). Moreover, such collisions may also initiate
interband transitions with the emission of light. The
band bending near the surface affects the height and the
shape of the surface barrier. This may account for the
luminescence sensitivity to surface contamination. In
particular, adsorbed oxides are capable of substantially
reducing the surface work function and, thus, of
enhancing the surface photoeffect initiated by electron
collisions with the pore surface. 

2. RESULTS OF THE EXPERIMENT 
AND DISCUSSION 

We studied the electroluminescence and electronic
emission from PS-based sandwich structures, as well as
from planar systems made up of Si islands. 

The PS layers were prepared by standard electro-
chemical etching of p-type single-crystal plates 200 µm
thick and with an electrical resistivity of 7 Ω cm. The
porous layer was a few microns thick. An aluminum
layer was deposited on the back side of the plate to pro-
vide an ohmic contact (see inset in Fig. 4). A gold grid
electrode was deposited on the PS layer to facilitate
electron escape into vacuum when observing electronic
emission from the sample. In some samples, the top
gold electrode was replaced by a spring-type contact.
The measurements were carried out in a vacuum, with
a residual gas pressure at a level of 10–4 Pa. To measure
the electronic emission, an electron collector biased at
+100 V with respect to the top gold electrode was
placed above the sample. The I–V curves of the conduc-
tion and electronic-emission currents, as well as the
radiation spectrum, were studied by applying dc and ac
voltages. 

Fig. 3. Schematic of light emission in inverse photoeffect
(hω1), in inelastic electron scattering from a potential bar-
rier between nanoparticles (hω2), and in inelastic electron
tunneling (hω3). 
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Figure 5 presents an I–V curve of the conduction
current through a dc-biased experimental structure
shown in Fig. 4. The structure had rectifying properties
with a rectification factor of 50 at a voltage of about
10 V. Forward bias is obtained by applying a negative
potential to the top gold electrode, which agrees with
the published data [3]. The conduction-current I–V
curves measured under forward bias exhibit a clearly
pronounced nonohmic pattern. Conduction-current I–V
characteristics of this kind were also observed when an
ac voltage was applied to a sample. 

EL was seen under a forward bias of about 13 V in
the form of separate red luminous dots, which could be
observed by the unaided eye in the dark. The EL inten-
sity observed when applying an ac voltage of the same
effective magnitude was somewhat higher than that
under a dc bias. This is similar to EL observations in
IMFs [10]. The appearance of the luminescence was
accompanied by the onset of electronic emission from
the diode. The inset to Fig. 5 presents oscillograms of
the ac voltage U applied to the structure and of the con-
duction (Ic) and emission (Ie) currents. One readily sees
that an emission current is observed in a forward-biased
sample, where a noticeable conduction current also sets
in. The dependences of the luminescence intensity
(λmax = 700 nm) and of the electron emission current on
the applied ac voltage are shown in Fig. 4. These depen-
dences are seen to be well correlated, including their
noise, which suggests that electron emission and the EL
processes are interrelated. As was already mentioned, a
similar correlation was observed in the case of IMFs
[19]. 
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In addition to the sandwich configurations, we also
studied the planar silicon island structures [10], which
were prepared in a high vacuum on a dielectric sub-
strate in the gap between the Si contacts (inset b in
Fig. 6). To reduce the electron work function, a BaO
layer was deposited on the Si island film. Deposition of
BaO on Si islands increased film conductivity, and an
electron emission current accompanied by lumines-
cence set in at a voltage of 40 V (Fig. 6). Also shown in
the figure is the spectral response of the luminescence
of a BaO-coated Si island film. 

The observation of electron emission in PS and sili-
con island films argues for the presence of hot electrons
in them. The similarity between the spectral responses
gives one grounds to maintain that the EL in these
materials has the same nature. The presence of hot elec-
trons in silicon nanoparticles with a reduced work func-
tion and of an extended surface in PS makes the opera-
tion of luminescence generation mechanisms involving
bremsstrahlung, the inverse surface photoeffect, and
inelastic tunneling possible. 
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Abstract—The generation of low-temperature thermal donors (TD) in silicon is sensitive to the sample cooling
rate (from the anneal to room temperature) and the ambient (air or vacuum). This effect is most clearly pro-
nounced in the case of annealing at 500°C, is noticeable at 480°C, and is practically undetectable at 450°C. The
results are interpreted satisfactorily as being due to the TD generation becoming enhanced in the presence of
silicon self-interstitial (SiI) atoms. These atoms are emitted by thermal donors, to be subsequently absorbed by
sinks, particularly the sample surface and grown-in microdefects (vacancy voids). When annealing in a vacuum,
the surface acts as the main sink. If the anneal is done in air, this sink is passivated as a result of oxidation and/or
contamination, with voids becoming the main sinks; as a result, the concentration of SiI atoms increases sub-
stantially and the generation rate is enhanced. Rapid cooling brings about a partial passivation of the voids
(as a result of their becoming decorated by rapidly diffusing impurities) and an additional enhancement of
the generation rate. The calculated rate curves obtained within this model are well fitted to the experiment.
© 2000 MAIK “Nauka/Interperiodica”.
The kinetics of oxygen thermal-donor (TD) buildup
in silicon in the course of low-temperature annealing
(usually in the temperature region from 400 to 550°C)
is dealt with in a wealth of publications; they are
reviewed, for instance, in [1–4]. The experimental data
are characterized by very poor reproducibility; indeed,
the N(t) rate curves, i.e., the dependences of the TD
concentration on anneal time, obtained at a given
anneal temperature T and oxygen concentration C, may
differ both in shape (in the characteristic time needed to
reach saturation) and in the magnitude of N (by a few
multiples). This scatter can be partially attributed to the
difference in the content of some concomitant impuri-
ties, such as carbon [5, 6], hydrogen [7, 8], or nitrogen
[9, 10], among the samples studied. However, the high-
purity crystals (where the above impurities are practi-
cally absent) studied also exhibited this strong differ-
ence in N(t) at the same T and C. There is obviously an
intimate and fundamental reason for this difference,
which is not merely associated with the different impu-
rity contents in a material. Such a fundamental factor
would most probably result from the silicon self-inter-
stitial atoms emitted by oxygen aggregates [3, 11]. This
paper presents experimental data as evidence of the
appreciable significance of this factor. The rate curves
obtained were successfully fitted to the relations calcu-
lated in terms of a simple quantitative model.
1063-7834/00/4211- $20.00 © 22022
1. EXPERIMENT

We studied silicon samples cut from adjacent plates
of the same crystal with the following characteristics:
diameter 150 mm; vacancy growth regime [12]; a rela-
tively high growth rate, 0.8 mm/min; oxygen content
C = 1 × 1018 cm–3 (obtained using the presently
accepted calibration of 3.14 × 1017 cm–2 for the optical
absorption peak); carbon content below the sensitivity
threshold (approximately 2 × 1015 cm–3); crystal boron-
doped to a concentration NB = 1.7 × 1015 cm–3. Some of
the samples were studied in the starting (post-growth)
conditions, but the majority were studied after a fast
thermal anneal (at 1250°C 35 s in a nitrogen atmo-
sphere). This preliminary anneal dissolves native oxy-
gen clusters [13], so that subsequent oxygen agglomer-
ation should start anew. A qualitative difference
between the above two groups of samples was not,
however, observed. All the data presented in what fol-
lows refer to samples that were subjected to prelimi-
nary anneal. This was done because, in such samples,
the effects to be described below manifest themselves
more clearly in these conditions.

Thermal donor annealing was carried out both in air
(in several three to four hour long steps adding up to
about 80 h, with each step finalized either by quench-
ing, at a cooling rate of about 60 K/s, or by slow cooling
in a furnace at a rate of 0.2 K/s after switching the heat-
ing off) and in an evacuated quartz tube at a fixed cool-
000 MAIK “Nauka/Interperiodica”
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ing rate of 0.8 K/s, which is intermediate between the
two figures mentioned in parentheses.

The TD concentration was derived from the temper-
ature dependence of the electron concentration n(T)
measured using the Hall effect (see Fig. 1 for illustra-
tion). The theoretical (solid) line is drawn under the
assumption that the double TDs of different size and,
accordingly, with slightly differing energy levels can be
formally described by one (averaged) deep level and
one shallow level. Despite this simplification, the
smallest rms deviation of the theoretical curve from
experimental points did not usually exceed 3%. The
parameters to be determined were the concentration of
double thermal donors N, their averaged deep (Ed) and
shallow (Es) energy levels, and the effective compen-
sating concentration (which is equal to the difference
between the concentrations of shallow (boron) accep-
tors and shallow (phosphorus) donors, as well as of
shallow single thermal donors, STDs [14, 15]).

The rate curves N(t) obtained under a 500°C anneal
in the three regimes studied (namely, (I) anneal in air
with subsequent quenching, (II) anneal in air with sub-
sequent slow cooling, and (III) anneal in vacuum) are
presented in Fig. 2. These three curves differ strongly
in shape and in absolute concentrations, despite the
samples being identical. Annealing in vacuum results in
a comparatively low concentration of double thermal
donors, and the rate curve can be fitted by a simple
exponential (except for a small drop occurring in long
time intervals). Annealing in air produces a signifi-
cantly larger N and a cupola-shaped curve. The solid
lines in Fig. 2 were calculated in terms of the model
described below, in which the main parameter is the
sink power for the SiI atoms (which depends strongly
on the actual anneal conditions).

Some series of anneals were done with regime
switching (Fig. 3). When several anneals in air with
quenching were followed by annealing in a vacuum
furnace, N(t) dropped to the level characteristic of the
new conditions (Fig. 3a). When switched to the reverse
direction, from the initial anneal in vacuum to that in air
(with quenching), N(t) started to increase immediately
to the values typical of the new regime (Fig. 3b).

The effect of the anneal conditions were weaker at
lower T; indeed, while it remained substantial at 480°C
(Fig. 4a), it nearly disappeared at 450°C (Fig. 4b).

2. MODEL

The strong sensitivity of the rate curve N(t) to the
anneal conditions can be readily accounted for, both
qualitatively and quantitatively, within a simple model
reducing to four main points:

(1) The TD generation rate G increases rapidly if the
concentration CI of the self-interstitial atoms is suffi-
ciently high [3, 11]; the G(CI) dependence, which is
discussed below, can be reduced to a linear function.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
(2) The interstitials SiI are emitted by thermal-donor
oxygen clusters On (where n is the number of oxygen
atoms in a cluster). Emission transforms these clusters
to vacancy-type clusters OnV (removal of a silicon
atom is equivalent to adding a vacancy).

(3) The emitted SiI atoms are absorbed by sinks, i.e.,
the sample surface and volume sinks (voids in a
vacancy-type material). Under prolonged annealing,
absorption of SiI atoms by vacancy clusters OnV also
becomes significant.
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Fig. 1. Illustration of the temperature dependence of the
electron concentration derived from the Hall effect. The
sample was annealed for 8 h at 500°C in air (with subse-
quent quenching). The TD parameters found from the best
fit of the theoretical (solid) curve to experimental points:
N = 2.45 × 1015 cm–3, a deep energy level of 133 meV, a
shallow level of 60 meV, a difference between the boron
acceptor and STD concentrations of 1 × 1015 cm–3. 
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Fig. 2. TD generation rate curves obtained at 500°C
[(I) anneal in air with quenching, (II) anneal in air followed
by slow cooling, (III) anneal in vacuum]: (1–3) were calcu-
lated within the model of oxygen agglomeration enhanced
by self-interstitials. 
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(4) The sink power depends on the actual anneal
conditions, and it is this factor that accounts for the sen-
sitivity of the rate curves to these conditions. 

The flux of diffusing interstitials to voids, normal-
ized to the product DICI of the diffusion coefficient by
the concentration, is equal to 4πRVNV (where RV is the
average radius of the voids, and NV is their density). The
quantity 4πRVNV may be called the void sink power and
be denoted by βV . The typical void parameters [12] cor-
respond to βV = 150 cm–2. 

Diffusion to the sample surface acting as a sink
results in CI being dependent on the depth z, a relation
which can be approximated by the sin(πz/d) profile.
The loss of interstitials (per unit volume) corresponds
to the sink power βS = (π/d)2 = 2000 cm–2 (in our case,
the sample thickness d = 675 µm). The diffusion flux to
the surface is substantially stronger than that to the
voids; the βS/βV ratio is approximately 14. 

The substantial increase in the TD concentration
observed when crossing over from annealing in vac-
uum to that in air (Figs. 2, 3) may be attributed to the
fact that the flow to the surface, under the relatively
clean conditions of vacuum anneal, is limited only by
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Fig. 3. Transient TD-generation processes after the switch-
ing of the anneal conditions: (a) anneal in vacuum after a
preliminary anneal in air with quenching (A/V curve, filled
squares) and (b) anneal in air with quenching after a prelim-
inary anneal in vacuum (V/A curve, filled circles). Shown
for comparison are curves obtained in a fixed regime, (A) in
air and (V) in vacuum. Solid curves are the calculation. 
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diffusion; i.e., it is strong (and the concentration of
interstitial atoms is too low to enhance the TD genera-
tion). Conversely, when annealing in air, the surface is
passivated either by a growing oxide layer or by surface
contamination (or both), which makes the voids the
main (but less powerful) sink. Accordingly, the CI con-
centration grows, and the TD generation rate increases.
The further increase in the generation rate, observed
after the transition from slow cooling to quenching,
indicates partial void passivation in the case of anneal-
ing in air. It appears natural to relate this effect to void
decoration by rapidly diffusing impurities (such as cop-
per), which penetrate into the bulk of the sample under
annealing. Under the slow cooling conditions, these
impurities diffuse back to the surface. However, when
quenched, the impurities remain in the sample and dec-
orate the voids. It is essential that only part of the voids
(in a general case, microdefects) are decorated by
impurities during the quench [16]; one may, therefore,
anticipate that the void passivation will be far from
complete. Indeed, an estimation made below suggests
that the void sink power decreases by only a factor of
1.5. This reasoning is supported by sample etching
experiments; while before, thermal donor anneal etch-
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Fig. 4. Comparison of TD generation rate curves for two
anneal conditions: (1) in air with quenching and (2) in vac-
uum, obtained at (a) 480°C and (b) 450°C. 
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ing did not reveal microdefects, after an anneal for sev-
eral hours (in air with subsequent quenching), microde-
fects with a volume density of the order of 2 × 106 cm–3

were observed, which, in order of magnitude, is equal
to a typical void density in vacancy silicon [12]. 

We are turning now to a quantitative theory of
kinetic phenomena based on the above general model. 

2.1. TD Generation Rate as a Function
of the Concentration of Interstitials 

Oxygen thermal-donor clusters are generated
(nucleated) as a result of consecutive transitions in a
chain of states. Two adjacent states are denoted by indi-
ces k and k + 1; they differ either in the size n (the num-
ber of aggregated oxygen atoms) or in atomic configu-
ration. In the first case, the transition indicates the
attachment of another oxygen atom, while in the sec-
ond, it indicates the atomic rearrangement. In terms of
classical nucleation theory, the generation rate G is
expressed as a sum over consecutive transitions [17]: 

(1)

where Jk is the flux from k to the next state, k + 1, for
the particular case where clusters are in equilibrium
with the monomer solution (so that their concentration
Ck is given by the law of active masses and is propor-
tional to Cn). The flux Jk is equal to the product of Ck

and the transition frequency νk. Both types of transi-
tions, the attachment and rearrangement, can be
enhanced in the presence of SiI atoms. The reaction of
the attachment is enhanced through oxygen transport
by the rapid diffusion (and rapid dissociation) of OSiI

complexes [3, 11]. The rearrangement is enhanced if
the SiI atoms act as mobile catalysts in this reaction;
indeed, an SiI atom then becomes the nearest neighbor
of a cluster and lowers the barrier to rearrangement, to
subsequently recede again from it. 

For both types of transitions, the frequency νk (and,
hence, the flux Jk) is a linearly growing function of the
concentration of interstitials CI. The nucleation rate in
Eq. (1) is frequently controlled by only one (critical)
transition, in which case it is also the linearly growing
function 

(2)

where G0 is the “intrinsic” nucleation rate (in the
absence of SiI atoms) and α is a “catalytic coefficient”
describing the generation enhanced by the SiI atoms. 

In earlier papers [3, 11], it was assumed that SiI

atom emission can also be a transition in the chain lead-
ing to the formation of thermal-donor clusters, which in
this case would be vacancy-type clusters, such as OnV.
The vacancy cluster concentration can be measured
using the platinum diffusion technique [18, 19]. This
technique was employed to determine the vacancy con-

1/G 1/Jk,∑=

G G0 αCI,+=
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centration in the starting and quenched silicon samples
(vacancies are bound to oxygen atoms to form OnV
below a certain temperature, near 1020°C [20]). When
applied to samples annealed at 500°C [21], this tech-
nique revealed that vacancy complexes are indeed
introduced in the course of thermal-donor anneal, but
their concentration is less than N by two to three orders
of magnitude. Thus, the emission transitions are not
involved directly in the formation of TDs (which
should be identified with the simple On clusters). The
emission of SiI by the already formed TDs is, however,
an effect of fundamental significance; indeed, the inter-
stitials emitted in relatively small numbers enhance the
TD generation catalytically, thereby producing feed-
back in the system under consideration. 

2.2. The Rate of Emission and Reabsorption 
of SiI Atoms 

The emission rate is proportional to the emitter
(thermal donor) concentration and is equal to µN,
where µ is the emission frequency. Strictly speaking,
this frequency varies with time as the average cluster
size increases. However, the average size of thermal
donors rapidly attains a constant level, about 10 oxygen
atoms per cluster [22], which justifies the use of a time-
independent averaged value of µ. 

The emission is balanced by the reabsorption of SiI

atoms by vacancy clusters (their concentration is
denoted by NV), in which case the concentrations of the
three reagents (emitters, absorbers, and SiI atoms) sat-
isfy the mass action law 

(3)

where χ is the equilibrium emission constant. The total
vacancy-cluster generation rate is equal to the differ-
ence between the emission and absorption fluxes: 

(4)

It becomes zero when the equilibrium relation (3) is
satisfied. 

2.3 The Balance Equation for Self-Interstitials 

Interstitial atoms are generated at the same rate in
Eq. (4) as the vacancy clusters (the difference between
the emission and reabsorption); moreover, they are
absorbed by sinks (this process is practically irrevers-
ibly because of the low equilibrium SiI concentration at
low T) at the rate βDICI: 

(5)

The sink power β defined earlier depends noticeably on
the actual anneal conditions. 

The SiI diffusion coefficient is very large even below
room temperature [23]; at the melting point, it was esti-
mated at 3 × 10–4 cm2/s [24]. Extrapolation to 500°C

CI NV /N χ ,=

dNV /dt µ N CI NV /χ–( ).=

dCI/dt µ N CI NV /χ–( ) βDICI.–=
00



2026 VORONKOV et al.
made for a reasonably low migration energy (0.25 eV),
yielding DI = 4 × 10–5 cm2/s. By Eq. (5), the actual con-
centration CI very rapidly (in about 3 min or less)
reaches a quasi-stationary value corresponding to the
nearly zero right-hand part of the equation 

(6)

In particular, in an earlier anneal stage, when the
vacancy cluster concentration is still not high, expres-
sion (6) reduces to direct proportionality between CI

and the emitter (thermal donor) concentration: 

(7)

However, at a later stage, as the vacancy cluster concen-
tration builds up, the magnitude of CI, by Eq. (6), is
controlled by the ratio N/NV . Because N is limited and
NV continues to grow (as a result of the emission and
subsequent removal of the interstitials by the sinks), CI

falls off with time in a later anneal stage and the thermal
donor generation rate decreases accordingly. This
effect accounts for the dropping branch of rate curves 1
and 2 in Fig. 2. 

2. 4. Rate Equation for Thermal Donors 

TDs are generated at a rate given by expression (2).
The generated thermal donors, on the other hand, dis-
appear with a characteristic lifetime τ, which is evi-
denced by the dropping branches of the rate curves
(particularly by the decrease following the regime
switching in Fig. 3a). The net rate equation includes
generation and losses: 

(8)

There are two general thermal-donor loss mechanisms:
(1) dissolution (dissociation) and (2) transformation to
neutral clusters  either through a slow rearrange-
ment to a neutral configuration or as a result of growing
to a size at which the electrical activity is zero. 

In the first case, the concentration N would tend to a
constant value (determined by the mass action law),
which is at odds with the behavior of the curves in
Fig. 2. We shall therefore accept the second mecha-
nism, namely, transformation to the neutral clusters

. Generation of these clusters requires certain
refinements be introduced into the model: (i) These
clusters are assumed to be weaker emitters than the
thermal donors themselves, so that their contribution to
the balance equation (6) can be neglected. (ii) The ther-
mal-donor lifetime (the time for On to convert to )
will be assumed to be independent of CI. These
assumptions are justified by the good agreement of the
calculated rate curves with the experiment. 

CI µN / βDI µNV /χ+( ).=

CI µN /βDI.=

dN /dt G0 αCI N /τ .–+=

On*

On*

On*
PH
2. 5. Analytical and Numerical Solutions 
of the Agglomeration/Emission Equations 

In a general case, the evolution of a system of oxy-
gen clusters and interstitials is described by the two rate
equations (8) and (4) for two interrelated dynamic vari-
ables, N (the concentration of TDs, the emitters) and NV

(the concentration of vacancy clusters, the absorbers).
The SiI concentration is expressed through these vari-
ables by using the balance equation (6). 

In an earlier stage, when vacancy clusters still play
an insignificant role, the rate curve is determined by
one simple equation following from Eqs. (7) and (8): 

(9)

where τa is the effective (sink-dependent) TD lifetime 

(10)

The solution of Eq. (9) is a simple exponential growth
of N(t) with saturation. On the plateau, the value of N is
G0τa; it increases with decreasing sink power, and the
first half of the rate curves in Fig. 2 is qualitatively
accounted for by this simplified theory. 

To describe the net rate curves, one has to integrate
Eqs. (8) and (4) numerically, for which purpose one can
conveniently introduce scaling factors, namely, S = G0τ
for the thermal-donor concentration, SV = αχτ  for the
vacancy cluster concentration, and SI = G0/α for the
concentration of the self-interstitial clusters. 

After the transition to normalized (divided by the
above factors) variables and a dimensionless time x =
t/τ, the system of equations will include two dimen-
sionless parameters, namely, the reduced catalytic
coefficient A, 

, (11)

and the reduced sink power B,

(12)

The equations for the normalized variables, labeled by
the old symbols N, NV , and CI, assume the simple form 

(13)

(14)

(15)

The lifetime τ and the intrinsic generation rate G0 were
found from a rate curve, obtained under vacuum
annealing (where the effect of interstitials is insig-
nificant), and were determined to be τ = 5 h and G0 =
8.6 × 1010 cm–3 s–1. The parameters A and B were cho-
sen as best fits for curves 1 and 2 in Fig. 2 (recall that
the value of B for vacuum annealing is not an indepen-
dent parameter; it is 14 times the value of B for anneal-
ing in air followed by slow cooling). The final results
are as follows: A = 20, B = 1.1 for annealing in air with

dN /dt G0 N /τa,–=

1/τa 1/τ µα /βDi.–=

A αχ/G0µτ=

B βDI/αµτ .=

dN /dx 1 CI N ,–+=

dNV /dx N CI NV–( )/A,=

CI N / NV B+( ).=
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quenching, B = 1.6 for annealing in air with subsequent
slow cooling, and B = 23 for vacuum annealing. 

The corresponding calculated curves for all three
(dimensionless) variables are presented in Fig. 5;
curves 1, 2, and 3 refer to three anneal regimes with dif-
ferent sink powers B. The curves of Fig. 5a, recalcu-
lated for the dimensional variable, are also shown in
Fig. 2. 

The curves with anneal regime switching (Fig. 3)
were calculated for a stepwise change of sink power B
made at the corresponding instants of time (from 1.1 to
23 in Fig. 3a and from 23 to 1.1 in Fig. 3b). This proce-
dure does not involve any new fitting parameters; while
the calculated curves do not precisely coincide with the
experimental transition portions, they are close to them.
The fast falloff of the A/V transient curve in Fig. 3a is
due to the fact that the SiI concentration decreased in a
jump [expression (6) or (15)] and the TD generation
rate dropped accordingly to become lower than the loss
rate (N/τ in the dimensional form). 

Similarly, the fast rise of the transient curve V/A in
Fig. 3b is caused by the stepwise increase in CI and the
corresponding strong increase in the generation rate. 

2. 6. Estimation of the Model Parameters 

Based on the emission-induced generation rate of
the vacancy clusters OnV specified above (their concen-
tration is three orders of magnitude lower than N at
anneal times of approximately a few hours; that is, µt/2
is in the order of 10–3), the emission frequency µ can be
estimated as 10–7 s–1 at 500°C. After this, we find αχ  =
4 × 109 cm–3 s–1 from Eq. (11). For a given void sink
power (β = 150 cm–2, B = 1.6) for annealing in air fol-
lowed by slow cooling, expression (12) yields α/DI =
4 × 104 cm–2. The two products estimated above allow
one to determine DIχ = 105 cm–1 s–1. Using the intersti-
tial diffusion coefficient specified earlier (DI = 4 ×
10−5 cm2/s), we obtain α = 1.5 s–1 and χ = 3 × 109 cm–3.
One can now estimate the scaling factors SI and SV

needed to reduce the dimensionless concentrations in
Figs. 5b and 5c to their absolute values, SI = G0/α = 7 ×
1010 and SV = αχτ  = 8 × 1013 cm–3. 

One of the most important consequences that can be
drawn from these estimates is the conclusion that the
OnV vacancy clusters are poor absorbers of interstitials.
Indeed, the absorption rate (which can also be called
the rate of recombination of the two defects OnV and
SiI) is RCINV, where R is the recombination coefficient,
which, according to Eq. (4), is equal to µ/χ. On the
other hand, if the recombination were diffusion limited,
R would be equal to 4πrDI, where r is the capture radius
(of the order of the interatomic distance 3 × 10–8 cm).
The ratio of the actual to diffusion-limited values of R
is µ/(4πrDiχ) = 2 × 10–6. In other words, there exists an
appreciable barrier Er to recombination; it reduces the
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
rate of the reaction by a factor exp(–Er/kT), from which
one obtains Er = 0.87 eV. 

For some quantities, one can also estimate the acti-
vation energies (which characterize temperature depen-
dence). For the TD loss frequency 1/τ and the emission
frequency µ, this can be done by using the simple
expression νexp(–E/kT), with the prefactor ν = 1013 s–1.
Such an estimate of the emission constant χ is based on
the above-mentioned barrier factor to recombination.
Thus, the following activation energies were obtained:
2.65 eV for 1/τ, 3.1 eV for the emission frequency µ,
and 2 eV for the emission constant χ. 

The dimensionless time x = t/τ varies within a broad
range at 500°C, where τ is relatively short. As T
decreases, the lifetime grows rapidly, up to 15 h at
480°C and up to 80 h at 450°C, and the accessible
dimensionless-time interval contracts. According to
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Fig. 5. Normalized concentrations of various defects calcu-
lated as functions of dimensionless time x: (a) thermal
donors, (b) self-interstitials (SiI), and (c) OnV vacancy clus-
ters for different sink parameters (curves 1–3 correspond to
B = 1.1, 1.6, and 23, respectively, for the three different
anneal regimes). 
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Fig. 5a, at small t/τ, the difference between the three
anneal regimes is small; this is what accounts for the
convergence of the rate curves as T is reduced (Fig. 4). 

2.7. Oxygen Loss Effect

The formation of oxygen clusters brings about a
gradual decrease in the concentration C of the oxygen
monomer. Accordingly, the generation rate parameters
G0 and α, which are power-law functions of C, decrease
with time. This effect has been ignored up to now in
order to focus the main attention on the key phenome-
non, namely, the participation of silicon self-intersti-
tials in the TD formation. In actual fact, the monomer
loss C(t) can considerably affect the shape of a rate
curve (so that the drop in the generation rate during
long time intervals is caused not only by the decrease in
the CI but also by the decrease in C). Taking into
account the decrease in C would in no way be difficult
(one may assume the loss of ten monomer atoms per
cluster [22]). However, because of the formidable
mathematical complication of the model involved, this
will be analyzed in a separate publication. 

3. CONCLUSIONS

Thus, a systematic dependence of TD concentration
on the anneal conditions was found by annealing iden-
tical silicon samples in three different regimes (in air at
two different cooling rates and in vacuum). These
results are considered as arguments for silicon self-
interstitials (SiI) playing an important part in the low-
temperature anneal process. The TD generation rate
becomes greatly enhanced if the concentration CI of
these atoms is high enough (above 1010 cm–3). The
magnitude of CI is controlled, in its turn, by the thermal
donor clusters On (the main SiI emitters), by the power
of the SiI sinks, and also, under prolonged annealing, by
the vacancy clusters OnV (which are products of the
emission and, at the same time, act as absorbers of SiI

atoms). 
The dependence of the rate curves on the anneal

conditions originates from the fact that the latter
strongly affect the SiI sink power. Under relatively
clean conditions, i.e., under annealing in vacuum, the
sample surface is the major sink. In this case, the CI

concentration is low and TD generation remains practi-
cally unenhanced. When annealing in air, the surface as
a sink becomes passivated, and the volume sinks (voids
in the vacancy-type silicon) become dominant. In this
case, CI increases with time to such a level that TD gen-
eration is substantially enhanced. If annealing in air is
followed by quenching, part of the voids become passi-
vated (decorated) and CI increases still more, which
entails a corresponding increase in the generation rate. 

The qualitative theory, built in terms of the simplest
model (with thermal donors of various sizes described
PH
as identical defects with averaged properties), reduces
to two rate equations in two dynamic variables, one of
them being the TD concentration; the other, the
vacancy cluster concentration. 

An interesting consequence of this model is that
under vacuum annealing the TD generation should
become greatly enhanced with increasing sample thick-
ness, i.e., with decreasing power of the main (surface)
sink. This effect saturates at thicknesses of approxi-
mately a few millimeters, where the surface sink com-
pares in power with the bulk sink. In samples of such
thickness, there should form a strongly pronounced
depth profile for the thermal donor concentration N,
copying the SiI distribution. The enhancement of TD
generation with increasing sample thickness and the
depth profile of N were actually observed [25], but in
this particular case hydrogen rather than SiI could act as
the catalyst. A comprehensive study of the N depth pro-
file in thick samples could yield direct evidence of the
catalytic effect of self-interstitial atoms. 
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Abstract—The fine structure of the exciton ground level in a spherical nanocrystal of a zincblende or a wurtzite
structure semiconductor was calculated with the inclusion of short- and long-range (nonanalytical), exchange-
interaction components. The band-parameter dependence of the long-range exchange-interaction contribution
to the spin Hamiltonian describing the exciton ground-level splitting was found. A study was made of the effect
exerted on the exciton-level fine structure by the difference between the background dielectric permittivities of
the nanocrystal and of the dielectric host in which it was grown. © 2000 MAIK “Nauka/Interperiodica”.
Glasses activated by nanocrystals became popular
model objects for use in investigating quantum size
effects in semiconducting, quasi-zero-dimensional sys-
tems starting from the early 1980s, when it was shown
that carriers present in semiconductor nanocrystals
embedded in a wide-bandgap glass host are subject to
three-dimensional quantum confinement [1–3].

A large number of publications have recently
appeared which deal with the exchange interaction
between the electron and the hole in nanocrystals,
which are small in comparison to the exciton Bohr
radius aB in a bulk semiconductor [4–11]. This interest
stems from the fact that, because of the strong, three-
dimensional, spatial compression of the electron and
hole wave functions, the exchange-induced, exciton
level splittings become very large compared with those
in bulk semiconductors (while remaining, at the same
time, small in comparison with the characteristic size-
quantization energies) and increase as R–3, with
decreasing nanocrystal radius R, whereas the size-
quantized energy scales increase as R–2. This depen-
dence of the exchange splitting of the exciton ground
level was observed experimentally in CdSe nanocrys-
tals [5–10] and was determined to pertain to the effect
of the analytical (short-range) part of the exchange
interaction only. As shown in our related briefs [12, 13],
the long-range or, as it is called sometimes, nonanalyt-
ical part of exchange interaction results in the same
dependence of the exchange splitting on the radius, and
its contribution to this splitting is of the same order of
magnitude as that due to the analytical part. The pur-
pose of the present work is to present a self-consistent
theory of exchange interaction between the electron
and the hole in a spherical quantum dot of a semicon-
ductor with a zincblende or wurtzite structure and its
generalization, taking into account the difference
between the dielectric permittivities of the nanocrystal
and the host.
1063-7834/00/4211- $20.00 © 22030
1.ELECTRON–HOLE EXCHANGE INTERACTION
IN THE EXCITON

A self-consistent theory of electron–hole exchange
interaction in semiconductors was developed by Pikus
and Bir [14–16] and Denisov and Makarov [17]. Con-
sidered in the effective-mass approximation, the Cou-
lomb interaction operator between the electron and the
hole in a semiconductor crystal includes three contribu-
tions, corresponding to the direct Coulomb interaction
(*C) and the long-range (*long) and short-range
(*short) exchange interactions, respectively. We intro-
duced two-particle excited states of the crystal |m, ke; n,
kh〉 , where ke, h is the electron or hole wave vector and
the indices m and n label degenerate states of the elec-
tron in the conduction band (representation Γc) and of
the hole in the valence band (representation Γν), respec-
tively, at the point of the extremum ke, h = 0 (the Γ
point). We shall first consider a semiconductor of cubic
symmetry exhibiting a zincblende structure; the case of
a wurtzite structure crystal is discussed in Section 6.
The matrix elements of the *C and *long operators
between the above two-particle states can be written in
the form [14–16, 18]

(1)

(2)

Here, K is the total wave vector ke + kh =  + ; m0

is the free-electron mass; Eg is the gap width;  =

〈m|p|  is the matrix element of the momentum opera-

*m'n' mn,
C ke' kh' ke kh, , ,( )

=  
1
V
--- 4πe2

κ0 ke ke'–
2

---------------------------δm'mδn'nδke kh+ ke' kh'+,– ,

*m'n' mn,
long ke' kh' ke kh, , ,( )

=  
1
V
--- 4πe2

"
2

κbm0
2Eg

2
------------------

Kpm'n'( ) Kpmn( )∗

K2
-----------------------------------------δke kh+ ke' kh'+, .

ke' kh'
pmn

n
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tor calculated between the electron Bloch functions |m,
k = 0〉  and | , k = 0〉  (the hole state n, k and the electron
state ,–k are related through time-reversal operation);
κ0 and κb are the low-frequency and high-frequency (at
the electron–hole excitation frequency) dielectric per-
mittivities, respectively; e is the electronic charge; and
V is the crystal volume. Note that the long-range
exchange interaction is sometimes called nonanalyti-
cal, because the limit of the matrix element in Eq.(2) for
K  0 depends on the way in which K tends to zero.

The exchange interaction in Eq.(2) involves only
electron–hole pair states that are optically active in the
dipole approximation. Such states may be specified by
the total angular momentum of the pair I = 1, and the
long-range exchange interaction operator in Eq.(2) can
be cast in an invariant form [13]:

(3)

where

(4)

and the 3 × 3 matrices  (α = x, y, z) are the matrices
of the I = 1 angular momentum projections.

The matrix element of the long-range, exchange,
interaction operator written in the coordinate represen-
tation has the form [14–16]

(5)

where the α and β indices run through the values x, y,
and z. Note that because

(6)

where a and b are arbitrary vectors, the matrix element
of the long-range exchange interaction operator in
Eq.(5) contains the contact term

(7)

A contribution to the short-range (analytic) interac-
tion is provided by Fourier components of the Coulomb
potential with wave vectors b +  – ke, where b are
nonzero reciprocal-lattice vectors. For small enough
values of ke and kh, satisfying the criterion of applica-

n
n

*long ke' kh' ke kh, , ,( )

=  
4π"

2e2P0
2

κbm0
2Eg

2
----------------------- 1 KÎ( )2

K2
--------------– δK K', ,

P0
2 pmn

α 2

m n,
∑=

Îα

*m'n' mn,
long re' rh' re rh, , ,( ) δ re rh–( )δ re' rh'–( )–=

× "
2e2

κbm0
2Eg

2
------------------ pm' n',

α pmn
β* ∂2

∂reα∂reβ
-------------------- 1

re re'–
-----------------,

αβ
∑

a∇( ) b∇( )1
r
--- 1

r3
---- 3

ar( ) br( )
r2

---------------------- ab–
4π
3

------abδ r( ),–=

∆*m'n' mn,
long re' rh' re rh, , ,( ) = δ re rh–( )δ re' rh'–( )δ re re'–( )

× 4π
3

------ "
2e2

κbm0
2Eg

2
------------------ pm' n',

α pmn
α*.

α
∑

ke'
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bility of the effective-mass approximation, the operator
*short takes the form of contact interaction and can be
presented as

(8)

where a0 is the lattice constant and  is factored out so

that the coefficients  have the dimensions of
energy. The dependence of these coefficients on band
indices is determined using symmetry considerations,
while their absolute values are determined from a com-
parison of the theory with the results of an experimental
study of the exciton-level fine structure (see, e.g., [19]).
The number of linearly independent coefficients coin-
cides with that of the irreducible representations con-
tained in the direct product Γc × Γν.

Note that the short-range part of exchange interac-
tion is sometimes defined [4, 20] as the sum of the ana-
lytic exchange interaction in Eq.(8) and the contact part
of the nonanalytic exchange interaction in Eq.(7). The
short-range exchange interaction defined in this way is
written in the form of Eq.(8), but with a renormalized
constant

(9)

2. EXCITON QUANTIZATION IN SPHERICAL 
NANOCRYSTALS

In the case of strong quantization (R ! aB), the wave
function of an electron–hole pair is determined prima-
rily by the reflections of the electron and the hole from
the quantum-dot walls, whereas the Coulomb interac-
tion between them is merely a weak perturbation. Then,
in zero approximation, the envelope of the exciton, two-
particle, wave function can be written as the product

(10)

where  and  are the one-particle wave
functions of the electron and the hole, respectively, and
are localized in the quantum dot.

The electronic states in a spherical quantum dot are
characterized by electron, orbital, angular momentum
le. The lowest energy corresponds to the electron state
described by a spherical wave with an orbital angular
momentum le = 0. For an infinitely high barrier, the
electron wave function can be written as

(11)

where the spin index m assumes the values ±1/2.
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The envelope of the ground-state wave function of a
size-quantized hole in the spin–orbit split-off band Γ7
in cubic semiconductors of the crystalline class Td coin-
cides with that in Eq. (11).

The state of a quantum-confined hole in a fourfold
spin-degenerate band Γ8 (the hole spin Jh = 3/2, its pro-
jection n = ±3/2, ±1/2) is not characterized by any def-
inite value of the orbital angular momentum lh.
Neglecting the warping of constant-energy surfaces
(spherical approximation), the total hole momentum
Fh = Jh + lh may be considered a good quantum number
[21]. Such a state is (2Fh + 1)-fold degenerate due to the
projection Fz of the angular momentum Fh on the z axis.
For the ground state, we have Fh = 3/2 and Fz = ±3/2,
±1/2. The wave function of the hole in this state can be
written [22]

(12)

where the components of matrix  can be
expressed through Wigner’s 3jm symbols:

(13)

where  are the normalized spherical functions,

(14)

 are spherical Bessel functions, β = (γ1 – 2γ)/(γ1 + 2γ)
is the light-to-heavy hole mass ratio, γ1, γ are the Lut-
tinger parameters in the spherical approximation, ϕ(h) is
the first root of the equation

(15)

and # is found from the normalization condition

Because in the ground state Fh = Jh, the  and |n〉
functions transform in accordance with the same repre-
sentation of the rotation group. Therefore, the matrix

ψFz
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n
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j0 x( ) j2 βx( ) j2 x( ) j0 βx( )+ 0,=

f 0
2 x( ) f 2

2 x( )+[ ] x2 xd

0

1

∫ 1.=

ψFz

h( ) rh( )
PH
 must be a spherical invariant. It can be written in
invariant form as [12, 13]

(16)

where  are the 4 × 4 matrices of the Jh = 3/2 angular
momentum projections (α = x, y, z).

For β  1, the light- and heavy-hole subbands in
a bulk semiconductor merge to form one degenerate
band. As follows from Eqs. (14) and (16) in this limit,
the wave-function envelope of a size-quantized hole in
the ground state does not depend on spin indices and
coincides with the envelope of the function in Eq.(11).

3. ELECTRON–HOLE EXCHANGE 
INTERACTION IN A NANOCRYSTAL 

OF A SEMICONDUCTOR WITH A SIMPLE 
BAND STRUCTURE

To make a comparative estimation of the short- and
long-range exchange-interaction contributions to the
exciton-level splitting, let us first consider the optical
transitions between a simple conduction band Γ6 and a
simple valence band Γ7 in zincblende structure semi-
conductors (crystal class Td). In this case, taking into
account the spin degeneracy of the electron and the hole
state, the 1s exciton energy level is fourfold degenerate.
Because the direct product Γ6 × Γ7 reduces to irreduc-
ible representations Γ5 and Γ2 [23], one may conve-
niently replace the |m, n〉  basis (m, n = ±1/2), in which
the matrix elements in Eqs. (2), (5), and (8) are written,
with the basis of the states |Γ5, ν〉  (ν = x, y, z) and |Γ2〉 .
The |Γ5, ν〉  state is optically active for light linearly
polarized in the ν direction, while the |Γ2〉  state is inac-
tive. If the energy is reckoned from the Γ2 level, then in
the new basis, the nonzero components of the short-
and long-range exchange terms will have the form

(17)

where aB is the Bohr radius of excitons in a bulk semi-

conductor,  is the magnitude of the exciton level

splitting into a singlet and a triplet, and  is the
longitudinal–transverse exciton splitting. Because the
exchange splitting of exciton levels is small compared
to the size-quantization level separations, the electron–
hole exchange interaction in a nanocrystal can be taken
into account using perturbation theory. As follows from
Eq.(17), the exciton splitting in a spherical nanocrystal
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of radius R ! aB into a singlet and a triplet is [12]

(18)

where

(19)

In the derivation of Eq.(18), the potential barrier at the
nanocrystal boundary was assumed to be infinitely
high. In this case, the wave-function envelopes of both
the electron and the hole coincide with the envelope of
the function in Eq.(11) and vanish at the nanocrystal
boundary. Assuming, for the purpose of estimation, that

 ~ 0.1 meV and  ~ 1 meV, we come to the
conclusion that, of the two terms in Eq.(18), the long-

range contribution to the splitting  is dominant.

Note that, in the case of the Γ6 × Γ7 exciton, only the
contact part (7) of the long-range exchange interaction
contributes to the exchange splitting in Eq.(18). This
follows from the fact that the noncontact part of the
long-range exchange interaction, having the character
of a dipole–dipole interaction, transforms according to
a Td-group representation that does not contain the
identity representation.

4. EXCHANGE INTERACTION 
OF THE ELECTRON AND THE HOLE 

IN A SEMICONDUCTOR NANOCRYSTAL 
WITH A COMPLEX-STRUCTURE 

VALENCE BAND
Now, let us consider a Γ6 × Γ8 exciton in a nanocrys-

tal of radius R ! aB. The electron and hole wave func-
tions are presented in this case by expressions (11) and
(12), respectively. The short-range exchange interac-
tion is [7]

(20)

where εexch is the exchange-interaction constant and σα
are the Pauli matrices acting on the electronic spin. For
the long-range part in Eq.(2), we obtain

(21)
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where pcν = i〈S X〉  is the interband matrix element of
the momentum operator.

The Hamiltonian of the electron–hole exchange
interaction in a quantum dot of radius R ! aB can be
written as

(22)

Here,

(23)

(24)

(25)

Expression (24) for the short-range contribution to the
parameter  was derived in [7]. Expression (25) for the
parameter ζ(β), determining the long-range contribu-
tion, can be recast in the form

(26)

The χ(β) and ζ(β) functions are plotted in Fig. 1.
Note that, in contrast to the Γ6 × Γ7 exciton, here not

only the contact but also the noncontact part of the
nonanalytic exchange interaction contributes to the
long-range term. The contribution to the splitting from
the contact part is

In the limit as β  1, the noncontact part vanishes,
leaving us with

ζ(β  1) = χ(β  1)3/π = C,

where C is determined by expression (19). A compari-
son of the χ(β) and ζ(β) functions shows that for β < 1
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the contribution of the noncontact part to the exchange
splitting is opposite in sign to that of the contact part, so
that the noncontact part reduces the total contribution
of the long-range exchange interaction to the exciton
level splitting.

5. INCLUSION OF THE BACKGROUND 
PERMITTIVITIES OF THE NANOCRYSTAL 

AND THE HOST

We shall use the approach developed in [14–16] to
calculate the contribution of long-range exchange inter-
action to the exciton ground-level splitting in a nanoc-
rystal, taking into account the difference between the
background permittivities of the nanocrystal and the
host. This approach is based on a solution of the prob-
lem of interaction between two electrons occupying
states near the Γ point in the valence band and in the
conduction band, respectively. The Coulomb interac-
tion potential of these electrons has the form

where κ1 is the permittivity at the exciton resonance
frequency.

The Coulomb interaction potential between two
point charges in a spherical semiconductor nanocrystal
synthesized in a host with a background permittivity κ2
contains an additional term due to the surface charge
induced on the sphere [24, 25]:

(27)

Vbulk r r',( )
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Fig. 1. Functions ζ(β) (solid line) and χ(β) (dashed line).
PH
where

(28)

According to Eq.(5), this term produces an additional
term in the electron–hole long-range exchange-interac-
tion operator

(29)

which yields a corresponding contribution to the
exchange splitting of the exciton level:

(30)

The matrix  for the Γ6 × Γ7 exciton in the ground
state is proportional to the identity matrix and has the
form

(31)

while for the ground state of the Γ6 × Γ8 exciton, this
matrix is proportional to the product of the scalar enve-
lope from Eq.(11) by matrix (16):

(32)

Expression (30) can be recast to

(33)

where

(34)

The quantities  can be simplified if one takes into
account that the matrix element of the covariant cyclic
component pσ (σ = ±1, 0) of the momentum operator,
which is calculated using conduction- and valence-
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band Bloch functions, is expressed through Wigner’s
3jm symbol

(35)

where Jh = 1/2 for the Γ6 × Γ7 exciton, Jh = 3/2 for the
Γ6 × Γ8 exciton, the constant P0 is defined in Eq.(4), and
the canonical basis of the Bloch functions |m〉 , |n〉  are
used [23]. Then, after some manipulations, one obtains
for the Γ6 × Γ7 exciton

(36)

and expression (18) for the triplet–singlet ground-state
splitting of the Γ6 × Γ7 exciton can be recast to [12]

(37)

Taking into account Eqs.(13) and (32), we obtain for
the Γ6 × Γ8 exciton

(38)

Note that

because the three numbers (3/2, 1/2, 3) do not satisfy
the rule of the triangle. Taking into account the differ-
ence between the background permittivities of the
nanocrystal and the host, expression (23) can be rewrit-
ten as

(39)
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For β  1, the square of the integral in the brackets
tends to 1/2 and the envelopes of the electron and hole
wave functions coincide; for β < 1, the overlap between
them decreases and the integral in the brackets in
Eq.(39) decreases.

Figure 2 shows the dependence of the quantity

 on the parameter β with the difference
between the background permittivities of the nanocrys-
tal and the host included (solid line) and disregarded
(dashed line). For κ2, the typical value of the squared
refractive index of glass, κ2 = 2.25, was taken, while the
other parameters were taken equal to those of CdSe
(κ1 = 8.4). One readily sees that taking into account the
difference in the background permittivities between the
nanocrystal and the host results in an increase in .

6. THE FINE STRUCTURE OF THE EXCITON 
GROUND LEVEL IN WURTZITE 

NANOCRYSTALS

In the case of hexagonal crystals with wurtzite struc-
ture, one has to add a term responsible for the crystal-
field splitting [22] to the Luttinger Hamiltonian,
describing states near the top of the valence band of a
bulk cubic semiconductor:

Therefore, the fine structure of the exciton ground state
in a wurtzite-lattice nanocrystal, taking into account the

η R/aB( )3

η

*̂cr
∆cr

2
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2 5
4
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β

–η(R/aB)3, meV

Fig. 2. Dependence of the quantity  on the param-

eter β calculated with (solid line) and without (dashed line)
inclusion of the difference in the background permittivity
between the nanocrystals and the host.

η R/aB( )3
0
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crystal-field and exchange splittings, is described by a
spin Hamiltonian:

(40)

where ∆ = ∆crν(β),

(41)

Expression (41) was derived in [22]. Note that the
parameters "ωTF and "ωLT, which were introduced in
Eq.(23), have a simple physical meaning for a bulk hex-
agonal crystal; namely, "ωTF is the splitting of the 1s
exciton level A (Γ7 × Γ9 representation of group C6ν)
induced by the short-range exchange interaction, with
the split-off states having angular-momentum projec-
tions ±2 and ±1 on the C6 axis, respectively, and "ωLT

is the longitudinal–transverse splitting for the exciton
propagating in the plane perpendicular to the C6 axis.
The fine structure of exciton levels in CdSe nanocrys-
tals was studied in [5–10]. The description of the
exchange splitting presented in [5–10] took into
account only the first term in expression (23). Accord-
ing to [19], "ωTF ≈ 0.12 meV and "ωLT ≈ 0.95 meV; one
can extrapolate that for β = 0.3 the ratio of the second
(long-range) term to the first (short-range) term is
approximately 3.

Figure 3 presents exciton level diagrams described
by Hamiltonian (40) and by each of its terms separately.
The excitonic sublevels are labeled in accordance with
the magnitude of the projection of the total electron–

∆H
∆
2
--- Jz

2 5
4
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 – η sJ( ),–=
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4η–
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Fig. 3. Diagram of exciton level splitting into five sublevels
for a hexagonal nanocrystal. For conveniency, the fine struc-
ture obtained neglecting (a) exchange interaction or (b)
crystal-field splitting is also shown.
PH
hole pair, angular momentum Fz + m on the C6 axis. If
one takes into account only the crystal-field splitting
and neglects the exchange contribution, the exciton
ground level splits into two states differing in the mod-
ulus of the projection of the total hole angular momen-
tum (Fig. 3a). The projection of the total hole angular
momentum Fz = ±1/2 corresponds to the upper state,
while the lower state has the projection Fz = ±3/2. Con-
versely, if one neglects the crystal-field splitting and
includes only the exchange contribution, the exciton
ground level will split into two sublevels corresponding
to different values for the total angular momentum Fex
of the electron–hole pair (Fig. 3b). Fex = 1 corresponds
to the upper (optically active) sublevel, while the lower
sublevel (inactive) has Fex = 2. Taking both terms in
Hamiltonian (40) into account results in a splitting of
the exciton ground level into five sublevels (Figs. 3a,
3b). The relative oscillator strengths of the correspond-
ing transitions were calculated in [7]. The states ±1U,
±1L, and 0U are optically active in the dipole approxi-
mation, while the transitions to the ±2 and 0L states are
forbidden in the same approximation. At the same time,
the “dark” state ±2 turns out to be the lowest in energy,
so that the low-temperature photoluminescence is due
to the radiative recombination from this state. There-
fore, one can determine the splitting between the ±1L

and ±2 levels experimentally from the Stokes shift of
the luminescence [5–10]. The splittings between the
±1U and ±2 levels and between 0U and ±2 can be
derived from luminescence excitation spectra, but the
±1U and 0U states cannot be resolved in such a manner
[6, 9].

The splitting  between the ±2 and ±1L states
is given by the expression

(42)

For large radii, where  ! ∆,  is approximately

equal to 3 . For ∆  ∞, β  1, and "ωTF = 
in particular, expression (42) transforms into Eq.(18).

For small radii, where  @ ∆, we have  ≈ 3∆/4. If
one neglects the long-range exchange contribution, the
parameter  in Eq.(42) is replaced by the parameter

which is approximately one fourth of  for β = 0.3.
Figure 4 presents the calculated dependence of the

splitting  on the nanocrystal radius. The solid and
dashed lines were calculated including and neglecting
the difference between the background permittivities of
the nanocrystal and the host, respectively. The dotted
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line plots expression (42) with the parameter 
replaced by η. The filled [8] and open [6] circles refer
to experimental points. The values of the Luttinger
parameters used in the calculation are [26] (γ1 = 2.04
and γ = 0.58, for which β = 0.275). The triangles iden-

tify the values of the splitting  calculated using the
pseudopotential method [11].

The splittings ∆1 and ∆2, between the ±1U and ±1L,
and between the ±0U and ±1L sublevels, are given by the
expressions

(43)

(44)

respectively. 
For large radii (  ! ∆) we have ∆1 ≈ ∆ – 2  and

∆2 ≈ ∆ + . For small radii (  @ ∆), ∆1 ≈ 4  – ∆/2 and
∆2 ≈ 4  + ∆/4. Figure 5 presents the splittings ∆1 and
∆2 calculated as functions of the nanocrystal radius. The
pair of solid (dashed) curves corresponds to the calcu-
lation with inclusion (without inclusion) of the differ-
ence between the background permittivities of the
nanocrystal and the host. The upper curve in each pair
describes the ∆2(R) relation, while the lower curve is
∆1(R). The dotted curves were calculated from expres-
sions (43) and (44), in which the parameter  was
replaced by η. The open [6] and filled [9] circles are
experimental data.

7. DISCUSSION OF RESULTS
As seen from Figs. 4 and 5, the curves calculated

with inclusion of long-range exchange interaction
agree with the experimental data obtained for the split-

tings ∆1 and ∆2, whereas in the case of the  split-
ting, the calculation made for nanocrystals of small
radius disagrees substantially with the experimental
data. It is, however, this splitting that is particularly
sensitive to the nanocrystal shape. Indeed, as pointed

out above, we have  ≈ 3∆/4 for small radii. On the
other hand, a weak deviation of the nanocrystal shape
from the spherical is usually delineated by the introduc-
tion of a volume-conserving, homogeneous, uniaxial
strain along the hexagonal crystallographic axis C6, as
a result of which the nanocrystal assumes the shape of
an oblong or an oblate ellipsoid of rotation [5–7]. Tak-
ing this strain into account results in a renormalization
of the quantity ∆, which becomes larger by an amount
proportional to R–2 [27]. Because it is for small-radius
nanocrystals that a deviation from the spherical shape
is most probable, it is no wonder that our theory is at
odds with the experiment in this case. At the same time,

η
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Fig. 4. Dependence of the splitting  on nanocrystal

radius calculated for κ1 = 8.4 and κ2 = 2.25 (solid line) and
κ1 = κ2 = 8.4 (dashed line), taking into account both the
short-range and long-range exchange contributions. The
dotted line presents the calculation made neglecting long-
range exchange interaction. The filled [8] and open [6] cir-
cles refer to the experimental values of the splitting, and the

triangles are the splitting  calculated using the pseudo-

potential method [11].

∆TF
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Fig. 5. Dependences of the splittings ∆1 (1) and ∆2 (2) on
nanocrystal radius calculated for κ1 = 8.4 and κ2 = 2.25
(solid lines) and κ1 = κ2 = 8.4 (dashed lines), taking into
account both the short-range and long-range exchange con-
tributions. The dotted lines represent the calculation made
neglecting the long-range exchange interaction. The experi-
mental values of the splitting are shown by the filled [9] and
open [6] circles.

55



2038 GUPALOV, IVCHENKO
the splittings ∆1 and ∆2 are less sensitive to a nonsphe-
ricity of quantum dots. As seen from Fig. 5, the experi-
mental points from [9] are better suited to the solid line
(κ1 ≠ κ2), while those from [6] are better suited to the
dashed line (κ1 = κ2). This may be explained by the fact
that the measurements of [9] were made on nanocrys-
tals prepared by the thermally activated phase decom-
position of a supersaturated solid solution of a semi-
conductor in a glass host [28]. In this case, the back-
ground permittivity of the host in which the
nanocrystals are embedded should be set equal to the
square of the refractive index of the glass. The study [6]
was done on chemically synthesized nanocrystals with
a different dielectric environment.
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Abstract—A study is reported on the thermoelectric properties of n-type solid solutions Bi2Te3 – ySey (y = 0.12,
0.3, 0.36), Bi2 – xSbxTe3 – ySey (x = 0.08, 0.12; y = 0.24, 0.36), and Bi2Te3 – zSz (z = 0.12, 0.21) as functions of
carrier concentration within the 80- to 300-K range. It has been established that the highest thermoelectric effi-
ciency Z is observed in the Bi2Te3 – ySey (y = 0.3) solid solution containing excess Te at optimum carrier con-
centrations (0.35 × 1019 cm–3) and at temperatures from 80 to 250 K. The increase in Z in the Bi2Te3 – ySey solid
solution compared with Bi2 – xSbxTe3 – ySey and Bi2Te3 – zSz is accounted for by the high mobility µ0, an increase
in the effective mass m/m0 with decreasing temperature, the low lattice heat conductivity κL, and the weak
anisotropy of the constant-energy surface in a model assuming isotropic carrier scattering. © 2000 MAIK
“Nauka/Interperiodica”.
n-Bi2Te3-based solid solutions enjoy wide use as
n-legs in multistage modules providing cooling below
150 K; this requires the development of thermoelectric
materials with low carrier concentrations [n = (3–4) ×
1018 cm–3], which are optimal for the low-temperature
domain [1, 2]. For this reason, analysis of the β param-
eter determining the ZT product, the key factor in the
thermogenerator efficiency or the performance coeffi-
cient of a thermoelectric refrigerator, is of utmost
importance. The corresponding expression is

(1)

where Z is the thermoelectric efficiency and m, µ0, and
κL are the effective density-of-states mass, the mobility
taking the degeneracy and lattice heat conductivity into
account. The quantities entering expression (1) are con-
nected with the parameters of the constant-energy sur-
face and the carrier scattering mechanisms, thus offer-
ing the possibility of relating the thermoelectric effi-
ciency with these parameters for various temperatures,
carrier concentrations, and solid-solution composi-
tions.

1. MULTIVALLEY MODEL

The (Bi,Sb)2(Te,Se,S)3 solid solutions (space group

R m) exhibit strongly anisotropic kinetic effects
(except the thermopower), which is related to specific
features of crystal structure and chemical bonding. The
constant-energy surfaces of these materials are

ZT β∼ 2 2π( )3/2

h3e
-------------------k0

7/2 m
m0
------ 

  3/2

µ0T5/2κ L
1– ,=

3

1063-7834/00/4211- $20.00 © 22039
described in terms of a multivalley energy-spectrum
model [3, 4], which relates the components of the ten-
sors of electrical resistivity ρii, Hall effect ρijk, and mag-
netoresistance ρijk1 to the parameters determining the
constant-energy ellipsoids u, v, and w. The parameters
u, v, and w are connected with the components of the
inverse effective-mass tensor 

(2)

The tilt angle (θ) of the principal axes of constant-
energy ellipsoids with respect to the crystallographic
axes is given by the expression

(3)

The inverse effective-mass tensor  is defined in the
following way with respect to the crystallographic
axes:

(4)

The density-of-states effective mass is related to the
effective-mass tensor components in the multivalley
model through

(5)

where N is the number of valleys and m1, m2, and m3 are
the principal components of the effective mass tensor.

Studies of the effect of constant-energy surface
anisotropy on thermoelectric efficiency, made in terms
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v w– α23
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2 .=

2θtan 2α23/ α22 α33–( ).=
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α m0T θ( )m 1– T 1– θ( ).=
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of the model with anisotropic carrier scattering [1, 2],
showed that carrier scattering in Bi2Te3 – ySey solid solu-
tions (0.12 ≤ y ≤ 0.36), with optimum carrier concentra-
tions close to the filling of the second subband in the
conduction band, is close to isotropic in the tempera-
ture interval 80 < T < 150 K. Therefore, at optimal con-
centrations for the above temperature region, carrier
scattering may be considered isotropic. In this case, the
relaxation time depends only on energy using the
power-law relation

(6)

where τ0 is an energy-independent factor and reff is an
effective scattering parameter [5], which takes into
account, besides the main mechanism of scattering
from the lattice acoustic vibrations, the other possible
(impurity and interband) scattering mechanisms.

2. THERMOPOWER AND ELECTRICAL 
CONDUCTIVITY

The study of the thermoelectric properties of
(Bi,Sb)2(Te,Se,S)3 solid solutions was made on sam-
ples prepared through directed crystallization (vertical
zone leveling). The required carrier concentrations in
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Fig. 1. Temperature dependences of the thermopower coef-
ficient α (1–7) and of the electrical conductivity σ (8–14) in
Bi2Te3 – ySey solid solutions with different values of n

(1019 cm–3): (y = 0.12) (1, 8) 0.35, (2, 9) 0.8; (y = 0.21)
(3, 10) 0.65; (y = 0.3) (4, 11) 0.35, (5, 12), 0.8; (y = 0.36)
(6, 13) 0.35, (7, 14) 0.9.
PH
the Bi2Te3 – ySey solid solutions (y = 0.12–0.36) were
obtained by adding excess Te. In the Bi2 – xSbxTe3 – ySey

solid solutions (x = 0.08 and 0.12, y = 0.24 and 0.36),
one used CdCl2 in addition to excess Te. Bi2Te3 – zSz (z =
0.12 and 0.21) was doped by introducing CdCl2 into the
solid solution.

Figures 1 and 2 present the experimental tempera-
ture dependences for the thermopower coefficient α
and for the electrical conductivity σ, which were used
to determine the product (m/m0)3/2µ0 entering expres-
sion (1), with due account of reff:

(7)

where F(r, η) and Γ(r + 3/2) are the Fermi integral and
the gamma function, respectively, and η is the reduced
Fermi energy.

As follows from Figs. 1 and 2, the temperature
dependence of the thermopower coefficient α becomes
weaker in the low-temperature domain (80 < T <
150 K), and with an increasing number of substituted
atoms and with a carrier concentration increasing from
0.25 to 0.9 × 1019 cm–3 in the solid solutions studied.
The weakening of the α = f(T) relation is indicated by
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Fig. 2. Temperature dependences of the thermopower coef-
ficient α (1–6) and of the electrical conductivity σ (7–12) in
(Bi,Sb)2(Te,Se,S)3 solid solutions. Bi2 – xSbxTe3 – ySey, n

(1019 cm–3): (x = 0.08, y = 0.24) (1, 7) 0.7; (x = 0.12, y =
0.36) (2, 8) 0.4, (3, 9) 0.7. Bi2Te3 – zSz, n (1019 cm–3): (z =
0.12) (4, 10) 0.4, (5, 11) 0.7; (z = 0.21) (6, 12) 0.9.
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Table 1.  The slopes of the temperature dependences s1 = d ln α/d lnT, |s2| = d ln σ0/d lnT, |s3| = d ln((m/m0)3/2µ0)/d ln T,
|s4| = d lnκL/d ln T, and s5 = d ln β/d ln T in Bi2 – xSbxTe3 – y – zSeySz solid solutions obtained for T < 150 K

Bi2Te3 – ySey

y n × 1019, cm–3 s1 |s2| |s3| |s4| s5

0.12 0.35 0.86 1.65 1.7 0.75 1.61

0.8 0.83 1.55 1.66 0.75 1.36

0.21 0.65 0.69 1.51 1.61 0.75 1.56

0.3 0.35 0.55 1.61 1.75 0.73 1.56

0.65 0.53 1.51 1.57 0.7 1.5

0.36 0.35 0.5 1.42 1.63 0.72 1.52

0.9 0.48 1.34 1.55 0.71 1.45

z Bi2Te3 – zSz

0.12 0.3 0.76 1.38 1.49 0.55 1.5

0.7 0.58 1.08 1.35 0.49 1.47

0.21 0.9 0.67 0.93 1.26 0.46 1.35

x y Bi2 – xSbxTe3 – ySey

0.08 0.24 0.7 0.51 1.19 1.4 0.67 1.66

0.12 0.36 0.4 0.46 0.99 1.22 0.71 1.68

0.7 0.43 0.87 1.03 0.69 1.61
the decrease of the slopes s1 = dlnα/dlnT (Table 1;
Figs. 1, 2).

The temperature dependences of the electrical con-
ductivity σ measured at low temperatures also become
weaker (the slopes |s2| = dlnσ0/dlnT decrease, where σ0
is the electrical conductivity calculated for reff with
inclusion of degeneracy, Table 1) with an increasing
concentration n and an increasing number of substi-
tuted atoms in the solid solution (Figs. 1, 2); this is a
result of the increasing number of scattering centers.

Figure 3 plots temperature dependences of the
parameter (m/m0)3/2µ0. At low temperatures, the
Bi2Te3 – ySey solid solution (y = 0.12–0.36) exhibited a
decrease in (m/m0)3/2µ0 with an increasing carrier con-
centration n, which is associated with the decreasing
mobility µ0 (curves 1, 4, 6 and 2, 5, 7 in Fig. 3). As the
concentration n in the solid solutions increases from
0.25 to 0.9 × 1019 cm–3, the mobility µ0, in agreement
with our earlier data [2], decreases considerably faster
than (m/m0)3/2µ0. This pattern of variation of the
(m/m0)3/2µ0 quantity with n is governed by the concen-
tration dependence of the average effective mass m/m0,
by which m/m0 increases not only with an increasing
carrier concentration [6] but also with a temperature
decrease from 120 to 80 K [2].

In the low-temperature region, the parameter
(m/m0)3/2µ0 was found to be the largest in the
Bi2Te3 − ySey solid solution (y = 0.3) (curve 4 in Fig. 3).
The sample with concentration n ≈ 0.35 × 1019 cm–3 is
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
also characterized by a large slope |s3| =
dln(m/m0)3/2µ0/dlnT (Table 1).

Compared with Bi2Te3 – ySey, Bi2Te3 – zSz samples
exhibited a large decrease in the (m/m0)3/2µ0 parameter
with an increasing concentration n (curves 8, 9 in
Fig. 3). As the temperature is reduced from 200 to 80 K,
the parameter (m/m0)3/2µ0 decreases as a result of a con-
siderable decrease in mobility with an increasing n and
decreasing m/m0. The weak, contrasted with Bi2Te3 – zSz,
decrease in (m/m0)3/2µ0 in Bi2 – xSbxTe3 – ySey solid solu-
tions observed to occur at low temperatures, with the
concentration n increasing from 0.4 to 0.7 × 1019 cm–3,
is determined by the temperature dependence of the
effective mass m/m0, which grows with decreasing tem-
perature [6–8].

3. LATTICE HEAT CONDUCTIVITY

The experimental values of the heat conductivity κ
were used to calculate the lattice heat conductivity κL

(Fig. 4). The electronic heat conductivity κe needed to
calculate the Lorenz number L(reff, η) was found taking
the effective scattering parameter into account. The
result is

(8)
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By using reff, one can take into account not only a
change of the scattering mechanisms in solid solutions
but, albeit indirectly, the effect of a complex band struc-
ture on the lattice heat conductivity (through the con-
centration and temperature dependences of reff [5]).

The lattice heat conductivity κL decreases weakly
in Bi2Te3 – ySey solid-solution samples with low carrier
concentrations as y increases from 0.12 to 0.36
(curves 1, 4, 6 in Fig. 4). The weak variation of κL from
the number of substituted Te atoms is due to the fact
that a small number of Se atoms are sufficient for the
absorption of practically all short-wavelength phonons,
as a result of which an increase in the number of Se
atoms cannot bring about a noticeable decrease in κL
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Fig. 3. Temperature dependences of the parameter (m/m0)3/2µ0
in (Bi,Sb)2(Te,Se,S)3 solid solutions. Bi2Te3 – ySey, n

(1019cm–3): (y = 0.12) (1) 0.35; (2) 0.8; (y = 0.21) (3) 0.65;
(y = 0.3) (4) 0.35; (5) 0.8; (y = 0.36) (6) 0.35; (7) 0.9.
Bi2 − xSbxTe3 – ySey, n (1019 cm–3): (x = 0.08, y = 0.24)
(8) 0.7; (x = 0.12, y = 0.36) (9) 0.4; (10) 0.7. Bi2Te3 – zSz, n

(1019 cm–3): (z = 0.12) (11) 0.4; (12) 0.7; (z = 0.21) (13) 0.9.

0

PH
[9]. At higher carrier concentrations, the decrease in κL

with increasing y in the Bi2Te3 – ySey solid solution
becomes even more negligible (curves 1, 2, 4, 5, 6, 7 in
Fig. 4), because the distorted lattice regions may over-
lap at high impurity-atom concentrations. The slopes
|s4| = dlnκL/dlnT (Table 1) also fall off slowly with
increasing y in the Bi2Te3 – ySey solid solution.

The values of κL and of the |s4| slope for the
Bi2Te3 − zSz solid solution (curves 8–13 in Fig. 4) are
smaller than those for Bi2Te3 – ySey (curves 1–7). The κL

decreases because S atoms scatter phonons more
strongly than Se does and because the distortions of the
Bi2Te3 lattice induced by the S  Te substitution are
larger than in the Se  Te replacement due to the dif-
ference between the covalent radii of the S and Se
atoms [9].

In Bi2 – xSbxTe3 – ySey solid solutions (curves 8–10 in
Fig. 4) where substitution (Sb  Bi, Se  Te) takes
place on both Bi2Te3 sublattices, one observes a further
decrease in κL compared with that in the Bi2Te3 − ySey
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and Bi2Te3 – zSz solid solutions, where atoms are substi-
tuted on one sublattice only (curves 8–10 in Fig. 4).
This decrease in κL may be due to a change in the con-
centration of antisite Bi, brought about by the forma-
tion of the Bi2 – xSbxTe3 – ySey solid solution [9].

The decrease in κL with increasing carrier concentra-
tion in the Bi2Te3 – ySey solid solution containing excess
Te is due to the increase in phonon scattering from
charged impurities as the number of scattering centers
increases. The decrease of κL in the Bi2 – xSbxTe3 – ySey

and Bi2Te3 – zSez solid solutions containing CdCl2 as a
dopant, as well as excess Te, may be attributed to stron-
ger scattering from charged impurities. The decrease in
κL with increasing carrier concentration may also orig-
inate from the effect of the second subband in the solid-
solution conduction band [10], resulting from addi-
tional heat transport by carriers, which, while being of
two types, have the same sign.
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4. THERMOELECTRIC EFFICIENCY

Data on the temperature dependences of (m/m0)3/2µ0
and κL permit one to calculate the parameter β (Fig. 5),
which was observed to be the largest in the Bi2Te3 – ySey

solid solution (y = 0.3) at low temperatures at the con-
centration n = 0.35 × 1019 cm–3, which was found to be
optimal for these low temperatures (curve 4 in Fig. 5).
The increase in β and, hence, in the thermoelectric effi-
ciency Z (curve 4 in Fig. 6) for x = 0.3 can be assigned
to high mobility, to an increase in the density-of-states
effective mass with decreasing temperature for T <
150 K, and to the low lattice heat conductivity κL

(curve 4 in Fig. 4). The weak decrease in κL at y = 0.36
does not compensate the decrease in the parameter
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(m/m0)3/2µ0, which reduces the magnitude of β and,
hence, the thermoelectric efficiency Z (curve 6 in Figs.
5, 6).

It should be noted that in (Bi,Sb)2(Te,Se,S)3 solid
solutions, the slopes of the temperature dependences of
all the quantities studied (Table 1) are different for the
low- (T < 150 K) and high-temperature (150 < T <
250 K) regions, which may originate from the elec-
tron–phonon coupling being different in different tem-
perature intervals [11]. The decrease of the slope s5 =
dlnβ/dlnT at low temperatures, compared with that at
high temperatures, brings about an increase in thermo-
electric efficiency.

Despite the decrease in κL (curves 8–13 in Fig. 4) in
Bi2Te3 – zSz (z = 0.12, 0.21) and Bi2 – xSbxTe3 – ySey (x =
0.08, y = 0.24) solid solutions, the parameter β and the
thermoelectric efficiency Z (curves 8–13, Figs. 5, 6) are
substantially lower than those in Bi2Te3 – ySey because
of the considerable decrease in mobility.
PH
5. PARAMETERS OF THE CONSTANT-ENERGY 
ELLIPSOIDS

Expression (5), taken together with the effective
mass ratios mi/mj [4], offers a possible method of deter-
mining the orientation of the principal axes of the con-
stant-energy ellipsoids (m1, m2, m3) with respect to the
crystallographic axes. This was done using the data on
temperature dependences of effective-mass tensor-
component ratios mi/mj in (Bi,Sb)2(Te,Se,S)3 solid
solutions, which were obtained by us earlier [7, 8]. In
the calculations of mi, the Z (or 3th) axis was directed
along the threefold axis, the X (1th) axes were directed
along the twofold axes (binary directions), and the Y
(2th) axes were in the mirror planes (bisector direc-
tions).

Table 2 presents the ratios of components of the
effective-mass tensors m1, m2, m3 for the
(Bi,Sb)2(Te,Se,S)3 solid solutions calculated from
Eq. (5) for T = 77 and 150 K. The tilt angles θ of the
principal ellipsoid axes (not listed in Table 2), with
respect to the crystallographic axes, are 40°–44° for all
Table 2.  Parameters of the constant-energy ellipsoids in n-(Bi,Sb)2 (Te,Se,S)3 solid solutions

B2Te3 – ySey

no. y n × 1019, cm–3
T = 77, 150 K

m1 m2 m3

1 0.12 0.25 0.041 0.22 0.23

0.043 0.23 0.2

2 0.7 0.027 0.94 0.17

0.03 1.14 0.16

3 0.3 0.4 0.119 0.49 0.4

0.067 0.85 0.3

4 1.1 0.055 1.26 0.25

0.056 2.15 0.11

x y Bi2 – xSbxTe3 – ySey

5 0.2 0.3 1.1 0.05 0.34 0.2

0.051 0.46 0.24

6 0.4 0.6 0.8 0.017 0.17 0.07

0.015 0.15 0.05

z Bi2Te3 – zSz

7 0.12 0.4 0.049 0.48 0.41

0.615 0.52 0.23

8 1.3 0.068 0.83 0.17

0.04 1.2 0.08

9 0.21 0.4 0.06 0.48 0.51

0.04 1 0.21

Note: For each carrier concentration, the upper row gives the values of m1, m2, and m3 for 77 K, while the lower one gives those for 150 K.
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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the solid solutions, with the exception of Bi2Te3 – ySey

(y = 0.12), which exhibits a low concentration n =
0.25 × 1019 cm–3, where θ ≈ 22°; thus, no effect of the
second subband in the conduction band of the solid
solution [10] is indicated. The values of m2 and m3 from
Table 2 were used to construct projections on the ZY
plane of one of the six equivalent constant-energy ellip-
soids for the conduction band of the (Bi,Sb)2(Te,Se,S)3
solid solutions (Fig. 7).

The compression of the ellipsoids in the materials
under study was found to be the largest in the binary
direction (X). In the Bi2Te3 – ySey solid solution, the
ellipsoids constructed for T = 77 K and low carrier con-
centrations are weakly extended along the Y' axis and
tilted at an angle θ to the bisector crystallographic axis
Y (solid lines in Fig. 7, ellipsoids 1, 3). As the tempera-
ture decreases, the ellipsoids become more and more
extended along the Y' axis (along the bisector axis Y and
with a tilt through an angle θ) while remaining com-
pressed along the binary axis X' (dashed lines in Fig. 7,
ellipsoids 1, 3). According to [1, 2], for the carrier con-
centrations specified, the scattering is only weakly
anisotropic in the Bi2Te3 – ySey solid solution. The same
orientation of the ellipsoids and a weak extension along
the Y ' axis are also characteristic of the Bi2Te3 – zSz solid
solution at low carrier concentrations (0.4 × 1019 cm–3)
(ellipsoids 7, 8 in Fig. 7). However, the scattering
anisotropy in Bi2Te3 – zSz is larger than it is in
Bi2Te3 − ySey at similar carrier concentrations.

As the concentration increases (n ≥ 0.7 × 1019 cm–3),
the ellipsoids become progressively more extended
along the Y' axis while remaining compressed along the
binary axis X' (ellipsoids 2, 4, 8, 9 in Fig. 7). This
change in the ellipsoid parameters obtained in the
model assuming isotropic carrier scattering indicates
an increasing anisotropy in the constant-energy sur-
face.

It should be noted that at high concentrations n in
the Bi2 – xSbxTe3 – ySey solid solution, a smaller ellipsoid
elongation along Y' (ellipsoids 5, 6 in Fig. 7) was
observed compared with that observed for Bi2Te3 – ySey

and Bi2Te3 – zSz. Thus, the extension of the ellipsoids in
the Bi2 – xSbxTe3 – ySey conduction band occurs at higher
carrier concentrations than is the case with Bi2Te3 – ySey

and Bi2Te3 – zSz, which is due to the variation of the
mass parameters m1, m2, m3 (Table 2) with concentra-
tion and solid-solution composition, as well as to the
effect of carrier scattering anisotropy.

6. ANISOTROPY OF THE CONSTANT-ENERGY 
ELLIPSOID PARAMETERS

AND THE THERMOELECTRIC EFFICIENCY

The results of the study on thermoelectric efficiency
Z and the available data on the variation of the parame-
ters of constant-energy ellipsoids for the
(Bi,Sb)2(Te,Se,S)3 solid solutions permit a coordinated
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      200
analysis of these quantities. The largest values of Z
were observed in the Bi2Te3 – ySey (y = 0.3) solid solu-
tion with excess Te (curve 4 in Fig. 6) at optimum car-
rier concentrations (0.35 × 1019 cm–3) not only in the
low-temperature region but also at higher temperatures,
up to 250 K. At such concentrations n, the single-con-
duction-band model is valid for the Bi2Te3 – ySey solid
solution [10], the constant-energy ellipsoids are
slightly extended along the Y axis with a tilt angle θ,
and the carrier scattering anisotropy is the weakest in
comparison with the solid solutions, with y = 0.12 and
0.36. At higher carrier concentrations, where Z
decreases (curve 5 in Fig. 6), the ellipsoid parameters
change (the ellipsoids extend) and the anisotropy of the
constant-energy surface increases, as does that of the
carrier scattering.

At low enough carrier concentrations (n = 0.4 ×
1019 cm–3), the thermoelectric efficiency Z of the
Bi2Te3 – zSz solid solution (curve 11 in Fig. 6) is lower
than that of Bi2Te3 – ySey, with no appreciable changes
in the ellipsoid shape parameters being observed in
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these solid solutions (ellipsoids 3, 7 in Fig. 7; Table 2).
This decrease in Z can be explained as being due to a
difference in carrier scattering anisotropy between
Bi2Te3 – ySey and Bi2Te3 – zSz. A study of the galvano-
magnetic properties of the Bi2(Te,Se,S)3 solid solutions
made within the anisotropic scattering model [1, 2]
showed that in Bi2Te3 – ySey (y = 0.3) the ratios of the
relaxation time tensor components obtained within the
temperature interval 80 ≤ T ≤ 150 K for a concentration
n = 0.35 × 1019 cm–3 are τ22/τ11 ≈ (0.95–1.2) and
τ33/τ11 ≈ (0.65–0.9) as T is varied from 80 to 150 K. The
close-to-unity ratio τ22/τ11 implies a weak scattering
anisotropy in the Bi2Te3 – ySey (y = 0.3) solid solution in
both the bisector and binary directions. The small dif-
ference (of no more than 30%) between the τ22/τ11 and
τ33/τ11 ratios is associated with the weak anisotropy in
the mirror plane (YZ). In the Bi2Te3 – zSz solid solution
(z = 0.21, n = 0.4 × 1019 cm–3, 80 ≤ T ≤ 150 K), the ratio
τ22/τ11 ≈ (0.2–0.5), which gives evidence for a higher
scattering anisotropy compared with that in the binary
direction in Bi2Te3 – ySey. Thus, the thermoelectric effi-
ciency in the solid solutions studied is effected by an
increase in carrier scattering anisotropy to a larger
extent than by a change in the parameters of the con-
stant-energy ellipsoids.
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Abstract—The electronic band structure of the chalcogenide spinels In2S3 and CdIn2S4 has been studied using
the FEFF8 program. It is shown that the valence band top is formed by the S p states mixed with the In s and
In p states for In2S3 or with the Cd s, Cd p, In s, and In p states for CdIn2S4. Compared to In2S3, the presence
of Cd atoms in the nearest environment of S atoms in CdIn2S4 does not considerably affect the electronic band
structure. In CdIn2S4 the Cd 4d states, as well as the In 4d states, form a narrow localized band shifted deep into
the valence band. The theoretical results are in good agreement with the experimental x-ray photoelectron and
x-ray spectra. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nonmagnetic compounds of the  type, in
which the cations have filled d shells, are characterized
by a broad transparency region, high nonlinear suscep-
tibility and natural birefringence, optical activity, high
photosensitivity, and intense luminescence [1]. These
merits, in a combination with the large optical band gap
Eg (according to different authors, Eg for CdIn2S4 lies in

the range 2.0–2.3 eV [2]), render the  com-
pounds promising for use in optoelectronics.

The CdIn2S4 compound crystallizes in the normal

spinel structure, which belongs to the space group 
(Fd3m). The cubic unit cell of the spinel contains eight
CdIn2S4 formula units with the lattice parameter a =
10.797 Å [2] and the anionic parameter u = 0.386 [3].
The sulfur atoms in CdIn2S4 form a face-centered cubic
sublattice with the closest packing. As in all normal
spinels, the high-valence indium atoms occupy sixteen
octahedral holes and the cadmium atoms with a lower
valence fill eight tetrahedral holes in the unit cell. Each
sulfur atom has three octahedrally coordinated indium
atoms and one tetrahedrally coordinated cadmium
atom as the nearest neighbors. The shortest interatomic
distances in CdIn2S4 are as follows: RCd–S = 2.543 Å,
RIn–S = 2.586 Å, and RS–S = 3.481 Å.

The indium sulfide In2S3 studied in this work also
has a spinel structure with a tetragonal superstructure
due to a vacancy disordering. The sulfur atoms form the
closest cubic packing. One unit cell contains 32 sulfur
atoms. The indium atoms are distributed over two reg-
ular systems with multiplicities of 8 (tetrahedral holes)
and 16 (octahedral holes). However, compared to
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CdIn2S4, among all the above 24 holes in the unit cell
of In2S3, only 21 holes are occupied, and three holes
(1/3, 2, and 2/3) remain unoccupied [4]. The crystal lat-
tice parameter a = 10.74 Å and the parameter u =
−0.136 [4] were used in further calculations for In2S3.
The shortest interatomic distances in In2S3 are as fol-
lows:  = 2.53,  = 2.572, and RS–S = 3.463 Å.

The electronic band structure of CdIn2S4 and In2S3
was studied both theoretically by using band-structure
calculations [3, 5–11] and experimentally with x-ray
photoelectron (XPS) [12], ultraviolet photoelectron
(UPS) [13], and x-ray [14, 15] spectroscopy. Goode-
nough [5] noted that knowledge of the electronic band
structure of the In2S3 nonmagnetic spinel can be very
useful in investigating the structure of more complex
spinels with transition d metals (for example, CdIn2S4).
However, in all the cited works, the densities of states
were not determined in the band calculations of In2S3
and CdIn2S4, which made their comparison with exper-
imental results more difficult. In this respect, the exper-
imental and theoretical data on local partial densities of
states in In2S3 and CdIn2S4 are of fundamental impor-
tance, because this information, first, allows one to
determine with confidence the energy distribution of
electronic states with a specific symmetry and their
contributions to the electronic subbands and, second,
provides the basis for the conclusion about the hybrid-
ization of electronic states in these compounds.

2. EXPERIMENTAL TECHNIQUE

Sulfides are very convenient objects because the
experimental sulfur K x-ray spectra are rather informa-
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tive by virtue of their fine resolved structure. This is
explained by the fact that the width of the sulfur K-edge
core level is small (0.57 eV [16]), and this broadening
does not lead to a considerable “smearing” of the fine
structure in the experimental sulfur K x-ray spectra.
The sulfur K-edge x-ray fluorescence spectra and sulfur
K x-ray absorption spectra of the In2S3 and CdIn2S4
compounds were measured on a DRS-2 spectrograph
with photographic recording. The Johann focusing was
used in the DRS-2 spectrograph, and the energy resolu-

tion was equal to approximately 0.2 eV. The (10 1)
quartz crystal with a bending radius of 50 cm served as
a dispersive element. For the sulfur K spectra, the refer-
ence lines were the Bi Mα1 and Bi Mβ lines in the first-
order reflection with energies of 2422.5 and 2525.6 eV,
respectively [16]. Each spectrum was obtained by aver-
aging the data for three films after the photometric mea-
surements at 250 equidistant points.

The sulfur primary L2, 3 spectra of In2S3 and CdIn2S4
were taken on an RSM-500 spectrometer. A concave
spherical grating of radius R = 2 m with 600 rulings per
millimeter (the wavelengths fall in the range from
~20 Å to 550 Å) was used as a dispersive element in the
spectrometer. The grating was coated with a thin layer
of gold in order to increase the intensity and to enhance
the contrast of the spectra. The spectra were recorded
with a secondary emission electron multiplier of an
open type, which could operate in spectrometers under
a high vacuum, but, unlike counters, had no windows.
In measurements of the sulfur L2, 3 spectra, the Zr Mζ
line (λ = 81.75 Å; E = 151.65 eV [17]) was used as the
reference line. The spectra of the K and L series were
matched on the same energy scale against the energy of
the sulfur Kα1 line.

As a whole, the S K x-ray spectrum reflects the
energy distribution of the S p partial states [18]; hence,
its main maximum A (Figs. 1, 2) for all the studied com-
pounds determines the energy location of the greater
part of these states in the valence band. The other fea-
tures in the structure of the S K spectrum can be attrib-
uted to the S p states mixed with the partial states of the
other atoms bonded to the sulfur atoms in the com-
pound. This can be treated as a manifestation of the
hybridization of electronic states due to the interatomic
interaction in the chemical compound (this interpreta-
tion was successfully applied, for example, to sulfides,
in our earlier works [14, 19, 20]). In turn, the S L2, 3
spectrum reflects the energy distribution of the S s par-
tial states [18].

The In L1 x-ray emission spectra of the In2S3 and
CdIn2S4 semiconductor compounds were also recorded
on a DRS-2 spectrograph (for greater detail, see [21]).
Figures 1 and 2 demonstrate the In L1 x-ray emission
spectra together with the adjacent long-wavelength
spectral range approximately 25 eV in length. The In L1

emission band represents the  line, which corre-

1

Lγ4
PH
sponds to the L1–εp transitions from the L1 level to the
levels of the valence band. The shape of this line
reflects the energy distribution of the density of states
in the valence band, which have the p symmetry and are
localized in a polyhedron of the indium atoms. A small
structural feature, which was referred to as  [21], is

observed in the long-wavelength range of the L1 spec-
trum. This feature was assigned to the L1–N4, 5 transi-
tion. Despite the fact that the center of gravity of the

 feature on the energy scale is located approxi-

mately 10 eV below the valence band bottom, this fea-
ture can be interpreted in terms of the possible hybrid-
ization of states in solids, which gives rise to an admix-
ture of the In p states with the In N4, 5(4d) states.
Therefore, the N2, 3 and N4, 5 states manifest themselves
in the In L1 emission spectrum. The energy locations of
the latter states in Figs. 1 and 2 are shown by the In 4d
lines, which were brought into coincidence with the
corresponding peaks in the x-ray photoelectron spectra.

3. CALCULATION TECHNIQUE

Over twenty years, many researchers have run into
serious problems when interpreting the results of calcu-
lations of the x-ray absorption near-edge structure
(XANES) spectra in the range approximately 40 eV
above the absorption edge, which is characterized by a
strong photoelectron scattering (see, for example, [22,
23]). The available XANES codes, which deal with the
full multiple scattering calculations [22, 23], are lim-
ited in accuracy for the necessity of using large basis
sets and the absence of self-consistent potentials. At the
same time, the results of calculations of the electronic
structure with ground state potentials by conventional
methods [24, 25], as a rule, depend on the lattice peri-
odicity or disregard the core hole and the intrinsic
energy effects (when the exchange–correlation poten-
tial is taken to be independent of the energy of an out-
coming photoelectron).

In this work, the sulfur K x-ray absorption spectra
and the partial density of states for the In2S3 and
CdIn2S4 semiconductor compounds were calculated
using the new FEFF8 code [26, 27]. This program
makes it possible to perform ab initio calculations of
the self-consistent crystal muffin-tin potentials with a
sufficient number of loops (up to 30) and also to calcu-
late the XANES spectra for arbitrary systems without
any constraints on symmetry and periodicity within the
real-space full multiple scattering (RSMS) approxima-
tion taking into account a fully relaxed hole at the core
level. In addition to the x-ray absorption spectra, the
FEFF8 program permits calculations of the electronic
structure: the local partial densities of states (LDOS),
the charge electron densities ρ(r), and the charge trans-
fer between atoms of the studied compounds. Com-
pared to other techniques for calculating the electronic
structure, the real-space multiple-scattering approach
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Fig. 1. Experimental and theoretical data on the electronic band structure of the In 2S3 semiconductor compound. The XPS spectrum
is taken from [12]. The energy is reckoned from the valence band top Ev .
has the advantage that the integration is carried out over
the complex energy region without determination of the
energy eigenvalues.

All the theoretical x-ray spectra and the local partial
densities of states were ab initio calculated within the
dipole approximation without fitting parameters
according to the scheme recommended by the authors
of the FEFF8 code [26, 27]. The self-consistent muffin-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
tin potentials were determined for clusters composed of
35 atoms (the SCF subprogram). These potentials were
used to calculate the absorption spectra and the local
partial densities of states within the full multiple
scattering approximation for clusters consisting of
87 atoms (the FMS subprogram). Then, in addition to
these clusters, the paths of single scattering in the larg-
est cluster (permissible in the FEFF8 code) containing
00
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Fig. 2. Experimental and theoretical data on the electronic band structure of the CdIn 2S4 semiconductor compound. The XPS and
UPS spectra are taken from [12] and [13], respectively. The energy is reckoned from the valence band top Ev .

Cd 4d
up to 1000 atoms were included in the calculations (the
NLEG2 subprogram). The maximum path length
(RPATH) was equal to ~16 Å for each studied com-
pound. It should be noted that, among all the possible
two-way scattering paths, only significant paths whose
amplitude was no less than 4% of the maximum scatter-
ing path were taken into consideration (the CRITERIA
subprogram). The crystal potentials were constructed
with due regard for the exchange interaction in the
Hedin–Lundqvist approximation (the EXCHANGE 0
subprogram). Because the Debye temperature for many
PH
compounds is an uncertain quantity, the DEBYE sub-
program (as for the other specific parameters taken into
account by different subprograms of the FEFF8 pro-
gram) was commented out in the XANES calculations
of In2S3 and CdIn2S4. The location of the Fermi level E0

was automatically determined with an accuracy of 1 eV
in the self-consistent crystal potential calculations pro-
vided by the FEFF8 code. No shift in the real value of
the energy that changes the E0 location in the final data
files of the XANES calculations was made, and the
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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Energy location of the characteristic peaks (eV) attributed to the valence bands of In2S3 and CdIn2S4

Compound
Peak

A B C D E F

In2S3 x-ray spectrum (S) 1.5 3.8 5.8 – 11.9 17.3

XPS [12] 1.5 3.9 5.9 – 11.8 17.0

S p 1.5 3.4 5.5 – – –

S s – – – – 11.2 13.5

In s – 3.2 5.9 – 11.8 –

In p – 3.1 5.7 – 11.2 –

In 4d – – – – – 13.5

CdIn2S4 x-ray spectrum (S) 1.5 3.7 5.7 9.6 11.3 17.0

x-ray spectrum (In) – 3.3 5.8 – – 17.0

XPS [12] 1.6 3.9 5.9 9.7 – 16.8

UPS [13] 1.5 – 6.0 9.9 – –

S p 1.5 3.9 6.1 8.0 – –

S s – – – – 12.1 14.1

In s – 3.0 6.1 – 12.8 –

In p – 3.0 5.0 – 12.1 –

Cd 4d – – – 7.4 – –

In 4d – – – – – 14.0

Note: The energy is reckoned from the valence band top Ev.
CORRECTION subprogram providing this possibility
was commented out.

4. RESULTS AND DISCUSSION

Figure 1 displays the S K and S L2, 3 x-ray emission
spectra and the S K absorption edge, which were
obtained by A. A. Lavrent’ev (one of the authors of this
work), and also the x-ray photoelectron spectrum
(XPS) taken from [12]. As can be seen, these spectra
are compared with the local partial densities of states,
which were calculated for indium and sulfur atoms in
the In2S3 compound with the use of the FEFF8 pro-
gram. The theoretical and experimental data in Figs. 1
and 2 were brought into coincidence on the same
energy scale with respect to the main maximum A in the
S K spectrum, which reflects the energy distribution of
the S p partial states and determines the energy location
of the greater part of these states in the valence band.
The other features in the structure of the S K spectrum
(B and C) can be assigned to the S p states mixed with
the partial states of the indium atom involved in this
compound. Similarly, the S L2, 3 spectrum is interpreted
as the energy distribution of the S s occupied states, and
its main maximum E corresponds to the energy location
of their greater part.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
It can be seen from Fig. 1 that the upper part of the
valence band in In2S3 is formed by the S p states (the A
maximum). The B shoulder in the S K spectrum can be
attributed to the S p states mixed with the In s and In p
states. This is confirmed by the curve of the In p states,
whose main maximum coincides in energy location
with the B shoulder, and also by the curve of the In s
states, which shows a certain feature in this energy
range (see table). This inference is corroborated by the
experimental In  spectrum [21], which reflects the
energy distribution of the In p and In s states. The main
maximum of this spectrum is located near the B peak in
the curve of the In p states, and the C shoulder coin-
cides in energy location with the main maximum in the
curve of the In s states. In this range of energies, the S K
spectrum also contains the C shoulder. This indicates
that the S p states are mixed with both In p and In s
states and that the In–S chemical bond in the In2S3 com-
pound has a covalent component. The E shoulders in
the curves of the In s and In p states are caused by the
mixing of the S s states with the indium states of the rel-
evant symmetry. The In d states form a narrow local-
ized band, which is shifted deep into the valence band
(the F maximum). The shift found from the maxima in
the x-ray photoelectron spectrum [12] and from the In

 line [21] is equal to ~12 eV. However, the energy

locations of the main maximum F in the curves of the

Lγ4

L
β2

1

00



2052 LAVRENT’EV et al.
In d partial densities of states, which were calculated
with the FEFF8 code, considerably differ from the
experimental data (see table). Note that the performed
calculations revealed a general tendency in the above
shift. The In d states virtually do not contribute to the
chemical bonding in the In2S3 compound. At the same
time, the low-energy shoulders F in the S L2, 3 spectrum
and the theoretical curve of the S s states suggest only
an insignificant mixing of these states with the In d
states.

The sulfur x-ray absorption spectrum near the main
edge (a) reflects the energy distribution of the S p free
states. Analysis of the theoretical and experimental S K
edges and the calculated partial densities of free states
(Fig. 1) shows that the conduction band bottom is
formed by the strongly mixed S p free states and the
In p and In s unoccupied states (the maxima a and b in
the corresponding curves). The features c and d in the
experimental S K edge, which are located at ~13 and
~18 eV above the valence band top Ev, are also revealed
in our calculation and reside in the theoretical S K edge.

A comparison of the experimental and theoretical
results shows that the performed calculations are in
good agreement with the experimental data and reflect
the energy distribution of the partial densities of states
in the valence band within 20 eV from its top and in the
conduction band within 17 eV with respect to Ev .

Analysis of the electronic band structure of the
CdIn2S4 compound (Fig. 2) revealed that the valence
band top is also formed by the S p states. This is con-
firmed by the energy location of the A maximum in the
S K spectrum, x-ray photoelectron spectrum (XPS)
[12], ultraviolet photoelectron spectrum (UPS) [13],
and theoretical curve of the S p states. The shoulders B
and C in the curves displayed in Fig. 2 result from the
mixing of the S p states with the strongly mixed In s and
In p states. The low-energy maximum E in the curves
of the In s and In p states is associated with an admix-
ture of the S s states shifted deep into the valence band
by ~11 eV, which is supported by the experimental
S L2, 3 x-ray emission spectrum.

As follows from the comparison of the electronic
structures for CdIn2S4 and In2S3, the presence of the
cadmium atoms as the nearest neighbors of the sulfur
atoms does not considerably affect the chemical bound-
ing. This is explained by the fact that the Cd d states, as
well as the In d states, form a narrow localized band
shifted deep into the valence band by ~10 eV. The
energy location of the main maximum D in the curve of
the Cd 4d states, as for the In 4d states, disagrees with
the data of the ultraviolet photoelectron [13] and x-ray
photoelectron [12] spectroscopy. However, the distance
between the F and D peaks in the above curves corre-
sponds to the experimental value (see table). The shoul-
ders D in the S K spectrum and in the curve of the S p
states are due to an insignificant mixing of S p states
with Cd d states.
PH
According to the XANES calculations of the S K
absorption edge (Fig. 2), the conduction band bottom in
the CdIn2S4 compound, as in In2S3, is formed by the
mixed S p free states and the In p and In s states. How-
ever, the A maximum in the S K edge for the CdIn2S4
compound is associated with the hybridization of the S
p and In s states, unlike the In2S3 compound, for which
the In p states are also observed near the main absorp-
tion edge. The c feature in the experimental S K edge
was not revealed in our calculations, unlike the D max-
imum observed in the theoretical curve (Fig. 2).

5. CONCLUSION

The above analysis demonstrated that the FEFF8
program allows one to reveal the principal features near
the main absorption edge and also to trace the forma-
tion of the valence band top and the conduction band
bottom by the partial states of all the atoms involved in
the compound composition. This makes it possible to
compare the theoretical results with both absorption
spectra and the energy locations of the main maxima in
the emission spectra.
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Abstract—The movement of edge dislocations and the related acoustic emission of Si (111) carrying a direct
current of density 0.5–5 × 105 A/m2 in the [110] direction are studied in the temperature range T = 300–450 K.
It is shown that the basic mechanism of dislocation movement is the electric wind determining the magnitude
of the effective charge (per atom of the dislocation line) Zeff = 0.06 (n-Si) and –0.01 (p-Si). Matching theory
with experimental data has made it possible to determine the main contribution of edge dislocations to the
acoustic-emission response of the silicon samples under investigation. The characteristic transition frequencies
of dislocations in n- and p-Si from one metastable state into another are found to be fmax = 0.1–0.5 Hz. The
numerical values of the diffusion coefficient for atoms in the dislocation impurity atmosphere are estimated as
3.2 × 10–18 m2/s (n-Si) and 1.5 × 10–18 m2/s (p-Si). © 2000 MAIK “Nauka/Interperiodica”.
It is well known that dislocations considerably
affect the electrophysical properties of semiconductors
[1]. Like doping impurities, dislocations in semicon-
ductors play the role of electrically active centers [2]
whose motion modifies the electrical properties of crys-
tals. Moreover, they actively interact with dopant
atoms, leading to the formation of impurity atmo-
spheres [3, 4]. Such a rearrangement determines the
behavior of linear defects in external perturbing electric
fields. The experiments with elemental semiconductors
at high [1] or room (TR) temperatures under an addi-
tional mechanical loading [1, 5] provide an apt illustra-
tion of such an effect. However, the information
obtained in this case was obviously insufficient in
describing the mechanism of the electroplastic effect in
the studied elemental semiconductors. Moreover, there
is practically no information on the transport processes
occurring at the dislocation core during its electrically
stimulated motion at room temperature. For this reason,
this work aims at analyzing the electrically stimulated
transport of edge dislocations in silicon loaded with an
impurity cloud near room temperature.

The experiments were made on dislocation-free n-
and p-type silicon plates of the (111) orientation having
a size of 60 × 12 × 0.4 mm with a fixed value of resis-
tivity ρ ranging from 0.05 to 0.005 Ω cm. Edge dislo-
cations were introduced by a three-support bending of
the plates in the [111] direction at 1000°C for 30 min
[6]. As the sag changed to 800 µm, the dislocation den-
sity attained 106 cm–2 and was fixed for each object.

In our experiments, we first analyzed the dislocation
structure of the sample to establish the dominance of
the edge component, after which room-temperature
electrical annealing of dislocation-containing and dis-
1063-7834/00/4211- $20.00 © 22054
location-free samples was carried out, followed by an
analysis of the migration of the linear defects.

The effect of dislocation anharmonism on the
change in Young’s modulus E was detected during the
bending of silicon single crystals. Since the anisotropy
factor for silicon is ~1.5 [7] and the velocities of prop-
agation of sound in different directions differ insignifi-
cantly (by ~2% [8]), we can base our analysis on the
nonlinear Hooke law for isotropic bodies:

(1)

this law leads to the following expression for the elastic
energy per unit volume of the crystal:

(2)

Here and below, α and β are linear combinations of the
third- and fourth-order elastic moduli (Pa), respec-
tively; ε is the elastic strain; and E0 is Young’s modulus
for the linear Hooke law.

The modulus α in Eq. (2) is the coefficient of an odd
power of elastic strain; consequently, the alternating
contribution of this term to the elastic energy depends
on the sign of ε. For example, in the case of a sag, the
“upper” half of the plate experiences compression rela-
tive to the neutral layer (αε3 < 0), while the “lower” half
is subjected to extension (αε3 > 0), so that averaging
over the cross section gives zero [9]. On the other hand,
in a composition with β, any alternating deformation
leads to the same variation of W. While calculating the
contribution of dislocations to nonlinear moduli, we
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must take into account the lattice βl, dislocation βd, and
the concentration βc anharmonism:1

(3)

According to Nikitin [10], in the presence of a disloca-
tion structure, we have

(4)

and βl ! βd. Here, Ω is the orientation factor; Nd and L
are the dislocation density and length, respectively; ν =
0.27 is the Poisson ratio for silicon; and θ is the angle
between the Burgers vector b and the dislocation axis
[10]. For an edge dislocation in silicon, the sign of the
modulus β ≈ βd is positive, while for a dominating
screw component it is negative. Consequently, by mea-
suring the value of β for a dislocation-containing sam-
ple with a low concentration of charge carriers, we are
able to further understand the nature of linear defects in
semiconductors.

The sign of β was verified experimentally using a
compound vibrator technique. Piezoceramic pickups
with two metallized faces were glued to the end faces
of the plates. The pickup width was made as close to the
plate width as possible, while the length of the pickups
was 6–8 mm.

Bending of plates along the [111] direction was car-
ried out on a specially designed device with spherical
supports of diameter 0.5 mm, which reduced the effect
exhibited by the support–crystal contacts on the elastic
energy transport. The sag of the plates was measured by
a micrometer to within ±2.5 µm. The maximum sag of
the crystal at the center of the plate was 800 µm for a
span of 55 mm between the supports. The complete
destruction of the sample took place for larger strains.

The plate under investigation was connected to the
feedback circuit of an rf resonant amplifier. The reso-
nance frequency amplitude was monitored with the
help of an S1-83 oscilloscope and an RChZ-07-0002
frequency meter. The strain dependence of the elastic
wave velocity in the semiconductor was measured in
the frequency range 3–7 MHz. First, the oscillatory cir-
cuit was tuned to a resonance frequency, followed by a
subsequent 3-min holding of this frequency in the on
state. This allowed us to attain thermal equilibrium and
to reduce the resonance frequency drift. Then, a fre-
quency meter recording was taken upon the loading and
unloading of the crystals. The relative change in fre-
quency associated with a drift in the parameters of the
outer medium did not exceed 10–5.

If longitudinal vibrations are excited in a semicon-
ducting silicon plate of length LPL and thickness hPL

subjected to three-support bending, the total strain will
be the sum of the vibrational εk and static ε0 strains. The

1 The concentration anharmonism is identified with the contribu-
tion of the free charge carriers to the nonlinear elastic modulus β.

β βl βd βc.+ +=

βd
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parameters of the vibrations will be characterized in
this case by Young’s modulus [10]:

(5)

Here, the radius of curvature  for a small sag is
determined by the second derivative of the plate profile
y(x). For the loading procedure with a fixed distance ρ
between the supports used, the plate profile can be
described by the well-known function [10]

(6)

where d is the sag.
In order to determine the elastic moduli, we used a

measuring circuit, including a feedback oscillator with
the resonance condition determined by the resultant
phase

(7)

Here, v =  is the velocity of sound in the crystal

and dSi is the density of silicon.

The integration of this equation, while taking
Eqs. (5) and (6) into account, makes it possible to
derive an expression for the relative change in the fre-
quency ∆f = f – f0 of generation of ultrasonic signals in
an oscillatory system with a deformed plate:

(8)

Here, f0 and d0 denote the self-oscillation frequency and
the sag in the absence of deformation; f and d are the
frequency and sag under bending, respectively; and
∆d = d – d0.

For the sake of simplifying the subsequent analysis,
we write expression (8), taking into account Eq. (3), in
the form of the corresponding equations

(9)
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(10)

for dislocation-free (subscript “s”) and dislocation-con-
taining (“d”) silicon which take into account the
absence of the term α in the case of sample bending.

∆f

∆d( )2
--------------

 
 
 

d

4
hPL( )2

p3LPL

--------------
 
 
 

d

f d
3β
2E0
---------=

1

2

3
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∆f = f – f0, Hz

Fig. 1. Effect of the sag d on the variation of vibrational fre-
quency of samples with different density of dislocations:
(1) 8 × 104, (2) 7 × 105, and (3) 2 × 106 cm–2.
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Fig. 2. Oscillogram of the acoustic emission signal U(t)
emerging in the course of electrical annealing of silicon
(0.005 Ω cm) dislocation-containing plates (4 × 105 cm–2 of
the n type for a current density j = 2.7 × 105 A/m2 and T =
410 K).
PH
It can be easily seen that the right-hand sides of
Eqs. (9) and (10) determine the slope of the experimen-
tal curves plotted in the ∆f vs. (∆d)2 coordinates and
that their difference gives the value of the dislocation
contribution to the modulus being measured:

(11)

It can be seen that the dislocation contribution to the
corresponding modulus can be obtained by comparing
∆β for samples with different values of dislocation den-
sity Nd. The effects associated with the contribution of
free charge carriers to the nonlinear modulus β are
excluded in this case.

The results of these investigations are presented in
Fig. 1. It can easily be seen that βd > 0 for the disloca-
tion structure of n silicon, which indicates the edge
nature of the dislocations under investigation. A similar
situation is also observed for p silicon.

Thus, the deformation conditions used for both the
donor and acceptor silicon facilitate the emergence of
predominantly edge dislocations with an angle θ ≈ 90°
between the Burgers vector and the dislocation axis,
which follows directly from Eq. (4). Analysis of the
mobility of edge defects in an electric field was carried
out by acoustic-emission methods [11] and by the
selective etching of the semiconductor surface [12]. For
this purpose, silicon plates were chemically polished
and etching was started, after the annealing process
under a load was completed, in order to determine the
initial positions of the dislocations.

Exposure to a current without additional mechanical
loading (j = 1–7 × 10–5 A/m2) was carried out for a span
of 20–40 h in a thermostat in a special fastening unit.
The current contacts were formed by using In–Ga
eutectic.

After electrothermal annealing in the temperature
range 300–450 K, repeated etching and an analysis of
the dislocation pattern were carried out. The separation
between dislocation etch pits was measured with the
help of an MII-4 microscope under ×450 magnifica-
tion. In some experiments, the dislocation structure of
the sample before and after electrical exposure was
photographed and the paths were analyzed by measur-
ing the photographic negatives. The results obtained by
using both methods were found to be in good agree-
ment.

Along with controllable etching, the acoustic emis-
sion (AE) method was actively used. The AE signals
were detected by a piezoelectric transducer mounted on
the surface of the plate under investigation [11]. The
electric response U(t) from the transducer (Fig. 2) was
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fed to a storage oscilloscope S9-8. The information was
then fed to a computer in order for the spectral compo-
sition of the AE signal U(ω) to be calculated using the
algorithm of fast Fourier transformation based on the
Welch periodogram analysis [13]. A typical spectrum
of an acoustic-emission response in the course of elec-
trothermal annealing of dislocation-containing silicon
is shown in Fig. 3.

The results of analysis proved that the presence of a
stable AE response from dislocation-containing sam-
ples during electric annealing is associated with the
motion of dislocations. This is confirmed by the radical
difference in the acoustic emissions of dislocation-free
and dislocation-containing silicon plates, as well as by
the increase in the AE signal amplitude resulting from
an increase in the dislocation density in samples under
invariable parameters of electrical exposure [11].

It is well known that the effect of an electric field on
dislocations is the result of the combined action [12,
14–16] of forces of ion drag and electron (hole) wind:

(12)

where σin and σip are the average electron and hole scat-
tering cross sections per atom on a dislocation line,
respectively; Nat is the number of atoms on a disloca-
tion line; n, p, ln, and lp are the equilibrium concentra-
tions and mean free paths of electrons and holes; e is
the elementary charge; and Zi and Zeff are the Coulomb
and effective charges per atom on a dislocation line,
respectively. The sign of the effective charge of a dislo-
cation determines the direction of the electron transport
forces. The total force determining the motion of a lin-
ear defect with a velocity V can be written in the form

(13)

where Ft is the dislocation drag force depending on the
dislocation length L, on the diffusion coefficient Dd of
atoms in the dislocation impurity atmosphere, on the
equilibrium concentration c0 of an impurity in a defect-
free region of the crystal, and on the dimensional con-
stant γ.

Drag processes are manifested especially clearly in
doped semiconductors due to the impurity segregation
near the dislocation core and the formation of impurity
atmospheres whose characteristic size can be estimated
as [5]

(14)
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where D is the bulk diffusion coefficient for impurity
atoms, W is the binding energy, kT is the thermal
energy, and t is the duration of thermal treatment.

Near room temperature and at low current densities,
the probability of detachment of a dislocation from the
Cottrell atmosphere can be neglected even when taking
thermal activations into consideration. The presumed
mechanism of dislocation motion is associated with the
transition of a dislocation (or its fragment) to a neigh-
boring metastable state with a diffusion drag of impu-
rity atoms corresponding to its new position. In this
case, the dislocation can move only in the form of the
“dislocation–impurity cloud” object [17]. The motion
of this system is controlled by the diffusion of atoms
dissolved in the dislocation core [14, 17].

Thus, in the presence of a constant force F, the ther-
mally activated motion of a “loaded” dislocation can be
described by the equation [3, 14]

(15)

assuming the form

(16)

where Ep2 is the Peierls barrier of the second kind.
In analyzing the effects of an electric field on the

mobility of linear defects in silicon, it is necessary to
take into account the acceptor properties of linear
defects in n-Si and the donor–acceptor properties in p-
Si [2]. The distance over which the field of a charged
dislocation is compensated by the field of ionized

V V0
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Fig. 3. Spectral density of the acoustic-emission signal after
Fourier’s transformation of the signal U(t). The principal
curve corresponds to the smoothing of the U(ω) signal.
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donors for silicon is estimated as R ≈ 2 nm [2]. Conse-
quently, in view of complete screening, the main con-
tribution to the force action on dislocations under cur-
rent loading comes from the electron or hole wind,

3
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20

30

40

5 7 9 11 13

ni/Σni
i

ξ, µm

Fig. 4. Distribution of dislocation paths (ξ) in n silicon
(Nd = 5 × 1024 m–3) during electrical annealing with j =

0.5 × 105 A/m2.

0.1
0
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j, 105 A/m2

0.2 0.3 0.4 0.5

2

4

12

Fig. 5. Current dependence of the maximum of acoustic
emission spectrum for silicon. Symbols correspond to
experimental results and continuous curves are the results of
calculations: (1) n type (Nd = 5 × 1024 m–3) and (2) p type

(Nd = 2 × 1024 m–3).
PH
which, hence, determines the displacement of the “dis-
location–impurity cloud” object in the direction of
motion of the majority charge carriers.

Analysis of the paths of linear defects, which was
carried out for 80 individual dislocations, indicates that
the preferred motion of edge dislocations in n-Si is
towards the positive electrode. Analysis of dislocation-
containing p-Si reveals that the velocity of linear
defects has the opposite direction; that is, they move
towards the negative electrode. The results of these
investigations are presented in Fig. 4. An increase in the
“current load” accelerates the motion of edge disloca-
tions in Si, which invariably affects the acoustic emis-
sion of the samples [11].

Our acoustoemission experiments on the samples
under investigation demonstrated a regular displace-
ment of the acoustoemission spectrum towards higher
frequencies and an increase in the emission response
amplitude (Fig. 5) upon a perturbation of the system by
an electric current. The electrically stimulated changes
in the average velocity of the directional motion of dis-
locations and the characteristic frequency of the AE
spectrum are well correlated. For example, an increase
in j in n silicon (0.05 Ω cm) from 4 × 105 to 6 ×
105 A/m2 leads to an increase in V, as well as in the fmax,
by a factor of 1.5. Such a correlation makes it possible
to connect the peak of the AE signal spectrum with the
characteristic frequency of transition of dislocations
from one metastable state to another:

V = afmax, (17)

where a is the magnitude of a jump. It can be said,
moreover, that the very existence of the acoustoemis-
sion response points towards the hopping nature of the
dislocation movement [18]. Indeed, using the experi-
mental values of the dislocation velocity V = 0.5 ×
10−10 m/s and the characteristic values of fmax = 0.15 Hz
for j = 0.5 × 105 A/m2, we can easily calculate the
Peierls period a ~ 0.3 nm (which is in accordance with
the values for covalent crystals), as well as the disloca-
tion mobility µd = 1.4 × 10–12 m2/(V s).

Thus, the electric current passing through the sam-
ples expels dislocations even at room temperature. In
this case, the increase in the current load increases the
rate of dislocation-induced transitions and, hence, the
drift velocity of dislocations, which is directly reflected
in the spectra of acoustic-emission responses. Thus, the
recording of emission processes makes it possible to
trace in situ the dynamics of dislocations in a semicon-
ductor.

Let us analyze the relation between fmax and the cur-
rent density through the sample. For this purpose, we
rewrite Eq. (17) by taking into account Eqs. (13) and
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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Basic electrical transport parameters

Sample ρ, Ω m c0, m3 Φ1, m2/A Φ2, s Φ3, s Φ4, 1/s Zeff , 1/atom V0, m/s Dd, m2/s

n-Si 10–4 5 × 1024 phosphorus 3 × 10–7 7.27 × 10–6 4.23 1.77 0.06 4.1 × 10–5 3.2 × 10–18

p-Si 5 × 10–4 2 × 1024 boron 3.5 × 10–7 1.36 × 10–5 8.34 0.86 –0.01 2.2 × 10–5 1.5 × 10–18
(16) and present it first as the relation

(18)

and, for the convenience of subsequent graphic analy-
sis, we then rewrite it in the form

(19)

where the constants are given by

It can be seen that an increase in the current load
must be accompanied by a displacement of the maxi-
mum of the AE spectrum along the frequency axis. Fig-
ure 5 illustrates this graphically for donor and acceptor
silicon, demonstrating good agreement between the
experimental results and Eq. (19) for the obtained val-
ues of Φi (see table), r0 = 6 nm, and the Peierls barrier
of the second type (Ep2 ≈ 0.5 eV) [11]. This makes it
possible to determine the effective charge Zeff, the dif-
fusion coefficient Dd, and the preexponential factor V0
in Eq. (15). The obtained values of the main parameters
of electrical transport are presented in the table.

It can be seen that the numerical values of V0, Dd,
and Zeff determined from the acoustic-emission
response and from the displacement of dislocation
etching pits in perturbing electric fields are reasonable.
Exaggerated values of Dd as compared to bulk diffusion
[19] may indicate that diffusion is facilitated in the dis-
location core region in the presence of an electric field
and in the presence of a field of long-range internal
stresses in a deformed crystal, but they also indicate a
same order of magnitude as that of grain-boundary dif-
fusion for TR [20]. Unfortunately, we are not aware of
any data on the electrically stimulated drift of disloca-
tion–impurity structures that would aid in formulating
a comparative analysis.
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Thus, we have analyzed the motion of edge disloca-
tions in silicon in the 300- to 450-K temperature range.
It has been proven that the dominating mechanism of
transport under electrical action is the force of the elec-
tron (for n-Si) or hole (for p-Si) wind determining the
sign of the effective charge of an edge dislocation sur-
rounded by an impurity cloud. The obtained results
indicate the impossibility of the detachment of a dislo-
cation from an impurity cloud under the current and
thermal loads used in our studies, though their motion
is limited by the diffusion of atoms to the core in an
electric field and in the field of internal stresses of a
dislocation. The proposed mechanism of displacement
is associated with a transition of a dislocation (or its
fragment) to an adjacent metastable state with a diffu-
sion drag of impurity atoms corresponding to its new
position.
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Abstract—The general rules governing the transition to a new representation in which the Hamiltonian of
interaction with an alternating field contains constant terms are formulated. Diagonalization of this Hamiltonian
leads to the formation of quasi-stationary energy levels. The possibility of the existence of a temperature at the
quasi-energy levels is considered separately. A three-level spin system is used as an example to show that
another specially selected alternating magnetic field can excite resonance transitions between the energy levels
in the laboratory coordinate frame and the energy levels in the new representation. Expressions for free-pre-
cession and spin echo signals, which carry information concerning quasi-stationary energy levels, are derived.
© 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

An interesting fact was observed by Redfield [1]: if
the alternating field is so strong that interaction with it
considerably exceeds the interaction with the sources
of energy level broadening, a new effect called spin
quantization is observed in the alternating field. This
quantization is responsible for the emergence of spin
quasi-stationary energy levels.

Formally, a static field Heff = 
(H0 is a constant magnetic field and H1 is the amplitude
of an alternating magnetic field perpendicular to H0 and
rotating with a frequency ω in the direction of preces-
sion) in a rotating coordinate frame (RCF) can be put in
correspondence with Zeeman’s quasi-stationary energy
levels separated by an interval "ωeff = "γHeff [1, 2].

It was shown experimentally [1] that quasi-energy
levels indeed exist in the sense that magnetic resonance
can be observed on them with the help of an appropri-
ately chosen second alternating current. Spin levels in
the RCF were also recognized thermodynamically;
spin temperature and canonical distribution were intro-
duced for them [1]. Adiabatic demagnetization [3, 4]
and spin–spin and spin–lattice relaxation [5] were stud-
ied both theoretically and experimentally in the RCF.
The existence of spin quantization in the field of a high-
intensity acoustic wave and the trapping of nondiagonal
components of the nuclear quadrupole electrical
moment associated with it were studied in [6]. It is
interesting to note that the quasi-energy spectrum of the
nuclei in the case of quantization in an acoustic field is
identical to the nuclear quadrupole resonance (NQR)
spectrum, whereas in the laboratory coordinate frame

H1
2 H0 ω/γ–( )2+
1063-7834/00/4211- $20.00 © 22061
(LCF), the nuclei possess a Zeeman spectrum. Spin
quantization in a strong alternating magnetic field was
also studied in detail for the case when the spin system
in the LCF possesses the NQR spectrum [7–11].

In the case of a nonequidistant spectrum, the transi-
tion to the RCF is replaced by a transition to a new rep-
resentation in which the Hamiltonian of interaction
with the alternating field contains terms that do not
depend explicitly on time. Transition to the new repre-
sentation is expedient only over a certain part of the
LCF Hamiltonian, after which the possibility of excit-
ing spin transitions between quasi-energy levels, as
well as between the LCF and quasi-energy levels,
becomes quite obvious.

In this work, we study the transient processes in a
nonequidistant three-level twofold degenerate spin sys-
tem (the spins I = 5/2 are placed in an electric field of
axial symmetry) in which two energy levels are trans-
ferred to the quasi-stationary state by exciting an indi-
vidual resonance transition and the third level pertains
to the LCF. The investigated transient processes emerge
as a result of pulsed excitation of resonance transitions
between quasi-stationary and LCF levels.

1. SPECTRUM OF A SPIN SYSTEM
IN THE ALTERNATING-FIELD 

REPRESENTATION

In order to study the effect of resonance transitions
between LCF and quasi-energy levels on the spin sys-
tem, one should consider a spin system with three or
more nonequidistant energy levels. An alternating sta-
tionary resonance field is used to create quasi-energy
levels on two of these levels, while the remaining levels
000 MAIK “Nauka/Interperiodica”
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are barely perturbed by this field. The transient pro-
cesses are triggered by radiofrequency (rf) pulses
which serve as resonance pulses for an LCF level and a
quasi-energy level.

Let us consider the NQR spectrum of nuclei with
spin I ≥ 5/2. Three twofold degenerate NQR energy lev-
els with spin I = 5/2 possess the required nonequidistant
spectrum (the complications caused by twofold degen-
eracy are not manifested in the dynamics).

In the case of a nonequidistant spectrum, it is conve-

nient to use the projection operators  that have

matrix elements  = δmm'δnn' in the  rep-
resentation, thus having the multiplication rule

 = δnk  take place for them. In terms of these
projection operators, the NQR Hamiltonian for spin I =
5/2 has the following form in an axially symmetric
electric crystal field:

(1)

where eq is the electric field gradient at the nucleus, ω0
is the resonance frequency of the lower transition, and
eQ is the nuclear quadrupole electrical moment. The
NQR energy levels and the corresponding wave func-
tions χm are shown in Fig. 1.

Interaction with the alternating fields has the form

(2)

(3)

P̂mn

χm' P̂mn χn' Îz

P̂mnP̂kl P̂ml

Ĥ0
"ω0

3
--------- 5 P̂5 5, P̂ 5 5–,–+( )[=

– P̂3 3, P̂ 3– 3–,–( ) 4 P̂1 1, P̂ 1– 1–,+( )– ] ,

ω0
6e2Qq

4I 2I 1–( )
-------------------------,=

Ĥa
t γHa t( )Î–=

=  " f m P̂m 1+ m, P̂m m 1+,+( ) ωat θa+( ),cos
m

∑
Ĥb

t γHb t( )Î–=

=  i" gm P̂m 1+ m, P̂m m 1+,+( ) ωbt θb+( ),cos
m

∑
θa ϕa ωat0a–= , θb ϕb ωbt0b,–=

LCF AFR ε = +1 AFR ε = –1

5ω0/3

–ω0/3

–4ω0/3

χ±3

E±5
LCF

E±3
AFR

E±1
AFR

E±3
AFR

E±1
AFR

χ±5

χ±1
ϕ±1

ϕ±3 ϕ±1

ϕ±3

χ±5 χ±5E±5
LCF

Fig. 1. Energy spectrum and wave functions in the LCF and
AFR.
PH
where fm = γHa ; gm = γHb ;
t0a and t0b are the instants of time corresponding to the
application of alternating fields Ha(t) and Hb(t), respec-
tively; and Ha, Hb and ϕa, ϕb are their amplitudes and
initial phases, respectively. The magnetic fields Ha(t)
and Hb(t) are directed along x and y axes in the LCF.
Their frequencies are close to the resonance frequen-
cies ωa ≈ ω0 and ωb ≈ 2ω0 of the Hamiltonian (1).

The alternating magnetic field Ha(t) is used in the
formation of quasi-stationary energy levels, and the
field Hb(t) is applied for studying these levels by excit-
ing resonance transitions between them.

In order to find the quasi-energy levels associated
with the amplitude of the alternating field Ha(t), we
must go over to the new representation in such a way

that (I) the unitary operator exp  of transforma-

tion to the new representation commutes with the

Hamiltonian , (II) the Hamiltonian  contains
terms that do not depend explicitly on time, and
(III) the “center of gravity” of the operator is preserved;

i.e., the condition Tr( ) = 0 is satisfied.

In the general case, condition (I) is satisfied by the

operator  = , whose coefficients are sub-

jected to the constraint a±3 – a±1 = "ωa owing to condi-
tion (II), while condition (III) leads to the relation

 = 0. These equalities do not completely define

the coefficients am.

The following requirements can be additionally
introduced from the physical considerations: (IV) The
energy levels of Hamiltonian (1) are twofold degener-
ate and the alternating field excites transitions of iden-
tical intensities between the states χm  χm + 1 and
χ−m  χ–(m + 1); hence the twofold degeneracy of spin
levels can be naturally preserved in the new representa-
tion by putting am = a–m. (V) The alternating field Ha(t)
induces resonance transitions between the states
χ±1  χ±3 at the resonance frequency ωa ≈ ω0 and
leaves the states χ±5 unperturbed; hence, it is natural to
impose the requirement that a transition to the new rep-
resentation associated with Ha(t) must not affect χ±5,
i.e., that the equalities a±5 = 0 must be satisfied.

Taking into account requirements (IV) and (V), the

operator  can be defined accurately, except for the
sign. From the physical considerations we choose the
positive sign

(4)

χm Îx χm 1+ χm Îx χm 1+

iĤ1t
"

---------- 
 

Ĥ0 Ĥa
t

t( )

Ĥ1

Ĥ1 amP̂mmm∑

amm∑

     
     

     

Ĥ1

Ĥ1
"ωa

2
--------- P̂3 3, P̂ 3– 3–, P̂1 1,– P̂ 1– 1–,–+( ).=
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For any operator , the transition to the generalized
interaction representation (GIR) is accomplished with
the help of the relation

(5)

Let us pass to the operator  in the GIR, in which the
spin Hamiltonian is defined as

(6)

where

(7)

The interaction Hamiltonian of spin with an alternating
magnetic field Ha(t) can be written in the GIR in the
form

(8)

where

(9)

(10)

It seems natural that the spin spectrum in the GIR

should be determined by the Hamiltonian , i.e., the
part left after the transition to the GIR of the Hamilto-

nian  which defines the energy spectrum in the LCF
(Fig. 1). However, we assume that the spin spectrum in
the GIR is determined by all time-independent terms in
Hamiltonian (6):

(11)

This assumption is a continuation of Redfield’s ideas
on quantization in the RCF along an alternating field

amplitude. As a result, the Hamiltonian  in the GIR

Â

Â t( ) i
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ˆ

"
------t 

  â i
Ĥ1

"
------t– 

  .expexp=
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Ĥ Ĥ2 Ĥa
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–
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3
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---------+ 
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3
-------------
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2
---------– 

  P̂ 1± 1±, .–

Ĥa
t

t( ) Ĥa
const

t( ) Ĥa
2t

t( ),+=

Ĥa
const

t( )
" f 1

2
--------- P̂3 1, iθa–( ) P̂1 3, iθa( )exp+exp[ ] ,=

Ĥa
2t

t( )
" f 1

2
---------=

× P̂3 1, i 2ωat θa+( )[ ]exp P̂1 3, i 2ωat θa+( )–[ ]exp+( )

+ " f 3 P̂5 3, i
ωa

2
------t– 

 exp

+ P̂3 5, i
ωa

2
------t 

 exp ωat θa+( ).cos

Ĥ2

Ĥ0

Ĥ3 Ĥ0 Ĥ1– Ĥa
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t( ) Ĥ2 Ĥa
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t( ).+≡+=

Ĥ3
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assumes the form

(12)

The representation in which the Hamiltonian 
containing effective interaction with the alternating
field Ha(t) is diagonal will be called the alternating-
field representation (AFR).

The generalized quasi-stationary levels, or the
energy levels in the AFR, are defined as follows:

(13)

where we have used the notation

The eigenfunctions corresponding to these levels are

(14)

in which the parameter λ is defined by the condition

 = .

Let us now introduce, for the sake of convenience,

the projection operators  in the basis of the wave
functions ϕm:

The operators  and  are connected through
simple linear relations which can be used to obtain the

following expression for the operator  in the AFR
wherein it is diagonal:

(15)

The resonance frequencies in the AFR are defined as
(see Fig. 1)

(16)

Ĥ3
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3
-------------P̂5 5,
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3
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2
---------+ 
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3
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2
---------– 
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+
" f 1

2
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6
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κ ∆2 f 1
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ϕ1 χ1 λcos εχ3 iθa–( ) λ ,sinexp–=

2λtan
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∆
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Ĥ3 Em
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5ω0 εκ–

2
---------------------, Ω5 1,

5ω0 εκ+
2
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The operator  in the AFR plays the role of the

Hamiltonian  in the LCF.
In conformity with constraint (V) imposed on the

operator , we obtain

(17)

This fact leads to the assumption that, upon the transi-
tion to the AFR, this energy level remains an energy

level in the LCF, while the energy levels  and

 are the AFR energy levels.

Let us write down the resonance terms of the Hamil-

tonian  corresponding to transitions between the
LCF levels and the quasi-energy levels at frequencies
Ω5, 3 and Ω5, 1:

(18)

Interaction with any other field whose amplitude is

smaller than the energy  can also be presented in

terms of the projection operators  in the resonance
approximation.

2. DESCRIPTION OF TRANSIENT PROCESSES
IN THE AFR

The results of the action of an electromagnetic pulse
at the frequency ωb depend to a considerable extent on

the occupancy  of the quasi-energy levels in the

Ĥ3

Ĥ0

Ĥ1

E5
AFR E5

LCF 5"ω0

3
-------------, ϕ5≡ χ5.= =

E3
AFR

E1
AFR

Ĥb
t

t( )

Ĥb
res

t( )
i"g3

2
---------- i ωb

ωa

2
------+ 

  t θb+– 
 exp=

× R̂5 3, λcos εR̂5 1, iθa–( ) λsinexp–( )

– i ωb

ωa

2
------+ 

  t θb+ 
 exp

---× R̂3 5, λcos εR̂1 5, iθa( ) λsinexp–( ) .

Em
AFR

R̂mn

Nm
AFR

H
a(

t)

0

τ1 τ1 + t1

H
b(

t)

0 τ2 + τ1 τ2 + τ1 + t2 2τ2 + τ1

t

t

Fig. 2. Schematic diagram showing the application of an rf
field Ha(t) and field pulse Hb(t) (the expected instant of
emergence of the spin-echo signal is also indicated).
PH
AFR. If we measure time from the instant of applica-
tion of the rf field Ha(t), the electromagnetic field Hb(t)
starts acting from the instant of time τ1 ≥ 0. Figure 2
shows the general diagram for the application of the rf
field Ha(t) and the field pulses Hb(t). There, τ2 is the
time interval between the instants of application of the
first and second pulses of the field Hb(t), and t1 and t2
are their respective durations. Depending on the initial
form of the density matrix, two interesting limiting
cases are observed:

(1) The interval after which the transient processes
start is much shorter than the spin–lattice relaxation
time τ1 ! T2. In this case, the initial value of the density
matrix corresponds to the thermodynamic equilibrium
at the LCF levels:

(19)

In contrast, in the AFR, the density matrix in Eq. (19)
has the form

(20)

(2) By the beginning of the transient processes in the
spin system, thermodynamic equilibrium is already
established on the quasi-energy levels in the AFR (τ1 @
T2). In this case, the initial density matrix for transient
processes is defined by the relation

(21)

with a certain temperature TAFR, which is generally dif-
ferent from the lattice temperature.

In this section, main attention will be paid to the first
case. We shall solve the problem of spin dynamics in
the AFR, which coincides in general with the problem
of computing the spin echo in the LCF, but this shall be
done using Hamiltonian (15), the initial density matrix
in Eq. (20), and the interaction with the “external”
alternating resonance field in the form of Eq. (18).

Passing again to the interaction representation with

respect to the Hamiltonian , we can write
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The change in the density matrix induced by Hamilto-
nian (18) is defined by von Neumann’s equation

Here and below, the matrix elements involve the wave
functions ϕm. This leads to a complete system of equa-
tions of motion for the density matrix elements.

This system of equations has a general solution in
the resonance approximation (g3 ! κ, 2ω0) for the cases
when the exciting pulses cover both transitions

   and   (which is true
for κti ! 1, where ti is the duration of the ith pulse) or
when only one transition is covered (κti @ 1). For

example, if only one level  is covered under reso-
nance conditions at the frequency

, (22)

the solutions for the matrix elements at the end of the
first pulse for t = τ1 + t1 and up to the onset of the second
excitation pulse at t = τ2 + τ1 are given by

(23)
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Following the action of the second pulse (t ≥ τ2 + τ1 +
t2), the density matrix elements are defined as

(24)

Similar results are obtained in the case of excitation at
the other frequency investigated,

, (25)

as well as in the case when transitions at both resonance

frequencies  and  are excited to the same extent.

3. RESPONSE OF THE SPIN SYSTEM
TO A SINGLE PULSE AND TO TWO PULSES

In order to cover all spins contributing to the non-
uniform broadening of a resonance line, the alternating
field pulses used for exciting the transition should be so
short that the condition tiσ < 1 is satisfied, where σ is
the width of the inhomogeneously broadened steady-
state resonance line. Hence, the wavepacket of the
pulse covers nearly all nuclear spins (in the case of its
tuning at the center of the resonance line). In this case,
each spin is under the exact conditions for resonance at
the natural frequency

(26)
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where ωQ is the mean resonance frequency and δ is a
random deviation from ωQ caused by the imperfection
of the crystal field in the vicinity of the given spin.

The frequency of the alternating field Ha(t) has not
been specified thus far. We shall now consider the case
when the broadening field is tuned at the center of the
resonance line:

(27)

In this case, ∆ = |δ| and ε = sgn(δ). 
Let us calculate the y component of magnetization

of the sample, which defines the signals of free preces-
sion and spin echo:

(28)

where the operators  and  must be taken in the
same representation, the simplest one being the interac-

tion representation with respect to .

We introduce the notation (ω1, ω2, …) for the
part of My(t) oscillating at the frequency ω after the
exposure of the spin system to pulses of the alternating
field containing the frequencies ω1, ω2, … It follows
from formulas (23) and (24) (as well as from the anal-

ogous relations for the case when we have ωb =  and

the ωb pulse covers both frequencies ) that the quan-
tity My(t) can be presented as the sum of two terms:

(29)

oscillating at the natural NQR frequencies 2ωQ and ωQ.

One part of the y component, ,
oscillates at the frequency ωQ at which the strong alter-
nating field Ha(t) acts. Hence, it is quite difficult to reg-
ister transient processes at this frequency of NQR. On
account of the nonlinear effects in the apparatus, the
broadening field overlaps the signal and distorts it.
Hence, we confine the calculations to the part

.

Substituting expressions (23) for the density matrix
after the action of one exciting pulse in formula (28),
we arrive at the following values for the y component of
the magnetization in the LCF:

(30)
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The bar over the envelope W(ω) of the free precession
signal indicates its averaging over the difference δ
between resonance frequencies. We shall assume that
the distribution of the difference δ is described by the
normal distribution law

(31)

The general expressions for W(ω, δ) are cumbersome
and will not be presented here.

In the absence of the broadening field (f1 = 0), sig-
nals at the frequency ωQ vanish since, in this case,
ρ3, 1(t) = ρ1, 3(t) = 0 in the LCF and expression (30), for
which

is transformed into an expression for a conventional
signal describing free precession at the frequency 2ωQ,
which emerges after the passage of one pulse.

In the opposite limiting case of large f1

, we can write

(32)
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(33)

and 1F1(α; γ; z) is the confluent hypergeometric func-
tion [12].

Here, we have passed to the dimensionless quanti-
ties

(34)

Figure 3 shows the envelopes of the decay of free
precession as a function of the amplitude b of the
pumping field. It can be seen that, for b = 0 and excita-

tion at frequency , the response of the spin system
vanishes. As seen from the results obtained by Low and
Norberg [13], the response associated with the excita-

tion at frequency  coincides with the Fourier trans-
form of the steady-state resonance line shape used by
us. With increasing b, the free precession signal experi-
ences beats at frequencies that vary gradually with
increasing b.

Analogous computations were made for the magne-
tization of the spin system after two pulses. The echo
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response is described by the expression

(35)

In the limit of strong fields, we can write

(36)

where

The envelope of the echo signal experiences beats
just like the free precession signal (Fig. 4). It can be
seen from Figs. 3 and 4 that there exists a certain point
x** at which the plots of several transient signals inter-
sect the abscissa (time) axis. It would be interesting to
understand the meaning of these points. For this pur-
pose, we use the analytic expressions (32) and (36) in
the strong-field approximation. In this case, the free
induction and spin echo signals can be schematically
presented in the form

(37)

where Bi are certain constants which do not depend on
the parameter b in Eq. (34), Ci is a linear combination
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of the intervals between the onset of the first and second
pulses, and x is measured from the center of the echo
signal.

Note that |x**| ≥ 15 in Figs. 3 and 4; these results are
in good agreement with the approximation for large x.
For x  ∞, we can use relations (33) in their limiting
form

In this case, formula (37) is a superposition of sinu-
soids. It is well known that a superposition of several
sinusoids with different phases and amplitudes, but
with the same frequency, leads to the formation of a sin-
gle sinusoid with the same frequency and with modified
values of the amplitude and phase:

(38)

where B(b) and φ(b) are certain functions of Bi and bCi.

It can be seen from formula (38) that different

 curves for signals  corresponding to
various values bk of the parameter b must intersect the
abscissa axis at the points , if the conditions

 (n is an integer)

are satisfied. We can determine the amplitude b of the
pumping field by measuring the separation between the
nearest points of intersection of the abscissa axis with
the curves of the transient signals (Figs. 3 and 4): bk =
5π(  – )–1.

4. TRANSIENT PROCESSES 
UNDER CONDITIONS OF EXISTENCE OF SPIN 
TEMPERATURE FOR QUASI-ENERGY LEVELS

If the interval of time τ1 between the application of
the pumping field Ha(t) and the onset of the first pulse
Hb(t) is quite large (τ1 > T1, T2), spin temperature can
be introduced for quasi-energy levels [5].

The initial density matrix is defined in this case by
formula (21), which can be used to carry out all opera-
tions described in the previous section. This gives

(39)
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In a strong alternating field (f1 @ σ), the expressions

for  assume a compact form:

(40)

After the action of a double pulse, the signals of
transient processes at the frequency 2ωQ are defined as

(41)

where

(42)

It should be observed that  differs
from zero only when the ωb pulses simultaneously

cover both resonance frequencies .

A comparison of the results presented here and in
the previous section shows that the nature of envelop-
ing signals of transient processes does not change due
to the existence of the spin temperature characterizing
the occupancies of the quasi-energy levels. Calcula-
tions reveal only a difference in amplitude:

Thus, one can expect a difference in the amplitudes,
which is determined by the ratio of temperatures. This
makes it possible to study the kinetics of the attainment
of equilibrium and the stabilization of the spin temper-
ature of the quasi-energy levels in the above experi-
ments upon variation of the interval between the onset
of pumping and exciting pulses.
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The publications [1–11] cited in the Introduction
contain details of execution and theoretical interpreta-
tion of various experiments involving quasi-energy lev-
els. Since the energy levels in any representation can be
considered only indirectly through their influence on
the observable quantities, it can be concluded that
quasi-energy levels are as real as the energy levels in
the LCF.

However, the problem of excitation of resonance
transitions between the LCF and AFR levels remains
unsolved. The results of this work demonstrate the pos-
sibility and the formulation of the conditions for the
existence of these processes, as a well as a computation
of certain effects associated with quantization in a
strong alternating field, which induces such transitions.
In the procedure considered here, a strong resonance
field creates energy levels associated with one transi-
tion in the nonequidistant nuclear spin spectrum, while
the other rf field excites transitions between these levels
and the level that does not participate in the creation of
the quasi-energy spectrum, i.e., the LCF energy level.
The manifestation of quantization due to a strong rf
field in signals of transient processes induced by the
second rf field is demonstrated. It is found that the
envelopes of these signals are subjected to beats with a
frequency determined by the spacing between quasi-
energy levels. Among other things, the measurement of
the period of beats makes it possible to determine the
amplitude of the alternating field in the sample. It
would be interesting to study the kinetics of equilib-
rium stabilization and the spin temperature of the
quasi-energy levels in the framework of the approach
presented in this paper.
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Abstract—The dehydroxylation of brucite has been investigated in electric fields up to 400 kV/m at T = 623
K. It is revealed that this reaction in the presence and absence of the field is a diffusion-controlled process, and
its rate is governed by the diffusion rate of “slow” protons (the O2– states) in the Mg(OH)2 crystal structure. A
decrease in the activation energy for diffusion of these protons in an electric field can be explained by both the
additional energy acquired by the proton upon its migration through a distance of about 103 A and a certain
decrease in the potential barrier. It is shown that the found decrease in height of this barrier can be caused by
the ionic polarization of the brucite lattice in an electric field whose effect on the barrier depends on the net
dipole moment responsible for the generation of dipoles in the structural region of radius ~200 Å. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Although a large number of works have been dedi-
cated to the study of the dehydroxylation effect, the
physical mechanism of this phenomenon is not com-
pletely understood and its elucidation calls for further
investigation. Explorations into the influence of differ-
ent external factors on the process under consideration
provide a means of solving many important problems
concerning, in particular, possible paths of traveling
protons, height and shape of structural potential barri-
ers, etc.

Investigations into the effect of an external electric
field on the dehydroxylation of layered structures have
received little attention. It was found that this process is
usually accompanied by an increase in the electrical
conductivity owing to the contribution of protons [1]
and by a deterioration of the dielectric and strength
properties of the materials involved [2]. From the data
on the dehydroxylation of brucite and gibbsite in an
electric field [3], it was assumed that protons can tunnel
during reaction over considerable distances in the crys-
tal lattice and, most likely, can also be transferred by a
specific charged complex. The authors of [4, 5] studied
the proton conductivity in kaolinite, brucite, and gibb-
site and made the conclusion that two mechanisms of
proton transfer can be realized in similar structures: the
migration of excess mobile protons in the protonic con-
duction band lying above the potential barriers (Eact ~
2.1 eV for the Mg(OH)2 lattice) and the migration of
the O2– states over the crystal (the O2– ion located in the
lattice at the hydroxyl site takes up a proton from the
nearest OH group; Eact ~ 0.87 eV for Mg(OH)2]). It
should be noted that the authors of the aforementioned
works, for the most part, qualitatively described the
experimental results within the appropriate models and
1063-7834/00/4211- $20.00 © 22070
approximately estimated the heights of the energy bar-
riers.

At present, many researchers believe that the dehy-
droxylation reaction at a local level is attended by the
transfer of a proton from a particular OH group to the
nearest neighboring OH group [6, 7]. However, the
migration of protons over large distances in the crystal
is often treated as a probable mechanism of the reaction
at high temperatures occurring when a considerable
number of OH groups have already dissociated [7].

In this respect, it was of interest to investigate the
effect of an electric field on the dehydroxylation reac-
tion with the use of a technique providing the direct
determination of the degree of conversion from the
change in the number of hydroxyl groups in a sample.
The data obtained by this method directly reflect the
kinetics of the dehydroxylation reaction (the decompo-
sition of the structural OH groups), which can provide
useful information on the mechanism of this process.

In this work, we elucidated how the external direct
electric field (E = 0–400 kV/m) affects the dehydroxy-
lation kinetics of the Mg(OH)2 brucite at T = 623 K by
using the Mn2+ ESR technique. The degree of conver-
sion α (the relative decrease in the number of OH
groups in a sample) was determined from the decrease
in the peak intensity of the Mn2+ line in the ESR spec-
trum of the brucite sample (geff = 2.1478 ± 0.0005).
Although the spectra were recorded at room tempera-
ture, the kinetic data thus obtained seem to be reliable.

It should be noted that brucite was chosen for the
investigation of the dehydroxylation reaction in an
electric field, because the kinetics and mechanism of
dehydroxylation of this mineral in the absence of an
electric field were studied in sufficient detail by other
methods [5, 8, 9].
000 MAIK “Nauka/Interperiodica”
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2. EXPERIMENTAL TECHNIQUE

2.1. Sample Preparation

A natural x-ray pure brucite sample was used in our
experiments. The brucite structure is built up of the
Mg(OH)2 octahedra, which form the layers. The unit
cell is trigonal (a = b = 3.12 and c = 4.73 Å): the Mg2+

ion lies in the (001) plane and the O2– ions are located
above and below the (001) plane at a distance of 0.22c.
The protons are situated at a distance of 0.98 Å from
each oxygen ion along the c axis [10].

For our experiments, we chose the sample in which
a part of the Mg2+ ions (0.06%) was replaced by Mn2+

ions. The Mn2+ ESR spectrum of the initial polycrystal-
line sample contains six hyperfine structure lines (SN =
5/2 and IN = 5/2 for Mn2+) with constant A = (–85.0 ±
0.4) × 10–4 T, which agrees with the data reported in
[10, 11]. The heat treatment of the sample at T = 850 K
leads to the disappearance of the above ESR lines and
the appearance of a sextet with g0 = 2.0015 ± 0.0001
and A = (82.2 ± 0.5) × 10–4 T, which corresponds to the
Mn2+ ions located in the MgO structure [11].

Two cubic Mg(OH)2 samples (with the edge l = 5 mm)
were simultaneously heat-treated for a given time (5–
500 min) in air at temperature T = 623 K [at this tempera-
ture, the dehydroxylation rate is maximum (Fig. 1)]: the
check sample was measured at E = 0 (E ≡ |E|) and the
other sample was in the electric field (E || (001) plane).
The electric current passing through the crystal was
monitored in order to avoid the possible influence of
breakdown and electrolysis on the experimental data.

After heat treatment at the given temperature, the
samples were cooled down to room temperature and
were then investigated by the ESR technique.

2.2. Measurements

In this work, the degree of conversion α was deter-
mined from the Mn2+ ESR spectra according to the pro-
cedure described in [12]: the weights of several sam-
ples were measured and their 1H NMR and Mn2+ ESR
spectra were recorded prior to and after heat treatment
in the temperature range 400 < T < 800 K for 60 min.
All the spectra were measured at room temperature.

The ESR spectra of these samples were used to
determine the quantity

v(T) = I/I0,

where I0 and I are the peak intensities (peak heights) of
the first Mn2+ hyperfine line (geff = 2.1478) in the ESR
spectra recorded for the same sample prior to and after
the heat treatment at temperature T for 60 min, respec-
tively. The data obtained by the gravimetric method and
1H NMR spectroscopy were processed according to the
procedure described in [12].

The results obtained are displayed in Fig. 1. The
degree of conversion α can be calculated from the v
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
values, which were determined from the ESR spectra of
the studied samples. For example, at v = 0.5 (Fig. 1),
α1 = wG and α2 = 1 – w; therefore, α = (α1 + α2)/2 = 0.4.

As in [12], it can easily be shown that, under exper-
imental conditions, the time required for heating the
sample to the furnace temperature T is t1 > 30 s and the
time of its subsequent cooling is t2 > 40 s. Therefore,
the shortest time of heat treatment of the sample in a
furnace (300 s) is sufficient for heating the sample to
the temperature T. It should also be mentioned that,
upon heating of the crystal, the reaction rate increases
to a maximum value (attainable at T) for time t1. How-
ever, upon cooling in air, the reaction proceeds with a
decreasing rate for time t2. These effects, to some
extent, compensate for each other.

Consequently, there are strong grounds to believe
that the kinetic curves obtained in the present work ade-
quately describe the dehydroxylation reaction at a spec-
ified temperature (the direct determination of α for the
sufficiently precisely measured time t at the known
temperature).

3. RESULTS AND DISCUSSION

3.1. Kinetics and Mechanism of Dehydroxylation

The kinetic curves for dehydroxylation of a brucite
crystal at T = 623 K in air at different strengths of the
applied electric field are depicted in Fig. 2.

Note that an increase in the electric field strength
from 200 to 300 kV/m leads to a substantial increase in
the reaction rate. At E ≤ 200 kV/m, the dehydroxylation
reaction proceeds rather slowly (at E = 200 kV/m, the
value of α ≈ 0.9 can be reached only for t ~ 500 min),
whereas at E ≥ 300 kV/m, the reaction is virtually com-
pleted after a time t > 50 min.

1
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400 600 800

12
3
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T, K
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Fig. 1. Temperature dependences of (1) the relative weight
loss wG(T) = 1 – G/G0, (2) relative decrease in the integrated
intensity of the NMR line for hydroxyl groups w(T) = H/H0,
and (3) relative change in the peak intensity of the first
hyperfine structure line v(T) in the Mn2+ ESR spectrum for
a brucite sample (geff = 2.1478). Heat treatment time is 60
min.
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In order to elucidate the possible mechanism of the
reaction, the experimental data obtained were pro-
cessed on several coordinate systems.

It was found that the dehydroxylation of a brucite
crystal at the initial stage (α ≤ 0.34) at E = 0 and
200 kV/m is adequately described by the following
equation (the functional in the left-hand side of this
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Fig. 2. Dehydroxylation kinetics of the brucite crystal at T =
623 K in an electric field at different strengths (kV/m): (1) 0,
(2) 200, (3) 300, and (4) 400. Points are the experimental
data.
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Fig. 3. Kinetic curves for the functionals in the left-hand
sides of (a) Eq. (1) and (b) Eq. (2). Designations of the
curves are the same as in Fig. 2.

Parameters obtained for the contracting-circle and contracting-
sphere equations

E, kV/m ks, 10–10 m2/s ts, s kv, 10–10 m2/s tv , s

0 0.593 275 0.071 –

200 3.680 70 0.147 –

300 – – 2.140 245

400 – – 2.240 190
PH
equation is represented in Fig. 3a):

(1)

where ks is the diffusion coefficient of particles migrat-
ing at the initial stage of the dehydroxylation, ts is the
induction period, and r is the characteristic size of the
crystal.

Equation (1) was obtained from the “contracting-
circle” equation, which is often used for describing the
dehydroxylation of laminated minerals with due regard
for the fact that a decrease in the reaction rate with time
is caused by diffusion processes due to an increase in
the thickness of a product layer or its cracking (this
implies that the movement of the interface is deter-

mined by the parabolic law δ =  (where kdif is the
diffusion coefficient of migrating particles) for this dif-
fusion-controlled growth of nuclei) [9].

At E = 300 and 400 kV/m and at the later stages of
the reaction (α ≥ 0.34) when E = 0 and 200 kV/m, the
kinetic curve is well represented by the following equa-
tion (the functional in the left-hand side of this equation
is shown in Fig. 3b):

(2)

where kv is the diffusion coefficient of particles migrat-
ing at the later stage of the reaction, tv is the induction
period (at E ≥ 300 kV/m), and z is the ratio between the
molar volumes of the product and the reagent (z = 0.65
for Mg(OH)2).

Equation (2) was derived from the “contracting-
sphere” equation for reactions proceeding in the bulk of
spherical particles of radius r with due regard for the
fact that the reaction rate is limited by the diffusion pro-
cesses mentioned above [9].

The table lists the parameters ks, ts, kv, and tv, which
were calculated by the least-squares method from the
experimental data (r = 2.5 mm).

Thus, the results obtained in this work are in agree-
ment with the existing concepts [3, 5] on the mecha-
nism of brucite dehydroxylation. The stage of nucle-
ation—the decomposition of OH groups in the
Mg(OH)2 lattice and the formation of structural water
molecules—is not limited. The dehydroxylation of the
studied brucite crystal is the diffusion-controlled pro-
cess at both E = 0 and E ≠ 0. The elimination of the
resulting H2O molecules from the lattice occurs when
the product–reactant reaction interface is approached.

It should be noted that, according to [6, 7, 13], the
structural water molecule is formed upon the transition
of the proton from the hydroxyl group to a vacant site
in the nearest unit cell of brucite over the barrier with a
height of about 2.8 eV. This brings about the formation

1 1 α–( )1/2–( )2 ks t ts–( )
r2

--------------------,=

kdift

1 z 1–( )α+( )2/3 z 1–( ) 1 α–( )2/3 z–+

=  
2 1 z–( )kv t tv–( )

r2
------------------------------------------,
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of a nucleation center—the H2O molecule and the OH
group are located in the same unit cell. Most likely, the
product (one O2– ion) can be formed in this unit cell
when the water molecule leaves the lattice and the pro-
ton of the remaining hydroxyl group escapes from the
crystal structure [5]. Therefore, it is quite probable that
in the case when the protons occur at the product–reac-
tant interface and then migrate into the lattice, they can
activate the remaining nucleation centers, i.e., contrib-
ute to the development of an active zone in front of the
interface [9].

Since the relative change in the number of hydroxyl
groups in the sample was determined in the experiment,
the above conclusions regarding the diffusion-con-
trolled mechanism enabled us to argue that further for-
mation of structural water molecules (i.e., a decrease in
the number of OH groups) is determined by the rate of
escape of the H2O molecules from the crystal and,
hence, quite possibly, by the number of protons at the
interface and their migration.

3.2. Effect of an Electric Field on the Diffusion 
Coefficient of Migrating Particles

As follows from the foregoing, it is this migration of
protons (which occur at the product–reactant interface)
in the crystal structure that, most likely, limits the inter-
face movement, i.e., the reaction rate. Then, ks and kv
are the diffusion coefficients of these protons in the
sample lattice at the early and later stages of dehydrox-
ylation, which can be evaluated from the relationship

(3)

where ν0 = 1.07 × 1014 s–1 [13], kB is the Boltzmann
constant, ds = 3.12 Å is the distance to the nearest lattice
sites, and Us is the activation energy of diffusion (for kv,

the relationship is similar to Eq. (3) and contains  >
3.12 × 4.73 Å2).

It turned out that, in this case, the activation energies
of diffusion are equal to 0.62 and 0.71 eV (at E = 0) and
somewhat decrease to 0.53 eV (at E = 400 kV/m) with
an increase in the strength of the applied electric field.
These activation energies at E = 0 are very close to the
activation energy (~0.87 eV) obtained by Wengeller et
al. [5] for the diffusion of the so-called slow protons.
The latter process can be represented as the migration
of the O2– state over the crystal: the hydroxyl proton
transfers to the oxygen ion and the O2– ion formed in
the adjacent lattice site takes up a proton from another
OH group. It should be mentioned that a small number of
such protons occurs in the initial structure under normal
conditions, but their concentration substantially increases
in the course of dehydroxylation [5].

Therefore, the movement of the reaction interface
upon dehydroxylation of the brucite crystal is most

ks ν0ds
2e

U
s/kBT–

,=

dv
2
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likely governed by the diffusion rate of slow protons
(the O2– states).

The dependences of the quantities fs = ln(ks/ν0 )

and fv = ln(kv/ν0 ) on the external electric field
strength are shown in Fig. 4. It was found that these
dependences can be represented as

fs = as + bsE, E < 300 kV/m, (4)

where as = –12.49 and bs = 9.133 × 10–6 m/V (from the
data obtained at E = 0 and 200 kV/m), and

fv = av + bvE + cvE2, E ≤ 400 kV/m, (5)

where av = –14.73, bv = 5.347 × 10–6 m/V, and cv =
1.116 × 10–11 (m/V)2 (Fig. 4a).

The character of the dependences fs(E) and fv(E)
suggests that an increase in the rate of brucite dehy-
droxylation (according to the available data) can be
caused by the following factors: at the initial stage of
the reaction, it is the additional energy acquired by the
proton upon its migration in the electric field, and, at
the later stage, it is also a certain decrease in the activa-
tion energy for diffusion of slow protons due to the
polarization of the brucite crystal upon application of
the electric field. Apparently, a change in the brucite
structure at E ≠ 0 is accompanied by the generation of
electric dipoles in the mineral lattice, and the potential
barrier somewhat decreases in the field of these dipoles.

Let us now consider in greater detail the exponent in
formula (3). This expression can be written as

(6)

where U0 is the activation energy at E = 0, S is the dis-
tance at which the proton migrates, e is its charge, ε0 is

ds
2

dv
2

U
kBT
---------–

U0 eSEv– ε0βEv
2–

kBT
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Fig. 4. Effect of the external electric field on (a)  fs and  fv
and (b)  fv at the field strength E ≥ 300 kV/m.
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the dielectric constant, β is the polarizability, and Ev =
(ε0 + 2)E/3 > 3E is the local electric field strength in the
bulk (the dielectric constant of brucite ε > 7.0) [14].

From the data obtained for the early stage of the
reaction (at E < 300 kV/m) and relationships (4) and

(6), it is possible to evaluate only the quantities  =
0.67 eV and S ≈ 1500 Å.

For the later stage of the brucite dehydroxylation,

according to formulas (5) and (6), we have  =
0.79 eV, S ≈ 950 Å, and β = 1.2 × 10–21 m3.

As follows from the results obtained, the slow pro-
ton can migrate over large distances in the bulk of the
sample, which agrees with the data available in the lit-
erature [7].

In order to determine the type of particular polariza-
tion that makes the largest contribution to β, it is neces-
sary to estimate the magnitude of the dipoles pi = ε0βiEv

(pi ≡ |pi |), which appear in the unit cell of brucite upon
application of the electric field due to a certain dis-
placement of ions in the lattice; that is,

pi = 2R2e > 2.87 × 10–38E,

where R = 2eEv/k is the change in the distance between
the positions of Mg2+ ions in the lattice in the presence
and absence of an electric field, 2e is the charge of the
Mg2+ ion, and k is the stiffness coefficient (k > 10 N/m).

As a result, we obtain βi > 1.08 × 10–27 m3 for the
unit cell of brucite. A comparison of the ionic polariza-
tion with βd > 1.78 × 10–36 m3 (the maximum dipole
polarization)1 and βe > 9.86 × 10–29 m3 (the electron
polarization) demonstrates that the ionic polarization of
the lattice of this mineral in the electric fields is pre-
dominant: β0 = βi + βd + βe > βi.

The high value of β can be explained by the fact that
the net dipole moment (whose magnitude determines
the effect of the electric field on the barrier) is formed
by dipoles in a large structural region:

β > nβi.
Consequently, this region in the crystal should

involve n ~ 106 unit cells (the radius of the region is
~200 Å). It is worth noting that the obtained radius is of
the same order of magnitude as the estimated sizes of
the structural cluster whose ions form the potential bar-
rier for the proton in muscovite and whose thermal
vibrations are responsible for variations in parameters
of this barrier [12].

A further increase in the electric field strength up to
400 kV/m leads to an insignificant increase in the dehy-
droxylation rate. This indicates that the prebreakdown
voltages are achieved (in the experiment, the electric

1 This value was obtained with due regard for the fact that the OH
dipole is located perpendicularly to the (001) plane and its maxi-
mum deviation from the normal does not exceed 1 × 10–4 at the
applied fields E.

U0
s

U0
v

PH
current increases and the breakdown is sometimes
observed at E > 400 kV/m)2 when the electrical con-
ductivity σ obeys the Frenkel law [15]

ln(σ/σ0) = c0 ,

where σ0 is the electrical conductivity in weak fields
and c0 is the constant.

Note that, at E = 300 and 400 kV/m (Fig. 4b), we
have

fv = h  + g,

where h = 5.43 × 10–4 (m/V)1/2 and g = –11.5. As can be
seen, h > c0 [15]; hence, it is quite probable that the
electrical conductivity of brucite upon its dehydroxyla-
tion is primarily determined by the diffusion of slow
protons.

4. CONCLUSION

It was demonstrated that the dehydroxylation of the
brucite crystal in the presence and absence of an elec-
tric field is a diffusion-controlled process.

The kinetics of the process under consideration is
adequately described by the contracting-circle and con-
tracting-sphere equations with due regard for the
decrease in crystal volume in the course of the reaction.

An increase in the dehydroxylation rate in the elec-
tric field is primarily caused by an increase in the diffu-
sion coefficient of slow protons (the O2– states). This
can be explained by a decrease in the activation energy
of diffusion from 0.79 to 0.53 eV owing to the addi-
tional energy acquired by the proton upon its migration
in the electric field over a distance of ~103 Å and also a
certain decrease in the potential barrier height due to
the polarization of the brucite crystal upon application
of the electric field. In this case, the electric dipole
moments can likely arise in the lattice, and their field
induces a certain distortion and a decrease in the poten-
tial barrier. The radius of the structural region whose
net dipole moment determines the effect of the electric
field on the barrier is equal to ~200 Å.

REFERENCES

1. A. S. Litovchenko and V. V. Mazykin, Phys. Status Solidi
A 81, K47 (1984).

2. A. S. Litovchenko, V. A. Chernenko, I. V. Matyash, and
O. D. Ishutina, Phys. Status Solidi A 93, K9 (1986).

3. K. J. D. McKenzie, J. Therm. Anal. 5, 19 (1973).

4. G. C. Maiti and F. Freund, Clays Clay Miner. 16, 395
(1981).

5. H. Wengeller, R. Martens, and F. Freund, Ber. Bunsenges.
Phys. Chem. 84, 874 (1980).

2 The data obtained at E > 400 kV/m are not discussed in the
present work.

E

E

YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000



EFFECT OF AN ELECTRIC FIELD ON BRUCITE DEHYDROXYLATION 2075
6. G. W. Brindley and J. Lemaitre, in Chemistry of Clays
and Clay Minerals, Ed. by A. C. D. Newman (London
Scientific Technical, Essex, 1987), p. 319.

7. A. A. Ogloza and V. M. Malhotra, Phys. Chem. Miner.
16, 378 (1989).

8. M. C. Ball and N. F. W. Taylor, Mineral. Mag. 32 (6), 754
(1961).

9. M. Brown, D. Dollimore, and A. Galway, in Reactions in
the Solid State, Ed. by C. Tipper and C. Bamford
(Elsevier, Amsterdam, 1980; Mir, Moscow, 1983).

10. W. A. Pieczonka, H. E. Petch, and A. B. Mclay, Can. J.
Phys. 39, 145 (1961).
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
11. S. A. Altshuler and B. M. Kozyrev, Electron Paramag-
netic Resonance in Compounds of Transition Elements
(Nauka, Moscow, 1972; Halsted, New York, 1975).

12. E. A. Kalinichenko, A. S. Litovchenko, A. M. Kali-
nichenko, et al., Phys. Chem. Miner. 24 (7), 520 (1997).

13. R. Martens and F. Freund, Phys. Status Solidi A 37 (1),
97 (1976).

14. W. B. Mils, The Linear Electric Field Effect in Para-
magnetic Resonance (Clarendon, Oxford, 1976; Nauk-
ova Dumka, Kiev, 1982).

15. A. S. Zingerman, Usp. Fiz. Nauk 46 (4), 450 (1952).

Translated by O. Borovik-Romanova
00



  

Physics of the Solid State, Vol. 42, No. 11, 2000, pp. 2076–2082. Translated from Fizika Tverdogo Tela, Vol. 42, No. 11, 2000, pp. 2017–2023.
Original Russian Text Copyright © 2000 by Starenchenko, Solov’eva, Nikolaev, Shpe

 

œ

 

zman, Smirnov.

                                                                         

DEFECTS, DISLOCATIONS, 
AND PHYSICS OF STRENGTH
Thermal Hardening of Ni3Ge Alloy Single Crystals 
with an L12 Superstructure at Low Temperatures
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Abstract—The mechanical properties and the dislocation structure of Ni3Ge alloy single crystals have been
experimentally studied at low temperatures. It is found that the flow stresses increase beginning with 4.2 K, and
the observed rise in the stresses depends on the orientation of the strain axes of the crystals. The dislocation
structure is investigated thoroughly. It is revealed that the mean density of dislocations and the interdislocation
interaction parameter α anomalously increase as the temperature increases in the range 4.2–293 K. The mech-
anisms providing an explanation for the temperature anomaly of flow stresses and the α parameter are consid-
ered. The activation energy of thermal hardening is evaluated. It is assumed that the low activation energies of
thermal hardening are due to the motion of dislocations at velocities close to the velocity of sound at these tem-
peratures. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Single-phase ordered alloys exhibit a wide variety
of mechanical properties. The property of thermal hard-
ening, which, at the early stages of investigations, was
assumed to be unique and characteristic only of specific
alloys, appeared to be inherent in almost every simple
ordered superstructure (L12, B2, L10, and D019). How-
ever, the mechanisms responsible for the increase in the
flow stresses and the yield point with an increase in the
temperature can differ considerably for each group of
alloys. In this work, we considered the features in the
mechanical behavior of Ni3Ge alloy single crystals,
which belong to a large group of intermetallic alloys
with an L12 superstructure. Of particular interest is the
investigation into the temperature anomaly of the
mechanical properties of these alloys in the low-tem-
perature range near the liquid-helium temperature. For
the most part, the investigations have been limited by
the boiling temperature of liquid nitrogen (77 K). The
temperature range from 4.2 to 77 K remains poorly
investigated for a number of reasons. First and fore-
most, this is caused by methodological problems,
which stem from the necessity of using special equip-
ment for the performance of mechanical testing at low
temperatures. On the other hand, many researchers a
priori believed that the flow stresses should substan-
tially increase beginning with higher temperatures.
However, Takasugi and Yoshida [1] studied the
Ni3(Si,Ti) alloys and showed that an anomaly in the
mechanical characteristics is already observable upon
1063-7834/00/4211- $20.00 © 2076
heating in the temperature range from 4.2 to 77 K. In
this respect, it was of interest to examine the low-tem-
perature anomaly for other alloys with a similar super-
structure.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUE

The experiments were performed with Ni3Ge alloy
single crystals grown by the Czochralski technique
from nickel (N-1 grade) and high-purity germanium
(99.999%). Samples 3 × 3 × 6 mm in size were cut from
a single-crystal ingot by the electric-spark method. The
face orientation was determined with the use of the
Laue method.

The single crystals were tested on an Instron 1342
universal testing machine with an Oxford helium cry-
ostat at the Ioffe Physicotechnical Institute, Russian
Academy of Sciences. The samples were cooled down
to 77 K with liquid nitrogen. Liquid helium was sup-
plied to the cryostat with two pumps in order to ensure
a weak evacuation in the cryostat. In addition to the
standard isothermal testing at 4.2 and 77 K upon uniax-
ial compression at a rate of 4 × 10–4 s–1, the samples
were compressed upon a stepwise change in the tem-
perature. After the deformation (by ~0.1 mm, ∆ε ≈
1.5%) and recording of a portion of the deformation
curve at a specified temperature of testing (beginning
with 4.2 K), the sample was heated by ∆T = 10–20 K
(in the range 4.2–77 K) or ∆T = 90 K (at higher temper-
atures) at ε = const and, again, was subjected to the
2000 MAIK “Nauka/Interperiodica”
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deformation, etc. As a result, we constructed the com-
pression diagram consisting of portions of the deforma-
tion curves (load P versus change of sample length)
obtained at different temperatures (Fig. 1). Then, this
diagram was used for determining the flow stresses at
different temperatures and the sign and magnitude of
the stress jump with a change in the temperature. From
the obtained diagrams, we determined the temperature
dependences of the shear flow stresses, which were
taken equal to the flow stresses at 4.2 K plus the stress
jumps caused by the changes in the temperature, that is,

.

The dislocation structure was studied with a
UÉMV-100K electron microscope. In order to obtain
the image of the dislocation structure, the studied sam-
ple was cut by the electric-spark method into thin plates
parallel to the glide planes. These plates were mechan-
ically or electrolytically thinned to a foil. The disloca-
tion structure in the foil was examined under the elec-
tron microscope operating in the transmission mode.
The observations were performed at magnifications
M = (20–36) × 103. The mean dislocation density was
measured with the use of the linear-intercept method. A
rectangular mesh was superposed on a micrograph. The
mean dislocation density was calculated from the for-
mula

where M is the micrograph magnification; t is the foil
thickness; n1 and n2 are the numbers of intersections
with horizontal and vertical lines, respectively; and 11
and 12 are the total lengths of the horizontal and vertical
lines, respectively. The foil thickness was determined
from the thickness extinction contours at the foil edge. As
a rule, the foil thickness was equal to (1.2–1.7) × 103 Å.

3. MECHANICAL PROPERTIES

The mechanical testing of the Ni3Ge alloy single
crystals revealed that the temperature anomaly of the
flow stresses is observed beginning with the liquid-
helium temperature (4.2 K). As is seen from Fig. 1, out
of 23 temperature steps ∆T > 0 (for all the orientations),
only three steps correspond to ∆τ ≤ 0, and all the other
stress jumps are positive; i.e., the flow stresses τ
increase with an increase in the temperature (see insets
in Fig. 2). However, it can be seen that the lower the
temperature, the smaller the change in τ(T), and the τ
stresses at the [111] and [234] orientations remain
unchanged in the range 4.2–20 K. Figure 2 displays the
temperature dependences of the yield point for the
Ni3Ge single crystals at three orientations of the com-
pression axis. The anomalous shape of the dependence
τ(T) is observed even beginning with a temperature of
4.2 K. As follows from the figure in which the low-tem-
perature portions of the thermal hardening curves are

τ τ4.2 ∆τ∆Ti

i
∑+=

ρ M/t n1/11 n2/12+( ),=
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matched to their high-temperature portions [2] for the
three orientations under consideration, the thermal
hardening effect depends on the orientation of the com-
pression axis. This indicates that the Schmid–Boas law
is violated and agrees with the results obtained for ther-
mal hardening in the temperature range above 77 K [2,
3]. The behavior of the dependence τ(T) in the range
from 4.2 to 77 K virtually corresponds to its variation
in the range above 77 K, and the flow curves τ(ε)
(Fig. 3) have the shape of smooth convex downward
curves. An increase in the temperature from 4.2 to 77 K
weakly affects the flow curves: their shape only slightly
changes in this temperature range. In our earlier work
[2], we proposed the method for determining the acti-
vation energy of thermal hardening from the tempera-
ture dependences of the flow stresses. With this
method, we obtained the activation energies of the low-
temperature thermal hardening from the temperature
dependences of the yield point for the Ni3Ge single
crystals of different orientations. It was found that the
activation energies Ud in the low-temperature range
upon compression along the [001], [234], and [111]
axes are equal to (0.84 ± 0.16) × 10–2, (1.3 ± 0.1) × 10–2,
and (1.7 ± 0.3) × 10–2 eV, respectively. These energies
are close to the corresponding activation energies in the
temperature range 77–293 K [2], which suggests that
there is one mechanism of thermal hardening in the
temperature range 4.2–293 K.
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Fig. 1. Compression diagrams of Ni3Ge single crystals for
different orientations upon a stepwise change in tempe-
rature.
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4. DISLOCATION STRUCTURE

Numerous electron microscopic investigations into
the dislocation structure of the L12 alloys showed that
the main structural elements of dislocations at temper-
atures in the range of the anomalous temperature
dependence of the yield point are long rectilinear
anchored screw segments [4]. However, at tempera-
tures below 100 K, or in the case of small strains (below
the macroscopic yield point), the dislocation structure
does not exhibit these features and is formed by curvi-
linear dislocations [5]. Unlike the data obtained in [5],
our observations revealed that the long rectilinear dis-
location segments lying along close-packed directions
of the 〈110〉  type are observed in the Ni3Ge alloy even
at T = 4.2 K (Fig. 4). The examination of the fine struc-
ture of these barriers allows us to assume that the recti-
linear dislocations observed can be the Kear–Wilsdorf
PH
barriers or barriers similar to them [4, 6, 7]. Dipoles of
different configurations are also revealed. Superdislo-
cations are not split, which indicates a high energy of
antiphase boundaries in the octahedron plane. An
increase in the strain leads to a decrease in the number
and length of rectilinear dislocations. The curvilinear
dislocations with numerous kinks and reacted portions
appear in the structure. An increase in the temperature
up to 77 K does not result in considerable qualitative
changes in the dislocation structure (Figs. 5a, 5b). A
change in the orientation of the strain axis of the single
crystal (for the studied [234], [139], and [100] orienta-
tions) virtually does not affect the qualitative features
of the dislocation structure at these temperatures. The
structure remains highly homogeneous and predomi-
nantly consists of long rectilinear dislocations.

The direct observations of the dislocation structure
enabled us to evaluate its quantitative parameters. The
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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Fig. 4. Dislocation structures of the Ni3Ge single crystals
strained along the [234] axis at a temperature of 4.2 K.
Strain ε (%): (a) 5 and (b) 15.
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Fig. 6. Temperature dependences of the mean dislocation
density for different strains of the Ni3Ge single crystals at
the [234] orientation.
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Fig. 5. Dislocation structures of the Ni3Ge single crystals
strained along the [234] axis at a temperature of 77 K. Strain
ε (%): (a) 20 and (b) 23.

0 50

0

0.4

100 150 200 250 300

0.8

1.2

1.6

T, K

α

Fig. 7. Temperature dependence of the interdislocation
interaction parameter α.
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mean scalar dislocation density was measured as a
function of the temperature and the strain. Figure 6
demonstrates the low-temperature portion of the tem-
perature dependence of the mean dislocation density
for the [234] orientation, which was studied in greater
detail. The interdislocation interaction parameters α
were determined from the relationship τ = τF + αGbρ1/2

(where G is the shear modulus and b is the Burgers vec-
tor) and the experimental data on the dislocation den-
sity ρ and the shear stresses τ. The temperature depen-
dence of the α parameter is depicted in Fig. 7. It is
worth noting that the interdislocation interaction
parameter in this temperature range increases with a
rise in the temperature, which indicates an anomalous
change in the character of the interdislocation interac-
tion.

5. DISCUSSION

A number of mechanisms based on the concept of
the self-anchoring of superdislocations were proposed
to explain the thermal hardening in alloys with the L12
superstructure [4, 8]. A change in the resistance to the
dislocation motion is explained by the fact that driven
and driving superpartial dislocations lose the common
glide plane. Apparently, this can be caused by the cross
sliding of screw dislocations (the Kear–Wilsdorf mech-
anism [4]) and the trapping of point defects by edge
superdislocations, which are partly pinned as a result of
thermal fluctuations of the superpartial dislocation por-
tions [8]. The splitting of a superpartial dislocation can
essentially depend on the velocity of the dislocation
motion, and, hence, a change in the velocity can lead to
a change in the activation energy for the self-anchoring
of superdislocations. This is associated with the fact
that the stress fields of dislocations depend on the
velocity of their motion. At high velocities V of the dis-
location motion, when V  cs (where cs is the veloc-
ity of sound), the interaction forces between the parallel
dislocations sliding in the same plane become less than
those between the immobile dislocations by a factor of

approximately γ = 1 – V 2/  [9].

The activation energy for the formation of a super-
partial dislocation junction can be approximately evalu-
ated as the energy required for the displacement of a
driving partial dislocation from the equilibrium distance
r1 (determined by the equilibrium between the elastic
and the surface tension forces) toward a driven disloca-
tion at distances of the order of the Burgers vector

(1)

cs
2

∆U' τblcs rd ζ*lcs r1 b–( )–

r1

b

∫=

≈
γGb2lcs

2π
------------------ γGb

2πζ*
-------------ln 1– 

  ,
PH
where τb is the interaction force between partial dislo-
cations per unit length (without regard for the fine
structure of superpartial dislocations, the interaction
force between them can be approximately taken equal
to the interaction force between screw dislocations:
τb ≈ γGb2/2πr1); lcs is the length of the superdislocation
segment, which experiences the junction formation;
r1 = γGb2/2πζ*; and ζ* is the effective surface energy
of a planar defect linking partial dislocations. In order
to estimate the value of γ, let us consider the motion of
a superdislocation loop. We assume that the superdislo-
cation is a linear defect with the effective mass m*.
Then, the motion of the dislocation with a unit length
can be described by the equation

(2)

where τdyn is the stress causing the dislocation motion
in the shear region (τdyn = αdynGbρ1/2) [9, 10], τj is the
stress due to the motion of superdislocation jogs, and

 is the viscous drag force. For the screw disloca-

tion, τj can be represented as τj = pjξρ〈∆Ek〉x/b, where
pj is the fraction of jog-forming dislocations, ξ is the
fraction of the dislocation forest, ρ is the dislocation
density, 〈∆Ek〉  is the mean energy of the formation of a
point defect arising upon the motion of a jog, and x is
the dislocation path. In this case, relationship (2) takes
the form

(3)

Let the initial conditions be x = 0, t = 0, and dx/dt = 0.
The coefficients in the equation will be calculated with
the following parameters: ρ0 = 108 cm–2, G = 7 ×
1011 dyn/cm2, b = 5 × 10–8 cm, (∆Ek) = 1 eV, pj = 0.5,
ξ = 0.5, and B = 10–5 Pa [11].

According to [12], m* = db2/4πln(R/r). Setting the
density d = 8 g/cm3 and R/r0 = 10, we obtain m* ≈ 8.6 ×
10–16 g/cm.

Assume that τdyn is equal to αdynGb , where
α = 0.3 [9, 10]. The numerical solution of Eq. (3) for
different parameters αdyn is shown in Fig. 8.

The maximum velocity of the dislocation is
achieved at a distance of 1.5 µm, which is considerably
less than the shear region sizes (no less than 10 µm)
observed in alloys with the L12 superstructure [11].
This implies that the dislocation acquires the maximum
velocity of motion prior to reaching the boundary of the
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1
cs

----dx
dt
------ 

  2

–

-------------------------------------d2x

dt2
-------- τdynb τ jb– B

dx
dt
------,–=

B
dx
dt
------

d2x

dt2
--------

τdynb
m*

------------
B

m*
-------dx

dt
------–

pjξρ0 ∆Ek〈 〉
m*b

-----------------------------x– 
 =

× 1
1
cs

----dx
dt
------ 

  2

.–

ρ0
1/2
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000



THERMAL HARDENING OF Ni3Ge ALLOY SINGLE CRYSTALS 2081
shear region. The highest velocities for different
dynamic stresses lie in the range 1450–2600 m/s (the
experimentally obtained velocities of dislocations near
the yield point are close in the order of magnitude to the
velocities obtained in [13]), and, hence, the values of γ
can fall in the range 0.8–0.2. In this case, the activation
energy of junction formation can decrease by a factor of
1.3–5. For comparison, we note that the energies of the
antiphase boundary in alloys with a low ordering
energy (for example, Ni3Fe, in which the anomalous
effect is small) and a high ordering energy (for exam-
ple, Ni3Ge, in which the anomalous effect is pro-
nounced) differ approximately four or five times.

Therefore, it can be supposed that the moving super-
dislocations, to a large extent, are susceptible to ther-
moactivated junction formation and the development of
jogs, which result in the self-braking of dislocations.
This can account for the low activation energies of self-
braking superdislocations in the low-temperature
range, because the motion of dislocations at low tem-
peratures due to a decrease in the dynamic drag coeffi-
cient can occur at higher velocities compared to that at
high temperatures.

The formation of the Kear–Wilsdorf barrier on a
free dislocation segment changes the contact interdislo-
cation interaction and can bring about a change in the
strength of interdislocation interactions, which, in turn,
can lead to a change in the interdislocation interaction
parameter.

Let us now evaluate the change in the interdisloca-
tion interaction parameter due to the formation of the
Kear–Wilsdorf barrier on a free segment of the shear-
forming dislocation.

It was assumed that thermal fluctuations gave rise to
N barriers per unit area in the shear region, which were
subsequently suppressed in a further motion of the dis-
location loop. As was shown earlier [14], the mean
length of these barriers can be taken equal to approxi-
mately ρ–1/2, i.e., equal to the length of the free disloca-
tion segment.

The deformation work done by the external stress τ
is equal to the work expended on extending the disloca-
tion loops. Then,

(4)

where S is the mean area occupied by the dislocation
loop upon the formation of the shear region. The quan-
tity δA can be represented as the sum

δA = δAs + δAρ + δAf , (5)

where As is the work on the suppression of the Kear–
Wilsdorf barriers, Aρ is the work to overcome disloca-
tion forest, and Af is the friction work. The work on the
suppression of the Kear–Wilsdorf barriers is given by

δAs = NSρ–1/2∆U, (6)

τ δA
bS
------,=
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where ∆U is the energy of the Kear–Wilsdorf barrier
per unit length.

In [15], it was shown that

(7)

where ν is the Debye frequency; ws is the fraction of
screw dislocations; lcs is the length of the dislocation
portion which experiences the thermoactivated junction
formation; U is the activation energy for formation of
the Kear–Wilsdorf barrier; and V is the mean velocity
of dislocation motion. Then,

(8)

Thus, the contribution to the resistance to the
motion of shear-forming dislocations turns out to be
proportional to the square of the dislocation density.
This leads to a strong increase in the interdislocation
interaction parameter, which, according to formula (8),
is described by the relationship

(9)

This expression makes it possible to determine the
activation energy U from the experimental dependence
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Fig. 8. Dependences of the dislocation velocity V on the dis-
tance X from the source at different αdyn: (1) 0.4, (2) 0.3,
and (3) 0.2.
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α(T). By using the data on the dependence α(T) dis-
played in Fig. 7, we obtain the activation energy U =
(2.0 ± 0.8) × 10–2 eV, which is close to the activation
energy Ud obtained in the present work for this temper-
ature range. This gives grounds to believe that the pro-
posed mechanism of the influence of the Kear–Wils-
dorf barriers on the α parameter is true.

6. CONCLUSION
The following features of the Ni3Ge alloy single

crystals were experimentally established: (1) the flow
stresses anomalously increase beginning with a tem-
perature of 4.2 K, and the activation energy of thermal
hardening in this case is equal to a few hundredths of an
electron-volt, (2) the observed increase in the yield
point in the temperature range 4.2–77 K depends on the
orientation of the strain axis of the crystal, (3) the vari-
ation in the temperature from 4.2 to 77 K does not lead
to considerable qualitative changes in the dislocation
structure, and (4) the interdislocation interaction
parameter exhibits an anomalous temperature depen-
dence in the low-temperature range. The mechanisms
providing an explanation for the temperature anomalies
in the flow stresses and the α parameter were consid-
ered, and our conclusion supports the Kear–Wilsdorf
mechanism. It was assumed that the low activation
energies of thermal hardening are due to the motion of
dislocations at velocities close to the velocity of sound
at these temperatures.
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Abstract—The structures of nanodefect ensembles formed on the surfaces of copper, gold, and molybdenum
under a load have been investigated. The properties of the defect ensembles are described in the framework of
the reversible aggregation model. The size distribution of nanodefects is thermodynamically determined by the
maximum “entropy of their mixing” with atoms of the crystal lattice. The entropy of mixing reaches a maxi-
mum value at a small concentration of defects due to a considerable difference in the sizes of defects and atoms.
This concentration agrees closely with the experimental data. The reduced size distribution of defects is univer-
sal. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent investigations [1–4] of the surfaces of metals
(Cu, Au, Mo, and Pd) under tensile stresses by scanning
tunneling microscopy (STM) demonstrated that defects
of a nanometric size are formed on the metal surface
(Fig. 1). The nanodefects have the shape of a prism
(Fig. 2) whose walls are parallel to the glide planes [2].
All the defects can be divided into two groups. The
“smallest-sized,” rapidly fluctuating defects belong to
the first group, and the second group involves “large-
sized” quasi-stationary defects whose mean lifetime is
three or four orders of magnitude longer than that of the
former defects. The mean sizes of the defects increase
with time, and the time dependence of the defect con-
centration exhibits a quasi-periodic behavior (Fig. 3).
1063-7834/00/4211- $20.00 © 22083
In this paper, the size distribution of defects on the
surfaces of copper, gold, and molybdenum at different
times after the loading is described within the model of
their reversible aggregation [5]. The main inference
drawn is that the distribution has a universal form
which accounts for the optimum properties of the
defect ensembles (the principle of the maximum
entropy [6, 7]).

As can be seen from Fig. 4, the defects are formed
and annihilate through the motion of material strips
whose width varies from 5 to 50 nm [2–4]. We believe
that this example is a sufficient demonstration of the
occurrence of dynamic processes on the surface; there-
fore, we can consider the formation and annihilation of
defect ensembles as a result of their reversible aggre-
gation.
150 nm
150 nm

150 nm

150 nm
150 nm

150 nm

(a) (b)

Fig. 1. Fragments of the topograms of the copper surface (a) prior to loading and (b) within 21 h after applying a load of 420 MPa.
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It seems likely that the stationary size distribution in
systems with fluctuation superstructures can be rapidly
attained even in a nonequilibrium state. For example, it
was found that the size distribution of carbon black
aggregates formed under nonequilibrium conditions in
filled rubbers is identical in shape to the stationary dis-
tribution obtained by a numerical solution of the funda-

15 nm

50 nm

50 nm

5 nm

5 nm

1 2 3 4

Fig. 2. A quasi-stationary defect formed on the gold surface
under a load.

Fig. 3. Time dependence of the defect concentration on the
copper surface under a load of 380 MPa.

Fig. 4. Cross-sections of a smallest-sized defect on the gold
surface under a load of 220 MPa at different instants of time
t (s): (1) 0, (2) 38, (3) 76, and (4) 114.
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mental Smoluchowski equation [8]. It is worth noting
that the hysteresis of the stress–strain curves under
cyclic loading of a rubber can also be described using
the invariant relaxation distribution mode, which fol-
lows from the same stationary size distribution of
molecular aggregates [9, 10].

In the case when the aggregation occurs through the
coalescence of ensembles, the size distribution in each
of them should be “optimized,” even though each
ensemble contains a nonequilibrium number of compo-
nents. It is evident that the equilibrium is established
upon relaxation when the system passes through a
sequence of quasi-stationary states, and the entropy
production in the relaxation processes is minimized
[11, 12]. Such a behavior should be typical of the sys-
tems with a large number of equivalent subunits in
which identical processes proceed independently of
one another.

2. MODEL

In the model, the defect size is expressed by the
number y of atoms involved in the defect, and the defect
energy is measured in terms of y∆U0, where ∆U0 is the
energy required to change the length of the defect wall
by one interatomic distance. Under the reversibility
conditions, the size distribution of defects is repre-
sented by the following relationship [5]:

n(y) = n0y2exp(–βy∆U0), (1)

where , kΒ is the Boltzmann constant, T is the

temperature, and n0 is the normalization constant. The
entropy of the defect ensemble is maximum.

The lifetime of different atomic configurations on
the walls of quasi-stationary defects is three or four
orders of magnitude shorter than the mean time of
defect relaxation [2–4]. Consequently, throughout the
lifetime of a quasi-stationary defect, a large number of
different atomic configurations are generated on its
walls, and the atomic structure of the walls changes
independently. According to thermodynamics, the
defects with identical sizes, but with different internal
structures, should be treated as different entities [6, 7].
The continuously varying configurations of a defect
ensemble can be described as fluctuations of a multi-
component liquid in a loaded crystal lattice, which are
stabilized by the “entropy of mixing.” At equilibrium,
the entropy of mixing should be maximum. For this
reason, the preexponential factor in relationship (1) for
the size distribution of defects includes y2 [5].

The mean size 〈y〉  of a defect is given by [5]

(2)

β 1
kBT
---------≡

y〈 〉
y3exp βy∆U0–( ) yd∫
y2exp βy∆U0–( ) yd∫

-------------------------------------------------
3kBT
∆U0
------------.= =
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3. COMPARISON WITH THE EXPERIMENT

According to the model of reversible aggregation,
the reduced distribution nred(η) [see formula (1)] can be
written as

(3)

where  is a universal function [5].

The reduced size distributions of defects on the sur-
face were calculated for one, two, and ten samples of
molybdenum, gold, and copper at room temperature,
respectively. The load applied to the copper samples
ranged from 350 to 420 MPa, and the loading time var-
ied from 16 to 403 h. For the gold samples, the applied
load was equal to 320 MPa, and the loading durations
were 60 and 125 h. In the case of molybdenum samples,
the load was 800 MPa, and the loading time was 60 h.

nred η( ) n η( )
n0 β∆U0( )2
-------------------------- η2exp η–( ),= =

η 3y
y〈 〉

--------≡

1
2
3
4
5
6
70.005

500 750 1000 1250 1500

0.010

0

y/yd

nred

250

Fig. 5. Reduced distributions of the defects formed on the
surfaces of (1–5) copper, (6) gold, and (7) molybdenum at
different loads σ and loading times t. Load σ (MPa), time
t (s): (1) 380, 16; (2) 380, 45; (3) 400, 117; (4) 380, 403;
(5) 400, 21; (6) 320, 60; and (7) 800, 60.
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It was found that the reduced size distributions for
all the studied samples have an identical shape within
the limits of experimental error. This is illustrated in
Fig. 5, in which the experimental distributions are plot-
ted as a function of η = 3y/〈y〉  = y/〈yd〉 . In this figure, the
maximum of each distribution is shifted to the same
position (〈yd〉  = 25), and its magnitude nres is fitted to a
value of ≈0.09 by the corresponding variation in the
parameter n0.

As can be seen from Fig. 5, the symmetry predicted
by the reversible aggregation model can be observed in
real situations. Therefore, even under nonequilibrium
conditions, the structure of defect ensembles formed on
the surface of loaded metals corresponds to the maxi-
mum entropy.

At the same time, for an adequate description of the
distribution, it is often necessary to use two (rather than
one) distributions defined by formula (1), that is,

n(y) = n01y2exp(–βy∆U01) + n02y2exp(–βy∆U02). (4)

As an example, Fig. 6 shows the depth distributions
of defects formed on the surfaces of loaded samples of
copper and gold, which were calculated from relation-
ship (4). It can be seen that this expression adequately
describes the experimental data. Moreover, this expres-
sion adequately represents the size distribution of the
defects on the surfaces of all the studied samples of
copper, gold, and molybdenum.

This result indicates that the topologically identical
defect structure is realized on the surfaces of all the
studied metals.

The main fitting parameters β∆U01 and β∆U02 are
listed in the table. As is seen from the table, the ∆U01
values for the studied metals fall in the range (0.045–
0.088)kBT. (It is of interest that the standard energy of
aggregate formation on the surface of the poly(methyl
methacrylate) vitreous polymer at the glass transition
temperature Tg = 384 K is of the same order of magni-
tude: ∆U0 = 0.012kBT [5].)

The energies ∆U02 and the mean defect sizes 〈y1〉
and 〈y2〉  are also presented in the table. It is seen that the
ratio between the mean sizes of defects and the ratio
0 10

1

20 30 40 50 60 70 80

2
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4
5

Concentration of defects, µm–2

Depth of defects, nm

(a)

0 20

1

40 60 80 100

2
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4
5 (b)

Fig. 6. Depth distributions of the defects formed on the surface of (a) gold within 60 h after applying a load of 350 MPa and
(b) copper within 16 h after applying a load of 380 MPa. Solid lines correspond to the calculations according to Eq. (4).
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Standard aggregation energies (calculated per interatomic distance) and mean sizes of defects formed on the metal surfaces
under a load

σ, MPa t, h β∆U01 β∆U02

Cu

380 16 0.045 0.015 67 200 3.0 1.85

45 0.047 0.015 64 200 3.1 1.85

117 0.047 0.015 64 200 3.1 3.7

187 0.047 0.015 64 190 3.0 3.7

403 0.047 0.016 64 190 3.0 1

420 21 0.05 0.015 67 215 3.2 3.7

43 0.045 0.013 67 213 3.0 4.5

400 144 0.05 0.017 60 215 3.2 1.1

192 0.045 0.015 67 200 3.0 3.3

Au

350 60 0.06 0.016 50 130 2.7 1.85

125 0.06 0.02 50 210 4.2 1.1

Mo

800 60 0.088 0.025 34 110 3.2 1

y1〈 〉
ya〈 〉

----------
y2〈 〉
ya〈 〉

----------
y2〈 〉
y1〈 〉

----------
γ
γ0
-----
between the standard energies of their formation

 are approximately equal to 3. This result

is difficult to interpret in the framework of classical
kinetics. The model that provides an explanation for the
“magic” number 3 will be described in a separate work.

The smallness of the ∆U01 and ∆U02 energies (com-
pared to kBT) allows the possibility of forming and rear-
ranging the defect ensembles on the surfaces of loaded
metals due to thermal fluctuations.

If two consecutive ensembles of defects are inde-
pendently formed, the relationship for the preexponen-
tial factor in Eq. (1) under equilibrium conditions takes
the form

(5)

where pk ≡ exp(–β∆Uk) and k = 1, 2.

Since , at the equilibrium state, the ratio

between the preexponential factors  in expres-

sion (1) for two ensembles following each other should

be γ0 = 1/27. The parameter  can be used to

estimate the “distance” from the equilibrium. The 

values presented in the table indicate that the equilib-

y2〈 〉
y1〈 〉
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∆U01

∆U02
------------=

n0k

1 pk–( )3

2
---------------------,=

∆U01

∆U02
------------ 3≈

γ
n02

n01
-------≡

γ
γ0
-----

27n01

n02
-------------=

γ
γ0
-----
PH
rium is not universally attained, and the “distance from
the equilibrium” essentially depends on the experimen-
tal conditions (the applied load and loading time).

Thus, the hierarchical equilibrium in the optimized
defect structure on the surface of loaded metals, as a
rule, is not established. This is also evidenced by the
oscillations of the defect concentration (Fig. 3). How-
ever, the size distributions of defects are always identi-
cal in shape. Most likely, the time required for attaining
this form of the size distribution is considerably shorter
than the time taken to record the topogram (in our case,
this time is equal to approximately 40 min [1]).

4. EQUILIBRIUM CONCENTRATION
OF DEFECTS

The question now arises as to whether the defect
concentration on the surface of loaded metals can be
calculated in our case.

Let us consider the equivalent subsystems of
defects, which are substantially larger than the STM
scanned area. If these subsystems are optimized, the
following relationship (saturation condition) should be
met [5]:

(6)

where ∆Uca is the standard energy of formation of a
superaggregate from defects, and the product kΒln(Ωca)
characterizes the standard entropy of aggregation ∆Sca.

Our experimental data allow us to interpret the
entropy term in Eq. (6). We assume that defects with the
mean volume 〈yc〉  are randomly distributed over the lat-

yc〈 〉 β∆Uca 3 βT ∆Sca〈 〉 βTkB Ωcaln〈 〉 ,= = =
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tice consisting of atoms whose volume is ya. Then, the
fluctuations of the structural ensemble can be repre-
sented as a mixing of large-sized defects and small-
sized atoms. The partial entropy sc is determined by the
following relationship [8, 13, 14]:

(7)

where  is the volume concentra-

tion of defects.
Equation (6) can be rewritten as

(8)

At yc @ ya,  ≈ 1, and from relationship (8), it

follows that ϕc ≈ xc.
The partial molar entropy of the mixture under con-

sideration is approximately equal to the entropy of the
ideal mixture [5, 13, 14]

kB〈lnΩca〉 ≈ –kBlnxc . (9)

Substitution of this relationship into expression (8)
gives the molar concentration of defects

xc ≈ e–3 = 0.05. (10)

This value is in excellent agreement with the con-
centration (xexp = 0.050 ± 0.003), which was obtained
from the topograms at the instants of time when the
concentration reached its maximum values (Fig. 3).
Since the mean sizes of quasi-stationary defects 〈yc〉  are
considerably larger than the atomic sizes (see table),
our approximation is completely justified.

5. COROLLARY OF THE MODEL

It is expedient to calculate the ratio L/dc, where L is
the mean distance between two neighboring defects
with the mean size dc = εyc (the parameter ε is deter-
mined by the geometric shape of the defect). Since
dc/L ≈ xc, it follows from relationship (8) that

(11)

Therefore, the ratio  for the optimized aggregate

of defects is equal to e ≈ 2.7. As follows from the cal-

culations,  = 2.6–2.8 at the instants of time when the

defect concentration is close to maximum. This result
agrees well with the statement that the structure of the
defect ensembles is thermodynamically optimized.

sc

∂∆Smix d,

∂nc

-------------------- kB ϕc( )ln 1
yc

yc〈 〉
----------–+ 

  ,= =

ϕc

ycxc

ycxc yc 1 xc–( )+
---------------------------------------=

sc ϕcln 1
yc

yc〈 〉
----------–+ 

  Ωcaln〈 〉 3.= = =

yc

yc〈 〉
----------

L
dc

-----
1

xc
3
--------- e.≈=

L
dc

-----

L
dc

-----
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It is worth noting that the same ratio L/dc ≈ e was
obtained for cracks in different solids prior to their frac-
ture [15, 16]. Apparently, the structure of crack ensem-
bles under these conditions is also close to the thermo-
dynamically optimized structure.

According to our concept based on the experimental
data, the hierarchically organized ensembles (such as
the defect ensembles on the surface of loaded metals)
rapidly attain the quasi-stationary state even under non-
equilibrium conditions. This evolution of ensembles
becomes possible when they consist of large-sized
equivalent subsystems in which the processes occur on
different time scales. For example, in our experiments,
the smallest-sized defects are formed and relax rather
rapidly, whereas the large-sized quasi-stationary
defects undergo a slower evolution.

Most likely, the structure of the ensembles of the
defects formed on the surface of loaded metals is ther-
modynamically optimized. This assumption is corrob-
orated by their successful description in terms of the
reversible aggregation of atoms and defects. In particu-
lar, it was proven that, according to the thermodynamic
principle of symmetry [5, 8, 14], the reduced size dis-
tribution of defects [relationship (3)] has a universal
form. At the same time, the experimental concentration
of defects (xc ≈ 0.05) is correctly reproduced provided
that the entropy of mixing of the ensemble of defects
and atoms is maximum.
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Abstract—The dependences of the structural parameters and the electrical and magnetic properties of titanium
diselenide, intercalated by chromium, iron, and cobalt on the intercalant concentration and temperature were
studied experimentally. The possibility of the involvement of d electrons in the formation of interlayer covalent
bonds in relation to the 3d-shell filling of intercalated ion is discussed. © 2000 MAIK “Nauka/Interperiodica”.
Titanium dichalcogenides have a hexagonal layered
structure of the CdI2 type, with the [X–Ti–X] blocks
separated by appreciable spacings which far exceed the
interatomic spacings within the blocks. This feature of
the crystal structure allows for the introduction of a
considerable amount of other atoms which are in the
octahedral positions [1], between the blocks of the host
lattice. Many articles are concerned with the study of
these compounds, which are intercalated by alkaline
metals and silver (see, for example, [2]). Investigations
into the intercalation of titanium dichalcogenides by
3d-transition elements have recently been developed.
This allows for the extra possibility of wide-ranging
modification of their magnetic properties and the devel-
opment of quasi-two-dimensional magnetic materials.
The possibility of realizing a wide spectrum of mag-
netic states, from spin glass to magnetic ordering, has
been shown for these materials, in particular, for tita-
nium disulfide [3]. The MxTiSe2 compounds (M = V,
Cr, Mn, Fe, Co, Ni, Cu) with a small intercalant content
(x = 0.10, 0.20) are paramagnets, with the temperature
dependence of the magnetic susceptibility obeying the
Curie–Weiss law [4]. However, the most interesting
magnetic properties are revealed at large intercalant
concentrations. There is evidence that antiferromag-
netic ordering is observed in FexTiSe2 [5] and that the
temperature dependence of magnetic susceptibility
passes through a maximum in Co0.05TiSe2 [6] with an
increasing 3d-element concentration. Various observed
properties could be associated with the electronic struc-
ture of the intercalant atoms (with a number of d elec-
trons, the character of their distribution over d orbitals,
etc.). In addition, the intercalation of d transition ele-
ment atoms having directed orbitals can considerably
affect the conduction electron state.

In this work, the behavior of the structural parame-
ters, the electrical conductivity, the thermoelectric
1063-7834/00/4211- $20.00 © 22089
coefficient, and the magnetic susceptibility of titanium
diselenides intercalated by chromium, iron, and cobalt
has been investigated for a wide range of concentra-
tions.

1. EXPERIMENTAL METHOD

Samples of the composition of FexTiSe2, CoxTiSe2,
and CrxTiSe2 (0 < x ≤ 0.5) were made by sintering pre-
liminary prepared titanium diselenide and a consistent
quantity of 3d metal (the purity of the components was
99.9%) by means of solid-phase reactions in evacuated
quartz ampoules at a temperature of 900°C. Then, the
samples were pressed into pellets and homogenized at
the same temperature. At the last stage of preparation,
the samples were quenched in water so that the same
initial state of the samples would be provided. X-ray
analysis (made using a DRON-3M diffractometer with
CuKα irradiation) did not reveal any inclusions of other
phases in the samples prepared.

The investigation into the kinetic characteristics (con-
ductivity and thermopower) was carried out on rectangu-
lar cold-pressed samples using the standard four-probe
technique in the temperature range 80–400 K.

The magnetic susceptibility (χ) was measured by the
Faraday method in the temperature range 80–400 K.

2. EXPERIMENTAL RESULTS
AND DISCUSSION

The dependences of the unit-cell parameters on the
concentration of intercalated atoms are presented in
Fig. 1. The data from [4, 7] are also presented in this
figure. These data, as can be seen, agree with ours. It is
notable that the unit-cell parameters of all the systems
investigated show a similar behavior; in the concentra-
tion range 0 < x < 0.25, an increase in the intercalant
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Dependences of the crystal lattice parameters a0 and
c0 on the intercalant content x for (a) CrxTiSe2, (b) FexTiSe2,
and (c) CoxTiSe2.
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Fig. 2. Temperature dependences of the inverse magnetic
susceptibility 1/χ for MxTiSe2 (x = 0.10, 0.25).
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concentration results in a monotonic increase in the a0
parameters and a decrease in the c0 parameters. Such
behavior in the structural parameters radically differs
from that observed in titanium diselenide intercalated
by alkaline metals. As was shown in [2], the introduc-
tion of alkaline metals is accompanied by a simulta-
neous increase in both parameters. A decrease in the c0
parameter in the systems intercalated by 3d metals was
interpreted earlier as evidence of hybridization of the
3d states of intercalant atoms with the p–d states of the
atoms in a TiSe2 layer [4, 8]. Such bonding, as was
shown for TixTiTe2 [9] and FexTiTe2 [10], results in the
creation of localized electron states. It follows from
Fig. 1 that, after the M0.25TiSe2 composition is reached,
the parameter c0 ceases to decrease (in FexTiSe2),
decreases more slowly (in CoxTiSe2), or begins to increase
(in CrxTiSe2). As the intercalant atoms reside on sites
separated by some interatomic spacings at x < 0.25,
they can be considered as isolated from each other. On
further intercalation, intercalant atoms find themselves
in the neighboring sites and form clusters. Therefore,
this turnover in the c0 parameter dependence could be
associated with a crossover from a dilute to a concen-
trated solid solution.

The “parent” TiSe2 compound is a Pauli paramagnet
[11] with a magnetic susceptibility magnitude of 5.2 ×
10–7 cm3/g at room temperature. The intercalation of 3d
elements results in an increase in the magnetic suscep-
tibility magnitude (Fig. 2). All the samples investigated
in the temperature range studied (except for Fe0.5TiSe2
and Co0.5TiSe2) revealed a paramagnetic behavior with
the magnetic-susceptibility temperature dependence
close to the Curie law. The experimental dependences
of χ(T) can be represented in the form

(1)

where C is the Curie constant; Θ is the paramagnetic
Curie temperature; and χd and χp are the temperature-
independent terms due to the diamagnetism of the filled
electron shells and the paramagnetism of the free charge
carriers, respectively. The preliminary estimate of the χd

value was done in accordance with expression [12]

(2)

where Zi is the atomic number of the element, a0 is the
Bohr radius, and r is the electron orbit radius.

From the subsequent approximation of the magnetic
susceptibility temperature dependences, the values of
the parameters entering Eq. (1) were determined and
the effective magnetic moments of the intercalant
atoms were calculated. The results of the calculations
are presented in the table.

The values of the effective magnetic moments for
Cr, Fe, and Co, calculated with regard to their different
valence and spin states, are shown in Fig. 3 (curves);
the dots are the experimentally determined values for

χ T( ) C/ T Θ–( ) χd χ p,+ +=

χ Zi e2/"c( )2
NAa0

3/6 r/a0( )〈 〉 2,–=
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the intercalant ions in the CrxTiSe2, FexTiSe2, and
CoxTiSe2 systems for x = 0.10 and 0.25. A comparison
of the data presented shows that the experimental data
for iron and cobalt are the closest to the values for Fe2+

and Co2+, while the trivalent state is more probable for
chromium. This conclusion is also supported by the
fact that the octahedral coordination is the most favor-
able to the Cr3+ ion, which is argued by the estimates of
the stabilization energy for the differently coordinated
chromium ions [13]. It can be seen that the experimen-
tally determined effective magnetic moments of the
chromium, iron, and cobalt atoms turned out to be less
than the corresponding values of the spin moments of
the Cr3+, Fe2+, and Co2+ ions.

The reason for this could be the possible hybridiza-
tion considered above of the 3d states of intercalated
atoms with states in the TiSe2 layers. The data obtained
show that the concentration dependences of the mag-
netic moments correlate with the c0 parameter behavior
for the systems studied; the values of µeff decrease with
a contraction of the crystal lattice. The paramagnetic
Curie temperatures for most of the samples investigated
have a negative sign and are not large in magnitude.
This is indicative of the presence of antiferromagnetic
interactions, and therefore, antiferromagnetic ordering
upon temperature lowering might be expected in these
materials. Such ordering was observed in the FexTiSe2
system at x ≥ 0.25 [5] and observed by us for Fe0.5TiSe2.

The as-grown titanium diselenide is a semimetal
with respect to the electrical properties, with its con-
ductivity being 900 Ω–1 cm–1 at room temperature [11].
The investigations of the electrical properties have
shown that, for all the systems studied, a strong
decrease in the electrical conductivity of the samples
intercalated is observed in comparison to the electrical
conductivity of TiSe2. This takes place in spite of an
increase in the concentration of the electrons added to
the crystal lattice with the intercalant atoms (Fig. 4).
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0
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x = 0.10
x = 0.25
x = 0.10[4]

Fig. 3. Effective magnetic moments calculated for the free
ions (lines), and the experimentally determined values
(dots) for the three elements intercalated in the MxTiSe2
compounds. The keys (1, 2) and (3, 4) denote the high- and
low-spin states, respectively, of the ions M2+ (1, 3) and M3+

(2, 4).
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The sign of the thermoelectric coefficient of most sam-
ples indicates a p-type conductivity, typical of the as-
grown titanium diselenide. Such kinetic properties let
us suggest that the electrons are bound in a potential
well created by the intercalant atoms. The band struc-
ture of the compounds intercalated by the transition
elements seems to undergo qualitative changes, and a
band of localized states is formed. This results in an
increase in the density of states at the Fermi level,
which is indicated by an increase in the Pauli magnetic
susceptibility with an increasing intercalant concentra-
tion (see table).
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Fig. 4. Temperature dependence of the conductivity σ and
thermoelectric coefficient α (inset) for M0.10TiSe2.

Effective magnetic moments (µeff), the paramagnetic Curie
temperatures (Θ), and the Pauli magnetic susceptibility (χp)
for the MxTiSe2 systems

x µeff/µB Θ, K χp × 106, cm3/g

CrxTiSe2

0.10 3.6 –6.6 0.99

0.20 3.1 –7.4 1.15

0.25 3.2 –17.7 1.43

0.33 2.6 12.5 3.05

FexTiSe2

0.05 4.9 –5.6 0.71

0.10 4.0 3.1 0.95

0.25 4.2 –19.9 1.49

0.37 3.3 6.5 2.58

0.42 3.3 –5.1 1.29

CoxTiSe2

0.10 2.5 –34.6 0.75

0.20 2.4 –85.5 1.15

0.25 2.3 –66.1 1.09

0.33 1.6 –65.1 1.88
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The results presented on the concentration depen-
dence of the structural parameters and electrical and
magnetic characteristics of the titanium diselenides
intercalated by different transition metals show general
tendencies for all the intercalant atoms investigated.
These tendencies independently argue for the creation
of the localized electronic states due to the intercala-
tion.

The dissimilarities observed in the concentration
dependences of the physical properties resulting from
the intercalation by the different elements (the concen-
tration dependence of the c0 parameter at x > 0.25, the
different relative change in the lattice parameters and in
the effective magnetic moment) can be associated with
the peculiarities in the structure of the 3d shells of the
atoms intercalated. The most essential difference
between them is that the Cr3+ ion has partially filled
only three out of five d orbitals, whereas Fe2+ and Co2+

ions have electrons in a high-spin state in all d orbitals.
The orbitals with a z component of the electron density
are directed towards the ligands. Therefore, they are
favorably disposed towards the formation of the molec-
ular orbitals with the atoms in the environment. It might
be expected that these electrons in particular are the
most strongly hybridized and delocalized at the forma-
tion of the covalent bonds. In actual fact, at the interca-
lation by cobalt and iron, a decrease in the c0 parameter
continues up to significantly higher intercalant concen-
trations than in the samples intercalated by chromium.
The relative decrease in the c0 parameter is a maximum
for the CoxTiSe2 system. It should be noted that, in con-
trast to Fe2+ and Co2+, the Cr3+ ions are typically in a
singlet ground state. Therefore, the chromium atoms
are less favorably disposed towards hybridization,
resulting in the energy lowering (due to the degeneracy
lifting) and the distortion of the crystal lattice.

An increase in the d electron delocalization extent
leads to a monotonic decrease in µeff . A value of 1.6 µB
for Co0.33TiSe2 is consistent formally with one unpaired
electron in one of the cobalt d orbitals. With the intro-
duction of iron, the effective magnetic moment is equal
to 4.9 µB for the composition with x = 0.05 and
decreases to 3.3 µB at x = 0.42. In the intercalation by
chromium, the involvement of d electrons in the orbital
hybridization is to the smallest extent; this is in accor-
dance with the smallest relative change in µeff .
PH
Thus, as a result of this study, it has been shown that
the intercalation of titanium dichalcogenides by 3d
transition metals generally results in the localization of
the conduction electrons. However, the extent of the
localization and the material properties associated with
it depend heavily on the filling of the impurity 3d shell
and on the involvement of the d electrons in the cova-
lent bonding.
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Abstract—The temperature dependences of the lattice spacing and thermal expansion coefficient for five
hexaborides MB6 (M = Ce, Pr, Nd, Gd, and Tb) are experimentally investigated. © 2000 MAIK “Nauka/Inter-
periodica”.
In recent years, great interest has been expressed by
researchers in the properties of lanthanide hexaborides
at low temperatures. This is explained by a unique com-
bination of the physical and physicochemical proper-
ties inherent in compounds of this series. Considerable
1063-7834/00/4211- $20.00 © 22093
attention has been given to the study of magnetic trans-
formations in the majority of rare-earth hexaborides at
liquid-helium temperatures [1–6]. However, the proper-
ties of their crystal lattices over a wide range of low tem-
peratures have been not adequately investigated [7–13].
Lattice spacing a for rare-earth hexaborides

T, K
a, Å

CeB6 PrB6 NdB6 EuB6 GdB6 TbB6 DyB6

4.2 4.13482 4.12727 4.12232 4.18061 4.00163 4.09646 4.09513
6 4.13491 4.12730 4.12240 4.18068 4.10162 4.09645 4.09505
8 4.13492 4.12735 4.12245 4.18075 4.10161 4.09644 4.09501

10 4.13493 4.12739 4.12249 4.18091 4.10160 4.09643 4.09499
12 4.13493 4.12741 4.12253 4.18105 4.10155 4.09641 4.09494
14 4.13493 4.12743 4.12253 4.18109 4.10148 4.09639 4.09491
16 4.13493 4.12744 4.12253 4.18113 4.10151 4.09641 4.09489
18 4.13493 4.12745 4.12255 4.1814 4.10156 4.09643 4.09489
20 4.13493 4.12746 4.12257 4.18116 4.10162 4.0946 4.09477
22 4.09644 4.09429
24 4.09642 4.09411
26 4.09640 4.09372
28 4.09640 4.09296
30 4.13499 4.12750 4.12260 4.181119 4.10171 4.09643 4.09290
32 4.09648 4.09290
34 4.09655 4.09320
40 4.13505 4.12756 4.12262 4.18125 4.10181 4.09676 4.09332
60 4.13522 4.12771 4.12283 4.18139 4.10210 4.09707 4.09374
80 4.13542 4.12786 4.12308 4.18148 4.10240 4.09756 4.09423

100 4.13562 4.12809 4.12334 4.18167 4.10276 4.09798 4.09453
140 4.13608 4.12875 4.12397 4.18212 4.10352 4.09882 4.09561
180 4.13671 4.12955 4.12465 4.18266 4.10430 4.09993 4.09646
220 4.13740 4.13039 4.12537 4.18325 4.10524 4.10060 4.09743
260 4.13817 4.13127 4.12610 4.18389 4.10625 4.10170 4.09840
300 4.13899 4.13220 4.13299 4.18456 4.10724 4.10274 4.09938
320 4.13943 4.13267 4.12754 4.18490 4.10789 4.10323 4.09992
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This paper reports the results of the experimental
investigation into the lattice spacing of five hexaborides
MB6 (M = Ce, Pr, Nd, Gd, and Tb) and the data on the
LaB6, SmB6, EuB6, and DyB6 hexaborides studied in
our earlier works [14–16].

The sample preparation procedure and the x-ray dif-
fraction experiment were similar to those described
earlier in [14]. The temperature dependences of the
interplanar distance d411(T) for the studied hexaborides
are displayed in Fig. 1. The lattice spacings are given in
the table and in [14].

The temperature dependences of the linear thermal
expansion coefficients α for hexaborides were deter-
mined by differentiation of the graphically smoothed
curves d411(T) (Fig. 2).

As was noted earlier in [14–16], the dependences
α(T) for rare-earth hexaborides exhibit a number of
characteristic features. The magnetic ordering observed
in the majority of the studied hexaborides leads to the
appearance of pronounced anomalies in the α(T) curves.
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Fig. 1. Temperature dependences of the interplanar distance
d411(T) for (1) europium, (2) lanthanum, (3) cerium,
(4) samarium, (5) praseodymium, (6) neodymium, (7) gad-
olinium, (8) terbium, and (9) dysprosium.
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Fig. 2. Temperature dependences of the linear thermal
expansion coefficient α(T) for (1) LaB6, (2) CeB6, (3) PrB6,
(4) NbB6, (5) SmB6, (6) EuB6, (7) GdB6, (8) TbB6, and
(9) DyB6.
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Fig. 3. Temperature dependences of (1) the thermal expan-
sion coefficient α(T) for cerium hexaboride, (2) its regular
(lattice) component αL(T), and (3) the excess thermal
expansion coefficient ∆α(T) = α(T) – αL(T).
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Fig. 4. Temperature dependences of the excess thermal
expansion coefficient ∆α(T) (solid lines) and excess heat
capacity ∆Cp(T) (dashed lines) for hexaborides of (1)
cerium, (2) praseodymium, (3) neodymium, (4) europium,
(5) gadolinium, (6) terbium, and (7) dysprosium.
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At high temperatures, the α(T) dependences virtually
flatten out. The thermal expansion coefficient of
hexaborides at T = 300 K increases only slightly with an
increase in the atomic number of the metal. The origin
of the negative thermal expansion coefficient for SmB6,
which was discussed in [10], calls for further analysis.

After separating out the lattice contribution to the
thermal expansion coefficient, the deviations of the
components from the thermal expansion coefficient
manifest themselves more clearly. Since the crystal
structures of lanthanum and rare-earth hexaborides are
identical, the ratio between their lattice contributions to
the α(T) quantities is equal to that of the corresponding
lattice components of the heat capacity:
αL(LaB6)/αL(MB6) = CL(LaB6)/CL(MB6) [17]. By
assuming that the thermal expansion coefficient of
LaB6 contains only the lattice component, i.e.,
αL(LaB6) = α(LaB6), and using the temperature depen-
dences of the lattice components of the heat capacity
[18], we determined the lattice components of the ther-
mal expansion coefficient αL(MB6) for rare-earth
hexaborides and its excess component relative to the
lattice component: ∆α(T) = α(T) – αL(T). As an exam-
ple, Fig. 3 depicts the dependences α(T), αL(T), and
∆α(T) for cerium hexaborides. The ∆α(T) curves for all
the studied hexaborides are displayed in Fig. 4. For
comparison, this figure demonstrates the temperature
dependences of the excess heat capacity for the studied
hexaborides: ∆C(T) = C(T) – CL(T) [18]. Judging from
the curves ∆α(T) and ∆C(T), the processes of splitting
the energy levels responsible for the Schottky contribu-
tion to the heat capacity virtually do not affect the ther-
mal expansion of rare-earth hexaborides. An appreciable
value of ∆α(T) near T = 40 K for CeB6, a weak maximum
of ∆α(T) for PrB6, and clear maxima for GdB6, TbB6,
and DyB6 correlate with the anomalies in the heat
capacity and, most likely, result from the Jahn–Teller
effect [11].
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Abstract—The domain structure of a FeBO3 : Mg single crystal was studied with a polarizing microscope. It
was found that application of a magnetic field along the hard axis in the basal plane of this weak ferromagnet
gives rise, within a certain field-strength interval, to a magnetic superstructure observed against the background
of the macrodomain structure of the sample. The magnetic superstructure is visually represented as a quasi-peri-
odic system of bands oriented perpendicular to the applied field, with an alternating magneto-optic image con-
trast along an axis coinciding with the magnetic-field direction. The absence of sharp changes in the contrast of
the magnetic superstructure image along this axis is explained as being due to the smooth variation of the sub-
lattice magnetic-moment azimuth with spatial coordinates. The results obtained are discussed within the param-
eters of the instability of a uniform magnetic state of a system in the random field induced by a magnetic
field. © 2000 MAIK “Nauka/Interperiodica”.
† The instability of a uniform magnetic state of a fer-
romagnet, caused by a weak random field which makes
the state with nonuniform magnetization energetically
favorable, was first discussed in [1]. That publication
stimulated numerous experimental and theoretical
investigations aimed at studying the effect of a random
field on the magnetic state of a magnet. Those studies
stimulated, in particular, the discovery of the existence
of a microdomain structure in dilute uniaxial antiferro-
magnets through the use of neutron-diffraction and
magnetic measurements [2, 3]. The ambiguous behav-
ior of such a structure in a magnetic field with respect
to the instant of its application (before cooling below
the magnetic-transition temperature or after it) indi-
cated that the forming magnetic states are metastable. A
microdomain structure was also observed, in addition
to the uniaxial, in easy-plane antiferromagnets contain-
ing extended or point defects [4]. It was shown that,
depending on the correlation length of the random
anisotropic fields, there may form both a structure with
domains having a uniform antiferromagnetism vector
and an amorphous magnetic structure with the antifer-
romagnetism vector varying continually in direction in
the basal plane [4].

A particular place among easy-plane antiferromag-
nets is occupied by weak ferromagnets; their ferromag-
netic moment permits one to control their magnetic
structure through the application of a weak magnetic
field, which makes it possible, in principle, to follow
the effects associated with the presence of a random
field (induced, for instance, by the randomness of the

† Deceased.
1063-7834/00/4211- $20.00 © 22097
exchange or by local variations of the competing aniso-
tropic interactions) fairly easily. To study random-field
effects, we have carried out an experimental investiga-
tion of the influence of diamagnetic impurity ions on
the stability of a uniform magnetic state of a weak fer-
romagnet in an external magnetic field.

1. SAMPLES AND EXPERIMENTAL
TECHNIQUE

The study was performed on an FeBO3 single crys-

tal (space group ), in which part of the Fe3+ ions
was replaced by Mg diamagnetic ions. Magnetic inho-
mogeneities were revealed by magneto-optic visualiza-
tion of the domain structure of the sample. The choice
of the subject for the study and of the experimental
technique used therein was motivated primarily by the
fact that the behavior of the FeBO3 domain structure
had been thoroughly investigated and, therefore, one
could carefully analyze the differences in the magnetic
response between nominally pure (impurity-free) crys-
tals and crystals diluted by a diamagnetic impurity. In
addition to this, the magnetic, optical, and magneto-
optic properties of iron borate are well known (see, e.g.,
[5]). FeBO3 is a two-sublattice weak ferromagnet with
a Néel temperature TN = 348 K, below which a stable
domain structure is observed to exist. FeBO3 is practi-
cally transparent to visible light for wavelengths λ <
500 nm, and its magneto-optic properties are governed
primarily by the Faraday effect and magnetic linear
dichroism [6].
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The charge used to prepare the samples contained
magnesium oxide and iron oxide in a weight ratio of
~0.1%. After synthesis, plates ~100 µm thick and
~3 mm wide were cut from the FeBO3 : Mg single crys-
tals, such that the principal symmetry axis of the crys-
tal, C3, coincided with the normal to the sample plane.
To relieve the mechanical stress and to make the impu-
rity distribution over the volume more uniform, the
samples thus prepared were annealed in air for 10 h at
T = 500°C. Magnetic measurements showed that the
magnesium impurity, compared with pure FeBO3, did
not noticeably affect the TN of the samples.

The domain structure was studied using a polarizing
microscope with a camera attachment. The measure-
ments were carried out in transmission at the edge of
the transparency window (λ ≈ 500 nm), under normal
light incidence, and in the geometry of nearly crossed
axes of the polarizer–sample–analyzer system at 80 K
(see below). In addition, the magnetic-field and orien-
tation dependences of the intensity variation of light
passed through the polarizer–sample–analyzer system,
I/I0 (where I0 is the light intensity in zero magnetic field
H and I is that at H ≠ 0), were measured. The magnetic
field was produced by two pairs of Helmholtz coils.
The magnetization system permitted the orientation of
the H vector along any direction in the basal plane of
the sample at |H| = const. The orientation of the sample,
as well as the measurement of the I/I0 ratio, was exe-
cuted using the technique described in detail in [6].

2. EXPERIMENTAL RESULTS

An analysis of the field dependence of the magneto-
optic signal I(H)/I0, obtained at T = 80 K from regions
of the sample comparable in size with its transverse
dimensions, revealed magnetization curves of two
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Fig. 1. Field dependences of a magneto-optic signal
obtained at T = 80 K for different orientations of magnetiza-
tion. (1, 2) Vector H is parallel and perpendicular to the
domain wall direction.
PH
types. The I(H)/I0 dependences of the first kind (curve 1 in
Fig. 1) reflect the well-known behavior of magnetic
moments under increasing H, namely, an increase in the
integrated ferromagnetic, m, and antiferromagnetic, l,
moments through a decrease in their disorder. Curves
of this kind were observed under a field application
along the boundaries of the domain structure observed
in the demagnetized state in the sample (Fig. 2a).

I(H)/I0 dependences of the second type (curve 2 in
Fig. 1) were observed under the application of a field
perpendicular to the domain boundaries of the demag-
netized sample. The pattern of the magneto-optic signal
disagreed with the behavior of the moments m and l in
a magnetic field; indeed, as H increases from zero, the
I/I0 ratio grows to a value in excess of its saturated level,
to finally reach saturation at H > 20 Oe. As proceeds
from our results, this type of I(H)/I0 dependence is not
observed for T > 120 K.

The observed anomalous pattern of the field depen-
dence of the magneto-optic signal can be assigned to
the formation, in the course of magnetization, of
wedge-shaped magnetic domains, in which the rotation
of the plane of polarization increases through the inter-
ference of birefringence and the Faraday effect [7].
However, this phenomenon takes place only when the
direction of light propagation deviates considerably
from the crystal optical axis, which was not the case in
our experiment. Furthermore, it was earlier established
that the I(H)/I0 dependences of the second type were
not observed in an identical geometry on nominally
pure FeBO3 crystals.

In order to study the behavior of the magnetic state
of a FeBO3 : Mg crystal in the course of magnetization,
visual representations of the evolution of the domain
structure of the sample under study were analyzed. Fig-
ure 2a displays a fragment of the surface of a sample
maintained at T = 80 K in zero magnetic field. The sam-
ple is seen to be broken down into domains with dis-
tinct boundaries. As field H was applied in the sample
plane in the direction perpendicular to the domain
walls, the crystal first crossed over to the single-domain
structure, after which a quasi-periodic system of alter-
nating bands with fuzzy boundaries and different con-
trast (Fig. 2b) was observed in fields corresponding to
the anomaly in the I(H)/I0 dependence. As the field was
increased even more, the modulation of the magneto-
optic image contrast on the sample surface disap-
peared. It was found that the observed band structure
formed under a field applied close to the three direc-
tions in the crystal basal plane, which, judging from the
domain wall orientation in the demagnetized state, are
hard-magnetization axes of in-plane crystallographic
anisotropy. Figure 3 illustrates the angular pattern of
the above structure, relating the applied field strength to
the H vector azimuth.
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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Fig. 2. Sample surface image obtained in polarized light at T = 80 K. H (Oe): (a) 0, (b) 12.

(a)

(b)
Studies showed that the average period of the quasi-
periodic band structure with a varying magneto-optic
contrast depends on H. Figure 4 presents a typical
dependence of the spatial period d of the observed
structure on the magnetic field applied along the nor-
mal to its wavefront. Of importance is the discontinu-
ous change in period d in a field through a change in the
number of bands fitting within the measured length,
which is shown in Fig. 4 in the form of steps. In addi-
tion to this pinning effect, one observed a hysteresis in
the values of d as the field H decreased (i.e., under
reverse magnetization); in other words, the average
period of the structure is smaller under a decreasing
field than under an increasing field.
E SOLID STATE      Vol. 42      No. 11      200
3. DISCUSSION OF THE RESULTS

One could conceive of three reasons for the forma-
tion of the observed system of bands with different
magneto-optic contrasts. This structure may actually
represent interference bands produced by a system of
domain walls inclined to the crystal basal plane, a
stripe-domain structure, or again an image of a spatially
modulated (incommensurate) structure in the spin sys-
tem of the crystal.

The first phenomenon is observed at large angles of
light incidence on the sample surface [7], a geometry
which, as already mentioned, was not used in our
experiment. As for the possibility of the existence of a
0
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stripe-domain structure, it can hold only if one assumes
that impurity states in FeBO3 : Mg affect the hexagonal
anisotropy constant to the extent that the ferromag-
netism vector leaves the basal plane (in these condi-
tions, in order to reduce the magnetostatic energy, the
sample must break up into stripe domains). Further-
more, in a doped crystal, the sixth-order anisotropy
constant must become noticeable in comparison with
the second-order constant, which is unlikely, because
the ions introduced into the crystal are diamagnetic. It
is, in addition, known [8] that an increase of field H
applied in the basal plane of such systems results in an
increase in the period of the stripe structure; our experi-
ment, however, revealed the reverse relationship (Fig. 4).
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Fig. 3. Diagram illustrating the existence of contrast modu-
lation in the sample surface image in the azimuth–applied-
field plane. The hatched areas identify the regions where
band structures with different magneto-optic contrast set in,
and the orientation of the hatching corresponds to that of the
wavefronts of the observed structure.

Fig. 4. Field dependence of the spatial period of the quasi-
periodic structure of bands with different magneto-optic
contrast.
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The absence of sharp boundaries in the image of the
forming structure suggests that m, rather than being an
alternating quantity, as is the case with a conventional
domain structure, varies only in magnitude. This means
that a spatially modulated magnetic state is induced in
the FeBO3 : Mg, dilute, weak ferromagnet within a cer-
tain magnetic-field interval. Therefore, in order to ana-
lyze the results obtained, we employ the theory of the tran-
sition of a system from a uniform magnetic state to an
incommensurate structure (see, e.g., [9, 10]).

It is well known [10, 11] that magnetic anisotropy in
the easy plane in rhombohedral antiferromagnets gives
rise to the formation of six directions in this plane,
along which the uniform sublattice moments are in a
stable state. These directions are turned through the
angles ±π/3 with respect to one another and are crystal-
lographically equivalent. Thus, without any loss of gen-
erality, one can assume that the antiferromagnetism
vector in an external field H is aligned with an axis
close to one of these six directions. Assuming now that
the angle β by which vector l is canted from the given
axis, chosen here as the x axis, is small, the thermody-
namic potential of the crystal can be written in a form
similar to that obtained in [10]

(1)

where the single and double primes on β denote the cor-
responding derivative, and the external magnetic field
H || x is taken into account by adding two symmetry-
allowed terms: the first of them, mhβ (h = HM, where
M is the sublattice moment), is the Zeeman contribu-
tion to the crystal energy, while the second, 1/2ηlh(β')2,
is invariant under space and time inversion. Inclusion of
this term into expansion in Eq. (1) merely renormalizes
the coefficient of the first derivative and makes it
dependent on the external field H.

Within this model, the transition to a nonuniform
magnetic state takes place when the coefficient of the
first derivative, 1/2(α + ηlh), is less than zero. In other
words, for η < 0, a modulated state will be induced in
the medium under an external field h > α/ηl. In an anal-
ysis of the effect of a field H on such a transition, the
Zeeman contribution to the thermodynamic potential of
the system was first taken into account in [12], where it
was shown that a functional similar to Eq. (1) can be
minimized using a function of the type

where β0 and ξare parameters depending, in a complex
way, on h and the coefficients A, B, α, γ, and η of the
potential in Eq. (1), and the wave vector is defined as [10]

(2)

F β( ) 1/2Aβ2 1/4Bβ4 1/2α β'( )2+ +[∫=

+ 1/4γ β''( )2 mhβ 1/2η lh β'( )2 …+ + + ]dx,

β x( ) β0 ξ ikx( )exp c.c.,+ +=

k α η lh+ /2γ[ ]1/2.=
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Expression (2) is a good description, at least quali-
tatively, of the experimental H dependence of the
period of the structure. Indeed, as follows from Eq. (2),
the period of the structure d = 2π/k = 2π[2γ/|α + ηlh|]1/2

should decrease with an increasing magnetic field,
exactly as was observed in the experiment (see Fig. 4).

Thus, in accordance with the above model, when a
magnetic field, applied along the anisotropy axis in the
basal plane of a FeBO3 : Mg crystal, reaches the critical
level h = α/ηl, it induces a phase transition from a uni-
form to a modulated magnetic state. The axis along
which the state is modulated is oriented along the H
vector, and the magnetic superstructure can be con-
ceived of as a ripple-on phase, where the azimuth of the
local antiferromagnetism vector undergoes oscillations
relative to a constant deviation angle from the anisot-
ropy axis. The above assumptions suggest that there
should be three directions along which the magnetic
state of a crystal can be modulated, which is in accor-
dance with the diagram in Fig. 3.

Note that the one-dimensional spatial orientation of
vector l is an oversimplified case, and that, in actual
fact, there is probably also modulation along the axis
perpendicular to the basal plane of the crystal. How-
ever, because of the small thickness of the sample stud-
ied and the small amplitude of the oscillations, this
relation will manifest itself in the form of an effective
decrease in the antiferromagnetism vector compared
with its magnitude in the uniform state.

Now consider the physical meaning of the gradient
terms in potential Eq. (1). The introduction of Mg ions
into the iron borate lattice gives rise to distortions asso-
ciated with the difference between the ionic radii of Fe
and Mg (and, possibly, with the difference between
their charge states). This may produce a random anisot-
ropy, which will induce local canting of vector l(m)
from the directions determined by the crystallographic
anisotropy. On the whole, the equilibrium magnetic
structure of the crystal will be determined by the com-
petition between the random anisotropy, on the one
hand, and the crystallographic anisotropy and the dc
magnetic field, on the other. A similar situation was
considered for thin polycrystalline magnetic films [13],
where the role of the random anisotropy was played by
the crystallographic anisotropy in crystallites whose
axes were randomly oriented with respect to one
another. The factors governing the orientation were the
induced anisotropy and the external field H. Assuming
these interactions to be also essential for FeBO3 : Mg
and using the results obtained in [13], one can recast the
expression for the modulation period in the form

where J is the exchange constant and K is the crystallo-
graphic-anisotropy energy density. A similar relation
can be obtained from Eq. (2) by setting J = γ/ηl and K =
α/ηl. We readily see that the coefficients of expansion

d 2π 2J / h K–( )[ ]1/2,=
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in Eq. (1) do not have a simple physical meaning and
that they represent, rather, some combinations of the
exchange and anisotropy constants.

In conclusion, we turn back to the question of the
reason for the anomalous field dependence of the I/I0
ratio (Fig. 1). Using Jones’ matrix obtained for rhom-
bohedral weak ferromagnets in [6], one can write a col-
umn matrix describing the polarization state of the light
at the exit from the crystal. On multiplying it by a con-
jugate row matrix and making fairly cumbersome
manipulations, we obtain the following relation (to
within terms linear in magneto-optic coefficients) for
the relative intensity of the light passing through a
polarizer–sample–analyzer system:

(3)

where ϑ  and Ψ are the azimuths of the polarizer and
analyzer, respectively, reckoned from the direction of
the C2 axis in the basal plane of the crystal; ϕ is the azi-
muth of the ferromagnetism vector relative to the same
axis; δ is the angle by which the direction of light prop-
agation deviates from the optical axis; ϕ1 and ϕ2 are
constants; Q(δ) and R are magneto-optic coefficients,
which determine the Faraday rotation of the plane of
light polarization induced by the components of vector
m, transverse and longitudinal with respect to the light
propagation direction; and S(ϑ , Ψ) is the magneto-optic
coefficient accounting for the contribution of the mag-
netic linear dichroism to the magneto-optic rotation.
When the direction of light propagation exactly coin-
cides with the optical axis of the crystal (Q = 0 for δ =
0), the magnitude of the magneto-optic signal is deter-
mined only by the last two terms in Eq. (3).

As is evident from the structure of the above rela-
tion, in the case of the field oriented along the hard-
magnetization axis, the anomaly in the I(H)/I0 depen-
dence may be due to the fact that the vector m in the
modulated state cants away from the direction of the
applied field, which should increase the contribution of
the magnetic linear dichroism to the magneto-optic sig-
nal. In saturating fields, vector m aligns with the field
(ϕ = π/2), and the contribution due to the dichroism
term in Eq. (3) decreases.
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Abstract—Precisely (100)-oriented, 200-nm thick La0.67Ca0.33MnO3 films have been grown by laser ablation
on a sapphire (R-plane) substrate covered by a (100)SrTiO3/(001)Bi2SrNb2O9/(001)CeO2 trilayer buffer. The
azimuthal misorientation of crystal grains (50–300 nm) in the La0.67Ca0.33MnO3 films decreased by about 40%
as the condensation temperature was increased ered from 760 to 810°C. The lattice parameter of the grown
manganate films was reduced to 3.81–3.82 Å by enriching them with oxygen. The maximum in the temperature
dependence of the electrical resistivity of the La0.67Ca0.33MnO3 films grown was shifted toward lower temper-
atures by 20–50 K relative to its position for bulk ceramic samples of a stoichiometric composition. The largest
magnetoresistance (MR = 42% at H = 0.4 T) was found in La0.67Ca0.33MnO3 films with a Mn4+ concentration
on the order of 50% (T = 166 K). © 2000 MAIK “Nauka/Interperiodica”.
The process of ferromagnetic spin ordering in
La1 − xCaxMnO3 perovskite-like manganates is accom-
panied by an increase in the effective carrier mobility
[1] and, as a consequence, by a drop in the electrical
resistivity ρ [2–4]. The temperature of the ferromag-
netic phase transition TC depends on x involved in the
chemical formula [5], the oxygen concentration [6],
and the magnetic field [4, 6] and can be substantially
increased under hydrostatic pressure [7]. The increase
in TC in a magnetic field accounts for the anomalously
high magnetoresistance (MR) of epitaxial films and
bulk ceramic samples of La1 – xCaxMnO3 (T < TC). The
high values of the MR and of the temperature coeffi-
cient of resistivity β make La1 – xCaxMnO3 thin films
promising for use in magnetic-field detectors and sen-
sors of IR detectors (T < TC) [3].

The maximum temperature of the ferromagnetic
phase transition in La1 – xCaxMnO3 stoichiometric bulk
ceramic samples and epitaxial films is reached at x ≈
0.33 (TC = 250–270 K [4, 5]). The TC can be increased
up to 300 K by properly breaking the stoichiometry on
the cation sublattice of La1 – xCaxMnO3, for instance, by
inducing a lanthanum deficiency [8] or by doping the
solid solution with silver [9].

The magnetoresistance of La1 – xCaxMnO3 films
depends strongly on their microstructure which, in its
turn, is governed to a considerable extent by the mate-
rial used as the substrate [10].

To make perovskite-like manganate films attractive
for practical use, they should be grown on substrates of
1063-7834/00/4211- $20.00 © 22103
the materials employed in microelectronics. In this
work, we have studied the structure and electrophysical
parameters of thin La0.67Ca0.33MnO3 (LCMO) films
grown by laser ablation on a sapphire substrate coated
by a trilayer buffer heterostructure.

1. EXPERIMENT

An excimer laser (KrF, λ = 248 nm, τ = 30 ns) was
used to ablate a stoichiometric LCMO target prepared
by standard ceramic technology. The laser radiation
density on the target surface was 1.5 J/cm2. The oxy-
gen pressure during LCMO film growth was main-
tained within the 0.48–0.50-mbar interval. The sub-
strates chosen for the growth of LCMO films were
polished (1102)Al2O3 plates (R-plane, 5 × 5 × 0.5 mm).
To achieve the growth of a precisely oriented (both azimuth-
ally and with respect to the normal to the substrate plane)
LCMO film, a trilayer buffer (80 nm)SrTiO3/
(15 nm)Bi2SrNb2O9/(80 nm)CeO2 (STO/BSNO/CO) was
grown on the sapphire surface by laser ablation. The
LCMO films were grown at three different substrate
temperatures (Ts), namely, 760, 780, and 810°C.

The structure and the phase composition of the films
making up the LCMO/STO/BSNO/CO/Al2O3 multi-
layer heterostructure were studied with a Philips X’pert
MRD x-ray diffractometer (ω/2θ and φ scans and rock-
ing curves). The cell parameters of the grown mangan-
ate films were calculated from the x-ray data obtained.
The lattice parameter along the normal to the substrate
plane, c, was determined from an ω/2θ scan obtained in
000 MAIK “Nauka/Interperiodica”
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the conditions where the (100) plane in the LCMO film
was perpendicular to the plane containing both the inci-
dent and reflected x-ray beams. To determine the lattice
parameter a in the substrate plane, the ω/2θ x-ray scan
was recorded in the conditions where the (110) plane in
the grown LCMO film was normal to both the incident
and reflected x-ray beams. The morphology of the
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Fig. 1. (a) X-ray diffractogram (ω/2θ, CuKα) for an
LCMO/STO/BSNO/CO heterostructure grown on the
(1102)Al2O3 surface. The diffractogram was obtained with
the incident and reflected x-ray beams being in the plane
normal to the substrate plane: (*) x-ray peaks from the sub-
strate, (1) (300)STO peak, (2) (00.20)BSNO peak, and
(3) (00.26)BSNO peak. The inset shows rocking curves
obtained for the (200)LCMO x-ray reflection from mangan-
ate films grown at Ts = (°C): (1) 760, (2) 780, and (3) 810.
(b) X-ray diffractogram (ω/2θ, CuKα) for the same hetero-
structure obtained with the incident and reflected x-ray
beams contained in a plane normal to (110)LCMO. The
inset shows peaks in the x-ray φ scans obtained for the
(110)LCMO reflection for manganate films grown at
Ts = (°C): (1) 760, (2) 780, and (3) 810.
PH
grown manganate films was studied with a CamScan-
IIIa atomic-force microscope.

The resistance R of the LCMO films was measured
in the van der Pau geometry with a Hewlett-Packard
4263A LCR meter at a frequency of 100 Hz, both with
and without the application of a 0.4-T magnetic field.
The magnetic field was oriented perpendicular to the
LCMO film plane. The electrical resistivity of the man-
ganate films was calculated from the relation ρ =
(πd/ln2)R [11], where d = 200 nm is the LCMO film
thickness. The four silver contacts (d1 = 100 nm) at the
corners of the square were thermally deposited from a
tungsten boat.

2. EXPERIMENTAL RESULTS 
AND DISCUSSION

The fairly large difference between the lattice
parameters of LCMO and Al2O3 complicates the
growth of precisely oriented films of a perovskite-like
manganate directly on the sapphire surface, thus mak-
ing necessary the introduction of a thin buffer layer.
The buffer permits one not only to reduce the elastic
strain energy in the nucleus/substrate system, but also
to suppress the chemical interaction between the alumi-
num in the sapphire and the calcium in the LCMO
phase adsorbed on its surface. A thin (001)CO buffer
layer was successfully used [12] to grow YBa2Cu3O7 – δ
epitaxial films on the R-plane of the sapphire. Unfortu-
nately, diffusive exchange of the components results in
a drastic degradation of the microstructure and the
parameters of an LCMO film grown directly on

(001)CO || (1 02)Al2O3. Strontium titanate is more sta-
ble chemically with respect to LCMO than cerium
dioxide, and (100)STO matches well in the lattice
parameters to (100)LCMO. To preclude the formation
of (110)STO || (001)CO-oriented grains in the bulk of
the STO layer [13], a thin film of the BSNO layered fer-
roelectric was sandwiched between the strontium titan-
ate and the cerium dioxide. The specific features of the
growth of a thin (001)CO layer on (1102)Al2O3, of a
(001)BSNO layer on (001)CO, and of a (100)STO
layer on (001)BSNO were considered in [12, 13]. The
inset to Fig. 4a schematically shows the four-layer het-
erostructure LCMO/STO/BSNO/CO grown on the sap-
phire R-plane.

2.1. The Structure of a Trilayer Buffer

As follows from x-ray diffraction data, the layers
making up the STO/BSNO/CO trilayer buffer had a
preferred orientation to the substrate surface, both in
the azimuthal direction and relative to the substrate nor-
mal (see Figs. 1a, 1b and the inset to Fig. 2). We used
the x-ray scans of Figs. 1 and 2 to obtain the following
orientation relationships for the layers making up the
trilayer buffer heterostructure STO/BSNO/CO grown

1
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on (1 02)Al2O3: (100)[010]STO || (001)[110]BSNO ||
(001)[110]CO.

The FWHM of the rocking curves for the (200)STO
and (002)CO x-ray reflections from the STO/BSNO/CO
buffer heterostructure was practically the same,
0.5°−0.6° (Fig. 2), and approximately twice that mea-
sured for the (024) reflection from the substrate. The
rocking curve FWHM for the (00.10) x-ray reflection
from the BSNO layer was approximately 1.0° (Fig. 2).
The broadening of the rocking curve peak for the x-ray
reflection from the layered ferroelectric compared to
the corresponding figures for the STO and CO indicates
degradation of the BSNO microstructure because of its
small thickness and interaction with the cerium
dioxide.

As follows from the x-ray data shown in the inset in
Fig. 2, the BSNO layer was grown on the CO surface
without any misorientation in the substrate plane,
which indicates a good lattice match between
(001)BSNO and (001)CO. The parameter of the CO
cubic unit cell is 5.41 Å [13–15], and the constants a
and b of the orthorhombic unit cell of BSNO are
approximately equal to 5.51 Å. The STO layer grown
was turned azimuthally through 45° relative to the
BSNO (inset in Fig. 2).

Because of a considerable mismatch between the
lattice parameters, the cerium dioxide layer grown on

(1 02)Al2O3 had a granular structure. As follows from
the peak widths in the φ scans for the (111)CO x-ray
reflection, the azimuthal misorientation of crystal
grains in the CO layer is about 1.3°. It is the azimuthal
grain misorientation in the CO layer that also accounts
for the noticeable grain misorientation in the LCMO
films grown on the STO/BSNO/CO trilayer buffer (see
table).

2.2. The Structure and Parameters of LCMO Films

The surface of the LCMO films grown on (100)STO ||
(001)BSNO || (001)CO || (1102)Al2O3 was uneven
because of grains 50–300 nm in size (Figs. 3a, 3b). The
crystal grains in the LCMO film had a preferred orien-
tation relative to the substrate surface, both azimuthally
and with respect to the substrate normal, and
(100)[010]LCMO || (100)[010]STO (Figs. 1a, 1b). The
preferred orientation of grains in the LCMO films did
not change under variation of the substrate temperature
Ts within the 760–810°C interval. As follows from the

1

1
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surface images of the LCMO films grown at the sub-
strate temperatures of 760 and 810°C (Fig. 3), the den-
sity of grains rising above the surface of the manganate
films by 20–30 nm decreased with increasing Ts. The
atomic-force micrographs of the surface of the LCMO
films grown at Ts = 810°C clearly exhibit growth steps
(Fig. 3b).

The microstructure in the bulk of grains in LCMO
films became more ordered with an increasing conden-
sation temperature, which is evidenced by the decreas-
ing width of the rocking curves measured for the
(200)LCMO reflection (see table and the inset in Fig. 1a).
The increase in Ts was also accompanied by a decrease
in the azimuthal rotation angle of the crystal grains in
the manganate film (see the inset of Fig. 1b and table).
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Fig. 2. Rocking curves (CuKα) obtained for the (002)CO,
(00.10)BSNO, and (200)STO x-ray reflections from an
LCMO/STO/BSNO/CO heterostructure grown on

(1 02)Al2O3 at Ts = 780°C. The inset shows φ scans for (a)
(111)STO, (b) (115)BSNO, and (c) (117)CO for the same
heterostructure.

1

Condensation temperatures and structural and electrophysical parameters of LCMO films

N Ts, °C a, Å c, Å Rocking curve 
FWHM, deg

φ-Scan peak 
FWHM, deg aeff , Å Tρ, K TMR, K –MR, %

1 760 3.813 3.815 0.61 1.3 3.814 205 166 42

2 780 3.815 3.815 0.54 1.1 3.815 223 190 39

3 810 3.823 3.819 0.46 0.9 3.819 238 215 33
00
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Fig. 3. Surface morphology of 200-nm thick LCMO films grown on STO/BSNO/CO/Al2O3 at Ts (°C): (a) 760 and (b) 810. The
images were obtained with an atomic-force microscope. The surface of the film grown at Ts = 810°C exhibits characteristic growth
steps with a height multiple of the unit cell parameter.
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The lattice parameter of the La1 – xCaxMnO3 solid
solutions decreases approximately linearly with
increasing the relative concentration of Mn4+ ions from
zero (x = 0) to 100% (x = 1) [16]. This reflects the dif-
ference in the ionic radii between Mn4+ (r = 0.60 Å) and
Mn3+ (r = 0.66 Å [17]). According to [6], the parameter
of the pseudocubic unit cell of bulk ceramic LCMO
samples of stoichiometric composition, in which
approximately 33% of manganese ions are in the
4+ state, is 3.87 Å.

The parameters a and c for the LCMO films grown
at the substrate temperatures of 760 and 780°C practi-
cally coincided (see table). The increase in the parame-
ter a of the manganate film grown at 810°C compared
with the parameter c is due to tensile stresses in the sub-
strate plane. The mechanical stresses were generated in
the LCMO films because of the difference in the tem-
perature coefficients of expansion between the manga-
PH
nate film and the sapphire substrate and, partially, as a
result of the positive lattice mismatch between STO
and LCMO (the lattice parameter of strontium titanate
is larger than that of LCMO).

The specific feature of LCMO films grown on the
STO/BSNO/CO trilayer buffer is the substantially

smaller effective unit cell parameter (aeff = , where
Vc = cxa2, see table) compared with the corresponding
figures obtained on bulk ceramic samples. The low val-
ues of aeff measured on the grown LCMO films argue
for a high Mn4+ concentration.

A decrease in the lattice parameter compared with
that of ceramic samples of a stoichiometric composi-
tion was also found to occur in LCMO films grown on
single-crystal strontium-titanate plates [10]. The
decrease in aeff observed for the manganate films
formed on single-crystal (100)STO substrates is, how-

Vc
1/3
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ever, not as large as that in the LCMO films prepared in
this work on STO/BSNO/CO/Al2O3.

The concentration of Mn4+ ions in perovskite-like
manganates can be increased substantially (up to 35%
[16]) by enriching the LCMO with oxygen above the
stoichiometric level. The enrichment of La1 – xCaxMnO3
solid solutions by oxygen is favored by the introduction
of defects into the cation sublattice. The lattice param-
eter of LaxMnO3 – y films was found [8] to decrease sys-
tematically with an increasing lanthanum deficiency,
which is assigned [8] to the growth of the relative oxy-
gen concentration.

One of the most probable reasons for the oxygen
enrichment of LCMO films grown on STO/BSNO/CO
is the diffusion of lanthanum ions from the LCMO
film into the strontium titanate layer on whose sur-
face this film forms. The possibility of using Group-
III elements to dope the (Ba,Sr)TiO3 ceramic was
pointed out in [18]. The diffusive exchange of the
components between the manganate film and the
trilayer buffer STO/BSNO/CO is favored by the high
grain-boundary density in the layers making up the
LCMO/STO/BSNO/CO/Al2O3 heterostructure. Dop-
ing strontium titanate with lanthanum should result in
an increase in the oxygen vacancy concentration [18].
Oxygen-deficient STO films are characterized by large
lattice-parameter values compared with those for sto-
ichiometric STO single crystals (a = 3.905 Å [15]). The
unit-cell parameters of the STO layer in the buffer het-
erostructure measured in the substrate plane and along
its normal practically coincided and varied from 3.911
to 3.914 Å.

The temperature dependences of the electrical resis-
tivity ρ of the LCMO films studied exhibit a clearly
pronounced maximum (Fig. 4a). The temperature of
the maximum in ρ, Tρ, increased with increasing Ts (see
table). The maximum in the ρ(T) curve shifted by 3–5 K
toward higher temperatures when the resistance of the
LCMO film was measured in a magnetic field of 0.4 T
(Fig. 4a). The maximum in the temperature dependence
of ρ for LCMO films grown on STO/BSNO/CO/Al2O3
was shifted considerably (by 20–50 K) to lower tem-
peratures compared to its position on the corresponding
curves for bulk ceramic LCMO samples of a stoichio-
metric composition and for annealed films grown on
(100)LaAlO3 single-crystal substrates [4]. In bulk
ceramic LCMO films with a close-to-stoichiometric
composition, about one-third of the manganese ions
reside in the Mn4+ charge state, and the films have the
lowest values of ρ [16, 19]. The values of aeff derived
from the x-ray studies, combined with the available
data [5, 16] on the dependence of the lattice parameter
of the corresponding bulk ceramic samples on the Mn4+

concentration, lead to the conclusion that about 50% of
the manganese ions in the LCMO films grown on
STO/BSTO/CO/Al2O3 are in the 4+ charge state. The
phase-transition temperature TC of ceramic LCMO
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
samples decreased substantially (by ~40 K) as the Mn4+

concentration increased within the 30–50% interval
[16]. The increase in the conductivity of LCMO films with
increasing Ts is due to both an increase in the effective car-
rier concentration and the increase in the carrier mobility
as a result of improving the film structure, in particular, of
the decrease in the grain boundary density.

The exponential decrease of the electrical resistivity
of LCMO films with increasing temperature for T > Tρ
[20] was attributed to a manifestation of the polaron
mechanism of conduction. The depletion of the regions
adjoining the grain boundaries in a majority of the car-
riers because of a deviation from stoichiometry can also
lead to an exponential growth of the film resistivity
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Fig. 4. (a) Temperature dependences of the electrical resis-
tivity ρ of LCMO films grown on STO/BSNO/CO/Al2O3 at
Ts (°C): (1, 2) 760, (3, 4) 780, and (5, 6) 810. Curves 2, 4,
and 6 were measured in a 0.4-T magnetic field. The inset
shows a schematic of the four-layer heterostructure grown

on the R-plane of a sapphire: (I) BSNO layer and (1 02)AO
refers to the sapphire substrate. (b) Temperature depen-
dences of the magnetoresistance (MR) of LCMO films
grown on STO/BSNO/CO/Al2O3 at Ts (°C): (1) 760, (2)
780, and (3) 810. The inset shows ln ρ(1/T) relations mea-
sured at temperatures close to Tρ for the LCMO films grown
on STO/BSNO/CO/Al2O3 at Ts (°C): (1) 760, (2) 780, and
(3) 810.
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with decreasing temperature [10]. The temperature
dependences of the grown LCMO films measured at
temperatures from Tρ to 300 K could be well matched
by the relation lnρ ~ EA/kT, where k is the Boltzmann
constant. The values of the activation energy EA derived
for LCMO films from the slope of the lnρ(1/T) plot (see
inset in Fig. 4b) were only weakly dependent on Ts and
varied from 120 to 130 meV.

For the LCMO films, the maximum magnetoresis-
tance (in absolute magnitude) MR = [ρ(H = 0.4 T) –
ρ(H = 0 T)]/ρ(H = 0.4 T) was observed at a temperature
TMR lower than Tρ by 20–40 K (see table). The differ-
ence Tρ – TMR increased with decreasing Ts. The peak in
the MR(T) dependence for the LCMO films grown on
STO/BSNO/CO was considerably broader than that
typically observed on stoichiometric LCMO films
grown on a (100)LaAlO3 substrate and annealed in
oxygen [4]. The shift of the magnetoresistance peak
toward lower temperatures and its fairly large width are
accounted for by the coexistence in LCMO films of
regions with ferromagnetic and antiferromagnetic spin
ordering. The existence of phases with ferromagnetic
and antiferromagnetic ordering in the bulk of
La1 − xCaxMnO3 ceramic samples with Mn4+ concentra-
tions close to 50% was established in experiments with
neutron diffraction [16].

Thus, LCMO films grown on the sapphire R-plane
with an intermediate STO/BSNO/CO trilayer buffer
had a polycrystalline structure. The crystal grains in the
manganate films (50–300 nm) had a preferred orienta-
tion both azimuthally and relative to the normal to the
substrate plane. Increasing the growth temperature of
LCMO films favored improvement of the microstruc-
ture in the grain bulk and reduced the azimuthal grain
misorientation. As Ts was lowered, an increase in the
Mn4+ concentration brought about an increase in the
electrical resistivity of the manganate films and the
maximum in the ρ(T) dependence shifted toward lower
temperatures. The magnetoresistance peak for the
LCMO films was observed at temperatures lower by
20–40 K than the maximum in the corresponding tem-
perature dependences of the electrical resistivity. The
fairly large MR measured in LCMO films at low tem-
peratures is accounted for by the substantial misorien-
tation of the spins on manganese ions in different
regions of a film.

ACKNOWLEDGMENTS

This research was done within the framework of sci-
entific cooperation between the Russian Academy of
PH
Sciences and the Royal Swedish Academy. This study
was supported in part by the Russian Foundation for
Basic Research, grant no. 98-02-18222, and the TFR
240-97-382 project.

REFERENCES

1. C. Zener, Phys. Rev. 82, 403 (1951).

2. S. Jin, T. H. Tiefel, M. McCormack, et al., Science 264,
413 (1994).

3. A. Goyal, M. Rajeswari, R. Shreekala, et al., Appl. Phys.
Lett. 71, 2535 (1997).

4. M. F. Hundley, M. Hawley, R. H. Heffner, et al., Appl.
Phys. Lett. 67, 860 (1995).

5. G.-Q. Gong, C. Canedy, G. Xiao, et al., Appl. Phys. Lett.
67, 1783 (1995).

6. H. L. Ju, J. Gopalakrishnan, J. L. Peng, et al., Phys. Rev.
B: Condens. Matter 51, 6143 (1995).

7. Y. Moritomo, A. Asamitsu, and Y. Tokura, Phys. Rev. B:
Condens. Matter 51, 16491 (1995).

8. A. Gupta, T. R. McGuire, P. R. Dancombe, et al., Appl.
Phys. Lett. 67, 3494 (1995).

9. R. Shreekala, M. Rajeswari, S. P. Pai, et al., Appl. Phys.
Lett. 74, 2857 (1999).

10. Yu. A. Boikov, D. Erts, and T. Claeson, submitted to
Mater. Sci. Eng. B.

11. T. I. Kamins, J. Appl. Phys. 42 (11), 4357 (1971).

12. Yu. A. Boikov, T. Claeson, D. Erts, et al., Phys. Rev. B:
Condens. Matter 56, 11312 (1997).

13. Yu. A. Boikov and Z. Ivanov, J. Alloys Compd. 251, 193
(1997).

14. G. A. Smolenskiœ, V. A. Bokov, V. A. Isupov, N. N. Kraœ-
nik, and R. E. Shur, Ferroelectrics and Antiferroelectrics
(Nauka, Leningrad, 1971).

15. R. W. G. Wyckoff, Crystal Structures (Interscience, New
York, 1964), Vol. 2, p. 394.

16. E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545
(1955).

17. R. C. Weast, Handbook of Chemistry and Physics (CRC
Press, Cleveland, 1974), p. F-198.

18. B. Huybrechts, K. Ishizaki, and M. Takata, J. Mater. Sci.
30, 2463 (1995).

19. J. H. van Santen and G. H. Jonker, Physica (Amsterdam)
16, 599 (1950).

20. M. Jaime, M. B. Salamon, K. Pettit, et al., Appl. Phys.
Lett. 68, 1576 (1996). 

Translated by G. Skrebtsov
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000



  

Physics of the Solid State, Vol. 42, No. 11, 2000, pp. 2109–2112. Translated from Fizika Tverdogo Tela, Vol. 42, No. 11, 2000, pp. 2048–2051.
Original Russian Text Copyright © 2000 by Antoshina, Goryaga, Annaev.

                                                                                                                                                   

MAGNETISM
AND FERROELECTRICITY
Effect of the Spin–Orbit Interaction of Ni2+ Ions
with a Triplet Orbital Ground State on the Magnetostriction

of NiFe0.5Cr1.5O4 Ferrite
L. G. Antoshina, A. N. Goryaga, and R. R. Annaev

Moscow State University, Vorob’evy gory, Moscow, 119899 Russia
Received March 10, 2000

Abstract—The magnetization σ and the longitudinal (λ ||) and transverse (λ⊥ ) magnetostrictions of the
NiFe0.5Cr1.5O4 ferrite containing the tetrahedral ions Ni2+ with the triplet orbital ground state have been inves-
tigated for the first time at a temperature of 4.2 K in fields up to 55 kOe. It is revealed that the NiFe0.5Cr1.5O4

ferrite exhibits an anomalously large magnetic anisotropy (Hc = 12.5 kOe) and magnetostrictions (λ|| ≈ –870 × 10–6

and λ⊥  ≈ 800 × 10–6). In strong fields, the magnetostrictions λ|| and λ⊥  are found to be anisotropic in character;
i.e., the susceptibility ∆λ||p < 0 and ∆λ⊥ p > 0. The conclusion is drawn that the studied compound is character-
ized by two paraprocesses: one paraprocess in the B sublattice has an exchange nature, and the second process

in the A sublattice is due to the spin–orbit interaction of  ions. © 2000 MAIK “Nauka/Interperiodica”.NiA
2+
It is known that, among 3d ions, only ions whose
ground state in the crystal field of cubic symmetry is the
triplet orbital state (the effective orbital angular
momentum I = 1) exhibit a strong spin–orbit interac-
tion. In this case, the orbital angular momentum of the
3d ions is incompletely “frozen” by the crystal field,
and the magnetic properties of these ions are deter-
mined by the total angular momentum J. Therefore, in
magnetic compounds containing these 3d ions, the
spin–orbit interaction at T < TC (where TC is the Curie
temperature) results in the ordering of the orbital angu-
lar momenta with respect to the ordered spin momenta.
For spinel ferrites, this leads to a noncollinear magnetic
ordering in the magnetic sublattice containing these 3d
ions.

Consequently, in spinel ferrites, the application of a
magnetic field should induce a strong paraprocess (true
magnetization) without regard to the particular sublat-
tice which is occupied by the 3d ions with the triplet
orbital ground state. If the 3d ions in spinel ferrites
occur in the sublattice responsible for the magnetic
moment of the ferrite, the application of the magnetic
field H should lead to an increase in the total magnetic
moment MΣ of the ferrite due to an increase in the pro-
jection MJ onto the field direction. In the case when the
3d ions occupy the sublattice that is not responsible for
the magnetic moment of the ferrite, the total magnetic
moment MΣ of the ferrite increases at the expense of a
decrease in the projection MJ onto the direction of the
H field. We assume that this paraprocess should also be
accompanied by a change in the dimensions of the
spinel crystal lattice, i.e., by a substantial magnetostric-
1063-7834/00/4211- $20.00 © 22109
tion of the paraprocess λp. The data on the behavior of
magnetostrictions of this paraprocess in spinel ferrites
containing the above 3d ions are unavailable. In this
respect, it was of interest to perform an experimental
study which could corroborate this assumption. At the
same time, only a complex investigation into the behav-
ior of the longitudinal and transverse magnetostrictions
and magnetization can solve the problem under consid-
eration.

In this work, we investigated the magnetization and
magnetostriction of the NiFe0.5Cr1.5O4 ferrite. In this

compound, the 3d ions  with the triplet orbital
ground state occupy the tetrahedral sublattice that is not
responsible for the magnetic moment of the ferrite.
With allowance made for the energy of the preferred
occupation of particular crystallographic sites by ions,
the cation distribution in the ferrite has the following

form: . We assume that the
magnetic structure of this ferrite should be noncollinear

in both the B sublattice (due to the –  direct
negative interionic exchange) and the A sublattice owing

to the spin–orbit interaction between the  ions.

The NiFe0.5Cr1.5O4 ferrite sample was prepared by
the ceramic technique. The first annealing was carried
out at a temperature of 1000°C for 5 h, and the second
annealing was performed at 1350°C for 6 h with a sub-
sequent slow cooling. Both annealings were carried out
in air. The x-ray diffraction analysis performed at room
temperature revealed that the synthesized sample was a

NiA
2+( )

Ni0.5
2+ Fe0.5

3+ Ni0.5
2+ Cr1.5

3+[ ] O4

CrB
3+ CrB
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single-phase compound with the lattice parameter a =
8.32 Å. The magnetization was measured by the ballis-
tic technique, and the magnetostriction was determined
by the tensometric method. The measurements were
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Fig. 1. Isotherms of the magnetization σ(H) and the longi-
tudinal λ||(H) and transverse λ⊥ (H) magnetostrictions for
the NiFe0.5Cr1.5O4 ferrite at T = 4.2 K.
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Fig. 2. Isotherms of the volume ω(H) and anisotropic λt(H)
magnetostrictions for the NiFe0.5Cr1.5O4 ferrite at T = 4.2 K.
PH
carried out in a superconducting solenoid in magnetic
fields up to 55 kOe at a temperature of 4.2 K.

It was found that the NiFe0.5Cr1.5O4 ferrite at 4.2 K
has a large coercive force (Hc = 12.5 kOe). This sug-
gests that the ferrite containing the 3d ions with the trip-
let orbital ground state possesses a large magnetic
anisotropy.

Figure 1 displays the isotherms σ(H), λ||(H), and
λ⊥ (H). It can be seen that no saturation is observed in
all the isotherms. Furthermore, the magnetostriction of
this ferrite is anomalously large. For example, in the
magnetic field H = 50 kOe at 4.2 K, the longitudinal
magnetostriction λ|| ≈ –870 × 10–6 and the transverse
magnetostriction λ⊥  ≈ 800 × 10–6. In strong fields, the
λ|| and λ⊥  magnetostrictions have an anisotropic charac-
ter; i.e., the magnetostriction susceptibility ∆λ||p < 0 and
∆λ⊥ p > 0. It should be noted that, in the ferrite–chromite
materials with a spinel structure free from 3d ions with
the triplet orbital ground state, the magnetostriction, as
a rule, is substantially less, and the magnetostriction
susceptibilities ∆λ|| and ∆λ⊥  in strong fields have an iso-
tropic character.

Reasoning from our assumption that the magnetic
structure in the A sublattice is noncollinear owing to the

spin–orbit interaction between the  ions, the ferrite
under consideration should be characterized by two
paraprocesses. The first paraprocess is associated with
an increase in the projection of the magnetic moment
MB of the B sublattice at the expense of a decrease in

the angle between the magnetic moments of the 
ions, and the other paraprocess is due to a decrease in
the projection of the magnetic moment MA of the A sub-

lattice of the  ions onto the direction of the field H.
The first paraprocess has an exchange nature, and the
second paraprocess shows a spin–orbit nature.

By using the formulas for the volume magnetostric-
tion ω =  and the anisotropic magnetostriction

λt = , we constructed the isotherms ω(H) and
λt(H) at T = 4.2 K (Fig. 2). It turned out that the aniso-
tropic magnetostriction λt drastically increases begin-
ning with weak magnetic fields, whereas the volume
magnetostriction ω remains virtually zero in fields less
than 20 kOe and increases beginning only with the field
H = 20 kOe (ω ≈ 820 × 10–6 at H = 55 kOe). It was
found that the large magnetic anisotropy of the spinel
ferrites containing the 3d ions with the triplet orbital
ground state is accompanied by an anomalously large
anisotropic magnetostriction λt (for example, λt = –
1800 × 10–6 at H = 50 kOe).

For comparison, Fig. 3 shows the isotherms of the σ
magnetization, the longitudinal λ|| and transverse λ⊥
magnetostrictions at 80 K for the nickel ferrite–

chromite  (x = 0.9), in which

NiA
2+

CrB
3+

NiA
2+

λ|| 2λ⊥+

λ|| λ⊥–

Fe3+ Ni2+Fe0.1
3+ Cr0.9

3+[ ]O4
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the Ni2+ ions are absent in the A sites. Since the coercive
force Hc for this sample is equal to ≈0.2 kOe at 80 K,
the magnetic fields up to 12 kOe are large enough for
the study of the longitudinal λ|| and transverse λ⊥  mag-
netostrictions. It can be seen that, for this sample, the λ||
magnetostriction is one order of magnitude less than
that for the NiFe0.5Cr1.5O4 sample and the paraprocess
is attended by the negative isotropic magnetostriction;
i.e., ∆λ||p < 0 and ∆λ⊥ p < 0. This paraprocess has an
exchange nature and is brought about by the noncol-
linear magnetic structure in the B sublattice due to the

strong negative direct exchange – . The calcu-
lated isotherms of the volume magnetostriction ω(H)
and the anisotropic magnetostriction λt(H) are also dis-
played in Fig. 3. At H = 12 kOe, ω ≈ –52 × 10–6 and
λt = –73 × 10–6.

Hoppe and Hirst [1] theoretically proved that the
ordering of both the spin momenta S and the orbital
momenta L should be observed in the case when the
ionic magnetic compounds contain the 3d ions which
are involved in the superexchange interaction and
whose ground state is the triplet orbital state. In turn,
this leads to the formation of new ordered magnetic
phases. These authors also demonstrated that the phase
transitions associated with the ordering of the orbital
momenta L should occur at temperatures below the
temperature of the spin ordering. The conclusions made
in [1] can be successfully applied to explain the anom-
alous behavior of the magnetic and magnetostriction
properties of the NiFe0.5Cr1.5O4 ferrite, because it con-

tains the  magnetic ions, which participate in the
superexchange interaction and whose ground state in
the crystal field of cubic symmetry is the triplet orbital
state.

In the ferrite–chromite materials with a spinel struc-
ture, the paraprocess induced by a change in the degree
of noncollinearity in the ferrite sublattices in strong
fields should be accompanied by the isotropic suscepti-
bilities ∆λ|| and ∆λ⊥ . Hence, it was of interest to eluci-
date why the anisotropic magnetostriction susceptibili-
ties ∆λ||p < 0 and ∆λ⊥ p > 0 are observed in the strong
fields for the NiFe0.5Cr1.5O4 sample in which 3d ions
with the triplet orbital ground state occupy the A sublat-
tice that is not responsible for the total magnetic
moment of this ferrite.

However, it should be taken into account that the
degree of noncollinearity in the B sublattice can
decrease in weak fields, because the negative interac-
tion between the A and B sublattices favors this process.
At the same time, the negative interaction between the
A and B sublattices hinders an increase in the degree of
noncollinearity in the A sublattice. Consequently, it can
be inferred that, in the NiFe0.5Cr1.5O4 ferrite, the para-
process proceeds in the B sublattice in weak fields and
in the A sublattice in stronger fields. Moreover, it
should be remembered that, in the case when the 3d ion

CrB
3+ CrB

3+

NiA
2+
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has the orbital angular momentum l, its displacement in
response to the magnetic field should affect the
arrangement of the O2– anions in the crystal lattice due
to the Stark effect (E × l). This gives grounds to assume
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Fig. 3. Isotherms of the magnetization σ(H) and the longi-
tudinal λ||(H), transverse λ⊥ (H), volume ω(H), and anisotro-
pic λt(H) magnetostrictions for the NiFe1.1Cr0.9O4 ferrite at
T = 80 K.
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that the considerable magnetostriction and the anisotro-
pic character of its susceptibilities ∆λ||p < 0 and ∆λ⊥ p >
0 in strong fields are governed by the displacement of
the O2– anions.

Our calculations of the energy of the effective spin–
orbit interaction λ/S for the Ni2+ ion in the field of cubic
symmetry led to λ/S = (230 ± 15) cm–1, because λ =
−(230 ± 15) cm–1, S = 1, and l = 1 [2]. Therefore, this
ferrite should undergo a crystallographic transition at
temperatures below 300 K due to the spin–orbit inter-
action between the Ni2+ tetrahedral ions. It is known

that the spin–orbit interaction between the  ions in
the NiFe0.5Cr1.5O4 ferrite brings about a distortion of
the crystal lattice with c/a < 1 at T ≈ 200 K [3].

NiA
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80 120 160 200 240 280 320 360
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∆l/l × 104

Fig. 5. Temperature dependence of the thermal linear expan-
sion ∆l/l(T) for the NiFe0.5Cr1.5O4 ferrite.
PH
The temperature dependences σ(T) and λ||(T) (in
magnitude) in the magnetic field H = 12.7 kOe and the
dependence Hc(T) for the NiFe0.5Cr1.5O4 ferrite are dis-
played in Fig. 4. It can be seen that the magnetostriction
λ|| and the coercive force Hc increase beginning with the
temperature T ≤ 280 K. This suggests that the crystal
lattice distortions due to the spin–orbit interaction
between the Ni2+ tetrahedral ions also should be
observed at T ≤ 280 K. Our investigation into the tem-
perature dependence of the linear thermal expansion
conclusively confirmed this fact (Fig. 5). As follows
from the experimental data, the linear thermal expan-
sion coefficient α changes its sign from positive to neg-
ative at T ≤ 320 K and becomes positive again at T ≤
280 K. It is not improbable that the temperature range
280–320 K is the transition region. Thus, the experi-
mental data obtained made it possible to assume that
the transition temperature for the ferrite under consid-
eration is equal to 300 ± 20 K. This result is in good
agreement with the calculation of the effective spin–
orbit interaction energy λ1S = (320 ± 20) K for the

 ions.
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Abstract—Replacement of one half of the neodymium ions by lanthanum in Nd2/3Sr1/3MnO3 is shown to result
in a considerable increase in the Curie temperature. The single-crystal La1/3Nd1/3Sr1/3MnO3, whose Curie point
lies at 315 K, has been found to exhibit a record-high magnetoresistance of 27% in a weak magnetic field of
8.4 kOe in the temperature range above room temperature. © 2000 MAIK “Nauka/Interperiodica”.
Rare-earth manganites with a perovskite structure
are presently a subject of intense investigation. These
materials are characterized by a strong coupling of the
electronic and spin subsystems with the crystal lattice,
which gives rise to anomalies in the magnetic, electri-
cal, optical, and elastic properties. The most unusual
effect is certainly the colossal magnetoresistance
(CMR) observed in manganites near the phase transi-
tion from the paramagnetic state to the ferromagnetic
state. This phenomenon is of interest from a theoretical
standpoint (the nature of the CMR still remains largely
unclear) and for the potential of its practical applica-
tion. The materials exhibiting CMR can be employed as
highly sensitive transducers for magnetic-storage read
heads. To become attractive for applications, the CMR
in these materials should be observable (i) within a
broad temperature range close to room temperature and
(ii) in weak magnetic fields. However, the CMR in
manganites is usually seen in strong magnetic fields of
6–13 T. The record-high CMR of 96% in a weak
magnetic field of 0.67 T was observed in the
La1/3Nd1/3Ca1/3MnO3 ceramic, but it was at 90 K [1].
La0.7Sr0.3MnO3 is known to have the highest Curie tem-
perature TC = 370 K, but this compound has metallic
conduction, and its magnetoresistance is considerably
smaller than that of semiconductor manganites [2]. The
materials exhibiting room-temperature CMR are few.
These are, for instance, thin films of La0.77Sr0.23MnO3

[3] and La0.67Sr0.33MnO3 [4], whose magnetoresistance
(MR) is 13% in a magnetic field of 11 kOe and 22% at
6 T, respectively. This justifies the search for materials
exhibiting CMR near room temperature.

We studied earlier the Nd2/3Sr1/3MnO3 ceramic [5]
with the CMR observed within a broad temperature
range from 80 to 280 K in weak magnetic fields (the TC

of this compound is 243 K). Nd2/3Sr1/3MnO3 has a high
1063-7834/00/4211- $20.00 © 22113
conductivity; hence, exchange interaction through car-
riers is dominant in this compound. In this case, the
Curie temperature is given by the expression

TC ~ ztν, (1)

where t is the transfer integral (the conduction-band
width W is proportional to t), z is the coordination num-
ber of the magnetic ion (Mn in our case), and ν is the
number of carriers per magnetic ion [6]. By substituting
La for Nd in Nd2/3Sr1/3MnO3, we intended to increase
the Curie temperature using the following line of rea-
soning. In an undistorted perovskite structure, the Mn–
O–Mn bond angle is known to be 180°. Replacement of
the Nd ions by the smaller Sr ions results in a lattice dis-
tortion. One could thus anticipate that partial replace-
ment of the Nd ions by the larger La ions would bring
the bond angle closer to 180°, with a corresponding
increase in the conduction-band width. Indeed, in the
one-electron approximation, the width of the conduc-
tion band in manganites is proportional to cos2θ [7],
and, hence, the transfer integral t increases, thus entail-
ing an enhancement of the exchange through the cur-
rent carriers. In accordance with expression (1), the
Curie temperature also increases.

The La1/3Nd1/3Sr1/3MnO3 single crystal was grown
by a crucibleless zone-melting technique and has an
orthorhombic structure (space group Pnma). The initial
ac magnetic susceptibility was measured with an F5063
ferrometer, and the resistance and magnetoresistance,
by the conventional four-probe method.

Figure 1 presents the temperature dependence of the
initial magnetic susceptibility χ(T) measured in an ac
magnetic field (f = 8 kHz, H~ = 1 Oe). The pattern of
the χ(T) curve is seen to be typical of ferromagnets. The
value of TC, found as the temperature of the minimum
in the ∂χ/∂T(T) curve, turned out to be 315 K. The elec-
trical resistivity ρ is observed to increase rapidly near
000 MAIK “Nauka/Interperiodica”
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TC, while application of a magnetic field brings about a
decrease in ρ (Fig. 2). Figure 3 displays the temperature
dependences of the MR in various magnetic fields. One
readily sees a sharp maximum in the absolute value of
the MR at TC, which is characteristic of single crystals
and epitaxial films. The negative MR [the MR was
determined as (ρH – ρ0)/ρ0] reaches 27, 18, and 9% in
magnetic fields of 8.4, 4.5, and 2.2 kOe, respectively.
The MR isotherms remain far from saturation up to the
maximum measurement field of 8.4 kOe (Fig. 4). The
behavior of the electrical resistivity and magnetoresis-
tance displayed in Figs. 2 and 3 is characteristic of a
conducting magnetic two-phase state [8]. The
La1/3Nd1/3Sr1/3MnO3 compound is a heavily Sr-doped
antiferromagnetic semiconductor La1/3Nd2/3MnO3,
which exhibits metallic conduction below TC (Fig. 2). It
was shown [9] that there are two mechanisms by which
magnetic impurities in manganites of this type with

H~ = 1 Oe
f = 8 kHz
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Fig. 1. Temperature dependence of the initial magnetic sus-
ceptibility.
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Fig. 3. Temperature dependence of the magnetoresistance in
various magnetic fields.
PH
strong p–d exchange can affect the resistivity, namely,
(i) scattering of carriers reducing their mobility and
(ii) the formation of their band tail consisting of local-
ized states. In the vicinity of TC, the mobility of the car-
riers decreases strongly, and they undergo partial local-
ization in the band tail. A magnetic field inhibits the
magnetic-impurity scattering of the carriers, and they
delocalize from the band tail, a process giving rise to
the CMR.
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Abstract—A generalized interpretation of the processes of dynamic magnetization reversal in magnetically
soft electrically conducting materials is proposed. It can be used for obtaining a simple and quite accurate math-
ematical description for a family of dynamic hysteresis loops. © 2000 MAIK “Nauka/Interperiodica”.
The dynamic hysteresis loop of a magnetically soft
material can be treated as its main characteristic. It is
better to speak of a family of such loops since they
depend on the frequency and amplitude of the remag-
netizing field (or magnetic induction), as well as on the
magnetization reversal conditions, i.e., on the form of
the time dependence of the external field or the mag-
netic induction flux. The reasons behind the difference
between the dynamic and static hysteresis loops cannot
be treated as definitely established, since certain facts
cannot be explained within the framework of the tradi-
tional concepts [1]. In practice, one could disregard this
circumstance if a satisfactory quantitative description
of the loops and their dependence on the conditions
under which the magnetization reversal is performed
could be obtained at least by phenomenological meth-
ods. Such a description is extremely important for
applied electrical engineering.

But is it possible in principle to find such a descrip-
tion? An affirmative answer to this question is unlikely,
since it is well known that the process of magnetic
reversal in ferromagnetic materials is quite complicated
and a large number of reasonable assumptions have
been put forth about the diverse possible mechanisms
of retardation (relaxation) of this process. However, it
will be shown below that a quite rational quantitative
description for a family of hysteresis loops can never-
theless be obtained by adopting certain generalized
assumptions concerning the magnetization reversal
processes. One such assumption concerns eddy cur-
rents, while another pertains to a different type of phe-
nomena that retard the magnetic reversal and were
called the magnetic viscosity because of V.K. Arkad’ev
[2]. As regards eddy currents, the basic reason behind
the difficulties is quite obvious; it should be borne in
1063-7834/00/4211- $20.00 © 22116
mind that, in thin materials with a coarse domain struc-
ture, eddy currents are induced as a result of the motion
of each individual domain wall, and the eddy current
lines obtained as a result of their summation most likely
have a configuration other than the simple one assumed
in the classical theory of eddy currents. They may have
a quite “intricate” form, which means that classical for-
mulas for calculating eddy currents and their effect on
the dynamic hysteresis loop do not always reflect the
actual effects.

Let us examine how this circumstance can be taken
into consideration. In real materials, the configuration
of domain walls is by no means a regular pattern. More-
over, the motion of domain walls itself does not obey
simple laws and may be quite diverse. For example, the
mobility of walls may differ in value even for walls of
the same type. However, statistical laws may come into
play in a situation like this. For example, if a magnet is
quite bulky and the domain walls are small in compar-
ison, the configurations of eddy current lines will differ
only insignificantly from those used in the classical
computations of the eddy-current effect. In other
words, the effect of the domain structure on eddy cur-
rents will be statistically insignificant. It can be asked
whether some simple statistical law is also followed, at
least approximately, in the case when the domain size
is comparable with the thickness of the magnetic tape
or strips used for constructing the magnetic cores of
electrical devices.

An endeavor to establish such a regularity was made
in [3]. This endeavor can be briefly described as fol-
lows. We proceed from the Pry–Bean model [4], which
is a simple model, but the most characteristic, describ-
ing the domain structure and the movement of domain
walls. On the one hand, this model corresponds to the
000 MAIK “Nauka/Interperiodica”
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strongest manifestation of the “bendings” of the classi-
cal eddy current lines that are associated with the
domain structure and “enhance” the integrated eddy-
current effects. On the other hand, this model requires
comparatively simple computations. It was shown in
[5] that it can be used for calculating not only the
energy losses due to the excitation of eddy currents, but
also the dynamic component of the hysteresis loop
associated with them. An analysis of this computation
and its comparison with the classical approach suggests
[3] that they lead approximately to the same result if the
actual electrical conductivity γ in the classical formulas
is replaced by an “equivalent” quantity γeq, which is
larger than γ and depends on the size (width) of the
domains. The ratio λ = γeq/γ is a measure of the effect
of the domain structure on eddy currents. The fact that
the theoretical and actual eddy current losses become
equal as a result of such a substitution is trivial. The
main point is that the shape of the dynamic hysteresis
loops corresponding to the given magnetization rever-
sal is preserved.

The next step involves the extension of this result to
more complicated domain structures. In other words,
we treat this result as a statistical precept and seek its
verification from a comparison of the theoretical and
experimental hysteresis loops. We will dwell on this
aspect later and at this stage formulate only the main
aim of this research. As a matter of fact, a significant
drawback of our previous publication [3] is that,
although the replacement of γ by γeq in classical compu-
tations was substantiated approximately by tangible
theoretical results, no direct comparison was made
between the dynamic hysteresis loops calculated from
the Pry–Bean model and those obtained from the for-
mulas of the classical model of uniform magnetization
in which γ is replaced by γeq. The main purpose of this
research is to make such a comparison to show that,
under standard conditions of magnetization reversal in
the tapes made of magnetically soft electrically con-
ducting materials, this simplifying procedure leads to
results that do not differ significantly from the ideal
results. This opens up the possibility of a remarkably
simple quantitative description of the dynamic magne-
tization reversal cycles.

1. FORMULATION OF THE PROBLEM
Let us now formulate this problem in the specific

language of computational procedures. In order to
demonstrate in principle the variations introduced by
the domain structure to the classical computation of
eddy currents, Pry and Bean chose a simple model for
thin materials (e.g., for strip-wound cores), which con-
sists of domains separated by plane domain walls par-
allel to one another and perpendicular to the lateral
faces of the strip. A stripe domain structure is formed
on these surfaces, while the cross section displays the
pattern shown in Fig. 1. In the demagnetized state, all
domains are equal. When a magnetic field is applied
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
perpendicular to the plane of Fig. 1, adjacent domain
walls are displaced identically in opposite directions. In
such a model, the description of the time variation of
the average magnetization is equivalent to specifying
the velocity of each domain wall as a function of time,
which makes it possible to use the Maxwell equations
for calculating the components of the induced eddy
current density at each point of the strip. By way of an
example, the dashed curves in Fig. 1 show some of the
eddy current lines corresponding to this model under
certain conditions of magnetization reversal [5]. This
pattern of lines differs significantly from the classical
pattern in the model of uniform magnetization.

The formulas for the components of the eddy cur-
rent density can be used to obtain an expression for cal-
culating the eddy current losses (which was done by
Pry and Bean), as well as a formula for calculating the
corresponding dynamic hysteresis loops [5] without
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Fig. 1. The Pry–Bean domain structure model in the cross sec-
tion of a ferromagnetic tape. The dashed curves are some of
the eddy current lines; the domain walls are marked by 1–4.
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taking the magnetic viscosity into account. The latter
formula can be presented in the form

(1)

He t( ) Hst Bav( ) 8

π3
-----γδD

dBav

dt
-----------+=

×
αncosh αn

Bav

µ0Ms
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 cosh+

2n 1+( )3 αnsinh
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Fig. 2. Ascending branches of the dynamic hysteresis loops
for the Fe 3% Si alloy of thickness 0.28 mm with a Goss tex-
ture, calculated without taking into account the magnetic
viscosity for the case of magnetization reversal at a fre-
quency of 50 Hz in the regime of sinusoidal induction with
an amplitude of 1.5 T: I—according to the Pry–Bean model;
II—by the model of uniform magnetization with a replace-
ment of γ by γeq: d = 0.4 (curve 1), 1.3 (2), 1.9 (3), 2.4 (4),
3 (5), 4 (6), 5 (7), and 6 (8); III—static magnetization rever-
sal curve.
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Here, Bav is the magnetic induction averaged over the
strip cross section, which varies periodically with time
t; He(t) is the value of the external magnetic field
strength at the same instants of time t; Hst(Bav) is the
quasi-static component of this field; δ and γ are the
half-thickness and electrical conductivity of the mag-
netic tape, respectively; D is the average domain width
(the separation between the centers of adjacent
domains in Fig. 1); Ms is the saturation magnetization;
µ0 is the magnetic constant; and αn = 0.5π(2n + 1)(D/δ).
If the magnetic reversal conditions are specified, i.e.,
the periodic time dependence Bav(t) or He(t) is known,
the dependence of Bav on He , i.e., the dynamic hystere-
sis loop, can be calculated from formula (1).

On the other hand, the classical theory, which pre-
sumes the absence of a domain structure, i.e., a constant
value of the permeability, leads to the following rela-
tion for the dynamic hysteresis loop in the simplest case
of a weak surface effect:

(2)

The main aim of this research is to demonstrate
graphically that in some specific situations the dynamic
loops calculated from formula (1) are very close to the
loops calculated by using the simple formula (2), in
which the actual electrical conductivity γ is replaced by
the “equivalent” (“effective”) electrical conductivity
γeq, which depends on the domain structure parameter
d = D/δ. This would confirm the results obtained by us
earlier [3] by making some simplifying assumptions
following only approximately from the theoretical
curves presented in that work. On the other hand, these
results form the basis for a satisfactory description of
the family of dynamic hysteresis loops [6].

2. RESULTS OF CALCULATIONS

The dashed curves in Figs. 2 and 3 show the ascend-
ing branch of an experimental static hysteresis loop for
an iron–silicon (Fe 3 wt % Si) alloy of 0.28 mm thick-
ness with a Goss texture obtained as a result of magne-
tization reversal from the induction –Bm = –1.5 T to
+Bm = +1.5 T. The remaining curves in Figs. 2 and 3,
depicted by solid lines and dots, are the ascending
branches of the theoretical dynamic hysteresis loops at
a frequency of 50 Hz. Figure 2 corresponds to a preset
sinusoidal induction flux for a magnetization amplitude
µ0Mm = 1.5 T, while Fig. 3 corresponds to a preset sinu-
soidal external field with an amplitude Hm = 100 A/m.
The dotted curves were obtained as a result of calcula-
tions using formula (1), i.e., from the Pry–Bean model
with different values of the domain structure parameter
d in the range 0.4–6.0. The solid curves were obtained
by using formula (2), in which γ is replaced by γeq; the
values of the latter are selected in such a way as to attain
the maximum agreement with the curves obtained from

He t( ) Hst Bav( ) 1
3
---γδ2dBav

dt
-----------.+=
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formula (1). It can be seen that this agreement is quite
good, especially in the case of a sinusoidal external
field. The dependence of the ratio λ = γeq/γ on the
domain structure parameter can be defined as [5]

(3)

For small values of this parameter (d ≤ 0.4), the eddy
currents induced in the cross section of the tape differ
insignificantly from the classical results (1 ≤ γeq/γ ≤
1.05). The larger the value of d, the higher the equiva-
lent electrical conductivity γeq for neutralizing the
effect of the domain structure on the eddy currents and
hence on the dynamic hysteresis loop.

Thus, a clearly evident confirmation is obtained for
the principle that the eddy currents in a tape with a
domain structure can be calculated using the classical
formulas for the case of uniform magnetization with the
only difference being that the actual electrical conductiv-
ity γ should be replaced by the equivalent conductivity γeq,
which depends on the relative size of the domains.

3. GENERALIZATION
OF THE RESULTS OBTAINED

The curves shown in Figs. 2 and 3 confirm this prin-
ciple only for the Pry–Bean model. One can naturally
ask whether this simple result can be generalized to other
domain structures prevailing in real ferromagnetic mate-
rials used in electrical engineering. We believe that this
assumption can be made a working hypothesis if the
real dynamic hysteresis loops are consistent with it. It
is presumed that the Pry–Bean model is indeed the fun-
damental model, i.e., the most suitable one for rigor-
ously demonstrating the effect of the domain structure
on eddy currents, and that a stripe domain structure is
indeed observed as a local effect in various crystallites
of polycrystalline materials, although with different
separations between the domain walls. Hence, it is
expedient to introduce the concept of a certain general-
ized (effective) domain structure parameter deff, whose
value is determined by the spread of the real values of
d and, in addition, which statistically takes into account
various departures from the Pry–Bean model, including
the bending of walls, the presence of 90° walls, differ-
ent wall mobilities, etc. Naturally, a direct evaluation of
the quantity deff as a result of observations of the
domain structures can lead only to an estimate of its
value. On the other hand, indirect evaluations in terms
of the quantity λ = γeq/γ using formula (3) can be car-
ried out only if the theoretical and experimental hyster-
esis loops do not differ significantly.

λ 0.81d= 0.81d 1 0.1d+( )–[ ] .exp+
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
However, a considerable difficulty encountered in
this direction is that real materials are subjected not
only to eddy currents, but also to other relaxation mech-
anisms hindering the process of dynamic magnetiza-
tion reversal (magnetic viscosity with a small relax-
ation time). Thus, it was shown earlier [1] that there are
cases in which the observed discrepancy between the
theoretical and experimental dynamic hysteresis loops
cannot be attributed in any way to eddy currents only,
irrespective of the level of their “intricacy.” Among the
known (though not necessarily investigated thor-
oughly) mechanisms of magnetic viscosity with a small
relaxation time, we can single out, above all, the mech-
anisms of “friction” experienced by a domain wall dur-
ing its movement, which leads to the emergence of the
“friction force,” proportional to the velocity of the
domain wall, in the equation of motion of the domain
wall. Such a friction may be due to the interaction with
pinning centers [7–9] and with dislocations [10, 11], to
magnetostriction [12], or to spin–spin and spin–lattice
processes of magnetization relaxation [13]. In addition,
the magnetic viscosity may be due to the pinning of
domain walls at voids and inclusions [7, 14, 15], retard-
ing Barkhausen pulses [16, 17], thermal activation of
the motion of domain walls from metastable states, i.e.,
the effect of thermal fluctuations [18], and other pro-
cesses [19, 20]. It was mentioned in a recent publica-
tion [21] that even spin relaxation (damping of the free
precession of spins), characterized by a time constant
of the order of 10–7 s, may affect the hysteretic magne-
tization reversal in modern magnetic materials. This
relaxation may occur even at the acoustic frequencies
of the external field, since the time in which a domain
wall can pass through a given point (corresponding to
the magnetic moment reversal at this point) in materials
with a coarse domain structure may be small and com-
parable with 10–7 s.

It can be asked whether these mechanisms of mag-
netic viscosity with a small relaxation time can be
described quantitatively by a statistical law. An analysis
of the data obtained in numerous experiments leads to
the conclusion [6] that such a statistical law can be writ-
ten in the form of a modified magnetic viscosity equa-
tion

(4)

Here, r is the magnetic viscosity characterizing the
relaxation properties of the material under the given
conditions of magnetization reversal.

It was also shown in [1] that for moderate magneti-
zation reversal rates, when the surface effect is weak, it
is possible to derive an equation of dynamic magnetiza-
tion reversal, which can be used to calculate the

µ0
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-------- r 3.5
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dynamic hysteresis loop for given remagnetization con-
ditions. This equation has the form

(5)

and differs from Eq. (2) only in that it contains an addi-
tional “viscosity” term and that γ in the “eddy-current”
term is replaced by γeq. In order to calculate the hyster-
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Fig. 4. Ascending branches of the hysteresis loops for elec-
trical-sheet steel of 0.08 mm thickness under sinusoidal
magnetic induction: I—static loop; curves 1–5 are the
experimental points of dynamic loops for various frequen-
cies of magnetization reversal f (Hz): 60 (curve 1), 150 (2),
400 (3), 600 (4), and 1000 (5). The solid curves correspond
to the theoretical dynamic loops. The inset shows the depen-

dences of r (curve 1) and γeq/γ (curve 2) on .f

Fig. 5. The same as in Fig. 4 for a sinusoidal external field
and various magnetization reversal frequencies f (Hz): 50
(curve 1), 200 (2), 400 (3), and 600 (4).
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esis loop with the help of this equation, we must specify
the time dependence of the magnetization averaged
over the tape cross section, Mav(t), or of the external
magnetic field He(t). In addition, Eq. (5) contains two
unknown constants, viz., the quantity γeq (or λ = γeq/γ),
characterizing the effect of the domain structure on
eddy currents, and the viscosity r characterizing the
relaxation properties of the magnetic material. The
problem can now be formulated as follows: can we
select these two fitting parameters λ and r for each spe-
cific dynamic hysteresis loop in such a way that the
experimental and theoretical hysteresis loops are close
to each other? Some examples of an affirmative answer
to this question are given in [6]. We will present here
one more example that extends the list of materials for
which the effectiveness of the approach developed here
for describing the dynamic properties of magnetic
materials has been proved.

4. EXPERIMENTAL DATA

Two wound toroidal samples made of electrical-
sheet steel 3424 of 0.08 mm thickness with nearly iden-
tical static hysteresis loops were chosen for specific
measurements. One of them was tested in a sinusoidal
magnetic induction flux (the results are presented in
Fig. 4), and the other was tested in a sinusoidal external
field (Fig. 5). Static magnetization reversal curves were
measured on a ballistic setup and are shown by dashed
lines in Figs. 4 and 5. The points on the dynamic hys-
teresis loops were determined by measurements on a
ferrograph with a half-period cutoff, specially designed
and fabricated at the Metrological Institute, Yekaterin-
burg. In the sinusoidal induction regime with an ampli-
tude Bm = 1.48 T, measurements were made at frequen-
cies of 50, 150, 400, 600, and 1000 Hz. In the sinusoi-
dal field regime with an amplitude Hm = 200 A/m,
dynamic hysteresis loops were measured at frequencies
of 60, 200, 400, and 600 Hz. Measurements at higher
frequencies in both cases led to a departure from the
“weak surface effect” conditions.

5. RESULTS FOR SINUSOIDAL
MAGNETIC INDUCTION

Calculations of the dynamic hysteresis loop with the
help of formula (5) are especially simplified if the
induction Bav averaged over the tape cross section
depends on time t according to a sinusoidal law Bav =
Bmsinωt and if the small difference between the induc-
tion B and the magnetization M multiplied by the mag-
netic constant µ0 is disregarded, i.e., if we assume that
B ≅  µ0M. By specifying the numerical values of the
parameters

(6)

we can calculate the value of He(t) corresponding to
each instantaneous value of µ0Mav(t), i.e., determine the

Ω ω/r, Θ 1/3( )γeqδ
2ω,= =
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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coordinates of the point on the dynamic magnetization
reversal curve (the ascending branch of the dynamic
hysteresis loop).

By requiring that this curve pass through the
dynamic coercive field point Hcd at which Mav = 0 and
µ0(dMav/dt) = ωµ0Mm, we obtain from Eqs. (4) and (5)

where Hc is the static coercive field. Thus, it remains for
us to determine in fact only one of the parameters in
Eq. (6) corresponding to the best agreement between
the theoretical and the experimental magnetization
reversal curves.

Figure 4 shows the experimental points on the
ascending branches of the dynamic hysteresis loops,
while the solid lines are the corresponding theoretical
magnetization reversal curves. The values of the
parameters λ = γeq/γ and r, calculated from Eq. (6) by
using the obtained values of Ω and Θ, are presented in
the same figure as the functions of the square root of the
magnetization reversal frequency f. As in [6], the vis-

cosity r was found to be directly proportional to .
The parameter λ = γeq/γ, characterizing the effect of the
domain structure on eddy currents, decreases sharply
with increasing frequency, which indicates the familiar
intensive splitting of domains [13]. Since the quantity λ
is related to the generalized parameter d of the domain
structure through formula (3), the results obtained can
be used to estimate the average (effective) domain width.
It is found that D = 1.3 mm at a frequency f = 50 Hz,
D = 0.34 mm at f = 400 Hz, and D = 0.18 mm at f =
1000 Hz. The reasonably good matching of the theoret-
ical and the experimental magnetization reversal curves
shown in Fig. 4 leads to the conclusion that Eq. (5) can
be used for describing the dynamics of magnetization
reversal of the thinnest electrical-sheet steel.

6. RESULTS
FOR A SINUSOIDAL EXTERNAL FIELD

If the magnetization reversal occurs under the action
of a sinusoidal external field He(t) = Hmsinωt, the cal-
culations of the dynamic loop are a bit more compli-
cated than in the case of a given sinusoidal magnetic
induction, since they require a numerical solution of the
differential equation (5). The static magnetization
reversal curve can be defined in the form of an approx-
imating function. For this purpose, it is best to use a
spline [22] whose coefficients have been determined
beforehand. The difficulty lies in finding a steady-state
periodic solution. For this purpose, the initial value of
Mav corresponding to the steady-state process of peri-
odic variation of magnetization must be determined
meticulously at some “initial” instant of time. For the
type of magnetization reversal curves shown in Fig. 5
(having a gently sloping initial segment), it is best to
use the fact that if the starting point is chosen to the left

Ω Θ+ Hcd Hc–( )/µ0Mm,=

f
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of the ordinate axis, the results of computations do not
depend significantly on the initial value of Mav if it lies
within the interval in which the numerical computa-
tional procedure is stable. Subsequent computations
can be made without any difficulty by using the stan-
dard techniques.

The results of these calculations, which are pre-
sented in Fig. 5, are in accord with the experimental
points. In this case, the parameter λ slowly approaches
unity, varying from 1.2 at a frequency 60 Hz to 1.0 at a
frequency 600 Hz, i.e., the splitting of domains in this
case is insignificant in the given frequency range. As

regards the viscosity r, its dependence on  is nonlin-
ear in this case in contrast to all previously investigated
materials [6].

7. CONCLUSION

Thus, it has been shown graphically in the present
work that the theoretical dynamic hysteresis loops
remain practically unchanged if the complex calcula-
tions of eddy currents in materials where magnetization
reversal occurs as a result of displacement of domain
walls are reduced to simple classical calculations based
on the model of uniform magnetization in which the
actual electrical conductivity γ is replaced by the equiv-
alent conductivity γeq, the ratio γeq/γ serving as a mea-
sure of the effect of the domain structure on the eddy
currents. This serves as the basis for the derivation of
the simple dynamic magnetic reversal equation (5)
which can be used to calculate the dynamic hysteresis
loops for different frequencies and amplitudes of the
applied action. The effectiveness of this equation is
confirmed, among other things, by the example of the
low-frequency magnetization reversal of the thinnest
electrical-sheet steel of 0.08 mm thickness both in a
sinusoidal induction flux and in a sinusoidal external
magnetic field. This material obeys the dynamic mag-
netic reversal equation as do most of the materials
investigated earlier [6].
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Abstract—A generalized interpretation of the processes of dynamic magnetization reversal in magnetically
soft electrically conducting materials is proposed. It can be used for obtaining a simple and quite accurate math-
ematical description for a family of dynamic hysteresis loops. © 2000 MAIK “Nauka/Interperiodica”.
The dynamic hysteresis loop of a magnetically soft
material can be treated as its main characteristic. It is
better to speak of a family of such loops since they
depend on the frequency and amplitude of the remag-
netizing field (or magnetic induction), as well as on the
magnetization reversal conditions, i.e., on the form of
the time dependence of the external field or the mag-
netic induction flux. The reasons behind the difference
between the dynamic and static hysteresis loops cannot
be treated as definitely established, since certain facts
cannot be explained within the framework of the tradi-
tional concepts [1]. In practice, one could disregard this
circumstance if a satisfactory quantitative description
of the loops and their dependence on the conditions
under which the magnetization reversal is performed
could be obtained at least by phenomenological meth-
ods. Such a description is extremely important for
applied electrical engineering.

But is it possible in principle to find such a descrip-
tion? An affirmative answer to this question is unlikely,
since it is well known that the process of magnetic
reversal in ferromagnetic materials is quite complicated
and a large number of reasonable assumptions have
been put forth about the diverse possible mechanisms
of retardation (relaxation) of this process. However, it
will be shown below that a quite rational quantitative
description for a family of hysteresis loops can never-
theless be obtained by adopting certain generalized
assumptions concerning the magnetization reversal
processes. One such assumption concerns eddy cur-
rents, while another pertains to a different type of phe-
nomena that retard the magnetic reversal and were
called the magnetic viscosity because of V.K. Arkad’ev
[2]. As regards eddy currents, the basic reason behind
the difficulties is quite obvious; it should be borne in
1063-7834/00/4211- $20.00 © 22116
mind that, in thin materials with a coarse domain struc-
ture, eddy currents are induced as a result of the motion
of each individual domain wall, and the eddy current
lines obtained as a result of their summation most likely
have a configuration other than the simple one assumed
in the classical theory of eddy currents. They may have
a quite “intricate” form, which means that classical for-
mulas for calculating eddy currents and their effect on
the dynamic hysteresis loop do not always reflect the
actual effects.

Let us examine how this circumstance can be taken
into consideration. In real materials, the configuration
of domain walls is by no means a regular pattern. More-
over, the motion of domain walls itself does not obey
simple laws and may be quite diverse. For example, the
mobility of walls may differ in value even for walls of
the same type. However, statistical laws may come into
play in a situation like this. For example, if a magnet is
quite bulky and the domain walls are small in compar-
ison, the configurations of eddy current lines will differ
only insignificantly from those used in the classical
computations of the eddy-current effect. In other
words, the effect of the domain structure on eddy cur-
rents will be statistically insignificant. It can be asked
whether some simple statistical law is also followed, at
least approximately, in the case when the domain size
is comparable with the thickness of the magnetic tape
or strips used for constructing the magnetic cores of
electrical devices.

An endeavor to establish such a regularity was made
in [3]. This endeavor can be briefly described as fol-
lows. We proceed from the Pry–Bean model [4], which
is a simple model, but the most characteristic, describ-
ing the domain structure and the movement of domain
walls. On the one hand, this model corresponds to the
000 MAIK “Nauka/Interperiodica”
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strongest manifestation of the “bendings” of the classi-
cal eddy current lines that are associated with the
domain structure and “enhance” the integrated eddy-
current effects. On the other hand, this model requires
comparatively simple computations. It was shown in
[5] that it can be used for calculating not only the
energy losses due to the excitation of eddy currents, but
also the dynamic component of the hysteresis loop
associated with them. An analysis of this computation
and its comparison with the classical approach suggests
[3] that they lead approximately to the same result if the
actual electrical conductivity γ in the classical formulas
is replaced by an “equivalent” quantity γeq, which is
larger than γ and depends on the size (width) of the
domains. The ratio λ = γeq/γ is a measure of the effect
of the domain structure on eddy currents. The fact that
the theoretical and actual eddy current losses become
equal as a result of such a substitution is trivial. The
main point is that the shape of the dynamic hysteresis
loops corresponding to the given magnetization rever-
sal is preserved.

The next step involves the extension of this result to
more complicated domain structures. In other words,
we treat this result as a statistical precept and seek its
verification from a comparison of the theoretical and
experimental hysteresis loops. We will dwell on this
aspect later and at this stage formulate only the main
aim of this research. As a matter of fact, a significant
drawback of our previous publication [3] is that,
although the replacement of γ by γeq in classical compu-
tations was substantiated approximately by tangible
theoretical results, no direct comparison was made
between the dynamic hysteresis loops calculated from
the Pry–Bean model and those obtained from the for-
mulas of the classical model of uniform magnetization
in which γ is replaced by γeq. The main purpose of this
research is to make such a comparison to show that,
under standard conditions of magnetization reversal in
the tapes made of magnetically soft electrically con-
ducting materials, this simplifying procedure leads to
results that do not differ significantly from the ideal
results. This opens up the possibility of a remarkably
simple quantitative description of the dynamic magne-
tization reversal cycles.

1. FORMULATION OF THE PROBLEM
Let us now formulate this problem in the specific

language of computational procedures. In order to
demonstrate in principle the variations introduced by
the domain structure to the classical computation of
eddy currents, Pry and Bean chose a simple model for
thin materials (e.g., for strip-wound cores), which con-
sists of domains separated by plane domain walls par-
allel to one another and perpendicular to the lateral
faces of the strip. A stripe domain structure is formed
on these surfaces, while the cross section displays the
pattern shown in Fig. 1. In the demagnetized state, all
domains are equal. When a magnetic field is applied
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
perpendicular to the plane of Fig. 1, adjacent domain
walls are displaced identically in opposite directions. In
such a model, the description of the time variation of
the average magnetization is equivalent to specifying
the velocity of each domain wall as a function of time,
which makes it possible to use the Maxwell equations
for calculating the components of the induced eddy
current density at each point of the strip. By way of an
example, the dashed curves in Fig. 1 show some of the
eddy current lines corresponding to this model under
certain conditions of magnetization reversal [5]. This
pattern of lines differs significantly from the classical
pattern in the model of uniform magnetization.

The formulas for the components of the eddy cur-
rent density can be used to obtain an expression for cal-
culating the eddy current losses (which was done by
Pry and Bean), as well as a formula for calculating the
corresponding dynamic hysteresis loops [5] without
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Fig. 1. The Pry–Bean domain structure model in the cross sec-
tion of a ferromagnetic tape. The dashed curves are some of
the eddy current lines; the domain walls are marked by 1–4.
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taking the magnetic viscosity into account. The latter
formula can be presented in the form

(1)

He t( ) Hst Bav( ) 8

π3
-----γδD

dBav

dt
-----------+=

×
αncosh αn

Bav

µ0Ms
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 cosh+

2n 1+( )3 αnsinh
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Fig. 2. Ascending branches of the dynamic hysteresis loops
for the Fe 3% Si alloy of thickness 0.28 mm with a Goss tex-
ture, calculated without taking into account the magnetic
viscosity for the case of magnetization reversal at a fre-
quency of 50 Hz in the regime of sinusoidal induction with
an amplitude of 1.5 T: I—according to the Pry–Bean model;
II—by the model of uniform magnetization with a replace-
ment of γ by γeq: d = 0.4 (curve 1), 1.3 (2), 1.9 (3), 2.4 (4),
3 (5), 4 (6), 5 (7), and 6 (8); III—static magnetization rever-
sal curve.
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Fig. 3. The same as in Fig. 2 for the sinusoidal field regime
with an amplitude 100 A/m; d = 0.4 (curve 1), 1.3 (2), 2 (3),
3 (4), 4 (5), 5 (6), and 6 (7).
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Here, Bav is the magnetic induction averaged over the
strip cross section, which varies periodically with time
t; He(t) is the value of the external magnetic field
strength at the same instants of time t; Hst(Bav) is the
quasi-static component of this field; δ and γ are the
half-thickness and electrical conductivity of the mag-
netic tape, respectively; D is the average domain width
(the separation between the centers of adjacent
domains in Fig. 1); Ms is the saturation magnetization;
µ0 is the magnetic constant; and αn = 0.5π(2n + 1)(D/δ).
If the magnetic reversal conditions are specified, i.e.,
the periodic time dependence Bav(t) or He(t) is known,
the dependence of Bav on He , i.e., the dynamic hystere-
sis loop, can be calculated from formula (1).

On the other hand, the classical theory, which pre-
sumes the absence of a domain structure, i.e., a constant
value of the permeability, leads to the following rela-
tion for the dynamic hysteresis loop in the simplest case
of a weak surface effect:

(2)

The main aim of this research is to demonstrate
graphically that in some specific situations the dynamic
loops calculated from formula (1) are very close to the
loops calculated by using the simple formula (2), in
which the actual electrical conductivity γ is replaced by
the “equivalent” (“effective”) electrical conductivity
γeq, which depends on the domain structure parameter
d = D/δ. This would confirm the results obtained by us
earlier [3] by making some simplifying assumptions
following only approximately from the theoretical
curves presented in that work. On the other hand, these
results form the basis for a satisfactory description of
the family of dynamic hysteresis loops [6].

2. RESULTS OF CALCULATIONS

The dashed curves in Figs. 2 and 3 show the ascend-
ing branch of an experimental static hysteresis loop for
an iron–silicon (Fe 3 wt % Si) alloy of 0.28 mm thick-
ness with a Goss texture obtained as a result of magne-
tization reversal from the induction –Bm = –1.5 T to
+Bm = +1.5 T. The remaining curves in Figs. 2 and 3,
depicted by solid lines and dots, are the ascending
branches of the theoretical dynamic hysteresis loops at
a frequency of 50 Hz. Figure 2 corresponds to a preset
sinusoidal induction flux for a magnetization amplitude
µ0Mm = 1.5 T, while Fig. 3 corresponds to a preset sinu-
soidal external field with an amplitude Hm = 100 A/m.
The dotted curves were obtained as a result of calcula-
tions using formula (1), i.e., from the Pry–Bean model
with different values of the domain structure parameter
d in the range 0.4–6.0. The solid curves were obtained
by using formula (2), in which γ is replaced by γeq; the
values of the latter are selected in such a way as to attain
the maximum agreement with the curves obtained from

He t( ) Hst Bav( ) 1
3
---γδ2dBav

dt
-----------.+=
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formula (1). It can be seen that this agreement is quite
good, especially in the case of a sinusoidal external
field. The dependence of the ratio λ = γeq/γ on the
domain structure parameter can be defined as [5]

(3)

For small values of this parameter (d ≤ 0.4), the eddy
currents induced in the cross section of the tape differ
insignificantly from the classical results (1 ≤ γeq/γ ≤
1.05). The larger the value of d, the higher the equiva-
lent electrical conductivity γeq for neutralizing the
effect of the domain structure on the eddy currents and
hence on the dynamic hysteresis loop.

Thus, a clearly evident confirmation is obtained for
the principle that the eddy currents in a tape with a
domain structure can be calculated using the classical
formulas for the case of uniform magnetization with the
only difference being that the actual electrical conductiv-
ity γ should be replaced by the equivalent conductivity γeq,
which depends on the relative size of the domains.

3. GENERALIZATION
OF THE RESULTS OBTAINED

The curves shown in Figs. 2 and 3 confirm this prin-
ciple only for the Pry–Bean model. One can naturally
ask whether this simple result can be generalized to other
domain structures prevailing in real ferromagnetic mate-
rials used in electrical engineering. We believe that this
assumption can be made a working hypothesis if the
real dynamic hysteresis loops are consistent with it. It
is presumed that the Pry–Bean model is indeed the fun-
damental model, i.e., the most suitable one for rigor-
ously demonstrating the effect of the domain structure
on eddy currents, and that a stripe domain structure is
indeed observed as a local effect in various crystallites
of polycrystalline materials, although with different
separations between the domain walls. Hence, it is
expedient to introduce the concept of a certain general-
ized (effective) domain structure parameter deff, whose
value is determined by the spread of the real values of
d and, in addition, which statistically takes into account
various departures from the Pry–Bean model, including
the bending of walls, the presence of 90° walls, differ-
ent wall mobilities, etc. Naturally, a direct evaluation of
the quantity deff as a result of observations of the
domain structures can lead only to an estimate of its
value. On the other hand, indirect evaluations in terms
of the quantity λ = γeq/γ using formula (3) can be car-
ried out only if the theoretical and experimental hyster-
esis loops do not differ significantly.

λ 0.81d= 0.81d 1 0.1d+( )–[ ] .exp+
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
However, a considerable difficulty encountered in
this direction is that real materials are subjected not
only to eddy currents, but also to other relaxation mech-
anisms hindering the process of dynamic magnetiza-
tion reversal (magnetic viscosity with a small relax-
ation time). Thus, it was shown earlier [1] that there are
cases in which the observed discrepancy between the
theoretical and experimental dynamic hysteresis loops
cannot be attributed in any way to eddy currents only,
irrespective of the level of their “intricacy.” Among the
known (though not necessarily investigated thor-
oughly) mechanisms of magnetic viscosity with a small
relaxation time, we can single out, above all, the mech-
anisms of “friction” experienced by a domain wall dur-
ing its movement, which leads to the emergence of the
“friction force,” proportional to the velocity of the
domain wall, in the equation of motion of the domain
wall. Such a friction may be due to the interaction with
pinning centers [7–9] and with dislocations [10, 11], to
magnetostriction [12], or to spin–spin and spin–lattice
processes of magnetization relaxation [13]. In addition,
the magnetic viscosity may be due to the pinning of
domain walls at voids and inclusions [7, 14, 15], retard-
ing Barkhausen pulses [16, 17], thermal activation of
the motion of domain walls from metastable states, i.e.,
the effect of thermal fluctuations [18], and other pro-
cesses [19, 20]. It was mentioned in a recent publica-
tion [21] that even spin relaxation (damping of the free
precession of spins), characterized by a time constant
of the order of 10–7 s, may affect the hysteretic magne-
tization reversal in modern magnetic materials. This
relaxation may occur even at the acoustic frequencies
of the external field, since the time in which a domain
wall can pass through a given point (corresponding to
the magnetic moment reversal at this point) in materials
with a coarse domain structure may be small and com-
parable with 10–7 s.

It can be asked whether these mechanisms of mag-
netic viscosity with a small relaxation time can be
described quantitatively by a statistical law. An analysis
of the data obtained in numerous experiments leads to
the conclusion [6] that such a statistical law can be writ-
ten in the form of a modified magnetic viscosity equa-
tion

(4)

Here, r is the magnetic viscosity characterizing the
relaxation properties of the material under the given
conditions of magnetization reversal.

It was also shown in [1] that for moderate magneti-
zation reversal rates, when the surface effect is weak, it
is possible to derive an equation of dynamic magnetiza-
tion reversal, which can be used to calculate the

µ0
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-------- r 3.5
M2

Ms
2

-------–
 
 
 
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dynamic hysteresis loop for given remagnetization con-
ditions. This equation has the form

(5)

and differs from Eq. (2) only in that it contains an addi-
tional “viscosity” term and that γ in the “eddy-current”
term is replaced by γeq. In order to calculate the hyster-
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 
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dt
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Fig. 4. Ascending branches of the hysteresis loops for elec-
trical-sheet steel of 0.08 mm thickness under sinusoidal
magnetic induction: I—static loop; curves 1–5 are the
experimental points of dynamic loops for various frequen-
cies of magnetization reversal f (Hz): 60 (curve 1), 150 (2),
400 (3), 600 (4), and 1000 (5). The solid curves correspond
to the theoretical dynamic loops. The inset shows the depen-

dences of r (curve 1) and γeq/γ (curve 2) on .f

Fig. 5. The same as in Fig. 4 for a sinusoidal external field
and various magnetization reversal frequencies f (Hz): 50
(curve 1), 200 (2), 400 (3), and 600 (4).
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esis loop with the help of this equation, we must specify
the time dependence of the magnetization averaged
over the tape cross section, Mav(t), or of the external
magnetic field He(t). In addition, Eq. (5) contains two
unknown constants, viz., the quantity γeq (or λ = γeq/γ),
characterizing the effect of the domain structure on
eddy currents, and the viscosity r characterizing the
relaxation properties of the magnetic material. The
problem can now be formulated as follows: can we
select these two fitting parameters λ and r for each spe-
cific dynamic hysteresis loop in such a way that the
experimental and theoretical hysteresis loops are close
to each other? Some examples of an affirmative answer
to this question are given in [6]. We will present here
one more example that extends the list of materials for
which the effectiveness of the approach developed here
for describing the dynamic properties of magnetic
materials has been proved.

4. EXPERIMENTAL DATA

Two wound toroidal samples made of electrical-
sheet steel 3424 of 0.08 mm thickness with nearly iden-
tical static hysteresis loops were chosen for specific
measurements. One of them was tested in a sinusoidal
magnetic induction flux (the results are presented in
Fig. 4), and the other was tested in a sinusoidal external
field (Fig. 5). Static magnetization reversal curves were
measured on a ballistic setup and are shown by dashed
lines in Figs. 4 and 5. The points on the dynamic hys-
teresis loops were determined by measurements on a
ferrograph with a half-period cutoff, specially designed
and fabricated at the Metrological Institute, Yekaterin-
burg. In the sinusoidal induction regime with an ampli-
tude Bm = 1.48 T, measurements were made at frequen-
cies of 50, 150, 400, 600, and 1000 Hz. In the sinusoi-
dal field regime with an amplitude Hm = 200 A/m,
dynamic hysteresis loops were measured at frequencies
of 60, 200, 400, and 600 Hz. Measurements at higher
frequencies in both cases led to a departure from the
“weak surface effect” conditions.

5. RESULTS FOR SINUSOIDAL
MAGNETIC INDUCTION

Calculations of the dynamic hysteresis loop with the
help of formula (5) are especially simplified if the
induction Bav averaged over the tape cross section
depends on time t according to a sinusoidal law Bav =
Bmsinωt and if the small difference between the induc-
tion B and the magnetization M multiplied by the mag-
netic constant µ0 is disregarded, i.e., if we assume that
B ≅  µ0M. By specifying the numerical values of the
parameters

(6)

we can calculate the value of He(t) corresponding to
each instantaneous value of µ0Mav(t), i.e., determine the

Ω ω/r, Θ 1/3( )γeqδ
2ω,= =
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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coordinates of the point on the dynamic magnetization
reversal curve (the ascending branch of the dynamic
hysteresis loop).

By requiring that this curve pass through the
dynamic coercive field point Hcd at which Mav = 0 and
µ0(dMav/dt) = ωµ0Mm, we obtain from Eqs. (4) and (5)

where Hc is the static coercive field. Thus, it remains for
us to determine in fact only one of the parameters in
Eq. (6) corresponding to the best agreement between
the theoretical and the experimental magnetization
reversal curves.

Figure 4 shows the experimental points on the
ascending branches of the dynamic hysteresis loops,
while the solid lines are the corresponding theoretical
magnetization reversal curves. The values of the
parameters λ = γeq/γ and r, calculated from Eq. (6) by
using the obtained values of Ω and Θ, are presented in
the same figure as the functions of the square root of the
magnetization reversal frequency f. As in [6], the vis-

cosity r was found to be directly proportional to .
The parameter λ = γeq/γ, characterizing the effect of the
domain structure on eddy currents, decreases sharply
with increasing frequency, which indicates the familiar
intensive splitting of domains [13]. Since the quantity λ
is related to the generalized parameter d of the domain
structure through formula (3), the results obtained can
be used to estimate the average (effective) domain width.
It is found that D = 1.3 mm at a frequency f = 50 Hz,
D = 0.34 mm at f = 400 Hz, and D = 0.18 mm at f =
1000 Hz. The reasonably good matching of the theoret-
ical and the experimental magnetization reversal curves
shown in Fig. 4 leads to the conclusion that Eq. (5) can
be used for describing the dynamics of magnetization
reversal of the thinnest electrical-sheet steel.

6. RESULTS
FOR A SINUSOIDAL EXTERNAL FIELD

If the magnetization reversal occurs under the action
of a sinusoidal external field He(t) = Hmsinωt, the cal-
culations of the dynamic loop are a bit more compli-
cated than in the case of a given sinusoidal magnetic
induction, since they require a numerical solution of the
differential equation (5). The static magnetization
reversal curve can be defined in the form of an approx-
imating function. For this purpose, it is best to use a
spline [22] whose coefficients have been determined
beforehand. The difficulty lies in finding a steady-state
periodic solution. For this purpose, the initial value of
Mav corresponding to the steady-state process of peri-
odic variation of magnetization must be determined
meticulously at some “initial” instant of time. For the
type of magnetization reversal curves shown in Fig. 5
(having a gently sloping initial segment), it is best to
use the fact that if the starting point is chosen to the left

Ω Θ+ Hcd Hc–( )/µ0Mm,=

f
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of the ordinate axis, the results of computations do not
depend significantly on the initial value of Mav if it lies
within the interval in which the numerical computa-
tional procedure is stable. Subsequent computations
can be made without any difficulty by using the stan-
dard techniques.

The results of these calculations, which are pre-
sented in Fig. 5, are in accord with the experimental
points. In this case, the parameter λ slowly approaches
unity, varying from 1.2 at a frequency 60 Hz to 1.0 at a
frequency 600 Hz, i.e., the splitting of domains in this
case is insignificant in the given frequency range. As

regards the viscosity r, its dependence on  is nonlin-
ear in this case in contrast to all previously investigated
materials [6].

7. CONCLUSION

Thus, it has been shown graphically in the present
work that the theoretical dynamic hysteresis loops
remain practically unchanged if the complex calcula-
tions of eddy currents in materials where magnetization
reversal occurs as a result of displacement of domain
walls are reduced to simple classical calculations based
on the model of uniform magnetization in which the
actual electrical conductivity γ is replaced by the equiv-
alent conductivity γeq, the ratio γeq/γ serving as a mea-
sure of the effect of the domain structure on the eddy
currents. This serves as the basis for the derivation of
the simple dynamic magnetic reversal equation (5)
which can be used to calculate the dynamic hysteresis
loops for different frequencies and amplitudes of the
applied action. The effectiveness of this equation is
confirmed, among other things, by the example of the
low-frequency magnetization reversal of the thinnest
electrical-sheet steel of 0.08 mm thickness both in a
sinusoidal induction flux and in a sinusoidal external
magnetic field. This material obeys the dynamic mag-
netic reversal equation as do most of the materials
investigated earlier [6].
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Abstract—The electrical resistance of polycrystalline ferroelectric semiconductors is defined by the potential
barriers due to the existence of local charged surface states at crystallite boundaries. The barrier screening
depends on the state of the ferroelectric system and is maximal during spontaneous-polarization switching. It
is shown in this paper that the local perturbation of the ferroelectric system, resulting from the repolarization
and appearing as a domain wall between the regions with different polarization directions, has a zigzag config-
uration. The electric field in the vicinity of the zigzag domain wall is stabilized and coincides with the coercive
field, which provides low potential barriers in the ferroelectric phase compared with the paraelectric phase. The
repolarization processes become inefficient in the potential barrier screening at the transition from the ferro-
electric to the paraelectric phase. As a result, a sharp increase in the electrical resistance is observed at the fer-
roelectric–paraelectric phase transition, called the posistor effect. © 2000 MAIK “Nauka/Interperiodica”.
The resistance of polycrystalline ferroelectric semi-
conductors of the oxygen-octahedron type decreases by
several orders of magnitude at the transition from the
paraelectric to the ferroelectric phase [1]. This effect is
known as the effect of the positive temperature coeffi-
cient of resistance, or the posistor effect. This phenom-
enon could be related to the crystallite boundary poten-
tial barriers drastically changing in magnitude at the
ferroelectric phase transition. The potential barriers
mentioned are due to the presence of local charged sur-
face states of the acceptor-type at the crystallite bound-
aries with the activation energy of Es ~ 1 eV and the
density of Ns ~ 1014 cm–2 [1]. The resistance of poly-
crystalline ferroelectric semiconductors is mainly
determined by the charge screening of these surface
states, which is due to the response of both the elec-
tronic and the ionic subsystems. The response of the
electronic subsystem results in the creation of an elec-
tron-deficient Schottky region near the charged crystal-
lite boundaries. The electric field associated with the
surface states at the crystallite boundaries is concen-
trated in this region. The response of the ionic sub-
system forced by this field can reveal both the polariza-
tion and the repolarization character. The polarization
of the ionic subsystem occurs in the paraelectric phase.
This can also occur in the ferroelectric phase when the
direction of the spontaneous polarization Ps in the crys-
tallite bulk (where all fields compensate each other)
coincides with the direction of the electric field strength

E in the Schottky region (Ps  E). The repolarization
occurs in the ferroelectric phase when the direction of
Ps in the crystallite bulk is opposite to the direction of

the electric field in the Schottky region (Ps  E) and
the field strength E is larger than the coercive field Ec.
1063-7834/00/4211- $20.00 © 22123
In accordance with [2], the polarization response in the
ferroelectric phase does not provide efficient screening
of the potential barriers, compared with the screening
in the paraelectric phase, and, hence, it has not resulted
in the posistor effect. The repolarization response was
shown to play a crucial role in the screening of the
potential barriers and the posistor effect onset [2].
However, an analysis of the repolarization was done in
[2] in terms of the polarization metastable states,
described via the theoretical hysteresis loop. These
states are not stable, and the repolarization region
appears instead like a domain wall between two head-
to-head domains [3]. This region is a strong local per-
turbation of the ferroelectric system, because the thick-
ness of the domain wall is lc ~ 10–6 cm [4]. The structure
of this region and its role in the posistor effect onset are
analyzed in this paper. The domain wall has a negative
repolarization bound charge with a density of σp =
divP. For the most efficient screening of the electric
field, the wall should be oriented relative to the direc-
tion of Ps in the crystallite bulk so that the negative
bound charge and the positive space charge in the
Schottky region compensate each other. The space
charge is defined by the ionized donor states with a den-
sity of Nd ~ 1019 cm–3, and the neutralization of the total
repolarization charge ∆P = 2Ps ~ 10–5 C cm–2 occurs at
a distance of lp = 2Ps/qNd ~ 10–5 cm (here, q is the ele-
mentary electronic charge). As long as lc ! lp, the
domain wall will be oriented at an angle θ to the Ps

direction. This angle is given by the expression

(1)θsin
lcqNd

2Ps

-------------.=
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Then, the boundary between the head-to-head
domains will have a zigzag wedge shape, which was
observed experimentally in [5, 6].

1. CALCULATION RESULTS

The zigzag structure of the domain wall can be
found solving the equation of state for the ferroelectric
system.

We assume that Ps is parallel to the [001] direction,
taken as the Z axis. A normal vector to the domain wall
is directed at the angle π/2 – θ to the Z axis and lies in
the (011) plane, denoted as the YZ plane. Then, the ther-
modynamic potential for the tetragonal phase is given
by the expression

(2)

where

(3)

Minimizing expression (2), we arrive at the equation of
state

(4)

At θ  π/2, a solution to Eq. (4) is given by the
expression

(5)

Here, sn is an elliptic function and P0 is a variable
parameter,

(6)

(7)

(8)

(9)

The structure reveals an energy minimum at P0 
Ps. In this limit, Eq. (5) can be rewritten as

(10)

Φ 1
2
---αPz

2 1
4
---βPz

4 1
6
---γPz

6+ +=

+
1
2
---χ 1

A2
------

dPz

dz
-------- 

 
2 1

B2
-----

dPz

dy
-------- 

 
2

+ ,

A θ, Bsin θ.cos= =

χ 1

A2
------

d2Pz

dz2
-----------

 
 
  1

B2
-----

d2Pz

dy2
-----------

 
 
 

+ αPz βPz
3 γPz

5.+ +=

Pz1 P0

c2
0.5sn ηzA( )

sn2 ηzA( ) 1– c2+( )0.5
----------------------------------------------------.=

η P0
2 γ

6χ
------ c1 1 c2–( ),=

c1 2, δ– δ2 2δ– τ– ,±=

δ 1
2
---

3β
4γP0

2
------------,+=

τ 3α
γP0

4
---------.=

Pz1 Ps
ηzA( )sinh

ηzA( )cosh
2 2γPs

2

4γPs
2 3β+

-------------------------+
 
 
  0.5
-----------------------------------------------------------------------.=
PH
Here, sinh and cosh are the hyperbolic sine and cosine,
respectively.

We represent Pz in the form

(11)

At f  0, we can find a particular solution for f
from the equation of state, which has the form

(12)

We seek the general solution of the equation of state
in the form of a linear combination of the particular
solutions (10) and (12)

(13)

where g(z) is a function of z to be determined.

According to the numerical calculations, g(z) can be
approximated by the relation

(14)

Graphs of the dependencies described by Eqs. (13)
and (14) are presented in Figs. 1 and 2 for BaTiO3 at the
temperature T = 115 K and θ = 3°. The resulting wedge-
shaped structure is the zigzag domain boundary. The
periodicity of this structure is illustrated in Fig. 2 by the
boundary line between regions with opposite polariza-
tion directions. The polarization distribution having a
wedge-shaped structure is extended along the [001]
direction, and its length is ~lp. The coercive electric
field Ec, at which the polarization P switching begins,
is stabilized within the structure described; the space
charge in the Schottky region and the bound repolariza-
tion charge compensate each other, and the electric
field strength E, directed toward the crystallite bound-
ary, no longer increases. The value of Ec can be esti-
mated accounting for the thermal activation processes
of the polarization Ps switching in the regions whose
size is of the order of the coherent length ξ [4]. Let the
Ec value be equal to the electric field strength at which
the region that was not repolarized is too small to be
considered as continuous. Consequently, its relative
content is less than 0.15 [7]. In this case, WI/WII =
0.85/0.15. Here, WI is the probability for the ferroelec-
tric system being in state I, corresponding to one of the
thermodynamic potential minima, where Φ = Φ0 –
EcPs; WII is the probability for the system being in

Pz2 Pz1 f y( ).+=

f P0 ηyB( ).sin=

Pz Ps=

× ηzA( )sinh

ηzA( )cosh
2 2γPs

2

4γPs
2 3β+

-------------------------+
 
 
  0.5
----------------------------------------------------------------------- g z( ) ηyB( )sin+

 
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state II, corresponding to the other thermodynamic
potential minimum, where Φ = Φ0 + EcPs.

(15)

Here, Φ0 is the thermodynamic potential at P = Ps, k is
the Boltzmann constant, and Vc = ξ3. For Ec parallel to
the pseudocubic [001] direction, we obtain the expres-
sion

(16)

Here, ξ ~ (χεzzε0)0.5 [4], εzz is the dielectric permittivity
in the pseudocubic [001] direction, ε0 is the electric
constant, and Psz is the spontaneous polarization in the
pseudocubic [001] direction. The results of the Ec cal-
culation for BaTiO3 by using Eq. (16), presented in Fig. 3,
are in qualitative and quantitative agreement with the
experimental data, shown in the inset of Fig. 3. The cal-
culations were performed for χε0 ~ 6 × 10–16 cm2 [8],
and the experimental values of Psz and εzz taken from
[9]. The value of Ec was obtained to be about 103 V/cm,
which is of the same order of magnitude as the experi-
mentally determined coercive fields [10]. This is of
principal importance in the posistor effect theory and

W I Φ0 EcPs–( )– Vc/kT( );exp∼
W II Φ0 EcPs+( )– Vc/kT( ).exp∼

Ec
kT

2Pszξ
3Vc
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Fig. 1. Distribution of the polarization P resulting from the
repolarization in the Schottky region.
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implies that the field screening is more efficient in the
ferroelectric phase than in the paraelectric one. In the
latter, the electric field strength reaches the value of
Epe = lpqNd/εε0 ~ 104 V/cm at a distance of ~lp from the
Schottky region boundary [1]. Here, ε ≈ 104 is the
dielectric permittivity in the paraelectric phase near the
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Fig. 2. The boundary line between the regions with the
opposite polarization P directions resulting from the repo-
larization in the Schottky region.
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Fig. 3. The theoretical temperature dependence of the coer-
cive field Ec for BaTiO3 (the experimental one is in the
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phase transition point. If the length of the repolarization
region lp is comparable to the Schottky region length ls

defined by the electrical neutrality condition, the poten-
tial barrier in the ferroelectric phase qϕ0fe is determined
by the formula

(17)

This potential barrier is not high in comparison to the
potential barrier in the paraelectric phase, qϕ0pe [11]

(18)

From Eqs. (17) and (18), we obtain the relation
ϕ0fe/ϕ0pe = Ec2εε0/(qNs) ~ 0.1.

The sharp changes in the electrical resistivity (curve 1
in Fig. 4) [12] and in the coercive field (the inset in
Fig. 4) [13] were observed experimentally in polycrys-
talline KNbO3 in the region where the transition occurs
from one ferroelectric phase to the other. The correla-
tion observed in the behavior of ρ and Ec can be
explained by the following. The coercive field drasti-
cally changes in KNbO3 during the transition from one
ferroelectric phase to the other, and, therefore, the
screening of the potential barriers related to the repolar-
ization also changes drastically. This results in a sharp
change in the electrical resistivity during the transition
from one ferroelectric phase to the other.

The phenomenon described above should be partic-
ularly characteristic of an unpolarized polycrystalline

ϕ0 fe lsEc≈
NsEs

Nd

-----------.=

ϕ0 pe

qNs
2

2εε0Nd
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Fig. 4. The experimental temperature dependences of the
resistivity ρ of the unpolarized (curve 1) and the polarized
(curve 2) polycrystalline KNbO3. The experimental temper-
ature dependence of the coercive field Ec for the KNbO3
crystal is shown in the inset.
PH
ferroelectric, where the polarization Ps switching is
possible on either side of the crystallite boundary. In a
polarized polycrystalline ferroelectric, the polarization
Ps switching can occur only on one side of the crystal-
lite boundary. On the other side, we will have only the
substance polarization, which is of far less importance
in the screening than the repolarization is. Therefore,
the barrier potential and, consequently, the electrical
resistivity in the direction parallel to the polarization
direction are larger in the polarized polycrystalline fer-
roelectric than in the unpolarized one. This is in accor-
dance with the experimental data for KNbO3 [13]
(curve 2 in Fig. 4) and BaTiO3 [14].

The qualitative considerations presented above were
tested applying the theoretical calculations based on the
model proposed. For this purpose, the negatively
charged boundary between the crystallites arranged in
the (110) plane has been considered. There is a mobile-
charge-depleted Schottky region near the crystallite
boundary, which causes the screening of the boundary
surface charge. Therefore, no electric field is produced
outside of the Schottky region by the surface charge
owing to the screening effect. The linear size ls of this
region in the approximation of “complete depletion,”
meaning the total absence of the mobile charge carriers
in it, is defined by the electrical neutrality condition

(19)

Here, σ is the space charge density in the Schottky
region, ns is the density of the filled localized states at
the boundary between the crystallites, ϕ0 is the value of
the potential ϕ at the boundary, and EF is the Fermi
energy. For the donor states with a small activation
energy, we have σ = qNd. The value of the current den-
sity j (for the current along the [001] direction) was
determined in the diffusion-drift approximation [15] by
using the expression

(20)

Here, µ is the mobility of free charge carriers, u is the
external voltage value calculated per one crystallite, d
is the crystallite thickness, and ρ is the resistivity.

The integration in Eq. (20) is executed over the
space charge region near the charged boundary
between the crystallites, zr  and –zl are the coordinates
of the Schottky region boundary.

The calculation of the electrical characteristics
(including ρ) by using formula (20) requires knowing

lsσ qns

qNs

1 EF Es– qϕ0/kT–( )exp+
-----------------------------------------------------------------.= =
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the distributions of P, ϕ, and E. These values are deter-
mined from the system of equations

(21)

(22)

as well as from the equation of state P resulting from
the minimization of the thermodynamic potential and
accounting for the influence of the electric field pro-
duced by the charged crystallite boundary on the polar-
ization.

In this case, the possibility of the polarization P
switching in the field Ec caused by the zigzag domain
wall formation should be considered. The calculations
of ρ by using relation (20) for KNbO3 are presented in
Fig. 5. The following values for the parameters are used
in the calculations: Nd = 1018 cm–3, Ns = 3 × 1014 cm–2,
Es = 1.2 eV, µ = 0.5 cm2 V–1 s–1, and d = 4 × 10–3 cm.
Sharp drops in ρ are observed at the phase transitions to
the low-temperature phases (curve 1 in Fig. 5). The
character of the change in ρ and the drop values in ρ
agree quite well with the experimental data (Fig. 4).
The calculation of ρ for the unpolarized state (curve 1
in Fig. 5) was done at the polarization configuration

having Ps  E on both sides of the crystallite bound-
ary, resulting in the smallest potential barrier value. In
the Schottky region, where Ps and E have opposite
directions, after reaching the value of Ec by the electric
field, the repolarization begins. The proliferation of the
wedges occurs with the polarization opposite to the Ps

direction. As a result, the density of the repolarization
charge is compensated completely by the density of the
free charge (∇ P = σ = qNd), and the electric field has a
fixed strength of Ec in the repolarization region. The
calculation of ρ for the polarized state (curve 2 in Fig. 5)
was done at the polarization configuration having

Ps  E on one side of the crystallite boundary and

Ps  E on the other. In the polarized state, the repolar-
ization occurs only on one side of the crystallite bound-
ary. On the other side, the polarization occurs, and the
screening of the electric field is less efficient, resulting
in a larger value of the potential barrier qϕ0p compared
with that of the unpolarized state, qϕ0up. The screening
in the latter case can occur due to the repolarization on
both sides of the crystallite boundary. The calculations
for KNbO3 at T = 500 K give the values qϕ0up = 0.6 and
qϕ0p = 0.9 eV.

Thus, the character of the screening determines the
values of the potential barriers in polycrystalline ferro-
electric semiconductors. The screening is the most effi-
cient when, on both sides of the crystallite boundary,
the direction of the electric field in the Schottky region
has the direction opposite to the spontaneous polariza-
tion in the crystallite bulk, resulting in the repolariza-
tion. In this case, the domain wall between the regions

∇ ϕ E,–=

ε0∇ E σ ∇ P,–=
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
with different polarization directions, being the local
polarization perturbation, has a zigzag shape. The elec-
tric field in this zigzag repolarization region is stabi-
lized at the coercive field value, resulting in the most
efficient screening of the potential barriers in the ferro-
electric phase, compared with the paraelectric one, and
the posistor effect takes place. When the coercive field
changes sharply during the transition from one ferro-
electric phase to the other, the screening of the potential
barriers and the resistivity change drastically. This is
particularly relevant for the unpolarized polycrystalline
ferroelectrics, where the repolarization P is possible on
either side of the crystallite boundary. In the polarized
polycrystalline ferroelectric, the repolarization P
occurs only on one side of the crystallite boundary,
whereas on the other side, only the substance polariza-
tion occurs, which is of far less importance in the
screening of the potential barriers than the repolariza-
tion is. Therefore, the potential barriers and the resistiv-
ity for the polarized polycrystalline ferroelectrics turn
out to be larger than for the unpolarized ones.

The analysis of the experimental and theoretical
results presented above allows us to reach the following
conclusion. Due to the action of the electric field of the
charged surface states at the crystallite boundaries in
polycrystalline ferroelectric semiconductors, the zig-
zag region of the local polarization perturbations
appears. It provides for efficient screening of the
boundary electric field and results in the anomalies in
the resistivity as the ferroelectric system state is
changed.
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Fig. 5. The theoretical temperature dependences of the resis-
tivity ρ of the unpolarized (curve 1) and the polarized (curve 2)
polycrystalline KNbO3.
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Abstract—The influence of doping of the SrxBa1 – xNb2O6 (x = 0.61) crystals (SBN-0.61) by rare-earth element
(RE) dopants has been investigated. Taking into account the data available in the literature, it is demonstrated
that the introduction of all rare-earth metals is accompanied by a substantial decrease in the temperature of the
phase transition Tp and an increase in its smearing. The shift in the Tp temperature for certain rare-earth metals
ranges up to 20 K per atomic percent of dopant in the crystal. It is experimentally established that, in the
SBN-0.61 : Yb, SBN-0.61 : Ce, SBN-0.61 : Tm, SBN-0.61 : La, and SBN-0.61 : (Ce + La) crystals, a decrease
in Tp brings about a considerable increase in the permittivity and the piezoelectric and electrooptical coeffi-
cients. The conclusion is drawn that the doping by rare-earth metals provides a means of optimizing the prop-
erties of strontium barium niobates. The pulse switching of the SBN-0.61 and SBN-0.61 : RE crystals is studied
for the first time. It is found that the switching is characterized by a number of features, the most important of
which is a decrease in the switched charge after the application of external fields. This effect associated with
the specific features of the switching in the relaxor ferroelectric is assumed to be responsible for the instability
of the parameters for strontium barium niobate material. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

Ferroelectric crystals SrxBa1 – xNb2O6 (SBN-x) pos-
sess unique properties from the viewpoint of basic
research and different practical (optical, pyroelectric,
and piezoelectric) applications [1, 2]. They show con-
siderable promise owing to strong dependences of the
phase transition temperature Tp and the relaxor charac-
teristics on the composition (the [Sr]/[Ba] ratio), which
make it possible to vary different parameters over a
wide range. From the available data, it follows that the
doping of SBN-0.61 by La [3], Tb [4], and Ce [5, 6], as
well as an increase in the [Sr]/[Ba] ratio, leads to a sub-
stantial decrease in the Tp temperature. There is good
indirect evidence that the doping by other rare-earth
metals (RE) produces a similar effect [7]. The doping
of SBN-0.61 by rare-earth metals and an increase in the
[Sr]/[Ba] ratio result in an increase the piezoelectric
(for SBN-0.61 : La [3] and SBN-0.61 : Ce [8]) and elec-
trooptical (for SBN-0.61 : Ce [9]) coefficients. 

Despite the fact that the strontium barium niobates
doped with rare-earth metals are very promising mate-
rials, the works dealing with physical (in particular, fer-
roelectric) properties of these crystals are few in num-
ber; the exception is provided by the works concerned
with holographic recording in SBN-0.61 : Ce (see, for
1063-7834/00/4211- $20.00 © 22129
example, [10]). For comparison, we note that, in undoped
strontium barium niobates, the influence of the
[Sr]/[Ba] ratio on the phase transition and the relaxor
characteristics has been studied thoroughly [1, 11–13]. 

The pulse switching in strontium barium niobate
(SBN) crystals merits detailed consideration. The
exploration of this process is of special interest with
respect to the problem of producing regular domain
structures for the realization of quasi-phase matching
conditions, which provide the conversion of optical fre-
quencies (see, for example, review [14]). There are sev-
eral publications on the second harmonic generation of
IR radiation with the use of the domain structure in
strontium barium niobates [15, 16] and the laser gener-
ation with self-frequency doubling by microdomains in
SBN : Nd [17]. However, so far as we know, the studies
on the pulse switching of strontium barium niobate
crystals have never been published. Since the static
hysteresis loops for strontium barium niobates have
specific features due to the relaxor properties [18], it
can be expected that the kinetics of pulse switching also
exhibits characteristic features. 

This paper reviews the investigation into the influ-
ence of selected rare-earth metals on the ferroelectric
properties of the SBN-0.61 crystals. First and foremost,
in order to reveal the general character of the RE effect
000 MAIK “Nauka/Interperiodica”
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on the phase transition, we increased the number of the
studied SBN-0.61 : RE compositions. The influence of
Nd, Yb, and Tm dopants and a combined doping were
studied in this work for the first time. Then, we evalu-
ated how the selected rare-earth metals affect the piezo-
electric and electrooptical properties of strontium bar-
ium niobates. Moreover, we examined the pulse
switching of undoped SBN-0.61 and doped SBN-0.61 :
Ce crystals. The choice of the Ce dopant in this case
was dictated by the fact that, as was shown in the recent
work [6], the SBN : Ce crystal exhibits new optical
effects, which are specific to photorefractive ferroelec-
trics and can be associated with the influence of switch-
ing on the holographic characteristics. 

It should be emphasized that this paper presents the
results of a preliminary study. In general, the search for
techniques of optimizing the properties of strontium
barium niobates for different applications is the main
purpose of the investigation of strontium barium nio-
bates doped with rare-earth metals. 

2. STUDIED CRYSTALS 

The SBN-0.61 and SBN-0.61 : RE (where RE = Ce,
La, La + Ce, Nd, Tm, and Yb) crystals were studied in
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Fig. 1. Temperature dependences of the permittivity for
(1) SBN-0.61, (2) SBN-0.61 : Yb, and (3) SBN-0.61 : Ce crys-
tals at a frequency of 1 kHz. The inset shows the dependence
ε33(T) for the crystal SBN-0.61 : (1 wt % La + 0.01 wt % Ce)
at frequencies of (1) 0.1, (2) 1.0, and (3) 20.0 kHz. 
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this work. The SBN-0.61 : Ce, SBN-0.61 : La, SBN-
0.61 : Tm, and SBN-0.61 : Yb crystals were grown by
the Czochralski method. The profiled SBN and SBN-
0.61 : Nd crystals and the codoped SBN-0.61 : (La +
Ce) crystals were grown by the Stepanov method [19].
For doping, the rare-earth metal oxides were introduced
into the melt. All the crystals, except for SBN-0.61 : Ce,
were grown at the Research Center for Laser Materials
and Technology, Institute of General Physics, Russian
Academy of Sciences. The SBN-0.61 : Ce crystals were
grown at the Physical Faculty of the Osnabrück Univer-
sity (Germany). The weight concentrations given
below refer to the oxide concentration in the melt, and
the corresponding molar and atomic concentrations in
crystals were determined with a Camebax microana-
lyzer. The distribution coefficients for different rare-
earth metals in SBN-0.61 are given in [19]. 

3. EFFECT OF RARE-EARTH METAL DOPANTS 
ON THE PHASE TRANSITION TEMPERATURE 

IN SBN-0.61 CRYSTALS 
The temperature dependences of the permittivity ε33

were studied using thin plates of the z-cuts with elec-
trodes made of a silver paste or evaporated gold. The
measurements were carried out in the frequency range
from 100 Hz to 20 kHz with a measuring field ampli-
tude of no higher than 0.5 V/cm. Figure 1 depicts the
dependences ε33(T) for the undoped SBN-0.61 crystal
and the SBN-0.61 crystals doped with Ce, Yb, and La +
Ce (inset) at a frequency of 1 kHz. As is known, the
undoped SBN crystals of different compositions
exhibit a frequency dependence of the temperature Tmax
at a maximum of Tmax, which is characteristic of relax-
ors, and the dependence becomes stronger with an
increase in the [Sr]/[Ba] ratio [11–13]. A similar fre-
quency dependence of Tmax was also found for SBN :
La [3] and SBN : Tb [4]. In the studied SBN : RE crys-
tals, an increase in the field frequency also leads to a
decrease in the ε33 maximum and a shift in Tmax toward
the high-temperature range (see the inset in Fig. 1). As a
whole, the effect of rare-earth metals on the frequency
dependences of ε33 is qualitatively similar to the effect
of an increase in the [Sr]/[Ba] ratio. 

Table 1 presents the temperatures Tmax at a fre-
quency of 1 kHz for the crystals studied in the present
work, the data obtained in our previous work [6] for
SBN-0.61 : Ce, and the results taken from [4] for
SBN-0.61 : Tb. As is seen from Table 1 and Fig. 1, the
introduction of rare-earth metals brings about a sharp
decrease in Tmax and an increase in the smearing of the
phase transition. 

In the SBN-0.61 : Ce crystals, the shift in Tmax lin-
early depends on the atomic concentration of Ce in the
crystal: Tmax = 80–25[Ce] [6]. We roughly evaluated the
shift ∆Tmax per atomic percent of dopant in the crystal
for other rare-earth metals (Table 1) under the assump-
tion that, by analogy with SBN-0.61 : Ce, ∆Tmax in each
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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Table 1.  Effect of rare-earth metal dopants on the phase transition temperature of the SBN-0.61 crystals 

Crystal
Dopant concentration

Tmax, °C (1 kHz) ∆Tmax per atomic 
percent of dopant, K in melt, wt % in crystal, at. %

SBN-0.75 48

SBN-0.61 83

SBN-0.61 : Tm2O3 2.0 1.4 54–56 18

SBN-0.61 : Nd2O3 1.0 1.4 58–60 17–18

SBN-0.61 : La2O3 1.0 0.9 61 22

SBN-0.61 : CeO2 0.4 0.66 63

SBN-0.61 : CeO2 [6] 1.6 2.1 27–30 25

SBN-0.61 : La + Ce 1 + 0.01 35–37

SBN-0.61 : Yb2O3 2.6 2.6 62 7

SBN-0.61 : Tb2O3 [4] 1.0 70 ≤10

Table 2.  Parameters of the SBN and SBN : RE crystals at room temperature 

Crystal* ε33 (1 kHz) d33, C/N, 10–12 r33, pm/V Vλ/2 , V

SBN-0.75 3500 770 80

SBN-0.61 800 140 250 250

SBN-0.61 : 0.4% CeO2 1500 190 330 [9]

SBN-0.61 : 0.5% Tm2O3 2000 180

SBN-0.61 : 2.6% Yb2O3 2500 210 130

SBN-0.61 : 1% La2O3 1800 160

SBN-0.61 : (1% La + 0.01% Ce) 6000 130

SBN-0.61 : (1% La + 0.1% Ce) 8000 ≤100

* The dopant concentration in the melt is given in wt %. 
case linearly depends on the dopant concentration.
(The Tb2O3 concentration in the melt was given in [4];
therefore, for the upper estimate of ∆Tmax in SBN-0.61
: Tb, we assumed that the distribution coefficient keff for
Tb is approximately equal to 0.5–0.6, which, on the
average, is typical of rare-earth metals in strontium bar-
ium niobates.) It is seen from Table 1 that the shift in
the phase transition temperature is as much as 20 K per
1 at. % Ce, Tm, La, and Nd. 

The most intriguing result was obtained for the
codoped SBN : (La + Ce) crystals, which were grown
with the aim of their usage in the holography. In these
crystals, the La2O3 concentration (1 wt %) is consider-
ably higher than the CeO2 concentration (0.01 and
0.1 wt %). Therefore, it could be expected that the
phase transition temperature in these crystals should be
close to Tmax for SBN-0.61 : 1 at. % La, because the
doping with 0.1 wt % CeO2 (0.2 at. % Ce) leads to a
shift in Tmax by no more than 5 K [6]. However, the
effect of the codoping appears to be nonadditive and
anomalously strong: Tmax ≈ 37–40°C in the crystals
SBN-0.61 : 1 at. % La : Ce (see the inset in Fig. 1).
Moreover, according to the estimates based on the
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
microanalysis, the La concentrations in the crystals
SBN-0.61 : 1 at. % La and SBN-0.61 : 1 at. % La : Ce
are virtually identical, which means that the large dif-
ference between Tmax in these crystals cannot be
explained by different concentrations of the La dopant.
In the SBN-0.61 : (La + Ce) crystals, the phase transi-
tion is the most smeared, and the frequency dispersion
of ε33 is the most pronounced (inset in Fig. 1). 

Despite an increase in the smearing of the phase
transition upon doping with rare-earth metals, the
Curie–Weiss law is fulfilled in good approximation in
the frequency range from 100 Hz to 20 kHz for all the
studied SBN-0.61 : RE crystals with the exception of
SBN-0.61 : (La + Ce). 

4. EFFECT OF RARE-EARTH METAL DOPANTS 
ON SOME PARAMETERS OF SBN-0.61 

CRYSTALS 

The doping of the SBN-0.61 crystals by all the rare-
earth metal dopants is accompanied by an increase in
the permittivity ε33 under normal conditions (Table 2),
which is caused by a decrease in the temperature Tp and
00
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Fig. 2. Temperature dependences of (a) the piezoelectric coefficient and (b) the elastic compliance for (1) SBN-0.61, (2) SBN-0.61 : Yb,
and (3) SBN-0.61 : Ce crystals. 
the smearing of the phase transition. An increase in ε33
should result in an increase in a number of parameters.
This can be demonstrated by the example of the piezo-
electric and electrooptical properties of the SBN-0.61 :
RE crystals. The piezoelectric coefficients d33 and half-
wave voltages Vλ/2 were evaluated at room temperature
(Table 2). 

The piezoelectric coefficients d33 for the crystals
preliminarily polarized by an external field were mea-
sured in the frequency range from 100 kHz to 5 MHz
by using the resonance–antiresonance method [20].
The calculations were performed by the formula 

where fr and fa are the resonance and antiresonance fre-
quencies, respectively; ρ is the crystal density taken
equal to the density of the undoped SBN-0.61 crystal
[7]; and h is the crystal thickness along the polar axis.
The error of measurements was no more than 10%. The
d33 coefficient obtained for the undoped SBN-0.61
crystal (Table 2) agrees well with the reference data [2,
7] (however, its value is less than d33 = 190 × 10–12 C/N
determined in [3]). 

Figure 2a displays the temperature dependences of
d33 for the crystals SBN-0.61, SBN-0.61 : 0.66 at. %
Ce, and SBN-0.61 : 2.6 at. % Yb. The doping with rare-

d33
π
4
---

ε33ε0 f r f a–( )

ρ f r
3h2

--------------------------------,=
PH
earth metals brings about a substantial increase in the
piezoelectric coefficients over the entire temperature
range. The temperature dependences of the elastic com-

pliance  calculated from the resonance frequencies
are shown in Fig. 2b. These dependences are similar to

the dependences  obtained for SBN : Ce in [8].
From Figs. 2a and 2b, it follows that an increase in d33

upon doping with rare-earth metals is predominantly
determined by an increase in ε33. At the same time, for
each specific SBN : RE crystal, an increase in d33 with

temperature is contributed by both ε33(T) and . 

The half-wave voltages Vλ/2 were measured by the
standard polarization-optical method with a He–Ne
laser (λ = 0.63 µm) as a radiation source. The angle
between the polarizations of radiation and crossed
polarizers was 45°, the propagation vector of radiation
was perpendicular to the polar axis z, and the field was
applied along the z axis. The Vλ/2 voltages were deter-
mined by the dynamic technique in a 50-Hz sinusoidal
field. The Vλ/2 voltages obtained for the undoped SBN-
0.61 crystal (Table 2) are in good agreement with the
reference data [2, 5]. An appreciable decrease in Vλ/2 for
all the SBN-0.61 : RE crystals as compared to that for
the undoped SBN-0.61 crystal indicates the corre-
sponding increase in the linear electrooptical coeffi-
cient ry . The Vλ/2 value ≤100 V for the codoped SBN-

s33
E

s33
E T( )

s33
E T( )
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0.61 : (La + Ce) crystals is close to the lowest known
voltage (50–75 V) found for the SBN-0.75 crystals [2].
Note that Vλ/2 in our SBN-0.75 crystals is equal to 80 V
(Table 2). 

5. FEATURES OF FERROELECTRIC SWITCHING 
IN STRONTIUM BARIUM NIOBATE CRYSTALS 

As far as we know, there are no works dealing with
the pulse switching of strontium barium niobate crys-
tals. In this respect, we studied first the undoped
SBN-0.61 crystals. Then, for the most part, the
SBN-0.61 : 0.66 at. % Ce crystals were investigated for
comparison. For these crystals at room temperature, the
spontaneous polarization Ps calculated from pyroelec-
tric measurements is equal to 16–20 µC cm–2. 

The switching currents excited in the crystals by
single-shot rectangular pulses with a width of 0.1 s and
a short rise time ≤0.1 µs were measured by the Merz
method (see, for example, [21]). The pulse amplitude
was as large as 8 kV/cm, and the pulse separation was
equal to several minutes. Plates 1–2 mm thick were
used in the experiments. The shape of the switching
current is observed in the studied crystals is identical to
a characteristic pulse shape presented in monographs
for model ferroelectrics [21]. The switching current is,
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Fig. 3. Temperature dependences of the switching time for
(1) SBN-0.61 and (2) SBN-0.61 : Ce crystals in a field of
5 kV/cm. 
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the switched charge ∆Qs (the integral of the switching
current is over the time), and the switching time ts were
studied as a function of pulse amplitude and tempera-
ture. The time corresponding to 90% of the switched
charge was taken as the switching time ts [21]. 

The switching process in undoped and doped stron-
tium barium niobates obeys general regularities charac-
teristic of model ferroelectrics [21] and, at the same
time, shows a number of specific features of fundamen-
tal importance. The switching kinetics in the fields cor-
responding to the “full” switching (for more detail, see
below) over the entire temperature range is described by

the activation dependence  = , where
α is the activation field. The time ts decreases as the
phase transition is approached (Fig. 3), which is typical
of ferroelectrics. The value of α for the SBN-0.61 : RE
crystals is lower than that for the SBN-0.61 crystals.
For example, the α values for the SBN-0.61 and SBN-
0.61 : Ce crystals at T = 30°C are equal to 17 and
11 kV/cm, respectively. An increase in the temperature
leads to a decrease in α for both crystals. 

The doping with rare-earth metals results in a “retar-
dation” of the switching. As is seen from the depen-
dences ts(T) (Fig. 3), the time ts for the SBN-0.61 : Ce
crystal over the entire temperature range is consider-

ts
1– t∞

1– α /E–( )exp
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Fig. 4. Field dependences of the switched charge for
(1) nonpolarized SBN-0.61 : Ce crystals, (2) after the polar-
ization of crystals in an external field of 4 kV/cm at room
temperature, and (3) after the polarization of crystals in an
external field of 2 kV/cm upon slow cooling from 120 °C to
room temperature. 
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ably (almost by an order of magnitude) longer than that
for the undoped SBN-0.61 crystal. 

A substantial difference between the switching
characteristics of the nonpolarized (“polydomain”)
crystals and the crystals polarized in the external field
is a fundamental feature of the pulse switching in the
SBN and SBN : RE crystals. The dependences of the
charge ∆Qs on the switching field for the SBN-0.61 : Ce
crystal are demonstrated in Fig. 4. Curve 1 was
obtained for the polydomain crystal. In this case, the
∆Qs(E) dependences are virtually identical for the
switching fields of both signs. Curves 2 and 3 were
derived for the same crystal preliminarily polarized in
the external field under different conditions (in these
cases, the ∆Qs(E) dependences for the fields of opposite
signs differ sharply). Note that curves 2 and 3 corre-
spond to the switching in the fields with directions oppo-
site to the direction of the polarizing field. Curve 2 char-
acterizes the switching of the crystal polarized in a field
of 4 kV/cm for 1 h at room temperature. Curve 3
describes the switching of the crystal in which a single-
domain state was produced upon prolonged cooling
from the paraelectric phase down to room temperature
in a field of 2 kV/cm. In all the cases, the ∆Qs(E) depen-
dences flatten out, but the limiting values of ∆Qs are
different. The limiting value is maximum (∆Qs ≈ Ps) for
the nonpolarized crystals. For the polarized crystals,
∆Qs is substantially lower and decreases with an
increase in the duration or amplitude of the polarizing
field. After the prolonged application of the fields with
alternating polarity to the polarized crystal, the value of
∆Qs increases owing to a partial depolarization. 

As noted above, the kinetic characteristics of
switching ts(E) were studied in the fields corresponding
to the full switching. The term full switching was used
according to the commonly accepted terminology and
only implies that the ts(E) dependences were obtained
in the fields at which ∆Qs(E) flattens out. However, in
the polarized crystals, ∆Qs at the saturation is less than
Ps (Fig. 4); i.e., the switched volume is considerably
smaller than that in the polydomain crystal. Therefore,
the values of ts in the polydomain crystals are substan-
tially larger than the times ts observed in the same crys-
tals after the preliminary polarization. 

Another specific feature of the pulse switching in
the SBN-0.61 and SBN-0.61 : RE crystals is the high
values of the so-called fields of the onset of switching.
For example, this threshold quantity under the field
conditions used is equal to approximately 2 kV/cm
(Fig. 4). At lower fields, the switching current is, at
least, one order of magnitude less. The same features of
the pulse switching (the high fields of the onset of
switching and a decrease in the values of ∆Qs and ts due
to the polarization in the external field) are observed in
the SBN-0.75 crystals. 
PH
6. DISCUSSION 

Let us discuss the experimental results in the order
of their representation. Our experimental observations
in agreement with the data available in the literature
demonstrate that the doping of the strontium barium
niobate crystals by all the studied rare-earth metal
dopants leads to a considerable decrease in the phase
transition temperature Tp. Most likely, this conclusion
can be extended to all the rare-earth metal dopants. The
influence of the rare-earth metals on the Tp temperature
is much more efficient than the change in the [Sr]/[Ba]
ratio. An increase in the Sr content from 61 to 75 at. %
brings about a decrease in Tp from 80 to 40–50°C [1, 2]
(Table 1), whereas the same result can be achieved by
doping only with 1–2 at. % of the rare-earth metal.
According to our results and the data available in the
literature, it is possible to distinguish two groups of the
rare-earth metal dopants which differ in the quantitative
effect on the Tp temperature: RE1 = Ce, Tm, La, and
Nd, for which ∆Tmax ≥ 20 K, and RE2 = Tb and Yb, for
which the effect is substantially less (∆Tmax ≤ 10 K). 

The nature of a profound effect of the rare-earth
metal dopants on the phase transition in strontium bar-
ium niobates and the difference in the influence of the
two groups of dopants cannot be analyzed, because the
location of rare-earth metal ions in the strontium bar-
ium niobate lattice is unknown. This problem was stud-
ied only for the Ce dopant. It was shown that Ce in the
strontium barium niobate lattice predominantly occurs
in the charge state 3+ [22, 23] and, most likely, replaces
Sr [24]. The location of the Ce ions is uncertain,
because the Sr ions are statistically distributed over two
structural positions [1, 2]. It is obvious that the La [3],
Tm [6], and Nd [17] dopants in the lattice also occur in
the charge state 3+. In general, it is reasonable to
assume that all the rare-earth metal ions, which have
large ionic radii (ri ≥ 0.85 Å [25]), replace Sr2+ (ri =
1.12 Å) or Ba2+ (ri = 1.34 Å) rather than Nb5+ (ri ≈ 0.7 Å).

An increase in many parameters, specifically in the
permittivity, over a wide range of temperatures is an
important practical result of a decrease in the Tp tem-
perature upon introduction of rare-earth metals. In this
respect, of particular interest are the codoped SBN : (La +
Ce) crystals, in which the permittivity ε33 is almost one
order of magnitude larger than that in the undoped
SBN-0.61 crystals, and a broad smearing of the phase
transition (Fig. 1) ensures a rather weak temperature
dependence of ε33. 

In oxygen octahedral ferroelectrics, the linear elec-
trooptical coefficients and the permittivity ε33 are
related by the known relationships [26] 

,

where gik are the temperature-independent quadratic
electrooptical coefficients in the corresponding cen-

r13 2g13Psε33ε0,=

r33 2g33Psε33ε0=
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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trosymmetric phase. Consequently, an increase in ε33
upon doping with rare-earth metals should be attended
by an increase in the rij coefficients. Our rather rough
estimates of the Vλ/2 voltage (Table 2) indicate that the
electrooptical coefficients r33 in all the studied crystals
increase by a factor of approximately two. This is
somewhat less than the magnitudes expected reasoning
from an increase in the permittivity ε33 [in certain
SBN : RE, ε33 is three or four times larger than that in
SBN (Table 2)]. In part, this is explained by the fact that
the spontaneous polarization in the SBN : RE crystals
(Ps = 15–20 µC/cm2) owing to the smearing of the
phase transition is less than that in the SBN crystals
(Ps ≥ 25 µC/cm2 [1, 2]). The doping with certain rare-
earth metals (La and Yb) is not accompanied by the
appearance of absorption bands in the visible spectral
range. Therefore, these rare-earth metal dopants do not
change the transmittance and can serve as efficient
“controllers” of optical parameters such as the elec-
trooptical coefficients, linear and nonlinear susceptibil-
ities, etc. In order to increase the optical parameters of
the strontium barium niobate crystals, the doping of the
SBN-0.61 crystals by the rare-earth metals seems to be
more efficient compared to an increase in the Sr con-
tent, because the SBN-0.61 crystals corresponding to
the congruent melt [2] possess the best optical quality
among all the SBN compositions. The doping of the
SBN-0.61 crystals by the rare-earth metals with the use
of appropriate technological procedures does not dete-
riorate the crystal homogeneity as particularly evi-
denced by a wide employment of the SBN-0.61 : Ce
crystals in the holography [10]. 

Our inference regarding a substantial increase in the
d33 coefficients in the SBN-0.61 : Ce and SBN-0.61 :
Yb crystals (Table 2) suggests that these materials, sim-
ilar to SBN : La [3], can find a wide use in piezoelectric
engineering. Note that an increase in the piezoelectric
coefficients is not an a priori obvious consequence of a
decrease in the Tp temperature; for example, upon doping
with Tb, the value of d33 remains virtually constant [4]. 

It is quite possible that the effect of rare-earth metal
dopants on the Tp temperature in strontium barium nio-
bates is not unique in character. For example, it was
found that a heavy doping of SBN-0.61 by Cr leads to
a substantial decrease in the Tp temperature [27]. How-
ever, unlike the doping with rare-earth metals, this
interesting result is of no practical importance, because
a strong optical absorption in the visible range, which
appears in the highly doped SBN : Cr crystal, prevents
the traditional use of this material in holography [10]. 

Now, we dwell on the results obtained for the pulse
switching. A decrease in the switched charge upon
application of fields is the most important finding. This
is in agreement with the data obtained in [18, 28] on the
irreproducibility of dielectric hysteresis loops in stron-
tium barium niobates in static and quasi-static fields
upon repeated cycling, which is attended by a change in
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
the shape of loops and a decrease in their amplitudes.
The results of optical experiments (the generation of
the second harmonic of Nd–YAG laser radiation by the
microdomain structure in SBN-0.6 upon switching)
[15] also indirectly indicate a decrease in the switched
charge after the repeated application of a pulsed field,
as a result of which the intensity of the second-har-
monic radiation turns out to be uncontrollable. 

The regularities observed in the pulse switching can
be interpreted in the framework of the model proposed
in [18, 29] for explaining the “anomalous” field and the
time dependences of the polarization P for the stron-
tium barium niobate crystals. It can be assumed that the
observed features are associated with the relaxor nature
of the materials and stem from the occurrence of the
strong randomly distributed internal field Ei in a polar
crystal with an inhomogeneous distribution of its com-
position. The full repolarization of this crystal is
achieved only in the case when the external field |E | >
|Ei | at each point in the bulk (i.e., in this case, the notion
of the specific coercive field loses its meaning). Upon
application of the field |E | < |Ei |, a part of the material
transforms into a stable nonrepolarizable state. As a
result, the switched charge in the field of the opposite
sign becomes less than that in the nonpolarized crystal,
which can be seen from Fig. 4. In our opinion, the
model proposed in [18, 29] and the dependences
∆Qs(E) obtained in this work (Fig. 4) partly explain the
scatter in the Ps values available in the literature for
strontium barium niobates (from 20 to 35 µC/cm2 for
SBN-0.61). It seems likely that only the limiting
(“equilibrium” for a given polarizing field) value of
Pe < Ps was measured in a number of cases. As was
shown in [29], the kinetics of polarization relaxation
P(t) in the given field E for strontium barium niobates
is contributed to by fast and slow (of an order of 1 min)
components. Thus, the full switching cannot be real-
ized at all in the pulsed fields (in our case, with a pulse
length of 0.1 s) up to very large amplitudes. 

The results obtained in [18, 28] and this work dem-
onstrate that the polarization in strontium barium nio-
bates depends on the external fields, which, to a certain
degree, explains the degradation or instability (noted in
the literature) of different parameters (for example, the
piezoelectric and electrooptical coefficients) during the
practical use of strontium barium niobates. This degra-
dation is one of the causes that restrict the application
of strontium barium niobates. Therefore, from the prac-
tical standpoint, the problem of optimizing the proper-
ties of these materials for applications resides in a
decrease in the energy of the potential barriers and the
equalization of their distribution over the bulk (i.e., a
decrease in the strength of the field Ei and an increase
in the uniformity of its distribution). The observed
decrease in the activation field of switching α upon
doping with Ce, preliminary investigations, and the
data obtained in [2, 4] suggest that this possibility, to
00



2136 VOLK et al.
some extent, is provided by the doping with rare-earth
metals.

7. CONCLUSION 
The doping of strontium barium niobate crystals by

the rare-earth metals leads to a sharp decrease in the
phase transition temperature Tp. The shift in the Tp tem-
perature per atomic percent of dopant in the crystal is
equal to about 20 K for RE1 = Ce, Tm, La, and Nd and
is less than 10 K for RE2 = Tb and Yb. Moreover, the
smearing of the phase transition becomes more pro-
nounced, which especially manifests itself in the
codoped SBN : (La + Ce) crystals. This effect of the
rare-earth metal dopants on the Tp temperature is
accompanied by a considerable increase in the permit-
tivity over a wide range of temperatures and, as a con-
sequence, by a substantial rise in the piezoelectric and
electrooptical coefficients. It is experimentally found
that the piezoelectric coefficient d33 appreciably
increases in the SBN-0.61 : Ce and SBN-0.61 : Yb crys-
tals, and the half-wave voltage (for the 0.63-µm radia-
tion) decreases in the SBN-0.61 : La, SBN-0.61 : Tm,
SBN-0.61 : Yb, and SBN-0.61 : (Ce + La) crystals (in
the last case, Vλ/2 ≤ 100 V). Consequently, the rare-earth
metal dopants can be considered the efficient control-
lers of the practically important parameters for stron-
tium barium niobate crystals. 

The pulse switching of the undoped SBN-0.61 crys-
tal and the SBN-0.61 : Ce crystal was investigated for
the first time. It was found that, in addition to the com-
mon kinetic regularities characteristic of ferroelectrics,
the switching in strontium barium niobate crystals of
all the compositions exhibits a number of features, the
most important of which is a decrease in the switched
charge ∆Qs upon the preliminary application of exter-
nal fields. This effect that is evidently responsible for
the instability of the parameters of strontium barium
niobates (observed in practice) stems from the specific
features of the polarization in the relaxor ferroelectric. 
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Abstract—The low-frequency internal friction Q–1 and the shear modulus G in a paraelectric phase of
CsH2AsO4, KD2PO4, and KH2PO4 ferroelectrics were studied using a reversed torsion pendulum method.
Anomalies in the Q–1(T) and G(T) dependences were observed above the Curie temperatures of these crystals,
at temperatures 308, 253, and 293 K, respectively. The anomalies were associated with a first-order phase tran-

sition ( m  mm2) occurring in the foreign phase inclusions. © 2000 MAIK “Nauka/Interperiodica”.42
Anomalies in various physical properties (electrical
conductivity, dielectric, acoustic, thermal, optical, and
other properties) have been discovered in KH2PO4-
family crystals above the Curie temperature (TC) by
many researchers. As a rule, the anomalies were
observed at temperatures near the thermal decomposi-
tion of the crystals [1–4]. The presence of the anoma-
lies has been interpreted as a consequence of the high-
temperature structural phase transitions in the solid
phase [3, 5–7] or as the chemical decomposition of the
crystals [4, 8]. High-temperature phase transitions are
associated with H2PO4-group rotation around the crys-
tallographic axes and with changes revealed in the
hydrogen bonds and PO4 groups [3, 5–7] involved. The
results of investigations into the low-frequency elastic
and inelastic properties of these crystals [9, 10] have
shown that the temperature spectrum of internal fric-
tion Q–1 has a relatively complicated form. Along with
the peaks in the temperature dependences of Q–1, corre-
sponding to the Curie temperatures and high-tempera-
ture phase transitions, there are peaks in Q–1 observed
in the paraelectric phase slightly above TC, but not iden-
tified in the origin.

Therefore, the aim of this work is to investigate the
origin of anomalies of low-frequency internal friction
and of the shear modulus in crystals of CsH2AsO4
(CDA), KD2PO4 (DKDP), and KH2PO4 (KDP) in the
paraelectric phase under different external actions.

1. EXPERIMENTAL METHODS 
AND SAMPLES

The single crystals investigated were grown from
supersaturated water solutions by the dynamic method,
with adjustable temperature lowering. The specimens
used for the measurements were in the form of 20 × 2 ×
2 mm rectangular bricks cut from homogeneous parts
1063-7834/00/4211- $20.00 © 22137
of crystal boules and polished with a wet fabric. The
samples with X or Z orientation were oriented with their
long side directed along the crystallographic X or Z,
respectively.

The internal friction Q–1 and the shear modulus G
were measured using an installation constructed on the
basis of a reversed torsion pendulum [11] with a fre-
quency of ~20 Hz and a deformation amplitude of ~5 ×
10–5. The logarithmic decrement of the oscillations,
divided by π, was chosen as the measure of internal
friction. The systematic error was no more than 10% in
Q–1 measurement and no more than 5% in the shear-
modulus measurement. The installation also enabled us
to take measurements of the sample torsion angle ϕ in
the torsion pendulum as a function of temperature, and
the automatic recording of ϕ(T) curves was accom-
plished using an XY recorder. During measuring, the
samples were placed in a thermostat, where a constant
temperature was maintained and measured within an
accuracy of 0.3 K in the temperature range from 90 to
370 K.

2. EXPERIMENTAL RESULTS 
AND DISCUSSION

The temperature dependences of internal friction Q–1

(curves 1) and shear modulus G (curves 2) for samples
with an X orientation of the CDP, DKDP, and KDP
crystals are presented in Figs. 1, 2, and 3, respectively.
Two clear peaks are observed in the Q–1(T) depen-
dences for all crystals in the temperature range investi-
gated. These peaks are related to changes (softening) in
the temperature behavior of the shear modulus G at
temperatures TC and T*. As for the mechanical loss
near TC, the mechanism of the damping of low-fre-
quency elastic oscillations at the first-order phase tran-
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependences of (1) the internal friction
Q–1 and (2) the shear modulus G of a CsH2AsO4 crystal at
a heating rate of 0.5 K/min.

Fig. 2. Temperature dependences of (1) the internal friction
Q–1, (2) the shear modulus G, and (3) the spontaneous tor-
sion angle ϕs of the KD2PO4 crystal.
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Fig. 3. Temperature dependences of (1) the internal friction
Q–1, (2) the shear modulus G, and (3) the spontaneous tor-
sion angle ϕs of the KH2PO4 crystal.
PH
sition responsible for the peak in Q–1 was considered, in
detail, in [9, 12] and will not be discussed in this article.

To investigate the origin of the anomalies in Q–1 and
G at the temperature T*, measurements of Q–1(T),
G(T), and ϕ(T) were taken at different rates of temper-
ature change and different external mechanical strain
amplitudes, etc. To get rid of the influence of the sam-
ple prehistory on the values measured, the samples
were processed to achieve the same initial state. For this
purpose, after each measurement, the samples were
kept in a vacuum of about 10–2 torr in isothermal con-
ditions at room temperature for twelve hours.

Analyzing the results presented in Figs. 1–3, it
should be noted that the anomalies in Q–1 and G near T*
were observed in all the crystals studied. This fact sug-
gests that the mechanism responsible for the observed
anomalies is common for crystals of the KH2PO4
group. This mechanism is practically independent of
deuteration and isomorphic ion substitution, which
affect only the magnitude of the anomalies and the tem-
peratures at which they are observed.

It is seen from the figures that the peaks in Q–1 at
temperatures T* for different crystals correlate with the
softening of the shear modulus G. This softening has
the same character here as at the phase transitions at TC

but is slightly smaller in magnitude. A temperature hys-
teresis of 5 K is observed in Q–1 and G measurements
in a cycle of heating and subsequent cooling at a
1 K/min rate of temperature change. The temperature
dependences of Q–1 were studied at different frequen-
cies in the range from 6 Hz to 150 kHz. It was found
that the height of the peak at T* varies inversely with
frequency, while there is no appreciable shift in the Q−1

peak position with temperature. Such behavior of the
internal friction peak is characteristic of low-frequency
relaxation processes associated with phase transition
[12]. However, no peculiarities were observed, in the
vicinity of this Q–1 peak, in the temperature behavior of
the dielectric permittivity ε33 at a frequency of 1.5 kHz,
nor were any observed in that of the electrical conduc-
tivity. This reasoning will be discussed later.

We suggest that the peak of the mechanical loss at
T* is due to the fluctuation mechanism associated with
the nucleation of the new phase and the movement of
the phase boundary throughout a system of stoppers [9,
12]. Hence, for the case of sufficiently low oscillation

amplitudes of the sample, the height of the peak  is
given by the equation:

(1)

where m is the rate of the phase transformation (that is,
the specific volume of the substance undergoing the
phase transition per unit time), β is the effective volume
of the critical nucleus, G is the shear modulus, xs is the
jump in the spontaneous deformation at the phase tran-

Qm
1–

Qm
1– Gβxs

2

kT
-------------m

ω
----,=
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sition point, ω is the frequency, k is the Boltzmann con-
stant, and T is the temperature.

As can be seen from formula (1), the fluctuation
mechanism of Q–1 not only explains the peak height

 varying as the reciprocal of the frequency, but also

predicts the linear dependence of  on the rate of
temperature change V (proportional to m). Indeed, such

dependences of  on V were observed in the experi-
ment for all crystals investigated (see, for example,
Fig. 4 for a CDA crystal). The estimates show that the
effects observed are not associated with the tempera-
ture flattening over the sample volume due to the finite
value of thermal diffusivity nor with the influence of
thermoelastic deformations on the experimentally mea-
sured values of Q–1 and G. In actual fact, the largest
temperature difference ∆T along the sample radius r,
caused by the thermal diffusivity χ of the material, can
be estimated from the expression

(2)

Substituting the values of r = 1 mm, χ = 10–3 cm2/s [13],
and the rate V = 2.5 K/min (the largest observed in the
experimental conditions), we obtain ∆T = 0.1 K, which
is noticeably smaller than the Q–1 peak width which is
equal to ≅ 30 K. This temperature difference along the
sample thickness causes thermoelastic deformation

(3)

where αT is the coefficient of linear expansion. Putting
αT = 4 × 10–5 K–1 [13] at T = 300 K and ∆T = 0.1 K, we
obtain xT = 2 × 10–6, which is an order of magnitude
smaller than the deformation amplitudes used in the
experiment.

Formula (1) allows one to estimate the jump in the
spontaneous deformation xs at the phase transition tem-
peratures TC and T* by using the internal-friction
experimental data. We assume that the critical nucleus
volume is of the same order of magnitude as the size of
Känzig’s regions, β ≅  10–19 cm3 [14]. Substituting the
available experimental data in Eq. (1), we determine for
the CDA, DKDP, and KDP crystals the respective val-
ues of xs = 10 × 10–3, 5 × 10–3, and 1.5 × 10–3 at the TC

and xs = 3 × 10−3, 9.8 × 10–4, and 5 × 10–4 at the T*.

In accordance with Eq. (1), the low-frequency
internal friction at the first-order phase transition is
dictated by phase transition kinetics and, in the case of
isothermal measurements of Q–1, with the temperature
being fixed (V  0), the time dependences for Q–1

should be observed. An example of these dependences
for the CDA crystal is shown in Fig. 5. Similar depen-
dences were obtained for the KDP and DKDP crystals.
It has been recognized that Q–1(t) dependences are

Qm
1–

Qm
1–

Qm
1–

∆T
Vr2

2χ
--------.=

xT αT∆T /2,=
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approximated sufficiently by exponential functions of
the type

(4)

where  is the internal friction at the initial instant of

time,  is the internal friction at t  ∞, and τ is the
relaxation time.

The possibility of this approximation is confirmed
by the fact that the experimental points lie well enough
on the straight lines (the inset in Fig. 5) in the coordi-

nates  =  – )/(Q–1 – ) and time t.
The relaxation time τ, estimated by Eq. (4), decreases

Q 1– t( ) Q∞
1– Q0

1– Q∞
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Fig. 4. Temperature dependences of Q–1 near T* of a
CsH2AsO4 crystal at different heating rates V: (1) 0.5, (2) 1,

and (3) 2.5 K/min. The dependence of the  peak height
on the heating rate V is shown in the inset.
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shown in the inset.
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with a temperature rise, and the τ temperature depen-
dence obeys the Arrhenius equation

(5)

where τ0 is the preexponential factor depending only
slightly on temperature, k is the Boltzmann constant,
and U is the activation energy.

Calculating the experimental results using formula
(5) gives the value of τ0 = 1.6 min and the barrier height
U = 0.1 eV, which is close to the interaction energy of
a phase boundary and a point defect [12]. Thus, the Q–1

time dependences can be explained by the kinetics of
the interfacial boundaries driven by the diffusive redis-
tribution of point defects in a process of isothermal
annealing and by the movement of the interfacial
boundaries to the new, energetically more favorable
positions in the course of time.

The physical nature of the mechanical relaxation at
the first order phase transition implies that the rate of
the phase boundary displacement in the process of the
phase transition is limited by the thermal fluctuational
mechanism of overcoming the potential barriers cre-
ated by stoppers (point defects). In this case, the role of
overheating (or supercooling) in the occurrence of
internal friction is reduced to decreasing the height of
the potential barriers due to the pressure applied to the
phase boundary by the thermodynamically unstable
phase. Obviously, the potential barriers for the moving
interfacial boundary are created by its interaction with
point defects of the crystal lattice. Under the experi-
mental conditions, the Q–1 peak width in the tempera-
ture dependence is determined by the duration of the
phase transition, while the Q–1 peak shape reflects the
change in the phase transition rate with temperature.

The experimental data obtained suggest that, in the
crystals investigated, the peculiarities of the internal
friction and the shear modulus near T* are associated
with a new structural phase transition of the first order
above TC. This conclusion is also supported by the
investigations of the temperature dependences of the
sample spontaneous torsion angle ϕs in the torsion pen-
dulum (curves 3 in Figs. 2, 3). It is seen that a discon-
tinuous change occurs in ϕs in the paraelectric phase at
temperatures close to T*, as well as at the ferroelectric
phase transition point TC, the magnitude of the jump at
T* being noticeably smaller than that near TC.

As is known [15], in the ferroelectrics with a spon-
taneous shear strain xs occurring at TC, the occurrence
of this deformation in the absence of an external
mechanical stress results in spontaneous sample twist-
ing in the torsion pendulum as the temperature is varied
and passes through the phase transition point. In this
case, the angle of twist ϕs is equal to

(6)

τ τ0
U
kT
------ 

  ,exp=

ϕ s
3l
4a
------ 

  xs.=
PH
Here, l is the sample length and a is the cross-section
size of the sample.

The jump in the strain at the Curie point calculated
for a KDP crystal by using Eq. (6) is x6s = 1.4 × 10–3,
which is close to the value of x6s = 1.5 × 10–3 presented
in [16]. The jump in strain at the temperature T* as esti-
mated from the experimental value of the angle of the
twist has noticeably smaller values of x6 = 3 × 10–3,
8.5 × 10–4, and 2.5 × 10–4 for CDA, DKDP, and KDP
crystals, respectively.

Despite the fact that crystals of the KH2PO4 family
are well studied, there is no available data in publica-
tions supporting the existence of a phase transition at
temperatures close to T* and based on structural inves-
tigations. Therefore, it is unlikely that such a phase
transition, if it exists, occurs everywhere in the crystal
volume. Apparently, it occurs only in some local
regions, i.e., the foreign phase inclusions. This sugges-
tion is based on the results of KDP crystal investiga-
tions using a transition electron microscopy method
[17, 18], revealing inclusions of the rhombohedral
phase (the point symmetry group mm2) in the tetrago-

nal matrix ( m) at room temperature, well above TC.

The average size of the inclusions is about 500–4500 Å,
and the total volume of the inclusions is not large,
amounting to 1.5–5% in different crystals. We consider
that the anomalies of Q–1 and G discovered in this work
are associated with the structural phase transition in the
inclusions, while the macroscopic tetragonal matrix
symmetry remains unchanged. Inasmuch as the specific
volume of the inclusions is small, the dielectric permit-
tivity of this microheterogeneous system is mainly
determined by the dielectric properties of the matrix,
rather than by those of the inclusions, thereby explain-
ing the absence of these dielectric anomalies at the tem-
perature T*.

The existence of the phase transition at T* in the
inclusions of the phase with the orthorhombic symme-
try mm2 is supported by the orientational dependence
of Q–1 and G observed in the experiments. The peak of

the internal friction  and the softening of the shear
modulus G are not observed at an arbitrary sample ori-
entation relative to the crystallographic axes. The
anomalies of Q–1 and G are clearly pronounced near T*
only for the samples with the X orientation and are
completely absent for the samples with the Z orienta-
tion. The anomalous behavior of the elastic and inelas-
tic properties of X-oriented samples can be explained in
the following way. The external torsion stress produces
shear stress components σ5 and σ6 and, consequently, is
related to the parameter x6 of the transition. At the tor-
sion of Z-oriented samples, the components σ4 and σ5
appear, which do not involve x6; therefore, the anoma-
lies in Q–1 and G are absent near T*.
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Thus, there is a set of experimental data obtained in
this work: the existence of the peak of the internal fric-
tion Q–1 and the shear modulus G softening, which are
characteristic of the phase transitions; the hysteresis of
Q–1 and G during a cyclic temperature variation; the
slight dependence of the Q–1 peak position on fre-
quency; the orientational dependence of Q–1 and G; the
long-term mechanical relaxation in the isothermal sam-
ple kept in the temperature region of the Q–1 peak; and
the discontinuous change in the shear strain component
x6 estimated from the internal friction and the angle of
the spontaneous sample twisting in the torsion pendu-
lum. Altogether, these experimental data let us con-
clude that the phase transition occurs at the temperature
T* in the inclusions in the crystals studied with the

symmetry change mm  mm2. The reason for the
appearance of the orthorhombic phase inclusions in the
tetragonal matrix has not yet been established. There
are some suggestions [18] to the effect that small con-
centrations of uncontrolled impurities (Fe3+, Cr3+, Ca2+,
and Al3+) could create local deformations, resulting in
orthorhombic distortions of the crystal lattice. It is quite
possible that the different phosphate complexes

(HP , H5P2 , and H3PO4), which are always
present, even in carefully purified saturated water solu-
tions of KH2PO4 [19], could function like these impuri-
ties.
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Abstract—New experimental data on antiparallel-beam holograms recorded in LiNbO3, temperature fixation
of the recorded holographic gratings, and the spectral characteristic of a narrow-band (0.01 nm) interference
filter are reported. The effects of asymmetry in the diffraction efficiency and the emergence of satellites in the
transmission spectrum of the filter are observed. These effects are explained using the birefringence properties
of the crystal and the ability of holograms to transfer power between the beams in the course of recording.
© 2000 MAIK “Nauka/Interperiodica”.
The exposure of ferroelectric crystals to light causes
a change (∆n) in their refractive index [1]. Wide-range
applications of these materials in optical holographic
storage devices based on the above effect were pre-
dicted as early as at the beginning of the seventies.
These predictions have not been implemented com-
pletely because of a number of problems that have
defied solution, such as low sensitivity and photoin-
duced destruction of coherent light beams, which
accompanies the variation in ∆n. However, the recently
discovered possibility of using such materials for
developing ultra narrow-band interference filters can be
regarded as an important advancement in science and
technology. Specimens of such filters (with a transmis-
sion band of 0.01 nm) have already been constructed on
LiNbO3 crystals [2]. The conventional modern narrow-
band filters (∆λ ≥ 0.05 nm), which are used, for exam-
ple, in solar astronomy, contain up to 50 optical units
and weigh not less than ten kilograms. In contrast to the
traditional approaches, the LiNbO3-based narrow-band
filter is a small-size unit including 3–5 optical elements
and weighing less than one kilogram. The small size
and mass of filters based on ferroelectric crystals make
it possible to use them in space vehicles, in transmis-
sion lines operating on optical waveguide channels, and
for other purposes.

In the modern technology of interference filter prep-
aration, layers with different refractive indices are
deposited by sputtering. As a rule, several dozens of
such layers are used. The advantage of ferroelectric
crystals lies in the possibility of creating a three-dimen-
sional sinusoidal refractive index grating with practically
any period (or spacing Λ) and any number of cycles (or
layers). The spectral half-width (∆λ) of the filter is deter-
mined by the thickness (L) of the medium [3]:

(1)∆λ λ 2/2nL.=
1063-7834/00/4211- $20.00 © 22142
Here, n is the average refractive index of the layers, and
λ is the wavelength of light corresponding to the reflec-
tion maximum of the filter. It follows from Eq. (1) that
the spectral width of the filter depends on the crystal
thickness as 1/L; consequently, by varying L, we can
create a filter with any transmission spectral width.

In a ferroelectric crystal exposed to light, an electric
current

(2)

is generated [4]. This current is the sum of the photo-
galvanic (χβI), diffusion (Dχ∇ I), and conduction (σE)
currents. Here, χ, β, and D are the optical absorption,
photogalvanic, and diffusion coefficients, respectively;
σ is the conductivity; E is the electric field (photoin-
duced or applied to the crystal); and I(r) is the optical
intensity distribution. The current j leads to a spatial
redistribution of charges matched with the I(r) distribu-
tion, resulting in the emergence of an electric field
E(r) ∝  I(r). The induced field E(r) changes the refrac-
tive index due to the electrooptical effect: ∆nij = rijkEk .
The recording of the gratings of the refractive index is
carried out with the help of two coherent laser beams
(with the wave vectors k1 and k2). In the region where
the beams (which are characterized by the input inten-
sities I01 and I02) overlap, a periodic distribution of light
intensity is formed due to interference [3]:

(3)

where I0 = I01 + I02, m = 2  is the
modulation coefficient, and K12 = k1 – k2 is the wave
vector of the grating (the optical grating and the holo-
graphic grating being recorded).

The recorded grating is erased during filter opera-
tion under subsequent exposure of the crystal due to
photoconduction. However, it was proved long ago [5]

j χβI Dχ∇ I σE+ +=

I I0 1 m K12r( )cos+( ),=

I01 I02/ I01 I02+( ),
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that the grating can be fixed; i.e., the erasure time can
be increased significantly. The model of fixation, which
remains popular even now, was proposed in [5] and
supported later by other authors. The process of fixa-
tion is described in this model as follows. The current j
emerging as a result of exposure to light (formula (2))
is due to photoexcited electrons. In their motion, photo-
electrons are trapped at relatively deep energy levels.
Illumination by light having the distribution of Eq. (3)
forms a sinusoidal profile of the occupancy of traps
(becoming donors)—an “electron matrix.” Subsequent
heating of the crystal (after recording) leads to domina-
tion of ionic conductivity. An optically induced “elec-
tron matrix” is screened by ions; i.e., an “ion matrix” is
also formed. After the crystal is cooled to the initial
temperature, exposure to light with a uniform intensity
leads to equalization of the electron population due to
nonuniform absorption of the “electron matrix” and
diffusion processes. This gives rise to fields produced
by the distribution of ions, i.e., by the “ion matrix,”
which remains unaltered upon exposure to light.

In this paper, we present the experimental data con-
cerning the recording of holographic filters in LiNbO3
crystals. The factors affecting the quality of the inter-
ference gratings being recorded, the thermal fixation,
and the spectral parameters of the gratings, which have
rarely been discussed in the literature, are considered.

1. SOME PARAMETERS
OF HOLOGRAPHIC GRATING RECORDING

IN ANTIPARALLEL BEAMS

We studied pure and Fe-doped monocrystalline sam-
ples of LiNbO3 by recording reflection holograms in
counter-propagating beams (the angle ϕ between the
beams was equal or close to 180°). The wavelength of the
recording beams was λ = 514.5 nm, and the beam inten-
sities were close (I01 ≈ I02 ≈ 0.5 W/cm2). The minimum
spacing of the grating Λ = λ/(2nsinϕ) = 112 nm. The
grating vector K12 was parallel to the Z axis (K12 || Z,
where Z is a third-order axis parallel to the vector of the
spontaneous polarization of the crystal).

The diffraction efficiency η of the gratings being
recorded increased with the concentration of the Fe
impurity. For example, for a crystal thickness Lz along
the Z axis equal to 3 mm, the diffraction efficiency in
crystals of the rated purity was η ≤ 0.01, while in Fe-
doped crystals with 0.01 and 0.1 wt % impurity concen-
trations, the value of η attained 0.3 and 0.8, respec-
tively. In these Fe-doped crystals, the diffraction effi-
ciency η becomes the same (0.8–0.9) upon an increase
in the sample thickness to 10 mm. In nominally pure
crystals with Lz = 10 mm, the value of η does not exceed
0.01–0.05.

It is worth noting that the diffraction efficiency is
strongly asymmetric: for reading beams with the wave
vector k– directed opposite to the Z axis (or having a
negative projection on this axis), the value of η consid-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      200
erably exceeds (by a factor of 3) its value for a reading
beam with the vector k+.

For relatively long periods of exposure, the record-
ing beam power is transferred to the beams reflected in
the crystal from its back faces. The most significant
transfer (up to 80%) is carried out from the beam with
the wave vector k+.

2. FIXED HOLOGRAPHIC GRATINGS

We investigated LiNbO3 crystals doped with Fe
(0.01–0.1 wt %). Fixation was carried out by the ther-
mal method: after hologram recording, the crystal was
heated until diffraction practically completely disap-
peared, after which the heater was disconnected, and
the crystal temperature returned to the initial value as a
result of natural heat exchange. The gratings were
restored by exposing the crystal to white light from a
quartz incandescent lamp or to a laser beam incident on
the crystal at an angle other than Bragg’s angle or hav-
ing a wavelength differing from the recording wave-
length. The experimental setup allowed control of the
diffraction intensity during heating, cooling, and restor-
ing irradiation.

It was found that fixation takes place at temperatures
of heating from 90 to 180°C. For complete erasure of
the hologram, the crystal must be held in the thermostat
approximately for an hour at 90°C, or for several min-
utes at 180°C. The experiments were made on five
groups of crystals with different concentrations of Fe
(from 0.01 to 0.1 wt %).

The value of η of a fixed grating decreases as com-
pared to its initial value by a factor 1.2–4 depending on
the thermal regime and recovery conditions, as well as
on the Fe concentration in the samples. Good recovery
takes place in crystals with a high concentration of Fe.
However, in heavily doped crystals (with 0.1 wt % Fe),
the fixed grating relaxes rapidly due to dark conductiv-
ity (the characteristic time is of the order of several
hours at room temperature). Repeated exposure of such
a crystal to homogeneous light restores the hologram,
and the process of relaxation and restoration can be
repeated many times.

The spectral characteristics of diffraction at fixed
gratings were investigated according to the following
diagram (Fig. 1). A polychromatic light beam is colli-
mated into a parallel beam (k0) and is directed to a
LiNbO3 crystal with a recorded grating. Light satisfy-
ing the Bragg condition (kd(λ) = k0(λ) + K12) is dif-
fracted into a parallel beam with kd . Light beams that
do not satisfy Bragg’s relation for the recorded grating
are transmitted through the crystal. Light diffracted at
the grating is passed through the spectrometer to a pho-
todetector. The normal ns to the crystal face forms an
angle with the grating vector K12, which ensures com-
plete spatial separation of the diffracted beam and the
beam reflected from the surface.
0
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We will present below the spectral characteristics
for a filter recorded in a sample of diameter 12 mm, Lz =
10 mm, and Fe concentration 0.01 wt %. The obtained
diffraction efficiency of the fixed grating was ≥60%. On
account of absorption in the crystal and reflection from
the surfaces, the diffracted beam contains up to 15% of
the light incident on the crystal and satisfying Bragg’s
condition. An incandescent lamp served as the source
of the initial light. The spectra of light diffracted in the
filter were measured on a two-grating spectrometer
DFS-24.

When the crystal is illuminated by unpolarized white
light, the spectrum of the diffracted beam displays two
peaks (Fig. 2): the principal peak (λ = 514.5 nm) and an
auxiliary peak displaced by 0.7 nm. Light polarizations
in these beams are mutually perpendicular, and the inten-
sities are approximately equal (the difference between the
two peaks in Fig. 2 is due to the polarization selectivity of
DFS-24). When the crystal is exposed to polarized light,
only one peak is observed (see Fig. 2). The widths of
the peaks shown in Fig. 2 were of the order of the
instrumental resolution of the DFS-24 device, which

LiNbO3

kd

ns

k0 K12

Fig. 1. Optical diagram of diffraction at a holographic filter.
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Fig. 3. Spectrum of the diffracted beam on the logarithmic
scale for a polarized light source.
PH
was determined independently from the spectral
response of the instrument to a laser line of 514.5 nm.
According to estimates, the spectral width of the reflec-
tion line of the filter, taking into account the instrumen-
tal broadening, does not exceed 0.01 nm. In Fig. 3, the
spectrum of diffracted light is shown on a logarithmic
scale to characterize the efficiency of the suppression of
the light that does not satisfy Bragg’s condition near the
diffraction maximum. It can be seen that the suppres-
sion of the intensity of the light detuned from the dif-
fraction maximum by 0.1 nm is not worse than three
orders of magnitude.

By varying the angle of incidence (Q) of the light
beam on a crystal with a recorded holographic filter, we
can displace the diffraction maximum of the filter in
accordance with Bragg’s condition for reflection holo-
grams [3]

(4)

The theoretical curve presented in Fig. 4 shows that the
spectral shift of the diffraction maximum (λread) can be
as large as 10 nm or even larger. This possibility was
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Fig. 2. Spectrum of the diffracted beam for an unpolarized
(dashed curve) and a polarized (solid curve) light source.
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Fig. 4. Recording of the wavelength λ of the diffracted light
as a function of the angle of incidence for a grating recorded
in antiparallel beams with the wavelength 514.5 nm.
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verified experimentally by analyzing the diffraction
spectrum of the filter for different angles of incidence
of the initial polychromatic light on the crystal. Figure 5
contains experimental data on the spectral characteris-
tics of filters for three different angles Q.

We also studied the displacement of the spectral line
of the filter under the action of an external field. It was
found to be ±0.07 nm in a field of ±10 kV/cm applied
along a direction perpendicular to the Z axis, and it is
equal to zero if the field is applied along the Z axis. The
result matches with the calculations based on the
known electrooptical coefficients (this is clear from the
analysis carried out in [6]). The choice of the recording
geometry (i.e., K12 || Z) is optimal for obtaining a large
η and for a considerable detuning from the effects of
photoinduced scattering of light. However, the effect of
the electric field on the position of the diffraction peak
of the filter in this geometry is minimum as compared
to some other orientations of K12 relative to the crystal-
lographic axes of the crystal.

The results presented in Figs. 2, 3, and 5 were
obtained on the grating which was recorded under the
condition K12 || Z, and the polarizations of the recording
beams were perpendicular to the plane of incidence
(ϕ ≠ 180°). If one of these conditions is violated, a sec-
ond additional peak appears in the long-wave spectral
range. Light polarizations of the right and left satellites
are mutually perpendicular. The half-width of the spec-
tral reflection line of the filter can increase considerably
if the exposure time increases to the region of a slow
increase in η(t). Figure 6 illustrates the effect of these
deteriorating factors on the spectral properties of the fil-
ter. In the course of the recording of this filter, the dif-
ference K12 was not parallel to Z, and they did not lie in
the same plane, additionally the exposure time was tri-
pled as compared to its optimal value.

3. DISCUSSION OF RESULTS

Here, we will explain the experimental results which
do not require a detailed discussion of the mechanisms of
recording and fixation on a microscopic level.

It follows from the results of experiments that the
recording in principal beams can be worse (have a
smaller value of η) than in the principal beam and the
beam reflected from the back face. This is due to sev-
eral factors. One of them is associated with the instabil-
ity of the light wave phases in the bulk of the crystal.
The phases of the principal beams vary stochastically
on account of the relative mechanical vibrations of the
elements of the optical system and the convective air
flows, which are different in the regions where these
beams propagate. This leads to spatial shifts of the
interference peaks and, accordingly, to a decreased
interference contrast and a decreased amplitude of the
grating being recorded.

The interference pattern of the principal beam and
the beam reflected from the back face does not experi-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
ence any spatial displacement in the crystal. It is well
known that antinodes (or interference maxima) are at a
fixed distance from the reflecting face irrespective of the
displacement of the crystal in any plane (except for rota-
tional vibrations). Such a standing optical grating can eas-
ily be recorded without taking special measures for pro-
tection from the mechanical vibrations of the elements of
the optical system and the convective flows of air.

There exists one more factor that affects simulta-
neously the value of η, its asymmetry, and the spectral
resolution of the grating being recorded. It is associated
with the transfer of power between the beams partici-
pating in the recording of the gratings. It is well known
that the grating ∆nhcos(K12x – ψ) is recorded in LiNbO3
under the action of light with the distribution I0cosK12x.
It is the sum of two gratings: ∆nhcos(K12x – ψ) =

∆nncosK12x + ∆nssinK12x, with ∆nh = . One
of them, viz., the undisplaced grating (∆nncosK12x),

∆nn
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Fig. 5. Optical diffraction spectra for three different angles
of incidence of a polychromatic beam.

Fig. 6. Spectrum of the beam diffracted at a grating recorded
under the following conditions: the difference K12 is not
parallel to Z and does not lie in the same plane with Z (solid
curve). The dashed curve corresponds to the resolution of
the spectrometer.
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coincides in phase with the optical interference grating,
while the other grating (∆nssinK12x) is displaced by a
quarter of the period (Λ/4). On the first grating, a time-
dependent transfer of power is possible, but only if
I01 ≠ I02 at the input surface of the crystal. The beam
intensities I1 and I2 at the output surface can be written
in the form (ηn is the diffraction efficiency of the undis-
placed grating)

In the case of a displaced grating, an additional term

±2  appears [7], which describes the
interference energy transfer emerging as a result of the
overlapping of two beams propagating in space with a
phase shift equal to 0 or π. In the case of an undisplaced
grating, the principal beams with intensities I01(1 – η)
and I02(1 – η) and the diffracted beams (I02η, I01η) coin-
ciding with them differ in phase by ±π/2.

The interference transfer of power is asymmetric
relative to the Z axis: it is positive for k– beams and neg-
ative for k+ beams. This asymmetry considerably
affects the characteristics of recording in antiparallel
beams. It was noted long ago [8] that, when a crystal is
exposed to a single beam along the Z axis, the k+beam
can be completely transformed into the reflected 

beam, and vice versa, the reflected  beam can be
transformed into the principal k– beam. These are the
effects of induced reflection and antireflection. In the
former case, a low-intensity (reflected) beam is ampli-
fied, leading to the formation of an optical grating with
improved contrast, and the grating being recorded is
characterized by a large value of η. In the steady state,
instead of passing through the crystal, the main beam k+
can penetrate the crystal to a depth Lz at which the con-
dition (ηs ≈ 0.5) of a complete transfer of power is sat-
isfied. The beam k– is transmitted through the crystal
and even is slightly intensified due to the transfer of the
power of the reflected beam  to it. The asymmetry in
the intensity variation of the k+ and k– beams on the
k+ −  and k– –  gratings leads to the read-out asym-
metry in η. It should be borne in mind that a reflected
beam is also present in the readout. This means that the
interference transfer of power between the k+ and k–
beams persists during the readout. During the record-
ing, the transfer of power between the principal beams
also takes place. It can be noted that, for equal beam
intensities at the entrance to the crystal, the transfer of
power leads to an intensity disbalance and, accordingly,
to a decrease in the interference contrast and in the
amplitude of the grating being recorded. The recording
on the principal grating k+ – k– = K12 competes with the
recording on the auxiliary grating k+ – . When more
exact conditions (the absence of a stochastic phase vari-
ation and an increase in the interference pattern con-

I1 I01 1 ηn–( ) I02ηn; I2+ I02 1 ηn–( ) I01ηn.+= =

I01I02 1 η s–( )η s

k–'

k+'

k+'

k–' k+'

k–'
PH
trast in the course of the transfer of power) are satisfied,
the grating k+ –  dominates in the recording, starting
from a certain instant. The suppression of the k+ beam
caused by three factors (absorption and the transfer of
power due to the two gratings k+ –  and k+ – k–) leads
to a decrease in its intensity with the increasing pene-
tration depth. As a result, the effective thickness of the
recorded lattice (k+ – k– = K12) decreases, and the spec-
tral resolution width increases in accordance with
Eq. (1) (see Fig. 6).

It can be seen that the displaced grating leads to
undesirable effects in the development of holographic
interference filters. Its contribution can be minimized
by using the optimal exposure time for the crystal dur-
ing the recording of the holographic grating (at the ini-
tial instants of exposure, the recording of the principal
grating k+ – k– = K12 prevails in view of the larger mag-
nitude of the interference maxima), by creating an anti-
reflection coating (which reduces the intensity of the
reflected beams), and by hermetically sealing or evacu-
ating the optical system and eliminating its mechanical
vibrations (which suppress the stochastic oscillations
of the phases of the principal beams).

The reasons behind the emergence of satellites in
the spectrum of diffracted light are associated with the
anisotropic properties of the crystal, viz., electrooptics
and birefringence. Let us consider the case when the
vector K12 of the grating being recorded is parallel to
the axis Z and ϕ ≠ 180°. Depending on the direction of
the polarization of the light beams, the following three
cases are possible.

(1) Polarization is perpendicular to the plane of inci-
dence of the beams relative to the Z axis. By definition,
these are beams with ordinary polarization (eo). They

are used to record the grating with the vector  =

 – .

(2) When the polarization vector lies in the plane of
incidence, the beam polarization is extraordinary (ee).

The grating being recorded is  =  – .

(3) In the intermediate case, when the conditions of
the first or second case are not satisfied for the polariza-
tion vector, the recording beams contain waves with the
eo and ee polarizations. The gratings being recorded are

 and . The same situation is realized when the
vector K12 is not parallel to Z.

When Bragg’s conditions are satisfied, light beams
with eo, as well as ee, polarization can experience dif-
fraction on the same grating. If Bragg’s condition (4)
for the angle is satisfied for the eo component of a beam
of unpolarized white light, Bragg’s condition for the ee
component of the beam is satisfied at another wave-
length in accordance with (4). As a result, the readout
in white light results in two diffraction peaks with

k–'

k–'

K12
o

k1
o k2

o

K12
e k1

e k2
e

K12
o K12

e
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mutually perpendicular polarizations (λo and λe).
A beam with the polarization ee or eo will undergo dif-
fraction with the same, ee or eo, polarization.

The direction of the displacement of the second
peak from the principal peak at λo (at which recording
was carried out) can be determined from the equality
Λo = Λe, since diffraction occurs on the same grating.
This equality and Eq. (4) (where we put Q ≈ π/2) lead
to λene/no = λo. Lithium niobate is a negative crystal,
i.e., no > ne. It can be seen that the λe is shifted relative
to λo towards the short-wave region. If, however, λe is
taken as the wavelength corresponding to the principal
peak, the displacement takes place in the opposite
direction. When the grating is recorded in beams with
an intermediate polarization (between ee and eo), two

gratings are recorded:  and . In accordance with
the above conclusion, the diffraction on these gratings
results in the principal line (λo and λe) and in two satel-
lites: the short-wave line with the polarization ee and
the long-wave line with the polarization eo. In the prin-
cipal line, light must be depolarized (in view of the
presence of light with ee and eo polarizations).

Thus, we have analyzed experimentally the spectral
characteristics of holographic filters based on LiNbO3.
It was proved that the characteristics of the filter can
change depending on the recording and reading condi-
tions.

The narrow-band (∆λ ≤ 0.01 nm) interference filter
created on the LiNbO3 crystal as a result of our investi-
gations is being tested at the Institute of Solar and Ter-
restrial Physics, Siberian Division, Russian Academy
of Sciences. It is used for studying the intensity distri-
bution of some spectral lines emitted from the Sun’s
surface.
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Abstract—The nonmonotonic behavior of electron emission intensity induced in a surface layer of a ferroelec-
tric electret by soft x-ray irradiation with an injected charge depth is predicted using a model of an accelerating
electric field. The predicted behavior is in agreement with the results of the model experiments. © 2000 MAIK
“Nauka/Interperiodica”.
The electron emission induced from the surface of
ferroelectric electrets by soft x-ray radiation has been
called anomalous electron emission (AEE) due to some
qualitative specifics in the physical behavior observed
therein [1–3]. In accordance with the theoretical model
proposed in [1], AEE is governed by the potential dif-
ference accelerating electrons in a crystal surface layer
and favors their emission into a vacuum. The corre-
sponding behavior of the electron potential energy ϕ(z)
near the surface is shown in the inset of Fig. 1 [1]. The
effect is related to the nonlinearity of the equation of
state of a ferroelectric, E(P), which here indicates the
dependence of an electric field E on polarization P. The
effect is observed only if the total injected charge meets
the condition σ > P. In accordance with the experimen-
tal evidence [1–3], this effect can result in an increase
in the emission current by more than two orders of
magnitude from its value for a neutral surface [4, 5]. It
follows from the accelerating-field model [1] that the
emission intensity depends on the spatial distribution
n(z) of the injected electron charge, particularly, on the
depth of its occurrence in the surface layer, because this
depth determines the width z0 of the region of the
anomalous behavior of the potential ϕ(z) (Fig. 1) and
the proximity of the strong electrical field region to the
surface. As is shown below, this could be used for the
direct experimental verification of the theoretical pre-
dictions in the proposed model.

We assume that the model dependence of n(z) has
the form

(1)

therefore, there is a charge maximum at a distance a
from the crystal surface. At a < 0, the charge density
decreases monotonically with an increasing distance

n z( )
σ∞

π
------ γ

z a–( )2 γ2+
-----------------------------;=
1063-7834/00/4211- $20.00 © 22148
from the surface to the crystal bulk. The values of σ∞
and γ are the model parameters.

The polarization distribution P(z) in a ferroelectric
is determined approximately by the expression [6]

(2)P z( ) zn z( )d

0

z

∫≈

0 4 8 –z

–1

0

1

E
–

ϕ(z)

0 z0 z

1

2

Fig. 1. Behavior of the normalized electrical field  = E/Ec

in a surface layer of an electret for σ∞/Ps = 2 and  ≡ a/γ =
(1) 5.0 and (2) 1.0 (  = z/γ). The schematic behavior of the
potential ϕ(z) in accordance with [1] is shown in the inset.

E

a

z
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or, allowing for (1),

(2a)

where  = z/γ,  = a/γ, and  = P/Ps.

For the equation of state  = 

(Ec is the coercive field) [6], the electrical field behavior
in the surface layer is shown in Fig. 1 for two values of
the parameter a (the field sign is consistent with the def-
inition of the potential ϕ). As the parameter a
decreases, the potential peak and the region of the
strong electrical field approach the surface, which
should lead to an increase in the emission intensity.
However, a more detailed analysis shows that the
dependence of these quantities on a is not monotonic.
Specifically, from expression (2a), allowing for the
condition P(z0) = Ps for z0(a), we find

, (3)

where a0 = – ).

The dependence z0(a) (Fig. 2) has a minimum at a =
amin = , the minimum being equal to

 = 2amin. The value of z0 decreases with increasing

σ∞, while at a  a0, we have z0  ∞. For  < a0,
the total injected charge in the crystal is σ(a) < Ps. There-
fore, there is no region of the anomalous potential near the
surface and, hence, the conditions for the anomalous elec-
tron emission are not met [1]. The position of the electric-
field extremum is also determined by expression (3), in

which the substitution Ps  Ps/  should be done in
the a0 definition. The peculiarities described in the
behavior of the potential ϕ(z) in the surface electret
layer must result in the nonmonotonic dependence of
the anomalous electron emission intensity on the posi-
tion of the maximum a of the injected charge.

This effect is observed in the model experiments.
The results of these experiments for PbTiO3-based
ceramic samples PKR-70, which are polarized using
the method described in [7], are shown in the inset of
Fig. 2: when the surface layer is mechanically removed,
layer by layer the emission integral intensity I as a func-
tion of the thickness d of the layer removed has two
maxima. The dependence I(d) qualitatively agrees with
the predictions made above using the model of the
accelerating electric field. Moreover, this dependence
suggests that there are two or more maxima in the dis-
tribution n(z) of the injected charge in the surface layer
of the ferroelectric electret. The influence of the
ceramic microgranular structure on this effect is pres-
ently under investigation.

P
σ∞

πPs

--------- z a–( )arctan aarctan+{ } ,≈

z a P

E E/Ec≡ 3 3
2

----------P p2 1–( )

z0
1 a2+
a a0–
--------------=

π( Ps/σ∞cot

π(tan Ps/2σ∞ )

z0
min

a

3
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In concluding, we note that the analysis presented
above is valid for the case where the state of the sample
is uniform over its plane. To investigate the problem of
the stability of this state and the closely related problem
of the description of the AEE spectrum shape [1–3], a
more general theoretical approach is necessary, some
aspects of which were considered in [3]. The important
aspect of these investigations is, in particular, the
description of the shape of the AEE spectrum, whose
width may be as large as several hundred electronvolts
[1–3]. The similarity in the spectrum shape of the elec-
tron emission measured from cold cathodes [8, 9] and
of the AEE raises questions on the nature of the phe-
nomena to be compared.
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Abstract—The paper is devoted to the calculation of renormalization-group (RG) functions in the O(n)-sym-
metry two-dimensional model of the λϕ4 type in the five-loop approximation and to an analysis of the critical
behavior of systems described by this model. Five-loop expansions for the β function and the critical indices
are determined in bulk theory. They are summed up using the Padé–Borel and Padé–Borel–Le Roy methods,
making it possible to optimize the summation procedure and to estimate the accuracy of the obtained numerical
values. It is shown that in the Ising (n = 1) case, as well as in other cases, the inclusion of the five-loop contri-
bution to the β function displaces the coordinate of the Wilson fixed point only insignificantly, leaving it outside
the interval formed by the results of computations on lattices; even “spreads” of the error in the renormalization
group and lattice estimates do not overlap. This discrepancy is attributed to the effect of the nonanalytic com-
ponent of the β function, which cannot be determined in perturbation theory. A computation of critical indices
proves that, although the inclusion of the five-loop terms in the corresponding RG expansion slightly improves
the concordance with the exact results, the nonanalytic contributions are apparently also significant in this case.
© 2000 MAIK “Nauka/Interperiodica”.
The renormalization group (RG) method is one of
the most important analytical tools applied at present
for a theoretical analysis of critical phenomena. It
proved to be exceptionally efficient as applied to three-
dimensional systems both for determining the quantita-
tive characteristics of the critical behavior and for ana-
lyzing qualitative features of phase transitions. The cal-
culation of multiloop RG expansions for an O(n)-sym-
metry model of the λϕ4 type and their processing with
the help of various methods of summation made it pos-
sible to obtain highly accurate values of critical indices,
critical-amplitude ratios, and renormalized coupling
constants [1–9] used as standards for comparing the
predictions of the theory with the results of physical
and computer experiments.

On the other hand, the advances of the RG method
in the theory of phase transitions, which are quite obvi-
ous, lack sufficient theoretical substantiation. Indeed,
all observables can be presented in this case in the form
of a diverging power series in dimensionless renormal-
ized coupling constants which are not small in the crit-
ical region. The construction of various iterative proce-
dures on the basis of diverging RG expansions, the best
of which exhibit rapid convergence and lead to match-
ing numerical results, simplifies the problem, but natu-
rally does not solve it. In this situation, alternative
methods of verification of the reliability and efficiency
of the RG method (primarily, its testing on certain
exactly solvable models) become especially significant.

The two-dimensional Ising model, describing criti-
cal phenomena in a number of real physical objects, is
1063-7834/00/4211- $20.00 © 22151
a well-known example of an exactly solvable model of
phase transitions. It is generally accepted that in the
critical region this model is thermodynamically equiv-
alent to the two-dimensional scalar theory of the λϕ4

type, and hence its critical behavior can be analyzed
using the RG method in analogy with three-dimen-
sional systems. Quite recently, exact values of asymp-
totic critical indices were also determined for a family
of two-dimensional models corresponding to confor-
mal-invariant theories [10–12]. These models are charac-
terized by n-component order parameters with nonintegral
values of n, forming an infinite sequence converging to the
point n = 2. They form a natural basis for further testing of
the RG method in phase-transition theory.

Another circumstance stimulating the study of two-
dimensional models by using the RG technique is that
not all of the universal parameters characterizing their
critical behavior are known or can be determined from
the exact solutions obtained. As a matter of fact, these
solutions are valid either in a zero field or only at the
critical point, and hence they cannot be used, for exam-
ple, to find the critical index of corrections to scaling ω
or the renormalized dimensionless coupling constants
g2n appearing in the equation of state (a detailed analy-
sis of questions associated with this problem can be
found, for example, in [13, 14]). At the same time, the
recent renormalization-group calculation of the univer-
sal value of the vertex g6 for the two-dimensional Ising
model [15] and a comparison of the result obtained
with the lattice analogs [16, 17] proved that the RG
method can be sufficiently efficient in such cases.
000 MAIK “Nauka/Interperiodica”
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It should be noted that in the physical-dimensional-
ity space the field-theoretical RG method was applied
for the first time to the two-dimensional Ising model
more than two decades ago. In the classical work [1],
the RG functions of a two-dimensional model of the
λϕ4 type with n = 1 were calculated in the four-loop
approximation. The summation of the obtained RG
expansions by using the Padé–Borel–Le Roy method
led to estimates of “large” critical indices γ and ν,
which were found to be in accord with the Onsager val-
ues. However, the values 0.16, 0.08, and 0.06 obtained
for “small” indices α, η, and β differ significantly from
the exact values (0, 1/4, and 1/8). In addition, the com-
paratively small number of terms in the RG series and
their stronger convergence than in the 3D case deterio-
rated the accuracy of the numerical results: the values
of the corresponding “spreads” were found to be
between ±0.2 and ±0.6 [1]. The application of more
complicated summation methods [2] based on the
Borel–Le Roy transformations and on the conformal
mapping technique slightly improved the situation; the
estimates α = 0.06 ± 0.24, η = 0.13 ± 0.07, and β =
0.08 ± 0.26 were obtained for small indices, but their
difference from the exact values still remained too
large, and the accuracy was quite low.

This work aims at the calculation of the RG func-
tions in a two-dimensional O(n)-symmetry model of
the λϕ4 type in the five-loop approximation. These
functions will be determined for an arbitrary n. Sum-
mation of the RG expansions will allow us to determine
the coordinate of a nontrivial fixed point and the critical
indices for the cases n = 1 and 0, which are interesting
from the physical point of view and correspond to lay-
ered Ising ferromagnets and polymers, as well as for an
exactly solvable model with n = –1. The article has the
following structure. Section 1 is devoted to determining
the RG expansions for the β function and critical indi-
ces. In Section 2, the Padé–Borel–Le Roy method of
summation of the expansion of the β function is used to
calculate the coordinate of a nontrivial (Wilson) fixed
point  and the index ω of corrections to the scaling.
Padé’s approximants of several different types are used
in this case, and the summation procedure is optimized.
Section 3 contains an analysis of asymptotic critical
indices for the above values of n, a comparison of the
numerical results with the exact values and with the
data of calculations on lattices, and a discussion of the
efficiency of the field-theoretical RG method as applied
to problems of the type under consideration.

1. FIVE-LOOP EXPANSIONS 
FOR THE β FUNCTION AND CRITICAL INDICES

Thus, the Hamiltonian of the model under consider-
ation has the form

(1)

g4*

H x2 1
2
--- m0

2ϕα
2 ∇ ϕα( )2+( ) λ

24
------ ϕα

2( )2
+ ,d∫=
PH
where ϕa is the real n-component vector field, the

square of the “bare mass”  is proportional to T –

, and  is the phase transition temperature disre-
garding order parameter fluctuations.

We will calculate the β function and critical indices
in the framework of bulk theory. In Green’s function,
the vertex part and the total three-leg vertex are
assumed to be normalized for zero external momenta
according to the conventional procedure

(2)

Since four-loop expansions for the β function and crit-
ical indices for n = 1 are known [1], we must obtain the
corresponding series for arbitrary n and then calculate
the five-loop contributions. The solution of the first
problem is not complicated by any difficulties, since the
combinatorial factors, tensor convolutions, and the
numerical values of integrals of all one-, two-, three-,
and four-loop Feynman diagrams were determined ear-
lier [18]. Conversely, the integrals corresponding to
five-loop vertex and mass diagrams have not been cal-
culated for the 2D case and will be calculated here for
the first time. Without going into the details of this
computation, we consider the most significant aspects
of the analysis.

The five-loop contribution to the total four-leg ver-
tex is specified by the sum of 124 topologically differ-
ent diagrams, which are compiled in [18]. Twenty-
seven diagrams have a trivial structure in the sense that
their integrals are the products of the integrals of lower-
order diagrams. Several dozens of diagrams correspond
to integrals which can easily be evaluated with the help
of a computer, since they can be reduced to single or
double integrals. However, the calculation of triple and
more complex integrals cannot be carried out using
standard packages and requires the application of
appropriate programs, which were specially developed
for this purpose. The calculation of 31 five-fold and
three seven-fold integrals was the most time-consum-
ing. The latter were evaluated to within four decimal
places, but the relative total contribution of these three
diagrams to the five-loop term was approximately equal
to 2.5%. Because the remaining diagrams were calcu-
lated with errors that were several orders of magnitude
lower, the accuracy of the final result was better than to
five decimal places. As a matter of fact, the accuracy
proved to be still higher, since the experience of per-
forming operations with our programs shows that the
error in such computations is actually an order of mag-
nitude smaller than that declared by the corresponding
option. For this reason, we will henceforth write the
five-loop contribution to the β function to within six
decimal places.

m0
2

Tc
0( ) Tc

0( )

GR
1– 0 m g4, ,( ) m2, ∂GR

1– p m g4, ,( )

∂p2
----------------------------------

p
2 0=

1,= =

Γ R 0 0 0 m g, , , ,( ) m2g4, Γ R
1 2,( ) 0 0 m g4, , ,( ) 1.= =
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Thus, the expansion of the β function in the model
with the Hamiltonian (1) has the form

(3)

The calculation of five-loop RG expansions for critical
indices also required the computation of quite a family
of multiple integrals, which turned out to be more com-
plicated than in the case of the β function. Eventually,
the following expressions were obtained for the indices
γ and η:

(4)

(5)

β g( )
2

---------- g– g2+=

–
g3

n 8+( )2
------------------- 10.33501055n 47.67505273+( )

+
g4

n 8+( )3
------------------- 5.0002759n2(

+ 149.1518586n 524.3766023+ )

–
g5

n 8+( )4
------------------- 0.08884291n3 179.6975910n2+(

+ 2611.154798n 7591.108694+ )

+
g6

n 8+( )5
------------------- 0.00407946n4– 80.3096n3+(

+ 5253.56n2 53218.6n 133972+ + ).

γ 1– 1
n 2+
n 8+
------------g

g2

n 8+( )2
------------------- n 2+( )3.3756289+–=

–
g3

n 8+( )3
------------------- 4.6618848n2(

+ 34.41848329n 50.18942749+ )

+
g4

n 8+( )4
------------------- 0.31899304n3 71.70330240n2+(

+ 429.4244948n 574.5877236+ )

–
g5

n 8+( )5
------------------- 0.0938051n4 85.4975n3+(

+ 1812.19n2 8453.70n 10341.1+ + ).

η g2

n 8+( )2
------------------- n 2+( )0.91708597=

–
g3

n 8+( )3
------------------- n 2+( )0.05460898

+
g4

n 8+( )4
------------------- 0.09268446n3– 4.05641051n2+(
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Here, as in the previous publications [1–3], instead of
the renormalized coupling constant g4, we used the
dimensionless invariant charge proportional to it:

(6)

which, in contrast to g4, does not tend to zero as n  ∞,
but attains a finite value equal to unity.

2. THE COORDINATE OF WILSON’S FIXED 
POINT IN THE FIVE-LOOP APPROXIMATION

The values of indices and other universal parameters
characterizing a phase transition are determined by the
coordinate of Wilson’s fixed point g*, which is a non-
trivial solution to the equation β(g) = 0. Like other
series of the renormalized perturbation theory, the
expansion obtained by us for β(g) is asymptotic; in
order to find g*, the series in Eq. (3) must be reduced to
a convergent one, i.e., subjected to a rearrangement of
its terms. This is usually done using the Borel–Le Roy
transformation

(7)

In order to evaluate the integral in Eq. (7), the Borel
transform F(y) of the required function must be contin-
ued analytically beyond the convergence range. To this
end, we can use Padé’s approximants [L/M], which are
the ratios of polynomials PL(y) and QM(y) of the Lth and
Mth degree, respectively, whose coefficients are
defined unambiguously if the sum L + M + 1 coincides
with the number of the known terms of the series, and
QM(0) = 1. It was found that the best approximating
properties are observed for the diagonal Padé approxi-
mants, for which L = M, or approximants close too
them (see, for example, [19]). However, the number of
roots, i.e., the number of approximant poles in the com-
plex plane, increases with the degree of the denomina-
tor M. If at least some of these poles are close to the real
semi axis y > 0, or, which is still worse, lie on this semi
axis, the corresponding approximant becomes unsuit-
able for the summation of the series. In actual practice,
this considerably limits the degree of the denominator
from above and narrows the choice of admissible
approximants. On the other hand, the presence of the
adjustable parameter b in the Borel–Le Roy transfor-

+ 29.2511668n 41.5352155 )+

–
g5

n 8+( )5
------------------- 0.0709196n4 1.05240n3+(

+ 57.7615n2 325.329n 426.896+ + ).

g
n 8+
24π
------------g4,=

f x( ) cix
i

i 0=

∞

∑ e t– tbF xt( ) t,d

0

∞

∫= =

F y( )
ci

i b+( )!
-----------------yi.
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∞

∑=
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mation makes it possible to optimize the summation
procedure by attaining the most rapid convergence of
the iterative process.

Taking into account what has been said above, we
initially chose the following procedure for calculating
the coordinate of the nontrivial fixed point g* [6]. For
each n, a nontrivial root of the equation β(g) = 0 was
determined in four successive (two-, three-, four-, and
five-loop) approximations, and the analytic continua-
tion of the Borel transforms of the β function was car-
ried out using symmetric or nearly symmetric Padé
approximants: [1/1], [2/1], [2/2], and [3/2]. The param-
eter b was varied over wide limits and chosen such that
the numerical results specified by higher (four- and
five-loop) approximations coincided; i.e., the most
rapid convergence of the iterative procedure was
ensured. Unfortunately, the optimal values of b corre-
sponding to the most rapid convergence proved to be
quite close to the threshold values, i.e., the values
beyond which working approximants acquire poles for
positive values of y. In actual practice, this circum-
stance significantly affects the accuracy of the results
obtained.

In order to avoid the problem of poles, we did not
use the variation of b and confined the analysis (for

Table 1.  Coordinate of Wilson’s fixed point for models with
n = 1, 0, and –1 as calculated in four successive RG approx-
imations and the resultant five-loop estimates of g*(n)

n [1/1] [2/1] [2/2] [3/2] g*, 5-loop

1 2.4246 1.7508 1.8453 1.8286 1.837 ± 0.03

0 2.5431 1.7587 1.8743 1.8402 1.86 ± 0.04

–1 2.6178 1.7353 1.8758 1.8278 1.85 ± 0.05
PH
small n) to a fixed value of this parameter (equal to
zero), which corresponds to the Padé–Borel summation
method. In this case, all the Padé approximants listed
above are free from “hazardous” poles, and the iterative
procedure converges quite rapidly. The results of com-
putations for n = 1, 0, and –1 (exactly solvable models)
given in Table 1 clearly illustrate the situation. It can be
seen that the application of the approximants [1/1],
[2/1], [2/2], and [3/2] for analytic continuation of the
Borel transform gives estimates for g* that rapidly
approach asymptotic values; the process of attaining
the asymptotic form has the form of damped oscilla-
tions. The presence of oscillations appears quite natu-
ral, since the series for the β function is alternating, and
their damping reflects the Borel summability of the RG
expansion. Consequently, it can be concluded that the
asymptotic value of g* must lie between the four- and
five-loop estimates, and it is natural to take their half-
sum as the final result. For example, having obtained
g* = 1.8453 and 1.8286 in the four- and five-loop
approximations of the two-dimensional Ising model,
respectively, we assume that g* = 1.837 is the most
probable coordinate of Wilson’s fixed point. The esti-
mates of g* for other values of n are given in the last
column of Table 1 and in the upper row of Table 2.

The accuracy of determining the coordinate of Wil-
son’s fixed point was estimated as follows. We varied
the parameter b from 0 to 10, i.e., over wide limits, and
traced the ensuing variation of g* obtained by averag-
ing the four- and five-loop results. The range of varia-
tion of this average value was taken as the error in
determining the numerical value of g*. The estimate of
error obtained in this way is quite conservative since it
exceeds considerably (at least by a factor of two) the
difference between the averaged and the five-loop val-
Table 2.  Coordinate of Wilson’s fixed point g* and the critical index ω for –1 ≥ n ≥ 32 in the five-loop renormalization-group
approximation

n –1 0 1 2 3 4 8 16 32

g*

RG, 5-loop 1.85(5) 1.86(4) 1.837(30) 1.80(3) 1.75(2) 1.70(2) 1.52(1) 1.313(3) 1.170(2)

(b = 1) (b = 1) ([4/1], [3/1]) ([4/1], [3/1])

HT exp [22, 23] 1.679(3) 1.754(1) 1.81(1) 1.724(9) 1.655(16)

MC [25, 29] 1.71(12) 1.76(3) 1.73(3)

SC [24] 1.473(8) 1.673(8) 1.746(8) 1.81(2) 1.73(4)

e-exp [23] 1.69(7) 1.75(5) 1.79(3) 1.72(2) 1.64(2) 1.45(2) 1.28(1) 1.16(1)

1/n-exp [23] 1.758 1.698 1.479 1.283 1.154

ω
RG, 5-loop 1.32(4) 1.31(3) 1.31(3) 1.32(3) 1.33(2) 1.37(3) 1.50(2) 1.70(1) 1.85(2)

Note: The values of g* extracted from high-temperature (HT) expansions and strong-coupling (SC) expansions, as well as those calculated
by the Monte Carlo (MC) method, obtained by the processing of e expansion for g* (e-exp), and specified by the corresponding 1/n
expansion (1/n-exp), are given for comparison.
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ues of g*. This allows us to treat this estimate as quite
realistic.

Before using the values obtained for determining
critical indices, it would be interesting to compare them
with the values of g* reported earlier in other publica-
tions. The coordinate of the fixed point for the two-
dimensional Ising model was determined by the RG
method in the physical-dimensionality space [1, 2, 20]
from an analysis of high-temperature expansions [16,
21–23] with the help of the e-expansion technique [23],
the Monte Carlo method [25], and the strong-coupling
method [24, 26]. The numerical value of g* was
obtained from the results of calculation on lattices with
the help of the relation

(8)

connecting the renormalized coupling constant g4 =
(8π/3)g with the nonlinear χ4 and conventional χ sus-
ceptibilities of the system in the critical region. The
summation of four-loop RG expansions by the Padé–
Borel ([3/1] approximant) and Padé–Borel–Le Roy
methods, as well as by using the conformal mapping
technique, led to the following estimates: g* = 1.88
[20], 1.8 ± 0.3 [1], and 1.85 ± 0.1 [2], respectively. The
processing of high-temperature expansions, as well as
of strong-coupling expansions, made it possible to
obtain close values characterized by a high expected
accuracy: g* = 1.751 [21], 1.7547 ± 0.002 [16], 1.7538
± 0.0005 [22], and 1.746 ± 0.008 [24]. The summation
of the e-expansion for the renormalized coupling con-
stant for e = 2 by using information on exact values of
g* for low-dimensional models (D = 1 and 0) led to the
estimates of g* = 1.79 ± 0.05 and 1.75 ± 0.05 [23].
Finally, the Monte Carlo method and direct summation
of the strong-coupling expansion for the β-function
resulted in g* = 1.71 ± 0.12 [25] and 1.76 [26].

A comparison of these numbers with one another
and with our result g* = 1.837 ± 0.03 leads to the fol-
lowing important conclusions. First, the lattice esti-
mates of g*, grouped around the value of g* = 1.75,
noticeably differ from their analogs obtained by the RG
method in the four-loop approximation. Second, the
inclusion of the five-loop contribution to the β-func-
tion, which improves considerably the expected accu-
racy in the determination of g*, leads only to an insig-
nificant displacement of the coordinate of the fixed
point, leaving it outside the interval containing the
results of the calculations on lattices. Moreover, even
the spreads in the errors of the RG and lattice estimates
do not overlap in the five-loop approximation. The rea-
sons behind this discrepancy can be associated with the
insufficient length of the available RG expansions and
the slower convergence of iterations than in the D = 3
case on the one hand, and, on the other hand, with the
presence of nonanalytic contributions to the RG func-
tions, which cannot be determined from perturbation
theory.

χ4
∂3M

∂H3
----------

H 0=

χ2m 2– g4,–= =
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The first reason does not appear to be likely. Indeed,
the series for the β function is alternating, and hence the
dependence of g* on the approximation order is oscil-
lating by nature. This means that the inclusion of the
six-loop term in the expansion of β(g) leads to an
increase in g*, i.e., to a larger difference between the
RG result and its lattice analogs. The perturbative con-
tributions of higher orders might slightly reduce the
six-loop estimate, but the value of g* at any rate
remains larger than that obtained in the five-loop
approximation in view of the convergence of the itera-
tive procedure. Consequently, the divergence under
consideration cannot be eliminated in perturbation the-
ory.

It is natural to attribute this divergence to the effect
of the nonanalytic component of the β function. It is
well known that field-theoretical functions must have
singularities [27] (Dyson theorem) at the point g = 0,
near which the weak-coupling expansions are con-
structed. In a theory of the λϕ4 type, Wilson’s fixed
point itself can be singular for the β function [23, 28].
Numerous calculations made in recent decades show
that the nonanalyticity of RG functions virtually does
not affect the accuracy of determining the critical indi-
ces and other universal quantities characterizing the
critical behavior of 3D systems. However, the role of
singular terms must increase with decreasing dimen-
sionality. The results obtained can be regarded as a con-
vincing demonstration of the fact that the influence of
nonanalytic terms for 2D objects is no longer negligibly
small.

This conclusion is valid not only for the Ising
model. For n ≠ 1, the field-theoretical RG method also
leads to estimates of g*, which differ significantly from
the numbers obtained by lattice calculations. For exam-
ple, for n = 0, the method of high-temperature expan-
sions and the RG analysis in the five-loop approxima-
tion give g* = 1.679 ± 0.003 [24] and 1.86 ± 0.04,
respectively (see Table 1). With increasing n, the differ-
ence between the lattice and the RG estimates of the
coupling constant decreases but remains comparable
with the errors in determining g* or exceeds them. This
is clearly illustrated in Table 2, containing, in addition
to five-loop RG estimates, the values of g* for various
values of n obtained from high-temperature expansions
[22, 23] (row 2), strong-coupling expansions [24] (row
4), and the Monte Carlo method [25, 29] (row 3), as
well as those leading to the e expansion summed up
taking into account the available exact values of g* for
D = 1 and 0 (row 5) and the 1/n expansion (row 6); the
latter are borrowed from [23]. (In order to avoid a mis-
understanding, we note that the models with n > 1 are
considered here exclusively for testing the RG method
rather than for describing the thermodynamics of real
degenerate 2D systems, in which ferromagnetic transi-
tions are known to be absent.) In order to determine g*
for n = 16 and 32, Padé approximants [4/1] and [3/1]
were used, since the values of the coupling constant
obtained on their basis depend on the parameter b only
00
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Table 3.  Critical indices for models with n = 1, 0, and –1 determined by the Padé–Borel summation of five-loop RG expansions

n Method g* γ η ν α β

1 RG 1.837 1.790 0.146 0.966 0.068 0.071

1.754 (HT) 1.739 0.131 0.931 0.139 0.061

Exact 7/4 1/4 1 0 1/8

(1.75) (0.25) (0.125)

0 RG 1.86 1.449 0.128 0.774 0.452 0.049

1.679 (HT) 1.402 0.101 0.738 0.524 0.037

Exact 43/32 5/24 3/4 1/2 5/64

(1.34375) (0.20833) (0.75) (0.5) (0.078125)

–1 RG 1.85 1.184 0.082 0.617 0.765 0.025

1.473 (SC) 1.155 0.049 0.592 0.816 0.014

Exact 37/32 3/20 5/8 3/4 3/64

(1.15625) (0.15) (0.625) (0.75) (0.046875)

Note: The numerical values of these indices are also given for comparison.
slightly, and the approximants [3/2] and [2/2] become
inapplicable for large values of n in view of the emer-
gence of “hazardous” poles. It can be seen from Table 2
that the RG and lattice estimates of g* are close to each
other only for n = 2 and 3. This closeness, however, is
accidental and does not change the conclusion concern-
ing the systematic divergence of the field-theoretical
and lattice estimates of the coordinate of the fixed
point.

Apart from the numerical values of the coordinate of
Wilson’s fixed point, Table 2 also contains our esti-
mates of the critical index ω = dβ(g*)/dg determining
the temperature dependences of scaling corrections.
The index ω was determined by numerical differentia-
tion of the function β(g) specified by the RG expansion
summed up according to the Padé–Borel method
(approximants [3/2] and [2/2]), and the error was taken
as half the difference between the five- and four-loop
estimates of this index. Since the diagonal and close-to-
diagonal approximants acquire “hazardous” poles for
b = 0 with increasing n (see above), the shift parameter
for determining the index ω was taken as 1 for n = 4 and
8, while for n = 16 and 32, the approximants [4/1] and
[3/1] were used (for b = 0).

3. CRITICAL INDICES: DISCUSSION 
OF RESULTS

Let us now determine the numerical values of the
critical indices. It is well known that RG expansions for
different indices differ considerably in their structure.
For example, series (4) for γ–1 is alternating and is char-
acterized by a regular behavior of the coefficients,
which does not apply to the RG expansions of γ and ν.
In order to ensure the highest rate of convergence of the
iterative procedure, we carried out the Padé–Borel–Le
Roy summation of the series for γ–1 and η, while the
PH
remaining critical indices were determined with the
help of the well-known scaling relations. In order to
verify the self-consistency of the obtained numerical
results and to estimate their accuracy, we also calcu-
lated the indices

(9)

whose RG expansions have a regular structure. Since
the RG method gives the coordinate of Wilson’s fixed
point which differs noticeably from the results of lattice
calculations (see above), the critical indices were deter-
mined using both the renormalization-group and the
lattice values of g*. This enabled us to determine the
values of g* ensuring the closeness of RG estimates of
critical indices to the exact values and to ascertain the
extent of the sensitivity of these results to the value of g*.
While processing the RG expansion for γ–1, we used the
approximant [3/2], while the series for η(i) and η, which
start from the first- and second-order terms in g, respec-
tively, were summed up (after factoring out common
multipliers) with the help of approximants [2/2] and
[2/1]. The values of critical indices determined in this
way were found to be weakly dependent on the param-
eter b, which can obviously be explained by the high
symmetry of the approximants used.

The numerical results obtained for the models with
n = 1, 0, and –1 for b = 0 are presented in Table 3.
Although the values of critical indices are given in this
table to the third decimal place, the actual accuracy of
RG estimates is much lower. An estimate of its value
can be obtained by calculating the index η in two dif-
ferent ways: summing up directly the series in Eq. (5)
for this index or determining η as the difference of the
series summed up for η(2) and η(4). In the Ising case, the
value of η determined by the second method is equal to
0.093, i.e., differs from the direct estimate by 0.053; for

η 2( ) 1
ν
--- η 2, η 4( )–+ 1

ν
--- 2,–= =
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n = 1, this difference is 0.028. Although the attained
accuracy is quite low, it nevertheless makes it possible
to characterize the situation quite definitely. The inclu-
sion of five-loop terms in RG expansions obviously
leads to a certain decrease in the difference between the
renormalization-group estimates and the exact values
of critical indices. At the same time, this does not solve
the problem of small indices, for which the discrepancy
between the predictions of the RG method and the
exact values remain on the order of the indices them-
selves. This conclusion does not depend on whether the
values of g* used for determining critical indices were
obtained by the RG method or from the high-tempera-
ture expansions (n = 1, 0) and the strong-coupling
expansion (n = –1).

Will the inclusion of the next terms in the RG expan-
sion of critical indices change the situation? In all prob-
ability, it will not. Indeed, the series for γ–1 and η, as
well as for the indices η(2) and η(4), are alternating,
which leads to oscillating dependences of the numeri-
cal values of these indices on the approximation order.
Since the five-loop estimates of critical indices are
closer to the exact values than the four-loop estimates,
the addition to the six-loop contributions must deterio-
rate (at least to a small degree) the quality of the RG
estimates. This means that the discrepancy under con-
sideration cannot be eliminated in perturbation theory.
It can only be assumed that it originates from nonana-
lytic contributions to the indices. It was proved that
these contributions for 2D models are significant.

In conclusion, let us consider the results of calcula-
tions of the critical index ω. It is well known that the
true value of the index of scaling corrections in the two-
dimensional Ising model remains disputable. The first
RG computations in two dimensions (four-loop
approximation) gave values of ω close to 1.3 [1, 2]. The
summation of the e expansion for e = 2 led to the esti-
mate ω = 1.6 ± 0.2 [30]. This value is in good agree-
ment with the predictions of the conformal-invariant
theory, according to which ω = 4/3 in the two-dimen-
sional Ising model [31], and with the results of analysis
of high-temperature expansions, according to which
ω = 1.35 ± 0.25 [32]. On the other hand, all the above
values contradict the results of exact calculations of the
principal singular and correction terms for the suscep-
tibility of the two-dimensional Ising model, which give
ω = 1 [33]. Moreover, it was found recently that the
two-dimensional Ising model belonging to the family
of conformal-invariant theories for which ω = 4/m, with
m = 1, 2, 3, …, occupies a special place in this family:
the index ω for this model must be equal to 2 [34] and
not to 4/3 (m = 3 in the Ising model). The only pertur-
bative estimate close to ω = 2 was obtained from an
analysis of the strong-coupling expansion for the β
functions, according to which ω = 1.88 [26]. On the
contrary, it can be seen from Table 2 that the results of
our calculations confirm the conclusion about the
closeness of the index ω to 4/3 in the two-dimensional
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
Ising model. The inclusion of the five-loop term in β(g)
made it possible to improve the accuracy of the esti-
mates for ω as compared to the four-loop approxima-
tion and, accordingly, to make this conclusion more
definite.
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Abstract—This paper reports on a study of electron-stimulated desorption (ESD) of O+ and Li+ ions from tita-
nium dioxide as a function of the preheating temperature T and of the concentration of lithium adsorbed at 300 K,
which was carried out with a static magnetic mass spectrometer combined with a retarding-field energy ana-
lyzer. For T > 1500 K, the TiO2 surface undergoes irreversible rearrangement. At temperatures from 300 to
900 K and at lithium coverages Θ < 1, the ESD cross sections of the O+ and Li+ ions vary in a reversible manner
with temperature, while for lithium coverages Θ > 1, the changes in the Li+ and O+ ESD cross sections become
irreversible. For Θ < 1, the appearance threshold of the Li+ and O+ ions is 25 eV, whereas for Θ > 1, the ESD
threshold of Li+ ions shifts to 37 eV. © 2000 MAIK “Nauka/Interperiodica”.
Titanium dioxide is one of the most efficient cata-
lysts for water photolysis [1] and for cleaning the pol-
luted atmosphere and water basins of organic com-
pounds [2]. It is also used to develop detectors of chem-
ically aggressive gases [3] and in the preparation of
barrier layers in field-effect transistors [4].

However, the atomic and electronic structure of
TiO2 is relatively unstable and changes already on heat-
ing to T > 470 K, the change depending on the pressure
and composition of the gas in which the heating takes
place [5, 6].

Alkali metals are employed as promoters in
TiO2-based catalysts, and they were established to
modify the geometric and electronic surface structure
of titanium dioxide [7–11].

There is a wealth of information on the adsorption
of Na, K, and Cs on the (110) and (100) TiO2 planes
[12–17], which shows that, at low coverages, alkali
metals are adsorbed in the ionic form, while at high
coverages the adsorbed overlayer undergoes metalliza-
tion. We are not aware, however, of any studies of lith-
ium adsorption on the TiO2 surface.

We studied electron-stimulated desorption (ESD) of
alkali-metal ions and atoms from layers adsorbed on
oxidized tungsten surfaces [18] and showed that
adsorption of alkali metals attenuates the desorption of
oxygen ions, the attenuation cross section decreasing as
one crosses over from cesium to lithium [19].

This work investigates the ESD of lithium ions Li+

from layers adsorbed on the surface of titanium dioxide
and makes a comparison between the results obtained
and similar relations measured for Li+ ions escaping
from the adlayers on oxidized tungsten.
1063-7834/00/4211- $20.00 © 22159
1. EXPERIMENTAL TECHNIQUE

The experimental setup and the measurement tech-
nique employed have been described in considerable
detail elsewhere [18]. Here, we briefly recall some spe-
cific features of the measurements and instrument
design. The ESD ion currents were measured with a
static magnetic mass spectrometer combined with a
retarding-field energy analyzer.

The residual gas pressure in the instrument chamber
did not exceed 10–9 Pa. The substrates were 20 × 1 ×
0.01-mm textured tungsten ribbons with a predomi-
nantly (100)-oriented surface, which was obtained by
their ac heating at 2500 K for 10 h. To remove carbon,
the ribbon was annealed at a temperature of about 1900 K
and oxygen pressure of 10–4 Pa. The TiO2 film was pre-
pared by two techniques.

By the first technique, titanium was deposited on a
tungsten substrate at room temperature to a thickness of
6–10 monolayers. The source of titanium was a tita-
nium-iodide strip placed parallel to the ribbon and
heated by passing an electric current through it. The
titanium was oxidized at 1000 K in an oxygen atmo-
sphere at a pressure of 10–5 Pa for 30 min. By the sec-
ond technique, the titanium deposition was carried out
directly onto a tungsten substrate heated to 1000 K at an
oxygen pressure ~10–5 Pa.

An analysis of the films prepared by both tech-
niques, which was made by Auger electron and thermal
desorption spectroscopy, revealed the presence of TiO2
films.

Lithium was supplied by directly heated evapora-
tors, in which a mixture of Li2CO3 with CaO was
reduced by an aluminum powder. The concentration of
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Lithium (1) and oxygen (2) ion ESD yield q (arbi-
trary units) from a TiO2 surface as a function of the primary-
electron energy Ee. The surface was covered with lithium to

a concentration of 2 × 1014 at./cm2 at 300 K after a 10-s sub-
strate heating at T = 1500 K. Electron current 10 µA. 
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WO3 (2) surfaces covered with lithium to a concentration of
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T = 1500 K. 
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Fig. 3. Li+ ion yield in ESD from a lithium adlayer of 2 ×
1014 at./cm2 deposited on TiO2 at 300 K after a 5-s substrate
heating at different temperatures T. Electron energy 190 eV. 
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the lithium deposited was determined from the deposi-
tion time under constant flux, whose magnitude was
derived from measurements of the surface ionization
current on a tungsten ribbon at saturation. The sticking
coefficient was assumed to be equal to unity. The lith-
ium concentration was monitored by observing the
variation of the work function measured by the contact
potential-difference method.

2. RESULTS OF THE MEASUREMENTS

Figure 1 presents the yield curves for Li+ and O+ ions
obtained in ESD from a TiO2 surface covered by a lithium
adlayer with a lithium concentration of 2 × 1014 at./cm2,
which are plotted as a function of the primary electron
energy. One observes the same appearance threshold
near 25 eV for both ions, after which the ion yield tends
gradually to saturation at electron energies above
150 eV. These plots are qualitatively similar to those
obtained for the escape of Li+ and O+ ions from the sur-
face of oxidized tungsten [18].

Figure 2 displays normalized Li+ and O+ energy dis-
tributions obtained in ESD from the TiO2 surface at a
concentration of adsorbed lithium of 2 × 1014 at./cm2

and a primary-electron energy of 190 eV. The energy
distribution for the O+ ions is substantially broader than
that for the Li+ ions, and its maximum is shifted by 3 eV
toward higher energies relative to that for the Li+ ions.
Note that the maximum of the distribution for the Li+

ions escaping from TiO2 lies about 1 eV higher than
that for Li+ ions desorbing from oxidized tungsten [18].

TiO2 films grown at 1000 K undergo a noticeable
rearrangement with increasing temperature, which
becomes manifest in a change of the Li+ ESD yield
from the lithium overlayer deposited at room tempera-
ture. The results of these experiments are presented in
Fig. 3. The substrate was heated for 5 s at the tempera-
tures specified in the figure and then cooled down to
room temperature, after which lithium was deposited
on it to a concentration of 2 × 1014 at./cm2. It is seen
that, up to heating temperatures of about 1500 K, the Li+
ion yield at a primary electron energy of Ee ~ 190 eV
decreases slightly with increasing T, and for T > 1570 K,
the yield grows rapidly to reach a maximum at T ~
1700 K. For T > 1760 K, the Li+ yield decreases and
tends to zero for the anneal temperatures T > 2300 K.
As follows from thermal desorption experiments, TiO2

films start to disintegrate at T > 1800 K. The Li+ ion
yield depends not only on the temperature of the film
preannealing but also on the duration of it. Figure 4
illustrates the dependence of the Li+ yield for Ee ~ 190 eV
on the TiO2 film anneal time made at T = 1650 K fol-
lowing deposition of 2 × 1014 at./cm2 of lithium at
300 K. The yield reaches a maximum at an anneal time
of 5 min.
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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Figure 5 shows the concentration dependences of
the Li+ and O+ ESD cross sections obtained at a pri-
mary-electron energy of ~190 eV after TiO2 film
annealing at various temperatures for 10 s and lithium
constant-flux deposition at room temperature. The ESD
cross section of O+ ions increases with an increasing
lithium concentration for anneal temperatures below
1600 K and reaches a maximum at a lithium concentra-
tion whose value decreases with an increasing anneal
temperature. For anneal temperatures above 1600 K,
the ESD cross section of the O+ ions decreases contin-
uously with an increasing lithium concentration. As the
deposited lithium concentration increases, the Li+ ESD
cross section passes through a maximum irrespective of
the substrate anneal temperature. Note that, as the
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Fig. 4. Li+ ion yield in ESD from a lithium adlayer of 2 ×
1014 at./cm2 deposited on TiO2 at 300 K as a function of
substrate heating time at T = 1650 K. Electron energy
190 eV, electron current 10 µA. 
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anneal temperature increases, the maximum ESD cross
section is attained at progressively lower lithium con-
centrations and that the maximum lithium-ion ESD
cross section varies nonmonotonically. It should be
pointed out that the O+ ESD cross section starts to
increase simultaneously with a decrease in the Li+ ESD
cross section.

As the substrate anneal temperature is increased
above 1700 K, the ESD cross sections of the O+ and Li+

ions decrease, thus implying disintegration of the TiO2
film. Therefore, all subsequent experiments were per-
formed at substrate temperatures below 1700 K, at
which the TiO2 film remained stable and lithium
escaped from the surface without its disintegration. It
was found that at substrate temperatures below 900 K
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Fig. 5. ESD cross sections of O+ (curves 1–3) and Li+

(curves 1'–3') as functions of the concentration of lithium
deposited at 300 K for various TiO2 preanneal temperatures.
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energy 190 eV, electron current 10 µA. 
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the ESD cross sections of Li+ and O+ ions vary with
temperature in a reversible manner. Figures 6 and 7 plot
ESD cross sections of the Li+ and O+ ions, obtained for
various substrate temperatures at a primary electron
energy of 190 eV, as functions of the deposited lithium
concentration. Within the 300- to 500-K region, lithium
attenuates the ESD cross section of O+ ions, similar to
the case of lithium adsorption on oxidized tungsten
[19]. However, at temperatures of 600 to 900 K, the ini-
tial O+ signal decreases substantially, which indicates
either a decrease in the ESD cross section or a rear-
rangement of the TiO2 surface. The latter appears more
probable, because at T = 750 K and high lithium con-
centrations, the O+ ESD cross section does not depend
on the concentration of the deposited lithium (Fig. 6),
which is similar to the ESD cross section of Li+ ions
(Fig. 7).

In Fig. 7, one can isolate two lithium concentration
regions in which the Li+ ESD cross section varies dif-
ferently with increasing concentration. In the first
region, where the lithium ion concentration is less than
the monolayer coverage, the lithium cross section
passes through a maximum whose height increases
with increasing temperature. In the second region, for
Θ > 1 ML, the lithium-ion ESD cross section grows
slowly to reach saturation at last. The cross section at
saturation and the lithium concentration at which the
saturation is reached are temperature dependent.

The Li+ appearance threshold changes after the lith-
ium concentration has increased above the monolayer
coverage (Fig. 8). For lithium coverages Θ < 1 ML, the
Li+ appearance threshold is close to 25 eV (curve 1),
while for Θ > 1 ML, it shifts to 37 eV (curve 3). Curve 2
obtained after the substrate was heated to T > 1800 K
reveals two specific features, namely, the Li+ appear-
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Fig. 8. Li+ ion ESD current from a lithium adlayer deposited
on TiO2 at 300 K to a coverage (1) Θ < 1 ML and (3) Θ > 1
ML after substrate heating to T = 1500 K. Curve 2 was
obtained after heating the substrate to T > 1800 K and lith-
ium deposition at 300 K to Θ > 1ML. 
PH
ance threshold at Ee = 25 eV and an additional thresh-
old at Ee = 37 eV. This phenomenon apparently indi-
cates that the substrate surface has become nonuniform
as a result of this temperature treatment.

3. DISCUSSION OF RESULTS

The same appearance threshold for the Li+ and O+

ions at about 25 eV permits the suggestion that the ESD
of both ions is initiated by ionization of the 2s energy
level of oxygen [20]. Studies show that alkali metal
atoms adsorb on the surface of oxide single crystals by
the Stranski–Krastanow mechanism and, at least up to
moderate coverages, occupy specific sites determined
by the surface structure [21]. The decrease in the work
function accompanying lithium adsorption on TiO2
implies that lithium is adsorbed in the ionic form to
comparatively high coverages. However, at coverages
close to a monolayer, lithium adsorption becomes neu-
tral because of the mutual depolarization of the
adsorbed dipoles. Under these conditions, oxygen
acquires a positive charge after the vacancy Auger
decay at the oxygen 2s energy level and starts to repel
the adjacent Li+ positive ion. The O+ ion, in its turn, can
be repelled from a Ti4+ positive ion. The lower kinetic
energy of the Li+ and O+ ions compared with that of
these ions observed in ESD from tungsten oxide argues
in favor of a lower binding energy of lithium and oxy-
gen on titanium oxide compared with the tungsten
oxide.

Ion ESD takes place usually from the uppermost
layer of the substrate, and therefore the variation of the
ion yield with temperature may be due to either a vari-
ation of the concentration of adsorbed particles or a
change in the lifetime of the repulsive excited state.
Heating the substrate to T > 1500 K (Fig. 3) results in a
sharp increase in the Li+ yield after lithium adsorption
at 300 K and is accompanied by an increase in the O+

yield. This effect is initiated apparently by reconstruc-
tion of the substrate surface under the ultrahigh-vac-
uum annealing conditions. Such a reconstruction was
observed by means of a scanning tunneling microscope
and by HEED [5]. The reconstruction gave rise to the
formation of ridges propagating in the [110] and [ 10]
directions, which created a network with a cell size of
about 4 nm. It is clear that the yield of Li+ ions from
lithium atoms adsorbed at the top of the ridges should
be considerably higher than that from atoms adsorbed
between the ridges, because the local surface potential
at the ridge top should be lower.

At lithium coverages of less than one monolayer
(n < 1015 at./cm2, Fig. 6), the ESD cross section of Li+

ions increases reversibly with temperature up to T ~
900 K. We relate this increase in the Li+ ESD cross sec-
tion to the increase in the average distance of lithium
adatoms from the surface caused by transitions to
higher vibrational levels and a change of the adatom

1
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wave-function shape [18, 22]. The dependence of the
O+ ESD cross section on temperature is considerably
more complex. Within the T = 300–500 K range, the O+

ESD cross section decreases with an increasing surface
coverage by lithium, and for coverages more than a
monolayer it tends to zero. For T > 600 K, the O+ ESD
cross section passes through a maximum with an
increasing lithium concentration and reaches saturation
at coverages above one monolayer, as the Li+ yield
does. It may be conjectured that lithium forms some
compounds with the oxygen of TiO2 in these ranges of
lithium concentrations and temperatures. It should be
pointed out that the TiO2(110) surface undergoes rear-
rangement within the 770- to 830-K interval in the
presence of oxygen with the formation of an irregular
network of pseudohexagonal rosettes, and of small,
(110)-oriented (1 × 1)-island bands in the 470- to 660-K
region [6].

Rearrangement of the TiO2 surface at lithium cover-
ages above one monolayer is supported by the change
in the Li+ ESD appearance threshold from 25 to 37 eV.
The 37-eV threshold can be associated with the ioniza-
tion of the titanium core 3p level [20]; accordingly, the
change in the Li+ ESD threshold is apparently caused
by a change in the Li position with respect to titanium
and oxygen, and possibly, by a reaction of the substrate
with the adsorbed lithium. The existence of two fea-
tures in the Li+ yield vs. electron energy curve (Fig. 8)
implies the formation of two regions with different geo-
metric structures on the surface, with a final surface
rearrangement involving the formation of a new struc-
ture occurring at T > 1800 K.
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Abstract—The third-order nonlinear optical susceptibility in polymer complexes of diarylidenealkanones has
been investigated by the third harmonic generation technique at a wavelength of 1.06 µm. The macroscopic
nonlinear susceptibility χ(3) measured is compared with the calculated γ values of the second-rank molar hyper-
polarizability tensor. It is demonstrated that low-molecular chromophores can be used in syntheses of the stable
polymer composite systems with a high nonlinear optical susceptibility. A further improvement in the nonlinear
optical properties of complexes between deprotonated chromophores and high-basicity polymers can be
achieved using the proposed methods. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, investigations into the nonlinear
optical properties of different materials have attracted
considerable attention, because they provide valuable
information for structural analysis of these materials
and their practical use in optoelectronic devices.
Among a large number of materials with a pronounced
nonlinear optical response, the compounds whose
refractive indices can significantly change depending on
the light intensity are of prime importance. This property
provides a means of controlling the optical propagation
in a medium with the use of light—purely optical gates,
bistable devices, etc. It is known that, for the most part,
organic compounds with a strongly delocalized conju-
gate π-electron system possess the required property
[1].

In our earlier work [2], we reported that polya-
midines with a high basicity can be used as H-bonding
agents for nonlinear optical chromophores of the dia-
rylidenealkanone series. Specifically, it was shown
that 2,6-bis(4-hydroxybenzylidene)cyclohexanone forms
strong complexes with aliphatic polyamidine, and one
terminal OH group of the chromophore in these com-
plexes is likely deprotonated by the polymer (Fig. 1).

This inference was confirmed by the change in color
from light yellow to dark red upon mixing of the com-
ponents, which was accompanied with a shift in the
maximum of the absorption band of the chromophore
by 130 nm [2]. The preliminary experiments demon-
strated that films of this polymer complex exhibit a
considerable efficiency of the third harmonic genera-
tion. In this respect, the purpose of this work was, first,
to synthesize a large number of diarylidenealkanone
chromophores with terminal OH groups and their com-
1063-7834/00/4211- $20.00 © 22164
plexes with high-basicity polyamidines and, second, to
investigate the third harmonic generation properties of
the films prepared from these complexes.

2. EXPERIMENTAL TECHNIQUE

Diarylidenealkanone complexes were synthesized
according to the procedure described in [3] for prepar-
ing 2,6-bis(4-hydroxybenzylidene)cyclohexanone. The
elemental composition determined by IR and NMR
spectroscopy corresponded to the hypothetical struc-
tures of chromophores. The chemical structures of
dibenzylidenealkanones synthesized in this work are
depicted in Fig. 2.

The complexes of the studied chromophores with
polyamidine (Fig. 3) were prepared by mixing the chro-

(CH2)10 N N
H

HO O–
O HN

HN

(CH2)10

+

HO OH
O

+

Fig. 1. Structure of the complexes studied.
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mophore solutions in ethanol with an alcohol solution
of polyamidine. The molar ratio between the chro-
mophore and monomeric unit of the polymer was 0.5.
Samples suitable for optical investigations were pre-
pared by pouring the ethanol solutions of complexes
onto a teflon substrate followed by evaporation of the
solvent at room temperature and atmospheric pressure.
Prior to the measurements, the films obtained were
dried under vacuum (0.1 torr) to a constant weight.

3. DESCRIPTION
OF THE PHYSICAL EXPERIMENT

The refractive index variation, which depends on the
intensity of exciting radiation, is determined by the
cubic term in the expansion of the macroscopic polar-
ization of a dielectric in powers of the external electric
field strength

P = χ(1)E + χ(2)EE + χ(3)EEE + …,

where χ(n) are the corresponding optical susceptibilities
(nonlinear at n > 1).

At present, there are a number of widely accepted
techniques for evaluating the third-order optical nonlin-
earities, for example, degenerate four-wave mixing [4],
longitudinal scanning (Z-scan) method [5], the third
harmonic generation technique, etc. Among these
methods, the third harmonic generation is the simplest
and most efficient (in technical realization) technique.
Moreover, this method has the advantage that it fur-
nishes a means for determining the electronic con-
tribution to the third-order nonlinear optical suscepti-
bility χ(3).

In this work, the nonlinear optical properties of the
synthesized materials were evaluated using the third
harmonic generation technique. The excitation of sam-
ples was achieved with a pulsed neodymium-doped
garnet laser (radiation wavelength, 1.06 µm; pulse
length, 15 ns) operating in a Q-switching mode. The
pulsed radiation power could be varied over a wide
range (up to 30 mJ). A Gaussian spatial profile of the
laser beam was specified by the higher-order transverse
mode selection with the use of a mode control iris. The
p-polarized radiation was focused onto the studied
sample by using a convex spherical lens with F =
100 mm. A part of the radiation (4%) was separated
with a beam splitter into a calibrated FD-24K photo-
diode. After focusing onto the sample, the third har-
monic radiation was directed with the use of a lens sys-
tem, first, at an entrance slit of an MDR-2 grating
monochromator and, then, at a FEU-106 photomulti-
plier. Electric signals from both photodetectors were
fed into integrating analog-to-digital converters and,
through a KAMAK instrument interface, to a personal
computer for further processing.

Since the determination of the absolute intensities of
exciting radiation at the sample involved considerable
difficulties, the nonlinear optical susceptibilities of the
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
materials studied were estimated using the relative
method based on comparison with a reference sample
measured under identical conditions. The reference
sample was a 0.5-mm-thick fused silica plate adjusted
to the first maximum of the third harmonic intensity of
the Maker fringes [6].

In this case, the susceptibility χ(3) of the material can
be determined from the simple relationship by compar-
ing the intensities of the third harmonic signals from
the studied and reference samples, that is,

where I(3ω) and Is(3ω) are the third harmonic intensi-
ties of the studied and reference samples, respectively;
lc and lc, s are the corresponding coherence lengths; and

χ 3( ) χs
3( ) I1/2 3ω( )/lc[ ] / Is

1/2 3ω( )/lc s,[ ] ,=

RR

R1R1

HO OH
O

Ia, Ib

RR

HO OH
O

IIa, IIb

IIIa, IIIb

RR

R1R1

HO OH
O

CH3O OCH3

O

HO OH

IV

Ia R = R1 = H; Ib R = OCH3, R1 = H;
IIa R = R1 = H; IIb R = OCH3, R1 = H;

IIIa R = R1 = H; IIIb R = OCH3; R1 = H.

Fig. 2. Chemical structures of the chromophores used in
syntheses of the complexes.

C
N NH(CH2)10
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Fig. 3. Chemical structure of poly(1,10-decamethylene ace-
tamidine).
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 esu for SiO2 at λ = 1.06 µm. From
this relationship, it follows that the susceptibility χ(3)

cannot be precisely determined when the coherence
length of the studied material is unknown. However, the
relative values of the cubic susceptibility can be quali-
tatively evaluated by ignoring the differences in coher-
ence lengths for different compounds. The estimates
obtained for the χ(3) susceptibilities are listed in Table 1.

χs
3( ) 3.11 10 14–×=

Table 1.  Cubic susceptibilities of the complexes

Chromophore χ(3) × 1014 esu 
(experiment)

γ × 1036 esu 
(calculation)

Ia 10.7 53.8

Ib 33.7 59.6

IIa 10.0

IIb 23.5

IIIa 27.0 79.6

IIIb 38.2 89.9

IV 16.9 51.2

HO OH
O

HO O
OH

Fig. 4. Resonance forms of the 2,6-bis(4-hydroxyben-
zylidene)cyclohexanone monoanion.

Table 2.  Absorption band maxima for the chromophores
and their complexes with polyamidine

Structure
λmax, nm

chromophore complex

Ia 373 486

Ib 386 494

IIa 397 417 495

IIb 409 425 527

IIIa 380 478

IIIb 394 512

IV 380 378
PH
4. DISCUSSION

The λmax values characterizing the location of
absorption band maxima for the chromophore com-
plexes with polyamidine are given in Table 2. It can be
seen from this table that, in all cases, except for the
complex of chromophore IV, there are two absorption
bands, of which the short-wavelength band corre-
sponds to the nondeprotonated chromophore, and the
long-wavelength band is attributed to the deprotonated
chromophore. The bathochromic shift of the absorption
band upon deprotonation of the chromophore is caused
by the delocalization of the negative anionic charge as
a result of the conjugation, which can be represented as
a superposition of the benzenoid and quinoid resonance
structures (Fig. 4).

Such a delocalization becomes impossible for the
anion of chromophore IV, because the hydroxyl group
in the phenyl ring occurs in the meta position with
respect to the C=C double bond. Correspondingly, the
interaction of chromophore IV with polyamidine does
not lead to the bathochromic shift of the absorption
band (Table 2). Furthermore, it can be seen from Table 2
that the introduction of electron-donating (auxo-
chrome) groups into the benzylidene fragments brings
about an increase in the bathochromic shift.

Table 1 presents the macroscopic susceptibilities
χ(3) measured for the chromophore complexes with
polyamidine and the second-order molecular hyperpo-
larizabilities calculated by the PM3 method (intermedi-
ate neglect of differential overlap (INDO), version 3)
[7]. It is evident that the introduction of auxochrome
substituents into the benzylidene fragment also leads to
an increase in χ(3). Therefore, an increase in the electron
density at the benzylidene fragment brings about an
enhancement of the third harmonic signal of the chro-
mophore complex with a high-basicity polyamidine.
Moreover, it can be seen that the efficiency of the third
harmonic generation for the polyamidine complexes of
chromophores with the central cyclic fragment (based
on cyclopentanone or cyclohexanone) is less than that
for the complexes of acetone-based chromophores
without central cyclic fragments. It is quite possible
that a similar behavior is associated with a smaller
π-conjugation in diarylidenecycloalkanones as com-
pared to the acyclic analogues. This assumption is con-
firmed by the PM3 calculations, according to which
diarylidenecycloalkanones adopt a nonplanar “banana-
like” conformation (due to the repulsion between the
ortho protons of the phenyl rings and the methylene
protons of the central cyclic fragment), unlike a near-
planar conformation of the acyclic chromophores (Fig. 5).
It should be taken into account that the conformational
rigidity of diarylidenecycloalkanones is considerably
greater than that of their acyclic analogues. This is
explained by the fact that the s-cis-trans isomerization
becomes impossible because of the rotation of the
O=C–C=C fragment about the single bond, which leads
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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to the freezing of the nonplanar conformation of the
chromophore.

It can be seen from Table 2 that, in the absorption
spectra of the polyamidine complexes with chro-
mophores, the short-wavelength bands that correspond
to the molecular forms of these complexes (nondepro-
tonated chromophore) are very close in the location of
their maxima (380–410 nm) to the wavelength of the
third harmonic (355 nm). Consequently, the polyami-
dine complexes of chromophores in the molecular form
can contribute to the total intensity of the third har-
monic signal due to the resonant three-photon amplifi-
cation. It seems likely that the three-photon resonance
is responsible for the intensity of the third harmonic
signal in the polyamidine complex of chromophore IV.
At the same time, the polyamidine complexes of chro-
mophores in the ionic form (for which the long-wave-
length absorption bands have no tails in the vicinity of
355 nm) contribute to the third harmonic generation
through a nonresonance mechanism. A comparison
between the susceptibilities χ(3) for the polyamidine
complexes of chromophores Ib and IV allowed us to
assume that the resonance and nonresonance contribu-

O

O

O

(a)

O O

O
(b)

Fig. 5. Preferred conformations of compounds (a) IIIa and
(b) Ia.

(a)

(b)
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
tions to the third harmonic generation are comparable
in magnitude.

5. CONCLUSION
The results obtained in this work demonstrated that

the low-molecular chromophores can be used in the
preparation of the stable polymer composite systems
with a high cubic nonlinear optical susceptibility. The
use of simple chromophores (from the viewpoint of
synthesis) makes it possible to obtain the χ(3) values of
the order of 10–12 esu. These values fall in the range of
susceptibilities observed for a number of polymers
whose synthesis is a very laborious procedure, for
example, polythiophenes [8]. An insignificant modifi-
cation of the chromophores studied in this work (the
introduction of additional electron-donating substitu-
ents and an increase in the length of conjugation by
introducing additional C=C bonds) can substantially
increase the efficiency of the third harmonic generation
in the complexes of the deprotonated chromophores
with high-basicity polymers such as polyamidines.
Similar investigations are being performed at the
present time.
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Abstract—The atomic and electronic structure of some endo-, exo-, and endo-exohedral complexes of the
fullerene C60 with various guest atoms and molecules (Hen, H2, and Li2) are investigated using semiempirical
and nonempirical quantum-chemical methods. The atomic core dynamics is studied by the method of molecular
dynamics. It is shown that guest atoms and molecules in fullerene polyhedra acquire an orbital angular momen-
tum due to the correlated motion of nuclei above the low-energy barriers of the potential surface within the car-
bon polyhedron even at low temperatures (from 4 to 78 K). The emergence of orbital angular momenta of nuclei
of guest atoms and molecules is attributed to a change in the contribution of the orbital angular momentum of
electrons to the potential surface of the complexes. The motion of Li ions in a polyhedron leads to blurring of
the top of the valence band and to the emergence of a charge polarization wave in the carbon polyhedron. ©
2000 MAIK “Nauka/Interperiodica”.
A large number of compounds of fullerenes with
metals are known at present (see, for example, [1–3]).
These materials can be divided into two large classes:
endohedral complexes, in which metal atoms are inside
the fullerene polyhedra, and exohedral complexes, in
which metal atoms are located outside the polyhedra.
Both classes have attracted considerable attention from
researchers due to their unique chemical and physical
properties, including their magnetic and superconduct-
ing characteristics. The most interesting metal–
fullerene objects at present are probably exo- and
endohedral fullerene complexes with alkali metals.
This is primarily due to the fact that compounds of the
K3C60 and Rb3C60 type [1, 4] are superconductors with
rather high superconducting transition temperatures
approaching 55 K. An elegant method of synthesis of
the endohedrals Li@C60, Li2@C60, and Li3@C60, in
which fullerite C60 is bombarded by a beam of lithium
ions with an energy up to 30 eV, was also developed
recently [5].

Fullerene complexes with metals have been studied
intensely for a long time by using both experimental
(see, for example, [5–12]) and theoretical methods (see,
for example, [1, 3, 13–27]). The electronic structure of
metal complexes was studied by the method of electron
spectroscopy. Weaver [9], for example, analyzed photo-
electron spectra and inverse photoemission spectra of
exohedral compounds of the KxC60 type (Fig. 1).
1063-7834/00/4211- $20.00 © 22168
It can be seen that the filling of the lower vacant
orbital of C60 during doping by an alkali metal (potas-
sium in our case) leads not only to a displacement of the
occupied and vacant states, but also to a considerable
change in the shape of the bands and a complex behav-
ior of the Fermi level. A transition from pure C60 to
KC60 leads to the disappearance of the band gap due to
the formation of an impurity state on the one hand and
a considerable (of the order of 1 eV) displacement of
the first peak in the inverse emission spectrum on the
other. A further increase in the extent of doping leads to
a monotonic increase in the density of the impurity
electron state, while the vacant state behaves in a more
complex manner. For a doping degree of 2.5, it is dis-
placed to the maximum extent on the energy scale
(by 1.5 eV as compared to C60), and then starts moving
upwards along the energy scale again, and the band gap
reappears for x ≈ 6.

Another informative method of studying the elec-
tronic and atomic structures of both pure compounds
and their complexes with metals is NMR and EPR
spectroscopy. Almost immediately after the synthesis
of the C60 molecule, it was established with the help of
NMR spectroscopy that C60 molecules rotate in a solid at
room temperature [28–30] at a frequency of the order of
1011 s–1 with randomly oriented rotational axes of the mol-
ecules. As the temperature is lowered to 250 K, the
rotation becomes slower and ordered and the molecules
now rotate only about a single axis [31, 32].
000 MAIK “Nauka/Interperiodica”
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Similar results on the rotation of C60 molecules
along a preferred axis of K3C60 and Rb3C60 crystals
were obtained in [6] with the help of NMR spectros-
copy. It was also pointed out that the freezing of rota-
tion at a certain temperature plays an important role in
the phase transitions in such materials.

Another important publication [11] in this field is
also worth mentioning. Sato et al. [11] studied the
molecular and intermolecular dynamics for solid
CeLa@C80. This compound was obtained in the course
of beta decay of one of the 140La atoms implanted in a
carbon polyhedron. Sato et al. detected not only rota-
tions of the molecules themselves, which were abruptly
frozen at 160 K, but also rotations of Ce atoms, which
persisted to temperatures of the order of 40 K.

The rapid migration of La ions in fullerene was also
studied using the molecular dynamics method on the
basis of the potential calculated in the LDA approach
[33]. It was proved that La moves very rapidly along the
tangent to a carbon polyhedron and performs one revo-
lution in approximately one picosecond. Similar results
were also obtained by Andreoni and Curioni [33, 34]
for the endohedral La@C82. These results led to the
conclusion that the results of some experiments on the
electronic and atomic structure should be interpreted
taking the rotation into account. In particular, EPR
spectroscopy cannot be used to extract the required
information, since the characteristic time for EPR pro-
cesses is an order of magnitude longer than the period
of revolution of a La ion in the polyhedron.

A large number of endohedral fullerene complexes
with individual atoms, as well as some molecules, have
been obtained. It is obvious, however, that not all guest
atoms and molecules can move in carbon polyhedra. In
spite of the considerable interest of theoretical and
experimental physicists in these exotic compounds, the
coordination (location) of guest atoms and molecules
that remain stationary in a polyhedron has not been
determined in the general form. Indeed, only scant
experimental information has been obtained on the
structure of solids based on endohedra such as Y@C82,
for which it is known [10] that the yttrium atom is rig-
idly fixed to the carbon wall from inside, and endohe-
dral molecules themselves in the molecular solid are
arranged in a “head-to-tail” manner. These results were
obtained, using a synchrotron source of radiation, by
the methods of x-ray powder diffraction and maximum
entropy. It was found that the yttrium atom is separated
from the center of the C82 polyhedron by a distance of
3.14 Å. It was also shown that the rotation of the
endohedral complex in the crystal lattice is suppressed,
while C82 can rotate freely. The separation between the
guest atom and the carbon wall in this case is approxi-
mately equal to 2.9 Å, which slightly exceeds the value
predicted by quantum-chemistry methods.

For obvious reasons, the methods of coordination of
guest atoms have been studied much better theoreti-
cally than experimentally. It was shown that some
PHYSICS OF THE SOLID STATE      Vol. 42      No. 11      20
atoms and ions like He and K+ [16, 17, 25] must be
coordinated at the center of a carbon polyhedron, while
others, such as Li+ and Na+, must be coordinated at the
carbon wall [13, 16, 35]. It is clear from the most gen-
eral considerations that there exist five ways of coordi-
nating a guest atom (at the center of a hexagon, at the
center of a pentagon, at the edge between two hexa-
gons, at the edge between a pentagon and a hexagon,
and at the vertex of a truncated icosahedron). Obvi-
ously, in the presence of more than one guest atom, the
number of possible arrangements of atoms within a car-
bon tetrahedron can be even greater.

An interesting theoretical publication [4] is also
worth mentioning. Ramirez [4] proved that guest atoms
can tunnel between the minima of a multivalley poten-
tial surface of an inner carbon wall. However, the prob-
lem was solved in the general form by using a model
Hamiltonian under the assumption that the potential
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Fig. 1. Photoelectron spectra (PES) and inverse photoemis-
sion spectra (IPES) [9] of compounds of the KxC60 type. For
x = 1, the spectral intensity of the photoelectron spectrum at
the Fermi level is low, while the first peak of the inverse pho-
toemission spectrum is significant. However, the intensity of
the photoelectron spectrum increases with doping, while the
first peak of the inverse photoemission spectrum decreases.
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surface over which the guest atom moves has twenty
minima each of which lies above the center of a hexa-
gon. The nature of the chemical interaction between the
carbon wall and the guest atom was not considered.

This work is devoted to the study of the effects asso-
ciated with the “flexibility” of the atomic core of
endohedral complexes and the effect of the arrange-
ment of guest atoms in a fullerene polyhedron on the
electronic structure of these compounds.

1. METHODS AND OBJECTS
OF INVESTIGATION

The electronic and atomic structures and the
dynamic properties of a number of fullerene complexes
with Li and He atoms, as well as with a hydrogen mol-
ecule, were investigated by the standard semiempirical
quantum-chemistry PM3, MNDO, and INDO methods,
the nonempirical Hartree–Fock method in the 3- to 21-G
basis, and the molecular dynamics method, each method
employing its own calculated potential. The GAMES pro-
gram [36] (electronic structure and equilibrium atomic
geometry) and the demonstration version of the “Hyper-
Chem-5.02” program (electronic structure, equilibrium
atomic geometry, and molecular dynamics) were used
for computer calculations. Such a variety of quantum-
chemical methods is necessary for the following rea-
sons.

(1) It is necessary to verify that the potentials
obtained using different quantum-chemical methods
(both nonempirical and semiempirical) lead to match-
ing results in the molecular dynamics method.

(2) Unfortunately, none of the semiempirical meth-
ods possesses a parametrization for all the atoms con-
stituting the chosen objects.

(3) It is impossible to make molecular-dynamic cal-
culations in the quantum-chemical ab initio approach
even on a small basis of the 3- to 21-G type for large
systems (containing several dozens of carbon atoms
like the C60 molecule) by using the existing computer
facilities. (For example, a molecular-dynamic compu-
tation of the Li2@C60 system by the semiempirical
MNDO method disregarding the symmetry of the dura-
tion of 1 ps and a step of 0.001 ps on a P-II 450 Dual
256 MB RAM computer requires more than a week of
continuous operation.)

On the other hand, the semiempirical method can be
successfully used to describe the electronic structure,
as well as the equilibrium atomic geometry, of the C60
molecule itself and its derivatives doped with alkali
metals in the case when the system has a closed elec-
tron shell (see, for example, [37] and some other publi-
cations). For example, the results obtained by the Har-
tree–Fock method in the 3- to 21-G basis were com-
pared in [37] with the experimental photoelectron
spectra and with the results of semiempirical computa-
tions by the PM3 and MNDO methods for endo- and
exohedral complexes of C60 with the Li+ ion and the Li2
PH
dimer. It was proved that semiempirical methods give
results matching with the results of nonempirical calcu-
lations and correctly describe the experimental photo-
electronic data taking into account systematic errors
associated with the effects of strong electron correla-
tions in these systems. By the way, such a result is not
astonishing, especially in the case of endohedral com-
plexes. As a matter of fact, all semiempirical methods
correctly describe carbon-based systems with strong
chemical bonds, such as fullerenes and their endo-
derivatives with alkali metals. In view of its unique
electronic structure, the fullerene polyhedron is an oxi-
dizer for alkali metals and attracts the s electrons of the
metal. Thus, the bond in the molecule becomes mainly
ionic (the charge of the alkali metal ion is of the order
of +0.6). If, however, more than one guest atom
(excluding the H2 molecule) is implanted into the car-
bon polyhedron, the system, in addition, becomes
stressed, since the internal volume is insufficient for
their accommodation.

Thus, the choice of semiempirical quantum-chemi-
cal approaches for an extensive molecular-dynamic
simulation of the behavior of such systems appears as
justified and appropriate. In all cases, the calculated
equilibrium geometry was used as the initial geometry
in molecular-dynamic computations made under the
assumption that the object under investigation is in a
vacuum.

We analyzed the following objects.

(1) The C60 molecule with an icosahedral symmetry.
The electronic structure and the equilibrium geometry
were calculated in the restricted Hartree–Fock approx-
imation by the nonempirical Hartree–Fock method in
the 3- to 21-G basis and the semiempirical PM3
method. The length of the 6–6 bond in the ab initio
approach and in the PM3 method amounted to 0.1367 and
0.1384 nm, respectively, while the length of the 6–5
bond was 0.1453 and 0.1457 nm, respectively. The
molecular dynamics was calculated in the potential of the
semiempirical PM3 method disregarding the symmetry.

(2) The C36 molecule with the D6h symmetry. The
electronic structure and the equilibrium geometry were
calculated in the restricted Hartree–Fock approxi-
mation by the nonempirical Hartree–Fock method in
the 3- to 21-G basis and the semiempirical PM3
method. The bond lengths in the ab initio approach and
in the PM3 method were 0.1393 and 0.1411 nm, respec-
tively, for the first type (6–6), 0.1438 and 0.1437 nm for
the second type (6–5), 0.1415 and 0.1430 nm for the
third type (6–5), and 0.1485 and 0.1499 nm for the
fourth type (5–5). In order to verify these results, we
made calculations in the 6- to 31-G basis and by the
DFT B3LYP method. Both these calculations con-
firmed the correctness of computations in the 3- to
21-G basis and by the semiempirical PM3 method. The
molecular dynamics was calculated using the potential
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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obtained by the semiempirical PM3 method and the
nonempirical potential 3- to 21-G disregarding the
symmetry.

(3) The endohedral complex Li2@C60, whose elec-
tronic structure and equilibrium geometry were calcu-
lated in the restricted Hartree–Fock approximation by
the semiempirical MNDO method (a more detailed
analysis of the electronic and atomic structures of this
complex is given in [37]). The molecular dynamics was
calculated in the potential of the semiempirical MNDO
method disregarding the symmetry.

(4) The exohedral complex Li2C60, whose electronic
structure and equilibrium geometry were calculated in
the restricted Hartree–Fock approximation by the
semiempirical MNDO method (see [37]). The molecu-
lar dynamics was calculated in the potential obtained
by the semiempirical MNDO method.

(5) The endo-exohedral complex Li[Li@C60] (one
of the ions is inside the polyhedron and the other is out-
side it), whose electronic structure and equilibrium
geometry were calculated in the restricted Hartree–
Fock approximation by the semiempirical MNDO
method (see [37]). The molecular dynamics was calcu-
lated in the potential of the semiempirical MNDO
method.

(6) The endohedral complex Li@ , whose elec-
tronic structure and equilibrium geometry were calcu-
lated in the restricted Hartree–Fock approximation by
the semiempirical MNDO method (see [37]). The
molecular dynamics was calculated in the potential of
the semiempirical MNDO method.

(7) The endohedral complex H2@C36, whose elec-
tronic structure and equilibrium geometry were calcu-
lated in the restricted Hartree–Fock approximation by
the nonsemiempirical Hartree–Fock method in the
3–21-G basis and by the semiempirical PM3 method.
The structure of the polyhedron C36 in the complex was
practically unchanged. The molecular dynamics was
calculated in the potentials of the semiempirical PM3
method and in the nonempirical potential 3–21 G.

(8) The endohedral complex H2@C50, whose elec-
tronic structure and equilibrium geometry were calcu-
lated in the restricted Hartree–Fock approximation by
the semiempirical PM3 method. The structure of the
polyhedron C50 was chosen with the D5h symmetry. The
bond lengths were 0.1405 nm for the first type (6–6),
0.1378 nm for the second type (6–6), 0.1419 nm for the
third type (6–5), 0.1474 nm for the fourth type (6–5),
0.1467 nm for the fifth type (6–5), and 0.1481 nm for
the sixth type (5–5). The molecular dynamics was cal-
culated in the potentials of the semiempirical PM3
method. 

(9) The endohedral complex H2@C60, whose elec-
tronic structure and equilibrium geometry were calcu-
lated in the restricted Hartree–Fock approximation by

C60
+
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the semiempirical PM3 method. The molecular dynam-
ics was calculated in the potentials of the semiempirical
PM3 method.

(10) A number of endohedral complexes Hen@C60,
n = 2, 3, 4, whose electronic structure and equilibrium
geometry were calculated in the restricted Hartree–
Fock approximation by the semiempirical INDO
method. The length of the 6–6 bond was 0.1397 nm,
while the length of the 6–5 bond was 0.1449 nm. The
molecular dynamics was calculated in the potential of
the semiempirical INDO method.

All calculations of the complexes with light ele-
ments were made without taking into account the sym-
metry of the system. The optimization of the geometry
of these complexes in all the methods was carried out
with a convergence parameter of 0.01 kcal/mol per
atom of the complex.

At the present time, the method of molecular
dynamics [38], which does not require the introduction of
empirical intermolecular and interatomic potentials for
computations, is widely used for studying the dynamic
properties of molecular systems. Car and Parinello [38]
specially introduced the term “nonempirical molecular
dynamics” to emphasize that the potential of the system
is not chosen parametrically, but calculated by quan-
tum-chemical (including semiempirical) methods for
any configuration in the course of computer simulation.
They used the demonstration version of the Hyper-
Chem-5.02 program for calculations using the nonem-
pirical molecular dynamics method, which makes it
possible to make calculations based on ab initio, as
well as a number of semiempirical (INDO, MNDO,
PM3, etc.), potentials. The elegance of some pro-
grams (including Hyper-Chem) for implementing the
molecular dynamics method is also worth noting. The
software was developed so that successive variation of
atomic coordinates with time can be observed in the
form of a dynamic picture, which provides a visual
and convenient representation of the results of compu-
tations.

In the approach of molecular dynamics, the elec-
tron system is described by a set of wave functions
{ψi(r)} belonging to the ground state of the Born–
Oppenheimer potential surface at any instant, which
allows us to describe the collective motion of electrons
and nuclei corresponding to a set of coordinates {Rl}.
In this case, the fixed kinetic energy of electrons
remains small as compared to the kinetic energy of
ions, which makes it possible to calculate the forces
acting on the nuclei at any instant with the help of the
Hellman–Feynman theorem for the electron systems
corresponding to instantaneous nuclear configurations.
The equations of motion of the complete dynamic sys-
tem including the fictitious electron dynamics and real
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ion dynamics are determined by the Lagrangian

where E[{Ψi}, {Rl}, {αν}] is the total energy func-
tional, which can be obtained using any quantum-
chemical approach; the set {αν} describes any possible
external conditions, such as temperature, pressure, or
volume; µ is the fictitious mass for the electron dynam-
ics; and µν is an arbitrary parameter of the appropriate
dimensions. The matrix Λi, j is a set of Lagrangian mul-
tipliers ensuring the orthonormality of {Ψi(r)}. From
these equations, we can obtain the Euler–Lagrange
equations of motion

which describe the fictitious electron dynamics, ion
dynamics, and the influence of external conditions
(e.g., temperature), respectively.

The nonempirical molecular dynamics satisfies the
Born–Oppenheimer approximation only under certain
conditions. The situation with the choice of µ and other
initial conditions for semiconductors and insulators is
quite simple. However, a different situation prevails for
systems in which the band gap is small and electrons
interact strongly. This leads to thermal equilibrium
between ions and electrons and violates the conditions
of applicability of the Born–Oppenheimer approxima-
tion. In order to overcome these difficulties, the algo-
rithm of thermostats [39] (one for ions and the other for
electrons) is used in the nonempirical molecular
dynamics. In this case, we have

where fi is the occupancy, and

The thermostat variables η and ξ are determined by the
equations
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where Qe and QR are the masses of the thermostats for
the electron and ion components, respectively; Ee and T
are the kinetic energy of electrons and the ionic temper-
ature required by the conditions of the problem; and g
is the number of degrees of freedom.

Time-dependent temperature fluctuations are included
in the equations for the electron and ion thermostats, while
the dynamics of the entire system obeys the principle of
the thermodynamic-potential minimum. The simplest
case of Newtonian dynamics describes the motion of the
system in equilibrium, which allows us not only to
study the dynamic properties of molecular and solid-
state systems, but also to find effectively the equilib-
rium atomic structure.

It should be noted that, in the method of nonempiri-
cal molecular dynamics, the law of the conservation of
energy (thermodynamic potential) is satisfied in the
entire system, including in the electron and ion thermo-
stats. This law can be written as

while the energy of the electron–nucleus system with-
out thermostats is not conserved because of thermal
fluctuations. Consequently, for systems with nonrigid
atomic cores, situations are possible when thermal con-
ditions affect the electronic structure and the spectra of
the systems under investigation as a result of the viola-
tion of the energy conservation law, since different
atomic configurations must have different electronic
spectra. In particular, rapid temperature rearrange-
ments in the electronic spectra must lead to superposi-
tions of the spectra corresponding to different configu-
rations, which must be manifested in broadening and
blurring of a number of spectral features.

2. RESULTS OF CALCULATIONS
AND DISCUSSION

The electronic structure of the C60 molecule, as well
as its dynamic properties in various conditions and
states, has been studied comprehensively (see table).
According to the results of our molecular-dynamic cal-
culations, the C60 molecule rotates about its center of
mass as a single entity. The period of rotation τ and the
frequency ν = 1/τ were determined from the time vari-
ation of the coordinates of the atoms forming the car-
bon polyhedron. An analysis of a free C60 molecule
proved that the frequency of its rotation at 300 K
amounts to 0.79 × 1010 s–1. The experimental frequencies
determined from the NMR spectra for the C60 molecule
are 3.3 × 1011 s–1 in the gaseous phase at 300 K [28–30],
1.1 × 1011 s–1 in the solid phase at 300 K, and 5.0 ×
108 s–1 below 260 K in the solid phase. It can be seen
that our theoretical calculations based on the nonempir-

E µ ψ̇i ψ̇i〈 | 〉
i

∑ 1
2
--- MlṘl
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ical molecular dynamics method qualitatively describe
the effect of the rotation of C60 molecules. The differ-
ence in the rotational frequencies is obviously due to
the fact that semiempirical methods of calculations
give, as a rule, exaggerated values of the energy and
coupling constant and hence underestimate the change
in the spacing between nuclei upon heating.

The rotation and the emergence of a nonzero orbital
angular momentum of the entire molecule upon heating
can be explained by the change in the total orbital angu-
lar momentum of the electron. Indeed, the total angular
momentum of the system (the electron plus nuclear
angular momenta) must be conserved, but an increase
in temperature alters the effective nuclear spacing, and
hence in the general form we can write 

This inequality holds since ψ(r, R0) ≠ ψ(r, RT), because
the set of nuclear coordinates ({R0} ≠ {RT}), which
appear in the total electron wave function as parame-
ters, changes with temperature. Consequently, the
entire system must compensate for the change in the
electron orbital angular momentum by the change in
the ion orbital angular momentum, which is manifested
in the rotation of molecules as a whole.

Nonempirical calculations of the lowest fullerene
C36 in the 3- to 21-G basis at 300 K proved that this
effect is also reproduced when the potential obtained by
the ab initio method is used in the molecular dynamics.
Since such computations require considerable time on
computers, we could not estimate the rotational fre-
quency of the molecule. As a matter of fact, the system
is sort of “heated” in time due to the peculiarities of the
algorithm in the molecular dynamics method using the
system of thermostats. The typical time of heating is of
the order of 0.2–0.3 ps, while a correct estimation of the
rotational period can be made over time intervals equal
to 0.5 ps. At the present time, the prevailing standard
computer facilities do not allow us to carry out such a
long simulation of the system behavior. The duration of
intervals in our case was 0.1 ps, which required about
two weeks of continuous operation of a P-II 450 Dual
256 MB RAM computer. The calculation of the rota-
tional frequency of C36 using the semiempirical poten-
tial obtained using the PM3 method proved that the
rotational frequency is slightly higher than for C60 and
is equal to 3.2 × 1010 s–1.

The ab initio calculations of the equilibrium atomic
structure of the hypothetical endohedral complex
H2@C36 in the 3- to 21-G basis revealed that the hydro-
gen molecule is located at the center of the carbon poly-
hedron. Calculations based on the molecular dynamics
method at 300 K also demonstrated the flexibility of the
coordination of the H2 molecule in the polyhedron. The
hydrogen molecule moves in a multivalley potential,
hopping from one minimum to another. Effectively,
such motion appears as the rotation of a molecule in the
C36 polyhedron. However, the rotational frequency also

ψ r R0,( ) r∇ ψ r R0,( )〈 〉 ψ r RT,( ) r∇ ψ r RT,( )〈 〉 .≠
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could not be estimated in this case in view of limita-
tions of the computer facilities. An analysis of molecu-
lar dynamics in the semiempirical PM3 potential
revealed that the hydrogen molecule rotates in the poly-
hedron at a frequency of 4 × 1013 s–1. It should be noted
that the hydrogen molecule remains at the center of the
carbon polyhedron.

An analysis of the dynamics of the hypothetical
H2@C50 system shows that the rotational frequency of
the hydrogen molecule in this endohedral complex is
slightly lowered (to 3 × 1013 s–1) in view of the presence
of a plateau on the potential surface within the carbon
polyhedron. The hydrogen molecule is displaced by
0.09 nm from the center along the long axis of C50 in the
course of its motion.

An analysis of the dynamics of the endohedral com-
plex H2@C60 at 300 K proved that the hydrogen mole-
cule in it does not rotate, but moves chaotically in the
fullerene due to thermal fluctuations, which can be
attributed to the presence of a large plateau (much
larger than the hydrogen molecule) on the potential sur-
face in the carbon polyhedron in all directions. For
example, the displacement of the guest molecule from
the center of C60 reaches 0.1 nm. An analysis of the sys-
tem dynamics at 4 K revealed that the amplitude of
motion of the hydrogen molecule decreases to 0.01 nm,
but the system remains flexible all the same.

An analysis of the molecular dynamics for other
interesting endohedral complexes of fullerene with
helium atoms (Hen@C60, n = 2, 3, 4) in the semiempir-
ical INDO potential shows that such systems remain
flexible at T = 4 K, the rotational frequencies of helium
atoms for these objects being estimated as (3–5) ×
1012 s–1. An increase in temperature to 300 K leads to a
noticeable increase (up to (6–7) × 1012 s–1) in the rota-
tional frequency of the helium atoms. It should be noted

Rotational frequencies of the Li2 dimer and fullerene C60 in
endohedral complexes Li2@C60 and (Li2@C60)2

Compound, temperature, K
Rotational 

frequency of  
Li2 dimer, s–1

Rotational 
frequency of 

fullerene C60, s
–1

Li2@C60, 79 1 × 1012 2.5 × 109

Li2@C60, 300 2.5 × 1012 3.4 × 109

C60, 300 – 7.9 × 109

Experimental frequency of 
rotation of the gas-phase C60 
molecule at 300 K [28–30]

– 3.3 × 1011

Experimental frequency of 
rotation of the C60 molecule 
in fullerite at 300 K [28–30]

– 1.1 × 1011

Experimental frequency of 
rotation of the C60 molecule in 
fullerite below 260 K [28–30]

– 5.0 × 108
00
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that the carbon polyhedron in fact contains Hen mole-
cules, the nuclear separation being 0.18 nm in all cases.
(It should be noted that the calculation of the Van der
Waals dimer He2 by the INDO method gives 0.50 nm
for the nuclear spacing, while in the ab initio approach
(on the 6- to 31-G basis) this distance is 0.32 nm.)

Calculations of the electronic and atomic structures
of Li-containing complexes show that lithium ions in
the endohedral complex Li2@C60 are coordinated to the
opposite vertices of the hexagons facing each other, so
that the axis of the Li2 fragment is just at the center of
the polyhedron, the Li–Li separation being 0.299 nm,
which is in accord with the C–C separation between the
opposite carbon atoms from the base hexagons, while
the Li–C distance (to carbon atoms belonging to hexa-
gons) is 0.328 nm.

In the exohedral complex Li2C60, Li can be coordi-
nated either to the center of a hexagon or to the center
of a pentagon, the distance from the lithium ion being
0.232 nm to a carbon atom of the hexagon and 0.234 nm
to a carbon atom of the pentagon.

In the endo-exohedral complex Li[Li@C60], the
exohedral ion was coordinated to the center of a hexa-
gon with the Li–C spacing equal to 0.231 nm, while the
endohedral ion was coordinated to the center of a hexa-
gon adjoining the hexagon to which the exohedral lith-
ium is coordinated, the separation between the endohe-
dral lithium ion and the carbon atom being 0.241 nm.

The coordination of lithium in the Li@  complex
takes place at the center of a hexagon, the Li–C distance
being 0.2405 nm, while the separation between the lith-
ium ion and the center of the hexagon is 0.1909 nm.

An analysis based on the molecular-dynamics
method and the semiempirical potential demonstrates
that endohedral Li ions in the Li2@C60 complex at 4 K

C60
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Fig. 2. Electronic structure observed in 16 stills of a dynamic
picture superimposed and shot with a step of 0.01 ps calculated
for the Li2@C60 complex at 300 K. It can be seen that the
upper filled orbital (impurity electron state) changes its
position with an amplitude of 1 eV. The inset shows the
impurity state on a magnified scale.
PH
are “frozen” to a carbon wall. At a temperature above
79 K, a dynamic transition takes place, in which the ions
are dislodged from the equilibrium geometry and start
rotating in the polyhedron at a frequency of 1.0 × 1012 s–1,
the carbon polyhedron itself also rotating at a frequency
of 2.5 × 109 s–1. (It should be emphasized that this
dynamic transition temperature is just an estimate of the
potential barrier height rather than a thermodynamic
parameter. It was mentioned above that all calculations
were made by the molecular-dynamics method, which
does not comprehensively take into account thermal
fluctuations and in fact simulates the thermodynamic
equilibrium state.) At 300 K, the rotational frequency
increases and attains 2.5 × 1012 s–1 for lithium ions and
3.4 × 109 s–1 for the carbon polyhedron (see table).

According to the results of similar molecular-
dynamic calculations, the exohedral complex Li2C60 is
rigid up to 300 K. The outer Li ions just vibrate near
their equilibrium positions above the centers of both the
hexagons and the pentagons.

The behavior of the endohedral ion in the endo-exo-
hedral complex Li[Li@C60] is much more complicated:
at 77 K, it changes its coordination from the center of a
hexagon to the edge between two adjacent hexagons to
which the exo- and endohedral ions were coordinated at
4 K. At 300 K, the endohedral ion starts migrating in a
solid angle of the order of 30° in the region of coordi-
nation of the exohedral lithium.

The calculations made by the molecular dynamics
method in a semiempirical potential show that the
endohedral Li ion in the Li@C60 complex at 300 K
moves at a frequency of the order of 5 × 1012 s–1.

Let us now analyze the dependence of the electronic
structure on the dynamic properties of the endohedral
complex Li2@C60. Figure 2 presents the total densities
of states plotted for 16 stills with an interval of 0.01 ps,
obtained during dynamic filming of this complex. It can
be seen that the impurity electronic state formed due to
additional electrons supplied by Li atoms is “bloated.”
The change in the energies of the upper filled orbital
due to the change in the coordination of Li ions under
the action of thermal fluctuations is quite large (of the
order of 1 eV). The motion of Li ions also gives rise to
a polarization wave at the carbon polyhedron. The
motion of lithium ions causes a change in the sign of
the carbon atoms, whose effective charges can vary
from a few hundredths of the electron charge to fifteen
hundredths of the electron charge.

Thus, the calculations made by the method of non-
empirical molecular dynamics lead to the following
conclusions.

(1) Endohedral complexes of fullerenes with closed
shells and light guest atoms and molecules that are not
connected through covalent bonds with the carbon
walls are flexible systems.
YSICS OF THE SOLID STATE      Vol. 42      No. 11      2000
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(2) This property can be explained by the low (of the
order of tens of kelvins) potential barriers on the potential
surface of atomic rearrangements in carbon polyhedra.

(3) The motion of ions within polyhedra under the
action of thermal fluctuations blurs the top of the
valence band consisting of an impurity electronic state
and generates a polarization wave on the surface of a
carbon polyhedron, which moves behind positively
charged guest ions.

The files with dynamic pictures have been placed on
the server of the Institute of Physics, Siberian Divi-
sion, Russian Academy of Sciences (Kirensky.kra-
science.rssi.ru). The authors can also send them by e-mail:
paul@post.krascience.rssi.ru.
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