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As was shown previously, oscillations of massless neutrinos may be due to the splitting of multiply degenerate
Fermi points. In this letter, we give the details and propose a three-flavor model of Fermi point splittings and
neutrino mixings with only two free parameters. The model may explain recent experimental results from the
K2K and KamLAND collaborations. There is also rough agreement with the data on atmospheric neutrinos
(SuperK) and solar neutrinos (SNO), but further analysis is required. Most importantly, the Ansatz allows for
relatively strong T-violating (CP-nonconserving) effects in the neutrino sector. © 2004 MAIK “Nauka/Interpe-
riodica”.
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1. INTRODUCTION

Neutrino oscillations are commonly associated with
neutrino-mass differences (see, e.g., [1–3] for three
reviews). But, the different propagation states might
also be distinguished by some other characteristic. Two
examples discussed in the literature are connected with
violations of the equivalence principle [4, 5] and
Lorentz invariance [6].

Lorentz noninvariance and CPT violation as emer-
gent phenomena in a fermionic quantum vacuum have
been discussed recently by Volovik and the present
author [7]. It was noted that one possible consequence
of the splitting of multiply degenerate Fermi points (to
be defined later) could be neutrino oscillations. The
question is whether or not this particular type of neu-
trino oscillation is compatible with the experimental
data. If so, we may have an entirely new perspective on
the neutrino sector.

The aim of this paper, then, is to provide an explor-
atory analysis of the experimental data on neutrino
oscillations from the perspective suggested in [7]. In
order to stress the difference with mass oscillations, we
keep an eye open to the possibility that the experimen-
tal data could, after all, be compatible with relatively
strong T (and CP?) violation in the neutrino sector.

The outline of this Letter is as follows. In Section 2,
we discuss the case of two-flavor oscillations for mass-
less left-handed neutrinos with Fermi point splitting.
(A Fermi point is a point in three-momentum space at
which the energy spectrum of the fermion considered
has a zero.) In Section 3, we propose a simple three-fla-
vor model of Fermi point splittings and neutrino mix-
ings, which allows for strong T violation. The model
has two free parameters, an energy scale B0, and a phase
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δ, together with particular fixed values (equal or close
to π/4) for the three mixing angles. In Section 4, we
give the resulting expressions for the oscillation proba-
bilities among the three flavors. In Section 5, we com-
pare the results of the model with the experimental data
on neutrino oscillations. The combined data from K2K
and KamLAND (with input from SuperK) appear to
favor T violation (sinδ ≠ 0) over time-reversal invari-
ance (sinδ = 0), but this remains to be confirmed. In
Section 6, we present some concluding remarks.

2. TWO-FLAVOR NEUTRINO OSCILLATIONS

In the limit of vanishing Yukawa couplings, the
Standard Model fermions are massless Weyl fermions
and have the following dispersion law

(1)

for three-momentum q and with  = 0 for the
moment. Here, a labels the sixteen types of massless
left-handed Weyl fermions in the Standard Model (with
a hypothetical left-handed antineutrino included) and f
distinguishes the three known fermion families.

The Weyl fermions of the original Standard Model

have all  vanishing, which makes for a multiply
degenerate Fermi point q = 0. (Fermi points (gap
nodes) qn are points in three-dimensional momentum
space at which the energy spectrum E(q) of the fermi-
onic quasiparticle has a zero, i.e., E(qn) = 0.) Nonzero

parameters in dispersion law (1) describe the split-
ting of this multiply degenerate Fermi point. See [7] for
a discussion of the physics that could be responsible for
Fermi point splitting and [6] (and references therein)
for a general discussion of Lorentz noninvariance.
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Now, consider the following pattern of spacelike
splittings:

(2)

as given by Eq. (5.4) of [7], with a minor change of
notation. Given the hypercharges Ya of the Standard
Model fermions, this pattern has only three unknowns,
the vectors b(f). The Fermi point splittings (2), for non-
vanishing b(f), violate CPT but the induced electromag-
netic CPT-odd Chern-Simons-like term cancels out
exactly, consistent with the tight experimental limits.
Still, there may be other effects, for example, neutrino
oscillations (as long as the neutrinos are not affected
too much by the mechanism of mass generation).

We therefore focus on massless left-handed neutri-
nos (hypercharge  = – 1) with Fermi point splittings
(2). The dispersion law for a left-handed neutrino with
three-momentum q is then given by

(3)

with f = 1, 2, 3, for three neutrinos.

In this section, we restrict our attention to oscilla-
tions between two flavors of neutrinos (see, e.g., [8] for
further details). The mixing angle between the flavor
eigenstates |A〉, |B〉 and propagation eigenstates |1〉, |2〉
will be denoted by θmix. These propagation states evolve
differently as long as b(1) ≠ b(2) in dispersion law (3).

For an initial neutrino with large enough momentum
|q|, the oscillation probability from flavor A to flavor B
over a travel time t (travel distance L ~ ct) is readily cal-
culated:

(4)

with  ≡ q/|q| and Db( ff ' ) ≡ b( f ) – b( f ' ), for f = 1 and
f ' = 2. Oscillation probability (4) is anisotropic and
energy-independent. The survival probability is given
by P(A  A) = 1 – P(A  B). Oscillation probabil-
ities similar to Eq. (4) have been discussed, for exam-
ple, in Section III B of [6].

Next, consider the following timelike splittings of
Fermi points for the massless Standard Model fermi-
ons:

(5)

as given by Eq. (6.5) of [7]. Again, the induced electro-
magnetic CPT-odd Chern-Simons-like term cancels out
exactly. The dispersion law of a massless left-handed
neutrino is now given by

(6)

ba
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with f = 1, 2, 3, for three neutrinos. In order to stay to
the usual neutrino phenomenology as close as possible,

it is assumed in this paper (different from [7]) that 
in Eq. (6) is a CP-even parameter. The results of Sec-
tion 5 are, however, independent of this assumption.

For a large enough momentum of the initial neu-
trino, there is again an energy-independent two-flavor
oscillation probability,

(7)

with ∆  ≡  – , for f = 1 and f ' = 2. The first-
peak distance (half of the wavelength λ) occurs at

(8)

For completeness, we also mention neutrino-mass
oscillations [1–3, 8] which are based on the Lorentz-
invariant dispersion law

(9)

for |q| @ mf and with f = 1, 2, for two neutrinos. The
standard result,

(10)

has, of course, the same basic structure as Eq. (7) but is

now energy-dependent. With ∆m2 ≡  – , the cor-
responding first-peak distance is

(11)

for energies typical of “atmospheric neutrinos” (see
Section 5.1).

3. THREE-FLAVOR SPLITTING 
AND TRI-MAXIMAL MIXING

For simplicity, we consider only the timelike split-
tings (5) in the rest of this letter. Because the neutrino
oscillations are energy-independent, the analysis of the
experimental data is entirely different from that of the
usual mass oscillations.

b0
f( )

P A B( )

∼ 2θmix( ) 1
2
---∆b0

f f '( )L/"c 
  ,sin

2
sin

2

b0
f f '( ) b0

f( ) b0
f '( )

Lfirst–peak π"c/ ∆b0
f f '( ) 600 km 

10 12–  eV

∆b0
f f '( )--------------------

 
 
 

.≈=

Eν f, q( )( )2 c2 q 2
m f

2c4 c q
m f

2c3

2 q
-----------+ 

 
2

,∼+=

Pmass–oscill A B( )

∼ 2θmix( ) 1
2
---

m f
2 m f '

2–
2Eν

--------------------Lc3/" 
  ,sin

2
sin

2

m f
2

m f '
2

Lmass–oscill
first–peak π 2Eν"c( )/ ∆m2 c4( )=

≈ 600 km 
Eν

GeV
----------- 

  2 10 3–  eV
2
/c4×

∆m2
------------------------------------- 

  ,
JETP LETTERS      Vol. 79      No. 10      2004



NEUTRINO OSCILLATIONS FROM THE SPLITTING OF FERMI POINTS 453
To illustrate this point, we choose the following reg-
ular pattern for the Fermi point splittings of the three
left-handed neutrinos with dispersion law (6):

(12)

In addition, we take “tri-maximal” values for the mix-
ing angles which enter the unitary matrix V between fla-
vor and propagation states (see Section 4):

(13)

This neutrino mixing matrix is parametrized as follows
[2, 3]:

(14)

with two Majorana phases set to zero and the standard
notation sx and cx for sinθx and cosθx.

The particular values (13) maximize, for given
phase δ, the T-violation (CP-nonconservation) measure
[9]

(15)

This maximality condition on J is used only as a math-
ematical prescription to select unambiguously certain
“large” values of the mixing angles.

At this moment, we do not want to speculate on pos-
sible explanations of relations (12) and (13). There is a
certain elegance to the model, with essentially two free
parameters (B0 and δ). In contrast, the standard inter-
pretation of the experimental results on neutrino oscil-
lations [2, 3] has three different neutrino masses, at
least two different mixing angles, and one undeter-
mined phase:

(16)

These values would imply that T and CP violation in
the neutrino sector are suppressed by a small value of
the mixing angle θ13 [cf. Eq. (15)], which would not be
the case for the Ansatz (12)–(14).
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4. THREE-FLAVOR NEUTRINO OSCILLATIONS

Now, define three flavor states |A〉 , |B〉 , |C〉  in terms
of the propagation states |1〉 , |2〉 , |3〉 , which have disper-

sion law (6) with parameters , f = 1, 2, 3, given by
pattern (12). In matrix form, the relation is

(17)

where the asterisk indicates complex conjugation.
Here, we follow the conventions of [2], with the mixing
matrix V defined by Eq. (14) for particular values (13).

For a large enough momentum of the initial neu-
trino, the energy differences from Eq. (12) give the fol-
lowing oscillation probabilities:

(18)

with the further definition

(19)

and notation sδ and cδ for sinδ and cosδ. For the antipar-
ticle probabilities, replace δ by –δ (assuming B0 to be
CP-even). The difference of the P(X  Y) and
P(Y  X) probabilities in Eq. (18), for X ≠ Y and
sδsin∆ ≠ 0, implies T violation (cf. [3]).
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For later use, we also calculate the average probabil-
ities 〈P〉 , defined by integrating ∆ over the interval
[0, 2π] with normalization factor 1/2π:

(20)

These average probabilities are equal only for δ = ±π/2.
The identification of the states |A〉 , |B〉 , |C〉  with the

usual neutrinos states |νe〉 , |νµ〉 , |ντ〉  is left to experiment,
which, after all, observes the electrons and the muons.

5. COMPARISON TO EXPERIMENT

In this section, we compare model predictions (18)
with two sets of data on neutrino oscillations: one from
the SuperK and K2K experiments and the other from
the KamLAND and SNO experiments. The LSND
results are left out of consideration, as these have not
been confirmed by another experiment. We refer to two
recent reviews [2, 3] for further details and an extensive
list of references.

5.1. SuperK and K2K. With neutrino energies in
the GeV range, SuperK [10] discovered indirect evi-
dence for νµ  νx oscillations starting from a distance
of L ≈ 500 km (corresponding to a zenith angle of
approximately 90°). The same type of neutrino oscilla-
tions has also been inferred by K2K [11] at a distance
of L = 250 km. Both lengths are of the same order of
magnitude as Eq. (8).

For a more precise analysis, we turn to the K2K
experiment. The crucial result is now that K2K [12]
does not see νµ  νe at an appreciable level for the
length L = 250 km where the νµ flux is reduced by
approximately 30%. The quoted numbers of neutrino
events are

(21)

where the number for  has been deduced from the

expected number  ≈ 80 ± 6 without neutrino oscil-
lations.

Taking the phase δ = π/4, the probabilities calcu-
lated in Eq. (18) give a “best fit” for

(22)

with the dimensionless length l defined by

(23)

P A B( )〈 〉 P A C( )〈 〉 P A A( )〈 〉, ,( )
=  1/3 1/3 1/3, ,( ),

P B C( )〈 〉 P B A( )〈 〉 P B B( )〈 〉, ,( )
=  1/4 2δcos( )/12 1/3 5 2δcos+( )/12,,–( ),

P C A( )〈 〉 P C B( )〈 〉 P C C( )〈 〉, ,( )
=  1/3 1/4, 2δcos( )/12 5 2δcos+( )/12,–( ).

Nνµ
Nνe

Nντ
, ,( )

L 250 km=

K2K 56 1 23?, ,( ),≈

Nντ

Nνµ

80 P C C( ) P C A( ) P C B( ), ,( ) l 0.145=
δ π/4=×

∼ 56 2 22, ,( ),

2πl B0L/ "c( ) ∆.∼≡
The model numbers (22) compare well with the
“observed” numbers (21).

The comparison with the K2K experiment allows
for the following tentative identification,

(24)

at least if δ is set to π/4 (see Section 5.2 for further dis-
cussion). With L = 250 km, we also have

(25)

and a wavelength λ ≈ 1700 km (l = 1). The statistical
error on B0 is estimated to be of the order of 10%, as
obtained by letting the  value in Eq. (21) range from
17 to 29 and finding the matching probabilities in the
model.

The K2K experiment has also analyzed the spec-
trum of the reconstructed energies of the µ-type neutri-
nos. Given the large errors, the data points agree more
or less with the shape expected from the Fermi-point-
splitting mechanism (box histogram in Fig. 2 of [11]).

The production rates corresponding to Eq. (22) first
have a peak for B-type neutrinos at l ≈ 0.3 and then a
peak for A-type neutrinos at l ≈ 0.6, with the C-type rate
reduced to under 20% over the range 0.3 & l & 0.7. For
SuperK, the C-type (= µ-type?) atmospheric neutrinos
would start being depressed at a length L ≈ 500 km (l ≈
0.3), which is roughly what is observed at a zenith
angle of 90°. With travel distances averaged over sev-
eral thousand kilometers (corresponding to large
enough zenith-angle intervals), the number of initial
C-type neutrinos would be reduced significantly.
According to Eq. (20) for δ = π/4, an initial 2 : 1 ratio
of C-type to A-type neutrinos would be changed as fol-
lows:

(26)

Apparently, these averaged vacuum oscillations would
keep the initial number of A-type (= e-type?) events
unchanged and reduce the initial number of C-type
(= µ-type?) events by 40%, more or less as observed by
SuperK [10].

Needless to say, a complete reanalysis of the
SuperK data is required if the neutrino energy is given
by Eq. (6) instead of the Lorentz-invariant relation (9).
The most important task would be to establish unam-
biguously whether or not the oscillation properties
depend on the neutrino energy. (Figure 4 of [10] is not
really conclusive, because the data points can also be
fitted by a smoothed steplike function, which drops
from a constant value 1 for L/Eν & 100 km/GeV to a
constant value 0.6 for L/Eν * 400 km/GeV.)

5.2. KamLAND and SNO. With antineutrino ener-
gies in the MeV range, KamLAND [13] presented indi-
rect evidence for    oscillations at a distance

A| 〉 νe| 〉= B| 〉 ντ| 〉 C| 〉 νµ| 〉=,=,( ) δ π/4= ,

B0 0.145 hc( )/ 250 km( ) 7.2 10 13–  eV×≈ ≈

Nντ

NC C,  : NA A,  : NB B,( ) 120 : 60 : 0( )=

50 20 : 40 20 : 30 20+ + +( ).

νe νx
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L ≈ 180 km. The experiment quotes the following sur-
vival probability:

(27)

The distance L ≈ 180 km corresponds to l ≈ 0.104, as
defined by Eq. (23) for the tentative energy scale (25).
From Eq. (18) specialized to δ = π/4, the relevant prob-
ability for the identification (24) is

(28)

which is less than two standard deviations away from
the experimental result (27); cf. Fig. 4 of [13]. Note that
a 10% error on the value of l translates into a 6% error
for the probability (28).

The KamLAND experiment has also analyzed the
positron energy spectrum from the inverse β decay used
to detect the antineutrinos. The spectrum is reported to
be consistent at the 53% C.L. with the expectations
from the Fermi-point-splitting mechanism (upper his-
togram in Fig. 5 of [13] multiplied by a factor of 0.6).

Considering oscillation probabilities (18) for only
two values of the phase, δ = 0 and δ = π/4, the combined
experiments of K2K, KamLAND, and SuperK appear
to favor the nonzero value of δ. As an example of a dis-
favored identification (actually one of the best for δ =
0), we list the following numbers:

(29)

(30)

The first set of numbers compares well with the K2K
data (21), but the second number is rather far from the
KamLAND result (27). The SuperK results, which
indicate νµ  νx wavelengths of at least 1000 km,
also help to rule out certain other δ = 0 identifications.

The model predictions for δ = –π/4 and δ = ±π/2
have also been compared with the experimental data,
and “best fits” are found with numbers similar to those
of Eqs. (29) and (30) or worse. The δ = π/4 identifica-
tion (24) seems to be preferred among the cases consid-
ered, at least for Fermi point splittings (12) and mixing
angles (13). Note that the δ range can be restricted to
[−π/2, π/2], since B and C switch roles in probabilities
(18) for δ  δ + π.

The preliminary result for the T-violating phase is
then

(31)

with identifications |A〉  = |νe〉 , |B〉  = |νµ〉 , |C〉  = |ντ〉  for the
case of δ = –3π/4 and identifications (24) for δ = π/4. A
comprehensive statistical analysis remains to be per-
formed in order to determine the error on these values
for δ.

P νe νe( ) L 180 km≈
KamLAND

=  0.611 0.085 stat( ) 0.041 syst( ).±±

P A A( ) l 0.104=
δ π/4=

0.74,∼

80 P A A( ) P A C( ) P A B( ), ,( ) l 0.115=
δ 0=×

∼ 56 2 22, ,( ),

P C C( ) l 0.083=
δ 0=

0.92.∼

δ 3π/4 or π/4,–≈
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In contrast to KamLAND, the experiments of
CHOOZ [14] and Palo Verde [15] failed to see evidence
for    oscillations at l ≈ 1 km. This would be
consistent with probabilities (18),

(32)

for | 〉 = | 〉 and with ∆l ≡ B0l/("c) ≈ l/(270 km) ! 1
for energy scale (25). Remarkably, this general reduc-
tion of the off-diagonal oscillation probabilities does
not require sin2θ13 to be close to zero, as would be the

case for mass oscillations (10), (11) with |  – | ≈
2 × 10–3 eV2/c4 and Eν ≈ 3 MeV [14, 15].

As to solar neutrinos, SNO [16, 17] has definitely
established flavor oscillations, with the initial e-type
neutrinos distributed over the three flavors and their
flux reduced to approximately 30%. Vacuum oscilla-
tions of neutrinos with Fermi point splittings (12) and
tri-maximal mixing angles (13) have an average e-type
survival probability of 1/3, according to Eqs. (20) and
(24). Matter effects can be expected to play a role
because the matter-oscillation length scale

hc/(2 GFne) is approximately 100 km in the center of
the Sun [3], which is definitely less than our length
scale (8). But, in the end, matter effects may be rather
unimportant if the vacuum mixing angles are close
to π/4.

It is not clear how well our neutrinos with Fermi
point splittings fit all the solar neutrino data from SNO
and the other experiments [2, 3]. Obviously, a complete
reanalysis of neutrino propagation in the Sun is
required if the vacuum dispersion law is given by
Eq. (6).

There is also the possibility of further effects from
small neutrino masses with their own matrix structure;
cf. [6]. These small masses could affect flavor oscilla-
tions of solar neutrinos with relatively low energy
(Eν & 1 MeV for |∆m2| ≈ 10–6 eV2/c4), whereas oscilla-
tions of neutrinos with higher energy would be prima-
rily determined by the Fermi point splittings (25).

6. CONCLUSIONS

The present letter has shown that energy-indepen-
dent neutrino oscillations from the timelike splitting of
Fermi points [7] need not be in flagrant contradiction
with the experimental data [10–17].

For the sake of argument, we have considered a sim-
ple model (12)–(14) with two free parameters: the
energy scale B0 and the phase δ. The mixing angles of
this model are fixed to values (13) by the condition that
they maximize function (15) for a given phase δ. It
turns out that the model can more or less explain the
results of the K2K and KamLAND experiments, with a

νe νx

P A A( ) 1 O ∆l
2( ), P A B( )– O ∆l

2( ),= =

P A C( ) O ∆l
2( ),=

A νe

m1
2

m3
2

2
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fundamental energy scale B0 of the order of 10–12 eV
and a preference for a nonzero T-violating phase,
sin2δ ≈ 1/2. (These numerical values are, of course, to
be considered preliminary.) There is also rough agree-
ment with the data on atmospheric neutrinos (SuperK)
and solar neutrinos (SNO), but further analysis is
needed.

The tentative conclusion is that the simple Ansatz
(12), (13) for neutrino dispersion law (6) and mixing
matrix (14) may be compatible with experiment. The
model considered can, of course, be perturbed by
changes in the energy scales and mixing angles and by
the addition of small mass terms. More importantly, the
Ansatz suggests an entirely new structure of the neu-
trino sector, with the possibility of relatively strong T
(and CP?) violation.

We end this letter with four general remarks. First,
the spacelike splitting of Fermi points is a possibility
not considered in detail here, as the phenomenology
would certainly be more complicated due to the pres-
ence of anisotropies; cf. Eq. (4). Second, left-handed
antineutrinos (with hypercharge  = 0) drop out for
patterns (2) and (5) but could perhaps play a role in fur-
ther mass generation. Third, it remains to be seen how
the Fermi point splittings of the massless (or nearly
massless) neutrinos feed into the charged-lepton sector;
cf. [18]. Fourth, theory and experiment need to eluci-
date the precise role, if any, of CP, T, and CPT violation
in the neutrino sector.

The author thanks G.E. Volovik for extensive dis-
cussions and M. Jezabek and the referees for useful
comments on the manuscript.
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PACS numbers: 05.50.+q; 05.20.-y
The algebraic approach to the two-dimensional
exactly solvable models of the Statistical Mechanics [1,
2] turns out to be a very effective tool for finding inte-
gral representations for correlation functions and form
factors of local operators. In this approach, a Hamilto-
nian of a model in the thermodynamic limit is diagonal-
ized exactly by the use of the so-called vertex operators
(generators of a quadratic associative algebra). In the
present work, we extend the construction of the “Inter-
action Round a Face” type algebras [3–6] for the case
of fused vertex operators and apply it to a description of
the local operators in a corresponding massive scaling
theory. For definiteness, we elaborate the procedure for
the Andrews–Baxter–Forrester (ABF) [7] integrable
models of Statistical Mechanics. In what follows, we
identify the fused vertex operators with the operators
inserting lattice spins. We argue that, in the scaling limit
[8, 9], the proposed bosonic operators determine vac-
uum expectation values of the local operators [10] of
the theory. The last quantities, carrying all nonperturba-
tive information on the theory, are of fundamental
importance since they define both short- and long-dis-
tance asymptotics [11] of the scaling correlation func-
tions.

The fluctuation variables in the ABF models (and
their nonunitary generalizations) are associated with
sites of a two-dimensional square lattice and take inte-
ger values 1 ≤ k ≤ p' – 1. In regime III, there are p – 1
ground states 1 ≤ l ≤ p – 1 in the model. The parameter-
ization of the Boltzmann weights is given in terms of
the elliptic theta functions θ1(u |τ) with the elliptic nome
e2πiτ. We use the shorthand notation for the ratios of
theta functions

¶ This article was submitted by the author in English.

u[ ]  := θ1
πu

ξ 1+
------------

iπ
ξ 1+( )e

-------------------- 
  /θ1

π
ξ 1+
------------

iπ
ξ 1+( )e

-------------------- 
  .
0021-3640/04/7910- $26.00 © 20457
Here, ξ := p/p' – p, while e > 0 and 0 < u < 1 are, respec-
tively, the parameter measuring deviation from critical-
ity and the spectral parameter. A local Boltzmann
weight U is assigned to every configuration (ma, mb, mc,
md) of heights round a face with the sites (a, b, c, d). The
nonvanishing Boltzmann weights satisfying the Yang–
Baxter equation (YBE) are given (up to a gauge trans-
form) as follows:

(1)

It is convenient to choose the factor R here to be such
that the partition function per face in the thermody-
namic limit equals one

(2)

The vertex operator algebra [2] is a quadratic graded
associative algebra with the coefficients satisfying the
YBE. The simplest case based on (1) has already been
studied in [4, 5]. The solutions of the YBE which
appear in the definition of new vertex operator algebras
are essentially Boltzmann weights appearing in the
construction of the fusion ABF models [12]. (Note that
we use an obvious generalization for the case of ratio-

U m 2± m 1±
m 1± m

R,=

U m m 1±
m 1± m

R
m u±[ ]

1 u–[ ] m[ ]
--------------------------,=

U m m 1±
m 1+− m

R
1 m–±[ ]
m[ ]

--------------------- u[ ]
1 u–[ ]

----------------.=

R u( ) e
ξ

ξ 1+
------------ue–

=

× me ξmesinhsinh
m ξ 1+( )sinh me 2mesinh
--------------------------------------------------------------e 2uem–

m ∞–=

∞

∑
 
 
 

.exp
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nal values of the parameter ξ.) For integers 0 < ν ≤ µ <
p' – 1, let a, b, c, d ∈  {1, …, p' – 1} satisfy the condi-
tions a – b, c – d = –µ, –µ + 2, …, µ; a – d, b – c = –ν,
–ν + 2, …, ν. Starting from U in Eq. (1), we introduce
the following notations:

with  := u + ξ + (i – j)ξ. The sum is taken over

all values of ai, j allowed due to (1), while the variables
a0, j, (0 ≤ j < µ), ai, µ, (0 ≤ i < ν) are fixed. According to
[12] the result depends only on the indexes a = aν, µ,
b = aµ, 0, c = a0, 0, d = a0, µ and does not depends on {a0, j,
j = 1, …, µ – 1} and {ai, µ, i = 1, …, ν – 1}. Though the
expressions for the general solution of the YBE are
rather complicated, our analysis depends basically on
the properties of the U1µ fused weights, which can be
written out explicitly

Here,  := u – ξ and the factor R1µ(u) is

Uνµ
a b

d c
u  := U

ai 1 j 1+,+ ai 1 j,+

ai j 1+, ai j,

ũ ,
j 0=

µ 1–

∏
i 0=

ν 1–

∏
ai j,{ }
∑

ũ
µ ν–

2
------------

U1µ
m' 1+ m 1+

m' m
u

R1µ u( )
m[ ] µ u–[ ]

--------------------------=

× m m' µ–+
2

------------------------- m' m– µ+
2

------------------------- u– ,

U1µ
m' 1– m 1+

m' m
u

R1µ u( )
m[ ] µ u–[ ]

--------------------------=

× m' m– µ+
2

------------------------- m' m µ–+
2

------------------------- u+ ,

U1µ
m' 1+ m 1–

m' m
u

R1µ u( )
m[ ] µ u–[ ]

--------------------------=

× m m'– µ+
2

------------------------- m' m µ+ +
2

------------------------- u– ,

U1µ
m' 1– m 1–

m' m
u

R1µ u( )
m[ ] µ u–[ ]

--------------------------=

× m m' µ+ +
2

------------------------- m m'– µ+
2

------------------------- u– .

u
µ 1–

2
------------

R1µ u( ) = R u
µ 1–

2
------------ξ– 

  R u
µ 3–

2
------------ξ– 

  …R u
µ 1–

2
------------ξ+ 

  .
We will use symmetric Boltzmann weights obtained
from Uνµ by applying the “gauge” transform

Here, ea = ±1, eaea + 1 = (–1)a and the symbols (a, b)µ ≡
(b, a)µ are defined via the theta functions

where [a, b] := [a][a + 1]…[b], [a, a – 1] = 1. The set
of functions Wνµ satisfy the Yang–Baxter equation

where u := u1 – u2 and the sum is taken over all allowed
values of the variable f.

We check that the functions R1µ(u) are subjects of
the inversion relations R1µ(–u)R1µ(u) = 1 and

(3)

Using this property and Theorem 2.15 from [12], it is
easy to verify that the weights W1µ satisfy the symme-
try conditions

(4)

as well as the inversion relation

(5)

Heuristically the (so-called type I) operators in the Ver-
tex Operator Approach [2] to the ABF model are
defined as half-infinite products of the Boltzmann
weights W11 [2, 5]. It seems natural to generalize the
construction for an extended operator algebra by imply-
ing the fusion procedure. We introduce the space +l, k

Wνµ
a b

d c
u

eb

ed

----
ab( )µ bc( )ν

cd( )µ ad( )µ
--------------------------- 

 
1
2
---

Uνµ
a b

d c
u .=

a b,( )µ

µ
a b– µ+

2
---------------------

1– a b µ–+
2

--------------------- a b µ+ +
2

----------------------,

a[ ] b[ ]
----------------------------------------------------,=

Wνµ
a s

e f
u1 Wντ

s b

f c
u2 Wτµ

e f

c d
u∑

=  Wντ
a f

f e
u2 Wνµ

f b

d c
u1 Wτµ

a s

f b
u ,∑

R1µ u( )R1µ u 1+( )

=  u
µ 1–

2
------------ξ+ / u 1

µ 1–
2

------------ξ–+ .

W1µ
a b

d c
u W1µ

c d

b a
u ,=

Wµ1
b c

a d
u –( )µ 1– a[ ] c[ ]

b[ ] d[ ]
----------------W1µ

a b

d c
1 u– ,=

Wµ1
a d

b' c
u– W1µ

a b

d c
u

d

∑ δb b', .=
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(1 ≤ l ≤ p – 1, 1 ≤ k ≤ p' – 1) as a set of vectors (a0, a1,
a2, …) such that a0 ≡ k, |aj – aj + 1| = 1 and the sequence
{aj} stabilizes to l, l + 1, l, l + 1, … for j @ 1. Let us
define half-infinite products of the fused Boltzmann
weights W1µ

where |bj – bj + 1| = |aj – aj + 1| = 1, a0 = a, b0 = b, and treat

it as an element of the half-infinite matrix (u)
sending the vector (b, b1, b2, …) ∈  +l, b to the vector (a,
a1, a2, …) ∈  +l, a

(6)

The subtle point which we want to point out is that the
matrix element of the “conjugate” operator

coincides with that for  due to Eq. (4). This
requirement fixes a freedom in choosing a gauge trans-
form.

The heuristic definition given above allows one to
derive the axioms for the vertex operator algebra. First,
applying the YBE to a product of two operators, we
conclude that Φ1µ + 1 generate a quadratic associative
algebra

(7)

Second, from inversion relations (5), we find that vertex
operators have to satisfy the normalization condition

(8)

In addition, it is assumed that the algebra can be
extended by the so-called “Corner Hamiltonian” [1, 2,
5] element H : +lk  +lk acting diagonally in the
space of states. Its action on the vertex operators is
defined as

(9)

The last requirement which we impose is that the spec-
trum of D is described by the following formula [7]:

(10)

Φ1 µ 1+,
ab u( ) b b1 b2 …, , ,( )

a a1 a2 …, , ,( )
 := W1µ

b j 1+ a j 1+

b j a j

u ,
j 0=

∞

∏

Φ1 µ 1+,
ab

Φ1 µ 1+,
ab( )  : +l b, +l a, .

Φ1 µ 1+,
*ab

u( ) b b1 b2 …, , ,( )
a a1 a2 …, , ,( )

 := W1µ
a j b j

a j 1+ b j 1+

u
j 0=

∞

∏

Φ1 µ 1+,
ab( )

Φ1 µ 1+,
cb( ) u2( )Φ1 ν 1+,

ba( ) u1( )

=  Wνµ
a d

b c
u21 Φ1 ν 1+,

cd( ) u1( )Φ1 µ 1+,
da( ) u2( ).

d

∑

Φ1 µ 1+,
1 µ 1+,( ) u( )Φ1 µ 1+,

µ 1 1,+( ) u 1+( ) 1–( )µ 1–

µ 1+[ ]
---------------------.=

e 2ev H– Φ1µ 1+ u( )e2ev H Φ1µ 1+ u v+( ).=

Tr+lk
qH[ ] χ lk q( ),=
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where χlk(q) is the character of the irreducible represen-
tation of the Virasoro algebra with the central charge
and the highest weight vector being, respectively,

(11)

To describe the matrix elements (and traces) of ver-
tex operators satisfying properties (6)–(10), we use the
free field technique originally developed in the CFT
context [13–15] and generalized for the elliptic case in
the works [3–6, 16]. Here, we formulate main proposi-
tions on the properties of the bosonization procedure
and add missing proofs.

Let us introduce the free bosonic field

where the nontrivial commutation relations for the zero
modes 4, 3 and oscillators βm are given as

On the Fock module ^lk = { , …, |l, k〉 , m1 ≤ …

≤ mN < 0} with the highest weight vector |l, k〉 , the zero
mode 3 acts as a number,

while βm|l, k〉  = 0, m > 0. The grading operator in the
Fock space is naturally defined as

The vertex operators will be expressed in terms of the
exponents of the free bosonic field Vµ : ̂ l, k  ̂ l, k + µ

and  : ^l, k  ^l, k – 2

(12)

c 1
6

ξ ξ 1+( )
--------------------, ∆lk–

ξ 1+( )l ξk–( )2 1–
4ξ ξ 1+( )

----------------------------------------------.= =

φ u( ) ξ
2 ξ 1+( )
-------------------- 4 2ieu3+( ) i

βm

m
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m Z / 0{ }∈
∑+–=

3 4,[ ] i,–=

βm βn,[ ] m
me ξmesinhsinh

2me ξ 1+( )mesinhsinh
---------------------------------------------------------δm n+ .=

βm1
βmN

ω l k,| 〉  := 2ξ ξ 1+( )3 l k,| 〉 ξ 1+( )l ξk–( ) l k,| 〉 ,=

D
ξ 1+( )me 2mesinhsinh

me ξmesinhsinh
---------------------------------------------------------β m– βm

32

2
-------

1
24
------.–+

m 1=

∞

∑=

V

Vµ u( ) i φ u
µ 2 j– 1–

2
------------------------ξ+ 

 
j 0=

µ 1–

∑ 
 
 

,exp=

V v( ) iφ v
1
2
---+ 

 – iφ v
1
2
---– 

 – 
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Define Lukyanov’s screening operator as an integral
operator

(13)

Here, the integration is from u to u + iπ/e and η is a nor-
malization constant which will be specified later. We
claim that acting in the direct sum of the Foci spaces
⊕ ^lk, the following screened vertex operators

(14)

satisfy quadratic relations (7) but with the coefficients
given by Uνµ.

Knowing the exact formulas for bosonization (12)–
(14), it is easy to derive matrix elements of the screened
operators and analyze its properties. (It is convenient
for us to work with integrals using the multiplicative
variables z = x2v, x = e–e.) The oscillator modes contri-
butions for the exponential operators

(15)

are given as following

Here and below, we use the definitions for infinite prod-
ucts

The constants ρµ and  enter the expression for matrix

elements in the combinations  and η–1  only. The
last ones turn out to be

Xn u( ) n[ ] !
n!

---------- e–
η
----- 

 
n v 1d

πi
---------…

v nd
πi

---------
v i v j–[ ]

v i v j 1––[ ]
------------------------------

i j<
∏∫=

×
v s u– µ/2– ω– n– 1+[ ]

v s u– µ/2–[ ]
--------------------------------------------------------------

s 1=

n

∏ V v 1( )…V v n( ).

Vµ
s( ) u( ) Xs u( )Vµ u( ) : ^l a, ^l a µ 2s–+,=

Vµ 0( )Vµ u( )〈 〉 osc ρµ
2 gµ e 2ue–( ),=

V 0( )Vµ u( )〈 〉 osc ρµρwµ e 2ue–( ),=

V 0( )V v( )〈 〉 osc ρ2w e 2ue–( ),=

gµ ζ( ) x
2ξ 4+ ζ{ } ∞

2
x2ξ 2 2ξµ+ + ζ{ } ∞ x2ξ 2 2ξµ–+ ζ{ } ∞

x2ξ 2+ ζ{ } ∞
2

x2ξ 4 2ξµ+ + ζ{ } ∞ x2ξ 4 2ξµ–+ ζ{ } ∞

---------------------------------------------------------------------------------------------------,=

wµ z( ) x1 µ 1+( )ξ+ z( )∞

x1 µ 1–( )ξ– z( )∞
--------------------------------, w z( ) 1 z–( ) x2z( )∞

x2ξz( )∞
-----------------.= =

z( )∞ := 1 zx2 ξ 1+( ) j–( ),
j 0=

∞

∏

z{ } ∞ := 1 zx2 ξ 2+( )ix2ξ j x4m–( ).
i j m, , 0=

∞

∏
ρ

ρµ
2 ρ

ρµ
2 gµ 1( ), η 1– ρ x

ξ
2 ξ 1+( )
-------------------- x2 ξ 1+( )( )∞

x2ξ( )∞
-----------------------.= =
Using these formulas, we find, for instance, that the two
points matrix element of the vertex operators Vµ

defining the normalization of these operators is given in
terms of the µ-fold integral

(16)

where E(z) := (x2(ξ + 1))∞(z)∞(x2(ξ + 1)z–1)∞. The integral
can be transformed to the Askey–Roy type integral for
which the explicit expression is known [17]. Applying
the identity

we arrive finally at the following elegant expression for
the matrix element of two screened operators:

(17)

It is obvious now that Gµ(x2) = [µ]!e1em + 1.
Until now we concentrated on the operators acting

in ⊕ ^l, k(l, k ∈  Z). It is possible to prove that bosonic
fields (14), in fact, can be restricted to a smaller space,
⊕ +l, k(1 ≤ l ≤ p – 1, 1 ≤ k ≤ p' – 1), the direct sum of
irreducible representations of the deformed Virasoro
algebra [4, 5, 18]. Let us recall its construction via a
BRST reduction generalizing [15]. Consider the
sequence of the maps

(18)

defined by the action of the appropriate screening
charges Xs(0), i.e.,

Gµ e 2eu–( ) := 11〈 |Vµ
µ( )

0( )Vµ
0( ) u( ) 11| 〉

Gµ ζ( ) ρx
ξ
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--------------------–
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1
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 
 
 
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µ
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gµ ζ( )ρµ
2=

× µ[ ] !
µ!
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z1d

2πiz1
-------------…

zµd
2πizµ
-------------

zi/z j( )∞

zix
2ξ /z j( )∞

-------------------------
i j≠
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×
E zsx

1– ξ µ 1+( )+( )
zsx

1 µ 1–( )ξ–( )∞ x1 µ 1–( )ξ– /zs( )∞

----------------------------------------------------------------------
s 1=
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∏

×
E zsx
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zsx
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ζ x2ξ s 1+( )( )∞
-----------------------------,
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µ 1–
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Gµ x2u( ) µ[ ] !e1eµ 1+
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-------------------,=
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… ^l k, ^l k–, ^m k 2 p'–, …X(–1) X(0) X(1) X(2)

X 2 j( ) Xk : ^l k 2 j p'–, ^m k– 2 j p'–, ,=
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It was proposed in [5, 6] that the following statements
are true for e > 0.

I. The chain of maps (18) is a BRST complex, i.e.,

(19)

II. The cohomologies of the complex turn out to be
nontrivial only for j = 0

(20)

III. Bosonic operators act in the spaces of cohomol-
ogies +lk ≡ KerX (0)/ImX (–1). (These spaces coincide
with the irreducible representations of the Deformed
Virasoro algebra [4, 5, 18].)

Proof. The first statement has already been estab-
lished in [16], based on the fact that the screening oper-

ator Xn can be identified with  acting on the corre-
spondent space.

To prove the second statement, we follow word by
word the line of the proof of [15] but for the deformed
e > 0 case. Taking into account the results on the repre-
sentation structure of the deformed Virasoro algebra
[18], the only missing step would be that the screening
charge X( j ) is nontrivial. This, in turn, follows from the
fact that for 1 ≤ k ≤ p' – 1 and l < 0 there exists a nonva-
nishing matrix element of the form

with si ∈  N, 0 < n1 < n2 < … < nj and  = –l. From
the commutation relations

we show that the integrand of J contains the multiples

 which form a basis in the space of

symmetric polynomials of degree |lk | in z1, …, zk.
Therefore we can choose an element which would pro-
duce (z1, …, zk)|l |. Using the expression for the cou-
plings of exponential operators (15), we find that the
problem is reduced to computation of the q-beta inte-
gral:

(21)

X j( )X j 1–( ) 0.=

KerX j( )/ImX j 1–( ) 0, if j 0.≠=

X1
n

J l k–,〈 |βn1

s1 …βn j

s j Xk l k,| 〉 ,=

sini∑

βm V v( ),[ ] ξme( )sinh
ξ 1+( )mesinh

-----------------------------------zm,–=

zt
ni

t 1=
k∑ 

 
si

i 1=
j∑

z1d
2πiz1
-------------…

dzk

2πizk

-------------
E z jx

1– 2ξ k 2s– 1+( )+( )
z jx

1–( )∞ x2ξ 3+ z j
1–( )∞

-----------------------------------------------
s 1=

k

∏∫°

× 1
za

zb

----– 
  x2za/zb( )∞

x2ξza/zb( )∞

--------------------------
1 a b k≤<≤

∏

=  
E x2ξ s( )
E x2ξ( )
----------------- x2 ξ 1+( )x2ξ s 1–( )( )∞

x2ξ s( )∞
------------------------------------------,

s 1=

k

∏

JETP LETTERS      Vol. 79      No. 10      2004
which is nonzero for 1 ≤ k ≤ p' – 1. Repeating the
remaining arguments of [15], we verify the proposition.

To show that the vertex operators of the first type act
in the cohomologies of the Felder complex, we have to
show the commutativity of the following diagram:

(22)

This can be proven from the µ = 1 case using the com-
mutation relations between Xk and V1 derived in [19]

(23)

This completes the proof of the statements on the BRST
complex.

We identify the lattice space of states +lk with the
cohomologies spaces of the Felder resolution. As for
operators, we provide the restriction of the following
bosonic operators:

(24)

Collecting the results described above, we finally are
able to extend the statements of [5] to the following
proposition for the 1 ≤ µ ≤ p' – 1 case:

The bosonic operators in Eq. (14, 24) satisfy com-
mutation relations (7) and (9), normalization condition
(8), and character property (10).

In the rest of the paper, we would like to empha-
size that the proposed bosonization construction for
the vertex operators carries important information on
the local operators of the scaling theory. Indeed,
according to [20], the vacuum expectation values of
the primary operators in the scaling e  0 limit of

the ABF model should be defined as  =
(−1)k − 1〈1k|exp(−π2H/e)|1k〉 , where exp(–π2/2e) is a
temperature-like parameter. We propose that the pro-
jection on the highest weight vectors |1k〉  is a result of
insertion of two vertex operators Φ1, k in the matrix ele-
ment 〈11|… |11〉 . Let us note here that, in the conformal
case [14, 15], two copies of fused vertex operators of
different chiralities are glued in a crossing invariant
way to reconstruct operators with a trivial braiding,
while the conjugation condition is satisfied automati-
cally. In the off-critical case, the local operator is con-
structed from the product of vertex operator and its con-
jugate. The commutativity of such pairs follows from
the commutativity of fused transfer matrices, while the
conjugation condition is provided by choosing the sym-
metric (4) expressions W1µ. In that way, the normaliza-

^l k, ^l k µ 2s–+,

 

^l k–, ^l k–, µ– 2s+

Vµ
s( )

Vµ
µ s–( )

Xk Xk + µ – 2s

Xk 1 2s–+ u0( )V1
s( ) u( ) ^l k,

V1
1 s–( )

u( )Xk u0( ) ^l k,
.=

H +l a,
D +l a,

,=

Φ1 µ 1+,
b a,

+l a,

eb

ab( )µ

-----------------Vµ
a b– µ+( )/2

+l a,
.=

Φ̂1k〈 〉
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tion of Boltzmann weights, as well as the gauge trans-
form, is fixed in the local operators construction. Now,
assuming the “conformal” normalization, which is nat-
ural in a scaling theory,

rather than the lattice one (8), and using Eq. (17), we
find the following vacuum expectation values for scal-
ing fields with the dimension ∆1k:

(25)

Here, the k-independent proportionality coefficient C
between the mass of kink M [9] and the temperature
parameter exp(–π2/2e) can be fixed from k = 3 case due
to [21]. Computing the limit (25), we arrive at the
Lukyanov–Zamolodchikov answer for the vacuum

expectation values of the scaling fields  in the con-
formal normalization [10, 22]

(26)

The meromorphic function Q(x) obtained from (17) can
be rewritten as an analytic continuation of

(27)

Finally, let us draw some concluding remarks. Our
motivation for studying the fused vertex operators was
that the integral representations for the correlation
functions are rather difficult to analyze in the scaling
limit. At the moment, we think that one of the most
effective methods of studying correlation functions in
the scaling theory [8, 9] is Al. Zamolodchikov’s
approach of combining results of the conformal pertur-
bation and the form-factor theories. The most important
objects in [11] are vacuum expectation values of local
operators which determine normalizations of form fac-
tors as well as local OPEs. In the present paper, we
started studying a lattice origin of the vacuum expecta-
tion values by introducing and analyzing algebra of
spin operators for the ABF model. Tracing the result
(25)–(27) back to Eq. (17), we observe that the essential
part of the Lukyanov–Zamolodchikov vacuum expecta-
tion values, the function gµ(ζ), appears in the fused ver-
tex operators theory as a part of the normalization mul-
tiple of the Boltzmann weight Wµµ. The last one, in

11〈 |Φ1k 0( )Φ1k u/e( ) 11| 〉
e 0→
lim

1

1 u–( )
2∆1 k,

-------------------------,=
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2
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2
---+ 

 

2Γ ξ
2
--- 

 
------------------------------

 
 
 
 
 
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=
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Q x( ) td
t
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0

∞

∫exp=
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
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.

turn, is related with Baxter’s partition function of the
eight vertex model [1]. We checked that this phenome-
non is of a general nature. It appears, for instance, for
vacuum expectation values of local operators of other
integrable models, like ZN models [23] and perturbed
Wn models [24, 25]. In that way, the formulated proce-
dure proposes an alternative way for finding vacuum
expectation values in scaling models for which the lat-
tice vertex operators are known, e.g., [26, 27]. The nice
feature of the construction is that the “reflection equa-
tions” [22, 24, 28] are automatically taken into account.
It would be very interesting to generalize the construc-
tion to descendant operators [18], for which, in general,
the reflection equations [28] are difficult to solve, see,
e.g., [29, 30].
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It is shown that, at zero temperature, a hole placed in a homogeneous synthetic nucleotide chain with applied
electric field demonstrates Bloch oscillations. The oscillations of the hole placed initially on one of the base
pairs arise in response to disruption of the initial charge distribution caused by nucleotide vibrations. The finite
temperature fluctuations result in degradation of coherent oscillations. The maximum permissible temperature
for DNA “Bloch oscillator” occurrence is estimated. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 87.14.Gg; 87.15.Aa; 82.39.Pj
In recent years, experiments on the study of the
charge migration in DNA placed in external electric
field have become feasible [1–3]. Of special interest for
future nanotechnology are experiments with synthetic
homogeneous nucleotide sequences [1]. The properties
of electrons or holes in such nucleotide sequences
should be similar to those of band charge carriers in
crystals of the solid body.

As is known, in the case of ideal periodic crystal
structure, an electron located therein exhibits oscilla-
tions [4]. In semiconductors with superlattices, this
gives rise to such phenomena as radiation of electro-
magnetic waves (Bloch oscillator) [5], negative differ-
ential conductivity [6, 7], absolute negative conductiv-
ity [8], dynamical localization [9–13], and multiphoton
absorption [14, 15].

One-dimensional and homogeneous “DNA crystal”
differs significantly from its solid analogue, because
oscillations of the nucleotide pairs play a great role
there. Motion of the charge carriers in DNA is accom-
panied by considerable displacements of the nucleotide
pairs from their equilibrium positions, which, in turn,
affect the motion of the charge carriers.

Our purpose here is to report the results of charge
transfer modeling: dynamical behavior of a hole in the
DNA sequence of the form (G–C)n (where G is gua-
nine, C is cytosine) in electric field applied along the
chain.

In such a chain, a hole travels over guanine bases
whose oxidation potentials are lower than that of
cytosine [16]. The Hamiltonian of the charge transfer
along the chain of nucleotide sites has the form [17, 18]

¶ This article was submitted by the authors in English.

H Hh TK UP,+ +=
0021-3640/04/7910- $26.00 © 20464
(1)

Here, Hh is the Hamiltonian of a hole; , an are the
operators of creation and annihilation of the hole at the
nth site; and αn is the energy of a hole at the nth site.
"ωB = eEa, where E is the intensity of the electric field,
e is the electron charge, a is the distance between neigh-
boring bases. νn, m is the matrix element of the transition
from the nth site to the mth one. TK is the kinetic energy
of the sites, UP is the potential energy of the sites (Mn is
the mass of the nth site, un is the displacement of the nth
site from its equilibrium position, and Kn is the elastic
coefficient).  is the hole-site displacement coupling
constant, n = 1, …, N, and N is the number of sites in
the chain.

We choose the wave function of a hole |Ψ〉 in the
form

where bn is the amplitude of the probability of hole
localization at the nth site, and then derive from Hamil-
tonian (1) in the nearest-neighbor approximation the
following equations of motion [17, 18]:

(2)
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Equations (2) are the Schrödinger equations for the
probability amplitudes. To take into account the pro-
cesses of dissipation, in classical equations of motion
(3), we added the term –γn  (γn are the friction coeffi-
cients). System (2), (3) corresponds to the case of the
zero temperature T = 0.

In the absence of interaction between a hole and the
displacements of the chain sites (at  = 0 for all n),
Eqs. (2) have the solution [19, 20]

(4)

where νn, n ± 1 = ν in the case of a homogeneous chain
and Jn are Bessel functions of the first kind. Solution (4)
corresponds to Bloch oscillations of a hole with fre-
quency ωB and the position expectation value of the

hole center mass value x(t) = na. By the use of
(4), it can be expressed as

(5)

Expression (5) corresponds exactly to the quasi-classi-
cal description of the charge migration in crystal lattice
[4–15] if bm(0) ≈ bm – 1(0), when Θ0 = 0 and S0 = 1.

By (5), the amplitude of x(t) oscillations is equal to
zero if at the initial moment the charge was localized at
just one site. In this case the density of the hole proba-
bility at each moment is distributed symmetrically
about the initial position x = 0. Classically, a hole
moves along the field and opposite it with acceleration
identical in modulus and contrary in direction, deriving
energy from the field when traveling along it and at the
same time losing energy when moving in the opposite
direction.

In contrast to x(t), the mean square value of hole

position X2(t) = n2a2 other than zero and is
equal to

(6)
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Thus, the motion of the charge density represents
coherent oscillations with Bloch period.

In modeling the motion of a hole in the sequence
GG … G with account of the site displacements, we

took the same parameter values as in [17]:  = 0,

ω2τ2 = 0.0001 (where  = Kn/Mn),  = τγn/Mn =

0.006, κ = ( )2τ/("Kn) = 4; τ = 10–14 s, Mn = 10–21 g.
Matrix elements were taken from [21]: νn, n ± 1=
0.084 eV.

Corresponding to (1), the dimensionless Cauchy
system was numerically solved by the fourth order
Runge-Kutta method. In the calculations, the normaliz-
ing condition was controlled; it was fulfilled with an

accuracy of |  – 1| < 0.0001. The initial condi-
tions for the displacements and site velocities were
taken to be zero. At the initial moment, charge was
assumed to be localized in the middle of the chain con-
sisting of 499 sites (at the 250th site); i.e., we dealt with
the case when, in a rigid lattice with  = 0, oscillations
of the mass center of a hole are lacking. The initial con-
ditions under discussion are typical since, in charge
transfer experiments, a hole arises due to photoexcita-
tion on one nucleotide pair [22–24]. We calculated the
system with a number of electric field intensity values

 = eaEτ/".

Figure 1 shows the dependences of x(t) for some
values of the electric field intensity which varies from
the minimum at which the effects concerned with the
finiteness of the chain do not manifest themselves
Emin = 8ν/eaN to the maximum Emax = 4ν/ea, which
corresponds to Stark localization of the hole at one site.
Thus, taking into account interactions between the hole
and the chain displacements un leads to the appearance
of hole oscillations, the period T of which is quite close
to TB = 2π/ωB (Fig. 2). Changes in the values of the fric-
tion coefficient γ and the constant  influence the

amplitude of the oscillations (vanishing at  = 0) but
not their period. We relate this fact to violation of the
initial charge distribution caused by displacements of
sites from their equilibrium positions.

To explain the physical mechanism of the studied
effect, let us consider an infinite nondeformable chain
with  = 0. In this chain, a hole initially localized at
the site with number n = 0 at the subsequent moments
will produce symmetrical distributions of the charge
density. The reason is that in this case the hole moves in
antisymmetric potential αn where it can transfer to the
site n and to the site –n with equal probability. If the
interaction  ≠ 0 takes place, symmetrical distribution
of the charge density at the moment t = 0 will cause (in
view of equation (3)) at the next moment displacements
un, which are like-sign, and un ≈ u–n. So, the total poten-

αn
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ωn
2 ωn'

αn'

bn
2∑

αn'

Ẽ

αn'

αn'

αn'

αn'
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tial energy αn, associated with the external electric field
and site displacements, loses its symmetry. As a result,
the probabilities of transitions along the electric field
and in the opposite direction become different. This
breaks the symmetry in the charge distribution and,
consequently, causes nonzero displacement of the hole

mass center x(t). Classically, in this case (i.e., at  ≠
0), acceleration of the hole along the field is not equal
in modulus to that opposite the field, and the energy
which the hole derives from the field can radiate in the
form of electromagnetic waves and oscillating quanta
of the nucleotide chain. Note that the mechanism we
deal with is general and is realized at any parameter val-

αn'

Fig. 1. Graphs of position expectation (normed to a), depen-
dent on t (ps), for the next dimensionless values of the elec-

tric field intensity: (a)  = 0.04, (b)  = 0.06, and (c)  =
0.08.

Ẽ Ẽ Ẽ
ues, with only quantitative characteristics of the effect
varying.

For the parameter values used, the value of the elec-
tric field intensity E lies in the range Emin ≈ 4 ×
104 V/cm < E < 107 V/cm ≈ Emax. These values of the
field correspond to the frequencies of the electromag-
netic waves Ωn multiple of the Bloch frequency: Ωn =
nωB, n = 1, 2, …, with minωB = 2 × 1012 s–1 and
maxωB = 5 × 1014 s–1. So, for actually attainable electric
field intensities, the radiation frequencies fall in the ter-
ahertz range.

Until the present time, no experiments have been
carried out on the observation of microwave radiation
in nucleotide sequences.

Bloch oscillations are observed at finite temperature
on the condition ωBτ > 1, where τ is the time of the hole
relaxation determined by dissipation on site oscilla-
tions. The value of τ can be estimated from the relation
τ = µm*/e, where µ is the hole mobility and m* =
"2/2νa2 is the effective mass of hole. For our parameter
values, the mass m* ≈ 3.94m0 (m0 is the electron mass).

In computations of the temperature dependence of
the mobility µ, we used the method described in [25].
Classical equations for site motions obtained from (1)
were modified so as to add the term An(t) for taking into
account the temperature fluctuations. So, the site

Fig. 2. Continuous line determines the Bloch oscillation TB
dependence on the electric field intensity E (TB = 2π/ωB,
wB = eEa/" is the Bloch frequency) at κ = 0 (accordingly

 = 0). The bold dots show periods calculated at κ = 4

(  ~ 1.3 × 10–4 eV/Å).

αn'

αn'
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motions follows the Langevin equations. The mobility
was calculated by the Kubo formula

, (7)

where 〈X2(t)〉  is an averaged square of the hole dis-
placement along a chain of sites for the temperature
range from 10 to 350 K. For each given temperature,
averaging was performed over a large number of real-
izations; then, the mean square displacement of a hole
was found, from which the mobility was calculated by
(7). The best approximation of the results obtained is
given by the function

, (8)

where µ0 ≈ 2.87 cm2/V s (the improved value of [25]) is
the mobility at T = 300 K.

Increase in the hole mobility with decreasing tem-
perature given by dependence (8) can be explained as
follows. As a result of temperature fluctuations, at each
moment of time, a hole travels in a random potential
field determined by random distribution of the hole
energy on the sites αi (1). Since, in the one-dimensional
case considered, in a random field there always exists a
localized state, increase in the mobility will always
occur with decreasing amplitude of the random field.
According to (1), this will take place as the contribution
of α'ui into the energy of a hole on the ith site decreases,
i.e., the temperature falls.

With the use of the temperature dependence of the
mobility (8) in the chain, one can estimate the temper-
ature T at which Bloch oscillations take place at a fre-
quency of ωB: T < (ωBτ0)1/2.3T0, τ0 ~ 6.4 × 10–15 s being
the relaxation time at T0 = 300 K; e.g., at minωB = 2 ×
1012 s–1, the expression for the temperature value at
which Bloch oscillations can be observed is T < 45 K.

This work was carried out with the support from the
Russian Foundation for Basic Research, grant nos. 03-
04-49225 and 04-07-90402.
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The structure of annealed titanium monoxide TiO1.087 containing monoclinic ordered phase Ti5O5 was studied
by electron diffraction. Along with the set of structural, superstructural, and extra reflections, the diffraction pat-
tern of titanium monoxide shows a set of plane diffuse fringes in the  section of the reciprocal lattice
of the basis cubic structure B1. It is shown that some of the extra reflections are due to the twinning of the mon-
oclinic superstructure along the (–1–11) plane of the reciprocal lattice of the basis cubic structure. The diffuse
contours enclose plane areas of the reciprocal space with the fixed values of wave vectors K100 ~ ±(h +
0.07)k100, K010 ~ ±(k + 0.07)k010, and K001 ~ ±(l + 0.07)k001 of the B1 structure. Their appearance is associated
with the short-range displacement order. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.66.Fn; 61.14.Hg

112( )B1*
Titanium monoxide TiOy (0.8 < y < 1.25) belongs to
the group of strongly nonstoichiometric interstitial
compounds [1] and is characterized by an unusual
structure containing a large number of structural vacan-
cies (unoccupied lattice sites) simultaneously in the
nonmetallic and metallic sublattices. A disordered TiOy

monoxide has the B1 structure and, depending on the
oxygen content, behaves either as an electronic conduc-
tor or as a narrow-gap semiconductor [2, 3]. The mon-
oclinic (space group C2/m) Ti5O5 phase (or Ti5jO5h,
where j and h are the structural vacancies in the metal-
lic and nonmetallic sublattices, respectively) is the
main ordered phase of titanium monoxide [4]. The
structural features of the Ti5O5 phase are as yet not
completely understood. In this work, the short-range
displacement order in this ordered phase was observed
and analyzed by electron diffraction, and the twin
reflections from the ordered phase were set off from the
observed extra reflections and quantitatively identified.

A sample of TiO1.087 monoxide was prepared by
high-temperature vacuum synthesis from Ti and TiO2
powders. To obtain disordered distribution of structural
vacancies, the synthesized sample was quenched from
1330 to 283 K at a rate of 200 K s–1. The measured den-
sity (4.968 g cm–3) proved to be 20% lower than the the-
oretical density (5.962 g cm–3) calculated on the
assumption that the metallic sublattice is defectless.
The comparison of the measured and theoretical densi-
ties gives the formula Ti0.833O0.906. This signifies that
0.167th of all titanium sublattice sites and 0.094th of all
oxygen sublattice sites are vacant.

The ordered titanium monoxide was prepared by
annealing the quenched sample at 1330 K for 3 h fol-
lowed by slow cooling to 300 K at a rate of 10 K h–1.
0021-3640/04/7910- $26.00 © 20468
The synthesis method and conditions and the procedure
of certifying the samples of nonstoichiometric disor-
dered and ordered titanium monoxide over the entire
range of existence of the cubic phase are described in
detail in [5]. X-ray diffraction of the annealed titanium
monoxide suggested that, along with the monoclinic
(space group C2/m) ordered phase of the Ti5O5 type, the
synthesized sample contained about 30% of a disor-
dered titanium monoxide. In addition, the X-ray dif-
fraction pattern shows in the range of angles 2θ < 36°
several lines whose intensities are from two to three
times lower than the intensity of the superstructural
reflections from the Ti5O5 phase. These lines are part of
a set of superstructural reflections observed in the
X-ray pattern of the annealed TiO1.262 monoxide.
Although we failed to determine the structure of the
ordered phase of annealed TiO1.262 monoxide, we estab-
lished that the observed diffraction reflections did not
correspond to the known tetragonal Ti4jO5 [6, 7] and
rhombic Ti5jO6 [6] and Ti2jO3 [8] phases of the cubic
titanium monoxide.

Electron diffraction and the microstructure of the
ordered titanium monoxide were observed using a Phil-
ips CM-200 electron microscope with a beam width of
70 nm and wavelength λ = 0.00251 nm. The procedure
of sample preparation was described in [9]. The
microdiffraction angle relative to the high-atomic-reso-
lution images was zero. The aperture included struc-
tural spots  and . The bright-field

image was photographed in the central  spot,

and the dark-field image, in the  reflection. The
instrument constant was Lλ = 2.33 ~ 2.51 mm nm,
where L is the chamber length.
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Fig. 1. (a) Experimental diffraction pattern of the ordered monoclinic (space group C2/m) titanium monoxide TiO1.087 and (b) the
scheme of the diffraction pattern: (1) structural reflections of the basis cubic lattice B1 of a disordered titanium monoxide; (2) super-
structural reflections of the ordered monoclinic Ti5O5 phase; (3) twin reflections of the ordered monoclinic Ti5O5 phase; (4) uni-

dentified reflections possibly belonging to the unknown ordered phase; diffuse fringes parallel to the  and 

directions are shown by the solid lines (weak fringes are shown by dashes). Matrix axis  ≡ . For convenience,

indices of some structural and superstructural reflections are shown.

02 1–[ ] B1* 20 1–[ ] B1*
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In [9–11], apart from the structural and superstruc-
tural reflections, extra reflections were observed in the
diffraction pattern of the ordered monoclinic (space
group C2/m) titanium monoxide Ti5O5. The authors of
[9, 11] assumed that these were the twin reflections but
did not identify them. In this work, the observed reflec-
tions are identified quantitatively.

Figure 1a displays the electron diffraction pattern of
the ordered monoclinic (space group C2/m) TiO1.087
monoxide, where the extra reflections are seen most
clearly. The normal to the figure plane coincides with
the matrix axis and corresponds to the  ≡

 direction in the reciprocal lattice. The diffrac-
tion pattern contains vast and diverse information: in
addition to 124 spots of different intensity, it exhibits a
system of weak diffuse fringes parallel to the

 and  directions and slightly
shifted from the structural sites. None of the fringes
passes through the  site. Apart from the struc-
tural reflections (28 high-intensity spots), less intense
superstructural reflections and extra reflections, which
can be associated with the presence of twins in the sam-
ple, are seen. In the case of a double diffraction, the sec-
ondary twin reflections can be observed in addition to
the primary ones. The microphotographs obtained by
transmission electron microscopy provide strong evi-
dence for the presence of twins in the sample studied.
In particular, five twins in the form of extended rectan-
gles are clearly seen in Fig. 2. Let us first discriminate

011[ ] C2/m*

112[ ] B1*

02 1–[ ] B1* 20 1–[ ] B1*

000[ ] B1*
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300 nm

Fig. 2. TEM microphotographs of the TiO1.087 sample
(115000x magnification). The extended rectangles are
twins; the angle of the twin with broad extinction contours
(on the right and slightly above the middle of the figure) is
large (~90°), and the remaining twins with narrow extinc-
tion contours belong to the second family.
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between the structural, superstructural, and extra reflec-
tions. For the convenience of analysis, the observed dif-
fraction pattern is schematically shown in Fig. 1b.

The distances Rhkl from the central spot to

the nearest structural  spots situated at an angle
of 90° with respect to the central spot are equal to 9.75
and 15.90 nm. Note that the ratio of the distances to the
nearest structural reflections situated in the perpendic-
ular directions [–110] and [11–1] is equal to ~1.63 ≅
(2 )/ , i.e., corresponds to the ratio typical for the
(112) section of the reciprocal FCC lattice. This is an
additional evidence that the observed diffraction pat-
tern corresponds to this plane of the reciprocal lattice.
The values of 0.238 ± 0.012 and 0.147 ± 0.007 nm cal-
culated for the interplanar spacings dhkl = Lλ/Rhkl using
the instrument constant Lλ = 2.33 ~ 2.51 mm nm corre-
spond to the  and  reflections of the
basis cubic phase. The calculated positions of the
superstructural reflections in the section containing the
indicated basis-phase reflections allowed the former to
be assigned to the superstructural spots 

and , respectively. For a better under-
standing, the indices of some of the observed structural
and superstructural reflections are shown in the diffrac-
tion pattern in Fig. 1b. It became clear from our analysis
that, in addition to 28 structural reflections, 57 super-
structural reflections are present in the diffraction pat-
tern.

Whereas the structural reflections of the basis B1
phase were rather easily distinguished from the super-
structure reflections of the monoclinic phase, the
remaining 39 extra reflections were identified only after
special calculations. In so doing, the TEM results were
taken into account (Fig. 2). Judging from the extinction
contours in the photographs, there are two twin fami-
lies. The twin situated on the right slightly above the
middle of Fig. 2 and fringed with broad contour lines
belongs to the first family, and the remaining twins
belong to the second family. The twins are turned rela-
tive to each other by an angle of ~67°–68°. For the
twinning along the (111) planes in the FCC crystals,
such an angle (~67.8°) can be observed if the matrix
axis is directed along [112] [12]. The most probable
reason for the occurrence of the extinction contour is
that the twinning plane forms a certain angle with the
surface of the sample (foil). The twinning angle ϕ is
defined as the angle between the matrix axis [112] and
the normal to the twinning plane: ϕ ≈ 19.5° for the
twinning plane (111), ϕ ≈ 61.9° for the planes (–111)
and (1–11), and ϕ = 90° for the (–1–11) plane. The
extinction contours of a twin belonging to the first fam-
ily are rather broad, so that the corresponding twinning
angle is close to 90°. With this preliminary estimate in
mind, one can believe that the twinning most likely
occurs along the (–1–11) plane.

000[ ] B1*

hkl[ ] B1*

2 3

11 1–[ ] B1* 220–[ ] B1*

21 1–[ ] C2/m*

22– 2–[ ] C2/m*
It is clear from the diffraction pattern (Fig. 1) that
the extra reflections cannot be assigned to the primary
twin reflections from the basis cubic phase, because,
upon twinning in an FCC crystal along any plane
belonging to the (111) family, all twin reflections in the
(112) section of reciprocal lattice should coincide with
certain structural reflections. Since no such coincidence
is observed in our case, the extra twin reflections are
associated with the ordered monoclinic phase.

To index the twin reflections, the indices of all
reflections were represented in the cubic coordinates.
For the twinning along the (p1p2p3) plane, the corre-
sponding twin indices ( ) are related to the

matrix indices ( ) by the formula

(1)

where the notation  ≡ ,  ≡ , and  ≡ 
is introduced for brevity. Note that Eq. (1) is invariant
about the transposition of  and  and can be used
to determine the twin reflection indices for the given
matrix reflections or the matrix reflection indices for
the assumed twin reflections. Passing from the found
cubic to the monoclinic indices in the reciprocal lattice
is described by the following relationships:  =

 – ,  = , and  =  +  (similar
relationships between the monoclinic and cubic coordi-
nates in the direct lattice of the ordered Ti5O5 phase
have the form hmon = (2hcub – lcub)/3, kmon = kcub, and
lmon = (hcub + lcub)/3).

In the above calculation, the possibility of twinning
along any of the (111), (–111), (1–11), and (–1–11)
planes of the reciprocal lattice of a crystal with B1
structure was taken into account. The calculation
showed that 23 of the 39 observed extra reflections
were primary twin reflections of the ordered mono-
clinic Ti5O5 phase, with twinning along the (–1–11)
plane; there is no secondary twinning. Sixteen uniden-
tified extra reflections (Fig. 1b) belong, most likely, to
the ordered phase that as yet has not been identified on
the basis of the available experimental data.

In the diffraction pattern (Fig. 1a), the diffuse scat-
tering is observed in the form of a system of low-inten-
sity plane diffuse fringes parallel to the [02–1] and
[20−1] directions and shifted from the structural sites in
the ±[–15–2] and ±[5–1–2] directions, respectively. Let
us express the displacement δ of the diffuse fringes
through the absolute value of the  vector of

reciprocal lattice. In the  plane, the diffuse
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fringes form a system of geometrically similar and
completely or partially closed rhombic contours con-
centrically arranged about the primary [000] spot. If the
fringes passed through the structural sites (including
the forbidden sites of the type [–110], [1–10], etc.), the
ratio D/d of the major to minor rhombus diagonals

would be equal to /  for any rhombus. The same
ratio of (3/2)1/2 is retained if the displacements in the
±[100], [010], and ±[001] directions of the reciprocal
lattice are the same. If the displacement is nonzero only
in the ±[001] direction, then D/d > (3/2)1/2 and the diag-
onals of the diffuse contour coincide with the [11–1]
and [1–10] directions. If the fringes are shifted only in
the ±[100] and ±[010] directions, the ratio D/d <
(3/2)1/2; if the shifts are identical, the minor diagonal of
the diffuse contour coincides with the [1–10] direction.
If the diffuse fringes are shifted only in the ±[100] or
±[010] direction, the diagonals of the diffuse contour
do not coincide with the [11–1] and [1–10] directions,
and D/d ≠ (3/2)1/2. In the case considered, the ratio of
the diagonals of the observed diffuse contours is
~(3/2)1/2, indicating that their diagonals coincide with
the [11–1] and [1–10] directions. This signifies that the
diffuse contour nearest to the [000] site in a three-
dimensional reciprocal lattice is shaped like a cube with
faces formed by the diffuse planes and shifted from this
site by same value δ100, 010, 001 = ∆|k100, 010, 001| in the
±[100], ±[010], and ±[001] directions (k100 = [100],
k010 = [010], k001 = [001], and |k100| = |k010| = |k001|). The
numerical processing of the diffraction pattern (Fig. 1a)
showed that the relative displacement ∆ is equal to
~0.07. Therefore, the positions of the plane diffuse
areas in the reciprocal space can be specified by the
vectors K100 = ±(kh00 + ∆k100) = ±(h + ∆)k100, K010 =
±(k0k0 + ∆k010) = ±(k + ∆)k010, and K001 = ±(k00l +
0.07k001) = ±(l + ∆)k001 normal to the corresponding
diffuse planes.

According to [13], the periodic diffuse features
bypassing the reciprocal lattice sites of the basis cubic
phase can be assigned to the short-range substitution
order. However, the observed diffuse scattering is dif-
ferent from the one typical of the majority of nonsto-
ichiometric carbides and nitrides MXy (MXyh1 – y) with
short-range substitution order in the distribution of non-
metallic atoms X and structural vacancies h. For
instance, diffuse scattering typical of the short-range
substitution order and different from the above diffrac-
tion pattern was observed in [14], where the disordered
cubic titanium monoxides TiO1.00, TiO1.19, and TiO1.25
were studied by electron diffraction. The only common
feature is that plane diffuse fringes parallel to the [110]
direction are present in the diffraction pattern corre-
sponding to the (110) section of the reciprocal lattice of
the TiO1.00 sample. However, these features are local
rather than extended; moreover, from the comparison
of the analogous diffraction patterns of TiO1.25 and
TiO1.19 it becomes clear that the local plane diffuse fea-

3 2
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tures are degenerate spherical effects. The authors of
[14] assumed that titanium monoxide has a high elec-
tronic conductivity and, by analogy with metallic
alloys, explained the diffuse scattering by the appear-
ance of concentration or displacement waves with the
wave vectors corresponding to the flat or cylindrical
areas of the Fermi surface. However, the assumption
about the high electronic conductivity is contradictory
to the experiment: the bremsstrahlung spectra [15] and
the optical conductivity data [16] suggest that the
energy gap in the disordered TiOy is nonzero. The pres-
ence of a gap between the O(2p) and Ti(3d) bands in the
electronic spectrum of TiOy is confirmed by the calcu-
lations in [17]. According to [2, 3], the disordered TiOy

monoxides are narrow-gap semiconductors with a gap
up to 0.17 eV at y > 1.08 and are poor electronic con-
ductors only at y < 1.07.

In nonstoichiometric MXy compounds with the
basis structure B1, the diffuse scattering in the presence
of short-range substitution order can be described using
the approximate cluster transition-state model [18–23].
By the transition state is meant crystal state at a temper-
ature slightly above the order–disorder transition, i.e.,
the state with short-range order and yet without long-
range order in the atomic arrangement. In this model,
the diffuse scattering distribution in the reciprocal lat-
tice is described using cubic, octahedral, or tetrahedral
clusters (or their combination) with all or part of their
cites occupied by the atoms X. In the simplest case, the
diffuse-scattering surface for the octahedral cluster is
described by the expression [18, 23] cos(πh) + cos(πk) +
cos(πl) = 0, and the analogous expression in a more
accurate model [23] has the form cos(πh) + cos(πk) +
cos(πl) + γcos(πh)cos(πk)cos(πl) = 0, where γ is a cer-
tain constant depending on the composition of the com-
pound. The spatial distribution of the diffuse scattering
observed in [14] for the disordered TiOy was also
described using the transition-state model with a tetra-
hedron-shaped cluster. For the interval 1.05 ≤ y ≤ 1.25
of TiOy compositions, this was done by the authors of
[21]. In the case of the tetrahedral cluster, the diffuse-
scattering surface is described by the equation f(g)f*(g) –
µ = 0, where f(g) = 1 + exp[iπ(h + k)] + exp[iπ(h + l)] +
exp[iπ(k + l)] and µ is a parameter close to unity.

Our calculation showed that none of the three mod-
els listed above can provide the diffuse-scattering con-
tours that we observed in the diffraction pattern for the
(112) section of the reciprocal FCC lattice. However,
diffuse scattering caused by the short-range substitu-
tion order is usually observed for the samples of nons-
toichiometric compounds quenched from a temperature
slightly above the order–disorder transition. In other
words, such a diffuse scattering is typical of the transi-
tion state [19–22] and, as the transition to the ordered
state occurs, the diffuse-scattering intensity is gradually
concentrated at the positions corresponding to the
superstructural reflections. Since in our case the dif-
fraction pattern was obtained for the ordered titanium
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monoxide, the diffuse scattering from the short-range
substitution order is absent. In accordance with the the-
ory of diffraction in imperfect crystals [24], the plane
diffuse-scattering regions can be caused by the atomic-
displacement waves. One can thus assume that the dis-
placement waves in the ordered TiO1.087 monoxide
enclose plane areas of reciprocal space with the fixed
wave vectors K100 ~ ±(h + 0.07)k100, K010 ~ ±(k +
0.07)k010, and K001 ~ ±(l + 0.07)k001. The diffuse scat-
tering caused by the short-range displacement order has
maximal intensity just near these vectors. Therefore,
the results obtained in this work allow one to assume
that the formation of monoclinic Ti5O5 superstructure
in the nonstoichiometric cubic titanium monoxide
TiO1.087 is accompanied not only by the rearrangement
of atoms and structural vacancies but also by the forma-
tion of atomic-displacement waves.
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A two-dimensional mesoscopic Bose system of dipoles in a 2D trap is considered using computer simulation
by the quantum path-integral Monte Carlo method. The model describes a rarefied system of spatially indirect
excitons in a confining potential. Bose condensation in the system and its superfluid and structural properties
are studied over a wide range of interparticle spatial correlations, from an almost ideal Bose gas to the regime
of a strongly correlated system. It is found that, at strong interparticle spatial correlations, particles in the con-
densate form a crystal-like structure. In this case, the spatial correlations of particles in the condensate are less
pronounced than the correlations of noncondensed particles. The effect of recurrent crystallization is observed
in the regime of strong interparticle correlations. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.75.Hh; 68.65.-k; 03.75.Kk
1. INTRODUCTION 

Bose condensation has long been a subject of only
theoretical considerations; however, recent advances in
the development of experimental techniques has
allowed this phenomenon to be investigated in various
systems [1–3]. In particular, of special interest is an
examination of the possibility of Bose condensation in
systems with reduced dimensionality [4, 5].

Along with atoms in traps, the system of spatially
separated electrons and holes residing in coupled quan-
tum wells, whose coherent properties were predicted in
[6], is one of the most interesting physical systems for
an experimental investigation of the Bose condensation
effect. At present, this system is being intensively stud-
ied experimentally [4, 5], and the Bose condensation of
indirect excitons in coupled quantum wells has recently
been detected in [4, 5].

At low temperatures, electrons and holes from dif-
ferent wells form a coupled state representing a spa-
tially indirect (interwell) exciton. In the ground state,
this exciton possesses an electric dipole ddip = eD,
where D is the distance between the quantum wells and
a is the exciton radius along the quantum wells. At
moderate exciton concentrations (na2 < 1), the
exchange effects are exponentially suppressed because
of the barrier associated with the dipole–dipole repul-
sion, and, with a high accuracy, indirect excitons can be
considered Bose particles. If the distance between exci-
tons along the quantum wells is larger than the effective
exciton size (characteristic size of the bound state [6]),
the exciton can be considered a structureless Bose par-
ticle. Thus, the problem of N dipolar Bose particles in a
two-dimensional harmonic confining potential with a
0021-3640/04/7910- $26.00 © 20473
frequency ω can be taken as a model of the system
under consideration [7–9]. The number of excitons in a
trap with a size of order 1 µm and an exciton density of
1010 cm–2 (which corresponds to the conditions of
experiments in [4]) equals 100; that is, the system is
mesoscopic in some sense.

In this connection, of great interest is the consider-
ation of mesoscopic systems of particles, which dem-
onstrate profound differences in the phase diagram as
compared to extended systems [6, 16]. In the mesos-
copic system of dipoles considered in this work, the
mesoscopic size effect in the system becomes highly
important in the region of strong correlations. In this
case, the Bose-condensation critical temperature and,
hence, the amount of condensate decrease with increas-
ing number of particles, because it is known that the
condensate in a system with interparticle interaction is
absent in the thermodynamic limit at a nonzero temper-
ature [26, 27]. The influence of interaction on the criti-
cal temperature in the region of strong correlations is
stronger than the influence of the finite particle-number
effect.

Another interesting implementation of the model of
dipole particles in a confining potential is a two-dimen-
sional trap for Bose atoms with a dipole moment
induced by a static electric field or an electromagnetic
field with a frequency resonant with the intraatomic
transitions.

Of great interest is the study of the Bose condensa-
tion and other properties of such a system of dipole
excitons, in particular, in the as yet unstudied region of
strong interparticle correlations. Of special interest are
the structural properties of the system, in particular, the
004 MAIK “Nauka/Interperiodica”
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spatial structure of the Bose condensate. Another inter-
esting challenge is the problem of a supersolid, that is,
the possibility for a Bose system to simultaneously
have spatial interparticle crystal-like order and super-
fluid properties.

The structural properties of a Bose system and con-
densate were considered by a number of authors,
although only for a weak interparticle interaction (see,
for example, [3, 7, 19–23]). In the cited works, the
radial distributions of particles in the system (and in the
condensate) remained monotonic functions in the
region of parameters under consideration. However, we
found in this work (see below) that in mesoscopic clus-
ters these distributions become nonmonotonic in the
region of stronger correlations and assume the form
typical of crystal-like (shell) order.

We found that the condensate in a trap has a crystal-
like structure (mesoscopic supersolid arises). In addi-
tion, recurrent crystallization was observed in the sys-
tem under consideration.

2. MODEL

We consider this problem using the quantum path-
integral Monte Carlo method [13].

The Hamiltonian of the model system has the form

where meff is the effective mass of the indirect exciton.
The second term in the Hamiltonian describes the con-
fining potential for excitons. It can be associated with
either the confining potential in an artificial semicon-
ductor quantum dot or the nonuniform electric field
generated by a metal electrode or the random potential
relief in a system of coupled quantum wells.
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Fig. 1. Fraction of condensate particles as a function of tem-
perature for various values of the dimensionless parameter d.
Passing in the Hamiltonian to the dimensionless

length r0 =  and energy E0 = "ω, we obtain

where we introduced the dimensionless quantum con-

trol parameter d = /E0 , which serves as a dimen-
sionless exciton-interaction constant. This parameter
can be varied experimentally by changing the boson
dipole moment, that is, the distance between the wells
in the case of indirect excitons, or by varying the con-
fining potential parameter. The other control parame-
ters are the number of particles N and the dimensionless
temperature T/"ω.

We assume that the condition for the applicability of
our model is fulfilled, i.e., that the mean interparticle
distance is considerably larger than the exciton size
n−1/2 @ aexc.

3. RESULTS OF SIMULATION
AND DISCUSSION

The mesoscopic system of quantum dipoles in a har-
monic confining potential is studied using the quantum
path-integral Monte Carlo method [13]. The study is
carried out over a wide range of the values of dimen-
sionless control parameter d, temperatures, and the
number of particles in the system. Of special interest is
the study of the Bose condensation and superfluidity
phenomena in the given system in the regime of strong
spatial correlations and the determination of the critical
phase-transition temperatures as functions of the con-
trol parameters of the problem. We consider the tem-
perature dependences of the energy and the fractions of
the condensate and superfluid component for various
values of d. The structural properties of the system and
its structural transformations are studied by considering
the total radial and shell-by-shell angular distributions
of particles in the system, as well as the total and angu-
lar shell-by-shell pair distributions determining inter-
particle correlations. The condensate structure is stud-
ied using the same distribution functions for the con-
densate particles. Of special interest is the study of
these functions in the region of strong interparticle cor-
relations. Another quantity that reveals structural trans-
formations is the Lindemann parameter (see, for exam-
ple, [16]).

At small values of the parameter d, the system is
close to an ideal gas in a trap, and the calculated values
only slightly differ from the corresponding values for
the ideal gas (see Figs. 1, 2) and agree well with the
results of works devoted to a weakly nonideal Bose gas
(see, for example, [3] and references therein).

To study the mechanism of washing-out condensate
through the interparticle interactions, we examined the
temperature dependences of the fractions of condensate
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particles and superfluid component for different values
of the interaction parameter d. For small values of the
parameter d, these dependences have the same form as
in an ideal gas (for the fraction of condensate N0/N =

1 – (T/ )2); however, the interaction gives a small
correction to the critical temperature (Figs. 1, 3). At
large values of the control parameter d, not only the
value of the critical temperature changes but also the
temperature dependence of the fraction of condensate
changes, and now this fraction rapidly drops with
increasing temperature.

At large values of the parameter d, strong interparti-
cle correlations are observed in the system; they show
up in the specific shell structure of the particle distribu-
tion in the system (Figs. 2, 4, 5). As a result of these cor-
relations, the properties of the system in this regime
strongly differ from the properties of a nonideal gas in
the trap. In particular, a number of interesting new
effects arise: the formation of crystal-like (shell) struc-
ture in the condensate and in the entire system, the
recurrent crystallization, and the presence of a bound-
ary around the particle cloud.

It is known that the dipolar systems of classical par-
ticles have a distinct shell structure at low temperatures
[8]. However, quantum systems undergo quantum melt-
ing at a sufficiently low temperature, so that the crystal-
like structure is smeared because of quantum fluctua-
tions [8, 16]. On the other hand, a quantum system at
high temperatures is close in its properties to a classical
one. Hence, the crystal structure, if any, must undergo
“classical” melting and smear with an increase in the
number of equilibrium phonons. We found that, starting
at certain values of d (see Fig. 6), a crystal-like structure
exists in an intermediate temperature region; that is,
recurrent crystallization occurs (this phenomenon was
not observed for an extended two-dimensional system;
see [12]). To analyze this problem, we considered a sys-
tem of 40 particles with d = 50 (the fraction of conden-
sate n0 = 0.24 at T = 0.1) (Fig. 4). At the temperature
T = 0.1, the structure is slightly smeared. However, as
the temperature increases, the angular and radial distri-
butions become more distinct (a process inverse to
quantum melting—recurrent crystallization—occurs).
As the temperature further increases, this structure is
smeared again. The behavior of the Lindemann param-
eter Ur as a function of temperature reveals this effect
rather distinctly (Fig. 7). Starting at a certain value of d,
Ur varies nonmonotonically with temperature; namely,
a minimum occurs (see Fig. 7), and it may be stated that
the system is best ordered at the minimum of this
parameter (only in a limited region of d values). This
effect is also evident in the total distribution of particles
in the system; it is observed only for sufficiently large
values of the parameter d, i.e., in the regime of very
strong interparticle correlations. It is worthy of note
that the fractions of condensate and superfluid compo-
nent are not equal to zero even in a system with clearly
defined shell structure (Fig. 5).

Tbec
0
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In connection with the study of the system structure,
of interest is the following question: how is the conden-
sate structured spatially? To examine this problem, we
calculated the particle radial distributions in the con-
densate (Figs. 8, 9). Interestingly, this distribution
becomes narrower with increasing temperature, and its
maximum is located at the center of the system. In addi-
tion, the radial distribution of the condensate shows an
extended tail. The point is that the condensate particles
are mainly located at the center of the system. The tem-
perature excitations begin to wash out the condensate,
starting at its surface. Thus, it proves that the system as
a whole has the following structure: a condensate core
is at the center, and a shell of noncondensed particles is
on the outside. The core decreases in size as the temper-
ature increases.

For an ideal Bose gas, the shape of the condensate
wave function does not depend on temperature. For a
weakly nonideal gas, the condensate wave function in
the trap is modified due to the interaction: it broadens

Fig. 2. Evolution of the total radial distributions with tem-
perature for various values of d.

Fig. 3. Fraction of superfluid component as a function of
temperature for various values of the dimensionless param-
eter d.
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T = 0.01 T = 0.05 T = 0.10 T = 0.2 T = 0.5 T = 1 T = 2

Fig. 4. Distributions of particles in the system, the Lindemann parameter, and the fraction of condensate at various temperatures.

T = 0.1 T = 0.2 T = 0.3 T = 1 T = 3

Fig. 5. Distributions of particles in the system.
(retaining the form ~exp(–(r/σ)2)), in good agreement
with the results reported in [3]. In this case, the wave
function does not depend on temperature. As the mag-
nitude of correlations (parameter d) increases, the func-
tion changes from Gaussian to ~A – (r/σ')2 (Thomas–
Fermi regime; see [3]). We found that, as the parameter
d further increases, the distribution of condensate parti-
cles in the region of strong spatial correlations (though
sufficiently weak for the condensate to appear in the
system) displaces an interesting phenomenon: a non-
monotonic distribution is seen against the background
of the dependence ~A – (r/σ')2. Hence, it turns out that
the distribution, on the whole, nonmonotonically
depends on the radius (see Figs. 8, 9) and has a shell
structure that repeats (at a low temperature) the distri-
bution of all particles of the system but is less pro-
JETP LETTERS      Vol. 79      No. 10      2004
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Fig. 6. Phase diagram of the system. Region Q.Crystal is the
domain of existence of quantum crystal, Tmelt(d) is the melt-
ing curve of the quantum crystal upon an increase in tem-
perature, Tq.melt(d) is the melting curve of the quantum
crystal due to zero-point quantum vibrations, and the BEC-
SF region is the domain of existence of the Bose condensate
and the superfluid component in the system.

Fig. 7. Lindemann parameter as a function of temperature.
The sharp growth of the parameter points to melting in the
system.

Fig. 8. Radial distributions of particles in the condensate at
various temperatures. Dotted line designates the total radial
distribution in the system. From top to bottom: radial distri-
butions of condensate particles with decreasing tempera-
ture.
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nounced than in the case of noncondensed particles (see
Fig. 9). As the condensate is washed out with increasing
temperature, the spatial correlations in the condensate
become weaker (see Fig. 8). Of special interest is the
fact that the spatial interparticle correlations of conden-
sate particles are less pronounced than the correlations
of the noncondensed particles.

Thus, the system exhibits simultaneously both diag-
onal and nondiagonal order; i.e., this state can be con-
sidered a mesoscopic supersolid. This is a mesoscopic
effect, because our calculations show that, as the total
number of particles in the system increases (for fixed
temperature and interaction strength), the fraction of
condensate decreases (in the thermodynamic limit, a
two-dimensional system with interparticle interaction
does not have condensate at a nonzero temperature; see
[26]).

The distributions of the condensate particles in sys-
tems of 40 and 30 particles are shown in Figs. 4 and 5,
respectively, for the values d = 50 and 40, respectively.
At the temperature T = 0.1, the structure formed by the
condensate particles is slightly smeared as compared to
the total structure of the system. As the temperature
increases, the condensate is depleted and the conden-
sate structure smears (melts).

Let us discuss the phase diagram of the system; see
Fig. 6. In a certain region (Q.Crystal in Fig. 6), spatial
ordering of particles (quantum crystal) occurs in the
system. In this case, Tmelt(d) is the classical melting
curve of the system upon an increase in the temperature
and Tq.melt(d) is the quantum melting curve of the crystal
(e.g., due to zero-point quantum vibrations). In the
region BEC-SF, the system contains the Bose conden-
sate and the superfluid component. Let us summarize
the main results of this work. (1) In the region of strong
spatial correlations, the condensate particles in a meso-
scopic system form a crystal-like structure. In this case,
the particle correlations in the condensate are less pro-
nounced than the correlations of all particles. As the
temperature increases, the decay of this structure
occurs earlier than the complete melting of the entire
system. The spatial shell structure of the distribution
might reveal itself in the ring pattern of the interwell
exciton photoluminescence. (2) At certain intermediate
values of the dimensionless control quantum parameter

Fig. 9. Radial distributions of particles in the condensate at
various temperatures for N = 30 and d = 20; dashed line cor-
responds to particles in the condensate, solid line corre-
sponds to noncondensed particles, and dotted line corre-
sponds to all particles.
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d, the recurrent-crystallization effect is observed: at low
temperatures, the crystal order is absent in the system
because of quantum fluctuations; next, with increasing
temperature, a crystal-like structure forms in the sys-
tem. This structure melts in a classical way as the tem-
perature further increases.

This work was supported by the Russian Foundation
for Basic Research, INTAS, and the Ministry of Educa-
tion. S.Yu. Volkov is grateful for support to the Dinas-
tiya foundation and the International Center for Funda-
mental Physics in Moscow (ICFPM).

Yu.E.L. is grateful to L.V. Keldysh, V.D. Kulakov-
skiœ, and V.B. Timofeev for useful discussions of the
results.

REFERENCES
1. M. H. Anderson and J. R. Ensher, Science 269, 198

(1995); J. R. Ensher, D. S. Jin, M. R. Matthews, et al.,
Phys. Rev. Lett. 77, 4984 (1996).

2. W. Ketterle and N. J. Druten, Phys. Rev. A 54, 656
(1996).

3. F. Dalfovo, S. Giorgini, and L. P. Pitaevskii, Rev. Mod.
Phys. 71, 463 (1999).

4. A. V. Larionov, V. B. Timofeev, P. A. Ni, et al., Pis’ma
Zh. Éksp. Teor. Fiz. 75, 699 (2002) [JETP Lett. 75, 570
(2002)]; A. V. Larionov, V. B. Timofeev, J. M. Hvam,
et al., JETP Lett. 75, 200 (2002); JETP 90, 1093 (2000).

5. L. V. Butov, Solid State Commun. 127, 89 (2003).
6. Yu. E. Lozovik and O. L. Berman, JETP Lett. 64, 573

(1996); Yu. E. Lozovik and V. I. Yudson, Sov. Phys. JETP
44, 389 (1976); Yu. E. Lozovik and V. A. Mandelshtam,
Phys. Lett. A 165, 469 (1992).

7. W. Krauth, Phys. Rev. Lett. 77, 3695 (1996).
8. Yu. E. Lozovik, S. A. Verzakov, and M. Willander, Phys.

Lett. A 260, 400 (1999); A. I. Belousov and Yu. E. Loz-
ovik, JETP Lett. 68, 858 (1998).

9. L. Santos, G. V. Shlyapnikov, P. Zoller, et al., Phys. Rev.
Lett. 85, 1791 (2000); V. V. Konotop and V. M. Prez-Gar-
cia, cond-mat/0106488 (2001); S. Giovanazzi, A. Gorl-
itz, and T. Pfau, cond-mat/0204352 (2002); K. Bernar-
det, G. G. Batrouni, J.-L. Meunier, et al., cond-
mat/0110314 (2001).

10. S. De Palo, F. Rapisarda, and G. Senatore, cond-
mat/0201414 (2002).
11. S. A. Moskalenko and D. W. Snoke, Bose–Einstein Con-
densation of Excitons and Biexcitons and Coherent Non-
linear Optics with Excitons (Cambridge Univ. Press,
New York, 2000); V. V. Krivolapchuk, E. S. Moskalenko,
and A. L. Zhmodikov, Phys. Rev. B 64, 045313 (2001).

12. Yu. E. Lozovik and V. M. Farztdinov, Solid State Com-
mun. 54, 725 (1985).

13. D. M. Ceperley and E. L. Pollock, Phys. Rev. B 39, 2084
(1989).

14. D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).
15. S. Heinrichs and W. J. Mullin, cond-mat/9807331

(1998).
16. A. V. Filinov, M. Bonitz, and Yu. E. Lozovik, Phys. Rev.

Lett. 86, 3851 (2001).
17. M. Bayindir and B. Tanatar, Phys. Rev. A 58, 3134

(1998).
18. G. Schmid, S. Todo, M. Troyer, and A. Dorneich, cond-

mat/0110024 (2001).
19. G. E. Astrakharchik and S. Giorgini, cond-mat/0212512

(2002).
20. M. Holzmann and Y. Castin, physics/9812029 (1998).
21. T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106,

1135 (1957).
22. F. Dalfovo and S. Stringari, Phys. Rev. A 53, 2477

(1996).
23. K. Goral and L. Santos, Phys. Rev. A 66, 023613 (2002);

K. Goral, K. Rzazewski, and T. Pfau, Phys. Rev. A 61,
051601 (2000).

24. Yu. Kagan, V. A. Kashurnikov, A. V. Krasavin, et al.,
cond-mat/9811090 (1998).

25. D. S. Fisher and P. C. Hohenberg, Phys. Rev. B 37, 4936
(1988).

26. W. J. Mullin, J. Low Temp. Phys. 106, 615 (1997); Phys.
Rev. B 33, 4632 (1986).

27. W. J. Mullin, cond-mat/9610005 (1996); W. J. Mullin,
cond-mat/9709077 (1996).

28. J. Shumway and D. M. Ceperley, cond-mat/9909434
(1999).

29. W. Deng and P. M. Hui, cond-mat/9704095 (1997).
30. S. Grossmann and M. Holthaus, Phys. Lett. A 208, 188

(1995).

Translated by A. Bagatur’yants
JETP LETTERS      Vol. 79      No. 10      2004



  

JETP Letters, Vol. 79, No. 10, 2004, pp. 479–483. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 79, No. 10, 2004, pp. 592–596.
Original Russian Text Copyright © 2004 by Pakhnevich, Bakin, Yaz’kov, Sha

 

œ

 

bler, Shevelev, Tereshchenko, Yaroshevich, Terekhov.

                                                                                    
Energy Distributions of Photoelectrons Emitted
from p-GaN(Cs, O) with Effective Negative 

Electron Affinity
A. A. Pakhnevich1, 2, V. V. Bakin1, A. V. Yaz’kov2, G. É. Shaœbler1, S. V. Shevelev1, 

O. E. Tereshchenko1, 2, A. S. Yaroshevich1, and A. S. Terekhov1, 2

1 Institute of Semiconductor Physics, Siberian Division, Russian Academy of Sciences, 
pr. Akademika Lavrent’eva 13, Novosibirsk, 630090 Russia

2 Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
Received April 5, 2004

Energy distributions of photoelectrons emitted into vacuum from the valence band and the localized states in
the energy gap of p-GaN(Cs, O) with effective negative electron affinity were studied. It is shown that the pho-
tothermal electron excitation from the localized states lying below the Fermi level in the energy gap of
p-GaN(Cs, O) is the dominant photoemission mechanism at the low-energy photoemission threshold. © 2004
MAIK “Nauka/Interperiodica”.

PACS numbers: 79.60.Bm
Interest in high-energy-gap Group III nitrides is due
to their successful use in the fabrication of light sources
emitting in the blue–green and ultraviolet (UV) spectral
regions, high-power high-temperature microwave
devices, and UV photodetectors. Vacuum photomulti-
pliers and electrooptical converters possess the highest
detection ability and operation speed and allow the
detection of single photons. The fabrication of perfect
GaN-based photocathodes with effective negative elec-
tron affinity (ENEA) and their use in UV photodetec-
tors would be helpful in solving important scientific
and practical problems. The basic possibility of devis-
ing ENEA emitters on the basis of p-GaN(Cs, O) was
demonstrated in [1]. The study is underway on the
atomic and electronic structures of atomically pure
GaN surfaces and their modification upon cesium and
oxygen adsorption [2, 3]. Nevertheless, the energy dis-
tributions of electrons emitted from p-GaN(Cs, O) have
not been studied so far. These distributions carry impor-
tant information about the types of optical transitions
responsible for photoemission, about the kinetic phe-
nomena involving the thermalized and hot nonequilib-
rium electrons, and about the electron–phonon interac-
tion in semiconductors. In particular, the electron-dis-
tribution energy width measured for the phonon energy
"ω . εg coincides, to a high accuracy, with the ENEA.
The latter is commonly symbolized by χ* and is one of
the most important characteristics of the p-GaN(Cs, O)
surface. The values of χ* measured to date by different
authors [3, 4] differ from each other within a factor
of 3, and the reasons for this disagreement remain to be
understood.
0021-3640/04/7910- $26.00 © 20479
In this work, the energy distributions measured for
the p- GaN(Cs, O) surface with ENEA were used to dis-
criminate between the photoemission transitions from
the valence band and the energy-gap localized states,
with the aim of revealing the photothermal photoemis-
sion mechanism at the long-wavelength photoemission
threshold and establishing the possible reason for the
scatter of the χ* values obtained by different authors.

Magnesium-doped p-GaN layers grown from MOS
hydride epitaxy on a (0001)-oriented leucosapphire
substrate were used in the experiments. The free-hole
concentration measured using the Hall effect at room
temperature was 1 × 1017 cm–3. The atomically pure
p-GaN surface was prepared by the technique that was
successfully used in the operation with GaAs [5]. It
included the following steps: gallium oxides were
chemically removed from the GaN surface by process-
ing it with a solution of HCl in isopropyl alcohol in a
pure nitrogen atmosphere [6]; after processing, the het-
erostructure was mounted on a vacuum-degassed
molybdenum holder, placed in a hermetic transport
container with the N2 atmosphere, and carried either
into a vacuum chamber of an ADES-500 electron spec-
trometer for determining the chemical composition and
atomic structure of the surface by the methods of X-ray
photoelectron spectroscopy (XPS) and low-energy
electron diffraction or into a three-chamber ultravac-
uum setup for heat cleaning, applying cesium and oxy-
gen, and installing into vacuum photodiodes. The pho-
todiodes were used for measuring the quantum-effi-
ciency spectra QE("ω) of the p-GaN(Cs, O)
photocathodes and the Ne(ε||) distributions of the emit-
ted electrons in the longitudinal energy ε||.
004 MAIK “Nauka/Interperiodica”
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The photodiode consisted of a cylindrical frame
made from alumina-based ceramics and having a leu-
cosapphire window and a p-GaN(Cs, O) photocathode
of diameter 18 mm on a molybdenum holder, both her-
metically fixed at the opposite ends of the cylinder. A
planar copper grating with a diameter of 18 mm, mesh
size of 15 × 15 µm, and effective transparency of 0.44
was placed between the window and the photocathode.
The separation between the grating and the photocath-
ode was ~1 mm to eliminate the edge effects and pro-
vide the desired electric-field uniformity in the central
part of the photocathode. The copper grating was used
for applying either accelerating or decelerating electric
field when measuring QE("ω) or Ne(ε||), respectively.
The final heat cleaning of the photodiode units, the
application of a (Cs, O) layer to the atomically pure
p-GaN surface for obtaining ENEA, and the hermetic
attachment of the photocathode holder to the frame
edge through a deformable indium gasket were per-
formed in a ~10–9 Pa vacuum. The atomically pure and
structurally ordered GaN surface was obtained by heat
cleaning of the photodiode for 30 min at a temperature
of 450–500°C. After the semiconductor was cooled to
room temperature, the activator (Cs, O) coating was
applied to the surface to ensure the ENEA state. The
maximal photocathode quantum efficiency was
achieved for 0.7 cesium monolayers and ~0.01 oxygen
monolayers.

The QE("ω) and Ne(ε||) dependences were measured
on the setup described in [7]. A deuterium DDS-30
lamp was used as a light source at "ω ≥ 3.6 eV, and a
halogen KGM-24-150 lamp was used at "ω < 3.6 eV.
The light spectral decomposition was accomplished

Fig. 1. Spectral dependence of the quantum efficiency of
p-GaN(Cs, O) photoemitter.
using an MDR-23 monochromator. To suppress the
influence of the scattered short-wavelength radiation on
the measurement accuracy at "ω ≤ 3.6 eV, a set of light
filters was used. All measurements were made at room
temperature.

The preliminary measurements with the ADES-500
electron spectrometer had shown that the use of the
pure N2 atmosphere in chemical processing, mounting
the GaN samples on the holder, and carrying them into
the high-vacuum chamber afforded an atomically pure
and ordered GaN surface after heating at T ≥ 450°C [6].
The XPS-measured residual carbon and oxygen con-
centrations did not exceed 3–5% of a monolayer. The
electron diffraction with energy 70–100 eV suggested
that the surface was ordered and had the (1 × 1) struc-
ture.

To determine the types of optical transitions respon-
sible for the photoemission, the quantum-efficiency
spectrum of the p-GaN(Cs, O) photocathode was mea-
sured. The corresponding results are shown in Fig. 1.
One can see that the long-wavelength photoemission
threshold occurs at "ωth . 1.3 eV. At "ω > "ωth, the
quantum efficiency rapidly increases. The increase in
QE("ω) is decelerated at "ω . 2 eV, after which it is
again accelerated at "ω . "ωg = 3.4 eV, where the inter-
band transitions from the valence subbands come into
play. At "ω > 3.6 eV, the quantum efficiency increases
by a factor of ~3, mainly due to the increase in the effi-
ciency of photoelectron “gathering” by the emitter sur-
face as a result of a decrease in the light-absorption
depth and increase in the fraction of hot (nonthermal-
ized) photoelectrons that did not lose the photon-
endowed kinetic energy before escaping into vacuum.
The maximal value QE = 27% was achieved at "ω =
5.2 eV.

At "ω < "ωg, the photoemission from the semicon-
ductors with ENEA can be caused by the emission from
the occupied surface states. However, in the leucosap-
phire-grown GaN it is mainly due to the electron pho-
toexcitation from the bulk in-gap defect levels. The
point is that the gallium nitride grown on leucosapphire
has many structural defects that create the in-gap elec-
tronic states. The optical transitions from the occupied
states lying below the Fermi level to the unoccupied
states manifest themselves in the GaN absorption spec-
tra [8]. The length of the tail in the QE("ω) curve at
"ω < "ωg coincides approximately with the length of
absorption tails.

To gain information about the photoemission mech-
anism at "ω < "ωg, we measured the energy distribu-
tions of emitted electrons. The results are presented in
Fig. 2. To improve the signal-to-noise ratio, measure-
ments with "ω = 1.17, 1.27, and 1.58 eV were carried
out using lasers with a power of ~10–2 W. One can see
from the figure that the Ne(ε||) distributions measured
for "ω = 1.17 and 1.27 eV coincide and have the form
of a narrow peak with a FWHM of ~60 meV. We
assumed that the position of the low-energy wing of
JETP LETTERS      Vol. 79      No. 10      2004
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this peak (determined from the condition that the deriv-
ative ∂Ne(ε||)/∂ε|| is maximal) coincides with the vac-
uum level εvac. The shape of the Ne(ε||) curve is indepen-
dent of "ω at "ω ≤ 1.27 eV, because electrons are pho-
toexcited to the states lying below the vacuum level.
The additional energy necessary for the escape into
vacuum electrons acquire through the phonon absorp-
tion; i.e., a two-step photothermal photoemission
mechanism is dominant at the low-energy threshold of
the photoeffect in p-GaN(Cs, O) with ENEA. As "ω
increases to 1.58 eV, the high-energy wing of Ne(ε||)
undergoes a shift of ~0.15 eV to higher energies. This
signifies that the initial energy of photoelectrons for
this "ω exceeds the vacuum level by ~0.15 eV, so that
hot electrons appear in the distribution of emitted elec-
trons. As the photon energy increases to 3.30 eV, the
length of high-energy wing in the Ne(ε||) distribution
increases without any qualitative change in its shape.

Upon a further increase in "ω of only 0.1 eV, the
shape of Ne(ε||) qualitatively changes because the inter-
band transitions start to contribute to the photoemis-
sion. Therefore, the lowest photon energy correspond-
ing to the appearance of photoemission from the inter-
band transitions coincides with εg, which proves the
existence of the ENEA states at the p-GaN(Cs, O) sur-
face. Note that, although the valence band of the hexag-
onal GaN consists of three subbands split by ~20 meV
[9], we failed to discriminate between the transitions
from these subbands. The shape of Ne(ε||) at "ω ≥ εg is
shown in Fig. 3. One can see that three distributions
measured for "ω = 3.40, 3.50, and 3.60 eV coincide
with each other within the experimental error. The fact
that Ne(ε||) is independent of "ω at "ω . εg is further

Fig. 2. Distributions of emitted electrons in longitudinal
energy upon the excitation with light "ω < "ωg.
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proof of the existence of a surface ENEA state, for
which small changes (caused by small changes in "ω)
in the initial energy of photoelectrons excited in the
semiconductor bulk are leveled off as a result of the
thermalization before the escape into vacuum. For this
reason, the shape of a high-energy wing of the Ne(ε||)
distribution is determined, to a large measure, by the
Maxwellian distribution of the thermalized electrons in
the quasi-neutral semiconductor bulk. The Ne(ε||) wing
took the exponential form with a slope of ~40 meV
starting at ε|| . 1.7 eV. This energy was taken to be

equal to the energy  of conduction-band bottom in
the semiconductor bulk. We attribute the fact that the
slope of the Ne(ε||) wing differs from kT = 26 meV to the
wing broadening mainly caused by small variations in
the initial position of vacuum level over the emitter sur-

face. Inasmuch as the  energy measured from εvac

coincides, by definition, with |χ*|, measurement of
Ne(ε||) is the most direct and reliable method of measur-
ing this value.

It follows from Fig. 3 that the length of high-energy
wing of Ne(ε||) increases with increasing "ω to 4.00 eV
and achieves ~1.25 eV at "ω = 5.5 eV. The increase in
the wing length is caused by the increase in the fraction
of hot electrons that did not lose completely the excess
kinetic energy before the escape into vacuum.

The results obtained in this work can be used to
refine the parameters in the energy diagram of the
p-GaN(Cs, O)–vacuum interface (Fig. 4). The diagram
was constructed in the following way. A change in the
work function ϕth upon coating with 0.5 ML Cs up to
the maximal QE value was measured by the Anderson

εc
b

εc
b

Fig. 3. Distributions of emitted electrons in longitudinal
energy upon the excitation with light "ω ≥ "ωg.

3.4–3.6 eV
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method in ADES-500 to give ∆ϕth = 2.5 eV. Simulta-
neously, XPS measurements suggested that the GaN
ground states did not change their energy position, indi-
cating that the band bending did not change. Conse-
quently, the measured ∆ϕth value was caused by a
change only in the electron affinity χ0 of the pure GaN
surface. The use of a thicker coating consisting of
0.7 ML cesium and 0.01 ML oxygen for the activation
of the photocathode to the maximal value of QE
resulted in a decrease, by estimate, of 2.6 eV in χ0. By
taking the literature value χ0 = 3.3 eV [3, 4], we find
that, after applying (Cs, O), the true electron affinity χ
of the activated p-GaN surface is positive in our case
and equal to 0.7 eV. The work function ϕth of the p-GaN
(Cs, O) surface was determined by the photoelectric
method using the data given in Fig. 2. The fact that the
shape of the Ne(ε||) curve is independent of "ω at "ω ≤
1.27 eV is evidence that ϕth ≥ 1.27 eV. At the same time,
hot electrons with the energy ~0.15 eV higher than the
electron energy in the Maxwellian tail appear in the
Ne(ε||) distribution at "ω = 1.58 eV. Consequently, the

Fig. 4. Energy diagram of the p-GaN(Cs, O)–vacuum inter-
face: εv  is the valence-band top; εc is the conduction-band
bottom; εf is the Fermi level; εvac is the vacuum level;
(1) electrons excited by the light with "ω . "ωg; (2) hot
photoelectrons excited by the light with "ω > "ωg; (3) elec-
trons excited by the light with "ω . ϕth; and (4) hot elec-
trons excited from the states with εv  < ε < εf.

ϕth
value of ϕth is higher than 1.27 eV but lower than
1.58 eV by approximately 0.15 eV; i.e., it is equal to
~1.4 eV. By subtracting the value of χ from ϕth, we find

that the conduction-band bottom  at the surface dif-
fers from the Fermi energy εf by 0.7 eV. The near-sur-
face band bending ϕd can be determined in two ways. It
follows from Fig. 4 that ϕd = χ + |χ*|. By substituting
|χ*| = 1.7 eV into this expression, we find ϕd = 2.4 eV.
On the other hand, ϕd can be determined from the rela-

tion ϕd = εg –  – εf, where εf is measured from the
valence-band top in the quasi-neutral semiconductor
bulk. By inserting into this expression the values εg =
3.4 eV [9] and εf = 0.3 eV [1] corresponding to GaN
doped with Mg to the concentration p . 1017 cm–3, one
finds ϕd = 2.4 eV.

Of interest is to compare our data with the results
obtained in [3, 4] by different methods. For the sake of
convenience, the results are compiled in the table.

One can see from the table that the disparity
between the χ* values obtained by different authors is
large and exceeds the possible experimental errors. A
certain contribution to the scatter of the χ* values
comes from ∆χ values that can be different in different
experiments because of the difference in the composi-
tion of activating coating and the methods and temper-
ature of its preparation. Nevertheless, the scatter in the
near-surface band bending is the main reason for the
scatter in χ*. Note also that in [4], as in our experi-
ments, the band bending did not change upon cesium
adsorption, whereas in [3] it increased upon cesium
adsorption and decreased upon oxygen adsorption. The
fact that ϕd does not depend on the adsorbed cesium is
strong evidence that the original surface charge is much
larger than the additional charge carried by cesium to
the GaN surface. At the same time, the small value of
ϕd and its “proper” variation upon the adsorption of
electropositive cesium are evidence of an appreciably
lower charge density at the original surface of a GaN
sample studied in [3]. In that work, the atomically pure
surface was prepared by ion bombardment followed by
vacuum annealing at 900°C to obtain a high density of
surface states. In our experiments, as in [4], more “sub-
tle” methods were used for the preparation of clean

εc
s

εc
s

Parameters of the energy diagram of the p-GaN(Cs, O)–vacuum interface

χ0, eV ∆χ, eV χ, eV |χ*|, eV ∆ϕd, eV ϕd, eV Coating Temperature Ref.

3.35 2.3 1.0 2.1 0 (Cs) 3.1 Cs 150 K [4]

3.3 2.8 0.5 0.7 +0.2 (Cs) 1.2 O + Cs RT [3]

–0.4 (O2)

3.3 2.6 0.7 1.7 0 (Cs) 2.4 Cs + (Cs, O) RT This work

Note: χ0 is the electron affinity of a clean GaN surface; ∆χ is the decrease in affinity upon activation; χ is the electron affinity of the acti-
vated surface; χ* is the effective electron affinity of the activated surface; ∆ϕd is the change in band bending upon activation; and
ϕd is the band bending of the activated surface.
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GaN surface. It is thus improbable that the high density
of charged surface defects is responsible for the band
bending stronger than in [3] and for its independence of
the adsorption of electropositive cesium. It would be
natural to assume that the strong band bending in [4]
and in our experiments is caused by a high electric-field
strength due to the piezoelectric effect in the strained
GaN layers grown on Al2O3. In the gallium nitride
grown on SiC [3], the residual stress and the piezofield
are substantially weaker, because the matching of the
lattice parameters and the thermal expansion coeffi-
cients in the GaN/SiC structure is better than in our sys-
tem. As a result, the piezofield likely has no effect on
the ϕd and the value of ϕd is smaller and depends on the
sign and magnitude of the charge on the surface and
adsorption states.

In summary, the energy distributions of photoelec-
trons emitted from the localized defect states and the
band states of p-GaN(Cs, O) with effective negative
electron affinity have been measured, the main photoe-
mission characteristics and mechanisms have been
revealed for different spectral regions, and data indica-
tive of a strong influence of the piezoeffect on the band
bending and the effective negative electron affinity in
the strained GaN have been obtained.

We are grateful to V.V. Lundin, E.E. Zavarin, and
A.I. Besyul’kin (Ioffe Physicotechnical Institute, Rus-
JETP LETTERS      Vol. 79      No. 10      2004
sian Academy of Sciences) for providing the GaN lay-
ers. This work was supported in part by the Russian
Foundation for Basic Research (project no. 04-02-
16639).
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A detailed investigation of multiband superconductivity in the Mg1 – xAlxB2 system was carried out by the meth-
ods of tunneling and Andreev spectroscopy. Temperature dependences of the superconducting gaps and their
variation upon an increase in the degree of disorder and the Al concentration were studied. It is shown that the
experimentally observed dependences cannot be explained in detail within the framework of the presently avail-
able microscopic theories. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.70.Dd; 74.50.+r; 74.45.+c 
Since the superconductivity with a relatively high
critical temperature Tc = 40 K was discovered in MgB2
several years ago [1], it has persisted in attracting the
attention of researchers. Interest in MgB2 is caused by
the fact that at least two superconducting gaps were
observed in two different regions of the Fermi surface
of this material. The properties of such multiband
superconductors were studied in many theoretical
works after the publication of pioneer works [2, 3] in
the mid-20th century. The most interesting prediction
was made by Leggett [4] in 1966. He has shown that
multiband superconductors can possess specific collec-
tive excitations due to the fluctuations of the relative
order-parameter phases of different superconducting
condensates.

The multiband superconductivity phenomenon is
akin, in some sense, to the anisotropy phenomenon,
which is inherent in almost all superconductors. It is
well known that the anisotropy of superconducting gap
can easily be broken by impurities. Even from the early
works [3, 4], it has become clear that the multiband
character of superconducting gaps must disappear in
the dirty limit. A surprising property of multiband
superconductivity in the MgB2 system is that it does not
disappear even if the residual resistance increases by
two or more orders of magnitude. A possible reason for
this phenomenon was formulated in [5], where it was
attributed to the specific features of the electron bands
in MgB2.

The ab initio calculations of the electronic structure
of MgB2 [6–8] showed that the Fermi surface of mag-
nesium diboride contains two slightly corrugated coax-
ial cylindrical surfaces belonging to two 2D σ bands
0021-3640/04/7910- $26.00 © 0484
and two complex tubular structures formed by two 2D
π bands. Two-dimensional (2D) charge carriers—holes
localized in the boron planes—correspond to the σ
bands. Three-dimensional (3D) electrons and holes are
delocalized over the entire crystal and correspond to the
π bands. The multiband superconductivity in MgB2 is
stable because the scattering potentials between the σ
and π bands are small [5]. It is worth noting that the real
four-band spectrum of MgB2 [8] is usually modeled by
a two-band spectrum [5–7], while the number of super-
conducting gaps is reduced to two: ∆σ (σ band; large
gap) and ∆π (π band; small gap). In a number of works
[9–15], the ∆σ and ∆π gaps in MgB2 at T  0 and their
temperature dependences ∆σ(T) and ∆π(T) were deter-
mined using tunneling and microjunction spec-
troscopies (see also reviews [16, 17]).

The two-band behavior of polycrystalline MgB2
samples differing in the degree of defectness was stud-
ied in our work [18]. It was shown that the temperature
dependences of the larger gap ∆σ(T) was close to the
BCS type. At the same time, the ∆π(T) dependences
showed a deviation from the standard BCS function.
The critical temperatures of the samples studied in [18]
showed a sizable scatter due to the technological
regime of their preparation and fell within the 25 K ≤
Tc ≤ 40.5 K interval. The value of ∆σ in different sam-
ples decreased linearly with decreasing temperature Tc,
whereas the small ∆π gap had virtually the same value
∆π ≈ 2 meV over the entire interval of Tc values.

The purpose of this work was the systematic study
of the Mg1 – xAlxB2 system. According to the data in
[19–21], the critical temperature Tc of the Mg1 – xAlxB2
2004 MAIK “Nauka/Interperiodica”
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system decreases with increasing aluminum concentra-
tion x and turns to zero at x ≈ 0.5. There is only one
experimental work [22] where the ∆σ(x) and ∆π(x)
dependences were determined for a limited number of
Mg1 – xAlxB2 samples.

We studied polycrystalline Mg1 – xAlxB2 samples
with concentrations of 0.32 ≤ x ≤ 0.45 and, correspond-
ingly, critical temperatures of 21.5 K ≥ Tc ≥ 6.5 K.
Microjunction (Andreev) and tunneling spectroscopies
were used as experimental methods. Both methods
were implemented by the use of break junctions. Due to
the high surface quality of a cryogenic cleavage, the
experimental results are well reproducible, making
break junctions more suitable than the other tunneling
structures. The unique advantage of a break junction is
that it can be adjusted in the course of a low-tempera-
ture experiment and carried from the tunneling regime
(tunneling spectroscopy; SIS junction) to the micro-
junction regime (Andreev spectroscopy; SnS junction,
where n stands for normal metal) with relative ease.

In this work (as in [18]), the gap structure on the
dI/dV characteristics of the junctions in the tunneling
regime at T = 4.2 K (differential conductivity peaks cor-
responding to the biases Vσ, π = 2∆σ, π/e) is compared
with the subharmonic gap structure for the same junc-
tions in the microjunction regime (two series of differ-

Fig. 1. Subharmonic gap structure on the dI/dV characteris-
tics of the SnS junction at different temperatures for a poly-
crystalline MgB2 sample with Tc = 39 K. Dashes indicate
the biases V corresponding to the dynamic-conductivity
dips labelled nσ (σ band; solid lines) and nπ (π band; dotted
lines); T = 4.2 K.
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ential conductivity dips corresponding to the biases
Vn, σ, π = 2∆σ, π/ne, where n is an integer). The reliability
of determining the superconducting gaps is substan-
tially enhanced if the ∆σ, π values obtained by the two
aforementioned methods coincide.

It should be noted that the measurement of the tem-
perature dependences ∆σ(T) and ∆π(T) by Andreev
spectroscopy is more preferable, because the subhar-
monic gap structure remains rather pronounced virtu-
ally up to the critical temperature Tc. This allows the
estimation of the local critical temperature in the micro-
junction region. Hereafter, by the critical temperature is
meant the local Tc. A good coincidence of the local Tc

with the critical temperature derived from the resistive
transition of the whole sample (prior to the formation of
a break junction) is observed only in the cleanest MgB2
samples.

The subharmonic gap structure on the dI/dV charac-
teristics of the SnS junction in a MgB2 sample with Tc =
39 K is shown in Fig. 1 for different temperatures.

The influence of temperature on the subharmonic
gap structure on the dI/dV characteristic of the Andreev
junction in a Mg1 – xAlxB2 sample with Tc = 21.5 K is
shown in Fig. 2. The features at the V biases corre-
sponding to two gaps (∆σ and ∆π) are clearly seen in the
figures. The doublet character of the subharmonic gap

Fig. 2. Influence of temperature on the subharmonic gap
structure on the dI/dV characteristic of the Andreev junction
in a polycrystalline Mg1 – xAlxB2 sample with Tc = 21.5 K.
The dynamic-conductivity dips labelled nσ (σ band) and nπ
(π band) are indicated in the figure.
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structure, particularly pronounced in Fig. 2, is notewor-
thy. It is not improbable that the doublets often
observed by us in the high-quality characteristics are
due to the presence of the closely spaced ∆σ gap and
two ∆π gaps in magnesium diboride, as was predicted in
the theoretical work of Choi et al. [8].

The temperature dependences of the gaps in the two
aforementioned samples and in two another samples,
one of which is free of Al impurity and has the critical
temperature Tc = 34.5 K, are presented in Fig. 3. One
can see in Fig. 3 that the temperature dependences
∆σ(T) and ∆π(T) in the Mg1 – xAlxB2 system are qualita-
tively different. The ∆σ(T) dependences are close to the
BCS type (dark symbols in Fig. 3). However, the ∆π(T)
gap behaves in a cardinally different way. The appear-
ance of a tail in the ∆π(T) curve is evidence of the influ-
ence of the σ condensate on the π condensate as a result
of the internal proximity effect. The curves in Fig. 3
more closely resemble the corresponding graphs for the
standard proximity effect between two weakly coupled
superconductors with sizably different Tc values. One
can thus assume that the MgB2 π band possesses intrin-
sic superconductivity with Tc ≈ 13 K, while the inter-
band coupling constant λσπ is appreciably smaller than
the value of 0.23 obtained in [7, 23]. This becomes
clear after the comparison of the ∆π(T) dependences

Fig. 3. Temperature dependences of the (1–4; dark symbols)
large ∆σ and (1'–4'; open symbols) small ∆π gaps in the
polycrystalline samples: (1, 1') MgB2 with Tc = 39 K,
(2, 2') defective MgB2 with Tc = 34.5 K, (3, 3') Mg1 – xAlxB2
with Tc = 21.5 K, and (4, 4') Mg1 – xAlxB2 with Tc = 14 K.
The solid, dashed, and dot-and-dash lines correspond to the
BCS model.
obtained in this work (Fig. 3) with the corresponding
dependence obtained in [23] and virtually coinciding
with the BCS type.

The dependences of the ∆σ and ∆π gaps on the criti-
cal temperature Tc at T  0 are shown in Fig. 4. The
circles are the results obtained for the MgB2 samples
differing in the degree of defectness, and the squares
are the results obtained for the Mg1 – xAlxB2 samples. It
follows from Fig. 4 that the interband coupling shows
appreciable strengthening neither upon an increase in
the disorder in MgB2 nor upon an increase in the Al
concentration.

Several reasons for a possible decrease in Tc and,
correspondingly, in ∆σ upon substituting Al for Mg
were proposed in the literature. First, the hole σ band in
this case is filled with extra electrons from aluminum,
resulting in an appreciable decrease in the electron den-
sity of states and eventually in the gap collapse at x >
0.5 [21, 25]. The second reason is that the interband
scattering strengthens with an increase in the impurity
concentration. It is well known that the anisotropy of
superconducting gap in conventional single-band
superconductors is suppressed due to the scattering
from nonmagnetic impurities [25]. Accordingly, the Tc

of such a superconductor also decreases. It was shown
by Golubov and Mazin [26] that an analogous phenom-

Fig. 4. The (dark symbols) ∆σ and (open symbols) ∆π gaps
at T  0 as functions of critical temperature Tc. Circles
correspond to the results obtained for the MgB2 samples
differing in the degree of defectness, and squares corre-
spond to the results obtained for the Mg1 – xAlxB2 samples.
The solid lines are drawn for convenience sake.
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enon should also be observed in multiband supercon-
ductors. The calculations carried out in [27–29] on the
basis of both these ideas are in sharp contrast to our
results. We did not observe the predicted increase in the
smaller ∆π gap upon a decrease in Tc. Moreover, we did
not observe the transition to the dirty single-gap limit
down to Tc ≈ 6 K, where both ∆σ and ∆π gaps must coin-
cide.

We would also like to call attention to the fact that
the decrease in ∆σ upon disordering and addition of Al
is accompanied by a very small change in the 2∆σ/kTc

ratio. Moreover, one can see from Fig. 5 that this ratio
sizably exceeds the value typical of the BCS limit. It
also exceeds the value 2∆σ/kTc = 4.1 calculated in [5–7,
23]. It should be noted that 2∆π/kTc values exceeding
3.52 were also obtained in a number of other experi-
mental works on MgB2 [30–32]. At the same time, the
2∆π/kTc ratio tends to 3.52 at Tc  0 (Fig. 5). This fact
indicates that the intrinsic superconductivity of the π
bands corresponds to the BCS limit.

There can be no doubt to us that the strong electron–
phonon interaction is the main mechanism responsible
for high Tc values in MgB2. Unfortunately, the available
calculations [5–8, 23] cannot describe in detail the
results obtained in this work. The experimental value of

Fig. 5. The (dark symbols) 2∆σ/kTc and (open symbols)
2∆π/kT ratios as functions of critical temperature Tc for the
studied polycrystalline MgB2 samples differing in the
degree of defectness and the Mg1 – xAlxB2 samples. The
solid lines are drawn for the sake of convenience, and the
dashed line corresponds to the BCS limit.
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2∆σ/kTc proves to be appreciably larger than its theoret-
ical value. In addition, our data indicate that the values
of interband electron–phonon coupling constants are
overestimated in [5–8, 33]. This fact was discussed in
our previous work [18], where plasma-type collective
excitations (Leggett modes) were observed in MgB2. It
was also pointed out in [18] that these modes could not
be observed in MgB2 if the interband constants were as
large as those obtained in the theoretical works.

We are grateful to V.F. Gantmakher, L.M. Fisher,
and M.R. Trunin for helpful discussions. This work was
supported by the Russian Foundation for Basic
Research (project nos. 02-02-16658, 02-02-17915, 02-
02-17353), INTAS-2001-0617, and the scientific pro-
grams of the Russian Academy of Sciences and the
Ministry of Industry, Science, and Technology.
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We study a system of two superconductors connected by a small normal grain. We consider the modification of
the Josephson effect by the Coulomb interaction on the grain. Coherent charge transport through the junction
is suppressed by Coulomb repulsion. An optional gate electrode may relax the charge blocking and enhance the
current leading to the single Cooper pair transistor effect. Temperature dependences of critical current and of
the minigap induced in the normal grain by the proximity to superconductor are studied. Both temperature and
Coulomb interaction suppress critical current and minigap, but their interplay may lead to the nonmonotonic
and even reentrant temperature dependence. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.–b; 74.45.+c; 74.50.+r
Nanoscale SINIS junction consists of a small nor-
mal metallic grain connected to two superconductive
leads by tunnel junctions. The Josephson effect in this
system is provided by the Andreev reflection processes
at the contacts: Cooper pairs enter the normal part of
the junction and propagate as Cooperons. This allows
the transport of Cooper pairs from one lead to another
establishing a supercurrent. Another manifestation of
the Andreev mechanism is the appearance of a minigap
in the spectrum of the normal grain: the proximity
effect. This minigap is a result of a nonzero Cooper
pairs density come from superconductors. The men-
tioned effects rely on the phase conservation in the
grain. Charging effects lead to fluctuations of the phase
and break the coherent electron transport as well as the
induced minigap. The interplay between proximity and
charging effects in a normal grain connected to one
superconductor was recently studied in [1]. Here, we
apply the same formalism to the system with two leads
and consider the Josephson effect. We also study tem-
perature dependence of the minigap and Josephson cur-
rent and find some unexpected reentrant behavior in a
certain range of parameters.

We consider tunnel junctions between normal grain
and left (L) and right (R) superconductors character-
ized by large [in units of e2/"] normal-state conduc-
tances GL, R @ 1 and (geometric) capacitances GL, R. The
gate electrode is coupled to the grain by the capacitance
Cg. Mean level spacing in the grain δ is the smallest
energy scale of the system, while the superconductive
gap ∆ in the leads and Thouless energy ETh of the grain
are largest ones. We assume that Andreev conductances

of both contacts are small,  ≤ 1 (together with con-
ditions GL, R @ 1, it means that our junctions contain

¶ This article was submitted by the authors in English.
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many weakly transparent channels, quantitative esti-
mates will be provided below). The proximity and
charging effects in the grain are characterized by the
bare minigap width Eg0 = (GL + GR)δ/4 and Coulomb
energy EC = e2/2C, with C = CL + CR + Cg + ∆C being the

total capacitance of the grain. Here, ∆C = (GL + GR)

is the contribution to capacitance coming from virtual
quasiparticle tunnelling [2]. We assume that δ !
(Eg0, EC) ! (∆, ETh). With the help of the dynamical (in
imaginary time) sigma model in replica space [3], and
the adiabatic approximation for charging effects devel-
oped in [1], we study the current-phase relation of
SINIS junction as well as the dependence of the critical
current on temperature and gate voltage Vg.

Electronic properties of the normal grain are charac-
terized by its Green function. To capture proximity
induced correlations, one uses the matrix Green func-
tion in Nambu–Gor’kov representation. The sigma-
model operates with the matrix field Q which apart
from Nambu–Gor’kov structure carries two Matsubara
energies and two replica indices. The standard Green
function can be extracted from the diagonal in energies
element of matrix Q by replica averaging. Charging
effects are described by the fluctuating scalar field φ
corresponding to the electric potential and also carrying
the replica index in the sigma-model formalism. The
action for the two variables Q and φ reads

(1)

e2

2∆
-------

S Q φ,[ ] π
δ
---Tr ετ̂3 φ+( )Q[ ]–=

–
π
4
---Tr GLQL GRQR+( )Q[ ] τ

φa eVg–( )2

4EC

---------------------------.d

0

1/T

∫
a

∑+
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Here,  are the Pauli matrices in Nambu–Gor’kov
space. The trace operation implies summation over all
possible variables including replica indices and integra-
tion over energies. The equilibrium superconductive
matrices QL, R for the leads are diagonal in both energies
and replicas and have the form QL, R(ε) = cosϕL, R +

sinϕL, R in Nambu–Gor’kov space with ϕL, R being
the superconductive phase of the left (right) lead. This
expression is valid at energies well below ∆. The con-
tribution from higher energies [2] has already been
taken into account by renormalization of the capaci-
tance: C ° C + e2(GL + GR)/(2∆).

To exclude fast fluctuations due to shifts of the elec-
tron band by the potential φ from the matrix Q, we per-
form the following change of variables [4]:

(2)

The phase K is determined up to a constant, which will
be fixed later to simplify further analysis. With new
variables, the action takes the form

(3)

In this formula we put ϕ = ϕL – ϕR, denote  =

/2, N = CgVg/e, and introduce bare phase-
dependent minigap

(4)

Expression (3) is very similar to the action for an
SIN system with one superconductive lead [1]. The
only difference is the phase dependence of Eg. Further
calculation will essentially follow the procedure of [1].
The key idea is the adiabatic approximation based on

the separation of characteristic frequencies of matrix 
and phase K ensured by the inequality EC @ δ. The
characteristic timescale of the variable K fluctuations is
much shorter than that of electronic degrees of free-
dom; thus, we integrate the action over K(t) regarding

 as a time-independent matrix (it depends only on the
difference of its two time arguments). Then, we apply
the saddle point approximation to the K-averaged
action. The justification of this approximation will be
provided below.

We parametrize the time-independent matrix Q by
an angle α:

(5)

τ̂ i

τ̂1

τ̂2

φa τ( ) = K̇
a τ( ), Qττ '

ab e
i τ̂3K

a τ( )
Q̃ττ '

ab
e

i τ̂3K
b τ'( )–

.=

S Q̃ K,[ ] π
δ
---Tr ετ̂3Q̃( )– τ K̇ N–( )

2

4EC

---------------------d

0

1/T

∫+=

–
2πEg ϕ( )

δ
--------------------- Q̃ττ

1( )
2K Q̃ττ

2( )
2Ksin+cos( ) .

Q̃
i( )

tr τ̂ iQ̃( )

Eg ϕ( ) δ
4
--- GL

2
GR

2
2GLGR ϕcos+ + .=

Q̃

Q̃

Q̃ ε( ) τ̂3 α ε( ) τ̂1 α ε( ).sin+cos=
The  term here is eliminated by the proper choice of
the constant in the definition of K. Inserting this expres-
sion into (3), we derive the Hamiltonian controlling the
dynamics of the phase K:

(6)

All physical quantities depend periodically on N. It is
convenient to assume that |N | < 1/2. The parameter q(ϕ)
is expressed in terms of the angle α(ε)

(7)

This sum diverges logarithmically and should be cut off
at |ε| ~ ∆. For large values of q, the phase K is nearly
localized in the minima of cosine potential and the fluc-
tuations are weak. In the opposite case, fluctuations of
the phase get strong and the proximity effect is mostly
suppressed. Thus, the parameter q quantifies the
strength of proximity coupling competing with the
charging effect.

With the derived Hamiltonian, we are able to calcu-
late the free energy of the K degree of freedom F(q, T)
and then extract the total free energy of the system from
action (3)

(8)

The equilibrium value of α(ε) is determined by the min-
imum of this free energy functional (saddle-point

approximation). This gives tan α(ε) = /ε, with 
obeying the self-consistency equation

(9)

This  is the minigap appearing in the spectrum of the

normal grain. The estimation of matrix  fluctuations
justifies the saddle-point approximation, provided

 @ δ. The system of two equations (7) and (9) deter-

mines two parameters, q and . A trivial solution q =

 = 0 always exists. It is analogous to the normal state,
which is the stationary point (local maximum) of the
superconductor free energy. We are looking for a non-
trivial solution leading to nonzero value of the minigap

. Once this solution exists, it has lower energy than
the trivial solution.

After solving the equations, we can calculate free
energy (8) and all physical properties of the junction.
We are interested in the current–phase relation given by
the identity I(ϕ) = (2e/")(d^/dϕ). Using self-consis-

τ̂2

Ĥ EC i∂/∂K– N–( )2 2q ϕ( ) 2Kcos–[ ] .=

q ϕ( )
πEg ϕ( )T

ECδ
---------------------- α εn( ).sin

εn

∑=

^
2πT

δ
---------- εn α εn( ) F q T,( ).+cos

εn

∑–=

Ẽg Ẽg

Ẽg

Eg ϕ( )
--------------

1
2EC

---------∂F
∂q
------.–=

Ẽg

Q̃

Ẽg

Ẽg

Ẽg

Ẽg
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tency relation (9) and identity (7), we express the cur-
rent as

(10)

Below, we consider analytically two limiting cases
of weak (q @ 1) and strong (q ! 1) charging effect and
then discuss the numerical results for arbitrary q. The
spectrum of Hamiltonian (6) is given by the character-
istic values of the Mathieu equation, which is elemen-
tary solved in these two limits. We first calculate the
current at zero temperature, taking the ground state of
(6) for the free energy F.

Weak Coulomb blockade. When charging effects
are weak and the parameter q is large, the phase K is
localized near 0 or π in the minima of the cosine poten-
tial. The applied gate voltage is ineffective in this case.
Expanding the potential to the second order near its
minimum, we find the ground state energy E0 =

EC(−2q + 2 ). The pair of equations (7), (9) can be
solved iteratively. In the considered regime, the mini-
gap is slightly suppressed in comparison with its bare
value Eg(ϕ). First, we estimate q, substituting Eg(ϕ) in
the r.h.s. of (7)

(11)

Here, we neglect the ϕ dependence of Eg in the argu-
ment of logarithm. At the next iteration, we put q0 in the
r.h.s. of (9) and then refine the value of q, inserting the

calculated  into (7):

(12)

With this q and , we calculate the Coulomb correc-
tion to the current using (10)

(13)

(14)

Here, we denote current in the absence of Coulomb
interaction by I0(ϕ). Suppression of the current by the
Coulomb interaction becomes stronger as the phase on
the junction increases. Qualitatively, the bare minigap
Eg(ϕ) decreases and the charging effects win the com-
petition with proximity further suppressing the current.
In the symmetric junction (GL = GR), the proximity
effect vanishes completely as ϕ approaches π. The
weak interaction approximation becomes invalid in this
limit even if it is correct for small ϕ.

I ϕ( )
eδ2ECẼgq

4"Eg
3 ϕ( )

------------------------GLGR ϕ .sin=

q

q0

Eg
2 ϕ( )

ECδ
-------------- ∆/Eg0( ).log=

Ẽg

Ẽg = Eg ϕ( ) 1 1/2 q0–( ), q = q0 1 1/2 q0–( ).

Ẽg

I ϕ( ) I0 ϕ( ) 1 1

q0

---------– ,=

I0 ϕ( ) eδ
4"
------GLGR ∆/Eg0( ) ϕ .sinlog=
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Strong Coulomb blockade. For small values of the
parameter q, we calculate the ground state of (6) pertur-
batively: E0 = –ECq2/2(1 – N2). Equations (7) and (9)
give

(15)

Exponentially small minigap survives at T = 0 when
Coulomb blockade is strong. Josephson current is
exponentially small as well:

(16)

We solve numerically system of equations (7), (9)
and plot the dependence of the current on the phase dif-
ference in Fig. 1. Critical current Ic =  as a

function of charging energy is shown in Fig. 2.
The gate voltage enhances both the minigap and the

current (see Fig. 3). Large Coulomb energy makes the
charge of the grain to be nearly conserving quantity.
The ground state corresponds to zero charge and is sep-
arated by the gap 4EC from the excited states with
charge ±2e. States with odd charge are ineffective
because electrons tunnel from leads by pairs. This situ-
ation changes when the gate voltage approaches e/2C.
The gap between the ground state and excited state gets
twice smaller, assisting tunneling of Cooper pairs. At

Ẽg = 2∆
2ECδ

Eg
2 ϕ( )

------------- 1 N2–( )– , qexp  = 
2Ẽg 1 N2–( )

Eg ϕ( )
---------------------------.

I ϕ( )
2eδ2EC∆2

"Eg
4 ϕ( )

------------------------GLGR 1 N2–( )=

×
4ECδ

Eg
2 ϕ( )

-------------- 1 N2–( )– ϕ .sinexp

ϕ I ϕ( )
ϕ

max

Fig. 1. Current vs. phase for the symmetric junction. Solid
curve illustrates the case EC = 0. It is given by expression (14).

Other curves correspond to ECδ/  = 0.5, 1.5, 2.5. At

small values of this parameter and at small ϕ, the current is
given by (13). At larger ϕ, charging effects are always
strong and the current is exponentially suppressed (16). We
assume GL = GR = 20 and /Eg0) = 5.

Eg0
2

∆(log
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higher gate voltage, the ground state carries odd charge
and the critical current starts to diminish. The increase
of current with gate voltage is analogous to that studied
in [5], where a similar setup with the superconductive
grain was considered. Now, we turn to the thermody-
namic properties of the junction. The temperature
dependence of the critical current is found numerically
and depicted in Fig. 4. At some temperature, both the
minigap and the Josephson current disappear. As tem-
perature approaches its critical value Tc, the parameter
q becomes arbitrarily small. This allows the expansion
of the free energy of the K degree of freedom: F(q, T) =
F(0, T) – ECβ(N, T)q2. The coefficient β(N, T) may be
found with the help of perturbation theory for Hamilto-
nian (6):

(17)

Note that β is a nonmonotonic function of temperature.
At high temperature, highly excited levels of the
Hamiltonian insensitive to the q perturbation play the
main role. Thus, β goes to zero in this limit. At low tem-
perature, the phase K is almost frozen at the ground
state. The q term mixes two lowest excited states. As
temperature grows, these two states begin to contribute
to the free energy, increasing its dependence on q.
When N approaches 1/2, the ground state becomes
degenerate and β falls monotonically with temperature.

β N T,( )

e
n N–( )2

EC/T–
/ 1 n N–( )2–( )

∞–

∞

∑

2 e
n N–( )2

EC/T–

∞–

∞

∑
----------------------------------------------------------------------=

=  
1/ 2 1 N

2
–( )[ ] , T  ! EC;

EC/T 2/3( ) EC/T( )2, T  @ EC.–



Fig. 2. The dependence of the critical current on EC for the
symmetric junction. The parameters are GL = GR = 20,

/Eg0) = 5.∆(log
Expression (7) in the limit  ! T gives

(18)

Here,  ≈ 0.577 is the Euler constant. Self-consis-
tency condition (9) in the limit of small q takes the form

 = Eg(ϕ)βq. Substituting this equation into Eq. (18),
we find for the critical temperature

(19)

Ẽg

q
EgẼg

ECδ
------------ 2γ∆

πT
---------.log=

γlog

Ẽg

Tc
2γ
π
------∆

ECδ

Eg
2 ϕ( )β N Tc,( )

------------------------------------– .exp=

Fig. 3. Relative increase of critical current by gate voltage

for ECδ/  equal to 1.5, 2, and 2.5. This effect gets stron-

ger at larger charging energies. Other parameters of the
junction are GL = GR = 20, /Eg0) = 5.

Eg0
2

∆(log

Fig. 4. Critical current vs. temperature for ECδ/  = 0.5,

1.5, 2.5. Other parameters of the junction are GL = GR = 20,

/Eg0) = 5.

Eg0
2

∆(log
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The same equation may be obtained by the expansion

of (8) in powers of  and setting the coefficient of 
to zero. It can be checked that the fourth-order term of
this expansion always remains positive. This justifies

our assumption that  vanishes continuously at the
critical temperature.

In the regime of strong Coulomb interaction, critical
temperature appears to be much lower than EC. Taking
low temperature asymptotic of β(N, T), we find that

Tc = (γ/π) (T = 0), where (T = 0) is given by
Eq. (15). This is the BCS relation between the gap and
the critical temperature. The phase of the grain strongly
fluctuates and is mainly independent of the phase in the
leads. The only effect of superconductive leads is a
weak effective attraction in the Cooper channel which
leads to formation of very weak BCS-like state.

In the opposite limit of weak Coulomb interaction,
we employ high temperature asymptotic of β and find

(20)

The whole dependence of the critical temperature
on parameters is shown in Fig. 5. It is possible that
Eq. (19) has more than one solution at a given value of
EC. This implies reentrant behavior of the minigap and
critical current as functions of temperature. Mathemat-
ically, it is due to nonmonotonic behavior of the func-
tion β(T). The physical explanation is simplest in charge
rather than phase representation of Hamiltonian (6).
Two excited states with charge ±e have equal charging
energies. Tunneling of the Cooper pair that switches
between these two states is not blocked by Coulomb
interaction. Finite temperature may excite the system to
one of these states, leading to the temperature-assisted
proximity effect and the enhancement of the minigap.
Hamiltonian (6) conserves the parity of electron num-
ber. Thus, thermalization of the system implies some
parity-breaking processes (e.g., single electron tunnel-
ing with energy above ∆), which may take a long time.

At large enough values of ∆ > ∆* = 17.7 /δ, reen-
trant behavior of the minigap with temperature was
found in some (dependent on ∆/∆* ratio) interval of the

Coulomb parameter ECδ/ , cf. Fig. 6. Fine tuning of

the parameter ECδ/  can be achieved by an appropri-
ate phase bias, cf. Eq. (4).

To conclude, we have described the Josephson
effect in a nanoscale SINIS junction modified by the
Coulomb interaction. The most important feature of
SINIS structure (in comparison with usual SIS struc-
ture) is that it can demonstrate both good metallic con-
ductance in the normal state and Coulomb blockade of
Josephson current at very low temperatures, since both

Ẽg Ẽg
2

Ẽg

Ẽg Ẽg

Ts

Eg
2 ϕ( )
δ

-------------- 2γ∆δ
πEg

2 ϕ( )
------------------log

2
3
---EC.–=

Eg
2

Eg
2

Eg
2
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the conditions GL, R @ 1 and EJ = Ic ≤ EC can be ful-

filled simultaneously. We calculated the current–phase
characteristic of the junction in both weak and strong
Coulomb blockade limit. The enhancement of the cur-

"
2e
------

Fig. 5. The critical line demonstrating the dependence of
critical temperature on EC. The three curves are plotted for

∆δ/  = 5, 17.7, 70. At large enough values of ∆, this

dependence may not be single-valued. Dotted line shows
the turning points of critical temperature. Small disk
denotes the critical point where the dotted line touches the
TC vs. EC curve. This critical point gives the following crit-

ical values: δ/  = 0.54, δ/  = 2.05, ∆*δ/  =

17.7.

Eg
2

Tc* Eg
2

EC* Eg
2

Eg
2

Fig. 6. The minigap in the normal dot as a function of tem-

perature. Solid line is plotted for ECδ/  = 2.6. Dashed line

illustrates the case ECδ/  = 2.67. Chain line is for

ECδ/  = 2.75. All curves are plotted for ∆ = 70 /δ. The

critical temperature as a function of EC for the same value
of ∆ is shown by the chain line in Fig. 5.

Eg
2

Eg
2

Eg
2

Eg
2
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rent by the gate voltage is predicted. The temperature
dependence of the critical current and of the minigap
induced in the normal part of the junction was found. A
grain of noble metal with a size of about 50 nm con-
nected to Nb superconductive electrodes by tunnel
oxide barriers with transparency per channel of the
order of 10–5 could present an example of the studied
system with EJ ~ EC ~ 1K.
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Magnetotransport properties of a 2D electron gas in narrow GaAs quantum wells with AlAs/GaAs superlattice
barriers were studied. It is shown that the anisotropic positive magnetoresistance observed in selectively doped
semiconductor structures in a parallel magnetic field is caused by the spatial modulation of the 2D electron gas.
© 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.63.Hs; 73.21.-b; 73.23.-b; 73.20.-r
In an idealized zero-thickness 2D electron system,
the orbital motion of charge carriers is affected only by
the normal component of the external magnetic field,
where the magnitude of this component depends on the
angle between the magnetic field Bext and the normal to
the plane of 2D electron gas. The in-plane component
of magnetic field in such a system will cause changes in
the spin degree of freedom of charge carriers and,
hence, in the density of states of 2D electron gas. The
real 2D semiconductor systems always have a nonzero
thickness, and this is the cause of the orbital effect in a
parallel magnetic field [1]. Unlike the magnetoresis-
tance associated with the spin effect in a parallel mag-
netic field [2], the magnetoresistance caused by the
finite thickness of 2D electron gas is anisotropic. The
origin of this anisotropy is that the variation of the
effective mass of charge carriers in the direction per-
pendicular to the external magnetic field is greater than
the variation in the direction parallel to the field.

This anisotropy mechanism manifests itself in the
dependence of the magnetoresistance of 2D electron
gas on the mutual orientation of the in-plane magnetic
field and the measuring current. In particular, in the sit-
uation where the measuring current is perpendicular to
the in-plane magnetic field, the magnetoresistance of
2D electron gas in AlGaAs/GaAs heterojunctions is
greater than in the situation where the current is parallel
to the field [3]. The anisotropy of positive magnetore-
sistance observed in [3] was found to be much smaller
than that predicted by the theory [1]. In our opinion,
this discrepancy is due to the fact that 2D electron gas
in real selectively doped structures not only has a finite
thickness but is also nonplanar [4–7]. As will be shown
below, even a very small spatial modulation of 2D elec-
tron gas, which is inherent in any real structure, also
leads to the anisotropy of the positive magnetoresis-
tance of 2D electron gas in an in-plane magnetic field.
0021-3640/04/7910- $26.00 © 20495
However, the magnetoresistance in this mechanism is
smaller when the magnetic field and the measuring cur-
rent are mutually perpendicular and greater when they
are parallel. A combined effect of the finite thickness
and the spatial modulation of 2D electron gas should
lead to a decrease in the degree of magnetoresistance
anisotropy in the in-plane magnetic field, which may
qualitatively explain the experimental results obtained
in [3].

In the general case, the surface of 2D electron gas
can be described by the function z = z(x, y) characteriz-
ing the deviation of the surface from the ideal plane
formed by the x and y axes. If we decompose the vector
of external magnetic field into perpendicular and paral-
lel components, Bext = B⊥ (x, y) + B||(x, y), the quantities
B⊥  and B|| for this surface will be functions of x and y.
The perpendicular and parallel components are meant
as the projections onto the normal vector and the tan-
gential plane, respectively, at the point (x, y) of the sur-
face of 2D electron gas.

This decomposition is helpful because, in the case
of a narrow quantum well, 2D electrons perceive only
the normal component that is responsible for to the
appearance of classical Larmor orbits in the plane of 2D
electron gas. This normal component can be considered
effective inhomogeneous magnetic field Beff(x, y) aris-
ing as a result of applying external magnetic field to the
nonplanar 2D electron gas. In the particular case of the
external magnetic field parallel to the sample, the effec-
tive field will be an alternating function with zero
mean: 〈Beff(x, y)〉  = 0 [8]. The effective magnetic field
Beff = Beff(x, y) can be calculated if we know the surface
of 2D electron gas z = z(x, y) and the external magnetic
field Bext =(Bx, By, Bz). Then, Beff(x, y) = |Bext|cos(Θ(x, y)),
where |Bext| is the magnitude of the vector of external
magnetic field and Θ(x, y) is the angle between the nor-
004 MAIK “Nauka/Interperiodica”
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mal to the surface z = z(x, y) at the point (x, y) and the
vector of external magnetic field Bext.

To characterize the surface of 2D electron gas, it is
convenient to introduce the autocorrelation function

G(x, y) = (x – X, y – Y)z(x, y)dXdY. If the surface is

isotropic, the autocorrelation function will also be iso-
tropic. However, the effective magnetic field Beff will be
anisotropic, because the external magnetic field intro-
duces a preferential direction into the system. Thus, the
analysis of the influence of the in-plane magnetic field
on the 2D electron transport in heterostructures with
nonplanar heteroboundaries reduces to the problem of
transport in an inhomogeneous magnetic field with zero
mean and a certain anisotropy. Hence, in the general
case, including selectively doped MBE structures with
the isotropic surface relief, the magnetoresistance of a
nonplanar 2D electron gas is due to the transport in an
inhomogeneous magnetic field and should depend on
the angle between the direction of the measuring cur-
rent and the vector of the in-plane magnetic field.

The structures studied in the experiment were selec-
tively doped 10-nm-thick GaAs quantum wells with

z∫
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0
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µ

µ
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0.5
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nm

(a)

Fig. 1. (a) Two-dimensional AFM image of the surface
relief of the MBE structure. (b) Autocorrelation functions of

the relief in the [110] and  directions.110[ ]
AlAs/GaAs superlattice barriers. They were prepared
by molecular beam epitaxy (MBE) on (100) GaAs sub-
strates whose deviation from the (100) plane did not
exceed 0.02°. The surface morphology of the structures
was examined by atomic force microscopy (AFM).
Figure 1a shows the typical AFM image of the surface
relief of the MBE structures under study. From the cor-
relation analysis presented in Fig. 1b, one can see that
the surface relief of a real MBE structure is not isotro-

pic. The surface is wavy with a preferred  orienta-
tion of the wave crests, which is typical of the selectively
doped GaAs quantum wells with AlAs/GaAs superlat-
tice barriers grown on GaAs (100) substrates [4].

Figure 2a shows a two-dimensional image of the
effective magnetic field calculated for 2D electron gas
on the assumption that its surface is identical to the
AFM image of the MBE structure under study and that
the external magnetic field is parallel to the [110] direc-
tion. One can clearly see that the effective magnetic
field is anisotropic. The results of calculation of the
effective magnetic field for the situation where the

external magnetic field is oriented along the 
direction are shown in Fig. 2b. In this situation, the
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Fig. 2. Function Beff(x, y) calculated for a nonplanar 2D
electron gas with a relief corresponding to the AFM image
of the surface of MBE structure: Bext is directed along (a)

[110] and (b) .110[ ]
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anisotropy of effective magnetic field is much smaller
than in the previous case. Hence, for the 2D electron
gas in the selectively doped MBE structures under
study, the character of Beff(x, y) anisotropy depends on
the direction of the vector Bext.

The magnetotransport experiments were carried out
at temperatures from 4.2 to 1.6 K in magnetic fields up
to 15 T on L-shaped Hall bars (Fig. 3a), which were
fabricated by optical lithography and liquid etching.
The bars had a width of 50 µm, and the distance
between the potential terminals was 100 µm. The bar
orientations were chosen so that the measuring current

was parallel to the [110] and  directions. The
structures under study had one filled size-quantization
subband. The equilibrium parameters of the 2D elec-
tron gas at T = 4.2 K were as follows: the concentration
ns = 1.6 × 1012 cm–2 and the mobility µ = 300 ×
103 cm2/V s. Figure 3b represents the results of mea-
surements of the relative magnetoresistance for two dif-
ferent orientations of the parallel external magnetic
field: along the x axis (Bx = Bext and By = 0) and along
the y axis (Bx = 0 and By = Bext). Due to the anisotropy
of the surface relief, the pattern of effective magnetic
field for each of these Bext directions is different. This
results in the four combinations of the 2D electron-gas

magnetoresistance along the [110] and  direc-
tions. It should be noted that, in the temperature range
from 4.2 to 1.6 K, the positive magnetoresistance
observed in the structures under study did not vary, evi-
dencing its classical [9, 10] rather than quantum-
mechanical nature [11–13].

The anisotropy observed for the magnetoresistance
of 2D electron gas can be qualitatively explained by
electron scattering from the anisotropic inhomoge-
neous magnetic field [14] that depends on the angle
between the vector Bext and the direction of the measur-
ing current. For the quantitative evaluation of this
assumption, we carried out numerical simulation of the
quasi-classical charge-carrier transport in the effective
inhomogeneous magnetic field appearing in a nonpla-
nar 2D electron gas in the parallel magnetic field. The
model surfaces of the 2D electron gas were constructed
using the results of AFM studies of real samples, for
which the magnetic-field dependences are shown in
Fig. 3b. The conductivity was calculated by the formula
[15]

where ν(t) = (cosϕ(t), sinϕ(t)) is the direction of the
electron velocity vector and τ is the charge-carrier
transport relaxation time. The averaging was over 106

trajectories. The factor e–t/τ reflects the presence of
impurities from which electrons are elastically scat-
tered.

110[ ]

110[ ]

σij
ne2

m
-------- ν i 0( )ν j t( )〈 〉 e t /τ– t,d

0

∞

∫=
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The trajectory of an electron r(t) was determined by
the numerical integration of the equation of motion of a
2D electron in magnetic field:

where Beff(x, y) is the effective magnetic field directed
normally to the sample. By analogy with the experi-
mental configurations, two directions were preset for

mv̇ t( )
e
c
-- v Beff x y,( )×[ ] ,–=

Fig. 3. (a) Schematic representation of an L-shaped Hall
bar. (b) Dependences of the relative magnetoresistance of
the 2D electron gas: (1) Rxx(Bx, By = 0)/Rxx0, (2) Ryy(Bx = 0,
By)/Ryy0, (3) Ryy(Bx, By = 0)/Ryy0, and (4) Rxx(Bx = 0,
By)/Rxx0. The solid lines represent the experimental curves,
and the dots represent the calculations.
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the external field: along and across the [110] direction.
In this way, four dependences were obtained for differ-
ent combinations of Rxx, Ryy and Bx, By. The model
parameters were taken to be equal to the parameters of
the real samples (mobility, concentration, and surface
relief). The only fitting parameter was the amplitude of
the spatial modulation of the 2D electron gas.

The results of modeling are shown in Fig. 3b. It
should be noted that the calculated amplitude of spatial
modulation of the 2D electron gas proved to be
2.5 times greater than the amplitude of surface rough-
ness obtained from the AFM studies. We explain this
difference by the fact that the 2D electron gas in the
MBE structure under study is at a certain distance from
the sample surface, and this distance is much greater
than the roughness amplitude. Therefore, in the general
case, the spatial modulation of the 2D electron gas may
not coincide with the surface relief. One can see that the
model and experimental dependences are in good
agreement with this value of the fitting parameter.

Another possible explanation of the aforementioned
discrepancy is that our calculations did not take into
account the influence of the finite thickness of 2D elec-
tron gas on the value of positive magnetoresistance [1].
However, we believe that the high concentration of 2D
electron gas and small width of the GaAs quantum well
allow us to ignore the contribution from the orbital
effect to the magnetoresistance. This approximation
agrees with the absence of the temperature dependence
of magnetoresistance in the interval from 4.2 to 1.6 K
and allows us also to exclude other quantum-mechani-
cal mechanisms from the consideration [11–13]. The
quasi-classical nature of the magnetoresistance anisot-
ropy observed by us is confirmed not only by the func-
tional agreement between the model and experimental
curves but also by the quantitative coincidence of the
relative values of magnetoresistance obtained for dif-
ferent combinations of the directions of measuring cur-
rent and parallel magnetic field. This result allows the
following conclusion to be drawn: our model ade-
quately describes the 2D electron transport in the selec-
tively doped MBE structures under study, and the main
contribution to the magnetoresistance comes from the
scattering by the effective inhomogeneous magnetic
field arising in such structures in a parallel external
magnetic field.
Thus, we have shown that the anisotropic positive
magnetoresistance of a high-concentration 2D electron
gas in a parallel magnetic field is governed by the scat-
tering by the effective inhomogeneous magnetic field,
i.e., by the spatial modulation of the 2D electron gas in
the selectively doped MBE structures under study.

This work was supported by the Russian Foundation
for Basic Research, project no. 04-02-16789.
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The method of measuring the Leggett frequency of 3He-B using spatially homogeneous oscillations of a homo-
geneously precessing domain was developed. The temperature dependence of Leggett frequency was measured
for bulk 3He-B and 3He-B in aerogel at a pressure of 19.5 bar. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 67.57.-z; 76.60.-k
1. INTRODUCTION

The investigation of 3He in a low-density aerogel
allows the experimental study of the influence of impu-
rities on the superfluidity of a system with nontrivial
Cooper pairing. Aerogel consists of SiO2 strands with a
diameter of ~30 Å and a characteristic distance of
500 Å between the strands (hereafter, we deal with so-
called 98% aerogel, i.e., an aerogel in which 98% of the
volume is free and with which most experiments have
been carried out). Since the strand diameter is much
smaller than the coherence length in a superfluid 3He,
they play the role of extended impurities.

If an aerogel is filled with pure 3He, NMR is dis-
tinctly affected by two solid monolayers of paramag-
netic 3He covering the strand surface. With lowering
temperature, their magnetic moment increases, and at
temperatures on the order of 1 mK, it exceeds several
times the magnetic moment of a liquid 3He filling the
aerogel. To circumvent this effect, a small amount of
4He is first added into a cooled cell with aerogel to
cover the aerogel strands with two 4He monolayers, and
only after this the cell is filled with 3He. In this case, the
NMR signal is determined only by the liquid 3He. It is
known that the presence of 4He at the strand surface
does not affect the phase diagram of 3He superfluid
states in aerogel. All the experiments discussed below
were performed in an aerogel preliminary covered with
4He.

It is known that two superfluid phases arise at
ultralow temperatures in a 3He in aerogel, one of which
is analogous to the B phase of bulk (i.e., without aero-
gel) 3He [1–3]. The Leggett frequency ΩB that charac-
terizes the strength of dipole–dipole interaction
between atoms in a Cooper pair is an important param-
eter of the B phase because it allows the estimation of
the value of energy gap. The purpose of this work was
0021-3640/04/7910- $26.00 © 20499
to develop the method of measuring the Leggett fre-
quency for 3He-B in aerogel and carry out such mea-
surements.

The Leggett frequency for bulk 3He-B was deter-
mined by various methods: by measuring the transverse
cw NMR line shape, the longitudinal NMR frequency,
etc. [4–6]. To determine the Leggett frequency by these
methods, it is necessary to know the spatial distribution
(texture) of the 3He-B order parameter in an experimen-
tal cell. For example, in the case of transverse NMR, the
Leggett frequency can be determined from the absorp-
tion line shape. At equilibrium, the order-parameter
vector n is parallel to the external magnetic field H only
far from the cell walls. This orientation corresponds to
the Larmor NMR frequency. Near the walls oriented
along H, the angle between n and H is ≈63° and the
NMR frequency changes. As a result, the transverse
NMR line shape consists of a sharp peak at the Larmor
frequency ωL and a long “tail” extended to high fre-
quencies and terminated at the frequency ω = ωL +

2 /5ωL.

The use of standard NMR methods for 3He-B in
aerogel is hampered because the main orienting action
on the texture comes from the local aerogel inhomoge-
neities. This is illustrated in Fig. 1, where two trans-
verse cw NMR signals recorded in two different cells
with 3He-B in aerogel at the same temperature are
shown (the scheme of the experimental chamber con-
taining two cells is shown in [3]). Both cells were
shaped like a cylinder (5.3 mm in diameter and 5.6 mm
in height) with the axis oriented along the external mag-
netic field. One of the cells was almost fully filled with
aerogel, while the aerogel in another cell had the form
of a ≈2.4-mm-thick disk placed in the middle of the
experimental volume. The samples were prepared by
the same technique, and the 3He superfluid transition
temperature in these samples was the same (at P =

ΩB
2
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25.5 bar, Tca ≈ 0.76Tc, where Tc and Tca are the super-
fluid transition temperatures for bulk 3He and for 3He in
aerogel, respectively). It is seen from the figure that not
only the NMR line widths but also the line shapes are
noticeably different in these cells. It is worth noting that
the signal from the cell partially filled with aerogel is
almost the same as for 3He in aerogel (except for a nar-
row region near the Larmor frequency), while a high-
frequency tail from bulk 3He-B has a much smaller
amplitude and terminates far beyond the picture. This
follows from the fact that the line narrows monotoni-
cally but, on the whole, retains its shape with a rise in
temperature, and only a narrow peak remains in the
region of Larmor frequency at T = Tca. The tail corre-
sponding to 3He-B becomes detectable only upon fur-
ther rise in temperature.

It is known that a homogeneously precessing two-
domain structure (homogeneously precessing domain
(HPD) [7]) can arise in bulk 3He-B in a magnetic field
with a uniform gradient. One of these domains is a
region with an almost equilibrium magnetization, while
the magnetization in the other is tilted by an angle β
slightly exceeding Θ0 =  ≈ 104° and
undergoes the in-phase precession over all volume. In
this case, the vector n deflects from H by an angle of
90° and also precesses uniformly in volume. The pre-
cession frequency is equal to the Larmor frequency in
the domain wall, whose characteristic thickness is
equal to 0.2–0.3 mm. The local frequency shift from the
Larmor frequency is due to the dipolar frequency shift
that arises in 3He-B if the magnetization deflects by an
angle larger than Θ0. If a uniform magnetic-field gradi-
ent is applied to the sample in the H direction (z axis),
an HPD arises upon a gradual decrease in the spatially
homogeneous component of external field in the case of

1/4–( )arccos

Fig. 1. Absorption signals obtained under the same condi-
tions by standard cw NMR in two different cells (see text).
Dots: cell is filled with aerogel in the form of a 2.4-mm-
thick disk. Solid line: cell is almost fully filled with aerogel.
T = 0.76Tca; P = 25.5 bar; and H = 284 Oe.
transverse cw NMR with a sufficiently high rf ampli-
tude h [8]. In this case, HPD can be maintained as long
as one likes, because the magnetic relaxation is com-
pensated by the rf power.

An HPD can also be created in the B phase of 3He in
aerogel [3]. In this case, HPD does not differ from an
HPD in bulk 3He-B and has a homogeneous texture in
a 3He-B sample in aerogel as well. Against the back-
ground of precession, various oscillation modes of the
precessing HPD magnetization can be excited. To date,
two types of spatially inhomogeneous HPD oscillations
have been studied both theoretically and experimen-
tally: torsional oscillations [9] and domain-wall-shape
oscillations [10]. The torsional frequency depends on
the HPD length, the cell geometry, the Leggett fre-
quency, and the spin-wave velocity. If the latter is
known, this mode, in principle, can be used to deter-
mine the Leggett frequency. However, it will be shown
below that the spatially homogeneous HPD modes are
much more suitable for this purpose.

2. SPATIALLY HOMOGENEOUS HPD 
OSCILLATIONS

Two spatially homogeneous HPD modes were theo-
retically predicted in [11], where the oscillations in
3He-B were considered on the background of stationary
precession with various magnetization tipping angles.
It was shown that, for β ≥ Θ0, two oscillation modes are
possible. In the rotating system of coordinates, the fre-
quencies of these modes are given by the following
expressions:

(1)

(2)

where ∆ω is the precession-frequency shift from the
Larmor value. In [11], the rf field was absent. We car-
ried out calculations for the case where the rf amplitude
is nonzero and β ≥ Θ0, which corresponds to the rf-
maintained HPD. It turned out that, if the relation ∆ω @

γh /  holds (which was always fulfilled in our
experiments), one more oscillation mode arises with a
frequency determined by the following expression [12]:

(3)

At first sight, the first and third of the aforemen-
tioned modes are ideally suited for measuring the Leg-
gett frequency. To check this, we performed numerical
simulation of the experiment on the excitation and
maintaining HPD oscillations by a cw rf field. To this
end, a complete set of Leggett–Takagi equations was
solved for the one-dimensional case with allowance for
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the dissipation and the presence of superfluid spin cur-
rents (spin supercurrents). The boundary conditions
corresponded to the absence of spin flux at both bound-
aries. The simulation was as close to the real experi-
ment as possible: a uniform gradient of the external
magnetic field and a weakly spatially nonuniform rf
field were applied to the 3He sample, and the HPD in
the cell was formed through reducing the spatially
homogeneous magnetic-field component. After the
HPD completely filled the cell, the field did not change
and the HPD was disturbed from equilibrium by some
pulsed action or by an additional cw pumping with a
frequency changed in a certain range near Ω1 or Ω3. It
turned out that, in practice, the Ω1 mode cannot be
excited because it is strongly damped. Quite the
reverse, the Ω3 oscillations can easily be excited and are
weakly damped, and their frequency coincides with Eq.
(3). In the rotating system of coordinates, these modes
correspond to the oscillations of precession phase about
the equilibrium position. Numerical simulation sug-
gests that the following excitation method is optimal for
this mode: oscillations are excited after a jump change
in H by a small value δH ~ 10–100 mOe.

3. EXPERIMENTAL

Experiments were carried out at a pressure of
19.5 bar in a magnetic field of 285 Oe (the correspond-
ing NMR frequency is 923 kHz). The experimental
chamber (Fig. 2) was mounted at the nuclear demagne-
tization stage and contained two cylindrically shaped
cells (each ~5.25 mm in diameter and 1.75 mm in
height) fabricated from Stycast-1266 epoxy resin. A
transceiver NMR coil with the axis oriented perpendic-
ular to the external field H was placed outside each cell.
In addition, each cell was surrounded by a separate lon-
gitudinal coil (not shown in Fig. 2) to produce a jump
change in the homogeneous component of the external
field (the axes of these coils were aligned with H). All
coils were thermally insulated from the cells. Cell 1 did
not contain aerogel, and aerogel in cell 2 had the form
of a disk with a diameter of 5 mm and a thickness of
≈1.53 mm and was placed in the center of the experi-
mental volume. The HPD signal induced in the corre-
sponding transceiver coil was amplified by a preampli-
fier and fed into a lock-in SR844 (Stanford Research
Systems) amplifier that extracted the absorption and
dispersion signals, after which they were read in a com-
puter memory. The required temperature was achieved
using a nuclear-demagnetization cryostat and moni-
tored by a platinum NMR thermometer and a vibrating
wire placed in a separate volume (below the experimen-
tal cells). The experimental cells were connected to this
volume through a channel with a waist of diameter
1 mm and length of 2.5 mm.
JETP LETTERS      Vol. 79      No. 10      2004
4. EXPERIMENTS WITH BULK 3He-B

An HPD was “grown” in cell 1 by the cw NMR
method through lowering the field H. The field ceased
to change when the cell was fully filled with the HPD
and the minimal frequency shift in the cell was suffi-

ciently large for the condition ∆ω @ γh /  to be
met (the frequency shift varied along the cell because of
the applied field gradient). Then, a rectangular current
pulse with a duration of a few tenths of a second corre-
sponding to a change of 10–50 mOe in the external field
was fed into the corresponding longitudinal coil. The
time constant of the lock-in amplifier was chosen to be
small (ordinarily, 30 µs), so that the possible low-fre-
quency HPD oscillations were detected without distor-
tion. It turned out that, indeed, this procedure gave rise
to weakly damped oscillations, whose amplitude was
larger at the channel corresponding to the absorption
signal. For the convenience of signal processing, the
phase of reference signal from the lock-in amplifier was
tuned so that the oscillations were observed only at one
of the channels. The result of one of these experiments
is demonstrated in Fig. 3. At t = 0, a current pulse cor-
responding to δH ~ 50 mOe was applied to the longitu-
dinal coil. The excited oscillations were damped with a
characteristic time on the order of 100 ms. The oscilla-
tions were also excited upon switching off the addi-
tional field. It was found that, in accordance with

ΩB
2 ωL

2

Fig. 2. Scheme of the experimental chamber: (1) cell 1;
(2) cell 2; (3) platinum NMR thermometer; (4) vibrating
wire; and (5) aerogel.
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Fig. 3. Oscillations of the NMR signal from 3He-B in cell 1
after applying a pulse to the longitudinal coil.

Fig. 4. Oscillation frequency as a function of the amplitude
of the rf field maintaining HPD in cell 1. T ~ 0.61Tc. The rf
amplitude was calibrated in a uniform magnetic field in the
normal phase of 3He through applying a long (on the order
of 1 ms) rf pulse and measuring the initial free-induction
amplitude as a function of the pulse amplitude.

Fig. 5. Oscillations of the NMR signal from 3He-B in aero-
gel in cell 2 after applying a pulse to the longitudinal coil.
Eq. (3), the oscillation frequency was independent of
the frequency shift and proportional to the square root
of the effective rf amplitude (Fig. 4); i.e., this method
can be used to excite the spatially homogeneous HPD
mode (3).

5. EXPERIMENTS WITH 3He IN AEROGEL

The superfluid transition temperature of 3He in aero-
gel at a pressure of 19.5 bar was found to be 0.795Tc.
The experiments with cell 2 were carried out exactly in
the same manner as in bulk 3He, and mode (3) was also
easily excited by a pulse applied to the longitudinal coil
(Fig. 5). The frequency of the resulting oscillations was
also independent of the frequency shift and propor-
tional to the square root of the effective rf amplitude.

6. MEASUREMENTS 
OF THE LEGGETT FREQUENCY

The amplitude of the HPD-maintaining rf field can
easily be calibrated in the normal 3He phase. After the
subsequent measurement of the oscillation frequency,
one can use Eq. (3) for determining the Leggett fre-
quency. The results of these measurements in both bulk
3He (cell 1) and 3He in aerogel (cell 2) are shown in
Fig. 6. The solid curve in Fig. 6 corresponds to the Leg-
gett frequency measured in [4] by the standard cw
NMR in bulk 3He and interpolated to a pressure of
19.5 bar. The good agreement between these data and
our results is evidence that the method developed by us
for measuring the Leggett frequency is quite efficient.

It is worthy of note that, when interpreting the mea-
surement results for aerogel, one should take into
account that the sample can be overheated due to a low
heat conductivity of 3He in aerogel. To reduce this over-
heating, the thickness of our aerogel sample was small,
and gaps (~0.12 mm) were left between the sample and
the cell walls to remove the heat that was released in the
HPD due to the magnetic relaxation. The heat power
released in the cell did not exceed 0.5 nW, as was esti-
mated from the known rf amplitude and the measured
absorption-to-dispersion ratio of the HPD signal. The
maximal sample overheating for such a heat release can
be estimated using the data on aerogel thermal conduc-
tivity [13, 14]. For our geometry, this estimate gives an
acceptable value of no higher than 0.003T/Tca. How-
ever, in the presence of gaps, the fraction of bulk helium
in cell 2 comprises 18% of the cell volume. It follows
from [3] that the HPD in the cell containing aerogel and
bulk 3He fills both the aerogel and the volume free from
aerogel. The Leggett frequency in bulk 3He differs from
its value in aerogel. As a result, the situation of two cou-
pled oscillators arises. The frequencies of coupled
oscillators depend on their eigenfrequencies and on the
corresponding coupling parameters. In our case, the
spin-wave velocities (determining the gradient energy
and the spin supercurrents) are such parameters. We
JETP LETTERS      Vol. 79      No. 10      2004
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have carried out the numerical simulation of our exper-
iment, in which the aerogel (a region where the Leggett
frequency, the spin-wave velocities, and the magnetic-
relaxation parameters differ from their values in bulk
3He) was situated between two regions of bulk 3He. It
was found that the observed oscillation frequency is
determined only by the aerogel filling factor in the cell
and by the frequencies of mode (3) in bulk 3He and in
3He in aerogel. It is independent of the spin-wave
velocities and magnetic-relaxation parameters over a
wide range of their values (that far exceeds their possi-
ble range!). The oscillation frequency is determined, to
a greater extent, by the part of the cell where the Leg-
gett frequency is lower (i.e., by the region filled with
aerogel). In our experiments, the filling factor was
equal to 0.82. In this case, the oscillation frequency is
8% higher than the value calculated by Eq. (3) on the
assumption that the cell is fully filled with aerogel.
Accordingly, the Leggett frequencies of 3He in aerogel
are indicated in Fig. 6 by the vertical bars, with the
upper end of each bar corresponding to the value
obtained by the direct recalculation of the measured
oscillation frequency and the lower end corresponding
to the value obtained with the indicated correction.

The energy gap in the spectrum of 3He-B excitations
should be proportional to the Leggett frequency and
inversely proportional to the square root of magnetic
susceptibility [15]. Our results and the known value of
magnetic susceptibility (which can be estimated from
[1]) yield ∆a = (0.53 ± 0.02)∆, where ∆a and ∆ are the
gaps in 3He in aerogel and in bulk 3He at temperatures
corresponding to the same ratio to Tca and Tc, respec-
tively. This value agrees with the results of acoustic
measurements [16] and with the estimates obtained
from the standard cw NMR experiments [1].

Fig. 6. Temperature dependence of the Leggett frequency in
(circles) bulk 3He-B and (vertical bars) 3He-B in aerogel (in
units of T/Tc and T/Tca, respectively), as measured at P =
19.5 bar using the spatially homogeneous HPD oscillations
(mode (3)). Solid curve corresponds to the Leggett fre-
quency measured for bulk 3He in [4] and interpolated to a
pressure of 19.5 bar.
JETP LETTERS      Vol. 79      No. 10      2004
7. CONCLUSIONS

As a result of our studies, a new method has been
developed for measuring the Leggett frequency in the
B phase of superfluid 3He. The method was used to
measure the Leggett frequency in 3He-B in aerogel.
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We use a quasi-Corbino sample geometry with independent contacts to different edge states in the quantum Hall
effect regime to investigate a charge redistribution between cyclotron-split edge states at high imbalance. We
also modify the Büttiker formalism by introducing local transport characteristics in it and use this modified Büt-
tiker picture to describe the experimental results. We find that charge transfer between cyclotron-split edge
states at high imbalance can be described by a single parameter, which is a transferred between edge states por-
tion of the available for transfer part of the electrochemical potential imbalance. This parameter is found to be
independent of the particular sample characteristics, describing fundamental properties of the interedge-state
scattering. From the experiment we obtain it in the dependence on the voltage imbalance between edge states
and propose a qualitative explanation to the experimental findings. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.43.Fj
Just from the beginning of the quantum Hall inves-
tigations, it was understood that edge states play a sig-
nificant role in many transport phenomena in the quan-
tum Hall effect regime [1]. In a quantizing magnetic
field the edge potential bends up the energy levels near
the sample edges. At the intersections of the energy lev-
els with the Fermi level, edge states are formed. It was
a paper of Büttiker [2] that proposed a formalism for
the Hall resistance calculation regarding a transport
through edge states. This model was further developed
by Chklovskii et al. [3] for electrostatically interacting
electrons. The interaction modifies one-dimensional
Büttiker edge states into strips of incompressible elec-
tron liquid of finite widths. It was shown theoretically
[2] and confirmed in experiments [4] that quantum Hall
resistance is not sensitive to the interedge-channel scat-
tering. Nevertheless, the properties of this scattering
can be investigated by using the selective edge channel
population methods.

Most experiments have been performed in the Hall-
bar geometry by using the cross gate technique [4].
These experiments have revealed the interedge-scatter-
ing dependence on the magnetic field, temperature and
filling factor [4]. In the Hall-bar geometry, the experi-
ments are at low imbalance conditions, when the
energy difference between edge states is smaller than
the spectral gaps. An attempt to increase the edge states
imbalance by closing cross gates dramatically
decreases the experimental accuracy, as was mentioned
in [5].

¶ This article was submitted by the authors in English.
0021-3640/04/7910- $26.00 © 20504
Another experimental method is the use of the
quasi-Corbino sample geometry [6, 7]. In this geometry
two nonconnecting etched edges are formed in the sam-
ple. A cross gate is used to redirect some edge states
between etched edges and to define an interaction
region at one edge. Because the interacting edge states
originate from different edges of the sample, they are
independently contacted and direct interedge-scatter-
ing investigations become possible at any imbalance
between edge states. This imbalance is controlled by
the applied voltage, and in dependence of its sign, the
edge potential profile between edge states becomes
stronger or flatter. In the latter case, at some voltage
imbalance, the potential barrier between edge states
disappears, leading to a steplike behavior of the corre-
sponding branch of the I–V curve. This effect opens a
path to use the quasi-Corbino geometry for spectro-
scopic investigations at the sample edge. Recently, the
quasi-Corbino geometry was used to investigate the
edge spectrum of single- [7] and double-layer [8]
two-dimensional electron structures. It was also under-
stood that, in the transport between spin-resolved edge
states at high imbalance (i.e., higher than the spectral
gaps), nuclear effects become important [9].

When developed, Büttiker formalism was intended
to describe a high accuracy of the sample resistance
quantization in the quantum Hall effect regime. For this
reason, it depicts the interedge scattering by integral
sample characteristics practically as scattering between
ohmic contacts. This picture becomes inconvenient
004 MAIK “Nauka/Interperiodica”
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while describing a charge transfer between edge states
at high imbalance, where the scattering by definition
takes place on small lengths, much smaller than the
sample size.

Here, we investigate a charge transfer between
cyclotron-split edge states at high imbalance. We mod-
ify Büttiker formalism by introducing local transport
characteristics in it. We find that charge transfer can be
described by a single parameter, which is the trans-
ferred portion of the available for the transfer part of the
electrochemical potential imbalance. This modified
Büttiker picture is used to describe details of charge
transfer while current is overflowing between edge
channels.

Our samples are fabricated from a molecular beam
epitactically-grown GaAs/AlGaAs heterostructure. It
contains a two-dimensional electron gas (2DEG)
located 70 nm below the surface. The mobility at 4 K is
800000 cm2/V s, and the carrier density 3.7 × 1011 cm–2.
Samples are patterned in a quasi-Corbino geometry [7],
see Fig. 1. Rectangular mesa has an etched region
inside. Ohmic contacts are made to both (inner and
outer) edges of the sample. A Shottky gate is patterned
around the inner etched area, leaving an uncovered
T-shaped region between inner and outer edges. This
region forms a narrow (about several microns) strip of
uncovered 2DEG near the outer edge of the sample
which is called gate gap. Here, we present data from the
sample with 5 µm gate-gap width, while 2-, 10-, and
20-µm gate-gap samples are also investigated, showing
identical experimental results.

In our experimental setup, one of the inner contacts
is always grounded. In a quantizing magnetic field, at
filling factors ν = 3, 4, we deplete 2DEG under the gate
to a smaller filling factor g = 2, redirecting cyclotron-
split ν–g edge states from inner to outer edges of the
sample. We apply a dc current to one of the outer con-
tacts and measure a dc voltage drop between two others
inner and outer contacts at a temperature of 30 mK. By
switching current and voltage contacts I–V, traces for
four different contact combinations can be investigated.
Because of independent ohmic contacts to the cyclo-
tron-split edge states, the measured voltage U is con-
nected to the voltage drop V between edge states in the
gate gap, which is directly the energy shift eV between
them. For example, U = V for contact combination at
which contacts 4 and 2 are current contacts and 3 and 1
are voltage ones, as denoted in Fig. 1.

Examples of experimental I–V curves are presented
in the insets to Figs. 2 and 3 for two groups of cyclo-
tron-split edge states. While increasing the current from
zero to positive values, the measured voltage rises
abruptly to some value Vth. There is practically no cur-
rent before V = Vth, but after it, the voltage is a roughly
linear function of the current. This linear law is valid for
hundreds of nanoAms, see main Figs. 2 and 3, up to our
highest applied currents for filling factor combination
ν = 4, g = 2. For ν = 3, g = 2, at high currents, there is a
JETP LETTERS      Vol. 79      No. 10      2004
strong deviation from the linear law. The deviation
starts from twice the onset voltage 2Vth and leads to
increasing resistance in respect to the linear depen-
dence. It cannot be due to overheating of the sample by

Fig. 1. Schematic diagram of the pseudo-Corbino sample
geometry. Contacts are positioned along the etched edges of
the ring-shaped mesa (thick outline). The shaded area rep-
resents the Schottky gate. Arrows indicate the direction of
electron drift in the edge states.

Fig. 2. Positive branches of experimental I–V curves for fill-
ing factors ν = 4, g = 2 for different contact configurations.
They are (from up to down) current (4–2), voltage (3–1);
(4–1), (3–2); (3–2), (4–1); (3–1), (4–2) as depicted in Fig. 1.
The inset shows an example of the experimental I–V curve
in a whole sweeping range with marked threshold position.
Vth = 4.5 mV. The magnetic field is B = 3.9 T.
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the current, because it would diminish the resistance, in
contradiction with the experiment, see Fig. 3.

In Figs. 2 and 3, positive I–V branches are shown for
four different contact combinations. As can be seen
from the figure, there is still small nonlinearity of the
curves. The behavior described above is valid for all of
them and is very reproducible from sample to sample
and in cooling cycles. Positive branches start from the
same threshold voltage, which is fixed for a given fill-
ing factor combination. The threshold voltage values
are close to the cyclotron splitting in the corresponding
field but smaller by approximately 2 mV, see [7]: Vth =
4.5 mV for ν = 4, g = 2 ("ωc = 6.7 meV) and Vth =
6.7 mV for ν = 3, g = 2 ("ωc = 8.8 meV).

While sweeping the current to the negative values,
there is no clear defined onset: the voltage is rising with
rising the current practically from a zero value. The
negative branch of the I–V curve is clearly nonlinear for
any currents, see insets to Figs. 2 and 3. The exact form
of the branch is dependent on the cooling procedure and
may vary from cycle to cycle.

To be correct, Büttiker formalism [2] cannot be con-
veniently applied to transport at high imbalance. It
describes integral sample resistance, so in the case of
nonlinear I–V curve, the Büttiker transmission coeffi-
cients become dependent on the voltage imbalance
between edge states.

Fig. 3. Positive branches of experimental I–V curves for fill-
ing factors ν = 3, g = 2 for different contact configurations.
They are (from up to down) current (4–2), voltage (3–1);
(4–1), (3–2); (3–2), (4–1); (3–1), (4–2) as depicted in Fig. 1.
The inset shows an example of the experimental I–V curve
in a whole sweeping range with marked threshold and twice
threshold positions. Vth = 6.7 mV. The magnetic field is
B = 5.1 T.
As an example, let us consider a filling factor com-
bination ν = 4, g = 2. Our sample can be described by
the equations [2]

(1)

where Ii is the current flowing in the ith contact, i is the
electrochemical potential of the ith contact, and {Tij} is
the matrix of transmission coefficients [2]. These coef-
ficients are not independent: because of the charge con-
servation in the gate gap, we can write

(2)

Also, from symmetry considerations, we should men-
tion that

It means that every transmission coefficient can be
expressed through a single value, which we define as
T = T23.

Let the current flow between contacts 4 and 1, and
use contacts 3 and 2 to measure the voltage drop. For
these experimental conditions, the flowing current is
I41 = I1 = –I4 and there is no current in the voltage
probes I2 = I3 = 0. Also, the voltage drop is the differ-
ence of the electrochemical potentials of the potential
contacts, so eU32 = µ3 – µ2. By solving system (1) with
relations (2) and herein, we can obtain

(3)

Relation (3) can be used to calculate T from the
experimental I–V trace, see Fig. 4. The dependence
T(V) is strongly nonlinear. It starts from the threshold
voltage, because below threshold practically no current
is flowing, so the transmission T is practically zero.
While the voltage imbalance between edge states V
increases, T(V) is monotonically rising and asymptoti-
cally tends to the equilibrium Büttiker value T = 1/2 at
high voltages V. T(V) dependence has a universal char-
acter: when obtained, it can be used to describe the
experimental I–V traces for any given contact combina-
tion at fixed filling factors. One should calculate the
current–voltage relation for this contact combination
from Eq. (1) and introduce the above T(V) into it to

I1 4
e
h
---µ1 4

e
h
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I2 4
e
h
---µ2 2

e
h
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e
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obtain the experimental I–V curve. We will demonstrate
this fact below in a physically more transparent manner.

Using strongly nonlinear transparency T(V) is too
sophisticated to analyze the overflowing current at V >
Vth; e.g., it is not clear the physical origin of the linear
regions on the experimental I–V curves. For nonlinear
transport in the gate gap, it is obvious to introduce local
transport characteristics instead of the integral Büttiker
transmission coefficient T. From the positive branch of
the experimental I–V curve, we conclude that there is
practically no current between edge states below the
threshold voltage. In the Büttiker picture of edge states,
it means that both edge states are injecting and leaving
the gate-gap region with their own electrochemical
potentials µ1 and µ3, originating from corresponding
ohmic contacts 1 and 3. Currents flowing in the gate
gap are equal to e/hµ1and e/hµ3 in the inner and outer
edge states, respectively. A current between edge states
starts to flow; then, the difference in electrochemical
potentials exceeds the threshold voltage. In other
words, only some part of the incoming electrochemical
imbalance (µ3 – µ1 – eVth) is available for redistribution
between edge states. It is obvious in this case to
describe the current between edge states as α(µ3 – µ1 –
eVth)e/h, where α is a parameter describing a portion of
the available part of electrochemical potential imbal-
ance, which is in fact transferred between edge states.
For the above filling factor combination ν = 4, g = 2, it
is clear that α = 1/2 means equal redistribution between
edge states. The edge states are leaving the gate-gap
region with mixed electrochemical potentials µ1 +
α(µ3 – µ1 – eVth) and µ3 – α(µ3 – µ1 – eVth). By intro-
ducing these values into Büttiker formulas (1), we have
the following equations instead of (1)–(3):

(4)

In this case there is no need for any additional relations
(all the necessary information is indeed in equations (4))
and the only parameter α has a clear physical sense: it
is a transferred between edge states portion of the avail-
able for the transfer part of the electrochemical poten-
tial imbalance between edge states. The aforemen-
tioned combination of filling factors and contacts can
be described by I–V relation

(5)
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It is important to mention that, because α is the local
characteristic of the interedge state transport, it should
be independent from the contact combination. In other
words, a single value of α obtained from different I–V
curves is a test of the consistency of our description.

The linear behavior of experimental I–V curves after
the threshold means a constant slope in Eq. (5) and,
therefore, a constant α. In Figs. 2 and 3, the linear
regions of experimental I–V curves are fitted by dashed
lines. These lines are calculated from formulas like
Eq. (5) with constant single a for every filling factor
combination. The used values of α are 0.55 for ν = 4,
g = 2 factors and 0.34 for ν = 3, g = 2. It can be seen
from the figures that dashed lines fit the experimental
curves quite well, even in view of small nonlinearity of
the experimental curves. The same values of α were
obtained from similar linear fits for other samples with
different gate-gap widths. We should conclude that α
depends only on the filling factor combination and,
therefore, describes fundamental properties of the
interedge-state transport.

The fact that the experimental traces are not exactly
linear, see Figs. 2 and 3, indicates that there is a slow
dependence of α on the voltage imbalance between
edge states. Using formulas like Eq. (5), it is possible to
extract this dependence of α directly from the experi-
mental traces. In the insets to Fig. 4, the dependence of
α is depicted as a function of the voltage imbalance V
between edge states for two different filling factor com-
binations. Just from the definition, α is zero before the
threshold, it jumps to values that are close but slightly
higher than ones for full equilibration between all
involved edge states (αeq = 1/2 for ν = 4, g = 2 filling
factors and αeq = 1/3 for ν = 3, g = 2) and then slowly

Fig. 4. The dependence of the Büttiker transmission coeffi-
cient T on the voltage imbalance between cyclotron-
resolved edge states at filling factors ν = 4, g = 2, starting
from the threshold voltage. Insets show the dependences of
the transport parameter α (see text) as obtained from I–V
curves at four different contact configurations for ν = 3,
g = 2 and ν = 4, g = 2 filling factors, respectively.
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diminishes with increasing voltage imbalance V
between edge states. For a single filling factor combi-
nation, α(V) traces obtained from different contact con-
figurations deviate within 2%, which is of the order of
our experimental accuracy, which also indicates the
universal character of the α parameter.

Let us discuss the obtained dependence of α on volt-
age imbalance between edge states, see insets to Fig. 4.
It is important to mention that α by definition describes
the resulting mixing of the electrochemical potentials,
while charge transfer takes place on the whole length of
the gate-gap width. This charge transfer changes the
electrochemical potentials of the edge states. It means
that, while at one (injection) corner of the gate gap, the
energy shift between edge states equals the depicted in
the figures voltage imbalance V between them, the edge
potential profile between edge states is flattening while
moving away from the injection corner. At some point
the edge profile becomes flat. If this point is really
within the gate gap, full equilibration between edge
states is established, and there should be no further
charge transfer on the rest of the gate-gap width. The
resulting value of α in this case can be expected to be
exactly equal to the equilibrium one. The experimental
fact that the values of α are higher than the equilibrium
ones indicates that charge transfer in the same direction
is still taking place even after the equilibration point. In
this case the slow dependence of α on the voltage
imbalance V becomes clear: at higher imbalance V, a
higher amount of electrons should be transferred
between edge state to flatten the potential; thus, the
point of equilibration moves to the opposite to the
injection corner of the gate gap and the “length of over-
flowing” (on which an additional charge is transferred)
becomes shorter. After leaving the gate gap, equilibra-
tion is not established at all, so α becomes smaller than
the equilibrium value. This behavior can be clearly seen
in insets to Fig. 4. The origin of the “overflowing”
behavior is still unclear and requires further theoretical
investigations. One qualitative explanation can be pro-
posed here: the value of the threshold voltage Vth is
determined by the cyclotron splitting but not exactly,
see [7]. At least the energy level broadening has an
influence on the value of Vth, and maybe any other fac-
tors. In this case we can suppose a small variation of Vth
along the gate gap, which leads to the additional charge
transfer.

It is worth mentioning that, for the filling factor
combination ν = 3, g = 2, experimental values of α vary
around the value 1/3. This is the equilibrated value at
which all three edge states are involved in the charge
transfer. It means that electrons from inner edge state
having spin in the field direction, “up,” are moving both
in the neighbor edge state with spin “down” and in the
outer edge state with spin “up.” These processes should
go together: without high voltage imbalance, equilibra-
tion between spin-split edge states goes on a millimeter
distance [5]; so, to have the full equilibration between
all three edge states on few microns, as well process
with spin flip should be present as one without it. (For
ν = 4, g = 2 filling factors, where the transport goes
between two pairs of equilibrated spin-split edge states,
spin flip is not needed.) At voltages above Vth but below
2Vth, electrons are moving by vertical relaxation
through the cyclotron gap and a diffusion in space after-
wards. In the relaxation process the energy is changing
by emitting a photon (in spin-flip transfer) or a phonon
(without spin-flip). As the voltage imbalance exceeds
2Vth, the energy levels are bent enough to allow hori-
zontal transitions between edge states [9]. In these tran-
sitions, electron spin is flipping due to flopping of
nuclear spin, in so called flip–flop processes, which
leads to the formation of a nuclear polarized region in
the gate gap. This process is well known in the literature
[9–11] as a dynamic nuclear polarization. Once
appeared, a region of dynamically polarized nuclei
influences the electron energies through the effective
Overhauser field. Overhauser field is effectively com-
pensating the external field for the Zeeman splitting and
can be in GaAs as high as 5 T, see [12]. Thus, it can sig-
nificantly change the space distance between spin-split
edge states and, therefore, increase the distance for the
charge transfer in the gate gap (which is determined by
the difference between cyclotron and spin splittings).
This gives rise to increase of the resistance, once makes
harder the charge transfer. In the experiment, it is at this
voltage V = 2Vth the experimental I–V traces change
their slopes for ν = 3, g = 2 filling factors, see the inset
to Fig. 3. A hysteresis on the I–V curves for ν = 3, g = 2
above the voltage 2Vth is also present (not shown in the
figure), which is a key feature of the dynamic nuclear
polarization [9–11].

We used a quasi-Corbino sample geometry with
independent contacts to different edge states in the
quantum Hall effect regime to investigate a charge
transfer between cyclotron-split edge states at high
imbalance. We found that charge transfer between
cyclotron-split edge states at high imbalance can be
described by a single parameter, which is the trans-
ferred portion of the available for transfer part of the
electrochemical potential imbalance between edge
states. From the experiment we obtained this parameter
in its dependence on the voltage imbalance between
edge states and proposed a qualitative explanation.
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For the B92 protocol with allowance for real attenuation and phase interruption of signal states in a one-dimen-
sional optical fiber, a simple estimate is obtained for the critical length of the quantum communication channel
that can provide secure key distribution. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.67.Dd; 03.67.Hk; 89.70.+c
Quantum cryptography, or more exactly, quantum
key distribution, allows the realization of a completely
secure encryption system with one-time keys. Uncondi-
tionally secure key distribution among remote legiti-
mate users is ensured by fundamental laws of nature
rather than by limited computational or engineering
capabilities of an eavesdropper. The unconditional
security of quantum cryptography in the nonrelativistic
domain is based, in essence, only on the Heisenberg
uncertainty principle or, more formally, on the impossi-
bility of simultaneously measuring observables
described by noncommuting operators. In terms of a
pair of quantum state vectors, in which classical infor-
mation about the key is encoded, this means the impos-
sibility of gaining any information about the transmit-
ted quantum states without distorting them if they are
nonorthogonal [1, 2].

Attenuation in a quantum communication channel is
a fundamental problem for security. It obviously
reduces the key transmission rate, because not all pho-
tons reach the receiver end. However, the main problem
with attenuation in the quantum communication chan-
nel is the impossibility of guaranteeing the security of
key transfer [3]. The critical attenuation value in fiber-
optic communication channels is determined by their
length. The critical length below which the system
remains secure has not yet been determined. Estimates
vary from 10 to 150 km for various quantum crypto-
graphic protocols [3].

The security of key distribution has been studied in
most detail (see [3, 5, 6] and references cited therein)
for the case where a pair of orthogonal quantum states
in each basis is associated with classical bits in the key
and the states between bases are pairwise nonorthogo-
nal (BB84 protocol [4]). The security of key distribu-
tion for the case where a pair of nonorthogonal states
0021-3640/04/7910- $26.00 © 20510
corresponds to classical bits (B92 protocol [2]) has
been studied less thoroughly than the BB84 protocol.
However, the B92 protocol is less stable to attenuation
than the BB84 protocol but is simpler in technical
implementations and is faster than the BB84 protocol.
Being simpler, the B92 protocol can be used to distrib-
ute a key over short distances. The BB84(4 + 2) proto-
col [3], which remains secure up to a communication-
channel length of 150 km, is likely most stable to atten-
uation. It is obtained from the BB84 protocol by mak-
ing the states 0 and 1 mutually nonorthogonal in each
basis.

In this work, we obtain a simple estimate for the crit-
ical length of a fiber-optic communication channel in
which the protocol ensures the security of key distri-
bution.

The available prototypes of quantum cryptosystems
are generally based on the following encryption princi-
ples: (i) information about the key is encoded in the
polarization degrees of freedom [7]; (ii) phase coding
with the use of an unbalanced Mach–Zehnder interfer-
ometer and with encoding information into the phase
shift accumulated at the receiver and transmitter arms
of the interferometer [8–12]; (iii) quantum cryptosys-
tems with carrier-frequency modulation [13]; and
(iv) quantum cryptography with encryption in continu-
ous variables (coherent-state schemes) and homodyne
detection at the receiver end [14]. New schemes based
on coherent states provide certain hopes for the key
generation rate, but their cryptographic security is as
yet little understood.

In the presence of the attenuation in a quantum
channel, the cryptosystem cannot ensure the key secu-
rity if the length of the communication channel exceeds
a certain critical value. Since the coherent states are
multiphoton, the eavesdropper can carry away a part of
004 MAIK “Nauka/Interperiodica”
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the state using a beam splitter and send the remaining
part through a channel with lower attenuation or with-
out attenuation (which is not forbidden by natural
laws), thereby simulating losses in the original commu-
nication channel.

When extracting the secure key from the original bit
sequence obtained through the quantum channel, the
legitimate users employ the procedure of error correc-
tion and privacy amplification by exchanging informa-
tion thorough a public communication channel. These
procedures are possible if the mutual information IAB
between legitimate users Alice and Bob exceeds the
mutual information between the eavesdropper and the
legitimate users; i.e., IAB > max{IAE, EB}.

For the BB84 key distribution protocol based on
coherent states, the effect of attenuation on the key
security was analyzed in several works [15, 16]. Silber-
horn et al. [16] stated that the coherent-state protocol
can operate in the quantum communication channel,
where losses are as high as 3 dB, but the parameters of
the quantum channel with attenuation did not enter into
the result. The propagation of quantum states through
the channel with attenuation and decoherence (phase
interruption) leads to the distortion of states at the
receiver end even in the absence of the eavesdropper.
Knowing the properties of the original quantum com-
munication channel and the distortions of propagating
states, the eavesdropper can use this knowledge to his
benefit. For this reason, to determine the critical length
of the communication channel, it is necessary to explic-
itly solve the evolution equations for quantum states in
the channel, which was not done in [15, 16]. In this
work, the evolution equations for the channel are
explicitly solved, and the critical length of the commu-
nication channel is determined for the eavesdropping
strategy with the use of a beam splitter.

In contrast to the state transformation by the beam
splitter, the attenuation in the channel (photon absorp-
tion and decoherence processes) is not a unitary state
transformation. First, the protocol must work in the
absence of an eavesdropper, and the states should prop-
agate to the receiver end through the original channel
with attenuation rather than through a better channel
(with lower attenuation) substituted by the eavesdrop-
per. In the absence of an eavesdropper, due to the atten-
uation and decoherence processes, the state at the
receiver end is a mixed state rather than a pure coherent
state. In this case, the legitimate users must extract the
secure key from the mixed states distorted by the atten-
uation and other decoherence processes. The mutual
information content between Alice and Bob in the
absence of an eavesdropper must explicitly depend on
the characteristics of the original quantum communica-
tion channel (amplitude and phase attenuation con-
stants). Alice creates signal states at the transmitter end,
and Bob makes his measurements at the receiver end.
These measurements must be optimal for distinguish-
ing the states obtained at the transmitter end from the
JETP LETTERS      Vol. 79      No. 10      2004
pure coherent signal states after they reach the receiver
end and become mixed. Optimum measurements imply
that they provide the maximum mutual information for
the given input signal states and the given quantum
communication channel with attenuation and decoher-
ence. Thus, if the input signal states and measurements
are known, the mutual information IAB is a priori
known for all users of the protocol (legitimate users and
eavesdropper). This quantity depends on the length of
the quantum communication channel and is a decreas-
ing function of the length. In the limit, where all states
are absorbed in the channel, mutual information van-
ishes, and any information transmission, let alone the
secure key, is impossible.

The critical length of the quantum communication
channel that provides secure key distribution should be
found as follows. Let the signal states at the transmitter
end, as well as the properties of the original quantum
communication channel, including its length L, be
specified. This condition automatically determines the
optimal measurements for distinguishing the states dis-
torted in the initial communication channel and, corre-
spondingly, determines mutual information IAB(L). The
eavesdropper can use a beam splitter to carry away a
part of the state for his measurements and send the
remaining part to Bob through his ideal channel. The
protocol becomes insecure if the error probability in
distinguishing the states carried away by the eavesdrop-
per is lower than the error probability that Bob, whose
measurements are optimal for the initial distorted states
but are not for the states received from the eavesdrop-
per, distinguishes the states received through the ideal
channel from the eavesdropper.

To detect the presence of an eavesdropper, the legit-
imate users should randomly choose about a half of the
transmitted sequence and open it through a public clas-
sical channel. The quantity  is calculated for this

half, and the protocol is interrupted if (L) < IAB(L).
Next, secure key distribution is impossible if the

eavesdropper can provide attack against the key for
which

(1)

Correspondingly, the protocol ensures the key secu-
rity if

(2)

for any attack. It suffices to compare IAE with IAB,
because IBE < IAE.

Since the signal states and measurements are fixed
at the beginning of the protocol, regardless of the pres-
ence of the eavesdropper, and the physical properties of
the initial quantum communication channel are known,
inequality (2) determines the critical length of the quan-
tum communication channel that provides secure key
distribution. The upper estimate of the communication

IAB

IAB

IAB L( ) IAE{ } .
all attacks
max<

IAB L( ) IAE{ }
all attacks
max>
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channel length is obtained if IAB(L) is taken to be equal
to the transmission capacity of the original quantum
communication channel.

An exhaustive search for all possible eavesdropping
attacks against the key is the most difficult problem. At
present, exhaustive proof of the security of the B92 pro-
tocol in the channel with attenuation is absent.

Below, by the example of the B92 protocol based on
a pair of nonorthogonal coherent states, we explicitly
introduce the attenuation and phase decoherence into
the quantum communication channel and consider the
protocol stability against the specific beam-splitting
attack, where a part of the state is carried away by the
eavesdropper.

Signal states. A pair of nonorthogonal coherent
states arising at the output of a single-mode laser is
taken as signal states. Correspondingly, states 0 (|+α〉 )
and 1 (|–α〉 ) are taken in the form

(3)

where (a+)n|0〉 = |n〉  is the n-particle Fock’s state, a+ is
the creation operator, and |0〉  is the vacuum state
describing the empty communication channel. The ini-
tial density matrix has the form

(4)

Original quantum communication channel with
attenuation and decoherence. The physical properties
of the quantum communication channel are described
by two constants, amplitude and phase attenuation. The
density-matrix evolution in the channel is described by
the standard equation

(5)

where Γa and Γp are the amplitude- and phase-attenua-
tion constants per unit length, respectively, and τ = x –
ct. The amplitude-attenuation constant Γa is known for
an optical fiber. In particular, for a wavelength of
1550 nm, at which the attenuation in a single-mode
optical fiber is minimal, Γa = 0.17–0.25 dB/km,
depending on the type of single-mode optical fiber.

The amplitude attenuation is responsible for the pho-
ton absorption in the communication channel and results
in the exponential decrease in the average number of
photons with increasing length. For Γp = 0, we have

α±| 〉 e
α 2

2
---------– α±( )n

n!
-------------- n| 〉 ,

n 0=

∞

∑=

ρ 1
2
--- ρ+ ρ–+( ), ρ± α±| 〉 α±〈 | .= =

d
dτ
-----ρ Γa aρa+ 1

2
---a+aρ 1

2
---ρa+a–– 

 =

+ Γp a+aρa+a
1
2
--- a+a( )2ρ–

1
2
---ρ a+a( )2

– 
  ,
(6)

The phase decoherence conserves the number of parti-
cles and leads to the attenuation of the off-diagonal
density-matrix components. For Γa = 0, we have

(7)

The evolution of the off-diagonal density-matrix com-
ponents has the form

(8)

In the general case, the equation of motion for the den-
sity matrix cannot be solved analytically, and numerical
methods should be used.

Measurements at the receiver end. Let the channel
length be fixed and equal to L. The density matrix at the
receiver end is determined by solving equation of
motion (5) with initial conditions (4). The density
matrix at the output of the quantum communication
channel is denoted as ρ(L)±. First, the protocol must
operate in the absence of an eavesdropper. We assume
that the legitimate user at the receiver end makes only
individual measurements on the states in each message,
because these measurements can easily be realized
from the technical point of view. The optimal measure-
ment that minimizes the error in distinguishing
between the states ρ–(L) and ρ+(L) with the same a pri-
ori output probabilities π– = π+ = 1/2 is known [17, 18].
It is given by the unity decomposition

(9)

Here, }– is the projector on the self subspace of the

operator (ρ+(L) – ρ–(L)). In this case, the minimal

error probability is 

(10)

where the norm is defined as the trace norm of the oper-
ator T; i.e., ||T ||1 = Tr |T |, and |T | = T+ + T–, where T+(T−)
is the positive (negative) part of the Hermitian operator.
The norm in Eq. (10) is defined as the sum of the posi-
tive operator eigenvalues.

With this measurement method, the mutual informa-
tion between Alice and Bob is given by the expression [18]

(11)

d
dτ
----- n〈 〉 Tr a+a

d
dτ
-----ρ

 
 
 

Γ̃ a n〈 〉 ,–= =

n τ( )〈 〉 10
Γaτ /10–

n 0( )〈 〉 .=

d
dτ
-----ρnm Γp nm

1
2
---n2 1

2
---m

2
–– 

  ρnm=

=  
Γp

2
----- n m–( )2ρnm, ρnm– n〈 |ρ m| 〉 .=

ρnm τ( ) ρnm 0( )e

1
2
---Γpτ n m–( )2–

.=

I }+ }–+ .=

1
2
---

pe L( ) 1
2
--- 1

1
2
--- ρ+ L( ) ρ– L( )–( )

+
– 

  ,=

IAB L( ) 1 h pe L( )( ),–=

h x( ) x x 1 x–( ) 1 x–( )log+log=
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and coincides with the so-called classical transmission
capacity of the quantum communication channel per
shot [18]. Roughly speaking, this quantity is classical
information that is measured in bits per message and
can be correctly (more precisely, with the error proba-
bility as low as one likes) transferred from Alice to Bob
through a sufficiently long sequence using optimal
measurements (9).

If, in addition to the individual measurements, the
legitimate users can measure sufficiently long state-
transfer blocks, the maximal attainable mutual infor-
mation is limited by the classical transmission capacity
of the quantum communication channel [18], which is
determined as

(12)

Secure key generation protocol. Let long series of
messages and measurements be carried out. As a result,
Alice and Bob generally have different bit strings. They
open about a half of the bits by random sampling
through the open public communication channel, com-
pare them, and estimate the probability of the lack of
coincidence (error probability). For a sufficiently long
sequence, the probability that the error in the unopened
part of the sequence is equal to the error in the open part
tends to unity. The error probability determines the
mutual information between Alice and Bob. If the
resulting value coincides with a priori estimate (11),
the protocol is continued. Otherwise, the protocol is
interrupted.

Beam-splitter eavesdropping. We now consider
the protocol security against the eavesdropping strategy
where a part of state is separated by a beam splitter. In
practice, the eavesdropper near the transmitter end car-
ries away a part of the state by the beam splitter and
sends the remaining part to Bob through his channel
without attenuation.

We aim at estimating the initial length (L) of the
quantum communication channel with attenuation, for
which the eavesdropper, being undetected, could not
have larger mutual information IAE(η) than the legiti-
mate users [IAE(η) < IAB(η)]. The beam-splitter coeffi-
cient η is arbitrarily chosen by the eavesdropper. For a
given length L of the original communication channel,
the protocol ensures the secure key distribution if the
inequality IAE(η) < IAB(η) = IAB(L) is valid. The critical
channel length and the critical beam-splitter coefficient
ηc are determined from the condition IAE(η) = IAB(η) =
IAB(L). The eavesdropper cannot take a larger η value
(for a given channel length), because, otherwise,
IAE(η > ηc) > IAB(η), and his presence will be detected
by the legitimate users.

C L( ) H
1
2
---ρ+ L( ) 1

2
---ρ– L( )+ 

  1
2
---H ρ+ L( )( )–=

–
1
2
---H ρ– L( )( ), H ρ( ) Tr ρ ρlog{ } .–=
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The initial coherent states are factorized into the ten-

sor product of the states |±α〉  |± α〉 ⊗
|± α〉 and are independent of each other. There-
fore, measurements of the eavesdropper and legitimate
user over their states are independent. The legitimate
user at the receiver end carries out measurements
(described by unity decomposition (9)) for the states

|± α〉 received from the eavesdropper through
his ideal communication channel. The resulting mutual
information is IAB(η).

For this attack against the transmitted key, the eaves-
dropper remains undetected if

(13)

For a fixed beam-splitter coefficient η, the mutual infor-
mation IAE(η) cannot exceed the classical transmission
capacity of the ideal quantum communication channel

for the input states |± α〉 with a priori probabilities
of 1/2. The corresponding classical transmission capac-
ity is given by the expression [18]

(14)

If the eavesdropper carries out only individual mea-
surements, the mutual information IAE(η) cannot
exceed the classical transmission capacity of the chan-
nel between him and Alice per shot [18]:

(15)

Numerical procedure. Evolution equations (5)
were solved numerically. The length of the communica-
tion channel is divided into discrete intervals with step
∆l. The density matrix in the occupation-number basis
is replaced by the finite N × N matrix (ρnm = 0 for n,
m > N). Analysis of the numerical procedure shows that
the step must satisfy the inequality ∆l < 1/ΓaN. To test

the procedure, the average particle number ,
for which exact solution (6) exists in the absence of
phase decoherence, is calculated at each stage.

Critical length. The critical channel length for
which the system allows secure key distribution is
given in the table for various phase-attenuation con-
stants Γp. The amplitude-attenuation constant Γa = 0.2
corresponds to the minimal attenuation in a single-
mode optical fiber for a wavelength of 1550 nm. The
two upper parts of the table present the length for the

η
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case, where the eavesdropper makes individual opti-
mum measurements (15). The lower, third, part of the
table gives the critical length for the case where the
eavesdropper carries out collective measurements (14).
These simple estimates agree well with the results
obtained in [5] by other methods. We emphasize that
this estimate cannot be extended to other quantum pro-
tocols of secure key distribution. Estimations of the
length give a value of ~50 km for the BB84 protocol
based on single-photon states (more precisely, on
quasi-single-photon states, where µ = 0.1) and ~150 km
for the BB84(4 + 2) protocol that is most stable to atten-
uation. These limits on the attenuation (communication
channel length) arise because the security is based only
on the geometric properties of the state vectors in the
Hilbert space. It is worth noting that, in relativistic
quantum cryptographic systems, whose secrecy is
based not only on the quantum mechanical exclusions
but also on the special-relativity exclusions (relativistic
causality principle), the secrecy remains for any degree
of attenuation [19]. Attenuation only reduces the key
distribution rate.

This work was supported by the Russian Foundation
for Basic Research (project no. 02-02-16289).

Table

Average
photon
number
µ = |α|2

Amplitude
attenuation

Γa

Phase
attenuation

Γp

Critical length of 
the communica-
tion channel L, 

km

0.1 0.2 0.01 14.3

0.3 0.2 0.01 14.1

1.0 0.2 0.01 13.4

3.0 0.2 0.01 11.5

0.1 0.2 0.05 11.8

0.3 0.2 0.05 11.2

1.0 0.2 0.05 9.4

3.0 0.2 0.05 7.6

0.1 0.2 0.01 9.4

0.3 0.2 0.01 9.4

1.0 0.2 0.01 8.4

3.0 0.2 0.01 7.1
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