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Abstract—The properties of a quasicrystalline phase in the Al–Pd–Tc system are studied for the first time.
X-ray investigations demonstrate that the quasicrystalline phase in the Al70Pd21Tc9 alloy has a face-centered
icosahedral quasi-lattice with parameter a = 6.514 Å. Annealing experiments have revealed that this icosahedral
phase is thermodynamically stable. The heat capacity of an Al70Pd21Tc9 sample is measured in the temperature
range 3–30 K. The electrical resistivity and magnetic susceptibility are determined in the temperature range 2–
300 K. The electrical resistivity is found to be high (600 µΩ cm at room temperature), which is typical of qua-
sicrystals. The temperature coefficient of electrical resistivity is small and positive at temperatures above 50 K
and negative at temperatures below 50 K. The magnetic susceptibility has a weakly paramagnetic character. The
coefficient of linear contribution to heat capacity (γ = 0.24 mJ/(g-atom K2)) and the Debye characteristic tem-
perature (Θ = 410 K) are determined. The origin of the specific features in the vibrational spectrum of the qua-
sicrystals is discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that quasicrystals belong to a spe-
cial class of solids lacking the periodic order inherent
in usual crystal systems. However, unlike amorphous
materials, quasicrystals are not disordered systems.
Quasicrystals are characterized by a specific long-
range order—the so-called “quasi-periodic” order. The
long-range noncrystalline orientational order (for
example, the long-range order that corresponds to a
fivefold rotational symmetry, as is the case in icosahe-
dral quasicrystals) was revealed by electron diffraction
and x-ray diffraction analyses [1].

The first quasicrystalline materials (aluminum-
enriched transition metal alloys with an icosahedral
structure) were thermodynamically unstable. Subse-
quently, stable icosahedral quasicrystals were obtained
in the Al–Cu–Li, Al–Cu–Fe–TM (TM = Fe, Ru, and
Os), Mg–Zn–Ga, Mg–Zn–R (R = Y, Dy, Tb, Ho, and
Er), and Al–Pd–TM (TM = Mn and Re) systems [2–7].

Investigation into the ternary Al–Pd–TM systems
(where TM = Mn or Re) showed that the icosahedral
phase is observed for compositions in which the ratio
between components is close to 7 : 2 : 1. In Group VII
of the periodic table, technetium is placed between
manganese and rhenium. This gives grounds to assume
that the quasicrystalline icosahedral phase also exists in
the Al–Pd–Tc system. However, until recently, infor-
mation on the Al–Pd–Tc system was unavailable. This
was primarily due to the fact that technetium has no sta-
ble isotopes and is of limited occurrence. Moreover,
experimenting on this element requires the observance
1063-7834/00/4212- $20.00 © 22177
of radiation safety rules. Attempts to produce the
Al70Pd20Tc10 quasicrystalline alloy have failed [8].

The quasicrystalline icosahedral phase in the Al–
Pd–Tc system was first prepared in our previous work
[9] by the conventional solidification technique.

The aim of the present work was to investigate
experimentally the thermodynamic and transport prop-
erties of this phase.

2. SAMPLE PREPARATION AND STRUCTURAL 
INVESTIGATIONS

An ingot of the Al70Pd21Tc9 alloy was produced by
melting the initial high-purity metals: Al (99.999%), Pd
(99.99%), and Tc (99.98%). The melting was carried
out in an electric arc furnace with a water-cooled cop-
per bottom. Permanent tungsten electrodes were used.
In order to ensure alloy homogeneity, a workpiece was
turned over then remelted; this process was repeated
four times. The workpiece thus prepared was annealed
at a temperature of 940°C for 3 days under vacuum and
then was quenched in water. The sample was light gray
in color with a metallic luster. A small bar 1.65 × 1.7 ×
5.35 mm in size was cut from the workpiece; moreover,
a powder suitable for the structural investigation was
also prepared from the same workpiece. The procedure
of sample preparation was described in detail in [9].

The structure of the alloy prepared was investigated
by x-ray powder diffraction on a Philips ADP-10 x-ray
diffractometer (CuKα radiation, graphite monochroma-
tor) intended for measurements of radioactive samples.
000 MAIK “Nauka/Interperiodica”
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Fig. 1. X-ray diffraction pattern of the Al–Pd–Tc powder. Dark arrows show the peaks attributed to the face-centered icosahedral
structure. Light arrows indicate the peaks assigned to the hexagonal compound Al3Pd2. Indices of the icosahedral phase are dis-
cussed in the text.
Figure 1 displays the x-ray diffraction pattern of an
annealed sample of the Al70Pd21Tc9 alloy. This pattern
is identical to the x-ray diffraction patterns of the Al–
Pd–Mn and Al–Pd–Re quasicrystalline face-centered
icosahedral phases. As can be seen, the diffraction pat-
tern exhibits additional peaks, which are not attributed
to the quasicrystalline face-centered icosahedral phase
and, most likely, correspond to the Al3Pd2 compound
involved in the form of an impurity phase. Furthermore,
a halo assigned to the varnish coating of the sample is
observed in the diffraction pattern in the range 2θ =
18°–30°.

The peaks shown in Fig. 1 that correspond to the
quasicrystalline phase are marked by arrows with two
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Fig. 2. Wavevector Q for each x-ray diffraction peak attrib-
uted to the face-centered icosahedral phase as a function of
the product QparaP calculated for the icosahedral structure.
Wavevector Q for each peak was determined using the
weighted mean wavelength of the Kα doublet.
PH
indices, N and M, according to the Cahn scheme [10].
It should be noted that the presence of the (7, 11) peak
confirms the fact that our quasicrystalline phase is the
face-centered icosahedral phase. This structure can be
considered a six-dimensional superstructure in a prim-
itive hypercubic lattice in real space with the six-
dimensional lattice parameter aP, which is half as much
as the parameter aF of the face-centered lattice [2]. In
the diffraction patterns experimentally obtained for the
face-centered icosahedral phases, the reflections asso-
ciated with the superstructural ordering (N = 4n + 3,
where n is the integer) are often very weak compared
to the reflections of the primitive lattice. Correspond-
ingly, these reflections are usually indexed using the
indices of the primitive lattice with the lattice parame-
ter aP = aF/2.

For the icosahedral peaks, the wavevector magni-
tude is given by the relationship

(1)

where aP is the quasi-lattice parameter and τ = (  –
1)/2 is the golden section.

Figure 2 shows the wavevector Q, which was deter-
mined for each x-ray diffraction peak indexed in the
icosahedral phase, as a function of the product QparaP

calculated by formula (1). The dependence Q(QparaP)
for all the indexed icosahedral reflections is depicted in
Fig. 2 together with the straight line describing this
dependence. The mean absolute deviation of peak posi-
tions (3 × 10–3 Å) is considerably less than the full mean
width at half-maximum (2 × 10–2 Å), which is a
weighty argument in support of the applicability of our
indexing procedure described above.

The quasi-lattice parameter aP can be determined,
with a high accuracy, from analysis of the x-ray powder
diffraction patterns at large angles with respect to the

Qpar
2π
aP

------ N Mτ+
2 τ+

------------------,=
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incident x-ray beam. This is explained by the fact that
the large Bragg angles are very sensitive to small vari-
ations in the quasi-lattice parameter, as is evident from
the expression for the derivative of the quasi-lattice
parameter aP with respect to the Bragg angle θ:

daP/dθ = –aP .

Averaging of the data on QparaP/Q over the diffraction
angle range 63° < 2θ < 90°, which involves three reflec-
tions, gives the quasi-lattice parameter aP = 6.514 ±
0.004 Å. This value is very close to the quasi-lattice
parameter aP = 6.451 Å for the Al–Pd–Mn icosahedral
quasicrystal [11].

It should be noted that certain x-ray powder diffrac-
tion peaks, which cannot be indexed in the icosahedral
structure, are most probably attributed to the Al3Pd2
compound. This compound crystallizes in a hexagonal
structure of the Al3Ni2 type with the unit cell parame-
ters a = 4.217 Å and c = 5.166 Å (Fig. 1).

A cast sample of Al70Pd21Tc9 contained a mixture of
the face-centered icosahedral phase with one or more
other phases. After the annealing under vacuum at
940°C for 3 days, a considerable part of the sample
transformed into the icosahedral phase. This gives
grounds to assume that the icosahedral phase of alloys
in this system is stable.

If the assumption is made that the impurity phase is
a metallic phase whose electronic heat capacity and
electrical resistivity are typical of metals, it is possible
to estimate qualitatively the fraction of the impurity
phase in the given sample. According to the estimate
made from the electronic contribution to the heat
capacity, the fraction of the impurity metallic crystal-
line phase in the studied sample is less than 15% and,
hence, the fraction of the quasicrystalline phase is more
than 85%.

3. INVESTIGATIONS OF ELECTRICAL 
RESISTIVITY, MAGNETIC SUSCEPTIBILITY, 

AND HEAT CAPACITY

The temperature dependence of the dc electrical
resistivity was measured in a separate experiment by
the standard four-point probe method with the use of
pressed contacts.

The magnetic susceptibility was determined on an
instrument for measurements of the differential mag-
netic susceptibility in magnetic fields of ~1 Oe with a
sensitivity of 10–10 A m2 in the temperature range 4–
350 K. The instrument is based on the devised tech-
nique of double synchronous detection [12]. This tech-
nique makes it possible to measure the absolute mag-
netic susceptibility of small samples with a weight of
the order of several tens of milligrams and a specific
magnetic susceptibility of 10–7 emu/g, to differentiate
the diamagnetic and paramagnetic signals, and to deter-
mine the zero position with an accuracy of ~10–10 A m2.

θcot
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The heat capacity of the sample was measured by
the adiabatic technique with pulsed heat input [13]. The
sample weight was 52 mg, and the experimental error
was equal to about 10% in the temperature range 3–6 K
and less than 5% in the range 6–30 K.

The experimental data on the heat capacity, mag-
netic susceptibility, and electrical resistivity of the
Al−Pd–Tc quasicrystalline sample are presented in
Figs. 3–6 and the table.

Figure 3 displays the temperature dependence of the
electrical resistivity for the Al–Pd–Tc sample in the
temperature range 2–300 K. This dependence exhibits
a minimum at T = 50 K. The electrical resistivity at

0
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Fig. 3. Temperature dependence of the electrical resistivity
of the Al–Pd–Tc quasicrystalline sample in the temperature
range 2–300 K.

Molar heat capacities Cp at constant pressure for the
Al70Pd21Tc9 quasicrystal as a function of temperature T
(1 g-atom = 49.96 g)

T, K Cp , mJ/(g-atom K) T, K Cp , mJ/(g-atom K)

3 1.57 17 178

4 2.81 18 217

5 4.71 19 260

6 7.45 20 310

7 11.3 21 366

8 16.4 22 428

9 23.2 23 496

10 31.8 24 571

11 42.8 25 652

12 56.4 26 737

13 73.0 27 828

14 93.0 28 921

15 117 29 1017

16 145 30 1113
00
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300 K has a high value (600 µΩ cm), which is typical
of quasicrystals.

The temperature coefficient of electrical resistivity
is small and negative over a wide range of temperatures
above 50 K. The magnitude of this coefficient does not
exceed 8 × 10–4 K–1 in the range 50–300 K. At temper-
atures below 50 K, the temperature coefficient of elec-
trical resistivity is negative.

A comparison of the experimental temperature
dependences of the electrical resistivity for the Al–Pd–
Tc sample and other quasicrystalline compounds shows
that, in the above temperature range, the temperature
coefficients of electrical resistivity can be positive and
negative. Moreover, there are quasicrystalline systems,
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Fig. 4. Temperature dependence of the magnetic suscepti-
bility of the Al–Pd–Tc quasicrystalline sample in the tem-
perature range 4–300 K. The vertical size of points corre-
sponds to the accuracy in the determination of χ.

Fig. 5. Temperature dependence of the heat capacity of the
Al–Pd–Tc quasicrystalline sample in the temperature range
3–10 K in the C/T–T2 coordinates.
PH
in particular, Al86Co14, for which the temperature
dependence of the electrical resistivity also exhibits a
minimum in the low-temperature range [14].

Nonetheless, when analyzing the possible reasons
for the positive temperature coefficient of electrical
resistivity, the influence of the Al3Pd2 impurity phase,
whose additional peaks are observed in the x-ray pow-
der diffraction pattern (Fig. 1), must not be ruled out.

The high electrical resistivity of the sample suggests
that the impurity metallic phase does not form a contin-
uous region, and, consequently, its fraction in the sam-
ple volume is below the percolation limit.

The temperature dependence of the magnetic sus-
ceptibility of the Al–Pd–Tc quasicrystalline sample in
the temperature range 4–300 K is shown in Fig. 4. In
the temperature range covered, the magnetic suscepti-
bility is extremely small and positive, which indicates
its paramagnetic nature. As follows from the experi-
mental data, a decrease in the temperature is accompa-
nied by a decrease in the magnetic susceptibility with a
temperature coefficient of ~1.3 × 10–7 emu/(g K).

The heat capacity of the sample in the temperature
range 3–10 K is displayed in Fig. 5 in the C/T–T2 coor-
dinates. In these coordinates, the temperature depen-
dence of the heat capacity is close to a straight line,
which corresponds to the law typical of metals: C =
γT + βT3.

The coefficients γ and β determined by the least-
squares technique and the low-temperature value of the
Debye characteristic temperature Θ, which is related to
the β coefficient by the relationship β = 12π4R/(5Θ3)
(where R is the gas constant), are as follows: γ =
0.24 mJ/(g-atom K2), β = 0.029 mJ/(g-atom K4), and
Θ = 410 K. The term linear in temperature corresponds
to the electronic contribution to the heat capacity, and
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Fig. 6. Temperature dependences of the vibrational heat
capacity in the Cvib/T3–T coordinates: (1) Al70Pd21Tc9 qua-
sicrystal (this work) and (2) aluminum [17, 18].
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the term cubic with respect to the temperature is deter-
mined by the vibrational contribution to the heat capac-
ity. Note that the γ coefficient of the term linear with
respect to temperature is substantially smaller than that
for usual metals, which suggests a low density of states
at the Fermi level. Vaks et al. [15] noted that it is this
low density of states at the Fermi level which favors a
decrease in the energy of the system and can be respon-
sible for the stabilization of the quasicrystalline phase
with the icosahedral symmetry.

The content of an impurity metallic phase in the
sample can be evaluated from the coefficient γ of the
term linear in temperature (γ = 0.24 mJ/(g-atom K2)).
By assuming that the term (linear with respect to tem-
perature) in the heat capacity of the studied sample is
completely determined by the impurity phase, which is
characterized by the γi coefficient of the linear term,
and the linear term for the quasicrystalline phase is
appreciably less, the upper limit of the fraction η of this
impurity metallic phase can be estimated from the for-
mula η = γiγ. Setting γi = 1.6 mJ/(g-atom K2), which is
close to the coefficients characteristic of simple metals,
we obtain the estimate of the impurity phase fraction
η < 15%.

The data obtained enable us to separate the vibra-
tional contribution from the measured heat capacity in
the studied temperature range and to draw inferences
about the character of the energy dependence of the
density of vibrational states. For this purpose, it is
expedient to plot the vibrational component of the heat
capacity Cvib = C – γT in the Cvib/T3 vs. T coordinates,
because detailed analysis performed by Junod et al.
[16] showed that the Cvib/T3 quantity is the approxi-
mate representation of the function ω2g(ω) at "ω =
4.93kBT, where kB and " are the Boltzmann and Planck
constants, respectively.

Figure 6 shows the temperature dependences of the
vibrational heat capacity for the studied Al–Pd–Tc sys-
tem and pure aluminum [17, 18] in the Cvib/T3–T coor-
dinates in the temperature range 3–30 K. The tempera-
ture dependence of Cvib/T3 for the Al–Pd–Tc sample
passes through a broad maximum at T ≈ 26 K, which
indicates the intense low-frequency mode at the energy
"ω ≈ 12 meV in the vibrational spectrum. This low-fre-
quency mode makes an additional contribution to the
vibrational energy of the Al70Pd21Tc9 quasicrystalline
phase in the low-frequency range and, hence, the corre-
sponding contribution to the vibrational heat capacity
in the low-temperature range. Maxima in the depen-
dences of Cvib/T3 on T were also observed for the
Al−Cu–Co and Al–Pd–Re icosahedral quasicrystals
[19, 20].

4. DISCUSSION

Let us compare the vibrational heat capacities of
pure aluminum and a quasicrystalline system consist-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 12      20
ing of aluminum to the extent of 70%. Since 30% of
aluminum atoms in the studied system are replaced by
palladium and technetium atoms whose mass is almost
four times larger, the mean atomic mass m in the
Al70Pd21Tc9 system is equal to 50 amu, which is nearly
twice as large as the atomic mass of aluminum [10].
The vibrational heat capacity Cvib at low temperatures
is determined by the mean sound velocity, which, in
turn, substantially depends on the mean atomic mass:
Cvib(T/Θ)3 ~ T3(m/k)3/2. Here, k is the effective force
constant, which is proportional to the corresponding
elastic modulus. It would be reasonable to expect that
the low-temperature heat capacity of the quasicrystal
should exceed the heat capacity of pure aluminum by
several times due to the twofold increase in the mean
atomic mass. However, the increase observed in the
heat capacity both in the studied system and other alu-
minum-based quasicrystals is not so large. As can be
seen from Fig. 6, at equal temperatures, the heat capac-
ity of the quasicrystal in the low-temperature range dif-
fers from that of aluminum by no more than 50%.

Syrykh et al. [21] revealed that substitution of par-
ticular atoms for other atoms in actual systems can lead
to a substantial change in the force interaction between
atoms, including the matrix atoms, which results in the
renormalization of the phonon spectrum of the matrix.
The electronic subsystem plays a significant role in the
renormalization of the phonon spectrum. Gomersall
and Gyorffy [22] theoretically treated the renormaliza-
tion of the phonon spectrum upon the electron–phonon
interaction and derived the relationship

(2)

where 〈ω2〉  is the mean-square frequency of the phonon
spectrum renormalized by the electron–phonon interac-
tion, 〈Ω2〉0 is the mean-square frequency of the bare
phonon spectrum, EF is the Fermi energy, N(EF) is the
density of states at the Fermi level, 〈Ι 2〉  is the matrix
element of the electron–phonon interaction, and M is
the atomic mass.

With the known relationship (see, for example, [23])
which relates the matrix element of the electron–
phonon interaction to the electron–phonon coupling
constant λ, that is,

expression (2) can be rearranged to give

ω2〈 〉 Ω2〈 〉 0
4
5
---EFN EF( )

N EF( ) I2〈 〉
M

--------------------------,–≅

λ
N EF( ) I2〈 〉

M ω2〈 〉
--------------------------,=

Ω2〈 〉 0 ω2〈 〉 1
4
5
---EFN EF( )λ+ 

  ω2〈 〉 1 6nλ
5

---------+ 
  .≈=
00
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In the right-hand side of the equality, we used the for-
mula valid for the free-electron model

EF N(EF) = 3n/2,

where n is the number of valence electrons of the metal.
It is seen that, within the free-electron model, which

is applicable to pure aluminum, the renormalizing fac-
tor involves only two parameters, namely, the number
of valence electrons and the electron–phonon coupling
constant. These parameters are known. The number of
valence electrons n is equal to 3 (reasoning from the
valence), and the electron–phonon coupling constant
λ = 0.38 was estimated in [23] from the superconducting
properties according to the McMillan equation. The esti-
mates made for the renormalization of the phonon spec-
trum of aluminum by using relationship (2) demonstrate
that the electron–phonon interaction in aluminum con-
siderably (by a factor of almost 1.5) decreases the fre-
quency of the phonon spectrum. In quasicrystals, the
density of states at the Fermi level is appreciably less.
This density in our system is almost six times less than
that in aluminum, for which γ = 1.35 mJ/(g-atom K2).
Therefore, in the quasicrystal, the effect of the phonon
frequency renormalization by the electron–phonon
interaction is substantially weaker. Consequently, it is
believed that a change in the heat capacity of the quasi-
crystal due to an increase in the mean atomic mass, to a
large extent, is compensated by the effect of the spec-
trum renormalization upon the electron–phonon inter-
action.

Now, we consider the possible reasons for the
appearance of the intense low-frequency mode in the
vibrational spectrum, which manifests itself as a maxi-
mum in the temperature dependence of Cvib/T3.

It is known [24] that the vibrational spectrum of
crystalline systems with heavy impurity atoms exhibits
a resonance feature associated with the so-called quasi-
local vibrations, which were predicted in [25] and
revealed experimentally in [26, 27]. More recently,
similar features in the vibrational spectra were also
observed for disordered amorphous systems [28]. Zher-
nov and Augst [29] carried out detailed numerical cal-
culations of the contribution from the quasi-local vibra-
tions to the heat capacity of systems with different
ratios between the masses of the components. However,
in the case of a heavy impurity in a light matrix, there
are simple relationships for the quasi-local frequency
and the change in the heat capacity [22]:

(3)

(4)

where ωR is the frequency of quasi-local vibrations, ωD
is the characteristic (Debye) frequency of the initial
material (matrix), M is the mass of the matrix atom, Md

ωR
2

ωD
2

------- 1
3
--- M

Md 0.6M–
--------------------------,≈

∆Cvib

Cvib
------------- 0.091η

ωD

ωR

------- 
 

3

,=
PH
is the mass of a heavy impurity atom (Md @ M), η is the
concentration of heavy impurity atoms, Cvib is the
vibrational heat capacity of the initial material, and
∆Cvib is the additional contribution to the vibrational
heat capacity from the heavy impurity atoms.

The frequency of the quasi-local mode "ωR was
evaluated from relationship (3) with the atomic mass of
aluminum (as the mass of the matrix atom), the atomic
mass of palladium (as the mass of an impurity atom),
and the experimental Debye frequency (Θ = 410 K):
"ωR = 136 K = 12 meV, which is in good agreement
with the experimental data. Moreover, according to
relationship (4), the height of the maximum in the tem-
perature dependence of Cvib/T3 at a heavy atom con-
centration of 30% was estimated at about 100%, which
also agrees with the experiment.

However, it should be noted that the quasi-local
vibrations are not the sole possible reason for the
appearance of the maximum in the temperature depen-
dence of Cvib/T3. Similar maxima are observed for
usual metals, specifically for aluminum, due to sound
velocity dispersion. Consequently, the dispersion can
also be responsible for the observed nonmonotonic
temperature dependence of Cvib/T3 for quasicrystals.
Unfortunately, no investigations of the sound velocity
dispersion in the Al70Pd21Tc9 quasicrystals were carried
out.

Furthermore, according to the model described in
[30], the appearance of resonance low-frequency vibra-
tional modes is due to fluctuations of the density and
the force constants in systems without translational
symmetry. In the framework of this model, the low-fre-
quency mode also takes place. However, the exact
expressions that relate the characteristics of the low-
frequency mode to the controllable parameters of the
system are absent.

Thus, in the quasicrystals based on the aluminum–
transition metal alloys, the effect of quasi-local modes
is most likely responsible for the appearance of the low-
frequency vibrational mode with the energy "ω ~ 10–
15 meV, which shows itself as a maximum in the tem-
perature dependence of Cvib/T3 in the temperature
range 20–30 K. At the same time, the possibility of
manifesting the effects associated with the sound
velocity dispersion and specific features of the quasi-
crystalline state due to the absence of translational
symmetry must not be ruled out.

5. CONCLUSION

In this work, we investigated the properties of the
Al70Pd21Tc9 quasicrystalline phase, which has an icosa-
hedral face-centered quasicrystalline lattice with the
parameter a = 6.514 ± 0.004 Å.

The electrical resistivity of the studied system
proved to be rather high (600 µΩ cm at 300 K), which
is characteristic of the quasicrystals. The temperature
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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dependence of the resistivity ρ(T)/ρ(300 K) exhibits a
minimum at T = 50 K. The positive temperature coeffi-
cient of electrical resistivity does not exceed 8 × 10–4 K–1

in the temperature range 50–300 K, and the negative
temperature coefficient of resistivity at temperatures
below 50 K is of the order of 5 × 10–4 K–1.

The experimental data on the magnetic susceptibil-
ity suggest a weak paramagnetic interaction in the qua-
sicrystalline system under consideration.

The magnitude of the coefficient of the linear (in
temperature) contribution to the heat capacity of the
Al70Pd21Tc9 quasicrystal indicates the low density of
states at the Fermi level, which agrees with the data for
other quasicrystalline materials. The Debye character-
istic temperature Θ is equal to 410 K. This value falls
in the range of the Θ temperatures typical of the stable
quasicrystals. The temperature dependence of Cvib/T3

for Al–Pd–Tc passes through a broad maximum at T ~
26 K, which suggests the presence of an intense low-
frequency mode with energy "ω ~ 12 meV in the vibra-
tional spectrum.
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Abstract—The results of x-ray emission investigations of the electronic structure of Fe–Si and Fe–P disordered
alloys are presented. Relying on the analysis of the spectrum parameters and data available in the literature, a
qualitative model of the electronic-structure formation in disordered Fe–P alloys is proposed. The model allows
one to account for the concentration dependence of the average magnetic moment per iron atom in the disor-
dered systems investigated. © 2000 MAIK “Nauka/Interperiodica”.
Disordered alloys prepared by various techniques
represent a new state of solid substances, different from
ordered crystal materials. Many disordered systems
have no simple crystalline analogs, and their composi-
tion can be varied continuously within a single-phase
state. This makes it possible to obtain homogeneous
alloys and investigate their electronic structure without
facing complications caused by structural phase transi-
tions.

The alloys of the transition-metal–metalloid type
represent one of the most important groups of disor-
dered materials. An unresolved problem is the influence
of the metalloid species on the formation of the valence
band in disordered alloys. The aim of this work is to
investigate the formation of the electronic structure of
Fe–Si and Fe–P disordered alloys.

1. EXPERIMENT

Microcrystalline powders of Fe1 – xSix (x = 6–50 at. %)
alloys and a binary amorphous alloy of the eutectic
composition Fe80P20 were chosen as the objects for the
investigations of the influence of the metalloid species
on the formation of the electronic structure of disor-
dered transition-metal–metalloid alloys. 

The Fe–Si alloys were prepared from high-purity
components (99.99% Fe, 99.99% Si) in a vacuum
induction furnace in an argon atmosphere. Homogeni-
zation of the ingots was fulfilled in a vacuum of 10–4 Pa
at a T = 1423 K for six hours. The ingots were ground
up in a “Pulverizette-5” planetary ball mill designed to
produce disordered powders. The grinding was carried
out in an argon atmosphere. The average size of the
powder grains was 2 µm.

An amorphous binary alloy of Fe80P20 was produced
by quenching from a melt. The thickness of the amor-
phous ribbon was 12 to 14 µm, which corresponds to a
melt cooling rate of about 106 K/s.
1063-7834/00/4212- $20.00 © 22184
X-ray analysis was used for the structure and single-
phase condition testing. According to the x-ray analy-
sis, the Fe80P20 alloy was amorphous. The produced
microcrystalline powders of Fe–Si alloys have a disor-
dered BCC structure at Si concentrations up to 33  at. %;
a disordered hexagonal structure was observed at
higher silicon concentrations.

X-ray emission spectroscopy was used for the elec-
tronic-structure investigations, which permits one to set
apart the contributions from the partial densities of the
states of each component of the alloy to the valence
band.

X-ray fluorescence spectra Si(P)  and Fe  of
the Fe1 – xSix and Fe80P20 alloys and of intermetallic
Fe3P, as well as of pure silicon, iron, and red phospho-
rus, were obtained with an “SARF-1” x-ray spectrom-
eter, which provides fluorescence measurements.

The inaccuracy in the determination of the point
energy position in the spectra was ±0.2 and ±0.1 eV for
Si(P)  and Fe , respectively. The spread of the
intensity values was no more than six percent. The
spectra measured were processed in the standard way
(correction of inaccuracies due to the apparatus and the
signal internal level width, background subtraction,
normalization, and smoothing).

An analysis of the Si(P)  and Fe  spectra
associated with the Si(P) (3p–1s) and Fe (3d4s–2p)
transitions allows one to judge the density distribution
of the 3p and 3d electrons of Si(P) and Fe, respectively,
in the valence band of the alloys.

2. EXPERIMENTAL RESULTS AND DISCUSSION

The main features of all the measured x-ray emis-
sion spectra of the Fe80P20 and Fe1 – xSix disordered
alloys (Figs. 1, 2) are (1) a shift in the intensity maxima
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of the P(Si)  and Fe  bands to lower energies
compared with the spectra of the pure elements and (2)
a shoulder on the high-energy side of the P(Si) -
band due to the interaction of the P(Si) 3p and Fe 3d
electrons. The latter feature is also present in the spec-
tra of intermetallic Fe3P (Fig. 1).

Earlier investigations of ordered transition-metal
(TM) silicides showed that the TM–Si chemical bond
has a covalent–metal character and the strengthening of
the covalent component takes place in the series TM3Si,
TM5Si3, TMSi, and TMSi2 [1].

The influence of the metalloid species on the struc-
ture of the x-ray emission V  bands in ordered V–
sp-element compounds was studied in considerable
detail [2]. It was shown that the V  spectrum of these
compounds consists of three bands, and the subbands
associated fundamentally with the 3d states of V and
the np states of the sp element were separated [3]. The
disposition of these subbands relative to each other
depends on the type of atoms of the sp element and its
position in the periodic table. For example, as the
atomic number increases within the period (from Al to
Si, from Ga to Ge, and from Sn to Sb), an increase in
the spacing between these spectral subbands is
observed.

The regularities observed in the variations of the
spectrum parameters are also characteristic of the com-
pounds of V and Ti with C, N, and O [4, 5], as well as
of alloys based on Cr [6] and Mn [7].

Comparing the main thermodynamic characteristics
[8] of different compounds of the transition metals with
sp elements (see table), a clear tendency can be seen.
This tendency consists in an increase in |∆G | and |∆H |
with an increase in the sp-element atomic number on
going along the period, which indicates the strengthen-
ing of the chemical interaction between the alloy com-
ponents. At the same time, the spacing between the
spectral subbands associated fundamentally with the
d states of the transition metal and the p states of the
metalloid increases [2–7]. Therefore, the spacing
between the subbands in the spectrum correlates with
the stability of these compounds.

In contrast to the intermetallic compounds, the dis-
ordering in Fe–Si and Fe–P alloys results in the forma-
tion of the p zone possessed by the sp element, because
the appearance of two metalloid atoms that are the
nearest neighbors of each other is more probable in this
case. This causes a redistribution of the intensities in
the low-energy region of the x-ray emission Si
bands [9]. In particular, the intensity of the 3d-like band
in the x-ray emission Si  spectra decreases at the
order–disorder transition [10].

It was pointed out in a number of publications [11–
14] that the two subbands in the valence spectrum of
the metalloids in the amorphous alloys of the TM80X20
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Main thermodynamic constants of several compounds of transition metals with sp elements [8]

Compound , cal/mol , cal/mol Compound , cal/mol , cal/mol

VC0.88 –24.1 Fe3Si –22.4

VN –51.9 –45.7 Fe3P –40

VO –100 –93.5 FeS2 –42.4 –36.2

MnC –17.0 MnSi –17.0

MnN –46.1 MnP –23.0

MnO2 –124.4 –111.3 MnS –49.0 –46.9

Ni3C 9.0 7.6 Ni3Si –35.5

Ni3N 0.2 Ni3P –53.0

NiO –57.3 –50.6 Ni3S2 –47.5

∆H298
0 ∆G298

0 ∆H298
0 ∆G298

0

type (TM is a transition metal, X is a metalloid) stem
from the hybridization of the Xnp and TM3d states. The
contribution of the Xnp states predominates at the band
bottom, while the TM3d states dominate in the high-
energy region.

A comparison of the  bands of Si and P in the
corresponding Fe85Si15 and Fe80P20 alloys (Figs. 1, 2)
shows that, due to more p electrons participating in the
chemical interaction, the hybridization effect in an
Fe80P20 amorphous alloy is more pronounced than in an
Fe85Si15 alloy. The energy distance between the main
spectrum maximum and the 3d-like band in the P
spectrum of an Fe80P20 alloy (2.8 eV) is observed to be
greater than the similar characteristic of the Si  band
of the Fe–Si disordered alloys (2.6 eV).

From the data available in the literature [15, 16] and
the results of this paper, it follows that an increase in the
energy separation of the subbands in the x-ray emission

 spectra of the metalloids takes place in the
sequence Fe–Al (2.5 eV) [15]  Fe–Si (2.6 eV) 
Fe–P (2.8 eV)  Fe–S (3.3 eV) [16]. Therefore, in
terms of the approach proposed in this paper, an
increase in the chemical interaction of the alloy compo-
nents is observed in this sequence.

According to a qualitative model of the electronic-
structure formation in Fe1 – xSix and Fe1 – xSnx disor-
dered alloys [17], the formation of the covalent bonds
with some shift of the electron density from the atom of
the sp element (Si, Sn) to the Fe atom, with the active
participation of the 3d electrons of the Fe atom, occurs
at the concentrations x > 10–12 at. % Si and x > 25–
30 at. % Sn, respectively. Obviously, due to an extra
p electron possessed by an isolated phosphorus atom,
the formation of such bonds should occur at a concen-
trations of P less than that of Si and Sn. This statement
is supported by the behavior of the average Fe atom
magnetic moment. Its value begins to decrease at a
phosphorus concentrations of ~6 at. % for Fe–P disor-
dered alloys [18].

Kβ1

Kβ1

Kβ1

Kβ1
PH
It should be noted that, at the same metalloid con-
centration (for example, ~20 at. %) in Fe–Si and Fe–P
disordered alloys, the average magnetic moment per Fe
atom ( Fe) decreases in going from Fe–Si (1.8 µB) to
Fe–P (1.65 µB). Therefore, as the hybridization charac-
ter of the 3d electrons of the Fe atom and the 3p elec-
trons of the metalloid (Si, P) changes, redistribution of
the electron density occurs, resulting in a decrease in
the average magnetic moment per Fe atom [18, 19].

Thus, an increase in the energy separation between
the subbands in the x-ray emission spectra with a
decrease in the main thermodynamic characteristics

(∆ , ∆ ) is observed in the present work, which
indicates that one goes to a compound with higher sta-
bility. On the basis of this correlation, it has been sug-
gested that the chemical interaction in Fe–P disordered
alloys is stronger than in Fe–Si alloys.
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Abstract—A systematic analysis of the temperature dependences of the thermopower S(T) for different
phases of the HgBa2Can – 1CunO2n + 2 + δ family (n = 1, 2, 3) at different doping levels is performed in the
framework of a narrow-band phenomenological model. Quantitative estimates of the main parameters of the
band responsible for conduction in the normal phase of HgBa2Can – 1CunO2n + 2 + δ are given for optimally
doped samples. The character of the variation in these parameters with an increasing number n of the copper–
oxygen layers is discussed. A trend toward broadening of the conduction band with increasing n is revealed,
which can be due to the increase of the density-of-states (DOS) peak near the Fermi level with an increasing
number of the CuO2 layers responsible for the formation of the conduction band. It is found that an increase
in the number n leads to an increase in the fraction of localized carriers in the band owing to a more defective
structure observed in the more complex phases of HgBa2Can – 1CunO2n + 2 + δ. The variations in the band-struc-
ture parameters in going from under- to overdoped compositions in the HgBa2Can – 1CunO2n + 2 + δ family are
also discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The discovery of high-temperature superconductiv-
ity was followed by finding superconducting systems
based on yttrium, bismuth, thallium, neodymium, mer-
cury, and other elements, adding up to more than
50 various families of high-temperature superconduc-
tors (HTSCs). A record-high temperature of the super-
conducting transition Tc (about 130 and 160 K under
atmospheric [1] and elevated pressure [2–4], respec-
tively) was found in samples of the mercury-based
HgBa2Can − 1CunO2n + 2 +δ system for n = 3. Studies of
the crystal structure and superconducting properties of
HgBa2Can – 1CunO2n + 2 +δ for different n made it possi-
ble to elucidate the dependence of Tc on the number of
copper–oxygen layers [5, 6] and the oxygen content [7]
in these compounds. Some works dealt with the trans-
port properties of the HgBa2Can – 1CunO2n + 2 +δ system,
including the temperature dependences of the electrical
resistivity [8–11] and the thermopower [8–12]. How-
ever, despite a fairly large body of experimental data
available, their analysis is made difficult by the com-
plexity of the crystal structure of mercury-based super-
conductors and the high defect concentration, specifi-
cally in phases with n > 1. As a result, the authors of [8–
12], for instance, restricted themselves primarily to a
discussion of the general character of the S(T) depen-
dences and to a purely qualitative analysis of the effect
of doping on the magnitude of the thermopower.

At the same time, the family of mercury-based
HTSCs is a very interesting subject for investigation,
because the HgBa2Can – 1CunO2n + 2 +δ system allows the
1063-7834/00/4212- $20.00 © 22188
realization of various oxygen saturation regimes and, of
particularly importance, permits the obtainment of
compositions with excess oxygen [8, 12], which is
extremely difficult to achieve, for instance, in the
YBa2Cu3Oy system. Moreover, a comparative study of
a series of the HgBa2Can – 1CunO2n + 2 +δ solid solutions
with different n offers the possibility of following the
change in the properties of the material with an increas-
ing number of the copper–oxygen layers. This can pro-
vide important information on the nature of the band
responsible for the conduction and on the relation of the
characteristics of the charge carrier system in the nor-
mal phase with the superconducting properties of a
given compound.

It is apparently the complexity of the mercury-based
superconductors that accounts for the extreme paucity
of available theoretical band-structure calculations for
this system. In this connection, phenomenological
models have a serious advantage. One of them, which
permits one to obtain information on the band structure
from the temperature dependences of the transport
coefficients, is the narrow-band model [13]. As was
repeatedly shown earlier, this model provides a means
for determining the main parameters of the band
responsible for conduction in the normal phase and of
following their variation as the yttrium- [13–15] and
bismuth-based [16, 17] superconducting systems devi-
ate from the stoichiometric composition. The most
informative of the transport coefficients is the ther-
mopower S. The purpose of this work was to check the
applicability of the narrow-band model to mercury-
based HTSCs and to analyze, in terms of this model, the
000 MAIK “Nauka/Interperiodica”
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experimental dependences S(T) obtained for the
HgBa2CuO4 + δ, HgBa2CaCu2O6 + δ, and
HgBa2Ca2Cu3O8 + δ phases with different oxygen con-
tents in order to estimate the band structure parameters
for the above phases, as well as to study their transfor-
mation under the variation of both the number of the
copper–oxygen layers and the oxygen content.

2. STARTING DATA

The band structure parameters of mercury-based
superconductors were analyzed on the basis of the
available experimental data on the temperature depen-
dences of the thermopower for the following phases:
HgBa2CuO4 + δ (abbreviated as Hg-1201) [8, 12],
HgBa2CaCu2O6 + δ (Hg-1212) [9, 12], and
HgBa2Ca2Cu3O8 + δ (Hg-1223) [10–12]. All samples
were prepared by the standard solid-phase method from
the corresponding oxides. Different oxygen saturations
of the samples were achieved by employing different
regimes of the final annealing. The Hg-1212 and Hg-
1223 samples studied in [12] were synthesized at a
pressure of 3 kbar and the Hg-1201 samples were syn-
thesized at atmospheric pressure. Then, the samples of
all three phases were annealed at different partial oxy-
gen pressures (from 10–7 to 2 × 102 atm) in the temper-
ature range 260–450°C. In [8], the Hg-1201 samples
were annealed in an oxygen flow at 300 and 500°C for
different times (from 1 to 40 h). The Hg-1212 samples
studied in [9] were subjected to a final annealing in an
oxygen flow at 200°C for 10 and 35 h. In [10], the sam-
ples of the Hg-1223 phase were annealed at 400–500°C
for 24–124 h. In all cases, the single-phase state of the
samples and their crystal structure were tested by neu-
tron diffraction and x-ray powder diffraction analyses.

3. SPECIFIC FEATURES IN THE TEMPERATURE 
DEPENDENCES OF THE THERMOPOWER

OF MERCURY-BASED HTSCS

Figure 1 shows typical temperature dependences of
the thermopower in samples of the mercury-based
HTSC system for the Hg-1201, Hg-1212, and Hg-1223
phases doped to a level optimal for their superconduct-
ing properties. It is seen that the S(T) dependences
obtained for close-to-optimally doped samples of each
phase are typical of all chainless HTSCs [18]. The tem-
perature dependences of the thermopower exhibit a
clearly pronounced maximum at a temperature above
the superconducting transition and a linear portion
above this maximum, extending to T = 300 K, where S
decreases with an increase in temperature. As the oxy-
gen content in samples of each phase increases, the
thermopower decreases in magnitude. As a result, the
thermopower at room temperature, S300, becomes nega-
tive for some compositions. The thermopower S300 for
optimally doped samples of the Hg-1201 and Hg-1212
phases is ±1 µV/K and –0.5 to +2 µV/K, respectively.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 12      20
The range of variation in the absolute values of S for the
Hg-1223 phase is somewhat broader than that for the
above two phases, and S300 varies from 0 to 8 µV/K. As
is seen from Fig. 1a, Tc for the Hg-1201 phase with a
close-to-optimum oxygen content varies within the nar-
row range 95–98 K. For the Hg-1212 and Hg-1223
phases, the critical temperature is Tc ≈ 120 and ≈135 K,
respectively (Figs. 1b, 1c).

Figures 2a and 2b display typical dependences S(T)
for samples of each phase in the case of oxygen defi-
ciency (underdoped samples) and oxygen excess (over-
doped samples). The only exception is the overdoped
Hg-1223 phase, because information on the details of
the preparation of these samples is lacking. Unfortu-
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Fig. 1. Temperature dependences of the thermopower of
optimally doped compositions of the (a) Hg-1201, (b) Hg-
1212, and (c) Hg-1223 phases. Different symbols corre-
spond to the optimally doped samples at different oxygen
contents (the oxygen content increases with a decrease in
the magnitude of the thermopower). Solid lines are the
dependences calculated in terms of the narrow-band model.
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nately, the papers used by us in the analysis, rather than
quoting the value of the oxygen index for the samples
studied, specify only the direction of its variation from
one sample to another. For this reason, we will discuss
below only the general trends in the variation of the
band structure parameters for under- and overdoped
phases of the mercury-based HTSCs.

The absolute values of the thermopower for under-
doped samples of each phase are higher than those for
the optimally oxygen-doped compositions. An increase
in the doping level leads to a progressive increase in the
thermopower S300 from 10 to 50 µV/K for the Hg-1201
and Hg-1212 phases and from 25 to 40 µV/K for the
Hg-1223 phase. The maximum in the temperature
dependences of the thermopower in this case becomes
more diffuse and shifts toward higher temperatures.
Note that a similar transformation of the S(T) depen-
dences is observed upon going over from the optimally
doped to underdoped samples of bismuth-based super-
conductors [16, 18]. As the material becomes under-
doped, the magnitude of Tc decreases for all phases of
the mercury-based system.

The temperature dependences of the thermopower
for overdoped samples of Hg-1201 and Hg-1212
exhibit negative or close-to-zero absolute values S300 =
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Fig. 2. Temperature dependences of the thermopower of the
mercury-based system for different deviations from the sto-
ichiometric composition [12]: (a) underdoped (Hg-1201,
Hg-1212, and Hg-1223) and (b) overdoped (Hg-1201 and
Hg-1212) samples (different symbols). Solid lines are the
dependences calculated in terms of the narrow-band model.
PH
–(2–6) µV/K. The maximum in the S(T) dependences
becomes narrower, and as the oxygen content increases
still more (the heavily overdoped regime), it disappears
altogether. The magnitude of the thermopower
decreases monotonically with a decrease in tempera-
ture in the range of negative S. We have not been able
to find any literature data on the S(T) dependences for
overdoped samples of the Hg-1223 phase. In over-
doped Hg-1201 and Hg-1212 samples, Tc also
decreases.

Summing up, note the main features observed in the
temperature dependences of the thermopower of the
mercury-based system. The S(T) dependences for sam-
ples of the Hg-1201, Hg-1212, and Hg-1223 phases are
qualitatively similar to those measured for other chain-
less HTSC systems. The room-temperature values of
the thermopower S300 range from dozens of µV/K for
underdoped compositions to a few µV/K for optimally
doped samples, and S300 becomes negative for over-
doped compositions. A gradual increase in the oxygen
content (from underdoped  optimally doped 
overdoped compositions) brings about a transformation
of the temperature dependences of the thermopower, so
that the maximum of S(T) becomes narrower and the
values of S300, as well as those of S at the maximum of
the S(T) curve, decrease with an increase in the oxygen
content.

We present below an analysis of the experimental
data in terms of the narrow-band model. We are first
going to consider the S(T) dependences for composi-
tions with a close-to-optimum oxygen content [8–10,
12] and use the results of the analysis for all the above
phases to determine the main band-structure parame-
ters. Then, we will examine the character of the band-
structure transformation in going from optimally doped
to underdoped and overdoped compositions.

4. ANALYSIS OF EXPERIMENTAL DATA

The narrow-band model used here to analyze the
temperature dependences of the thermopower for the
Hg-1201, Hg-1212, and Hg-1223 mercury-based
superconductors was described in detail in [13]. This
model is based on the assumption that the band struc-
ture of HTSC materials contains a narrow density-of-
states (DOS) peak, whose existence accounts for the
main features of carrier transfer in the normal phase.
One of the possible reasons for the formation of such a
narrow peak could be the Van Hove singularity in the
electron energy spectrum [19–21]. It was shown earlier
[13] that if the condition of a narrow conduction band
is satisfied, the actual form of the dispersion relation
and of the energy dependence of the relaxation time are
inessential. This permits one to approximate the DOS
function D(E) and the differential conductivity σ(E) in
the calculation of the temperature dependences of the
chemical potential µ and the transport coefficients by
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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rectangles. In this approximation, the S(T) dependence
can be represented in the form [13]

(1)

(2)

where  ≡ WD/2kBT and  ≡ Wσ/2kBT. Thus, the
S(T) dependence can be described using three model
parameters: WD is the total effective bandwidth;  is
the bandwidth associated with conduction (the C ≡
Wσ /WD ratio characterizes the degree of carrier local-
ization); and F is the degree of band filling by electrons,
which is equal to the ratio of the number of electrons to
the total number of states in the band. By properly vary-
ing their values so as to obtain the best fit of the calcu-
lated data to the experimental temperature dependence
of the thermopower, one can determine the model
parameters for each sample studied and follow the
transformation of these parameters for various devia-
tions from stoichiometry [13–17].

The pattern of the S(T) dependences for mercury-
based HTSCs, as well as the results obtained earlier for
the bismuth-based HTSC system [16, 17], indicate that,
in order to analyze the behavior of the thermopower in
the HgBa2Can – 1CunO2n + 2 +δ system, one has to invoke
the assumption of a weak asymmetry of the conduction
band. The simplest way to take this band asymmetry
into account is to introduce a certain distance bWD

(where b is the asymmetry parameter) between the cen-
ters of the rectangles approximating the D(E) and σ(E)
functions [13, 16, 17]. In this case, expression (1)
remains valid if µ* calculated by formula (2) is
replaced with (µ*)' = µ* – bWD/kBT.

At the first stage, we analyzed experimental data on
the thermopower for close-to-optimally doped samples
of the Hg-1201, Hg-1212, and Hg-1223 phases. It
should be noted that in the framework of the symmetric
narrow-band model, the set of the model parameters for
a specific sample is determined unambiguously from
the S(T) dependence [13]. The introduction of the
fourth parameter, i.e., the parameter b accounting for
the degree of band asymmetry, extends the range of
variations in the other parameters, which can make
their determination ambiguous. To find the extent of
this ambiguity, the band structure parameters were cal-
culated repeatedly for each experimental dependence
S(T), with C or b fixed. This allowed one to determine
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the possible range of variations in these parameters,
which was found to be 0.3–0.5 for the C parameter and
–(0.02–0.05) for parameter b. Note that, in the former
case, this range is in accord with the results obtained
earlier for yttrium-based [13–15] and bismuth-based
[16, 17] HTSCs for a close-to-optimum doping level
and the asymmetry parameters are close in magnitude
to those for the bismuth-based HTSCs [16, 17]. These
results were then used to carry out calculations for each
sample with the aim of obtaining all possible sets of
model parameters that would satisfactorily describe the
experimental dependences S(T) for this sample. To
illustrate the fit of the calculated dependences S(T) to
the experiment, Fig. 1 presents calculated curves for
some samples of each phase to be compared with the
experimental data. Thus, the possible range of varia-
tions in each of the four parameters was determined for
each given sample. The results of these calculations are
listed in Table 1. Therefore, the width of the possible
range of variations in the model parameters can be con-
sidered an error in the determination of their values,
which arises upon the inclusion of the conduction-band
asymmetry.

One of the main goals of this work was to estimate
the main band-structure parameters of mercury-based
superconductors as a whole and to reveal the differ-
ences between the simplest and more complex phases.
To accomplish this, we had to analyze the most com-
plete possible set of experimental data obtained on dif-
ferent samples of each of the phases (Hg-1201, Hg-
1212, and Hg-1223). Thus, the second stage of our
analysis consisted in generalizing the results obtained
for specific samples, i.e., in determining the range of
variations in the band-structure parameters characteris-
tic of each optimally doped HgBa2Can – 1CunO2n + 2 +δ
phase. The results thus obtained are presented in
Table 2. For each of the Hg-1201, Hg-1212, and
Hg-1223 phases, we determined the range of possible
values of all four band-structure parameters, namely,
the effective bandwidth, the band filling, the degree of
localization of the states, and the band asymmetry. It
should be pointed out that the ranges of variations in F,
WD, C, and b (Table 2) characterize primarily not the
errors in the calculations but rather the ranges of possi-
ble values of the band-structure parameters for each
phase, which are associated with a generalization of the
results obtained in an analysis of data on a large set of
samples.

5. BAND-STRUCTURE TRANSFORMATION 
OF MERCURY-BASED HTSCs

WITH AN INCREASING NUMBER 
OF COPPER–OXYGEN LAYERS

We now turn to the discussion and interpretation of
the results obtained. As is seen from Table 2, there is a
trend to a gradual broadening of the band in going from
the simple Hg-1201 phase to the more complex ones,
Hg-1212 and Hg-1223. Indeed, the effective bandwidth
00
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Table 1.  Band structure parameters calculated for different optimally doped samples of the Hg-1201, Hg-1212, and Hg-1223
phases within the narrow-band model

Reference F WD, meV C b

Hg-1201 phase

[12] 0.475–0.487 80–135 0.34–0.45 –0.024…–0.030

0.474–0.488 70–135 0.31–0.63 –0.021…–0.029

0.473–0.487 85–135 0.31–0.51 –0.018…–0.020

0.473–0.486 70–120 0.30–0.59 –0.020…–0.032

[8] 0.452–0.485 70–133 0.38–0.69 –0.024…–0.050

Hg-1212 phase

[12] 0.474–0.489 100–190 0.28–0.44 –0.021…–0.022

0.471–0.486 110–190 0.25–0.55 –0.017…–0.021

0.471–0.488 95–145 0.26–0.41 –0.015…–0.024

[9] 0.481–0.496 90–155 0.35–0.41 –0.032…–0.050

0.423–0.493 90–135 0.31–0.54 –0.038…–0.051

0.470–0.496 90–160 0.32–0.42 –0.024…–0.040

Hg-1223 phase

[12] 0.466–0.488 100–155 0.26–0.34 –0.042…–0.050

0.466–0.485 95–150 0.28–0.41 –0.048…–0.050

0.474–0.494 95–185 0.20–0.31 –0.015…–0.018

0.462–0.487 95–175 0.22–0.42 –0.016…–0.040

[10] 0.469–0.494 95–180 0.36–0.50 –0.029…–0.045

0.479–0.494 95–160 0.28–0.48 –0.022…–0.032

0.471–0.496 100–205 0.21–0.50 –0.026…–0.041

0.468–0.496 95–210 0.27–0.41 –0.040…–0.050

0.471–0.503 95–175 0.22–0.47 –0.040…–0.050
in samples of the Hg-1201 phase varies from 70 to
135 meV, whereas for Hg-1212 and Hg-1223, this
range is WD = 90–190 and 95–210 meV, respectively.
Note that an increase in the number of the copper–oxy-
gen layers brings about not only a shift of the WD range
toward larger values, but its slight broadening as well.
The width of the range of band filling by electrons, F,
practically does not change as one transfers from the
simpler Hg-1201 phase to more complex ones. The
band asymmetry is small for all phases and amounts to
2–5% of the bandwidth. As regards the degree of local-
ization of the states, it is the smallest for the simplest
phase Hg-1201 (the largest ratio of the range of delo-

Table 2.  Ranges of band-structure parameter variation for dif-
ferent optimally doped phases of the mercury-based system 

Phase F WD, meV C b

Hg-1201 0.45–0.49 70–135 0.3–0.7 –0.02…–0.05

Hg-1212 0.46–0.495 90–190 0.25–0.55 –0.02…–0.05

Hg-1223 0.45–0.5 95–210 0.2–0.5 –0.02…–0.05
PH
calized states to the total bandwidth is C ≡ Wσ/WD) and
increases slightly for the more complex phases.

Let us discuss these trends in the character of the
band-structure transformation with increasing n in their
relation to the superconducting properties of the
HgBa2Can – 1CunO2n + 2 +δ system.

As is well known from experiments, the value of Tc

for HgBa2Can – 1CunO2n + 2 +δ increases gradually with
an increasing number of the copper–oxygen layers for
n < 4 [22]. It has been established that it is the presence
of the CuO2 layers that is crucial for the onset of high-
temperature superconductivity; i.e., these layers form
the band responsible both for the superconducting
properties of the HTSCs and for the conductivity of
these compounds in the normal phase. We believe that
both these points agree well with our results of the anal-
ysis of the thermopower. As was already mentioned, we
revealed a trend toward a gradual increase in the con-
duction-band width with an increasing number n. The
existence of this trend can be considered to be due to
the fact that an increase in the number of the copper–
oxygen layers responsible for the formation of a narrow
conduction band brings about an increase in the total
number of states in the band, i.e., an increase in the
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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DOS peak on the whole and, in particular, in its broad-
ening. In this case, the improvement of the supercon-
ducting properties in the HgBa2Can – 1CunO2n + 2 +δ sys-
tem with increasing n can be caused by an increase in
the magnitude of the DOS function at the Fermi level
D(EF). A similar broadening of the conduction band
with an increasing number of copper–oxygen layers,
which was accompanied by an improvement of the
superconducting properties, was also observed in [16]
for bismuth-based HTSCs upon going from the Bi-
2212 to Bi-2223 phase.

On the other hand, the overall complication of the
structure with an increase in the number of copper–
oxygen layers renders the Hg-1223 system potentially
more defective than Hg-1212 and Hg-1201. As was
noted in [23], this affects the WD range characteristic of
these phases. Indeed, our calculations showed that the
WD range for the simplest phase Hg-1201 is somewhat
narrower than that for the Hg-1212 and Hg-1223
phases. We believe that the broadening of this range,
specifically the elevation of its upper boundary, is
caused by the effect of the disorder introduced into the
system by phase inhomogeneities and various struc-
tural defects, whose formation becomes enhanced sub-
stantially with increasing n. Additional evidence for an
increase in the concentration of defects in more com-
plex phases of the compound is provided by our calcu-
lations of the degree of localization, which slightly
increases when going over from Hg-1201 to Hg-1212
and, further, to Hg-1223 (the C parameter decreases, as
is seen from Table 2). However, the broadening of the
band and an increase in the number of localized states
at its edges as a result of the disordering, which occur
in accordance with the Anderson model, are minor,
while negative, factors for the superconducting proper-
ties. As a result, although a structure imperfection can
bring about a decrease in D(EF) because of the band
broadening and, hence, a drop of the Tc temperature, an
increase in the number of the copper–oxygen layers in
more complex phases provides a noticeable general
growth of the DOS peak and, hence, an improvement in
the superconducting properties.

Note that the band filling F in optimally doped sam-
ples varies within the same range for all three phases
(Table 2). This implies that the ratio of the number of
electrons to the total number of states in the band
remains unchanged with increasing n; i.e., an increase
in the number of states in the band is accompanied by
an increase in the number of free carriers.

Thus, the results obtained give grounds to maintain
that the narrow-band model is applicable to optimally
doped mercury-based HTSCs and offers the possibility
of estimating the band-structure parameters for sam-
ples of different phases and of analyzing the trends in
their changes with an increasing number of copper–
oxygen layers.
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6. TRANSFORMATION 
OF THE HgBa2Can – 1CunO2n + 2 +δ BAND 

STRUCTURE WITH OXYGEN 
NONSTOICHIOMETRY

The next step of our work consisted in analyzing the
transformation of the HgBa2Can – 1CunO2n + 2 +δ band-
structure upon going to nonoptimally doped composi-
tions of Hg-1201, Hg-1212, and Hg-1223. For this pur-
pose, we used the above approach to analyze the avail-
able experimental data on the temperature dependences
of the thermopower for the underdoped [8, 12] and
overdoped [8, 12] samples of different phases. As is
seen from Fig. 2, in this case, the experimental and cal-
culated dependences S(T) are in good agreement. The
results of the calculations performed for each of the
compositions studied are listed in Tables 3 and 4. Note
that because of the difficulties encountered in preparing
samples of the Hg-1223 phase, particularly of those
with an oxygen nonstoichiometry, experimental data on
the transport properties of these samples are extremely
scarce. Treatment and analysis of the data obtained on
single samples and presented in [12] cannot provide
reliable information on the band structure of this phase.
For this reason, we cannot estimate the probable ranges
of the band-structure parameters for Hg-1223 samples
deviating strongly from stoichiometry. Nevertheless, it
was found that all the trends in the variation of the
band-structure parameters with an increasing number
of copper–oxygen layers, which were revealed for opti-
mally doped samples, remain valid for the overdoped
and underdoped compositions as well.

Consider the character of the band-structure trans-
formation of the Hg-1201 and Hg-1212 phases under
variation of the doping level. As follows from our cal-
culations, an increase in the oxygen content throughout
the range covered brings about a decrease in the band
filling by electrons, which reflects the acceptor nature
of the additional oxygen anions doped into the system.
The overlap of the ranges of variations in F (and the
other parameters too) in various regimes is readily
accounted for if one takes into account that the division
into the underdoped, overdoped, and optimally doped
ranges is fairly conventional. As a result, marginal sam-
ples can belong to either one or the other composition.
Note that as the oxygen content in each of the mercury-
based HTSC compositions increases, the degree of the
conduction-band asymmetry remains practically
unchanged and does not exceed 5%.

As one goes over from the optimally doped to
underdoped compositions, the band responsible for
conduction broadens substantially. Indeed, for an opti-
mally doped Hg-1201 phase, the WD values range from
70 to 135 meV, whereas the conduction-band width in
the underdoped Hg-1201 increases gradually to WD =
240–360 meV for the largest deviation from the opti-
mally doped composition. A similar trend to a broad-
ening of the conduction band for underdoped compo-
sitions is observed in the Hg-1212 phase as well (see
00
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Table 3.  Band structure parameters calculated for different underdoped samples of the Hg-1201, Hg-1212, and Hg-1223
phases within the narrow-band model 

Reference F WD, meV C b

Hg-1201 phase

[8] 0.471–0.483 155–245 0.25–0.35 –0.027…–0.031

[12] 0.492–0.492 140–235 0.18–0.31 –0.024…–0.034

0.500–0.525 195–310 0.15–0.26 –0.021…–0.049

0.530–0.558 245–360 0.16–0.23 –0.022…–0.039

Hg-1212 phase

[12] 0.493–0.506 155–240 0.18–0.33 –0.016…–0.027

0.500–0.537 170–295 0.17–0.28 –0.017…–0.026

0.502–0.548 175–340 0.16–0.28 –0.018…–0.035

0.515–0.547 210–380 0.17–0.27 –0.013…–0.048

Hg-1223 phase

[12] 0.496–0.510 160–370 0.22–0.26 –0.016…–0.032

0.508–0.529 160–260 0.18–0.24 –0.020…–0.035

Note: The samples of each phase are placed in the order of decreasing oxygen content.

Table 4.  Band structure parameters calculated for overdoped samples of the Hg-1201 and Hg-1212 phases within the narrow-
band model 

Reference F WD, meV C b

Hg-1201 phase

[12] 0.459–0.473 79–100 0.27–0.49 –0.033…–0.044

0.465–0.476 55–80 0.21–0.35 –0.032…–0.036

[8] 0.464–0.470 60–70 0.34–0.47 –0.030…–0.038

Hg-1212 phase

[12] 0.470–0.477 72–115 0.40–0.63 –0.031…–0.036

0.472–0.483 66–110 0.21–0.45 –0.021…–0.028

Note: The samples of each phase are placed in the order of increasing oxygen content.
Table 3). Note also that the degree of localization of
states with an increase in the oxygen deficiency reveals
a weak trend to an increase (the C parameter
decreases) for both phases. Thus, the band-structure
transformation in underdoped phases of the
HgBa2Can – 1CunO2n + 2 +δ system is similar in character
to that observed earlier for YBa2Cu3Oy with an increase
in the oxygen deficiency or under nonisovalent doping
(i.e., when going from close-to-stoichiometric to
underdoped compositions) [13–15] and for
Bi2Sr2CaCu2Oy, when calcium is partially replaced by
trivalent rare-earth elements [16, 17]. In our opinion,
this implies that the mechanism of the band-structure
transformation in underdoped compositions of the mer-
cury-based HTSC family is the same as in the yttrium-
and bismuth-based HTSCs. In particular, a decrease in
the oxygen content brings about lattice disordering,
which results, in accordance with the Anderson model,
in a broadening of the conduction band and is accom-
PH
panied by localization of states at its edges. The band
broadening entails a decrease in the DOS function at
the Fermi level, which, in turn, leads to a decrease in Tc.

An analysis of the experimental data on overdoped
compositions does not yield reliable information on the
character of the band-structure transformation, which is
a result of the paucity of these data. Nevertheless, a
trend was found of only a slight change and, possibly,
even of some decrease in the conduction-band width
with an increase in the oxygen content above the sto-
ichiometric value and some increase in the degree of
localization of states for the Hg-1201 and Hg-1212
phases (Table 4). Hence, introduction of excess oxygen
into the system is not as disordering a factor as is an
increasing oxygen deficiency. However, overdoped
mercury-based HTSC compositions also exhibit a
decrease in Tc. This means that the mechanism of the
effect of excess oxygen on the band structure of the
mercury-based HTSC system and the reasons for the
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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Fig. 3. Mechanisms of band-structure modification in HgBa2Can – 1CunO2n + 2 +δ: (a) band broadening and an increase in the DOS
peak with an increasing number of copper–oxygen layers n and (b) band broadening and a decrease in the DOS peak with increasing
disorder (increased concentration of structural defects). The shaded regions correspond to localized states at the conduction-band
edges, and the rectangles show the approximation used to calculate the thermopower in terms of the narrow-band model.
suppression of superconductivity in this case differ rad-
ically from those in the underdoped regime. It should
be pointed out that the complexity of the system under
study, the lack of reliable information on the crystal-
structure transformation of mercury-based HTSCs in
the case of a large oxygen excess, and the scarce data
available on the behavior of the thermopower in over-
doped compositions impede analysis of the data
obtained and hamper their generalization. The mecha-
nism by which superconductivity is suppressed in over-
doped compositions of mercury-based HTSCs is
undoubtedly an extremely interesting issue, which
should be a subject of further studies.

In conclusion, let us compare the effects of two dif-
ferent mechanisms of band-structure transformation in
HgBa2Can – 1CunO2n + 2 +δ compounds, which act on the
superconducting properties of the mercury-based
HTSC family. On the one hand, an increase in the num-
ber of copper–oxygen layers results, as was already
mentioned, in a growth of the DOS peak as a whole
(Fig. 3a). For the value F ≈ 0.5, which varies only
weakly in optimally doped phases with different n, this
effect causes an increase in D(EF), thus providing an
increase in Tc with increasing n. On the other hand, the
doping-induced lattice disorder in each phase, as well
as the increase in the defect concentration when going
over from Hg-1201 to Hg-1212 and, finally, to Hg-
1223, entails a broadening of the band and an increase
in the localization of states at its edges by the Anderson
mechanism (Fig. 3b). For the phases with larger n, the
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action of this effect on the decrease in D(EF) becomes
smaller compared to the first mechanism. As a result,
despite the relative drop of D(EF) associated with a
more defective structure in the more complex phases,
the Tc temperature increases. When going from opti-
mally doped to underdoped compositions within each
phase, this mechanism becomes dominant and causes
suppression of the superconducting properties with an
increasing doping level.

Thus, a systematic analysis of the temperature
dependences of the thermopower in the
HgBa2Can − 1CunO2n + 2 +δ system (n = 1, 2, 3) within the
framework of the narrow-band model has yielded the
following main results and conclusions:

(1) The narrow-band model is applicable to
mercury-based high-temperature superconductors and
permits determination of the main band-structure
parameters for optimally doped samples of the
HgBa2Can − 1CunO2n + 2 +δ phases (n = 1, 2, 3); it also
allows one to reveal trends in their variation in going
over from underdoped to overdoped compositions.

(2) The total effective width of the band responsible
for conduction in optimally doped mercury-based
HTSCs varies from 70 to 200 meV, and the band is
close to half-filling by electrons. Mercury-based
HTSCs are characterized also by a slightly asymmetric
conduction band.

(3) A comparative study of the Hg-1201, Hg-1212,
and Hg-1223 phases has revealed a trend to a gradual
broadening of the conduction band with an increase in
00
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the number of the copper–oxygen layers. This is possi-
bly due to an increase in the DOS peak as a result of a
larger number of the copper–oxygen layers involved in
its formation.

(4) The probable higher defect concentration of the
more complex Hg-1212 and Hg-1223 phases, as com-
pared to Hg-1201, manifests itself in a broadening of
the range of variations in the band parameters charac-
teristic of these phases and brings about an increase in
the localization of states with an increasing number of
the copper–oxygen layers.

(5) The transition to underdoped compositions is
accompanied by a broadening of the conduction band
and an increase in the fraction of localized states at its
edges, which are caused by the Anderson mechanism of
localization of states due to structural disordering. The
band broadening results in a drop of the DOS function
at the Fermi level, which may be the reason for the sup-
pression of superconductivity in underdoped compo-
sitions.
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Abstract—The temperature dependences of the conductivity and the thermoelectric coefficient in TlFeS2 and
TlFeSe2 samples have been investigated in the temperature range 85–400 K. The variable-range hopping con-
duction has been established. It is found that the density of localized states NF near the Fermi level is 1.7 × 1018

and 3.3 × 1018 eV–1 cm–3, and the average hopping length R is 109 and 104 Å for TlFeS2 and TlFeSe2, respec-
tively. The non-Arrhenius (activationless) behavior of the hopping conductivity is established in the tempera-
ture region T < 200 K for TlFeS2 and T < 250 K for TlFeSe2. © 2000 MAIK “Nauka/Interperiodica”.
The triple compounds TlFeS2 and TlFeSe2 belong to
the semiconductor group that has magnetic properties.
Only limited data on the chemical characteristics of
their crystals are available in the literature [1, 2], and
their physical properties are poorly understood. The
only exception is reference [3], which presents the
results of electrical and magnetic measurements of
TlFeSe2 single crystals. The activation energy of the
intrinsic conductivity of the TlFeSe2 crystals was deter-
mined to be 0.68 eV from the conductivity temperature
dependence in the temperature range 290 to 670 K. The
measurements of the magnetic susceptibility of
TlFeSe2 single crystals were also carried out in the tem-
perature range 4.2 to 295 K, which provided evidence
that TlFeSe2 is a quasi-one-dimensional antiferro-
magnet [3].

The present work is aimed at the study of the con-
ductivity temperature dependences of TlFeS2 and
TlFeSe2 crystals (in the temperature range 85 to 400 K),
the conductivity mechanism, and the thermoelectric
properties of these compounds.

The regimes of the synthesis of the TlFeSe2 com-
pound and its single-crystal growth are described in [3]
in detail. We synthesized the TlFeS2 compound by
fusion of the high-purity components (Tl, Fe, and S)
taken in the stoichiometric composition in evacuated
(up to 10–2 Pa) quartz ampoules. In the process of the
synthesis, starting from 400–450°C, a violent reaction
of the components was observed. The ampoule with the
substance was rotated around its axis and gradually
introduced with a rate of 1.5–3.0 cm/h into the hotter
furnace zone over 7–8 h; then, after keeping it at a tem-
perature of 750°C for about 1–2 h, it was cooled slowly,
over 5–6 h, to room temperature. The TlFeS2 com-
pound synthesized by this process was single-phase,
fairly soft, and of a black color and, according to differ-
ential thermal analysis, melted at 720°C.
1063-7834/00/4212- $20.00 © 22197
Single crystals of the TlFeS2 compound were grown
by the modified Bridgman–Stockbarger method. The
grown ingots of TlFeS2, as well as of TlFeSe2, con-
sisted of long extrathin fibers oriented along the
ampoule and formed a monolithic crystal of the com-
pound. The massive single crystals could be easily bro-
ken up into single-crystal fibers. TlFeS2 and TlFeSe2
crystals were soft and plastic; they were representatives
of chain one-dimensional crystals.

The structural investigations showed that the crys-
tals of TlFeS2 had a chain structure with the following
crystal lattice parameters: a = 11.643, b = 5.306, and
c = 6.802 Å; β = 116.75°; and the space group c2/m.
TlFeSe2, as was shown in [3], crystallizes in the mono-
clinic crystal system with the following elementary-cell
parameters: a = 12.02, b = 5.50, and c = 7.13 Å; and
β = 118.52°.

For electrical measurements, the samples were pre-
pared in the form of a parallelepiped, with dimensions
12.5 × 5.0 × 1.3 mm, by pressing the crystal fibers of
TlFeS2 and TlFeSe2. The samples were then annealed at
450 K. The ohmic contacts were made by electrolytic
copper deposition. The electrical conductivity (σ) and
thermoelectrical coefficient (α) of the TlFeS2 and
TlFeSe2 samples were measured by the four-probe
technique with a precision of one percent in the temper-
ature range 85 to 400 K.

We present the results of investigations of the charge
transport in TlFeS2 in a direct electric field at the tem-
peratures 189–298 K. The typical temperature depen-
dence of the conductivity of the TlFeS2 samples is
shown in Fig. 1. The high-temperature branch of this
dependence has an exponential character with a slope
of 0.33 eV in the temperature range 235 to 298 K. After
the exponential falloff, the conductivity is character-
ized by a monotonically decreasing activation energy
with decreasing temperature. This is evidence that in
TlFeS2 samples at the temperatures T < 235 K, the
000 MAIK “Nauka/Interperiodica”
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charge transfer proceeds via variable-range hopping
conduction over the states in a narrow energy band
(∆E) near the Fermi level [4]. This type of conductivity
is described by the formula [4]

σ ~ exp[–(T0/T)1/4], (1)
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Fig. 1. Temperature dependence of the conductivity of a
TlFeS2 sample in the Arrhenius and Mott coordinates (the
inset in the upper right corner).
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for TlFeSe2.
PH
where

(2)

k is the Boltzmann constant, NF is the density of local-
ized states near the Fermi level, and a is the localization
radius.

The experimental data on the conductivity σ for a
TlFeS2 sample at T < 235 K are represented in the Mott
coordinates, logσ versus T–1/4, in the inset of Fig. 1.
The experimental points fit the straight line in these
coordinates, the slope of the dependence obtained
being T0 = 4 × 107 K. Knowing T0 and using formula (2),
we have estimated the density of the localized states
near the Fermi level, NF = 1.7 × 1018 eV–1 cm–3. The
value a = 14 Å was taken for the localization radius, as
in binary sulfides of group III elements [5]. The rela-
tively high value obtained for NF suggests that the
TlFeS2 samples investigated are similar in their energy
structure to amorphous semiconductors. The presence
of strongly deformed, and even broken, chemical
bonds, which show the acceptor properties, is charac-
teristic of an amorphous state. The role of these defects
is particularly large in crystals with a layered or chain
structure; the high density of states near the Fermi level
is due to the presence of such defects. The pressing of
the crystal fibers during our preparation of the sample
increased the disorder in the samples, which, in turn,
resulted in a considerable concentration of localized
electronic states. In other words, the TlFeS2(Se2) sam-
ples we prepared for the electrical measurements were
composed of short-range order regions joined together
in a disorderly way. The presence of defect centers with
a high concentration causes appreciable conduction
over the localized states in the band gap even at rela-
tively high temperatures.

Using the formula

, (3)

we determined the hopping lengths in TlFeS2 at differ-
ent temperatures: R = 107 Å at T = 230 K and R = 111 Å
at T = 203 K. The average hopping length is 109 Å in
this temperature range, and the R/a ratio is equal to 8;
that is, the average hopping length significantly
exceeds the average distance between the localization
centers of the charge carriers.

Charge carriers hopping from one localization cen-
ter to another absorb phonons in the temperature range
200–235 K considered above. The activation energy,
which decreases monotonically as the temperature
decreases, is due to the energy spread of the localized
states. A temperature decrease leads to an increase in
the probability of a charge carrier hopping to centers
that are more distant in space, but closer in energy. This
is the reason why the hopping activation energy
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decreases and the hopping length increases as the tem-
perature decreases. Finally, the moment arrives when
the conductivity is independent of the temperature; in
this case, charge carrier hopping occurs with the emis-
sion of phonons [6]. As follows from our experimental
results, the conductivity of TlFeS2 does not depend on
temperature at T < 200 K.

The conductivity that is independent of temperature
could be due to tunnel transitions of the charge carriers
from the localized states to the conduction band in a
strong electric field. In our case, we have relatively low
electric fields, F < 102 V/cm, that are far away from the
breakdown field. Our experimental data allow us to
assert that the non-Arrhenius behavior of the conduc-
tivity in TlFeS2 samples at T < 200 K is due to the local-
ized charge carriers; that is, the conductivity is essen-
tially the hopping conductivity associated with charge
carrier hopping with the emission of phonons.

Analogous tendencies were experimentally discov-
ered in TlFeSe2 samples. In contrast to TlFeS2, the sam-
ples of TlFeSe2 had a low resistivity; for example, at
T = 298 K, it was 25 Ω cm, whereas the resistivity of
TlFeS2 was ρ = 8 × 103 Ω cm at the same temperature.
The curve log σ versus 103/T (Fig. 2a) for the TlFeSe2
sample had no constant activation energy, but monoton-
ically sloped downward as the temperature decreased
(the activation energy was about 0.05 eV). However,
these experimental points fit one straight line in the
coordinates logσ versus T–1/4 (Fig. 2b), with a slope of
T0 = 1.4 × 106 K, well. The density of the localized
states near the Fermi level was NF = 3.3 × 1018 eV–1 cm–3

in the TlFeSe2 samples (the localization radius was
taken to be a = 34 Å, as in gallium selenide [7]). The
average hopping length in TlFeSe2 was 104 Å.

By using the formula [4]

, (4)

we estimated the spreading of the trapping states near
the Fermi level, ∆E = 0.13 eV, in TlFeSe2 samples.

The conductivity was practically independent of
temperature in the temperature range 85 to 250 K. The
temperature-independent conductivity observed in
TlFeSe2 (as well as in TlFeS2) is simply the activation-
less hopping conductivity.

∆E
3

2πR3NF

--------------------=
PHYSICS OF THE SOLID STATE      Vol. 42      No. 12      20
Thus, we have studied the charge transfer processes
in TlFeS2 and TlFeSe2 samples in a wide temperature
range. The experimental data obtained by us suggest
that variable-range hopping conduction takes place in
these crystals, which becomes activationless as the
temperature decreases further.

The temperature dependence of the thermoelectrical
coefficient in the TlFeSe2 sample is presented in Fig. 3.
The thermoelectrical coefficient slightly rises with
increasing temperature, reaches its maximum value at
T = 290 K, and then decreases to zero at T = 340 K;
thereafter, the sign of α is reversed. At T = 400 K, we
have α = –20 µV/K.
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Abstract—A technique involving combined photoreflectance/photoluminescence measurements is proposed
to study the electronic properties of semiconductor surfaces. The efficiency of the technique is illustrated by a
study of the growth and degradation of the luminescence signal from selenium-passivated GaAs substrates
under CW laser excitation. © 2000 MAIK “Nauka/Interperiodica”.
Miniaturization of optoelectronic semiconductor
structures makes the monitoring of electronic surface
properties an urgent problem. Efforts in this area are
presently focused primarily on reducing the density of
the semiconductor surface electronic states [1]. The
surface quality must be probed by high-precision non-
destructive measurement techniques capable of deter-
mining the nature and density of the surface states.

The standard phenomenological model employed to
describe the electronic properties of a free or passivated
semiconductor surface is based on the density-of-sur-
face-states distribution function NSS(E) in the band gap.
These states trap majority carriers from the bulk of the
semiconductor, which results in the creation of a
depleted near-surface region (space charge region) and
of a surface electric field with a strength F decaying in
the space charge region and, as a consequence, in the
semiconductor band bending eϕ [2].

Laser excitation with photon energies in excess of
the semiconductor band gap generates nonequilibrium
carriers of both signs. The number of created carriers
depends on the distance from the surface z (the semi-
conductor surface is at z = 0) and is proportional to
I0exp(–αz), where α is the absorption coefficient for the
exciting light. Recombination of excess carriers may
occur radiatively (luminescence) and in a nonradiative
manner. Nonradiative recombination at the semicon-
ductor surface, which involves surface states, is
described through the surface recombination velocity
vS. In the absence of nonradiative recombination, vS =
0, and in the case where recombination in the near-sur-
face region proceeds nonradiatively, vS  ∞ [3].

Photoluminescence excitation spectroscopy (PES),
which is based on the measurement of the integrated
photoluminescence-signal intensity near the funda-
mental absorption edge, has recently attracted consid-
erable attention due to its extremely high sensitivity to
the state of the semiconductor surface [3–8]. The inten-
sity of the integrated luminescence signal can be used
1063-7834/00/4212- $20.00 © 2200
to determine the surface recombination velocity from
the expression [9]

(1)

where η is the internal quantum efficiency, L is the dif-
fusion length of the minority carriers, vD is the diffu-
sion velocity of the minority carriers, and Φ is a func-
tion introduced in [9] to describe the diffusion contribu-
tion from the bulk of the semiconductor. As follows
from the Shockley–Read–Hall recombination model,
the surface recombination velocity is directly propor-
tional to the density of recombination-active states.
Thus, by measuring the absolute value of the integrated
photoluminescence signal, one can obtain information
on the density of recombination-active surface states.
Measurement of the time dependence of the integrated
luminescence signal was used to study photostimulated
reactions on the GaAs surface [4–6].

Photoreflectance spectroscopy, which is a modifica-
tion of electroreflectance spectroscopy, is at present one
of the most precise methods for determining of the sur-
face electric field or the surface potential of a semicon-
ductor sample [10]. This method is based on a periodic
electrical modulation of the reflectance signal from the
near-surface region of a semiconductor through modu-
lation of the intrinsic surface electric field, which is
achieved by illuminating the surface by laser light with
a photon energy in excess of the band gap. Because of
the very strong broadening effects in the region of high-
energy transitions, the most useful information is con-
tained in photomodulation spectra obtained near the
fundamental absorption edge, E0.

Photoreflectance spectroscopy operates with spec-
tral structures of two types [11]. At moderate fields,
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where the electrooptical energy

(2)

(µ|| is the reduced effective electron–hole mass in the
direction of the electric field and e is the electronic
charge) exceeds the phenomenological spectral-broad-
ening energy Γ of the interband transition, the spectral
structure consists of a main peak near the transition
energy and Franz–Keldysh high-energy oscillations
(Fig. 1). In the low-field case, where the "Ω < Γ condi-
tion is satisfied, the spectral structure represents a reso-
nance line with two extrema of opposite sign.

As shown in the photoreflection theory, when pho-
toreflectance spectra are measured near the E0 inter-
band transition for a three-dimensional critical point,
the Franz–Keldysh oscillations can be described by the
approximate asymptotic relation [12, 13]

(3)

Thus, the period of the Franz–Keldysh oscillations can
be used to determine the electrooptic energy and, if µ||
is known, the surface electric field. Knowing this and
the equilibrium carrier concentration n, one can use the
relation

(4)

to determine the surface potential ϕ and the density of
charged surface states QSS [2].

Thus, by measuring a photoreflectance spectrum and
an integrated photoluminescence signal in the same
region of the semiconductor surface, one can obtain
information both on the strength of the surface electric
field and on the surface recombination velocity, i.e., esti-
mate the density of both electrically and recombination-
active surface states. This would provide a relatively
accurate determination of the electronic properties of the
surface. A further advantage of the proposed combined
method consists in that these studies can be performed
on the setup already described in detail in [14].

This paper illustrates combined photoreflectance
and photoluminescence measurements in a specific
example of a study of the stability of a passivated GaAs
surface.

The samples studied were fabricated at the Voron-
ezh Technological Academy. They were n-GaAs(100)
substrates annealed in Se or Se + As vapor at a temper-
ature of 660–680 K for 5–45 min. The Se vapor pres-
sure was maintained during annealing within the
0.1−1 Pa interval. Subjecting a GaAs substrate to a
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chalcogen-containing medium at the above tempera-
tures initiates the reaction of heterovalent substitution
and the formation of a pseudoamorphous Ga2Se3 layer
on the sample surface. It was established that the den-
sity of surface states on the Ga2Se3/GaAs interface is
lower than that of a naturally oxidized surface [1, 15,
16]. However, the stability of the effect achieved was
not studied. Because it is known from the literature that
CW laser illumination of a GaAs surface stimulates the
processes of desorption, reoxidation, and defect gener-
ation [3–8], it can be suggested that PES would be an
efficient tool to probe the stability of surface passiva-
tion.

All measurements were carried out in air at room
temperature on the setup described in [14] by the fol-
lowing technique. Modulated laser light (He–Ne laser,
λ = 632.8 nm) is focused on a 0.1 × 0.1 mm area on the
sample surface, and the GaAs E0 photoreflectance spec-
trum is measured (the pseudoamorphous Ga2Se3 layer
is transparent at λ = 632.8 nm). Because high laser-
excitation densities are capable of initiating photostim-
ulated reactions at the GaAs surface, the photoreflec-
tance spectra were obtained at those laser excitation
densities at which no noticeable change in the inte-
grated luminescence signal occurred during the mea-
surement time. After the measurement of the photore-
flectance spectrum, the laser power density is
increased, modulation of the laser light is removed, and
the dependence of the photoluminescence signal inten-
sity on time, IPL(t), is measured. After a certain time,
determined in each particular case by the actual pattern
of the observed integrated luminescence-signal evolu-
tion, the PL measurement is terminated, the laser exci-
tation density is reduced, and the photoreflectance
spectrum is measured again at the low laser-excitation
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Fig. 1. Experimental E0 photoreflectance spectra obtained
on Se-passivated GaAs samples. The difference between the
Franz–Keldysh oscillation periods implies different surface
electric fields: F1 = 3.19 × 106 V/m, F2 = 2.91 × 106 V/m.
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density. Having obtained the photoreflectance spec-
trum, the laser power density is brought back to the pre-
ceding level, it is checked for breaks in the integrated
photoluminescence (IPL) intensity curve, and the mea-
surement of the IPL(t) dependence is resumed.

It was empirically found that the laser excitation
density L ~ 1 mW/cm2 does not cause any noticeable
change in the IPL signal of the samples studied over
several hours. By contrast, for L > 100 W/cm2, the sig-
nal is observed to change already after a few seconds.
It is these values of L that were chosen for measure-
ments of the photoreflectance and IPL. The IPL(t) mea-
surement time was 1500 s. The time spent to take one
photoreflectance spectrum was 600 s.

Figure 2 illustrates a combined photoreflec-
tance/photoluminescence study typical of the samples
used. As seen from the upper curve of Fig. 2, at excita-
tion densities L ~ 2500 W/cm2, one observes only a
decay (degradation) of the signal, which exemplifies
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4

L = 250 W/cm2

L = 2500 W/cm2
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1
IPL

0 500 1000 1500
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Fig. 2. Results of a correlated photoreflectance/photolumi-
nescence study performed at a laser excitation density L =
2500 (top) and 250 W/cm2 (bottom). The electric fields F,
106 V/m: (1) 3.01, (2) 2.90, (3–5) 2.89; (1') 3.12, (2') 3.04,
(3') 2.99, (4') 2.97, and (5'–7') 2.95.
PH
the first type of photoluminescence intensity depen-
dence on time.

A tenfold decrease in the excitation density changes
the pattern of the relation in the initial phase. As is evi-
dent from the lower curve of Fig. 2, in the initial phase,
one now observes growth of the signal, which is fol-
lowed, on reaching a maximum value, by a decay sim-
ilar to that observed in relations of the first type.

Further decrease in the laser power density stretches
the growing part of the curve in time, so that only a slow
growth of the PES signal becomes evident at laser exci-
tation densities L ~ 1 W/cm2.

Mathematical modeling of the observed IPL(t) rela-
tions showed that curves of the first type are fitted well
by one decaying exponential, while those of the second
type are described by a superposition of one growing
and one decaying exponential:

(5)

where t1 and t2 are the rate constants of the processes
initiated by the laser excitation.

Our calculations show that the time constant t2 of
the growing exponential is substantially smaller than
that of the decaying one, t1. Growth of the excitation
density brings about a decrease in both constants, with
the difference between the two increasing. For instance,
for a laser excitation density L = 100 W/cm2, the time
constants averaged over ten samples are t1 = 420 s and
t2 = 280 s; for L = 500 W/cm2, we have t1 = 150 s and
t2 = 10 s; and for L = 2500 W/cm2, t1 = 30 s. These fig-
ures suggest that even an IPL(t) relation of the first type
has its growing portion, but it is not seen because of the
relatively large instrument resolution time (0.4 s).

Quantitative analysis of photoreflectance spectra
obtained before the initiation of photostimulated reac-
tions yields the following averaged parameters: F ≈ 3 ×
106 V/m, eϕ ≈ 0.3 eV, and QSS /e ≈ 2 × 1011 cm–2. The
photoreflectance measurements made in the course of
the PES studies are shown graphically in Fig. 2. As seen
from the upper curve, in the initial part of this descend-
ing curve, the surface electric field decreases; however,
a short time thereafter, saturation is obtained. The lower
curve reveals that the decay in the electric field is asso-
ciated with the growing component. Thus, photoreflec-
tance measurements provide unambiguous supportive
evidence for the presence of a growing component with
a short time constant in IPL time relations of the first
type as well.

The observed IPL relations can be interpreted in
terms of a model assuming photoinduced chemical
reactions near the semiconductor surface to proceed
simultaneously with the generation of “nonradiative”
defects in the near-surface region of the GaAs sub-
strate. The generation of nonradiative defects in the

IPL t( ) = IPL t = ∞( ) C A
t
t1
---– 

  B
t
t2
---– 

 exp–exp+ ,
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near-surface region of GaAs under laser irradiation was
reported in [3, 8].

We believe that the surface of the samples studied is
nonuniform and possesses regions both of stable passi-
vation, where heterovalent substitution has come to an
end, and of incomplete passivation. A passivated region
can be associated with the lowest density of states,
while a region with incomplete passivation has an
enhanced Se-induced density of states, which is super-
imposed on the intrinsic semiconductor-surface states.
The existence of regions with different surface-state
densities is confirmed by measurements of photoreflec-
tance spectra obtained with a high surface resolution
(10 × 10 µm) in different surface areas of a passivated
substrate. These studies showed that the magnitude of
the surface electric field depends strongly on the actual
point of measurement. This effect is not observed on an
untreated substrate.

The laser-induced conversion of incomplete to sta-
ble passivation results in a decrease in the surface
recombination velocity, which brings about a growth in
the luminescence intensity; by contrast, generation of
nonradiative defects in the near-surface region entails
signal degradation. That the generation of nonradiative
defects occurs not on the surface itself but rather in the
near-surface region of a semiconductor is supported by
the absence of any change in the surface electric field
within the degradation part of the relation, whereas the
conversion of incomplete to stable passivation is char-
acterized by a changing surface electric field. The latter
observation suggests that the states forming in the
course of the transition from incomplete to stable pas-
sivation should either be created within the band-gap
regions close to the band edges or destroy the midgap
states.

Thus, study of the stability of the selenium-passi-
vated GaAs surface has shown that combined photore-
flectance/photoluminescence measurements are an effi-
cient method for probing the electronic properties of a
semiconductor surface. Direct measurements have
established that the process responsible for the degra-
dation of the photoluminescence signal is the genera-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 12      20
tion of nonradiative defects in the near-surface region
of the semiconductor, while the growth of the photolu-
minescence signal can be accounted for by the photo-
stimulated reactions in the vicinity of the passivated
surface.
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Abstract—The method of two- and three-crystal x-ray diffractometry (TCD) is used for studying the disloca-
tion structure of thick GaN layers grown by chloride gaseous-phase epitaxy (CGE) on sapphire, as well as on
a thin GaN layer, which is grown by the metalloorganic synthesis (MOS) method. Five components of the
microdistortion tensor 〈ε ij〉  and the sizes of the coherent scattering regions along the sample surface and along
the normal to it are obtained from the measurements of diffracted intensity in the Bragg and Laue geometries.
These quantities are used to analyze the type and geometry of the dislocation arrangement and to calculate the
density of the main types of dislocations. The density of the vertical screw dislocations, as well as of the edge
dislocations, decreases (by a factor of 1.5 to 3) during growth on a thin GaN layer. The diffraction parameters
of the thick layer on the MOS-GaN substrate suggest that it has a monocrystalline structure with inclusions of
microcrystalline regions. © 2000 MAIK “Nauka/Interperiodica”.
The large difference between the lattice constants
and the temperature expansion coefficients of layers
and of sapphire substrates normally used for their
growth is a serious problem in the epitaxial growth of
GaN. As a result, the samples are bent and various
defects are generated, which deteriorates the optoelec-
tronic characteristics of the layers. This problem could
be solved, for example, by using the homoepitaxial
growth of GaN, but crystals and layers of GaN are sel-
dom used as substrates. Another promising approach is
to obtain thick GaN layers grown by the chloride gas-
eous-phase epitaxy (CGE) [1–4], which can be used for
the subsequent growth of heterostructures. It was
proved recently that the application of MOS of GaN
thin layers (on sapphire) as substrates for the subse-
quent growth of GaN by CGE can noticeably improve
the quality of their structure [5].

Defects in GaN layers are studied by using various
methods including photo- and cathodoluminescence,
transmission electron microscopy (TEM), atomic force
microscopy, the Raman method, and x-ray diffractom-
etry [1–6]. According to the obtained data, layers are
characterized by a high defect density near the interface
between the layer and the substrate, which decreases in
the direction to the surface. The change in the size of
microblocks in the layers with increasing distance from
the interface is also determined. Along with vertical
screw and edge dislocations, dislocations of a mixed
type are also present, although the number of former
dislocations is much larger [4].
1063-7834/00/4212- $20.00 © 22204
Among the methods listed above, x-ray diffractom-
etry is the only nondestructive method which provides
information about a large volume of the layer all at
once. As a rule, measurements of the symmetric dif-
fraction in Bragg’s geometry are used for this purpose.
In the framework of the mosaic model, dispersion of
the c axis of microcrystallites [henceforth called coher-
ent scattering regions (CSRs)] leads to broadening of
the rocking curve in the direction of the normal to the
diffraction vector due to mosaic spread (tilt), which is
the same for any reflex used, while the so-called size
effect depends on the diffraction angle in view of the
limitations on the CSR size. Such a behavior of the
symmetric diffraction curves is widely used for analyz-
ing the defect structure of nitrides. Metzger et al. [7]
indicated the limitations of such an analysis and pro-
posed that the results of measurement of asymmetric
Bragg reflections also be used. However, the measure-
ment of asymmetric reflections in Bragg’s geometry is
ineffective in our opinion since the broadening of the
asymmetric reflection contains (in general) a complex
combination of contributions from microrotations and
microdeformations of the crystal planes parallel and
normal to the surface, as well as from broadening due
to the limited size of the CSRs along and at right angles
to the sample surface. Additional simulation of the rela-
tion between the different contributions to the half-
widths being measured, which is required in this case,
complicates the analysis of the defected structure. In
addition, the conventional mosaic model disregards
structural defects and the related lattice deformation in
the CSRs themselves.
000 MAIK “Nauka/Interperiodica”
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In this paper, we use a complex approach based on
the x-ray measurement of the microdistortion tensor for
GaN layers obtained by the CGE method, which allows
us to avoid the disadvantages mentioned above. Micro-
distortions due to displacement fields around structural
defects modify the shape of a reciprocal lattice (RL)
site causing its broadening and, hence, the broadening
of the corresponding diffraction curve [8, 9]. We
include in our analysis defect-induced microdistortions
of crystal planes in micrograins and show how to obtain
the microdistortion tensor and the CSR size along and
at right angles to the sample surface from diffraction
curves by using only two scanning modes [θ and (θ–
2θ] and two (Bragg and Laue) geometries of symmetric
diffraction. We carry out a simple analysis of the rela-
tion between the microdistortion tensor being mea-
sured and the type and geometry of the arrangement of
dislocations in GaN. The potentialities of the proposed
analysis are demonstrated by comparing the structural
quality of thick CGE layers of GaN grown on sapphire
and on thin GaN substrates by the MOS technique.

1. X-RAY DIFFRACTION AND CRYSTAL 
LATTICE MICRODISTORTION IN NITRIDES

The different influences of the tilt and the size effect
on the broadening of Brag’s rocking curves in the case
of a mosaic structure of crystals are usually analyzed by
using the method proposed by Williamson and Hall
[10]. Presuming a linear superposition of the contribu-
tions, we construct the dependences

ωθ(sinθ/λ) = f(sinθ/λ) (1)

and

ωθ – 2θ(cosθ/λ) = f(sinθ/λ), (2)

where ωθ and ωθ – 2θ are the angular width at half the
reflection intensity peak for θ and θ–2θ scanning and θ
and λ are Bragg’s angle and the wavelength of x-rays,
respectively. The slope given by Eq. (1) is used to deter-
mine the contribution of microdisorientations ωtlt to the
broadening. The slope of the dependence in Eq. (2)
gives the values of microstrain εc along the c axis. The
sizes of the CSR along the surface (τx) and along the
normal to it (τz) are estimated from intercepts cut by the
dependences in Eqs. (1) and (2) on the y axis.

Recently, we proposed [9] a new approach for char-
acterizing the structural perfection of strongly mis-
matched epitaxial layers, which is based on x-ray mea-
surement of the microdistortion tensor components 〈ε ij〉
that are standard deviations of the average distortion
components. In view of the isotropy of the (0001) plane
in hexagonal GaN, the microdistortion tensor is com-
posed of just five independent components. However,
the broadening of the symmetric θ and (θ–2θ) reflec-
tions, each of which is related only to a single compo-
nent of 〈ε ij〉 , is also determined by the dimensions of the
CSR along the surface τx and along the normal to it τz.
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In order to separate the contributions from the com-
ponents of the 〈ε ij〉  tensor and the CSR, we propose that
the measurements of the diffracted intensity in the Laue
symmetric (transmission) geometry be used along with
the Bragg reflection geometry. In this case, Bragg’s
three-crystal θ curve contains information on εzx and τz,
while the (θ–2θ) curve carries information on εzz and τx.
In the Laue geometry, εxz and τz are obtained from the θ
curve, while εxx and τx are obtained from the (θ–2θ)
curve. Thus, the application of two scanning modes in
the two symmetric diffraction geometries makes it pos-
sible to measure each component of the microdistortion
tensor without making additional assumptions con-
cerning their relation in the half-widths being mea-
sured.

It was mentioned above that only the tilt and the size
effect are normally used for analyzing the structure of
strongly mismatched epitaxial layers in the mosaic
model. However, our measurements of the Laue dif-
fraction revealed a difference in the broadening of the
Bragg (B) and Laue (L) θ curves of reflection (taking
into account the size effect), which means that the
mosaic model is not quite adequate. While analyzing
the measured half-widths, we must obviously take into
consideration the contribution from individual defects
in microblocks. This is also important to do in view of
advances in obtaining less defected (almost monocrys-
talline) nitride layers. Consequently, for θ scanning we
can write

(3)

where the term  ~ λ/(τx(z)sinθ) is associated with
the size effect along the diffracting planes. The contri-

bution of  is determined by the mosaic spread dis-
ordering of the CSR, does not depend on Bragg’s angle
θ, and is the same in the measurements of the Bragg

and Laue diffraction (  = ). The contribution

 ~ 〈εzx(xz)〉  is proportional to the shear component
of the microdistortion tensor and originates from
microdisorientation of the diffracting planes near
defects in the CSR.

The broadening of the (θ–2θ) curve is determined
by only two components:

(4)

where  ~ λ/(τz(x)cosθ) is associated with the size
effect along the normal to the diffracting planes, while

 ~ 〈εzz(xx)〉  is proportional to the diagonal ten-
sor component and is determined by microdeforma-
tions of the diffracting planes.

The contributions to the broadening of θ and (θ–2θ)
reflections in the Bragg, as well as Laue, geometry are

ωθ
B L( )( )2 ωτx τ z( )

B L( )( )2 ωtlt
B L( )( )2 ωϕ

B L( )( )2
,+ +=

ωτx τ z( )
B L( )
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summed up according to a quadratic law since the
reflection curves have a Gaussian shape (see [9]).

In order to characterize completely the structural
perfection of nitrides, the measurements of the broad-
ening of the θ and (θ–2θ) symmetric reflection are
insufficient since the rotation of the CSR in the plane of
the layers and the microtwists (twt) of local crystal
regions near defects around the normal to the surface
also take place. Srikant et al. [11] demonstrated
recently that the correct value of the twist component
ωtwt can be determined from the dependence of the half-
widths ωOOP for a series of symmetric Bragg’s reflec-
tions of the (101l) type on the angle ξ formed by these
out-of-plane (OOP) planes with the basal (0001) plane
rather than from the conventionally used φ scanning [7,
12] or from the measurements of grazing Bragg diffrac-
tion (GBD) [13]. The half-width measured in the case
of φ scanning contains both tilt and twist contributions,
and the GBD method, which is correct from the meth-
odological point of view, provides information only on
a very thin (~100 nm) surface layer. As the value of ξ
increases, the effect of tilt on ωOOP decreases with a
simultaneous increase in the twist component and,
hence, the measurement of ωOOP as a function of ξ and
the extrapolation of the dependence ωOOP = f(ξ) to ξ =
90° gives the value of ωtwt. The value of ωtwt measured
by the OOP method is connected with the microdistor-
tion tensor components:

(ωtwt) = 〈εxx〉2 + 〈εxy〉2. (5)

2. MICRODISTORTION TENSOR 
AND DISLOCATIONS IN GaN

Apart from the dispersion of the c axis of microb-
locks and the presence of small-angle boundaries
formed by horizontal edge dislocations in the layers,
which is associated with the dispersion, the main
defects in the layers are vertical screw and edge dislo-
cations (see, for example, [5–7, 9]). In our analysis of
the dislocation structure of the layers, we used the rela-
tion between the components of 〈ε ij〉  with the geometry
and type of dislocations in GaN. For example, a vertical
screw dislocation with the Burgers vector parallel to the
normal to the surface makes contributions only to the
〈εzx〉  component, while a vertical edge dislocation with
the Burgers vector parallel to the surface makes contri-
butions both to 〈εxx〉  (L) and to 〈εxy〉  (B). A similar form
of the dependence for the main types of dislocations in
the geometry of their arrangement in GaN is illustrated
in Fig. 1. The recording geometry (B or L) determines
the mutual orientation of the normal n to the surface
and the diffraction vector H. The density ρvs of the ver-
tical screw dislocations can be estimated from 〈εzx〉
using the expression from [14] modified by us:

(6)ρvs εzx〈 〉 2/0.92bvs
2 ,=
PH
where bvs is the Burgers vector of a screw dislocation
(0.5186 nm in GaN). The density of randomly distrib-
uted vertical edge dislocations ρve can also be deter-
mined using expression (6) in which 〈εzx〉  is replaced by
〈εxy〉  and bvs by bve = 0.3185 nm.

When vertical edge dislocations form small-angle
boundaries, their density is given by [14]

(7)

where τx is the separation between these boundaries
along the surface.

3. EXPERIMENT

Thick (25 µm) GaN layers investigated by us were
grown at 1090°C by the CGE method described earlier
[3]. The samples were grown on the (0001) sapphire
without a buffer (A206) and on a thin GaN layer
(U296). A thin (2.5 µm) MOS-GaN layer (ATX5),
which was used as a substrate, was also grown on the
(0001) sapphire. Its structural parameters were also
studied in order to estimate the initial conditions for
growing the thick layer.

X-ray diffraction measurements of layers were
made on a two-crystal, as well as three-crystal, diffrac-
tometer in the Bragg (CuKα1) and Laue (MoKα1) geom-
etries. The three-crystal diffractometer was used for
measuring the θ and (θ–2θ) scanning curves for the fol-
lowing reflections of the GaN layers (Fig. 2): symmet-
ric 0002 and 0004 reflections in the Bragg geometry

and symmetric 10 0 and 20 0 reflections in the Laue
geometry (the layer at the x-ray exit).

Two-crystal curves were measured with a widely
open detector window for asymmetric reflections in the
Bragg geometry for the glancing angle of incidence

(11 4) and reflection (11 ) of the x-ray (the normal
to the sample surface lies in the plane of scattering),

symmetric reflections of the 10 l type in the Bragg
geometry from planes forming angles from 17° to 75°,
respectively, with the (0001) surface (the normal to the
sample surface lies outside the scattering plane).

Perfect Ge(220) crystals with a resolution not worse
than 15′′  were used as the monochromator and the ana-
lyzer. The dispersion in the x-ray optical scheme was
taken into account while processing the diffraction
curves.

4. DISCUSSION OF RESULTS

The half-widths of the diffraction curves of the sam-
ples are presented in Table 1. The correction for mac-
rotwist of the samples (~5′′  for the A206 sample having
the maximum curvature) was taken into account while
processing the experimental data according to [15]. For
all the samples, the following features of the measured
half-widths were observed: (i) ωθ @ ωθ – 2θ, which indi-

ρve
lab εxy〈 〉 2/ 2.1bveτ x( ),=

1 2

2 2 4

1
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Fig. 1. Relation between the microdistortion tensor components 〈ε ij〉  and the shape of reciprocal lattice sites for (a–e) various types
and geometries of the arrangement of dislocations and (f) crystal lattice rotations in the plane of the layer: vs denotes vertical screw;
hs, horizontal screw; ve, vertical edge; and he, horizontal edge dislocations; twt stands for twist; b is the Burgers vector; H is the
diffraction vector; and n is the normal to the surface.
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cates a strong anisotropy of diffraction scattering (the

shape of a site in the reciprocal shape); (ii)  >

, which indicates the presence of a size effect in

the measured half-widths; (iii) ωθ – 2θ ~ , which

ωθ
0002

ωθ
0004

θtan
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indicates that the broadening of the (θ–2θ) curves is
mainly determined by microdeformations of the com-

pression–extension type; (iv)  <  and  <

, which means that a reciprocal lattice site is

ω1124 ω1124 ω1124

ω0002
00
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extended not along the diffraction vector, but along the
surface (or occupies an intermediate position between

them); and (v)  > .

If the layers are composed only of CSRs free of
defects and characterized by a certain tilt, we should

expect that  is equal to . Item (v) rules out
this assumption. If we consider that the size effect is

insignificant ( /  ≥ 0.9) and the effect

of horizontal edge (mismatching) dislocations on 

can be neglected, we can assume that  ≅  ωtlt. In

ωθ
0002 ωθ
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ωθ
0002 ωθ

1010

ωθ
0004 2020, ωθ

0002 1010,

ωθ
1010
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GaN
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x

z
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L B
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–

20 20
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11 24
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–

11
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ξ
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Fig. 2. (a) Bragg (B) and Laue (L) geometries of x-ray dif-
fraction measurements in GaN and (b) mutual arrangement
and shape of reciprocal lattice sites of the reflections used
for GaN layers.

2 4
PH
this case, the difference between  and  indi-

cates that  also contains a contribution from
defects, the displacements from which have a nonzero
component along the diffraction vector. In the analysis
of broadening of x-ray reflections that will be carried
out here, we proceed from the assumption that the
broadening of θ curves are determined, in addition to
the size effect associated with a limited size of CSR, by
two disorientation components. The first is determined
by the angular rotation of the CSR (so-called tilt corre-
sponding to the second term in formula (3)) and does
not depend on the chosen reflection and the recording
geometry. The reason behind the mosaic spread (tilt) in
the case of nitrides is the strong mismatching of the
parameters of the layer and substrate lattices and the
three-dimensional growth associated with it. The sec-
ond component is due to defects in the microblocks
themselves, which are mainly grown-in vertical screw
and edge dislocations (the third term in formula (3)).

The microdistortion tensor components obtained
from experimental half-widths by using formulas (1)–
(5) are presented in Table 2.

The layers under investigation are characterized by
the following general regularities in the behavior of 〈ε ij〉
components: (i) 〈εzx〉 > 〈εxz〉 (i.e., the microdisorienta-
tions of the planes parallel to the surface are larger than
for planes perpendicular to the surface); (ii) 〈εxx〉 > 〈εzz〉 ,
which corresponds to a higher level of microdeforma-
tion of planes perpendicular to the surface in compari-
son with planes parallel to the surface.

Additionally, the components for thick GaN grown
on a sapphire by the CGE technique differ significantly
from those for a thin GaN layer grown by the MOS
method.

4.1. Undoped MOS GaN (ATX5) 
and a Thick Layer (U296) on It

Table 2 shows that 〈εzx〉 > 〈εxz〉  for both samples. The
values of 〈εzx〉  and 〈εxz〉  presented in Table 2 also include
the tilt of CSR, which is the same for both geometries

of diffraction,  = . Consequently, the difference
between 〈εzx〉  and 〈εxz〉  is due only to the type and geom-
etry of the arrangement of defects (dislocations) in the

ωθ
0002 ωθ

1010

ωθ
0002

ωϕ
B ωϕ

L

Table 1.  Angular half-widths for GaN layers (in seconds of arc)

Sample ωtwt 11 4/11

Bragg Laue

θ
0002

θ–2θ
0002

θ
0004

θ–2θ
0004

θ
10 0

θ–2θ
10 0

θ
20 0

θ–2θ
20 0

A206 1400 560/920 591 42 535 90 525 44 510 85

ATX5 862 257/590 414 26 390 67 184 42 180 75

U296 675 153/261 215 17 200 69 62 22 75 42

2 2 4

1 1 2 2
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microblocks themselves. According to Fig. 1, only ver-
tical screw dislocations make a contribution to 〈εzx〉  and
do not affect 〈εxz〉 , while vertical edge dislocations do
not affect any component of the tensor. In other words,
the difference in the components for the two geometries
of diffraction makes it possible to calculate the density
of the vertical screw dislocations ρvs. At the same time,
the difference in the absolute values of 〈εzx〉  and 〈εxz〉  for
thin MOS GaN and a thick layer on it can be due either
to a decrease in the density of the vertical screw dislo-
cations in a growing thick layer (because of their bend-
ing into the plane of the layer and the formation of dis-
location half-loops) or to a separation of the region of
the layer under investigation from a strongly defective
interface. Thus, the values of δ2 = 〈εzx〉2 – 〈εxz〉2 and not
of 〈εzx〉  must be used for calculating ρvs by using rela-
tion (6).

It follows from Table 1 that 〈εzz〉  is determined only
by horizontal edge dislocations. Since the value of 〈εzz〉
is practically the same in the MOS-GaN substrate and
in the thick layer on it, the density of this type of dislo-
cation (or defects with analogous displacement fields)
does not change in the case of the CGE growth of GaN.

The value of 〈εxx〉  depends on the presence of verti-
cal, as well as horizontal, edge (misfit) dislocations in
the layers, and a decrease in 〈εxx〉  to almost half the ini-
tial value upon a transition to the thick layer indicates a
decrease in the density of such dislocations. Since mis-
fit dislocations are located predominantly at the inter-
face, the decrease in 〈εxx〉  can be due to the loss of their
influence on the diffraction curve for the thick sample.
However, the fact that 〈εxy〉  also decreases by one-fourth
indicates a simultaneous decrease in the density ρve of
the vertical edge dislocations (annihilation of disloca-
tions and their bending to the basal plane). The values
of ρve calculated by formula (6) using 〈εxy〉  are pre-
sented in Table 2. The same table contains the value of

the density  of vertical edge dislocations (forming
small-angle boundaries), which can be obtained from
〈εxy〉  and the values of the lateral size τx of the CSR

given by Eq. (7). The value of  is three orders of
magnitude lower than ρve. The values of ρve obtained by
us from 〈εxy〉  and 〈εxx〉 (in analogy with [16]) indicate
the preferred location of vertical edge dislocations in
the grains themselves rather than on the grain bound-
aries.

The difference between the values of ρve obtained
from our measurements and by the TEM method [5] is

worth noting. Since ρve ~ , the possible presence
of stacking faults in the layers may lead to an additional
broadening of ωOOP that is not associated with the pres-
ence of dislocations and, hence, to an exaggerated esti-
mate of ρve. However, this correction cannot eliminate
the difference between our data and the TEM data. The
latter data should be estimated critically from the view-

ρve
lab

ρve
lab

ωOOP
2
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point of the improvement in the statistics of processed
images, as well as of the completeness of elucidation of
all dislocations.

Summarizing the results obtained for these two
samples, we note a decrease in the density of disloca-
tions in CGE GaN by a factor of 1.5–3 as compared to
the MOS-GaN substrate along with a simultaneous
increase in the size of the CSRs. The extremely low
value of the half-width of the θ-TCD reflection curve in
the Laue geometry (62′′ ), which was not observed ear-
lier for nitrides, allows us to assume that the thick CGE
layer of GaN is monocrystalline with inclusions of an
insignificant amount of microcrystalline regions.

4.2. The Thick CGE Layer of GaN (A206) on Sapphire

For this layer, the value of 〈εzx〉  is close to 〈εxz〉 ,
which complicates an analysis of the dislocation struc-
ture since the contributions cannot be separated by the
method used earlier because of the tilt and dislocations.

The fact that the half-widths of all (except 11 )
θ curves of diffraction are close indicates that the tilt
contribution is mainly responsible for the broadening
of the diffraction curve in this case. If we assume, as

before, that ωtlt ≅  , the calculation gives ρνs =
0.25 × 108 cm–2, which is smaller than for a thin MOS-
GaN layer and the CGE GaN on it. At the same time, all
angular half-widths are larger in the case when the
thick layer grows on sapphire without a buffer. This

means that the tilt contribution to  and the influ-
ence of defects on this half-width are overestimated. A
more detailed analysis of this layer requires the con-
struction of a map illustrating the distribution of the dif-
fracted intensity in the reciprocal space and a detailed
analysis of the dislocation structure on the basis of this
map, similar to that carried out in [17].

2 4

ωθ
1010

ωθ
1010

Table 2.  Microdistortion tensor components 〈ε ij〉 , size τi of
CSR, and dislocation densities ρ in GaN layers

Components A206 ATX5 U296

〈εzz〉 , 10–4 2.29 2.36 2.59

〈εzx〉 , 10–4 12.50 9.24 4.71

〈εxx〉 , 10–4 7.57 6.74 3.75

〈εxz〉 , 10–4 12.20 4.32 1.90

〈εxy〉 , 10–4 67.40 41.25 32.52

τx (µm) 0.68 1.00 1.61

τz (µm) 0.40 1.29 @1

ρvs, 108 cm–2 0.30 2.70 0.75

ρve, 1010 cm–2 4.87 1.83 1.13

, 107 cm–2 1.01 0.25 0.10ρve
cl
00
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The densities of vertical randomly distributed edge
dislocations calculated from 〈εxy〉  in accordance with
Eqs. (6) and (7) for the model of dislocations forming
small-angle boundaries are given in Table 2. Their
value in this layer is four times higher (for random dis-
locations) than that for a thick CGE layer on a MOS-
GaN substrate and an order of magnitude higher for the
model of the formation of small-angle boundaries from
vertical edge dislocations.

Thus, we have carried out a complex x-ray diffrac-
tion analysis of the dislocation structure of thick CGE
layers of GaN on sapphire, as well as on a thin MOS-
GaN layer used as a substrate.

We used the approach proposed by us earlier and
associated with the x-ray diffraction measurement of
the microdistortion tensor and analysis of the defective
structure of epitaxial layers, which is carried out on its
basis. Use was made of optimal x-ray layouts for
detecting the diffracted intensity and the relation
between its angular distribution and the type and posi-
tion of defects in the layers.

The disadvantages of the mosaic model applied for
analyzing the dislocation structure of nitrides are dem-
onstrated. It is proposed that apart from the contribu-
tions associated with the tilt and size effect, the compo-
nent associated with defects in the CSR (micrograins)
can be singled out and investigated in an analysis of x-
ray reflection broadening.

The asymmetric shape of the reciprocal-lattice site
is typical of all samples. The shape varies from that
extended along the normal to the diffraction vector for
the A206 sample (due to the predominance of the tilt
effect) to that extended along the sample surface (due
to anisotropy in the size of the CSRs, as well as in the
deformation fields of defects in them).

The defect structure of all the layers under investi-
gation is characterized by the presence of a large num-
ber of vertical screw and edge dislocations in it (the
number of the latter dislocations is two orders of mag-
nitude larger). It was found that the density of vertical
screw dislocations in a thick CGE-GaN layer is smaller
than in a MOS-GaN substrate used for its growth by a
factor of 2.5. The density of vertical edge dislocations
in the thick layer on a GaN substrate is one-fourth of its
value in a thick layer grown directly on sapphire. The
extremely low value of the half-width of the θ TCD
reflection curve in the Laue geometry (62′′ ) allows us
to treat the thick layer as monocrystalline with inclu-
sions of an insignificant number of microcrystalline
regions.
PH
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Abstract—The lattice heat conductivity κph of PrTe1.46 and LaTe1.46 has been measured within the 2- to 100-K
interval. The quantity –∆κres(T), the decrease in the heat conductivity caused by resonant phonon scattering due
to crystal-field-split paramagnetic levels of Pr, was derived from experimental data using the relation
−∆κres(T) = (T) – (T). The energy of the first split paramagnetic level of Pr, ∆1 was cal-

culated from the ∆κres(T) relation for T < Tres. It was found that ∆1 depends on the nature of the nearest neighbor
environment of Pr ions in the lattice. The temperature dependence ∆κres(T) has been determined to be ∆κres(T)
(∆κres ~ T−0.5) for T > Tres. © 2000 MAIK “Nauka/Interperiodica”.

κph PrTe1.46( ) κph LaTe1.46( )
INTRODUCTION

A large number of publications deal with phonon
scattering due to crystal-field-split paramagnetic levels
of rare-earth (RE) ions in solids (see, e.g., monographs
and reviews [1–5]).

The cases were considered where the RE ions were
impurities [4, 6, 7] (low RE concentration) or main
components of a compound (large RE concentration).
Situations were discussed where the RE ions were dis-
tributed over the lattice in an ordered or disordered
manner [4, 5, 8–10] or entered glass compositions [5,
11]. The latter cases related to heavily defective mate-
rials.

We were prompted to reconsider the effect of
phonon scattering due to RE paramagnetic levels by the
unusual behavior of the lattice heat conductivity (κph)
of YbInCu4 and YbAgCu4.

1 We suggested that the
behavior of κph in these compounds could be related to
the above-mentioned effect. YbInCu4 and YbAgCu4
belong to moderately defective materials, on which
phonon scattering due to crystal-field-split paramag-
netic levels of RE ions was not investigated within a
broad temperature range.

The model compound PrTe1.46 can also be classed
among the moderately defective materials.

In this work, we have attempted to study the effect
of phonon scattering from RE ions on κph in moderately

1 The results of heat conductivity measurements on YbInCu4 and
YbAgCu4 and their theoretical interpretation are being prepared
for publication.
1063-7834/00/4212- $20.00 © 22211
defective materials and to see whether some new spe-
cific features would appear in the effect.

Prior to considering our experimental data on the
heat conductivity of PrTe1.46, let us recall the essence of
the effect of phonon scattering from RE ions and char-
acterize the subject of the study.

The inner 4f shells of paramagnetic RE ions are only
partially filled. Their orbital (L), spin (S), and total (J)
angular momenta are nonzero. A free RE ion with an
angular momentum J is in a state which is (2J + 1)-fold
degenerate with respect to the J direction. The electric
field of the crystal lattice lifts the degeneracy, so that a
system of levels appears in place of one. Lattice vibra-
tions can cause transitions of an ion from one level to
another and vary the orientation of J in the process.
This results in phonon absorption and, as a conse-
quence, in a decrease in κph. The 4f shells lie deep
within an atom, and, therefore, the lattice crystal field
splits their levels by a small amount (~100 K or less).
The effect of a decrease in κph due to phonon scattering
from paramagnetic RE ions can be visualized by means
of the diagrams presented in Figs. 1a and 1b. Consider
a two-level system (Fig. 1a) and the thermal-phonon
energy distribution function (Planck’s function,
Fig. 1b). A scattering event occurs with the absorption
of a phonon of energy "ω = ∆ (Fig. 1a). In this process,
phonons with energies within a narrow interval
(hatched in Fig. 1b) do not take part in heat transport,
which reduces κph by an amount labeled here by ∆κres.
Theoretical calculations [4, 12] of the temperature
dependence of ∆κres are presented in graphical form in
Fig. 1c. The temperature of the maximum of ∆κres is
000 MAIK “Nauka/Interperiodica”
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denoted by Tres. For T < Tres, we have ∆κres ~ e–∆/kT. The
dominant contribution to ∆κres is due, as a rule, to the
first split-off level ∆1, so that, when treating our exper-
imental data, we can accept ∆ = ∆1.

ε

δ

∆

(a)

δ

∆

N(ε)
(b)

∆κres

exp(–∆/kT)

Tres
T–0.5

~θ

T–1

T–2

T

(c)

Fig. 1. (a) Energy level diagram of a two-level system,
where δ is the temperature-induced level broadening (δ ~

 [3, 4, 11]) and ∆ is the splitting energy; (b) thermal-
phonon energy distribution function; and (c) schematic rep-
resentation of the temperature dependence of ∆κres [3, 4,
11]. See text for explanation of the ∆κres temperature depen-
dences. Θ is the Debye temperature.

T

ε

PH
For T > Tres and T > Θ (Θ is the Debye temperature),
the pattern of the temperature dependence of ∆κres is
determined by the concentration of the paramagnetic
ions and by their ordered or disordered arrangement in
the lattice. As long as the concentration of paramag-
netic ions is low (i.e., they can be considered as an
impurity), we have

∆κres ~ T–2. (1)

For high concentrations of paramagnetic ions, where
they are the main components of a compound and are
positioned in an ordered or disordered manner on the
lattice (in the latter case, the phonon–phonon scattering
is assumed to be weaker than the phonon–impurity
one), one can write

∆κres ~ T–0.5. (2)

For large concentrations and disordered arrangements
of paramagnetic ions and under the assumption that the
phonon–phonon scattering is stronger than the
phonon–impurity scattering, we have

∆κres ~ T–1. (3)

Temperature dependences of the type in Eqs. (1)–(3)
were observed experimentally for a number of materi-
als with RE ions [3–5].2 

We chose PrTe1.46 to study resonant phonon scatter-
ing due to crystal-field-split paramagnetic levels of RE
ions in moderately defective materials. The composi-
tion corresponding to the formula PrTe1.46 is an “inner”
member of the Pr3 – yVyTe4 system, where Vy are cation
vacancies. All compositions of the system have a cubic
lattice of the type γ-Th3P4. The extreme compounds of
the above system are Pr3Te4 (PrTe1.333) and Pr2Te3
(PrTe1.5). PrTe1.333 and PrTe1.5 differ from one another
only in the concentrations of the vacancies (y varies
within the range 0 ≤ y ≤ 0.333) and carriers [n = n0(1 –
3y), where n0 is the carrier concentration in PrTe1.333]
[13, 14]. Passing from PrTe1.333 to PrTe1.45, the vacancy
concentration increases from 0 to ~1021 cm–3 and n
decreases from ~1021 cm–3 to 0.3

Thus, the PrTe1.46 composition chosen by us has a
sufficiently high Pr vacancy concentration and a low
carrier concentration.

The purpose of this work was to isolate and analyze
∆κres for PrTe1.46. To isolate ∆κres, we made use of an
experimental method presented in [3]. By this method,
–∆κres was determined as the difference between the
heat conductivities κph of crystals containing paramag-
netic RE ions and of those which had the same RE con-
centration but zero L or J angular momenta. We took

2 It should be pointed out that relations of the type ∆κres ~ T–n were
experimentally observed to persist for T > Tres to temperatures
substantially lower than Θ.

3 A similar behavior is observed in the Ln2X3–Ln3X4 systems with
a lattice of the γ-Th3P4 type, where Ln is a RE element and X
stands for S, Se, and Te.
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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LaTe1.46 as the reference material (for La3+, we have
J = 0); in such a material, phonons do not scatter from
paramagnetic ions. If we make the reasonable assump-
tion that the phonon–phonon and phonon–impurity
scattering in PrTe1.46 and LaTe1.46 are close in strength,
the quantity ∆κres for PrTe1.46 can be derived as

–∆κ = –∆κres = κph(PrTe1.46) – κph(LaTe1.46). (4)

EXPERIMENTAL

The LaTe1.46 and PrTe1.46 compounds were prepared
from elemental substances by the technique described
in [15]. Polycrystalline samples were obtained by RF
melting in sealed molybdenum crucibles. After melt-
ing, the ingots were annealed at a temperature of
~1200°C. The homogeneity of the samples was
checked by thermopower measurements, and the phase
composition was judged by x-ray diffraction. All sam-
ples had a distinct Th3P4-type lattice. The composition
of the samples was determined by two-component
chemical analysis [16].

The heat conductivity of LaTe1.46 and PrTe1.46 was
measured in the 2- to 100-K range by the absolute
method of steady-state linear heat flux.

RESULTS AND DISCUSSION

Measurements are presented in Fig. 2. Because the
electronic heat conductivity component was small, it
can be accepted that the measured κ is equal to κph for
both samples. For LaTe1.46, in which phonons do not
scatter from paramagnetic ions, we have κph ~ T1.5 at
low temperatures and κph ~ T–0.4 in the high-tempera-
ture domain. Interestingly, a similar behavior of κph is
also observed in LuInCu4 and LuAgCu4 [17, 18], which
can likewise be placed in the class of moderately defec-
tive materials and in which, as in LaTe1.46, there is no
phonon scattering from paramagnetic ions.

Figure 3 presents the quantity ∆κ calculated from
Eq. (4), which may be considered equal to ∆κres. The
bell-shaped ∆κres(T) dependence obtained by us exper-
imentally is similar to the relation predicted theoreti-
cally in [3–5] (see Fig. 1c).

We first consider the region of temperatures T < Tres.
As is evident from Fig. 3, this region exhibits two reso-
nant temperatures, T1 and T2. At T2, there is a clearly
pronounced maximum, while at T1, only a weak shoul-
der is seen.

Figure 4 compares our earlier data on ∆κ(T) =
∆κres(T) for PrTe1.46 (Fig. 3) and the Schottky compo-
nent of heat capacity, CSch(T) [13], obtained for the
PrTe1.47 composition. The T2 maximum in ∆κres(T)
coincides with the first maximum in CSch(T). The
CSch(T) curve does not exhibit any anomalies corre-
sponding to the maximum at T1.
PHYSICS OF THE SOLID STATE      Vol. 42      No. 12      200
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Fig. 2. Temperature dependence of the experimentally mea-
sured heat conductivity of PrTe1.46 and LaTe1.46: κ = κph
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Fig. 3. Temperature dependence of ∆κ for PrTe1.46: ∆κ =
∆κres.
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Fig. 5. Energies of the first split-off level ∆1 of the Pr ion in
the crystal field of the PrTex lattice derived for different x:
(a) 1.333, (b) 1.47, (c) 1.5, and (d) 1.46. The figures (a, b, c)
were derived from experimental data for CSch [13, 17], and
(d) are the results of this experiment. The dashed line in (d)
identifies the values of ∆1 obtained in [13, 17] for PrTe1.333.
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Let us turn back to the analysis of ∆κres(T). As

already pointed out, for T < Tres, we have ∆κres ~ .
We succeeded in estimating the values of ∆1 for regions
1 and 2 (Fig. 3) from the log(∆κ) = f(1000/T) relation;
they were found to be 24 and 36 K, respectively.

The crystal-field-split Pr levels in PrTe1.333, PrTe1.47,
and PrTe1.5 were derived from an analysis of the Schot-
tky component of the heat capacity Csch [13, 19]. The
energies for the first split level ∆1 (obtained by a theo-
retical treatment of experimental Csch curves) were
found to be 27.5, 35.1, and 36.2 K, respectively. These
results are presented in Fig. 5 together with data
obtained for PrTe1.46. Note an interesting feature. The
values of ∆1 obtained by us for PrTe1.46 within region 2
are close to those obtained in [13] for PrTe1.5 and
PrTe1.47, while in region 1 they are close to the corre-
sponding figures for PrTe1.333. We are going to suggest
at least a qualitative interpretation of the above results.

All Pr ions in the PrTe1.333 lattice (denoted by Pr1)
have the same environment, which entails the same
splitting ( ) of their paramagnetic levels (scheme A in
Fig. 6a). As already pointed out, we shall be interested
only in the position of the first split-off level. For
PrTe1.333,  = 27.5 K [13]. As one passes from
PrTe1.333 to PrTe1.5, cation vacancies are created in the
lattice, so that the Pr ions may now have different envi-
ronments. Part of the Pr ions, more specifically, Pr1,
have the same environment as in PrTe1.333, and, hence,
for these ions,  ~ 27.5 K (scheme A in Fig. 6b), while
others (denoted by Pr2) are surrounded by Pr vacancies
VPr in addition to Pr1 ions. In this case, the Pr2 ions will
be characterized by another energy,  (Fig. 6b,
scheme B). A fairly large number of praseodymium
ions in PrTe1.5, the marginal and most heavily defective
compound in the Pr3 – yVyTe4 system, can be placed in
the Pr2 category. According to [13], for these ions, ∆1 =

 = 36.2 K. PrTe1.46 is an intermediate case (it lies
between PrTe1.333 and PrTe1.5). It may be conjectured
that it contains small regions (“islands”) with a Pr envi-
ronment similar to that in PrTe1.333 (Figs. 6a, 6b,
scheme A) and larger regions where Pr has an environ-
ment similar to that in PrTe1.5 (scheme B in Fig. 6). Fig-
ure 6c suggests a possible division of PrTe1.46 into
regions A and B. Thus, the above reasoning provides a
qualitative explanation of the fact that PrTe1.46 has two
levels with energies of ~24 and 36 K. It remains
unclear, however, why this effect was not observed in
CSch [13].

Consider now the T > Tres interval in the ∆κres(T)
curve of Fig. 3. Theory suggests that ∆κres(T) can have
different temperature dependences in this temperature
region [3–5, 12]. In defective samples (at high RE con-
centrations, the case where these ions are dominant
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Fig. 6. Schematic illustrating the effect of PrTe1.46 crystal-lattice defectiveness on ∆κres. See text for explanation of the data in (a–c).
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The data for x = 1.333 and 1.5 was taken from [3, 4, 11] and
for x = 1.46, from this experiment.
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components of a compound), ∆κres scales with temper-
ature as either T –0.5 or T–1, depending on the actual
defect arrangement in the lattice [3–5, 12] (see Intro-
duction). Based on the data presented in Fig. 3 for
PrTe1.46, we obtained a relation ∆κres ~ T –0.5, which is
plotted in Fig. 7 together with the published data for
PrTe1.333 and PrTe1.5 [3, 4]. As seen from the figure,
∆κres has a different magnitude for defective and defect-
free samples.

As a result of the presence in defective samples of
Pr1 and Pr2 ions having different environments in the
lattice and, hence, different splittings of the praseody-
mium paramagnetic levels, the  and  levels
(which form bands because of thermal broadening) can
merge to produce broad continuous resonant bands
(Fig. 6b), which may extend over a sizable part of the
phonon spectrum. As a consequence, ∆κres of PrTe1.333

can be substantially smaller than its value observed in
defective compositions [4, 12] (Fig. 7).

In closing, we present the Tres dependence on ∆1 in
graphical form for a number of materials studied by us
earlier [3–5] and for PrTe1.46 measured in this work
(Fig. 8). The results obtained on all materials fall close
to a common straight line.

∆1' ∆1''
00
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CONCLUSIONS

Thus, our experimental study can be summed up as
follows:

1. We have measured κph for PrTe1.46 and LaTe1.46.
We determined ∆κres(T), the decrease in the heat con-
ductivity caused by resonant scattering of phonons due
to crystal-field-split paramagnetic levels of Pr.

2. An analysis of the ∆κres(T) relation has yielded the
following:

(a) The value of ∆1 for the first crystal-field-split-off
Pr paramagnetic level for T < Tres. It was found that ∆1
in a moderately defective material has a specific fea-
ture. This quantity depends on the nature of the nearest
Pr environment. It is assumed that a sample contains
islands, where the nearest neighbors of Pr are similar Pr
ions, within the main bulk of material in which Pr
vacancies may occupy the place of the nearest Pr neigh-
bors.

(b) The temperature dependence ∆κres(T) for the T >
Tres region (∆κres ~ T–0.5).
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Abstract—The threshold parameters of defects (the mass defect and the relative change in the force constants)
are determined at which local vibrations start to occur in an fcc crystal with substitutional impurities. The char-
acteristics of local vibrations are investigated, and the influence of the defect parameters on the frequency of
local vibrations and their decay rate with distance from the impurity atom is analyzed. The frequencies and the
intensities of local vibrations are calculated for the nearest neighboring atoms of an impurity, which, combined
with the impurity atom, form a defect cluster. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

One of the principal trends in modern solid-state
physics is the study of the properties of so-called zero-
dimensional systems, which are virtually isolated
atoms or small atomic clusters. Such systems show a
surprising behavior; for example, an exotic phenome-
non, which is referred to as a “quenching mirage” [1],
was observed in a system consisting of an isolated mag-
netic atom and a nonmagnetic metallic matrix. The
characteristics of individual atoms are investigated
experimentally, for example, with the help of a scan-
ning tunneling microscope [2] or by microcontact
microscopy [3], which opens the way to the controlled
synthesis of systems with desired acoustic, optical,
mechanical, and other properties (see, e.g., [4]).

For this reason, an investigation of vibrational char-
acteristics of individual, both guest and host, atoms in a
crystal lattice is also a topical and urgent problem. The
groundwork laid by Lifshitz and the papers of those
who adhere to his theories for study into the atomic
dynamics of imperfect crystals and disordered systems
[5–7] have enabled relevant predictions to be made; in
particular, the local vibrational modes with frequencies
lying either beyond [8] or within [9] a band of the con-
tinuous vibration spectrum of a perfect crystal can exist
near a defect. In the physical mechanics of crystal lat-
tices, however, an individual atom is considered as a
point oscillator, which is a source of spherical waves.
To treat its oscillations in terms of the traditional clas-
sification based on an expansion in plane waves is a
highly complicated problem. In the case of perfect
crystal structures with a simple lattice, the difficulties
can be obviated by calculating the characteristics of the
crystal as a whole. However, for a lattice with a multi-
atomic unit cell or for a crystal with defects, the prob-
1063-7834/00/4212- $20.00 © 22217
lem has to be solved by atomic-dynamics methods,
which leads, within the traditional classification of
vibrations, to highly cumbersome expressions, which
are very difficult to analyze even in the case of rela-
tively simple systems (see, e.g., [10–14]). Clearly, such
is not the case for one-dimensional systems, in which
the “plane” and “spherical” waves are the same.

For this reason, no consistent theoretical description
has yet been given of many interesting phenomena
closely related to the wavefront curvature of elastic
waves in the vicinity of a defect. In particular, the con-
ditions for the formation of local vibrational modes that
can be split off from the upper boundary of the contin-
uous vibration spectrum in the presence of light or
strongly bound impurity atoms in the lattice have not
been analyzed and the characteristics of these modes
have not been determined.

Determining the maximum number of such vibra-
tional modes existing in a specific lattice-plus-impurity
system and calculating the threshold values of the
defect parameters (the mass of the impurity atom and
the force constants characterizing its interaction with
the nearest neighboring atoms) and the fundamental
characteristics (the frequency and the dependence of
the vibration amplitude on the distance from the impu-
rity) for each of these modes make up an important and
pressing problem in atomic dynamics. Its solution pro-
vides a way to experimentally determine the force
interaction of an impurity atom with the host lattice and
is also of technological interest, for example, in devel-
oping systems with given resonance properties.

In this paper, we solve this problem for the case of a
substitutional impurity in an fcc lattice in which the
forces acting between nearest neighboring atoms are
central. This model is fairly simple and characterized
000 MAIK “Nauka/Interperiodica”
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by a small number of parameters. At the same time, it
is fairly realistic and closely approximates some actual
structures. Therefore, this model would be expected to
describe qualitatively and, in some instances, quantita-
tively the behavior of specific systems. The effect of
static stresses and weak dilatation in the vicinity of the
defect on the results obtained is discussed in the last
section.

1. FORMULATION OF THE PROBLEM

As in the theory of lattice dynamics, we represent a
crystal lattice as a periodic array of point particles inter-
acting with each other. Their interaction is described by
a potential ϕr, r', where r and r' are the position vectors
of the interacting atoms. For most crystals, this poten-
tial cannot be assumed to be pairwise, ϕr, r' ≠ ϕ(r – r'),
because it depends on the positions of other atoms.
However, for many close-packed crystal lattices, espe-
cially for fcc crystals of inert gases (see, e.g., [15]) and
some metals (see, e.g., [12]), the pairwise isotropic
potential approximation is reasonable, ϕr, r' = ϕ(|r – r' |).

Harmonic vibrations of a crystal lattice are
described by the Hamiltonian

(1)

where R and u(R) are the position vector of an atom in
equilibrium (lattice site) and the atomic displacement
vector from this equilibrium position, respectively [r ≡
R + u(R)]; (R) and m(R) are the momentum operator
and the mass of an atom at the site R, respectively; and

(R, R') is the force-constant matrix, whose elements
are Φik(R, R') = ∂2U/∂ui(R)∂uk(R')|u = 0, with U =

ϕrr' being the potential energy of the lattice.

In the case where the interatomic interaction is char-
acterized by an isotropic pairwise potential, we have
(see, e.g., [16, 17])

(2)

where D ≡ R – R', ∆ ≡ |D|, and

* ˆ = p̂2 R( )
2m R( )
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R

∑ 1
2
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PH
It is obvious that if an atom interacts not only with its
nearest neighbors but also with other atoms of the lat-
tice, then the parameter β, characterizing the internal
stresses in the lattice, will be nonzero. In the case of an
infinite crystal, the presence of such stresses is consis-
tent with the equilibrium condition ∂U/∂ui(R) = 0.
However, the formation of a free surface, a vacancy, or
some other defect in the crystal will have to be accom-
panied by a relaxation of the force constants near this
defect. If only nearest neighboring atoms interact with
each other, it is reasonable to assume that the lattice is
unstressed; that is, the equilibrium interatomic dis-
tances are determined by the pairwise potential, which
remains a central force potential. Thus, in Eq. (2), we
have

(3)

Here, the impurity atom is assumed to be at the origin
of the coordinates, λm/8 is the force constant of the per-
fect lattice (λm is the square of the maximum frequency
of the continuous vibration spectrum), and α0D =
(λm/8)(1 + η). The atomic masses at lattice sites are

m(R) = m(1 + εδR0), (4)

where m is the mass of an atom in the perfect crystal.
This description is referred to as two-parametric,
because the impurity atom differs from the host atom in
mass and single force constant (parameters ε and η).

This model adequately describes, for example, per-
fect crystals of inert gases Ar, Kr, and Xe [15, 18]. If the
impurity is not isotopic, the condition β = 0 corre-
sponds to the case where the equilibrium interatomic
distances for the host–host and impurity–host interac-
tion potentials are equal, which is a very restrictive
assumption. However, the unstressed-lattice model
with nearest neighbor interaction, in which the force
constant characterizing the interaction of the impurity
with its nearest neighbors is considered as an adjustable
parameter, is proven adequate in many cases [18, 19].

Harmonic vibrations of the crystal lattice are conve-

niently described by introducing an operator  defined
by the expression

(5)

Let (r, r') be the operator corresponding to the per-

fect lattice and (r, r', ε, η) ≡ (r, r') + (r, r', ε, η)
be the operator characterizing the lattice with a two-
parametric substitutional impurity. Combining
Eqs. (3)–(5), we find that the perturbation operator rep-

βRR'
1
∆
---

∂ϕRR D–

∂∆
------------------- 0,≡=

αRR D–

∂2ϕRR D–

∂∆2
---------------------≡

λm

8
------ 1 ηδR0+( ).=

+̂

+ik r r',( )
Φik r r',( )

m r( )m r'( )
---------------------------.=

+0
ˆ

+̂ +0
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resenting the effect of the impurity on the phonon spec-
trum of the unstressed fcc lattice has the form

(6)

In the model under discussion, the operator repre-
senting the perturbation of the phonon spectrum caused
by the impurity can be written as a sum of independent
degenerate perturbation operators whose rank is not
higher than two [5, 18]. The perturbed spectrum and the
additive thermodynamic characteristics of such a sys-
tem have already been calculated very accurately, the
accuracy being limited only by the accuracy of deter-
mining the spectrum of the unperturbed system [18,
20]. These calculations were performed in the frame-
work of Lifshitz’ theory of regular degenerate perturba-
tion operators by using the Jacobian matrix ()-matrix)
method developed by Peresada [20, 21]. The lattice
periodicity, broken down by the defect, is not involved
explicitly in this method; therefore, it is applicable to
both perfect structures and structures with defects.
Moreover, the operators () matrices), in terms of which
vibrations of a system are described in this method,
have a nondegenerate spectrum, which allows one to
avoid many computational difficulties.

The )-matrix method is described in detail in [20–
22] (see also [23, 24]). However, there is no detailed
description of its current application to phonon sys-
tems. For this reason, Appendix 1 presents the funda-
mentals of this method, which is necessary in under-
standing the nomenclature used in this paper.

2. LOCAL VIBRATIONAL MODES 
OF AN UNSTRESSED FCC CRYSTAL

WITH A SUBSTITUTIONAL IMPURITY

In the system under discussion, the operator given
by Eq. (6) is degenerate not only in the site representa-
tion, but also in the displacement space H, in which the
vectors h ∈  H are linear combinations of quantities
|rs|us, i.e., the displacements us of an atom at site s from
its equilibrium position rs. The five eigenvectors of this
operator that correspond to nonzero eigenvalues (see,
e.g., [18, 19]) belong to five different irreducible repre-
sentations, respectively, of the point symmetry group

Oh: , , , , and (in the notation of [25]).
These wavevectors are presented in Appendix 2 and
depicted in Fig. 1.

Using these eigenvectors, which are displacements
of the atoms of the “defect cluster” comprising the
impurity and its nearest host neighbors, one can
(see Appendix 1) separate five subspaces of space H,

which are invariant under both operators (r, r') and
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(r, r', ε, η) (cyclic subspaces). The perturbation
introduced into the lattice vibration spectrum by the
two-parametric substitutional impurity involves only
these mutually orthogonal subspaces. In each of these

subspaces Hh ⊂ H, the operators , , and  induce

operators , , and , respectively, which
have a simple spectrum and which are represented [in
terms of the basis set obtained by the orthonormaliza-
tion defined by Eq. (A1.1)] by tridiagonal J matrices.

The impurity atom itself is displaced only in the

 subspace, and its perturbation of the phonon
spectrum depends on the mass defect ε. The operator

 is a degenerate operator of the second rank and is
represented by the matrix

(7)

In the other four cyclic subspaces, the impurity is at rest
at the origin of the coordinates. The operators induced
in these four subspaces by the operator defined in
Eq. (6) do not depend on the mass defect ε and are per-
turbation operators of the first rank:

(8)

Because the spectra of the operators  are simple
and the zeros of the polynomials 3n(λ) and 3n + 1(λ) in
Eq. (A1.3) alternate with one another (see, e.g., [26]),
only one local mode can occur in each of the five cyclic
subspaces. Therefore, the two-parametric impurity can
give rise to at most five local vibrational modes in the
nonstressed fcc lattice. Let us determine the threshold
values of the defect parameters ε and η for the occur-
rence of the local modes. As in the case of exactly sol-
uble models (see, e.g., [27–30]), we can calculate the
corresponding Green’s functions from Eqs. (A1.2–
A1.7), using the )-matrix elements of the operators

 =  + , and find the poles of these func-
tions, which determine the frequencies of the local
modes and, hence, the conditions for their occurrence.
(Note that, formally, the degeneracy of the perturbation
operator is not essential in this method.) However, in
the case under study, the analytic approximation to
these functions is not an exact solution (this is always
the case for systems in dimensions higher than unity
because of the presence of van Hove singularities in the
phonon density of states). For this reason, the method
involving the degeneracy of the perturbation operators

 is more appropriate.
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Fig. 1. Eigenvectors of the operator  in the displacement space.Λ̂
If the spectrum of the operator corresponding to the
perfect lattice has no discrete frequencies, the change
produced by the degenerate perturbation operator in an
additive vibrational characteristic ^ can be written in
the form [31]

(9)

where ^(λ) is a function of the frequency, the form of
which depends on the characteristic being calculated

∆^ Tr F +̂0 Λ̂+( ) F +̂0( )–{ }=

=  
d^ λ( )

λd
---------------ξ h( ) λ( ) λd

0

λm

∫ ^ λ l
h( )( ) ^ λm( )–[ ]+

 
 
 

,
h

∑

PH
and, as a rule, is known with certainty [if ̂ (λ) ≡ 1, then
^ is the number of independent vibrational modes in
the continuous spectrum], and ξ(h)(λ) is a spectral-shift
function in the cyclic subspace H(h). This function is
continuous in the interval [0, λm], and its derivative
dξ(h)(λ)/dλ = ∆(1/π)ImSp&(h) characterizes the change

produced by the degenerate operator  in the contin-

uous spectrum of the operator . It should be noted
that Eq. (9) is valid only if ξ(h)(0) = 0. If the spectrum
of the perturbed operator has no local modes (λl is the
square of the local frequency), then all terms which are

Λ̂ h( )

+̂0
h( )
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not integrals are also absent in Eq. (9). Owing to the

fact that the spectrum of the operators  is simple,
the )-matrix method gives the following fairly simple
equation for the spectral-shift function [20]:

(10)

where ρ(λ) is the spectral density for the perfect crystal,
the quantity

is also a function of the defect parameters, and the
quantity 6(λ, ε, µ) can be written in the form

(11)

Here, r is the rank of the degenerate operator , that is,
the number of eigenfunctions corresponding to nonzero

eigenvalues, and 3σ(λ), 4σ(λ), and (λ, ε, η) are the
polynomials given by Eq. (A1.3), constructed using the
J matrices of the nonperturbed and perturbed operators,
respectively.

For each of the cyclic subspaces, the change caused
by the degenerate perturbation operator in the number
of states of the continuous spectrum [equal to ξ(h)(λm) if
^(λ) ≡ 1, as seen from Eq. (9)] is zero if local modes
do not occur but is equal to –1 if one local mode is split
off. In a three-dimensional crystal, we have ρ(i)(0) =
ρ(i)(λm) = 0 for all cyclic subspaces. Therefore, when
ξ(h)(λm) = –1, we obtain from Eq. (10) the inequality

(12)

from which one can derive the conditions for the occur-
rence of local vibrational modes in each of the cyclic
subspaces. In the case under study, the quantity 6(λ, ε,

µ) in the subspace  has the form

(13)

In the other subspaces, where the impurity atom is at
rest, the rank of the perturbation operator is equal to
unity and its single nonzero matrix element is the same
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for the four cyclic subspaces,

(14)

and is naturally independent of ε. A local mode occurs

in the subspace  when

(15)

and in the other subspaces when

(16)

As the rank of the ) matrix increases, the quantities
Ψ(h)(λm) rapidly approach their limiting values in all
subspaces (see Table 1):

(17)

The (ε) dependence is plotted in Figs. 2a and 2b

(curve 1; local modes exist above this curve). This
curve approaches the line η = 2 (dashed line 1') as
ε  ∞; therefore, at η > 2, the local mode exists for
any (as large as one likes) mass of the impurity atom.

The threshold magnitudes  of the interatomic
interaction above which a local mode exists in the cor-
responding subspace are indicated in Fig. 2a by hori-
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Table 1.  Evolution of the values of Ψ(h)(λm) with increasing
rank of the 7-matrix Ψ(h)(λ)

n

1 4.0000 4.5714 2.4615 3.2000 2.2857

2 4.6667 4.0585 2.7574 3.3542 2.3416

3 3.8048 3.9078 2.4235 3.0339 2.2180

4 4.0904 3.8729 2.4258 2.9558 2.2011

5 4.2304 3.8578 2.4222 3.0032 2.1946

6 4.0845 3.8460 2.4139 2.9691 2.1933

8 4.2074 3.8331 2.4157 2.9580 2.1914

10 4.1457 3.8284 2.3968 2.9440 2.1905

12 4.0471 3.8253 2.3968 2.9453 2.1904

16 4.0736 3.8232 2.3940 2.9417 2.1902

20 4.1425 3.8224 2.3947 2.9424 2.1902

24 4.0903 3.8220 2.3938 2.9416 2.1902

30 4.0868 3.8216 2.3934 2.9411 2.1902
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Fig. 2. (a) Threshold values of the defect parameters for the occurrence of local vibrational modes in the various cyclic subspaces
of an fcc crystal with a two-parametric substitutional impurity, and (b) the local-vibration mode intensity distribution among the

impurity and its first coordination shell in the cyclic subspace  generated by the displacements of the impurity atom.τ–
5

(a) (b)
zontal lines. At η < (ε), there are no local vibra-

tional modes. When η ∈  [ (ε), ], there is one

local mode in the system. The number of local modes

is two at η ∈  [ , ], three at η ∈  [ , ],

four at η ∈  [ , ], and five at η > . The
impurity atom itself is involved in local vibrations only

in one local mode, namely, at the frequency  ≡

. In the other local modes, only the impurity’s
neighbors oscillate, whereas the impurity atom itself is
at rest.

In the cyclic subspace , the perturbation oper-

ator  is a degenerate operator of the second rank;
therefore, the intensity of local vibrations with the fre-

quency  of the impurity’s nearest neighbors may
be higher than that of the impurity itself. Such a situa-
tion was analyzed in [32] for the case of a two-paramet-
ric impurity in a linear chain. The results of similar
analysis of the model considered in this paper are pre-

sented in Fig. 2b. Curve 2 corresponds to (λl) = 1,
while curve 3 corresponds to µ0 = 1/2. Therefore, the
intensity of local-mode oscillations of the impurity
atom is higher than that of all host atoms taken together
in the defect parameter range to the left of curve 3 and
is higher than that of the host atoms in the first coordi-
nation shell (i.e., of the other atoms of the defect clus-
ter) in the range to the left of curve 2. The vertical
dashed lines 2'' and 3'' correspond to the points of inter-
section of curves 2 and 3, respectively, with curve 1. To
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the left of these dashed lines (at ε < –0.41 and –0.89,

respectively), the inequalities (λl) < 1 and µ0 > 1/2
are true for any value of the parameter η. The vertical
dashed line 2' is the common asymptote (ε = 3) of
curves 2 and 3 as η  ∞. Therefore, at ε > 3, the
intensity of local-mode oscillations of the nearest host
neighbors of the impurity is higher than that of the
impurity itself for any value of η.

The fact that curves 2 and 3 are close to each other
and have a common asymptote as η  ∞ suggests
that the local vibrational mode in the cyclic subspace

 involves only the defect cluster comprising the
impurity and its nearest neighbors.

In the other cyclic subspaces, the operator  is a
degenerate operator of the first rank and the quantities

(λl) decay exponentially with increasing n from n =
1. However, the intensity of the local vibrational modes
in these subspaces can also depend nonmonotonically
on the coordination shell, because the projections of
atomic displacements onto the vectors hn in different
shells of neighbors can be different, especially for
small values of n (i.e., in the vicinity of the defect clus-
ter). Table 2 lists the intensities of the local-mode oscil-
lations for the first four shells of the neighbors in the
case of ε = 1/2 and η = 4.

It is worth noting that the intensity of oscillations of
atoms in the second shell is very low. The reason for
this is that the displacements of these atoms have no
components along the vectors h1 (nor along h2 in the

 and  subspaces) and their contribution to the
local vibrations is exponentially small, even though
they are close to the defect.
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Table 2.  Intensities of local-mode oscillations of the impurity’s neighbors in the first four coordination shells for the defect
parameters ε = 0.5 and η = 4.0

µ0 µ(0) µ(I) µ(II) µ(III) µ(IV)

1.5617 0.63249 0.63249 0.36100 7.5 × 10–6 0.00187 0.001608 0.9993

1.0909 0.88948 – 0.88951 8.6 × 10–6 0.00598 0.003703 0.9863

1.0240 0.69019 – 0.69101 0.00809 0.10803 0.17340 0.9805

1.0510 0.77309 – 0.83912 0.00057 0.07338 0.07048 0.9836

1.0149 0.73106 – 0.73192 – 0.05072 – 0.7826

ωl

ωm
------- µ Z( )

Z 0=
4∑

τ–
5

τ+
1

τ+
3

τ+
4

τ–
4

The frequencies and intensities of local vibrations
can be determined as the poles and residues at these
poles, respectively, of the Green’s function (A1.2). Fig-
ures 3 and 4 show the dependences of the squared local-
mode frequency λl (curve 1), local-mode frequency

ωl =  (dashed curve 2), and local-mode intensity µl

(curve 3) on the impurity parameters. Figure 3 presents

these characteristics for the subspace , where they
depend on both the impurity mass and the change in the
interatomic interaction. Three cases are covered: an
isotopic impurity (η = 0), an impurity whose mass is
equal to that of a host atom (ε = 0), and an impurity
whose Einstein frequency is equal to that for the perfect
lattice (η = ε).

λ l

H
τ–

5( )
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For a light isotopic impurity, the local-mode fre-
quency and intensity increase rapidly with decreasing
impurity mass and, when the impurity atom is ten times
lighter than a host atom, the parameter µl becomes
close to unity; that is, the amplitude of local-mode
oscillations of all atoms of the lattice, excluding the
impurity, is negligible.

At ε = 0, the local vibrational mode occurs when the
interaction of the impurity atom with its nearest neigh-
bors is strengthened. Clearly, these vibrations cannot be
localized entirely on the impurity; the first shell of its
neighbors is certain to be involved. Therefore, the
intensity of the local mode cannot be equal to unity. The
local-mode frequency increases indefinitely with η,
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Fig. 3. Dependences on the defect parameters of (1) squared frequencies and (2) frequencies of local vibrational modes, as well as

of the intensities of local-mode oscillations of (3) the impurity atom and (4) its nearest neighboring atoms in the cyclic subspace 

generated by displacements of the impurity atom: (a) η = 0 (isotopic impurity), (b) ε = 0 (only force constants are changed), and
(c) η = ε (the Einstein frequency of the impurity remains unchanged and equal to that of the host atom).
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while µl tends to its value  for very large η (in the

case in question,  ≤ 0.8).

Finally, at ε = η, the local-mode frequency also
increases indefinitely with increasing defect parame-
ters, but the increase is slower than in the above two
cases; the intensity reaches its maximum µl , max ≈
0.2585 at ε = η ≈ 2.3 and then slowly decreases to zero.

Thus, in this case, the local mode in the  subspace
is also not localized on the impurity.

Figure 4 shows the (η), (η), and (η)

dependences for the cyclic subspaces , ,

, and .

Since the symmetry transformations of the displace-
ments of each of the impurity’s nearest neighbors
involve all the irreducible representations indicated

µl*
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PH
above, its oscillation spectrum can have as many as five
local-mode frequencies. Figure 5 shows the effect of
the parameter η on the functions ν(i)(ω) ≡ 2ωρ(i)(λ),
where ρ(i)(λ) is the spectral density given by Eq. (A1.8)
and is associated with the displacements of an atom of
the first coordination shell (at r = D) along three mutu-
ally perpendicular directions for the case of a heavy
impurity (ε = 1/2).

At η = 1/2, as seen from Eq. (17), a local vibrational

mode appears in the  cyclic space. This is accom-
panied by the emergence of a square-root-type singular-
ity in the spectral density associated with a displacement
of the given atom in the direction D (Fig. 5, curve 1). The
spectral densities associated with the displacements of
the given atom along directions perpendicular to the
vector D (Fig. 5, curves 2, 3) are little more than the
densities of states of the perfect fcc lattice, represented
in all eighteen panels of Fig. 5 by dashed curves.

H
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Fig. 5. Effect of strengthening interatomic interaction on spectral densities associated with displacements of a nearest neighboring
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Curves 4–6 in Fig. 5 correspond to the case of η =

 > , where the local-mode frequency  ≈
1.2606ωm already exists in the vibration spectrum. Fur-

ther, curves 7–9 correspond to η = ; curves 10–12,

to η = ; and curves 13–15, to η = . Accord-
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ingly, at η = , there are two local-mode frequencies

in the spectrum:  ≈ 1.3656ωm and  ≈

1.0268ωm. At η = , there are three frequencies:

 ≈ 1.4639ωm,  ≈ 1.0575ωm, and  ≈

1.0221ωm. And at η = , there are four frequencies:
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 ≈ 1.5108ωm,  ≈ 1.0731ωm,  ≈ 1.0353ωm,

and  ≈ 1.0008ωm. 

Curves 16–18 correspond to the case of η = 4 >

 ≡ { }max, where all possible (five) local-mode

frequencies are present in the spectrum:  ≈

1.5617ωm,  ≈ 1.0909ωm,  ≈ 1.0510ωm, 

≈ 1.0238ωm, and  ≈ 1.0146ωm.

There is no oscillation direction for which the oscil-
lation spectrum of a nearest neighbor of the impurity

does not contain local-mode frequency . However,
the intensities of oscillations along the vector D and
along a direction perpendicular to it are significantly
different (the local-mode intensity is given by the dif-
ference of the areas under the corresponding solid and
dashed curves in Fig. 5). The local-mode frequency

 is present only in oscillations along the vector D,
the reason for which is easily seen from the form of the

generating vector  given by Eq. (A2.1). It should
be noted that the local modes existing at a given value
of η are observed only in oscillations along the D direc-
tion (curves 4, 7, 10, 13, 16).

The local-mode frequencies  and  (when
present in the spectrum) are also observed (curves 14,
17) in oscillations of the r = D atom along the direction
of the vector product D × n (n is a normal to either of
the two close-packed planes of the fcc lattice in which
the vector D does not lie), while the local-mode fre-

quency  is also observed in oscillations along the
D × (D × n) direction (curves 12, 15, 18).

At the edges of the continuous spectral band in the

cyclic subspaces , , and , we have

ρ(i)(λ) ~ [λ(λm – λ)]3/2, while (λ) ~ [λ(λm – λ)]5/2

[19, 20], which hampers the calculation of the thresh-
old values of the defect parameters using Eq. (A1.2).

Only in the cyclic subspace  (where the generating
vector is a one-atomic displacement) is the spectral

density proportional to  near the end points
of the interval [0, λm]. Because the function Re&00(λ)
is a polynomial with simple real roots, it is proportional
to λl  λm when λm – λ. Therefore, as seen from
Eq. (A1.2), root-type singularities appear in the spec-

tral densities (λ), (λ), (λ), and (λ) at
the threshold defect parameter values for the occur-
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rence of a local mode. In the invariant subspace ,
no root-type singularity appears in the spectral densi-
ties associated with the displacements of the impurity’s
nearest neighbor (at r = D) along the D direction at the

threshold values of the parameter η: η =  (Fig. 5,

curve 1); η =  (curve 4); η =  (curve 7); and

η =  (curve 10). Also, a singularity does not occur
in the spectral densities associated with the displace-

ments of a nearest impurity neighbor at η = 
(curves 13–15).

3. DISCUSSION OF RESULTS

The model of an unstressed close-packed lattice
with a two-parametric substitutional impurity consid-
ered in this paper is intermediate between exactly solu-
ble one-dimensional models of systems with defects
(see, e.g., [10, 11] and also [27–30]) and real crystals.
In contrast to one-dimensional models, the model at
hand is fairly realistic and can adequately describe
actual systems. At the same time, it can be analyzed rel-
atively correctly; even analytical dependences can be
derived in a number of cases.

It should be noted that, in the framework of the tra-
ditional classification of vibrations, one cannot make
good use of computational methods and present-day
computers for solving atomic-dynamics problems,
because the natural frequencies have infinitely high
degeneracies. Therefore, in order to carry the solution
of a problem to its conclusion when studying three-
dimensional crystals with defects, most investigators
are forced either to use direct computational methods
that do not involve any classification of vibrations (e.g.,
a molecular-dynamics technique) or to oversimplify the
model at hand, frequently at the cost of its stability. It is
self-evident that only very general features can be
described on the basis of oversimplified models of a
crystal lattice. Using such a model, quasi-local vibra-
tions were predicted in the low-frequency region of the
phonon spectrum and their contribution to low-temper-
ature lattice thermodynamics was determined [9, 33],
the qualitative features of the dependence of the
phonon spectrum on the concentration of the impurity
atoms were elucidated [34], etc. However, a more
detailed analysis of the vibrational properties of crys-
tals with defects is impossible to make within such
models.

Analyzing the Green’s function of an fcc lattice with
a two-parametric substitutional impurity, we arrived at
the following conclusions.

(1) A two-parametric substitutional impurity in an
fcc lattice with nearest neighboring atoms interacting
with one another via central forces is a degenerate reg-
ular perturbation. It can cause the occurrence of no

H
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more than five local vibrational modes. The spectrum
of oscillations of the impurity itself can have only one
local-mode frequency; the characteristics of this local
mode alone depend on the mass of the impurity atom.

The threshold values of the defect parameters for the
occurrence of each of the five local vibrational modes
are determined. For these values of the parameters, the
corresponding spectral densities associated with the
displacements of a nearest neighbor of the impurity
along different directions are analyzed.

(2) Beyond the defect cluster, the amplitude of a
local vibrational mode decays exponentially with
increasing index n of the basis vector hn in the classifi-
cation of vibrations in terms of ) matrices (see
Eq. (A1.9)). Because the projections of the displace-
ments of atoms in different coordination shells onto
these vectors depend nonmonotonically on the coordi-
nation shell, the dependence of the local-mode oscilla-
tion amplitude of an atom on its distance from the
impurity is also nonmonotonic, especially in the vicin-
ity of the defect cluster. As a rule, the intensity of local-
mode oscillations beyond the first four shells of the
impurity’s neighbors is negligible.

The distribution of the amplitudes of a given local
vibration mode within the defect cluster composed of
the impurity and its nearest neighbors is calculated
numerically as a function of both the mass defect of the
impurity and the change in the force constants. It is
shown that the amplitude of each of the local vibra-
tional modes (and even the occurrence of the local
mode) depends on the relationship between the direc-
tion of the oscillations of a given atom and its position
with respect to the impurity.

When studying the local vibrations in actual fcc lat-
tices with substitutional impurities, one should take
into consideration that, as a rule, an impurity causes
elastic stresses. Therefore, even if the interatomic inter-
action in the host lattice can be assumed to be purely
central, the parameter β in Eq. (2) for the matrix of the
force constants characterizing the interaction of the
impurity with its nearest neighbors will be nonzero. In

this case, the operator (r, r') given by Eq. (6) and rep-
resenting (in the coordinate representation) the pertur-
bation due to the impurity becomes

(18)

Its eigenvalues are obtained by adding β to the eigen-
values of the operator in Eq. (6). Therefore, all opera-

tors  induced by operator (18) in the cyclic sub-
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spaces H(h) generated by displacements of the atoms in
the first coordination shell are nonzero. In this case, the
eigenvalues of operator (18) depend on the change in
the central-force constants of the interatomic interac-
tion near the impurity (parameter η) only in the sub-
spaces generated by the vectors given by Eq. (A2.1)
and on the impurity mass (parameter ε) only in the sub-

space  defined in Eq. (A2.1).

Only in the subspaces generated by the vectors h
which transform according to one-dimensional irreduc-

ible representations of the Oh group, namely, , ,

and , and by the two-dimensional representation 
realized in the first coordination shell of the fcc lattice
by only one basis, does operator (18) induce degenerate
operators which are of the first rank. (A group-theoret-
ical analysis of displacements of the impurity’s nearest
neighboring atoms in the fcc lattice was performed in
[19, 20].)

The operators induced by operator (18) are nonde-
generate in the other cyclic subspaces. It should be
noted that, since the matrix elements an and bn of the )
matrices tend to the limiting values in Eq. (A1.6) with
increasing index n, in the classification of vibrations in
terms of Eq. (A1.9) there is no fundamental difference
between degenerate and nondegenerate perturbation
operators that correspond to a defect that does not
change the point symmetry group of the crystal. In par-
ticular, only one local vibrational mode can occur in
each of the cyclic subspaces which transform according
to the irreducible representations of group Oh.

In cyclic subspaces generated by vectors other than
those presented in Eq. (A2.1), local vibrational modes
can occur only for β > 0. However, it can be shown (see,
e.g., [17]) that, when the equilibrium distance for the
interaction potential between the impurity atom and a
host atom  is smaller than that for the interaction
potential between host atoms r0, the impurity is weakly
bound to the host lattice. In this case, there can occur
only one local vibrational mode, namely, that corre-

sponding to the cyclic subspace  generated by the
displacement of the fairly light impurity and presented
in Eq. (A2.1). For this mode, the spectral density

(λ) [17] is localized near the squared Einstein fre-
quency λe of the impurity atom, so that the threshold for
the occurrence of the local mode corresponds to λe ≈
λm, which agrees with Eq. (17) and Fig. 2 for a light and
weakly bound impurity. Note that the range of applica-
bility of the approximation linear in the impurity con-
centration for calculating vibrational characteristics of
such systems is significantly wider in this case (see,
e.g., [35, 36]).

The exception to this may be the case where the
potential well for the impurity interacting with the host
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atoms is many times deeper than that for the host atoms
interacting with each other. In this case, additional local
vibrational modes can occur. However, such combina-
tions of the host lattice and impurity are seldom
encountered. Furthermore, it is unlikely that the impu-
rity concentration will be low in this case; therefore, the
impurity atoms, rather than being isolated defects, will
form a more complicated structure in combination with
the host lattice (an example is the Pd–H system).

If  > r0 and β < 0, local vibrational modes can
occur only in the cyclic subspaces presented in
Eq. (A2.1); that is, as in the case of a two-parametric
impurity, no more than five local vibrational modes can
occur in the system. Direct calculations of the matrix
elements of the force interaction using specific (Len-
nard-Jones, Buckingham, and other) potentials show
that in this case, we have α @ β and threshold values of
the defect parameters, as well as dependence of the
local-mode characteristics on these parameters, which
are adequately described by the relations derived for a
two-parametric impurity.

The dilatation that may very likely be produced by
the impurity atom in this case will not change the
results qualitatively if the point symmetry group of the
crystal remains unchanged. Naturally, the range of
applicability of the approximation linear in the impu-
rity concentration becomes much smaller in this case
and is less than one percent.

Thus, we may expect that the basic results obtained
in this paper in the two-parametric-impurity approxi-
mation will adequately describe the characteristics and
the conditions for the occurrence of local vibrational
modes in real crystalline systems with impurities. In
closing, it is worth remarking that local vibrational
modes reveal themselves in optical characteristics. For

example, the local modes in the cyclic subspaces 

and  should be observed in infrared spectra, while

the local modes in cyclic subspaces , , and

 should be observed in Raman spectra [37].

APPENDIX 1

FUNDAMENTALS OF THE )-MATRIX METHOD

Let H be the linear space of the atomic displace-
ments of the crystal lattice. Harmonic vibrations of the
system can be described with the help of the operator

 defined for this space in Eq. (5).

For any vector h ∈  H, one can construct a cyclic

subspace H(h) ⊂  H invariant under the operator . This
subspace is a linear hull spanned by the vectors

(A1.1)

r̃0

H
τ–

5( )

H
τ–

4( )

H
τ+

1( )
H

τ+
3( )

H
τ+

4( )

+̂

+̂

+̂
n
h{ } n 0=

∞
h +̂h +̂

2
h … +̂

n
h…, , , ,=
PH
In the basis  obtained by orthonormalizing

the vectors in Eq. (A1.1), the operator  induced by

the operator  in the subspace H(h) has the form of a
Jacobian (tridiagonal) matrix () matrix). We denote the

diagonal elements of this operator by  and the off-

diagonal elements by , where n = 1, 2, 3, … . The
index (h) will be dropped when there is no need to indi-

cate the subspace. The operators  have a simple
spectrum; their eigenvalues (squared frequencies of
free vibrations) are denoted by λ.

The matrix elements of the Green’s operator  =

(λ  – )–1 (where  is the unit operator) correspond-

ing to the ) matrix of the operator  can be repre-
sented in the form of a continued fraction, and the
Green’s function &00(λ) can be written as

(A1.2)

Here, 3n(x) and &n(x) are polynomials generated by the

) matrix of the operator ; they obey the same recur-
rence relation

(A1.3)

but are subject to different initial conditions:

3–1(x) ≡ 0, 30(x) ≡ 1,

&0(x) ≡ 0, &1(x) ≡ .

The polynomial  coincides with the determi-

nant of the )-matrix λ( – +n (except for the factor

3n(λ)), where  is the ) matrix whose elements

coincide with those of the operator  (from the first

elements to an – 1 and bn – 1 inclusive), while (λ) is
the minor of the first diagonal element of this matrix.
_n + 1(λ) is the continued fraction corresponding to the
)-matrix + – +n.

From the definition of the basis  and from
the recurrence relation (A1.3), it follows that

hn = 3n( )h0. (A1.4)

Hence, for all eigenvalues λ (lying in the continuous
band, as well as the discrete), we have

&mn(λ) = 3m(λ)3n(λ)&00(λ), (A1.5)
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where &00(λ) is given by Eq. (A1.2). The function
_n(λ) involved in Eq. (A1.2) can be defined in different
ways (see, e.g., [20, 22, 29, 38]). Let us consider a sim-
ple crystal lattice whose continuous vibration spectrum
occupies the interval [0, λm] and has no gap. It is well
known (see, e.g., [20, 21, 23]) that the elements of
) matrices of operators with a spectrum of this type
satisfy the limiting relations

(A1.6)

The continued fraction corresponding to the ) matrix
composed of the elements a and b reduces to the
expression

(A1.7)

where

Z(λ) = iΘ(λ)Θ(λm – λ) – Θ(λ – λm),
with Θ(x) being the Heaviside theta function. Substitut-
ing function (A1.7) for _n(λ) in Eq. (A1.2), we obtain
&00(λ), which is an analytic approximation to the
Green’s function &00(λ) (that is, this function is approx-
imated by an analytic function).

The function given by Eq. (A1.7) has a nonzero
imaginary part in the continuous spectral band, λ ∈  [0,
λm]. Therefore, the spectral density ρ(λ), defined as
(see, e.g., [10]) ρ(λ) = (1/π) Im&00(λ + iγ), can be

written in the form [22]

(A1.8)

The function ρ(λ) characterizes the frequency distribu-
tion of the vibrational modes in the continuous spectral
band. The total density of states (the squared-frequency
distribution function) is equal to the arithmetic mean of
the spectral densities in the subspaces generated by lin-
early independent displacements h(i) ∈  H. If all ele-
ments bn are nonzero (and, therefore, the J matrix does
not reduce to a block-diagonal form), the function
&00(λ) will have no poles in the continuous spectral
band, as seen from Eqs. (A1.7) and (A1.8). If there
exist poles at λl ∉  [0, λm], they correspond to the
squared frequencies of local vibrational modes, while
the residues at these poles determine the intensity (i.e.,
the relative amplitudes) of the vibrational modes.

The eigenfunction of the operator  corresponding
to its eigenvalue λ can be written in the form

(A1.9)
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Since the elements of ) matrices tend to certain lim-
iting values with increasing n [see, e.g., Eq. (A1.6)], the
structure of the vibration spectrum will be controlled
by their first elements and the singularities of the func-
tion in Eq. (A1.9) will be determined fundamentally by
its first several terms. Therefore, the distortions of the
phonon spectrum caused by a local defect are associ-
ated predominantly with the cyclic subspaces gener-
ated by the displacements of the impurity atom and its
nearest neighbors (more specifically, with the first ele-
ments of the corresponding ) matrices). This, along
with the nondegeneracy of the spectrum, is the reason
why the classification based on the eigenfunctions in
Eq. (A1.9) is favored over the traditional classification
in terms of plane waves in considering vibrations of
systems with defects and complex crystal structures.

APPENDIX 2

EIGENVECTORS CORRESPONDING
TO NONZERO EIGENVALUES 

OF THE OPERATOR (r, r', ε, η)

(A2.1)
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Abstract—This paper presents the first unambiguous optically detected magnetic-resonance (ODMR) evi-
dence that AgCl crystals embedded in the KCl lattice and retaining the host orientation are formed in KCl crys-
tals grown with a 2–3 mol % silver impurity. ODMR spectra were obtained of self-trapped holes, shallow elec-
tronic centers, and self-trapped excitons, which are typical of AgCl, and a number of substantially different
ODMR spectra were also obtained. The differences between the ODMR spectra observed in samples cleaved
from different parts of a KCl : AgCl crystal are probably accounted for by embedded AgCl crystals varying in
size from large micro- to nanocrystals. © 2000 MAIK “Nauka/Interperiodica”.
Low-dimensional solid-state systems have recently
been attracting considerable attention. The fabrication
of single and periodically repeating potential wells by
combining materials having different band gaps and
dimensions providing spatial confinement of electrons
and holes permitted the development of new solid-state
structures with unique optical and electronic properties.
Of particular importance for the physics of low-dimen-
sional structures and the development of new materials
are semiconductor nanocrystals embedded in solid-
state matrices (usually glasses or organic materials). A
number of such systems have been developed in recent
years by using a variety of materials and technologies
(see, e.g., [1] and references therein).

Recent publications report on the formation of silver
halide nanocrystals in alkali halide host crystals [2, 3],
in particular, of AgCl in KCl, by growing alkali halide
crystals with a large (about 1–3 mol %) concentration
of the silver impurity. The band gap of AgCl, which is
3.237 eV [4], is much smaller than that of KCl
(≈8.7 eV), and, therefore, AgCl nanocrystals may be
considered as a quantum-dot system. Silver halides
occupy an intermediate position between ionic and
semiconductor crystals and exhibit unique properties
favoring their wide use in photography [4].

The structure and processes of the formation and
recombination of point defects in alkali halide crystals
with a silver impurity were extensively studied by opti-
cal spectroscopy and magnetic resonance and are pres-
ently well known. The introduction of silver in very low
concentrations is known to produce in them both single
Ag+ impurity ions and pairs of these ions. Irradiation of
such crystals with UV or x-ray radiation initiates the
formation in the crystals of a number of silver-associ-
ated defects, namely, neutral silver atoms in the cation
1063-7834/00/4212- $20.00 © 22231
and anion lattice sites, Ag– ions in anion positions, Ag2+

ions, silver atoms with a closely located anion vacancy

(laser-active AF centers), and  pair defects [5, 6].
Therefore, an investigation of the properties of silver
clusters forming in KCl with an increasing impurity
concentration is of particular interest.

Another important point is the availability of a
wealth of information on bulk AgCl crystals. When
irradiated by UV light, electrons are excited from the
valence to the conduction band. The hole remaining in
the valence band may become self-trapped to form
Ag2+, a self-trapped hole (STH). Free electrons can be
trapped to produce shallow electron (SE) centers. The
capture of an electron by a self-trapped hole gives rise
to the formation of a self-trapped exciton (STE), in
which the electron occupies a very delocalized 1s
orbital. The structures of the STH, STE, and shallow
electron centers were studied in considerable detail by
optical methods and pulsed EPR and ENDOR [7–9].
The STE was shown to consist of a strongly delocalized
electron (with a Bohr radius of 15.1 ± 0.6 Å) trapped by
a strongly localized STH [8]. The spatial distribution of
the wave function of the shallow electron center, which
is believed to play an important part in the formation of
latent images, was determined. The proposed model of
the center assumes the electron to be weakly coupled to
two neighboring silver ions occupying a cation site of
the AgCl lattice (the so-called split-interstitial silver
pair). The wave function of this center is very diffuse
[9]. As a result of the Jahn–Teller effect, the STHs
(Ag2+ centers) have a tetragonal symmetry with the axis
aligned with one of the 〈100〉  crystallographic axes. The
existence in the bulk AgCl of both strongly localized
(STH) and strongly delocalized (STE, SE) centers with

Ag2
+
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Fig. 1. Spectra of (a) luminescence and (b) ODMR of four samples (1–4) cleaved from different parts of a KCl : Ag crystal (2 mol
% in the melt) grown with a silver concentration gradient. The ODMR spectra were recorded by monitoring the luminescence inten-
sity under the following conditions: T = 1.6 K, ν = 35.2 GHz, P = 100 mW, fmod = 80 Hz, and B || [001]. Figure 1b (bottom) specifies
the positions of the ODMR lines corresponding to self-trapped holes (STH), shallow electron centers (SE), and self-trapped excitons
(STE) in bulk AgCl crystals. The signals assigned in [3] to STEs in AgCl nanocrystals are shown in ODMR spectrum 3. The symbols
|| and ⊥  refer to the centers whose axes are parallel and perpendicular to the magnetic field  B, respectively.
known spatial distributions of the wave functions, as
well as the Jahn–Teller effect, makes an investigation of
the size quantization phenomena in AgCl-based nano-
structures very promising.

This paper reports on an optically detected mag-
netic-resonance (ODMR) study of self-trapped holes,
shallow electron centers, and self-trapped excitons in
micro- and nanocrystals of AgCl in KCl : Ag with a sil-
ver concentration gradient.

The KCl : AgCl crystals were grown by the Stock-
barger method. The silver concentration in the melt was
1–3 mol %. The ODMR at 35 GHz was detected at a
temperature of 1.6 K from the luminescence excited by
UV light of a deuterium or mercury arc lamp, which
was provided by the corresponding filters. The lumi-
nescence was analyzed with a monochromator or a set
of color filters. The microwave power entering the cav-
ity of the ODMR spectrometer was modulated at a fre-
quency of 80–10000 Hz, and the changes in the lumi-
nescence intensity caused by the microwave field were
measured with a lock-in amplifier. Samples measuring
2 × 2 × 4 mm were cleaved from different parts of the
grown crystal. In contrast to the silver halides, the
NaCl-type alkali halide crystals cleave easily along the
PH
{100} planes, which facilitates the sample orientation.
For comparison, ODMR spectra were also obtained on
bulk AgCl crystals. EPR spectra were studied at tem-
peratures from 4 to 300 K in the X range (9.3 GHz) on
a JEOL spectrometer.

Figure 1a shows spectra of the luminescence and
Fig. 1b ODMR spectra derived from this luminescence
for four samples (1–4) cleaved from different parts of a
KCl : AgCl crystal (2 mol % AgCl in the melt). The
luminescence was excited by the light of a deuterium
lamp passed through a UFS-1 color filter (250–
400 nm). The ODMR spectra were derived from the
variation of the luminescence intensity in the 440- to
600-nm interval, with the [001] crystal axis aligned
with the magnetic field B and the microwave power
(100 mW) modulated at 80 Hz. One readily sees that
different samples exhibit substantial changes in the
spectra of both the luminescence (a broadening and a
red shift of the luminescence band) and the ODMR.

Figure 2 presents for comparison ODMR spectra
recorded on a bulk AgCl crystal under the same condi-
tions (spectrum 1) and at a lower microwave power
(spectrum 2). The higher microwave power was used to
increase the sensitivity when detecting ODMR in
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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KCl : AgCl. The ODMR signals belonging to the
STHs, SE centers, and STEs are marked by the lines.
Because the tetragonal axis of the STH and STE is
directed along one of the 〈100〉  crystallographic axes,
there are three types of centers. The symbols || and ⊥
denote the ODMR lines of the centers with the Jahn–
Teller distortion axes parallel and perpendicular to the
magnetic field B, respectively. The parameters of these
ODMR spectra coincide with those well known from
numerous publications (see, e.g., [7] and references
therein).

The ODMR spectrum of sample 1 in Fig. 1b agrees
completely with that observed in bulk AgCl crystals
(curve 1 in Fig. 2). It has the same angular dependence
and the same parameters, namely, g|| = 2.14, g⊥  = 2.04
for the STH; g = 1.88 for the SE center, and D =
−730 MHz for the STE. Curve 1 in Fig. 1b shows the
ODMR lines associated with the STEs, STHs, and SE
centers. This sample, similar to bulk AgCl, also exhib-
ited the so-called nonresonant background due to
microwave-heated free carriers, which corresponds to
the increase of the luminescence intensity and depends
only weakly on the magnetic field. Thus, one can main-
tain with confidence that fairly large AgCl microcrys-
tals, retaining the properties of the bulk material and
oriented in the same direction as the host, form in the
KCl crystals.

The ODMR spectrum of sample 3 has lines corre-
sponding to the ODMR signals assigned in [3] to triplet
STEs in AgCl nanocrystals. These lines are identified in
Fig. 1b for two orientations of the centers’ tetragonal
axis. The angular dependences of the ODMR signal
obtained by rotating the sample in the (100) and (110)
planes indicate the existence of an axial symmetry with
a 〈100〉-type axis and can be described by a triplet spin
Hamiltonian with parameters (g|| = 1.99, g⊥  = 1.96,
|D | = 335 MHz) differing substantially from those of
the STEs in bulk AgCl. We have succeeded in observ-
ing ∆m = ±2 forbidden transitions in this sample under
the [111] || B orientation, which supports the triplet
nature of the spectra. The nonresonant background was
practically absent in this crystal. The ODMR spectrum
of sample 2 cleaved from an intermediate region of the
starting crystal is a superposition of spectra 1 and 3
(curve 2 in Fig. 1b). When studying the luminescence
spectra, sample 3 revealed, besides the above-men-
tioned ODMR lines, additional anisotropic ODMR
signals in the 540- to 600-nm wavelength interval,
which were similar to the ODMR spectrum of sample 4
(curve 4 in Fig. 1b). This ODMR spectrum exhibits an
axial symmetry with a 〈100〉  axis, and its maximum is
at 540 nm.

Figure 3 displays the ODMR spectra obtained with
spectral resolution on sample 2. The inset shows the
luminescence spectrum specifying the wavelengths at
which the ODMR signal was observed. As the mea-
sured luminescence wavelength increases from 490 to
540 nm, the STE, STH, and SE signals typical of bulk
PHYSICS OF THE SOLID STATE      Vol. 42      No. 12      20
AgCl disappear, which indicates a complex structure of
the emission band. The luminescence and ODMR spec-
tra of KCl : AgCl change when the samples are kept in
the dark at room temperature or subjected to heat treat-
ment. For instance, the ODMR spectrum of sample 3
recorded two months after spectrum 3 (Fig. 1b) is sim-
ilar to spectrum 4 in Fig. 1b. After quenching this sam-
ple from 550°C to room temperature, its ODMR spec-
trum contained only a broad structureless band.

Because the STE is formed by a strongly delocal-
ized electron captured by a strongly localized STH, the
exchange splitting between the lowest triplet and the
upper singlet STE states is small. The singlet–triplet
splitting can be a measure of the spatial extent of the
electron wave function and, hence, can provide infor-
mation on size-quantization effects in nanocrystals. We
have succeeded in observing multiple-quantum transi-
tions involving absorption of up to seven microwave
quanta (the effective frequency of 7 × 35 = 245 GHz) in
ODMR spectra of bulk AgCl crystals, which permitted
highly accurate determination of the STE singlet–trip-
let splitting, J = –161.0 ± 0.1 GHz [10]. Multiquantum
transitions in ODMR spectra of KCl : AgCl (sample 1)
were detected only for the triplet state of the STE, with
no singlet–triplet transitions observed. This is possibly
associated with an increase in the exchange splitting in
microcrystals.

The conclusion that the AgCl phase is formed in
KCl crystals with a high (2–3 mol %) impurity-silver
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Fig. 2. (1) ODMR spectrum of a bulk AgCl crystal obtained
from the luminescence intensity under the same conditions
as the KCl : AgCl ODMR spectra displayed in Fig. 1, and
(2) ODMR spectrum obtained at a lower microwave power
(−10 dB). The ODMR signals corresponding to the STH,
SE, and STE are identified. The symbols || and ⊥  refer to the
centers whose axes are parallel and perpendicular to the
magnetic field B, respectively. T = 1.6 K, ν = 35.2 GHz,
fmod = 80 Hz, and B || [001].
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Fig. 3. Luminescence spectrum (inset) and ODMR spectra of KCl : AgCl (sample 2) measured with the spectral resolution at three
wavelengths specified by arrows (1, 2, 3) in the inset. The conditions of recording are the same as those for the spectra in Fig. 1.
concentration was drawn [2, 3] from a study of optical-
absorption and luminescence spectra, as well as from
atomic-force microscopy data, which do not provide
such direct information on the nature of this phase as
EPR is capable of yielding. In the KCl : AgCl samples
(2 mol %) studied in [3], the average size of the inclu-
sions visible in photomicrographs and identified with
AgCl nanocrystals was about 5–10 nm. The ODMR
spectra obtained in that work and attributed to nanoc-
rystals differ substantially from those of bulk AgCl
crystals. While this observation is of considerable inter-
est, it cannot serve as a direct proof of the ODMR spec-
tra being produced by AgCl crystals. It cannot be ruled
out that the ODMR spectra of KCl : AgCl may contain
signals due to point defects associated with the silver.
We have succeeded in observing, for the first time in
KCl : AgCl crystals, the ODMR spectra of STHs, SE
centers, and STEs, which may be considered as signa-
tures of AgCl crystals; thus, the formation of the AgCl
crystals embedded in the KCl lattice may be indeed
considered as unambiguously proven, which provides
supportive evidence for the brilliant idea of the authors
of [2, 3]. The differences between the ODMR spectra
observed in samples cleaved from different parts of a
grown KCl : AgCl crystal are probably due to the vari-
ation in the sizes of the embedded AgCl crystals, which
range from fairly large microcrystals to nanocrystals.
Additional investigation, which is being conducted
presently, is necessary to learn the relations governing
these changes and their dependence on the AgCl crystal
size and external factors. Note the absence of a smooth
transition from ODMR spectrum 1 to spectra 3 and 4
PH
(Fig. 1), which may imply the existence of some thresh-
old effect.

Thus, the investigation of the ODMR of KCl : AgCl
crystals grown with a silver concentration gradient has
revealed the presence of silver impurity clusters vary-
ing in size from point defects (in the form of single sil-
ver ions and pairs of them) to microcrystals; these silver
impurity clusters retain the main properties of bulk
AgCl and have the orientation of the host crystal. In the
intermediate concentration region, AgCl nanocrystals
are apparently observed, which may be considered as
self-organized quantum dots. The KCl : AgCl system
provides a unique possibility for studying oriented
micro- and nanocrystals in a transparent crystalline
matrix. It is important that the properties of bulk AgCl
and KCl : Ag materials are well known, thus making
possible the application of such an efficient method as
the ODMR. Bulk AgCl contains both fairly diffuse
objects (STEs and SE centers) and strongly localized
Jahn–Teller centers (STHs). This makes an investiga-
tion of the size-quantization effects in AgCl micro- and
nanocrystals particularly promising.

ACKNOWLEDGMENTS

This study was supported in part by the Russian
Foundation for Basic Research, grant no. 00-02-16950,
and the “Physics of Solid-State Nanostructures” pro-
gram, grant no. 99-3012.

REFERENCES
1. U. Woggon, Springer Tracts Mod. Phys. 136 (1997).
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000



KCl CRYSTALS WITH A SILVER IMPURITY: FROM POINT DEFECTS 2235
2. H. Stolz, H. Vogelsang, and W. von der Osten, Handbook
of Optical Properties: Optics of Small Particles, Inter-
faces, and Surfaces (CRC Press, Boca Raton, 1997),
Vol. II, p. 31.

3. H. Vogelsang, O. Husberg, U. Köhler, et al., Phys. Rev.
B 61, 1847 (2000).

4. H. Kanzaki, Photogr. Sci. Eng. 24, 219 (1980).
5. N. I. Melnikov, P. G. Baranov, and R. A. Zhitnikov, Phys.

Status Solidi B 46, K73 (1971); 59, K111 (1973).
6. A. G. Badalyan, P. G. Baranov, and R. A. Zhitnikov, Fiz.

Tverd. Tela (Leningrad) 19, 1847 (1977); 19, 3575
(1977).
PHYSICS OF THE SOLID STATE      Vol. 42      No. 12      20
7. O. G. Poluektov, M. C. J. M. Donckers, P. G. Baranov,
and J. Schmidt, Phys. Rev. B 47 (16), 10226 (1993).

8. M. T. Bennebroek, A. Arnold, O. G. Poluektov, et al.,
Phys. Rev. B 53, 15607 (1996).

9. M. T. Bennebroek, A. Arnold, O. G. Poluektov, et al.,
Phys. Rev. B 54 (16), 11276 (1996).

10. N. G. Romanov and P. G. Baranov, Semicond. Sci. Tech-
nol. 9, 1080 (1994). 

Translated by G. Skrebtsov
00



  

Physics of the Solid State, Vol. 42, No. 12, 2000, pp. 2236–2240. Translated from Fizika Tverdogo Tela, Vol. 42, No. 12, 2000, pp. 2171–2174.
Original Russian Text Copyright © 2000 by Karpinski

 

œ

 

, Sannikov.

                                                      

DEFECTS, DISLOCATIONS, 
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Abstract—The effect of interstitial hydrogen atoms on the evolution of plastic deformation in a crystal at the
tip of a tensile crack is estimated taking into account gas exchange at the crack banks. It is found that, for an
initial concentration of not less than 10–4, the plasticizing effect of dissolved hydrogen causing a dislocation
expulsion is significant and can be responsible (at least, partially) for plasticization. As regards the evolution of
the distribution of hydrogen atoms, a monotonic drain of dissolved hydrogen atoms into the hollow of the crack
is observed for concentrations below 5 × 10–4, while at higher concentrations the impurity concentration at the
banks of the crack varies periodically: complete drain is replaced by the accumulation of hydrogen corres-
ponding to a “blocking” of the drain by the gas pressure. Numerical calculations are made for an α-Fe crystal.
© 2000 MAIK “Nauka/Interperiodica”.
Plasticization of materials in the hydrogen medium
has been established experimentally in recent years
(see, for example, [1–6]). In this connection, it would
be interesting to explain this effect from the viewpoint
of energy advantage in the interaction of interstitial
hydrogen atoms with a dislocation [7]. It is known [1–
6] that plasticization processes have the highest inten-
sity in the vicinity of the crack tip. It was pointed out in
[7], however, that the main reason behind this effect is
not completely clear at present: either the main contri-
bution comes from the mechanism of dislocation
expulsion by interstitial hydrogen atoms or the effect of
molecular pressure in the hollow of the crack is domi-
nant. The inclusion of this mechanism in an analysis of
the evolution of plastic deformation at the crack tip in
[8] proved that an insignificant increase in the initial
hydrogen concentration in a crystal with a crack leads
to a change in the deformation regime from the “pas-
sive” mode (migration of point defects weakly affects
the deformation conditions) to the “active” mode, for
which the gas pressure in the hollow of the crack causes
unlimited loading in the model calculations, which cor-
responds to the growth of the crack in the experiments.

This communication is aimed at analyzing the evo-
lution of plastic deformation at the tip of a crack in a
non-hydride-forming crystal under the action of a
mechanical tensile stress taking into account the plasti-
cizing effect of hydrogen atoms dissolved in the crystal
and gas exchange at the banks of the crack.

The migration of point defects in a loaded sample
with cracks and pores has attracted the attention of
researchers for a long time (see, for example, the liter-
ature cited in [9, 10]). The evolution of the concentra-
1063-7834/00/4212- $20.00 © 22236
tion c(r, t) of interstitial impurity atoms and the relative
contributions from dislocation mechanisms to the
transport of interstitial impurity atoms were investi-
gated by us earlier in [8], where a crack of length 2l
located in the cleavage plane (010) (along the negative
semiaxis Ox) was studied in an infinitely long crystal
with a body-centered cubic (bcc) lattice. A uniform ten-
sile stress σyy(t) = (t) (mode I), which increased
monotonically to a certain value σa sufficient for plastic
deformation of the crystal but insufficient for the
growth of the crack, was applied to the planes y = ±∞
of the crystal. Prior to loading, interstitial hydrogen
atoms were uniformly distributed in the crystal with a
concentration c0.

Analogous to [8–11], we assume that plastic defor-
mation of the bcc crystal is executed through the dis-
placement of perfect dislocations with the Burgers vec-

tor b = 〈111〉  along easy slip planes {100}. The {110}

planes intersecting the Oxy plane form two families of
slip lines on it with uniformly distributed sources of
dislocations, emitting rectangular loops which lie in the
easy-slip planes. An analysis of the evolution of plastic
deformation in the absence of point defects was carried
out in [11], in which the plastic shear rate  at the crack
tip was calculated by the formula

(1)
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2
---
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dε j r t,( )
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where T is the temperature; kB is Boltzmann’s constant;
, τ0, and U0 are constants (U0 is the activation energy

for dislocation slip); and

(2)

is the effective shear stress in the easy-slip planes. In
this expression,

(3)

is the shear stress characterizing the elastic field in the
easy-slip planes near the crack tip and

(4)

is the stress hindering the plastic shear due to lattice
friction σ0 and local strain hardening σf of the material,
which can be calculated by the formula

(5)

where σ1 and m are constants. In Eq. (3),  is defined
by the Westergaard formulas for the elastic field com-
ponent at the crack tip; the quantity

(6)

is the stress field created at the crack tip by dislocations
slipping over two easy-slip planes; Dk is the plastic
region corresponding to each type of slip (k = 1, 2);
σk(r, r') is the shear stress in the easy-slip planes in an
unbounded elastic medium with a semi-infinite cut,
which contains an edge dislocation separated from the
tip of the cut by the distance r'; and the density ∆ρk of
effective dislocations at the point r' is defined by the
formula

(7)

Let us now supplement Eqs. (1)–(7) by modifying
Eq. (4) to take into account the plasticizing effect of the
dissolved hydrogen on the evolution of dislocation dis-
tribution at the crack tip. We replace σ0 in Eq. (4) by

 = σ0 + στ, where [7]

(8)

In these expressions, r0 is the radius of the dislocation
core, µ is the shear modulus, ν is the Poisson ratio, and
δv is the change in the crystal volume due to mismatch-
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ing between the size of the tetrahedral pores and the
radius of the hydrogen atom.

In our earlier publications [9, 10], we analyzed three
mechanisms of transport of interstitial hydrogen atoms
at the crack tip: (1) lattice diffusion, (2) dislocation-
induced “sweeping out” of point defects, and (3) the
transport of impurity atoms in the cores of dislocations
moving in the plastic zone. The results of calculations
[9, 10] proved that the first mechanism of transport of
interstitial atoms (lattice diffusion) makes the main
contribution to the flow of impurity atoms. Henceforth,
we will take into account only the first transport mech-
anism, which is associated with hydrostatic stress in the
vicinity of the crack tip, which is created by the crack
together with dislocations in the plastic zone. The effect
of this transport process on the evolution of plastic
deformation at the crack tip will be taken into account
by substituting c(r, t) for c0 in Eq. (8).

Let us now consider the basic equations of mechan-
ical diffusion (see, for example, [12]):

(9)

where D is the diffusion coefficient; for a dilute solu-
tion of impurities in the elastic field of stresses, the
chemical potential µ = kBTln(c/c0) – V(r, t). Here, V(r,
t) = ∆vσii, where ∆v is the change in the volume of a
unit cell in the crystal lattice due to an interstitial atom
contained in it and σii is the spherical component of the
stress tensor. Considering that ∇ 2V = 0, we obtain from
Eq. (9)

(10)

The initial conditions are chosen in the form c = c0 for
t = 0, and the boundary conditions for y = 0 [13] are

(11)

where km is the mass-exchange constant at the interface
between the gaseous and solid phases, P(t) is the gas
pressure in the hollow of the crack, Γ ' is the modified
Henry constant [14]

(12)

m is the mass of the molecule, " is Planck’s constant,
ψH is the energy of dissolution spent for dividing a mol-
ecule into two atoms and the subsequent implantation
of these atoms into the solid solution, and c = c0 for
|r |2 = x2 + y2  ∞.

Let us now consider the choice of the boundary con-
ditions for y = 0, x < 0 in greater detail. We assume that
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the gas is ideal; in this case, its pressure P(t) in the
crack is given by [6]

(13)

In contrast to [8], we will assume that the gas dissolved
in the bulk of the crystal mainly flows into the hollow
of the crack through its banks. In this case, the number
of hydrogen molecules in the hollow of the crack is

N(t) = J(t ')dt ', where J(t) = km [c2(x, 0, t) –

(Γ')−1P(t)]dx is the flux of gas atoms through the banks
of the crack.

The method for solving Eqs. (1)–(13) involved suc-
cessive solution of the system of equations (1)–(8) and
(10)–(13) at each time step. The method of solution of
Eqs. (1)–(8) is similar to that in [11], while the method
of solution of Eqs. (10)–(13) is described in [8].

Analysis of the evolution of plastic deformation
enabled us to estimate the evolution of the stress inten-
sity factor (SIF) in a loaded crystal. We assumed that
the SIF for a crack can be presented in the form [11]

K(t) = Kc(t) + Kp(t), (14)
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Fig. 1. Distributions of the plastic strain ε(r) (in %) at the
crack tip [without taking into account the plasticizing effect
of hydrogen (a, c) and taking this effect into consideration
(b, d)] after completion of stress relaxation at instants of
time (a) t = 5.15, (b) 9.18, (c) 5, and (d) 3.94 s for the initial
concentration of interstitial hydrogen impurity atoms c0 =

10–4 (a, b) and c0 = 5 × 10–4 (c, d).
PH
where Kc(t) = ( (t) + P(t))  is the SIF term for the
crack, which does not take into account the effect of
plastic deformation on it, whereas Kp(t) is determined
exclusively by this effect [11]:

(15)

where z' is the coordinate in the complex plane.

In the case under investigation, we are using the fol-

lowing formula for  =  – i  [11]:

(16)

where

The calculations for a crystal of α-Fe were made for
the following values of constants: 2l = 10–3 m,  =
1011 s–1, T0 = 300 K, b = 2.48 × 10–4 µm, D = 4.88 ×
10−12 m2 s–1, ψH = 48.8 kJ/mol, EB = 0.6 eV, km = 4.88 ×
10–9 m s–1 [8], r0 = 2b, µ = 83 GPa, ν = 0.28, and δv =
3 × 10–30 m3 [7].

The rate of crystal loading was chosen such that the
maximum strain rate in the plastic zone was 0.1 s–1. The
stresses created by a crack in the crystal are due to the
joint action of the external stress (t) and the gas pres-
sure P(t) in the hollow of the crack. After the stress

(t) + P(t) attained its upper limit σa = 5 MPa, the

value of (t) remained unchanged and the load on the
crystal with a crack increased only as a result of an
increase in the gas pressure P(t) caused by the gas flow
to the hollow of the crack. The computational process

was terminated when the effective stress (r, t) in
Eq. (2) dropped to zero. The calculations made on the
basis of this model proved that, for the initial concen-
tration c0 < 10–3, the pressure P(t) of gaseous hydrogen
in the hollow of the crack does not exceed 0.05 MPa by

the instant when (r, t) relaxes completely. For c0 ≥
10–3, the pressure P(t) is so high that the stress relax-
ation due to the multiplication and displacement of dis-
locations in the plastic zone has no time to suppress the

increase in (r, t) via its components (r, t) in
Eq. (3) before the plastic zone becomes larger than the
computational mesh. In contrast to [9, 10], this model
takes into account the “feedback” which ensures the
action of plastic deformation on the crack through the
filling of its hollow by the gas under the conditions con-
trolled by the same evolution of plastic deformation. A

σa' πl

K p t( ) K pˆ zk'( )∆ρk z' t,( ) z',d

Dk

∫
k 1=

2

∑=

K pˆ KI
pˆ KII

pˆ

KI
ˆ p

z' k,( ) iKII
pˆ z' k,( )– A/ π J1 iJ2 1–( )k+[ ] ,=

J1 π 1/ z' 3/2 z' z'/2 z'( )3/2–+[ ] ,–=

J2 π 1/ z' 1/2 z' z'/2 z'( )3/2+ +[ ] .–=

ε̇0

σa'

σa'

σa'

σe
j

σe
j

σe
j σ j

c

YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000



ANALYSIS OF THE PLASTICIZING EFFECT OF HYDROGEN DISSOLVED 2239
similar feedback was used in [8], but here it is refined
by the correction given by Eq. (8).

Let us now consider the features of the plasticizing
effect of dissolved hydrogen on the evolution of plastic
deformation at the crack tip for c0 < 10–3. It is important
to note that the effect of dissolved hydrogen on the evo-
lution of plastic deformation at the crack tip is deter-
mined by the combined operation of two mechanisms:
(1) an increase in the mobility of dislocations due to the
plasticizing effect of dissolved hydrogen, which
enhances the evolution of plastic deformation and leads
to additional relaxation of stresses at the tip, and (2) a
decrease in hydrogen drain to the hollow of the crack
due to lattice diffusion, which is caused by a decrease
in the hydrostatic component of effective stresses under
the influence of the additional relaxation mentioned in
item (1).

Figure 1 shows the distribution of plastic deforma-
tion at the crack tip for two values of initial concentra-
tion c0 of interstitial hydrogen atoms at the instants of
time corresponding to the termination of evolution of
plastic deformation. It can be seen from the figures that
the size of the plastic zone increases when the correc-
tion in Eq. (8) is taken into account (Figs. 1b, 1d) com-
pared to the case when it is disregarded (Figs. 1a, 1c).
It is important to note that in both cases the drain of
hydrogen to the hollow of the crack is taken into con-
sideration. In other words, the calculations proved that
the plasticizing effect of dissolved hydrogen due to
expulsion of a dislocation [7] is significant and can be
responsible (at least partially) for plasticization [1–6].
It should also be mentioned that the maximum strain in
the plastic zone is the same whether or not the hydro-
gen-induced plasticization is taken into account.

Let us now compare the evolutions of the SIF in a
crystal with dissolved gas. Figure 2 shows the time
dependences of the SIF in calculations (i) for a brittle
crack in a crystal, Kc(t), whose hollow is filled with a
gas which is in equilibrium with the dissolved hydro-
gen; (ii) for a gas-filled crack taking into account the
plastic zone, K*(t), and without taking into account the
plasticizing effect of dissolved hydrogen; and (iii) the
same as in (ii), but taking into account the plasticization
correction given by Eq. (8), K(t). The termination of the
curves in Fig. 2 indicates that the stress relaxation at the
crack tip is completed. It can be seen from the figure
that the time dependence of the SIF for the brittle crack,
Kc(t), changes only insignificantly after the external
stress attains the value σa at the instant t = 0.78 s in spite
of the continuous drain of hydrogen to the hollow of the
crack. The same figure shows that, due to the action of
the plasticization correction given by Eq. (8), the value
of K(t) is smaller than K*(t) by almost 10%.

In conclusion, let us briefly mention the results of
the analysis of the evolution of concentration of dis-
solved hydrogen at the tip of the crack. The calculations
made for c0 < 5 × 10–4 demonstrated a monotonic drain
of hydrogen to the hollow of the crack, while calcula-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 12      200
tions made for higher concentrations revealed a regime
of periodic change in the impurity concentration at
the banks of the crack: complete drain is replaced by
the accumulation of hydrogen, which corresponds to
the blocking of the drain by the gas pressure. It should
be noted in connection with this result that Gol’dshteœn
et al. [15] assumed in their calculations that the hydro-
gen concentration at the banks of the crack was con-
stant and equal to zero, but this choice for the boundary
condition is not confirmed in the present work.
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Abstract—The crystal structure and the magnetic state of polycrystalline LaMn1 – xVxO3 (0.1 < x < 0.9) com-
pounds have been studied by x-ray and neutron diffraction methods, as well as by magnetization and ac suscep-
tibility measurements. It is shown that substitution of vanadium for manganese ions leaves the orthorhombic
crystal structure of the compounds (space group Pnma) unchanged. The magnetic structure is observed to
change from a canted antiferromagnetic ordering (wavevector k = [0, 0, 0], with the antiferromagnetic moments
aligned with the a axis and the ferromagnetic component of the magnetic moment parallel to the b axis) at vana-
dium concentrations x < 0.4 to a collinear antiferromagnetic ordering (with the magnetic moments parallel
to the b axis) at x > 0.8; at this transition occurs through an intermediate state exhibiting spin-glass properties.
© 2000 MAIK “Nauka/Interperiodica”.
†1. INTRODUCTION

The discovery of the effect of giant magnetoresis-
tance in La2/3Ca1/3MnO3 [1] stimulated renewed inter-
est in studies of the physical properties of manganites
with a perovskite structure. Manganites of the type
(R, A)MnO3 + δ (R = La, Pr, and Nd; A = Ca, Sr, and Ba)
have become a subject of intensive investigation [2–4].
In these compounds, the oxygen nonstoichiometry and
the partial substitution of an alkaline- for a rare-earth
metal bring about a decrease in the amount of Mn3+

ions and an increase in the amount of Mn4+ ions. The
main regularities governing the changes in the crystal
structure and the magnetic state of these manganites
upon variations in the Mn4+ concentration have already
been established.

For instance, the La1 – yMnyO3 + δ nonstoichiometric
manganite is characterized by the presence of vacancies
in the cation sublattice [2]. Their concentration and the
content of the Mn3+ and Mn4+ ions are determined by the
synthesis conditions and can be estimated from the
magnitude of δ by using the relation 1 − y = 3/(3 + δ).
The structure obtained at a Mn4+ content of less than
10% is orthorhombic with a collinear antiferromag-
netic order. In this case, the nearest magnetic moments
are ferromagnetically ordered in the (010) planes and
the planes are aligned antiferromagnetically. Within the
concentration range 10–14%, canted antiferromag-
netism prevails. Manganites with Mn4+ concentrations
above 14% can have an orthorhombic, rhombohedral,

† Deceased.
1063-7834/00/4212- $20.00 © 22241
or cubic lattice with ferromagnetically aligned spins of
manganese ions.

However, a complete understanding of the mecha-
nisms responsible for the structural and magnetic phase
transitions in manganites also requires knowledge of
their behavior under variations in the Mn3+ concentra-
tion but with a fixed Mn4+ content. This can be achieved
by a partial replacement of Mn ions in RMnO3 + δ by
ions of another trivalent metal. There are only a few
publications which report on the investigation of these
systems [5, 6].

This paper reports the first investigation of the struc-
tural and magnetic states of compounds in the
LaMn1 − xVxO3 + δ system by x-ray and neutron diffrac-
tion methods, as well as by magnetic measurements.
Only extreme compositions have thus far been studied
in this system. Unlike lanthanum manganite, the effects
associated with oxygen nonstoichiometry of lanthanum
orthovanadite are too small to affect the unit cell
parameters and volume. According to [7], the orthor-
hombic perovskite structure is retained at a V4+ concen-
tration of no more than 10%. At low temperatures, lan-
thanum orthovanadite is an antiferromagnet [8–10] in
which the nearest-neighbor magnetic moments of the
V3+ ions are antiferromagnetically aligned in the (010)
planes and ferromagnetically ordered in the (100)
planes.

Thus, the moments in the extreme compositions of
LaMn1 – xVxO3 + δ (at small δ) are antiferromagnetically
ordered in opposite directions. This means that an
increase in concentration x should bring about a rota-
tion of the antiferromagnetic axis from one direction to
000 MAIK “Nauka/Interperiodica”
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the other. Moreover, substitution should change the
relation between the ferromagnetic and antiferromag-
netic exchange couplings, which can give rise to the
features presented in the magnetic phase diagram.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

The starting substances for the synthesis were the
oxides La2O3 (99.9%), MnO2 (analytical grade), and
V2O5 (high-purity grade). The lanthanum oxide was
preliminarily calcined in air at 1173 K. The manganese
oxide was reduced to MnO2 by calcination in air at
873 K for 8 h, and V2O5 was reduced to V2O3 by calcin-
ing in a hydrogen flow at 1173 K. The LaMn1 – xVxO3
solid solutions with x = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, and 0.9 were synthesized in a vacuum furnace at
1473 K and at a residual pressure of 1.3 × 10–3 Pa. The
total annealing time was 72 h. After every 24 h of
annealing, the samples were ground thoroughly.

X-ray diffraction measurements were carried out on
a DRON-2 diffractometer (CuKα radiation).

The neutron diffraction experiment was performed
on a diffractometer mounted in the horizontal channel
of an IVV-2M reactor. A monochromatic neutron beam
with wavelength λ = 1.805 × 10–1 nm was obtained by
successive reflection from a strained Ge(111) single
crystal and (004) pyrolytic graphite. Measurements
were made at temperatures ranging from 4.2 to 293 K.
The x-ray and neutron diffraction patterns were pro-
cessed using the FULLPROPF program [11].

The magnetic properties of the compounds were
studied on a vibrating-sample magnetometer in fields
of up to 19 kOe in the temperature range from 4.2 to
293 K. The relative error of the magnetization measure-
ments did not exceed 2%. The temperature depen-
dences of the ac susceptibility were measured at a fre-
PH
quency of 1 kHz and a magnetic-field amplitude of
≈10 Oe.

3. RESULTS AND DISCUSSION

The x-ray diffraction patterns of all samples were
recorded at 293 K in the angular range 10° < 2Θ < 70°.
The calculations of the diffraction patterns showed that
the samples studied have an orthorhombic structure.
The unit cell parameters (space group Pnma) for all
compositions x are given in Table 1. It is readily seen
that as the vanadium concentration increases, the a
parameter, on the whole, decreases; the b parameter
first increases, reaches a maximum of 7.877 Å at x =
0.5, and then decreases; and the cell length along the c
axis does not change substantially. A comparison of the
unit cell parameters in LaMn1 – xVxO3 + δ and in pure
LaMnO3 + δ shows that doping with vanadium brings
about a noticeable increase in the b parameter.

The lattice parameters obtained in this work for
samples of the LaMn1 – xVxO3 + δ system (see Table 1 for
the x-ray data obtained at 293 K and Table 2 for the
neutron diffraction data taken at 4.2 K) agree satisfac-
torily with the data available in the literature for
extreme compositions [2–5, 10]. However, it should be
pointed out that, for all the compounds studied by us,

the b/(a ) ratio varies within the range 0.978–0.998,
which lies closer to the corresponding value (1.0008)
for LaVO3 [9, 10], but somewhat differs from

b/(a ) ≈ 0.95 for stoichiometric LaMnO3 [2]. It is
known that deviation of this ratio from unity is due to
orthorhombic distortions in LaMnO3. Hence, substitu-
tion of vanadium for manganese results in a decrease in
the lattice distortions. This is apparently associated
with the fact that such a substitution should reduce the
static Jahn–Teller effect characteristic of LaMnO3,

2

2

Table 1.  Parameters of the LaMn1 – xVxO3 orthorhombic lattice, derived from the profile analysis of x-ray diffraction patterns
measured at 293 K 

Composition, x a, Å b, Å c, Å b/ V, Å3 R, %

0.0 [12] 5.669(1) 7.671(1) 5.523(1) 0.9568 240.188 3.4

0.1 5.661(1) 7.830(1) 5.551(1) 0.9780 246.051 12.8

0.2 5.642(1) 7.859(1) 5.548(1) 0.9849 246.000 6.09

0.3 5.620(1) 7.870(1) 5.559(1) 0.9902 245.871 9.43

0.4 5.617(1) 7.876(1) 5.557(1) 0.9914 245.849 6.71

0.5 5.611(1) 7.877(1) 5.562(1) 0.9927 245.828 5.12

0.6 5.605(1) 7.872(1) 5.562(1) 0.9931 245.410 6.12

0.7 5.589(1) 7.863(1) 5.559(1) 0.9948 244.297 4.61

0.8 5.577(1) 7.857(1) 5.556(1) 0.9962 243.456 5.02

0.9 5.560(1) 7.853(1) 5.553(1) 0.9980 242.598 8.72

1.0 [10] 5.547(4) 7.851(6) 5.553(1) 1.0007 241.830 –

Note: The lattice parameters for the extreme compositions are taken from the literature.

a 2( )
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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Fig. 1. Neutron diffraction patterns of the orthorhombic phase of the LaMn1 – xVxO3 perovskites at 4.2 K for the compositions with
x = 0.1, 0.5, and 0.9. Solid lines represent the calculated total intensities (nuclear and magnetic by the proposed models), and open
circles are experimental points. Dashes under the diffraction curves specify the angular positions of the nuclear (top) and magnetic
(bottom) reflections. The inset displays the temperature dependence of the peak intensity of the (010)M antiferromagnetic reflection
(2Θ = 13.2°) for the composition with x = 0.1.
because the number of Jahn–Teller Mn3+ ions
decreases.

The coordinate parameters and the site occupancies
were refined from neutron diffraction measurements. In
the orthorhombic lattice (space group Pnma), the lan-
thanum (La) and oxygen (O1) atoms, oxygen (O2), and
Mn/V atoms occupy the 4c(x, 1/4, z), 8d(x, y, z), and
4a(0, 0, 0) positions, respectively. The structural
parameters derived from the neutron diffraction pat-
terns are listed in Table 2. These values are close to
those obtained in [12] for LaMnO3 + δ. No data on the
coordinate parameters and site occupancies for the
other extreme composition of the LaMn1 – xVxO3 + δ sys-
tem are available in the literature.

As can be seen from Table 2, the oxygen nonstoichi-
ometry in LaMn1 – xVxO3 + δ compounds with x ≤ 0.3 is
δ ≈ 0.06, which corresponds to a Mn4+ content of about
12%. This concentration of Mn4+ ions is observed in
lanthanum manganite, whose magnetic moment at low
temperatures, in addition to the antiferromagnetic com-
ponent, has a noticeable ferromagnetic component
PHYSICS OF THE SOLID STATE      Vol. 42      No. 12      20
[12]. Therefore, it can be assumed that magnetic order-
ing of this type is realized in the compounds under
study at low vanadium concentrations.

In order to elucidate the magnetic structure and the
magnetic moments on the Mn and V atoms and to con-
struct the magnetic phase diagram, we carried out neu-
tron diffraction studies and magnetic measurements at
temperatures ranging from 4.2 to 293 K.

According to the neutron diffraction patterns
obtained at 4.2 K, the samples studied can be divided
conventionally into three groups. The neutron diffrac-
tion patterns characteristic of each group are displayed
in Fig. 1. One group combines compositions with x =
0.1, 0.2, and 0.3. The neutron diffraction patterns of
these compositions contain an antiferromagnetic reflec-
tion at the angle 2Θ = 13.2°. We did not find coherent
magnetic scattering in samples of the second group
with 0.4 < x < 0.9. The composition with x = 0.9 makes
up the third group of samples. The neutron diffraction
pattern of this sample exhibits an antiferromagnetic
reflection at the angle 2Θ = 18.5°. Figure 2 shows frag-
ments of neutron diffraction patterns containing reflec-
00
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0.7 0.8 0.9

0.5333(06) 0.5302(08) 0.5301(12)

0.0058(12) 0.0056(15) 0.0041(30)

0.99(1) 0.99(1) 0.99(1)

0.0169(09) –0.0170(12) –0.0157(18)

0.0710(15) –0.0629(18) –0.0615(35)

1.00 1.00 1.00

0.2926(06) 0.2913(08) 0.2874(24)

0.0422(06) 0.0432(07) 0.0434(13)

0.2176(09) 0.2188(11) 0.2196(13)

2.00 2.00 2.00

0.99(1) 0.99(1) 0.99(1)

0.027 0.006 0.015

5.985(1) 5.581(1) 5.579(1)

7.855(1) 7.846(1) 7.825(1)

5.550(1) 5.551(1) 5.548(1)

– – 1.1(2)

– –

– – 1.1(2)

≈120

5.5 5.8 6.1

– – 30.5

ojections and the lattice parameters are derived for
respectively. The parenthetic figures are the standard
Table 2.  Structural parameters at 293 K for an isotropic integrated thermal factor of 0.5 Å–2

x 0.1 0.2 0.3 0.4 0.5 0.6

x, La 0.5471(14) 0.5446(04) 0.5418(05) 0.5402(06) 0.5364(04) 0.5365(05)

z, La 0.008(27) 0.0082(08) 0.0060(11) 0.0087(11) 0.0081(08) 0.0056(10)

n, La 0.98(1) 0.99(1) 0.98(1) 1.00(1) 1.00(1) 1.00(1)

x, O1 –0.0148(20) –0.0168(06) –0.0163(08) –0.0162(09) –0.0157(06) –0.0172(08) –

z, O1 –0.0854(28) –0.0848(09) –0.0805(11) –0.0776(14) –0.0745(10) –0.0749(14) –

n, O1 1.00 1.00 1.00 1.00 1.00 1.00

x, O2 0.3017(16) 0.2971(04) 0.2950(06) 0.2938(06) 0.2918(04) 0.2934(06)

y, O2 0.0403(13) 0.0409(04) 0.0402(05) 0.0408(06) 0.0416(04) 0.0413(06)

z, O2 0.2137(18) 0.2170(05) 0.2187(6) 0.2151(08) 0.2148(05) 0.2165(06)

n, O2 2.00 2.00 2.00 2.00 2.00 2.00

n, Mn/V 0.98(2) 0.99(1) 0.98(2) 1.00(1) 1.00(1) 1.00(1)

δ 0.067 0.061 0.055 0.00 0.00 0.00

a, Å (4.2 K) 5.656(1) 5.644(1) 5.629(1) 5.621(1) 5.607(1) 5.597(1)

b, Å (4.2 K) 7.827(1) 7.842(1) 7.862(1) 7.870(1) 7.859(1) 7.858(1)

c, Å (4.2 K) 5.544(1) 5.548(1) 5.550(1) 5.554(1) 5.555(1) 5.547(1)

Mx (AF), µB 1.7(1) 0.9(1) 0.4(2) – – –

My (F), µB 1.3(1) 1.4(1) 0.6(2) – – –

〈M〉 , µB 2.2(1) 1.6(1) 0.7(2) – – –

TN 100(5) <78 <78

RN, % 7.7 4.4 4.2 5.2 3.6 3.8

RM, % 14.6 21.0 30.0 – – –

Note: The δ values are given for the experimental values of the site occupancy without regard for error. The magnetic moment pr
LaMn1 − xVxO3 at 4.2 K (B = 0.1 Å–2). Mx and My are anti- and ferromagnetic projections of the Mn and V magnetic moments, 
deviations for the last significant digits.
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tions at 2Θ = 13.2° and 18.5°. It is readily seen that the
main antiferromagnetic reflection changes in angular
position and intensity with an increase in the vanadium
concentration.

As follows from the calculations of the neutron dif-
fraction patterns, the magnetic- and crystal-cell param-
eters for the compositions with x = 0.1–0.3 and 0.9
coincide, which corresponds to the wavevector of the
magnetic structure k = [0, 0, 0]. Magnetic symmetry
analysis yielded possible magnetic ordering patterns
with k = [0, 0, 0] for the LaMn1 – xVxO3 + δ compounds.
The magnetic ions in these compounds occupy only
one position, 4a. For this position, the magnetic repre-
sentation with k = [0, 0, 0] has the form [13]

where τ1, …, τ7 are irreducible representations of the
Pnma space group. The basis functions of the irreduc-
ible representations belonging to the magnetic repre-
sentation of the Pnma space group are given in Table 1
of our earlier paper [12]. By properly mixing several
irreducible representations, one can obtain all lattice-
symmetry-allowed magnetic structures.

Neutron diffraction patterns were calculated for var-
ious mixing versions. Comparison of the calculated
neutron diffraction patterns with those experimentally
measured for the compositions with x = 0.1–0.3 and 0.9
revealed that the minimum value of the convergence
factor Rmag is reached under the following conditions.
The magnetic structure of the compounds with x =
0.1−0.3 is described by a superposition of the recurring
representations  + τ3. The  representation corre-
sponds to antiferromagnetic alignment with the a axis,
and the τ3, to ferromagnetic alignment with the b axis.
The ferro- and antiferromagnetic components of the
magnetic moment of an ion are given in Table 2. These
values relate to a “grey” 3d ion occupying the 4a posi-
tion. We readily see that substitution of vanadium for
manganese in compositions with 0.1 ≤ x ≤ 0.3 results in
a fairly drastic decrease in the magnetic moment.

A further increase in the vanadium concentration
(up to x = 0.9) brings about the disappearance of the
ordered magnetic moment. As already pointed out,
there is no long-range magnetic order in compounds
with 0.4 ≤ x ≤ 0.8 for T ≥ 4.2 K.

For the sample with x = 0.9, the Rmag factor was
found to be the smallest when the magnetic structure
was described by the  irreducible representation.
This representation relates to antiferromagnetic order-
ing along the b axis. The magnitude of the moment is
given in Table 2. Note that, in the composition with x =
0.9, not only the orientation of moments with respect to
the crystallographic axes but their mutual orientation as
well are different from those observed in compositions
with 0.1 < x < 0.3. In the sample with x = 0.9, the
moments of the nearest neighboring ions are coupled
ferromagnetically in the (001)-type planes, and antifer-

dM 3τ1 3τ3 3τ5 3τ7,+ + +=

τ3' τ3'

τ5''
PHYSICS OF THE SOLID STATE      Vol. 42      No. 12      20
romagnetically, between these planes, whereas in com-
positions with 0.1 < x < 0.3, we have the reverse situa-
tion.

In order to determine the Néel temperature TN of the
sample with x = 0.1, we carried out measurements of
the peak intensity I(010) of the (010) magnetic reflection
(see inset to Fig. 1). It is seen that the reflection disap-

Table 3.  Characteristics of the LaMn1 – xVxO3 magnetic
state, derived from magnetic measurements

x σ0, emu/g µ, µB TP, K Tf, K Tc, K

0.1 19.6(5) 0.9(1) 110 33 100(5)

0.2 16.7(5) 0.7(1) 85 32 65(5)

0.3 9.5(5) 0.4(1) 80 26 30(10)

0.4 – – 75 25 –

0.5 – – 65 26 –

0.6 – – 60 26 –

0.7 – – 40 28 –

0.8 – – 0 30 –

0.9 – – –125 32 –

x = 0.1

8

7

6
0.2

0.3

11 12 13 14 15 16 17 18 19 20
2Θ, deg

In
te

ns
ity

, 1
03  im

p/
20

0 
s

5 0.4

4

0.8

3

0.9

Fig. 2. Fragments of neutron diffraction patterns at 4.2 K for
the compositions with x = 0.1, 0.2, 0.3, 0.4, 0.8, and 0.9.
Open circles are experimental points, and the solid lines rep-
resent the calculations within the proposed models.
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pears at TN = (100 ± 5) K. We have not succeeded in
measuring the Néel temperature for the compositions
with x = 0.2 and 0.3 due to the low intensity of the anti-
ferromagnetic reflection. The Néel temperature of
≈120 K for the composition with x = 0.9 was estimated
from the intensities of the antiferromagnetic reflection
measured at 4.2 and 78 K.

To obtain information on the magnetic state of
LaMn1 – xVxO3 compounds and to construct the mag-
netic phase diagram, detailed temperature dependences
of the magnetization σ (susceptibility χ) were studied
on field-cooled (FC) and zero-field-cooled (ZFC) sam-
ples. Figure 3 presents temperature dependences of the
magnetization and the static susceptibility for the com-
position with x = 0.6. As is seen, this sample is charac-
terized by an irreversible behavior of the magnetiza-
tion. Below some temperature Tf, which decreases with
increasing field strength, the σZFC and σFC magnetiza-
tion curves do not coincide. The freezing temperatures
Tf derived in the magnetization measurements coincide
in the low-field limit with the peak on the temperature
dependence of the ac susceptibility. Figure 3 also
shows the temperature dependence of the inverse sus-
PH
ceptibility measured in a magnetic field of 16 kOe,
whose extrapolation to zero yields the paramagnetic
Curie temperature TP . As follows from the Curie–
Weiss law for the temperature dependence of paramag-
netic susceptibility, TP is a parameter determining the
dominant role of exchange coupling between magneti-
cally active atoms. Positive paramagnetic Curie points
are characteristic of ferromagnetic exchange coupling
between spins or magnetic clusters. Zero or negative
values of the paramagnetic Curie temperature are typi-
cal of systems with no ferromagnetic interactions. Sim-
ilar temperature dependences of magnetization and
susceptibility are observed for all the compounds stud-
ied, and Table 3 lists the Tf and TP temperatures
obtained for the compositions investigated. As is seen
from the values of TP, antiferromagnetic interaction in
compositions with x > 0.8 is dominant.

Figure 4 displays the field dependences of the spe-
cific magnetization measured at 4.2 K on ZFC samples
of the compounds studied. It is seen that the field
dependences of all the compositions, except those with
x = 0.1 and 0.9, resemble the Langevin-type curves,
which are characteristic either of systems with a large
anisotropy or of superparamagnets. For x = 0.1, the
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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dependence is closer to the ferromagnetic type, but
with a higher susceptibility of the paraprocess. For x =
0.9, the magnetization depends linearly on the applied
field. Determination of the spontaneous magnetization
σ0 at 4.2 K by linear extrapolation of the magnetization
curves to zero field is made difficult because of the
absence of a clearly pronounced linear portion in σ(H),
except for the case of the composition with x = 0.1. For
this reason, σ0 was found using a technique similar to
the Belov–Arrott thermodynamic coefficient method.
To accomplish this, the curves for σ2 = f(H/σ) at 4.2 K
were plotted for all the compounds studied. Extrapola-
tion to zero field permitted the determination of the
spontaneous magnetization σ0 and the subsequent cal-
culation of the average ferromagnetic moment per
“grey” atom occupying a manganese site (Table 3).
This approach also makes it possible to determine the
critical concentration of disappearance of the ferro-
magnetic order parameter in the series of the com-
pounds investigated. This concentration can be found
by setting the a parameter in the Belov–Arrott equation
a + bσ2 = H/σ to zero. It was found that for x < 0.4, the
magnetic ground state of the compounds is character-
ized by the existence of a ferromagnetic order parame-
ter. The temperature at which the ferromagnetic com-
ponent transfers to the paramagnetic state, Tc (see
Table 3), was determined by the thermodynamic coef-
ficient method, because the temperature dependences
of magnetization of these compounds measured in
weak fields do not have a step characteristic of the kink
method.

As follows from Tables 2 and 3, the compounds
with x < 0.4 exhibit spontaneous magnetization and the
ferromagnetic component of the magnetic moment is
comparable in magnitude to the antiferromagnetic
component. Because the ferro- and antiferromagnetic
alignments for these compositions are described by the
same irreducible representation, they are identified by
one exchange multiplet. Then, a structure with
moments having both ferromagnetic τ3 and antiferro-

magnetic  components will correspond to the ground
state of a magnet. Therefore, the magnetic structure of
the compositions with x ≤ 0.3 should be noncollinear,
which corresponds to a canted antiferromagnet. It
seems all the more probable that the Néel temperature
derived from the neutron diffraction data for the com-
position with x = 0.1 coincides, to within the experi-
mental error, with the Curie temperature determined by
the magnetic method. It is for this state that the absolute
values of the moment 〈µ〉  are given in Table 2. The fer-
romagnetic moments extracted from magnetic mea-
surements (see Table 3) appear to be somewhat under-
evaluated, possibly because true saturation cannot be
achieved in a field of 19 kOe. Recalling that 〈µ〉  for
LaMnO3 varies from 3.5 to 3.8µB, the data of Tables 2
and 3 suggest that substitution of V for Mn ions results
in a substantially stronger decrease in the moment on
the 3d ion than should be expected to result from the

τ3'
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dilution of the manganese sublattice alone. The reasons
for this may be as follows. As was shown, for instance,
in [14], local spin distortions can arise in a canted-spin
system. They form clusters around ions, which break
the periodicity of the ion distribution over lattice sites.
In the case of the LaMn1 – xVxO3 compounds, vanadium
substitutes for manganese in a random manner, which
frustrates the Mn ions. The breakdown of the relation
between the Mn3+–Mn4+ ferromagnetic and Mn3+–
Mn3+ antiferromagnetic interactions gives rise to a local
distortion of the spin structure around the V ion. More-
over, the V3+ ion has a magnetic moment whose prefer-
ential orientation differs from that of the Mn3+ moment,
so that the exchange coupling between Mn and V may
have opposite signs, depending on the electronic con-
figuration of the ions. This can induce random mag-
netic fields, which destroy the long-range magnetic
order in the matrix more strongly than doping with non-
magnetic ions.

Such systems exhibit properties typical of spin
glasses, in particular, the irreversible behavior of the
magnetization below the Tf temperature. The magnetic
state of compounds with 0.1 ≤ x ≤ 0.3 is probably two-
phase. One phase supports long-range magnetic order
(canted antiferromagnetism), whereas in the other
phase, the spin-glass state is realized. We can estimate
the sample volume occupied by the former phase by
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assuming that the moment of the Mn ion is 4µB and that
the mixing law holds. Then, at 4.2 K, the region with
the long-range magnetic order in the sample x = 0.1
occupies only about 60% of the sample volume.

Phase segregation, the manner of coexistence of
various magnetic phases in perovskites, has recently
become a subject of much debate [15]. The basic idea
is that manganese ions in different orbital states segre-
gate at different distances. This gives rise to an intrinsic
inhomogeneous magnetic ground state in the perovs-
kites, which is strongly affected by an external mag-
netic field. This description assumes the existence of
three magnetic phases, namely, the antiferromagnetic,
ferromagnetic, and spin-glass phases, which differ in
their lattice parameters and temperature-induced
changes. However, the magnitudes of these changes lie
beyond the accuracy of our measurements.

The absence of coherent magnetic reflections and
magnetic measurements suggest zero spontaneous
magnetization in compounds with 0.4 ≤ x ≤ 0.8 at
4.2 K. Here, only the short-range order, both antiferro-
magnetic and ferromagnetic, can exist. The presence of
short-range magnetic order regions, which become
blocked below Tf , gives rise to a magnetic ground state
in the form of a cluster spin glass (see, e.g., [16]).

A further increase in the concentration to x = 0.9 ini-
tiates long-range magnetic order with an antiferromag-
netic alignment similar to that observed earlier in
LaVO3 [8, 9]. This is indicated by the linear field
dependence of the magnetization and by the magnitude
of the paramagnetic Curie temperature. In
LaMn0.1V0.9O3, the magnetic moment of the V ion is
1.2µB (if the Mn ions are assumed nonmagnetic), which
is close to the value of 1.3µB found for LaVO3 [8]. At
the same time, the expected spin moment of the V3+ ion
is 2µB. This difference can be explained by the fact that
compositions with x = 0.9 and 1.0 exhibit regions with-
out long-range magnetic order, which manifest them-
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Fig. 5. Magnetic phase diagram of the LaMn1 – xVxO3 sys-
tem. Designations: P—paramagnet, CAF—canted antifer-
romagnet, AF—antiferromagnet, SGL—spin-glass state.
PH
selves in the irreversibility of magnetization below Tf .
One also cannot rule out the possibility that antiferro-
magnetic ordering in these compositions is accompa-
nied by an electronic transition resulting in a noticeable
decrease in the localized magnetic moment on the V
ions.

Unlike the above case, where the τ3 and  repre-
sentations corresponded to one exchange multiplet, the
τ3 and τ5 irreducible representations describing the
magnetic structures of the extreme compositions with
x = 0.1 and 0.9 give rise to two discrete multiplets of
states degenerate in exchange energy. Therefore, the
mixing of these representations will produce not a sin-
gle-phase state with a noncollinear magnetic structure
but rather a state with two phases which have different
magnetic structures. In our case, the boundaries sepa-
rating these phases do not cross; therefore, a magnetic
phase transition from one type of the magnetic struc-
ture to another occurs not through spin reorientation but
via a state with no long-range magnetic order.

In conclusion, we present a magnetic phase diagram
(Fig. 5) of the LaMn1 – xVxO3 orthorhombic perovs-
kites, in which the Néel temperature and the freezing
point of the spin-glass state are specified. The TCAF tem-
perature was derived from the data on neutron diffrac-
tion and magnetic measurements. The diagram identi-
fies the regions of existence of the long-range magnetic
and spin-glass orders, as well as the regions where the
magnetic phases coexist.

Thus, we have reported the first investigation of the
crystal structure and magnetic ordering in the
LaMn1 − xVxO3 + δ compounds. Oxygen nonstoichiome-
try is the largest in compounds with 0.1 ≤ x ≤ 0.3 and is
approximately 0.06. At T ≤ 300 K, all compounds have
an orthorhombic structure with similar parameters

b/  and c, which suggests that the doping of the lan-
thanum manganite by vanadium reduces orthorhombic
distortions. Long-range magnetic order is observed
only in compositions with x ≤ 0.3 and x = 0.9. The mag-
netic structure of the compositions with x ≤ 0.3 is
described by the sum of the irreducible representations

 + τ3, which corresponds to a canted antiferromag-
netic structure (wavevector k = [0, 0, 0]) with antiferro-
magnetic moments aligned with the a axis and a ferro-
magnetic component of the magnetic moment parallel
to the b axis. The best description for the composition

with x = 0.9 is provided by the  representation, which
corresponds to antiferromagnetic ordering with mag-
netic moments parallel to the b axis. The compounds in
the intermediate composition region with 0.4 < x < 0.9
reveal an absence of long-range magnetic order at
4.2 K. In this case, the magnetic ground state exhibits
properties characteristic of cluster spin glasses.

τ3'

2

τ3'

τ5''
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MAGNETISM 
AND FERROELECTRICITY
The Initial Stage in the Nonlinear Motion 
of a Domain Wall in Garnet Films
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Abstract—A study of the domain-wall motion in single-crystal garnet films of the YBiFeGa system with a per-
pendicular magnetic anisotropy, activated by a constant in-plane bias field Hp parallel to the wall plane and a
pulsed drive field Hg of an amplitude corresponding to the nonlinear region of the domain-wall velocity vs. the
Hg relation is reported. The earlier data suggesting the existence of an initial phase of motion, where the wall
is accelerated to a high instantaneous velocity, have been confirmed. The wall behavior in the initial phase has
been shown to be affected by the field Hp and the drive-field pulse rise time. A possible mechanism of the wall
structure transformation after the application of the Hg pulse is considered. It has been established that the
dependence of the wall velocity on Hp in the saturation region disagrees with theory. © 2000 MAIK
“Nauka/Interperiodica”.
It is known that a domain wall in films with a large
perpendicular magnetic anisotropy under drive fields
Hg in excess of a certain critical level  moves with
the so-called saturation velocity, which does not
depend on Hg. It was also established that, at the initial
instants of time immediately after a field pulse applica-
tion, the domain wall moves with a velocity exceeding
the saturation velocity. It was conjectured that in this
stage a wall does not contain spin structures such as
horizontal Bloch lines (HBL), so its motion can be
described in terms of the one-dimensional Walker’s
model (see, e.g., [1–5]). It was necessary, however, to
assume that the wall displacement occurs with losses
exceeding those typical of ferromagnetic resonance
(FMR) a few times over. At the same time, it was main-
tained [6, 7] that, on application of a drive field pulse
with an amplitude in excess of the field at which steady-
state motion breaks down, the domain wall accelerates
initially to a high instantaneous velocity. In [7], the wall
acceleration was described by the well-known equation
of motion with an inertial term. The wall effective mass
thus obtained was substantially larger than the Döring
mass, which was assigned to a buildup of HBLs in the
wall. This approach did not need any assumptions con-
cerning the damping parameter. The measurements in
[7] were carried out on one sample at a fixed drive-field
pulse rise time, so that the data obtained did not permit
any generalizations.

In order to investigate the initial stage of the domain
wall motion within the nonlinear region of the drive
fields in excess of the critical level  and to establish
the mechanism responsible for the transformation of
the wall spin structure, we studied the effect of the Hg

Hg
c

Hg
c

1063-7834/00/4212- $20.00 © 2250
pulse rise time on the domain-wall motion. The mea-
surements were performed on two YBiFeGa films with
the following characteristics: sample 1 had a thickness
of h = 5.3 µm, a magnetization 4πM = 138 G, the
anisotropy field HA = 2570 Oe, the Bloch wall-thick-
ness parameter ∆ = 0.28 × 10–5 cm, the effective gyro-
magnetic ratio γ = 1.8 × 107 Oe–1 s–1, and the Gilbert
damping parameter α = 0.0025 (from FMR data); and
sample 2 had h = 4.6 µm, 4πM = 156 G, HA = 6200 Oe,
∆ = 0.2 × 10–5 cm, γ = 1.67 × 107 Oe–1 s–1, and α =
0.002. The measurements were done on a planar
domain wall stabilized by a pulsed gradient field gener-
ated by two parallel planar conductors through which a
current pulse was passed. The pulse amplitude was
large enough to transform the initial labyrinth structure
between the conductors into two domains separated by
a domain wall parallel to the conductors. One micro-
second after the application of the gradient field pulse,
when the planar wall has already formed, a pulse of the
drive field Hg causing wall motion was applied. The
measurements were performed at different field-pulse
rise-time constants τ, more specifically at 1, 20, and 35
ns. An in-plane dc bias field Hp was applied parallel to
the planar wall. The relations q(t) connecting the wall
displacement with time were found for several values
of Hp, from 240 to 480 Oe for film 1 and from 400 to
1300 Oe for film 2, and for different amplitudes of Hg.
Visualization was obtained by a high-speed image-
recording method, and the ~5-ns pulsed illumination
was provided by a Rhodamine 6G dye laser pumped by
a pulsed nitrogen laser. A TV camera with a high-sen-
sitivity vidicon served as a receiver, and the images
recorded were stored and could be displayed on the
2000 MAIK “Nauka/Interperiodica”
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monitor screen for treatment. The wall displacement
was determined by averaging the data obtained in sev-
eral dozen measurements.

Figures 1 and 2 exemplify the typical q(t) depen-
dences obtained for film 1 with the time constants τ of
1 and 25 ns and an amplitude Hg = 45 Oe. One clearly
sees an initial delay t' in the wall displacement with
respect to the instant of the field pulse application. The
length of this delay increases from ~10 ns for τ = 1 ns
to ~30 ns for τ = 35 ns. The initial delay is followed by
the stage of wall acceleration to a velocity Vm, after
which the velocity drops to its saturation value Vs < Vm.
Qualitatively the same results were obtained for sample
2. The acceleration phase lasts ~15 ns for τ = 1 ns, and
its duration increases to ~30 ns with the time constant τ
increasing to 35 ns.

As in [7], when describing the wall motion in accel-
eration, we limit ourselves to the equation of motion
containing an inertial term. Taking into account the ini-
tial delay, this equation can be written in the form

(1)

where m is the effective wall mass, µ is the mobility,
and ∇ Η is the stabilizing gradient. We do not write out
the function y(t) here, which is the solution to this equa-
tion, because its explicit form is too cumbersome. We
shall approximate the experimental data by the function

m
d2y

dt2
-------- 2Mµ 1– dy

dt
------ 2M∇ Hy t( )+ +

=  2MHg 1 e t t'+( )/τ––[ ] ,

q t( )
0, for  t t'≤
y t( ), for t' t t''.≤<
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Fig. 1. Domain wall displacement vs. the time reckoned
from the instant of the application of the Hg pulse. Sample 1,
τ = 1 ns, Hg = 45 Oe, and Hp = 360 Oe. The points are exper-
imental; (1) approximation by the q(t) function, (2) calcula-
tion for the m = mD case, and (3) velocity saturation region. 
PHYSICS OF THE SOLID STATE      Vol. 42      No. 12      20
Here, t" is the time at which the wall reaches its maxi-
mum velocity. The quantities m and t' were used as fit-
ting parameters, and µ was derived from the FMR mea-
surements. It was shown earlier [8] that, in films with a
very narrow FMR line, the mobility found from wall
dynamics experiments turns out to be a few times
smaller than that extracted from the FMR data. In our
case, these mobilities differ by a factor two to four;
however, one can readily verify that this difference does
not affect noticeably the calculated q(t) relation, and,
therefore, µ was determined from the FMR data.

In Figs. 1 and 2, the experimental data are fitted by
curves 1. The values of the effective mass found in the
Hp interval studied, m > 10–9 g/cm2, exceed the Döring
mass mD. For instance, for sample 1, mD = (2π∆γ2)–1 =
1.7 × 10–10 g/cm2, and in the fields Hp employed here,
this mass should be less than 10–10 g/cm2 (see Eq. (16)
in [9]). Curve 2 in Fig. 1 shows how the time depen-
dence of the wall displacement would look in the case
of m = mD and for the values of t' and µ corresponding
to curve 1. According to the present notions, the wall
mass can be written as [10] 

(2)

where Vi is the instantaneous wall velocity. A domain
wall will possess an anomalously large effective mass
if the increase in velocity in the course of its accelera-
tion will be accompanied by a substantial increase in
the film-thickness-averaged angle  that the magneti-
zation makes with the wall plane. Thus, the data
obtained by us in this work and in [7] for films with
very low losses permit the conclusion that, when a film
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Fig. 2. Domain wall displacement vs. the time reckoned
from the Hg pulse application moment. Sample 1, τ = 20 ns,
Hg = 45 Oe, and Hp = 390 Oe. The points are experimental;
(1) approximation by the q(t) function and (2) calculation
for the α = 0.2 case. 
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starts to move under a drive field substantially in excess
of the breakdown field, HBLs will build up in it at the
first instants of time. This is what accounts for the
growth of the  angle. 

The dependence of the duration of the acceleration
phase on the field-pulse rise time constant can be
explained in the following way. A wall stabilized by a
gradient field ∇ Η and driven by an Hg pulse is acted
upon by an effective field 

(3)

This field brings about an increase in the  angle,
which is described for low losses by the expression 

(4)

It is possible that the wall accelerates until the angle 

reaches a certain critical value . After this, one of the
HBLs punches through upon reaching the surface and a
state of chaos corresponding to the velocity saturation
regime sets in. Obviously enough, the time interval dur-
ing which  attains the critical value is given by Eq. (4).
If the Hg pulse is step-shaped, the amplitude H' = Hg at
the instant of the application of the field, after which, by
Eq. (3), H' falls off. At finite values of τ, we always have
H' < Hg. If one plots H'(t) relations for different τ, it will
become evident that, as the pulse rise constant
increases, the time required to twist the spins in the wall
through the angle  should also increase. If the τ
times are large enough, the wall can reach its new equi-
librium position where H' = 0, while not attaining
motion with the saturation velocity. 

The wall acceleration stage can apparently be
observed only in films with a very low damping param-
eter α. For comparatively large α, the viscosity effect
will prevail. For instance, if sample 1 had a sufficiently
large damping parameter, for example, α = 0.2, then for
the values of m and t' corresponding to curve 1 in Fig. 2
the solution of Eq. (1) would be represented by curve 2.
Note that the initial portions of the time dependence of
the wall translation obtained with drive fields Hg > 
in [1–6] and in other studies where films with large α ~
0.1 were used had the same pattern. 

A possible explanation of the initial delay in the
wall displacement can be proposed on the basis of the
results quoted in [11]. According to the calculations in
[11], the first to nucleate in the wall under a high drive
field is a single HBL and it appears not near the film
surface but rather in the middle (see also [12, 13]).
When the Bloch line moves across the film thickness,
the wall velocity is given by the relation 

(5)
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--------,=
PH
where σ is the wall energy density. If the HBL is dis-
placed near the film center, σ changes primarily due to
the change in the HBL spin energy under the stray field
created by charges on the film surface. As is shown by
the calculations, this energy and, hence, σ increase very
little near the film central plane for a noticeable
increase of the  angle. Therefore, the wall velocity
also grows very little for some time, which is perceived
as a delay in the translation. The increase in the delay
time t' observed to occur with an increasing time con-
stant τ can be explained as due to the fact that, because
of the specific character of the dependence of the effec-
tive field H' on τ, the twist angle  will reach (with
increasing τ) the values at which the wall velocity dif-
fers noticeably from zero only at later times. Note that
an initial delay in the wall displacement was also
observed earlier [14, 15] in the translational motion of
magnetic bubble domains, but in weak drive fields, of
the order of the coercive field, and it was attributed to
magnetic aftereffects. 

A dc in-plane magnetic field is known to affect sub-
stantially the saturation velocity of a domain wall. This
effect is dealt with in a number of papers, but their results
differ noticeably. For instance, by a simple model [10],
in the nonlinear field region, Hp @ 8M, one has

(6)

The wall dynamics was considered theoretically for the
case of in-plane transverse fields Hp @ 4πM, and the
conclusion was drawn that the velocity saturation
reached by a wall in the presence of a transverse field is
caused by a change in the relaxation mechanisms with
an increasing drive field [16]. The saturation velocity
was obtained as 

(7)

According to experimental data [17], relation (6) holds
in comparatively low drive fields (Hg < 4M), while at
higher Hg the saturation velocity increases 2π times more
rapidly with an increasing field Hp. Such a strong
increase in the wall velocity was also observed in [18] for
Hp > 12πM; there, the measurements were performed
in the drive fields Hg > 25M. These results are at odds
with the data quoted in [7, 19]. In particular, the
Vs(Hp) relations obtained in [7] with different drive
fields (Hg = 0.5M and 6M) were found to be substan-
tially nonlinear and disagreed with expressions (6) and
(7). In view of these contradictions, it appeared reason-
able to reconsider the wall motion in the saturation
velocity region in the presence of a transverse field and
in films with different parameters. In this work, as in [7],
the saturation velocity was determined for the linear por-
tion in the q(t) curve, which immediately follows the
wall acceleration phase. Figure 3 presents experimental

Ψ

Ψ

V Vs
1
4
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π
2
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data obtained on sample 2 for 4 < Hp/8M < 13 and
Hg = 60–85 Oe. Also shown are the relations calculated
from Eqs. (6) and (7). The value of Vs calculated using
an empirical relation from [20], Vs = M∆γ(1 + 6.9α),
is identified with a cross on the vertical axis. One
readily sees that the experimental dependence is not
described by expressions (6) and (7), in particular, in
the region of the Hp values (Hp @ 8M) where, by [16–
18], the linear relation (7) should hold. The data in Fig. 3
qualitatively resemble the relation obtained by us earlier
[7]. Our results likewise do not argue for the velocity sat-
uration mechanism proposed in [16]. 

Thus, we have obtained new data supporting the ear-
lier model of the spin structure transformation of a
domain wall in the initial interval of its motion within
the velocity saturation region. It has also been shown
that the available theory does not provide a correct
explanation for the domain wall motion in the velocity
saturation region in the presence of a transverse mag-
netic field. 
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Fig. 3. Saturation velocity vs. dc bias field Hp for film 2:
(a) experimental points, (b) the value of Vs calculated from
an expression in [20]; (1) calculation using Eq. (6) and (2)
calculation from expression (7). 
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Abstract—The properties of Pb5Ge3O11 : Cu2+ crystals near the temperature of the ferroelectric phase transi-
tion are discussed in terms of a phenomenological approach. Assuming a quadratic interaction with the order
parameter, the effect of Cu2+ is considered a result of static distortions, which result from the off-center position
of the copper impurity ions in the lead germanate structure. In this approximation, Cu2+ jumps between off-
center positions do not affect the dynamic properties of the crystal matrix near TC. © 2000 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

In recent years, extensive studies have been devoted
to phase transitions in real crystal structures containing
defects of various types. At the same time, many exper-
imental works whose results are explained as being due
to structural imperfections were performed on nomi-
nally defect-free crystals. The lack of direct data on the
nature and concentration of defect centers makes the
proposed interpretation seem unreliable.

The aim of this work was to investigate the dielec-
tric properties and to elucidate the specific features of
the phase transition in lead germanate crystals doped
with copper ions. The transition in Pb5Ge3O11 crystals
from the high-temperature paraelectric phase (space
group ) to the ferroelectric phase (space group )

is observed at TC = 451 K and is accompanied by spon-
taneous polarization along the trigonal polar axis c [1–3].
Analysis of the EPR spectra of Cu2+ ions showed that
impurity ions replace Pb2+ ions in the trigonal positions
of the Pb5Ge3O11 structure and occupy three off-center
sites in the (ab) plane perpendicular to the polar axis
[4, 5]. The investigation of the EPR averaging effects
and the relaxation maxima in the temperature depen-
dence of the dielectric losses allowed the authors of [5]
to infer that thermally activated Cu2+ jumps occur
between the off-center positions and to determine the
activation energy and the natural frequency of the
impurity dynamics involved.

Obviously, Pb5Ge3O11 : Cu2+ is a promising subject
in discussing the role of specific defects, such as off-
center impurity ions in crystals with phase transitions.
This is supported by the following arguments. First, the
results obtained in [4, 5] provide deep insight into the
microscopic properties of the Cu2+ impurity centers in
the crystal structure. Second, lead germanate is a uniax-
ial ferroelectric, which justifies the applicability of the

C3h
1 C3

1
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mean field approximation within a broad vicinity of TC.
Therefore, we can attempt to reveal the main features of
the phase transition in Pb5Ge3O11 : Cu2+ at a phenome-
nological level [6, 7]. Third, we had at our disposal
Pb5Ge3O11 single crystals (nominally pure) with differ-
ent contents of the Cu2+ impurity, namely, 0.1, 0.2, and
0.5 wt %.

2. PERMITTIVITY OF Pb5Ge3O11 : Cu2+ 
CRYSTALS NEAR THE PHASE TRANSITION

In order to obtain information on the effect of off-
center copper ions on the properties of lead germanate
near the phase transition, we measured the permittivity
of the crystals. The results of these measurements are
presented in Fig. 1. It is seen that the introduction of a
copper impurity leads to a shift of the transition point
toward lower temperatures and to a broadening of the ε
anomaly. The concentration-induced lowering of TC

indicates that the copper ions are “rigid” defects which
stabilize their symmetric environment when cooled
below the transition temperature of the ideal structure
[8]. The broadening of the thermodynamic anomalies
upon the introduction of different impurities is a fairly
general phenomenon, which can be associated with a
nonuniform distribution of defects over the crystal
matrix [7]. To quantify the concentration dependence
of the dielectric properties, the experimental data were
fitted within the range from TC + 5 K to TC + 40 K by

the Curie–Weiss relation ε–1 = (T – TC). Figure 2
shows the dependence of the displacement of the
phase transition temperature, ∆TC = TC (N = 0) – TC (N),
on the dopant content N. The Curie–Weiss constant is
practically independent of the copper content and, for
all the crystals studied, follows the relation CC–W =
(1.21 ± 0.02) × 104 K.

CC–W
1–
000 MAIK “Nauka/Interperiodica”



        

THE EFFECT OF OFF-CENTER Cu

 

2+

 

 IONS ON THE PHASE TRANSITION 2255

                                                                                  
3. PHENOMENOLOGICAL DESCRIPTION 
OF THE PHASE TRANSITION

IN Pb5Ge3O11 : Cu2+

Let us consider the interval around the transition
point for which the approximation of noninteracting
defects is valid. In order to relate the state of the system
to the microscopic characteristics of Cu2+, we represent
the density of the thermodynamic potential  for a
crystal with defects as the sum of the contribution φ(η)
from cells with a perfect structure, the contribution φD

from defect cells, and the binding energy φC for the
order parameter η and defects.

In the crystals under study, the Curie–Weiss relation
is satisfied and the introduction of Cu2+ ions does not
result in noticeable changes in the ε–1(T) dependence
(Fig. 1). Therefore, we can neglect the spatial inhomo-
geneity of the order parameter and represent the φ(η)
potential of undistorted cells in the form of the conven-
tional Landau expansion

(1)

where A = A0(T – TC), A0, B > 0.
Writing the contribution φD of defect cells in the

exact form would require knowledge of the micro-
scopic reasons for the off-center behavior. However,
recalling that Cu2+ occupies three off-center positions
in the plane perpendicular to the polar axis c, we
attempt to model the potential relief φD by going over
in the (ab) plane to polar coordinates with the origin at
the trigonal site of the substituted ion, x = ucosψ, y =
usinψ. Taking into account the above notation, the con-
tribution of one defect cell to the thermodynamic
potential can be written as

(2)

where α, β > 0. The function φD has a maximum at the
trigonal lattice site (u = 0). At the angles ψi0 = 2(i – 1)π/3
(i = 1, 2, 3), the φD potential has three minima, which cor-
respond to the equilibrium value of the off-center dis-
placement u0 = (α/β)1/2. Information on the relative mag-
nitude of the coefficients in expansion (2) can be obtained
from [5], according to which the height of the barrier sep-
arating the off-center positions is W = α2/(4β) ~ 0.24 eV.
In the vicinity of the phase transition, the frequency of
the Cu2+ jumps between the off-center positions,
τ−1(TC) ~ 109–1010 Hz [5], considerably exceeds the
measuring frequency (1 kHz, Fig. 1). The inclusion of
the local dynamics of defect ions results in the time
dependence of the polar angle ψ in expansion (2).

Now, we determine the type of interaction between
the order parameter η and the coordinates (u, ψ) of the
impurity defects. We recall that the off-center position

φ

φ η( ) φ0
1
2
---Aη2 1

4
---Bη4,+ +=

φD u ψ,( ) 1
2
---– αu2 3ψ 1

4
---βu4,+cos=
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of Cu2+ in the (ab) plane does not violate the mirror
plane, which maps (+η) into (–η). It is obvious that
the symmetry of the order parameter contains the axis
C3 || c, which maps the impurity ion from one off-center
position into another. Hence, the interaction energy φC

should be an even function of η and u. According to the
symmetry of the lead germanate paraphase and the
arrangement of the off-center positions, the lowest
order interaction invariant has the form η2u2. It is essen-
tial that this interaction not contain the polar angle ψ
and, hence, not depend on the local dynamics of the
copper centers.

Taking into account Eqs. (1) and (2) and the type of
interaction involved, the density of the thermodynamic
potential of a crystal with defects can be written as

(3)

The last formulation (3) singles out the dependence of

 on η and introduces the notation  + φ0 + NφD and

 = A + Ng , where g > 0 is the coupling parameter.

φ η u0,( ) φ η( ) NφD u0 ψ,( ) NφC η u0,( )+ +=

=  φ̃0
1
2
--- Ãη2 1

4
---Bη4.+ +

φ φ̃
Ã u0

2

1
2
3
4

0.002

0
450 500

T, K

ε–1

Fig. 1. Temperature dependence of the reciprocal permittiv-
ity ε–1 in the range of the phase transition in Pb5Ge3O11
crystals: (1) undoped samples and samples doped by (2) 0.1,
(3) 0.2, and (4) 0.5 wt % Cu2+. The measurements are made
along the polar axis c at the frequency f = 1 kHz.
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4. DISCUSSION OF THE RESULTS 
AND CONCLUSIONS

Consider the effect of the coupling with the order
parameter on the state of an impurity ion. As follows
from Eq. (3), below TC, the magnitude of the off-center
displacement and the height of the potential barrier sep-
arating the Cu2+ positions become temperature-depen-
dent:

(4)

Expressions (4) show that the state of an impurity ion is
sensitive to the static component of the order parameter.
Taking into account that the frequency of hopping
(109–1010 Hz) between off-center positions near TC is
three orders of magnitude less than the Debye fre-
quency Ω ~ 4 × 1012 Hz [9], we can assume the effect
of higher harmonics of η on the defect time scale to be
averaged out to zero. Despite the temperature depen-
dence W(T) predicted by relationships (4), no notice-
able changes in the activation energy within the range
100–400 K were observed [5]. Apparently, the error
with which the activation energy was derived from the
EPR and dielectric spectra in [5] is not exceeded in
magnitude by the second term in expressions (4). Note

that the binding energy φC = (1/2)gη2  in Eq. (3) does
not depend on the polar angle ψ and is determined by
the static coordinate u0. In the approximation we are
using, the relaxation dynamics of the impurity ions is
unaffected by the coordinate of the order parameter η

u0
α
β
---

g
βB
-------A0 TC T–( )– ,=

W
α2

4β
------

αg
2βB
----------A0 TC T–( ).–≅

u0
2

∆T
C
, K

20

0

0 0.5
N, wt %

Fig. 2. Dependence of the displacement of the phase transi-
tion temperature on the Cu2+ content in Pb5Ge3O11 (derived
from dielectric measurements).
PH
and all three minima of the potential of a defect cell
remain equivalent.

Analysis of the properties of the crystal matrix
makes it evident that the inclusion of the interaction
with defects in Eq. (3) results in a renormalization of
the expansion coefficient of η2. The quadratic interac-
tion with the order parameter gives grounds to classify
the off-center Cu2+ impurity ions in lead germanate
among defects of the random local transition tempera-
ture type [6, 7]. The displacement of the average phase-

transition temperature  in a crystal containing
defects with respect to the TC point of an impurity-free
crystal is proportional to the impurity concentration

(5)

The influence of copper ions on the dynamic properties
of the crystal matrix is limited to an increase in the soft-
mode frequency. Defects of the type discussed here do
not affect the soft mode damping, and local hopping
cannot give rise to a dynamic central-peak component
in scattering spectra [10, 11].

The concentration-induced displacement of the
transition point ∆TC (Fig. 2) exhibits a somewhat
weaker dependence than predicted by Eq. (5). It should
be stressed that the effect of Cu2+ ions on the phase
transition in lead germanate is discussed here in terms
of the copper-center model, which was proposed on the
basis of radio spectroscopy data [4, 5]. The anisotropy
in the EPR spectra of Cu2+ ions does not reveal any dis-
tortions along the polar axis which could produce com-
ponents of a defect of the random-local-field type [6,
7]. Thus, there are no grounds to assume linear interac-
tion between Cu2+ defect ions and the order parameter
which would result in the features of the dynamic prop-

erties and a nonlinear dependence of  on the concen-
tration N [7, 10–12]. The behavior of the experimental
dependence ∆TC(N) should be assigned to the scatter in
the transition temperatures of the samples prepared
from different lead germanate single crystals, which is
seen in Fig. 2.
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Abstract—This paper reports on an EPR study of a ferroelectric, 1.8/65/35, and an antiferroelectric, 2/95/5, of
optically transparent Pb1 – yLayZr1 – xTixO3 (PLZT) ceramics within a broad temperature range (20–300 K) after
illumination at a wavelength of 365–725 nm. Illumination with ultraviolet light, whose photon energy corre-
sponds to the band gap of these materials, at T < 50 K creates a number of photoinduced centers: Ti3+, Pb+, and
Pb3+. It is shown that these centers are generated near a lanthanum impurity, which substitutes for both the Pb2+

and, partially, Ti4+ ions through carrier trapping from the conduction or valence band into lattice sites. The tem-
perature ranges of the stability of these centers are measured, and the position of their local energy levels in the
band gap is determined. The most shallow center is Ti3+, with its energy level lying 47 meV below the conduc-
tion band bottom. The Pb3+ and Pb+ centers produce deeper local levels and remain stable in the 2/95/5 PLZT
ceramics up to room temperature. The migration of localized carriers is studied for both ceramic compositions.
It is demonstrated that, under exposure to increased temperature or red light, the electrons ionized into the con-
duction band from Ti3+ are retrapped by the deeper Pb+ centers, thus hampering the carrier drift in the band and
the onset of photoconduction. The part played by localized charges in the electrooptic phenomena occurring in
the PLZT ceramics is discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The optically transparent ceramic PLZT belongs to
solid solutions of the PbTiO3 ferroelectric and PbZrO3

antiferroelectric doped lightly by La. The introduction
of lanthanum into PbZr1 – xTixO3 not only increases the
density of the hot-pressed ceramic to 99.5%, thus mak-
ing it optically homogeneous and transparent, but also
substantially changes its electrical properties. For
instance, at lanthanum concentrations above 8% the
permittivity of the 65/35 composition exhibits a notice-
able frequency dispersion characteristic of the relaxor
systems [1, 2]. A decrease in the grain size and the frag-
mentation of polar domains upon introduction of La
result in a decrease in the coercive field. On the other
hand, the fraction of regions adjacent to the domain
walls increases and the strength of the nonuniform
internal electric fields induced by different-type crystal
lattice imperfections, as well as by carriers trapped in
defects, also increases substantially. As a result, such a
medium becomes extremely sensitive even to weak
external factors capable of changing the local electric
polarization.

One of these important external factors, which can
effectively influence the electric polarization, is optical
irradiation. It is the effect of optically induced change
in the polar state that underlies many promising appli-
cations of the PLZT ceramics. It is intuitively clear that
this phenomenon can be associated, in particular, with
photocarrier localization at local levels, which entails
1063-7834/00/4212- $20.00 © 22258
the creation of regions with a locally uncompensated
space charge. This localized carrier usually produces a
paramagnetic center, and EPR is the most appropriate
method of probing these centers.

Despite the obvious importance of studying photo-
induced intrinsic defects, relevant information is
scarce. In particular, only two centers, namely, Pb3+ and
Ti3+, in PLZT of the 7/65/35 and 8/65/35 compositions
have been identified to date (see [3–5]). The tempera-
ture stability of these centers was studied in our earlier
work [5]. However, many issues related to these and to
a number of other centers remain unclear.

In this work, we continued the study of light-
induced defects in the PLZT ceramics of two different
compositions (1.8/65/35 and 2/95/5). In particular, an
analysis of the spectrum near the g-factor of 2.0 permit-
ted the isolation of EPR lines belonging to a new elec-
tron-type Pb+ center. It was shown that at an elevated
temperature or upon exposure to red light, the electrons
ionized from Ti3+, rather than annihilating with the
holes, are retrapped by the deeper-lying Pb+ centers.
The positions of the Pb+, Pb3+, and Ti3+ energy levels
were determined by deriving the temperature depen-
dence of the probability of localized-carrier thermal
ionization from the EPR spectra. A mechanism of pho-
tocarrier localization in the PLZT ceramics is pro-
posed, and the role of the localized carriers in the elec-
trooptic phenomena characteristic of this type of the
ferroelectric ceramics is discussed.
000 MAIK “Nauka/Interperiodica”
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Fig. 1. EPR spectrum of the 2/95/5 PLZT ceramics at T = 20 K (a) before and (b) after UV irradiation (365 nm).
2. EXPERIMENTAL TECHNIQUE

The studies were performed on samples of optically
transparent Pb1 – yLayZr1 – xTixO3 ceramics (y/1 – x/x) of
two compositions, 1.8/65/35 and 2/95/5, which were
prepared by the standard two-stage hot-pressing
method [6]. The samples were obtained in the form of
platelets (4 × 2 × 0.5 mm in size) with carefully pol-
ished surfaces. The EPR spectra were recorded on an
X-band spectrometer with an ESR-9 Oxford tempera-
ture-control attachment in the temperature range from
20 to 300 K. The samples were irradiated directly in a
spectrometer cavity with a high-pressure mercury lamp
at T = 20 or 290 K through narrow-passband color fil-
ters at wavelengths of 365, 405, 436, 579, 675, and
725 nm. When studying the effect of low-temperature
annealing (100 < T < 155 K) on EPR spectra, the sam-
ple heated to a fixed temperature after irradiation at
T = 20 K was allowed to stand for a preset time (usu-
ally, 1–40 min) and was cooled rapidly to the tempera-
ture T = 20 K at which the EPR spectrum was mea-
sured.
CS OF THE SOLID STATE      Vol. 42      No. 12      20
3. EXPERIMENTAL DATA

3.1. EPR spectra. Low-temperature (T = 20 K)
EPR spectra of the 2/95/5 PLZT ceramics before opti-
cal irradiation revealed a very weak line with a g-factor
close to that of a free electron (g ≈ 2), whereas the
1.8/65/35 sample did not exhibit an EPR spectrum at all
(Figs. 1a, 2a). At room temperature, no EPR spectra
were observed for any of the samples studied.

After the irradiation has carried out at T = 20 K with
UV light, whose energy is approximately equal to the
band gap (3.4 eV), both samples exhibited photoin-
duced EPR spectra, which are displayed in Figs. 1b and
2b for the 2/95/5 and 1.8/65/35 compositions, respec-
tively. The spectra were resolved into individual lines
belonging to different paramagnetic centers by using
the Peak Fit program. The curves thus obtained are
indicated by dotted lines in Figs. 1b and 2b. This decon-
volution of the spectra into its components was accom-
plished with the use of their temperature dependences,
because different centers were stable within different
temperature ranges. Computer processing yielded
exact values of the g-factors of the individual lines.
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PLZT 1.8/65/35

g = 2.012

g = 1.999

g = 1.992

g = 1.943
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Fig. 2. EPR spectrum of the 1.8/65/35 PLZT ceramics at T =
20 K (a) before and (b) after UV irradiation (365 nm).

PLZT 2/95/5g = 2.012
g = 1.999,
g = 1.992

g = 1.944
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Fig. 3. Temperature dependence of photoinduced EPR spec-
tra of the 2/95/5 PLZT ceramics.
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As follows from the analysis, the spectra of both
ceramic compositions consist of two groups of lines
with approximately equal g-factors, g ≈ 2 and 1.94. The
EPR line with an average g-factor of 1.934 was
observed earlier in both the PLZT and PZT ceramics
and assigned to the titanium ion Ti3+ (3d1) [3, 4]. The
spectrum with an average g-factor of 1.94 can also be
attributed to the titanium ion, and its complex shape is
due to the g-factor anisotropy. Besides the titanium
spectrum, the 1.8/65/35 PLZT ceramics exhibited an
EPR line with a g-factor of 2.015. This line was
assigned to an F-center [5]. For both ceramic composi-
tions, our analysis also revealed a line with a similar g-
factor of 2.012, but its intensity in the 1.8/65/35 ferro-
electric ceramics is about ten times higher than that in
the 2/95/5 antiferroelectric sample. In this study, we
identified it as belonging to the Ni3+ ion (3d7).

We believe the spectral lines lying close to g = 2.00
to be of the greatest interest. One of them can be
assigned to the Pb3+ center with g = 1.995 described in
[3, 4], and the slight difference in the magnitudes of the
g-factor can be accounted for by a more precise calcu-
lation resulting from line separation. The second line
(g = 1.992) isolated by the EPR spectrum deconvolu-
tion is observed for the first time in the PLZT ceramics
and can be attributed to the thermally more stable Pb+

center, because it was observed up to room tempera-
ture.

As is seen from Figs. 1 and 2, the intensities of the
spectral lines with the same g-factors observed in dif-
ferent ceramic compositions differ substantially. For
the 1.8/65/35 sample, the strongest lines are those with
g = 2.012 and 1.992. The Ti3+ line (g = 1.94) is the
weakest for this ceramics. For the 2/95/5 sample, the
strongest lines are the Ti3+ spectrum and the line with
g = 1.992.

3.2. Effect of the annealing temperature on the
photoinduced spectra. The effect of the annealing
temperature on the light-induced EPR spectra were
studied in the temperature range from 20 to 280 K. The
results obtained are presented in Figs. 3 and 4 for the
2/95/5 and 1.8/65/35 ceramic compositions, respec-
tively. It is seen that the Ti3+ spectral intensity (g = 1.94)
is maximum at low temperatures (20–70 K) for both
ceramics. As the temperature increases, the intensity
decreases, and the spectrum becomes practically unob-
servable above T = 180 K.

The line with g = 2.012 is observed up to T ~ 190 K
for both ceramics. However, as can be seen from the
temperature dependence (Fig. 4), its intensity first
increases with an increase in temperature, reaches a
maximum at T ≈ 130 K, and then decreases very
strongly as the temperature increases. For instance,
even an increase in the temperature to 160 K results in
a decrease in the intensity of this line to about one-
fourth its level at T = 130 K.
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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The photoinduced centers belonging to lead ions,
g = 1.999 and 1.992, whose spectra were observed up
to room temperature, T ~ 290 K, are the most thermally
stable centers. However, keeping the samples for a few
days at 300 K brings about the “erasure” of all EPR
spectra induced by UV light.

3.3. Effect of incident photon energy. The effect of
the incident photon energy on the behavior of the EPR
spectra was studied in two ways. In the first case, the
samples were irradiated directly in the spectrometer
cavity at T = 20 or 290 K with color filters transmitting
at different wavelengths. In the second case, the sam-
ples were irradiated successively at T = 20 or 290 K by
UV light (365 nm) and light of a preset wavelength. At
both temperatures, an increase in the light wavelength
resulted in a decrease in the intensity of all photoin-
duced spectra. Irradiation with red light at a wavelength
of 546–579 nm after UV exposure completely elimi-
nated all the spectra induced by the UV light.

Figures 5 and 6 illustrate the results obtained by suc-
cessively illuminating (at T = 20 K by UV light and
light at a wavelength of 405–725 nm) the 2/95/5 and
1.8/65/35 ceramic compositions, respectively. It is seen
that an increase in the wavelength to 405 nm reduces
the intensity of all EPR lines for both ceramics. A fur-
ther increase in the wavelength to 546 nm brings about
the total disappearance of the photoinduced spectra to
leave only a weak single line with g ≈ 2. However, illu-
mination with UV and light with λ = 675 nm induces
new intense EPR spectra in both samples. As the wave-
length increases still more to 725 nm, the intensity of
these EPR lines increases. The spectra induced in both
ceramic samples closely resemble one another. They
consist of two strong lines with similar g-factors of
≈1.99, two hyperfine lines, about four times weaker,
and a high-field line (546 mT, g = 1.23). One should
also point out that the separation between the hyperfine
lines in the 1.8/65/35 PLZT sample is larger than that
between the same lines in the 2/95/5 PLZT composi-
tion, which can be due to the difference in the crystal
structure of the different-type ceramics. These lines
are also present in the complex spectra displayed in
Figs. 1 and 2. As was already mentioned, one of them
(g = 1.999) most likely belongs to the Pb3+ center.
Indeed, the observation of a hyperfine transition in the
207Pb isotope in high fields (B = 546 mT) confirms the
nature of this center. We believe that the second spec-
trum (g = 1.992) and the two satellite lines should be
assigned to the Pb+ (6p1) center. A good resolution of
the hyperfine lines permits a fairly accurate calculation
of their relative integrated intensity, which amounts to
22% of the total spectral intensity and, thus, confirms
that they belong to the 207Pb isotope (I = 1/2; natural
abundance, 22.8%). The observed negative deviation of
the g-factor (g – ge < 0) is in agreement with the crystal-
field theory prediction for the 6p1 configuration. In this
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Fig. 4. Temperature dependence of the photoinduced EPR
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Fig. 6. Effect of the incident photon energy on the EPR
spectra of the 1.8/65/35 PLZT ceramics.

Fig. 7. Photoinduced EPR spectra of the 2/95/5 PLZT
ceramics at room temperature.
PH
approximation, the components of the g-factor can be
written as [7]

g|| = ge; g⊥  = ge – 2λ/δ, 

where λ is the spin–orbit coupling constant, δ is the
crystal-field splitting of energy levels of the ion, and ge

is the g-factor of a free electron. Hence, for a polycrys-
tal, one can expect g < ge. The average hyperfine split-
ting (A = 0.018 cm–1) likewise lies within the range
characteristic of the Pb+ ion in other materials (see, e.g.,
[8]).

3.4. Optical illumination at T = 290 K. Before
illumination at room temperature, no EPR spectra
were observed on either of the samples. After UV irra-
diation at room temperature, the samples were held at
this temperature for approximately 10–15 min, cooled
to T = 20 K, and the EPR spectra were then measured.
It was found that UV irradiation at T = 290 K induces
an EPR spectrum only in the 2/95/5 PLZT sample
(Fig. 7). It is readily seen that this spectrum is identical
to that obtained under successive illumination by UV
and red light at T = 20 K. Subsequent illumination by
red light with λ = 579 nm at room temperature com-
pletely eliminates the EPR spectrum (Fig. 7).

4. IONIZATION ENERGY 
OF PHOTOINDUCED CENTERS IN PLZT

In order to determine the thermal ionization ener-
gies of the centers, we studied the effects of tempera-
ture and annealing time on the EPR spectra of the
1.8/65/35 ceramics. The measurements were carried
out within the temperature range 96–155 K; the spec-
tral intensities therein varied the most strongly. After
illumination at T = 20 K, the sample was heated to a
fixed temperature (Ti), allowed to stand at this temper-
ature for 1–50 min, and cooled rapidly to T = 20 K, at
which the EPR signal intensity (I) was measured.
Within the temperature range in which thermal ioniza-
tion of the centers started, the EPR signal intensity var-
ied approximately exponentially:

I(Ti, t) = I0exp(–P(Ti)t), (1)

where t is the heating time and P(T) is the center ion-
ization probability.

Relation (1) is valid for a simple ionization event of
a local level, where carrier retrapping from the band
can be neglected [9]. Such a behavior was characteristic
of the Ti3+ center throughout the temperature range
covered. The intensity of the other spectral lines varied
nonmonotonically with an increase in the temperature
and heating time. For instance, the signal intensity of
the center with g = 2.012 first increased upon heating to
T ≈ 130 K and began to fall off exponentially with an
increase in the heating time and temperature for T >
130 K. This behavior suggests that the electrons ion-
ized from Ti3+, rather than annihilating with holes, are
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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retrapped by deeper electron-type centers, namely, Pb+

and the center with g = 2.012, thus increasing their con-
centration.

The numerical values of the ionization energies
were derived from the expression relating the trap ion-
ization probability to temperature [9]:

P(T) = NeSVexp(–Ea/kT), (2)

where Ea is the ionization energy; Ne is the effective
density of states in the conduction or valence band; and
V and S are the carrier thermal velocity and trapping
cross-section, respectively. Neglecting the temperature
dependence of S, the NeSV product can be approxi-
mately estimated as being proportional to T 2. There-
fore, the temperature dependence of the ionization
probability P(T) is primarily governed by the exponent
in Eq. (2); hence, Ea can be readily determined from the
slope of the lnP vs. 1/T plot.

The ionization energies calculated in this way for
the 1.8/65/35 PLZT ceramics are given in the table. No
similar measurements of the center ionization energies
were performed for the 2/95/5 PLZT ceramics. How-
ever, it should be noted that, since the latter ceramic
composition has a larger band gap (Eg ≈ 4 eV), the Ea

values should be, accordingly, larger. In fact, the lead
centers (Pb3+ and Pb+) in the 2/95/5 PLZT ceramics are
thermally stable at room temperature as well.

5. DISCUSSION

Irradiation of the PLZT ceramics with light whose
photon energy is approximately equal to the band gap
creates, in the conduction and valence bands, a large
number of electrons and holes, part of which can be
trapped into local levels formed by various defects and
impurities. Among these lattice defects can be included
centers located near the La3+ impurity. A positively
charged La3+ impurity (La3+ substitutes for Pb2+) can be
considered exclusively as a source of lattice strain
rather than as a donor, because there is no indication
that the electronic level of this ion can be localized in
the band gap. Nevertheless, by displacing the neighbor-
ing ions in the lattice, such a defect acts as a local
potential well for free electrons, which transfer to one
of the free 3d1 orbitals of the nearest Ti3+ or to 6p1 Pb+;
this process is energetically favorable because of the
possible Jahn–Teller pseudoeffect [10, 11]. This mech-
anism of electron localization is realized also in La3+-
and Y3+-doped PbWO4 crystals, where the W5+–La3+

and W5+–Y3+ centers were convincingly identified from
the observation of hyperfine lines due to the 139La and
89Y isotopes [11].

The second electron-type center identified by us,
Pb+, is deeper and more thermally stable than Ti3+. It is
this defect that should play an important part in photo-
induced phenomena in the PLZT ceramics close to
PHYSICS OF THE SOLID STATE      Vol. 42      No. 12      20
room temperatures. The mechanism of electron local-
ization on the Pb3+ ion is apparently similar to that con-
sidered above for the Ti4+ site. It is well known [12] that
the 6p lead states in lead-containing oxides, together
with the nd states of a B-type ion, form the conduction
band bottom; therefore, in such lattice-defect sites, a
photoelectron can become localized also on the 6p1

lead-ion orbital to form the Pb+ paramagnetic center.

In contrast to the Pb+ and Ti3+ centers, Pb3+ (6s) is an
acceptor center. Its local electronic level lies above the
valence band top by approximately 0.12 eV. The local-
ization of holes at lead ions can be associated with La3+

ions occupying the Ti4+ sites. This La3+ substitution
appears fully probable already at impurity concentra-
tions above 1%, so that the lead vacancies alone would
not be able to compensate the excess positive charge
introduced by a trivalent ion into the lattice.

Obviously, the Pb3+ and Pb+ pair of centers plays a
considerably larger part in the PLZT ceramics than
could be expected from the Pb3+ and Ti3+ centers.
Remaining thermally stable up to room temperature,
both lead centers should appreciably affect the forma-
tion of a locally uncompensated space charge created in
the ceramic under UV irradiation. The observed effect
of optical annihilation of the Pb+ and Pb3+ centers under
illumination with red light that we discovered favors the
disappearance of the space charge. The same effect is
observed in samples heated above room temperature
when thermal ionization of carriers from the Pb3+ and
Pb+ centers becomes intense.

Thus, the conditions in which lead centers form and
are destroyed are similar in many respects to those
under which, in particular, the recording and erasure of
optical (holographic) information in PLZT take place.
We hope that the photoinduced phenomena, observed
and studied by us, will provide new insight into the
complex physical processes underlying practical appli-
cation of the optically transparent PLZT ceramics.
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Abstract—A Brillouin scattering study of the behavior of hypersonic longitudinal acoustic phonons in crystalline
pentacesium trihydrogen tetrasulfate Cs5H3(SO4)4 · xH2O (PCHS) and its deuterated analog Cs5D3(SO4)4 · xD2O
(DPCHS) at temperatures ranging from 420 to 120 K is reported. The effect of deuteration on the crystal lattice
dynamics is investigated. The differences in the behavior of hypersonic acoustic phonons in the PCHS and
DPCHS crystals suggest the existence of a hydrogen isotope effect in both the high- and low-temperature
phases. A possible model of the isotopic effect in the high-temperature phase is discussed. An analysis is made
of the acoustic response of the PCHS and DPCHS crystals in the region of the transition to the glasslike phase.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Cs5H3(SO4)4 · xH2O (PCHS) crystals belong to a
new class of compounds of the general formula
MezHy(AO4)(z + y)/2 · H2O, where Me = Cs, Rb, and NH4

and A = S and Se [1]. The high-temperature phase of
these crystals is characterized by a dynamically disor-
dered hydrogen-bond network, which provides a high
protonic conductivity called superprotonic conductiv-
ity [2, 3]. Experiments have demonstrated that protons
play a dominant role in the crystal lattice dynamics of
these compounds. The strong hydrogen isotope effect
observed in a number of compounds of the MeHAO4 or
Me3H(AO4)2 type manifests itself in the form of addi-
tional phases and structural phase transitions and has
been studied extensively using various methods (see,
e.g., [4–6]).

The effect of deuteration on the lattice dynamics of
PCHS crystals above room temperature was discussed
in [7]. These studies were later extended to the low-
temperature range by using elastic and inelastic neutron
scattering techniques [8]. At room temperature, the
PCHS crystals have a hexagonal structure with the
space symmetry P63/mmc (a = 6.2455 Å, c = 29.690 Å,
V = 1003 Å3, and Z = 2) [9]. Extremely interesting
structural changes occur in the vicinity of Tc1 = 414 K
and Tc2 = 360 K. At Tc1, a superprotonic phase transition
involving a change in symmetry, P6/mmm 
P63/mmc, takes place [9–11], and at Tc2, an isostructural
phase transition associated with a change in the local
symmetry of the SO4 tetrahedral complexes is observed
[10, 12]. A decrease in temperature results in the hydro-
gen-bond network transferring from a dynamic to a
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static disorder (both orientational and positional), and
in the vicinity of Tg = 260 K, a transition to the proton-
glass phase is realized [13]. The crystal symmetry
remains unchanged down to liquid-helium tempera-
tures [9]. Neutron diffraction measurements showed
that the hexagonal-cell parameters of the deuterated
compound Cs5D
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2 [7]). Investigations of compounds differing in isotope
composition, such as the diamond crystals 

 

12

 

C and 

 

13

 

C
[14], have revealed a sensitivity of the elastic properties
to these substitutions and the efficiency of using, in
these cases, the Brillouin light scattering (BS).

This paper reports an BS study of the effect of deu-
teration on lattice dynamics of the PCHS crystal.

2. EXPERIMENTAL TECHNIQUE

Colorless PCHS and DPCHS single crystals were
grown by slow evaporation from a supersaturated aque-
ous solution at room temperature. The DPCHS crystals
underwent double recrystallization in heavy water. This
resulted in a ~60% deuteration of the samples used in
our experiments. The samples thus obtained were plate-
shaped crystals with their face coinciding with the basal
plane and with characteristic hexagonal faceting. A
number of rectangular parallelepipeds with one face
perpendicular to the hexagonal axis 

 

c

 

h

 

 were cut from
the plates belonging to the same growth lot. The nor-
mals to the other two faces were arbitrarily oriented in
the basal plane. The parallelepipeds polished to optical
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quality measured 5 × 5 × 3.5 mm. The crystals were ori-
ented with a polarizing microscope.

We studied the temperature behavior of longitudinal
hypersonic (LA) phonons in PCHS and DPCHS crys-
tals with qph || ch and qph ⊥ ch (qph is the wavevector of
the acoustic phonon). The scattering spectra were
excited by a Spectra Physics single-mode argon laser
operating at wavelength λ = 488 nm. The radiation
power did not exceed 50 mW. Check experiments car-
ried out at a lower power showed that laser-beam heat-
ing of the crystal can be neglected. Scattering was stud-
ied in a 180° geometry. The scattered light was ana-
lyzed by a three-pass piezoscanning Fabry–Perot
interferometer with a Burleigh DAS-1 system provid-
ing automatic signal accumulation and adjustment of
the interferometer plane-mirror parallelism, thus per-
mitting one to maintain the instrument finesse at the
level C = 50. To improve the accuracy of measuring the
shift of the BS components (ν) and their half-width
(δ is the half-width at half-maximum), the interferome-
ter free spectral range was varied from 11 to 14 GHz.
This made it possible to observe the BS components in
PCHS and DPCHS in the second order with respect to
the undisplaced Rayleigh line, which substantially
reduced the experimental error. In order to decrease the
noticeable contribution of light scattering at the
unshifted frequency to the BS spectra, the Rayleigh line
was cut out for the time of scanning by a system of
color filters. Conversely, in order to increase the inten-
sity of the signal with the DAS-1 system, the period of
scanning the channels corresponding to the BS compo-
nents was increased by 99 times.

It should be noted that the study of the temperature
behavior of hypersound in the PCHS crystal has an
upper limit at Tc2 = 360 K, because the acoustic phonon
attenuation drastically increased as this temperature
was approached. At the same time, the background due
to the increasing contribution of quasi-elastic light scat-
tering to the BS spectrum substantially increased in
intensity, which was observed in [10, 11]. In this con-
nection, in order to improve the accuracy of measure-
ments on the PCHS crystal, studies above room tem-
perature were performed on a Burleigh five-pass
piezoscanning Fabry–Perot interferometer. This per-
mitted us to closely approach the Tc2 temperature.

The starting point in all the temperature measure-
ments was room temperature (Tr = 294 K). Each tem-
perature cycle was run on a new crystal sample, thus
ensuring an identical prehistory for all the single crys-
tals used in our experiments.

Measurements in the low-temperature range (294–
120 K) were performed with an optical cryostat in
which the sample was cooled by a nitrogen vapor flow.
The temperature decreased slowly and continuously.
Between the measurements, the cooling rate was
0.5 K min–1. In the course of measurement, its value
PH
                         

did not exceed 0.05 K min–1. The sample temperature
was monitored to within ±0.1 K by two copper–con-
stantan thermocouples attached to the sample. Thus,
the error in the determination of the measurement
temperature was no more than 0.5 K. An optical fur-
nace fabricated at the laboratory was used in the mea-
surements performed at 294–420 K. The temperature
control system employed provided slow and uninter-
rupted sample heating. Between the measurements,
the heating rate was 0.5 K min–1. During the measure-
ments, its value was 0.05 K min–1 and decreased near
the phase transitions to 0.02 K min–1. The temperature
was monitored to within ±0.1 K by a chromel–coppel
thermocouple attached to the sample. The error in the
determination of the measurement temperature did
not exceed 0.5 K.

The velocity (V) and attenuation (α) of the longitu-
dinal hypersonic phonons in a 180° scattering geometry
were determined from the expressions

V = νλ/(2n), (1)

α = 4πnδ/(νλ), (2)

where n is the refractive index of the crystal. The value
used in all calculations was n = 1.51 [15].

The experimental BS spectra were treated by the
least-squares procedure. The Rayleigh component was
approximated in the calculations by a Gaussian func-
tion, and the BS component, by a Voigt function. The
Voigt function is actually a convolution of the Gaussian
and Lorentz functions, which allows instrumental
broadening to be adequately taken into account. In this
way, one could bring the error in determination of the
shift and of the spectral width of the BS component pro-
file to a minimum. The results of the calculations exem-
plified in Fig. 1 demonstrate good agreement with the
experiment throughout the temperature range covered.

In the analysis of our data, we found it convenient to
use relative changes in the hypersound velocity. From
Eq. (1), we obtain 

∆V/V0 = (V(T) –V0)/V0 ≈ (ν(T) – ν0)/ν0, (3)

where V0 and ν0 are the velocity and frequency shifts of
the hypersonic phonon at Tr = 294 K, respectively. This
temperature was chosen as the reference for matching
the data, because, first, it was the starting point in all the
measurements and, second, it is appropriately equally
distant from both the low-temperature glasslike transi-
tion and the high-temperature phase transitions at Tc2 =
360 K and Tc1 = 414 K. The sign of the approximate
equality in relationship (3) means that we did not
include the possible temperature dependence of the
refractive index in our calculations. In this case, the
error in the measurements is fully determined by the
experimental error in measuring the frequency shift of
the BS components. In our experiments, it did not
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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Fig. 1. BS from LA phonons with qph || (001) in a PCHS crystal. Interferometer free spectral range, 12.375 GHz, T = 299 K. R is
the Rayleigh component of the spectrum and AS and S are the anti-Stokes and Stokes scattering components, respectively. Open
circles identify the experimental points, dotted lines display deconvolution of the experimental spectrum using the extrapolation
functions discussed in the text, and the solid line is the result of fitting.
exceed 0.5%. The true half-width of the BS compo-
nents (δ) was calculated as the difference between the
experimentally observed half-widths of the BS compo-
nents (δM) and the Rayleigh line (δ0): δM – δ0. In this
case, the error in determining the attenuation α in
Eq. (2) is primarily governed by the error in determin-
ing δM, which, in our experiments, did not exceed 10%.
The magnitude of this quantity is ~0.04 GHz at room
temperature and increases to 0.13 GHz in the vicinity of
the high-temperature phase transitions as the hyper-
sound attenuation increases.
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3. RESULTS AND DISCUSSION

The velocity of longitudinal acoustic phonons prop-
agating along a sixfold axis in a crystal of hexagonal
symmetry (measured in a 180° scattering geometry) is
given by the relationship ρV2 = C33. In the basal plane,
all directions of the propagation of the longitudinal
acoustic phonons are equivalent and the velocity is
determined by the expression ρV2 = C11 [16]. In these
expressions, C11 and C33 are the components of the
elastic modulus and ρ = 3.51 × 103 kg m–3 is the density
00
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Fig. 2. Temperature evolution of the elastic moduli (1) C33 and (2) C11 and (3) the corresponding change in the attenuation of the
hypersonic LA phonon with qph || (100).
of the crystal taken from [9]. Thus, the temperature
dependences of the shift of the BS components
obtained in the experiment are directly and unambigu-
ously correlated with those of the corresponding elastic
moduli of the crystals under study (Fig. 2). The values
of C11 and C33 for the DPCHS and PCHS crystals are
different, which implies the existence of an isotopic
effect. However, our major goal was to elucidate how
deuteration affects the PCHS lattice dynamics, rather
than to determine the magnitude of the elastic moduli
in the deuterated and protonated compounds. There-
fore, our attention was focused primarily on the relative
variations in the velocity and the attenuation of hyper-
sonic acoustic phonons.

Figures 3a and 4a present relative changes in the
velocity of the hypersonic LA phonons with qph ⊥  ch

and qph || ch. It is readily seen that while matching at
room temperature, these quantities diverge in both the
PH
high- and low-temperature phases. This prompted us to
study these portions of the temperature dependence of
the hypersound velocity in greater detail.

3.1. Acoustic Anomalies in the Vicinity 
of the Isostructural Phase Transition

As is evident from Fig. 2, within the temperature
range from 294 to 330 K, the temperature dependences
of C11 and C33 exhibit the same behavior, which can be
satisfactorily fitted by a linear function. As the temper-
ature increases, the elastic moduli follow different
courses. In fact, C11 abruptly decreases (“softens”) and
deviates from the linear dependence, whereas C33

departs from its previous direction of variation insignif-
icantly (and likewise decreases). The “softening” of C11

is observed up to T ≈ 355 K, where C11 ≈ C33. From the
standpoint of crystal acoustics, the decrease in C11 to a
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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Fig. 3. (a) Temperature dependence of the relative variation in the velocity of the hypersonic LA phonon with qph || (100) in the
DPCHS and PCHS crystals. Straight lines show the fit of experimental data to a linear function. (b) Temperature dependences of the
relative variation in the attenuation of the hypersonic LA phonon with qph || (100) in the DPCHS and PCHS crystals. Note the con-
siderable increase in the error of attenuation measurement in the protonated sample as the temperature approaches 360 K, which
corresponds to an increase in the quasi-elastic scattering contribution to the BS spectra and a decrease in the accuracy of measure-
ments (the same as in Fig. 4b).

of measurements
value of C33 implies a change in the acoustic symmetry
from hexagonal to “pseudocubic” [16]. This behavior
of the elastic modulus C11 near Tc2 is connected with a
sharp increase in the attenuation of the hypersonic
acoustic phonon propagating in the basal plane. The
magnitude of this attenuation changes by a factor 2.5 at
355 K relative to its room-temperature value (Fig. 2)
[17]. A comprehensive analysis of our results and the
available data was performed in [12]. This analysis
shows that an isostructural phase transition takes place in
the PCHS crystal at Tc2 within the P63/mmc symmetry.

Similar BS experiments performed on a DPCHS
crystal revealed no softening of the elastic modulus C11

in the vicinity of Tc2. This is clearly seen from Fig. 3a,
where the relative changes in the velocity of the hyper-
sonic phonons propagating in the basal plane differ for
deuterated and protonated crystals in the high-temper-
ature region. Note that longitudinal hypersonic
phonons in the DPCHS crystal were clearly observed
down to the superprotonic phase transition. The tem-
perature behavior of the attenuation of the correspond-
ing phonons near 360 K is likewise different (Fig. 3b).
Unlike the PCHS crystals, the increase in the attenua-
tion of the hypersonic LA phonons in the DPCHS crys-
PHYSICS OF THE SOLID STATE      Vol. 42      No. 12      20
tals is not accompanied by anomalies near 360 K.
These results indicate that deuteration of the PCHS
crystals leads to either suppression of the isostructural
transition at Tc2 or its shift to higher temperatures, i.e.,
to a substantial hydrogen isotope effect.

A possible explanation for the observed isotopic
effect can be provided by the following model of the
interaction of the transverse acoustic phonon with the
pseudospin mode. Experiments on inelastic neutron
scattering in the DPCHS crystal revealed a softening of
the transverse acoustic (TA) phonon at the Brillouin
zone edge with an increase in the temperature from 200
to 325 K [18]. The existence of a pseudospin mode in
systems with hydrogen bonds is widely used in con-
structing different models of phase transitions [19]. It is
possibly this mode that we observed in the neutron
inelastic scattering experiments in DPCHS crystals on
a triaxial spectrometer installed on the reactor at the
Institute of Solid-State Physics in Budapest, Academy
of Sciences of Hungary. Unfortunately, the resolution
of the spectrometer employed was not sufficiently high
and the dispersionless excitation at 0.8 meV was
recorded without confidence. An excitation with simi-
lar parameters (and likewise not sufficiently reliable)
was observed on a PRISMA inelastic scattering spec-
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Fig. 4. (a) Temperature dependence of the relative variation in the velocity of the hypersonic LA phonon with qph || (001) in the
DPCHS and PCHS crystals. Straight lines show the fit of experimental data to a linear function. (b) Temperature dependences of the
relative variation in the attenuation of the hypersonic LA phonon with qph || (001) in the DPCHS and PCHS crystals.

of measurements
trometer at the RAL (England). Nevertheless, we will
assume a pseudospin mode exists (we are going to con-
tinue experimental studies in this direction). Thus, the
pseudospin mode of the proton subsystem of the PCHS
crystal at room temperature lies at a frequency of
approximately 1.12 meV and does not interact with the
TA phonon at the Brillouin zone edge whose frequency
is 0.9 meV [18]. In these conditions, the PCHS crystal
at approximately 360 K undergoes a phase transition
induced by a softening of the TA phonon at the Bril-
louin zone edge. The situation changes in the case of
the deuterated crystal: the pseudospin mode frequency
decreases to 0.8 meV, and this turns out to be enough
for the TA phonon to interact with the pseudospin mode
at the Brillouin zone edge. As a result, no phase transi-
tion takes place at 360 K in the deuterated crystal
DPCHS. This model should only be considered one of
many possible explanations and it requires additional
study.

3. 2. Transition to the Proton Glass Phase

A discussion of the behavior of hypersonic LA
phonons in the PCHS and DPCHS crystals near the
transition to the proton glass phase should be started
from above room temperature. As is evident from
Figs. 3a and 4a, within the range 330–290 K, the tem-
perature behavior of the hypersound velocity in the
crystals under study can be fitted by a linear function.
PH
The temperature dependence starts to deviate from a
straight line below 280 K, and a weak dispersion anom-
aly in the velocity appears near the transition to the
glasslike state (Tg = 260 K). This anomaly is character-
istic of phase transitions to a glasslike phase [20] and is
more pronounced in the DPCHS crystal. As the temper-
ature decreases still more, the experimental data can
again be described by a linear temperature dependence,
but with a smaller slope. It should be pointed out that
the hypersound velocity recovers its linear behavior in
PCHS at T ≈ 235 K and in DPCHS at 215 K (Fig. 3a).
Thus, the temperature range within which the velocity
of the LA phonon propagating in the basal plane of the
deuterated crystal exhibits an anomaly is 20 K greater
than that of a pure protonated sample. A similar pattern
is observed for the LA phonon with qph || ch (Fig. 4a).
Below 240 K, there is a difference between the corre-
sponding relative changes in the hypersound velocity
which is outside the limits of experimental error
(Figs. 3a, 4a). Thus, in low-temperature measure-
ments, at T < Tg, the BS spectra of the PCHS and
DPCHS crystals also exhibit the isotopic effect.

As was already mentioned, the relative changes in
the hypersound velocity can be approximated by a lin-
ear function, but different portions of the linear temper-
ature dependence will have different slopes. If we
extrapolate the linear approximation in the high- and
low-temperature phases to the range of the transition to
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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the proton glass state, these conjectured temperature
dependences of the hypersound velocity will intersect
at T ~ 260 K (Figs. 3a, 4a). Note that this temperature
point is the same for the protonated and the deuterated
samples. It is quite possible that, upon thermal cycling,
a broad anomaly in the hypersound velocity transforms
into a kink in the linear temperature dependence. It is
this effect that was observed in x-ray diffraction exper-
iments: as a result of thermal cycling, the plateau in the
temperature dependence of the cell parameters degen-
erated into a kink near the transition to the glasslike
phase of the PCHS crystal [21]. The part played by the
structural water should be mentioned. Baranov et al.
[22, 23] particularly emphasized that its role in lattice
dynamics should be taken into account. Thermal
cycling apparently brings about the “evaporation” of
the structural water and the formation of an orthorhom-
bic phase below 220 K [21]. However, crystalline
PCHS samples subjected to one thermal cycle revealed
no noticeable changes in the phase composition either
in x-ray diffraction measurements [21] or in neutron
scattering experiments [8].

In studies of phase transitions to the structural glass
phase, the maximum in attenuation is usually identified
with the phase transition temperature (in doing this, one
should not forget the strong frequency dependence of
Tg). In our case, no substantial anomalies in the attenu-
ation of the longitudinal hypersonic phonons under
study were observed at T < Tr (Figs. 3b, 4b). This is at
variance with the results of ultrasonic measurements on
PCHS, which revealed a broad anomaly in the attenua-
tion with a maximum at T ≈ 240 K [23–25]. Analysis of
ultrasonic and dielectric data revealed a correlation
between the attenuation anomaly and the high-frequency
β relaxation at frequencies of the order of 10 MHz [23].
According to our calculations for the relaxation mech-
anism of acoustic phonon attenuation at hypersonic
frequencies, the maximum shifts to a temperature of
~600 K. This is the reason why the maximum in the
attenuation was not observed in our measurements.

Note that the acoustic anomalies exhibited a relax-
ation character in transitions to the superionic phase of
some crystals, for instance, fluorites (PbF2, SrF2, etc.)
[26], superionic glasses of the (AgI)x–(AG2O–
2B2O3)1 – x type [27], at glass transition temperatures in
a number of polymers [28], and in transitions to the ori-
entational glass state in the KxNa1 – xCN crystals [20].
The nature of these anomalies is the subject of consid-
erable discussion in the literature: whether it stems
from the distribution of the relaxation times or the dis-
tribution of the activation energies is of topical interest.
We will return to this problem in greater detail in our
next work dealing with the frequency dependence of
the observed acoustic anomalies in crystals.

Thus, our studies of the Brillouin scattering in
Cs5H3(SO4)4 · xH2O and in its deuterated analog have
PHYSICS OF THE SOLID STATE      Vol. 42      No. 12      20
shown that the behavior of the velocity of longitudinal
hypersonic acoustic phonons depends substantially on
deuteration.

The hydrogen isotope effect manifests itself in the
high-temperature phase upon displacement or suppres-
sion of the isostructural phase transition near 360 K, as
well as in the low-temperature range in the form of dif-
ferent temperature dependences of the hypersonic
acoustic phonon velocity. The latter is apparently con-
nected with the formation of a new phase of the
Cs5H3(SO4)4 · xH2O crystal at low temperatures, as
reported in the paper dealing with neutron scattering in
the above compounds [8].
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Abstract—An expression for the phase volume fraction in a system with a nonuniform nucleation rate is
derived by using the geometrical–probabilistic approach. Examples of such systems considered here are (1) a
plane layer (with nucleation in the midplane) and random planes in space, (2) an infinitely long cylinder (with
nucleation on the axis) and random lines in space, and (3) a sphere (with nucleation at the center) and nucleation
at random points. In each case, an expression for the phase volume fraction is derived for the time-dependent
rates of nucleation and growth. The equivalence of homogeneous nucleation and nucleation at points is estab-
lished. © 2000 MAIK “Nauka/Interperiodica”.
The kinetics of a phase transformation in an
unbounded medium for the coordinate-independent
nucleation rate I(t) is described by the Kolmogorov
expression [1] or the Johnson–Mehl–Avrami (JMA)
formula [2, 3]

(1)

where V(t ', t) = 4π/3R3(t ', t), R(t ', t) = u(τ)dτ, u(t) is

the nucleus growth rate, R(t', t) is the radius at instant t
of a nucleus appearing at the instant t ', and V(t', t) is its
volume.

In this paper, expression (1) is generalized to the
case when the nucleation rate depends on the position
variable. For this purpose, the critical-region method
used earlier by the author for calculating the volume
fraction of competing phases [4] is employed. It should
be noted that the concept of a critical region was intro-
duced by Kolmogorov in [1], although no special term
was used for this region [V(t ', t) is the volume of this
region]. The result obtained by using Kolmogorov’s
approach can be formulated as follows: the probability
that a random point O' of the system at instant t is in the
untransformed volume is

(2)

In other words, this is the probability that no center of
the new phase appears in the critical region for point O'.
For the sake of simplicity, we assume that nuclei have
a spherical shape. Accordingly, the critical region is a
sphere of radius R(t', t) with the center at point O'. A
generalization to other region shapes admissible in Kol-
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mogorov’s model presents no difficulty. In the case of a
coordinate-dependent nucleation rate, expression (2)
must be replaced by

(3)

where r0 is the radius vector of point O'.
The functions Y(t) and Y(r0, t), when calculated by

the algorithm proposed in [1], can generally be
expressed in terms of an integral over the critical
region. For example, in the problem considered here,
the function Y(r0, t) must have the form

(4)

In the case of several competing phases [4], for the kth
phase we have

(5)

where q(k – 1)(t ', r) is the untransformed part of the criti-
cal region of the k phase [4].

In this sense, the form (2) of the function Y(t) can be
regarded as the simplest. Thus, Kolmogorov’s method
is a “differential” method with respect to the time vari-
able, but an “integral” method with respect to the space
coordinate. It is during the derivation of Eqs. (1)–(3)
that a finite quantity, viz., the volume V(t', t), is used
from the very beginning.

The proposed method differs from the Kolmogorov
approach in that it is a “differential” method in both the
time and the space variables: the volume fraction is
obtained by using the differential of the volume V(t', t).
As a result, the solution can be presented in the form of
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an integral with respect to the time variables only,
which is convenient for analysis of the dependences
obtained [4]. Consequently, this approach is more
effective in some cases. In particular, this advantage is
manifested in the problem under consideration: in the
case of a nonuniform nucleation rate, we must naturally
operate with dV rather than with V.

In problems for which the difference between the
two approaches is insignificant and the probabilistic
analysis is similar to that in [1], the application of the
result (3) obtained by using Kolmogorov’s approach
immediately leads to the solution (see Section 2).

The following two special cases of systems with a
nonuniform nucleation rate are important for applica-
tions: (1) nucleation at various i-dimensional objects
(i < 3), such as surfaces, lines, and points (the nucle-
ation rate can be presented as a δ function of the coor-
dinates), and (2) nucleation in a bounded volume G.
The nucleation rate at a point A(r) of the space has the
form of a step function:

the problem being simpler when I0 is independent of r.

The second case will be considered in a separate
publication. In this paper, we analyze nucleation at the
simplest i-dimensional objects, viz., planes, straight
lines, and points. The article has the following struc-
ture. In Section 1, a general expression for the volume
fraction is derived for a nonuniform nucleation rate.
Expressions for the volume fractions of an infinitely
large plane layer with nucleation at the midplane, of an
infinite cylinder with nucleation at its axis, and of a
sphere with nucleation at its center are derived in Sec-

I r t,( )
I0 r0 t,( ), A r( ) G∈
0, A r( ) G,∉




=

O''O'
r0

R

r

O

For the derivation of an expression for the volume fraction
in the case of a coordinate-dependent nucleation rate.
PH
tion 2. In Section 3, the problem of the calculation of
the volume fraction is considered for nucleation at ran-
dom planes, straight lines, and points distributed in an
unbounded medium. The results obtained are discussed
in Section 4.

1. THE VOLUME FRACTION 
OF A TRANSFORMED SUBSTANCE 
IN THE CASE OF A NONUNIFORM 

NUCLEATION RATE

We introduce a reference frame with the origin at
point O (see figure). Let us determine the probability
dX(t) of a point O'(r0) (randomly chosen in the system)
being absorbed by the growing phase in the time inter-
val (t, t + dt). For this event to occur, it is necessary and
sufficient that the following two conditions be met: (i)
point O' must not be absorbed before the instant t and
(ii) a center of the new phase that can absorb point O'
during the time (t, t + dt) (the critical center) appears at
an instant t ', 0 ≤ t ' ≤ t. Let Q(r0, t) and dY(r0, t) denote
the probabilities of the first and second events, respec-
tively. We consider the space–time diagram of the real-
ization of the process in which both events occur.

We specify the spherical region of radius R(t ', t)
with the center at point O' (the critical region). At the
instant t ', the boundary of the region moves to its center
at a velocity u(t') such that its radius decreases from the
maximum value R(0, t) ≡ Rm(t) to R(t, t) = 0. The fulfill-
ment of condition (i) indicates that the emergence of
centers of the new phase in the critical region is ruled
out in the entire time interval 0 ≤ t ' ≤ t. In Kolmogorov’s
approach, the function Q(t) is calculated directly from
this condition. In the approach proposed here, condi-
tion (ii) is used for calculating this function.

The critical center emerging at the instant t' must be
within the layer of thickness dR(t ', t) = (∂R(t ', t)/∂t)dt at
the distance R(t', t) from the point O'. Let us suppose
that it appears in the volume element dV(r) in the vicin-
ity of a certain point O"(r) (see figure). This nucleation
process is not of the Poisson type with respect to both t
and r since the nucleation rate is a function of these
variables; i.e., the steady-state condition is not satisfied
[5]. However, we assume that the remaining two condi-
tions of the Poisson process are satisfied: (a) the proba-
bility of the emergence of one center in a four-dimen-
sional volume element dt 'dV(r) is equal to
I(r, t ')dt 'dV(r), while the probability of the emergence
of more than one center is an infinitely small quantity
as compared to the former probability, and (b) the num-
bers of centers emerging in two nonintersecting vol-
umes are independent random quantities. So, the prob-
ability of the emergence of a center in the neighbor-
hood of point O" is I(r, t')dt'dV(r), and in order to
obtain the probability dP(t ', t) of the emergence of a
critical center at instant t', we must integrate this
expression over the boundary of the critical region. For
this purpose, we introduce a spherical reference frame
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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with the origin at point O'. In this frame, point O" has
the coordinates R(t ', t), θ, φ, where R(t ', t) = |r – r0|).
The volume element dV(r) is equal to dV(t ', t)dΩ/4π,
where dV(t ', t) = 4πR2(t ', t)dR(t ', t) and dΩ = sinθdθdφ
is a solid angle element. The nucleation rate in this ref-
erence frame has the form I(r, t ') ≡ (R, t ') = (R(t ',
t), θ, φ; t ') (the dependence of quantities on r0 is indi-
cated by the corresponding subscript). We introduce the
following notation:

(6)

where the integral is taken over the solid angle of the
entire space. In this case, we obtain the following
expression for the sought probability dP(t ', t):

(7)

The probability d (t) of the emergence of a critical
center in the interval 0 ≤ t ' ≤ t is the integral of expres-
sion (7) with respect to t':

(8)

Thus, the simultaneous fulfillment of conditions (i) and
(ii) leads to the following relation for d (t):

(9)

Since (t) = 1 – (t), expression (9) can be treated

as a differential equation for (t). Its solution for the

initial condition (t0) = 0 has the form

(10)

The function (t) is the probability that point O' will
be absorbed by the growing phase by the instant t pro-
vided that it is located in the volume element dr0. The
probability of the latter event is dr0/V0, where V0 is the
volume of the system. The probability X(t) that point O'
at instant t is in the transformed part of the system is
given by

(11)

where the integral is taken over the system volume.
Expression (11) is the required volume fraction of

the transformed substance in accordance with the geo-
metrical definition of probability [5]. If the system is
unbounded, expression (11) is treated as the limit for
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V0  ∞. However, it is significant that bounded sys-
tems are naturally covered by the definition (11) of the
phase volume fraction. Thus, the expressions derived
above can also be regarded as a generalization of for-
mula (1) for the case of bounded systems. Even if the
nucleation rate in such a system is independent of r, the
function (t) is nevertheless a function of r0. The rea-
son for this is that only a part of the critical region for
point O' lies in the system in the general case. The size
of this part depends on r0.

2. NUCLEATION ON A PLANE, STRAIGHT LINE, 
AND AT A POINT

We will use the indices s, l, and c for a plane, line,
and point, respectively. Let the plane under investiga-
tion be the yz plane of the Cartesian system of coordi-
nates, the straight line be the z axis, and the point be the
origin (point O). The volume nucleation rate in each
case can be presented in the form

(12)

where Ii(t) (i = s, l, c) are the specific nucleation rates;
Is and Il are the numbers of centers emerging per unit
time per unit area and per unit length, respectively; and
Ic is the probability of the emergence of a nucleating
center at the point per unit time.

If the plane is at the middle of a layer of width εs =
2L, the straight line is the axis of a cylinder with the
base area εl = πL2 ≡ s, and the point is the center of a
sphere of volume εν = (4π/3)L3 ≡ ν, then the average
volume nucleation rate is

or

(13)

where σ = (2L)–1 is the average area in a unit volume,
λ = s–1 is the average length in a unit volume, and n = ν−1

is the average number of points in a unit volume.
Without loss of generality, we take point O' on the

x axis at a distance r0 from the origin. For the angle θ
in the spherical system of coordinates with the origin
at point O', we take the angle formed by the vector R
with the negative direction of the x axis. The angle φ
lies in the yz plane. The components of the radius vec-
tor r in this system are as follows: x = r0 – R(t ', t)cosθ,
y = R(t ', t)sinθsinφ, and z = R(t ', t)sinθcosφ. Substi-
tuting these values into Eq. (12) and following the com-
putational algorithm described in Section 1, we obtain
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the required result (see Appendix). However, we can
obtain the result much more easily in this case by
applying the critical-region method directly.

The critical region for point O' at instant t' is a
sphere of radius R(t', t). This sphere contains a part of

the plane of area (t ', t) = π[R2(t ', t) – ], or a part of

the straight line of length (t ', t) = 2[R2(t ', t) – ]1/2,
or the point. We define the instant tm(t, r0) through the
equation

R(tm, t) = r0. (14)

For t ' > tm, the object under investigation is outside the
critical region.

The necessary and sufficient condition for point O'
to be in the untransformed region at instant t is that the
center of the new phase does not appear in the time
interval 0 ≤ t ' ≤ tm(t, r0) on the area element (t ', t), or

on the segment of length (t ', t), or at point O. The

probability (t) of this event can be calculated by the
method developed in [1]; the result is obvious:

(15)

(16)

since the object is not in the critical region for any time
t' in this case (Eq. (14) has no solution).

Expression (3) has such a form in the given case.
The advantage of this version of the critical-region
method is manifested even more clearly in the case of
nucleation on the surface (or a curve) of an arbitrary
shape. The result is obviously analogous to Eq. (15):

(17)

where (t ', t) is the area of a part of the surface ( (t ', t)
is the length of a segment of the curve) confined in the
critical region at instant t ' and p is the shortest distance
from point O' to the object. For t ' > tm(t, p), the object
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remains outside the critical region. Naturally, the quan-
tities depend in this case on all the coordinates of point
O', which is signified by the subscript r0.

In order to obtain the fraction of the transformed sub-

stance in the layer, we integrate the function (t) = 1 –

(t) with respect to r0 in accordance with Eq. (11):

(18)

We denote by t* the instant of time at which a nucleus
emerging at instant t' = 0 reaches the boundary of the
layer Rm(t*) = L. For t < t* [i.e., Rm(t) < L], this integral,
in accordance with Eq. (16), can be reduced to

(19)

For t > t*, we use Eq. (18) itself for the volume fraction,
which can be written in the form

(20)

Finally, we obtain

(21)

where η(x) is a symmetric unit function [6].
A similar expression also holds for volume fractions

of a cylinder and a sphere. In the case of a cylinder, we
have

(22)

(23)

while for a sphere we obtain

(24)
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For constant nucleation and growth rates, the inte-
grals in the latter case can be evaluated, so the explicit
dependence on time has the form

(26)

(27)

3. NUCLEATION AT RANDOM PLANES, 
STRAIGHT LINES, AND POINTS: ANOTHER 

DERIVATION OF KOLMOGOROV’S FORMULA

In view of the generality of the approach used here,
we will consider the three cases simultaneously.

Let us suppose that planes, straight lines, or points
are distributed at random in an unbounded medium. In
order to obtain the volume fraction for nucleation at
these objects, we will again use the critical-region
method. We choose point O' at random and find the
probability Q(i)(t) (i = s, l, c) that this point lies in the
untransformed region at instant t. The critical region for
point O' at instant t' = 0 is a sphere of radius Rm(t). Let
this region be intersected by N planes (or straight lines)
or contain N points. We denote by rk the distance
between point O' and the kth object, k = 1, …, N. The

probability ({rk}, t) of point O' being in the untrans-
formed region at instant t for a given N and for a real-
ization of the set {rk} = {r1, r2, …, rN} is the product of
the probabilities in Eq. (15):

(28)

The sought function Q(i)(t) will be obtained by averag-

ing ({rk}, t) over all the values of rk and over N:

(29)

where f (i)({rk}) is the distribution function for the set
{rk} and P(i)(N) is the probability of having the value N.

In order to obtain the function f (i)({rk}), we first
choose a parametric space for each class of objects. In
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the case of points, the parametric space coincides with
the coordinate space itself: a point is defined by the
coordinates (r, θ, φ), and a volume element is dν =
r2sinθdrdθdφ. We will assume that the points are dis-
tributed according to Poisson’s law: the probability of a
point being in the volume element dν is equal to dν
and does not depend on the shape of this element or its
position in space. We divide the volume Vm(t) =

(4π/3) (t) of the critical region into layers of thick-
ness dr, dν(r) = 4πr2dr, and use the following property
of Poisson’s process [5]: the probability of the kth point
being in the volume element dνk [provided that N points
are in the entire volume Vm(t)] is dνk/Vm (the distribu-
tion over the volume is uniform). Going over from νk to
rk, we find that the probability that the kth point is in the

interval [rk, rk + drk] is 4π drk/Vm. In addition, the dis-
tances rk are independent random quantities. Conse-
quently, we can write

(30)

where f (c)(rk) = 3 / .

The plane is defined unambiguously by two angles
θ and φ and by the length of rk, viz., the perpendicular
to it dropped from the point O'. The element of the mea-
sure for planes in the parametric space (r, θ, φ) is dE(s) =
sinθdrdθdφ [7]. For planes, we also assume that Pois-
son’s distribution takes place; the probability that the
plane is in the “volume” element dE(s) is dE(s). Sim-
ilarly, for the distribution of the set {rk}, we obtain
expression (30) with f (s)(rk) = 1/Rm.

We define the straight line by its direction θ, φ and
by the polar coordinates r, β of the point of its intersec-
tion with the plane perpendicular to it and passing
through the point O'. Thus, the measure element is
dE(l) = rdrdβdΩ, and, for the Poisson distribution (with
the parameter ), the probability of the kth straight
line being in the interval of distances [rk, rk + drk] from

point O' is f (l)(rk)drk = 2rkdrk/ .

Returning now to formula (29), we see that the

N-dimensional integral is equal to , where

(31)

Averaging with P(i)(N) = exp(–αi)/N! gives
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Let us determine the Poisson parameter αi for each

class of objects. In the case of points, αc =  = Vm(t)n.
In the case of planes, we express αs in terms of σ. The
area Sr of the part of the plane confined inside the criti-

cal region is equal to π(  – r2). Its mean value is

The average area in a unit volume is σ = /Vm =
αs/Vm = αs/2Rm, which gives

αs = 2σRm. (33)

Similarly, for the straight lines we can easily find

αl = πλ . (34)

Substituting the expressions obtained for αi into
Eq. (32), we obtain the fraction of the transformed sub-
stance in each case:

X(i) = 1 – exp(– (t)), (35)

where (t) are given by formulas (19), (22), and (24).

Let us consider in greater detail the nucleation at
points. Expression (35) in this case has the form

(36)

We introduce a function (t) through the equality

(37)

The integral of this function has the form

(38)

It can easily be seen that expression (36) can be pre-
sented in terms of (t) in the form

(39)

Reversing the order of integration, we arrive at Kol-
mogorov’s formula
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which shows that the function (t) has the meaning of
the average volume nucleation rate.

Indeed, in the case of nucleation at points, the vol-
ume nucleation rate can be presented in the form

(41)

where rk is the radius vector of the kth point in a certain
reference frame and Nf(t) is the number of “non-acti-
vated” points in the system (i.e., the points at which no
nucleation took place by the instant t). We assume that
the volume V0 of the system is large enough, but finite,
and contains N0 points. The number Nf(t) is a random
quantity distributed according to the binomial law

where φ(t) = exp(– Ic(t ')dt ') is the probability of a

point being “non-activated” by the instant t. This leads
to (t) = N0φ(t). Thus, the averaging of Iν(r, t) in
Eq. (41) over Nf and over the volume for V0  ∞
gives (t) = Ic(t)nφ(t), i.e., expression (37).

In the limiting case of large values of Ic(t), the function

(t) is δ-shaped, (t) = nδ+(t), so that expression (40)
describes the situation in this case when all the centers
appear at t' = 0, i.e.,

(42)

Let us also consider the limiting cases for planes. If the
exponent in (t) in Eq. (15) is small (low nucleation and
growth rates and small values of time), expression (19) is
transformed to

(43)

Reversing the order of integration, we obtain

(44)

In the case of a large exponent, we obtain

(45)

The corresponding limiting cases for a system of
planes can be obtain by substituting Eqs. (44) and (45)
into Eq. (35). In this case, the expression X(s)(t) = 1 –
exp(–2σRm(t)) can be interpreted as the volume frac-
tion of infinite planar “nuclei” formed at t' = 0.
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4. DISCUSSION OF RESULTS

It can be seen from the above considerations that the
geometrical–probabilistic approach in the form of the
critical-region method is quite efficient for solving var-
ious problems associated with the computation of vol-
ume fractions. In addition, the apparent advantage of
this approach is its mathematical rigor. By way of an
example of the inhomogeneity, we consider here the
nucleation at various i-dimensional objects. The
expressions for volume fractions of a plane layer, cylin-
der, and sphere are derived. Several remarks should be
made concerning expressions (26) and (27) for the last
quantities.

First, expression (21) combined with Eqs. (26) and
(27) is the average volume fraction of a sphere at instant

t. The true volume fraction (t) = V(t ', t)/ν is a ran-
dom quantity since the instant t' of the emergence of a
nucleating center is random. The volume fraction in

Eq. (21) can be obtained by averaging (t) with the
function Icexp(–Ict '), which is the distribution function
for the time of the emergence of a nucleating center.
Thus, we can write

(46)

where Iν(t ') = nIcexp(–Ict '). We can easily find that
these expressions lead to Eqs. (26) and (27).

Second, the transformation time tf is infinitely long in
this simple bounded system. This fact is an obvious con-
sequence of the random nature of the instant of the emer-
gence of a nucleating center. The average transformation

time is  =  + t*. In the limiting case Ic  ∞, the
time tf is finite and equal to t*.

In connection with the expression for the volume
fraction in the case of nucleation on a plane, attention
should be paid to the fact associated with the one-
dimensional asymptotic form in Eq. (45), which takes
place in the case of competing nucleation of two (or
more) different phases on the plane. Let us suppose that
two phases with the nucleation and growth rates Is, k(t)
and uk(t), k = 1, 2, u2(t) > u1(t) are formed. It was proved
earlier [4] that, in order to calculate the volume fraction
of each phase, the independent-phase approximation
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can be used in this case. Thus, we obtain

(47)

The total fraction of the transformed substance X(s)(t)
can be obtained by integrating the expression 1 –

 with respect to r0:

(48)

where ξ ≡ r0/Rm, 1 and t < t*, with t* being determined
by the equation Rm, 2(t*) = L.

In the limiting case of large values of Yξ, 2(t), we
have

(49)

Thus, the process of phase transformation is deter-
mined by the second (rapidly growing) phase. The
grains of the first phase turn out to be “immured” in the
layer of the second phase and make no contribution to
the increase in the transformed volume.

The expressions obtained from an analysis of nucle-
ation at unit i-dimensional objects are used for calculat-
ing the volume fractions in unbounded systems in
which these objects are distributed at random. Nucle-
ation at pointlike objects was first considered by
Avrami [3], who believed that the phase transformation
in general follows such a scenario. Nucleation at ran-
dom planes and straight lines was considered by Cahn
[8] as applied to an analysis of the nucleation processes
at the boundaries and edges of the grains. The analysis
was carried out by using the JMA approach and led to
expressions for volume fractions at constant nucleation
and growth rates.

However, the JMA approach, which is also referred
to as the mean-field approximation, is intuitive rather
than a mathematically rigorous method. It may lead to
an exact or approximate result. Kolmogorov’s formula,
which can also be obtained by using the JMA approach,
is an example of the former result. An example of the
latter result is the volume fractions of competing phases
[4]: the JMA approach gives approximate expressions
for them. These considerations inspire the revision of
these expressions [8]. The derivation of these expres-
sions carried out in this paper confirms the results
obtained by Cahn [8]; expressions (35) for constant
nucleation and growth rates are transformed into those
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derived by Cahn. The fact that the mean field approxi-
mation leads to the exact result in the given problem,
which follows from the theory presented in Section 3,
is a consequence of the Poisson law of the distribution
of objects. This form of distribution is the most wide-
spread in physical systems. However, cases of the non-
uniform distribution of objects are also possible. For
example, pointlike objects (impurity particles at which
nucleation takes place) can be distributed nonuniformly
over volume for some reason. Such cases can also be
analyzed in the framework of the theory developed in
Sections 1 and 3 with appropriate modifications. For
example, the function Q(i)(t), which can be evaluated
with the help of the algorithm described in Section 3,
will now be a function of the radius vector r0 of point
O', and hence formula (11) should be used for evaluat-
ing the volume fraction. A detailed analysis of these
cases is beyond the scope of this article.

In conclusion, let us analyze Eq. (40) in greater
detail. It shows that the nucleation at points can be
regarded as a process of homogeneous nucleation with
the corresponding rate given by Eq. (37). The converse
statement is also valid: the process of homogeneous
nucleation at a rate Iν(t) can be presented as nucleation
at points. The corresponding specific nucleation rate
Ic(t) can be determined easily from Eq. (37):

(50)

The parameter n remains arbitrary except for the condi-
tion n > n0(t). Thus, the inverse representation is ambig-
uous: expression (50) describes a family of curves cor-
responding to various values of n. In this case, two dif-
ferent situations are possible: n0(t) is finite or infinite
for t  ∞.

Let us consider the latter situation by using the sim-
ple example when Iν = const = a. In this case, we have

(51)

The number of centers emerging by the instant t,
n0(t) = at increases indefinitely with time. Consequently,
the parameter n must also be infinitely large. However,
there is no contradiction here. The number n0(t) can be

presented as the sum n0(t) = (t) + (t), where

(52)

(t) is the number of real centers, i.e., those emerg-

ing in the untransformed volume, and (t) is the
number of centers emerging in the transformed volume.
The latter are just fictitious centers, or “phantoms” in

Ic t( )
Iν t( )

n Iν t'( ) t'd

0

t

∫–

-----------------------------
Iν t( )

n n0 t( )–
-------------------.= =

Ic t( )
a

n at–
--------------.=

n0
r( ) n0

f( )

n0
r( ) t( ) Iν t'( )Q t'( ) t', n0

f( ) t( ) Iν t'( )X t'( ) t',d

0

t

∫=d

0

t

∫=

n0
r( )

n0
f( )
PH
the JMA approach. In the case of a constant nucleation
rate, their number increases indefinitely with time

( (t) is always finite). The divergence is associated
with the fact that the transformation time tf is formally
infinite. In fact, it can always be chosen as finite and
defined by the condition Q(tf) = Qmin, where Qmin is the
minimum experimentally observed value of the volume
fraction. In this case, the process is considered on the
interval 0 < t < tf, and for n in Eq. (51) we can take any
value n > atf.

The established equivalence of homogeneous nucle-
ation and nucleation at points indicates that the Avrami
and Johnson–Mehl approaches are not alternatives [9],
but can be reduced to each other through relations (37)
and (50), respectively.

APPENDIX

In the case of nucleation on a plane, expression (6)
has the form

(A.1)

In order to integrate over θ, we make use of the follow-
ing property of the δ-function:

where θ0 is the root of the equation

r0 – R(t ', t)cosθ = 0. (A.2)

This equation is valid only for R(t', t) ≥ r0. Hence, the
maximum value of t' denoted by tm(t, r0) is determined
by Eq. (14). For tm < t ' < t, we have (t ', t) = 0. We
shall take into account this fact with the help of the
asymmetric unit function η–(x) [6].

The integration of Eq. (A.1) gives

(A.3)

For nucleation on a straight line or at a point, we
have, respectively,

(A.4)
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(A.5)

Substituting sinθ0 = /R into Eq. (A.5), we
obtain

The substitution of  into Eq. (7) gives

(A.6)

where (t ', t) is given by formulas (15); in the case of
points, we put

(t ', t) = η+(R(t ', t) – r0).

Thus, we obtain the following equation for (t):

(A.7)
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Reversing the order of integration, we finally get

(A.8)
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Abstract—The pressure–temperature phase diagram for a [N(CH3)4]2CuCl4 crystal has been theoretically con-
structed using the phenomenological approach developed earlier. The relationships for the thermodynamic
potentials of different phases and the boundaries between these phases are derived. The theoretical and exper-
imental diagrams are in reasonable agreement. The approximations and assumptions made in the construction
of the diagrams are discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The [N(CH3)4]2CuCl4 (TMATC-Cu) crystal belongs
to a large family of well-investigated tetramethylammo-
nium tetrahalogenmetal compounds [N(CH3)4]2MX4
(where M is a bivalent metal and X is a halogen) [1–3].
The theoretical approach to the construction of the
pressure–temperature (P–T) phase diagram for the
TMATC-M crystals, specifically for the TMATC-Zn
crystal, was proposed in [4]. This approach was based
on the assumption that the phase diagram involves a tri-
ple point that was termed the Lifshitz-type point
(LT point). This point was theoretically introduced by
Aslanyan and Levanyuk [5] and is somewhat similar to
the Lifshitz point (L point) [6]. Three lines of the tran-
sitions between the incommensurate (IC) phase, initial
(C) phase, and commensurate (C0/1) phase (equitransla-
tional with the C phase) converge to the LT point, as to
the L point (the classification and features of the triple
points were described in [7]). The presence of the LT
point in the phase diagram is associated with the char-
acteristic feature in the dispersion of a soft optical
branch in the normal vibration spectrum of the crystal,
which is responsible for the phase transition. In a cer-
tain range of parameters, this branch exhibits two min-
ima: one minimum is observed in the center of the Bril-
louin zone, and the other minimum, at an arbitrary
point of this zone.

The soft branch of the TMATC-Cu crystal differs in
symmetry from that of the related TMATC-M (where
M = Zn, Fe, and Mn) crystals. The LT point is not
observed in the P–T diagram, because it lies at negative
pressures. However, the technique proposed in [4] is
also applicable to this crystal. Figure 1 schematically
represents the experimental P–T phase diagram
obtained using x-ray diffraction analysis [8]. Figure 2
schematically shows the P–T phase diagram derived by
dielectric measurements in other ranges of tempera-
tures and pressures [9]. These diagrams are combined
1063-7834/00/4212- $20.00 © 22282
in Fig. 3, which also shows the boundary between the
C0/1 and C1/3 phases [10] (see also the experimental P–
T phase diagrams obtained from measurements of opti-
cal birefringence and elastic properties in [11]).

The aim of this work was to construct the theoretical
P–T phase diagram for the TMATC-Cu crystal with the
use of the technique proposed in [4]. First, we will con-
struct the phase diagram on a plane of the dimensionless
variables D0 and A, which are combinations of the ther-
modynamic potential coefficients (see below). Then,
under the assumption that D0 and A linearly depend on P
and T, we will construct the P–T diagram and compare it
with the experimental diagrams (Figs. 1–3).

2. PHASE SYMMETRY

The initial C phase of the crystal has the space group

 in the standard bca–Pmcn setting. The wavevectorD2h
16

0
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30
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P, åêa

T, °C

C

C1/3

0.34

IC

0.35

0.36
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Fig. 1. Experimental P–T phase diagram for TMATC-Cu
[8]. Phase designations are the same as in the text.
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of the incommensurate phase IC is kz = qc*. The space
groups of the commensurate phases Cm/l are P1121/n
(C0/1 phase) and P121/c1 (C1/3 phase) (see [8–10] and
references therein).

It is reasonable to assume that all the phases
observed in the P–T diagrams are associated with the
same soft optical branch in the normal vibration spec-
trum of the initial phase in the crystal (the terminology
of crystal lattice dynamics is convenient to use irre-
spective of whether we consider phase transitions of the
displacement type or the order–disorder type). This
assumption is consistent with the space groups of the
Cm/l phases (table). The symmetry of the soft branch is

uniquely determined by the space group P1121/n ( )
of the C0/1 phase in the chosen setting of the group

Pmcn ( ) of the C phase and the direction of the
wavevector of the IC phase along the z axis.

The space groups of all the possible Cm/l phases that
correspond to this branch are given in the table, which
is cited from the tables presented in [12]. The first col-
umn of this table contains the representation of the
point group mmm (D2h), according to which the transi-
tion from the C phase to the C0/1 phase occurs, the low-
est-rank tensor component (that transforms via this rep-
resentation) in parentheses, and the space group of the
C0/1 phase. The next three columns list the space groups
of three possible phases c1, c2, and c3 for each Cm/l phase
for all qm/l = m/l (m+, m– are even numbers and m–, l– are
odd numbers) and also the lowest-rank tensor compo-
nents that have spontaneous values in the c1 and c2
phases (for more detail, see [12]).

3. THERMODYNAMIC POTENTIALS: 
THE SOFT BRANCH

Let us use the relationships derived in [4] for the
thermodynamic potentials of phases and add the term
proportional to ρ6 (which is necessary, as will be seen
from further consideration). The potential of the Cm/l
phases with qm/l = m/l (except for q0/1 = 0/1) has the
form

(1)

where ρ and ϕ are the amplitude and the phase of the
two-component order parameter [the soft branch is
doubly degenerate; i.e., α(q) = α(–q)], respectively. It is
assumed that β > 0 and γ > 0. The potential of the IC
incommensurate phase is given by

(2)

Note that the anisotropic term with the  coefficient
in formula (1) for arbitrary incommensurate q does not
satisfy the translational symmetry of the crystal and,

C2h
5

D2h
16

Φm/l α qm/l( )ρ2 βρ4 γρ6 α2l' ρ2l 2lϕ ,cos–+ +=

ΦIC α q( )ρ2 βρ4 γρ6.+ +=

α2l'
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hence, is not an invariant. The potential of the C initial
and C0/1 commensurate phases is defined as

(3)

The soft optical branch or, more exactly, the dependence
of the coefficient of elasticity α(q) [see formulas (1) and
(2)] on the wave number q is described by the expres-
sion [5]

(4)

Φ0/1 αζ2 2
3
---βζ4 2

5
---γζ6.+ +=

α q( ) α δq2 κq
4

– τq6,+–=

300
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Fig. 2. Experimental P–T phase diagram for TMATC-Cu
[9]. Phase designations are the same as in the text.

Fig. 3. Experimental P–T phase diagram for TMATC-Cu
(constructed from Figs. 1, 2 and the data taken from [10]),
reduced to the same scale.
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Space groups of all possible commensurate phases corresponding to the soft branch with the wavevector kz = qc* in the normal

vibration spectrum of the initial phase Pmcn ( ) in TMATC-Cu crystal

c1 P21cn x P1121/n xy Pc21n y

B1g(xy) P1121/n c2 P121/c1 zx P212121 xyz P21/c11 yz

c3 P1c1 P1121 Pc11

D2h
16

m
l
---- 0

1
---

m–

l–
------

m+

l–
------

m–

l+
------

C2v
9 C2h

5 C2v
9

C2h
5 C2h

5 D2
4 C2h

5

Cs
2 C2

2 Cs
2

where κ and τ are assumed to be more than 0.
Relationship (4) can be rewritten as

(5)

Here, we introduced the quantities a, b, and qL, which
will be used in subsequent descriptions. Their physical
meaning is as follows: a and b are the coefficients of the
minimum in the soft branch at an arbitrary point of the
Brillouin zone

q = b, α(b) = a. (6)

This minimum is observed at δ > –κ2/3τ or b2 > 2 /3.
The minimum in the center of the Brillouin zone

q = 0, α(0) = α (7)

can be observed at δ < 0 or b2 < 4 /3. Therefore, in the

range –κ2/3τ < δ < 0 or 2  < b2 < 4 /3, the soft
branch exhibits two minima. The LT point is deter-
mined from the condition that these minima are equal
to each other and simultaneously become zero. The
coordinates of the LT point, depending on the plane in
which they are determined, take the form

a = 0, b2 = , δ = –τ , ∆0 = 0. (8)

Consequently, the qL quantity corresponds to one of the
coordinates of the LT point.

Expressions (1)–(3) for the potentials can be simpli-
fied by varying them with respect to the variables. As a
result, at γ = 0, we have [4]

(9)
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The last relationship for Φm/l is obtained providing that
the anisotropic (i.e., dependent on the phase ϕ) invari-
ant in formula (1) is small compared to the isotropic
invariant [4]

(10)

It should be emphasized that the neglect of the γρ6 term
in the thermodynamic potentials (9) (see [4]) is not jus-
tified for Φ1/3. Actually, at γ = 0, the minimum of the
Φ1/3 potential described by formula (1) at finite values
of ρ2 disappears rather rapidly with an increase in
α(q1/3) even at small values of . In order to avoid
this situation, it is necessary to include the γρ6 term and
to set γ ≥ . It is clear that the γρ6 term should be also
included in all the potentials (rather than only in Φ1/3).
By minimizing relationships (1)–(3) with respect to their
variables, we obtain the expressions for the thermody-
namic potentials [more complex than formulas (9)]
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The last relationship for Φm/l is derived under the con-
dition of a weak anisotropy. Now, this condition takes
the form

(12)

which coincides with condition (10) at 3γ(–αm/l)/β2 ! 1.

4. INTERPHASE BOUNDARIES

The following variables and parameters will be used
below:

(13)

For convenience (see the D0–A phase diagram in
Fig. 4), the sign of A is taken opposite to the sign of a.
Each Cm/l phase is characterized by only one dimen-
sionless parameter e2l, which is determined by the 
coefficient. There is also the parameter eγ that is com-
mon for all the phases. Since the α, δ, κ, and τ coeffi-
cients themselves are dimensionless quantities, Q is the
number and is introduced into relationships (13) for the
convenience of choosing numerical values of different
quantities in the construction of the phase diagrams.

The phase diagram should be constructed on the
plane of two thermodynamic potential coefficients
which are small and, therefore, considerably depend on
P and T. The remaining coefficients are assumed to be
independent of P and T. This is justified, because these
coefficients, in general, are not small. The coefficients
δ (and, hence, D) and α (and, hence, A) are small. Thus,
the phase diagram in [4] was constructed on the D–A
plane. However, analysis shows that it is more conve-
nient to construct the phase diagram on the D0–A plane
under the assumption that these variables linearly
depend on P and T and the remaining quantities QL, eγ,
and e2l are constant. Therefore, the κ, τ, β, γ, and 
coefficients of the potential are also constant.

By equating the potentials described by relation-
ships (11), we obtain the expressions for the boundaries
between the corresponding phases. We will restrict our
consideration to the boundaries that are observed in the
experimental phase diagrams. The C–IC and C–C0/1
boundaries with the initial phase C are given respec-
tively by

A = 0, A = D0. (14)
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The IC–C0/1, IC–C1/3, and C0/1–C1/3 boundaries are
represented respectively as follows:

(15)

Three boundaries C–IC and C–C0/1 [relationships
(14)] and IC–C0/1 [relationship (15)] converge to one
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Fig. 4. D0–A phase diagram with the LT point.
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point, namely, the LT point. Its coordinates on the D0−A
and D–A planes are respectively as follows:

D0 = 0, A = 0; D = – , A = 0 (16)

[in this point, B2 = , see relationships (8)].

As follows from expression (12), the IC–Cm/l bound-
ary has the form

(17)

This expression is obtained under the condition Dm/l ! A,
which virtually coincides with condition (12) of weak
anisotropy that in designations (13) takes the form

(18)

The Cm/l–C1/3 boundary only slightly differs from the
IC–C1/3 boundary, and this difference most frequently
can be ignored, which is done in Fig. 4.

The Dm/l, D0, and D quantities in relationships (13)
are expressed in terms of B2 according to formulas (5)
in the following way:

(19)
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Fig. 5. Theoretical P–T phase diagram for TMATC-Cu,
obtained from Fig. 4.
PH
Setting the value of B2, we determine the value of A
from relationships (14)–(17) and the value of D0 from
expressions (19), which allows us to construct the
boundaries in the D0–A diagram.

The minimum in the branch of the spectrum at the
arbitrary point of the Brillouin zone disappears below

B2 = (2/3) . In this case, the a and b (A and B) quanti-
ties lose their meaning. Consequently, the plot in the
D0−A or D–A plane has meaning only at D0 ≥ (–8/27)

or D ≥ (–4/3) .

5. THEORETICAL PHASE DIAGRAMS

In order to construct the D0–A phase diagram for the
TMATC-Cu crystal, it is necessary to choose the values
of the QL, eγ, and e2l parameters for each Cm/l phase, in
our case, at m/l = 1/3 and 3/8. The choice is based on
the best fitting of the theoretical P–T phase diagram
obtained from the D0–A diagram to the experimental P–
T phase diagram depicted in Figs. 1–3. The parameters
chosen are as follows:

 = 0.2, eγ = e6 = 0.6, e16 = 1.5, Q = 0.5. (20)

These parameters are taken to be virtually accurate to
the first decimal place. The simplifying assumption that
eγ = e6 is used. Figure 4 displays the D0–A phase diagram
obtained from relationships (14)–(20). The LT point with
coordinates (16) is designated by the letters LT.

The P–T phase diagram is constructed from the D0–A
diagram (Fig. 4) by assuming the simplest linear depen-
dences of D0 and A on P and T. Then, the P and T axes in
Fig. 4 are straight lines. Their location, orientation, and
scale are determined from the best fit to the experimental

P–T diagram (Figs. 1–3). Let  = 0.4 and

 = 0.8. These values are obtained with due
regard for the scale on the D0 and A axes. Note that the
values of these cotangents in Fig. 4 (without regard for
the scale) are larger by a factor of two (0.8 and 1.6).

It should be remarked that A and D0 are related by
the expression α/τQ6 = –A + D6 [see relationships (5)
and (13)]. It is usually assumed that the coefficients α
of the potential linearly depend on P and T. From the
assumption that A linearly depends on P and T, it
directly follows that D0 also linearly depends on P and
T. This mutual correspondence does not occur for the A
and D variables, and they cannot simultaneously depend
in a linear manner on P and T [see relationships (5) and
(13)].

Figure 5 depicts the theoretical P–T phase diagram
constructed from Fig. 4 with the P and T axes shown in
the latter figure. A comparison of Figs. 5 and 3 shows
that the theoretical and experimental diagrams are in
reasonable agreement. This agreement can be some-
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what improved by a more adequate choice of the QL, eγ,
and e2l parameters and the orientation of the P and T
axes in the D0–A diagram. A strong nonlinear depen-
dence of qm/l on P and T is seen in Figs. 1–3. The non-
linearity of the C3/8 commensurate phase in Figs. 2 and
3 is so strong, especially in the region close to the C1/3
phase, that the boundary between these phases is not
observed. At the same time, no such features are
revealed in the theoretical phase diagram (Fig. 5).

In summary, let us list the approximations and
assumptions that were made in the construction of the
theoretical D0–A and P–T phase diagrams. It was
assumed that the triple LT point theoretically introduced
in [5] resides in the phase diagram (and the L point is
absent [6]). Note that the LT point in the P–T diagram
lies in the range of negative pressures (approximately at
P = –100 MPa).

The one-harmonic approximation was applied to the
IC phase. This leads to errors (even though not large) in
the determination of the boundaries between the IC
phase and the Cm/l phases. The weak anisotropy condi-
tion was used for the Cm/l phases (m/l ≠ 1/3), which
made it possible to derive the explicit relationships for
the potentials of the Cm/l phases and, hence, for the
boundaries with these phases. This condition is suffi-
ciently well met over the entire region of the D0–A and
P–T phase diagrams (Figs. 4, 5).

It was assumed that only two small quantities D0
and A depend on P and T. The remaining quantities QL,

eγ, and e2l (or κ, τ, β, γ, and ) were taken to be con-
stant, i.e., independent of P and T. The assumption that
D0 and A linearly depend on P and T is a simplification,
which obviously is not quite in agreement with the
experimental data (cf. Figs. 5 and 3). The diagram was
constructed using the numerical parameters taken to be
accurate to the first decimal place. The approximation
that eγ = e6 was employed. The dispersion (i.e., the

dependence on q) of the β, γ, and  coefficients was
ignored.

The above approximations and assumptions did not
interfere in reaching a satisfactory agreement between
the theoretical and experimental P–T phase diagrams
for the TMATC-Cu crystal. This was achieved in spite
of the fact that the phenomenological model under con-

α2l
'

α2l
'
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sideration contains a small number of parameters: the
QL parameter that determines the coordinate of the LT
point, eγ, and e2l (one parameter for each Cm/l phase)
that determines the q range (around qm/l) occupied by
the Cm/l phase (at a specified value of A).

Thus, the results obtained demonstrated that the
phenomenological approach to the structural phase
transitions, which usually works well, adequately
describes the experimental data in the special case of
the complex phase diagram which involves the specific
triple point, the incommensurate phase, and a large
number of commensurate phases.
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Abstract—A new method in the microscopic theory of anharmonic crystal lattice dynamics—the independent
anharmonic oscillator (IAO) approximation—is discussed. The method is compared with traditional
approaches (such as the mean-field and renormalized self-consistent phonon methods) from the standpoint of
the analysis of the main approximations. Different methods are applied to the description of the structural phase
transition in a monoatomic anharmonic crystal, the results obtained are analyzed, and the numerical accuracy
of different approximations is estimated. It is demonstrated that, for this model in the displacement-type insta-
bility range, the new method, unlike the self-consistent phonon method, adequately describes the phase transi-
tion as a second-order transition. The phase transition temperature calculated in the displacement limit mono-
tonically tends to the exact value in contrast with the temperature obtained within the mean field approximation.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A correct physical theory should, on the one hand,
take into account the main factors that affect the phe-
nomenon under consideration and, on the other hand,
be simple enough to ensure quantitatively significant
results for real objects. In most cases, the simultaneous
fulfillment of these requirements is a complicated prob-
lem. Such is indeed the case in the microscopic theory
of structural phase transitions in crystals. Crystals that
undergo structural phase transitions are of considerable
interest owing to the attendant anomalies in their differ-
ent physical characteristics. As a rule, these crystals
have complex structures with a low symmetry and a
large number of atoms in the unit cell. The dynamics of
their crystal lattices at low temperatures is rather sim-
ply described within the quasi-harmonic approxima-
tion (QHA). However, this approximation is inapplica-
ble in the range of structural phase transitions when the
role of anharmonic contributions increases and some
modes become harmonically unstable. The available
theoretical methods for the microscopic description of
the dynamics of strongly anharmonic crystals are too
complicated to be applied to complex polyatomic crys-
tals. The development of new methods in the theory of
anharmonic crystal lattice dynamics, which should be
sufficiently precise and applicable to the study of com-
plex low-symmetry structures, remains a topical prob-
lem of solid state physics.

Boyer and Hardy [1] considered the lattice dynamics
and structural phase transitions in a RbCaF3 crystal and
proposed a method for providing the applicability of the
1063-7834/00/4212- $20.00 © 22288
quasi-harmonic approximation (without loss of its con-
ceptual simplicity) even in the range of thermodynamic
conditions at which normal lattice vibrations become
harmonically unstable, i.e., when they are characterized
by imaginary frequencies. To accomplish this, it was suf-
ficient to include anharmonic corrections for each oscil-
lator (under conditions of their independence) in the cal-
culations of their contributions to the entropy. Hence,
this approach can be referred to as the independent
anharmonic oscillator (IAO) approximation. In a recent
work [2], this method was applied to the study of struc-
tural phase transitions in quartz, which made it possible
to describe an anomalous thermal expansion in this
material. Moreover, the theoretical estimates obtained in
[1, 2] for the structural phase transition temperatures
turned out to be very close to temperatures observed in
the experiment. However, neither the rigorous justifica-
tion of the assumptions underlying the IAO approxima-
tion nor its comparison with other (traditional) methods
has been made up to now. The purpose of the present
work was to fill this gap.

2. THEORETICAL JUSTIFICATION: 
ANALYSIS OF THE MAIN APPROXIMATIONS

Calculation of the free energy in the classical
approximation involves the computation of the statisti-
cal integral

(1)Z e

U x1 … xn, ,( )–

T
-----------------------------------

x1d … xnd ,

xn

∫
…
∫

x1

∫=
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where T is the temperature, xn are the atomic coordi-
nates, and U is the potential energy. The integration
over all atomic coordinates in an infinite crystal is a
complex mathematical problem, which cannot be
solved without simplifying approximations. As a rule,
the potential function is represented as the sum of sin-
gle-particle functions

(2)

In this case, the statistical integral is split into the prod-
uct of the simple integrals

(3)

The most universally used method that leads to expan-
sion (2) is based on the mean field concept. In this con-
cept, the variation in the potential function along a par-
ticular coordinate is analyzed under the assumption that
the instantaneous values of the other coordinates are
equal to their thermodynamic means. The mean field
concept is realized in the independent-site approxima-
tion (ISA) [3], according to which it is assumed that
each atom in the lattice independently moves in a spe-
cific mean field defined by the single-particle potential

(4)

Within this approximation, no constraints are imposed
on a specific form of the potential function. This univer-
sality of the ISA method leads to considerable difficul-
ties in the calculation of the corresponding statistical
integrals (3). The calculations are substantially simpli-
fied in the case when the mean field approach is applied
not to the potential function itself, but to its expansion
into a power series in the vicinity of the point x = . If,
then, we change over to the normal lattice coordinates
q(k), the quadratic part of the expansion takes a diagonal
form. In the simplest variant of the quasi-harmonic
approximation, this expansion is truncated at quadratic
terms. In this case, the coordinates are immediately sep-
arated, the single-mode potentials have the simple form

(5)

and integrals (3) are easily calculated on the condition
that all the eigenvalues of the dynamic matrix λ(k) are
positive. This condition is not met in the range of struc-
tural phase transitions in which the higher-order terms
of the expansion should be taken into account. To
accomplish this and, in doing so, to retain the separa-
tion of the contributions from different modes, the
products qi(k)qi(–k) are separated out, and the expres-
sions for the coefficients of these terms are replaced by
their mean values. This operation results in the single-
mode potentials

(6)

U x1 … xn, ,( ) φi xi( ).
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The quantities ∆i(k) depend on the anharmonic coeffi-
cients of the expansion and also on the mean values
〈qj(k)qj(–k)〉 . The stabilizing anharmonic correction
∆i(k) increases with a rise in the temperature, and the
sum λ + ∆ remains positive even in the range of struc-
tural phase transitions. In [3], this approach was termed
the independent-mode approximation (IMA). It should
be noted that this approximation is more frequently
referred to as the renormalized (or self-consistent)
phonon approximation. The formalism of this method
in the general form was described, for example, in the
review [4]. In the next section, this approach will be
considered in more detail as applied to the case of a sin-
gle-mode crystal.

The independent anharmonic oscillator approxima-
tion under consideration uses the same mean field con-
cept as the independent-site approach. By using the
technique of determining single-particle potentials (4)
for the expansion of the potential function in the space
of normal coordinates and taking into account that the
mean value of qi(k) is equal to zero, we obtain the
expansion in which the cross terms (that correspond to
the interaction between different modes) are absent but
the single-mode potentials contain the anharmonic con-
tributions

(7)

Similarly to the independent-site approximation, the
IAO approximation remains physically meaningful in
the case when certain λ < 0, because it accounts for the
stabilizing effect of anharmonic contributions. The
appropriate integrals (3) can easily be calculated with
the special function G(p) (see [2] and Appendix).

3. PHASE TRANSITION 
IN THE 2–4 MODEL SYSTEM

It is hardly probable that the question of the applica-
bility or advantages of a particular approximation in the
theory of structural phase transitions can be conclu-
sively solved reasoning only from general consider-
ations by analyzing and comparing the assumptions
underlying these approaches. It is of special interest to
compare the numerical results obtained within different
approximations for a model system in which the
character of the structural phase transitions can vary
from the displacement type to the order–disorder type.
A relatively simple, well-studied model, namely, the
2–4 model, can serve as this system. The 2–4 model
system represents a monoatomic cubic lattice in which
each atom resides in a local double-well potential of the

type ν(x) = – αx2 + βx4 and interacts with the six

nearest neighbors through harmonic forces whose
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2
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2
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potential has the form γ(xi – xj)2. In order to simplify

our analysis, a one-dimensional motion is treated under
the assumption that the harmonic forces between the
neighboring atoms are isotropic. This system serves as
the simplest model of the sublattice, which is active
upon the phase transition and whose interaction with all
the other sublattices is replaced by the potential field of
an inert medium.

Now, we change over to dimensionless quantities by
taking (α/β)1/2 and α2/β as the unit length and the unit
energy, respectively. Then, the potential function has
the form

(8)

where ν(x) = – x2 + x4 and κ =  is the sole param-

eter of the model. In what follows, we will use the more
convenient quantity χ = 6κ. Moreover, the atomic mass
is taken equal to unity.

1
2
---

U x( ) ν xi( ) 1
2
---κ xi x j–( )2

j

∑+
 
 
 

,
i

∑=

1
2
--- 1

4
--- γ

α
---

(a)
ISA

0.01 0.1 1 10
χ

(b)
IMA

τβ

0.9
0.8

0.6

0.4

0.2

0.0

τα

τc

τα QHA

Fig. 1. (a) Dependences τc(χ) obtained by the Monte Carlo
method [5] (circles), by extrapolation with the heuristic for-
mula [6] (dashed line), and within the independent-site
approximation (solid line). (b) Dependences τc(χ), τα(χ),
and τβ(χ) calculated by the IMA method. The dashed line
represents the dependence τα(χ) calculated within the
quasi-harmonic approximation.
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At any χ parameter, the system under consideration
is statically stable at x = ±1. This corresponds to the
low-temperature low-symmetry α-phase. As the tem-
perature increases, the statically unstable high-symme-
try β-phase that corresponds to x = 0 becomes thermo-
dynamically preferable. At a certain temperature Tc, the
system undergoes a second-order phase transition. The
character of this transition depends on the value of χ: it
is the displacement-type phase transition at x @ 1 and
the order–disorder transition at χ ! 1 [3]. The Tc tem-
perature turns out to be almost proportional to the χ
parameter, and, hence, the ratio τc = Tc/χ, rather than Tc,
will be used in the subsequent discussion of the numer-
ical results.

Rubtsov et al. [5] performed the Monte Carlo calcu-
lations for the  values at different temperatures and
different χ parameters. The results obtained were used
to determine the dependence of τc on χ (Fig. 1a). Here-
after, this dependence will be treated as the exact solu-
tion of the problem. Hlinka et al. [6] proposed the sim-
ple approximation of this dependence

τc = 0.76 – 0.49 , (9)

which is also depicted in Fig. 1a. Now, we analyze how
this dependence is reproduced in each of the above
approximations.

3.1. Independent-site approximation. According to
definition (4), the single-particle potential can be deter-

mined as ϕ(x, ) = – (χ – 1)x2 + x4 – χx  + χ 2.

The value of (T), which determines the crystal struc-
ture at a specified temperature, can be found from the
minimum condition for the free energy F = –TlnZ. It is
known that, in this model, the ISA method correctly
describes the structural phase transition as a second-
order transition [3]. Then, the Tc temperature can be
obtained from the condition d2F/dx2 |x = 0 = 0, which, in
our case, leads to the equation

(10)

The integrals that enter into relationship (10) can be
expressed in terms of the G(p) function and its deriva-
tive (this function and the computational details are dis-
cussed in the Appendix). The curve τc(χ) calculated by
the ISA method is also displayed in Fig. 1a.

In order to analyze the other approximations, it is
necessary to change over to the normal lattice coordi-
nates, which are related to the atomic coordinates by
the formula

(11)

Here, n is the vector with integer-valued components
which numbers the cells and k = (k1, k2, k3) is the wave
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vector, each component of which varies in the range
from –π to π. The substitution of expression (11) into
relationship (8) with due regard for the normalization
of the harmonic functions

gives the expression for the energy density

(12)

The coefficient f(k) accounts for the dispersion rela-
tionship for the harmonic interaction between the near-
est neighbors in a monoatomic cubic lattice and has the
simple form

(13)

In what follows, we will ignore the contributions from
the normal coordinate q(0) to expansion (12), because
the integration over this coordinate is not required in
the calculation of the partial free energy and, in
essence, this coordinate and  describe the same
degrees of freedom.

3.2. Quasi-harmonic approximation. Prior to ana-
lyzing the results obtained by the IMA and IAO meth-
ods, it is expedient to discuss the benefits of applying
the quasi-harmonic approximation to our problem. If
the third- and fourth-order terms are neglected in
expansion (12), the potential function corresponds to a
system of independent harmonic oscillators whose fre-
quencies squared are defined by the dispersion relation-
ship

(14)

where λ0 = ν'' = –1 + 3 2. The dispersion branches
along the directions that connect the singular points in
the Brillouin zone are displayed in Fig. 2a. The corre-
sponding density of states g(λ) is shown in Fig. 2b.

Within the quasi-harmonic approximation, the free
energy is expressed by the simple relationship

(15)
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Note that the dependence of λ on  in the model under
consideration is determined only by the first term in the
dispersion relationship (14) and, hence,

(16)

With this formula, we obtain the equilibrium condition

(17)

The solution of this equation gives (T, χ). By gradu-
ally increasing the temperature, we find the tempera-
ture Tα above which Eq. (16) does not possess solu-
tions, except for the trivial solution  = 0. The corre-
sponding dependence τα(χ) is shown by the dashed line
in Fig. 1b. The Tα temperatures thus determined corre-
spond to the temperature below which the low-symme-
try phase exhibits a local minimum (i.e., this phase is
metastable). Recall that the quasi-harmonic approxi-
mation, in principle, is inapplicable to the high-symme-
try phase for which λ0 < 0. Consequently, the Tα value
determined within this approach gives only an upper
estimate of the phase transition temperature. As follows
from Fig. 1b, this temperature is strongly overestimated
at χ < 1 and underestimated at χ >1. At large χ, the lim-
iting value of τα within the quasi-harmonic approxima-
tion is equal to 2/3 of the exact value.

3.3. Independent-mode approximation. If only the
terms containing the q(k)q(–k) products are retained
in expansion (12) and the linear terms are retained in
the expansion into a power series of the deviations

x

dλ k( )
dx
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Fig. 2. (a) Dispersion of the square of the phonon frequency
between singular points in the Brillouin zone and (b) the
density of states for the 2–4 model system.
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q(k)q(–k) – 〈q(k)q(–k)〉 , we obtain the representation
of the potential function at the IMA level

(18)

where

(19)

Then, we can write the expression for the free
energy

(20)

and the equilibrium condition

F ' = ν'( ) + 3 I = 0. (21)

It should be noted that the relationship for the derivative
F ' can be obtained either by treating I as a function of x
and differentiating expression (20) with respect to x
(with due regard for this dependence) or by treating F
as a function of two independent parameters x and I. In
the latter case, the partial derivative with respect to x
gives Eq. (21), and the condition for the minimum of F
with respect to I leads to relationship (19). The possi-
bility of treating I as an independent parameter of the
free energy provides the basis for the variation
approach to the formulation of the self-consistent
phonon method [4].

By solving Eqs. (19) and (21), we obtain (T, χ)
and, then, the critical temperatures Tα and Tβ, which are
defined in the following way: the local minimum of
F( ) in the low-symmetry phase takes place at 0 < T <
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2
--- λ k( ) 3I+( ) q k( ) 2 3

4
--- I2,–

k
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I q k( )q k–( )〈 〉
k

∑ T
N
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λ k( ) 3I+
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F ν x( ) T
2N
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Fig. 3. Dependences τc(χ) calculated within different
approximations. Circles represent the results obtained by
the Monte Carlo method [5]. Dependences τα(χ) and τβ(χ)
are calculated in the independent-mode approximation.
PHY
Tα, and the local minimum in the high-symmetry phase
exists at T > Tβ. Upon the second-order phase transi-
tion, Tα = Tβ = Tc. Upon the first-order phase transition,
Tα > Tβ. In the latter case, the phase transition tempera-
ture Tc lies in the range between Tα and Tβ and can be
determined from the equality of the free energies for
two local minima. In the independent-mode approxi-
mation, the temperatures Tα and Tβ appear to be differ-
ent, and, hence, this method erroneously describes the
structural phase transition as a first-order transition [3].
Figure 1b displays the dependences of τα, τβ, and τc on
χ, which were calculated within the independent-mode
approximation. At large χ, τβ ≈ τc ≈ τα ≈ 0.22, which
corresponds to the exact limit at χ  ∞. At small χ,
the values of τα and τc calculated by the IMA method
substantially exceed the exact values of τc and turn out
to be even larger than τα calculated within the quasi-
harmonic approximation.

3.4. Independent anharmonic oscillator approxima-
tion. Expansion (10) for our model involves two terms

(22)

It is evident that the anharmonic corrections in our
model are identical for all modes in the phonon spec-
trum. The calculation of integral (3) with this potential
is discussed in the Appendix. By using the functions
G(p) and H(p), which are determined in the Appendix,
we obtain the relationship for the free energy

(23)

Φ q k( )( ) 1
2
---λ k( ) q k( ) 2 3

4
--- q k( ) 4.+=

F ν x( ) T
N
---- G

λ k( )

2 3T( )
1
2
---

-----------------
 
 
 
 
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Fig. 4. Dependences τc(χ) calculated within the IAO
approximation for the cut-off of the coefficients µ =
1/4exp(–λ2/g2) at λ > 0: (1) g = ∞, (2) g = 1, (3) g = 0.5, and
(4) g = 0.25. Circles represent the results obtained by the
Monte Carlo method [5].
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and the equilibrium equation

(24)

By solving Eq. (24), we obtain the temperatures Tα and
Tβ. It turns out that the equality Tβ = Tα is rigorously ful-
filled in the range of the displacement-type structural
phase transition (at χ ≥ χ0 ≈ 0.5). This implies that the
IAO approximation, unlike the IMA method, ade-
quately describes the phase transition as a second-order
transition in the model under consideration. Figure 3
shows the dependence of τc on χ, which was calculated
within the IAO approximation. It should be that, in the
displacement limit, i.e., at χ  ∞, the τc value calcu-
lated in the IAO approximation monotonically tends to
the exact limit τc ≈ 0.22, unlike the limiting value τc =

obtained by the ISA method [3].

In the instability range of the order–disorder type (at
χ < 0.5), the IAO approximation results in the substan-
tially overestimated temperature Tc. Note that, in this
range, the Tα and Tβ temperatures calculated within the
IAO approximation differ insignificantly. Thus, it can
be concluded that, similar to the IMA method, the IAO
approximation is inapplicable to the systems undergo-
ing a structural phase transition of the order–disorder
type.

The application of the IAO approximation to the
investigation of the lattice dynamics in complex poly-
atomic crystals requires the determination of the quasi-

harmonic frequencies λi(k) = (k) and the fourth-
order parameters µi(k) for each geometry studied. The
quasi-harmonic frequencies are determined by the stan-
dard methods for the construction and diagonalization
of the dynamic matrix, whereas the determination of
the numerical parameters µi(k) demands certain efforts.
In [1, 2], these parameters were numerically deter-
mined from the dependence φ(q) for specific harmoni-
cally unstable modes. It was found that the µi(k) values
are almost identical for all modes λi(k) < 0. Earlier [2],
we proposed to use the same µ value for all modes of
the phonon spectrum (this case is realized in the above
model). Boyer and Hardy [1] employed the conventional
quasi-harmonic approximation for all the harmonically
stable modes; i.e., they assumed that µi(k) = 0. It is of
interest to analyze variations in the calculated values of
τc under this assumption. In order to exclude numerical
instabilities and to ensure the continuity of all the func-
tions, we introduce the following “cut-off” of the µ
coefficients into the aforementioned model: µ = 3/4 at

λ ≤ 0 and µ = exp(–λ2/g2) at λ > 0. The dependences

τc(χ) calculated for different parameters g are displayed

F ' ν' x( ) x 3T( )
1
2
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N
----------------- H

λ k( )

2 3T( )
1
2
---

-----------------
 
 
 
 
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1
3
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ωi
2

3
4
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in Fig. 4. These results allow us to reach the conclusion
that the elimination of anharmonic corrections for all
the harmonically stable modes brings about a certain
decrease in τc but changes neither the type of the struc-
tural phase transition nor the value of τc in the displace-
ment limit. Moreover, this correction of the µ parame-
ters leads to numerical results which are in better agree-
ment with the exact solution.

4. DISCUSSION

The concepts underlying the IAO approximation are
similar to the initial assumptions of the ISA and IMA
methods. In the strict sense, the IAO approximation is
the approximation obtained in the case when the mean
field approach (the replacement of the instantaneous
coordinate values by their means) is formally applied to
the expansion of the potential function of the lattice
into a series in terms of its normal coordinates.

The numerical calculations in the framework of the
IAO approximation are only slightly complicated as
compared to those within the quasi-harmonic approxi-
mation. A certain complication of the calculations due
to the inclusion of the fourth-order term in the statisti-
cal integral can be readily overcome using the table of
the special functions G(p) and H(p).

For the 2–4 model system in the displacement-type
instability range, the IAO approximation permits a cor-
rect description of the structural phase transition as a
second-order transition. The Tc temperature calculated
within this approximation tends to the exact solution in
the displacement limit, even if somewhat exceeds its
exact value. The elimination of anharmonic corrections
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H(p)

–2 –1 0 1 2
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0

1

2
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4

0
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4

6
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Fig. 5. Functions G(p) and H(p) (solid lines) and their
asymptotics (dashed lines).
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for harmonically stable modes leads to a decrease in the
Tc temperature and improves the numerical accuracy of
the approximation.

5. CONCLUSION

The results presented in this work and the data
obtained earlier by the IAO method, as applied to inves-
tigations of structural transformations in complex crys-
tals [1, 2], give grounds to treat this approximation as
an efficient and promising method in the microscopic
theory of structural phase transitions.

APPENDIX

The statistical integral (3) with the potential ϕ(x) =
λ/2x2 + µ/4x4 can be represented as

(A.1)

where 

G(p) = f(p) and f(p) = .

The integral f(p) can be calculated by the Gauss–
Christoffel method (see, for example, [7]). The proper-
ties and the plot of this function are presented in [2].

The problem of minimizing the free energy involves

the calculation of the function H = – . The functions

G(p) and H(p) are shown in Fig. 5. Let us consider their
specific properties.

At λ > 0, the G(p) function gives the value of inte-
gral (A.1) for the oscillator with the quartic anharmonic
correction. Note that, at λ @ µ, we have the limiting
case of a harmonic oscillator and

At λ < 0, the G(p) function allows one to calculate inte-
gral (A.1) for the 2–4 system with the double-well
potential. In this case, p2 = ε/T (where ε is the potential
well depth) and

At λ = 0, we have a quartic oscillator and G(0) =

(1/2 )Γ(1/4).

Z
ϕ x( )

T
----------– 

 exp xd∫ 2
T
µ
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–[ ] xdexp∫
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2 p
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2 p
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G p( ) ep
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2 p–
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1
2 p
------, p ∞.–+≈=
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PH
It should be also noted that the functions G(p) and
H(p) are the solutions of the following differential
equations:

G'' = G + 2pG',

H' = H2 + 2pH – 1,

which enable one to obtain easily the formulas for the
higher derivatives.

In particular, the H(p) function makes it possible to
calculate the Tc temperature within the ISA method.
Relationship (12) can be rewritten as

From these expressions, we obtain

which determines the dependence τc(χ) in the paramet-
ric form.
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Abstract—An interpretation of the available experimental data on the linear electrooptical effect in two-dimen-
sional (2D) electronic systems in quantized magnetic fields has been proposed. The self-consistent treatment of
the data obtained for the Corbino and Hall samples in both equilibrium and transport-current-carrying states is
performed with due regard for the contact phenomena observed during sample preparation. The limiting cases
of small and large contact-potential differences as compared to the cyclotron energy are analyzed. © 2000
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Earlier [1], we discussed the possibility of measur-
ing “incompressible” regions in inhomogeneous two-
dimensional (2D) electronic systems with integer fill-
ing factors with the use of capacitance methods. It was
assumed that the inhomogeneities stem from contact
phenomena occurring, with a high probability, in the
systems under consideration. In the present work, we
treated the local characteristics of different 2D systems
in a magnetic field, which can be measured using the
linear electrooptical effect (see [2–4]). Analysis of the
data obtained in [3, 4] revealed that the spatial homoge-
neity of the electron density is disturbed in electroopti-
cal experiments. This disturbance is most likely caused
by contact phenomena.

2. EQUILIBRIUM CONDITIONS

2.1. Figure 1 demonstrates the characteristic distri-
butions of the electric potential ϕ(x) over the cross-sec-
tion of the rectangular and Corbino geometry samples
in the normal and integer states in the absence of a
transport current. The normal part of this distribution is
depicted schematically (Fig. 1, line A). Line B (Fig. 1),
which is conventionally termed anomalous, represents
the data obtained by Knott et al. [3, Fig. 9] for one of
the cross-sections of a Hall sample. A qualitatively sim-
ilar distribution was also observed in the Corbino
geometry [4, Fig. 2].

The difference between the normal and anomalous
behavior of ϕ(x) can easily be explained for the Corb-
ino geometry samples. Actually, since the filling factor
is integer, the 2D electronic system acquires the dielec-
tric properties. Hence, the electric potential ϕ(x) should
monotonically decrease from a fixed value equal to the
contact-potential difference across the exterior elec-
1063-7834/00/4212- $20.00 © 22295
trodes to its minimum value in the center of the 2D sys-
tem, as is the case in the experiment.

For a rectangular geometry, a similar interpretation
is inapplicable. Indeed, a two-dimensional sample (2l ×
2w, l @ w) has ohmic contacts along its short sides of
length 2w and has no contacts along the other two sides
of length 2l. In these conditions, when the 2D system
acquires the dielectric properties, the expected inhomo-
geneities of ϕ(y) can be realized only along the direc-
tion between the short sides of the rectangular sample
with the characteristic dependence ϕ(y) ∝ y/l but not in

A

B

400 µm

1

0

Cross-current direction

Φ
/Φ

H

Fig. 1. Normal and anomalous behavior of the electric
potential over the cross-section of the Hall sample. Line A
corresponds (schematically) to the normal behavior of ϕ(x)
when the overall 2D system is in the high-conductivity state.
The smooth behavior of ϕ(x) at the edges of the 2D system
is associated with the finiteness of the laser beam radius.
Line B and the experimental points along this line represent
the data taken from [3] for the Hall sample.
000 MAIK “Nauka/Interperiodica”
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the “Hall” cross-sections of the rectangle –w ≤ x ≤ +w.
This contradicts the data obtained in [3] (see Fig. 1, line
B), for which the ϕ(x) inhomogeneity similar to that
observed in the Corbino configuration [4] is clearly
seen in the Hall cross-sections (i.e., ϕ(x) ∝  x/w). There-
fore, the assumption about the homogeneity of the
dielectric 2D state in experiments performed on a rect-
angular configuration [3] seems untenable.

Let us assume that the 2D system is inhomogeneous
along the x direction. In this case, if the central part of
the rectangle acquires the dielectric properties, its
perimeter (including the free sides) remains in the well-
conducting state. The situation becomes similar to that
realized in the Corbino geometry sample, and the x/w-
type inhomogeneity of ϕ(x) is easily explained. It
remains to demonstrate that the contact-potential dif-
ference at the short sides of the rectangular sample
gives rise to an inhomogeneity of the electron density
in the section –w ≤ x ≤ +w.

The electrostatic part of the problem is formulated
as follows:

 (1)

 (2)

Here, δn(x, y, t) is the deviation of the electron density
from the equilibrium value in the absence of the contact
energy W and κ is the dielectric constant. For simplic-
ity, the potentials of the metallic contacts are assumed
to be identical (and equal to zero).

In expressions (1) and (2), we change over to the
Fourier components with respect to the variable y and
obtain

 (3)

 (4)

Here, K0(x) is the modified Bessel function.
In the range of small arguments, the K0(x) function

has a logarithmic singularity. Hence, in the central part of
the 2D rectangle, the solution of the integral equation (4)
for δn(x, q) has a form similar to the solution of the prob-
lem for an infinite charged strip of width 2w, that is,

 (5)

eϕ x y,( ) 2e
2

κ
-------- σd s

δn s σ,( )

x s–( )2 y σ–( )2+
-----------------------------------------------d
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∫
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=  const W ,=

w x +w, l y +l;≤ ≤–≤ ≤–

ϕ x y,( ) 0, w x +w,≤ ≤–=

∞ y l or +l y +∞.≤ ≤–≤ ≤–

δn x y,( ) δn x q,( ) iqy( ),exp∝
ϕ x y,( ) ϕ x q,( ) iqy( ),exp∝

ϕ x q,( ) const
2e
κ
------ δn s q,( )K0 q x s–( ) s,d
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0 q 2π/l.≤ ≤

eϕ x( ) 2e2

κ
-------- δn s( ) x s–ln sd

w–
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∫ const.= =
PH
The solution of problem (5) for δn(x) yields the rela-
tionship

 (6)

Therefore, in our case,

 (7)

The limit q  0 implies that the inequality w ! l is
met and the cross-section of the 2D rectangle is chosen
in the vicinity of its middle. Near the short sides of the
sample, the electron density distribution should deviate
from asymptotics (7).

Thus, the electron density inhomogeneity is
observed in all the Hall cross-sections of the rectangu-
lar 2D samples, which are in ohmic contact with metal-
lic control electrodes only at certain portions of their
perimeter. Evidently, the specific details of the depen-
dence δn(x) for the Corbino and rectangular configura-
tions are different. Recall that, in the presence of con-
tact phenomena in the Corbino disk, the dependence
δn(x) is represented as

 (8)

which is valid in the quasi-one-dimensional case at
(R1 – R2)/(R1 + R2) ! 1, where R1 and R2 are the outer
and inner radii of the 2D Corbino disk. A qualitative
similarity between the disturbances defined by expres-
sions (7) and (8) is obvious. It is also clear that, in a
magnetic field, the sample with the density inhomoge-
neity described by relationship (7) or (8) cannot have an
integer filling factor throughout its surface. This is con-
firmed by the data obtained in [3, 4], which are qualita-
tively represented in Fig. 1 (line B).

2.2. Now, we turn to the discussion of the inhomo-
geneity scale in the 2D samples. Unfortunately, the
available equilibrium electrooptical data [2–4] and, in
particular, the results presented in Fig. 1 (line B) give
no absolute values of the potential ϕ(x). This is essen-
tial for the solution of the problem as a whole and also
for a detailed description of this potential, which
depends on the ratio between the energies "ωc and W
(where ωc is the cyclotron frequency). For "ωc ≤ W, the
central part of the 2D channel is predominantly occupied
by one incompressible strip of width 2a ≤ 2w with a par-
ticular distribution ϕ(x). In the case when "ωc ! W, the
2D channel is filled by a large number of incompress-
ible strips, so that the averaged distribution ϕ(x)
appears to be different. In the absence of absolute data
on the potential ϕ(x), the probable difference in its
behavior can be useful in analyzing 2D systems.

The solution of the problem of an isolated symmet-
rical incompressible channel, which, in the general
form, was considered by Chklovskiœ et al. [5] (for more

δn x( ) const

w2 x2–
---------------------.∝

δn x q,( )q 0→
const

w2 x2–
---------------------.∝

δn x( ) const

w2 x2–( )
---------------------,∝
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details of this problem in the presence of contact phe-
nomena, see also [1]), results in the following relation-
ship for ϕ(x):

 (9)

where 2a < 2w is the width of the incompressible strip.
The maximum width at the electron density described
by expression (8) is determined by the formula

 (10)

Note that the strip width is rather sensitive to a mag-
netic field. As the magnetic field strength increases, the
width of the strip varies from zero at the instant of its
formation to the critical size [formula (10)] when the
maximum value of potential (9) in the center of the
channel reaches the value of "ωc, after which the strip
studied breaks into two strips (for more details, see [5]).

In the case when "ωc ! W, the formation of a large
number of incompressible strips becomes possible and
expressions (9) and (10) lose their meaning. Hence, it
is necessary to use a formalism accounting for a large
number of strips and their interaction with each other.
One way to accomplish this is to take into account the
potential difference "ωc across the edges of each strip.
Then, the local electric potential in the problem with a
large number of strips can be written as

 (11)

where ν(x) is the local filling factor.

According to relationships (11), in the limit "ωc ! W,
the electric potential, on the average, reproduces the
local behavior of the electron density.

2.3. Let us treat the available experimental data
[3, 4] on the equilibrium distribution of ϕ(x) in the
Corbino and rectangular samples according to rela-
tionships (7)–(11).

The most interesting qualitative results obtained in
[3] are displayed in Fig. 1 (line B), according to which
the electron density distribution in the Hall sample is
inhomogeneous. Unfortunately, a number of uncertain-
ties in these data make their interpretation more diffi-
cult. In particular, a pronounced asymmetry can be due
to the effect of adjacent channels. Moreover, the cross-
section position chosen by the authors for the conve-
nience of measurements is close to the short side of the
2D system and is poorly determined, which compli-
cates the detailed description of ϕ(x).

The results obtained for the Corbino disk are more
readily interpreted. The experimental data obtained in
[4] are compared with the multichannel [relationship
(11)] and single-channel [relationship (9)] distributions
of ϕ(x) in Figs. 2 and 3, respectively. The calculated

ϕ x( ) a2 x2–( )3/2
, a x +a,<≤–∝

amax/w( )3 3π"ωc

2W
----------------.=

eϕ x( ) . "ωcν x( ), ν x( ) πlH
2 n x( ),=
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Fig. 2. (a) Coordinate dependences of the potentials defined
by relationships (12), (11), and (8). The solid line corre-
sponds to the parameters R = 50 µm and ω = 250 µm. Points
are the experimental data taken from [4]. (b) Evolution of
the potentials [relationships (12), (11), and (8)] with a vari-
ation in radius R (µm): 75 (points), 50 (solid line), and 5
(dashed line).

Fig. 3. Dependences ϕ(x) defined by relationships (12) and
(9) at R = 50 µm and different parameters a (µm): 230 (solid
line) and 250 (dashed line).
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curves φ(x) were constructed with the use of the expres-
sion

 (12)

Here, R is the radius of a laser beam used in the exper-
iments [3, 4]. The curves were located with reference to
the minimum φ(0) and were then fitted to the experi-
mental points by varying R and the geometric parame-
ters that enter into relationships (11) and (9). The solid
line in Fig. 2a corresponds to R = 50 µm and w = 250 µm.
Figure 2b illustrates how the radius of the laser beam
affects the behavior of φ(x). The ϕ(x) dependence cal-
culated from relationship (9) with two different a val-
ues and R = 50 µm is fitted to the same experimental
points in Fig. 3.

It should be noted that the experimental points dis-
played in Figs. 2 and 3 were obtained by scanning
Figs. 1 and 2, taken from [4]. Then, using Fig. 9 from
[3], which is identical to Fig. 1 in [4], the data obtained
by scanning Fig. 2 taken from [4] were recalculated in
terms of φ(x).

Summing up, we can state that the best agreement
between the data obtained in [4] and the calculated
dependence ϕ(x) is achieved with relationship (11)
(Fig. 2). However, more reliable inferences regarding
variants of the ϕ(x) distributions require a knowledge of
the anomaly scale, which hitherto has not been deter-
mined in experiments performed under equilibrium
conditions.

3. MEASUREMENTS IN A TRANSPORT REGIME
The anomaly scale we are interested in (for exam-

ple, the magnitude of the electrostatic “dip” in Fig. 1)
can be estimated from experiments with a transport cur-
rent. In this case, the problem includes an additional
energy parameter—the driving voltage V. This offers
new possibilities for further analysis, specifically for
the Corbino disk.

The electrical part of the problem in the presence of
a transport current needs special comments. There are
several approximate schemes of these calculations.

For σxx ≠ 0, the calculations are based on the condi-
tion divj = 0, which, according to the Ohm law, can be
reduced to the equation for ϕ(x, y) with boundary con-
ditions that allow joining the potentials in normal and
integer ranges. In this formulation, the problem is as yet
unsolved.

If σxx = 0, which is quite reasonable for the quantum
Hall effect, the condition divj = 0 degenerates. In this
case, it is necessary to search for other relationships
between ϕ(x, y) and δn(x), which, together with the
Poisson equation, would provide closure of the electro-
static problem. An example of this solution indepen-
dent of σxx is given in [6]. In the present work, the for-
mulated problem is solved within the contact approxi-

φ x( ) 1
2R
------- ϕ s( ) s.d

x R–

x R+

∫=
PH
mation, which is a simple extension of the approach
proposed in [1]. The case in point is the electron density
distribution over the cross section of the 2D system in
contact with supplying electrodes, which accounts for
the effect of the contact-potential difference and the
driving voltage. With this distribution, we can readily
obtain the distribution of ϕ(x) with the use of relation-
ship (11), providing that eV @ "ωc . By definition,

 (13)

 (14)

Using the known solution of the Dirichlet problem (14),
we calculate the required derivatives [formula (13)] and
obtain the relationship for δn(x), that is,

 (15)

In the limit V  0, expression (15) transforms into
relationship (8).

The distribution described by formula (15) exhibits
a characteristic maximum at the point xm

 (16)

The maximum in the ϕ(x) distribution is observed in the
experiment. According to [3], xm/w . 0.8 at eV . 0.3 eV.
In this case, from relationship (16), we have W . 0.73 eV.
The value of "ωc is of the order of 100 K; i.e., the con-
dition W @ "ωc , which allows us to use expression (11)
relating the density (15) to the observed electrostatic
potential, is rigorously fulfilled.

4. CONCLUSION

In this work, we proposed a scheme for describing the
inhomogeneous 2D electronic systems, which contain a
large number of integer channels in a magnetic field. The
average description of the channel system leads to the
conclusion that the observed electrostatic potential is
proportional to the inhomogeneous electron density of
the sample [see relationship (11)]. For a transport cur-
rent, the model explains the observed location of the
electrostatic maximum within the 2D sample.
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Abstract—A theory for the response of a 2D two-level system to irradiation by a symmetric light pulse is devel-
oped. Under certain conditions, such an electron system approximates an ideal solitary quantum well in a zero
field or a strong magnetic field H perpendicular to the plane of the well. One of the energy levels is the ground
state of the system, while the other is a discrete excited state with energy "ω0, which may be an exciton level
for H = 0 or any level in a strong magnetic field. It is assumed that the effect of other energy levels and the
interaction of light with the lattice can be ignored. General formulas are derived for the time dependence of the
dimensionless “coefficients” of the reflection 5(t), absorption !(t), and transmission 7(t) for a symmetric light
pulse. It is shown that the 5(t), !(t), and 7(t) time dependences have singular points of three types. At points
t0 of the first type, !(t0) = 7(t0) = 0 and total reflection takes place. It is shown that for γr @ γ, where γr and γ
are the radiative and nonradiative reciprocal lifetimes, respectively, for the upper energy level of the two-level
system, the amplitude and shape of the transmitted pulse can change significantly under the resonance ωl = ω0.
In the case of a long pulse, when γl < γr, the pulse is reflected almost completely. (The quantity γl characterizes
the duration of the exciting pulse.) In the case of an intermediate pulse duration γl . γr, the reflection, absorp-
tion, and transmission are comparable in value and the shape of the transmitted pulse differs considerably from
the shape of the exciting pulse: the transmitted pulse has two peaks due to the existence of the point t0 of total
reflection, at which the transmission is zero. If the carrier frequency ωl of light differs from the resonance fre-
quency ω0, the oscillating 5(t), !(t), and 7(t) time dependences are observed at the frequency ∆ω = ωl – ω0.
Oscillations can be observed most conveniently for ∆ω . γl. The position of the singular points of total absorp-
tion, reflection, and transparency is studied for the case when ωl differs from the resonance frequency. © 2000
MAIK “Nauka/Interperiodica”.
A strong change in the shape of a strongly asymmet-
ric light pulse with a steep front passing through a
quantum well and a large intensity of the reflected pulse
were predicted by Lang and Belitsky [1]. They assumed
that the carrier frequency ωl of the exciting pulse is
close to the electron excitation energy ω0 measured
from the ground-state energy. These phenomena can
take place under the condition

 (1)

where γr and γ are the reciprocal radiative and nonradi-
ative lifetimes of the electron excitation, respectively. It
is well known that in the opposite case, when

 (2)

the shape of the pulse transmitted through the well
changes insignificantly and the reflected and absorbed
pulses are weaker than the exciting pulse.

γr @ γ,

γr ! γ,
1063-7834/00/4212- $20.00 © 22300
The radiative broadening of energy levels takes
place for quasi-two-dimensional systems as a result of
breaking of the translational symmetry in a direction
perpendicular to the plane of the well [2, 3]. For high-
quality wells, the radiative broadening γr can be compa-
rable with the contributions from other relaxation
mechanisms and can even exceed them. This new phys-
ical situation requires an adequate theoretical descrip-
tion in which higher order terms in the interaction
between electrons and the electromagnetic field must
be taken into account [1–14]. The reciprocal radiative
lifetime γr for the exciton energy level in a quantum
well was calculated in [2] for zero magnetic field, in
[11, 12] for a strong magnetic field, and in [12] for a
magnetic polaron in a quantum well.

Here, we consider a two-level system having the
ground state and an excited state. We assume that the
influence of other energy levels can be ignored. The
000 MAIK “Nauka/Interperiodica”
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role of the electron excitation can be played by an exci-
ton in a quantum well in a zero or a strong magnetic
field. Since it is difficult to obtain a light pulse with one
steep front, we consider, in contrast to [1], a symmetric
pulse.

1. ELECTRIC FIELDS TO THE RIGHT 
AND LEFT OF A QUANTUM WELL 

UNDER PULSED IRRADIATION

Let us suppose that an exciting light pulse falls on a
solitary quantum well from the left (where z < 0) and
that the electric field corresponding to it has the form

 (3)

where E0 is the real-valued amplitude, el is the polariza-
tion vector; p = t – zn/c, n is the refractive index of the
medium outside the well; Θ(p) is a step function; and
γl1 and γl2 define the attenuation and build-up of the
symmetric pulse, respectively. The pulse in Eq. (3) cor-
responds to the Poynting vector

 (4)

 (5)

where ez is a unit vector along the z axis.
We carry out the Fourier transformation of expres-

sion (3) written in the form

 (6)

where

 (7)

In [1, 10, 11], a strongly asymmetric pulse with a steep
front was used, for which γl2  ∞ and the second term
in Eq. (5), as well as the second term in the brackets in
Eq. (7), vanishes. For

 (8)

the pulse in Eq. (3) is symmetric. For γl  0, the sym-
metric pulse is transformed into a monochromatic wave
of frequency ωl and the function $0(ω) is transformed
into δ(ω – ωl). The pulse of the form of Eq. (3) is con-
venient for computations. Its drawback is the disconti-
nuity of the derivative at the point t – zn/c [see Eq. (5)],
but all the qualitative conclusions that will be drawn
below remain valid after a transition to pulses with a

E0 z t,( ) E0el iωl p–( ) Θ p( ) γl1 p/2–( )exp{exp=

+ 1 Θ p( )–[ ] γl1 p/2–( )exp } c.c.,+

S p( ) S0P p( ),=

S0 ezcE0
2/ 2πn( ),=

P p( ) Θ p( ) γl1 p/2–( )exp=

+ 1 Θ p( )–[ ] γl2 p/2–( ),exp

E0 z t,( ) E0el ωe iωp– $0 ω( ) c.c.,+d

∞–

∞

∫=

$0 ω( )
i

2π
------=

× ω ωl– iγl1/2+( ) 1– ω ωl– iγl2/2–( ) 1––[ ] .

γl1 γl2 γl,= =
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smoothed shape. Some results for a symmetric pulse

proportional to  are given in [1].

Let us consider quantum wells whose width d is
much smaller than the wavelength c/(nωl) of a light
wave. In this case, the electric fields El(r)(z, t) on the left
(right) of the quantum well are given by [1]

 (9)

 (10)

where the upper (lower) sign corresponds to the sub-
script l (r). In accordance with Eq. (10), the polarization
of the induced electric field coincides with the polariza-
tion of the exciting field. Result (10) presumes that the
incident waves have a circular polarization

 (11)

where ex and ey are unit vectors along the x and y axes,
respectively. It is also assumed that each of the two cir-
cular polarizations corresponds to the excitation (from
the ground state) of one of the two types of electron–
hole pairs (EHP) with the same energy (see [12, 15]).

The frequency dependence of $(ω) has the form

 (12)

 (13)

where ρ is the index of the excited state; "ωρ is the
energy of the excited state measured from the ground
state; and γrρ and γρ are the radiative and nonradiative
reciprocal lifetimes of the excited state with the index ρ,
respectively. The second term in the brackets in Eq. (13)
is a nonresonant term, which will henceforth be disre-
garded. We assume that the reflection and absorption of
light by the quantum well are due only to electron tran-
sitions from the valence band to the conduction band.
The interaction of light with the lattice and deep elec-
tron levels is disregarded.

It was mentioned above that in the sum in Eq. (13)
we take into account the only excited level; i.e., we con-
sider a two-level system in which the first level corre-
sponds to the ground state, and the second, to the
excited state. The index ρ assumes only one value, and
hence the following notation will be used:

 (14)

Using formulas (7)–(13), we obtain the following
result for the field induced on the left of the well under

γl p( )cosh[ ] 1–

El r( ) z t,( ) E0 z t,( ) ∆El r( ) z t,( ),+=

∆El r( ) z t,( ) E0el ωe iω t zn/c±( )– $ ω( ) c.c.,+d

∞–

∞

∫=

el 2 1/2– ex iey±( ),=

$ ω( )
4πχ ω( )$0 ω( )

1 4πχ ω( )+
----------------------------------,–=

χ ω( ) i/4π( ) γrρ/2( )
ρ
∑=

× ω ωρ– iγρ/2+( ) 1– ω ωρ iγρ/2+ +( ) 1–+[ ] ,

ωρ ω0, γrρ γr, γρ γ, Γ γr γ.+= = = =
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irradiation by a symmetric pulse:

 

 

 (15)

where s = t + zn/c and ∆ω = ωl – ω0. The expression for
∆Er(z, t) differs from Eq. (15) only in the substitution of
the variable p = t – zn/c for s. Since expression (15) is
valid for |z| @ d, we will henceforth ignore the width of
the quantum well, assuming that it lies in the plane z = 0.

2. CALCULATION OF TRANSMITTED, 
REFLECTED, AND ABSORBED 

ENERGY FLUXES

For the sake of brevity, we will refer to the Poynting
vector as the energy flux. The transmitted flux, i.e., the
flux on the right of the well, is given by

 (16)

while the flux on the left of the well is

 (17)

where S(p) is the flux of the exciting light pulse defined
by Eq. (4) and Sref(s) is the reflected flux, which is given
by

 (18)

The absorbed energy flux is defined as

 (19)

and is equal to

 (20)

where

 (21)

We introduce the dimensionless “coefficients” of the
transmission 7(x), reflection 5(x), and absorption
!(x), defining them as

 (22)

It follows from Eq. (19) that the equality

7(x) + 5(x) + !(x) = P(x) (23)

always holds. The quantities P(x), 7(x), and 5(x) are
always positive, while absorption can be positive or

∆El z t,( ) iE0el γr/2( )–=
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c.c.,+
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---------------------------------------------- iω0s– Γs/2–( )exp–=

× 1
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---------------------------------------- 1
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----------------------------------------– ,
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Sabs t( ) S0! t( )=
PH
negative. Negative absorption at a certain instant t indi-
cates that the electron system of the quantum well gives
away the energy accumulated during previous time
intervals. Instead of the notation x for the variable, we
will henceforth use the notation t, bearing in mind the
definitions in Eq. (22). The variable t corresponds to
real time for z = 0.

3. TIME POINTS OF ZERO ABSORPTION, TOTAL 
REFLECTION, AND COMPLETE TRANSMISSION

This section is based on an analysis of the formulas
from Section 2, which is carried out without specifying
the expression for the induced field ∆E(z, t). For this
reason, the results obtained below are valid for any
number of excited energy levels in the quantum well
(see, for example, [10–14]) rather than only in the case
of a single energy level for which formula (15) is appli-
cable.

In the figures presenting the !(t), 7(t), and 5(t)
curves, we can see the points of zero absorption !(t) =
0, total reflection 5(t) = P(t), and complete transmis-
sion 7(t) = P(t). We will refer to these time points as
singular points. It follows from formulas (16), (18), and
(20) that these points can be of three types. For the first
two types, they correspond to the disappearance of the
electric fields or their combinations. For singular points
of the first type, the fields Er(z = 0, t) or ∆El(x = 0, t) are
equal to zero. For the case of Er(z = 0, t0) = 0, we have

!(t0) = 0, 7(t0) = 0, 5(t0) = P(t0), (24)

and the point t0 is referred to as the point of total reflec-
tion of the first type. For the case of ∆El(z = 0, tx) = 0,
we have

!(tx) = 0, 5(tx) = 0, 7(tx) = P(tx), (25)

and the point tx is referred to as the point of complete
transmission of the first type. Thus, the absorption
!(t) = 0 at singular points of total reflection and com-
plete transmission of the first type.

The equality P(t) – 5(t) = 0 can be written in the
form

 (26)

while the equality P(t) – 7(t) = 0 can be written as

 (27)

Consequently, the condition E0 – ∆E = 0 corresponds
to the point of total reflection, while the condition
E0 + Er = 0 corresponds to the point of complete trans-
mission. At these points, the absorption !(t) generally
differs from zero. We will refer to these points as the
points of total reflection and complete transmission of
the second type. Finally, expressions (20), (26), and

E0( )2 ∆E( )2– 0, E0 ∆E+( ) E0 ∆E–( ) 0,= =

Er E0 ∆E–( ) 0,=

E0( )2 ∆Er( )2– 0, E0 Er–( ) E0 Er+( ) 0,= =

∆E E0 Er+( ) 0.=
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(27) indicate that the special points ! = 0, 5 = P, and
7 = P can appear when the vector Er is perpendicular
to ∆E, Er is perpendicular to E0 – ∆E, and ∆E is per-
pendicular to E0 + Er, respectively. These singular
points will be referred to as singular points of the third
type.

In experiments, the singular points can be observed
as follows. We will measure the transmission as a func-
tion of time t in the plane z = z0, while the reflection will
be measured in the plane z = –z0, i.e., on the left of the
quantum well. Let t0 be the point of total reflection of
the first type. Taking into account expression (22), we
find that at the instant t = t0 + z0n/c, the transmission is
equal to zero, while the reflection is total. The absorp-
tion ! cannot be measured directly, but, having defined
it as ! = P – 5 – 7 at the instant t = t0 + z0n/c, we find
that ! = 0 for a singular point of the first type. This
means that, in such an experiment, the absorption is
measured with a delay by the time interval ∆t = z0n/c.

4. ENERGY FLUXES IN THE CASE OF EXACT 
RESONANCE FOR ARBITRARY RELATIONS 

BETWEEN RECIPROCAL LIFETIMES

Using the results obtained in Section 2 and expres-
sions (3), (8), (9), and (15) for electric fields, we can
determine the transmitted, reflected, and absorbed
energy fluxes for any values of the parameters ωl and γl

characterizing the exciting pulse and of the parameters
ω0, γr, and γ characterizing the energy level in the quan-
tum well.

For γl = 0, which corresponds to monochromatic
irradiation, we obtain the expressions

 (28)

which were derived earlier in [2–5, 8].
In the case of exact resonance

ωl = ω0, (29)

we obtain the following results for the quantities char-
acterizing the energy fluxes:

 (30)

 

 

7
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--------------------------------, 5
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------------------------------,=
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× γl p( ) γ γl+( )2/ Γ γl+( )2,exp
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 (32)

In formulas (30) and (32), we have introduced the nota-
tion G = (Γ – γl)–1 – (Γ + γl)–1. Expressions (9) and (15)
for ωl = ω0 imply that the position of the point t0 of total
reflection of the first type is determined by the condi-
tion t > 0 and the equation

 (33)

Solving this equation, we obtain

 (34)

so that the point of total reflection always exists for a
short pulse. This means that, for larger values of time,
the absorption of energy by the quantum well is
replaced by energy generation since !(t0) = 0 and is
negative for t > t0.

The position of the point tt of complete transmission
of the second type, at which Er + E0 = 0, is determined
by the conditions

 (35)

which lead to

 (36)

It follows from Eq. (36) that the point tt exists for short
pulses. Note that the condition γl > γ + γr/2 is more strin-
gent than the requirement γl > γ from Eq. (34).

In the case of only one excited level in question,
under the condition of exact resonance ωl = ω0, the con-
ditions ∆E = 0 and E0 – ∆E = 0 cannot be met and,
hence, the points of complete transmission of the first
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Fig. 1. Dimensionless “coefficients” of the reflection 5(t), absorption !(t), and transmission 7(t) for a symmetric light pulse and
a two-level system in the case of exact resonance ∆ω = ωl – ω0 = 0 and a short pulse. Here, t0 is a total-reflection point of the first
type; tt is a complete-transmission point of the second type; γr and γ are the radiative and nonradiative reciprocal lifetimes of the
excited level, respectively; γl determines the duration of the chosen symmetric pulse; ωl is the carrier frequency; and ω0 is the res-
onance transition frequency.
type and of total reflection of the second type do not
exist, which is reflected in Figs. 1–3.

Singular temporal points of the third type in the case
of exact resonance do not exist either. Indeed, the vec-
tors E0, Er, and ∆E are parallel at all instants. This can
easily be verified with the help of Eqs. (3), (9), and (15)
for ∆ω = 0. For the vectors E0(z = 0, t), Er(z = 0, t), and
∆E(z = 0, t), as well as for their combinations E0 – ∆E
and E0 + Er, we obtain expressions of the type

 (37)

where

 (38)

the signs + (–) correspond to the right (left) circular
polarization, and Fi(t) are dimensionless real-valued
functions. Equation (37) just indicates that all three vec-
tors are parallel. The singular points of the second and
third types correspond to the equalities Fi(t) = 0 for t > 0.

For short pulses, for γl > Γ and p @ , the follow-
ing situation takes place. The exciting field containing
the factor exp(–γlp/2) becomes negligibly small and,
hence,

 (39)

In this case, for t @ , we find that

 (40)

Ei z 0 t,=( ) E0Fi t( )el
± t( ),=

el
± t( ) el iωlt–( ) el* iωlt( )exp+exp=

=  2 ex ωlt ey ωltsin±cos( ),

γl
1–

Er z t,( ) . ∆Er z t,( ).

γl
1–

5 t( ) . 7 t( ), ! t( ) . 25 t( ).–
PH
This means that only the induced fields ∆El(r) symmet-
ric relative to the plane of the well persist. The electron
system of the well gives away the energy accumulated
in it, emitting this energy symmetrically in the form of
two flows propagating to the right and to the left. The
fulfillment of relations (40) for γlt @ 1 is illustrated in
Fig. 1.

5. ENERGY FLUXES FOR EXACT RESONANCE 
UNDER THE CONDITION γr @ γ

In the case when γr ! γ, the perturbation theory is
applicable and it is sufficient to take into account only
the lowest order terms in the interaction of electrons
with the electromagnetic field, which is equivalent to
discarding the term 4πχ(ω) in the denominator of for-
mula (12).1 For γr ! γ, the fields ∆El(r) induced on the
left (right) of the well are smaller than the exciting field
in Eq. (3) for p = 0; i.e., the dimensionless reflection 5
and absorption ! are smaller than unity. The shape of
the transmitted pulse differs insignificantly from that of
the exciting pulse. Interesting results are also obtained
in this case: “pulling” of a short pulse is observed in the
transmitted light for times of the order of γ–1, while
sinusoidal beats are observed in the case of two closely
spaced energy levels at a frequency ∆E/", where ∆E is

1 In the case of pulsed irradiation of a quantum well, the lowest
order approximation in the perturbation theory for γr ! γ is appli-

cable only for times t !  since the intensity of the transmitted

and reflected light for t ≥  attenuates according to the law
exp(–γrt).

γr
1–

γr
1–
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Fig. 3. The same as in Fig. 1 for an intermediate pulse.
the energy spacing between the levels (see, for exam-
ple, [16]).

In the opposite case γr @ γ, the induced fields are
comparable to the exciting fields in magnitude and the
shape of the transmitted pulse might change signifi-
cantly. Lang and Belitsky [1] proved this for a strongly
asymmetric pulse and presented the results of numeri-
cal calculations for a symmetric pulse proportional to

. The analytical expressions for the dimen-
sionless quantities 7, 5, and ! for the symmetric pulse
in Eq. (3) were presented above [see Eqs. (30)–(32)].

Let us consider the case when γ = 0, in which the con-
dition γr @ γ always holds. Figures 1–3 show the curves
calculated by using formulas (30)–(32) (in which we

γl p( )cosh[ ] 1–
E SOLID STATE      Vol. 42      No. 12      20
have put γ = 0) for short (γl @ γr), long (γl ! γr), and inter-
mediate (γl = γr) pulses. In these figures, we can see the
point t0 of total reflection of the first type, which always
exists for γ = 0 and is defined by the expression

 (41)

For this reason, the curve 7(t) has two peaks, which
can be seen especially clearly in Fig. 3. Figures 1 and 3
also show the point of complete transmission tt of the
second type, which exists for γl > γr/2 in the case when
γ = 0 and is given by

 (42)

t0
2

γr γl–
--------------

2γr

γr γl+
---------------.ln=

tt
2

γr γl–
--------------

2γrγl

γr γl+( ) 2γl γr–( )
-------------------------------------------.ln=
00
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This point is not observed in Fig. 2 since the condition
γl > γr/2 is violated for long pulses.

It can be seen from formulas (30)–(32) and from
Fig. 1 that in the case of a short pulse, the transmitted
pulse differs from the exciting pulse insignificantly.
The reflected pulse is very weak since formula (31)
contains a small factor ~(γr/γl)2. The absorbed power is
also small as compared to that of the exciting pulse, but
is greater than the reflected power since it contains the
factor ~(γr/γl).

In the case of a long pulse, the situation is com-
pletely different, which is illustrated in Fig. 2. The
pulse is reflected almost completely; i.e., the reflected
pulse almost coincides with the exciting pulse. The
transmitted pulse is very weak and contains the factor
~(γr/γl)2. The absorption is larger than the transmission
since it contains the factor ~(γr/γl).

Figure 3 corresponds to the case when γl = γr. Sub-
stituting γl = γr and γ = 0 into Eqs. (30)–(32), we find
that

 (43)

Obviously, the points t0 of total reflection of the first
type and tt of complete transmission of the second type
are given by

 (44)

The exciting, transmitted, and reflected pulses are of
the same order of magnitude, but the transmitted pulse
differs significantly in shape from the excited pulse,
which is illustrated in Fig. 3. The transmitted pulse has

a minimum at the point t0 =  and then a second peak;
i.e., it has two humps.

6. INTEGRATED ENERGY FLUXES IN THE CASE 
OF EXACT RESONANCE ωl = ω0

The total amount of the energy absorbed per unit
area in the case of pulsed irradiation is given by

 (45)

where we have introduced the dimensionless quantity

 (46)

The total amount of exciting, transmitted, and reflected

7 t( ) Θ t( )e
γl t–

1 γlt–( )
2

1 Θ t( )–( )e
γl t+[ ] /4,=

5 t( ) Θ t( ) γlt–( ) 1 γlt+( )2exp[=

+ 1 Θ t( )–( ) γlt( )exp ] /4,

! t( ) Θ t( ) γlt–( ) 1 γlt( )2–( )exp[=

+ 1 Θ t( )–( ) γlt( )exp ] /2.

t0 γl
1– , tt 3γl

1– .= =

γl
1–

%! 2 S0 _!/γl,=

_! γl/2( ) ! t( ) t.d

∞–

∞

∫=
PH
energy per unit area is given, respectively, by

 (47)

where

 (48)

so that

 (49)

Using Eqs. (30)–(32), we obtain

 (50)

 (51)

 (52)

Similar expressions for an asymmetric pulse with a
steep front were given in [1]. It follows from Eq. (52)
that the total amount of absorbed energy is equal to zero
for γ = 0. This is obvious from the physical point of
view since electron excitations in a quantum well trans-
mit their energy to other excitations (e.g., phonons)
only for γ ≠ 0. If γ = 0, the entire energy of the electron
excitations is ultimately transformed into the luminous
energy and the total absorption is zero. For γ = 0 and
γr = γl, formulas (50) and (51) show that three-fourths
of the energy of the exciting pulse is reflected and one-
fourth is transmitted through the well.

7. REFLECTION AND ABSORPTION OF A LIGHT 
PULSE FOR A CARRIER FREQUENCY 

DEVIATING FROM THE RESONANCE VALUE

Expressions for the dimensionless absorption !(t),
reflection 5(t), and transmission 7(t) for a departure
from resonance have the form

 

 

 (53)

%P 2 S0 _P/γl, %7 2 S0 _7/γl,= =

%5 2 S0 _5/γl,=

_P

γl

2
---- P t( ) t, _7d

∞–

∞

∫
γl

2
---- 7 t( ) t,d

∞–

∞

∫= =

_5
γl

2
---- 5 t( ) t,d

∞–

∞

∫=

_7 _5 _!+ + _P.=

_7
γ2 Γ 2γl+( ) γl

2Γ+

Γ Γ γl+( )2
-------------------------------------------,=

_5
γr

2 Γ 2γl+( )
Γ Γ γl+( )2
---------------------------,=

_!
2γrγ Γ 2γl+( )

Γ Γ γl+( )2
---------------------------------.=

! t( )
Θ t( )

∆ω( )2 γl Γ–( )2/4+
-----------------------------------------------=

× 1
2
--- γlt–( )γr γ γl–( )

Γ t–( )γr
2γl

2exp

2 ∆ω( )2 γl Γ+( )2/4+[ ]
-------------------------------------------------------–exp





– γrγl

∆ω( )2 γl γr γ–+( )2/4+

∆ω( )2 γl Γ+( )2/4+
---------------------------------------------------------
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 (54)

 (55)

where the following notation has been introduced:

 (56)

 (57)

and the angles χ, ζ, and κ are defined through the rela-
tions

(58)

 (59)

--× γl Γ+( )t/2–( )exp ∆ωt χ+( )cos




+ 1 Θ t( )–[ ]
γlt( )γr γl γ+( )exp

∆ω( )2 γl Γ+( )2/4+
-----------------------------------------------,

5 t( )
γr

2

4
----- Θ t( )

∆ω( )2 γl Γ–( )2/4+
-----------------------------------------------





=

× a5
2 t( ) b5

2 t( ) 2a5 t( )b5 t( ) ∆ωt ζ–( )cos+ +[ ]

+
1 Θ t( )–[ ] γlt( )exp

∆ω( )2 γl Γ+( )2/4+
-----------------------------------------------





,

7 t( )
Θ t( ) a7

2 b7
2 2a7b7 ∆ωt κ+( )cos+ +[ ]

∆ω( )2 Γ γl–( )2/4+
--------------------------------------------------------------------------------------------=

+
1 Θ t( )–( ) γlt( ) ∆ω( )2 γ γl+( )2/4+[ ]exp

∆ω( )2 Γ γl+( )2/4+
------------------------------------------------------------------------------------------------,

a5 γlt/2–( ),exp=

b5

γl Γ t/2–( )exp

∆ω( )2 γl γ–( )2/4+
--------------------------------------------------,=

a7 ∆ω( )2 γl γ–( )2/4+ γlt/2–( ),exp=

b7 γrγl/ 2 ∆ω( )2 Γ γl+( )2/4+[ ] Γ t/2–( ),exp=

χcos

=  
∆ω( )2 γl Γ+( ) γl γr γ–+( )/4+

∆ω( )2 γl Γ+( )2/4+[ ] ∆ω( )2 γl γr γ–+( )2/4+[ ]
-----------------------------------------------------------------------------------------------------------------------,–

χsin

=  
∆ωγ

∆ω( )2 γl Γ+( )2/4+[ ] ∆ω( )2 γl γr γ–+( )2/4+[ ]
-----------------------------------------------------------------------------------------------------------------------,

ζcos
γl Γ+

2 ∆ω( )2 γl Γ+( )2/4+[ ]
-----------------------------------------------------------,–=

ζsin
∆ω

∆ω( )2 γl Γ+( )2/4+[ ]
--------------------------------------------------------,–=
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In all three dependences, oscillations are observed at
the frequency ∆ω with different phase shifts.

8. SINGULAR POINTS FOR A CARRIER 
FREQUENCY DEVIATING 

FROM THE RESONANCE VALUE

Let us prove that singular temporal points of the first
and second types generally do not exist for ∆ω ≠ 0.
Indeed, expressions (9), (10), and (15) imply that the
fields ∆E(z = 0, t) and Er(z = 0, t) can be written in the
form

 (61)

where A, B, and C are real-valued coefficients indepen-
dent of time and ξ, ϕ, and ζ are phase shifts. Using the
circular polarization defined in Eq. (11), we transform
Eq. (61) to

 (62)

where the + (–) sign corresponds to the right (left) cir-
cular polarization of the exciting light. Thus, in the case
of the deviation from resonance for t > 0, the transmit-
ted, as well as reflected, pulse contains two circularly
polarized waves with different carrier frequencies ωl

and ω0 and different phase shifts relative to E0(z = 0, t).
In this case, the resultant vector E(z = 0, t) does not van-
ish in the general case. Setting the vector E(z = 0, t)
equal to zero, we obtain two equations for the same
unknown t, which have no solutions. The same applies
to the combinations of vectors E0 – ∆E and E0 + Er.
Thus, the singular points of the first and second type are
absent in the case of a deviation from resonance. On the
other hand, singular points of the third type are possible
and do exist since some of the vectors ∆E, Er, E0 – ∆E,

κcos

=  
∆ω( )2 γl γ–( ) γl Γ+( )/4+

∆ω( )2 γl Γ+( )2/4+[ ] ∆ω( )2 γl γ–( )2/4+[ ]
------------------------------------------------------------------------------------------------------------,–

κsin

=  
∆ω Γ γ+( )/2

∆ω( )2 γl Γ+( )2/4+[ ] ∆ω( )2 γl γ–( )2/4+[ ]
------------------------------------------------------------------------------------------------------------.

E z 0 t,=( ) E0el Θ t( ) A γlt/2 i ωlt ξ+( )––( )exp[{=

+ B Γ t/2– i ω0t ϕ+( )–( )exp ]
+ 1 Θ t( )–[ ]C γlt/2 i ωlt ζ+( )–( )exp } c.c.,+

E z 0 t,=( )

=  E0 Θ t( ) A 2 γlt/2–( ) ex ωlt ξ+( )cos(exp[{

± ey ωlt ξ+( )sin ) ] B 2 Γ t/2–( )exp+

× ex ω0t ϕ+( )cos ey ω0t ϕ+( )sin±( )

+ 1 Θ t( )–[ ]C 2 γlt/2( )exp

× ex ω0t ζ+( ) ey ω0t ζ+( )sin±cos( ) } ,
00
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Fig. 4. (a) 5(t) and (b) !(t) curves for a very short pulse for various values of deviation ∆ω of the carrier frequency of the pulse
from resonance.
and E0 + Er can be perpendicular to each other at cer-
tain instants.

It is more convenient to analyze the conditions for
the existence of a point of zero absorption, total reflec-
tion, or complete transmission of the third type by
using expressions (53)–(55). We will confine our sub-
sequent analysis to the most interesting case of γr @ γ,

setting γ = 0. In this case, the condition  =

0 holds and at least one point of zero absorption must
obviously exist. An analysis of expression (53) for γ = 0
shows that a finite odd number of zero-absorption
points exists for γl ≠ γr. This means that for large values
of time, the quantity !γ = 0(t) becomes negative. The
number of points for which !γ = 0(t) = 0 depends on the
ratio q = ∆ω/γl, i.e., on the deviation from resonance. In

!γ 0= t( ) td
∞–

∞∫
PH
the case of a short pulse, when γl @ γr, there exists only
one zero-absorption point for q ! π, while several
points of this kind exist for q @ π. In the case of a long
pulse, when γl ! γr, there is one zero-absorption point
for q ! πγr/γl and many such points exist for q @ πγr/γl.

For γl = γr, the number of zero-absorption points is
infinitely large. However, the number of total-reflection
points is determined by the parameter q. The number of
total-reflection points is infinitely large for q < qb and is
equal to zero for q > qb. The value of qb is determined

by the equation (2qb – 1)  – 1 = 0 and is equal
to 0.876. It should also be noted that the number of
complete-transmission points for γl = γr is infinitely
large for any q.

1 qb
2+
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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9. DISCUSSION OF RESULTS FOR THE CASE 
OF A FREQUENCY DIFFERING 
FROM ITS RESONANCE VALUE

Figures 4–6 depict the functions 5(t), !(t), and
7(t) for γ = 0 and for various relations between the
parameters γr, γl, and ∆ω. Figure 4 corresponds to short
pulses for which γl @ γr, while Fig. 5 corresponds to
long pulses (γl ! γr). Figure 6 corresponds to interme-
diate pulses for which γl/γr = 1.

Figure 4 depicts the dependences of reflection 5(t)
and absorption !(t) on the dimensionless quantity γlt
for γl/γr = 10 and for various values of the parameter
q = ∆ω/γl characterizing the departure from resonance.
The transmission 7(t) curves for short pulses are not
presented since they are close to P(t) for values of q
varying from 1 to 10; i.e., the transmission is always
LID STATE      Vol. 42      No. 12      20
significant. It can be seen from Fig. 4 that the values of
5 and ! are much smaller than unity for ∆ω = 0 and
attenuate rapidly with an increasing deviation from res-
onance. The oscillating contribution to 5 and ! atten-
uates according to the law exp[–(γl + γr)t/2]. The atten-
uation parameter is defined as Π = 2/(1 + γr/γl) (Π = 1.9
in Fig. 4). The period of oscillations is T = 2π/q. On the
5(t) and !(t) curves, oscillations cannot be seen since
T @ Π for q = 0.2. However, oscillations can be seen
clearly on the curves for q = 1 and 10. With an increas-
ing deviation from resonance, the period of oscilla-
tions, as well as their amplitude, becomes smaller. Fig-
ure 4a contains total-reflection points of the third type,
while Fig. 4b contains zero-absorption points of the
third type (see Section 8).

Figure 5 shows the 5, !, and 7 curves for γl/γr =
0.1. The oscillations cannot be seen on the 5 curves in
00
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Fig. 5a for any value of q since their amplitude is much
smaller than the nonoscillating contribution. For q = 0,
the 5(t) curve is close to the P(t) curve; i.e., the pulse
is reflected almost completely, while with increasing q
the reflection decreases, attaining small values for q =
100. It can be seen from Fig. 5b that absorption also
decreases rapidly when parameter q increases. Oscilla-
tions on the !(t) curves can be clearly seen for q = 20
and 100. The number of zero-absorption points differs
from unity only for q = 100, which agrees with the
results obtained in Section 8. The transmission 7
(Fig. 5c) is small for q = 0; it increases with q and
approaches P(t) for q > 10. Oscillations cannot be seen.
For q = 0, there exists a point of total reflection of the
first type (Fig. 5a), which corresponds to the zero-
absorption point in Fig. 5b and the zero-transmission
point in Fig. 5c. With increasing q, the zero-transmis-
sion point is transformed into a minimal-transmission
point, while the total-reflection point is transformed
into the maximal-reflection point.

Finally, Fig. 6 shows the 5(t), !(t), and 7(t) curves
for an intermediate pulse for γl  = γr . Figure 6a depicts
the 5(t) curves for q = 0, 1, 10, and 30. While the reflec-
tion is comparable with P(t) for q = 0, it becomes
extremely small as compared to unity already for q = 10.
Oscillations can be observed on the curves for q = 10 and
30. A total-reflection point of the first type can be seen
on the curve for q = 0, while on the remaining curves
such points are absent. This is in accord with the results
obtained in Section 8 for q > qb . Figure 6b shows the
5exp(γlt) curves for which attenuation is ruled out, and
hence an infinitely large number of oscillations is
observed. In accordance with Section 8, there exists an
infinitely large number of total-reflection points of the
third type for q < qb, while no point of this type is
observed for q > qb. For q = qb, the 5exp(γlt) curve
touches the P(t)exp(γlt) straight line corresponding to
an excited pulse. Figure 6c depicts the !(t) curves for
an intermediate pulse. When the parameter q increases,
the absorption decreases, and we can clearly see oscil-
lations and a large number of zero-absorption points for
q = 10. It should be recalled that, for γl  = γr , the number
of zero-absorption points is infinitely large. Figure 6d
shows the 7(t) curves for an intermediate pulse. The
transmission increases with q and becomes close to the
P(t) curve even for q = 2. The number of complete-
transmission points must be infinitely large for any
value of q ≥ 0. However, only one such point can be
seen for q = 0.5 and two points for q = 2 in view of the
rapid attenuation of the curves. In order to demonstrate
the large number of complete-transmission, total-
reflection, and zero-absorption points, Fig. 6e depicts
the 5exp(γlt), !(t)exp(γlt), and 7exp(γlt) curves cor-
responding to q = 0.7 as well as the Pexp(γlt) straight
line for t > 0. It can be seen that all three oscillating
curves are different in phase. It should be emphasized
that the 5(t) curve in Figs. 6b and 6e does not assume
PH
the zero value, as it might appear, but assumes very
small positive values at the points of the minima.

Thus, we can draw the following qualitative conclu-
sions obtained under the condition γ ! γr. (For the sake
of simplicity, we assume that γ = 0.) For exact reso-
nance, when ωl = ω0, in the case of a very short pulse
for which γl  @ γr, the pulse passes through the well
almost without changing its shape. The reflection and
absorption are small, the reflection being much smaller
than the absorption. In the case of a long pulse for
which γl  ! γr, the pulse is reflected almost completely
and the transmission is much smaller than the absorp-
tion. Since the integrated absorption is zero for γ = 0,
for any relation between γl and γr there exists a zero-
absorption point at which the luminous-energy absorp-
tion is replaced by emission. At the point of zero
absorption, total reflection takes place and the trans-
mission is equal to zero (a singular point of the first
type).

The case when ωl = ω0 and γl  . γr, in which the
reflection, absorption, and transmission have compara-
ble values, is of special interest. The shape of the trans-
mitted pulse differs significantly from the shape of the
exciting pulse. The transmitted pulse has two peaks,
i.e., a two-humped shape due to the presence of a sin-
gular point of the first type.

When the frequency deviates from the resonance
value, i.e., when ∆ω = ωl – ω0 ≠ 0, the reflection and
absorption decrease with an increasing deviation ∆ω,
while the intensity and shape of the transmitted pulse
become similar to those of the exciting pulse. For ∆ω @
γl, the pulse passes through the well, remaining almost
unchanged. All the 5(t), !(t), and 7(t) curves display
oscillations at the frequency ∆ω. However, these oscilla-
tions cannot be observed on all the curves in Figs. 4–6
which correspond to the departure from resonance. For
∆ω ! γl, the period of oscillations is much longer than
the time period over which the values of 5(t), !(t), and
7(t) attenuate. For ∆ω @ γl, the period of oscillations
is small, but their amplitude is also small. For this rea-
son, oscillations can be seen best of all for ∆ω . γl.

In the case of a deviation from resonance, the points
of total reflection, complete transmission, and zero
absorption do not coincide. Such singular points were
called the points of the third type. For a more detailed
analysis of these points in the most interesting case
when γr  . γl, we use Figs. 6b and 6e in which attenua-
tion of the curves is ruled out since the quantities 5(t),
!(t), and 7(t) multiplied by exp(γlt) are laid on the
ordinate axis. It is shown that, in the case of the exact
equality γr  = γl, the number of zero-absorption and
complete-transmission points is always infinitely large
for ∆ω ≠ 0, while the number of total-reflection points
is infinitely large for ∆ω/γl < qb, where qb = 0.876. The
infinitely large number of zero-absorption points indi-
cates that the energy is transferred from the electron
system to light waves and back an infinite number of
YSICS OF THE SOLID STATE      Vol. 42      No. 12      2000
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times, but it should be borne in mind that these oscilla-
tions attenuate according to the law exp(–γlt). When the
exact equality γr  = γl is violated, the number of singular
points of the third type is always finite. In particular, the
number of zero-absorption points is odd since absorp-
tion is always negative for large values of time; i.e., the
system emits the luminous energy accumulated earlier.
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Abstract—A new mechanism of nanopore formation in carbon materials produced by the interaction of car-
bides with chlorine is proposed. In essence, this method is the following. A series of nonlinear chemical reac-
tions proceed in the course of a chemical interaction between chlorine and a carbide. If the external parameters,
the component fluxes, and the diffusion rates satisfy certain relations, the self-organization process can occur.
This process results in the creation of a periodic nanoporous structure in the carbon material formed. A mathe-
matical model is proposed, the main characteristics of the process are calculated, and the restrictions on the
parameters at which the formation of the porous structure becomes possible are found. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Earlier [1–4], it was shown that carbon materials
with unique properties can be obtained by chlorine
treatment of carbon-containing compounds (B4C, SiC,
TiC, Mo2C, etc.). In particular, it was established [2–6]
that nanopores 0.8–2 nm in size are formed in carbides
treated with chlorine [2, 3, 5, 6]. The action of chlorine
on carbides leads to a substantial transformation of the
carbon sublattice of the carbides, and the carbon atoms
are displaced by a distance of 1–2 Å.

Fedorov et al. [2, 3] revealed that the pore size in the
carbon material prepared from SiC is equal to 0.8 nm.
It turned out that all the pores have almost the same
size, with a distribution half-width of 0.02 nm.

At present, the theory of pore formation in solids is
quite well developed [7]. According to the concepts
developed in these models, the main reasons for pore
formation are as follows:

(i) The pores are formed from a supersaturated solu-
tion of vacancies, which arise either upon heat genera-
tion or under exposure of the solid to ionizing radiation
with a sufficient energy (the so-called vacancy porosity).

(ii) The pores arise under mechanical action on sol-
ids (deformation pores).

(iii) The pores can also be formed during the growth
of crystals and films upon the sorption of gases,
microshrinkage, nonuniform deposition, etc. [7].

In all the above cases, the pore formation is due to
physical transformations in the structure and is not
accompanied by a chemical transformation of the mate-
rial. In the case under study, the reason for the pore for-
1063-7834/00/4212- $20.00 © 22314
mation is quite different. It concerns the chemical reac-
tion proceeding in the course of the chlorine treatment
of carbides, that is,

 (1)

Here, Me is the general designation of the carbide-
forming element and µ and ν are the stoichiometric
coefficients. In the process of the chemical reaction,
chlorine “eats away” atoms of the carbide-forming
metal and leaves behind the carbon atoms and voids.

As a rule, this process is accompanied by the forma-
tion of a homogeneous-in-size spatially periodic porous
structure in which the positions of carbon atoms are dis-
placed with respect to their initial positions [2, 3]. To our
knowledge, this phenomenon has not been explained in
the literature thus far. In this connection, the objective
of this work was to develop a model of the formation of
the nanoporous structure in carbon materials obtained
by the chlorination of carbides.

Such a model is important both for understanding the
processes occurring in the course of the preparation of
nanoporous materials according to reaction (1) and for
controlling the structure of the materials produced [8].

2. PHYSICAL PRINCIPLES AND THE MODEL
OF NANOPORE FORMATION 

In this work, we investigated the formation of nan-
opores in silicon carbide. Let us dwell on this specific
example.

MeCµ
ν
2
---Cl2 MeClν µC.++
000 MAIK “Nauka/Interperiodica”
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The chemical reaction in this case proceeds accord-
ing to scheme (1), where Me = Si, µ = 1, and ν = 4.
Apparently, this reaction involves several stages.
Indeed, the chlorine molecules should first dissociate
into atoms, which then diffuse into the bulk of the sili-
con carbide and combine with silicon. It is evident that
the active radicals are thus generated and can catalyze
this reaction until the stable gas SiCl4 is formed, which
is then removed from the sample.

The generation of intermediate radicals leads to the
emergence of a nonlinear feedback; i.e., the reaction
product SiCl4 (radicals) will itself activate its appear-
ance and, correspondingly, the formation of carbon. At
a low flux of chlorine, the substance is virtually homo-
geneously distributed in the system, because the diffu-
sion has had time to compensate for the existing heter-
ogeneities. However, in the case when the chlorine flux
density is high enough, the system is in principle
unable to receive and process such a quantity of the
substance in a uniform way. It will be forced to reorga-
nize itself for the nonlinear chemical reaction to pro-
ceed more rapidly.

One possible reorganization is the formation of a
periodic spatial distribution of the substance. For the
system under study, this means that the sample should
consist of periodically arranged pores (the SiCl4 gas is
removed) and carbon atoms. Such a process is referred
to as self-organization [9, 10]. Let us consider it in a
quantitative manner.

We designate the concentrations of chloride
[MeCl] = A, chlorine [Cl] = B, carbon [C] = C, and car-
bide [MeC] = D.

In order to describe the kinetics of the chemical
reaction, we use the following reactions:

 (2)

where ∆ = ∂2/∂X2 is the Laplacian; X is the spatial coor-
dinate; τ is the time; FA and FB are the diffusion coeffi-
cients of the substances A and B, respectively; T0 is the
characteristic time of the outflow of the reaction prod-
uct (chloride A) from the system; J is the rate of the
chlorine inflow into the system; and k is a constant.

The derivatives ∂A/∂τ, ∂B/∂τ, and the others in the
left-hand sides of the equations of set (2) are the rates
of change in the concentrations of the corresponding
substances. The summands FA∆A and FB∆B in the
righthand sides of these equations account for the dif-

∂A
∂τ
------ FA∆A kAmBnD

A
T0
-----,–+=

∂B
∂τ
------ FB∆B J kAmBnD,+ +=

∂D
∂τ
------- kAmBnD,–=

∂C
∂τ
------- kAmBnD,=
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fusion processes of chloride and chlorine, respectively.
The summand kAmBnD corresponds to the chemical
equation, but, as mentioned above, m > 1 owing to the
catalytic role of the A chloride. The chloride outflow
from the system is allowed for by the term –A/T0 in the
first equation, and the inflow of chlorine into the system
is taken into account by the term +J in the second equa-
tion.

Let us study the possibility of forming a periodic
structure of the distribution of the reaction product, i.e.,
of the C quantity. In the case of a steady time-indepen-
dent flux J ≠ 0 no stationary periodic structures are
formed, since it follows from the set of Eqs. (2) that
AmBnD  0. According to the second equation of set
(2), the latter result leads to B  ∞.

In the case when the flux J vanishes at a certain
instant of time τ0, the B quantity can decrease with time
according to the second equation of set (2) and the A
quantity can decrease according to the first equation of
this set. Hence, it can be assumed that AmBnD  0
and, as a consequence of the fourth equation, the result-
ing structure of the reaction product C is stabilized.

In order to investigate the formation of quasi-sta-
tionary periodic structures under the assumption of a
slow change in d, it is sufficient to consider the self-
organization in the case described by only the first two
equations of set (2).

We introduce the dimensionless variables and con-
stants which are convenient for the mathematical anal-
ysis of the behavior of the system, that is,

 (3)

where p = m + n.

Linearizing the first two equations of set (2) with
respect to x and y, we obtain

 (4)

This set of equations has a homogeneous solution x = 0,
y = 0. However, it might become unstable at certain
parameters j, α, and d; i.e., any arbitrarily small devia-
tions from this solution will increase with time. The
expansion of the possible deviations into a Fourier

t
τ

T0
-----, z

X

DAT0

-----------------, j JT0 kT0
p , α

FB

FA

------,= = = =

a A kT0,p b B kT0
p , d D kT0

p ,= = =

c C kT0
p , x a j, y– b– d jm 1–( ) 1/n–

,–= = =

∂x
∂t
------ ∆x m 1–( )x nd1/n j m n 1–+( )/ny,++=

∂y
∂t
----- α∆y mx– nd1/n j m n 1–+( )/ny.–=
00
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The dependence c(t, z) for α = 10, d(0, z) = 24, j = 0.25 at t < 45, and j = 0 at t > 45.
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series with respect to the spatial coordinate z (the 1D
case) gives

 (5)

The factors xn(t) and yn(t) must satisfy the set of equa-
tions

 (6)

with the matrix

 (7)

The condition for an increase in xn(t) and yn(t) with time
is equivalent to the condition that the A matrix has the
eigenvalues with positive real parts. This takes place at

x z t,( ) xn t( ) ωnz,cos
n

∑=

y z t,( ) yn t( ) ωnz.cos
n

∑=

xn' t( )

yn' t( ) 
 
 

A
xn t( )
yn t( ) 

 
 

=

A
m 1– ωn

2– nd
1/n

j m n 1–+( )/n

m– nd
1/n

j m n 1–+( )/n αωn
2–– 

 
 
 

.=
PH
ω <  under the condition

m > 1, n > 0. (8)

Thus, the substance A, which is the product of the reac-
tion, should serve as a catalyst for this reaction in con-
formity with m > 1, as was assumed above.

Otherwise, in the case when

 (9)

the increase in perturbations is selective with respect to
ω (i.e., a certain type of self-organization occurs). Only
those perturbations increase for which ω satisfies the
inequality

 (10)

m 1–

α m 1+

m 1–
-----------------,>

m 1–
n

------------- 
 

n 1

jm n 1–+
---------------- d

α m 1–( )2

n
---------------------------- 

 
n

1

jm n 1–+
----------------,< <

m 1–
2α

------------- α 1– α 1–( )2 4α
m 1–
-------------–– 

  ω<

<
m 1–

2α
------------- α 1– α 1–( )2 4α

m 1–
-------------–+ 

  .
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The initial set of Eqs. (2) is nonlinear. As a result, the
increase in perturbations can cease. Thus, if conditions
(8) and (9) are met, the self-organization in the set of
Eqs. (2) and the formation of a stationary periodic
structure with the period Π = 2π/ω, where ω obeys ine-
quality (10), become possible.

The plot for the numerical solution c(t, z) of the set
of Eqs. (2) at m = 2, n = 1, and α = 10 is shown in the
figure.

It can be seen from the figure that a periodic porous
structure (alternating valleys) is formed in the carbon
distribution. Upon termination of the inflow of chlorine
into the system, the growth of the pores ceases and the
resulting structure is stabilized. In the case when the
inflow of chlorine molecules into the system continues,
further growth of the pores is observed.

3. DISCUSSION

By applying the results obtained to the characteristic
case when at least one intermediate stage of the chem-
ical reaction exists (i.e., m = 2, n = 1), we obtain the fol-
lowing necessary conditions for the formation of the
porous structure:

 (11)

Thus, if relation (11) is valid, self-organization in the
system is possible, i.e., as the emergence of periodi-
cally alternating voids and carbon.

If one takes the ratio of the diffusion coefficients,
FA > FB, to be equal to ten because of the different
molecular masses of the reaction products and the ini-
tial substance (chlorine) and T0 = 10 s, then it follows
from inequality (10) that the size of the pores falls
within the range from 0.7 to 1.7 nm. This agrees with
the experimental data.

When the ratio of the diffusion coefficients does not
meet condition (11), self-organization is impossible.

FB

FA

------ 2 1+

2 1–
----------------,

1

J2
----- kT0

3D 2 1–( )
2FB

FA

------ 1

J2
-----.< <>
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Hence, heterogeneous chemical reactions occur, and no
ordered porous structures arise.

On the contrary, if the experimental situation allows
a choice of different initial conditions, the self-organi-
zation is possible. Generally speaking, this is true for
arbitrary fluxes, but the parameters must satisfy condi-
tion (11).

ACKNOWLEDGMENTS
This work was supported in part by the Skeleton

Technologies Group, the Russian Foundation for Basic
Research (project nos. 98-03-32791 and 99-03-32768),
and the Russian Federal Center “Integration” (project
no. A0151).

REFERENCES
1. G. F. Kirillova, G. A. Meerson, and A. N. Zelikman, Izv.

Vyssh. Uchebn. Zaved., Tsvetn. Metall. 3, 90 (1960).
2. N. F. Fedorov, Ross. Khim. Zh. 39 (6), 37 (1995).
3. N. F. Fedorov, G. K. Shikhnyuk, and D. N. Gavrilov, Zh.

Prikl. Khim. (Leningrad) 54 (2), 272 (1982).
4. S. K. Gordeev and A. V. Vartanova, Zh. Prikl. Khim.

(St. Petersburg) 67 (7), 1080 (1995).
5. A. E. Kravchik, A. S. Osmakov, and R. G. Avarbé, Zh.

Prikl. Khim. (Leningrad) 61 (11), 2430 (1989).
6. R. N. Kyutt, É. A. Smorgonskaya, S. K. Gordeev, et al.,

Fiz. Tverd. Tela (St. Petersburg) 41 (8), 1484 (1999)
[Phys. Solid State 41, 1359 (1999)].

7. P. G. Cheremskoœ, V. V. Slezov, and V. I. Betekhtin, Pores
in Solids (Énergoatomizdat, Moscow, 1990).

8. R. G. Avarbé, S. K. Gordeev, A. V. Vartanova, et al., RF
Patent No. 2,084,036, MKl6NO169/00, Byul. No. 19
(1997).

9. G. Nicolis and I. Prigogine, Self-Organization in Non-
Equilibrium Systems (Wiley, New York, 1977; Mir, Mos-
cow, 1979).

10. S. A. Kukushkin and A. V. Osipov, Fiz. Tverd. Tela
(St. Petersburg) 36 (5), 1258 (1994) [Phys. Solid State
36, 687 (1994)]. 

Translated by M. Lebedkin
00



  

Physics of the Solid State, Vol. 42, No. 12, 2000, p. 2318. 
Original Russian Text Copyright © 2000.

           

ERRATA
On page 906, Eq. (17) should have the form

(17)

In the next paragraph, λ123 should be replaced by λ113. 

Ω1 4,
2  = ALy' ALy' 2My'–( ) 2 –λ123 λ113±( )Ly'Ez+[ ] ,

Ω2 3,
2  = ALy' ALy' 2My'+( ) 2 λ123 λ113±( )Ly'Ez+[ ] .

Erratum: “Effect of Electric Field on NMR Spectra
in Centroantisymmetric Antiferromagnets”
[Phys. Solid State 42 (5), 903 (2000)]
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