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Abstract—The dependence of bias current density through a junction on the velocity of a uniformly moving
vortex carrying two magnetic flux quanta is established in the approximation of weakly nonlocal Josephson
electrodynamics. It is shown that the velocity quantization of free motion of the vortex, which is induced by the
Cherenkov interaction with Swihart waves, leads to the emergence of a discrete family of curves on the veloc-
ity–current plane. © 2001 MAIK “Nauka/Interperiodica”.
The experimental work by Dueholm et al. [1] neces-
sitated the formulation of an approach in Josephson
vortex electrodynamics to construct a description of
coherent structures in long Josephson junctions, which
could move uniformly in the absence of dissipation,
carrying several magnetic flux quanta. Such coherent
vortex structures were called 2πn kinks, since an ordi-
nary Josephson vortex carrying only one magnetic flux
quantum corresponds to a 2π change in the phase dif-
ference ϕ(z, t) upon a change in the coordinate z from
−∞ to +∞. The first analytic solution describing such a
coherent structure in a nondissipative Josephson junc-
tion between two bulk superconductors was obtained in
1993 [2, 3] and corresponded to a 4π kink. This solu-
tion was obtained in the framework of nonlocal electro-
dynamics corresponding to very high critical densities
of the Josephson current, for which the Josephson
length λj is smaller than the London length λ. An ana-
lytic description of a 4π kink was obtained in [4] under
similar conditions, but for a junction with sandwich
geometry. This solution finally made it possible to con-
struct a description of a 4π kink [5], corresponding to
junctions with a low Josephson critical current density,
for which 

 (1)

Along with analytic approaches [2–5], a numerical
approach to the study of nonlocal generalizations of the
sine–Gordon equation was also developed. This gener-
alization corresponding to nonlocal electrodynamics
was used to construct a numerical description of a 4π
kink [6, 7]. An important step made in [6] was the
application of the weakly nonlocal approximation in
which fourth-order derivatives, along with second-
order derivatives, were also taken into account in an
equation generalizing the sine–Gordon equation. It is
clear now that such an approximation is realized when
inequality (1) is satisfied and when the velocity of a
vortex is close to the Swihart velocity vs, which is the
maximum possible for the free motion of an ordinary
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2π kink in the sine–Gordon equation. This approxima-
tion was used for obtaining an analytic description of a
4π kink [5]. All numerical and analytic descriptions of
4π kinks obtained in this approximation moved freely
with a velocity characteristic for a given model. An
important numerical result was obtained by Alfimov et
al. [7], who observed a 4π kink with a nonmonotonic
dependence on the coordinate in addition to a 4π kink
with a monotonic spatial dependence. It was found that
the monotonic and nonmonotonic 4π kinks move at dif-
ferent velocities. It should be emphasized that this is
similar to a certain extent to the known numerical
results obtained by Peyrard and Kruskal [8] using a dis-
crete model of Josephson junctions.

The results of the description of 4π kinks mentioned
above were obtained for an ordinary sine nonlinear
dependence of the superconducting current through the
junction on the phase difference ϕ of the wave func-
tions of Cooper pairs. There exists another model pro-
posed by Aubry and Le Daeron [9, 10] for describing
dislocations and by Volkov [11, 12] for describing
Josephson junctions. The Aubry–Volkov model [9–12]
envisages a periodic saw-tooth dependence of the
superconducting current density on the phase differ-
ence ϕ, which leads to a large number of analytical
results for nonlinear running waves. This model was
used in [13] to obtain a countable set of 4π kinks. It was
proved that owing to the resonant Cherenkov interac-
tion with Swihart waves, 4π kinks trap waves in the
gaps between 2π kinks. In the coherent structures
formed as a result, the waves play the role of an adhe-
sive which glues vortices together [14]. As a result of
Cherenkov trapping of waves by vortices, the coherent
structures of 4π kinks are characterized by discrete
numbers corresponding to the number of waves accom-
modated in the region of vortex gluing. The velocities
of free motion of different vortices in this case are dis-
crete (quantized).

It should be noted that apart from the Aubry–Volkov
model, there is one more exactly solvable model [15],
2001 MAIK “Nauka/Interperiodica”
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in which the sine is simulated by a sequence of isosce-
les triangles. Dissipation is taken into account in this
model conventionally by supplementing D’Alembert’s
differential operator with two differential terms. The
term with the first-order time derivative describes the
ohmic losses in the material separating the supercon-
ductor, while the term with a mixed third-order deriva-
tive of the phase difference for wave functions of Coo-
per pairs (the first-order derivative is with respect to
time and the second-order derivative is with respect to
the coordinates) describes the so-called surface losses
associated with normal electrons in the superconduc-
tors. Sakai [15] proved that, in the case of considerable
surface losses, a 4π kink driven by a bias current may
exist in such a model. It should be emphasized that the
free motion of such a 4π kink, which exists owing to
strong dissipation, is ruled out. This distinguishes qual-
itatively the 4π kinks considered in [15] from those in
[13, 14].

In the present paper, the Aubry–Volkov model is
used to analyze the induced motion of a 4π kink under
the action of a bias current density j. The dependence of
j on the velocity v of a 4π kink derived by us is an ana-
log of the current–voltage characteristic (IVC). It is
proved that each eigenvalue vn of the velocity of free
motion of a 4π kink is the origin for a pair of j(v)
curves. This leads to the formation of the IVC band on
the (v, j) plane.

1. BASIC EQUATIONS

As the starting equation in our analysis, we will use
[6, 16]

 (2)

Here, ωj is the Josephson frequency, jc is the critical
density of the Josephson current, J ≡ j/jc, β character-
izes the dissipation in the junction separating the super-
conductors, and η characterizes the so-called surface
dissipation determined by the normal electrons in the
superconductors. The operator on the left-hand side of
Eq. (2) differs from the operator used usually, in the so-
called local theory, in the third term containing a
fourth-order derivative with respect to the coordinates.
Such an approximation of the equation is associated
with the approximation of weak spatial nonlocality. It is
productive, for example, when the velocity of vortices
is close to Swihart velocity vs ≡ λjωj. The last term on
the left-hand side of Eq. (2) in the Aubry–Volkov
model is given by

 (3)
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where I[x] is the integral part of the number x. In accor-
dance with Eq. (3) and following [4], we will use the
following notation:

where e is the electron charge, c is the velocity of light,
2d is the thickness of the layer separating the supercon-
ductors, and e is the dielectric constant of this layer.

Subsequent analysis is devoted to vortices moving
at a constant velocity v, for which

 

and Eq. (2) assumes the following form:

 (4)

In the range of the parameters under investigation, the
characteristic scale of the spatial variation of a 4π kink is

 (5)

Accordingly, using the dimensionless variable ξ ≡ ζ/

for the function ψ(ξ) = ϕ( ξ), we can write, in accor-
dance with Eq. (4),

 (6)

Here and below, we use the following notation:

 

 (7)

 

In order to make our calculations less cumbersome,
we will henceforth confine our analysis to the case
when

 (8)

In this case, Eq. (6) is a differential equation in which
the coefficient of the highest order derivative is a small
parameter.
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ON THE VELOCITY OF A 4π KINK 3
2. PHASE DIFFERENCE IN A JUNCTION 
WITHOUT OHMIC LOSSES

In this section, we consider the limiting case of
Eq. (6), in which ordinary dissipative effects are
neglected, β = η = 0, and the only dissipative effect is
associated with losses associated with Cherenkov radi-
ation. In this case, we have

(9)

We construct a continuous solution of this equation, sat-
isfying the conditions –π < ψ < π for ξ < –ξj; ψ(–ξj) = π;
π < ψ < 3π for –ξj < ξ < ξj; ψ(ξj) = 3π; and 3π < ψ < 5π
for ξ > ξj.

The process of solving the equation begins at the
leading edge of a vortex, where ξ > ξj. Considering that
there are no waves in front of the vortex, we assume
that all the derivatives of the function ψ are equal to
zero for ξ  +∞. In accordance with Eq. (9) and
under the assumption that

 (10)

we obtain the following expression for the phase differ-
ence of a 4π kink for ξ  +∞:

 

For the leading edge of the vortex, we obtain from
Eqs. (3) and (9)

 (11)

Since ψ(ξj) = 3π, the solution of Eq. (11) is given by

 (12)

where the size of the region where the solution attains
the constant value 4π – πJ is determined, in units of the
quantity defined in Eq. (5), by the number

 (13)

For the central region of the vortex, where π < ψ < 3π,
we obtain the following equation from Eqs. (3) and (9):

 

A solution to this equation satisfying the joining
condition for the solution itself and its first three deriv-
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atives with the solution in Eq. (12) and its derivatives,
respectively, is given by

 

 

 (14)

where the wave number

 (15)

defines the wavelength λ0 = 2π/k0 of Swihart waves
emitted by a moving vortex. Equating the function in
Eq. (14) to π at the point ξ = –ξj, we obtain the condi-
tion

 (16)

which connects the quantities J, ξj, and v. This condi-
tion will be subsequently used for deriving the depen-
dence J(v).

Let us now describe the tail part of the vortex, for
which ψ < π. Equation (9) assumes the form

 (17)

A solution to this equation can be presented in the
form

 (18)

Here, Ct describes the spatially monotonic dependence
of the vortex, while At and Bt characterize the field of
the Cherenkov radiation of Swihart waves in the tail of
the vortex, which is associated with the accelerating
action of the current on the vortex. The joining of solu-
tions in Eqs. (14) and (18) and their first three deriva-
tives gives

 

and another relation between the quantities J, ξj, and v,
which supplements condition (16):

 (19)
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ψh(ξ) in Eq. (12), ψb(ξ) in Eq. (14), and ψt(ξ) in
Eq. (18). The phase difference in the leading edge of
the vortex decreases exponentially from 4π – πJ to 3π.
At the middle of the vortex, there appear periodic trig-
onometric functions corresponding to Swihart waves in
addition to the terms describing the monotonic depen-
dence of ψ. The tail part of the vortex is described by a
trigonometric function corresponding to Swihart waves
emitted by the vortex and contains a monotonic term
decreasing to –πJ, J < 1.

The description of the vortex structure becomes
even more clear if we present the solutions in Eqs. (12),
(14), and (18) in a form which appears naturally when
we construct a solution with the help of the Fourier
transformation on the entire ξ axis. Indeed, using rela-
tion (19) and introducing the notation

 (20)

 

where θ(ξ) is a Heaviside step function and  ≡
2θ(ξ) – 1 is the signum function, we obtain the follow-
ing expression for the phase difference of a 4π kink:

 (21)

In accordance with Eq. (21), in the limit of small cur-
rents defined by Eq. (10), a 4π kink is the sum of two
2π kinks localized near the points –ξj and ξj. Each of
the 2π kinks emits Swihart waves [see Eq. (20)] which
interfere with one another for ξ < –ξj. In the absence of
current (J = 0), the waves emitted by the 2π kinks are
absent in the tail part of the vortex. We are left only with
oscillations localized in the interior region of the vortex
and ensuring the gluing of two 2π kinks into a single 4π
kink. If, however, the current differs from zero, the field
of Cherenkov radiation is induced in the tail of the vor-
tex. In other words, when a 4π kink is accelerated by
the current, Swihart waves are not trapped in the region
confined between two kinks and form an oscillating
trace in the tail part of the vortex. Thus, the tail of the
4π kink is periodically modulated by the Swihart waves
emitted by the vortex.

3. RELATION BETWEEN THE CURRENT 
AND THE VORTEX VELOCITY

Relations (16) and (19) connecting the current J, the
coordinate ξj, and the vortex velocity v allow us to
establish the form of the function J(v). We write these
relations in the form

 (22)

 (23)
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where we denote δ ≡ k1/k0 and the numbers k0 in
Eq. (15) and k1 in Eq. (13) depend on the vortex velocity
through the small parameter ε in Eq. (7). Since ε ! 1, we
have

 (24)

Taking into account the smallness of the parameter
ε, we obtain the size of the interior part of the vortex
from Eqs. (23) and (24):

 (25)

A solution to Eq. (25) has meaning only if the cur-
rent density for a given vortex velocity does not exceed
the quantity

 (26)

Taking into account relation (25), we obtain from
Eqs. (22) and (24) the following equation for J(v):

 (27)

In order to determine the function J(v), we write
Eq. (27) in the form

 (28)

In this equation, the integer quantity n numbers the
discrete set of the functions J(v) connecting the vortex
velocity with the current. The functions J(v) corre-
sponding to different values of n describe the current-
induced motion of vortices with different internal struc-
tures characterized by the number of Swihart wave-
lengths fitting into them.

In the absence of current, we find from Eq. (28) that
the parameter ε, and hence the velocity of a freely mov-
ing 4π kink, assumes discrete values labeled by the
number n:

 (29)

Taking into account inequalities (8), we find that the
number n must lie in the interval
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For such values of n, we find from Eq. (29)
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ON THE VELOCITY OF A 4π KINK 5
the current J and the vortex velocity v for each number
n from the interval defined in Eq. (30). Each number n
corresponds to two J(v) curves in view of the presence
of two signs of arccos in the exponential on the left-
hand side of Eq. (28). On the current–velocity plane,
such curves originate at the point v = vn, J = 0, where

 

corresponds to solution (31) of Eq. (29).
When the vortex velocity v is close to vn to such an

extent that

 (32)

the solution of Eq. (28) has the form

 (33)

For an insignificant difference between v and vn, when

(34)

we obtain from Eq. (33)

 

The function J– vanishes for v = vn. In the interval
defined in Eq. (34), the function J– increases monoton-
ically with the difference between v and vn both for
increasing and decreasing velocities. The velocity
range in which dJ–/dv < 0 is an analog of an unstable
IVC characterized by a negative differential resistance.

At the point

 

the functions J– and J+ have equal values and their
derivatives have infinitely large values. For v < vl(n),
Eq. (28) has no solution for a given n.

As the value of v increases so that the difference
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we obtain from Eq. (33)

 (35)

In accordance with relations (30) and (35), the differ-
ence between the functions J– and J+ is relatively small.

Finally, we will write the solution of Eq. (28) for
v > vn lying outside the interval in Eq. (32) when the
values of J± are exponentially close to the limiting value
J0(v):

 (36)

Consequently, the curves J–(v) and J+(v) asymptoti-
cally approach each other according to an exponential
law as we move away from the point vn.

The J(v) curves corresponding to different values of
n begin at points vn separated from one another by the
interval

 

Under the conditions in question, this difference is
smaller than the interval
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on which the curves J–(v) and J+(v) corresponding to a
given n approach each other. Thus, the curves corre-
sponding to smaller numbers n are generated prior to
the convergence of the curves J–(v) and J+(v) corre-
sponding to a number n on a scale of the order of the
value given by Eq. (37). In the region of convergence of
the curves with different values of n, all these curves are
exponentially close to the limiting curve J0(v) in
Eq. (36). A set of curves with numbers n = 3, 4, …, 10,
illustrating these regularities, is presented in Fig. 1. The
existence of a discrete set of closely spaced J(v) curves
corresponding to a certain value vn of the velocity of a
freely moving vortex allows us to speak of the line-
width of a certain unified dependence J(v). It follows
from what has been said above that the physical reason
behind this linewidth is the possible existence of differ-
ent states of a 4π kink with different structures of the
field of Swihart waves both in the interior region of
width 2ξj and in the tail region ξ < –ξj of the vortex. The
number of such vortex structures increases with the
velocity of a 4π kink.

The inset to Fig. 1 shows the dependence of J on v
in the vicinity of v = v5. This dependence resembles, to
a considerable extent, the one describing the so-called
stringent conditions of excitation of a new steady state
when the main state of a hydrodynamic flow loses its
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v/vs

J0(v)

J(v)

v1(5) v5

vsvs vs

v

0.0005

0.00025

n = 5

0.955

0.01

0.960 0.965 0.970 0.975 0.980
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0.04

J(v)

Fig. 1. Relation between the current and the velocity of a 4π kink for λ/λj = 10–2. Pairs of curves emerging on the abscissa axis
correspond to n = 3, 4, …, 10. The dashed curve corresponds to the limiting dependence  J0(v). The inset shows the segment of the
J(v) curve in the vicinity of v = v5.
stability [17]. A similar dependence is also typical of
hard excitation of a radio-frequency generator. As
usual, the segment on the curve in the inset to Fig. 1, on
which dJ/dv < 0, turns out to be unstable. On the other
hand, such a curve corresponds to a hysteresis depen-
dence for which a transition from the lower branch of
the curve to the upper branch can occur jumpwise for
various values of v.

4. RELATION BETWEEN THE CURRENT 
AND THE VORTEX VELOCITY WHEN OHMIC 
LOSSES ARE TAKEN INTO CONSIDERATION

In this section, we describe the results of an analysis
based on Eq. (6), taking into account not only the Cher-
enkov interaction of a Josephson vortex with Swihart
waves but also ordinary ohmic loses occurring in the
substance separating the superconductors and in the
superconductors, owing to the presence of normal elec-
trons in them. For the motion of 4π kinks we are inter-
ested in, we confine our analysis to the case when the
bias current density j is not high. We assume that ohmic
dissipation is comparatively weak so that

 

In this case, in analogy with Section 2, we can write the
following expressions characterizing the coordinate
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dependence ψ(ξ) for a uniformly moving 4π kink:

 

 

 

 

 

 

 

 

 

 

 

 

ψh ξ( ) 3π π 1 J–( )+=

× 1 k1 ∆k1+( ) ξ ξ j–( )–[ ]exp–{ } , ξ ξ j,>

ψb ξ( ) 2π πJ– π 1 ∆1–( ) 1 δ2+( ) 1–
–=

× k1 ∆k1+( ) ξ ξ j+( )–[ ]exp

+ π 1 ∆1+( ) 1 δ2+( ) 1–
k1 ∆k1–( ) ξ ξ j–( )[ ]exp

+ 2πδ2
1 δ2+( ) 1– ∆k0 ξ ξ j–( )[ ] k0 ξ ξ j–( )cos{exp

– ∆0 k0 ξ ξ j–( ) } , ξ j– ξ ξ j,< <sin

ψt ξ( ) πJ– 2π 1 ∆1+( ) 1 δ2+( ) 1–
+=

× k1 ∆k1–( )ξ j[ ] k1 ∆k1–( )ξ[ ]expcosh

+ 2πδ2 1 δ2+( ) 1–
k0 ξ ξ j–( )cos ∆0 k0 ξ ξ j–( )sin–[ ]

× ∆k0 ξ ξ j–( )[ ]exp 2πδ2 1 δ2
+( )

1–
k0 ξ ξ j+( )cos[+

– ∆0 k0 ξ ξ j+( ) ] ∆k0 ξ ξ j+( )[ ] , ξexpsin ξ j.–<
YSICS OF THE SOLID STATE      Vol. 43      No. 1      2001



ON THE VELOCITY OF A 4π KINK 7
v/vs
0.955

0.20

Jmax(v)

0.960 0.965 0.970 0.975 0.980

0.25

0.30

0.35

JOhm(v)

J(v)

Fig. 2. Dependence of the current on the vortex velocity in a junction with ohmic losses for  β/ωj = 0.1, η/πωj = 0.002, and λ/λj = 0.01.
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Finally, the relations generalizing Eqs. (22) and (23) to
the case when ohmic dissipation is taken into account
have the form

 (38)

 (39)

In the limit defined by Eq. (8) and under the
assumption that the damping of Swihart waves in the
interior region of the vortex is small, i.e.,
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Eqs. (38) and (39) give, first, the relation

 

characterizing the size of the interior region of the vor-
tex filled with Swihart waves, and, second, the equation

(40)

relating the current to the vortex velocity. It obviously
follows from Eq. (40) that in the approximation applied
here, we have

 (41)

where the ohmic current JOhm is given by the relation

 (42)

and the Cherenkov current JCh is defined by the solution
of Eq. (27). Figure 2 illustrates relation (41). The
curves in this figure correspond to the following rela-
tions characterizing the Josephson junction from [18]:
β/ωj = 0.1, η/πωj = 0.002, and λ/λj = 0.01. The dashed
curve corresponds to the dependence in Eq. (42), while
the upper solid curve corresponds to the relation
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in which, in accordance with Eqs. (7) and (26), we have

 

The above analysis, which is a description of the
motion of a 4π kink (coherent pair of 2π kinks) induced
by the bias current, allows us to derive a simple analyt-
ical relation between the velocity of uniform motion of
such a vortex and the current inducing this motion.
Simple analytic formulas have been obtained in the
limit defined by Eq. (8), when

 

The set of J(v) dependences emerging in our analysis
due to the Cherenkov rearrangement of the vortex
structure can be distinguished experimentally for com-
paratively low ohmic losses in the region

 

This manifestation is simplified considerably at low
temperatures, when we can neglect ohmic losses at the
surface owing to freezing out of normal electrons. In
this case, Cherenkov losses become comparable to
ohmic losses or even exceed them for

The last inequality can be satisfied in junctions with

small ohmic losses for which β2/  ! λ/λj.
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Abstract—A model of self-synchronization in the process of second-harmonic generation in a quadratic
medium with a small coherence length is verified by investigations of the dependences of the output intensity
on the intensity and the repetition frequency of excitative pulses. © 2001 MAIK “Nauka/Interperiodica”.
In the process of second-harmonic generation, the
phase difference of secondary waves with a frequency
of 2ω generated at the 0 and x points equals x(k2ω –
2kω). The phase difference of π is reached at the dis-
tance of the coherence length, lc = π/(k2ω – 2kω). Back
pumping of the energy from I2ω to Iω begins at distances
x > lc. Commonly, due to dispersion, the inequality
k2ω > 2kω takes place and lc is small. However, account-
ing for birefringence (ne, 2ω < n0, ω), we can obtain k2ω =
2kω and lc  ∞ in some crystals. This phenomenon is
known as ordinary wave synchronism. It is absent in
barium titanate, and lc does not exceed 10 µm. Miller
[1] explained the appreciable generation of the 2ω har-
monic in thick BaTiO3 crystals by the presence of a reg-
ular structure with the wave vector q = k2ω – 2kω pro-
viding the momentum conservation (quasi-synchro-
nism, or quasi phase matching). Such a structure could
also be created artificially using external effects [2].
This finds wide use now mainly in devices based on
LiNbO3 crystals in which the appropriate micro domain
structure is created.

Investigations of the angular distribution of the gen-
erated 2ω wave (the maxima are observed at angles of
±7°) [3] suggest that the quasi-regular 90° domain
structure in BaTiO3 at room temperature could be such
a structure.

However, this scattering of the 2ω waves is
observed not in all crystals and completely disappears
close to the phase transition. Nevertheless, the intensity
I2ω of the wave going out of the crystal is not decreased,
but can even be increased by several times. It was
shown in [4] that in the process of the propagation of an
intense light wave of the ω frequency and the genera-
tion of a wave of the 2ω frequency in a quadratic
medium with no ordinary wave synchronism (due to
birefringence) and no quasi-synchronism (due to the
appropriate structure), the following three-step process
can occur and result in the energy accumulation of the
2ω wave despite the small coherence length.
1063-7834/01/4301- $21.00 © 20110
(1) The I2ω intensity maxima occur at the distances
that are multiples of Λ = 2lc = 2π/(k2ω – 2kω). The quan-
tity I2ω falls down to zero between these points in the
absence of synchronism. A layered structure is created
[4] in the medium, I2ω(x) ~ (4/q2)sin2(qx/2), where q =
2π/Λ.

(2) The field of the 2ω wave changes the properties
of the medium at each x point, changing not only the
refractive index, or the first-order electric susceptibility
χ(1) (photo refractive effect), but also the second-order
susceptibility χ(2) (second-order photo refractive
effect). An induced structure χ(x) is formed with the
same period of Λ = 2lc.

(3) The induced structure has turned out to be
exactly that required for quasi-synchronism: q = k2ω –
2kω. That is, it provides the second-harmonic accumu-
lation despite the absence of synchronism in the origi-
nal crystal. Thus, the appearing 2ω wave creates the
χ(x) relief in a quadratic medium which is necessary for
its generation. This process was called self-synchro-
nism (auto quasi-phase matching, or AQPM).

We verify the AQPM model in this work by the mea-
surement of the I2ω intensity of the second harmonic as
a function of the Iω intensity of the pumping wave and
the repetition frequency of the pumping pulses. The
installation consisted of a pulse IR-laser (λ = 1.06 µm,
pulse duration 18 ns), a stepped calibrated beam split-
ter, a beam coupler, a heated cell with a crystal, a green
optical filter, a flexible optical guide, and a monochro-
mator with a photo multiplier at the output registering
the intensity I2ω. The Iω intensity was recorded by a
high-frequency photodiode installed for measuring the
light reflected from the beam splitter. Scattering of the
signal was used to provide photodiode operation in a
linear regime. The signals from the recorders were dis-
played on storage oscillographs and measured with an
accuracy of about 5%.

The laser instability caused some difficulties, espe-
cially at the beginning of its operation before the estab-
001 MAIK “Nauka/Interperiodica”
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lishment of the stationary regime, in particular when
using single pulses. At the same time, we should avoid
illumination of the crystal by a large number of pulses
to prevent the crystal from heating. Therefore, we used
a special gate, selecting one or several pulses from a
series with the required relative pulse duration given by
the laser switched on ahead. The overall operation con-
sisting of the laser switching on with a required pulse
frequency, the gate operation, synchronization of the
oscillographs, and processing of the data obtained was
provided by a computer in accordance with the
assigned program.

A specified irradiation exposure is necessary for the
χ(x) structure to be created. Consequently, the depen-
dence of I2ω on Iω squared must not be linear, as it used
to be for the mechanisms of second-harmonic genera-
tion involving stationary structures or ordinary syn-

chronism. The experimental dependence of the I2ω( )
dependence is presented in Fig. 1 by dots. It can be seen
that there is no resulting outward 2ω intensity at small
pumping intensities. There is an increase in the I2ω
intensity at some threshold value of Iω (and, conse-
quently, the I2ω threshold value), following which the
dots fit the straight line passing through the origin of the
coordinates. In our opinion, this is evidence in favor of
the proposal about the structure induced by the 2ω
wave itself.

On the other hand, when the pumping pulses follow
each other rather rarely, the induced structure can relax
to zero each time. If the pulse-repetition period T is
small, the following pulse will utilize the χ(x) structure
induced by the preceding pulse. This is supported by
the experimental dependence presented by the points in
Fig. 2.

At a frequency higher than 10 Hz, the S-shaped

region disappears in the I2ω( ) dependence and the
dots fall on a straight line (line 2 in Fig. 1).

The variation of χ produced by a strong field is very
small in a perfect crystal. The proposed mechanism can
be realized in a ferroelectric crystal with impurities, as
the variation of χ associated with a change of the
valence state of impurity atoms or with processes of
nonlinear ferroelectric polarization (domain-wall dis-
placements) should be adequate. In this case, it can be
suggested that, first, the creation of the χ(x) profile due
to the photorefractive effect, as well as its disappearing,
needs time (Fig. 3). Second, the saturation associated
with a limited value of χlim should occur. Then, the χ
value at the point x corresponding to a maximum
increases in time during the pulse in accordance with
the law

(1)

Iω
2

Iω
2

dχ
dt
------ pI2ω∆t χ lim χ–( ),=

χ lim χ2–
χ lim χ1–
------------------- pI2ω∆t–( ),exp=
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where χ2 and χ1 are the electric susceptibility values at
the end of the illumination and at the end of the time
lapse between the pulses, respectively; ∆t is the pulse
duration (Fig. 3); and p is a parameter characterizing
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Fig. 1. Dependence of the intensity of the generated wave
going out of the crystal on the squared intensity of the excit-
ing wave calculated for (1) τ = 0.5 s and ν = 1 Hz and (2) τ =
0.5 s and ν = 80 Hz.

Fig. 2. Dependence of the intensity of the generated wave on
the repetition frequency of the exciting pulses.

Fig. 3. The creation and relaxation of the χ relief.
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the illumination efficiency. The χ value relaxes
between the pulses, tending to a value χ0

(2)

where ν is the pulse-repetition frequency and τ is the
relaxation time. If we put

(3)

then a solution of these two equations by numerical

methods leads to the I2ω( ) dependences presented in
Fig. 1 by solid curves. These curves can be in reason-
able agreement with the experimental data at a success-
ful choice of the parameters. The agreement will be bet-

ter if the avalanche-like increase of I2ω( ) is
accounted for, but the equations will be more compli-
cated.

Drawing a family of such curves for the different ν
and a given Iω we can plot the graph of I2ω(ν), which
reproduces the experimental S-shaped curve (solid line
in Fig. 2) for a successful choice of the parameters.

χ1 χ0–
χ2 χ0–
---------------- 1/ ντ( )–( ),exp=

I2ω χ2 I2ω ν,( )Iω
2 ,≈

Iω
2

Iω
2

P

Thus, the analysis undertaken confirms at least the
qualitative validity of the model considering the
induced and relaxed structure that provides the AQPM
effect.
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Abstract—Crystalline potassium dideuterophosphate subjected to a slowly varying or a dc electric field has
been found to exhibit polarization features which indicate the presence of a structural disorder characteristic of
inhomogeneous systems. Continuous distribution spectra of the relaxation time are drawn from the experimen-
tal data and a phenomenological analysis of the depolarization of the crystal. It is shown that the spectra have
an anomalous width and vary with temperature in a way suggesting the transformation of domain-wall potential
barriers. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

KD2PO4 (DKDP) has been attracting considerable
interest for many decades due to its clearly pronounced
anomalous physical properties and application poten-
tial [1]. This crystal undergoes a first-order phase tran-
sition whose TC increases with an increase in the deute-
rium concentration. In the vicinity of TC, its physical
properties are described by the Landau–Ginzburg–
Devonshire theory, so that the experimental data on
polarization are even in a satisfactory quantitative
agreement with calculations. It is essential that all the
polarization features characteristic of ferroelectrics, in
which the polarization is an order parameter, are clearly
pronounced only in slowly varying (quasi-static) elec-
tric fields [2].

This paper reports experimental data indicating that
the polar phase of DKDP crystals is characterized by a
structural disorder which manifests itself in specific
features of the polarization and depolarization kinetics
and that, at a temperature far from the phase transition,
the infralow-frequency spectra of the relaxation time
distribution exhibit an anomaly.

2. EXPERIMENTAL TECHNIQUE

A DKDP crystal of good optical quality was
obtained by the high-growth-rate method [3]. X-ray
topography of such crystals indicates a fairly good
structural homogeneity [4]. The deuterium content is
96.5%, and the phase transition temperature TC is
218.5 K.

The polarization P of the crystal was measured
automatically by the electrometric compensation
method on a setup described in considerable detail else-
where [5]. The dielectric hysteresis loop of the depen-
dence of P on the electric field E was obtained by vary-
ing E in steps of 12 V with a duration of 40 s and a
1063-7834/01/4301- $21.00 © 0113
period of ~1 h. The relaxation of P was measured by
rapidly turning E on and off for 190 min. The permit-
tivity was measured by the standard technique on a
capacitance bridge at a frequency of 1 kHz.

The crystal sample was a rectangular platelet (3 ×
4 × 0.3 mm in size) cut perpendicularly to the polar
axis. The major faces of the platelet were ground and
coated with a conductive silver paste. The error in sta-
bilizing the cryostat temperature did not exceed 0.03 K.

3. RESULTS AND DISCUSSION

Figure 1a shows quasi-static dielectric hysteresis
loops P(E) for three complete cycles of variations in the
E field, Fig. 1b shows the permittivity ε as a function of
E, and Fig. 1c shows the relaxation of the polarization
P in the E field whose magnitude is less than the hys-
teresis loop halfwidth. The loops are not rectangular in
shape, the saturation of P (and ε) in the field range cov-
ered is weakly pronounced, and only a slight deviation
is observed in the P traces between the first two cycles,
which reproduce themselves subsequently with a satis-
factory accuracy. The relaxation of P in an arbitrarily
low field E passes through two stages, namely, a jump
of P followed by its smooth variation. The first stage
reflects the fast over-barrier motion of domain walls.
The second stage is a slow, thermally activated process.
A similar evolution of P with time is observed in the
polar phase for any E and for all temperatures, down to
150 K. The latter observation suggests that in the
DKDP crystal under study, unlike the TGS crystal [6],
the coercive field Ec has a continuous distribution,
rather than a discrete value. As a result, when E is
turned on, only the part of the crystal whose volume
increases with an increase in E becomes involved in the
process of fast polarization. A similar situation was
observed earlier in the Rb2ZnCl4 crystal, whose inho-
2001 MAIK “Nauka/Interperiodica”
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mogeneous structure is apparently due to a random
internal electric field distorting the local symmetric
two-minimum functions of the free energy of P [6].
Note also that the absence of a definite Ec in the crystal
affects the shape of the hysteresis loops in the depen-
dences of P and ε on E. Indeed, the former loop has a
rising and a decaying P branch with a noticeable slope
(with a finite dP/dE derivative) instead of a jump in P,
and the latter loop exhibits broad plateaus instead of
sharp maxima of ε within the same range of the field E
(Figs. 1a, 1b). In other words, the region of the
relatively fast crystal polarization switching is fairly
diffuse within a rather wide range of the quasi-static
field E.

The slow, thermally activated stage in the DKDP
polarization relaxation follows a universal power law

p = (Pe – P(t))/(Pe – P0) = 1/(1 + t/a)n, (1)

where Pe and P0 are the equilibrium and initial polariza-
tions, respectively; P(t) is the polarization at the instant
of time t; and a and n are the fitting parameters. Rela-
tionship (1) corresponds to the normalized distribution
function of the relaxation time τ

f(τ) = [1/aΓ(n)](a/τ)1 + nexp(–a/τ), (2)

where Γ(n) is the gamma function and f(τ)dτ = 1.

Function (2) passes through a maximum fmax(τ) at τm =
a/(1 + n) [6].

The function f(τ) can, in principle, provide informa-
tion on the distribution of potential barriers for the
relaxation centers (domain walls). We present below
the results of measurements of the depolarization and
recovery kinetics of the f(τ) functions derived from
these experimental data in the range of the temperature
T0 of the polar phase of the crystal in which ε has a
weakly pronounced anomaly, more specifically, an
inflection point. Figure 2 displays the temperature
dependence of ε, in which the maximum corresponds to
the phase transition point TC = 218.5 K, the region of
interest is confined within a box, and the anomalous
point T0 is identified by an arrow. The open circles refer
to the ε data obtained in a cooling run, and the filled
ones, to those measured under heating. The procedure
used in polarization and subsequent depolarization is
explained in the inset showing the variation in P with
time. At points 1 and 3, voltages of 100 and 200 V are
switched on, respectively. Between points 2, 3 and 4, 5,
the polarization builds up slowly. At point 5, the voltage
(E = 3.3 kV/cm) applied to the crystal is switched off
and depolarization starts stepwise to point 6 and then
slowly proceeds by the thermal activation mechanism,
which is analyzed using relationships (1) and (2). The
P jumps in the plot are one more illustration of the
aforementioned absence of a definite coercive field in
the crystal under study.

Figure 3 exemplifies the process of slow depolariza-
tion at three temperatures. The initial points (filled cir-

0

∞∫
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cles) correspond to point 6 in the inset to Fig. 2. The
open circles refer to experimental data. The solid lines
correspond to the calculations according to formula (1).
The jumps preceding the slow process are ∆P .
0.6 µC/cm2 for all curves, and the equilibrium values of
the polarization are Pe . 0. Figure 4 displays the f(τ)
spectra, which are plotted using formula (2) with the
a and n parameters obtained by fitting the experimental
data with the power function (1). The values of a, n, the
most probable time τm = a/(1 + n), and the area S =

f(τ)dτ, where τ1 and τ2 are the minimum and maxi-

mum relaxation times corresponding to f(τ) =
0.1fmax(τ), are given in the table.

The errors of the parameters, which were deter-
mined in the same way as in [6], are |δa/a| = |δP/P0|(1 +
tm/a)/n(tm/a) . (1/n)|δP/P0| . 0.05, |δn/n| =
[1/nln(tm/a)]|δP/P0| . 0.01, and |δτm/τm| = |δa/a| +
|δ(1 + n)/(1 + n)| . 0.06. Here, tm . 190 min is the
maximum time of the P(t) measurement, δP = 3.2 ×
10−4 µC/cm2, P0 . 0.16 µC/cm2, and |δP/P0| = 0.002.
The low values S . 0.1 given in the table indicate that
the greater part (.0.9) of the relaxing regions should
have very short and long times τ. The long times τ are
not measured directly in the experiment and are
obtained by extrapolating the experimental data.

It can readily be shown that the small magnitude of
the exponent n in expression (1) (see table) permits a
satisfactory fit of the experimental data within a fairly
large time interval with a logarithmic dependence as
well. Indeed, for n ! 1, the dimensionless polarization
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Fig. 2. Temperature dependence of the permittivity ε of a
DKDP crystal. Open and filled circles refer to the cooling
and heating runs, respectively. The inset shows variations in
polarization P with time t upon switching on (points 1, 3)
and off (point 5) the electric field E = 3.3 kV/cm before the
depolarization measurement.
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p(t) in expression (1) can be approximately represented
as p(t) . 1 – nln(1 + t/a) and the f(τ) distribution can be
represented in the form of a function which differs from
zero only within a region bounded by finite values of τ.
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Fig. 3. Depolarization of a DKDP crystal at various temper-
atures T (K): (1) 153.25, (2) 164.91, and (3) 167.58. Circles
are experimental data, and solid lines correspond to calcula-
tions.

Fig. 4. Distribution spectra f(τ) of the relaxation time τ upon
depolarization of a DKDP crystal at various temperatures
T (K): (1) 192.09, (2) 182.07, (3) 175.07, (4) 167.58,
(5) 164.91, (6) 163.56, (7) 160.24, and (8) 153.25. The inset
shows the temperature dependence of the most probable
time τm at a maximum of the f(τ) function, t0 = 1 min.
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Parameters of the depolarization time distribution spectra of the DKDP crystal

T, K 192.1 182.1 175.1 167.6 164.9 163.6 160.2 153.2

a, min 0.52 0.32 0.17 0.3 0.48 0.19 0.15 0.06

n 0.038 0.049 0.046 0.043 0.037 0.048 0.032 0.044

τm , min 0.5 0.303 0.165 0.287 0.46 0.183 0.144 0.053

S 0.09 0.12 0.12 0.07 0.09 0.12 0.08 0.11
The possibility of approximating p(t) by a logarithmic
dependence is apparently characteristic of many inho-
mogeneous systems with slow relaxation (see, e.g., [7]).

The f(τ) distribution in the vicinity of the T0 point
varies nonmonotonically with the temperature. As a
crystal is cooled, the distribution shifts first toward
small τ, then in the opposite direction, and, finally,
again to small values of τ. The temperature dependence
of the most probable relaxation time τm (the inset to
Fig. 4) provides an insight into the anomalous variation
in f(τ). It is seen that τm has a distinct maximum at the
same point T0 where the temperature dependence of ε
undergoes an inflection. The bar shows the maximum
error in the determination of τm at T = T0. At other tem-
peratures, the error is several times smaller. Obviously,
the f(τ) distribution is related, in accordance with the
Arrhenius law [5], to the potential barrier distribution
for the relaxation centers (specifically for domain
walls). However, the mechanism underlying the anom-
alous temperature behavior of such a distribution
remains unclear.

Thus, the study of polarization kinetics over a broad
temperature range, unlike the methods based on mea-
surements at relatively high frequencies, allowed us to
reveal specific features in the properties of the macro-
scopic structure of a polar material with long-lived
metastable states. For the DKDP crystals studied, the
most essential features are the lack of reproducibility of
the dielectric hysteresis loops obtained in the first
cycles, the absence of a distinct coercive field, and a
very broad spectrum of polarization relaxation times.
Similar (but more clearly pronounced) indications of a
structural disorder were observed earlier in the SBN
relaxor, a substantially more inhomogeneous material
P

[8]. This feature of the structure is possibly common for
many real crystals.
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Abstract—The (NH4)3H(SO4)2 and [(NH4)0.82Rb0.18]3H(SO4)2 crystals are investigated by dielectric spectros-
copy, inelastic incoherent neutron scattering (IINS), and neutron powder diffraction. A comparative analysis of the
data obtained is given. It is shown that the phase transitions II  III, III  IV, IV  V, and V  VII
in the (NH4)3H(SO4)2 crystal are accompanied by changes in the orientation ordering of the  ions. In the
[(NH4)0.82Rb0.18]3H(SO4)2 crystal, these phase transitions are completely suppressed and the long-range order
inherent in the II phase is retained over the entire temperature range covered (6–300 K). It is revealed that this
crystal at the temperature Tg ≈ 70 K undergoes a transition to the dipole glass phase, which is attended by “freez-
ing” the orientation disordering of the ammonium ions. © 2001 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Crystals of triammonium hydrogen disulfate
(NH4)3H(SO4)2 (TAHS) belong to a large family of
M3H(AO4)2 (M = Na, K, Rb, and Sc; A = S and Se)
crystals with ferroelectric, ferroelastic, and superionic
properties. These crystals are of special interest,
because they can undergo a diversity of phase transi-
tions [1–10]

I  413 K  II  265 K  III  139 K

 IV  133 K  V  63 K  VII

The high-temperature paraelastic phase I has a trig-

onal structure (space group R m, Z = 1 [4] or R  [5]).
The monoclinic ferroelastic phase II (space group A2/a,
Z = 4 [6, 7]) has been studied most extensively. In the
crystal structure of this phase, there are two nonequiv-
alent ammonium groups. One of them, NH4(I), occu-
pies the special positions on a twofold axis, and the
other group, NH4(II), occupies the general positions.
This structure is characterized by three types of hydro-

R m [4] A2/a [6, 7] P2/b [7] ? ? ?

R  [3] P2/n [8] incommensurate [9].

                         

                         

3

3

3 3
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gen bonds [6]: (i) the N(I)–H···O bonds in which the
hydrogen atom links the N(I) atom to an oxygen atom

of the  ion, (ii) bifurcational bonds of the N(II)–
H···2O type in which the hydrogen atom links the N(II)
atom to two oxygen atoms, and (iii) the short symmet-
ric bonds O–H···O (RO···O = 2.54 Å) in which each two

neighboring  ions are linked via the acid proton to
form individual dimers (SO4HSO

 

4

 

)

 

–3

 

.

The NH
 

4
 

(
 

I
 

) tetrahedron is slightly distorted and,
hence, has a dipole moment. Suzuki and Makita [6]
assumed that, in the 

 
II

 
 phase at room temperature, the

NH

 

4

 

(

 

I

 

) groups both can be ordered and can execute
slow reorientations, whereas the NH

 

4

 

(

 

II

 

) ammonium

ions are most probably ordered. The  tetrahedron
is also somewhat distorted, which manifests itself in the
fact that the length of the S–O(2) bond (1.518 Å)
directed toward the acid proton is larger than that of the
other three bonds (1.450 Å). This distortion of the

 ion results in the formation of the dipole moment
parallel to the S–O(2) bond.

As follows from x-ray structure analysis, the

 

III

 

 phase also has a monoclinic symmetry (space group

SO4
2–

SO4
2–

SO4
2–

SO4
2–
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P2/b [7] or P2/n [8]). It should be noted that crystal
structures of the IV, V, and VII phases have not been
determined to date.

According to Baranov et al. [10], crystals of triru-
bidium hydrogen disulfate Rb3H(SO4)2 (TRHS)
undergo only one high-temperature structural phase
transition at TII–I' = 476 K from the monoclinic phase II
(space group C2/c [11]) to the cubic phase I ' with a high
protonic conductivity. It should be remarked that the
occurrence of two irreversible transitions revealed in
TRHS at temperatures of 329 and 399 K in the earlier
works [11, 12] was not confirmed in [10]. A deuterated
analog of TRHS, namely, TRDS, also undergoes a low-
temperature antiferroelectric transition at T = 71 K,
which is due to the ordering of deuterons in the double-
well potential of the acid deuterium bond [11]. The
ionic radius of rubidium is virtually identical to that of
ammonium, and, at room temperature, Rb3H(SO4)2
(hereafter, TRHS) and TAHS have identical crystal
structures (with insignificantly different unit cell
parameters) [13]. It is important that the length of the
acid hydrogen bond in TRHS (RO···O = 2.484 Å [13]) is
only slightly less than that in TAHS.

It is clear that the radical difference between the
sequences of phase transitions in TAHS and TRHS, in
which the unit cell parameters of crystals at room tem-
perature differ insignificantly, can be associated with
the ammonium ion, because it has the orientational
degrees of freedom and forms the aforementioned
hydrogen bonds. However, the role of acid protons
responsible for the I  II phase transition in TRDS
remains unclear. In our opinion, investigations into the
phase transitions and lattice dynamics in mixed
[(NH4)1 – xRbx]3H(SO4)2 crystals can provide answers
to this problem.

In the present work, we studied the TAHS and
[(NH4)0.82Rb0.18]3H(SO4)2 (TARHS) crystals by dielec-
tric spectroscopy, neutron powder diffraction, and
inelastic incoherent neutron scattering (IINS) over a
wide range of temperatures with the aim of elucidating
the behavior of ammonium ions and acid protons in dif-
ferent phases of TAHS and TARHS.

2. EXPERIMENTAL TECHNIQUE
Single crystals of the (NH4)3H(SO4)2 and

[(NH4)0.82Rb0.18]3H(SO4)2 compounds were grown
from aqueous solutions by slow cooling. The dielectric
spectra of these crystals were recorded in the tempera-
ture range 6–300 K at frequencies from 10 Hz to
1 MHz.

The inelastic incoherent neutron scattering (IINS)
spectra and neutron powder diffraction were measured
on a NERA-PR inverted-geometry neutron spectrome-
ter installed on an IBR-2 pulsed neutron source (Frank
Laboratory of Neutron Physics, Joint Institute for
Nuclear Research, Dubna) by using the time-of-flight
technique in the temperature range 10–300 K. The IINS

                                                           
P

                     

spectra were measured with a beryllium filter and crys-
tal analyzers from pyrolytic graphite (the elastic line of
the spectra was observed at E0 = 4.65 meV or λ0 =
4.15 Å [14]) with a resolution from 2 to 4% in the trans-
fer energy range 5–2000 cm–1. The total densities of
phonon states G(E) were calculated from the experi-
mental IINS intensities within the single-phonon inco-
herent approximation according to the program
described in [15]. The neutron powder diffraction spec-
tra measured on the NERA-PR spectrometer made it
possible to determine a set of experimental interplanar
distances d, which were used in calculations of the unit
cell parameters with the AUTOX autoindexing pro-
gram [16].

3. RESULTS

3.1. Dielectric properties. For the most part, the
results obtained in the investigation into the dielectric
properties of TAHS are in good agreement with the data
available in the literature [1–3, 17, 18]. It is worth not-
ing that the energies of the II, III, IV, and V phases are
close to the energy of the state with a parallel ordering
of dipoles. As can be seen from Fig. 1, the temperature
dependences of the permittivity εc along the pseudo-
trigonal axis c in these phases are described by the
Curie–Weiss law

(1)

where ε∞ is chosen to be 5.7 in all the phases. It should
be emphasized that the Curie constants in the II, III, IV,
and V phases (2800, 1350, 750, and 550 K, respec-
tively) are characteristic of intrinsic ferroelectrics and
antiferroelectrics with phase transitions of the order–
disorder type [19]. On the other hand, according to [1,
3, 17, 18], these phases exhibit no ferroelectric proper-
ties and a smeared maximum in the dependences εc(T)
at  ≈ 240 K disagrees with the aforementioned
phase transition. Therefore, the large Curie constants
indicate only that the free energies of the II, III, IV, and

 

V

 

 phases in TAHS are close to the energy of the ferro-
electric state. This inference is also supported by the
evolution of the above maximum of 
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c

 

 in the mixed
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 crystals with
an increase in the concentration, which finally results in
its splitting into two peaks at 
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 0.8 and the appearance
of the intermediate ferroelectric phase 

 

VI

 

 [17, 18].
The phase transitions 
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 and 

 

III

 

  

 

IV

 

 are
second-order phase transformations, whereas the phase
transitions 

 

IV

 

  

 

V

 

 and 
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VII

 

 are first-order
phase transformations. The above features of the
dielectric properties and the second-order phase transi-
tion 

 

III

 

  

 

IV

 

 in the absence of macroscopic sponta-
neous polarization allow us to assume that the 

 

III

 

 and

 

IV

 

 phases are antiferroelectric. Then, the 
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VII

 

transition should be the transition between the ordered
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Fig. 1. Temperature dependences of the reciprocal of the permittivity 1/εc for the (NH4)3H(SO4)2 crystal: (1) the experimental data
obtained at a frequency of 1 MHz, (2) the 1/ε0 values obtained by the extrapolation of the frequency dependences of 1/εc to zero
frequency, and (3) approximation by the Curie–Weiss law [relationship (1)].
                
                   
antiferroelectric and ferroelectric phases. Since the
symmetry groups of both phases in this case are not
related by the group–subgroup relationship, the phase
transition must necessarily be the first-order phase tran-
sition [19]. Actually, as the V  VII phase transition
point is approached from high temperatures, the per-
mittivity falls short of large values, which are charac-
teristic of the proper ferroelectric second-order transi-
tion or the first-order transition close to the second-
order transition. Upon transition to the ferroelectric
phase VII, the permittivity ε∞ of a single-domain sam-
ple jumpwise decreases and remains constant with a
further decrease in the temperature [10]. Moreover, the
V  VII phase transition exhibits a considerable tem-
perature hysteresis (∆T ≈ 10 K) and is often attended by
cracking of samples. Despite a pronounced first-order
character and the low temperature of the V  VII
phase transition, the domain structure formed in the fer-
roelectric phase is very labile, which manifests itself in
a strong low-frequency dispersion of the quasi-Debye
type. It should also be noted that the temperature
dependence of the static permittivity ε0 (which was cal-
culated from the frequency dependences of εc) in the
VII phase radically differs from the dependence ε∞ (T)
and jumpwise increases upon the transition to the ferro-
electric phase. With allowance made for the fact that the
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dielectric dispersion associated with the domain struc-
ture is observed only in the directions lying in the m
symmetry plane, it can be concluded that the polar axis
lies in this plane, its direction is close to that of the
pseudotrigonal axis c, and the point symmetry group of
the ferroelectric phase VII is m.

The substitution of the rubidium ion for the ammo-
nium ion leads to a substantial change in the tempera-
ture dependences of the permittivity, specifically in the
low-temperature range. As was shown in [10], even at
small concentrations (x ≈

 

 0.03) of rubidium in the
[(NH
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 crystals, the structural phase
transitions 
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 and 
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 and also the ferro-
electric transition 

 

V

 

  

 

VII

 

 are virtually suppressed,
and the 

 

III

 

  

 

IV

 

 phase transition becomes smeared.
It can be seen from Fig. 2 that, for the TARHS compo-
sition studied in the present work, with the rubidium
concentration 

 
x

 
 = 0.18, the Curie–Weiss law [relation-

ship (1)] is fulfilled only in the temperature range that
corresponds to the 

 

II

 

 phase in TAHS, and the values of
the Curie constant and 

 

ε

 

∞

 

 are identical to those in the 

 

II

 

phase of TAHS. However, the Curie–Weiss tempera-
ture 

 

T

 

0

 

 in a mixed TARHS crystal is 90 K lower than
that in TAHS (Fig. 1). Furthermore, the dependence
1/
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) for TARHS has neither a kink typical of the
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 phase transition nor jumps at the 
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Fig. 2. Temperature dependences of the reciprocal of the permittivity 1/εc for the [(NH4)0.82Rb0.18]3H(SO4)2 crystal, measured at
frequencies of (1) 1 MHz and (2) 1 kHz, (3) approximated by the Curie–Weiss law [relationship (1)], and (4) the 1/ε0 values calcu-
lated from the frequency dependences of εc.
and V  VII transition points, which suggests the
suppression of these phase transformations. A strongly
smeared anomaly is only retained in the range of the
III  IV phase transition. At the same time, a fre-
quency-dependent dielectric anomaly, which is typical
of transitions to a dipole glass phase, is observed in this
dependence in the vicinity of T ≈ 20 K. A detailed anal-
ysis of the dielectric dispersion in this crystal is beyond
the scope of this work and will be presented in a sepa-
rate paper.

3.2. Neutron diffraction. The neutron powder dif-
fraction spectra of TAHS at different temperatures are
displayed in Fig. 3a. A visual examination of these
spectra revealed that they differ from each other and
can be identified as the spectra of the VII phase at 10 K,
the V phase at 80 K, the III phase at 241 K, and the
II phase at 290 K. The unit cell parameters of TAHS at
room temperature (phase II) are determined from the
experimental interplanar distances d and are as follows:
a = 10.167 Å, b = 5.863 Å, c = 15.421 Å, and β =
101.8°. These values are in reasonable agreement with
the data available in the literature [6].

The neutron powder diffraction spectra of TARHS
at different temperatures are depicted in Fig. 3b. It is
seen that a variation in the temperature virtually does
not affect the set of reflections located in the range of

     

                                                                            
P

interplanar distances d from 2.8 to 3.7 Å, except for the
change in the reflection location due to the thermal
expansion of the crystal. At each temperature, the mea-
sured interplanar distances are adequately described by
a monoclinic unit cell. The temperature dependences of
the monoclinic unit cell parameters for TARHS are
shown in Fig. 4. A monotonic behavior of these depen-
dences indicates that the crystal symmetry of TARHS
remains unchanged in the studied temperature range
10 K < T < 290 K.

This is in good agreement with the inference made
from the dielectric data for TARHS (Fig. 2) that the
structural phase transitions are absent in this tempera-
ture range.

The neutron powder diffraction data obtained in this
work for TARHS also agree with the data of x-ray sin-
gle-crystal diffraction of the [(NH4)1 – xRbx]3H(SO4)2
crystal with x = 0.57 [20], according to which no phase
transitions occur in the temperature range 180 K < T <
290 K, and the II phase is retained, at least, down to
180 K.

3.3. Inelastic incoherent neutron scattering. The
differences between the IINS spectra [the scattering
intensity I(λ) as a function of the wavelength of inci-
dent neutrons] of the TAHS and TARHS crystals at dif-
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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ferent temperatures are no less radical (Fig. 5). These
spectra involve three components: the elastic line at

 

λ

 

0

 

 = 4.15 Å, the temperature-dependent wings of this
elastic line [which are determined by the quasi-elastic
incoherent neutron scattering (QINS)], and regions of
inelastic incoherent neutron scattering from internal
and external lattice modes of the TAHS and TARHS
crystals in the wavelength range 0.5 < 

 

λ

 

 < 3.9 Å.

The changes observed in the IINS spectra of TAHS
with an increase in temperature reflect the changes in
neutron scattering due to structural phase transitions.
In particular, at temperatures of 10 (phase 
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Fig. 3. Dependences of the neutron powder diffraction spec-
tra on d at different temperatures: (a) (NH4)3H(SO4)2 and
(b) [(NH4)0.82Rb0.18]3H(SO4)2.
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(phase V), and 120 K (phase V), the QINS does not con-
tribute to the total IINS intensity. This suggests that the
ammonium ions in these phases are orientationally
ordered. It should be noted that the fine structures of the
IINS spectra in the range of lattice modes at 10 and
80 K differ considerably, which indicates a change in
the vibrational spectrum of TAHS upon the VII  V

 

phase transition. Therefore, the 

 

VII

 

  

 

V

 

 ferroelectric
phase transition at 68 K can be considered a transition
between two phases with the ordered ammonium ions
at which the phonon spectrum substantially changes
owing to the transformation of the crystal structure.
This conclusion agrees with the above results of dielec-
tric measurements.

For the 

 

IV

 

 phase, the IINS spectrum was not mea-
sured for technical reasons associated with the narrow
temperature range of this phase 

 

∆

 

T

 

 

 

≈

 

 6 K. However,
already at 

 

T

 

 = 152 K, i.e., somewhat above the 

 

IV

 

  

 

III

 

phase transition temperature, the IINS spectrum
includes a contribution of QINS, which indicates the
dynamic orientation disordering of ammonium ions in
the 

 

III

 

 phase. Therefore, it can be assumed that the

 

IV

 

  

 

III

 

 phase transition (characterized as antiferro-
electric according to the dielectric data) can be due to a
disordering of the ammonium ions. The dynamic orien-
tation disordering of ammonium ions, which arises
with an increase in the temperature as a result of the
transitions from the 

 

V

 

 phase (at 

 

T

 

 = 120 K) to the 

 

III

 

phase (at 

 

T

 

 = 152 K), leads to a noticeable smearing in
the fine structure of the IINS spectrum in the range of
lattice modes. A further increase in the temperature is
accompanied by an increase in the QINS contribution
and a rise in the anharmonicity of ammonium ions,
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which manifests itself in a line broadening of the G(E)
spectrum. The IINS spectrum of the II phase at 290 K
contains one broad maximum that characterizes the
contributions from both neutron scattering by lattice
modes and the strong QINS (on the wings of the elastic
scattering line) by dynamically orientationally disor-
dered ammonium ions (Fig. 5a).

Therefore, the IINS spectra of TAHS demonstrate
that the dynamic disordering of ammonium ions occurs
in the sequence of phase transitions V  IV  III.
However, judging only from these spectra, we cannot
reveal the specific role of the NH4(I) and NH4(II)
ammonium ions in the observed sequence of phase
transitions.
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(NH4)3H(SO4)2 and (b) [(NH4)0.82Rb0.18]3H(SO4)2.
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The temperature variation in the IINS spectra of
TARHS considerably differs from that observed for
TAHS. At T = 10 K, the main difference in the IINS
spectra of TARHS and TAHS is observed in the wave-
length range 0.5 Å < λ < 2 Å, which corresponds to the
neutron scattering by lattice modes. As follows from
Fig. 5b, at 10 K, the line width in the IINS spectrum of
TARHS is larger than that in the spectrum of TAHS. An
increase in the temperature up to 80 K is attended by
the broadening of spectral lines for TARHS without
their noticeable transformation. At 150 K, the IINS
spectrum in the range of lattice modes consists of two
overlapping broad maxima, which arise as the result of
a further broadening of spectral lines and the appear-
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ance of the QINS contribution (at about 150 K) on the
wings of the elastic scattering line. A further increase in
the temperature to 250 and 290 K leads to the appear-
ance of one broad maximum in the IINS spectrum in
the range of lattice modes and an increase in the QINS
contribution.

The IINS spectra obtained substantiate the above
conclusion (reasoning from the data of dielectric mea-
surements and neutron powder diffraction) that TARHS
does not undergo structural phase transitions in the
temperature range 10–290 K. The QINS contribution to
the IINS spectra measured at temperatures of 150 K
and above indicates that the transition to the orienta-
tional glass state most likely occurs in the temperature
range between 80 and 150 K.

Figures 6a and 6b show the generalized phonon den-
sities of states G(E) for TAHS and TARHS crystals,
respectively. It is seen that the G(E) spectra of TAHS in
the VII (T = 10 K) and V (T = 80 K) phases differ sub-
stantially. This means that an increase in the tempera-
ture leads to a substantial transformation of the crystal
structure in the course of the VII  V phase transi-
tion. A comparison between the G(E) spectrum of the
V phase at a temperature of 120 K and the spectrum of
the III phase at a temperature of 152 K shows that the
sequence of phase transitions V  IV and IV  III
results in changes in the vibrational spectra of the crys-
tal lattice. This is reflected in the difference between the
G(E) spectra of the V and III phases in the energy range
from 240 to 380 cm–1. Moreover, an increase in the
temperature leads to a smearing in the fine structure of
the G(E) spectra of the V and III phases due to a broad-
ening of peaks of the lattice modes as a consequence of
an increase in the anharmonicity of ammonium ions.

Analysis of the G(E) spectra of the TARHS crystal
shows that their main characteristics remain unchanged
in the temperature range 10–290 K. This once more
supports the inference that no phase transitions in this
compound occur below room temperature. Note that
the G(E) spectrum of the TAHS crystal in the II phase
is smeared owing to the anharmonicity of the ammo-
nium ions. Hence, by comparing this spectrum with the
G(E) spectrum of the mixed TARHS crystal, we cannot
elucidate how the replacement of ammonium ions by
rubidium ions affects the vibrational spectrum. By vir-
tue of the anharmonicity, the G(E) spectra of both crys-
tals at 150 K are virtually identical, even though the
phases at this temperature are different (the III phase in
TAHS and the II phase in TARHS). This gives grounds
to assume that the II  III phase transition is not
accompanied by a considerable change in the orienta-
tional dynamics of ammonium ions, and the replace-
ment of ammonium by rubidium up to the concentra-
tions x ≤ 0.18 insignificantly affects the librational
modes of ammonium. Since the IINS intensity is pre-
dominantly determined by neutron scattering from
hydrogen atoms, our attempts to reveal the contribution
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of the other atoms of the studied compounds to the
change in the G(E) spectra have failed.

4. DISCUSSION

Reasoning from the IINS results and the available
data on infrared and Raman light scattering [21–24],
the lattice part of the G(E) spectra of the TAHS and
TARHS crystals can be divided into three regions:

translational and librational modes of the  ion in
the energy range 0 < E < 150 cm–1, translational modes

of the  ion in the energy range 150 < E < 250 cm–1,

and librational modes of the  ion in the energy
range 250 < E < 400 cm–1 [21]. The spectra of the V and
VII phases in the region of librational modes are char-
acterized by a finer structure compared to the spectra of
these phases in the region of translational modes and
can be deconvoluted into individual modes by approxi-
mating the contribution of each mode in the form of a
Gaussian line. The librational modes separated in the
G(E) spectra of the TAHS crystal in the V and VII
phases and their energies determined in such a manner
are listed in Table 1.

A comparison of the librational modes determined

by the IINS technique for the  ion in the TAHS
crystal with the infrared and Raman data taken from

SO4
2–

NH4
+

NH4
+

NH4
+

Table 1.  Comparison between the excitation energies deter-
mined by the IINS technique for TAHS and the Raman data
taken from [23] (energies are given in cm–1)

Phase V Phase VII Assignment

 IINS 
80 K

Raman 
scattering [23] 

120 K

 IINS 
10 K

Raman 
scattering [23] 

50 K

243 243

255 255 260 257

281 275 288 286

316 310 305 308

345 332 331

351 351

371

390

410

436 432

ν6
+

ν6
+

ν6
+

ν6
+

ν6
+

ν6
+

ν6
+

ν6
+

ν6
+

ν2
– SO4

2–( )
1
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[21–24] shows their reasonable agreement. The excep-
tion is provided by the librational modes with energies
of 345 and 410 cm–1 for the V phase and 371 and
390 cm–1 for the VII phase. As follows from compari-
son between the librational modes of the  ions in
the V and VII phases, the energies of certain modes in
both phases coincide to within the error of their deter-
mination or the shift due to the crystal lattice transfor-
mation. At the same time, there are modes observed
only in one of these phases. For example, the librational
mode with an energy of 410 cm–1 manifests itself only
in the V phase and the librational modes with energies

NH4
+

[(NH4)l – xRbx]3H(SO4)2 T = 10 K

x = 0.18

x = 0.0

ν2–
4 ν2–

1 ν+
4 ν+

6 + ν+
4

0 500 1000 1500 2000
E, cm–1

G
(E

),
 a

rb
. u

ni
ts

Fig. 7. Spectra G(E) of the (NH4)3H(SO4)2 and
[(NH4)0.82Rb0.18]3H(SO4)2 crystals at 10 K with locations

of the internal modes for  and  ions.NH4
+

SO4
2–
P

of 351, 371, and 390 cm–1 are observed only in the VII
phase. A simple correlation between the librational

modes of the  ions in the VII and V phases can
present difficulties in the case when the possible split-
ting of particular librational modes of the V phase upon
phase transition to the VII phase is disregarded, because
this phase transition is accompanied by a lowering in
the symmetry. Since the energies of the librational
modes are most sensitive to the nearest environment,
the change observed in the librational spectrum upon
the V  VII phase transition reflects the changes in
the interatomic distances and the site symmetry of
ammonium ions.

Of special note is the mode whose energy remains
virtually unchanged upon the VII  V phase transi-
tion (288 and 281 cm–1, respectively). This mode
clearly manifests itself in the Raman spectra of both
phases (see Table 1) and is close in energy to the O···O
mode (279 cm–1) in K3H(SO4)2 [25].

The main difference between the G(E) spectra of the
TARHS and TAHS crystals is observed in the region of
librational modes in which the G(E) spectrum of
TARHS at 11 K has no fine structure and involves a
broad band (Fig. 6b). This shape of the G(E) spectrum
can be explained by the fact that the TARHS crystal at
low temperatures is in the state of the orientational
glass. In the earlier work [26], we observed a similar
effect for the mixed Rb2 – x(NH4)xSO4 crystals in the
concentration range 0.4 < x < 1.2, which corresponds to
the state of orientational glass. The changes in the spec-
trum with an increase in temperature are caused by the
transition from the state of orientational glass with a
“frozen” local structural disordering to the state with a
dynamic disordering of structural units, specifically
ammonium ions. In this respect, we should note that the
temperature of this transition was not specially deter-
mined by the neutron scattering technique in our exper-
iments.

The G(E) spectra of the [(NH4)1 – xRbx]3H(SO4)2 (x =
0.0 and 0.18) samples in the energy range 0–2000 cm–1

NH4
+

     

                                            
                 
                                                                                     

Table 2.  Comparison between the energies of internal modes in tetrahedral structural units and acid hydrogen bonds (energies
are given in cm–1)

Complex νOH–out νOH–out  + 

Na3H(SO4)2 [25] 947 947

K3H(SO4)2 [25] 1140 1550

Rb3H(SO4)2 [25] 1140 1550

(NH4)3H(SO4)2 610 952 1478 1725, 1857

[(NH4)0.82Rb0.18]3H(SO4)2 612 1485 1739, 1826

 [27, 28] 613 981

 [28] 1397 1685

ν4
2– ν1

2– ν4
+ ν6

+ ν4
+

SO4
2–

NH4
+
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are displayed in Fig. 7. The results obtained in analysis
of the observed modes are presented in Table 2. The

 and  modes of the  ion and the  mode
of the ammonium ion can be separated in the above

energy range. The energies determined for the  and

 modes are close to those reported in [27] for the

 ion. The energy of the  mode is close to the
experimental and calculated energies given in [27, 28].
By analogy with the interpretation of optical spectra,
the mode at energies of 1725 and 1857 cm–1 for the
crystal with x = 0.0 and at energies of 1739 and
1826 cm–1 for the crystal with x = 0.18 can be treated as

the  +  Raman mode. By using the observed ener-

gies of the  mode, it is possible to determine the
energies of the librational modes and to verify the
validity of the mode assignment given in Table 1. These
results lend support to the view that the ammonium ion
in the studied systems can be considered a rigid rotator.

Thus, the characteristic features of the low-temper-
ature phase transitions in the [(NH4)1 – xRbx]3H(SO4)2
(x = 0.0 and 0.18) crystals were determined by a com-
bined method (dielectric and neutron spectroscopy). It
was demonstrated that the phase transitions II  III,
III  IV, IV  V, and V  VII in TAHS are gov-
erned by the behavior of ammonium ions, because the
substitution of rubidium ions for ammonium ions even
at small Rb+ concentrations brings about the stabiliza-
tion of the II phase in TARHS. This phase transforms to
the phase of orientational glass with a decrease in the
temperature. It can be assumed that the NH4–NH4 inter-
action between ammonium ions provides a way of real-
izing the sequence of phase transitions in TAHS,
because no phase transitions occur in TRHS. However,
even an insignificant amount of rubidium ions replac-
ing ammonium ions in TAHS considerably affects the
internal energy of the TARHS crystal and brings it
closer to the internal energy of TRHS. The cooperative
interaction between ammonium ions ceases to play the
decisive role but continues to make its contribution,
since a decrease in the temperature of the mixed
TARHS crystal leads to the transition to the state of ori-
entational glass.

5. CONCLUSION

The results obtained in this work demonstrated
that the orientational dynamics of ammonium ions is
of fundamental importance in cooperative phe-
nomena observed in (NH4)3H(SO4)2 and mixed
[(NH4)1 − xRbx]3H(SO4)2 crystals. The combination of
dielectric and neutron spectroscopy made it possible to
reveal the specific features of the phase transitions in
TAHS. It was shown that the II  III, III  IV, and
IV  V phase transitions are accompanied by the ori-

ν4
2– ν1

2– SO4
2– ν4

+

ν4
2–

ν1
2–

SO4
2– ν4

+

ν6
+ ν4

+

ν4
+
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entation ordering of ammonium ions and can be
described as the order–disorder transitions, whereas the
V  VII phase transition can be treated as the displa-
cive first-order transition between crystal structures
with orientationally ordered ammonium ions. How-
ever, the particular role of the NH4(I) and NH4(II)
ammonium groups in the sequence of phase transitions
II  III, III  IV, and IV  V can be determined
only with the use of single-crystal neutron diffraction.
At present, this problem remains unsolved.

The decisive role of ammonium ions in the sequence
of phase transitions II  III  IV  V  VII
was clearly demonstrated using the substitution of
rubidium ions for ammonium ions. Upon doping the
TAHS crystal by rubidium even in a small amount, the
internal energy of the mixed TARHS crystal radically
changes and approaches the internal energy of the
TRHS crystal in which the II phase is observed down to
liquid-helium temperatures. However, the cooperative
interaction between ammonium ions is retained in the
TARHS crystal, which manifests itself in the transition
from the II phase to the state of orientational glass with
a decrease in temperature.
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Abstract—The phase transitions in series of crystals with the general formulas A2BB'X6 (X = F, Cl, Br, or CN)

and Pb2BB'O6 that belong to the elpasolite family (space group Fm m) are analyzed. The influence of the
size and the shape of cations and anions on the entropy and the mechanism of structural distortions is discussed.
© 2001 MAIK “Nauka/Interperiodica”.

3

1. INTRODUCTION

Among perovskite-like compounds, the elpasolite
family is the most representative owing to the great
diversity of possible substitutions for atoms in crystals
of the general formula A2BB'X6. According to [1],
more than 350 compounds with a similar structure were
known until recently, and, as follows from crystal
chemical analysis, more than 1500 new elpasolites can
be obtained based on halides alone. In the initial phase,
crystals of this family have a cubic symmetry with the

space group Fm m–  (z = 4). Unlike the simple per-
ovskites ABX3 in which all octahedra are equivalent,
elpasolites (also referred to as ordered perovskites)
contain two types of ionic groups (BX6 and B'X6) alter-
nating along three fourfold axes. Therefore, an elpaso-
lite cubic cell can be treated as a perovskite cell with
twice the unit cell parameter. The crystal structure of
the cryolite A3B'X6 in which the A and B atoms are
chemically equivalent is a special case of the elpasolite
structure.

As was noted in [2], the most pronounced feature of
the perovskite structure is that its topology (i.e., an
ideal atomic arrangement) is thermodynamically
extremely stable, whereas a real crystal structure (i.e.,
an actual atomic arrangement) appears very unstable.
This statement is likely true for all perovskite-like crys-
tals or, at least, for those with a three-dimensional crys-
tal framework. It is because of the instability of real
crystal structures that these crystals can undergo struc-
tural phase transitions.

Crystal lattice distortions caused by structural phase
transitions are often considered in the framework of
two limiting mechanisms, namely, the displacive-type
and order–disorder mechanisms. These mechanisms
can be most adequately defined as follows. In the case
of displacements, the instability arises from long-range
cooperative interactions and brings about local distor-
tions, and, in the case of order–disorder, the local dis-
tortions stem from local instabilities [3]. As a rule, the

3 Oh
5
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features characteristic of both mechanisms can mani-
fest themselves in one form or another in the behavior
of different physical properties of the same crystal. In
this respect, the question as to which mechanism plays
a leading part in each special case is of particular
importance.

Before proceeding to phase transitions in elpasolites
(cryolites), we discuss the results obtained for ferro-
electrics [3] and ferroelastics [4, 5] with a perovskite

structure (Pm m). The interpretation of phase transi-
tions in these groups of crystals as the displacive-type
transitions was supported by the following experimen-
tal results. Compounds of the first group were charac-
terized by the soft modes in the initial and distorted
phases and large Curie constants. Compounds of the
second group, apart from the soft modes, exhibited
insignificant changes in the entropy. At the same time,
the experimental data obtained for many compounds of
both groups were interpreted as the evidence for the
existence of local structural distortions above the phase
transition temperature: diffuse x-ray scattering, the
central peak in the light scattering spectra, the birefrin-
gence, and the excess heat capacity. These findings
gave impetus to the development of different theoreti-
cal models. For example, according to [6], the cooper-
ative motion of ions in the structure is associated with
the possible transition (“crossover”) from the displa-
cive-type mechanism to the order–disorder mechanism
at a certain temperature above the phase transition point
T0. This is caused by a critical increase in the correla-
tion length as the T0 temperature is approached, result-
ing in the formation and growth of dynamic clusters—
small groups of bound atoms, which are displaced from
high-symmetry equilibrium positions in the same
direction.

The results of structure refinement within the cluster
and (or) anharmonic phonon models were compared
for a number of ferroelastic perovskites SrTiO3,
KMnF3, RbCaF3, CsPbCl3, and CsPbBr3. Hutton et al.

3

2001 MAIK “Nauka/Interperiodica”



 

128

        

FLEROV, GOREV

                                                                                  
[4, 5] analyzed the precision structural data in the
framework of different models and made the following
conclusions.

(1) A simple model with a multiple-well potential
for X atoms inadequately describes the initial structure:
the R factor (15%) is very large even as compared to the
harmonic model (R = 7%).

(2) Allowance made for the anharmonicity of
atomic vibrations leads to a substantial decrease in the
R factor (4%).

(3) It is difficult to decide between two models,
namely, the cluster and anharmonic phonon models,
when the predicted cluster distribution function does
not exhibit a pronounced behavior inherent in the
order–disorder systems.

Armstrong [7] analyzed the NMR and NQR data
obtained for certain of the aforementioned perovskites
and arrived at rather contradictory results. On the one
hand, the author believed that these data confirm the
crossover above T0 from the behavior that corresponds
to the displacive-type mechanism to the behavior asso-
ciated with the formation of dynamic clusters in the
structure. On the other hand, it was noted that the
experimental response of the system is very complex
due to the presence of defects in the crystals, so that the
experimental data cannot provide a sufficiently reliable
corroboration of the crossover phenomenon theory.

Unfortunately, the data on changes in the entropy
upon phase transitions were not used in analyzing the
results obtained in [4, 5, 7]. It should be mentioned that
this change in the entropy is rather small for many per-
ovskite-like crystals studied in these works.

In the present work, we analyzed the data on the
structure, phonon spectra, and physical properties of
elpasolites (cryolites) and discussed the possible mech-
anisms of structural phase transitions. Consideration
was given to several series of compounds whose com-
position involves different X atoms (F, Cl, Br, O, and
CN). The change in the entropy upon phase transition
was used as a major characteristic. Since the entropy is
a fundamental quantity and can be determined experi-
mentally, the study of the interrelation between the
entropy and specific disordering phenomena is of cru-
cial importance.

2. HALOID ELPASOLITES WITH ATOMIC IONS

According to crystal chemical analysis [1], the elpa-
solite structure can be realized in halides containing
fluorine, chlorine, and bromine.

As a rule, the refinement of the initial cubic struc-
ture of halogen-containing crystals is performed within
one or, in the best case, two approximations without
consideration of alternative models and, rather fre-
quently, under the assumption that halogen atoms
occupy the 24e position (on the edge of a cubic cell). As
can be seen from Table 1, the thermal parameters sub-
stantially differ for different elpasolites and the same
P

crystal studied by different authors. Of special interest
are the results obtained in the theoretical treatment of
structural models that account for the anisotropy and
the anharmonicity of vibrations of halogen atoms and
their possible arrangement in other crystallographic
positions. The inclusion of anisotropic thermal vibra-
tions led to a decrease in the R factor in K2NaCrF6 and
K2NaFeF6 crystals [12]. The anisotropy parameter
B33/B11 for the Rb2KFeF6 crystal, which undergoes a
phase transition at T0 ≈ 170 K, appears to be two or
three times larger than that for the Rb2NaFeF6 crystal
[10, 11], in which, according to the analysis of inter-
atomic bond strengths [8], no phase transition occurs
down to 0 K.

Makarova et al. [9] thoroughly examined the tem-
perature dependence of the thermal vibration ampli-
tudes for the Cs2NaNdCl6 elpasolite. It was shown that
the thermal ellipsoids for Cs, Na, and Nd atoms are
spherical, and only the vibrations of chlorine atoms are
characterized by an appreciable anisotropy and anhar-
monicity. Note that both the anisotropy and the anhar-
monicity for elpasolite structures turned out to be more
pronounced than those for perovskites [8]. These
results indicate that only halogen ions are crucial; i.e.,
they are responsible for the lattice instability which
leads to the phase transition.

Attempts were made to refine the structure of the
Rb2KScF6 elpasolite in the isotropic approximation
when fluorine atoms occupy one of the crystallographic
positions 24e, 96j, and 192l [8]. It follows from Table 1
that the disordering of fluorine atoms over four (96j) or
eight (192l) positions results in a substantial decrease
in the thermal parameter Biso compared to that for the
24e position. Since the thermal parameters and the reli-
ability factors are very close for both variants of disor-
dering, it is rather difficult to choose a particular vari-
ant. In our opinion, these findings suggest that a consid-
erable anharmonicity of vibrations is more likely to be
characteristic of fluorine atoms than the disordering
over several positions.

A substantial number of haloid elpasolites either
undergo structural phase transitions (whose nature is
usually ferroelastic) or exist in a distorted phase up to
the melting temperature. According to the group-theo-

retic analysis [14], diverse distortions of the Fm m
structure become possible due to octahedron rotations
and (or) polar displacements of atoms.

Among chlorides and bromides, series of crystals
with the general formula Cs2NaM3+Cl(Br)6 that
undergo one phase transition to the tetragonal phase
I4/m have been studied most extensively [8]. In terms
of the model proposed in [14], the corresponding struc-
tural distortions can be attributed to the (00ϕ) rotations
of octahedra about one of the fourfold axes of the cubic
cell.

Fluoro-elpasolites exhibit a greater diversity of the
A2B combinations of atoms. As a result, these com-

3
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Table 1.  Thermal parameters for halogen atoms in different crystallographic positions of the cubic phase in the isotropic
(Biso) and anisotropic (B11/B33) approximations

Compound
24e 96j 192l

T1, K Reference
Biso, Å2 (B11/B33)h (B11/B33)anh Biso, Å2 Biso, Å2

Cs2NaPrCl6 2.2 153 [8]

(R = 4.4%)

Cs2NaNdCl6 4.3 6.5 132 [9]

(2.9%) (2.8%)

Rb2NaHoF6 1.2 172 [8]

(5.8%)

Rb2NaFeF6 2.6 <0 [10]

(4%)

1.3 <0 [11]

(1.3%)

Rb2KFeF6 5.3 170 [10]

(4%)

4.4 170 [11]

(1.9%)

K2NaCrF6 3.2 ? [11]

(2.1%)

1.95 5.6 ? [12]

(13%) (12.5%)

K2NaFeF6 1.84 16 ? [12]

(5.9%) (4.6%)

Rb2KScF6 6.2 1.8 1.8 252 [8]

(6.4%) (5.0%) (5.5%)

(Nb4)3GaF6 1.8 250 [13]

(12%)

Note: The reliability factors R are given in parentheses. T1 is the temperature of the phase transition from the cubic phase. The subscripts
“h” and “anh” refer to the harmonic and anharmonic models, respectively.
pounds can undergo the single Fm m–I4/m (Rb2Na

and Cs2K), successive Fm m–I4/m–P21/n (Rb2K) and

Fm m–I4/m–C2/m–P21/n (Cs2Rb), and flip–flop

Fm m–P21/n (Rb2K) phase transitions [8].

As follows from the group-theoretic analysis of pos-
sible distortions of the elpasolite structure [14], the

Fm m–I4/m phase transition is associated with the soft
mode at the center of the Brillouin zone. Actually, the
soft mode belonging to the Γ point was found in studies
of inelastic neutron scattering in the cubic phase of
Cs2NaBiCl6 [15] and Cs2NaTmBr6 [16] crystals. Let us
now dwell on the characteristic features of the cubic
phase in the aforementioned elpasolites. First, we note
the quasi-two-dimensional motion of octahedra, which

3

3

3

3

3
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can be explained by the fact that a rotation of one octa-
hedron about a particular cubic axis results in the dis-
tortion of the whole octahedron layer orthogonal to this
axis. Second, a substantial damping of phonons was
revealed at temperatures 10–20 K below the T0 temper-
ature, which made unambiguous determination of the
soft mode frequency impossible in this temperature
range. The temperature determined by the extrapola-
tion of the linear dependence ω2(T) to ω2 = 0 turned out
to be considerably below the phase transition tempera-
ture obtained in other experiments. According to
Bührer and Güdel [16], this discrepancy is caused by
the deviation of the ω2(T) function from the linear
behavior in the vicinity of T0 due to the interaction
between acoustic and optical modes with the same
symmetry. However, it should be noted that the afore-
1
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Table 2.  Thermodynamic characteristics of phase transitions in haloid elpasolites with atomic cations [8]

A2B+B3+X6
Type of distorted 

structure SR Ti, K T–1dT/dp, GPa–1 ∆S/R

Cs2NaBiCl6 I4/m 00ϕ 100 0.28 0.20

Cs2NaNdCl6 I4/m 00ϕ 132 0.33 0.23

Cs2NaPrCl6 I4/m 00ϕ 153 0.32 0.21

Cs2NaLaCl6 I4/m 00ϕ 210 0.26 0.26

Cs2NaTmBr6 I4/m 00ϕ 102 0.32 0.21

Cs2NaYBr6 I4/m 00ϕ 139 0.31 0.18

Rb2NaDyF6 I4/m 00ϕ 166 0.20

Cs2KDyF6 I4/m 00ϕ 160 0.20

Cs2RbDyF6 I4/m 00ϕ 251 0.06 0.20

C2/m 0ϕϕ 205 –0.05
0.47

P21/n ψϕϕ 196 –0.09

Rb2KFeF6 ? ? 170 0.78 1.88

Rb2KGaF6 ? ? 123 0.90 1.73

Rb2KScF6 I4/m 00ϕ 252 0.07 0.20

P21/n ψϕϕ 223 0.01 0.51

Rb2KInF6 I4/m 00ϕ 283 0.07 0.18

P21/n ψϕϕ 264 0.03 0.59

Rb2KLuF6 I4/m 00ϕ 370 0.06
1.05

P21/n ψϕϕ 366 0.05

Rb2KErF6 P21/n ψϕϕ 395 0.06 0.95

Rb2KHoF6 P21/n ψϕϕ 400 0.05 1.13

Rb2KTbF6 P21/n ψϕϕ 412 0.06

Note:  SR denotes the system of octahedron rotations, and R is the gas constant.
mentioned elpasolites undergo the first-order phase
transition, and this is primarily the reason why the Tc

temperature (at which ω2(T) = 0) does not coincide with
the phase transition temperature T0. At the same time,
the T0 – Tc values determined from the neutron scatter-
ing [16] and calorimetric [17, 18] data differ signifi-
cantly and, hence, the assumption that the ω2(T) func-
tion deviates from the linearity near the T0 temperature
holds some validity.

The phonon spectra of fluoro-elpasolites were stud-
ied in the tetragonal phase of Rb2KScF6 by Raman
spectroscopy and in the cubic phase of Rb2KHoF6 by
neutron scattering [8]. However, the soft vibrational
modes were found in none of the crystals. Furthermore,
a diffuse scattering peak was observed for the cubic
phase of Rb2KHoF6. These data, together with the
above results of the structural investigations of
Rb2KScF6 (in which the best results were obtained in
the case when fluorine atoms in the cubic phase were
disordered over four or eight positions), allowed us to
assume that the mechanism of phase transitions in flu-
PH
orine-containing crystals has specific features as com-
pared to chloride and bromide crystals.

Now, we consider how the phase transitions in haloid
elpasolites can be characterized according to the calori-
metric data. As follows from the heat capacity measure-
ments in bromides (M3+ = Y and Tm) [18] and chlorides

(M3+ = Bi, Nd, Pr, and La) [17], the Fm m–I4/m transi-
tion is the first-order phase transformation close to the
tricritical point. An increase in the size of the M3+ ion
from crystal to crystal leads to an increase in the tem-
perature of the phase transition and the degree of its
closeness to the tricritical point. It was also found that
the entropy change upon the phase transition does not
depend on the size of M3+ and X– ions and has a rela-
tively small value: ∆S = (0.18–0.26)R (Table 2).

Unlike chlorides and bromides, the Fm m–I4/m
transition in all the fluorides studied is the second-order
phase transformation close to the tricritical point. One
of the possible reasons for the difference in the type of
phase transitions in these groups of elpasolites is the

3
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different scale of effects caused by the coupling
between the order parameter and the deformation,
which is determined by the reduced shift in the phase
transition temperature under the hydrostatic pressure

(dT0/dp)  [8]. This quantity in crystals with X = Cl
and Br is almost five times larger than that in fluoride
crystals (Table 2). It should be mentioned that the
reduced shift in the temperature of the I4/m–P21/n
phase transition increases with an increase in the size of
the M3+ ion and, for the compound with M3+ = Lu3+,

becomes as large as the shift typical of the Fm m–P21/n
flip–flop transition. At the same time, the entropy

changes upon the Fm m–I4m phase transition in fluo-
rides fall in the range of entropy changes that are char-
acteristic of chlorides and bromides (Table 2). Conse-
quently, the entropy ∆S = (0.22 ± 0.04)R (which can
more likely be treated as typical of the displacive phase
transition) could be considered as corresponding to one
vibrational degree of freedom due to rotations of octa-
hedral ionic groups in the elpasolite structure. Indeed,
even in the case when three phase transitions associated
with the successive rotations of octahedra about three
axes of the cubic phase occur in Cs2RbDyF6 (Table 2),
the total entropy change is equal to the sum of the
entropies corresponding to the simple rotations Σ∆Si ≈
0.67R ≈ 3 × 0.22R [8].

However, the “universality” of the entropy change is
not necessarily observed in haloid elpasolites. Exam-
ples are provided by a number of Rb2KM3+F6 crystals
(Table 2) [8]. Unfortunately, the space group of the dis-
torted phase is unknown, and, hence, it is difficult to
assign the considerable entropy change ∆S = Rln6 =
1.79R to particular critical ions in compounds with
M3+ = Ga and Fe (Table 2). It can only be stated that this
value with a high probability corresponds to ordering
processes in the structure. This assumption is supported
by the data obtained by Massa et al. [11], who did not

rule out that fluorine ions in the Fm m phase can
occupy four positions. An increase in the size of M3+

ions (and, correspondingly, the unit cell parameter a0)
leads to the successive (000)–(00ϕ)–(ψϕϕ) (M3+ = Sc,
In, and Lu) and, then, flip–flop (000)–(ψϕϕ) (M3+ = Er,
Ho, and Tb) phase transitions with the resulting mono-
clinic distortion owing to a superposition of octahedra
rotations. An increase in the a0 parameter in a series of
Rb2KM3+F6 crystals is accompanied by a change in the
bond strength which causes an increase in the anisot-
ropy (and anharmonicity) of atomic vibrations of fluo-
rine [8]. In turn, this should bring about an increase in
the entropy of the corresponding phase transitions [19].
Actually, the quantity Σ∆S = ∆S1 + ∆S2 increases from
crystal to crystal according to the increase in the anhar-

monicity parameter 〈x〉2/  of atomic vibrations of flu-
orine, where 〈x〉  is the mean displacement of critical
atoms [8]. However, even the maximum experimental

T0
1–

3

3

3

a0
2
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value Σ∆S = 1.13R (for Rb2KHoF6) appeared to be less
than the entropy Σ∆S = 1.39R = Rln4 which would be
observed for the phase transition associated with a par-
tial ordering of fluorine ions occupying eight and two

positions in the Fm m and P121/n1 phases, respec-
tively [8]. At the same time, it is not improbable that the
last phase transition can take place in Rb2KM3+F6 elpa-
solites with a further increase in the size of M3+ ions
and, correspondingly, in the anharmonicity parameter
(for example, at M3+ = La3+). Thus, the series of crystals
under consideration can likely provide an example of
the possible change in the mechanism of the phase tran-
sition from the displacive type to the order–disorder
type due to an increase in the anharmonicity of the
vibrations of critical ions.

3. HALOID ELPASOLITES AND CRYOLITES 
WITH MOLECULAR CATIONS

There is another way to affect the vibrations of crit-
ical fluorine ions and (or) their position in the structure
of the initial cubic phase and, hence, the phase transi-
tion mechanism. The elpasolite (cryolite) structure is
retained when the spherical atomic cations of potas-
sium and (or) rubidium in Rb2KM3+F6 crystals are
replaced by the tetrahedral ammonium ions [8]. A num-
ber of substituted compounds, such as (NH4)3M3+F6

(M3+ = Al, Ga, Cr, V, Fe, Sc, and In), (NH4)3KM3+F6

(M3+ = Al and Fe), and Cs2(NH4)FeF6, undergo phase
transitions (Table 3) [20–22]. Unfortunately, the data
on ammonium elpasolites are insufficient for detailed

3

Table 3.  Thermodynamic characteristics of phase transi-
tions in fluorine-containing cryolites and elpasolites with
ammonium cations [8, 20–23]

Compound Type of dis-
torted structure Ti, K ∆S/R

(NH4)2KAlF6 ? 250

? 186

(NH4)2KFeF6 ? 290

Cs2(NH4)FeF6 ? 190

(NH4)3AlF6 ? 220 2.23

? 190 0.51

(NH4)3CrF6 Tr 270 2.33

(NH4)3GaF6 Tr 250 2.77

(NH4)3VF6 Tr 280 2.99

(NH4)3FeF6 Tr 267 2.98

(NH4)3ScF6 P21/n1 330 1.61

I12/m1 290 0.81

P 243 0.08

Note: Tr denotes the triclinic symmetry, and R is the gas constant.

1

1
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consideration. In the (NH4)3M3+F6 cryolites, as in flu-
oro-elpasolites with atomic cations, an increase in the
M3+ ion size (the a0 parameter) leads to an increase in
the temperature of the stable initial cubic phase. How-
ever, there are considerable differences in the proper-
ties of these compounds. First, the triclinic symmetry
of the low-temperature phase and the absence of the
intermediate tetragonal phase I4/m upon successive
phase transitions are characteristic of ammonium cryo-
lites [23]. Second, the total entropy change upon transi-
tion from the cubic phase to the triclinic phase varies in
the narrow range Σ∆S = (2.33–2.99)R from crystal to
crystal and does not depend on the sequence of phase
transitions (Table 3). A large entropy clearly indicates
that certain processes of structural ordering proceed in
ammonium cryolites as a result of successive (M3+ = Al,
Sc, and In) or single (M3+ = Cr, Ga, V, and Fe) phase
transitions. The model proposed by Tressaud et al. [21]

for the possible ordering of ions upon the Fm m–P
phase transition was also successfully applied to the
description of the successive phase transitions [22].
The orientational disordering of (M3+F6)3– octahedra in
the cubic phase is due to the distribution of fluorine
atoms over eight positions (192l) [13] [see the data for
(NH4)3GaF6 in Table 1]. In the triclinic low-tempera-
ture phase, the octahedra (fluorine atoms) are com-
pletely ordered and occupy one position. To put it dif-
ferently, the contribution of octahedron ordering to the
entropy change is equal to Rln8 = 2.08R. Out of two
ammonium ions that occupy different crystallographic
positions (8c and 4b), only the latter ion in the cubic
phase is disordered over two orientations according to
the symmetry of its position. Consequently, the entropy
change that corresponds to the ordering of ammonium
ions is equal to Rln2 = 0.69R. Thus, the ordering pro-
cesses in ammonium cryolites cannot be attended by an
entropy change of larger than Σ∆S = R(ln8 + ln2) =
2.77R. This value is in reasonable agreement with the
experimental data (Table 3). In the crystals character-
ized by successive phase transitions, the ordering pro-
cesses occur in two steps [22]. The phase transition
from the cubic phase is associated with a partial order-
ing of octahedra (∆S = Rln4), which results in a forced
ordering of ammonium tetrahedra (∆S = Rln2). The
octahedra are completely ordered upon transition
between two monoclinic modifications (∆S2 ≈ Rln2).
The third phase transition (∆S3 = 0.08R) is unrelated to
the order–disorder processes. The model under consid-
eration is consistent with the NMR data obtained by
Sasaki et al. [24]. For cryolites with successive phase
transitions, an anomalous behavior is observed at the
temperature T1 for the spin-lattice relaxation times of
protons (T1H) and fluorine nuclei (T1F). At the tempera-
ture T2, considerable changes are observed only for T1F.

It was found that the structure of ammonium cryo-
lites strongly depends on the external pressure [22].
The investigation of the pressure–temperature phase

3 1
P

diagram for a cryolite with M3+ = Sc that underwent
three phase transitions demonstrated that both interme-
diate monoclinic phases disappear with a decrease in
the volume of the unit cell under the pressure. At p ≥
1.2 GPa, the direct Fm m–P  phase transition is
observed, as is the case in compounds with a smaller
size of the M3+ ion (Cr, Ga, V, and Fe) at atmospheric
pressure. This is the reason why the total entropy
change upon successive phase transitions in
(NH4)3ScF6 corresponds to the entropy of the phase
transition in (NH4)3GaF6. In turn, at relatively low pres-
sures p ≥ 0.045 GPa, the (NH4)3GaF6 cryolite under-
goes two phase transitions, as is the case in (NH4)3AlF6

which has the least volume of the Fm m unit cell
among ammonium cryolites. Three phase transitions
are observed in the gallium compound at p ≥ 0.25 GPa.
Therefore, it is not improbable that the third transition
can occur in aluminum cryolite under the pressure.

In order to elucidate in greater detail the role played
by particular ionic groups in the phase transition within
the above model, it is desirable to perform the follow-
ing investigations.

(i) It is expedient to refine the positions of atoms and
their thermal parameters in the cubic and distorted
phases not only for cryolites, but also for elpasolites
with ammonium ions, because spherical and tetrahedral
cations can occupy different crystallographic positions
in the latter compounds. In this case, several alternative
structural models should be taken into consideration.

(ii) Reliable information on the entropy of phase
transitions in ammonium elpasolites should be
obtained by calorimetric techniques.

(iii) The effect of the pressure on the phase transi-
tions in (NH4)3AlF6 and ammonium elpasolites should
be studied with the aim of constructing the generalized
p–T phase diagram.

4. ELPASOLITES WITH MOLECULAR ANIONS

Let us analyze how the elpasolite structure in crys-
tals with atomic cations is affected by replacing spher-
ical halogen ions with molecular ions (CN)–. The space

group Fm m is retained in Cs2LiM3+(CN)6 com-
pounds. The structure of these compounds was investi-
gated by Swanson and Lucas [25]. In their work, the
authors considered a model in which Cs, Li, and M
atoms occupy special positions (with the coordinates
1/4, 1/4, 1/4; 1/2, 1/2, 1/2; and 0, 0, 0, respectively), and
the C and N atoms are located on the cell edge (24e). A
pronounced anisotropy of vibrations is characteristic of
the (CN)– molecular anion. The vibration amplitudes of
the C and N atoms along the z axis (cell edge) are vir-
tually identical. The displacements in the direction per-
pendicular to the cell edge are substantially larger,
especially for the nitrogen atom. The motion of the Cs
atom is also characterized by an anomalously large

3 1
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root-mean-square amplitude of vibrations. For all the
studied Cs2LiM3+(CN)6 compounds, the Cs–N inter-
atomic distances are appreciably larger than the sum of
their ionic radii. On the other hand, the Li–N bond
length is comparable to this sum. According to [25],
these are the reasons for the weak interaction between
Cs+ and (CN)– ions and the considerable thermal dis-
placements of cesium and nitrogen atoms.

A large volume of holes occupied by cesium atoms
between octahedra plays a decisive role in the instabil-
ity of the cubic phase: as the unit cell parameter
increases, the cubic lattice becomes increasingly unsta-
ble with respect to the displacements of Cs atoms and
the rotations of M3+(CN)3– octahedra. In this respect, it
is interesting to note the correlation between a mono-
tonic increase in the vibration amplitudes of Cs, N, and
C atoms and an increase in the cell size. Since the bond
lengths remain unchanged to within the error of their
determination in all the Cs2LiM3+(CN)6 compounds,
the changes in the unit cell parameter a0 and the size of
the hole occupied by cesium atoms between octahedra
are determined by the change in the M3+–C bond
length. Some characteristics of the phase transitions in
Cs2LiM3+(CN)6 elpasolites are listed in Table 4. It is
seen that the stability loss temperature of the cubic
phase increases with an increase in the unit cell param-
eter a0. The sole exception is provided by the elpasolite
with M3+ = Ir. As was shown in [25], the phase transi-
tion to the tetragonal phase P4/nmc belongs to the first-
order transformations and is associated with the con-

densation of the  soft mode at a point of the Bril-
louin zone boundary. The structural distortions can be
explained by the antiferrodistorsion rotations of
M3+(CN)6 octahedra. Note that this type of tetragonal
distortion of the elpasolite structure differs from that
observed in the haloid crystals (see Section 2). The next
phase transition (to the monoclinic phase P21/n) is the
second-order transformation associated with the con-

densation of the  mode that corresponds to the octa-
hedron rotations and the displacements of Cs atoms. It
is worth noting that investigations of the monoclinic
phase structure and the Raman spectra did not reveal
noticeable distortion of the octahedra in Cs2LiCr(CN)6
[25] and Cs2KFe(CN)6 [26] crystals.

Thus, on the one hand, the sequence of phases
(cubic–tetragonal–monoclinic), which is realized upon
replacement of the atomic cation by the molecular cat-
ion in the elpasolite structure, is similar to that observed
in fluoro-elpasolites. On the other hand, the phase tran-
sition between the cubic and tetragonal phases in cya-
nides is associated with the soft mode at the point of the
Brillouin zone boundary.

Unfortunately, since the data on the entropy of
phase transitions in the Cs2LiM3+(CN)6 crystals are
unavailable, it is impossible to trace the effect of a con-

X2
+

X5
+
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siderable anisotropy of atomic vibrations of nitrogen
and cesium on the entropy change.

5. OXYGEN-CONTAINING ELPASOLITES 
(ORDERED PEROVSKITES)

Many oxides A2B'B''O6 crystallize in a perovskite-
like structure and can undergo phase transitions of dif-
ferent types. The ratios between the ionic radii of B' and
B'' cations and also between their charges affect the
character of ordering and, correspondingly, the struc-
tural characteristics and physical properties. Partly or
completely disordered compounds exhibit diffuse
phase transitions and relaxor phenomena. The ordered
compounds (elpasolites) undergo “sharp” (non-
smeared) transformations whose sequence consider-
ably depends on the cation type. Among these com-
pounds are lead-containing elpasolites such as
Pb2MgWO6, Pb2CoWO6, and Pb2MgTeO6.

Baldinozzi et al. [27–29] carried out the precision

structural investigation of the cubic phase Fm m in
these compounds. The composition disorder in the
arrangement of the B' and B'' cations was found in none
of the elpasolites. At the same time, it turned out that
the thermal parameters (or the root-mean-square dis-
placements u2) and the reliability factors R have the
least values for the structural model according to which
the oxygen atoms occupy the positions 24e and execute
pronounced anisotropic vibrations in the plane perpen-
dicular to the B'–O–B'' bond and the lead atoms are dis-
ordered over 6, 12, or 4 local positions in accord with
the possible displacements along the [100], [110], and
[111] directions. As follows from [27, 28], the model in
which the lead atoms occupy 12 equivalent positions is
most preferential. The u2 displacements and the R fac-
tors for the isotropic and disordering models are pre-
sented in Table 5. Thus, the structure of oxide com-
pounds, unlike haloid elpasolites (cryolites), involves
two types of critical ions, which, in principle, are
responsible for the displacive phase transitions (rota-
tions of oxygen octahedra) and the order–disorder
phase transitions (the ordering of lead atoms).

Different sequences of phase transitions are
observed in Pb2MgWO6, Pb2CoWO6, and Pb2MgTeO6
elpasolites (Table 6). Incommensurate phases with the

3

Table 4.  Characteristics of successive phase transitions in
Cs2LiM3+(CN)6 elpasolites [25]

M3+ a0, Å T1, K Space 
group T2, K Space 

group

Co 10.495 183 P4/nmc 168 P21/n

Fe 10.571 221 170

Mn 10.677 273

Cr 10.780 348 P4/nmc 310 P21/n

Ir 10.720 418 P4/nmc 335 P21/n
1
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Table 5.  Root-mean-square displacements  of oxygen and lead atoms for the isotropic model (O and Pb atoms occupy the
24e and 8c positions, respectively) and disordering model

Compound

, Å2

T1, K ReferenceO Pb O Pb

24e 8c Displaced Model [110]

Pb2MgWO6

0.018 0.036 0.005 0.011
313 [27]

(5.6%) (4.5%)

Pb2CoWO6

0.034 0.045 0.005 0.005
303 [28]

(5.9%) (5.3%)

Pb2MgTeO6

0.016 0.020
190 [29]

4.5%

Note: T1 is the stability loss temperature of the cubic phase. The reliability factor R is given in parentheses.

u2

u2
same symmetry were found in the last two compounds.
The incommensurate structure in Pb2MgTeO6 is
retained, at least, down to 6 K. The existence of the
intermediate phase in Pb2MgWO6 was not established
unambiguously. The structure of the low-temperature
phases was refined only for Pb2MgWO6 and
Pb2MgTeO6 [27, 29]. It was demonstrated that, in the
orthorhombic phase of Pb2MgWO6, the lead atoms are
displaced along the [010]p direction of the pseudocubic
cell and the octahedra are slightly rotated and distorted.
The modulated displacements of oxygen and lead
atoms are observed in the rhombohedral phase of
Pb2MgTeO6. Moreover, the lead atoms remain disor-
dered. The space group of the orthorhombic phase in
Pb2CoWO6 was determined ambiguously: Pmcn or
P21cn [28].

Analysis of the Raman spectra of the low-tempera-
ture phases in Pb2MgWO6 [31] and Pb2MgTeO6 [32]

Table 6.  Characteristics of phase transitions in oxygen-con-
taining elpasolites

Compound Type of dis-
torted structure Ti, K ∆S/R Refe-

rence

Pb2MgWO6 Pmcn 313 1.7 [27, 30]

Pb2CoWO6 IM 303 1.15 [28, 30]

Pmcn
? 256 0.18

P21cn

Pb2MgTeO6 R m 188 [29]

(δδδ)

R 142

(δδδ)
Note: IM denotes the incommensurate monoclinic phase, and R is

the gas constant.

3

3

P

revealed soft modes in the low-frequency range. It was
assumed that the phase transition in Pb2MgWO6 is
associated with the condensation of two modes X10 and
Σ3 at the boundary and within the Brillouin zone,
respectively. In Pb2MgTeO6, the soft mode is con-
densed at an incommensurate point of the Brillouin
zone.

The study of inelastic neutron scattering in the cubic
phase of Pb2CoWO6 also revealed the soft mode that
belongs to the X point of the Brillouin zone and corre-
sponds to rotations of the oxygen octahedra [33]. The
condensation of this mode leads to a lowering in the
crystal symmetry to tetragonal [14]. However, the low-
temperature phase in Pb2CoWO6 has a lower symme-
try. This seeming contradiction can be explained by the
fact that the phase transitions in this compound, as in
other oxygen-containing elpasolites, are governed by
two mechanisms and two order parameters. Apparently,
the primary parameter corresponds to displacements of
oxygen atoms (octahedron rotations) that lead to a dis-
tortion of holes between octahedra and a lowering of
their symmetry, which gives rise to the secondary order
parameter associated with the ordering of lead atoms.

Therefore, in oxygen-containing elpasolites, the
structural distortions upon phase transitions can be
caused by the simultaneously occurring processes of
ordering and displacement of different ions
(Pb2MgWO6 and Pb2CoWO6) and only by the displace-
ment processes (Pb2MgTeO6).

The question arises: How do these models of struc-
tural distortions correlate with the data of calorimetric
measurements?

Although ordered oxygen-containing perovskites
have been thoroughly investigated for many years, the
data on the heat capacity of Pb2MgWO6 and
Pb2CoWO6 have been obtained by adiabatic calorime-
try only recently. This made it possible to determine
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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reliably the entropy changes upon phase transitions
(Table 6) [30]. In order to separate the contributions
from the displacement and ordering processes to the
entropy, it would be expedient to obtain the data on the
excess entropy of Pb2MgTeO6 in which the phase tran-
sitions result only in the displacement of oxygen ions.
Unfortunately, at present, detailed information on the
heat capacity of Pb2MgTeO6 is unavailable. We intend
to perform these investigations in the immediate future.
However, it is known (see Section 2) that, in haloid
elpasolites, the displacive phase transitions associated
with small rotations of octahedra are usually accompa-
nied by relatively small entropy changes ∆S/R ≈ 0.2. By
assuming that this quantity for oxide compounds dif-
fers insignificantly, the main contribution to the entropy
of structural transformations in Pb2MgWO6 and
Pb2CoWO6 should be determined by the secondary order
parameter of phase transitions, i.e., by the ordering of
lead atoms. On the other hand, the experimental entro-
pies for these elpasolites fall in the range Rln4–Rln6.
In the framework of the model considered above, this
means that lead atoms in the orthorhombic phase are
incompletely ordered, because, otherwise, the entropy
change should be equal to Rln12. This assumption is in
good agreement with the structural data, according to
which lead atoms that occupy 12 local disordered posi-
tions in the cubic phase are displaced along the [010]p

direction of the pseudocubic cell in the orthorhombic
phase [27]. This implies that lead atoms in the partly
ordered low-temperature phase occupy two or four dis-
ordered positions, which results in the entropy changes
Rln12/2 = Rln6 and Rln12/4 = Rln3, respectively.

6. CONCLUSION

The main results obtained in the above analysis of
the phase transitions in the crystals with an elpasolite
(cryolite) structure can be summarized as follows.

(1) For the most part, the structural and calorimetric
data are in agreement, provided that they are consid-
ered within the model concepts of phase transitions.

(2) The mechanism of structural transformations
essentially depends on the size and the shape of cations
and anions. Changes in the size and the shape of ions
can lead to substantial changes in the anharmonicity of
vibrations of atomic ions and (or) the appearance of an
orientational ordering of nonspherical (molecular)
ions. In turn, this affects the magnitude and the behav-
ior of the excess entropy.

(3) In haloid crystals, the entropy of the cubic-to-tet-
ragonal phase transition is constant.

(4) In oxygen-containing compounds, there occur
phase transitions associated with two order parameters
which arise from the displacement of atoms of one type
and the ordering of atoms of another type in the struc-
ture. In order to separate the contributions from differ-
ent mechanisms of transformations to the entropy, it is
advisable to carry out the calorimetric investigations of
PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      200
crystals in which the phase transitions are associated
only with displacements of oxygen atoms (for example,
Pb2MgTeO6).
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Abstract—A study is reported on the Raman spectra of nanoporous carbon prepared in a chemical reaction
from polycrystalline α-SiC and TiC. The spectra are shown to be of a multicomponent nature, which distin-
guishes this group of materials from graphites and disordered carbon structures. A series of low-frequency
modes are detected. Anisotropy and dispersion effects are revealed. The results obtained argue in favor of a clus-
ter structure of nanoporous carbon and size quantization of the electronic and vibrational spectra in carbon nan-
oclusters. The main structural elements of the nanoclusters in the porous framework are small fragments of bent
or broken graphene sheets. The presence of fragments close in structure to strained cubic or hexagonal diamond
is observed in a number of cases. © 2001 MAIK “Nauka/Interperiodica”.
Raman scattering (RS) spectroscopy of light pro-
duces a wealth of information on the vibrational prop-
erties and short-range order of carbon materials [1–4].
RS spectroscopy has been used to study a rich variety
of forms of solid carbon, from the various crystalline
modifications and nanocluster systems (fullerenes,
nanotubes, nanocapsules, etc.) to amorphous, glassy, or
fiber structures. By comparing the vibrational modes
observed in RS spectra of the nanoporous carbon (npor-
C) studied in this work with data available for other car-
bon forms, one can draw conclusions on the character
of the valence bonds and structure of the material.

The RS spectrum of ordered graphite consists of
narrow bands near 1581 (the so-called G band) and
42 cm–1, which correspond to two types of lattice vibra-
tions of E2g symmetry in graphene sheets with
sp2-hybridized valence bonds [1]. Slight disordering of
the graphite lattice is capable of slightly shifting the
G band to either side.

The RS spectrum of microcrystalline or disordered
graphites exhibits one more peak usually called the
D band. The D-band Raman shift in samples excited by
argon laser radiation with λexc = 488 nm is 1355 cm–1

[1]. The D band is usually associated with the small
size of the ordered regions and the existence of distinct
boundaries of crystallites, which result in a violation of
the RS wave-vector selection rules. The ratio of inte-
grated intensities of the D and G bands (ID/IG) in graph-
ite powders grows linearly with decreasing grain size
[1], while in disordered graphite structures, it decreases
with increasing anneal temperature as the degree of
ordering (graphitization) increases [3]; this can be used
to estimate the linear dimensions of crystallites in
graphene sheets [1, 2]. The G band in graphite grains
crushed to ~25 Å in size broadens and shifts to higher
1063-7834/01/4301- $21.00 © 20137
frequencies, up to 1590 cm–1 [1]. The shift is accompa-
nied by the splitting off of a 1620 cm–1 band.

It has recently been shown [5] that the D band in
polycrystalline graphite shifts linearly in frequency as
the exciting photon energy "ωexc changes (the shift
coefficient is 50 cm–1/eV). Note that the G band at
1581 cm–1 does not shift significantly; however, at low
"ωexc, an additional band appears nearby, at ~1620 cm–1.

The Raman spectra of hollow nanocluster carbon
systems, such as nanotubes of various modifications,
are considerably more complex. As follows from theo-
retical calculations [6] and experiments [7], these sys-
tems can exhibit a large number of Raman bands in the
low- (below 300 cm–1), medium-, and high-frequency
(1200–1800 cm–1) spectral ranges. The last range
includes the regions of the G and D bands observed in
graphites. In particular, in spectra of nanotubes, one
may expect several discrete modes near the G band
(1571, 1585, 1586, 1587, 1591 cm–1). Nanotubes, as
well as microcrystalline graphite, exhibit a dependence
of the D-band position and of the ID/IG ratio on the
exciting photon energy [8]. The low-frequency (includ-
ing the so-called breathing) and medium-frequency
modes observed on single-wall [7] and, in still larger
numbers, on multiwall nanotubes, raw graphite rods,
and single graphene sheets [9] are typical of carbon
nanoclusters.

This paper reports the first results of a Raman spec-
troscopy study of nanoporous carbon (npor-C), which
is prepared from polycrystalline carbides of silicon
(SiC) and titanium (TiC) by reacting away the carbide-
forming elements (Si, Ti) with chlorine. The npor-C
obtained in this way represents a poorly studied group
of nanocluster carbon materials, which have neverthe-
001 MAIK “Nauka/Interperiodica”
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less already found application in technology (elec-
trodes in superhigh-capacity capacitors, high-effi-
ciency molecular filters, cold emitters). Extending the
application areas of npor-C farther requires a compre-
hensive investigation of its structure and properties. As
shown by the first results obtained in x-ray diffraction
studies [10, 11], as well as by x-ray photoelectron spec-
troscopy (XPS) [12], while the materials prepared from
different starting carbides exhibit certain similarities,
they also reveal noticeable differences, which relate, in
particular, to the character of carbon atom stacking,
valence-electron hybridization, and nanocluster size
and morphology. The comparative studies of the
Raman spectra of different kinds of npor-C performed
in this work provide additional information on the nan-
ocluster structure.

1. SAMPLE PREPARATION

Bulk samples of npor-C in the form of plane wafers
about 1 mm thick were prepared from powdered silicon
(α-SiC) or titanium (TiC) carbides subjected to a pre-
liminary heat treatment in a methane environment. The
starting carbides are known to have different crystallo-
graphic symmetry; indeed, α-SiC crystallites have a
hexagonal structure with alternating Si and C atomic
planes, whereas TiC is characterized by a NaCl-type
cubic structure. Compact carbide stocks were placed in
a reactor, where they reacted with chlorine at a temper-
ature of ~900°C. In this process, the carbide-forming
elements, i.e., Si or Ti, which form volatile compounds
with chlorine, were removed. The residues of possible
adsorbates were eliminated by placing the samples in
an argon flow. The final product was high-porosity
npor-C samples with a carbon framework and a total
porosity of ~70 vol %. It should be noted that the npor-
C samples thus prepared contained a small amount (7–
8 wt %) of pyrocarbon produced in the course of the
heat treatment of the carbides in methane. The pyrocar-
bon plays the part of a binder, conferring the desired
mechanical strength to the samples.

Part of the npor-C samples obtained from α-SiC
were prepared without pyrocarbon. In this case, before
chlorination, the starting carbide material with pyrocar-
bon inclusions was subjected to high-temperature sili-
cidation to transform the pyrocarbon to inclusions of
the β-SiC cubic phase. The subsequent chlorination
removed silicon from both the starting and newly
formed carbide, so that the nanoporous carbon frame-
work extended throughout the bulk of the sample. The
material of this type will be referred to in what follows
as npor-C〈SiC〉A. The npor-C〈SiC〉B and npor-C〈TiC〉B
notation with symbol B will identify the samples con-
taining pyrocarbon.

According to XPS data, the carbon content in sam-
ples of all types was in excess of 98 at. %. As is shown
by adsorption measurements, the materials of this
group are characterized by highly uniform nanopore
sizes, an extremely developed surface of the carbon
PH
framework, and a high adsorption capacity [13, 14].
Estimates made by the crack-pore model yield ~8 Å for
the pore size in npor-C〈SiC〉 .

2. MEASUREMENT TECHNIQUE

The Raman intensity from the npor-C samples was
measured with a DFS-52 double-grating spectrometer
under excitation with linearly polarized radiation of an
argon (λexc = 488.0 or 514.5 nm) and a krypton (λexc =
647.1 nm) laser operating at a power density of (5–
10) × 102 W/cm2. The measurements were made in a
90° scattering geometry under oblique exciting-light
incidence (the angle of incidence ~55°). As a rule, the
light was polarized in the plane of incidence. Scattered
radiation with polarization parallel and perpendicular
to the plane of incidence was detected. Thus, the
Raman spectra obtained corresponded to two polariza-
tion configurations denoted usually by HH and HV,
where the first symbols relate to the incident; the sec-
ond, to the scattered light. The type-A material was sub-
jected to additional measurements in the VV configura-
tion, where both the incident and the scattered light
were polarized perpendicular to the plane of incidence.
All measurements were carried out at room tempera-
ture. For convenience of comparison, the spectra are
presented in arbitrary units for the scattered intensity,
without taking into account the background compo-
nents.

3. RESULTS AND DISCUSSION

Figures 1 and 2 display Raman spectra of the npor-
C samples studied in the HH and HV polarization con-
figurations at the pump wavelength λexc = 488.0 nm
(npor-C〈SiC〉B and npor-C〈TiC〉B) or 514.5 nm (npor-
C〈SiC〉A). While the spectra observed differ noticeably
from one another, they can be divided in all cases into
two main, fairly broad regions. By analogy with micro-
crystalline graphite, it appears natural to refer to the
higher-energy region as the G* band and the lower-
energy region as the D* band. Note that in the spectra
of npor-C samples, both bands, G* and D*, were very
weak. Therefore, in what follows, we are going to dis-
cuss only the spectral components that were found to be
the strongest (reproducible) and/or coinciding or simi-
lar in the magnitude of the Raman shift in different
spectra.

One can readily see that, irrespective of the type of
material, none of the G* and D* bands can be described
by a single Lorentzian in either polarization configura-
tion and, moreover, these bands are strongly asymmet-
ric with respect to the maximum, which implies that
their broadening is inhomogeneous. Against the back-
ground of the G* and D* bands, one clearly sees more
narrow peaks or shoulders. In some spectra, one actu-
ally observes a split of the G* and D* bands into com-
ponents. When the polarization configuration changes,
these features generally shift in frequency, which also
YSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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occurs in the absence of distinct splitting. This is
accompanied by a change in the intensity ratio in the
region of the features, which makes the shape of the
broad G* and D* bands substantially dependent on the
scattered polarization. These observations argue for a
multicomponent character of the vibrational spectrum
of the materials under study and anisotropy of the cor-
responding vibrational modes.

Consider the specific features of the HH spectra of
the npor-C samples prepared from different carbides in
more detail (Fig. 1). One sees immediately that the
absolute maximum of the broad G* band is shifted rel-
ative to the above-mentioned narrow G band of graph-
ite at 1581 cm–1 toward higher frequencies and lies at
1588, 1600, and 1602 cm–1 for the npor-C〈TiC〉B, npor-
C〈SiC〉B, and npor-C〈SiC〉A, respectively. At the same
time, the spectra of both type-B samples also exhibit
noticeable features near 1581 cm–1, while the spectrum
of the type-A sample does not have the 1581 cm–1 fea-
ture at all. The samples of type B reveal a shoulder in
the interval from 1620 to 1625 cm–1. All the samples
also have weak features in the vicinity of 1670 cm–1.

On the low-frequency side of the G* band, near
1550–1560 cm–1, the spectra of both type-B samples
exhibit clearly pronounced features, which are practi-
cally indistinguishable in the spectrum of the npor-
C〈SiC〉A sample. In the samples of types A and B pre-
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Fig. 1. HH Raman spectra of npor-C: (1) npor-C〈SiC〉A,
(2) npor-C〈SiC〉B, and (3) npor-C〈TiC〉B; λexc(nm):
(1) 514.5 and (2, 3) 488.0.
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pared from SiC, one also observes a feature near
1534 cm–1.

The broad D* band seen in the HH spectra of all the
three samples studied splits into several components.
For the npor-C〈SiC〉A sample, these are the main peak
at 1351 cm–1 and an additional one at 1326 cm–1. There
are also two shoulders with inflections near 1301 and
1380 cm–1. In the case of npor-C〈SiC〉B, the main peak
is located near 1348 cm–1, but it is also, most likely, a
superposition of several components. In particular, one
can clearly see a shoulder at 1333 cm–1, a frequency
close to the well-known Raman mode at 1331 cm–1 for
a tetrahedrally coordinated carbon of diamond struc-
ture. In addition, one observes a low-frequency asym-
metric peak near 1300 cm–1 and a high-frequency peak
in the vicinity of 1382 cm–1, which are very close in fre-
quency to the already mentioned inflections in the
HH spectrum of npor-C〈SiC〉A. The splitting of the D*
band manifests itself most clearly in the HH spectrum
of npor-C〈TiC〉B. Near the maximum, one observes
three peaks of nearly the same intensity, with two of
them (at 1348 and 1382 cm–1) coinciding in position
with the features in the npor-C〈SiC〉B spectrum.

The broad G* band in the Raman spectra of npor-
C〈SiC〉A obtained in the HV polarization configuration
(Fig. 2) reaches an absolute maximum at 1602 cm–1, as
in the HH spectrum of this sample. The same Raman
shift corresponds to the side maximum of the G* band
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Fig. 2. HV Raman spectra of npor-C: (1) npor-C〈SiC〉A,
(2) npor-C〈SiC〉B, and (3) npor-C〈TiC〉B; λexc(nm):
(1) 514.5 and (2, 3) 488.0.
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in the HV spectrum of npor-C〈SiC〉B. The main peak of
the G* band of npor-C〈TiC〉B (1599 cm–1) also lies
close to this frequency. At the same time, in npor-
C〈SiC〉B, the absolute maximum of the G* band is
shifted relative to the 1581-cm–1 graphite line toward
lower frequencies and lies at 1576 cm–1. The spectra of
npor-C〈SiC〉A and npor-C〈TiC〉B also have features
near 1583 cm–1.

The D* band in the HV spectrum of npor-C〈SiC〉A
is split into two main components lying at 1333 and
1369 cm–1. The first, which is close to the Raman line
of diamond at 1331 cm–1, was already mentioned as a
shoulder in the D* band of the HH spectrum of npor-
C〈SiC〉B, and the second line is located close to one of
the three strong components (1367 cm–1) in the HH
spectrum of npor-C〈TiC〉B (Fig. 1). Splitting is also
seen in the HV spectrum of npor-C〈TiC〉B, but the peak
positions here are different, 1356 and 1377 cm–1. A fea-
ture near 1379 cm–1, a frequency close to the latter fre-
quency, is also observed in the spectrum of npor-
C〈SiC〉B. Recall that features near 1380–1382 cm–1

were also detected in the HH spectra of both types of
samples prepared from SiC (Fig. 1). In npor-C〈SiC〉B,
one likewise observes a splitting of the D* band in the
HV spectrum into two components, 1348 and 1362 cm–1,
with the first of them coinciding in position with the
absolute maximum of the D* band in the HH spectra of
both type-B samples. At a frequency near 1333 cm–1,

HH

1

2

1200 1300 1400 1500 1600 1700 1800
0

50

100

150

200

250

300

350

Raman shift, cm–1

Intensity, arb. units

Fig. 3. Raman spectra of an npor-C〈SiC〉A sample excited
by different laser radiation lines (nm): (1) 514.5 and
(2) 647.1.
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corresponding to the peak in the npor-C〈SiC〉A spec-
trum, one can also see a shoulder in the spectrum of
npor-C〈TiC〉B. Note that in all the npor-C samples, the
D* band also reveals several features on its low-fre-
quency side.

The variation of Raman spectra with exciting wave-
length λexc is a characteristic feature of all the npor-C
samples studied. Figures 3 and 4 compare the spectra of
npor-C〈SiC〉A and npor-C〈SiC〉B obtained at λexc =
647.1 nm with those measured at λexc = 514.5 and
488.0 nm discussed above. One readily sees that the
whole D*-band region in both spectra obtained at the
longer wavelength excitation is shifted toward lower
frequencies, as observed in the case of polycrystalline
graphite [5] and nanotubes [8]. Note that here, as in [5,
8], the D* band is higher in intensity than the G* band.

A comparison of the shapes of the D* band in the
HH spectra of npor-C〈SiC〉A (Fig. 3) reveals that some
spectral features are retained under variation of λexc, but
the intensity ratio of the individual components
changes. For instance, the 1351 cm–1 component,
which is strongest at λexc = 514.5 nm, is seen only as a
shoulder at λexc = 647.1 nm, but, in the latter case, a dis-
tinct peak appears at 1331 cm–1, which matches exactly
the diamond Raman peak. In addition, at lower fre-
quencies, new features become noticeable near 1292
and 1311 cm–1.
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Fig. 4. Raman spectra of an npor-C〈SiC〉B sample excited
by different laser radiation lines (nm): (1) 488.0 and
(2) 647.1.
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In npor-C〈SiC〉B (Fig. 4), the low-frequency shift
and the relative growth of the D*-band intensity in the
HV spectra observed to occur with increasing λexc are
pronounced even more clearly. At λexc = 647.1 nm, the
absolute maximum of the D* band lies at 1276 cm–1. A
number of features, at 1222, 1236, 1297, and 1329 cm–1,
were detected on both sides of this maximum. It should
be pointed out that, while identical or similar features
are also seen at λexc = 488.0 nm, they are considerably
weaker than the strong components at 1348 and
1362 cm–1. It is significant that these components are
practically unobservable at λexc = 647.1 nm. Note also
that the 1276-cm–1 mode detected in the HV spectrum
of npor-C〈SiC〉B is seen in the HH spectra of npor-
C〈SiC〉A (Fig. 3).

As λexc increases, the G* band also undergoes a
change in the relative scattered intensities of its various
modes. In particular, the HH spectrum of npor-C〈SiC〉A
(Fig. 3) exhibits, in addition to the 1602-cm–1 compo-
nent, a stronger 1582-cm–1 mode close to the graphite
mode, which determines the absolute maximum of the
G* band at λexc = 647.1 nm. By contrast, the intensity
redistribution in the G* band of the HV spectrum of the
npor-C〈SiC〉B sample (Fig. 4) occurs in favor of the
higher-frequency components; indeed, the 1576-cm–1

mode becomes relatively weaker in order to transform
into a shoulder, a spike appears near 1586 cm–1, and the
main maximum in this spectral region is displaced to a
position near 1598 cm–1.

The changes in the Raman spectra of npor-C
observed to occur under variation of the exciting pho-
ton energy "ωexc argue for a strong frequency disper-
sion of the Raman susceptibility tensor in the "ωexc
region under study and for the resonant nature of scat-
tering, which involves practically all the observed
vibrational modes. An explanation of the shift of the
D band with variation of "ωexc in microcrystalline
graphite was proposed in [5]. It was assumed that the
D band originates from resonant scattering with the
emission of a phonon whose (nonzero) momentum cor-
responds to the resonant excitation of an indirect virtual
electron–hole pair in the Brillouin zone, which
becomes possible because of the interaction of this pair
with a structural defect. The D* band of npor-C con-
sists of several spectral components, and the above
interpretation requires invoking additional assump-
tions, for instance, on the splitting of the electronic
spectrum in carbon nanoclusters into size quantization
subbands or sublevels. Size quantization effects in nan-
oclusters are apparently also responsible for the
observed change in the relative intensity of the spectral
components in the G* band induced by the variation of
"ωexc. The quantity "ωexc actually selects the electronic
states in the cluster spectrum that satisfy the resonance
condition and provide the largest contribution to the
Raman susceptibility for a given "ωexc. However, the
intensity of a Raman component depends on the prob-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      200
ability of the corresponding virtual electronic and
vibrational transitions and, hence, on the symmetry of
the states involved. As a result, different modes can be
excited by different electronic states and the relation
between the intensities of individual components in a
Raman spectrum can vary with varying energy "ωexc
and polarization of the exciting and scattered radiation.
Note that such dispersion effects in Raman spectros-
copy are characteristic of discrete molecular spectra
[15]. Resonant scattering associated with splitting of
the electronic spectrum was observed to occur on sin-
gle-wall nanotubes [7].

The vibrational properties of the npor-C and carbon
nanoclusters of other types, including nanotubes [7],
raw graphite rods, and single graphene sheets [9], allow
for a certain qualitative analogy in the low-frequency
range. Figure 5 presents a scattering spectrum of the
npor-C〈SiC〉A sample excited in the 40–320-cm–1 inter-
val by radiation with λexc = 647.1 nm. Because the sam-
ple surface was fairly rough, the Raman spectrum was
observed against a background of intense Rayleigh
scattering. As can be seen from Fig. 5, one can isolate a
number of features in the Raman spectrum: at 46.7,
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Fig. 5. Low-frequency HV Raman spectra of an npor-
C〈SiC〉A sample obtained at λexc = 647.1 nm. The curves
corresponding to different frequency intervals are shown in
different scales (a, b). The arrows identify the spectral fea-
tures observed against the background of Rayleigh scatter-
ing.
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56.4, 84, and 133 cm–1, as well as at 198, 218, 237, 280,
and 309 cm–1. Note that this range includes the Raman
molecular rotational spectra of water, nitrogen, and
oxygen (see, e.g., [16]), which could be adsorbed by
npor-C from air and, generally speaking, contribute to
the observed scattering. However, only one of these
modes (133 cm–1) coincides with one of the weak
modes in the Raman rotational spectrum of water,
whereas the strongest water lines are not seen in the
spectrum observed. In addition, the spectra of the npor-
C samples do not exhibit any known relations charac-
teristic of the Raman rotational spectra of the above
molecules. The series of low-frequency modes found
for npor-C〈SiC〉A do not coincide with similar modes
observed in the spectra of other types of npor-C studied
by us. One of the modes observed, namely, that at
56.4 cm–1, coincides with a band found in carbon nan-
oclusters [9]. This permits one to assign the above-
mentioned modes to vibrations in the carbon clusters.

As follows from an analysis of the Raman spectra in
Figs. 1 and 2, many features observed in the same (and,
sometimes, even different) polarization configurations
are very similar or coincide in the npor-C samples of
different types studied here, although the amplitudes of
the corresponding modes differ substantially in some
cases. For instance, the spectra revealing a distinct peak
in one case may exhibit only a relatively weak shoulder
in another and vice versa. It should be taken into
account that a porous system can always have consid-
erable stresses, which are certainly different in materi-
als prepared of carbide polycrystals of different sym-
metry and composition. Therefore, there is nothing
strange in the slight frequency shifts and Raman-mode
amplitude redistribution observed in different samples.
Of real significance is the close similarities between
many features in the spectra considered. These similar-
ities imply that the carbon framework in npor-C con-
sists primarily of fragments of the same type (although,
possibly, not of them only) with a complex structure of
the valence bonds, as well as of the electronic and
vibrational spectra. It is the presence in the density of
electronic and vibrational states of clearly pronounced
features, which is characteristic of small clusters with a
discrete spectrum of localized states, that accounts for
the resonant excitation of Raman modes discussed
above.

In addition to the similarity, the Raman spectra
exhibit differences in the cluster structure between the
various types of npor-C samples. Type-B materials con-
tain, in addition to a system of nanoclusters forming
from the grains of the starting carbides, the pyrocarbon
binder. Pyrocarbon does not have nanopores and repre-
sents a strongly disordered graphitelike material char-
acterized by Raman modes in the interval from 1565 to
1585 cm–1 [17]. Such features are indeed observed in
the spectra presented here: the main peak of the G*
band at 1576 and the 1583-cm–1 peak in the HV spectra
of npor-C〈SiC〉B and npor-C〈TiC〉B, respectively
P

(Fig. 2), as well as a number of features on the low-fre-
quency side of the G* band in the HH spectra of these
samples (Fig. 1).

The main component of the G* band in the npor-
C〈SiC〉A samples (without pyrocarbon) is shifted
strongly to higher frequencies (1602 cm–1) compared
with graphite, so that the Raman shift turns out to be
substantially larger than that for the finest graphite
powder in [1]. Assuming the trend to a G band shift
with decreasing grain size [1] to persist at such large
shifts, one may conclude that the carbon clusters in the
type-A material are so small as to make the idea of them
as graphitelike fragments no more than a matter of con-
vention. Graphitelike clusters in npor-C〈SiC〉A can be
revealed only under resonant excitation with a wave-
length λexc = 647.1 nm, i.e., in conditions where the
main peak of the G* band shifts to 1582 cm–1. It is pos-
sible that carbon nanoclusters in npor-C〈SiC〉A are pri-
marily small fragments of strongly bent or “broken”
graphene layers, as is assumed in the case of the so-
called “rigid” carbon, i.e., carbon that does not trans-
form to graphite under high-temperature carbon
annealing [18].

The spectra of type-B materials also exhibit similar
high-frequency maxima, namely at 1600 cm–1 in the
HH spectrum of npor-C〈SiC〉B and at 1599 cm–1 in the
HV spectrum of npor-C〈TiC〉B. We believe that they are
produced by very small carbon particles, identical or
similar in structure, which are created when the car-
bide-forming elements in the grains of the starting car-
bides are removed. The stronger polarization of the
above spectral modes in type-B materials compared
with npor-C〈SiC〉A is possibly due to the internal
stresses being of a different nature.

The above-mentioned presence in the HV D* band
of npor-C〈SiC〉A of the 1333-cm–1 peak and of features
at the same frequency in the HH spectrum of npor-
C〈SiC〉B and in the HV spectrum of npor-C〈TiC〉B
(Figs. 1, 2) suggests that the npor-C structure contains
small diamond-like fragments. Because the HH spec-
trum of npor-C〈SiC〉A excited at λexc = 514.5 nm clearly
does not have this mode (i.e., the scattered radiation is
polarized), one might conjecture that this mode is asso-
ciated with clusters of a hexagonal or strongly distorted
(strained) cubic diamond. The VV spectrum of the D*
band of npor-C〈SiC〉A, which was obtained at λexc =
514.5 nm specifically in this connection (Fig. 6), pro-
vides support for this conjecture. In this case, the nar-
row peak at 1331 cm–1 can be identified with the main
maximum of the D* band and can be reliably assigned
to the diamond component of the Raman spectrum. We
may recall that the 1331-cm–1 diamond mode is also
seen in the HH spectrum of npor-C〈SiC〉A at λexc =
647.1 nm (Fig. 3).

The above results are in good accord with earlier
data obtained in x-ray diffraction and XPS studies of
these samples [10–12]. The diffraction patterns mea-
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sured on the samples of type B exhibited fairly broad
reflections of a complex shape in the region of reflec-
tion (0002) of graphite (at diffraction angles 2θ = 20°–
26.5°) and reflections (100) and (101) of graphite or
(111) of diamond (2θ = 41°–48°). The strong inhomo-
geneous broadening of the reflections suggests that the
carbon framework is made up of a set of clusters of dif-
ferent types, which apparently includes graphitelike
fragments containing turbostratically disordered graph-
ite and defected or bent graphene layers. The (0002)
reflection observed in npor-C〈SiC〉A samples is still
more diffuse and is barely seen against the background
in the 2θ = 16°–27° interval [19]. These x-ray diffrac-
tion data also suggest that the graphitelike fragments
are so small or so strongly distorted that there is hardly
any sense in considering them as distinct structural ele-
ments. At the same time, the reflection at 2θ = 41°–48°
remains practically as distinct as the one seen in type-B
samples. This may mean that the structure of the mate-
rial of type A (and, possibly, of type B as well) likewise
has distorted diamond-like fragments, which is in
agreement with the above results obtained by Raman
spectroscopy.

The conclusion that the graphene layers are bent
was also drawn from the XPS measurement of 1s and
valence electrons in type-B npor-C samples [12]. The
binding energy of the 1s electron in npor-C, Eb =
284.6–284.7 eV (for graphite, Eb = 284.3 eV), as well
as the shape of the valence-band spectrum, argue con-
vincingly for the hybridization having an intermediate
character between sp2 (graphite) and sp3 (diamond) for
most (>60%) of the valence C–C bonds. Moreover,
XPS data have established the curvature of the
graphene layers in npor-C〈SiC〉B to be larger than in
npor-C〈TiC〉B. As for Raman spectra, they have thus far
only revealed the fact that these materials have different
structures. It is also worthwhile to note that the XPS
data [12] are not inconsistent with the conclusion that
diamond-like fragments exist in type-B materials,
while not providing unambiguous evidence for its sup-
port.

Thus an analysis of Raman spectra of npor-C sam-
ples showed that the microstructure of the porous car-
bon framework in materials of this class consists
mostly of fragments of the same type, which, neverthe-
less, does not rule out the possibility of their structural
parameters (the character of the valence bonding, size,
and shape) depending on the starting carbide and the
preparation technology. All the materials considered
are not amorphous. The substantially larger number of
the first-order Raman modes compared with graphites
argues for npor-C having a cluster structure with the
internal organization of the nanoclusters differing
strongly from that of graphite. In this connection, the
observation of a series of low-frequency modes, which
are characteristic of nanotubes and some other nanocar-
bon modifications, appears particularly significant [6].
The strong polarization dependence of the Raman sus-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      200
ceptibility is connected with the anisotropy in the nan-
ocluster sizes and structure. The electronic and vibra-
tional spectra of npor-C are apparently determined by
the superposition of discrete levels of the anisotropic
states localized in the nanoclusters. In this case, the
quasi-momentum selection rules are no longer valid for
electronic and vibrational transitions within a cluster,
as a result of which multicomponent Raman spectra
should exhibit, in addition to anisotropy, clearly pro-
nounced dispersion and resonance effects as the excit-
ing photon energy is varied.
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A. E. Aleksenskiœ*, V. Yu. Osipov*, A. Ya. Vul’*, B. Ya. Ber*, A. B. Smirnov*, V. G. Melekhin*, 

G. J. Adriaenssens**, and K. Iakoubovskii**
* Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia

** Catholic University of Leuven, B-3001, Heverlee-Leuven, Belgium
Received May 18, 2000

Abstract—Thin ultradisperse diamond (UDD) layers deposited from a water suspension are studied by optical
and x-ray photoelectron spectroscopy (XPS). The effective band gap determined by the 104-cm–1 criterion for
ozone-cleaned UDD is 3.5 eV. The broad structureless photoluminescence band (380–520 nm) is associated
with radiative recombination through a system of continuously distributed energy levels in the band gap of dia-
mond nanoclusters. The optical absorption of the material at 250–1000 nm originates from absorption on the
disordered nanocluster surface containing threefold-coordinated carbon. The surface of UDD clusters subjected
to acid cleaning contains nitrogen–oxygen complexes adsorbed in the form of N  nitrate ions. Annealing in
a hydrogen atmosphere results in desorption of the nitrate ions from the cluster surface. The evolution of the
oxygen (O1s) and nitrogen (N1s) lines in the XPS spectra under annealing of a UDD layer is studied compre-
hensively. © 2001 MAIK “Nauka/Interperiodica”.
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–

1. INTRODUCTION

The structure and phase transitions in ultradisperse
diamond (UDD) clusters have been intensively studied
during the past three to four years [1–4]. However, very
little attention was paid to the investigation of com-
plexes adsorbed on the surface of such clusters. At the
same time, the large specific surface area in UDDs, as
in other ultradisperse materials (measured in hundreds
of square meters per gram), stresses the importance of
this issue. The first attempts at analyzing atomic com-
plexes on the surface of UDD clusters were apparently
an investigation into the adsorption and desorption of
water molecules on the UDD cluster surface upon
annealing in various atmospheres, which was per-
formed by IR spectroscopy [5], and detection by x-ray
photoelectron spectroscopy (XPS) of nitrogen and oxy-
gen in UDD layers deposited onto silicon substrates by
electrophoresis [6].

This work was intended to expand our knowledge of
the optical properties of UDD layers as a model object
with a characteristic cluster size of about 50 Å, in
which various quantum-confinement effects may man-
ifest themselves [7].

In this work, we used visible and IR spectroscopy,
photoluminescence, Raman scattering spectroscopy,
and XPS. The XPS method, except in the already men-
tioned work [6], is widely employed in investigating
the evolution and reconstruction of the surface of sin-
gle-crystal diamonds and CVD-prepared diamond
films, as well as the adsorption and desorption of atoms
from these surfaces [8, 9].
1063-7834/01/4301- $21.00 © 20145
2. SAMPLES AND EXPERIMENTAL TECHNIQUE

We studied UDD layers deposited from water sus-
pensions. The starting product for the suspension was
carbon prepared by detonation synthesis from a 60 : 40
mixture of trinitrotoluene with hexagen [10]. The UDD
suspensions used to prepare the UDD layers were of
two types: in the first, the ultradisperse diamond was
isolated by removing non-diamond phases with nitric
acid at an elevated temperature (200–230°C) and, in the
second, ozone treatment was used [11]. It is known that
ozone treatment ensures a better cleaning of amorphous
carbon (the sp2 phase) from the diamond nanocluster
surface [11]. The material obtained after acid cleaning
was a suspension of ultradisperse diamond in a 30–40%
water solution of nitric acid with an UDD concentration
of about 3 wt %. Suspension sedimentation lasted a few
hours, with a boundary appearing between the clarified
and thickened layers. The further process of obtaining
the water suspension used in subsequent studies con-
sisted in multiple dilution with distilled water, mixing,
and removal of the thickened layer. In both cases, when
the diamond fraction was isolated with nitric acid or by
ozone cleaning, the UDD concentration in water at the
final stage of dilution was 0.04 wt % and the suspension
sedimentation time was no less than 20 days.

As is known, clusters of UDD, like those of other
ultradisperse materials, coalesce to form aggregates. In
the UDD used to prepare the suspension, the clusters
were about 45 Å in size. The average diameter of the
aggregates in the suspension was determined from the
sedimentation characteristics in the Stokes approxima-
tion and was approximately equal to 410 Å.

The layers were prepared by the deposition of UDD
aggregates from the water suspension onto substrates
001 MAIK “Nauka/Interperiodica”
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of quartz, silicon, CaF2, or BaF2 via water evaporation
[12]. The layer thicknesses measured by the ellipsomet-
ric technique at the wavelength λ = 632.8 nm ranged
from 1200 to 3500 Å.

To remove clusters of volatile adsorbed components
from the surface and to passivate the surface electronic
states, the layers were annealed in a hydrogen atmo-
sphere at 450–820°C.

The chemical composition of the samples was stud-
ied by x-ray photoelectron spectroscopy on a PHI 5500
electron spectrometer equipped with a hemispherical
energy analyzer. The photoemission spectra were

1

2

3100

75

50

25

200 400 600 800
Wavelength, nm

T
ra

ns
m

is
si

on
, %

Fig. 1. Transmission spectra of two UDD layers differing in
cleaning method: (1) acid cleaning with a layer thickness of
1870 ± 60 Å; (2) ozone cleaning with a layer thickness of
1890 ± 100 Å; and (3) transmission spectrum of the quartz
substrate. T = 300 K.
PH
excited by monochromatized AlKα (1486.5 eV) radia-
tion. We studied the regions of the photoelectron peaks
of carbon (C1s), nitrogen (N1s), and oxygen (O1s). The
sample charging was suppressed by irradiation with a
low-energy electron beam. The photoelectron peaks
were deconvolved into components after background
subtraction by the Shearley algorithm, with subsequent
approximation of the peak shape by Gaussians. The
elemental composition of the samples was estimated
from the relative peak areas after background subtrac-
tion by means of the element sensitivity factors given
in [13].

3. RESULTS AND DISCUSSION

Figure 1 shows transmission spectra of two UDD
layers, which were practically equal in thickness but
were prepared from differently cleaned suspensions. It
is seen that, unlike the acid-treated UDD layer, the
layer prepared by ozone cleaning is practically trans-
parent in the range from 600 to 1000 nm. The effective
band gap, derived from the energy at which the absorp-
tion coefficient takes on the value of 104 cm–1 [12, 14],
is 3.5 eV for the ozone-cleaned UDD, which is substan-
tially less than that for a single-crystal diamond (Eg =
5.5 eV). This does not appear strange, because the pres-
ence of sp2-hybridized carbon even in small amounts
can appreciably reduce Eg. For instance, it was reported
that the fourfold-coordinated amorphous carbon (ta-C),
in which 85% of the atoms form sp3 bonds and 15%
form sp2 bonds, has a band gap Eg ~ 2.4 eV and that a
decrease in the fraction of sp2 bonds results in an
increase in Eg [14]. At the same time, the Eg value we
4

3

2
1

100

80

60

40

20

0

300 400 500 600 700 800
Wavelength, nm

PL
 in

te
ns

ity
, a

rb
. u

ni
ts

Fig. 2. Luminescence spectra of UDD layers on quartz at T = 300 K: (1, 2) ozone cleaning and (3, 4) acid cleaning. Excitation wave-
length (nm): (1, 2) 210 and (3, 4) 254.
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found is in good agreement with the data obtained in
[15], where the value Eg = 3.3 eV for a nanocrystalline
diamond was determined by electron energy loss spec-
troscopy (EELS).

According to our model proposed earlier, the UDD
cluster consists of an sp3-hybridized crystalline dia-
mond core 45 Å in diameter, which is surrounded by a
layer of amorphous carbon with sp2-hybridized bonds
[3, 11, 16]. The optical absorption spectra of UDD lay-
ers are not at variance with this model. It can be
assumed that the optical absorption of the material in
the range 250–1000 nm is due to the presence of the sp2

phase [12]. The smaller fraction of sp2-hybridized
bonds in the ozone-cleaned UDD accounts for the
larger optical transparency of the layers.

Figure 2 displays photoluminescence (PL) spectra
of the UDD layers. The exciting-photon wavelength
was 210–254 nm. The spectra of both types of layers
are practically identical and actually represent a broad
“blue” luminescence band with a maximum near
450 nm and a full width at a half-maximum (FWHM)
of about 130 nm. It can be conjectured that this struc-
tureless PL band is associated with radiative recombi-
nation via a system of continuously distributed energy
levels in the band gap of the diamond nanoclusters. The
validity of this assumption is borne out by the findings
of [17, 18], according to which the structural disorder
on the nanodiamond surface and the presence of carbon
in the threefold-coordinated state and of dangling
bonds on the surface of the nanoclusters are responsible
for the high density of surface states in the diamond
band gap. Some features of the density of states in the
band gap of nanocrystalline diamond, which are con-
nected with the disordered carbon layer surrounding
the crystalline core of the diamond nanocluster, were
pointed out in [15]. Note that a broad band with a
weakly pronounced structure was observed earlier in
the PL spectrum of nanodiamonds within the wave-
length range 380–550 nm [19]. However, Kompan et
al. [19] interpreted the nature of the observed PL band
by identifying it with the corresponding intrinsic
defects of a single-crystal diamond, which contribute to
the structureless PL in the same spectral range.

As is seen from Fig. 3, the Raman spectrum of the
UDD layer exhibits, besides the narrow band at
1324 cm–1 associated with the crystalline diamond
phase, broad bands at 1240 and 1600 cm–1 due to the
maxima in the phonon density of states of the sp2-coor-
dinated carbon [20]. It is known that the shift of the
maximum in the Raman spectrum is due to phonon
confinement effects in nanosized samples [2, 3, 21]. In
this case, the shift δ is 6 cm–1, whereas in the UDD
powders used in the preparation of the suspension, it
reached 10 cm–1 [3].

The data [3] calculated within the phonon-confine-
ment model under the assumption that the UDD cluster
has a spherical shape can be used to estimate the mean
PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      200
size of diamond nanocrystals. For δ = 6 cm–1, the
nanocrystal size is 50 Å. As is seen from Fig. 3b, the
Raman line corresponding to the diamond phase is cor-
rupted by noise interference and is about 30 cm–1 wide.
The latter two factors account for the error of ±1 cm–1

in the determination of the shift δ and, correspondingly,
the error of ±4 Å in the determination of the nanocrystal
size.

The XPS results show that the unannealed samples
contain 70 at. % C, 8 at. % N, and 22 at. % O. Since the
samples have a disperse structure and the chemical
composition of a grain is nonuniform over the grain
thickness, quantitative analysis cannot provide any-
thing but an estimate. Carbon in these samples resides
in two chemically different states, namely, the
sp2-hybridized state with a binding energy of 284.4 eV
and the sp3-hybridized state with a binding energy of
285.8 eV (Fig. 4a). The relatively high intensity of the
C1s peak that corresponds to the sp2-hybridized carbon
can be associated with the aforementioned structure of
the carbon cluster containing an outer shell of
sp2-hybridized carbon. The complex shape of the nitro-
gen N1s peak (Fig. 4b) also implies the existence of
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Fig. 3. Raman spectra of (b) an UDD layer (acid cleaning)
3000 Å thick on silicon and (a) a microcrystalline HPHT
diamond. The spectra are excited by the 488-nm argon laser
line. The radiation power is 25 mW. Top panel (a) shows for
comparison the δ-shaped Raman line of microcrystalline
HPHT diamond at 1330 cm–1. The mean size of the HPHT
diamond grains is approximately 200 µm.
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Fig. 4. XPS spectra of UDD layers (acid cleaning, thickness d ≅  3000 Å) on silicon (a–c) before and (d–f) after annealing in a hydro-
gen atmosphere at 810°C. XPS spectra: (a, d) C1s carbon, (b, e) N1s nitrogen, and (c, f) O1s oxygen.
nitrogen atoms with different chemical environments in
the sample. The available data on the binding energies
of the N1s level in carbon and oxygen compounds with
different chemical bonds are fairly contradictory
(see, e.g., [22, 23]). However, it can be assumed that a
sample contains the N–C(sp3) (397.6 eV), N–C(sp2)
(400.1 eV), and N–O (404.0 eV) bonds. The photoe-
mission peak O1s represents a triplet (Fig. 4c) whose
strongest components with binding energies of 531.7
and 533.4 eV correspond to different oxygen–carbon
bonding types.
P

The elemental composition of the samples subjected
to annealing in a hydrogen atmosphere at 810°C for 1 h
can be estimated as 87 at. % C, 7 at. % N, and 6 at. % O.
Note that practically all carbon atoms are in the
sp3-hybridized state with a C1s-level binding energy of
285.8 eV (Fig. 4d). The triplet structure of the N1s peak
(Fig. 4e) again suggests that the sample contains nitro-
gen atoms with N–C(sp3) (397.6 eV), N–C(sp2)
(400.1 eV), and N–O (403.4 eV) bonds. It is worth not-
ing that, compared to the unannealed samples, the
intensity of the N–C(sp3) (397.6 eV) peak decreased
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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and the intensity of the N–C(sp2) (400.1 eV) peak
increased. The O1s triplet (Fig. 4f) is similar to that
observed in the sample before annealing and contains
peaks with binding energies of 531.5 and 533.4 eV.

Note that before the annealing, the amounts of oxy-
gen and nitrogen were in the ratio of about O/N =
22/8 ≈ 3, whereas after the annealing, this ratio
decreased (O/N = 6/7 ≈ 1). The total amount of nitrogen
and oxygen in the material of a layer decreased from 30
to 13 at. %. This implies that the annealing resulted in
desorption of the nitrogen–oxygen groups from the sur-
face of the diamond nanoclusters. The XPS data should
be analyzed with due regard for the fact that nitrogen is
one of the components of detonating explosives and,
therefore, the nitrogen content in the interior of the
forming UDD particles can be high [6].

The above data can be explained by assuming that
the surface of unannealed UDD clusters contains nitro-
gen–oxygen complexes adsorbed in the form of N
nitrate ions. This is argued for by the following consid-
eration. The UDD water suspension contains, in some
cases, a small amount of N  nitrate ions, which
remains after cleaning of the detonation products in
aqueous nitric acid and subsequent washing with dis-
tilled water. Part of the nitrate ions present in the sus-
pension is already adsorbed on the surface of the UDD
aggregates.

In some cases, the IR transmission spectra of the
unannealed samples of acid-cleaned UDD layers,
which were deposited onto BaF2 substrates, exhibited a
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Fig. 5. A fragment of an IR transmission spectrum of a UDD
layer on a BaF2 substrate in the range 1600–1000 cm–1

(curve 1). Acid cleaning. Layer thickness is 2200 Å. Curve 2
represents the transmission spectrum of the BaF2 substrate
in the same spectral range. T = 300 K.
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strong absorption band with two maxima at 1350 and
1420 cm–1 (Fig. 5). The absolute magnitude of the
absorption coefficient in this range was in excess of 5 ×
103 cm–1. In our opinion, this strong absorption could
be explained as follows. In the course of deposition of
an UDD layer, the interaction of the nitric acid remain-
ing in the suspension with the substrate material pro-
duces Ba(NO3)2, because the features observed in the
IR transmission spectrum at 1300–1470 cm–1 coincide
precisely with those of the transmission spectrum of the
Ba(NO3)2 salt in the same spectral range [24]. After
annealing for 1 h in a hydrogen atmosphere at 600°C,
the specific absorption in this range disappeared com-
pletely, which is easily explained by the decomposition
of the barium nitrate and the desorption of the volatiles.

Thus, the data obtained from IR spectroscopy and
XPS measurements confirm the presence of UDD
aggregates with adsorbed nitrate ions in the UDD sus-
pension which was used to prepare the nanodiamond
layers.
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Abstract—The GaN columnar crystals of nanometric sizes have been grown by molecular beam epitaxy with
high-frequency plasma initiation of nitrogen discharge. The types and distribution of defects in these nanostruc-
tures on the (0001) sapphire substrates are studied by transmission electron microscopy (TEM). It is revealed
that inversion domains begin to form almost at the interface irrespective of the presence of an initial low-tem-
perature buffer layer. The critical diameter of dislocation-free columns, their density, and mean sizes are deter-
mined. It is shown that the low-temperature buffer layer affects the density of dislocations, their spatial distri-
bution, and the mean sizes of columns. The nanosizes of grown crystals suggest a further use of these crystals
and the growth method for producing molecular-beam epitaxial quantum-size objects (quantum dots and wires)
in a promising AlGaInN system. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, wide-band-gap semiconductors in
the AlGaInN system have been the most extensively
investigated and promising materials for the creation of
emitters operating in the visible (from green to ultravi-
olet) wavelength range and power high-temperature
electronic devices [1–3]. The low-dimensional quan-
tum confinement effects in quantum wires, disks, and
dots are considered the most promising for improving
the quality of optical devices (light-emitting diodes,
lasers, and light-sensitive detectors) and nanostructures
[4]. Different-type low-dimensional structures are pro-
duced by various methods such as etching, growth on
profile-etched substrates, over-growth of lithographi-
cally formed nanostructures, and growth on substrates
misoriented at small angles. All these methods are
rather complicated and require multistage technologi-
cal operations. Moreover, nitrides (GaN) possess a high
chemical durability to liquid etchants, whereas dry
(plasma) etching has a tendency toward the introduc-
tion of defects and distortion of the surface. On the
other hand, selective epitaxy presents difficulties asso-
ciated with the preparation of nanostructures with a
high density. However, the possibility exists of growing
low-dimensional structures with the use of self-organi-
zation effects without pregrowth and postgrowth treat-
ment [5, 6]. Many works dealt with self-organization
processes in the AlGaInN system used for producing
quantum-size objects. For example, Yoshizawa et al.
[7] obtained GaN nanocolumns with a mean diameter
of ~53 nm on an Al2O3(0001) substrate.

It should be noted that self-organization processes
in various systems have been investigated in many
recent works [5–7]. However, the studies concerned
1063-7834/01/4301- $21.00 © 20151
with the oriented growth of low-dimensional crystals
(for example, whiskers) “remained somewhat in the
shade” after the elucidation of its mechanism [8], even
though the characteristic sizes (nanometers) of the
objects under investigation were close to those obtained
in recent years (for example, quantum dots) by different
methods, for example, by molecular beam epitaxy. Up
to now, there have been only a few works dealing with
the growth of low-dimensional crystals under condi-
tions of molecular beam epitaxy (see, for example, [9,
10]). Their growth proceeds through the so-called
vapor–liquid–solid (VLS) mechanism, which was pro-
posed and experimentally confirmed by Wagner and
Ellis [8]. This process should be carried out in the
ranges of temperatures and saturations in which the
thermodynamically possible reaction is hindered by
kinetic limitations. In practice, this means that the tem-
perature can be 100–200 K below the temperature usu-
ally used in the epitaxial growth [9], which offers new
possibilities for growing compounds with a high vola-
tility of the components involved (specifically, indium)
and for forming solid solutions (GaInN and AlInN)
with these components. In early works on the growth of
A3B5 compounds from vapor, whiskers and dendritic
crystals were obtained by accident and treated as a curi-
ous phenomenon or an undesirable crystallization
product. After the discovery of the vapor–liquid–solid
mechanism, there appeared a number of publications
devoted to the purposeful growth of A3B5 whiskers [11,
12]. However, information on the oriented growth of
these crystals is very limited. It is these data that can
provide a better insight into the growth mechanism and
open up the way for practical use of whisker structures.
Furthermore, the data on the growth of quantum-size
objects by the vapor–liquid–solid mechanism are virtu-
001 MAIK “Nauka/Interperiodica”
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ally unavailable in the literature on self-organization
processes.

The main defects in GaN are threading dislocations,
stacking faults, and, to a smaller extent, dislocation
loops. The majority of the threading dislocations are
generated at the substrate–growing layer interface and
grow along the c axis. The threading dislocations with
opposite Burgers vectors do not meet with each other
and cannot annihilate. Therefore, the problem of
decreasing the defect density should be solved begin-
ning with the initial stages of the growth. By decreasing
the defect density in GaN buffer layers, it is possible to
avoid many difficulties associated with the application
of the so-called epitaxial lateral over-growth method
[13], which involves the over-growth of a streaky struc-
ture preliminarily formed on the substrate in order to
decrease the dislocation density. In this respect, it was
of interest to investigate and elucidate the mechanism
of defect formation at the earliest stages of growth at
the heteroboundary with a substrate and to decrease the
defect density by using low-temperature buffer layers
or other techniques.

In this work, we demonstrated that self-organizing
nanometer-sized objects—the GaN columns oriented
along the c axis—can be obtained in situ on
Al2O3(0001) substrates by molecular beam epitaxy
with high-frequency initiation of plasma nitrogen dis-
charge [14] without postgrowth treatment. Moreover,
we studied their structural properties. It was shown that
these objects can be grown with the use of a compact
coaxial magnetron source with high-frequency-capaci-
tance initiation of the discharge. The structure of GaN
columnar (whisker) nanocrystals, the formation of
defects in transition layers below nanocrystals at the
heteroboundary between GaN and the (0001) sapphire
substrate, and the propagation of defects and disloca-
tions from the interface deep into the GaN columns
were investigated for the first time by transmission
electron microscopy (TEM).

2. EXPERIMENTAL TECHNIQUE

The GaN layers were grown on (0001) sapphire sub-
strates with the use of an ÉP-1203 molecular epitaxy
apparatus (devised at the Research Institute of Analyti-
cal Instrument Making, Chernogolovka, Russia) under
a vacuum of ~10–10 Torr. A chamber was equipped with
a Turbovac-560 thurbomolecular pump (Leybold–Her-
aeus) with an effective evacuation rate of ~350 l/s. A
coaxial magnetron source of activated nitrogen had an
original design with high-frequency-capacitance initia-
tion of the discharge (13.56 MHz), which provided a
growth rate as high as 2 µm/h at a high-frequency
power of ~150 W [9, 14]. As far as we know, until
recently, there was no information (except for [14]) on
the use of activated nitrogen sources with such a dis-
charge in molecular beam epitaxial processes with
plasma activation. In a series of experiments, metallic
P

gallium was fed from a standard effusion cell at temper-
atures from 1100 to 1300°C, and the flow rate of nitro-
gen was equal to 1–5 sccm/min (standard cubic centi-
meter per minute). The reverse sides of substrates were
coated with titanium. The substrates were secured on a
molybdenum clamping holder with a window for direct
radiation heating from the reverse side. In the course of
growth, the surface of a growing layer was monitored
using a high-energy electron diffraction (HEED) sys-
tem. The substrate temperature was calibrated against
the known melting points of metals (indium, tin, alumi-
num, and silver) and InSb and was checked against the
dependence of the temperature on the heater power.
The temperature was determined accurate to within
~10 K. Gallium nitride was grown at the temperature
Ts = 750–800°C. The sapphire substrates were not
chemically etched. They were only degreased prior to
the growth and then were annealed under vacuum at
1000°C for 30 min until the appearance of the charac-
teristic HEED pattern (fringes), which corresponded to
a clean atomically smooth surface. Thereafter, the nitri-
dation was carried out at the substrate temperature Ts =
900–1000°C for 20–30 min.

The grown samples to be studied were of two types:
(1) samples with a ~20- to 30-nm-thick low-tempera-
ture GaN buffer layer grown at a temperature of
~300°C and (2) samples without low-temperature
buffer layer. The growth of the GaN base layer was car-
ried out at temperature Ts ~ 770°C for 1.5–2 h at a rate
of 0.8 µm/h for samples of the first type (with a low-
temperature buffer layer) and 1.0 µm/h for samples of
the second type (without a low-temperature buffer
layer). The growth rates were determined from the col-
umn heights in images obtained with a CamScan S4-90
FE, field emission scanning electron microscope
(SEM). The column height was equal to 1–2 µm
(Figs. 1a, 1b). The column diameter determined from
the SEM micrographs varied in the ranges 20–70 nm
for structures with a buffer layer and 40–80 nm for
structures without buffer layer. The growth was per-
formed in a gallium-enriched medium. This was evi-
denced from the appearance of gallium drops at consid-
erably lower temperatures of the gallium cell and lower
temperatures of the substrate at the same flow rates of
nitrogen and the same high-frequency power, and also
from the characteristic HEED pattern that corre-
sponded to these conditions (narrow thin lines without
dashes and broadenings which are typical of nitrogen-
rich conditions). Upon the growth of columnar struc-
tures, no gallium drops were observed owing to high
growth temperatures (above ~700°C) at which excess
gallium actively reevaporated from the substrate sur-
face [15]. Under these conditions, the growth most
likely proceeds through the vapor–liquid–solid mecha-
nism, because the absence of drops is not an argument
against this mechanism [9]. In the earlier experiments
with a high-frequency discharge on sapphire and GaAs
substrates [10], we obtained regularly arranged GaN
and InN nanocolumns with somewhat larger mean
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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diameters ranging from 100 to 300 nm. Moreover, we
studied the growth mechanism, compared the results
with the theory [16], and showed that the growth pro-
ceeded through the vapor–liquid–solid mechanism [9].

In addition to the control over geometric sizes of
nanometer-sized objects, the TEM technique was used
to visualize defects typical of GaN, such as disloca-
tions, extended domain boundaries, and stacking faults
[17–20]. In the present work, the samples were exam-
ined using a Philips EM-420 electron microscope oper-
ating at an accelerating voltage of 100 kV. The standard
technique was applied to the sample preparation, which
involved the mechanical treatment (grinding and pol-
ishing) and sputtering of the material by Ar+ ions with
an energy of 4 keV at an angle of 14° with respect to the
sample surface. The samples were obtained in a cross-

sectional (2 0) geometry.

3. RESULTS AND DISCUSSION

Analysis of the SEM images demonstrated that the
growth of a GaN layer in the first-type (with a low-tem-
perature buffer layer) and second-type (without buffer
layer) samples was accompanied by the formation of
columnar structures (Figs. 1a, 1b). The main types of
defects observed in these structures were threading dis-
locations, stacking faults in the (0001) basal plane, and
inversion domains. It turned out that the growth of the
GaN base layer on a low-temperature thin GaN buffer
and without it (only with nitridation of the substrate)
resulted in almost the same interface—a 20- to 30-nm-
thick thin defect transition layer (seen in the TEM
image) at the heteroboundary with the substrate. These
data are in agreement with the results obtained by Byun
et al. [17], according to which a thin amorphous buffer
layer is directly formed by plasma treatment of sap-
phire, which is similar to our conditions of the substrate
nitridation with nitrogen plasma prior to the growth. In
our structures, the mean thicknesses of the transition
layer in the first- and second-type samples were esti-
mated at 28 and 23 nm, respectively. The column
lengths in these samples were equal to 1 and 2 µm,
respectively.

As can be seen from the TEM images of samples of
both types, the formation of a GaN columnar structure
does not imply that columns necessarily grow starting
from the buffer layer (Figs. 2, 4). In addition to columns
emanating from the interface, there are inversion
domains adjacent to these columns, which, taken
together, form a unity. During the growth of a GaN
layer, broad columns with diameters of the order of
100–300 nm are separated into narrower columns. This
separation is observed on the surface of a particular col-
umn beginning with a height of approximately 200 nm.
The mean column diameters measured at the surface
and the mean distances between columns are listed in
the table. We failed to achieve a clear visualization of
the distance between the columns in the second-type

1 1
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20 kV 00377 300 nm(a)

W 377 GaN*

20 kV 00000 1 µm(b)

376 GaN

Fig. 1. SEM micrographs of columnar structures on cleav-
ages of (a) the first-type sample grown with a low-tempera-
ture buffer layer and (b) the second-type sample without
buffer layer.

100 nm

Fig. 2. A cross-section (2 0) TEM weak-beam (g, 3g)
image of the first-type sample with a 28-nm-thick buffer
layer for the operating reflection (0002).
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Results of analyzing the electron microscope images for GaN/Al2O3(0001) samples of two types

Sample no.
Dislocation density, 109 cm–2

Column density, 
109 cm–2

Mean distance 
between 

columns, nm

Mean column 
thickness, nmscrew edge mixed

377(I) 5.7 ± 0.5 6.4 ± 0.6 6.4 ± 0.6 12 ± 3 14 ± 3 50 ± 18

376(II) 14 ± 3 6 ± 2 6 ± 2 10 ± 1 60 ± 4
samples with a thinner transition layer because of the
certain locality of the TEM technique. It is worth noting
that the first-type samples with a low-temperature
buffer and a 28-nm-thick transition layer exhibit a sub-
stantial scatter in column diameters, whereas the distri-
bution of distances between columns remains uniform
throughout the film (see table).

In order to elucidate the origin of the inversion
domain formation, we examined the interface between
the Al2O3 substrate, the GaN transition layer, and the

GaN base layer. As is seen from the (2 0) cross-sec-
tion dark-field images obtained with the operating

1 1

25 nm(a)

g

ID

25 nm(b)

ID

Fig. 3. Cross-section (2 0) TEM dark-field images of the
first-type sample with a 28-nm-thick buffer layer for the

operating reflections (a) (0002) and (b) (01 0).

1 1

1

P

reflections (0002) and (01 0) for the first- and second-
type samples (Figs. 3a, 3b and 5a, 5b, respectively), the
transition layer is not uniformly crystallized and homo-
geneous throughout the thickness. In the transition
layer, there exist regions (about 50 nm thick) displaced

with respect to each other in the [01 1] direction,
which form the initial portions of inversion domain
boundaries. Note that these displacements arise from
the stepped substrate surface (Figs. 3, 5). The transition
layer, as a whole, consists of the (0001) stacking faults,
which is confirmed by the presence of dark and bright

alternating lines parallel to the interface in the (01 0)
image (Figs. 3b, 5b). As is known [18], the polarity of
this plane can be judged from a specific contrast (bright
or dark) of the last line, which bounds the stacking
fault. It is seen that the contrasts of these lines for buffer
regions that correspond to columns and inversion
domains are opposite, which supports different polari-
ties of the matrix columns and the inversion domains
(Figs. 3, 5). Xin et al. [19] showed that, depending on

the operating reflection (0002) or (01 0), the contour
contrast perpendicular to the interface at the inversion
domain boundary makes it possible to determine the
type of this boundary. With this technique, we found

that the inversion domains have the (01 0) and (11 0)
boundaries (Figs. 3, 5).

Threading dislocations of different types were
investigated using a method based on the extinction of
dislocation contrast when the direction of the operating
reflection was perpendicular to the Burgers vector b. In
this case, the images were obtained under weak-beam
(g, 3g) conditions at which a strong contrast of strain
fields induced by dislocations was suppressed. A clear
contrast observed for threading dislocations under
weak-beam (g, 3g) conditions for the operating reflec-

tion (01 0) and its extinction for the operating reflec-
tion (0002) allowed us to conclude that these are edge
dislocations with the Burgers vector b = 〈hk10〉 . Wu
et al. [20] revealed that dislocations of this type are par-
tial edge dislocations with the Burgers vectors b =

1/3〈11 0〉  and b = 1/3〈2 0〉 .

The screw dislocations with the Burgers vector b =
〈0002〉  were identified reasoning from the contrast in

the (2 0) cross-section for the operating reflection
(0002) and the extinction of the contrast for the operat-

1

1

1

1

1 2

1

2 1 1

1 1
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ing reflection (01 0). Dislocations that exhibit a con-
trast (or its partial extinction) under all the above con-
ditions have the Burgers vector b = 〈hk1m〉 . According
to [20], dislocations with a similar contrast are the
mixed dislocations with the Burgers vector b =

1/3[11 ]. The densities of the screw, edge, and
mixed threading dislocations were determined from
analysis of the TEM images of samples of two types
(see table). The data on the mean column sizes obtained
by the TEM method are somewhat different from those
obtained by the SEM method because of the locality of
the former method.

It is of interest that the dislocations in the first-type
sample with a 28-nm-thick transition layer (the growth
with a low-temperature GaN buffer) exhibit an inhomo-
geneous spatial distribution over the film. In particular,
the highest dislocation density is observed either in the
region of inversion domains or in the GaN columns
whose thickness exceeds a critical size of ~50 nm. It
should be noted that this critical size coincides with the
mean thickness of the GaN columns (see table). The
diameter of an inversion domain decreases to 13 nm
with distance away from the interface, but the domain

with the {01 0} and {11 0} boundaries intergrows up
to the surface. In the second-type sample with a 23-nm-
thick transition layer (the growth without buffer layer),
the mean column size increases and the distance

1

2 3

1 2

100 nm

g

Fig. 4. A cross-section (2 0) TEM weak-beam (g, 3g)
image of the second-type sample with a 23-nm-thick buffer
layer for the operating reflection (0002).

1 1
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between the columns decreases considerably. No
dependence of the dislocation density on the spatial
arrangement and the size of columns was found for this
sample.

All the foregoing allow us to draw the following
inferences. The GaN nanocolumns with a mean diame-
ter of 50 nm were grown on the (0001) sapphire sub-
strates by using self-organization processes upon
molecular beam epitaxy with a high-frequency plasma
activation without postgrowth treatment (for example,
plasma etching). In the sample with a low-temperature
buffer layer, the minimum diameter of columns was
equal to ~20 nm and their mean density was ~1010 cm–2.
Most likely, the higher density of columns and their
smaller mean diameter in the sample with a low-tem-
perature buffer layer can be explained by the higher
density of steps at the low-temperature buffer and (or)
the larger diffusion length of atoms along the surface at
lower rates of growth (lower flow rates of gallium). The
mean dislocation density was equal to ~2 × 1010 cm–2,
and no dislocations were observed in columns whose
diameter was less than 50 nm. In the GaN layer without
the low-temperature buffer, the minimum column size
was equal to ~50 nm. Reasoning from the gallium-rich

25 nm(a)

g ID

(b)

ID

25 nm

Fig. 5. Cross-section (2 0) TEM dark-field images of the
second-type sample with a 23-nm-thick buffer layer for the

operating reflections (a) (0002) and (b) (01 0).

1 1

1
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growth conditions and the earlier investigations into the
growth mechanism under similar conditions [9], we can
conclude that, in our case, the growth most probably
proceeds through the vapor–liquid–solid mechanism;
however, a detailed elucidation calls for further investi-
gations.

Summing up the results obtained in TEM observa-
tions, we can note the following. The GaN columnar
structure is formed under the growth conditions
described above. In addition to single columns, there
are regions containing both GaN column and inversion
domains adjacent to this column. The columns can
originate both at the interface and on the surface of ini-
tially wide columns beginning with a certain height.
The examination of the interface showed that the
stepped surface of the substrate leads to displacements

of the buffer regions along the (01 1) direction, which
initiates the formation of inversion domain boundaries.
A further deposition of the material is accompanied by
a decrease in the diameter of inversion domains to

13 nm and their intergrowth with the {01 0} and

{11 0} boundaries up to the surface. In the first-type
sample with a 28-nm-thick transition layer, there exist
dislocation-free columns with diameters less than
50 nm (which coincides with the mean column diame-
ter in this sample), even though the total dislocation
density is rather high (1.9 × 1010 cm–2). For the second-
type sample with a 23-nm-thick transition layer, the
mean column diameter increases and the distance
between the columns decreases substantially. More-
over, the dislocation density increases to 2.6 × 1010 cm–2.
Therefore, it can be concluded that the growth of GaN
columnar structures is governed to a large extent by the
initial growth conditions (with a low-temperature
buffer layer and without it). This is likely explained by
an increase in the step density at the surface of the
buffer layer, even though the defect transition layers
with almost identical thicknesses are formed upon
growth in both cases.

The mechanism of the growth of columnar nano-
structures, the role of low-temperature buffer layers in
the further improvement of the nitride crystal quality
(which is an urgent problem [21]), and the controlled
growth of dislocation-free whiskers with a mean diam-
eter of less than the critical value (~50 nm) and their use
in practice invite further investigation.
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Abstract—An electrostatic model for calculating the band-gap renormalization in a two-dimensional (2D)
semiconductor layer (quantum well) due to the Coulomb interaction between nonequilibrium charge carriers
has been proposed. Consideration is given only to the first quantum-well energy levels for electrons and heavy
holes. The exchange and correlation energies are calculated for the first time taking into account the charge-
carrier potential energy fluctuations created by electrons and holes along the 2D layer. A relationship for the
screened Coulomb potential along the 2D layer is derived, which, within the extremely narrow quantum-well
approximation, transforms into the known expression. The band-gap renormalization and the photolumines-
cence line shape for the GaAs 2D layer in an AlxGa1 – xAs matrix are computed depending on the concentration
of nonequilibrium electrons and holes. The calculated band-gap renormalization is in agreement with the avail-
able experimental data at a high photoexcitation of the quantum well when the electrons and holes form the 2D
plasma. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The exchange and correlation interactions between
free charge carriers lead to a reduction in the band gap
Eg in both three-dimensional (3D) crystalline semicon-
ductors and two-dimensional (2D) layers [1–5]. For
example, as the concentrations of nonequilibrium elec-
trons n and holes p increase from zero to n = p ≈ 3 ×
1012 cm–2, the band gap in a GaAs 2D layer (with the
thickness L ≈ 10 nm in an Al0.3Ga0.7As matrix) at T ≈
4.2 K decreases by approximately 60 meV [4, 5].
According to Volkov et al. [6], electrons and holes at
concentrations n = p ≈ 5 × 1010 cm–2 and more in the
GaAs layer with a thickness of 30 nm form an electron–
hole plasma and are not bound into excitons.

Schmitt-Rink et al. [1] explained the band-gap
renormalization ∆Eg > 0 in a quantum-well 2D layer
only by the convergence of the conduction (c) and
valence (v) band edges as a result of the exchange inter-
action between charge carriers. In the framework of the
model proposed by Das Sarma et al. [2], ∆Eg in a 2D
layer was calculated within the random-phase approxi-
mation for the wave functions of electrons and holes
with due regard for their interaction with phonons (in
the Fröhlich approximation for 3D crystals). Fluctua-
tions in the potential energy of electrons and holes
along the 2D layer due to their Coulomb interaction
with each other and with impurity ions were ignored in
[1, 2]. This complicated the analysis of changes in the
band gap Eg and the spectral distribution of photolumi-
1063-7834/01/4301- $21.00 © 20157
nescence in a 2D layer at different parameters of the
layer and matrix materials and photoexcitation levels.

The aim of the present work was to calculate the
band-gap renormalization in a photoexcited 2D layer
(quantum well) with the inclusion of electrostatic
potential fluctuations (created by the electron–hole
plasma along the layer) on the basis of the model pro-
posed earlier in [7, 8] for a doped 3D crystal.

2. BASIC RELATIONSHIPS

The GaAs quantum wells in an AlxGa1 – xAs matrix
are usually produced on the crystallographic plane
(100). Let us define the 2D layer (quantum well) by the
X0Y plane and the perpendicular 0Z axis. The layer area
is S, and the layer thickness is L.

The energy of an electron (a hole) Ejn (Ejp) at the jth
quantum-well level can be estimated within the infi-
nitely deep quantum-well approximation [1, 9]: Ejn(p) =

(πj")2/2 L2, where  is the effective electron
(hole) mass responsible for the energy quantization
across the 2D layer (the subscripts n and p refer to elec-
trons and holes, respectively).

As in the GaAs 3D crystal, the Ejn energy and the
density of states for electrons are calculated using the

mass  =  = 0.0665m0 (where m0 is the mass of
a free electron). The Ejph(l) energies for holes are deter-

mined using the effective masses [1, 9–11]:  =

mn p( )
z( ) mn p( )

z( )

mn
z( ) mn

xy( )

mph
z( )
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m0/(γ1 – 2γ2) = 0.4m0 for a heavy hole and  =
m0/(γ1 + 2γ2) = 0.087m0 for a light hole (where γ1 = 6.98
and γ2 = 2.25 are the Luttinger parameters [10]). The
density of states for holes in the 2D layer in the (100)

plane is computed with  = m0/(γ1 + γ2) = 0.11m0

and  = m0/(γ1 – γ2) = 0.21m0.

Since  < , the quantum energy level of a
light hole E1pl is located in the v band at a greater depth
compared to the level of a heavy hole E1ph. Therefore,
Eg is equal to the energy gap between the first quantum
levels of electrons and heavy holes Eg = Eg0 + E1n +
E1ph, where Eg0 is the band gap in the 3D crystal. The
dependences of E1n(ph) on the thickness of the GaAs 2D
layer in an AlAs matrix were obtained by Franceschetti
and Zunger [12].

For simplicity of calculations, hereafter, we will
consider only the first quantum levels (j = 1) of elec-
trons and heavy holes that form a two-dimensional
plasma. Since only heavy holes will be included in fur-
ther calculations, the subscript ph will be replaced by p.

According to the model proposed earlier [7, 8], the
one-particle energies of the correlation E(cor) and

exchange (  and ) interactions between elec-
trons (n) and heavy holes (ph) additively enter into the
relationship for the band-gap renormalization ∆Eg in
the quantum well, that is,

(1)

where  is the band gap in the 2D layer upon excita-
tion of an electron–hole gas and Eg is the energy gap in
the 2D layer at n = p = 0.

Let us now consider a high level of the photoexcita-
tion of the 2D layer, i.e., the case when the concentra-
tion of impurity ions in this layer is negligibly small
compared to the concentration of nonequilibrium elec-
trons and holes and can be ignored. Then, the electro-
neutrality equation has the form n = p. We take into
account that the potential energy U of both an electron
and a hole fluctuates along the 2D layer due to the inter-
action of charge carriers with each other. By generaliz-
ing the results obtained in [1, 4] to the case of electro-
static potential fluctuations [7, 8], the mean two-dimen-
sional concentration of delocalized electrons n (holes
p) at a finite temperature can be written as

(2)
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where fn(p)(E) = (1 + exp((E – Fn(p)/kBT))–1 is the Fermi–

Dirac function for electrons (holes), E = ("k)2/2  + U
is the energy of the electron (heavy hole) with the
quasi-wave vector k along the quantum well, Fn(p) is the
Fermi quasi-level in the c(v) band, kBT is the thermal
energy, and Gn(p)(U) is the density of potential energy
distribution of electrons (holes).

The energy and the Fermi level Fn(p) of the electron
(hole) are reckoned from the first quantum level of the

electron E1n = (π")2/2 L2 [for the heavy hole, E1p =

(π")2/2 L2] deep into the allowed energy band with-
out photoexcitation of the 2D layer.

We assume that the density of distribution of the
potential energy U of the electron (hole) over the 2D
layer is Gaussian

(3)

where W = Wn = Wp is the root-mean-square fluctuation
of the energy.

At W @ kBT (formally, at temperature T  0),
from relationships (2) with due regard for expression (3)
within the approximation of the complete degeneracy
of electrons at the first quantum level in the c band
(heavy holes in the v band), we have [13–15]

(4)

At W ! kBT [formally, in the absence of fluctua-
tions, Gn(p)  δ(U)], from relationships (2), it follows
that [16]

(5)

Note that, at T  0, the concentration of electrons
(heavy holes) at the first quantum level is approxi-
mately equal to the total concentration n = p, provided
that the averaged (over the 2D layer) maximum kinetic

energy of the electron (hole)  satisfies the condi-
tion
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(6)

As was shown in [1, 9], the difference between
the energies of the second and first quantum levels can

be estimated as  –  ≈ 3(π")2/2 L2.
Then, from relationship (6), it follows that our analy-
sis can be restricted only to the first quantum levels
in the c and v bands of the 2D layer: n < 3π/2L2 and

p < 3π /2L2 .

2.1. Let us consider models for the charge density
distribution over the two-dimensional electron–hole
plasma. The root-mean-square fluctuation W of the
electrostatic potential energy of an electron and a hole
can be calculated with due regard for the fact that they
are not bound into the excitons; i.e., they should be
spaced apart from each other along the 2D layer.
According to the quasi-classical estimates [17], the dis-
tance between the electron (hole) and the nearest elec-
tron or hole is approximately equal to the diameter of
the 2D region per electron (hole): 2rc = 2(π(n + p))–1/2.
The charge density distribution for each electron (hole)
in the calculation of W can be expressed in the form

(7)

where θ(rc – r) is the Heaviside function [θ(rc – r) = 0
at r > rc and θ(rc – r) = 1 at r ≤ rc].

In the Debye–Hückel calculations of the screening
length and the correlation energy E(cor), each electron
(hole) can be represented in the form of a “wire” whose
charge density is uniformly distributed across the 2D
layer. At a high concentration of photoexcited charge
carriers (rc ! L), it follows from Eq. (7) that

(8)

where δ(r) is the two-dimensional Dirac function.

The exchange interaction  of electrons (holes)
in the 2D layer cannot be calculated by specifying only
the charge density. It is necessary to use the wave func-
tion of the electron (hole) with the quasi-wave vector k
at the first quantum level (j = 1). Within the infinitely
deep quantum-well approximation [9], we have

(9)

and the density of charge distribution is ρn(p) = ρ3 =
e|Ψk(r, z)|2 = (2e/LS)cos2(πz/L).
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2.2. The root-mean-square fluctuation of the poten-
tial energy of an electron (hole) W = Wn = Wp along the
quantum well can be calculated using the pure Cou-
lomb interaction only between the nearest delocalized
charges [7, 8]. The charge density distribution for each
electron (hole) is given by expression (7). The energy
of the Coulomb interaction between two touching disks
(each with radius rc and thickness L ≤ rc), whose charge
±e is uniformly distributed over the volume, virtually
does not differ from the energy of interaction between
the same point charges separated by the distance 2rc =
2(π(n + p))–1/2 = 2(2πn)–1/2. Hence, the magnitude of the
interaction energy |Ui | for the two nearest electrons
(holes) in the 2D layer is taken to be |Ui | ≈ e2/(8πεrc).
For the closest packing of charged particles along the
2D layer, each particle has the six nearest neighbors in
the first coordination sphere. In this case, in the absence
of correlation between the location and the charge sign
of a particle, at n = p, we have

(10)

where Pi = 1 is the probability that the nearest neighbor
of a particular electron is the electron or hole and

PiUi = 0.

Note that the ratio γn(p) between the magnitude of the
mean potential energy of the Coulomb interaction for two
particles and the mean kinetic energy of a particle [rela-
tionship (6)] in the two-dimensional electron–hole plasma

is γn(p) = |Ut|/  = (e2 /4πε"2)(2πn)–1/2. In the
GaAs 2D layer at 1011 cm–2 < n = p < 3 × 1013 cm–2, the
energy parameter of plasma imperfection [18, 19] var-
ies in the ranges γn = 1.3–0.07 for electrons and γp =
2.1–0.12 for heavy holes. Consequently, the electron–
hole plasma becomes more perfect with an increase in
the level of photoexcitation of the 2D layer.

2.3. Now, we dwell on the screening of the Coulomb
potential of an electron (hole) in the photoexcited
plasma of the 2D layer. The total electrostatic potential
ϕ(r, z) of the charge e with the density ρn(p) = ρ2
according to relationship (8) and its screening cloud
with the density ρs = e(p(ϕ) – n(ϕ)) can be found from
the linearized Poisson equation (in the cylindrical coor-
dinate system)

(11)
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where ε = εrε0 is the static permittivity of the 2D layer
crystal lattice, ε0 is the permittivity of free space,
ρs(r, z) = –2εϕ(r, z)/Lλ is the charge density of the
screening cloud, and

(12)

is the reciprocal of the screening length in the 2D layer
[16, 20, 21].

At low temperatures (kBT ! W), from relation-
ships (12) and (4), we obtain [13–15]

(13)

At high temperatures (kBT @ W), from relation-
ships (12) and (5), we have [16, 20]

The potential ϕ(r, z) that obeys the Poisson equation
(11) will be sought in the form

(14)

where J0(kr) = (2π)–1 exp(ikrcosα)dα is the zero-

order Bessel function and Φ(k, z) is the Fourier trans-
form of the ϕ(k, z) potential.

Substitution of Eq. (14) into expression (11) gives
the equation for determination of Φ(k, z)

(15)

in which we took into account that δ(r) =

exp(ikr)  = .

The combined equations (15) are solved taking into
account that ϕ(r, z) becomes zero at |z|  ∞ and that
the ϕ(r, z) potential and the electric induction are con-
tinuous at r ≠ 0 and z = ±L/2. Inside the 2D layer (at
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−L/2 ≤ z ≤ L/2), the projection of the electric induction
onto the 0Z axis is equal to –εrε0∂ϕ(r, z)/∂z. Outside the
2D layer (at z < –L/2 and z > L/2), the projection of
the electric induction onto the 0Z axis is equal to
−εrmε0∂ϕ(r, z)/∂z, where εrmε0 is the static permittivity
of the matrix. As a result, in the interval –L/2 ≤ z ≤ L/2,
we have

(16)

where  = k2 + 2/Lλ.

Let us average the density of the screening charge
ρs(r, z) over the thickness of the 2D layer. From rela-
tionships (11), (14), and (16), it follows that

(17)

where

and the net charge screening the electron (hole) is
equal to

The averaged (over the thickness of the 2D layer)
screened potential of the electron (hole) is given by

where χ(r/λ, L/λ, εr/εrm) is the dimensionless screening
function of the Coulomb potential in the plane of the
layer (quantum well) [see Eq. (17)].

In the limit of a thin 2D layer (L ! λ) when the per-
mittivities of the layer and the matrix are equal to each
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other (εr = εrm), the screening function takes the known
form [16, 20]

2.4. As follows from [7, 8, 14], the Debye–Hückel
energy of the correlation interaction between a hole and
electrons screening the hole is defined as E(cor) = –(Epn +
Enn) > 0, where Epn is the energy of the Coulomb inter-
action between the hole and the electron cloud screen-
ing the hole and Enn is the interaction energy for elec-
trons of the cloud (with the net charge equal to –e).

The magnitude of the energy of the pure Coulomb
interaction between two electrons and (or) holes, which
are separated by the distance r and whose distribution
over the 2D layer is described by relationship (8), can
be written as

(18)

where

Then, according to [7, 8, 14], with allowance made for
the fact that the interaction of charge carriers is deter-
mined by relationship (18), we obtain

(19)

in which the integration is performed over the entire
area S of the quantum well (2D layer), ρs(r) =
−2εϕ(r)/Lλ is the density of the charge screening the
“central” hole (electron) of the cloud [expression (17)],
and ξ(r, L) is defined by expression (18).

By using expressions (19), the correlation energy
E(cor) at 0.03 < λ/L < 30 (experimentally actual range)
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can be approximated by the following relationship:

(20)

Since, the screening length λ, which is defined by
relationship (12), does not depend on the thickness L of
the 2D layer, it follows from expression (20) that the
energy E(cor) increases with a decrease in L.

2.5. Now, we separately calculate the energies of
exchange interactions between degenerate electrons
and holes at temperature T  0 with inclusion of the
electrostatic potential fluctuations along the 2D layer.

According to [22, 23], the energy of the exchange
interaction between an electron (hole) with the wave
vector k and the other electrons (holes) of the 2D layer
at the first quantum level can be represented in the
form

Here, the wave function of the electron (hole) Ψk(r, z)
is defined by formula (9) and

is the two-dimensional quasi-wave vector of the Fermi
electron (hole) with the potential energy U and the
maximum kinetic energy Fn(p) – U in the 2D layer
region.

As follows from [22, 23], the expression for the
average [over the two-dimensional wave vector k of
electron (hole)] energy of the exchange interaction per
electron (hole) at T  0 can be rearranged to the form
(cf. [24])

(21)

The averaging of the energy defined by relation-
ship (21) over the 2D layer at W @ kBT gives the aver-
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age energy of the electron–electron (hole–hole)
exchange interaction per charge carrier, which is inde-
pendent of the layer thickness L, that is,

(22)

where the Fermi quasi-level Fn(p) is determined from
Eq. (4) taking into account Eq. (3).

Thus, relationships (1), (20), and (22) describe the
energy-gap renormalization ∆Eg > 0 in a 2D layer upon
photoexcitation of the electron–hole plasma in the
layer.

2.6. Let us now determine the luminescence line
shape upon recombination of electrons and holes in a
2D layer as a function of their concentration and tem-
perature.

Since the nonequilibrium charge carriers them-
selves produce the electrostatic potential relief along
the 2D layer, the “vertical” and “nonvertical” events of
recombination of an electron with a hole in the energy–
coordinate space (the r space) can be considered
equiprobable. This assumption distinguishes the pro-
posed model from the model of band-to-band recom-
bination, which accounts for the fluctuation potential
of impurity ions in a 3D compensated semiconductor
[25–27].

The probability of the recombination between the
electron with the kinetic energy Ec – Uc and the hole
with the energy Ev – Uv in the energy–quasi-momen-
tum space (the k space) will be designated as Pcν. Let
us consider two limiting cases: (i) the electron transi-
tions from the c band to the v band are allowed without
observance of the quasi-momentum selection rules
when Pcv = 1 at all the energies Ec – Uc and Ev – Uv, and
(ii) only vertical transitions (the quasi-momenta of the
electron and the hole are equal to each other) are
allowed when

Without regard for the quasi-wave vector selection
rules for electrons and holes, the spectral distribution of
the photoluminescence intensity I("ω) with the photon
energy "ω is described by the relationship

(23)
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P

where  = Eg0 + E1n + E1p – ∆Eg is the band gap in the
photoexcited 2D layer. The Fermi quasi-level Fn(p) in
the function fn(p) is determined by relationships (2).

Note that expression (23) specifies the known rela-
tionship for the intensity I("ω) of the band-to-band
recombination radiation [4, 5] for the case of Gaussian
fluctuations in the potential energy of an electron (hole)
along the 2D layer. The photoluminescence without
observance of the quasi-wave vector selection rules and
in the absence of fluctuations in the potential energy of
electrons and holes along the 2D layer [at Gn(p) 
δ(U)] was considered by Afonenko et al. [28].

In the case when only vertical electron transitions
from the c band to the v band of the 2D layer in the k
space are taken into account, formula (23) can be rear-
ranged to the form

(24)

where the total energies of the electron Ecc and the hole
Evv with the same quasi-wave vectors at the first quan-
tum level in the c and v bands are as follows:

3. COMPARISON BETWEEN RESULTS
OF CALCULATIONS AND EXPERIMENTAL 

DATA

First, we evaluate the ratios between the energies W,

E(cor), and , which, according to formulas (10),
(20), and (22), characterize the electron–hole plasma in
the GaAs 2D layer (L = 10 nm and εr = 12.4). For this
quantum well, an increase in the concentration of non-
equilibrium charge carriers from n = p = 1011 to 3 ×

1013 cm–2 leads to an increase in the ratio (  +

)/E(cor) from 0.4 to 8 and the ratio W/E(cor) from
0.7 to 7.

Figure 1 displays the dependences of the band-gap

renormalization ∆Eg = E(cor) +  +  > 0 on the
concentration of nonequilibrium electrons (holes) for
the GaAs quantum well in an AlxGa1 – xAs matrix. The
calculation of ∆Eg = Eg –  > 0 was performed
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according to relationships (1), (20), and (22) at L = 10
(curve 1) and 2 nm (curves 2, 3). The parameters used

in the calculations were as follows:  = 0.0665m0,

 =  = 0.11m0, and εr = εrm = 12.4. The exper-
imental data shown by open triangles and circles (a and
b) were taken from the review [4], and those designated
by closed squares (c) were taken from [5]. The latter
data for L = 2.3 nm correspond to the case when the
bottom of the c band in an AlxGa1 – xAs matrix which
contains the GaAs 2D layer lies below the bottom of the
c band in this layer [12]. The relative permittivity of the
GaAs 2D layer at liquid-helium temperatures is
εr = 12.4 (as in the 3D crystal [29]), and the relative
permittivity of the matrix AlAs is εrm = 10.1.

As the concentration of nonequilibrium electrons
and holes increases from n = p = 1011 to 3 × 1013 cm–2,
the screening length λ calculated by formula (13)
decreases from 5.4 to 2 nm, so that the condition for the
applicability of approximation (20) for the correlation
energy E(cor) is fulfilled for the data shown in Fig. 1.

At a weak photoexcitation of the GaAs 2D layers
with thickness L < 3 nm, the indirect electron–hole
radiative transitions are observed both in the coordinate
and quasi-momentum spaces (X transitions). However,
at a strong excitation, owing to the band-gap renormal-
ization, the number of the direct Γ transitions typical of
thicker 2D layers [12] becomes considerable and even
predominant. Since the electrons are partly distributed
outside the GaAs 2D layer, their contribution to the
screening of the electron–hole interaction is smaller
than the contribution of the heavy holes located inside
the 2D layer. Consequently, the electrons distributed
outside the 2D layer serve as the background which
provides the electroneutrality of the system and affects
the root-mean-square fluctuations Wn = Wp. In this
respect, the calculations of ∆Eg were performed for two
limiting cases: (i) the nonequilibrium electrons are dis-
tributed outside the 2D layer (Fig. 1, curve 2), and (ii)
the nonequilibrium electrons reside within the 2D layer
(Fig. 1, curve 3).

The ∆Eg values calculated under the assumption that
the fluctuation potential is absent (W ! Fn(p)) in the
two-dimensional degenerate electron–hole plasma
(kBT ! Fn(p)) are also shown in Fig. 1 (curves 4, 5). In
this case, relationship (13) for the distance of the elec-
trostatic field screening in the (100) plane of a “perfect”
GaAs 2D layer at n = p gives

(25)

Taking into account this result, the correlation energy
E(cor) defined by expression (20) does not depend on the
concentration of electrons and holes.
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At W ! Fn(p), the Fermi level Fn(p) = π"2n/  is
determined by the electroneutrality equation (4). Then,
by using relationship (22) and taking into consideration
that Gn(p)  δ(U), we obtain the exchange energy per
electron (hole)

(26)

which is identical for the degenerate electrons and
holes.

Note that the experimental data on the band-gap
renormalization ∆Eg > 0 taken from different works
(see review [4]) are not entirely consistent with each
other. Most likely, such an inconsistency can be associ-
ated with different methods used in these works for
estimating the concentration of nonequilibrium elec-
trons and holes in the 2D layer. However, as was shown
in [4, 5], ∆Eg increases with a decrease in the thickness
L of the quantum well (2D layer). This is confirmed by
our calculations (Fig. 1).

The photoluminescence spectra calculated from
expression (24) for the GaAs quantum well with thick-
ness L = 10 nm in an AlAs matrix at temperature T =
4.2 K and concentrations n = p = 1011 and 3 × 1012 cm–2

are depicted in Fig. 2 (solid curves 1, 3). For this quan-
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Fig. 1. Dependences of the band-gap renormalization ∆Eg
on the concentration of nonequilibrium electrons (holes) for
the GaAs quantum well in an AlxGa1 – xAs matrix at T =
4.2 K. Points are the experimental data taken from (a, b) the
review [4] at L = 10 nm and (c) [5] at x = 1 and L = 2.3 nm.
Solid lines correspond to the calculations of ∆Eg from
expressions (1), (19), and (22) at L = (1) 10 and (2, 3) 2 nm.
The screening lengths are calculated taking into account
(1, 3) electrons and holes (n = p) and (2) only holes (n ! p).
Dashed lines represent the results of calculations without
regard for the fluctuation potential (W ! Fn(p)) at L = (4) 10
and (5) 2 nm.
1
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tum well, according to [12], the energy gap in the
absence of photoexcitation is Eg = Eg0 + E1n + E1p =
1564 meV (where Eg0 = 1519 meV, E1n = 38.2 meV, and
E1p= 6.6 meV), ∆Eg = 18.7 meV at n = p = 1011 cm–2,
and ∆Eg = 43.1 meV at n = p = 3 × 1012 cm–2. The pho-
toluminescence spectra computed by formula (23)
without regard for the wave vector selection rules are
displayed by dashed curves 2 and 4. As can be seen, the
difference between the photoluminescence spectra cal-
culated in the framework of the proposed model with
and without regard for the quasi-momentum selection
rules is insignificant.

4. CONCLUSION

Thus, the electrostatic model for calculating the
band-gap renormalization ∆Eg > 0 upon strong photo-
excitation of the 2D crystal layer was proposed. The
fluctuation electrostatic potential produced by the pho-
toexcited electron–hole plasma along the 2D layer was
taken into consideration for the first time. The exchange
and correlation energies of interactions between elec-
trons and holes were calculated. The photolumines-
cence line shape for the GaAs 2D layer in an AlGaAs
matrix was computed with due regard for only the first
quantum levels in the c and v bands. The calculated
values of the band-gap renormalization are in agree-
ment with the available experimental data.

0.5

1400 1500 1600 17001300
"ω, meV

1.0

0

Intensity, arb. units

3

2
1
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Fig. 2. Calculated photoluminescence spectra of the GaAs
quantum well with the thickness L = 10 nm at T = 4.2 K for
concentrations of nonequilibrium electrons and holes n =
p = (1, 2) 1011 and (3, 4) 3 × 1012 cm–2. Curves 1 and 3 cor-
respond to the calculations according to formula (24).
Curves 2 and 4 represent the data calculated from expres-
sion (23).
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Abstract—The radiation emitted by sodium films in the 2.5–5 eV photon energy range as a result of bombard-
ment by 300-eV electrons is measured. It is shown that the feature observed in the region of 4 eV is associated
with the radiative decay of surface plasmons, while the radiation emitted at 4.6 and 4.68 eV is due to the radi-
ative decay of multipole plasmons. © 2001 MAIK “Nauka/Interperiodica”.
The advances made as a result of theoretical and
experimental investigations of the dynamic screening
of a field by a metal surface [1–6] provided additional
information on the dispersion of surface plasmons and
led to the prediction of a new branch of surface waves
(multipole plasmons) interacting with the bulk optical
waves at a frequency ω = 0.8ωp, where ωp is the plasma
frequency.

We present below the results of investigations of
multipole plasmons emerging in sodium films as a
result of bombardment of the surface by low-energy
electrons.

1. EXPERIMENTAL TECHNIQUE

The films studied by us were prepared by depositing
99.99% pure sodium metal on a tantalum ribbon by
thermal vaporization at a rate of 10 nm/s. The residual
gas pressure in the experimental tube was 10–10 Torr. A
copper source was used for sputtering. The thickness of
the film under investigation was measured by a quartz
balance. The tantalum ribbon could be cooled to the
nitrogen temperature and heated to the melting point of
sodium or even higher temperatures. Photographs
obtained in a scanning electron microscope showed
that the ribbon had a statistically uneven surface with a
predominant period of 100–200 nm. The choice of the
materials used for vaporization and for the substrate
made it possible to obtain high-purity sodium films on
account of the mutual insolubility of metals. Films of
thickness varying between 20 and 2000 nm were stud-
ied, each film being deposited on a substrate cleaned
preliminarily by heating.

The emission of sodium radiation was stimulated by
a 300-eV electron beam having a cross section of
1 mm2 on the sample and a current 3 × 10–5 A. Such a
choice of parameters rules out thermal heating of the
film being studied or any other kind of variation under
the action of the electron beam. The angle of incidence
of electrons was 45°. The electron beam was extracted
from the source through a sapphire window and was
1063-7834/01/4301- $21.00 © 20166
focused on the inlet slit of a monochromator. The emis-
sion spectra were registered by a photoelectric multi-
plier (PEM) counting single-electron pulses in the
interval 2.5–5 eV. The spectral response of the PEM
was measured by the technique described in [7]. The
transmission band width of the quartz monochromator
varied in the range of measurements from 0.04 eV (at
a photon energy of 5 eV) to 0.09 eV (at a photon
energy of 2.5 eV). The peak intensity of the monochro-
matic radiation emitted by sodium films was 200–
300 photons/s.

We recorded the spectrum of radiation emitted at
right angles to the sample surface in a solid angle 7°.
Such an aperture minimized the intensity of the tran-
sient radiation. The observed radiation was associated
with the radiative decay of surface plasmons with a
wave vector equal to the reciprocal of the roughness
period q; i.e., q + ksp = 0, where ksp is the surface plas-
mon momentum [8, 9].

2. DISCUSSION OF RESULTS

The emission spectra measured in sodium films
sputtered on a substrate at 77 K are shown in Fig. 1. The
peak of the spectra was displaced towards lower quan-
tum energies with increasing film thickness, while the
intensity of the radiation at the peak decreased. A split-
ting of the spectra was observed for films with a thick-
ness in the interval 40–200 nm.

As a film of thickness 1700 nm deposited on a sub-
strate at 77 K (Fig. 1) was heated to 369 K (the melting
point of sodium is 370.8 K under a pressure of
760 Torr), the emission spectrum recorded at this tem-
perature revealed not only the principal peak associated
with the radiative decay of surface plasmons, but also a
peak at a quantum energy of 4.6 eV (curve 1 in Fig. 2).
Upon a subsequent decrease in the temperature of the
substrate to room temperature, the amplitude of the
subsidiary high-frequency peak decreases, while the
position of the peak corresponds to a higher energy of
the quanta, viz., 4.68 eV (curve 2 in Fig. 2). This peak
001 MAIK “Nauka/Interperiodica”
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disappears as the film is cooled further to 77 K (curve 3
in Fig. 2). The spectrum is reproduced upon a repetition
of the heating–cooling cycle.

Among the emission spectra presented in this work,
the high-frequency peaks at 4.6 and 4.68 eV formed as
a result of heating of the sodium film are the most inter-
esting ones. These peaks are in close proximity to the
multipole plasmon frequency 0.8ωp = 4.58 eV [5]. Such
peaks, which are associated with multipole plasmons,
were first detected in characteristic energy loss spectra
for electrons in sodium films [4, 5]. The coincidence of
frequencies in our case with the presented data unam-
biguously indicates that the radiative decay of multi-
pole plasmons was observed in our experiment. Such a
radiation was not detected in experiments on electron–
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Fig. 1. Emission spectra of sodium films deposited on a sub-
strate cooled to 77 K (the film thickness is indicated in the
figure). Measurements were made at this temperature.
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phonon emission involving sodium films deposited on
mirror surfaces of substrates [10], nor in the spectra
presented in Fig. 1. This is even more astonishing in
view of the fact that the effect of multipole phonons on
the quantum yield has been proved convincingly in
experiments on the photoelectric effect [2, 6, 11]. An
increase in the quantum yield of the photoelectric effect
for a photon energy close to the energy of a multipole
plasmon was also observed in our experiment on the
photoelectric effect in sodium films deposited on a
highly polished mirror surface [12] (see inset to Fig. 2).
The quantum yield of photoelectrons from sodium
films of 1000 nm thickness increases at a frequency of
4.5 eV, i.e., at a frequency close to that of a multipole
plasmon (see curve b in the inset to Fig. 2). The
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Fig. 2. Emission spectra of a sodium film of thickness
1700 nm deposited on a substrate cooled to 77 K. Spectra 1,
2, and 3 were recorded at a film temperature of 369 K, upon
cooling to 293 K, and upon further cooling to 77 K, respec-
tively. The inset shows the energy distribution of photoelec-
trons for different photon energies (eV): (a) 4.25, (b) 4.5,
and (c) 5 [12]. 
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increase in the quantum yield of the photoelectric effect
at the multipole plasmon frequency is due to an
increase in the optical wave field at the surface occur-
ring as a result of the interaction of the bulk electro-
magnetic wave inducing the photoelectric effect with
the surface. Such an interaction is possible if the law of
conservation of the momentum component parallel to
the surface is obeyed. This condition does not contra-
dict the dispersion of multipole plasmons [5]. Hence,
the radiation associated with the radiative decay of
these plasmons must be observed. The fact that it has
not been detected so far is probably because the phase
volume occupied by a part of the dispersion curve kmp <
ω/c is small (kmp is the multipole plasmon momentum).
The electrons bombarding the surface mainly generate

waves with a wave vector  [8]. Since

we bombarded the surface with electrons having an
energy of 300 eV, kmp ~ 30ω/c. This means that since
kmp < ω/c, interaction with bulk waves is forbidden for
most of the surface waves occupying a major part of the
phase volume. Such an interaction can occur only if the
surface contains inhomogeneities with a “period”
(kmp/2π)–1 [8, 9]. Apparently, heating of the sodium film
nearly to melting point in our case “roughens” the film
surface to the scale q–1 ~ 10–100 Å. In this case, the law
of momentum conservation is obeyed, i.e., q + kmp = 0,
leading to an interaction of the surface waves with the
bulk waves. According to another possible mechanism,
multipole plasmons are scattered at roughnesses and
are transformed into plasmons with a small wave vector
kmp < ω/c [9]. If this is so, the mean free path of multi-
pole plasmons must be of the order of the wavelength
of light in a vacuum, i.e., 400 nm. The emergence of
roughnesses upon heating of the film is due to the fact
that its temperature is higher than the surface “roughen-
ing” temperature TR at which the surface loses its
smoothness and undergoes a phase transition (called
the roughening transition) [13]. According to the exper-
imental data presented in [13], TR = (0.6–0.7)Tm (Tm is
the melting point). This gives the value 230 K for the TR
of sodium. Hence the “roughening” conditions are sat-
isfied for the film under investigation at room tempera-
ture and above.

The roughness of the surface of sodium films of var-
ious thicknesses changes even at 77 K as can be seen
from the spectra of surface plasmons (Fig. 1). For a
small thickness (26 nm) of the deposited layer, the
sodium film profile is almost identical to the profile of

kmp
ω

c mc2/2E
--------------------------=
P

the substrate [9]. It can be seen from Fig. 1 that, as the
film thickness increases, the principal peak is displaced
towards lower quantum energies and splits into three
peaks and the peak profile changes. All this qualita-
tively indicates a change in the spectrum of the surface
roughnesses [14]. Thus, the displacement of the peak
towards lower energies indicates that the roughnesses
change the dispersion relation for surface plasmons,
which leads to the emergence of roughnesses with a
finer structure. It is quite possible that the displacement
is mainly due to a broadening of the spectrum of the
surface roughnesses toward shorter periods, since a fre-
quency shift also entails a decrease in the intensity of
the emitted radiation [14].

Thus, we have observed for the first time the radia-
tion stimulated by the radiative decay of multipole plas-
mons in sodium films heated above the surface “rough-
ening” temperature (roughening transition).
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Abstract—Corrosion precursors in the form of microgrooves appearing on the elastically compressed surface
of a silicon plate under etching are investigated. No corrosion precursors are observed on the elastically
stretched surface. This distinguishes the observed effect from corrosion cracking of metals, during which cor-
rosion usually takes place on stretched surfaces. The general dynamic model proposed for the evolution of sur-
face microgrooves during etching, corrosion, and growth of elastically stressed solids is based on the concept
of two local etching (growth) rates which are linear functions of the local stress tensor. The model describes the
kinetics of the process, and the asymmetry of corrosion evolution to the deformation sign. The role of stacking
faults, dislocations, and artificially created surface steps in the evolution of corrosion in stressed silicon crystals
is studied. © 2001 MAIK “Nauka/Interperiodica”.
Corrosion-induced cracking of metals and alloys is
usually manifested in the formation of corrosion micro-
grooves on a stretched surface under the action of an
aggressive medium [1]. The formation of corrosive
microgrooves during the etching of the surface of sili-
con microcrystals under elastic compression of the sur-
face was observed by us earlier [2]. The surface relief
formed as a result of etching was analyzed by Asaro
and Tiller [3], Grinfeld [4], and Srolovitz [5] on the
basis of a thermodynamic equilibrium model of insta-
bility of a solid surface. The kinetics of relief evolution
was not analyzed, and the role of the deformation
(extension or compression) mode in this effect
remained unclear.
1063-7834/01/4301- $21.00 © 20169
This paper is devoted to the surface instability of a
stressed solid subjected to etching, i.e., to an analysis of
corrosion-induced cracking of the surface of a brittle
body, e.g., monocrystalline silicon, under stress. Sev-
eral experiments were made on polycrystalline ribbons
of Fe–3 wt % Si alloy in the form of rolled and polished
strips. It was found that deformation affects the effi-
ciency of chemical reactions, but a detailed analysis of
microscopic relief as a function of strain is hampered
by the structural imperfection of the alloys under inves-
tigation.

We propose a general dynamic model of relief evo-
lution and formation of microgrooves during etching,
which is based on the concept of two (normal and tan-
d3

d2

d1

l1 l2 l3

1

2

3

h

Fig. 1. (2, 3) Setup for deforming the sample and (1) sample geometry. The sample thickness d1 before etching is usually equal to
d3, d2 is the thickness of the sample region under investigation, l1 is the distance between the fixation point and the beginning of the
region under investigation, l2 is the length of the active region, l3 is the distance from the point of application of the force through
the screw 3 to the end of the region under investigation, and h is the sag of the sample being measured. The relation between the
elastic strain ε varying along the investigated region and the sample parameters d, l, and h is presented in [2].
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gential) local etching rates which are linear functions of
the local stress tensor. This model explains the
observed asymmetry of the effect to the deformation
sign. In addition, we investigate the influence of struc-
tural defects (dislocations and oxidation-induced stack-
ing faults), as well as inhomogeneities in the form of
grooves, strips, and mesascopic structures, which are
created artificially on the surface, on the form of the
surface relief.

1. EXPERIMENTAL TECHNIQUE

The experiments on corrosion-induced cracking of
silicon were made on a setup which was specially
designed and made of teflon; this made it possible to
bend a plate of the material under investigation elasti-
cally and to attain compressive and tensile strains up to
0.6% at room temperature (Fig. 1).

The sample size was 18 × 3 × 0.3 mm, and the spe-
cial shape of the samples is shown in Fig. 1. The central
part of the samples under investigation had a thickness
d2 = 0.1–0.175 mm and a length l2 = 2 or 8 mm and was
etched by using the chemical etchant HNO3 :
CH3COOH : HF in a ratio of 5 : 3 : 3.

The thicker part of the sample was fastened to the
setup (see Fig. 1). The sample was loaded from below
with the help of a gauged fluoroplastic screw (3) and
could be controlled. The following two features of the
setup used are worth noting:

(1) The proposed geometry of the sample, its fasten-
ing, and the point of application of the load made it pos-
sible to trace (“scan”) the linear variation of stress over
the length of the thinner part of the sample.

(2) Simultaneously, the effect of the strain sign
could be verified, since one of the surfaces of the sam-
ple was subjected to compression and the other to
extension.

10 µm
SEI 15 kV X1.500 39 mm

Fig. 2. Scanning electron micrograph of the surface of dis-
location-free silicon after etching under elastic compression
(ε = 0.5%).
P

The experiments were made at room temperature on
Si samples in the elastic strain region. This allowed us
to prevent the emergence of dislocations or any phase
transformations which would complicate the interpre-
tation of the effect [6, 7].

Main experiments were made on the samples of dis-
location-free p type silicon with ρ = 10 Ω cm, grown by
the Czochralski technique. The samples were cut in the
form of ribbons oriented along the 〈112〉  and 〈110〉
directions from a washer with a (111) orientation of the
surface. The sample was mechanically polished and
chemically etched in order to reduce the influence of
surface defects. Dislocation-free silicon with a perfect
structure was used to eliminate the influence of struc-
tural defects in the bulk on the phenomenon under
investigation. We also studied dislocation-free Si sam-
ples with oxidation-induced stacking faults grown on
the surface or with an artificially created surface relief.
Some experiments were made on silicon samples con-
taining grown-in dislocations. A number of experi-
ments were carried out on rolled and polished ribbons
made of Fe–3 wt % Si alloys and on samples of poly-
crystalline Si strips grown by the Stepanov method.

Corrosion effects on the surface of silicon under
loading were studied using CP-4 as a polishing etchant
and the Secco etching agent [8]. The choice of these
etchants was dictated by their basically different
response to structural defects. In contrast to CP-4, the
etching rate in the Secco selective etchant increases
abruptly in the region of structural defects, which is
apparently associated with local deformations intro-
duced by them. The entire construction (2) with the
sample (1) (see Fig. 1) could be immersed directly in
the etchant. The etching time was usually 15 s at 300 K.

2. DISCUSSION OF RESULTS

Etching of elastically stressed surfaces of silicon in
the polishing etchant CP-4 left the surface smooth,
while the Secco selective etchant revealed surface etch-
ing-induced defects on the compressed surface, which
resembled microcracks. A typical pattern of a silicon
surface obtained by using scanning electron micros-
copy after etching in Secco under elastic compression
(strain ε = 0.5%) is shown in Fig. 2. Etching-induced
surface defects have a structure extended at right angles
to the compression axis with a typical size of 1 µm
along the compression axis and up to 10 µm at right
angles to this axis if etching is carried out in Secco for
15 s. A typical cross-sectional profile of the defects
obtained by atomic-force microscopy is shown in
Fig. 3.

The distribution of etching-induced defects on sur-
faces with artificially created steps having a height of
~2 µm, obtained by using scanning electron micros-
copy, are presented in Figs. 4a and 4b. It can be seen
that the step oriented along the compression axis does
not affect the distribution of defects (see Fig. 4a), while
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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Fig. 3. Atomic-force micrograph of the surface etching-induced defect. The depth of the relief in nanometers is laid along the ordi-
nate axis, and the distance on the sample surface across the surface defect is laid on the abscissa axis.
a defect-free zone is formed at the top of the step ori-
ented at right angles or any other angle to the compres-
sion axis (see Fig. 4b). It should be noted that the size
of the defect-free zone increases with the height of the
artificially created step. Such a behavior reflects the
redistribution of elastic stresses on profiled surfaces.

The patterns of distribution of etching-induced
defects over a surface with specially created oxidation-
induced stacking faults, which were obtained by using
atomic-force microscopy, are presented in Figs. 5a and
5b. It can be seen that the point of emergence of a par-
tial Frank dislocation bounding an oxidation-induced
stacking fault at the surface is a source of nucleation of
etching-induced surface defects. This effect can be
explained by the concentration of elastic stresses in the
regions where partial Frank dislocations emerge on the
surface.

Figures 6a and 6b show patterns illustrating the
etching of the compressed (111) surface of silicon with
60° grown-in dislocations, which were obtained by
using scanning electron microscopy. It can be seen that
the regions where 60° grown-in dislocations emerge on
the surface serve as sources of nucleation of etching-
induced surface defects. For low elastic stresses, a
small fraction of dislocations initiates the growth of
etching-induced surface defects. The number of such
dislocations increases with the stress, attains saturation,
and at still higher stresses defects can also be formed
between dislocations. As in the case of oxidation-
induced stacking faults and artificially created steps,
the effect of grown-in dislocations on the formation of
etching-induced defects can be explained by the con-
centration of elastic stresses in the regions of emer-
gence of 60° dislocations at the surface.

All the above-mentioned defects do not affect the
stress dependence of the density of etching-induced
surface defects [2]; they only reflect the redistribution
of elastic stresses. Analysis of etching-induced defects
in elastically stressed polycrystalline silicon strips
obtained by the Stepanov method revealed a pattern of
etching-induced defect distribution on individual
grains similar to that in monocrystalline silicon. Quan-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      200
titative analysis of the defect density distribution as a
function of strain is complicated by the ambiguity
encountered in estimating this level due to the presence
of grain boundaries, regions with a very high density of

3 µm(a) 0000020 kV

3 µm(b) 0000020 kV

Fig. 4. Effect of surface relief and direction of compression
on the distribution of etching-induced defects. Scanning
electron micrograph of the surface with artificially created
steps having a height of ~2 µm: (a) direct step oriented along
the compression axis and (b) bent step oriented mainly at
right angles to the direction of compression.
1
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dislocations, and built-in elastic stresses. Similar diffi-
culties complicate the observation of etching-induced
defects in more complex objects, such as alloys of iron
with silicon.

The experiments aimed at the observation of etch-
ing-induced defects in silicon with a very high density
of dislocations (>108 cm–2) and a high boron doping
level (ρ = 0.005 Ω cm) revealed the absence of a char-
acteristic relief of etching-induced defects even at
strain levels up to 8 × 10–3, which exceed the break-
down strain of (5–6) × 10–3 for ordinary monocrystal-
line silicon.

Study of etching kinetics on dislocation-free crys-
tals under various stresses proved that the rate of etch-
ing out of surface defects is proportional to the elastic
strain. The corresponding dependence of the reciprocal
etching time to a depth of ~0.2 µm, which was deter-

(b)
4800

2400

nm

0 2400 4800 nm

(a)
7.56

3.78

µm

0 3.78 7.56 µm

Fig. 5. Atomic-force micrograph of the etching-induced
defect and specially created oxidation-induced stacking
faults: (a) oxidation-induced stacking faults oriented at right
angles to the compression axis and (b) oxidation-induced
stacking faults oriented along the compression axis.
P

mined from the instant at which the etched surface
starts scattering white light, on the distance to the point
of fixation of the cantilever is shown by dashed steps in
Fig. 7. The solid curve shows the corresponding depen-
dence of elastic strain ε on the distance x to the cantile-
ver fixation point, which was calculated by formula (4)
in [2]. The experimental dependence of the reciprocal
etching time t–1 on the elastic strain ε can be described
by the formula

(1)

where A = 10 ± 2 s–1 and ε0 = 0.0002 ± 0.0002.

We propose a general model of etching for theoreti-
cally describing the kinetics of surface relief evolution
on the elastically compressed surface of a solid. The
model is based on the concept of two local etching
rates, i.e., the normal νn and tangential νt, which are lin-
ear functions of the isotropic part of the local stress ten-
sor σ(r) = Tr(σik(r)). The advantage of this model is its
applicability to all solids, including amorphous, micro-
crystalline, and crystalline materials. The correspond-

t 1– A ε ε0–( ),=

10 µm(a) 0000020 kV

10 µm(b) 0000020 kV

Fig. 6. Etching patterns of a compressed (111) surface of sil-
icon with grown-in 60° dislocations obtained by scanning
electron microscopy: (a) compression along 〈112〉  and
(b) compression along 〈110〉 .
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ing kinetic equation describing the time evolution of
the surface relief profile h(r, t) has the form

(2)

where νn, νt, dνn/dσ, and dνt/dσ are the experimentally
determined empirical parameters. For |∇ h(r, t)| < 1, the
relation between σ(r) and h(r, t) is linear and the corre-
sponding functional can be determined with the help of
Green’s function for the elastic isotropic half-space [9]:

(3)

The exact solution of the integro-differential equa-
tions (2) and (3) cannot be presented analytically; con-
sequently, analysis of the kinetics of evolution of the
surface relief involves numerical simulation on a com-
puter.

However, neglecting the off-diagonal component of
functional (3) in quasi-momentum, we can obtain an
approximate analytic solution of Eqs. (2) and (3),
which has the following form for σyy = 0:

(4)

dh r t,( )/dt νn σ r( ) dνn/dσ( )+[ ]–=

– ν t σ r( ) dν t/dσ( )+[ ] ∇ h r t,( ) ,
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Fig. 7. Dependence of reciprocal etching time (to a depth of
~0.2 µm) on the distance to the cantilever fixation point
(dashed steps). The etching depth was determined from the
onset of scattering of white light by the etched surface. The
solid line describes the theoretical dependence of elastic
strain ε on the distance to the cantilever fixation point.
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where

(5)

Equation (5) implies that the reciprocal characteristic
time 1/τq(t) of evolution of a relief with a preset wave
vector q is a linear function of the applied stress σ0,
which is in accord with the experimental data presented
in Fig. 7.

Moreover, Eq. (5) shows that the evolution of a
relief with a preset wave vector q terminates at a certain
instant t0 when it reaches the depth hq(t0) defined as

(6)

The approximate solution (5) implies the independent
evolution of modes with different wave vectors q. How-
ever, the inclusion in Eq. (3) of the off-diagonal terms
in q leads to suppression of modes with large values of
q by modes with small values of q for comparable
depths of the relief. Consequently, by transforming
Eq. (6), we can derive a relation between the character-
istic depth hq of the relief obtained as a result of etching
and its characteristic wave vector q:

(7)

hq t( ) t/τq t( ){ } hq 0( ),exp=

1/τq t( ) 2 ν 1+( )σ0q=

× dνn/dσ qhq t( )dν t/dσ–( ) qν t.–

hq t0( ) dνn/dσ( )/ dν t/dσ( ){=

– ν t/ 2 ν 1+( )σ0 dν t/dσ( )[ ] } /q.

q dνn/dσ( )/ dν t/dσ( ){=

– ν t/ 2 ν 1+( )σ0 dν t/dσ( )[ ] } /hq.
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Fig. 8. Experimental dependence of the quantity λ–1/2 as a
function of the distance x to the fixation point, as well as the
theoretical curves 1 and 2 calculated on the basis of formu-
las (8) and (9), respectively.
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It can easily be seen that the characteristic wave vec-
tor q of the relief (which is inversely proportional to the
characteristic wavelength λ = 2π/q), obtained as a result
of etching, is inversely proportional to its depth hq. For
a given depth of the relief, its characteristic local wave-
length λ is connected with the local deformation uii

through the relation

(8)

and not through the relation following from the theory
developed by Asaro and Tiller [3] and Grinfeld [4]:

(9)

Figure 8 shows the experimental dependence of the
quantity λ–1/2 as a function of the distance to the fixa-
tion point x, as well as the corresponding theoretical
curves 1 and 2 calculated by formulas (8) and (9),
respectively, taking into account the dependence uii(x)
presented in [2]. It can be seen that theoretical curve 1
describes the experimental data more accurately than
curve 2. Moreover, uii to the first power appears in
Eq. (8) and, hence, the evolution of instability is sensi-
tive to the sign of strain in accordance with the
observed experimental data [2] and contradicts the the-
ory developed by Asaro and Tiller [3] and Grinfeld [4].

Equation (5) shows that the instability of the etching
front evolves under the condition

(10)

in the case of compression and

(11)

in the case of extension.

λ 1/ A B/uii–( )∼

λ 1/ uii( )2.∼

qhqdν t/dσ dνn/dσ>

dνn/dσ qhqdν t/dσ>
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Fig. 9. Simulation of the kinetics of relief evolution on the
basis of Eqs. (1) and (2). The depth of the etching profile in
relative units is laid along the ordinate axis, and the distance
along the direction of compression in relative units is laid
along the abscissa axis. The sequence of curves (from top to
bottom) reflects the variation of the relief in equal time
intervals.
P

Inequalities (10) and (11) show that the instability
evolves without a threshold (i.e., for qhq = 0) for
dνn/dσ < 0 on a compressed surface and for dνn/dσ > 0
on a stretched surface. Thus, the sign of the derivative
dνn/dσ for a given combination of the material and the
aggressive medium determines the surface (com-
pressed or stretched) on which the etching relief will
develop. The experimental data presented above prove
that the sign of the derivative dνn/dσ is negative for a
pair formed by silicon and the Secco etchant since the
relief is observed on the compressed surface, while the
magnitude of the derivative dνn/dσ is close to zero for
the silicon–CP-4 pair since no relief is observed on
either surface of the sample. For a pair formed by a
metal and an aggressive medium, the sign of the deriv-
ative dνn/dσ must be positive since the corrosion-
induced cracking is usually observed on a stretched sur-
face of a metal [1].

Numerical simulation of the kinetics of relief evolu-
tion on the basis of Eqs. (2) and (3) is illustrated in
Fig. 9. It can be seen that the characteristic of the relief
obtained by numerical simulation correctly reflects the
main features of the experimentally observed relief (see
Fig. 3).

Thus, the facts presented above lead to the conclu-
sion that the general model of etching based on the con-
cepts of two local etching rates which are linear func-
tions of the local stress tensor is in good agreement with
the experimentally observed data.

It is interesting to note that for negative values of νt

and νn, the model developed here describes the growth
of anisotropically stressed crystalline films rather than
of etching. Such a situation takes place, for example,
for epitaxial films growing from the liquid or gaseous
phase on asymmetric crystalline surfaces.

Equation (5) shows that the front instability of the
surface evolves independently of the sign of the rates νt

and νn under the conditions (10) or (11); i.e., the growth
instability evolves without a threshold for dνn/dσ < 0 in
the case of an axially compressed surface and for
dνn/dσ > 0 in the case of an axially stretched surface.

Thus, the sign of the derivative dνn/dσ, which is
determined by the type of the surface, as well as by
technological parameters such as temperature, pres-
sure, and the chemical composition of the surrounding
gaseous or liquid medium, determines the sample sur-
face (compressed or stretched) on which growth insta-
bility will develop.

Thus, we have experimentally studied the kinetics
of the formation of microgrooves during etching of
elastically stressed surfaces of solids. It was found that
stacking faults and dislocations can be centers of nucle-
ation of microgrooves but do not affect the general
form of their distribution as a function of surface
stresses. The effect of the artificial surface relief is
reduced exclusively to a redistribution of surface
stresses and the change in the distribution of micro-
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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grooves associated with it. A general model of etching
based on the concept of two local etching rates which
are linear functions of the local stress tensor is pro-
posed. The model provides a correct description of the
dependence of the average separation between micro-
grooves on the magnitude and sign of the strain and
makes it possible to simulate the kinetics of the forma-
tion of microgrooves. This model can also be applied
for describing the instability of growth processes under
uniaxial stresses.
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Abstract—The influence of an external magnetic field on the optical characteristics of the exciton spectra of a
semiconductor is studied. It is shown that the diamagnetic shift of the exciton level essentially changes the
dynamics of the exciton absorption. The combination of the excitonic and magnetic properties of a crystal in
the range of excitonic frequencies gives new opportunities to control the bistable behavior of the crystal. It is
revealed that the magnetooptical response of the semiconductor to the laser field gives rise to bistable loops with
respect to both the intensity of the incident light and the magnitude of the magnetic field. © 2001 MAIK
“Nauka/Interperiodica”.
The most applicable possibilities of the creation of
new optical information systems based on optical-
bistability principles concern the way in which a laser
field interacts with a nonlinear medium [1]. Optical
studies of semiconductor materials in the visible and
ultraviolet spectral ranges are particularly interesting. It
is in the range of excitonic frequencies that the appear-
ance of two and more stable optical states of a crystal
provides new possibilities to record and store optical
information and to control the evolution of nonlinear
phenomena with the determination of their specific
characteristic parameters when the external factors are
changed [2]. Optical bistability can be realized by dif-
ferent mechanisms in which the appearance of a hyster-
esis loop in light transmission is associated either with
a change in the laser-radiation parameters, such as fre-
quency, intensity [3], and polarization [4], or with a
change in external factors, such as pressure, tempera-
ture [5], the magnetic field, etc.

The aim of this paper is to investigate the depen-
dence of the exciton absorption of the laser radiation on
the magnetic field. If the external magnetic field is
weak, the position of the excitonic level is determined
by the squared magnitude of the magnetic field H [6]:

 (1)

where δ =  and L =  are the parameter of

the diamagnetic shift and the width of the exciton band,
respectively; E0 is the bottom of the exciton band; aex,
m*, and µ* are the radius and the effective and reduced
exciton masses, respectively; e and m are the electron
charge and mass, respectively; and a is the lattice con-
stant of the crystal. A large number of articles have
been devoted to the experimental investigations of the
diamagnetic shift of exciton bands (see, e.g., [7]).

E k( ) E0 δH2 L
ka
π
------ 

 
2

,++=

e2aex
2

4µ*
------------ π2

"
2

2m*a2
----------------
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Investigation of the exciton spectral characteristics
is connected with calculation of the system’s mass
operator M = ∆ + iΓ, which determines the coefficient
of the excitonic absorption

(2)

Here, D0 is the matrix element of the exciton–photon
interaction; x = ("ω – E0)L–1 is the excitation frequency
ω normalized to the width of the exciton band; and h =
δH 2L–1 is the normalized magnitude of the magnetic
field. The mass operator M is calculated by a standard
method [8].

According to Eqs. (1) and (2), a shift of the exciton
band to higher energies occurs as the magnetic field is
increased. If the frequency of the incident light is fixed,
for example, at the maximum of the absorption band
xmax, then the crystal can be switched into the transpar-
ent regime by changing the magnitude of the magnetic
field. Obviously, the extent of the crystal blooming
depends on the ratio between the magnitude of the dia-
magnetic shift and the half-width of the band of exciton
absorption. The larger their ratio, the broader the
switching range.

The interaction between the crystal and the laser
field leads to the generation of exciton gas of controlled
density in the crystal. In this case, the coefficient of the
excitonic absorption also depends on the filling num-
bers of the exciton states N, which are determined by
the intensity of the external radiation I and (according
to Eq. (1)) the magnitude of the magnetic field [8]:

(3)

At zero magnetic field (H = 0), the solution of Eq. (3)
describes the standard optical bistability IB(I), since it
accounts for the hysteresis loop in the dependence N(I)
at the fixed frequency of the input signal [3]. The

K ω H,( )
2πD0

2

L
------------- Γ x h,( )

x h– ∆ x h,( )–[ ] 2 Γ2 x h,( )+
--------------------------------------------------------------------.=

N IK ω H,( ).=
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switching-on of the magnetic field results in a shift of
the exciton band and, hence, in a change in the fre-
quency at which the optical bistability occurs. In this
case, the condition

(4)

should be fulfilled.
There is no optical bistability at any other frequency

of the input signal. This means that the frequency xS =
xL – h, at which the bistable states IB(I) occur at the out-
put in the crystal, can be achieved by varying the mag-
netic field H and using a laser with a given frequency
xL > xmax.

On the other hand, the density of the exciton gas in
the semiconductor is a complicated function of the
magnetic field N(H). The form of this dependence is
determined by the balance equation (3). If the laser fre-
quency ω0 and intensity I0 are fixed, the number of exci-
tons can be calculated from the formula K(N) = N/I0 for
different magnitudes of the magnetic field and the

xS
h xS h+=
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Dependence of the absorption coefficient on the magnitude
of the magnetic field for the frequency of the input signal
xS = –0.0021.
P

dependence N(h) can be determined. The calculations
carried out reveal that the number of excitons in the
crystal is a nonmonotonic function of the field and, in a
certain range of magnetic fields, N(h) exhibits an
S-shaped dependence on the magnetic field. This indi-
cates that the appearance of magnetooptical bistability
is possible in these semiconductors. The calculated
absorption coefficient K(H) leading to the magneto-
optical bistability is shown in the figure. The calcula-
tion was performed for a CdS-type semiconductor with
the parameters taken from [3] and for a fixed frequency
xS = – 0.0021. As is seen from the figure, there are two
stable values of the absorption coefficient (portions 1
and 2 of the curve) in a certain range of values of the
magnetic field ∆H = H↓ – H↑. The calculations indicate
that the width of the range of the magnetooptical bista-
bility does not depend on the frequency of the input sig-
nal. Increasing the frequency, for example, by ∆xL, we
obtain an identical magnetooptical bistability but for
another value of the magnetic field H ' = H +∆xL. Thus,
the shift from the absorption maximum to higher ener-
gies of the spectrum requires larger fields to realize the
magnetooptical bistability.
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Abstract—The most general (nonrelativistic) formulas for the force of attraction to the surface and for the drag
of a nonrelativistic atom moving parallel to it, as well as for the lateral and normal forces acting on a moving
dipole molecule and on a charged particle (in the case of parallel and perpendicular motion), are derived for the
first time in the framework of the fluctuational electromagnetic theory. The dependences of these forces on the
velocity, temperature, separation, and dielectric properties of the atom and the surface are derived. The effect
of the nondissipative resonance interaction between a moving neutral atom and the field of surface plasmons,
as well as the possible emergence of a positive (accelerating) force acting on the atom (nanoprobe), is substan-
tiated theoretically. The role of dynamic fluctuational forces and their possible experimental measurement when
using the quartz microbalance technique and an atomic-force microscope (in the dynamic mode), as well as dur-
ing deceleration of atomic beams in open nanotubes, are considered. The correctness of the obtained results is
confirmed by their agreement with most of the available theoretical relations derived by other authors. © 2001
MAIK “Nauka/Interperiodica”.
The study of the dynamic fluctuation-induced elec-
tromagnetic interaction of atoms and molecules with
flat or bent surfaces is interesting for an analysis of the
results of experiments involving various operational
conditions of scanning electron probe microscopes
[1, 2], as well as of the quartz microbalance technique
[3–5], and in connection with the possible control of
particle beams with the help of nanotubes [6].

To our knowledge, the first publications in this field
appeared at the beginning of the 1980s [7–9]. It was
proved that, along with the Van der Waals force of
attraction to the surface, which is generally also a func-
tion of the particle velocity V, a drag force of the type
defined in Eq. (1) also appears. In view of the apparent
analogy with hydrodynamics, this force was called the
“frictional force” and the proportionality factor η was
called the “friction coefficient”:

(1)

Schaich and Harris [7] obtained the dependence
η(z) ~ z–10 for the interaction of neutral particles with a
metal surface, where z is the distance to the surface. A
completely different dependence (η(z) ~ z–5) was
derived by Mahanti [8], in our earlier publications [2,
10], and by Tomassone and Widom [11]. In particular,
the following expression was obtained in [11] for the
interaction of a dipole molecule with a metal surface
for the dipole axis d oriented along the normal

F ηV.–=
1063-7834/01/4301- $21.00 © 20176
to the surface

(2a)

(σ is the electrical conductivity of the metal), while the
corresponding expression for the interaction of a spher-
ical atom with the surface has the form

(2b)

where α''(ω) is the imaginary part of the dynamic polar-

izability of the atom, ∆(ω) = ∆''(ω) is the

imaginary component of this quantity, ε2(ω) is the
dielectric constant of the medium, " is Planck’s con-
stant, T is the temperature, and kB is Boltzmann’s con-
stant.

It should be noted that, in accordance with Eq. (2b),
η = 0 for T = 0. In our opinion, this conclusion is basi-
cally incorrect. On the contrary, according to Mahanti
[8] and the results obtained by us earlier [2, 10], the
coefficient η does not vanish at zero temperature either.
It should be noted that the authors of the above-men-
tioned publications used different computational meth-
ods: the methods of quantum perturbation theory [7, 8],

η z( ) 3d2

8πσz5
---------------=

η z( ) 3"

4πz5
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dω
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the formalism of Green’s and Kubo’s functions [11],
and the fluctuational electromagnetic theory [2, 10].

A similar problem was studied recently by Pendry
[12] and later by Volokitin and Persson [13], who con-
sidered the fluctuation-induced friction between two
half-spaces separated by a plane gap of width z. These
authors also found that the friction coefficient is equal
to zero for T = 0 and the nonzero component of the fric-
tional force was found to be proportional to the third
power of the velocity.

Such a serious discrepancy in the obtained results
necessitates a more detailed analysis of the scope of a
related problem in the consistent theory of electromag-
netic fluctuations [14]. The corresponding (nonrelativ-
istic) analysis at T = 0 was carried out by us [10, 15] for
a plane [10] and a cylindrical [15] surface. We derived
general formulas for the dynamic attraction potential
and the drag force acting on an atom moving parallel to
the surface. The present work aims at a generalization
of the results obtained in [2, 10] to the case of arbitrary
temperatures and velocities for moving neutral atoms,
polar molecules, and ions (in the case of a plane sur-
face). We failed to derive final formulas for an atom
moving along the normal to the surface since we could
not separate the space and time variables while solving
Poisson’s equations.

1. AN ATOM MOVING PARALLEL TO A PLANE 
SURFACE: GENERAL RELATIONS

We consider a spherically symmetric atomic parti-
cle having a polarizability α(ω) and moving at a non-
relativistic velocity V ! c parallel to a plane surface
with a given dielectric constant ε(ω) (see figure). We
assume that the distance h between the particle and the
surface is much larger than the characteristic size r0 of
atoms: h @ r0. The time lag can be neglected if the fol-
lowing condition is observed: ω0h/c ! 1, where ω0 is
the characteristic frequency of the motion of electrons
in the atoms. This condition implies that the time it
takes for light to propagate from an atom to the surface
is much shorter than the characteristic period of oscil-
lations of atomic electrons. Spatial dispersion is disre-
garded here. In this case, in the range of distances r0 !
h ! c/ω0, the particle can be regarded as a pointlike
fluctuating dipole with zero average value of the dipole
moment dsp and a nonzero average value of the square
of this quantity.

In order to calculate the dynamic potential of attrac-
tion of the atom to the surface and the frictional force
in Eq. (1), we use the general equations of the nonrela-
tivistic electromagnetic theory for a medium, as well as
fluctuation–dissipation relations. We write the follow-
ing expression for the polarization vector created in the
medium by spontaneous fluctuations of the dipole
moment dsp:

(3)Psp r t,( ) δ x Vt–( )δ y( )δ z h–( )dsp.=
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It should be noted that all the vector quantities in the
theory of electromagnetic fluctuations are considered
as quantum-mechanical operators in the Heisenberg
representation. In order to calculate the electric field
created by the polarization given by Eq. (3), we write
the Poisson equation for the scalar potential [16]

(4)

and represent the quantities appearing in Eq. (4) in the
form of Fourier integrals as functions of the variables x,
y, and t:

In this case, Eq. (4) for the Fourier components
assumes the form

(5)

A solution of this equation that satisfies the boundary
conditions of continuity for the potential and the nor-
mal component of the electric induction on the surface
z = 0 has the form [10]

(6)
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Geometry of the interaction of a particle with a plane sur-
face.
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where k =  and ∆(ω) has the same meaning as
in Eq. (3). The first term in Eq. (6) describes the polar-
ization potential of the medium that is associated with
the fluctuation-induced electromagnetic field of the
atom (this follows from the fact that ∆(ω) = 0 for
ε(ω) = 1), while the second term is the field produced
by the fluctuating dipole.

For T ≠ 0, the free energy (interaction potential) of a
particle with the surface in the dipole approximation is
defined as [17]

(7)

where the angle brackets denote complete quantum-
mechanical and statistical averaging, the first term
being determined by spontaneous fluctuations of the
dipole moment dsp(t) of the atom, while the second is
determined by fluctuations of the electromagnetic field
Esp(r, t) of the surface at the point (r, t) where the par-
ticle is located.

In order to find U1, we write the operators dsp(t) and
Ein(r, t) in the form of Fourier integrals taking into
account that the particle position vector is r = (Vt, 0, h)

and express the Fourier component (h) through the

induced potential (h) with the help of Eq. (6). Then
we substitute the Fourier component of the operators
dsp(t) and Ein(r, t) into Eq. (7) and expand the emerging
correlators of the dipole moment by using the fluctua-
tion–dissipation theorem [18]

(8)

Finally, taking into account the analytic properties of
the functions α(ω) and ε(ω) associated with the even-
ness of the real parts and the oddness of the imaginary
parts [16] and carrying out simplifying algebraic trans-
formations, we reduce the expressions for U1 to the
form

(9)

The quantities with one or two primes correspond to the
real and imaginary parts of the relevant functions. Here
and below, we assume that integration is carried out
over positive frequencies and wave vector components.

Similarly, in order to calculate U2, we write din and
Esp in the form of Fourier integrals and substitute them

kx
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P

into Eq. (7). Taking into account the linear relation
between the induced dipole moment din of the particle
and the fluctuational electromagnetic field Esp of a sur-
face atom, we obtain an expression for U2 in the form
of a multiple integral of the spectral density of the elec-
tric field fluctuations Esp. In accordance with the gen-
eral results of the theory of electromagnetic fluctua-
tions, this spectral density can be expressed in terms of
the imaginary part of the retarded Green function for a
photon in the medium that satisfies the equation [14]

(10)

In the nonrelativistic limit (c  ∞), the solution of
Eq. (10) leads to the following expression for the spec-
tral density of the fluctuational electromagnetic field of
the surface at the point of the location of the particle
(z = h):

(11)

Using this expression, integrating with respect to the
variables ω', , and  and taking into account the
analytical properties of the functions α(ω) and ε(ω), we
obtain the potential U2:

(12)

Summing up Eqs. (9) and (12), we obtain the final for-
mula for the potential of the interaction between a mov-
ing atom and a plane surface [2]:

(13)

This formula is a generalization of a well-known
expression for the energy of the Van der Waals interac-
tion of a neutral spherically symmetric particle with a
plane surface to the case of a finite velocity and a finite
temperature of the surface. In order to prove this, we
put V = 0 and T = 0 in Eq. (13). This gives

(14)
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Then the integral over the wave vectors kx and ky can be
evaluated through an elementary transition to polar
coordinates (the result is π/8h3), while the integral over
frequencies can be transformed by rotating the integra-
tion contour through 90° to make it coincide with the
upper imaginary half-axis. This gives

(15)

Ultimately, we obtain the well-known result for the
static attractive potential of the atom to the surface [17]:

(16)

In Eq. (14), we can additionally carry out integration
with respect to the variable ky using the Sommerfeld
integral representation for the MacDonald function [19]

(17)

which leads to a simpler expression for the potential:

(18)

Let us now calculate the frictional force F. For a steady
motion of the particle, this force is connected with the
energy dissipation of the fluctuational electromagnetic
field per unit time through the well-known relation

(19)

The energy dissipation rate, as well as the interaction
potential, can also be presented as a sum of two inde-
pendent components

(20)

which are associated with the contributions from the
fluctuating dipole moment of the atom and the fluctua-
tional electromagnetic field of the surface, respectively,

where jsp = , Psp is defined by formula (3), and jin

can be expressed in terms of Esp through a linear inte-
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gral relation. Carrying out calculations similar to those
made above and taking into account the fluctuation–
dissipation relations (8) and (11), we find [2]

(21)

After evaluation of the integral over ky, formula (21)
can be reduced to the double integral

(22)

Formulas (21) and (22) generalize the results
obtained by us earlier [10] to the case of finite temper-
atures and make it possible to determine the frictional
force for any nonrelativistic velocities without confin-
ing the analysis to the linear approximation. In the limit
V  0, Eq. (22) can be simplified even further. After
integrating over the wave vectors, we can write the con-
tribution to the frictional force, which is linear in veloc-
ity, in the form [2]

(23)

In spite of the obvious similarity to formula (2b),
this relation differs basically from it. The main differ-
ence is that the integrand in Eq. (23) contains the deriv-
atives of the dielectric component instead of Planck’s
distribution, and hence the friction coefficient differs
from zero for T = 0. In the latter case, after simplifica-
tions connected with the integration by parts, formula
(23) can be written in a still more compact form [2]
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2. NONDISSIPATIVE (RESONANCE) 
INTERACTION OF A MOVING ATOM

WITH A SURFACE WAVE

In contrast to the potential (and force) of attraction
to the surface, which contain cross products of the real
and imaginary parts of the functions α(ω) and ∆(ω), the
drag force defined by formulas (22)–(24) contains
products of only the imaginary parts of these functions
and is ultimately determined by the overlap integral of
the absorption spectra of the atom and the surface,
which are shifted relative to each other by ∆ω = ±kxV
due to the Doppler effect. Thus, the structure of the
expression for the frictional force clearly demonstrates
its dissipative nature. However, the obtained results
also permit the existence of nondissipative lateral
forces. We will carry out the analysis using the well-
known formula for the polarizability of an atom in the
ground state [20]:

(25)

where f0n is the oscillator strength for a transition from
the ground state (0) of the atom to a state (n) of the dis-
crete spectrum and ω0n and γ0n are the transition fre-
quency and the absorption line width, respectively. We
assume that, for V = 0, the atom and the surface are
characterized by two narrow absorption lines with fre-
quencies ω0n and ωs (the latter is equal to the frequency
of a surface plasmon, which satisfies the dispersion
equation ε(ωs) + 1 = 0, [21]) and the conditions γ0n !
ω0n, γs ! ωs, and max(γ0n, γs) ! |ω0n – ωs | are satisfied.
The last inequality indicates that the overlap integral
for the absorption lines is negligibly small. In this case,
the imaginary parts of the functions α(ω) and ∆(ω) can
be written in the form

(26)

(27)

Substituting Eqs. (25)–(27) into Eq. (24) and inte-
grating with respect to the frequencies, we obtain [11]

(28)
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P

According to this equation, the contribution to the
lateral force for ωs > ω0n comes only from the first delta
function in the braces; hence, F < 0 and the particle is
decelerated, its kinetic energy being spent for exciting
a surface wave. In the opposite case, when ωs < ω0n, the
contribution to the integral in Eq. (28) comes from the
second delta function and the particle is accelerated,
receiving energy from the surface wave, while the lat-
eral force becomes nondissipative. Subsequent integra-
tion of Eq. (28) with respect to the wave vector leads to
a formula taking into account both cases, i.e.,

(29)

where ∆ω = |ωs – ω0n |. An analysis of formula (29)
proves that the force F(h, V) as a function of the veloc-
ity has a peak which is the sharper, the smaller the dif-

ference ∆ω. For low velocities, when  @ 1, we

can use the asymptotic expression for the MacDonald
functions for large values of the argument [19]:

Kn(x)  exp(–x). In this case, it follows from

Eq. (29) that the frictional force is exponentially small

for  @ 1. As the velocity increases, the quantity

F(h, V) increases rapidly, attaining its maximum value
for V = 0.95∆ωh. Upon a further increase in the veloc-
ity, the function F(h, V) tends asymptotically to zero,
but this transition occurs more smoothly. Thus, the non-
dissipative interaction of a moving atom with a surface
wave, which is described by Eq. (29), is of a resonance
nature and the equality V = 0.95∆ωh can be regarded as
the resonance condition. In this case, we must require
that the condition 2∆ωh ! c under which a nonrelativ-
istic analysis is possible be satisfied. Consequently, the
difference in the frequencies must satisfy the relation
γ0, s ! ∆ω ! c/2h.

It is interesting to note that the effect considered
above is similar to a certain extent to the Landau colli-
sionless damping in a plasma, but in our case the role
of spatial dispersion and the velocity distribution of
particles are insignificant. In addition, as was proved in
[2], the effect of the accelerating force (in the approxi-
mation linear in velocity) may also be observed in the
case when the dielectric functions have a more general
form. This aspect will be considered in Section 4.
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3. INTERACTION OF POLAR MOLECULES
AND IONS WITH THE SURFACE

The generality of the method used by us here makes
it possible to calculate easily the attractive potentials
and frictional forces for polar molecules and ions.
Moreover, this can also be done for a motion along the
normal to the surface. Some of the results presented
here were obtained by other authors who used alterna-
tive methods [6, 11, 22–25], which provides another
opportunity to verify our theory.

In the case of a neutral particle (polar molecule), we
assume that it possesses a permanent time-independent
dipole moment d = (dx, dy, dz). Irrespective of the direc-
tion of motion of the dipole, it is convenient to calculate
the force acting on it by using the formula F = (d∇ )Eind,
where the Fourier component of the induced field can
be expressed in terms of the Fourier component of the
potential in Eq. (6). Calculations give the following
expressions for the normal and lateral components of
the force:

(1) lateral motion:

(30a)

(30b)

(2) Normal motion (in this case, both conservative
and nonconservative interaction forces are perpendicu-
lar to the surface):

(30c)

Formula (30a) describes the interaction of a moving
dipole with its image. For V = 0, after the integration
over the wave vectors, this formula leads to an expres-
sion well known in electrostatics for the force of attrac-
tion of a stationary dipole to its image [16]:

(31)

where ε is the static dielectric constant of the medium.
The integration of Eq. (30b) in the linear approxi-

mation in velocity gives the frictional force in the form

(32)

which has the same dependence on distance as in
Eq. (24). In the case of a conducting surface, we can

Fz h V,( ) 2
π
--- dkxdky∆' kxV( ) 2kh–( )exp∫∫–=

× kx
2
dx

2
ky

2
dy

2
k2dz

2
+ +( ),

Fx h V,( ) 2
π
--- dkxdky

kx

k
----∆'' kxV( ) 2kh–( )exp∫∫–=

× kx
2
dx

2
ky

2
dy

2
k2dz

2
+ +( ).

Fz z t,( )
dx

2 dy
2 2dz

2
+ +

2
--------------------------------– dkk3∆ ikV–( ) 2kz–( ),exp

0

∞

∫=

z Vt.=

Fz h( )
3 dx

2 dy
2 2dz

2
+ +( )
16h4

---------------------------------------- ε 1–
ε 1+
----------- 

  ,–=

F
3 3dx

2 dy
2 4dz

2
+ +( )V

32h5
-----------------------------------------------

d∆'' ω( )
dω

------------------
ω 0=

,–=
PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      200
use the low-frequency approximation for the dielectric
constant [16]

(33)

(σ is the static electrical conductivity) to easily trans-
form Eq. (32) to

(34)

In this case, we have F =  for the orienta-

tion of the dipole moment at right angles to the surface,
which agrees completely with the result obtained by
Tomassone and Widom [11] [see formula (2a)].

Similarly, taking into account Eq. (33) in the linear
approximation in the velocity from Eq. (30c), we obtain 

(35)

Consequently, in analogy with the result obtained in
[10], the friction coefficient for the motion along the
normal to the surface is twice as large as for the lateral
motion. The first term in Eq. (35) describes the conser-
vative attraction of the dipole to the surface.

Formulas similar to Eqs. (30a), (30b), and (30c),
which describe the interaction of particles having a
charge Z1e with a plane surface, have the following
form [2]:

(1) Lateral motion:

(36a)

(36b)

(2) Motion along the normal:

(36c)

Introducing the variable ω = kVcosφ, we can easily
reduce Eqs. (36a) and (36b) to a simpler form coincid-
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ing with the result obtained in [23]:

(37)

(38)

In the plasma limit ε(ω) = 1 –  for the

dielectric constant of the medium, formula (38) leads to
another well-known result [22, 25]:

(39)

where ωs = ωp  is the frequency of a surface plas-
mon. In the case of a conducting surface described by a
dielectric constant of the form (33) in the linear approx-
imation in velocity from (36b) we obtain 

(40)

accordingly, for the motion along the normal, we have

(41)

Formulas (40) and (41) are in perfect accord with the
results obtained in [11, 25]; in analogy with the drag of
a dipole molecule [cf. Eqs. (34) and (35)], the friction
coefficient for the motion along the normal to the sur-
face is also twice as large as for the lateral motion.

Thus, the formulas obtained in this section agree
with all analogous results obtained by other authors. To
our knowledge, formulas (30) and (36) have not been
presented before and are the most general relation in
the given form since they can be used for calculations
with dielectric functions of an arbitrary type.

4. ESTIMATION OF THE ROLE
OF FLUCTUATION-INDUCED 

ELECTROMAGNETIC FORCES
IN EXPERIMENTS

It would be interesting to estimate the drag forces
acting on an adsorbate atom moving near a conducting
surface in connection with the interpretation of the
experiments carried out by using the quartz microbal-
ance technique [3–5]. Let us suppose that the most
intense line in the absorption spectrum of the atom has
the frequency ω0n. Assuming that the damping factor
for the line is equal to zero, we can use Eq. (26) for the
imaginary part of the atomic polarizability and write
the dielectric function of the conducting medium in the
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Drude approximation (ωp is the plasma frequency, τ is
the relaxation time, and ε(0) = 1 for metals):

(42)

Substituting Eqs. (26) and (42) into Eq. (24) and carry-
ing out elementary integration, we obtain

(43)

where x = ω0nτ and y = ωpτ. An analysis of formula (43)
shows that the sign of the force F depends on the rela-
tion between the absorption frequency of the atom and
the plasma frequency. The force is decelerating for ωp >

ω0n. This condition is satisfied for the parameters
τ = 10–14–10–15 s and ωp = 5–15 eV, which are typical of
metals, but the opposite situation is also possible for
high-frequency absorption lines and the lateral force
becomes accelerating. It should be noted, however, that
the absolute values of the overlap integral for the spec-
tra, which is determined by the factor in Eq. (43)
depending on x and y, decrease rapidly with increasing
ω0n, and hence a detailed analysis of the absorption
spectrum of the atom in the narrow frequency range in

the vicinity of ωp/  is required to obtain a correct
estimate of the resultant force F. According to calcula-
tions, the value of the overlap integral in typical exper-
iments [3–5] involving the adsorption of a krypton
atom on gold is close to –0.1 and the damping time of
motion for z = 0.4 nm is equal to ∆t = MV/F = 0.6 ns (M
is the mass of the krypton atom), which is close to the
experimentally observed value [26].

In the case when an atomic force microscope with a
parabolic probe having a radius of curvature R and the
equation of the surface z = (x2 + y2)/2R is used, the fric-
tion coefficient in the case of lateral motion can be
obtained by using formula (23) and the additive
approximation, as well as the Clausius–Mossotti equa-
tion for expressing the polarizability in terms of the
dielectric constant motion [2]:

(44)

where the frequency integral J is similar to the fre-
quency integral in Eq. (23), in which α''(ω) is replaced

by Im , ε1(ω) is the dielectric function of the

probe material, and h is the distance from the probe
apex and the surface. A more correct evaluation of the
frictional force involves the determination of the spec-
trum of electromagnetic waves in the given geometry (a
parabolic probe and a plane surface) and may lead to a
change in the numerical factor in Eq. (44).
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For typical scanning velocities of 10–4–10–2 cm/s,
the value of the fluctuational electromagnetic forces is
from 3 to 6 orders of magnitude lower than the value of
the static adhesive frictional forces [1, 2, 26] but these
forces can make a significant contribution to the damp-
ing coefficients in the dynamic mode for vibrational
frequencies of nanoprobes of the order of 1 to 10 MHz
and for amplitudes from 1 to 10 nm. Hence, for diag-
nostics of the surface and for testing the theory of fluc-
tuational forces, it would be interesting to make corre-
sponding measurements for various combinations of
materials of the probe and the sample, for various tem-
peratures, and for other physical parameters. The first
experimental results in this field have already been
obtained [27, 28].

It was proved in [6] that nanotubes with open ends
can be effectively used as a micromanipulator for vari-
ous types of radiation, including transporting and
focusing of neutral atomic beams. When a beam enters
a nanotube at a small angle to its axis, a channeling
mode similar to that in a crystal can be realized. A con-
siderable advantage of nanotubes is the existence of a
radial symmetry of the continuous potential with a
small range (0.1 to 0.2 nm) in the immediate vicinity of
the walls. Consequently, the main part of the beam will
move away from the walls of nanotubes with a radius
of several nanometers without being scattered. If we
take the above estimate of the drag time (1 ns) for an
individual atom (due to fluctuational forces) as the
starting point, 80 and 90% of the beam of atoms having
an initial velocity of 1000 m/s and trapped in a cylindri-
cal channel are capable of traversing nanotubes of
length 100 µm having radii of 5 and 10 nm, respec-
tively. Thus, nanotubes can be used for modifying the
surface of solids by low-energy (thermal) atomic
beams. This can be done in the scanning mode of a
probe microscope by attaching nanotubes to its cantile-
ver [6].

Thus, the theory of dynamic fluctuational electro-
magnetic forces makes it possible to calculate the latter
for a wide range of applied problems associated with
the motion of neutral atomic, ionic, and molecular
beams, as well as nanoprobes, near a flat surface. The
obvious evidence of the correctness of the theory is the
possible reproduction of its main results for the static
and dynamic fluctuational interaction with the surface.
However, the formulas obtained (for the drag forces
acting on neutral atoms) differ considerably from the
available formulas [11–13] since they predict the pres-
ence of finite frictional forces (that are linear in veloc-
ity) at zero temperature. This conclusion reflects the
natural features of the electromagnetic forces of a fluc-
tuational origin.

For the first time, we have substantiated the possible
sign reversal for lateral forces acting on an atom (nan-
oprobe) moving near the surface which lead to its
acceleration by the field of surface plasmons. The nec-
essary conditions for such behavior are analyzed. In the
PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      200
case of a moving atom, this effect is of a resonance
nature.

It has been proved that dynamic fluctuational elec-
tromagnetic forces can ensure the damping time for
adsorbed particles, which is observed in experiments
using a quartz microbalance. The measurement of such
forces, as well as damping decrements for nanoprobes
in the dynamic mode of scanning probe microscopes,
may form the basis of diagnostic methods of studying
the dielectric properties of thin surface layers and can
also be used for verifying the dynamic mechanisms of
friction. The experimental measurement of the
dynamic frictional forces can also be used for studying
the passage of atomic beams through open carbon nan-
otubes.
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Abstract—The process of rearrangement of the magnetic structure of the low-spin cluster V15 in superhigh
magnetic fields is investigated. At low temperatures, this process is shown to manifest itself as three quantum
jumps, each of which is a transition causing the spin of the complex to increase by two unities. The nature
of these quantum jumps is discussed. The magnetization curve and the magnetic susceptibility are calculated.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

At the present time, magnetic mesoscopic systems
attract considerable interest. These systems exhibit
both specific quantum features characteristic of indi-
vidual atoms and classical features typical of bulk sin-
gle crystals. Among these systems are clusters contain-
ing d or f ions (Mn12Ac, Fe6, Fe8, Fe10, etc.) [1–11].
Advances in high-molecular chemistry have made pos-
sible the synthesis of magnetic clusters representing
metal-organic molecules with a gigantic spin. Exam-
ples are Mn12Ac, Fe8, Fe17, and V12 [1–11]. These clus-
ters form molecular crystals, in which they keep their
individuality because the bonds between the clusters
are fairly weak. A unique property of such systems is
molecular bistability [12]. This means that they behave
as molecular magnets at sufficiently low temperatures
and, in principle, can be used for information record-
ing. It has recently been discovered that these clusters
show macroscopic quantum magnetization tunneling
[5, 8, 12], a property which is of great importance. A
theoretical study of quantum coherence in magnetic
clusters was also made [13]. These phenomena,
undoubtedly, give some insight into the fundamental
problems of magnetism and open up fresh interesting
opportunities for quantum mechanical calculations.
Until recently, only clusters with an integer spin, such
as Mn12Ac (S = 10 in the ground state), Fe8 (S = 10 in
the ground state), and Mn6R6 (S = 12 in the ground
state) were investigated. However, a study of clusters
with a half-integer spin, such as the magnetic cluster
V15, is of prime interest for understanding the physics
of magnetic nanoclusters, because, according to Kram-
ers’ theorem, the properties of systems with a half-inte-
ger spin may differ qualitatively from those of systems
with an integer spin. This is why this cluster is of inter-
est to investigators.

When studying mesoscopic properties, a cluster is
usually considered in the ground-state multiplet
1063-7834/01/4301- $21.00 © 0185
approximation. However, in order to gain a better
understanding of the physics of a cluster, one should
investigate its internal structure, i.e., in our case, the
exchange interactions between magnetic ions compos-
ing the cluster. The most direct method for studying
these interactions is to investigate the complete magne-
tization curve in megagauss magnetic fields. This is the
only objective of the present paper, which is devoted to
a study of the behavior of crystals formed by V15-poly-

oxyvanadate molecules (K6[ As6O42(H2O)] · 8H2O).
These crystals possess trigonal symmetry (space
group R3) with a = 14.029 Å, α = 79.26°, and V =
2632 Å3 [11, 14]. The unit cell contains two V15 clus-
ters. The V15 cluster comprises fifteen VIV ions, each of
which has a spin of S = 1/2. Ions VIV are situated at the
apexes of two planar hexagons and one triangle
between them. The structure of the cluster is depicted
schematically in Fig. 1. The exchange interaction
between VIV ions is antiferromagnetic in nature [14].
Because of this, in contrast to most organic clusters
such as Mn12Ac, which are high-spin systems, the V15

cluster has a low spin S = 1/2 in the ground state. The
magnetic (dipole) interaction between the spins of
neighboring clusters is negligible (several mil-
likelvins). Each hexagon of the cluster (Fig. 1) has
three pairs of strongly coupled spins (J ≈ –800 K). The
spin of each ion of the triangle is coupled with two pairs
of spins, one of which belongs to the upper hexagon;
the other, to the lower hexagon (J ' ≈ J1 ≈ –150, J '' ≈ J2 ≈
–300 K). The exchange interaction between the spins
situated at the apexes of the triangle is very weak (J0 ≈
–2.5 K [15]). The spin of the cluster in the ground state
S = 1/2 is due to the antiferromagnetic interaction
between VIV ions; therefore, the cluster can be thought
of as a multi-sublattice ferromagnet at the molecular
level. The fundamental parameters of such a molecular
ferrimagnet are exchange integrals which determine the

V15
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2001 MAIK “Nauka/Interperiodica”



 

186

        

ZVEZDIN 

 

et al

 

.

                                                                                                         
magnetic structure of the cluster and its transformation
under an external magnetic field. Using the magnetic
Mn12Ac cluster as an example, it has been shown
recently that the transition from the ferrimagnetic to a
ferromagnetic state in magnetic clusters with antiferro-
magnetic exchange interaction between magnetic ions
has a number of specific features qualitatively different
from those in the case of a classical Néel ferrimagnet
[9]. In this paper, we investigate this transformation of
the spin structure of the V15 cluster, which comes to a
close in ultrastrong magnetic fields. The magnetization
and magnetic susceptibility of the cluster are calculated
as a function of exchange constants, magnetic field, and
temperature.

1. THE HAMILTONIAN, BASIC FUNCTIONS, 
AND ENERGY LEVELS

The Hamiltonian of the cluster is written in the
form [1]

H1 = –J(S1S2 + S3S4 + S5S6 + (…)'), (1)

H2 = –J '(S2S3 + S4S5 + S6S1 + (…)'), (2)

(3)

H4 = –J1(SaS1 + SbS3 + ScS5 + Sa  + Sb  + Sc ),(4)

H5 = –J2(SaS2 + SbS4 + ScS6 + Sa  + Sb  + Sc ),(5)

H6 = –J0(SaSb + SbSc + ScSa), (6)

H7 = HZ = 2µBB SZ. (7)

Here, summation is performed over all fifteen VIV ions.
The symbol (…)' designates an analogous expression
involving the spins of the upper hexagon; and Sa, Sb,

H Hn,
n 1=

7

∑=

H3 J'' S2S4 S4S6 S6S2 S1S3+ + +(–=

+ S3S5 S5S1 …( )' ).+ +

S2' S4' S6'

S1' S3' S5'

∑

J0

a

J''

J'

b

J1

J2
J1

J2

4

5 6

23

3'

4' 6'5'

2'

1

1'

c

J

Fig. 1. Structure and exchange interactions of the V15 clus-
ter (schematic).
P

and Sc are the spins at the apexes of the triangle.
According to [14], J = –800, J ' = J1 = –150, J '' = J2 =
−300, and J0 = –2.5 K. However, it should be noted that
these values of the exchange constants are rough esti-
mates.

In [15], it was shown that at B < 3 T, the spin of the
cluster in the ground state is S = 1/2. At B = 3 T, the
magnetic structure of the cluster is changed with the
result that the spin becomes equal to 3/2. In this case,
Saz = Sbz = Scz = –1/2 (〈Siz〉  = 〈 〉 = 0, i = 1, …, 6). Fur-
ther transformation of the magnetic cluster structure
occurs in the range of ultrastrong magnetic fields, to a
consideration of which we now proceed. Analysis
shows that the orientation of spins Sa, Sb, and Sc remain
unchanged in this case.

In the case of Saz = Sbz = Scz = –1/2, we have

H4 + H5 = H8 + H9 (8)

(9)

(10)

When studying the energy spectrum of the system, we
take into account the hierarchy of the exchange interac-
tions in the Hamiltonian H [see Eq. (8)]. We represent
H in the form

H = H0 + H',

where

H0 = H1 + HZ, (11)

while the Hamiltonian

H ' = H – H0

includes the remaining exchange interactions charac-
terized by J1, J ', J2, and J ''. The energy levels corre-
sponding to the Hamiltonian H0 are

(12)

where S = (τi + ), τi,  = 0, 1; S = 0, 1, …, 6;

τ1 = S12, τ2 = S34, τ3 = S56,  = ,  = ,  = ;
and MS = S, S – 1, …, –S.

When studying the behavior of the magnetization
and magnetic susceptibility of the cluster in strong
magnetic fields and at low temperatures (kT < 2µBB), it
is sufficient to consider the states with MS = –S. In this

Siz'

H8
1
4
--- J1 J2+( ) Ŝiz Ŝiz'–( ),

i 1=

6

∑=

H9
1
4
--- J2 J1–( ) Ŝ2z Ŝ1z– Ŝ4z Ŝ3z–+(=

+ Ŝ6z Ŝ5z– …( )' ).+

E0 S( )
J
2
--- S12 S12 1+( ) S34 S34 1+( )+–=

+ S56 S56 1+( )
1
2
--- 3

2
--- 3××– …( )'+ 2µBBMS+

=  JS 2µBBMS const,+ +–

i 1=
3∑ τ i

' τ i'

τ1' S12' τ2' S34' τ3' S56'
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case, Eq. (12) for the energy levels can be written as

E0(S) = –JS – 2µBBMS. (13)

The corresponding eigenfunctions are

(14)

It follows from Eq. (13) that all energy levels with S =
0, 1, …, 6 cross simultaneously when B = –J/(2µB) ≈
560 T. In this situation, it is quite important to take into
account the corrections to the energy levels due to the
perturbations described by the Hamiltonians H2, H3,
H8, and H9. The effect of the perturbation H8 reduces to

renormalization of the exchange integral J : J   =

J – (J1 + J2). It is of prime importance that the pertur-

bation V(H2, H3, H9) is additive and given by the sum of
two independent contributions from the upper and
lower hexagons.

Let us consider the contribution from the lower
hexagon. In this case, naturally, the quantum number S
corresponds only to the subsystem under consideration
(S = 0, 1, 2, 3). Using the basis wave functions given by
Eq. (14) and the perturbation Hamiltonian V = H2 +
H3 + H9 [see Eqs. (2), (3), (10)], we calculate the cor-
rections δE to the energy levels defined in Eq. (13) for
S = 0, 1, 2, 3.

In the case of S = 0, we have δE(S = 0) = 0. The S = 1
state is threefold degenerate and the corresponding
basis wave functions Ψ0(τ1, τ2, τ3) given by Eq. (14) are
Ψ1 = Ψ0(1, 0, 0), Ψ2 = Ψ0(0, 1, 0), and Ψ3 = Ψ0(0, 0, 1).
In this case, the perturbation Hamiltonian matrix has
the form

(15)

The lowest energy is found from Eq. (15) to be

δEmin(S = 1) = (J ' + 2J '')/4. (16)

The ground state with S = 1 is doubly degenerate. The
excited state is separated from the ground state by ∆ =
–(J ' + 2J '')/2. For J ' = –150 and J '' = –300 K, we have
∆ ≈ 400 K. Therefore, the population of the excited
state can be neglected up to room temperature.

Similarly, for the S = 2 state, we obtain

δEmin(S = 2) = 0. (17)

Ψ0 τ i τ i',( ) C1
2
---m1 i( )

1
2
---m2 i( )

τ i τ i– 1
2
---m1 i( )

1
2
---m2 i( ) 

 
m1 m2,
∑

i 1=

3

∏=

C1
2
---m1' i( )

1
2
---m2' i( )

τ i' τ i'– 1
2
---m1' i( )  

1
2
---m2' i( ) 

  .
m1' m2',
∑

i 1=

3

∏

J̃
1
4
---

V
1
4
--- J' 2J''+( )

0 1 1

1 0 1

1 1 0

.=
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This level is also doubly degenerate, and the higher
level is separated from it by ∆ ≈ 400 K. In the case of
S = 3, we have

δEmin(S = 3) = – (J ' + 2J ''). (18)

It follows from Eqs. (13) and (16)–(18) that, as the
magnetic field increases, the lowest energy levels cor-
responding to different values of S

E(S) = E0(S) + δEmin(S) (19)

cross successively. The intersection of the energy levels
E(S = 0) and E(S = 1) occurs at

(20)

The energy levels E(S = 1) and E(S = 2) cross at

(21)

Finally, the energy levels E(S = 2) and E(S = 3) intersect
when the field is equal to

(22)

Now, we determine the contributions from both hexa-
gons:

(23)

The behavior of the lowest energy levels of the V15 clus-
ter E(St) = E0(St) + δEmin(St) [see Eq. (23)] in superhigh
magnetic fields is shown in Fig. 2.

2. MAGNETIZATION AND MAGNETIC 
SUSCEPTIBILITY OF THE V15 CLUSTER

The cluster magnetization in the approximation
used is additive and given by the sum of the contribu-
tions from the two hexagons composed of V ions and
from the triangle between them.

3
4
---

B1
1

2µB
--------- J̃– J' 2J''+

4
-------------------+ 

  .=

B2
1

2µB
---------– J̃

J' 2J''+
4

-------------------+ 
  .=

B3
1

2µB
---------– J̃

3
4
--- J' 2J''+( )+ 

  .=

St 0, δEmin 0,= =

St 1, δEmin J' 2J''+( )/4,= =

St 2, δEmin J' 2J''+( )/2,= =

St 3, δEmin 3 J' 2J''+( )/4,= =

St 4, δEmin 0,= =

St 5, δEmin 3– J' 2J''+( )/4,= =

St 6, δEmin 3 J' 2J''+( )– /2.= =
1
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The dependence of the cluster magnetization on the
magnetic induction and the temperature is given by

(24)

where E(S) is determined by Eqs. (16)–(19), g(0) = 1,
g(1) = g(2), and g(3) = 1. In Eq. (24), the first term is
the contribution from both hexagons, while the second
is the contribution from the triangle. In order to analyze
the magnetic properties of the V15 cluster, it is conve-
nient to introduce dimensionless variables

b ≈ 2µBB/ ,

τ = T/ , ε(S) = E(S)/ , µ = M/2µB,

where

Then, Eq. (24) takes the form

(25)

M B( ) 4µB=

×

Sg S( ) E S( ) 2µBBS–( )/kT–[ ]exp
S 0=

3

∑

g S( ) E S( ) 2µBBS–( )/kT–[ ]exp
S 0=

3

∑
---------------------------------------------------------------------------------------- 3µB,+

J
≈

J
≈

J
≈

J J̃
J' 2J''+

4
-------------------.+=

≈

µ b τ,( ) 2µ̃ b τ,( ) 3/2,+=

µ̃ h τ,( ) Z 1– Sg S( ) ε S( ) bS–
τ

---------------------– 
  ,exp

S 0=

3

∑=

Z g S( ) ε S( ) bS–
τ

---------------------– 
  .exp

S 0=

3

∑=

0.4
–4

b

ε(S)
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–2
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4

Fig. 2. Dependence of the lowest energy levels of the V15

cluster (in relative units, ε(S) = E(S)/ ) on the magnetic field

b = 2µBB/| |, where  =  – (J ' + 2J'' – J1 – J2)/4.
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Fig. 3. Dependence of (a) the relative magnetization and (b,
c) the magnetic susceptibility of the V15 cluster on the mag-

netic field b = 2µBB/| |, where  =  – (J ' + 2J'' – J1 – J2)/4,
J = –800 K, J' ≈ J1 ≈ –150 K, and J'' ≈ J2 ≈ –300 K [15] at

various temperatures τ = kT/| |: (1) 0.005 (T = 4.2 K),
(2) 0.089 (T = 78 K), and (3) 0.343 (T = 300 K).

J̃̃ J̃̃ J̃

J̃̃

SICS OF THE SOLID STATE      Vol. 43      No. 1      2001



QUANTUM TRANSITIONS AND MAGNETIZATION OF THE MAGNETIC V15 CLUSTER 189
With Eq. (25), the dimensionless magnetic suscepti-
bility is easily found to be

(26)

Figure 3 shows the dependences of the magnetiza-
tion (Fig. 3a) and magnetic susceptibility of the V15
cluster (Figs. 3b, 3c) on the external magnetic field cal-
culated for J = –800, J ' = J1 = –150, and J '' = J2 =
−300 K in the cases of a low T = 4.2 K (τ = 0.005), a
high T = 300 K (τ = 0.343), and the nitrogen boiling
temperature T = 78 K (τ = 0.089).

3. CONCLUSION
Thus, we theoretically investigated the rearrange-

ment of the spin structure of the magnetic V15 cluster
induced by an ultrastrong magnetic field. It is found
that the changeover from the ferrimagnetic (spin S =
3/2) to a ferromagnetic (S = 15/2) magnetic structure
occurs in three jumps equal to 2µB each. All three
jumps occur in the range of megagauss magnetic fields.
For the values of the exchange integrals presented in
[14], Eq. (8), we have, according to Eqs. (20)–(22), B1
= 350, B2 = 612, and B3 = 875 T. All these jumps can be
measured experimentally by a modern MK-1 oscillator
[16], which is of great importance to the refinement of
the exchange constants J, J1, J ', J2, and J ''.
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Abstract—Experimental absorption spectra were obtained near the absorption K edge of Rb in RbCl and
Rb2ZnCl4 in the solid state and in a melt. Detailed analysis of the electronic structure of RbCl was conducted
by means of the total multiple scattering method, and good agreement with the experimental spectrum was
obtained. The fine structure of the unoccupied electronic states was determined in the conduction band of the
compound studied. The unoccupied p states of rubidium were shown to be hybridized, for the most part, with
the Cl p states in the conduction band. It was proved that the RbCl melts can be described in good approxima-
tion on the basis of the cluster model with the Debye–Waller parameter σ2 = 0.3 Å–2. © 2001 MAIK
“Nauka/Interperiodica”.
Solid-state to liquid phase transitions are accompa-
nied by considerable changes both in the local structure
and in the electronic subsystem. Understanding the
transition mechanism and the reasons for the induced
changes serves to improve methods for growing ideal
crystals. As a consequence, interest in the solid-state to
liquid phase transitions is not only diminishing but is,
actually, growing. Investigations of local structure
changes are made by different methods, including neu-
tron scattering [1, 2] and EXAFS spectroscopy [3–6].
The choice of these methods was determined by the
fact that traditional x-ray diffraction methods for inves-
tigating crystal structure failed because of strong disor-
dering of the crystals during the melting process.

To date, investigations of glasslike alloys [2], semi-
conducting Ga–Ge [7], GaSe2 [1], and GeSe2 alloys
[3, 5] and ionic crystals [4, 6] have been completed.
The last-named crystals are the objects most often used
in studies due to their quite simple crystalline structure,
which allows for the testing of new methods for inves-
tigating these substances. Moreover, ionic crystals are
of independent interest themselves.

Rubidium tetrachlorzincanate Rb2ZnCl4 is an inter-
esting object to study. This compound exhibits three
phase transitions as the temperature is changed. At tem-
peratures higher than 302 K, it has a structure of the
β-K2SO4 type. Cooling to temperatures lower than
303 K leads to a transition into an incommensurate
structure, which transforms at 189 K into a ferroelectric
superstructure. On further cooling, rubidium tetrachlo-
rzincanate is transformed into a monoclinic structure,
whose symmetry has not yet been studied. The com-
mensurate–incommensurate structural transition has
1063-7834/01/4301- $21.00 © 0019
been well investigated both theoretically and experi-
mentally [8–11]. However, the transition into the liquid
state has not yet attracted the attention of researchers it
deserves. In order to study such a transition, we have
experimentally measured the absorption spectra of
rubidium in Rb2ZnCl4 and RbCl in the vicinity of the
x-ray absorption edge (XANES spectra). The measured
spectra have been analyzed theoretically by means of
the total multiple scattering method.

The experiments were carried out as a joint project
in the Japanese Photon Factory synchrotron center on
the 10B lines [two-crystal monochromator with two flat
Si(311) crystals] and on the 7C line (where a two-crys-
tal monochromator with Si(111) crystals was also
used). The electron flux energy inside the synchrotron
ring attained 2.5 GeV, and the electron current was of
the order of 150–300 mA. Some of the experiments
were carried out in the Beijing synchrotron center
(China) at the 4W1B line, where two flat Si(111) crys-
tals were used as a monochromator. The current
strength of the electron beam was 30 mA for an energy
of 2.2 GeV. A detailed description of the experimental
setup used for measuring XANES spectra for the liquid
state was published earlier [3].

To obtain information from experimental x-ray
absorption spectra of rubidium, one needs to carry out
a theoretical analysis of the results [12]. It is possible to
make such an analysis on the basis of different theoret-
ical approaches: a tight-binding method [13], band cal-
culations [14], etc. However, the multiple scattering
method in the direct space [15, 16] has been applied
with the most success. The use of the quasi-molecular
approach [17] in similar cases (for interpretation of the
2001 MAIK “Nauka/Interperiodica”
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spectrum structure in the vicinity of the x-ray absorp-
tion K edge) does not give results as satisfactory as
those given for the absorption L spectra associated with
transitions between localized states.

An algorithm of the total multiple scattering method
and the program complex G4XANES were described
previously in [18]. The parameters and structure of the
NaCl crystalline lattice with lattice constant 6.581 Å
[19] were used in the calculations. To estimate phase
shifts, we utilized the crystalline muffin-tin potential
constructed by means of the Mattheiss scheme with
mutually touching spheres. The exchange part of this
potential was calculated in the Slater model with the
exchange constant equal to 1.0. The atomic charge
planes were found by the Dirac–Slater method. Phase
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Fig. 1. Absorption spectrum of rubidium in RbCl in the solid
state calculated for clusters of different size by the total mul-
tiple scattering method. Zero of the energetic scale corre-
sponds to zero of the muffin-tin potential.

Structure of a cluster describing the RbCl crystal

Coordination 
shell Atom Number of atoms 

in the shell
Shell radius, 

Å

1 Cl 6 3.29

2 Rb 12 4.65

3 Cl 8 5.7

4 Rb 6 6.58

5 Cl 24 7.36
P

shifts with the orbital angular momentum up to 3 were
taken into account in our calculations. In order to com-
pare the theoretical spectrum with an experimental one,
we took into account some factors leading to the broad-
ening of the spectrum (the finite lifetime of the core
vacancy [20], the mean free path of the photoelectron
[21], and the spectral resolution). All these factors con-
tribute to the imaginary part of the complex potential
used. We represent the theoretical spectra in a normal-
ized form (i.e., the absorption coefficient in relative
units of the atomic absorption coefficient at high ener-
gies) in all figures except Fig. 1. To obtain the absolute
values of the absorption coefficient, these normalized
values should be multiplied by the corresponding value
of the atomic absorption coefficient.

In order to clarify the factors that influence the
XANES Rb K spectra in Rb2ZnCl4 and to elaborate a
method for studying the phase transition, analysis of
the Rb spectrum was carried out on a relatively simple
RbCl compound by using the total multiple scattering
method. First, it was necessary to determine the mini-
mum cluster size that would reproduce all the peculiar-
ities of the experimental XANES spectrum. The results
of the total multiple scattering calculation of the
XANES Rb K spectra in the solid RbCl for clusters of
different sizes are shown in Fig. 1. For simplicity, all
spectra are shifted along the ordinate axis. The cluster
parameters (their size and the number of atoms in each
coordination shell) are shown in the table. The XANES
spectrum consists of a single broad maximum and dif-
fers considerably from the experimental spectrum in
the case of the cluster consisting of a single coordina-
tion shell, where the central rubidium atom is sur-
rounded by six chlorine atoms. The calculated structure
of the spectrum broadens when the next two coordina-
tion shells are added. The structure of the theoretical
spectrum agrees with the experiment only when the
number of coordination shells in the cluster reaches
five. Further increase in the cluster size does not lead to
any changes in the spectrum shape. Therefore, the
XANES spectrum for the Rb K edge results from the
multiple scattering of an excited photoelectron inside a
cluster of large size (more than 33 atoms, including all
types of atoms).

Figure 2 compares the experimental XANES data
obtained for the first time for the K spectra of rubidium
in the solid and liquid state. Zero of the scale used cor-
responds to 15189 eV in absolute energy units. This
scale is utilized for convenience in comparing the
experimental data with the calculated spectra, where
the zero value of the muffin-tin energy is chosen as the
origin of the coordinates [18]. In the obtained spectra,
the same tendency is observed as in the earlier studied
spectra [4]. After phase transition into the solid state
takes place, all spectral peculiarities broaden consider-
ably. As a result, the roll in the longwave region in the
vicinity of 9 eV and the maximum in the region of
25 eV disappear, while the principle maximum in the
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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Fig. 2. Experimental XANES K spectra of rubidium in RbCl
for (1) the solid state at 295 K and (2) a melt at 1023 K.

Fig. 3. Theoretically calculated rubidium spectrum in RbCl
in a melt: (1) the Debye–Waller factor is not taken into
account; theoretical approximation taking into account the
Debye–Waller factor for (2) σ2 = 0.1 and (3) 0.3 Å–2; and
(4) experimental spectrum of the compound considered.

0.0
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vicinity of 13 eV decreases in intensity and increases in
width.

Calculations for the RbCl melt were carried out in the
Debye–Waller approximation [4]. The σ2 parameter was
chosen in such a way as to guarantee the best correspon-
dence with the experiment. The consecutive changes in
the spectrum structure that occur with increasing σ2 are
shown in Fig. 3. Good agreement with the experimental
melt spectra is attained for σ2 = 0.3 Å–2 (Fig. 3). The
same value of σ2 for a melt was obtained in [4] by
means of EXAFS analysis.

Comparing Figs. 1 and 2, one can conclude that the
calculation method used gives results consistent with
the experimental data. The square of the dipole matrix
element of the transition probability is a monotonic
smooth function. Taking into account that, in the dipole
approximation, the absorption coefficient above the
K edge is the product of the square of the matrix ele-
ment of the transition probability and the partial density
of p states of rubidium, one can conclude that the
experimental spectrum gives precise information on the
peculiarities of the amplitude energy distribution of the
density of unoccupied p states of rubidium in the con-
duction band of the compound studied. The accuracy in
this case is to within the matrix element. For this rea-
son, we calculated the partial density of the p states of
rubidium in the conduction band of RbCl in the ground
state (Fig. 4). Analysis of the results obtained will be
useful for investigating the peculiarities of the electron
subsystems of the described compound and of the
changes appearing in this compound in the course of
the phase transition. The partial density of the unoccu-
pied p states of Cl is shown in the same figure. A com-
parison of these two curves allows one to make a con-
clusion that the main peculiarities of the Rb and RbCl
absorption spectra have a hybridized character.
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Fig. 4. Partial densities of states calculated for a cluster with
five coordination shells, which approximates the RbCl crys-
tal: (1) partial density of p states of Rb and (2) partial den-
sity of p states of Cl. Zero of the energetic scale corresponds
to zero of the theoretical muffin-tin potential.
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The experimental XANES K spectrum of rubidium
in Rb2ZnCl4 in the solid and melted states, measured
here for the first time, is represented in Fig. 5. Zero cor-
responds to an energy of 15171 eV. The peculiarities of
the RbCl compound found above remain unchanged
even for the more complex Rb2ZnCl4 compound. For
the latter compound, similarly to RbCl, all the details of
the spectrum broaden when the transition from the
solid into the liquid state takes place. It is obvious that
the σ2 parameter will have the same order of magnitude
both for this substance and for RbCl. Due to the com-
plexity of the structure of the considered compound [8],
theoretical calculations demand a large amount of com-
puter time and will be presented elsewhere.
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Abstract—The heat capacity at constant pressure (in the range 3–50 K) and the lattice heat conductivity (from
5 to 75 K) of a single-crystal synthetic opal are measured. It is shown that the heat capacity of the opal behaves
at these temperatures in a way similar to porous amorphous materials. The data on the heat conductivity suggest
that single-crystal opals can be related to a class of semicrystalline (partially crystallized amorphous) materials.
However, because of specific features of their crystal structure, the opals form a nonstandard type of semicrys-
talline material which we termed semiamorphous. © 2001 MAIK “Nauka/Interperiodica”.
Studies of the heat capacity κ of opals and related
nanocomposites are dealt with in a large number of
publications [1–6]. The opals studied were of varying
degrees of perfection [1, 2]. The heat capacity (C) of
opals has not been investigated before.

Opals are very interesting subjects for various phys-
ical experimentations. They exhibit a unique crystal
structure of the fractal type [1, 7, 8]. Opals consist of
closely packed spheres of amorphous SiO2 ~2000–
2500 Å in diameter (first-order spheres). These spheres
contain an array of closely packed spheres of smaller
sizes, ~300–400 Å (second-order spheres), which, in
turn, are formed of closely packed particles ~100 Å in
size (third-order spheres). The lattice of closely packed
spheres has voids of the octahedral and tetrahedral
types. Depending on the order of the spheres, the voids
can also be divided into voids of the first, second, and
third orders.

The octahedral and tetrahedral voids of the first, sec-
ond, and third orders measure 800, 140, and 30 Å and
400, 70, and 15 Å, respectively. Their contributions to
the total porosity of the opal are 26, 19, and 14%. Thus,
the total porosity of the opal is ~59%. However, the
actual total porosity, even of fairly perfect opal sam-
ples, is only 46–50% [2, 9]. This is due to a possible
sintering of the second- and third-order SiO2 spheres.
The porosity of the first-order sphere array remains
equal to the theoretical estimate, which is, as was men-
tioned above, 26% [1–6].

The voids in the opal are connected to one another
through channels. The first-order amorphous SiO2
spheres form a regular face-centered lattice with a lat-
tice constant of ~3000–4000 Å. Thus, the opal can be
1063-7834/01/4301- $21.00 © 20190
considered an amorphous medium (the first-order
amorphous SiO2 spheres) with spatially modulated
properties (the regular arrangement of the amorphous
SiO2 spheres making up a cubic lattice).

In this work, we measured the heat capacity at con-
stant pressure (Cp) in the temperature range 3–50 K and
the heat conductivity in the range 5–75 K for perfect
synthetic opal single crystals.

The technique of sample preparation was described
briefly in [1]. X-ray diffraction analysis showed that the
opals are purely amorphous materials [2, 3, 5]. No trace
of the crystalline SiO2 phase was found in the samples
studied. Optical structural analysis [2, 10] was used to
determine the parameter of the cubic lattice formed by
the first-order amorphous SiO2 spheres. The SiO2
sphere dimensions were comparable to the wavelength
of visible light, which served in this case as an analog
of x-rays in x-ray diffraction measurements. The SiO2
amorphous spheres in the sample studied were ~2350 Å
in size, and the crystal lattice constant was found to be
~3300 Å.

The heat capacity was determined by the adiabatic
technique, and the heat conductivity was measured by
a technique similar to that employed in [11].

The objective of this work was (i) to study the effect
exerted on the heat capacity and heat conductivity of
the opal by the spatial modulation of its properties (the
regular arrangement of the first-order SiO2 amorphous
spheres) and by the corresponding “crystallinity” of the
object under study and (ii) to determine the effect of the
large opal porosity on C(T).
001 MAIK “Nauka/Interperiodica”
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Figure 1 shows our data on the heat capacity Cp(T)
for the opal. For comparison, this figure also displays
the available data on the heat capacity Cv(T) for crystal-
line and amorphous SiO2 [12] and on Cp(T) for SiO2
aerogels [13].

Figures 2 and 3 display our data for the opal sample
in the C/T3–T coordinates, to be compared with the cor-
responding data for amorphous and crystalline SiO2
[12].

As is seen from Figs. 1–3, Cp(T) of the opal sample
behaves in a similar fashion to that of classical amor-
phous materials:

Fig. 1. Temperature dependences of the heat capacity for a
number of amorphous and crystalline materials. Points are
the results of our experiment for Cp of an opal sample (den-

sity is ~1.1–1.3 g/cm3). The data for Cv of crystalline and
amorphous SiO2 (density of the amorphous material is

~2.2 g/cm3) are taken from [12]; for Cp of two SiO2 aerogel

samples with densities of 0.275 and 0.145 g/cm3, from [13].
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(1) The heat capacity of the opal substantially
exceeds that of crystalline SiO2 and, insignificantly, that
of amorphous SiO2; however, starting from T > 6 K, it
practically coincides with the heat capacity of highly
porous SiO2 aerogel (Fig. 1).

(2) The magnitude of Cp/T3 increases with a
decrease in temperature, passes through a bell-shaped
maximum and a fairly sharp minimum, and rises again
as the temperature decreases still more (Figs. 2, 3).

As follows from the classical model of the behavior
of C(T) in amorphous solids, at low temperatures (T <
1 K) in glasses, C ~ T (rather than C ~ T3, as is the case
in crystalline solids) and there is an excess of the heat
capacity compared to crystals and to the Debye contri-
bution to C, which can be calculated, for instance, from
the sound velocity (Fig. 3) [12].

This behavior of C(T) in amorphous solids is inter-
preted in terms of the phenomenological two-level-sys-
tem tunneling model [14, 15]. As the temperature rises
above 1 K, this model becomes progressively inappli-
cable. The heat capacity does not begin to increase as
~T, but in amorphous solids, it is still higher than in
crystals up to approximately ~100 K [12]. Unfortu-
nately, there is still no universally accepted explanation
of the above effect. The heat capacities of amorphous
and crystalline solids most frequently coincide at T >
100 K [12].

Fig. 2. Dependence of Cp/T3 on T for the opal sample stud-
ied.
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Thus, analysis of our data on the heat capacity of
opals and comparison with the available data on the
heat capacity of amorphous solids permit one to con-
clude that the behavior of C(T) in opals does not exhibit
any specific features associated with the regular
arrangement of the first-order amorphous SiO2 spheres
(i.e., with the crystallinity). The heat capacity of opals
behaves in a similar fashion to that of conventional
porous amorphous materials.

Analysis of the data on the heat conductivity of the
opal single crystal studied led us to the following new
and interesting considerations.

2 × 10–7

5 × 10–7
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Fig. 3. Comparison of the behavior of C/T3 = f(T) for Cv of
crystalline and amorphous SiO2 [12] and for Cp of the opal
sample studied. Dashed lines represent the heat capacity
calculated from data on the elastic constants within the
Debye model [12].
P

The opal is an insulator, and, therefore, the experi-
mentally measured heat conductivity is that of the crys-
tal lattice κph.

Earlier [1, 2], we studied the heat conductivity of
synthetic opals with varying degrees of perfection.
According to these measurements, the heat conductiv-
ity κph(T) of moderately perfect opal samples (not sin-
gle crystals) showed a behavior typical of classical
amorphous solids [1, 2]. At low temperatures (4–25 K),
κph ~ T2, in the range 25–60 K, the heat conductivity
exhibited a plateau, after which, at T > 60 K, it
increased directly with ~T. In more perfect samples
(close in quality to single crystals), κph behaved in a
manner characteristic of a “semicrystalline” material
[16, 17]. For these samples, κph ~ T throughout the tem-
perature range covered (4–300 K). What is a classical
“semicrystalline” material? It is an amorphous solid
containing crystallized regions (i.e., the crystalline
phase is embedded in an “amorphous sea” [16, 17]).
These materials exhibit no plateau in κph(T), and the
low-temperature heat conductivity can increase with
temperature by a law from κph ~ T to κph ~ T3, depend-
ing on the actual amount of crystallized phase involved.
The variations in κph (a decrease in κph at very low tem-
peratures in semicrystalline materials compared to the
amorphous matrix) and its temperature dependence are
accounted for by the appearance of a thermal resistance
at the amorphous-solid–crystal interfaces in semicrys-
talline materials [16, 17].

The experimental results on κph(T) obtained in this
work for a perfect single-crystal opal sample are shown
in Fig. 4a. We readily see that this graph has no plateau
and that κph ~ T throughout the temperature range cov-
ered (Fig. 4b); i.e., in this experiment, too, the heat con-
Fig. 4. Temperature dependence of κph of the single-crystal synthetic opal: (a) in the κph–T coordinates and (b) in the κph =

f( T) coordinates. The points in Fig. 4b are the averaged data taken from Fig. 4a.
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ductivity κph(T) exhibits properties characteristic of
semicrystalline solids [1, 2, 16, 17].1 

Let us try to find an explanation to the above results.
Below, we consider several possible versions.

(1) The dependence of κph ~ T could correspond in
our case to a temperature region above the plateau char-
acteristic of amorphous solids, while the real plateau
and the temperature dependence κph ~ T2 should be
expected at lower temperatures (T < 4 K). This assump-
tion is in conflict with

(i) our previous studies on the heat conductivity κph
of opals [1, 2], according to which the plateau is
observed for amorphous opals in the range 25–60 K,
whereas at 4–25 K, κph ~ T2; and

(ii) our present data on Cp(T). The plateau in κph(T)
and the bell-shaped hump in the dependence C/T3 =
f(T) of amorphous solids approximately coincide in
temperature (see, e.g., [12, 18]). For our opal, the hump
in the graph C/T3 = f(T) lies near 10 K (rather than
below 4 K).

(2) Amorphous opals contain regions of crystallized
SiO2, which account for the behavior of κph(T) charac-
teristic of semicrystalline materials. This assumption
should also be ruled out, because, as was already men-
tioned, x-ray diffraction measurements did not reveal
any trace of crystalline SiO2 in the sample under study.

(3) As was pointed out earlier, the opal possesses a
unique crystal structure, which makes it simultaneously
an amorphous solid and a crystal. The “amorphicity” is
accounted for by the second- and third-order spheres,
which do not form a regular substructure throughout
the opal crystal. The regular cubic lattice formed by the
first-order SiO2 amorphous spheres is responsible for
the crystallinity. Thus, in the case of the opal, we
encountered a new type of semicrystalline material in
which the amorphous phase (the first-order SiO2 amor-
phous spheres) acts as “atomic masses” making up a
cubic lattice with a giant lattice constant. Such a semi-
crystal, unlike the standard classical case [16, 17]
(which we will call “a semicrystal of the 1st kind”), can
be termed “a semicrystal of the 2nd kind.” One can also
introduce a new term by calling the latter a semiamor-
phous material.

The nature of the semicrystallinity (semiamorphic-
ity), which manifests itself in the behavior of κph(T) in
single-crystal opals, will be treated in a separate paper.

This study can be summed up as follows:
(1) The heat capacity of opals at low temperatures

(3–50 K) behaves in a manner characteristic of porous
amorphous materials.

(2) Analysis of experimental data on the lattice heat
conductivity of single-crystal opals allowed us to relate

1 The semicrystal model proposed for a single-crystal opal is not at
variance with our data on the heat capacity of opals, because the
heat capacity C of amorphous and partially crystallized amor-
phous materials at low temperatures always exceeds that calcu-
lated by the Debye model [17].
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them to a new unusual class of semicrystalline (semi-
amorphous) solids.
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Abstract—The [111] longitudinal sound velocity (vL) in a single-crystal synthetic opal has been measured at
a frequency of 10 MHz in the temperature range 4.2–300 K. At 300 K, vL = 2.1 × 105 cm/s. The quantity
dvL/v300 K(T) (where dvL = vT, K – v300 K) in the ranges 4.2–200 and 200–300 K behaves in the way typical of
amorphous and crystalline solids, respectively. © 2001 MAIK “Nauka/Interperiodica”.
Recent years have witnessed a considerable interest
expressed by researchers in the properties of synthetic
opals. Opals possess a very unusual crystal structure [1,
2], which accounts for a number of the unique physical
properties they exhibit. Opals have turned out to be the
only solid-state materials with a photonic band gap for
visible light (photonic crystals). This has aroused the
intense interest of experimenters and, accordingly, has
stimulated an avalanche of papers dealing with this
effect (see, e.g., the pioneering works [3–5]).

Opals represent a porous material with a regular
arrangement of pores making up a regular lattice [1, 2].
This made it possible to construct a three-dimensional
opal-based nanocomposite with a cubic lattice of a
filler material (“matrix quasicrystals”), which is char-
acterized by a giant lattice constant (~3000–4000 Å)
and “heavy atomic masses” (see [6] and references
therein).

Nanocomposites based on an opal with semicon-
ductors introduced in its pores are promising materials
for the development of large-density arrays of elec-
tronic devices (see, e.g., [7, 8]).

In what respect is the opal crystal structure unusual?
Opals possess a fractal structure [9]. They consist of
closely packed spheres of amorphous SiO2, ~2000–
2500 Å in diameter (first-order spheres). These spheres
are made up of an array of SiO2 spheres of a smaller
diameter, ~300–400 Å (second-order spheres), which,
in turn, are formed of SiO2 particles about 100 Å in size
(third-order spheres). The lattice of the closely packed
spheres has octahedral and tetrahedral voids, which can
also be subdivided into voids of the first, second, and
third orders. In our analysis of the sound velocity data,
we will be interested in the first-order structure of
amorphous SiO2 spheres and the total fraction of the
opal porosity, which is 59% (the first-order pores add
up to 26%). The voids in the opal are connected to one
another through channels. The first-order amorphous
SiO2 spheres (and first-order octahedral, ~800 Å, and
1063-7834/01/4301- $21.00 © 20194
tetrahedral, ~400 Å, voids)1 make up a regular face-
centered cubic lattice with a giant spacing parameter of
~3000–4000 Å. The opal density is ~1.1–1.3 g/cm3 [9].

Thus, opals can be considered an amorphous
medium (first-order amorphous SiO2 spheres) with spa-
tially modulated properties (the regular arrangement of
the amorphous SiO2 spheres making up the cubic lat-
tice).

Earlier, we studied the heat conductivity [1, 13, 14]
and heat capacity [14] of single-crystal synthetic opals.
It was shown that the heat capacity of these materials at
constant pressure in the temperature range 3–50 K
behaves similarly to porous amorphous solids. It could
be expected that, at high temperatures, the heat capacity
of opals would coincide with that of crystalline SiO2.
(At T > 100 K, the heat capacities of amorphous and
crystalline solids, as a rule, coincide [15].)

The behavior of the lattice heat conductivity of sin-
gle-crystal opals is similar to that of classical semicrys-
talline materials, which represent an amorphous solid
with embedded crystallized regions. However, in the
case of opals, we encountered a new kind of semicrys-
talline material, in which the amorphous phase (the
first-order amorphous SiO2 spheres) acts as “atomic
masses” making up a cubic face-centered lattice. Such
a “semicrystalline” material, unlike the classical case
[16], was termed semiamorphous [14].

To gain a better understanding of the heat transport
processes in opals, it was of interest to elucidate how
the sound velocity would behave in these materials,
specifically whether it would be affected by the spatial
modulation of their properties (the regular arrangement
of the first-order amorphous spheres and the ensuing

1 In the course of the formation of opal-based nanocomposites, the
first-order voids and channels are filled by various methods [6,
10–12] with metals, semiconductors, and insulators, which form,
as already mentioned, matrix quasicrystals with a giant lattice
constant and heavy atomic masses (i.e., voids ~800 Å in size
filled with various materials).
001 MAIK “Nauka/Interperiodica”
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Behavior of various physical parameters in a single-crystal opal at low and high temperatures

Parameter
Behavior

low temperatures high temperatures

Sound velocity Typical of amorphous materials, T = 4–200 K Typical of crystalline materials, T = 200–300 K

Heat capacity Typical of amorphous materials, T < 50 K Typical of crystalline materials, T > 100 K

Lattice heat conductivity Typical of semicrystalline (semiamorphous) solids, T = 4–300 K
“crystallinity” of the medium) and how the “amorphic-
ity” of the opal associated with the presence of embed-
ded first-order amorphous SiO2 spheres would manifest
itself. Unfortunately, no studies of the sound velocity in
opals have been carried out thus far.

In this work, the longitudinal sound velocity (vL) in
a single-crystal opal sample used in a previous work
[14] was measured in the temperature range 4–300 K.
The sample to be studied consisted of first-order amor-
phous SiO2 spheres ~2350 Å in diameter, which made
up a cubic face-centered lattice with the spacing param-
eter α ~ 3300 Å [14].

The sound velocity vL was measured at a frequency
of 10 MHz along the [111] axis of the opal single crys-
tal. The technique employed in the measurements was
described in [17].

The sample measured 2.4 × 2.5 × 6 mm (Fig. 1). The
sound was launched along the 2.4-mm face, which
coincided with the [111] crystallographic direction.
The scheme of the vL measurement is presented in
Fig. 1. The quartz sensors were attached with Thiokol
32 cement. Special precautions were taken to prevent
cement penetration into the bulk of the sample (the
cement penetrated to a depth of no more than a few
tenths of a millimeter, which did not introduce a signif-
icant error into the vL measurement). The measure-
ments were conducted under vacuum.2 It was found
that at 300 K, vL = 2.1 × 105 cm/s (the accuracy of deter-
mination was ~10%). The experimental results
obtained for dvL/v300 K = f(T) (dvL = vT, K – v300 K) are
shown in Fig. 1a. The quantity dvL/v300 K exhibits a
nonstandard temperature dependence. Within the range
300–200 K, it increases with a decrease in temperature,
as anticipated for crystalline solids, whereas in the
range from 200 to 4 K, its temperature dependence is
typical of amorphous materials (cf. Fig. 1b) [18–20].
The results obtained on dvL/v300 K(T) correlate well
with the experimental data on the lattice heat capacity
and the heat conductivity of single-crystal opals [14].

As with the heat capacity and heat conductivity, we
encounter here the dual nature of opals in that they
behave simultaneously as a crystal and as an amor-
phous solid.

2 To speed up the onset of thermal equilibrium, 4He was admitted
into the chamber at a pressure of a few mbar. We believe that this
should not affect the measured velocity vL.
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As in the case of the heat capacity, the data obtained
on dvL/v300 K(T) at low temperatures can be interpreted
in terms of a two-level system tunneling model. As the
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temperature increases, this model becomes gradually
invalid, so that at high temperatures, the behavior of
dvL/v300 K(T) is fully governed by the “crystalline”
nature of the material.

The present experimental data and our earlier results
obtained in a study of the heat capacity and heat con-
ductivity of a single-crystal opal [14] are summarized
in the table illustrating the behavior of vL, κL, and C in
various temperature ranges.

We note with interest the dependence of vL on the
density d of a number of materials based on amorphous
quartz (amorphous quartz, amorphous SiO2 subjected
to uniaxial pressure, silica gels, and opals). This is
shown in Fig. 2. One observes a linear dependence of
vL on d.
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Abstract—Photoluminescence (PL) and temporal variation of optical absorption and radioluminescence (RL)
of LiF crystals after irradiation with an electron impulse are investigated by pulse spectrometry methods using
different irradiation regimes and different degrees of initial radiation damage. The difference in the RL and PL
characteristics of ionized  and  centers is revealed. Several mechanisms for inducing these centers by irra-
diation, which differ in energy and kinetic parameters and in temperature dependence, are proposed. It is estab-
lished that the ionized centers in the radiation active state are created due to the interaction of the respective
neutral centers with holes of different thermalization extent. A mechanism for the excitation of these radiation-
active centers is proposed. © 2001 MAIK “Nauka/Interperiodica”.

F2
+ F3

+

Color-center accumulation with a gain in the inte-
gral absorbed radiation dose in a material influences the
character and efficiency of the primary interaction of
radiation with a substance. Application of pulsed mea-
surement techniques allows one to investigate the inter-
action of electronic excitations with irradiation-
induced defects by direct methods. For example, it was
established that the energy yield of Frenkel pairs and
self-trapped excitons in a regular lattice decreases with
a gain of the absorbed radiation dose. At the same time,
the efficiency of the radiative channel of dissipation of
the absorbed energy increases [1]. The elucidation of
the mechanisms of excitation of irradiation-induced
radiation-active defects is of undoubted interest for a
description of the processes of defect creation.

The present work is aimed at investigating the radi-
oluminescence of  and  ionized electron color cen-
ters.

1. EXPERIMENTAL TECHNIQUE

Different types of electron centers (F, F2, F3, ,
and ) were preliminarily created in a crystal. The
required ratio between them was attained by variation
of the temperature at which the crystal was irradiated,
by the integral exposure dose, and by the temperature
and duration of keeping the crystal after its irradiation.
Then, the crystal was exposed to a single electron
impulse (EI) with the following characteristics: an EI
duration of 20 ns, an average electron energy of 200 keV,
and a fluence of 1011 cm–2.

The absorption relaxation kinetic curves were mea-
sured at the maxima of the absorption bands of color
centers, and the radioluminescence (RL) decay kinetics
of these centers was investigated in the time interval

F2
+ F3

+

F2
+

F3
+

1063-7834/01/4301- $21.00 © 20023
10−8–103 s after the termination of electron impulse
exposure. The investigations were carried out for dif-
ferent temperatures, in the interval 80–300 K, at which
the crystal was irradiated, and for various initial
degrees of radiation damage of the material.

The change in the center concentration was esti-
mated by the change in the absorption at the maxima of
the absorption bands or by the change in the photolumi-
nescence (PL) intensity of these centers. Since the cen-
ters are created not only during the EI exposure, but
also after the irradiation, the absorption and PL of the
irradiated crystal were measured in the specified time
interval after the EI exposure.

Measurements of the absolute values of the -center
concentrations in LiF crystals are complicated due to the
overlap of the absorption bands of these centers (460 and
420 nm [2]) and the band at 450 nm associated with F2
centers. Therefore, only relative concentration changes
were estimated from the PL intensity for these centers.

The dependences of the RL and PL intensities of
color centers on the exposure dose at 300 K were inves-
tigated by the following method. The crystal was irra-
diated with an EI series having a repetition frequency of
1 × 10–2 Hz. The RL intensity of the centers was mea-
sured 10 ns after the termination of each EI of the
series, while the PL intensity was measured just before
the onset of the next EI. At a constant EI repetition fre-
quency, the PL intensity is proportional to the number
of centers created during the EI exposure and for the
time interval between two sequential EIs.

The PL of the centers was investigated by exciting
it in the corresponding absorption bands. The PL of

 centers was excited in a 650-nm band, that of F2

centers, in a 450-nm band, and that of  centers, in a
460-nm band.

F3
+

F2
+

F3
+
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2. EXPERIMENTAL RESULTS

2.1. Irradiation-Induced  Centers

Three stages of the absorption increase at the maxi-
mum of the  absorption band at 650 nm (Fig. 1) were
shown earlier to be stimulated by electron impulse irra-
diation [3]. These stages can be recognized by their dif-
ferent characteristic times of response to EI duration. In
the first of them, the response is inertialess, while the
other two go on after irradiation. In the latter stages, the
characteristic times of the absorption increase depend
on the temperature at which the crystal was irradiated.
These stages are associated with the corresponding
mechanisms of center creation, which have different
time and energy characteristics and lead to different
temperature dependences of the processes.

It has been established that the first two stages of the
absorption increase are due to the creation of the cen-
ters resulting from the interaction of F2 centers with
holes of different thermalization extent, whereas the
third stage is due to the creation of  centers resulting
from the interaction of F centers and anion vacancies.

The RL appears as a result of EI irradiation of the
crystal, and its spectrum consists of several bands. The
spectral position of one band (910 nm) and its half-
width and temperature dependence coincide with the
corresponding characteristics of the PL of  centers
excited in the  absorption band (650 nm).

The RL pulse at 910 nm reveals two components
(Fig. 1). The short-term component is comparable in
duration to the electron impulse and observable at any
temperature in the interval 80–300 K. The long-term

F2
+
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+
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+
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+
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Fig. 1. Kinetics (a) of the absorption relaxation at the
-band maximum and (b) of the luminescence in the

910-nm band initiated by the exposure of the crystal to elec-
tron impulses at 300 K with F and F2 centers present in the
crystal prior to irradiation.

F2
+

P

component appears at T ≥ Ta, where Ta is the tempera-
ture of the delocalization of Vk centers in an LiF crystal
(140 K).

Comparative analysis of the PL and RL characteris-
tics of  centers shows the following:

(1) The RL intensity of  centers is proportional to
the concentration of F2 centers in the crystal at both 300
and 80 K (curves a, b in Fig. 2). At 300 K, the exposure-
dose dependence of the number of F2 centers accumu-
lated in the crystal coincides with that of the RL inten-
sity of  centers excited in this case, as is seen from
Fig. 2 (curve a). At 80 K, the experiment (curve b in
Fig. 2) was carried out in the following way. The F, F2,
and  centers were created in a crystal irradiated at
300 K. Then, the crystal was exposed to an EI series at
80 K. This extra radiation exposure led to the destruc-
tion of the accumulated centers, and luminescence at
910 nm was excited. In response to the exposure to the
first EI of the series, all preliminarily accumulated 
centers were completely destroyed. However, the lumi-
nescence at 910 nm was observed not only after the
exposure to the first EI of the series, but also after all
subsequent EIs. In this case, the luminescence intensity
was varied with the EI number (the extra exposure
dose) and its change was proportional to the change in
absorption at the F2-band maximum.

In contrast to the RL, the PL intensity of  centers
does not depend on the concentration of F2 centers in
the crystal. This conclusion follows from the results of
direct experiments on the excitation of the PL of 
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Fig. 2. Exposure-dose dependence of the absorption at the

band maxima of (1a, 1b) F2, (c) , and (1d, 1f) F3 centers;
of the RL intensity at (2a, 2b) 910 and (2d, 2f) 530 nm; and
(e) of the PL intensity of  centers. The EI repetition fre-
quency is  f = 1 × 10−2 Hz and the temperature is (a, c–e)
300 and (b, f) 80 K.
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centers in crystals with different concentrations of F2

centers, but with the same concentration of  centers.

(2) The RL intensity of  centers excited by a sin-
gle EI does not depend on the concentration of  cen-
ters present in the crystal prior to irradiation. This can
be concluded from the different exposure-dose depen-
dences of the -center RL excited after exposure to
each successive EI and of the number of  centers cre-
ated for the time interval between two sequential EIs
(curves 2a, c, respectively, in Fig. 2).

In contrast to the RL, the PL intensity of  centers
is proportional to the concentration of  centers in the
concentration range investigated (≤2 × 1017 cm–3).

(3) The temperature dependences of the short-dura-
tion component of the RL intensity and the PL intensity
of  centers are identical. Therefore, the activation
energies for the processes of the RL and PL tempera-
ture quenching are coincident at T ≥ 130 K (Fig. 3).

(4) The creation of  centers is accompanied by
the RL of these centers only at the first and the second
stage (Fig. 1). At the third stage,  centers are created
in the ground state at 300 K, within a time interval of a
second after the EI termination.

2.2. Irradiation-Induced  Centers

In the RL spectrum of an LiF crystal excited by an
EI, there is a band at 530 nm whose spectral position,
half-width, and temperature dependence are coincident
with the corresponding characteristics of the PL of 
centers.

The RL pulse at 530 nm, like the RL pulse at 910 nm
described above, has a short-term component compara-
ble with the EI in duration, and a long-term component
appearing at the delocalization temperature of Vk cen-
ters in the crystal.

In contrast to the PL at 530 nm, the RL intensity in
this spectral region does not depend on the concentra-
tion of  centers present in the crystal prior to irradi-
ation. This follows from the dissimilarity of the expo-
sure-dose dependences of the -center RL intensity
excited under the EI exposure and of the -center PL
intensity proportional to the concentration of these cen-
ters created during the EI exposure and for the time
interval between two sequential EIs (curves 2d, e in
Fig. 2).

The RL intensity at 530 nm is proportional to the
concentration of neutral F3 centers present in the crystal
prior to irradiation. This is evident from a linear corre-
lation, discovered by us, between the RL intensity and
the optical absorption at the absorption band maximum
(375 nm) of F3 centers at 300 and 80 K (curves f, d in
Fig. 2). The experiment, the results of which are pre-
sented in Fig. 2 by curve f, was carried out in the fol-
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lowing way. The F, F2, , , and F3 centers were cre-
ated in the crystal under irradiation at 300 K. Then, the
crystal was exposed to an EI series at 80 K. The band at
530 nm in the RL spectrum appeared not only as a
result of the exposure of the crystal, with  centers
having already been present in it, to the first EI, but also
because of the action of all subsequent EIs of the series.
As the extra EI exposure dose is increased, a correlation
is observed between the decrease in the luminescence
intensity in the 530-nm band and the optical absorption
at the F3-band maximum at 375 nm.

The following conclusions can be drawn from the
investigations into the irradiation-induced  centers
described above:

(1) The creation of  centers in the radiation active
state due to irradiation occurs in two time intervals:
during EI exposure and after EI termination, with the
delay time being determined by the Vk-center lifetime
at a corresponding temperature. Only the long-term
stages of the creation of these centers, observed after
irradiation, were known previous to our investigations.
The centers were created in the ground state as a result
of two processes: the interaction of F2 centers with
anion vacancies and the interaction of  centers with
F centers [4–6].

(2) The number of  centers in the radiation active
state created under EI exposure correlates with the con-
centration of neutral F3 centers preliminarily created in
the crystal, but does not dependent on the concentration
of  centers preliminarily created in the crystal.
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Fig. 3. Temperature dependence (1a) of the PL intensity at
910 nm excited in the 650-nm band and of the RL intensity
at (2a) 910 and (b) 670 nm stimulated by a single EI expo-
sure of an LiF crystal with F and F2 centers.
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3. DISCUSSION

In the RL spectrum induced by the exposure of an
LiF crystal to EIs, there are bands which coincide in
spectral and kinetic parameters with the luminescence
bands observed in the optically excited crystal. In par-
ticular, the RL at 910 and 530 nm can also be optically
excited in the absorption bands of  and  centers,
respectively.

The following general features were established
through comparative analysis of the RL characteristics
at 910 and 530 nm:

(1) The RL pulse at 910 nm, as well as at 530 nm,
has a short-term and a long-term component, the latter
appearing above the delocalization temperature of Vk

centers.

(2) The RL intensities at 910 and 530 nm are
independent of the concentrations of  and  cen-
ters, respectively, present in the crystal prior to irradi-
ation.

(3) The RL intensities at 910 and 530 nm correlate
with the concentrations of  and  centers, respec-
tively, present in the crystal prior to irradiation.

The similarity between the features of - and
-centers RL indicates the general mechanism of the

luminescence excitation of these centers under EI
exposure.

A set of experimental data on the irradiation-
induced luminescence of color centers, obtained by us,
indicates the identity of the PL and RL spectral and
kinetic characteristics of the ionized centers. However,
the presence of these ionized centers in the crystal prior
to irradiation does not affect the EI-excited lumines-
cence yield. To reconcile these, at first glance, contra-
dictory results, we suggest that the ionized centers cre-
ated during the EI exposure, but not those present in the
crystal prior to irradiation, change to the radiation
active state. Actually, direct quantitative measurements
show that, in the crystal free of  ionized centers prior
to irradiation, their creation, as well as luminescence
excitation at 910 nm in nanosecond and microsecond
time intervals, takes place as a result of EI exposure
(see, e.g., Fig. 1).

The ionized centers present in the crystal prior to
irradiation are completely destroyed during a single EI
at high excitation densities, such as those used in the
present work. In this case, the capture of one electron
by  centers results in the creation of F2 centers in the
singlet and triplet radiation-active states [2], while the
sequential capture of two electrons leads to the creation
of  centers in the ground state [7]. The destruction of

 centers under EI exposure as a consequence of the
capture of one or two electrons is followed by the cre-
ation of F3 or  centers, respectively.
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Thus, two alternative processes take place as a result
of the exposure to each electron impulse: the destruc-
tion of all ionized centers present prior to irradiation
and the creation of an additional number of ionized
centers. The intensity of the arising RL, as well as the
efficiency of the creation of ionized centers, is deter-
mined by the concentration of the corresponding neu-
tral centers preliminary created. This indicates that only
newly created  and  ionized centers are in the radi-
ation-active state.

The following mechanisms of the luminescence
excitation of the centers created are possible: (a) one
due to the reabsorption of the radiation of the other cen-
ters and (b) one due to the transfer of the electronic
excitation energy to the center created.

As is known, the absorptive transition in  centers
and the radiative transition in F2 centers are coincident
in position in the LiF spectrum [8]. The appearance of

-center luminescence during optical excitation in the
F2-center absorption band results from the reabsorption
of F2-center luminescence by  centers:

The luminescence bands of both F2 and  centers are
present simultaneously in the RL spectrum of a crystal
exposed to EI irradiation. Therefore, there is no reason
to exclude the reabsorption mechanism of -center
luminescence excitation. However, this mechanism
cannot be considered as dominant in an irradiated crys-
tal. Indeed, if the reabsorption mechanism were domi-
nant, correlation between the RL intensities of F2 and

 centers would be observed. However, there is no
correlation observed either with a temperature variation
during irradiation or with an additional creation of dif-
ferent -center concentrations in the crystal at a con-
stant F2 concentration. For example, as has been estab-
lished here, the F2-center RL undergoes strong quench-
ing at T ≥ 80 K, whereas the -center RL intensity
remains unchanged until a temperature of 130 K is
reached, above which quenching occurs (Fig. 3). It was
shown in [9, 10] that the efficiency of the thermally
activated intercombination transition within the F2 cen-
ter, which is the cause of F2-center RL quenching, does
not depend on the presence of  centers in the crystal.

Thus, the following facts have been established: the
coincidence of the kinetic parameters of the RL relax-
ation with the lifetime of band and self-trapped holes in
the crystal; the correlation of the luminescence yield
with the concentration of the corresponding charge
neutral centers preliminary introduced into the crystal;
and the independence of the luminescence yield from
the corresponding ionized center present in the crystal.
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All these facts together indicate, first, that the centers in
the radiation-active state are created in the process of
irradiation; second, that the corresponding neutral cen-
ters participate in the creation of the ionized centers;
and, third, that the creation process involves both the
band and self-trapped holes.

The following mechanism of creation of ionized
centers in the radiation-active state is proposed. At the
first stage, a band hole or a self-trapped hole is captured
in the vicinity of the corresponding neutral center. At
the second stage, tunneling of an electron from the neu-
tral center to the hole results in the creation of an ion-
ized center and a near-defect exciton. At the third stage,
the energy transfer occurs from the near-defect exciton
to the adjacent ionized center, followed by radiation
from it. According to the mechanism proposed, the cre-
ation processes of  centers, for example, can be rep-
resented by the following reactions: (a) the fast process

(1)

and (b) the slow process determined by the Vk-center
mobility,

(2)

where τ0 is the radiative lifetime of the center; τv is the
Vk-center lifetime; e0 is a near-defect electron excita-
tion; p and Vk are a band hole and a self-trapped hole,
respectively; and F2(S0) are F2 centers in the ground
singlet state.

The creation of  centers in the radiation-active
state is described by similar processes, starting with F3
centers in both reactions.

If the center radiative lifetime and the EI duration
are comparable, both products of the reaction in Eq. (1)
can be detected after the termination of the EI exposure.
One is detected by the absorption increase at the band
maximum, while the other is determined from the
appearance of the short-term component of the lumi-
nescence of the centers. Actually, in accordance with
[11, 12], τ0 of  centers depends on temperature and
equals 30 ns at 80 K and 15 ns at 300 K, while τ0 of 
centers equals 8 ns and does not depend on tempera-
ture.

According to Eq. (2), the creation time of the ion-
ized centers is determined by the Vk-center mobility,
which is known to be dependent on the temperature at
which the crystal is irradiated. The kinetic and energy
parameters of this reaction coincide with the respective
characteristics determined from the kinetic curves of
absorption decrease in the Vk-absorption band.

F2
+

F2 S0( ) p F2
+ e0+ +

F2
+( )∗ F2

+( ) hϑ F2
+( )+

τ0

F2 S0( ) Vk F2
+ e0+ +

F2
+( )∗ F2

+( ) hϑ F2
+( ),+τ0

τv

F3
+

F2
+

F3
+

PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      200
In accordance with Eqs. (1) and (2), the relaxation
kinetics of the absorption at the maximum of the
absorption band of the ionized centers and the RL exci-
tation kinetics for these centers must exhibit both a
nanosecond and a slow component. This finds experi-
mental evidence (see, e.g., Fig. 1).

The localization of a hole is suggested in the region
of the neutral radiation defect, in accordance with
Eqs. (1) and (2). One of the reasons for localization
could be the lattice distortion in the defect region,
which leads to a change in the migration conditions for
electronic excitations in the crystal.

The lattice relaxation in the defect region results in
potential profile distortion as compared to the perfect
crystal. This distortion has an oscillatory character and
spreads over a distance of several lattice constants. The
occurrence of a barrier or a potential well very close to
the defect depends on the relative size of the substitu-
tional defect. Our estimates [1] suggest a potential well,
appearing very close to the F-center region, for a posi-
tive charge in alkali halide crystals. A hole being sepa-
rated from the defect by a certain distance can be
trapped in the potential profile distortion region by one
of its minima. It is likely that this situation occurs not
only in the F-center region, for which estimates have
been made, but also in the region of neutral defects,
such as F2 and F3 centers.

Evidently, the localization of a charge of one sign in
the lattice (holes in the case considered) initiates the
attraction of a charge of the opposite sign to this region
with the creation of a near-defect exciton (NDE). If a
hole captures a band electron, an NDE is created near a
neutral center. If an electron of a neighboring defect
tunnels to the hole, an NDE is created near the ionized
center as a result of this tunneling.

The fast creation of ionized centers (with respect to
the EI exposure) with efficiency dependent on the con-
centration of the corresponding neutral centers and
independent of temperature is evidence in favor of the
tunneling creation process.
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Abstract—Atomic collision cascades initiated by Ar and Xe ions (with energies of 25, 40, and 50 eV) normally
incident on the Al(100) crystal surface at a crystal temperature of 300 K have been simulated by the molecular
dynamics technique. The formation of vacancies and radiation-adsorbed and interstitial atoms in a cascade is
discussed. It is demonstrated that the numbers of surface and bulk vacancies formed in cascades under bom-
bardment of the Al(100) surface by Xe ions reach two maxima within 0.2–0.3 and 0.7–1.0 ps after the cascade
initiation, whereas the number of vacancies generated under bombardment by Ar ions reaches one maximum
within 0.2–0.3 ps after the cascade initiation. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The molecular dynamics technique [1, 2] with the
use of many-body atom–atom potentials [3] makes it
possible to describe correctly the formation of lattice
defects at all stages, including the recombination of
unstable defects in a low-energy atomic collision cas-
cade under ion bombardment. Considerable interest is
currently being expressed by researchers in the mecha-
nisms of defect formation in the near-surface region of
light crystalline targets upon their bombardment by
heavy ions when nonlinear collisional effects (for
example, the “clearing-the-way” effect [4]), which can
be simulated using only the molecular dynamics tech-
nique, are accompanied by surface effects such as the
formation of radiation-adsorbed atoms (adatoms) and
surface vacancies [5–9]. In the present work, we dis-
cussed the elastic energy loss distribution of bombard-
ing ions over the target depth, the formation of surface
and bulk vacancies, as well as of radiation-adsorbed
and interstitial atoms, and changes in the mean square
displacements of atoms in the course of cascade evolu-
tion under normal bombardment of the Al(100) crystal
surface by Ar and Xe ions with energies of 25, 40, and
50 eV at a crystal temperature of 300 K.

2. MOLECULAR DYNAMICS MODEL

Calculations were performed with a model Al crys-
tal composed of 4032 atoms with a lattice constant of
4.05 Å. The periodic boundary conditions were
imposed on the lateral faces [2]. All atoms were
arranged in fourteen layers. The atom–atom interac-
tions were described by the many-body potential,
1063-7834/01/4301- $21.00 © 20029
which, at high energies, was sewed together with the
Ziegler–Biersack–Littmark potential [10]. The latter
potential was also used to describe the ion–atom inter-
actions. The equations of particle motion were solved
by the Verlet method [2]. The integration was per-
formed with a time step of no longer than 4.5 fs. The
temperature was simulated by specifying a constant
temperature in a layer on the lateral faces and the bot-
tom of the crystal. This layer also dissipated the energy
introduced by ions into the crystal [11]. Variations in
the temperature in the crystal stabilized without inter-
action with ions were no more than 4% of the mean
temperature. The interstitial atoms and vacancies were
identified using an algorithm proposed by Karetta and
Urbassek [6]. When the crystal defects were identified
after the cascade evolution for 1 ps, the law of conser-
vation of matter held good to better than 94%. The ini-
tial coordinates of ions incident on a given surface
region [12] were calculated according to the law of ran-
dom numbers. In all cases, we carried out 200 compu-
tations of collisional cascades and traced each cascade
in the initial crystal for 4 ps.

3. RESULTS AND DISCUSSION

3.1. Elastic Energy Losses by Ions

The elastic energy loss distributions of ions over the
depth of an Al crystal are shown in Fig. 1. In what fol-
lows, the data averaged over the number of simulated
experiments for a particular quantity will be displayed
in the figures. The reflected Ar and Xe ions carry away,
on the average, an energy of 1–3 eV per bombarding
ion from the crystal. As the initial energy increases, the
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Elastic energy loss distributions of (1, 3, 5) Ar and
(2, 4, 6) Xe ions over the crystal depth at different energies
E (eV): (1, 2) 25, (3, 4) 40, and (5, 6) 50. Layers: –1 (energy
carried away by reflected ions), 0 (adatom layer), and 1 (sur-
face layer of the crystal).
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Fig. 2. Dependences of the number of (a) adatoms and (b)
interstitial atoms on the cascade time upon bombardment by
(1, 3, 5) Ar and (2, 4, 6) Xe ions with different energies
E (eV): (1, 2) 25, (3, 4) 40, and (5, 6) 50.
reflection coefficient of Ar ions remains equal to unity,
whereas the reflection coefficient of Xe ions decreases
from 0.96 at 25 eV to 0.73 at 40 eV and to 0.44 at 50 eV.
This explains the small increase in the energy carried
away by the reflected Ar ions and the opposite tendency
observed for the Xe ions. Moreover, the energy losses
of both ions in an adatom layer above the crystal sur-
face also decrease. As can be seen from Fig. 1, the Xe
ions penetrate deeper into the crystal as compared to
the Ar ions, which, at initial energies of 40 and 50 eV,
lose ~90% of the energy in the first and second atomic
layers (including the adatom layer), whereas the Xe
ions at the same energies lose ~60% of the initial
energy in the third and fourth layers.

For Xe ions, the velocity component normal to the
surface changes its sign within 0.2–0.4 ps after the ini-
tiation of the cascade as a result of simultaneous inter-
action between the Xe ion and two or three atoms
knocked from equilibrium positions. Note that these
atoms also interact with atoms of deeper layers. Coop-
erative retardation with subsequent simultaneous
reflection of the heavy ion by a large number of light
atoms of the lattice can be treated as the completion of
processes in which light atoms of the target “clear the
way” ahead of the moving heavy ion. These processes
at higher energies were simulated by Shulga et al. [4].
The reflection of Ar ions proceeds through the same
mechanism but is observed somewhat earlier, in the
range 0.1–0.2 ps, and closer to the surface.

3.2. Radiation-Adsorbed and Interstitial Atoms

It is seen from Fig. 2a that, in all cases, the number
of stable adatoms formed under bombardment by Xe
ions (hereafter, the data for the Xe ions are shown by
the curves with closed symbols) is larger than that pro-
duced under bombardment by Ar ions (the data for the
Ar ions are displayed by the curves with open sym-
bols). The number of adatoms (Nad) produced under Xe
ion bombardment reaches a maximum more slowly
(~0.8–1.0 ps) compared to Ar ions (~0.2–0.6 ps). For
both ions, an increase in the initial energy leads to a shift
in the maximum toward longer times by 0.1–0.2 ps. In
the case of Ar ions, the number of stable adatoms insig-
nificantly increases with an increase in the ion energy.
At the same time, the number of adatoms formed under
Xe ion bombardment sharply increases as the ion
energy increases from 25 to 40 eV. The number Nad

reaches a stationary value within 1.1 and 1.5 ps after the
initiation of cascades by Ar and Xe ions, respectively.

In the case of Xe ions, the values of Nad for all the
initial energies increases more smoothly in the range
0.2–0.4 ps. This is caused by interactions of the inci-
dent ion and primary recoil atoms with the surface
atoms and also, possibly, by the fact that curvilinear
atomic collision sequences induced at the surface attain
the same crystal surface [13]. Note that the atomic sub-
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stitution collision sequences along the 〈110〉  directions
can be induced in the Al crystal even at an ion energy
of 25 eV, because, according to [14], the threshold gen-
eration energy for the atomic substitution collision
sequences along these directions in the Al crystal with an
interaction potential proposed in [10] is equal to 6 eV. In
the same time range, these mechanisms of the adatom
formation are also efficient in the case of Ar ions (see
Fig. 2a), since Ar ion bombardment, as a rule, brings
about the formation of the Al primary recoil atoms with
higher energies and larger velocity components in the
(100) plane as compared to their normal components.
For example, after the 0.1-ps evolution of cascades at an
initial energy of 25 eV for Ar and Xe ions, the ratio
between the mean-square displacement components nor-
mal and parallel to the (100) plane was equal to 2.9 and
8.45 for Ar and Xe, respectively. It is seen from Fig. 2a
that the formation of adatoms under Ar ion bombard-
ment is limited by the above mechanisms.

The number Nad of adatoms formed under bombard-
ment by Xe ions reaches a maximum in the range 0.8–
1.0 ps due to the interaction of the surface atoms with
the ion reflected from deeper atomic layers and the
recoil atoms. In this case, the momentum can be trans-
ferred to the surface atoms by generating two or three
steps of the atomic substitution collision sequences in
the range 0.4–0.6 ps, which are directed from the bulk
of the crystal toward the surface and result in adatom
formation. Note that the Xe ion can remain in the crys-
tal. In turn, the mean energy of the Xe ions leaving the
crystal is equal to 2.5–5.5 eV, whereas the mean energy
of the Ar ions is 1.5–2.0 eV, depending on the initial
energy. Therefore, the probability of the adatom forma-
tion by the Xe ion upon leaving the crystal is higher
than that by the Ar ion. The mean residence time of Ar
ions in the crystal is ~0.5 ps without regard to their ini-
tial energies. The mean residence time of Xe ions is
equal to ~1.2 ps at ion energies of 40 and 50 eV and
~0.7 ps at an ion energy of 25 eV. This agrees with the
times that correspond to the largest values of Nad.

As can be seen from Fig. 2b, the number of intersti-
tial atoms formed under ion bombardment reaches a
stationary value within 1.0–1.6 ps after the cascade ini-
tiation for Ar ions and within 1.7–2.5 ps for Xe ions.
The bombardment by Xe ions generates a larger num-
ber of interstitial atoms in the range ~0.2–1.5 ps. After
cascade evolution for 2 ps, the number of interstitial
atoms retained in the crystal in the case of Ar ions is
somewhat larger than that in the case of Xe ions. This
can be explained by the higher probability that the
atomic substitution collision sequences along the 〈110〉
direction is formed by the Ar ions at the collisional
stage of the cascade. Another mechanism of the forma-
tion of interstitial atoms in the Al crystal can consist in
relocating the Al recoil atoms deep into the crystal by a
distance equal to 1.5–2 lattice constants [15–17]. For
Ar and Xe ions with an energy of 50 eV, the number of
PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      200
these relocations is equal to ~0.35 relocations per ion.
The time it takes for the number of interstitial atoms Nin

to reach the maximum value (~0.2–0.3 ps) does not
depend on the energy and the type of ions and coincides
with the characteristic time of the adatom formation at
the collisional stage of the cascade. This suggests an
identical mechanism of the formation of these defects
in the range 0.2–0.5 ps.

3.3. Surface and Bulk Vacancies

As is seen from Fig. 3a, the number of surface
vacancies Nv, s (vacancies in the first atomic layer)
attains a maximum in the range 0.2–0.3 ps irrespective
of the initial energy of Ar ions. The number Nv, s

reaches a stationary value within 1.2–1.6 ps after the
cascade initiation. In the case of Xe ions, Nv, s has two
maxima. The first maximum is observed for all initial
energies of the Xe ion in the same time range as for the
Ar ions. The time that corresponds to the second maxi-
mum depends on the initial ion energy: its value is
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Surface vacancies per ion
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Fig. 3. Dependences of the number of (a) surface and
(b) bulk vacancies on the cascade time upon bombardment
by (1, 3, 5) Ar and (2, 4, 6) Xe ions with different energies
E (eV): (1, 2) 25, (3, 4) 40, and (5, 6) 50.
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equal to 0.6–0.7 ps at an energy of 25 eV and 1.0–1.1 ps
at energies of 40 and 50 eV. As a rule, the second max-
imum of Nv, s is attained upon bombardment by the Xe
ions which penetrate into the crystal at a rather small
depth (1–3 atomic layers) and have a sufficiently high
energy to form the adatom and the surface vacancy
upon leaving the target. For Xe ions, the number of sur-
face vacancies reaches a stationary value within 1.7–
2.5 ps after the cascade initiation. The number of stable
surface vacancies at ion energies of 25 and 40 eV is
larger in the case of Xe ions, whereas at an ion energy
of 50 eV after 2.3 ps, this number for Ar ions only
slightly exceeds that for Xe ions.

It can be seen from Fig. 3b that the number of bulk
vacancies Nv, b (the vacancies are located deeper in the
first atomic layer) at different energies of Ar and Xe
ions attains maxima in the same time ranges as the
number of surface vacancies Nv, s, because vacancies of
both types are generated through the same mechanism.
The bombardment by Xe ions generates a considerably
larger number of stable bulk vacancies due to a deeper
penetration of heavy ions into the crystal and the atten-
dant relocations of atoms from the bulk toward the sur-
face. As for surface vacancies, the number of stable
bulk vacancies drastically increases with an increase in
the ion energy from 25 to 40 eV. At an initial energy of
25 eV, the cascade evolution for 4 ps results in a spatial
separation of vacancies (located in the first three atomic
layers) and interstitial atoms (located in the fourth to
twelve atomic layers). At initial energies of 40 and
50 eV, the profiles of vacancies and interstitial atoms
overlap in the fourth to sixth layers.

3.4. Cascade Relocations of Atoms

The dependences of the number of atoms leaving
their Wigner–Seitz cells NWS on the cascade time are
depicted in Fig. 4. The number of atomic relocations at
the relaxation stage of the cascade is larger for Xe ions
at all bombarding ion energies. The number of atoms
NWS attains a stationary value within 0.9–1.3 and 1.5–
2.0 ps after the cascade initiation for Ar and Xe ions,
respectively. The time dependence of NWS exhibits two
maxima for the cascades initiated by Xe ions and one
maximum for the cascades induced by Ar ions. Note
that the largest values of NWS are observed at the same
times as those of Nv, s and Nv, b in Fig. 3. The first max-
imum of NWS is determined by atomic relocations at the
collisional stage of the cascade when the ion penetrates
into the crystal. The second maximum is associated
with the backward motion of the Xe ion and its related
collective movement of atoms toward the surface. For
Ar ions, both stages of the ion motion in the crystal dif-
fer in time by ~0.1 ps, which leads to the appearance of
one maximum in the dependence of NWS. In this case,
the probability of atomic relocations associated with
the motion of the Ar ion from the crystal is less than that
PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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of a similar process with the participation of the Xe ion
for the energy reasons considered in Section 3.2 and
also because the Ar ions virtually do not penetrate deep
into the crystal. In particular, at an ion energy of 50 eV,
the number of atomic relocations from layer to layer in
the [100] direction deep into the Al crystal is equal to
~3.2 relocations per ion for ions of both types, whereas
the number of relocations toward the surface is 5.85
and 1.82 relocations per ion for Xe and Ar ions, respec-
tively.

The mean square atomic displacements per cascade
(R2) were calculated from the relationship

where x0i, y0i, and z0i and xi, yi, and zi are the initial and
current coordinates (i = 1, …, NWS) of atoms leaving
their Wigner–Seitz cells. The above inferences con-
cerning the atomic relocations are illustrated by the
dependences of the components of mean square dis-
placements on the cascade time upon bombardment by
Ar and Xe ions with an energy of 50 eV (Figs. 5a, 5b).
In the case of Ar ions, the mean square displacement

components  in the [100] direction (the initial direc-

tion of the ions) and  in the (100) plane within the
crystal drastically increase for the first 0.2 ps. The dis-

placements of adatoms  on the (100) surface
increase within 0.1 ps after the cascade initiation and
attain a maximum for ~0.5 ps. At the same time, the

adatom displacements  normal to the surface insig-
nificantly affect R2. For the Xe ions, weak maxima in the

dependences of  and  in the range 0.3–0.4 ps in
Fig. 5b correspond in time to the first maxima of Nv, s
and Nv, b (Figs. 3a, 3b) and the maximum of Nin

(Fig. 2b). The contribution of adatoms to R2 for the first
0.5 ps of the cascade evolution is insignificant, even
though it increases beginning with 0.1 ps. The second
sharp increase in R2 (Fig. 5b) in the range 0.5–1.0 ps is

primarily due to an increase in  and , even

though  and  also increase in this range.

Upon bombardment by Xe ions with an energy of

25 eV, the mean square displacement components 

and  predominantly contribute to R2 for the first
0.3 ps, whereas the contribution from atoms is small. In
the range 0.5–1.0 ps, the main contribution to R2 is

made by the adatoms (  +  ~ 17 Å2), whereas

 and  are equal to 2 and 4 Å2, respectively. In the
case of Ar ions with an energy of 25 eV, the mean
square displacement attains a sole maximum for
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~0.5 ps. For Ar and Xe ions with an energy of 40 eV, the
dependences of the mean square displacement compo-
nents are in qualitative agreement with those obtained
at an initial energy of 50 eV.

4. CONCLUSION

Therefore, upon bombardment of the Al crystal by
Xe ions with energies of 25, 40, and 50 eV, the time
dependences of Nv, s and Nv, b exhibit two maxima in the
ranges 0.2–0.3 and 0.8–1.0 ps. It was demonstrated that
the first maximum appears upon penetration of the Xe
ion into the crystal and stems from the atom–atom and
ion–atom interactions which bring about the formation
of adatoms and interstitial atoms. The second maxi-
mum is associated with the motion of the reflected ion
and the accompanying atoms away from the bulk of the
crystal toward the surface. In turn, this process is
attended by the formation of adatoms, even though the
maximum in the time dependence of Nad is not resolved
into two separate peaks. In the case of Ar ions, only one
maximum at 0.2–0.3 ps is observed in the time depen-
dences of Nv, s and Nv, b, irrespective of the ion energy.
In the simulation of collision cascades in Cu and Ni
crystals under the same bombardment conditions and
with the potentials proposed in [18] and [10], one max-
imum of the number Nv, s and one or two maxima of Nad

are usually observed in the course of the cascade evolu-
tion.
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Abstract—The effect of grain-boundary dislocation transformations on diffusion in nanocrystalline solids is
discussed. A theoretical model describing the enhancement of diffusion processes associated with the climb of
grain-boundary dislocations in nanocrystalline solids is developed. © 2001 MAIK “Nauka/Interperiodica”.
The physical properties of nanocrystalline solids
differ substantially from those of polycrystals of the
same chemical composition (see, e.g., [1–10]). In par-
ticular, the nanocrystalline solids synthesized in
strongly nonequilibrium conditions exhibit anoma-
lously enhanced diffusion for at least a certain time
after preparation [2, 9, 10]. For instance, the self-diffu-
sion coefficient in nanocrystalline fcc materials
exceeds by two to four orders of magnitude the grain-
boundary diffusion coefficient in polycrystalline fcc
materials of the same chemical composition [2, 9, 10].

According to [2], there are three factors that account
for the enhanced diffusion in nanocrystalline solids: (1)
Relaxation of grain-boundary structures, which occurs
through relative grain displacements and reduces the
free volume of grain-boundary structures, is impeded in
nanocrystalline solids (this is due to the fact that the
geometric conditions of relaxation of adjacent grain
boundaries are usually poorly compatible because of
the small nanocrystallite size). (2) In nanocrystalline
solids, the volume fraction of triple grain-boundary
junctions, where diffusion proceeds faster than in the
“usual” grain boundaries, is extremely large. (3) The
concentration of impurities which interfere frequently
with grain-boundary diffusion is lower in nanocrystal-
line solids than in polycrystals.

However, the explanation put forward in [2] for the
enhanced-diffusion phenomenon in nanocrystalline
solids does not take into account the part played by
grain-boundary dislocations in diffusion processes. At
the same time, ensembles of grain-boundary disloca-
tions are characterized by an extremely high density in
nanocrystalline materials and strongly affect many
physical properties of these materials (see, e.g., [11,
12]). The main objective of this work was to develop a
theoretical model that would describe the effect of
grain-boundary dislocation climb on diffusion pro-
cesses in nanocrystalline solids.
1063-7834/01/4301- $21.00 © 0035
1. GRAIN-BOUNDARY DISLOCATION 
TRANSFORMATIONS 

IN NANOCRYSTALLINE SOLIDS

Nanocrystalline solids are usually prepared under
strongly nonequilibrium conditions (see, e.g., [1–5]). A
nonequilibrium defect structure forms in the grain-
boundary phase. In particular, the grain boundaries
contain “excess” grain-boundary dislocations and, in
addition, the geometrically necessary conditioned
grain-boundary dislocations (i.e., dislocations that
account for the misorientation of boundaries and which
are associated with the structural geometry of the
boundaries) are randomly displaced relative to their
equilibrium spatial positions [11–13] (Fig. 1a). During
a certain relaxation period after the synthesis of a
nanocrystalline sample, the ensemble of grain-bound-
ary dislocations undergoes transformations, which are
accompanied by a decrease in its energy. The excess
dislocations annihilate, and the geometrically neces-

(a) (b)

Fig. 1. Dislocation structure of (a) nonequilibrium and (b)
equilibrium grain boundaries.
2001 MAIK “Nauka/Interperiodica”
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sary dislocations move to their “equilibrium” positions
(Fig. 1b).

In our opinion, the grain-boundary dislocation
transformations under study considerably affect the dif-
fusion processes in nanocrystalline solids. Indeed, dis-
placements of grain-boundary dislocations are accom-
panied by changes in their dilatation fields, which exert
a noticeable effect on the migration of point defects,
i.e., diffusion carriers, while the dislocation climb in
grain boundaries is accompanied by the emission and
absorption of point defects. The effect of the dilatation
fields of grain-boundary dislocations on diffusion was
studied in detail [14] for the case of transformation of
such dislocations in the course of grain-boundary
amorphization in nanocrystalline and polycrystalline
solids. In the subsequent sections of this paper, we con-
sider the effect of grain-boundary dislocation climb (as
relaxation processes characteristic of grain-boundary
structures) on vacancy emission and the corresponding
diffusion enhancement in nanocrystalline solids.

2. VACANCY EMISSION IN THE CLIMB 
OF GRAIN-BOUNDARY DISLOCATIONS

The climb of grain-boundary dislocations is accom-
panied by the emission and absorption of vacancies and
interstitials (Fig. 2). Note that because the mobility of
vacancies is substantially higher than that of the inter-
stitials [15], the emission of vacancies (the “detach-
ment” of vacancies from the dislocation core and their
subsequent migration into the adjacent grain-boundary
phase, see Fig. 2a) is more intense than that of intersti-
tial atoms (Fig. 2b). It should also be pointed out that
the absorption of vacancies occurring in the course of
the climb of a grain-boundary dislocation (Fig. 2c)
requires a continuous vacancy supply from the sur-
rounding material, whereas the emission of vacancies
(Fig. 2a) is not impeded by such a restrictive require-
ment. Therefore, the emission of vacancies (Fig. 2a)

(a) (b) (c) (d)

Fig. 2. Grain-boundary dislocation climb.
P

proceeds at a higher rate than their absorption, Fig. 2c
(the more so than that of the interstitials, Fig. 2d). In
view of this, we restrict our subsequent analysis of the
factors affecting diffusion to the grain-boundary dislo-
cation climb processes that involve vacancy emission
(Fig. 2a).

The major contribution to the energy of nonequilib-
rium defect structures in grain boundaries (Fig. 1a) usu-
ally results from the existence of excess grain-bound-
ary dislocations. Therefore, the processes of climb and
annihilation of such dislocations accompanied by
vacancy emission are characteristic of the relaxation of
grain-boundary structures in nanocrystalline solids. As
an illustration, let us consider the climb and subsequent
annihilation of two grain-boundary dislocations mak-
ing up a vacancy-type dipole (Fig. 3).

Because the stress fields of the dislocations making
up a dipole are screened efficiently with a screening
radius λ (where λ is the dipole arm, see Fig. 3a), the
energy W of this dislocation dipole is given in terms of
the linear theory of dislocation elasticity [15, 16] by the
approximate expression

 (1)

Here, Wd(λ) is the energy of a dislocation characterized
by the screening radius λ of its stress fields, d is the dis-
location length, ±b are the Burgers vectors of the dislo-
cations, G is the shear modulus, ν is the Poisson ratio,
r0 is the dislocation core radius, and Z is a factor taking
into account the contribution of the dislocation core to
the dislocation energy. The climb of a grain-boundary
dislocation to an average interatomic distance a in the
grain boundary (Figs. 3a, 3b) reduces the dipole energy
by an amount ∆W = W(λ) – W(λ – a) and is accompa-
nied by the emission of d/a vacancies. Therefore, the
energy of formation of one vacancy involved in the

W λ( ) 2Wd λ( ) Gb2d
2π 1 ν–( )
----------------------- λ

r0
---- 

 ln z+ .= =

λ

(a) (b) (c)

Fig. 3. Transformation of the grain-boundary dislocation
dipole.
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climb of the dislocations making up the dipole
(Figs. 3a, 3b) can be written as

 (2)

where  is the energy of the vacancy formation in the
dislocation-free grain-boundary phase and Wv(λ) is the
decrease in the dislocation dipole energy (Fig. 3a)
caused by the emission of one vacancy:

 (3)

Equation (3) is valid for λ > 2a. For λ ≤ 2a, the stress
fields of the dislocations making up the dipole are local-
ized near the dislocation cores and the dislocation energy
is determined by the factor Z. The climb of dislocations
toward one another within the region of λ ≤ 2a is essen-
tially the process of dislocation annihilation, in which
2(d/a) vacancies are emitted and the dipole energy

W(λ = 2a) ≈  decreases to zero. As a conse-

quence, for λ ≤ 2a, the energy of the dipole of annihi-
lating dislocations decreases on the emission of one
vacancy by an amount

 (4)

The dependence of Wv on λ/a given by Eqs. (3) and (4)
is plotted in Fig. 4 within the region of λ from 0 to 15a
for the following characteristic values of the parame-
ters: G = 50 GPa, a ≈ 0.3 nm, b ≈ a/3, Z ≈ 1, and ν ≈
1/3. The shape of this relation shows that the vacancy
emission is facilitated when the dislocations making up
the dipole approach each other.

3. EFFECT OF GRAIN-BOUNDARY 
DISLOCATION CLIMB 

ON THE DIFFUSION COEFFICIENT

The coefficient of diffusion occurring via the
vacancy mechanism (which is usually the most efficient
mechanism) is given by the relation (see, e.g., [15])

 (5)

where k is the Boltzmann constant, T is the absolute

temperature, D0 is a constant, and  is the activation
energy for the vacancy migration. The factor

exp( /kT) in Eq. (5) characterizes the equilibrium
concentration of vacancies (as the main diffusion carri-
ers) in a solid when the influence of defect transforma-
tions and dilatation fields on diffusion is ignored. In the
vicinity of climbing dislocations (Fig. 3), the vacancy
concentration exceeds the equilibrium concentration,
because the vacancies are produced here in more favor-
able conditions. This effect is characterized quantita-

Ẽv
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tively by the change in energy for the vacancy forma-

tion    =  – Wv and by the corresponding
local change in the diffusion coefficient D  D*,
where D* in the vicinity of climbing grain-boundary
dislocations (Fig. 3) can be written as

 (6)

Using the Wv(λ) relation (Fig. 4) and averaging the fac-
tor exp(Wv/kT) over λ within the λ interval from 0 to
15a, we find that in the vicinity of climbing disloca-
tions (Fig. 3), the diffusion coefficient is D* ≈ 3 × 105D.

The average diffusion coefficient in a solid with

climbing grain-boundary dislocations is  ≈ f D*,
where f is the fraction of the regions with the climb. In
nanocrystalline solids, during the relaxation period
(after their preparation in strongly nonequilibrium con-
ditions), practically all grain boundaries contain non-
equilibrium defect structures, in particular, excess dis-
locations, whose climb enhances diffusion. In this case,
the coefficient f is approximately equal to the volume
fraction of the grain-boundary phase; i.e., f ≈ 0.1–0.5,
depending on the average grain size in the nanocrystal-

line solid. Therefore, we have  ≈ f D* ≈ (3–15) × 104D.
Thus, during the relaxation of grain-boundary struc-
tures, the climb of grain-boundary dislocations (Fig. 3)
substantially enhances the diffusion processes, which is
manifest in the average diffusion coefficient changing
by four to five orders of magnitude.

To sum up, the macroscopic properties of nanocrys-
talline solids depend noticeably on the properties of
grain boundaries. In particular, grain-boundary disloca-
tion transformations are capable of appreciably affect-
ing the diffusion characteristics of nanocrystalline sol-
ids. The theoretical analysis carried out in this work
suggests that the climb of grain-boundary dislocations

Ev
f Ẽv

f
Ev

f

D* D0 Ev
m/kT–( ) Ev

f Wv–( )/kT–( )expexp=

=  D Wv /kT( ).exp

D̃

D̃
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1
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2

3

4
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6

Fig. 4. Wv vs. λ/a relation.
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making up dipoles (Fig. 3) is accompanied by intense
emission of vacancies, which enhances the diffusion in
nanocrystalline solids by several orders of magnitude.
The theoretical estimates obtained are in satisfactory
agreement with experimental data on the diffusion
properties of fcc nanocrystalline materials [2, 9, 10].
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AND PHYSICS OF STRENGTH
Magnetoplastic Effect in Twinning of Bismuth Crystals 
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Abstract—Twinning of bismuth crystals under a concentrated load is found to be partly suppressed by a con-
stant magnetic field. The main mechanisms of the influence of a constant homogeneous magnetic field on the
twinning of bismuth single crystals subjected to long-term concentrated loading is studied. It is revealed that
the length and the number of wedge twins at an indentation decrease in the magnetic field. This suggests a
decrease in the mobility of partial twinning dislocations and in the intensity of the nucleation of wedge twin
interlayers in a constant magnetic field. Application of the magnetic field increases the width of twins at the
mouth. No anisotropy of the magnetoplastic effect is observed upon twinning. © 2001 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION
Over the last decade, the magnetoplastic effect in

metals has been intensively investigated by several
groups of researchers in Russia and other countries [1–
4]. In spite of the significant achievements in this area,
the effect of a magnetic field on twinning, an important
kind of crystallographic form change, remains practi-
cally unexplored.

According to the modern concepts of the nature of
the magnetoplastic effect, the external magnetic field
brings about depinning of perfect dislocations from
paramagnetic impurities (due to spin-dependent transi-
tions in the system formed by a dislocation and an
impurity center) and their subsequent motion in the
elastic stress field. Since the cores of partial twinning
dislocations contain no dangling interatomic bonds [5],
they can have a smaller number of paramagnetic cen-
ters as compared to perfect dislocations. In this respect,
experimental study of the magnetoplastic effect in met-
als in which plastic deformation proceeds through
motion of both perfect and partial dislocations, i.e.,
through glide and twinning simultaneously, can pro-
vide better insight into the physical mechanisms of the
magnetoplastic effect.

2. SPECIMENS AND EXPERIMENTAL 
TECHNIQUE

Bismuth single crystals grown by the Bridgman
method from a 99.97% pure raw material (with a lead
impurity) were used in the measurements. A smooth
surface, suitable for investigations without additional
processing, was prepared by cleaving a bismuth single
crystal along the (111) cleavage plane. The specimens
had the shape of a rectangular prism 10 × 5 × 5 mm in
size. As was shown earlier [6], the duration of the spec-
1063-7834/01/4301- $21.00 © 0039
imen exposure to air does not significantly affect the
micromechanical characteristics of bismuth crystals.
Measurements were carried out using a PME-3 micro-
hardness tester with a diamond pyramid applying a
concentrated load. A special device was used to place a
specimen in the magnetic field in such a way as to elim-
inate instrumental effects, namely, distortion of the
magnetic flux by ferromagnetic parts of the equipment
and the Maxwell pressure forces. The components of
the experimental equipment, the diamond-point chuck,
and the loads on the indenter rod were prepared from
nonferromagnetic materials (copper and brass). Special
control tests showed that the action of the magnetic
field on the elements of the measuring equipment did
not cause instrumental effects. The dimensions of the
diamond pyramid indentation in the absence of a load
on the indenter rod neither increased nor decreased
with an increase in the magnetic induction. The exper-
imental setup was described in detail in [7].

In order to avoid magnetic flux distortion by the
steel rotary table of the PMT-3 microhardness tester,
the specimen was placed at a height of 10 cm from the
rotary table, in the geometric center of the gap of the
electromagnet limb. Measurements performed with a
Hall probe showed that the relative change in the field
along the specimen did not exceed 2–3%.

The indenter was pressed into the (111) cleavage
plane of the bismuth crystals. The exposure of a speci-
men to a magnetic field was synchronous with the
microindentation. We studied the wedge twins belong-
ing to the {110} 〈001〉 system. In this case, three twin-
ning planes were symmetric about the load and settled
at an angle of 120°. The magnetic induction B was con-
stant in the gap of the electromagnet limb, where the
specimen was enclosed, and amounted to 0.2 T. The
times t of the specimen exposure to the magnetic field
2001 MAIK “Nauka/Interperiodica”
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were 5, 15, 30, 60, and 120 min. The gravitational force
acting on the indenter rod was P = 0.14 N. The length
L of wedge twins, the width h of twins at the mouth, and
the number N of twin interlayers were directly mea-
sured with an eyepiece micrometer of the PMT-3
instrument. The results of the measurements were aver-
aged over the twin interlayers wedged about 20 inden-
tations. The measurement error did not exceed 3%.

3. RESULTS AND DISCUSSION

We found that turning the magnetic field on and off
before applying a load did not change the plastic defor-
mation pattern. The magnetoplastic effect was
observed in bismuth crystals when the magnetic field
and the concentrated load were simultaneously applied
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Fig. 1. Dependences of the mean length L of twins on the
time t of concentrated loading (1) in the absence of a mag-
netic field and (2) in a magnetic field.

Fig. 2. The mean number of wedge twins N near the inden-
tation as a function of the time t of concentrated loading (1)
without a magnetic field and (2) in a magnetic field.

Fig. 3. Dependences of the mean width h of twins at the
mouth as a function of the time t of concentrated loading (1)
without a magnetic field and (2) in a magnetic field.
P

to the specimen. The reversal of the field sign did not
affect the plastic deformation.

The experiments revealed that the length of the
wedge twins in the magnetic field is considerably
smaller than that without it (curves 2, 1 in Fig. 1,
respectively). This indicates that the twinning disloca-
tion path is reduced when the magnetic field is applied
to the specimen. As can be seen from Fig. 1, the con-
centrated loading for t = 5–120 min does not change the
length L of the twins either in the magnetic field or
without it. The experimental dependences are plotted in
semilogarithmic coordinates (the logarithm of the load-
ing time lnt is plotted along the horizontal axis in all the
graphs). Open symbols in the experimental depen-
dences correspond to measurements in the absence of
the field, and the filled symbols represent the data
obtained upon applying the magnetic field to bismuth
crystals.

As is seen from Fig. 2, the mean number N of wedge
twins increases with t, but this process is partly sup-
pressed in the magnetic field. A possible reason for this
is that the magnetic field impedes the translation of
twinning dislocations in the twinning plane and, there-
fore, increases the backward locking stresses that act on
the twinning dislocation sources in the twin mouth [8].

Application of the magnetic field to the specimen
stimulates multiplication of twinning dislocations at
the existing twin–matrix interfaces, because the twin
width h at the mouth in the magnetic field (curve 2 in
Fig. 3) is larger than that in the absence of the magnetic
field (curve 1 in Fig. 3). The physical reason for this
phenomenon is not yet clear, since the backward lock-
ing stresses, which act on the twinning dislocation
sources in the twin mouth, should increase with a
decrease in the twin length.

Al’shits et al. [9] reported that the magnetoplastic
effect depends on the mutual orientation of the disloca-
tion L, its Burgers vector b, and the magnetic induction
B. The anisotropy of the magnetic field effect on twin-
ning, if it occurs, can be found in the following way.
The wedge mechanical twins observed at the indenta-
tion can be considered segments. Then, we can statis-
tically calculate the sum of the absolute values of all the
segments projected onto the positive L+ and negative
L− directions of the axis. The axis was aligned parallel
to the magnetic inductance vector in the former case
and perpendicular to it in the latter case. The experi-
ment revealed that, in both cases, the ratio L+/L– is inde-
pendent of the time of concentrated loading. The quan-
tity L+/L– behaves likewise in the absence of the mag-
netic field. The numerical values of L+/L– are the same
in the magnetic field and without it, providing that t is
the same. Thus, no anisotropy of the magnetoplastic
effect is found in the case of the twinning of bismuth
crystals. The difference between the numerical values
of L+/L– for curves 1 and 2 in Fig. 4 is determined by
the indenter orientation relative to the twinning planes.
Each point in the graphs was obtained at the same ori-
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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entation of the diamond indenter with respect to the
{110} planes.

The physical phenomena observed in this work can
be interpreted in the following way. Twinning is an
energy-consuming process. The work of gravity acting
with the load on the indenter rod is spent for the nucle-
ation and growth of twins. At the same time, twinning
proceeds much faster than glide (hundreds of meters
per second) [10, 11]. For this reason, twins rapidly
drive the elastic energy away from the stress concentra-
tors. Considerably smaller cleavage stresses are neces-
sary for the glide to be realized through the motion of

perfect dislocations in the {11 } planes [12], but this
process is relatively slow. The force effect of the mag-
netic field on dislocations was excluded from our con-
sideration due to the homogeneity of the magnetic field.
Since the magnetic field was constant, the heating of
the specimen by eddy currents and the pinching of the
electron–hole plasma were also excluded. Earlier
investigations [13–16] showed that the magnetic field
enhances the mobility of perfect dislocations due to
their depinning from paramagnetic obstacles or the
decay of these obstacles into smaller ones. This can
lead to a partial suppression of twinning. The experi-
ments conducted by the authors revealed that the
dimensions of dislocation rosettes, which consist of
arrays of perfect dislocations, are considerably larger in
the case when the magnetic field is applied to bismuth
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Fig. 5. Dependences of the microhardness H on the time of
concentrated loading (1) in a magnetic field and (2) without
a field.
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crystals. The effect of the magnetic field on the partial
twinning dislocations is apparently less substantial,
because their cores possess a smaller number of para-
magnetic centers. Certainly, these interferences call for
further experimental and theoretical investigations.

The microhardness H was found to be sensitive to
the magnetic field (Fig. 5). At small t, the microhard-
ness is larger in the magnetic field. This can be
explained by a partial suppression of twinning by the
magnetic field. As the glide evolves with time t, the
microhardness H diminishes and becomes comparable
to the microhardness obtained in the absence of the
magnetic field.
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Abstract—An analysis is made of the specific features in the generation and evolution of partial misfit dislo-
cations at the vertices of V-shaped configurations of stacking fault bands, which terminate in the bulk of the
growing film at 90° partial Shockley dislocations. The critical thicknesses hc of an epitaxial film, at which gen-
eration of such defect configurations becomes energetically favorable, are calculated. It is shown that at small
misfits, the first to be generated are perfect misfit dislocations and at large misfits, partial ones, which are
located at the vertices of V-shaped stacking-fault band configurations emerging onto the film surface. Possible
further evolution of stacking-fault band configurations with increasing film thickness are studied. © 2001 MAIK
“Nauka/Interperiodica”.
The generation and evolution of various defect
structures in the course of growth of thin-film hete-
roepitaxial systems has been for many years a subject
of numerous experimental and theoretical studies (see,
e.g., [1–16]). In particular, one is presently witness to
intense development of the concept of misfit disloca-
tions (MDs) whose formation at the interphase bound-
ary between the substrate and the growing epitaxial
film serves as an efficient channel of removing misfit
stresses caused by differences in the crystalline struc-
ture and properties between the substrate and film
materials [1–6]. The role of MDs may actually be
played by both perfect lattice dislocations (“perfect
misfit dislocations”) and partial dislocations (“partial
misfit dislocations”), which are associated with stack-
ing faults. However, nearly all of the theoretical models
proposed relate to the formation and behavior of perfect
MDs, although a comparative consideration of the per-
fect and partial MDs suggests the existence of such
parameters for a heterosystem at which the formation
of partial MDs is found to be energetically preferable
[7, 8]. In particular, as follows from the results of a the-
oretical analysis from [8], if the lattice misfit between
the film and the substrate is large enough (>1%), the
critical thickness for the formation of partial MDs con-
nected with V-shaped stacking fault defects becomes
less than that for the appearance of perfect MDs; i.e.,
such partial MDs form in a heterosystem before perfect
MDs do. This conclusion is of considerable interest in
view of the present demand in technology for the use of
heterostructures with large misfits.

However, the case considered in [8] relates to fairly
simple partial MD configurations, namely, to partial
MDs located at the interphase boundary at the vertices
of V-shaped stacking faults. The main objective of this
1063-7834/01/4301- $21.00 © 20042
work is to analyze theoretically the conditions favoring
generation of experimentally observed [13] partial-MD
configurations of a more complex type, more specifi-
cally, of configurations made up of three partial MDs
located at the interphase boundary and in the bulk of the
film and connected with V-shaped stacking faults.

1. GENERATION MECHANISMS 
OF PARTIAL MISFIT DISLOCATIONS

Consider the possible mechanisms of formation of
partial MDs at the interphase boundary between an epi-
taxial film and a substrate. Formation of semiloops of
split dislocations at the free surface of a growing epi-
taxial film, followed by their slide to the interphase
boundary, is one of the major mechanisms of MD gen-
eration which appears to be best studied experimentally
[9–13]. For instance, the splitting of sliding perfect 60°
dislocations into partial 30° and 90° Shockley disloca-
tions (Fig. 1a) with a subsequent slide of this already
split configuration to the interphase boundary, brings
about the formation of a partial MD, which is con-
nected through a stacking fault to the second partial dis-
location remaining in the bulk of the film [9, 10]. A
reaction between two such partial MDs near the inter-
phase boundary gives rise to the formation of sessile
partial MDs located at the vertices of V-shaped stacking
faults [12], at the ends of which Shockley partial dislo-
cations are located (Fig. 1b). Such defect configura-
tions are similar to the Lomer–Cottrell barriers in fcc
metals [17], the only difference being that, here, a par-
tial MD acts as the stair-rod sessile dislocation. If par-
tial MDs form even at small film thicknesses (in sys-
tems with large misfits), the formation of the second
Shockley partial dislocations becomes delayed and
001 MAIK “Nauka/Interperiodica”
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stacking fault bands extend from the partial MD to the
free film surface. As the film continues to grow, these
partial dislocations will be generated on the surface and
they will slide toward the vertex partial MD, after
which this V-shaped defect configuration transforms
(collapses) into a sessile Lomer perfect dislocation.

In [8], we considered the first case in detail, where
stacking fault bands always reached the surface of the
film as the film grew. When applied to the
GaAs/Si(001) heterosystem, where such partial MDs
were observed to exist at the vertices of  V-shaped
stacking faults [12], it is implied that each sessile 90°
partial MD is formed of two partial 30° dislocations
sliding toward each other to merge at the interphase
boundary and that the 90° partial MDs, which should
terminate the stacking fault bands, had no time to
nucleate.

The present work considers the second, more gen-
eral case, where partial 90° dislocations also slide from
the film surface after the 30° partials, but stop at a cer-
tain distance from the surface (Fig. 1b). Thus, the V-
shaped stacking fault is now bounded from below by a
90° partial MD at its vertex and from above by two 90°
partial dislocations residing in the bulk of the film. Note
that such defect configurations were observed experi-
mentally [13], but have not been treated theoretically.

In the subsequent sections, we are going to calculate
the critical parameters for the formation of partial MDs
connected through V-shaped stacking faults with partial
dislocations in the bulk of the growing film and analyze
the further evolution of such defect configurations in
the course of epitaxial growth. The analysis will be
illustrated by GaAs/Si heteroepitaxial structures.

2. CRITICAL PARAMETERS 
OF THIN-FILM HETEROSTRUCTURES 

WITH PARTIAL MISFIT DISLOCATIONS

One of the important parameters characterizing a
heteroepitaxial system is the critical film thickness hc,
above which the formation of MDs becomes energeti-
cally favorable [1–6]. The appearance of the first MDs
alone determines the magnitude of hc; therefore, it is
sufficient in itself for study of a system consisting of
one partial MD connected through a V-shaped stacking
fault with two partial 90° dislocations in the bulk of the
film (Fig. 1b).

Consider a model heteroepitaxial system in the form
of a thin elastically isotropic film of thickness h, which
is grown epitaxially on a semi-infinite elastically iso-
tropic substrate (Fig. 2). The elastic constants, the shear
modulus G, and the Poisson ratio ν will be considered
the same for the materials of the film and of the sub-
strate. The original coherent state of the system is char-
acterized by the elastic strain of the film ε = –f, where
f  = (a2 – a1)/a1 > 0 is the original two-dimensional lat-
tice misfit between the substrate and film whose lattice
parameters are a1 and a2, respectively. We place a par-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      200
tial MD with the Burgers vector b at the point (h, 0) at
the interface and partial 90° dislocations with Burgers
vectors bp1 = –bx – by and bp2 = bx – by at points (d, ±s)
in the bulk of the film. The partial MD connects with
these dislocations through the stacking fault bands
making up a V-shaped configuration with an opening
angle 2α. For convenience, we present each of these
partial 90° dislocations as a superposition of two edge
dislocations with Burgers vectors ±bx and by (Fig. 2).

(a)

Film

Substrate

30° 30°

90°90°

Film

90° 90°

90°

Substrate

(b)

–bx
–by –by

bxbp2bp1 x
z

ys sd

ph
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2α
Film

Substrate

Fig. 1. Formation of partial misfit dislocations. (a) Slide of
60° dislocations split into Shockley partial 30° and 90° dis-
locations. (b) Formation of a sessile partial 90° MD con-
nected through stacking fault bands with Shockley partial
90° dislocations in the bulk of the film.

Fig. 2. Model of a V-shaped configuration of stacking fault
bands with a partial 90° MD at the vertex and two Shockley
partial 90° dislocations at the band ends.
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The total energy of the system per unit dislocation
length, Wt, can be presented as

 (1)

where Wf is the elastic energy of the original misfit,

Wn = G(b2 + 2 )/[4π(1 – ν)] is the total energy of the

dislocation cores,  =  = , Wfd = –2Gf(bh +
2byd)(1 + ν)/(1 – ν) is the total interaction energy
between dislocations and the elastic original-misfit
stress field, Wγ = 2γ(h – d)/cosα is the stacking-fault
band energy, γ is the stacking fault energy, and Wd is the
elastic energy of the dislocation subsystem including
the interaction of dislocations with the free film surface
and with one another. The last term is calculated using
the relations for the stress fields of an edge dislocation
located near a free surface [18], which finally yields (in
units of G/[4π(1 – ν)])

 

Wt W f Wn W fd Wγ Wd,+ + + +=

bp
2

bp
2

bp1
2

bp2
2

Wd b2 b
2h b–
---------------ln 2h h b–( )

2h b–( )2
-----------------------+ 

 –
4bxbysd3

d2 s2+( )2
-----------------------–=

– 2bby
h d–( )2

s2+

h d+( )2
s2+

------------------------------ln
2s2

h d–( )2 s2+
------------------------------–





1

2

3

10–3 10–2 10–1
0.1

f

hc, nm

1

10

100

1000

Fig. 3. f–h diagram (1) for a perfect MD, (2) for a partial
MD with stacking fault bands and Shockley partial 90° dis-
locations at the band ends, and (3) for a partial MD with
stacking fault bands reaching the surface of the growing
film.
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To find the critical film thickness hc at which the forma-
tion of even the first partial MD alone becomes energet-
ically favorable, we equate the change in energy that is
associated with the formation of a partial MD con-
nected through a V-shaped stacking fault with two par-
tial 90° dislocations to zero,

(3)

and obtain a transcendental equation for hc:
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Using Eq. (4),we consider the dependence of hc on the
original misfit f for the case where the partial disloca-
tions are located at a depth d. We use, as before [8], the
parameters characteristic of the GaAs/Si(001) hetero-
system [7, 19]: G = 32.5 GPa, ν = 0.31, b = 0.133 nm,
bp = 0.231 nm, bx = 0.19 nm, by = 0.133 nm, 2α ≈ 70°,
and γ = 0.06 J m–2.

Figure 3 presents the hc(f) dependences for a perfect
MD (curve 1, b = 0.398 nm, γ = 0), for a partial MD at
the vertex of a V-shaped configuration of stacking-fault
bands terminated by two partial 90° dislocations in the
bulk of the film at a minimal depth d = bx = 0.19 nm
(curve 2), and for a partial MD at the vertex of the same
configuration for the case where the stacking-fault bands
reach the free surface (curve 3, d = 0, b = 0.133 nm). As
seen from the plots, perfect MDs can be generated at
any misfits f (provided the film is thick enough),
whereas for a partial MD, in both cases, there exists a
limiting minimal misfit fl below which their generation
is energetically unfavorable. The values of fl in the latter
two cases are approximately equal, fl ≈ 0.009. It was also
found that the formation of a partial MD with d = 0 is
always more probable than that with d = bx (curve 3
passes below curve 2). Consider now what happens as
d increases. Figure 4 presents the dependence of hc on
d for a fixed misfit f = 0.02. As seen from the figure, for
small d, the critical film thickness hc increases with d to
reach a maximum at d ≈ 4bx ≈ 0.76 nm, after which it
falls off while remaining substantially larger than the
critical thicknesses for perfect MDs (≈0.14 nm) and par-
tial MDs with d = 0 (≈0.12 nm). Thus, one can conclude
that for small misfits (f < 0.01), the first to be generated
are perfect MDs, whereas for large misfits (f > 0.01), par-
tial MDs are generated first, with the stacking-fault
bands reaching the surface of the growing film.

3. EVOLUTION OF PARTIAL 
MISFIT-DISLOCATION CONFIGURATIONS

IN THE COURSE OF FILM GROWTH

Consider the development of the situation as the
film continues to grow in the case of large misfits (f >
0.01). We calculate the equilibrium position of the par-
tial 90° dislocations terminating the stacking-fault
bands in the bulk of the film (Fig. 2) using Eqs. (1) and
(2). One can determine the change in the equilibrium
distance  (i.e., corresponding to the maximum gain in
energy ∆W) as the film thickness h increases with the
misfit f kept fixed. The results of the calculation are
plotted in Fig. 5 as (h) functions for f = 0.02, 0.04,
0.07, and 0.10 (curves 1–4, respectively). It is readily
seen that, as long as the thickness h is small (h < 1 nm),
we have (h) = h – bx for any of these misfits; i.e., the
stacking-fault bands grow as the film grows to finally
reach (to within bx) the free surface. At the instant h
reaches a critical value ,  exhibits a sharp drop,
which can be treated as a fast displacement of 90° par-

p

p

p

hc' p
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tial dislocations to the interface separating the film
from the substrate; the drop is accompanied by a short-
ening of the stacking-fault bands until they disappear
altogether and the V-shaped configuration collapses,
with the partials transforming to perfect MDs. For
instance, to the misfits f = 0.02, 0.04, 0.07, and 0.10
correspond now “new” critical thicknesses,  ≈ 5.7,
3.1, 1.9, and 1.3 nm, at which the partials become per-

hc'

0
3

d, nm

hc, nm

1 2 3

4

5

0 1
h, nm

–p, nm

2 3 4

1

2

3

4

1

2

34

Fig. 4. Dependence of the critical thickness hc on depth d of
Shockley partial 90° dislocations, calculated for a misfit
f = 0.02.

Fig. 5. Variation of the equilibrium distance  between
Shockley partial 90° dislocations and the interphase bound-
ary with increasing film thickness, calculated for the misfits
f (1) 0.02, (2) 0.04, (3) 0.07, and (4) 0.10.
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fect MDs. The collapse of the V-shaped configurations
of stacking-fault bands with partial MDs at their verti-
ces, resulting in the formation of perfect MDs, confirms
the conclusion [8] that a decrease in partial MD density
and an increase in perfect MD density in the course of
film growth inevitably occur and suggests that a natural
mechanism is involved in the transformation of partial
to perfect MDs. A decrease in the partial MD density
and an increase in the perfect MD density with increas-
ing thickness of the growing film were observed in the
experiments in [13].

Thus, our theoretical consideration of partial MDs
located at the vertices of V-shaped configurations of
stacking-fault bands, which terminate at Shockley par-
tial 90° dislocations in the bulk of the film, permits the
following conclusions. At small misfits, the first to be
generated are perfect MDs, while at large ones, partial
MDs are generated at the vertices of the V-shaped con-
figurations of stacking-fault bands emerging onto the
film surface. In the latter case, as the film grows in
thickness, the stacking-fault bands first grow longer
and reach, as before, the film surface, but after the
thickness has attained a critical value , which
decreases with increasing misfit, they shorten rapidly
through the generation of Shockley partial 90° disloca-
tions and their slide to the interphase boundary. As
these dislocations approach the interface, the V-shaped
configuration collapses and the partial MDs transform
into perfect MDs. This mechanism of transformation of
partial to perfect MDs accounts for the decrease in par-
tial MD density and the increase in perfect MD density
during the growth of nanolayer heterosystems, which is
well known from experiments (see, for instance, [13]).
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DEFECTS, DISLOCATIONS, 
AND PHYSICS OF STRENGTH
Dynamic Properties of Dislocations in Silicon Wafers 
Heat-Treated at Low Temperatures
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Abstract—The specific features of the dislocation motion in dislocation-free silicon wafers (single crystals are
grown by the Czochralski method) heat-treated at 450 and 650°C have been investigated. It is found that the
low-temperature treatment of silicon wafers with an oxygen content of (7–8) × 1017 cm–3 substantially affects
the dynamic properties of dislocations generated into silicon wafers during their four-point bending and brings
about an increase in the starting stresses of the onset of the dislocation motion. A characteristic spatial inhomo-
geneity is observed in the generation and propagation of dislocations from indentations upon the bending of
heat-treated wafers. The reasons for the regularities revealed are discussed. © 2001 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

During the formation of active integrated-circuit
elements, dislocation-free silicon wafers of large diam-
eters are subjected to various mechanical and thermal
actions, which can lead to undesirable generation of
dislocations in these wafers. In this respect, the prob-
lem of the mechanical strength of silicon wafers, espe-
cially the problem concerning the nature of heteroge-
neous nucleation of dislocations and the factors respon-
sible for their dynamic properties (see, for example, [1,
2]), is a prime consideration. The mechanical proper-
ties of Czochralski grown dislocation-free silicon sin-
gle crystals, specifically their plasticity, are determined
to a large extent by the content and the form of oxygen
involved in these wafers. In the course of crystal
growth, oxygen is incorporated into the crystal at suffi-
cient concentrations to form supersaturated solid solu-
tions over a wide range of temperatures. These solu-
tions undergo decomposition both during postcrystalli-
zation cooling of an ingot (partially) and upon
subsequent heat treatment of wafers cut from this ingot.
Depending on their nature and size, the oxygen-con-
taining precipitates formed during the crystal growth
can play the role of heterogeneous nucleation sites of
dislocations and act as stoppers against dislocation
motion, thus hindering dislocation propagation and
multiplication. The nature and size of the precipitates in
a crystal matrix are governed by the oxygen content,
thermal conditions of single-crystal growth, and heat
treatment of silicon wafers. The purpose of this work
was to investigate the dynamic properties of disloca-
tions at different low-temperature treatments of silicon
wafers during which the oxygen supersaturated solid
solution undergoes decomposition with the formation
of extremely small oxygen clusters [3].
1063-7834/01/4301- $21.00 © 0047
2. SAMPLES AND EXPERIMENTAL TECHNIQUE

The experiments were carried out with wafers 150 mm
in diameter (resistivity, 5 Ω cm; p-type conductivity;
oxygen content, ~(7–8) × 1017 cm–3), which were cut
from dislocation-free silicon single crystals grown by the
Czochralski method in a “vacancy” mode [4] in the [001]
direction. The wafers were heat-treated under the follow-
ing conditions: 1000°C/15 min + 450°C/16 h (wafer 1)
and 1000°C/15 min + 650°C/16 h (wafer 2). The high-
temperature treatment was performed with the aim of
dissolving oxygen-containing precipitates of the
“growth” origin in the crystal matrix. The heat treatment
of the samples at 450°C was accompanied by the vigor-
ous formation of oxygen clusters with donor properties
(thermodonors). The heat treatment at 650°C brought
about the formation of wafers containing larger-sized
(compared to the heat treatment at 450°C) oxygen clus-
ters, the greater part of which possesses no electrical
activity [3].

Samples for mechanical testing were cut from
wafers in the form of parallelepipeds 25 × 4 × 0.7 mm
in size with the {100} large faces. The long side of the
sample was oriented along the 〈110〉  direction. All
samples were chemically polished in an acid mixture
HF : HNO3 = 1 : 6 for 5 min. In the process, a layer
~40 µm thick was removed from the surface. Then,
several indentations were made on the sample surface
with the use of a Knoopp indenter (the indenter loading
was 0.25 N, and the loading time was 15 s). After the
indentation, the sample was subjected to four-point
bending in a special setup according to the procedure
described in [5] at temperatures of 600 and 800°C. The
sample side containing indentations was subjected to
tensile deformation. The indentation of the sample sur-
2001 MAIK “Nauka/Interperiodica”
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face and the subsequent loading at a testing temperature
gave rise to dislocation loops in the near-surface layer,
which consisted of two 60° segments and one fragment
of a screw dislocation aligned parallel to the sample
surface. In the experiments performed, we examined
the mobility of 60° dislocation-loop segments.

The structural transformations in the silicon wafers
were controlled by x-ray topography and optical
microscopy. For comparison, we studied the samples
cut from a single-crystal wafer immediately after the
growth (wafer 3).

3. INVESTIGATION 
OF DISLOCATION DYNAMICS

Figure 1 displays the dependence of the velocity of
dislocation motion in heat-treated silicon wafers at
600°C on the applied shear stress. For comparison,
Fig. 1 also depicts similar dependences for samples cut
from wafer 3 (the postgrowth state). As follows from
comparison of the results obtained, the velocities of
dislocation motion in samples after the low-tempera-
ture treatment are higher than those in the samples
immediately after the growth. Noteworthy are the sub-
stantially larger values of the starting stresses of the
onset of dislocation motion in heat-treated samples. For
example, in samples cut from wafers 1 and 2, the start-
ing stresses were equal to 58 and 63 MPa, respectively
(for samples of wafer 3, the starting stress was
22 MPa). It should be mentioned that, at stresses of
~80–90 MPa, the bulk generation of dislocation slip
bands from external sources was observed in all the

58

63

22

1
2
3

20
τ, MPa

10–7

V, cm/s

40 60 80 100

10–6

Fig. 1. Dependence of the velocity of dislocation motion in
silicon wafers at 600°C on the applied stress (vertical
dashed lines correspond to the starting stresses of the onset
of dislocation motion in the samples under investigation).
P

samples, which brought about their macrodeformation
and made the observation of indentation-induced dislo-
cations difficult. At a testing temperature of 800°C, the
starting stresses in samples of wafers 1 and 2 were
equal to 25 and 43 MPa, respectively; the plastic bend-
ing in the samples was observed already at stresses of
45 and 50 MPa, respectively. The critical stress of the
onset of dislocation motion in samples of wafer 3 at a
temperature of 800°C was equal to 12 MPa, whereas
the stress giving rise to plastic bending was 25 MPa. It
is worth noting that, upon the four-point bending at
800°C, the samples are characterized by a large spread
in the critical stresses of the onset of dislocation motion
and the stresses responsible for the bulk generation of
dislocation slip bands from external sources, which
resulted in plastic bending of the samples. This inho-
mogeneity and the narrow stress range of observation
of the motion of individual indentation-induced dislo-
cations made correct determination of the dislocation
motion velocity at 800°C impossible.

Thus, we can state that the velocities of dislocation
motion in all the samples studied are close to each
other. However, after the low-temperature annealings at
450 and 650°C, the starting stresses of the onset of dis-
location motion considerably increase. The above reg-
ularities can be explained by the fact that the oxygen-
containing clusters formed upon the low-temperature
treatment are effective stoppers against the onset of dis-
location motion, but they are not serious obstacles to
moving dislocations.

4. INVESTIGATION OF SPATIAL 
INHOMOGENEITY IN GENERATION
AND MOTION OF DISLOCATIONS

A characteristic feature of all the samples after the
low-temperature treatment is a pronounced spatial
inhomogeneity in the generation and propagation of
dislocations from indentations at the same shear
stresses. In the case when identical indentations are
closely located at almost equal intervals (~50 µm) on
the sample surface, the dislocation slip bands do not
necessarily emanate from all indentations and the linear
density of dislocations in the slip bands can consider-
ably differ even for neighboring indentations. Such an
unusual inhomogeneity most clearly manifests itself in
the course of mechanical testing at 800°C. As an exam-
ple, Fig. 2a shows typical patterns of the dislocation
propagation from closely spaced indentations upon
bending at 800°C. It can be seen that no dislocation slip
bands are observed around certain indentations, but,
where these bands are formed, the linear density of dis-
locations in them can differ by almost two orders of
magnitude for individual closely located indentations.
Figure 2b demonstrates the histogram of the linear den-
sity of dislocations in slip bands emanating from
equally spaced indentations. As is clearly seen, there is
a pronounced periodic inhomogeneity in the distribu-
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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tion of the linear dislocation density in the slip bands
formed around individual indentations.

The heat-treated samples were subjected to anodic
etching (electrolyte HF : CH3COOH = 1 : 1; current
density, 10 mA/cm2; etching time, ~5 min [6]) with
subsequent treatment in the solution HF : HNO3 = 1 : 4
for 10–15 s. The anodic etching revealed a characteris-
tic layered inhomogeneity (growth bands) in samples,
which, most likely, stems from the inhomogeneous dis-
tribution of oxygen in the wafers under investigation.
Figure 3 shows a typical pattern of the layered inhomo-
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Fig. 2. A spatial inhomogeneity in the generation and prop-
agation of dislocations from indentations: (a) the pattern of
the selective etching of samples after their bending and (b)
the histogram of the linear dislocation density in slip bands
formed around individual indentations.
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geneity, which was revealed by anodic etching in the
samples heat-treated at 450°C.

The spreading resistance was measured in a wafer
heat-treated at 450°C in order to confirm the inference
that the layered inhomogeneity reflects the character of
the oxygen distribution in the samples studied. As
noted above, heat treatment of silicon single crystals at
450°C is accompanied by intensive generation of ther-
modonors—clusters consisting of several oxygen
atoms. The concentration of thermodonors formed in
the course of heat treatment at 450°C strongly depends

10 mm

Fig. 3. A layered inhomogeneity revealed on the surface of
wafer 1 by anodic etching.
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Fig. 4. Distribution of the spreading resistance along the
radius of wafer 1 in (a) central and (b) middle regions.
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on the oxygen content in the sample under investiga-
tion. The spreading resistance is a unique characteristic
of thermodonor concentration (and, correspondingly,
the oxygen content).

The results of measurements of the spreading resis-
tance in a silicon wafer after the heat treatment at
450°C are displayed in Fig. 4. These results convinc-
ingly indicate a periodic (layered) inhomogeneity in the
oxygen distribution in the samples studied. This gives
grounds to believe that the spatial inhomogeneity in the
generation and propagation of dislocations from inden-
tations in the heat-treated samples is primarily due to an
inhomogeneous (layered) distribution of oxygen. Dur-
ing the low-temperature treatment of silicon wafers, the
oxygen supersaturated solid solution undergoes
decomposition with the formation of oxygen clusters.
The volume density of the clusters thus formed is a very
sensitive function of the oxygen concentration in the
crystal. In the presence of a layered inhomogeneity in
the oxygen distribution, the volume concentrations of
oxygen clusters formed in adjacent regions upon heat
treatment differ considerably. This can induce an elas-
tic stress field modulated by a nonuniform distribution
of clusters in which alternating regions experience elas-
tic compressive and tensile deformation. In this case,
the oxygen-rich regions with the maximum content of
oxygen clusters should undergo compressive deforma-
tion and the generation and motion of dislocations in
these regions should be hampered. The latter can be
P

explained by the fact that the oxygen clusters, as was
shown above, are effective stoppers against the onset of
dislocation motion, because they bring about an
increase in the starting stresses.
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Abstract—The method of laser range scanning profilometry is used to study the evolution of mesoscopic per-
turbations of strain fields in aluminum, copper, and iron polycrystals during loading. The fractal nature of meso-
scopic perturbations of the flow fields with a power-flow increase of the correlation interval ξ = ξ0θ–ν (θ is the
dimensionless strain-hardening modulus) during loading is established. The fundamental structural scale ξ0 and
the index ν lie in the intervals ξ0 = 30–150 µm and ν = 0.27–0.70. The dimensionality of the deformation relief
increases in the course of loading from ~1.05–1.25 at the initial stage to ~1.35–1.65 for strains from ~0.30 to
0.35 for all the materials. The results indicate an essentially multilevel nature of plastic deformation and argue
for the applicability of renormalization group methods for its description. © 2001 MAIK “Nauka/Interperiod-
ica”.
The self-organization of mesoscopic perturbations
of plastic flow was discussed in several publications [1–
3]. A theoretical description based on the renormaliza-
tion group approach was proposed in [3, 4], and fluctu-
ation-induced corrections for the synthesis of an effec-
tive diagram describing the deformation of heteroge-
neous media were taken into account in [5]. In this
respect, complex experimental investigations into the
dynamics of mesoscopic perturbations of strain fields
during loading of plastic materials with the help of a
specially developed technique of laser range scanning
profilometry [6] is of special interest.

A light beam is used as the measuring instrument in
this case. An optoelectronic detecting system deter-
mines the sign of deviation of the height of a specific
point on the surface being measured from the focal
plane of the objective, and then the point is brought to
the focal plane by displacing the sample relative to the
optical system. The measuring process is controlled
entirely by a PC through an interface operating a spe-
cific program.

Since three-dimensional positioning systems nor-
mally use step motors, determining coordinates boils
down to simply counting the number of steps within a
known step. The displacement step along two horizon-
tal directions has a length of 1.667 µm, while the step
in the vertical direction (which is the quantity being
measured) is 1.25 µm.

We experimentally studied the scaling of the relief of
plastic flow during the evolution of instability under
uniaxial extension. Planar samples made of annealed
low-carbon steel (0.08% C) and of polycrystalline cop-
per and aluminum were preliminarily polished. The ten-
sile stress–strain diagram with a strain rate of 1 × 10–3 s−1

at 293 K in the real coordinates S vs. ϕ (Fig. 1) was
1063-7834/01/4301- $21.00 © 20051
approximated by the method of least squares using the
expression

(1)

where S is the stress normalized to Young’s modulus E
and ϕ is the strain.

The parameter S0, the exponent n, and the homoge-
neous strain ϕhom measured away from the neck region
after the fracture (i.e., in the region where the sample
thickness does not change) are presented in Table 1.
Formula (1) is also used to calculate the dimensionless
strain-hardening modulus θ(ϕ) = dS/dϕ.

The inhomogeneity of elastic strain was measured
from the surface profile of the deformed sample with
the help of a laser range profilometer. The error in the
measurement of the relief of a smooth surface can be

S S0ϕ
n,=

Fe#1
Fe#2
Cu#3
Al#4

0 0.05

1

ϕ

S × 103

0.10 0.15 0.20 0.25 0.30 0.35 0.40

2

3

Fig. 1. Stress–strain diagram for the tested samples in real
coordinates.
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reduced by using an objective with a shorter focal
length; in our case, the error was δ = ±1.25 µm. The
scanning area was a square mesh with a step l, side L =
(N – 1)l, and total number of counting points N2. The
same region of the sample was scanned in the initial
state and after each of 5 to 8 deformation steps ϕi. Sam-
ple fracture occurred after the formation of a macro-
scopic neck, and control measurements were made
after the fracture.

In order to compensate for the deviation from “hor-
izontality” of the sample during the measurements, an
experimentally determined relief was used to determine
the macroscopic inclination of the area in the form
Z(x, y) = Ax + By + C by the least squares method; this
value was subsequently subtracted. The parameters of
the relief measurements are given in Table 2.

The modulus of the Fourier transform of the two-
dimensional profile of the relief

(2)

where k = 2πn/L and n = (n1, n2) with –N/2 < (n1, n2) ≤
N/2, was calculated from the two-dimensional array of
relative heights h(r) in the wavelength range from 2l to
L by using a traditional method.

Since h(r) is a real-valued function and C(n1, n2) is
symmetric relative to the (0, 0) point, the subsequent
spectral analysis was carried out for 0 ≤ n1 ≤ N/2 and
−N/2 ≤ n2 ≤ N/2, except for C(0, 0), since this is the
average value of the height and carries no information
about the relief. Our subsequent calculations were

C k( ) 2πL( ) 2– h r( ) rdexp
ikr∫ ,=

Table 1.  Parameters of the stress–strain diagram

Sample
Young’s 
modulus 
E, GPa

S0 n ϕhom

Fe#1 205 (3.58 ± 0.03) × 10–3 0.28 ± 0.01 0.34

Fe#2 205 (2.34 ± 0.07) × 10–3 0.16 ± 0.02 0.19

Cu#3 128 (3.53 ± 0.07) × 10–3 0.33 ± 0.01 0.37

Al#4 71 (1.76 ± 0.03) × 10–3 0.27 ± 0.01 0.29
P

based on an analog for the spectral function of the one-
dimensional profile, namely, the power function

(3)

averaged over directions, and the radial correlation
interval

(4)

An increase in strain is accompanied by a decrease in
the dimensionless strain-hardening modulus θ(ϕ) =
dS/dϕ. The radial correlation interval for the relief is
connected with this modulus through the relation

(5)

The linear regression of the dependence ( )
led to the values ν = 0.27–0.7 for the samples of Fe#1,
Fe#2, Cu, and Al. The peak of the entropy of fluctua-
tions corresponds to ν = 0.5. The fundamental struc-
tural scale ξ0 was ξ0 = 30–80 µm in all cases.

The approximation of the integral (cumulative)
spectrum in the logarithmic coordinates

(6)

makes it possible, according to [7, 8], to calculate the
fractal dimensionality of the surface D = 3 – p/2, which
is a characteristic of the self-similar behavior of plastic
flow fluctuations. Such an approximation was carried
out by using the least squares method in the interval [k1,
k2] on which the measured dependence ( )
is linear (Fig. 2). The lower boundary corresponds to
the wavelength λ1 = (2πk1)–1 = 3 mm, while the upper
boundary corresponds to the wavelength λ2 = 0.3 mm.
The variation of the spectrum Q(|k |) and of the fractal
dimensionality in the course of deformation is illus-
trated in Figs. 2 and 3. The sharp decrease in the cumu-
lative spectrum for wavelengths λ < λ2 is a consequence
of the finite sensitivity δ of the profilograph, because
the amplitude of short waves is small, |C(λ < λ2)| < δ.

C
2 k( ) 2π k( ) 1– C v( ) 2 v,d

v k=

∫=

0 k π 2/l≤< kmax=

ξ 1
2π
------

k 2– Cm
2 k( ) kd∫

Cm
2 k( ) kd∫

-----------------------------------------
 
 
 

1/2

.=

ξ ξ0θ
ν– .=

ξlog θlog

Q k( ) C2 v( ) vd k p–∼
v k≥
∫=

Qlog klog
          
Table 2.  Parameters of relief measurements

Sample Mesh size 
l, µm

Area 
L2, mm2

Total number 
of points, N2 Strains ϕi

Height span, hmax–hmin, µm

ϕ = 0 ϕmax

Fe#1 150 89.3 4096 0.06; 0.12; 0.20; 0.26; 0.32 80 105

Fe#2 100 41.0 4225 0.058; 0.071; 0.078; 0.095; 0.147; 0.175 35 67

Cu#3 150 92.2 4225 0.01; 0.03; 0.06; 0.10; 0.14; 0.22; 0.37 42 80

Al#4 75 92.2 16641 0.04; 0.08; 0.17; 0.21; 0.23; 0.27 22 78
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001



GAUGE-INVARIANT SELF-ORGANIZATION OF STRAIN FIELD FLUCTUATIONS 53
An increase in the strain in all materials is accompa-
nied by a statistically significant increase in the dimen-
sionality of the relief from ~1.05 (Al), 1.18 (Cu), and
1.25–1.30 (Fe) in the initial state (s = 0.02–0.06) to
~1.65 (Al), ~1.32 (Cu), and ~1.60–1.62 (Fe) in the
region of the formation of a macroscopic neck.

Thus, measurements of the surface relief reveal
early stages of the evolution of instability in plastic
flow. A transition from random inhomogeneities upon
an increase in their correlation radius culminates in the
formation of a macroscopic neck when the neck radius
becomes comparable to half the sample thickness [1].
The deformation relief, and hence mesoscopic pertur-
bations of the flow in a wide interval, are self-similar and
have a dimensionality increasing in the course of load-
ing. The results speak in favor of the hypothesis of a mul-
tilevel deformation (see, e.g., [9]) wherein a nonuniform
rotation of the scale level (n – 1) generates flow distor-
tion of the nth level, which in turn determines the non-
uniform rotation of the (n + 1)th level, and so on [1–3].

The obtained results indicate that renormalization
group methods can be used for describing the self-orga-
nization of mesoscopically induced deformation [4, 6].
The current scale of the deforming process, viz., the
fluctuation correlation interval for flow fields, can be
parametrized during loading by the strain-hardening
modulus θ (for a known σ(s)–average-strain-s diagram)
and can therefore be used as a universal variable in the

log(|k|/kmax)

ϕ = 0.071
ϕ = 0.095
ϕ = 0.147
ϕ = 0.175

–1.5
–2

–1.0 –0.5 0

–1

0
log(Q(k)/Q(kmin))

Fig. 2. Cumulative spectrum for the Fe#2 sample for various
strains.
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construction of a system of equations relating the run-
ning dynamic parameters of the system (e.g., correla-
tion functions of various orders for mesoscopic pertur-
bations of the flow) to the process of loading.
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Abstract—The states of single- and double-charge donors in an antiferromagnetic crystal are investigated tak-
ing into account the formation of magnetized regions (localized ferrons) around them. Double-charge donors
should be in a state of the (1s)(2s) type, which is energetically favored over the (1s)2 state. In doped antiferro-
magnetic semiconductors, the usual Mott transition is impossible because the single-charge donors in them are
ferrons. Instead, the donor electrons are delocalized through the transition of the crystal to the single-electron
state. It is unlikely that a ferromagnetic–antiferromagnetic (FM–AFM) mixed state will occur in this case. In
the case of double-charge donors, transition to an FM–AFM mixed state should occur. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In this paper, we investigate antiferromagnetic
(AFM) semiconductors moderately doped with donors
or acceptors. It is well known that in nonmagnetic
semiconductors, the Mott delocalization of electrons
(or holes) occurs and the crystal passes from the insu-
lating state to a highly conducting state as the concen-
tration of donors (acceptors) increases. It will be shown
in this paper that the usual Mott delocalization does not
occur in AFM semiconductors if the s–d exchange is
fairly strong. In this case, when the donor concentration
n becomes equal to a certain critical value, the crystal
passes from the state in which there is no ionized
donors to a ferromagnetic (FM) state with delocalized
electrons or to an AFM–FM mixed state in which all
delocalized electrons are within the FM region of the
crystal. The former alternative is most likely to occur in
the case of single-charge donors, while the latter occurs
in the case of double-charge donors. It is unlikely that a
mixed AFM–FM state will arise in the case where the
single donors are fixed in their positions.

The reason for this unusual behavior is that each sin-
gle-charge donor is in fact a localized ferron (magnetic
polaron) and, hence, there is an FM microregion around
each donor. (The concept of a ferron was first intro-
duced in [1, 2].) This region acts on the donor electron
as a potential well, which is added to the Coulomb
potential. For this reason, the radius of the electron
orbit becomes much smaller than the effective Bohr
radius corresponding to the Coulomb potential alone.
This prevents the donor electrons from being delocal-
ized, and the crystal remains in the AFM state. In the
FM state, by contrast, the electron orbit radius equals
the Bohr radius, which is favorable to electron delocal-
ization. Therefore, the concentration phase transition
can occur from the insulating AFM state with localized
1063-7834/01/4301- $21.00 © 0054
electrons to a highly conducting FM state with delocal-
ized electrons. This transition can be thought of as
going via a virtual insulating FM state.

The behavior of double donors, e.g., Se vacancies in
EuSe (as well as acceptors, e.g., excess oxygen in
LaMnO3 + y), is essentially different. If the AFM order-
ing in a crystal were not perturbed, such a donor in it
would be in the (1s)2 state with antiparallel electron
spins and the total exchange energy between these
spins and magnetic atoms would be close to zero. How-
ever, if the donor transfers to the (1s)(2s) state with par-
allel spins and an FM region arises in the vicinity of it,
this state will be energetically favored over the non-
magnetic (1s)2 state, because the exchange energy
between the donor electrons and magnetic atoms will
be large in magnitude. Such localized ferrons have not
yet been considered in the literature; their theory is,
thus, first presented here.

Since the ionization energy of the 2s electrons is
small, their delocalization can occur via the mixed FM–
AFM state first considered in [2, 3]. Two scenarios are
possible. In the first, FM droplets containing several
electrons are formed in the AFM matrix when the donor
concentration is close to the critical value for phase
transition. This partial delocalization, where electrons
are locked in a droplet, occurs instead of the complete
Mott delocalization, and the state of the crystal as a
whole is insulating. Further increase in the donor con-
centration causes the FM droplets to increase in size,
and, at a certain concentration, they come in contact
with one another, which means that percolation for FM
ordering and for the electron liquid occurs. When the
donor concentration is higher than its threshold value
for percolation, the bulk of the crystal will be in an FM
and highly conducting state and only AFM droplets
will remain in the crystal. Therefore, the Mott transition
2001 MAIK “Nauka/Interperiodica”
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comes to an end and the delocalized electrons cause the
crystal as a whole to be highly conducting only above
this percolation threshold.

In the other possible scenario, the crystal immedi-
ately undergoes a crossover from the state with local-
ized donor electrons to a highly conducting FM–AFM
state. In general, the transition to a mixed FM–AFM
state can also occur in the case of single donors and the
transition to a FM state can take place in the case of
double donors. However, these transitions are unlikely
to occur for realistic values of the parameters. It is inter-
esting to note that both the insulating and highly con-
ducting FM–AFM states have been observed in EuSe
with double donors [4].

1. IMPOSSIBILITY OF THE CONVENTIONAL 
MOTT TRANSITION IN ANTIFERROMAGNETS

First, we prove that the Mott transition is impossible
in AFM semiconductors if the s–d exchange is not very
weak. For this purpose, the well-known Mott calcula-
tion is generalized to the case of electrons strongly
interacting with another subsystem (magnetic in the
case under study). As is usually done, we consider the
conditions for the existence of a discrete energy level in
the potential well produced by the donor Coulomb
potential screened by conduction electrons. The AFM
ordering is caused by the direct d–d exchange between
magnetic atoms, which models the superexchange
between them. This interaction involves conduction
electrons and thereby competes with the indirect
exchange that favors the FM ordering. There is a criti-
cal donor concentration below which the AFM ordering
is relatively stable [2]. For the sake of simplicity, the
indirect exchange via charge carriers is assumed to be
weak when compared to the direct d–d exchange. We
show that the indirect exchange does nothing but
enhance the effect under study.

The corresponding calculation is conducted includ-
ing the local magnetization produced by an electron
that occupies a discrete level and has its spin unpaired.
For the sake of definiteness, the AFM ordering is
assumed to be in staggered rows. The s–d model is
used. The Hamiltonian of the system in the coordinate
representation is given by

(1)

H Hs r( ) Hsd r( )+ Hdd,+=

Hsd
∆

2m
-------–

e2

εr
----- r

rs

---- 
  ,exp–=

Hsd A Sgs( )D r g–( ),
g

∑–=

Hdd
1
2
--- SgSg D+( ),

g D,
∑–=
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where Sg is the d spin of atom g, s is the spin of a con-
duction electron, D(r – g) equals unity within the unit
cell g and zero outside it, D is the vector connecting two
nearest neighbors, m is the effective electron mass, ε is
the permittivity, and " = 1. The screening radius rs can
be written as

(2)

(3)

(4)

(In the case of double exchange, the band width for a
“dressed” electron due to the s–d exchange interaction
is (2S + 1)1/2 times smaller and its effective mass is
(2S + 1)1/2 larger than the respective values for a “bare”
electron [5].)

We use a variational procedure in which the varia-
tional parameters are the angles θg between the spin of
atom g and the local magnetization induced in the AFM
crystal by the localized electron and the parameter x
that defines the orbital radius of a localized electron
aB/x. The latter parameter is involved in the trial elec-
tron wave function

(5)

We consider the limiting case of AS/W ! 1 and the
opposite limit (double exchange), where S is the d-spin
magnitude and W is the conduction band width for a
bare s electron. Assuming that the angles θg vary
smoothly, one can write

(6)

where a is the lattice parameter, the energy is measured
in units of

rs
εµ

6πe2n
--------------- ≅ 1

2
--- aBn 1/3– ,=

aB
ε

me2
---------,=

µ 3π2n( )2/3

2m
----------------------.=

ψ r( ) x3

πaB
3

---------
 
 
  1/2

xr
aB

-----– 
  .exp=

E x2 8x3

p 2x+( )2
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– ua3 ψ g( )2 θgcos
g

∑ ν
2
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and the following notation is also used:

In deriving Eq. (6), the FM ordering is assumed to be
unsaturated in the region of the electron localization.
Strictly speaking, the expression for U presented above
is an approximation in the double-exchange limit (it is
exact only in the case of large spins [2]). Minimizing
the energy in Eq. (6) with respect to θg, we find that the
value of θg corresponding to an energy minimum is
given by

(7)

Using this expression, one can find the energy as a
function of the single parameter x (in units of EB):

(8)

A discrete level appears when E(x) = 0 and dE(x)/dx =
0, which, in combination with Eq. (7), reduces to

(9)

Solving Eq. (9) yields the critical value of parameter
x for the appearance of a discrete level and, hence, the
critical concentration (involved in the expression for
the screening radius):

(10)

As follows from Eqs. (5), (7), and (8), this approach
is adequate if

(11)

For inequality (11) to be fulfilled, the coupling between
electrons and the magnetic subsystem should not be
strong because k ∝  u2. On the other hand, Eq. (11) gives
the upper limit for the values of x for which Eq. (9) is
valid (formally, the absolute minimum of the energy E
is attained as x  ∞, but this is an artifact).

Equation (9) has two positive roots up to kc =
0.210937 (the other two roots are imaginary and,
hence, physically meaningless). However, the largest of
the positive roots, xg, corresponds to negative values of

u
U
EB

------, ν z I S2
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16x3k
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p in Eq. (10) for k < 0.12. Clearly, negative p and the
corresponding values of x have no physical meaning.
Furthermore, the larger root is also physically meaning-
less for p > 0, because the value of p corresponding to
it is smaller than that corresponding to the other posi-
tive root xl (e.g., for k = 0.13, we have xg = 1.083, xl =
0.652, pg = 0.151, and pl = 1.083). Indeed, according to
Eq. (4), p is proportional to n1/6. Since we are consider-
ing the metal–insulator transition, which occurs as the
concentration n decreases, only the transition corre-
sponding to the larger value of n has physical meaning.

As for the smaller root, the value of p corresponding
to it increases with k and, at kc = 0.21, the constant C =
(p/2)2 in Mott’s expression n1/3aB = C is as large as
0.348 instead of the value 0.25 obtained by Mott (the
corresponding x is 1.185). Therefore, as the s–d
exchange energy AS increases, the Mott value of the
concentration increases; that is, the AFM ordering hin-
ders the metallization of the system.

At k = kc, the two positive roots become equal and,
as x increases still further, all the four roots of Eq. (9)
become imaginary. This means that the potential well
has no discrete level near the bottom of the conduction
band and Mott’s scenario for the insulator–metal tran-
sition is impossible. In order to understand the physics
of this phenomenon, let us consider the insulating state
of the system. In this state, the nonionized donors are
localized ferrons; that is, the electron of each donor
produces the FM order in the vicinity of the donor. The
stronger the s–d exchange, the lower the energy of a
localized ferron. If u @ 1 @ ν, this energy is close to
(−u) irrespective of the screening radius, because the
s−d exchange is not screened by free carriers. There-
fore, the discrete level exists for any concentration of
carriers and, if u is large enough, the metal–insulator
transition is impossible.

This is especially true where the coupling between
the electrons and the magnetic subsystem is so strong
that inequality (11) is not valid. Therefore, this inequal-
ity is not a necessary condition for the Mott transition
to not occur in AFM semiconductors. This is supported
by a direct calculation based on Eq. (14), in which the
first parenthetical term is replaced by the term in square
brackets in Eq. (8).

Now, let us return to the problem of indirect
exchange. Its rigorous consideration is made difficult
by the fact that at AS ! W, the RKKY exchange is long-
range, in contrast to the d–d exchange. In the case of
AS @ W, only the ground state of an AFM system has
been investigated [2]. However, for qualitative treat-
ment, it will suffice to note that the indirect exchange is
opposite in sign to the d–d exchange and, hence, it
decreases the effective value of the parameter ν,
thereby increasing the parameter k in Eq. (8). For this
reason, Mott’s scenario for the insulator–metal transi-
tion becomes impossible for an s–d coupling weaker
than that in the case where there is no indirect
exchange.
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2. SINGLE-ELECTRON FERRONS
Even when the Mott transition is impossible in an

AFM semiconductor, some other cooperative phenom-
ena can occur in the system of donors (or acceptors)
with increasing donor concentration. In order to inves-
tigate them, we first consider the state of an individual
single-electron donor (localized ferron). Earlier, this
problem was investigated only in the case of AS ! EB

and of very small D = |zIS2 | [1] and it was assumed that
a region of the saturated FM ordering occurs around the
donor atom. More realistic is the case where only a par-
tially magnetized noncollinear-AFM region arises and
there is, perhaps, a saturated FM core in it. This model
is investigated in what follows.

First we consider the case of a region with nonsat-
urated magnetization and with no FM core in it, where
we can use Eq. (8). Putting p = 0 (no screening) and
minimizing the energy in Eq. (8) with respect to x, we
obtain for the optimal value of x the expression

(12)

It follows from Eq. (12) that the ferron with a noncol-
linear AFM ordering is stable only for k ≤ 1/6. At k =
1/6, the energy in Eq. (8) equals (–4/3), which is much
lower than in the case where the magnetic moments of
the sublattices are not canted.

Now, we consider the case where there is a region of
saturated FM ordering. Taking again a trial function in
the form of Eq. (5), the radius R of this region can be
determined from Eq. (7) by putting cosθR = 1. The
result is

(13)

Using Eqs. (1), (5), and (13), the energy of the sys-
tem can be found to be

(14)

With Eqs. (5) and (7), we calculate the total moment
of the localized ferron:

(15)

Minimization of the energy in Eq. (14) with respect to
x can be performed numerically.

In order to get insight into the properties of the
localized ferron, we present some results of the numer-
ical minimization. If u = 5 and b = 1, then E and M/S
are found to be, respectively, –3.81 and 12.453 for
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ν = 0.1, –5.164 and 52.748 for ν = 0.01, and –5.748 and
181.483 for ν = 0.001. For the same value of u and
b = 2, the quantities E and M/S are, respectively, –1.837
and 6.23 for ν = 0.1, –3.983 and 58.709 for ν = 0.01,
and –5.248 and 298.543 for ν = 0.001. It is seen that the
ferron moment M is gigantic even for a sufficiently
large ν. For small values of ν, the moment increases
with the Bohr orbit radius b (for a fixed value of a), but
the situation is reversed for large ν. This is because a
large localized ferron with b = 2 is more similar to a
free ferron (first considered in [1]), which can exist
only when the d–d exchange is sufficiently weak.

3. LOCALIZED DOUBLE-ELECTRON FERRONS

Now, we investigate localized double-electron fer-
rons, corresponding, for example, to Se vacancies or
excess Se atoms in EuSe, which are donors and accep-
tors, respectively, with a charge of 2e. The Hamiltonian
of the system is

 

 (16)

 

where Hsd and Hdd are given by Eq. (1). If the s–d
exchange is weak, the system is analogous to the He
atom: its electronic configuration corresponds to the
(1s)2 state when the spins of the electrons are antiparal-
lel and the electrons do not induce local magnetization.
In this case, the donor energy is equal to E11 = –5.695
(in units of EB) [6]. However, when the s–d exchange is
fairly strong, the (1s)(2s) state with parallel electron
spins is energetically favorable. For a crystal with FM
ordering and favorable orientation of the electron spins,
the corresponding energy is E12 = –4.29 – 2u (the factor
2 in the last term occurs because there is a gain in the
s–d-exchange energy for both electrons). Therefore, for
u > 0.7, the (1s)(2s) state is energetically favored over
the (1s)2 state. In a crystal with AFM ordering, the
(1s)(2s) state is energetically favorable if there is an FM
order in the vicinity of the donor, which requires a cer-
tain expense of the d–d-exchange energy. Therefore,
the donor energy in this state is higher than that in an
FM crystal.

In order to calculate this energy, we again make use
of the variational procedure. The orbital part of the trial

H Hs r1( ) Hsd r1( ) Hs r1( )+ +=

+ Hsd r1( ) e2
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∆
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double-electron function is taken to be

(17)

(18)

(19)

where r is measured in units of aB. The function ψ2s is
orthogonal to ψ1s. The magnetic ordering is completely
FM for r < R and noncollinear AFM for r > R. It is
assumed that the radius of the 1s state (equal to 1/2) is
much smaller than the radius of the completely FM
region R. For this reason, ψ1s is taken in the form corre-
sponding to the FM ordering and involves no varia-
tional parameter. However, the function ψ2s depends on
the radius of the FM region through the variational
parameter x.

With Eqs. (16)–(19), the ferron energy can be found
to be

(20)

where  = –4 – u is the total energy of the 1s elec-

tron;  is the kinetic energy of the 2s electron,

(21)

 is the Coulomb interaction energy of the 2s elec-
tron with the ionized donor and with the 1s electron,

(22)

 is the energy of the 2s electron within the FM

region and  is the energy for the formation of this
region,

(23)
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and  consists of the 2s-electron energy and the
d−d-exchange energy in the noncollinear (canted) AFM
phase, which are calculated by minimizing the energy
with respect to the angles of the d spins in the same way
as in the case of Eqs. (6)–(8). The result is

(25)

Although the integrals in Eqs. (23) and (25) are eas-
ily calculated analytically, the final expressions are too
cumbersome to be written out here.

The radius of the FM region is determined from an
equation that includes the effective field exerted on the
d spins by the 1s electron:

(26)

When calculating numerically, we first find the
radius R as a function of x from Eq. (26) and then min-
imize the energy in Eqs. (20)–(25) with respect to x. For
example, for u = 5, ν = 0.02, and b = 1, we thus obtain
R(x) ≅  1.75 – 0.3x and the optimal energy –10.908 for
x = 1.52 and R = 1.254. In the case of the FM ordering,
the energy is significantly lower. Using the expression
for the energy of the He atom in the (1s)(2s) state pre-
sented in [6], the energy of the (1s)(2s) state is found to
be –14.35. Thus, the energy of the double-electron
donor in an FM crystal is lower by 3.442EB than that in
an AFM crystal.

4. THE ENERGY OF THE FERROMAGNETIC 
METAL OF IMPURITIES

For further investigation of donor-electron delocal-
ization, we compare the energies of individual nonion-
ized donors and of the FM metal composed of ionized
donors. In general, the energy of the FM–AFM mixed
state may be lower than the energy of the pure FM state
for some donor concentrations. In both cases, one
should calculate the energy of the FM metal of the
impurities. To do this, one has to go beyond the jelly
model and to calculate the energy of this FM–AFM
state by treating the ionized donors as an array of point
charges.

First we derive an expression for the energy of the
metal of donors in an FM crystal with completely spin-
polarized conduction electrons. According to [6], the
energy per electron is given by the expression

(27)

where E0 is the bottom of the conduction band and Eex
is the exchange energy between the conduction elec-
trons. For completely spin-polarized electrons, this
energy can readily be obtained by generalizing the cor-
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responding Bloch expression for a completely depolar-
ized electron gas (presented, e.g., in [6]) and has the
form

(28)

For calculating the energy E0, we use the Wigner–Seitz
procedure (see, e.g., [7]). Namely, a sphere of radius

is constructed around each ionized donor and it is
assumed that within this Wigner–Seitz sphere the elec-
tron wave function φ with k = 0 satisfies the equation

(29)

with boundary condition

(30)

According to the theory of cohesive forces in metals,
the wave function φ is roughly constant under the
boundary condition given by Eq. (30). The problem is
solved by a variational method. Within the cell, the trial
wave function is taken to be

(31)

where K is the normalization factor and y is a varia-
tional parameter. Calculations show that the energy dif-
fers from that corresponding to the function φ = const
by less than 1% for the relative donor concentration
ranging from 0.001 to 0.01. Therefore, we have

(32)

Equations (27), (28), and (32) can be generalized to the
case of an FM–AFM state where the number of elec-
trons ne in the FM part of the crystal does not exceed the
number of electrons nd. Without the Coulomb energy,
according to Eqs. (28) and (32), the energy in Eq. (27)
takes the following form in this case (in units of EB):

(33)

where ζe = nea3, ζd = nda3, b = aB/a, and a is the lattice
parameter.

5. THE ENERGY OF THE FM–AFM STATE

The existence of the FM–AFM state was first indi-
cated and investigated in [3], where the jelly model was
employed, which allows one to determine the geometry
of the mixed FM–AFM state. However, this model
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overestimates the energy. In this paper, we consider this
state more accurately on the basis of the results
obtained in the preceding section. First we discuss the
case of single donors.

As in [2, 3], the variational method is used. As a vari-
ational parameter, we take the ratio x = VA/VF between
the volumes of the AFM and FM phases in the crystal. If
the AFM phase is dominant (x < 1), the FM phase con-
sists of geometrically identical droplets. In addition to
Eq. (33), we also take into account the s–d-exchange
energy, Coulomb energy, and electronic surface energy
in the same way as in [2, 3] and find the total energy of
the mixed FM–AFM state to be

(34)

where β = 1 for x > 1 and β = x for x < 1:

Here, we have used the same notation as in Eq. (6) and
the fact that the FM phase makes up the 1/(1 + x) vol-
ume fraction of the crystal. In other words, the relative
donor concentration in the FM phase ζe is (1 + x) times
higher than the average concentration ζ = na3.

Minimizing the total energy in Eq. (34) with respect
to x, one finds the optimal energy and the conditions for
the existence of the mixed FM–AFM state. The equal-
ity of the optimized energy in Eq. (34) to the energy of
an individual localized ferron in Eq. (14) or in Eq. (20)
can be considered as the condition for the transition
from the insulating state to a partially or totally highly
conducting state. The partially highly conducting state
is a state with x > 1, in which the crystal consists pre-
dominantly of the insulating AFM phase, with highly
conducting FM droplets embedded in it. Since the elec-
trons are locked in these droplets, the crystal as a whole
is an insulator, even though there are local highly con-
ducting regions in it. The totally highly conducting
state corresponds either to a mixed FM–AFM state with
x < 1, in which the bulk of the crystal is highly conduct-
ing, or to the totally FM state.

Now, we present some numerical results for single-
electron donors. Calculations show that, for realistic val-
ues of the parameters (U ∝  0.1–0.5, EB ∝  0.05–0.1 eV,
z|I |S2 ∝  0.0001–0.1 eV), only transitions to the FM
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state are possible. For example, at u = 5 and b = 1, the
energies of the localized ferrons and the metal become
equal in the totally FM state for ν in the range from
0.001 to 0.1. When ν = 0.001, the crystal becomes FM
for ζF = 0.0012 (Em1 = –4.735) and the energies are
equal for ζT = 0.007 (Em1 = –5.731), which corresponds

to aB = 0.199. If ν = 0.01, the crystal becomes FM
for ζF = 0.006 (Em1 = –4.179) and the energies are equal
for ζT = 0.013 (Em1 = –5.211), which corresponds to

aB = 0.229. At ν = 0.1, the crystal becomes FM
when ζF = 0.03 (Em1 = –2.748) and the energies are
equal for ζT = 0.045 (Em1 = –3.87), which corresponds

to aB = 0.359.

It should be noted that, if the number of nonionized
donors is fairly large, the crystal cannot be considered
antiferromagnetic, because the bulk of the crystal
exhibits a short-range FM order (in the regions around
the donors). The transition to the FM state implies the
change over from the short-range FM to the long-range
FM order. In weak magnetic fields causing the local
magnetic moments of all nonionized donors to be par-
allel to one another, the transition to the highly con-
ducting state is accompanied by a sharp increase in the
magnetization of the crystal. For example, the magne-
tization is doubled for ν = 0.1 and is half as large for
ν = 10.01.

In general, there exist such values of the parameters
for which, according to the criterion used in this paper,
the system immediately passes to the mixed FM–AFM
state (e.g., for u = 15, b = 3.5 and ν = 0.01 and for u =
20, b = 1 and ν = 1). In the latter case, the transition
occurs to the state with x = 0 and ζT = 0.13. However,
these parameter values are not typical of the systems
with single-electron donors.

Now, we consider the mixed FM–AFM state of a
crystal with double donors. Only 2s electrons are
assumed to be delocalized, because their orbital radius
is far larger than that of the 1s orbital. In the AFM
phase, the ionized donors of the He+ type create FM
regions in their neighborhood, which are surrounded by
the canted AFM phase. Using 1s wave functions in the
form of Eq. (5) and Hamiltonian (1), one can find the
energy E1s:

(35)

where the radius r of the FM region is given by Eq. (13)
and the ferron moment is given by Eq. (15). For u = 5
and b = 1, we obtain from Eq. (35) E1s = –8.46, x =
2.193, and M/S = 18.46.
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The energy E1s is higher than the energy of the ion-
ized donor in the FM phase (equal to –9) by a value of
L = 0.54. This can easily be taken into account by add-
ing the term L(1 + x) to the energy of the FM–AFM
state in Eq. (34). As a result, we find that the energies
of the localized ferrons and of the FM–AFM state
become equal when the relative carrier concentration is
ζ = 0.0045. The corresponding value of x is 2.12, which
corresponds to the FM–AFM state with FM droplets
within the AFM matrix. At the critical concentration for
the transition, each droplet contains five electrons,
which justifies the multielectron approach employed in
this paper. The conditions for the validity of this
approach are even better fulfilled for the percolation
concentration equal to 0.006, where each droplet con-
tains eleven electrons.

There are sets of parameters for which the transition
immediately occurs to the highly conducting mixed
state or even to the FM state. However, in this case, the
parameter values are not typical of the systems at hand.
Therefore, for typical parameter values, the insulator–
metal transition occurs to the FM state in the system of
single-electron donors and to the mixed FM–AFM state
in the system of double-electron donors.
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Abstract—Calculations of the K-edge x-ray absorption near-edge structure (XANES) in a pure metal and in
monoferrites of stoichiometric compositions MgFe2O4, MnFe2O4, NiFe2O4, and ZnFe2O4 are carried out using
a FEFF8 program. It was confirmed that the Fe K-edge energy shift found experimentally occurs upon the tran-
sition from pure iron to monoferrites. It is demonstrated that this shift is identically directed for ferrites with a
structure of normal (MnFe2O4, ZnFe2O4) and inverted (MgFe2O4, NiFe2O4) spinels, but numerical values of
theoretical Fe K-edge shifts agree well with experimental data only for normal spinels. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

This paper is devoted to the investigation of the
influence of a metal ion type and the arrangement in tet-
rahedral and octahedral lattice sites of the Me(Mg, Mn,
Ni, Zn)Fe2O4 spinels on the shape and energy of the
iron K absorption edge. Specific features of the x-ray
absorption near-edge structure (XANES) spectra were
calculated using the FEFF8 program [1, 2]. Compared
to previous versions, the application of this program
opens up new opportunities for band-structure calcula-
tions: (1) simulation of the self-consistent crystal
potentials for all atoms involved in each compound, (2)
inclusion of the full multiple-scattering paths within a
cluster of the chosen size, and (3) calculation of K
absorption edges with various spin orientations for the
absorbing iron atom. Additional applications of the
FEFF8 program lead to a manifold increase in the time
required for calculations even on modern workstations.
For this reason, the cluster size was limited by the num-
ber of atoms which provided satisfactory agreement
with the experimental results.

2. CALCULATION PROCEDURE

The crystal structure of spinels with the space group

-F3dm represents a closely packed face-centered
cubic lattice of anions with tetrahedral and octahedral
holes partially occupied by cations [3, 4].

The MnFe2O4 and ZnFe2O4 ferrites belong to the
structure type of normal spinels in which manganese
and zinc cations occupy tetrahedral sites and iron cat-
ions occupy octahedral sites. Thus, the AB2O4 for-
mula unit should involve one Me(Mn, Zn) cation
occupying the A tetrahedral site and two iron cations
located in the B octahedral site. However, in the
MnFe2O4 ferrite, eight tetrahedral sites are occupied by

Oh
7
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both Mn2+ and Fe3+ cations in the ratio 0.8Mn2+ + 0.2Fe3+

per A site [5]. Similarly, 16 octahedral sites are
occupied by both Fe3+ and Mn2+ ions in the ratio
0.2Mn2+ + 1.8Fe3+ per two B sites. Hence, in our cal-
culations, instead of the formula MnFe2O4, we used
the formula FexMn1 – x[FeyMn2 – y]O4, where x and y are
the concentrations of cations in the A and B sites,
respectively.

The MgFe2O4 and NiFe2O4 ferrites belong to the
structure type of inverted spinels in which one-half the
iron ions occupy tetrahedral sites and the other half of
the iron ions and all the Me(Mg, Ni) ions are located in
octahedral sites. Since the Me(Mn, Mg, Ni)Fe2O4 fer-
rites are antiferromagnets, the magnetic moments of
metal ions located in the A sites were assumed to be
parallel to one another and antiparallel to the magnetic
moments of atoms occupying the B sites. The exception
was the ZnFe2O4 spinel. This compound exhibits no
magnetic properties due to the presence of a nonmag-
netic zinc ion, which favors antiparallel spin orienta-
tions of iron ions located in the same octahedral sublat-
tice. The lattice parameters a and the anionic parame-
ters u, which account for the displacement of oxygen
atoms from ideal sites toward the [111] direction, are
given in the table. Thus, when calculating the iron K
absorption edges for Me(Mn, Ni)Fe2O4, we used the
clusters containing atoms of six types: (1) the central
absorbing iron atom with a certain orientation of the
spin magnetic moment; (2, 3) the iron ions with two
antiparallel spin orientations, which were located in the
corresponding coordination spheres; (4, 5) Me(Mn, Ni)
ions with allowance made for the orientation of the
magnetic moments; and (6) oxygen ions. In the
Me(Mg, Zn)Fe2O4 spinels, the cluster involved atoms
of only five types, because magnesium and zinc are not
magnets.
001 MAIK “Nauka/Interperiodica”



 

62

        

SAFONTSEVA, NIKIFOROV

                                                
Unit cell parameters (a), anionic parameters (u), Fe K-edge shifts (∆E), charges of Fe ions (qFe/e), and parameters of the com-
putation model for pure iron and Me(Mn, Zn, Mg, Ni)Fe2O4 ferrites

Material α-Fe MnFe2O4 ZnFe2O4 MgFe2O4 NiFe2O4

a, Å [5] 2.86 8.512 8.442 8.364 8.340

u [4] – 0.385 0.385 0.381 0.381

[5] 0 8.3 ± 0.5 7.3 ± 0.6 6.3 ± 0.3 6.0 ± 0.4

∆E, eV This work 0 ~8 ~7 ~9 ~9

qFe/e ≡ n
n ↑ 0.009 0.203 0.231 0.234 0.263

n ↓* 0.004 0.042 0.009 0.034 0.04

Fet – – – 984 984

Nmax Feo – 981 981 974 974

α-Fe 965

Fet – – – 13.62 13.58

RPATH, Å Feo – 13.78 13.66 13.48 13.44

α-Fe 14.02

Fet – – – 29 29

NFMS Feo – 27 27 27 27

α-Fe 27

Fet – – – 3.49 3.48

RFMS, Å Feo – 3.74 3.71 3.66 3.65

α-Fe 4.01

, Å – – – 1.90 1.89

, Å – 2.05 2.03 2.04 2.04

6–O 6–O 6–O 6–O

Coordination number Feo – 6–Fe 6–Fe 2–Fe, 4–Mg 2–Fe, 4–Ni

6–Mn 6–Zn 6–Fe 6–Fe

4–O 4–O

Coordination number Fet – – – 6–Fe 6–Fe

6–Mg 6–Ni

[5] 23.5 12.1 17.5 15.2 16.5

a–b, eV This work 24.1 11.8 18.8 16.8 16.0

* The “up” spin is marked with the arrow ↑ , and the “down” spin is marked with the arrow ↓ .

LFet–O

LFeo–O
The XANES calculations of the Fe K spectra for all
the ferrites under investigation were carried out within
a unified calculation model:

(1) The largest cluster size (Nmax) was no more than
1000 atoms.

(2) The procedure of full multiple scattering was
carried out for a fairly small cluster containing up to
30 atoms (NFMS).

(3) Within the longest scattering path (RPATH),
whose length was limited by the largest cluster size,
only the meaningful scattering paths with a multiplicity
of eight were taken into account.

(4) The Hedin–Lundqvist exchange potential was
included in our computations: the self-consistent-field
(SCF) potential was calculated for a fairly small cluster
P

containing up to 30 atoms and the number of iterations
(loops) was as much as ten.

The longest scattering paths, the interatomic dis-
tances (LFe–O and LMe–O), the cluster sizes (Nmax and
NFMS), the coordination numbers, and the types of near-
est-neighbor atoms are given in the table.

3. RESULTS AND DISCUSSION

Figure 1 shows the Fe K absorption edges for pure
iron and Me(Mn, Mg, Zn, Ni)Fe2O4 ferrites, which
were calculated using the FEFF8 code. The absorption
edge for pure iron on the relative energy scale in Fig. 1a
is taken as zero (E0). The choice of this scale was
caused by the necessity of comparing the theoretical Fe
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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Fig. 1. Iron K absorption edges for monoferrites with a spinel structure: (a) theoretical K edges computed using the FEFF8 code and
(b) experimental K edges [5]. The energy locations of the absorption edges are marked with arrows.
K spectra with the experimental curves shown in
Fig. 1b, in which the shifts of the iron K edges upon the
transition to ferrites are given with respect to pure iron.
The experimental Fe K edges were taken from [5]. The
energy location of the theoretical K edges (E0) was
defined as the inflection point of the arc tangent curve,
which was used to approximate the theoretical Fe K
edges for all the ferrites under investigation. In order to
compare the theoretical K edges with the experiment, it
is necessary to take into account that spinels contain
two different iron ions with different charges and spin
orientations. The experimental Fe K edges [5], which
are displayed in Fig. 1b, represent the averaged absorp-
tion spectra for iron ions. For this reason, the theoreti-
cal Fe K edges shown in Fig. 1a also represent a super-
position of Fe K edges for iron ions of different types.

Analysis of the Fe K spectra upon transition from
pure iron to monoferrites revealed that the absorption
edge shift to the high-energy range did not exceed
~9 eV. This trend exists for all the aforementioned com-
pounds and is independent of the cation distribution in
the unit cell, which is in good agreement with the
experiment [5]. However, the analysis of the experi-
mental and calculated numerical values of iron K edge
shifts (see table) demonstrated that a reasonable agree-
ment with the experiment was achieved only for the
normal spinels MnFe2O4 and ZnFe2O4. The largest dif-
ference in the numerical value of the Fe K edge shift
relative to pure metal (~3 eV) is observed in the theo-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      200
retical curves for MgFe2O4 and NiFe2O4, which belong
to inverted spinels. For these compounds, the intense
shoulders in the pre-edge region were not revealed
experimentally (a'').

The pre-edge region can be interpreted as transitions
of 1s electrons to unoccupied 3d states by analogy with
the assignment of the main peak to the transition of 1s
electrons to 4p states [5]. This conclusion is confirmed
by our calculations, in which the local density of states
for iron 3d electrons with the main peak located in the
same energy range as the a' shoulders for all the afore-
mentioned ferrites Me(Mg, Mn, Ni, Zn)Fe2O4 was
computed using the LDOS code of the FEFF8 program.
Since the main features of XANES, including the pre-
edge region, are associated with the photoelectron
wave scattering in a complex potential relief of the
nearest-neighbor atoms, the a'' shoulders in the pre-
edge region of the Fe K spectra for MgFe2O4 and
NiFe2O4 can be due to the existence of two types of iron
atoms occupying tetrahedral (Fet) and octahedral (Feo)
holes in inverted spinels. By contrast, iron atoms in the
MnFe2O4 and ZnFe2O4 normal spinels are located only
in the octahedral sites. As was mentioned above, the
theoretical Fe K spectra represent a superposition of the
Fe K spectra for iron ions, which have different spin
orientations and occupy nonequivalent crystallographic
sites. Because of this, the appearance of a'' shoulders
can be due to the different interatomic distances FetO
and FeoO and the variation in the nearest-neighbor
1
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relief of the absorbing atom (see table). The absence of
a similar complicated pattern in the pre-edge region of
the Fe K spectrum of Mn0.8Fe0.2[Fe1.8Mn0.2]O4 can be
explained by the small number of Fet atoms compared
to Feo atoms. Actually, Fet = 0 and Feo = 2 per formula
unit AB2C4 for normal spinels and Fet = 1 and Feo = 1
for inverted spinels. Thus, the appearance of additional
features a'' should be associated with the atomic
arrangement in the crystal lattice rather than with the
type of atoms (other than iron) involved in ferrites.

An additional complication of the pre-edge region
of the Fe K edge brings about ambiguity in determining
the edge location, since the approximating arc tangent
curve transforms into a multimodal curve. This can
partly explain the discrepancy between the experiment
and theory. However, the difference between the exper-
imental and theoretical shifts for inverted spinels can-
not be explained by problems in the determination of
the edge location (its midpoint). As was noted in [5],
the Fe K-edge shift should increase with an increase in
the iron valence. An increase in the iron ion charge
(qFe/e, where e is the electron charge) upon the transi-
tion from normal to inverted spinels, which was calcu-
lated using the FEFF8 program, correlates well with the
increasing Fe K-edge shift (see table). Further calcula-
tions for other inverted spinels should show whether or
not the result obtained is a generality in the trends of the
absorption edge shift in normal and inverted spinels. As
P

for now, we can state that the calculated Fe K-edge
shape and the energy gap (a–b) from the main absorp-
tion edge a to the clearly defined features b, which are
observed in a fine structure of the spectra, agree well
with the experiment (see table). This fact and the exhi-
bition of the general trend of the Fe K-edge shift to a
high-energy range for both normal and inverted spinels
demonstrate the adequate efficiency of the FEFF8 code
for computations of absorption spectra.
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Abstract—The stable states of magnetic inhomogeneities of the “static”-soliton type in a (111) plate of a garnet
ferrite with combined anisotropy are investigated theoretically, and the conditions for their occurrence are
established. A model of static solitons is considered, and its fundamental properties are determined by solving
the corresponding variational problem numerically. It is shown that these inhomogeneities originate at crystal
defects and can significantly affect the kinetics of a phase transition of the spin-reorientational type. © 2001
MAIK “Nauka/Interperiodica”.
INTRODUCTION

The properties of magnetic materials are known to
depend heavily on the presence of a domain structure in
them. The magnetization distribution in the crystal and
in domain walls (DWs) is determined by the geometry
of the crystal, the symmetry of the crystal lattice, the
higher order anisotropies, etc. [1–3]. However, even in
the simplest cases, e.g., in a uniaxial ferromagnet, one-
dimensional magnetic inhomogeneities with a nontriv-
ial topology can exist. Investigations of the phase tra-
jectories of the magnetization vector M in these crys-
tals show that, in addition to 180° DWs that separate
two domains with opposite directions of the vector M,
there occur magnetic inhomogeneities of the 0°-DW
type, static solitons (SSs) [4]. These inhomogeneities
are sandwiched between two domains with the same M
direction and have a bell-shaped magnetization distri-
bution.

On the other hand, a number of magnetic materials,
such as epitaxial garnet ferrite films [5], possess a com-
bined anisotropy consisting of two components of dif-
ferent natures: induced uniaxial (IUA) and intrinsic
cubic anisotropy (CA). Calculations show [6] that such
a combined anisotropy is also favorable to the occur-
rence of SSs in magnets under certain conditions. It
should be noted that localized solutions of this type
have already been discussed in the literature (see, e.g.,
[7]), but they did not attracted considerable interest
because of their topological instability. At the same
time, DWs with such a structure were observed experi-
mentally [2, 8, 9]; they occur in different materials,
including garnet ferrites. Therefore, there is consider-
able current interest in studying the properties of these
inhomogeneities and the conditions for their occur-
rence in plates with combined anisotropy.
1063-7834/01/4301- $21.00 © 0065
1. STATIC SOLITONS IN AN IDEALIZED MODEL

Let us consider a ferromagnetic crystal in the form
of an infinite plane-parallel plate of thickness D with
combined IUA and CA. For the sake of definiteness, the
plate is taken to be of the (111) type and the IUA easy
axis is assumed to be parallel to the normal n to the
plate, n || z  || [111]. The magnetization varies along the
y axis, which lies in the (111) plane and makes an angle

ϕ0 with the [ ] axis. With allowance made for the
exchange interaction, the CA and IUA energies, and the
demagnetizing field of space charges in the Winter
approximation [10], the energy of magnetic inhomoge-
neities in the (111) plate has the form

(1)

where A is the exchange parameter; Ku and K1 are the
IUA and CA constants, respectively; Ms is the satura-
tion magnetization; Θ and ϕ are the polar and azimuth
angles of the vector M, respectively; Θ∞ and ϕ∞ char-
acterize the M direction in the domains; and V is the
volume of the plate. The plate is assumed to be thick
enough for the contribution from the demagnetizing
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field of surface charges to the energy in Eq. (1) to be
negligible (idealized model).

The Euler equations minimizing the energy in
Eq. (1) have the form

(2)

with the proviso that

(3)

Solving these equations, one can find both the possible
magnetic phases and the structure of the magnetic inho-
mogeneities in the (111) plate. Analysis shows that
Bloch 180° DWs (ϕ = 0, π) exist for domains with M ||
[111] and ϕ0 = πk/3 (k ∈  Z) if Ku > 0 and κ < 4/3 (κ =
K1/Ku). When 1.314 < κ < 4/3, the structure of a 180°
DW exhibits cross ties (with additional inflection
points in the M distribution), which are due to the
emergence of metastable axes in the DW plane, causing
the spin rotation to be slower near them. In the phase
diagram for the (111) plate [6], these M directions cor-
respond to a canted phase of the [uuw] type, which is
metastable in this κ range, in contrast to the symmetric
phase with M || [111], which is stable. At κ = 4/3, a
spin-reorientational ([uuw]  [111]) phase transition
of the first order occurs. In the region 4/3 < κ < 3/2, the
[111] magnetic phase is metastable, whereas the [uuw]
phase is stable. Accordingly, the domain structure of
the plate is rearranged at κ = 4/3 and the 180° DW
between M || [111] domains transforms into a 180° DW
between M || [uuw] domains. The latter DW also has
cross ties due to the metastable [111] easy axis lying in
the DW plane. It is well known [11] that cross ties aris-
ing in the vicinity of a first-order spin-reorientational
phase transition are nucleation centers for the new
phase and are also favorable to domain structure rear-
rangement. In this case, the original 180° DW deforms
and finally splits into two DWs; these are 70.5° and
109.5° DWs in the particular case of κ  ∞ (Ku  0)

δE
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δE
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Fig. 1. Phase portrait of Eqs. (2) for ϕ = 0 and π; ϕ0 = 0; and
κ = 1.4.
P

[6]. At the same time, analysis of the phase portrait of
the set of equations (2) shows that in the region
4/3 < κ < 3/2, some trajectories of the vector M have
the shape of closed loops (Fig. 1), which correspond to
the solutions

(4)

where ∆0 = . These solutions describe magnetic
inhomogeneities of the SS type, for which M || [111] in
the domains. As follows from Eq. (4), the SS in the
(111) plate can be of two types: large-angle (LAS) and
small-angle soliton (SAS), which differ in energy E,
width ∆s, and the maximum angle Θs (amplitude) of the
deflection of the magnetization vector M from its direc-
tion in the homogeneous state. The width and ampli-
tude of the SS, which characterize its dimensions, are
given by

(5)

where δ = ln(k + ) and k (k > 1) is the maximum
root of the cubic equation

(6)
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 [6]. Analysis of inequality (3) for the
solution given by Eq. (4) reveals that the SS is not sta-
ble, because it is a one-dimensional solution of the ide-
alized model [12]. The point is that this model allows
for no factors (e.g., the finiteness of the sample) that are
responsible for the formation of a domain structure. In
this case, account must be taken of the demagnetizing
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fields of the plate, the contribution of which to the
energy in Eq. (1) for the Bloch DWs can be written as

(7)

where Lx is the dimension of the plate along the x axis.
We note that the energy Ems (minus the energy of the
homogeneous state) makes a negative contribution to
the total energy in Eq. (1). At the same time, analysis of
Eq. (7) shows that the larger the SS dimensions, the
larger |Ems |. Nonetheless, with the magnetostatic
energy included, the SS state does not become stable,
as will be shown later.

2. MODEL OF NUCLEATION 
IN REAL CRYSTALS

In order to investigate the stability of the SS, we
consider the thermodynamics of its formation. The
point is that the structure of these inhomogeneities and
the conditions for their existence suggest that these
magnetization inhomogeneities arise in the process of
nucleation of the new phase. Owing to fluctuations, the
nuclei always appear in the original phase in the vicin-
ity of the first-order phase transition (in the region of
coexistence of the phases). When the new phase is
metastable and the original phase is stable (energeti-
cally favorable), the nuclei of the former phase are
unstable and quickly decay [13]. However, they
become stable if there are so-called condensation cen-
ters in the thermodynamic system. In magnetic materi-
als, such centers are various defects: structural, chemi-
cal, thermic, etc. [14]. Their presence breaks the trans-
lational symmetry of crystals and leads to
nonuniformities of the material parameters of the sam-
ple [15, 16].

As an example of a defect that stabilizes the SS, we
consider a magnetic inclusion in the form of a platelet
[17] in which the parameters A, Ku, and K1 are different
from their values in the host crystal; that is, the y depen-
dence of these parameters is taken to be

(8)

where L is the thickness of the defect.
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To describe the process of nucleation at the defect
quantitatively, we apply the variational method and
take the SS magnetization variation in Eq. (4) as a trial
function, with a, b, and c being variational parameters.
Their values are determined by minimizing the energy
in Eq. (1) with allowance made for Eqs. (7) and (8); that
is, the energy of the static soliton Es is taken to be

(9)

where Ed is given by

(10)

This approach is based on the assumption that the
defect virtually does not affect the structure of the mag-
netic solitonlike inhomogeneities, but merely changes
the structure parameters. Indeed, the magnetostatic
field can significantly affect the structure of the DW
(for example, the Bloch wall can be transformed into a
Néel wall) only in the case of a fairly thin plate (with a
thickness comparable to ∆0) and of the quality factor of

plate Q = Ku/2π  satisfying the condition Q ≤ 1. In
this paper, however, we assume that D @ ∆0 and Q > 1.
On the other hand, a numerical study of the topology of
the magnetic inhomogeneities (without regard for the
magnetostatic field) that arise near defects [16, 18]
reveals that the SS with a structure similar to that given
by Eq. (4) can form in crystals with a combined anisot-
ropy. Therefore, the approximation used in this paper is
justified.

3. STATIC PROPERTIES OF STATIC SOLITONS

In order to find the stable states of the SS in a crystal
with the defects described by Eq. (8), one should solve
the corresponding variational problem. Because the
equations obtained by minimizing the energy Es with
respect to the parameters a, b, and c are cumbersome
and their solution cannot be expressed in terms of
known functions, we solve the variational problem by

minimizing the reduced energy εs = Es/ LxD∆0

numerically. It is taken into account that the centers of
the SS and the defect can differ in position and be sep-
arated by a distance ξ.

The results obtained are presented in Figs. 2–6,
where all quantities with dimensions of length are mea-
sured in units of ∆0. It is seen from Fig. 2 that the depen-
dences of the SS parameters on the shift ξ have some
specific features which are associated with the corre-
sponding dependence of the interaction forces between
the SS and the defect. The first feature to note is that the
equilibrium position of the SS is determined by the
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–1.5, L = 5, D = 35, and various values of Q: (1) 5, (2) 8,
(3) 15, and (4) 25.
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defect center. A shift of the SS relative to the center
gives rise to a quasi-elastic force, which obeys Hooke’s
law for small ξ. This SS–defect interaction force is
determined fundamentally by the contribution
described by Eq. (10) (curve εd in Fig. 3). As ξ
increases, part of the spins in the SS find themselves
outside the defect, which causes Ed to increase. How-
ever, this effect is reduced by the SS portions that dis-
place and find themselves inside the defect, thereby
being involved in the interaction with the defect
(because of the short-range character of this interac-
tion). As a result, the SS width and amplitude (dictated
by the exchange forces) are increased and in turn cause
a decrease in Ems. At K1 > 0, the CA easy axes are
directed along 〈100〉 , while the CA hard axes are paral-
lel to the 〈111〉  axes. Therefore, any deflection of the
spins from the [111] direction causes the CA energy Eca

to decrease, as can be seen from Fig. 3. The increase in
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Fig. 3. Dependences of the different components of the total
SS energy on the shift ξ for Q equal to (a) 5 and (b) 8. The
other material parameters are the same as in Fig. 2.
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the IUA energy Ea with an increase in the SS dimen-
sions is explained in the same way.

As ξ is increased further, the ξ dependence of the
resultant force becomes nonlinear (Fig. 2) and its mag-
nitude reaches a maximum at ξ = ξP corresponding to
the inflection point of the function εs = εs(ξ). Then, as
the shift increases still further, the force decreases in
magnitude and becomes equal to zero. At this point
(ξm), the energy εs(ξ) is maximal and the interaction
changes sign; at ξ > ξm, the SS is repelled from the
defect. Analysis of this process in the quasi-static
approximation shows that the plate becomes uniformly
magnetized with M || [uuw], because, for the parameter
ξ tending to infinity, we have εs  –∞, ∆s  ∞, and
Θs  Θm.

Thus, the stabilization of the SS structure, which is
determined by the balance of the forces taken into
account, is established in a certain range of the material
parameters bounded by their limiting values. For exam-
ple, if Q is decreased, i.e., the contribution Ems to the

Fig. 4. Dependences of the SS parameters (a) Θs and (b) ∆s
on the defect width L for Q = 5, ξ = 0, and various values of
κ: (1) 0.83, (2) 1.0, and (3) 1.42. The other material param-
eters are the same as in Fig. 2.
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energy in Eq. (9) is increased, there is a critical value of
ξ at which the magnetostatic field, which is favorable to
the spin tilt to the plane of the plate, breaks the balance
of the forces and the SS spreads out (curve 1 in Fig. 2):
εs  –∞, ∆s  ∞, and Θs  π. It should be noted
that the ranges of the material parameters in which the
SS is stable are considerably wider in the absence of the
stray demagnetizing fields (Q  ∞) than in the pres-
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ters are the same as in Fig. 5.
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ence of them. There is always a (lower) critical value of
Q at which the SS becomes unstable.

The stable SS states, as was shown above (Fig. 3),
are determined fundamentally by the presence of the
defect in the crystal structure. For example, it is seen
from Fig. 4 that the SS width increases in proportion to
the width of the defect, so that the SS spreads out in the
limit as L  ∞. In this limit, the plate is homogeneous
(but its material parameters are changed) and the fac-
tors that can stabilize the SS disappear. It is worth not-
ing that the limiting values of Θs coincide with the val-
ues of the polar angle of M in the uniformly magnetized
plate [6]. We also note that the SS has a growing ten-
dency to adapt to the profile of the defect with increas-
ing L. At the same time, it follows from Fig. 4 that the
process of nucleation on the defect has a threshold
character; namely, there is a minimal defect size at
which the SS becomes unstable and collapses. This
agrees with the corresponding general result of the ther-
modynamic theory of the “condensation” of a new phase
[13] and correlates with the analogous dependences of
the SS parameters on ∆A, ∆K1, and ∆Ku (Figs. 5, 6). It
follows from these dependences that there is a mini-
mum defect energy at which the SS has a stable struc-
ture. This energy depends on the size and other param-
eters of the defect (∆A, ∆K1, ∆Ku). Calculations show
that the SS width increases, but its amplitude decreases
with increasing ∆A. This is due to the fact that the mag-
netization distribution in the SS becomes smoother
when the exchange interaction in the defect is stronger.
The dependence of the SS dimensions on ∆K1, charac-
terizing the jump in CA due to the defect, is more com-
plicated; as ∆K1 increases, the value of Θs increases sig-
nificantly for κ > 0 and decreases moderately for κ < 0.
This behavior is due to the nature of CA. Indeed, the
〈001〉  axes increase in importance with increasing K1:
the plane of spin rotation in the 0° DW contains the
[001] axis, which makes the angle Θ ≈ 35° with the
[111] axis. At K1 > 0, the greater part of spins tend to
tilt to this axis, so that ∆s and hence Θs (by virtue of the
exchange interaction) increase. At K1 < 0, in contrast,
the spins in the 0° DW tend to tilt to the [111] axis. This
explains the dependence of the 0°-DW dimensions on
∆K1 mentioned above.

Calculations (some of which are presented in
Figs. 5, 6) show that the SS dimensions increase with κ,
which agrees with Eq. (5) derived in the idealized
model. There is a κ range (∆κ) over which the SS
dimensions increase so significantly that it can be said
that the changeover from the SAS state to an LAS state
occurs. This changeover proceeds continuously in the
range ∆κ, whose position shifts to higher or lower κ
values depending on the defect parameters ∆A and ∆K1
(but not on ∆Ku). The opposite situation occurs with the
value of ∆κ, which is determined fundamentally by the
parameter ∆Ku, but virtually does not depend on ∆A and
∆K1. At a certain, critical value of ∆Ku, ∆κ vanishes
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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(∆κ = 0); that is, the changeover from the SAS to an
LAS (and vice versa) occurs suddenly (Fig. 6), which
is indicative of the possible rearrangement of the
domain structure associated with the defect. With a fur-
ther decrease in κ, the SAS decreases in size and col-
lapses finally at a certain value of κ after the SS col-
lapse, the plate becomes uniformly magnetized with
M || [111]. It should be noted that this state can also
appear at a larger value of κ, because εs > 0 in this case
and the SS state is metastable. At the other, upper, bound
of the κ range over which the SS is stable, the SS spreads
out, because ∆s  ∞ and Θ  Θm. In this case, the
plate is also uniformly magnetized with M || [uuw].
Therefore, the plate is remagnetized; that is, it under-
goes the [111]  [uuw] phase transition. The point of
this spin-reorientational phase transition corresponds
to the upper κ limit of the SS stability at which the SS
spreads out.

It is seen from the results presented above that the κ
range over which the SS is stable is fairly wide; it is
wider than that predicted by the idealized model. The
SS exists even at κ = 0, i.e., in the absence of CA. This
is a nontrivial result, because it is the presence of the
combined anisotropy that is the condition for SS-like
solutions in the idealized model. We note, however, that
the effect of defects on the DW structure was shown
[16, 19] to be similar to the effect produced by higher
order anisotropies. This is the reason why the com-
bined-anisotropy effect is observed.

4. DISCUSSION OF RESULTS

The results obtained in this paper allow one to
model the magnetization reversal in a crystal as fol-
lows: Let a magnet be in a uniformly magnetized state
with M || [111] under given external conditions defined
by the temperature, external stresses, etc. As the param-
eter κ is increased, an SS will nucleate on the defect at
a certain value of κ, which can be different from the
critical value κc1 for the SS collapse (because of possi-
ble hysteresis). With a further increase in κ, the SS
dimensions increase and the SS spreads out finally at
another critical value κc2; the magnet again becomes
uniformly magnetized but with M || [uuw]; that is, a
spin-reorientational phase transition occurs. A similar
magnetization reversal of a crystal was reported in [3,
20], where it was of fundamental importance that, in
the process of the spin-reorientational phase transition,
a new phase (canted phase with M roughly parallel to

the [ ] axis) nucleated on a dislocation, grew, and,
finally, occupied the bulk of the crystal, so that the
remainder of the original phase with M || [111] was
located in a microregion around the dislocation. This
microregion can be considered as an SS characterized
by the canted phase with M || [uuw]. Clearly, this inter-
pretation of the data presented in [3, 20] is qualitative,
because the model of the crystal with a defect we con-
sider here is one-dimensional, whereas the dislocations

     

111
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and magnetic inhomogeneities observed in [3, 20] are
at least two-dimensional. (The explanation proposed in
this paper is not the only one possible. In [21], the M
distribution around a dislocation was calculated numer-
ically and the results are in qualitative agreement with
[20]. However, only the case of an infinite crystal was
considered in [21] and the kinetics of the process was
not investigated.) However, our interpretation is sup-
ported by the fact that the dimensions of the defect and
the SS are comparable and ∆s > L, which was observed
in the experiment [20]. Furthermore, the κ dependence
of the SS dimensions correlates with the temperature
dependence of the dimensions of the magnetized
microregion localized on a dislocation, especially in the
vicinity of the spin-reorientational phase transition. As
the temperature is increased by ∆T ≈ 1°K, the microre-
gion expands rapidly and occupies the entire crystal;
the SS also increases infinitely in size as κ is increased
by ∆κ ≈ 0.1 in the vicinity of κ ≈ κc2. Finally, as follows
from the analysis given above, the SS tends to adapt to
the defect profile; therefore, our model qualitatively
explains the shape of magnetic inhomogeneities local-
ized on dislocations.

5. CONCLUSION

Thus, the static soliton is shown to be stable in a cer-
tain range of the parameters of the crystal and of defects
of a certain type. It has a number of interesting features,
which allows one to consider the SS as a nucleus of a
new phase localized on a defect and arises in a spin-
reorientational phase transition. In this case, the SSs are
an intermediate structure through which magnetization
reversal of the crystal occurs. The analysis of these
magnetic inhomogeneities can be used in interpreting
the experimental data, in particular, the data on the pro-
cesses of the magnetization reversal in a magnetic field,
where various defects are of considerable importance.
These inhomogeneities also have potential for device
applications.
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Abstract—It is demonstrated that the heat capacity discontinuity for a gas of nuclear spin waves occurs in fer-
romagnetic materials. The heat capacity discontinuity manifests itself at ultralow temperatures and stems from
the specific spectrum of these quasiparticles. The effect is observed at the temperature TK ≅  2.37"ωn. The heat
capacity discontinuity is found at this temperature. © 2001 MAIK “Nauka/Interperiodica”.
Investigations into the properties of magnetic struc-
tures in which the so-called hyperfine interaction plays
an important role [1] are not a novel trend. They were
started 30–35 years ago with investigations of the col-
lective dynamics of novel quasiparticles, which were
called nuclear spin waves (NSWs) and were originally
predicted by de Gennes et al. [2] in 1963. Beginning
with that time, a large number of papers have been con-
cerned, in one way or another, with analysis of the
properties exhibited by these quasiparticles [3–8] at
temperatures sufficiently below the liquid-helium tem-
perature.

In studies of the dynamic properties of magnetic
materials in this temperature range, it is important to
take into account the hyperfine interaction, which
results in the formation of the NSW spectrum in the k
space due to an indirect exchange interaction of neigh-
boring nuclear spins (through the electron spins). This
spectrum is very simple for ferromagnets and is almost
indistinguishable from the frequency of the nuclear
magnetic resonance (NMR). The NMR frequency is
known as ωn = AS/", where A is the hyperfine interac-
tion constant and S is the electron spin of the atomic
outer shell. Actually, the NSW spectrum is as follows:
ωn(K) = ωn – ∆ωn(k). Here, the dispersion, or the
dynamic frequency shift, is ∆ωn(k) = A2SI/"2ωe(k),
where I is the nuclear spin and ωe(k) is the magnon dis-
persion. The explicit form of the magnon dispersion is
ωe(k) = ωe + ωE(ak)2, where ωe = γe(H + Ha) is the fer-
romagnetic resonance frequency, γe is the gyromag-
netic ratio, H is the external magnetic field, Ha is the
anisotropy field, ωE is the exchange frequency (ωE =
Jex/", where Jex is the Dirac exchange integral), and a is
the interatomic distance.

By virtue of the specific character of the NSW spec-
trum in ferromagnets, only the processes occurring
with conservation of the number of quasiparticles (the
case in point is the interaction within the NSW system;
the interaction with phonons and magnons is consid-
1063-7834/01/4301- $21.00 © 0073
ered negligibly weak) are allowed by the laws of con-
servation of energy and momentum. Actually, for three
NSWs, the energy conservation law is as follows:
ωn(k1) = ωn(k2) + ωn(k3). It is clear that this law breaks
down for the NSW spectrum at any wavevector due to
small dispersion ∆ωn(k), which is considerably less
than the NMR frequency. By contrast, the four-particle
interaction, whose Hamiltonian commutes with the

operator for the number of quasiparticles N = ak, is
allowed by the conservation laws. Hence, for this inter-
action, the equilibrium function takes the form of a
Bose distribution with the nonzero chemical potential
µ: n(k) = [exp("ωn(k) – µ)/T – 1]–1 (the Boltzmann con-
stant is taken to be unity). However, since the disper-
sion is small, we can assume that "ωn(k) = "ωn.

Thus, we come now to the solution of the problem
of calculating the heat capacity discontinuity, which
should manifest itself from the above reasoning on the
NSW spectra. This can be proved by rigorous mathe-
matical treatment.

It is known that the complete number of nuclear spin
waves is determined by the following integral: N =

(V/(2π)3) d3kn(k) = (πV/6a3)n("ωn – µ). Since V/a3 =

Na (where Na is the number of atoms in a substance),
from the equation n("ωn – µ) = (6/π)(N/Na) for µ = 0,
we determine the required temperature at which this
condition is met:

TK = "ωn/ln[(π/6)(N0/Na) + 1], (1)

where N0 is the number of quasiparticles for µ = 0 (TK

should not to be confused with the Bose condensation
temperature [9]).

The order of magnitude of the TK temperature is
about 10–2 K. Let us calculate the heat capacity of the

ak
+

∫
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nuclear spin waves at the temperature found from
Eq. (1). Since

and the chemical potential is small at temperatures
close to TK, after the decomposition of the integrand,
we obtain 

N = N0 – Na(π/6")(∂n0/∂ωn)µ, 

where n0 = n (µ = 0).

As a consequence,

µ = (6"/π)[(N0 – N)/Na]1/(∂n0/∂ωn). (2)

By virtue of the fact that the derivative ∂E/∂µ = N ≅  N0,
we have E = E0 + µN0. Taking into account Eq. (2), we
obtain 

E = E0 + (6"/π)[(N0 – N)/Na]1/(∂n0/∂ωn)N0.

Double differentiation of the obtained equation with
respect to temperature gives

N N0 V / 2π2( )( ) k2 k n "ωn µ–( ) n "ωn( )–[ ]d

0

π/a

∫+=

∆Cn T∂2E/∂T2
"T ∂2N0/∂T2 ∂ n0/∂ωnln[ ] 1– -





= =

–
2 N0/∂T( )∂ ∂ n0/∂ωnln[ ] /∂T

∂ n0/∂ωnln[ ]2
-------------------------------------------------------------------





.

Cn(T)

TK T

(a)

Cn(T)

TK T

(b)

Fig. 1. Schematic representation of the heat capacity discon-
tinuity in ferromagnets due to nuclear spin waves (a) with-
out the interaction and (b) with inclusion of the interaction.
P

By calculating the derivatives and substituting
Eq. (1), we find

(3)

On the other hand, at T < TK, the energy of the NSW gas
is determined by the equation

(4)

Then, the heat capacity to the left of the TK point is

(5)

From Eqs. (3) and (5), we derive the heat capacity at
T > TK:

(6)

Let us dwell briefly on the justification of the above sit-
uation. The condition of the nonzero NSW chemical
potential, which is necessary to realize the case under
consideration, requires estimation of the ratio between
concrete relaxation times. Indeed, a similar situation
occurs only if the relaxation time τn – n – ph – e of the
NSW temperature is substantially less than the relax-
ation time τn – n – ph of the chemical potential. The time
τn – n – ph – e is governed by the mechanism of the annihi-
lation interaction of nuclear spin waves with phonons
and magnons (see, for example, [10]) and is determined

by multiplying the operators αnk'bq , where

(αnk) is the production (annihilation) operator for

nuclear spin waves with wavevector k,  is the produc-
tion operator for a magnon with wavevector k, and

(bq) is the production (annihilation) operator for a
phonon with wavevector q. The estimation of the relax-
ation time for this mechanism gives [τn – n – ph – e]–1 ≅
B1ωn(ωn/ωE)3(ωT/ωe)2, where B1 is a constant. As
regards the time τn – n – ph, it is determined by the mecha-

nism of the interaction of the type bq. In this
case, a simple estimation demonstrates that [τn – n – ph]–1 =
B2ωn("ωn/θD)3 in order of magnitude. It follows

∆Cn π/6( )Nnn0 "ωn/T( )2

T TK=
–=

=  N0/ π/6( ) N0/Na( ) 1+[ ]ln
2

.–

E V / 2π2( )( ) "ωn k( )n "ωn( )k2 kd

0

π/a

∫=

=  π/6( )N0n0"ωn.

Cn
– T∂2E/∂T2

T TK 0–→
lim π/6( )"ωnNaTK∂2n0/∂TK

2= =

=  N0/ π/6( ) N0/Na( ) 1+[ ]ln
2{ }

× 1 6Na/πN0+( ) 1 12Na/πN0+( )/ π/6( )[ln[{
× N0/Na( ) 1 ] 2 ] } .–+

Cn
+ Cn

– ∆Cn+=

=  N0/ π/6( ) N0/Na( ) 1+[ ]ln
2{ } 1 6Na/πN0+( ){

× 1 12Na/πN0+( )/ π/6( ) N0/Na( ) 1+[ ]ln 2 } .–

αnk
+ α ek''

+

αnk
+

α ek
+

bq
+

αnk
+ αnk'

+
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from comparison of these times that the scheme of
relaxation required to realize this situation, which is

represented as αnk'bq   µ ≠ 0, Tn  T and

bq  µ  0 can be realized if, for example,
ωT @ ωe, where ωe is the ferromagnetic resonance fre-
quency and ωT = 2AωEIS/".

Thus, the inclusion of the adiabatic interaction
between nuclear spin waves and a thermostat leads to a
decrease in the chemical potential µ, which becomes
zero after a very long, but finite amount of time. In this
case, the knee shown in Figs. 1a and 1b gradually dis-
appears. By virtue of the specific interaction, this time
should be very long; namely, its characteristic values
fall in the range from several months to centuries. The
reason for this is that the phonon region of the phase
space is very small for this type of interaction and is of
the order of ("ωn/θD)3. It should be noted that the
instant of time at which all the subsystems attain ther-
modynamic equilibration can be determined rather
exactly from the time of the disappearance of this knee.

For antiferromagnets, the situation is somewhat
complicated and the above effect does not necessarily
manifest itself. In fact, owing to the large dynamic fre-
quency shift in the NSW spectrum, which is caused by
the exchange interaction, the effect can manifest itself
only in antiferromagnets with a low Néel temperature
and, correspondingly, a small dynamic frequency shift.
This is known as the necessary condition for the prohi-
bition of three-particle scattering with the proviso that
introducing the chemical potential is meaningful.

In conclusion, it should be emphasized once again
that the above-predicted heat capacity discontinuity,
which is due to the presence of the nuclear spin sub-

αnk
+ α ek''

+

αnk
+ αnk'

+
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system, occurs only at the so-called ultralow tempera-
tures. The specific effects and the results of calculations
for temperatures T ≤ "ωn were considered in detail, for
example, in [10]. Note that the nonstandard NSW spec-
trum, which is characteristic of the ferromagnets with a
small dynamic frequency shift, is the most important
feature in our consideration. The temperature of the
heat capacity discontinuity can easily be estimated
from Eq. (1). If Na = N0, we obtain TK ≅  0.071 K for
AS = 0.03 K.
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Abstract—The field and angular dependences of nonreciprocal birefringence (NB), which is linear in magnetic
field B and is due to magnetic-field-induced spatial dispersion, have been studied in the cubic (symmetry class
Td) paraelectric phase of the R3B7O13X boracites (R = Co, Cu, Ni; X = I, Br) at a wavelength λ = 633 nm. It is
shown that the NB in crystals with different 3d and halogen ions exhibits the same anisotropy. The relation
between the A and g parameters, A = 2g, which determine the NB anisotropy, suggests that the microscopic
mechanism of the NB is the manifestation of second-order magnetoelectric susceptibility at optical frequencies.
© 2001 MAIK “Nauka/Interperiodica”.
The optical-frequency permittivity tensor εij(ω, B, k)
of noncentrosymmetric diamagnets and paramagnets
can have a Hermitian symmetric component bilinear in
the external magnetic field B and the wave vector of
light k: δεij = γijklBkk1 [1, 2]. This component describes
the phenomena of magnetic-field-induced spatial disper-
sion, one of which is the nonreciprocal (gyrotropic) bire-
fringence of light. Nonreciprocal birefringence (NB) has
been observed to date in the β-LiIO3 diamagnet (symme-
try class C6) [3]; Cd1 – xMnxTe and Zn1 – xMnxTe mag-
netic semiconductors [4, 5]; and CdS, CdSe (class C6v)
[6, 7], CdTe, ZnTe, and GaAs (class Td) [8, 9] semicon-
ductors. The microscopic mechanisms responsible for
NB in conventional and magnetic semiconductors were
considered in [4–10]. It was shown that the large NB
observed near the band edge of the semiconductor crys-
tals is primarily due to the contributions, linear and
bilinear in B and k, to the dispersion of the conduction
band and the valence bands between which virtual opti-
cal transitions take place (the interband mechanism) or
to the exciton-branch dispersion (the exciton mecha-
nism). Obviously enough, these mechanisms do not
operate in the cases where the NB originates from local
optical rather than interband or exciton transitions, i.e.,
where the excitation is localized on an ion and cannot
propagate over the crystal. This may be expected to
occur, for instance, with the optical d–d transitions in
transition-metal ions or the f–f transitions in rare-earth
ions. NB has recently been observed [11] in the
Co3B7O13I boracite (class Td) in the energy region E ~
2.1 eV (E is the photon energy) corresponding to the
optical transition 4A2(4F)  4E(4P) within the 3d shell
of the Co2+ ion. In this spectral region, the NB has a res-
onant character with an S-shaped dispersion. In the
case of local optical transitions, the NB microscopic
mechanisms can be associated with (i) the second-order
magnetoelectric susceptibility at optical frequencies
1063-7834/01/4301- $21.00 © 20076
(the magnetoelectric mechanism) and (ii) the quadru-
pole moment induced by the electric field of light in the
presence of a magnetic field B (the quadrupole mecha-
nism) [11]. The second-order magnetoelectric suscepti-
bility describes the magnetic moment δMω and the
electrical polarization δPω that are induced by the elec-
tric Eω and magnetic Hω fields of the light wave,
respectively, and oscillate at the light frequency ω in
phase with the respective Eω and Hω fields. The induced
magnetic moment can occur in noncentrosymmetric
crystals placed in an external magnetic field B and is

described by a third-rank polar i-tensor Gijk(ω): δ  =

Gijk(ω) Bk. Because the magnetic moment is an axial
c vector, it cannot be induced by an electric field in cen-
trosymmetric crystals in the absence of a magnetic

field. The quadrupole moment  that is induced by a
field Eω in the presence of an external magnetic field B
and is responsible for the NB oscillates with a 90°-
phase shift relative to the Eω field and is described by a

fourth-rank tensor (ω):  = (1/ω) (ω) B1.
Both mechanisms can contribute to the γijkl tensor and
determine the magnitude and relation between the A
and g parameters of this tensor in the symmetry class
Td. As is shown in [11], in this class, the magnetoelec-
tric mechanism results in an exact relation A = 2g
between the parameters, while the quadrupole mecha-
nism, which is described by a higher rank tensor, does
not relate these parameters. The experimental value
A/g = 1.9 obtained for Co3B7O13I suggests that the NB
in this crystal is due primarily to the magnetoelectric
mechanism [11]. Nevertheless, direct evidence for the
operation of this mechanism was lacking, because, in
principle, the A/g = 2 relation, as well as any other rela-
tion of this kind, is not forbidden for the quadrupole

Mi
ω

E j
ω

Qij
ω

aijkl' Qij
ω aijkl' Ėk

ω
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mechanism. A rigorous proof of the magnetoelectric
mechanism being dominant can be based on the fact
that the A = 2g relation (in the Td class) for this mecha-
nism follows from symmetry considerations alone and,
therefore, must hold for any 3d ion and any optical tran-
sition in these ions. The objective of this work was an
experimental investigation of the field and angular
dependences of the NB in boracites with different 3d
ions and the determination of the relation between A
and g.

1. EXPERIMENT

The method used to determine the A and g parame-
ters for class-Td crystals is described in [4, 5]. The A
and g parameters were found by analyzing the angular
dependences of NB with light propagating along the
[110]-type crystallographic direction and magnetic
field B lying in a (110)-type plane perpendicular to this
direction. We measured the field dependences of the
angle of turn α of the plane of the polarization for light
which has passed through a crystal placed in a magnetic
field and a λ/4 plate for different angles θ between the
magnetic field and the [001]-type crystallographic
direction. The NB accounts for the α(Β) dependences
linear in the magnetic field, with the magnitude and
sign of dα/dB depending on the θ angle. The experi-
ments were carried out in the E || B geometry (the mag-
netic field B is oriented parallel to the incident-light
polarization E) and for E45B, a geometry in which the
angle between E and B was 45°. In both cases, the prin-
cipal direction of the λ/4 plate was parallel to E. As is

Table 1.  Ferroelectric phase transition temperature TC, the
temperature of the transition to the magnetically ordered

state TN, and the Curie temperature  for the boracites
studied [14]

CoI CuBr NiBr

TC, K 200 224 398

TN, K 38 24 40

, K –80 –47 –31

TC
m

TC
m
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shown in [4, 5], in the first case the dα/dB(θ) relations
have the form acosθ + bcos3θ and, in the second,
a'sinθ + b'sin3θ. The A and g parameters could be
derived from the dα/dB(θ) angular relations to within
~10%. In this work, we studied NB in the boracites
Co3B7O13I, Cu3B7O13Br, and Ni3B7O13Br at a wave-
length λ = 633 nm. The sensitivity to the angle of turn
of the polarization plane was δα ≈ 10''. The measure-
ments were carried out in fields of up to ±1.5 T within
the temperature range of 294–470 K.

The boracite family includes crystals with a general
formula R3B7O13X, where R stands for the ion of a diva-
lent metal and X stands for the halogen ion. For T > TC

(TC is the Curie temperature), in the paraelectric state,

their structure is described by the space group  and
the point-symmetry class Td [12, 13]. The metal ions
occupy 24 c-positions of point symmetry S4 in the unit
cell. The nearest neighbor environment of R2+ is a dis-
torted octahedron formed by two halogen ions X– and
four oxygen ions O2–. The oxygen ions on the square
diagonals are displaced from the basal plane along the
z axis by ±δ, so that the point symmetry of the complex
is D2d. At T < TC, a first-order phase transition to the fer-
roelectric state occurs in the boracites. The crystal sym-

metry lowers to  [12, 13]. At T < TN, the boracites
undergo a transition to an antiferromagnetic state with
weak ferromagnetism [14]. The Curie temperature TC

of the ferroelectric transition, the point of transition to
the magnetically ordered state TN, and the correspond-

ing Curie magnetic temperature  are given in Table
1 for the crystals studied in this work. The magnetic and
magnetoelectric properties of the boracites were inves-
tigated in [14, 15]. Their absorption spectra were stud-
ied in [16, 17]. In the 0.3–3-eV region, these spectra
consist of several bands of different intensities, which
are due to transitions within the 3d shell of the metal
ions. The positions of the strongest absorption bands
lying near E = 1.96 eV (λ = 633 nm), the absorption
coefficient at the maximum, αm, and the transition
assignments for the boracites under study are listed in
Table 2.

Td
5

C2v
5

TC
m

Table 2.  Position of some absorption bands E0, the maximum absorption coefficient αm, and the type of transition in the
boracites studied [16, 17] 

Boracite CoI CuBr NiBr

Transition 4A2(4F)  4E(4P) 2B1(2D)  2E(2D) 3A2(3F)  3Eb(3P)

E0, eV 2.1 1.5 2.9

αm, cm–1 1400 3000 2500

Transition 4A2(4F)  4A2(4P) 2B1(2D)  2B2(2D) 3A2(3F)  3Ea(3F)

E0, eV 2.7 1.2 1.5

αm, cm–1 1300 2500 600
1
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The boracite platelet samples measuring 2 × 2 mm
were cut of boules grown by the method described in
[18]. The platelet thickness was d ≈ 90 µm for the CoI
boracite, ≈800 µm for the CuBr boracite, and ≈900 µm
for the NiBr boracite. The samples were ground and
polished with a diamond abrasive. The samples were
oriented using x-ray diffraction patterns and boule
faceting. The spontaneous birefringence associated
with the growth-induced strains and defects was ∆n =
6.7 × 10–6, 7.0 × 10–6, and 1.2 × 10–5 for the CoI, CuBr,
and NiBr boracites, respectively, and did not affect the
α(B) relations. For comparison, the Faraday effect was
measured on all samples. The Faraday effect measure-
ments were conducted in a longitudinal magnetic field
of ±0.05 T.

2. RESULTS OF THE EXPERIMENT

All the boracites studied exhibited linear α(B)
dependences in the E || B and E45B geometries. The
nonreciprocity of the induced birefringence was veri-
fied by turning the crystal around an axis parallel to B
and an axis perpendicular to B and k. Figure 1 presents
field dependences α(B) obtained in both geometries for
the CuBr boracite. Figures 2 and 3 display angular
dependences dα/dB(θ) for the CoI and CuBr boracites
obtained in the (110)-type plane in the E || B and E45B
geometries. In accordance with theory, the angular
dependences are described by first- and third-order har-
monics. The dα/dB function exhibits extrema at θ = N ×
60° (N = 0, …, 5) in the E || B geometry and at θ = 30°

E || B

E45B

θ = 120°

θ = 0°

θ = 180°

θ = 60°

θ = 260°

θ = 20°

θ = 120°

θ = 80°

1.0

0.5

0

–0.5

–1.0
1.0

0.5

0

–0.5

–1.0

α,
 d

eg
/c

m

–1.5 –1.0 –0.5 0 0.5 1.0 1.5
B, T

Fig. 1. Field dependences α(B) obtained for Cu3B7O13Br
in (a) the E || B and (b) the E45B geometries at different
θ angles.
P

+ N × 60° in the E45B geometry. We may recall that the
dα/dB function obtained in the E || B geometry at θ =
0° is determined by the g parameter alone and, for
E45B at θ = 90°, by the combination 3A + 2g [4, 5].

In all the CoI boracite samples studied in this work,
the NB was found to be in agreement with the results of
[11] both in magnitude and in the character of anisot-
ropy. As is seen from Figs. 2 and 3, the value of the NB
in CuBr is smaller than that in the CoI boracite. In the
CoI boracite, the extremum values are dα/dB ≈ 2°/cm T,
while in the CuBr boracite, they are dα/dB ≈ 0.6°/cm T.
Nevertheless, the character of anisotropy, i.e., the rela-
tion between the values of dα/dB at the angles θ = 0°,
180° and θ = 60°, 120° in the E || B geometry, as well
as at θ = 90°, 270° and θ = 30°, 150° in the E45B
geometry, is the same for the two boracites.

Figure 4 presents the angular dependences of dα/dB
obtained for the NiBr boracite at T = 450 K. The NB
found for this boracite, dα/dB ≈ 0.2°/cm T, is substan-
tially smaller than that for the CoI and CuBr boracites.
Nevertheless, as can be seen from Fig. 4, the anisotropy
of NB in the NiBr boracite has the same character.
Thus, the relations shown in Figs. 2–4 indicate that
while the magnitude of the NB depends substantially
on the type of the 3d ion in the boracite structure, the
NB anisotropy in crystals with different metal and halo-
gen ions is the same.

Note that the α(B) dependences measured in the
E45B geometry are linear in all the crystals studied.
This implies that the NB at the wavelength used is sub-

E ||  B2

1

0

–1

–2

E45B2

1

0

–1

–2

–3

3

dα
/d

B
, d

eg
/c

m
 T

0 90 180 270 360
θ, deg

Fig. 2. Angular dependences of dα/dB in the CoI boracite
obtained in the E || B and E45B geometries.
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stantially larger than the birefringence associated with
the Cotton–Mouton effect, which is quadratic in a mag-
netic field. Thus, the magnetooptic properties of borac-
ites in their transparency region are determined by two
nonreciprocal phenomena, namely, the Faraday effect
and the nonreciprocal birefringence.

3. DISCUSSION OF RESULTS

The NB angular dependences were analyzed to
determine the A and g parameters of the γijkl tensor. The
refractive index used in the calculations was n = 1.9.
Table 3 lists the maximum values of the NB (obtained
at θ = 90° in the E45B geometry), the A and g parame-
ters, their ratio, and the Verdet constant for the crystals
studied. As can be seen from Table 3, the values of the
NB and of the Faraday effect do not correlate. Indeed,
the magnitude of NB in the CoI boracite is an order of
magnitude larger than that for the NiBr boracite,
whereas the magnitude of the Faraday effect in these
crystals differs by about a factor three. The magnitude
of the Faraday effect in the CuBr boracite is nearly
40 times smaller than that for the CoI boracite and an
order of magnitude smaller than that in the NiBr borac-
ite. By contrast, the NB in the CuBr boracite is only
four times smaller than that in the CoI boracite and
three times that in the NiBr boracite. The absence of a
correlation is evidence that the microscopic mecha-
nisms of these phenomena are different. The Faraday
effect is known to be due to the magnetic-field-induced
splitting of energy levels and to be associated with opti-

E || B0.6

0.2
0

–0.2

–0.6

E45B0.6

0.4

0

–0.2

–0.4
–0.6

dα
/d

B
, d

eg
/c

m
 T

0 90 180 270 360
θ, deg

–0.4

0.4

0.8

–0.8

0.2

Fig. 3. Angular dependences of dα/dB in the CuBr boracite
obtained in the E || B and E45B geometries.
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cal-transition matrix elements of the Im( ) type,
where d is the transition dipole-moment operator and
|a〉  and |b〉  are the wave functions of the ground and
excited states [19, 20]. While the NB is also connected
with the level splitting induced by a magnetic field, the
matrix elements involved are of another kind, namely,

Re( ) in the case of the magnetoelectric mecha-

nism and Im( ) for the quadrupole mechanism

[11], where m is the magnetic-moment operator and Qik

is the quadrupole moment operator. Because the
parameter ratio A/g = 2 (Table 3) holds for different 3d
ions having different electronic configurations, namely,
Co2+(3d7), Ni2+(3d8), and Cu2+(3d9), it is the magneto-
electric mechanism that accounts primarily for the NB.
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j

dab
i mba

j

dab
i Qba

jk
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0.2
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–0.1

–0.2

Fig. 4. Angular dependences of dα/dB in the NiBr boracite
obtained in the E || B and E45B geometries at T = 450 K.

Table 3.  Maximum value of dα/dB, the A and g parame-
ters, the A/g ratio, and the Verdet constant V at the wave-
length λ = 633 nm in the boracites studied 

Boracite CoI CuBr NiBr

dα/dB, deg/cm T 2.5 0.62 0.2

A, 10–8 µm/T 16.6 4.2 1.35

g, 10–8 µm/T 8.7 2.2 0.67

A/g 1.9 1.9 2.0

V, deg/cm T 8.1 –2.3 27.4
1
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As is shown in [11], the NB due to the second-order
magnetoelectric susceptibility at optical frequencies
can be written as

 (1)

where N is a parameter depending on the number of 3d
ions per unit volume and on the angle f between the X,
Y, and Z crystallographic axes and the local axes x, y,
and z of the oxygen–halogen octahedron, respectively

(f ~ 24°); Zab = (  – )/[(  –  + ], ωab

is the resonant frequency of the optical transition, Γab is
the damping parameter, and gt is the ground-state g fac-
tor for the magnetic field B aligned with the octahedron
local axis t(x, y, z); |at 〉  and |bt 〉  are the ground- and
excited-state wave functions for B || t; µB is the Bohr
magneton; and k is the Boltzmann constant. Because
the local environment of the 3d ions in boracites has D2d

symmetry, the magnetoelectric tensor Gijk(ω) has three
independent components and the indices ijk take on the
values yzx, zxy, and xyz. Let us use Eq. (1) to compare

the matrix elements Re( ) for different optical
transitions as calculated in the single-oscillator model.
To do this, we assume that the ND at the wavelength
λ = 633 nm is determined by the strong absorption
band closest to this wavelength. In the case of the CoI
boracite, this is the 4A2(4F)  4E(4P) transition at
E0 = 2.1 eV, while for the CuBr boracite, it is
2B1(2D)  2E(2D) at E0 = 1.5 eV, and for the NiBr
boracite, it is 3A2(3F)  3Eb(3P) at E0 = 2.9 eV
(Table 2). The Γab parameter can be estimated from the
absorption spectra [16, 17] to be ~0.1 eV. We also neglect
the g-factor anisotropy, i.e., replace gt in Eq. (1) by g =
(g⊥  + g||)/2, and introduce the notation Re(dabmba) ≡
Re(  +  + ). The ground-

state g factor of the Co2+ ion is g = 4.2 and that of the
Cu2+ and Ni2+ ions is g = 2.2 [21, 22]. Substituting these
figures, as well as the values of dα/dB (Table 3) and of

 (Table 1), in Eq. (1) shows that the value of

Re( ) for the transition responsible for the NB in
the CuBr boracite is 1.8 times larger than that for the
CoI boracite, while in the NiI boracite it is 0.8 of this
value. The above rough estimation suggests that while

the matrix elements Re( ) for different optical
transitions may differ by a few times, they are neverthe-
less of the same order of magnitude. More precise
information on the magnitude and sign of the

Re( ) matrix elements can be derived from spec-
tral measurements of the NB or of the nonreciprocal
linear dichroism.

∂α /∂B N Re datbt

i mbtay

j( )
b ijt,
∑=

× ZabωabµBgt/k T TC
m–( ),

ωab
2 ω2 ωab

2 ω2 )2 Γab
2 ω2

dab
i mba

j

daxbx

y mbxax

z dayby

z mbyay

x dazbz

x mbzaz

y

TC
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j
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Thus, the main mechanism accounting for the NB
magnitude and its anisotropy in the boracites is the
manifestation of the second-order magnetoelectric sus-
ceptibility at optical frequencies. The magnitude and
sign of the magnetoelectric susceptibility is determined

by the optical-transition matrix elements Re( ),
which can be derived from spectral measurements of
the NB or the nonreciprocal linear dichroism. The mag-
nitude of the NB in the boracites, ~2°/cm T, is compa-
rable to that observed in conventional and magnetic
semiconductors near the band edge [4, 5, 9] and can
readily be measured by present-day polarimetric tech-
niques. Note that the value of NB obtained in this work
for the CuBr boracite, dα/dB = 0.6°/cm T, is only four
times smaller than the magnitude of the Faraday effect
(V = 2.4°/cm T). The absence of a correlation between
the values of the NB and of the Faraday effect in differ-
ent boracites indicates that these phenomena have rad-
ically different dispersions. This implies, in turn, a dif-
ferent relation (both in magnitude and sign) between

the Im( ) and Re( )-type matrix elements
for different optical transitions that occur in the 3d shell
of the metal ions.
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Abstract—The thermodynamics and kinetics of polarization switching in ferroelectrics are studied in the spe-
cific case of switching in intrinsic ferroelectrics with 180° domains. The initial stage of the switching in the
region of weak metastability is analyzed. An expression relating the critical domain size to the switching field
is derived. An equation describing the evolution of the size distribution function of the switched domains is
obtained. Expressions for calculating the number of polarization switching nuclei as a function of the switching
field are derived. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Ferroelectric crystals and films are widely
employed as storage cells in integrated electronic
devices and other areas of technology [1]. The most
essential property of these structures is their ability to
reverse the direction of polarization. As a result, a
switching current appears. Multiple switchings caused
by alternating pulses bring about a decrease in the
switched charge in these systems and, as a conse-
quence, a decrease in the switching current [1–6]. The
switching phenomenon in ferroelectrics is intensively
investigated, both theoretically [6–9] and experimen-
tally [2–5]. For instance, the review by Scott [1] con-
tains a generalized analysis of these studies and a
review of microscopic studies of the structural evolu-
tion of domains formed in the course of switching is
given in [5].

There are presently two main approaches to the
description of switching kinetics. Both approaches are
based on the idea that the switching processes are first-
order phase transitions, which result in the nucleation
of regions (domains) with the polarization opposite to
the previous one in the bulk of the ferroelectric. Within
the first approach [1], the parameters determining the
time dependence of the current represent a set of empir-
ical fitting quantities. In the second approach [2–4, 6],
the corresponding parameters are expressed in terms of
the parameters of the Kolmogorov–Avrami model [10,
11], which is widely used in describing the degree of
volume filling by growing crystals. Attempts are pres-
ently being made to improve the second approach. In
particular, allowances are made for the effects associ-
ated with the ferroelectric samples being of a finite size
[4], etc.

However, despite all the efforts of the researchers,
progress in understanding the switching process is
1063-7834/01/4301- $21.00 © 0082
presently lacking. In our opinion, this is associated with
the fact that the Kolmogorov–Avrami model is a purely
geometric model. The equations used in this model
contain parameters such as the nucleation rate of the
domains and the rate of their growth. These quantities
are not defined within the Kolmogorov–Avrami model
and should be found from thermodynamics and kinetic
theory. The researchers engaged in the growth of crys-
tals and films from vapor, solutions, or melts were
faced with the same problems [12–14], and the Kol-
mogorov–Avrami model was the first to be used in
describing the growth of crystals and films.

Presently, the rigorous kinetic theory of first-order
phase transitions is available and its results are summed
up in [12, 14]. It was shown [12, 14] that the first-order
phase transitions are complex multistage processes
accompanied by various nonlinear phenomena. The
theory developed in [12–14] permits one to treat the
rich diversity of the processes involved within a unified
approach and to calculate all the most important char-
acteristics of a phase transition (the rate of nucleation
of the new phase, the nucleus growth rate, the evolution
of the nucleus size distribution function, the degree of
filling the sample volume with nuclei, the interface
structure, etc.). It is the latter approach that we will use
to describe the switching processes in ferroelectrics in
an electric field. The consideration will be exemplified
by an intrinsic ferroelectric crystal with 180° domains.

2. THERMODYNAMICS OF SWITCHING

Let us consider a ferroelectric crystal residing in a
completely ordered state at a temperature below the
Curie point and representing a plate of thickness L
placed between the plates of a capacitor. The polariza-
tion axis is directed along the z axis. We assume that the
dielectric properties of the crystal along the x and y axes
2001 MAIK “Nauka/Interperiodica”
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have no anomalies. This means that when considering
the thermodynamic properties of such a ferroelectric, it
is sufficient to include only the z component of the
polarization vector Pz in the thermodynamic potential.
We impose an external electric field on the ferroelec-
tric. According to [15, 16], the thermodynamic poten-
tial of a ferroelectric in an electric field at a temperature
near the Curie point can be represented as

 (1)

where Φ0 is the part of the thermodynamic potential
which does not depend on the degree of polarization, p
and T are the pressure and temperature of the medium
in which the crystal resides, Ez is the z component of the
electric field, TC is the Curie temperature, a and b are
the coefficients of the thermodynamic potential expan-
sion in powers of Pz, and ε0 is the permittivity of free
space.

We are not interested in the behavior of crystals at
temperatures T > TC. Consider the temperature region
T < TC. Differentiating Eq. (1) at the constant Ez yields
the following equation:

 (2)

which relates the field strength to the polarization of the
ferroelectric [15, 16]. The form of the function Ez(Pz)
described by Eq. (2) is shown in Fig. 1.

If T < TC, the value Pz = 0 cannot correspond to the
stationary state of the ferroelectric. For Ez = 0, sponta-
neous polarization of the pyroelectric phase sets in.
Then,

 (3)

where Pz10 and Pz20 are the equilibrium values of the
polarization.

Expression (3) allows one to draw a curve describ-
ing equilibrium states in a ferroelectric with the polar-
ization oriented along and opposite to the z axis direc-
tion. The curve describing the equilibrium state of
phases is called the binodal. Figure 2 shows a binodal
bounding the region of the two-phase state of a ferro-
electric with up and down polarizations. To determine
the boundaries of the metastability region, we have to
find the derivative (∂Ez/∂Pz)T and equate it to zero:

 (4)

The curve bounding the metastability region is called
the spinodal; it is shown in Fig. 2.

The most important characteristic of the first-order
phase transitions is the quantity called the supersatura-

Φ̃ = Φ0 p T,( ) a T TC–( )Pz
2 bPz

4 EzPz–
ε0Ez

2

2
-----------,–++

2a T TC–( )Pz 4bPz
3+ Ez,=

Pz1 20,
2a TC T–( )

2b
---------------------------,±=

P1 2s,
a TC T–( )

6b
------------------------.±=
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tion [12–14]. In describing the switching processes, we
can introduce a similar quantity

 (5)

We will call it the relative repolarization and ∆ = Pz – Pz10,
the repolarization. In rather weak fields, the polariza-
tion Pz = Pz10 + χε0Ez [15, 16], where χ is the permittiv-
ity. Substituting the last expression in Eq. (5) and then
in the relationship for ∆P yields

 (6)

 (7)

Recasting formula (7) as ∆P/χε0 = Ez, we obtain the
relationship for the repolarization as a function of an
electric field. Thus, the electric field strength in ferro-
electrics in the switching processes is an analog of the
supersaturation or supercooling in conventional phase
transitions. Because, according to [15, 16], χ =
4a(TC – T)–1 at T < TC, from Eq. (7), it follows that at
T  TC, the increase in χ is accompanied by an
increase in repolarization.

The quantity ξmax = |Pz1s |/ |Pz10 | – 1 has the meaning
of the maximum possible repolarization. For ξ > ξmax,

ξ
Pz

Pz10
------------ 1–

Pz Pz10–
Pz10

--------------------------.= =

ξ
χε0Ez

Pz10
--------------,=

∆P χε0Ez.=

–Ez

T

1
2

–Pz10 –Pz1s Pz2s Pz20 Pz

T = TC

T < TC

Pz

Fig. 1. The Ez(Pz) function [a plot of Eq. (2)].

Fig. 2. (1) The phase equilibrium curve of a ferroelectric
with states at the “up” polarization (Pz) and “down” polar-
ization (–Pz); Pz1, 20 are the equilibrium values of the polar-
ization. (2) The curve (spinodal) bounding the regions
within which the polarization of a ferroelectric cannot be
uniform in any conditions; Pz1, 2s are the boundaries of the
metastability region.



84 KUKUSHKIN, OSIPOV
the initial orientation of the ferroelectric phase
becomes completely unstable and spontaneous polar-
ization switching of the ferroelectric starts.

3. SWITCHING KINETICS AND NUCLEATION 
OF SWITCHED REGIONS

The most general method for studying phase transi-
tions is the field theory [12, 17], which allows one to
describe first-order phase transitions within a unified
approach. In this approach, it is inessential whether the
system undergoing the transition is in the region of
strong or weak metastability. Nevertheless, using this
method requires knowledge of the equation of state of
the system. If the equation of state is unknown, it can
be found in an approximate way by using the Landau
expansion for the thermodynamic potential. This
expansion (and the equation of state) is valid, as is well
known, only in the vicinity of the second-order phase
transition, which narrows substantially the region of its
applicability. The classical theory makes use of such a
phenomenological parameter as surface tension, but it
does not permit calculation of the interface structure. At
the same time, the structure of the interface can be cal-
culated in terms of the field theory. In our study of first-
order phase transitions in ferroelectrics, we will use
both the field approach and the classical theory of
nucleation, because the equation of state (2) is known
only in the vicinity of the Curie point. At the same time,
we are interested in a description of phase transitions
throughout the region of variations in the thermody-
namic parameters. We consider first the switching pro-
cesses in the region of weak metastability.

4. KINETICS OF THE INITIAL STAGE 
OF SWITCHING IN THE REGION 

OF WEAK METASTABILITY

Recall that the polarization Pz used above is defined
in the following way [16]:

 

where ω is the unit cell volume of the crystal, pzi =

 is the dipole moment of the unit cell in the
point-charge approximation, ei is the charge of the ith
ion, and rzi is the z component of the ith charge position
vector. From this,

 (8)

We assume the elementary structural units of domains
to be crystal unit cells with the dipole moment piz. The
number of unit cells in a domain of volume Vd is

,

Pz
1
ω
---- eirzi,

i

∑=

eirzii∑

pzi Pzω.=

n
Vd

ω
------=
P

and for the polarization of this domain, we have

 (9)

We introduce the distribution function f(n, t) of
domains in the number of unit cells they contain, which
is normalized against the number of domains N(t) per
unit volume of the crystal; that is,

 

We can change over from f(n, t) to the distribution func-
tion of domains in the degree of polarization f(Pzn, t) by
using the relationship f(n, t)dn = f(Pzn, t)dPzn and
Eq. (9).

According to the classical theory of nucleation [12–
14, 18], the kinetic equation describing the process of
new phase nucleation can be cast in the form

 (10)

where f(n, t) is the distribution function of the switched
domains in the number of unit cells they contain, In – 1
is the flux of new phase nuclei transferring from size
n – 1 to size n, and In is the flux of the new phase nuclei
transferring from size n to size n – 1. Hence, it follows
that

 

Here, Wn – 1, n, Wn, n – 1, and Wn, n + 1 are the transition
probabilities of the nuclei moving from the state with a
particular number of unit cells to another. Depending
on the actual size of the switching nuclei, they can be
divided in two classes: nuclei with n < nc and those with
n > nc, where nc characterizes the nucleus of a critical
size which is in equilibrium with the medium. The
nuclei with n < nc decay, because the medium is “under-
switched” for them, and those with n > nc grow, because
the medium is “overswitched.” Such a size distribution
of the nuclei is due to the existence of the interface
energy between a nucleus with the polarization vector
along the field and the medium with the oppositely
directed polarization vector. In the region between the
nucleus and the medium, the polarization vector turns,
which accounts for the creation of additional energy.

For n @ 1, we can change over from the difference
equation (10) to a differential one. In this case, we
obtain

 (11)

where Wn, n + 1 is the diffusion coefficient of the switch-
ing nuclei in the size space, Rmin(n) is the minimum
work done by the system to create the nuclei, and
∂Rmin/∂n is the change in the minimum work due to a

Pzn pzin.=

N t( ) f n t,( ) t.d

0

∞

∫=

∂f
∂t
----- In 1– In,–=

In 1– Wn 1– n, f n 1– t,( ) Wn n, 1– f n t,( ),–=

In Wn n, 1+ f n t,( ) Wn 1+ n, f n 1+ t,( ).–=

∂f
∂t
-----

∂
∂n
------Wn n, 1+

1
kBT
---------

∂Rmin

∂n
------------- f n t,( ) ∂f

∂n
------+ ,=
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change in the number of structural units in a domain at
n < nc.

The quantity (Wn, n + 1/kBT)(∂Rmin/∂n) is the growth
rate of nuclei of size n, that is,

 (12)

and the quantity Wn, n + 1(∂f/∂n) describes a random
walk of a nucleus in the size space.

By solving Eq. (11), we can determine the main
characteristic of the switching process, namely, the dis-
tribution function f(n, t), as well as the dependence of
the number of domains created in the course of the
switching, the variation in the domain mean size, and
many other parameters of this process.

Any first-order phase transformation can be conven-
tionally divided into a number of characteristic time
stages [12, 13] to facilitate their analysis. In the initial
stage, the system undergoing a phase transition does
not feel that a new phase has already been formed and
its thermodynamic parameters do not change. In the
subsequent stages of the phase transformation, the ther-
modynamic parameters of the system vary and this
becomes reflected in the nucleation.

In the initial stage of nucleation, it is sufficient to
consider the steady-state equation (11) and to deter-
mine the stationary flux of the polarization switching
nuclei. To find it, we should determine the coefficient
Wn, n + 1, the minimum work to be done to produce a
nucleus Rmin(nc), and the critical size of the polarization
switching nucleus nc. These quantities can be found in
two equivalent approaches. The first of them is the clas-
sical approach [18], which requires knowledge of the
equilibrium distribution function for the determination
of the nucleus flux. The second approach, which was
developed in [19], makes use of certain relationships
between the coefficients of absorption, Wn, n + 1, and
those of emission, Wn + 1, n. They allow one to derive the
expression for the stationary flux of nuclei without
recourse to the equilibrium distribution functions. Both
approaches yield the same result. We will employ the
latter technique to calculate the polarization switching
nucleus flux.

Thus, for nuclei with n < nc, the distribution function
f(n) ~ exp(–R(n)/kBT) (T < TC) makes the left-hand side
of Eq. (11) vanish; i.e., ∂f/∂t = 0. This means that the
transition probabilities Wn, n + 1 and Wn + 1, n, which
change the nucleus size by one structural unit, are
exactly the same as for heterophase fluctuations at equi-
librium.

Using the approach developed in [19], we can
obtain relationships between the absorption and emis-
sion coefficients which would be valid for all values of
n. We consider an auxiliary ferroelectric crystal with a
polarization at which a nucleus of size n > nc will be in
equilibrium with the crystal. The auxiliary-ferroelec-

dn
dt
------ Wn n, 1+

1
kBT
---------

∂Rmin

∂n
-------------,–=
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tric–true ferroelectric system resides in a local thermo-
dynamic equilibrium. Introduction of such an auxiliary
system permits one to obtain the relationship

 (13)

which is valid for all values of n.
Let us calculate the minimum work done to create a

nucleus of the switched phase with polarization Pzn in a
ferroelectric crystal. According to [20], the minimum
work required to form a nucleus in a medium is Rmin =
∆W + ∆0W, where ∆W is the total change in the nucleus
energy and ∆0W is the change in the energy of the
medium as a result of the nucleus formation. The quan-
tities with the subscript zero refer to the medium, and
those without a subscript, to the nucleus. We consider
the quantity ∆0W. As follows from thermodynamics, the
change in the energy upon the reverse transition from
one state to another can be represented in the form

 (14)

In the case of a ferroelectric in an electric field, the
work done by the electric forces should also be taken
into account; that is,

 (15)

In expression (14), p0, T0, and µ0 are the pressure, tem-
perature, and chemical potential of the medium, respec-
tively; ∆0V and ∆0S are the corresponding changes in
the volume and entropy of the medium; Ez0 is the elec-
tric field strength in the medium; D0 is the electric
induction of the medium; and Pz0 is the polarization of

the medium. The quantity ε0 /2 is the work associ-
ated with electric-field generation between the capaci-
tor plates. Because we investigate the internal field of a
ferroelectric, this quantity will be disregarded and all
parameters will be expressed in terms of the polariza-
tion rather than through induction. The minus sign
before the work of the electric forces in Eq. (14)
appears because the medium does the work required for
a nucleus to form.

The pressure, volume, and temperature in the sys-
tem remain fixed, and hence, p0 = p, T0 = T, n0 = n, and
∆0V = –∆V. For the change in entropy, we can write
∆S + ∆0S = 0. The polarization and field components in
the medium and the nucleus are oppositely directed;
i.e., ∆0Pz0 = –∆Pz and Ez0 = –Ez. Then, for Rmin(n), we
obtain

 (16)
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∆0W' p0∆0V– T0∆0S µ0∆0n.+ +=

∆0W ∆0W' Ez0∆0Dz0+=

=  ∆0W' Ez0∆0Pz0 ∆0

ε0Ez
2

2
----------- 

  .+ +

Ez
2

Rmin n( ) ∆ W p0V T0S– Ez0Pz–+( ) µ0n.–=
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Because the electric field in a nucleus of size n is Ezn,
we can recast Eq. (16) in a more convenient form. In
view of Eq. (15), we come to the relationship

 (17)

Now, we consider the nucleus energy W entering into
Eq. (16). It consists of a volume part of the nucleus
energy Wv and a surface part Ws. To calculate them, we
have to know the nucleus shape. Unlike the nuclei
forming in conventional phase transitions, the shape of
the polarization switching nuclei cannot be arbitrary.
This follows from the solution of Maxwell’s equations
for a dielectric [15, 16]. Indeed, as follows from the
solution of Maxwell’s equations, at the domain inter-
face, the normal component of the electric induction
vector is continuous, as is also the tangential compo-
nent of the electric field E. This means that the inter-
faces separating the domains of the old and new phases
should be parallel to the z axis. Therefore, the polariza-
tion switching in a ferroelectric crystal will give rise to
domains shaped as planar plates or cylinders, which
with such a shape should extend throughout the crystal
thickness L. However, as will be shown later, the prob-
ability of domain formation for a large thickness L will
tend to zero. This is associated with the energy
expended by the system to create the interface. This
problem does not arise when analyzing conventional
first-order phase transitions [12], because the nuclei
either have a close-to-spherical shape or represent two-
dimensional cylindrical formations whose height H is
of the order of interatomic distances. In the general
case, the domain shape is not retained upon switching.
In some cases, the radius of a domain can decrease as it
grows into the crystal, while in others, the domain will
become faceted. For simplicity of the calculations, we
assume that domains of height H, which is equal in
order of magnitude to the size of the crystal unit cell
H ~ ω1/3, are formed throughout the crystal thickness.
After the growth, they merge instantly to produce one
long bubble domain. The width (or radius) of such
domains will change in the course of their nucleation
and subsequent evolution. In this case, Ws =
2(πHω)1/2σn1/2, where σ is the surface tension of the
domain wall.

Note that the expression under the ∆ sign in Eq. (17)
is the thermodynamic potential of the nucleus with an
internal field Ezn; that is,

 (18)

Here,  is the chemical potential of the new-phase
nucleus of size n with inclusion of the surface tension;

Rmin n( ) ∆ W p0V T0S– EznPz–+( )=

+ Ezn Ez0–( )Pz µ0n.–

φ Pzn( ) ∆ W p0V T0S– EznPz–+( ) µ̃n.= =

µ̃

P

that is,

 (19)

Now, we can find the quantity  entering into for-
mula (13):

 (20)

where ∂Pz/∂n is the polarization per structural unit in
a nucleus, i.e., the quantity pzi introduced earlier [see
Eq. (9)].

Let us write (Ezn, p, T) – µ0(Ezn, p, T) in an explicit
form, taking into account that the equilibrium magni-
tude of the nucleus–medium polarization is given by
the expression

 (21)

The equilibrium value of the nucleus–medium field 
(the nucleus of an infinite size n  ∞) can be found
from the condition

 (22)

By subtracting Eq. (22) from Eq. (21) and expanding
the left- and right-hand sides of the relationship thus

obtained in the vicinity of the  point in the small

deviation (Ezn – )/ , we obtain for the main part of
the nucleus distribution spectrum

 (23)

Since the deviation of Ezn from  is small, we have
retained only the first term in the last expansion.

Because –∂µ/∂Ez |  = pzi2 and –∂µ0/∂Ez |  = pzi1

(where pzi1 is the elementary polarization of the
medium and pzi2 is the elementary polarization of the
nucleus), these quantities are equal in absolute magni-

∂φ Pzn( )
∂n
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Ez p T, ,

µ̃ Ezn p T, ,( )=

=  µ Ezn p T, ,( ) πHω( )1/2σ
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--------------------------.+
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R̃min = ∂Rmin

∂n
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Ez p T, ,
 = µ̃ µ0–( ) Ezn Ez0–( ) ∂

∂n
------Pz,+
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µ̃ Ezn p T, ,( ) µ Ezn p T, ,( ) πHω( )1/2σ
n

1/2
--------------------------+=

=  µ0 Ezn p T, ,( ).

Ẽz
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Ẽz
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∂µ
∂Ez Ẽz
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tude and have opposite directions. Denote pzi1 = pzi,
then pzi2 = –pzi, and from Eq. (23), we obtain

 (24)

As is seen from Fig. 2, the equilibrium state of the fer-

roelectric corresponds to the field  = 0. On the other
hand, the critical size of the polarization switching
nucleus, which is in equilibrium with the ferroelectric
in the switching field, is determined by the relationship
Eznc = Ez0.

Taking into account this relationship and  = 0,
from formula (24), we obtain

(25)

Dropping the index 0, which identifies the field with the
medium (i.e., with the part of the ferroelectric that has
not yet switched), we have

(26)

This relationship determines the number of struc-
tural units in the critical switching nucleus. It is similar
to the expressions describing the number of structural
units in the critical nuclei formed in solutions and melts
[12–14, 19]. The electric field plays the part of super-
saturation or supercooling.

We rewrite expression (26) in terms of the radius of
the critical domain Rc rather than through the number of
unit cells nc; that is,

(27)

Now, we can obtain an expression for the work to be
done to create a nucleus of the critical size. As follows
from Eqs. (17)–(24), it can be written as

(28)

Using the relationships derived above and Eq. (21), we
recast expression (20) in the form

(29)

Note that by introducing an auxiliary ferroelectric and
deriving relationships (13), we obtained an expression

2 Ezn Ẽz–( ) pzi
πHω( )1/2σ

n1/2
--------------------------,=

n1/2 πHω( )1/2σ
2 pzi Ezn Ẽz–( )
----------------------------------.=

Ẽz

Ẽz

nc
1/2 πHω( )1/2σ

2 pziEz0
--------------------------.=

nc
1/2 πHω( )1/2σ

2 pziEz

--------------------------.=

Rc
σω

2 pziEz

---------------.=

Rmin nc( ) πHω( )1/2σnc
1/2.=

R̃min
∂Rmin

∂n
------------- µ0 Ezn p T, ,( ) µ0 Ez0 p T, ,( )–= =

– Ezn Ez0–( ) pzi

∂µ0

∂Ez Ez0 Ezn≈
-------------------------------- Ezn Ez0–( )=
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for  which is valid throughout the range of n values
near the critical size. As follows from Eq. (29), if Ezn =
Eznc = Ez0, the derivative ∂Rmin/∂n for a nucleus of crit-
ical size is zero.

We are turning now to calculating the polarization
switching nucleus flux in the size space.

5. DETERMINATION OF THE DIFFUSION 
COEFFICIENT Wn, n + 1 
IN THE SIZE SPACE

In order to calculate the diffusion coefficient Wn, n + 1
in the size space, we revert to Eq. (12). It follows from
this equation that the growth rate ∂n/∂t of domains of
size n depends both on Wn, n + 1 and on ∂Rmin/∂n [see
Eq. (29)]. To find Wn, n + 1, we define the growth rate in
a different manner, namely, as

(30)

where β(Ezn) is the flux of the switched elementary
regions (cells) attaching to the side surface of a domain,
β(Ez0) is the reverse cell flux bringing about “domain
dissolution”, Ezn is the field in the auxiliary medium
which is in equilibrium with a domain of size n, Ez0 is
the field in the medium of the ferroelectric under study,
and S = 2(πHω)1/2n1/2 is the side surface of a bubble
domain. Note that we are considering a domain of size
n > nc, which is in equilibrium with the auxiliary ferro-
electric. We assume that the domain grows through the
transfer of atoms in the cells from one state to another
directly at the interface separating the domains. In this
case, we can determine the β(Ezn) and β(Ez0) fluxes in
the following way. If the ferroelectric is in an equilib-
rium state (there is no external electric field and its total
polarization is zero), the unit cell fluxes induced by
thermal fluctuations from domains with polarizations
in the directions along and opposite to the z axis are
equal. In a nonequilibrium state, the polarization of the
system will vary. Consider the quantity

where ν is the vibrational frequency of atoms in the unit
cells on the domain surface and V0 is the height of the
energy barrier separating the domains located in two
symmetric positions with oppositely directed polariza-
tions in the absence of the field. By multiplying  by
the number of unit cells Ns on the surface of domains,
we can obtain the equilibrium unit cell flux

The magnitude of Ns can be estimated as Ns ~ 1/ω2/3,
where ω2/3 is the area occupied by a cell on the domain
surface.

If the ferroelectric is in an external field, the height
of the energy barrier V0 changes. For each cell in a

R̃min

dn
dt
------ β Ezn( ) β Ez0( )–[ ]S,=

β0' ν V0/kBT–( ),exp=

β0'

β0 Nsν V0/kBT–( ).exp=
1
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domain with the polarization aligned along the field,
the barrier height decreases to V0 – pziEz, and for the
cells residing in domains with the oppositely directed
polarization, it increases to V0 + pziEz. In the presence
of a field, the fluxes of cells from the surface of one
domain to another are no longer equal. The cell flux
from the medium is β(Ezn) = β0exp(pziEzn/kBT), and the
cell flux from a nucleus of the critical size is β(Ez0) =
β0exp(pziEz0/kBT). If pziEz ! kBT, the exponentials in
the expressions for these fluxes can be expanded in a
series. Limiting ourselves to linear terms of the expan-
sion in formula (30), we obtain the growth rate for the
side surface of a domain of size n > nc:

(31)

Now, we can determine the diffusion coefficient Wn in
the size space. To do this, we compare Eq. (31) with
Eq. (12) and recall expression (29) to obtain

(32)

Then, for a nucleus of the critical size, we have

(33)

6. THE FLUX OF POLARIZATION
SWITCHING NUCLEI

Knowing the work needed to create a nucleus of the
critical size and the expression for the diffusion coeffi-
cient in the size space and using the standard technique,
we can calculate the stationary flux of the polarization
switching nuclei passing through the critical barrier.
According to [12, 13, 18, 19], this flux can be written as

(34)

where Nv is the number of unit cells per unit volume of
the crystal, which can be estimated as Nv ≈ 1/ω.

Substituting the values of  from Eq. (33),
Rmin(nc) from Eq. (28), and

in formula (34), we finally come to

(35)
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1/2

kBT
----------------------------------– 

  .exp=
P

We now express the critical radius nc in Eq. (35) in
terms of the field strength according to Eq. (26); that is,

 (36)

Relationship (36) describes the flux of switched
domains as a function of the applied field. Next we take
the logarithm of expression (36) to obtain

 (37)

where

 

Because the logarithm is a slowly varying function,
as a first approximation, we assume the second term in
expression (37) to be field independent. In this case, we
obtain a convenient expression for the estimation of
experimental data

 (38)

where const stands for the first two terms in Eq. (37).

We now estimate the time of the establishment and
existence of a stationary flux of the switching nuclei.
The region with n < nc is determined primarily by het-
erophase fluctuations of polarization switching. Hence,
the existing flux sets in during the time it passes the
region δn0 in the vicinity of the critical point at which
the hydrodynamic growth rate of the switching nuclei is
zero, i.e., where dn/dt = 0 and ∂Rmin(n)/∂n|n = nc = 0.
The width of this region is

(39)

Hence, it follows that the time required for the sta-
tionary flux to set in can be estimated as

(40)

The time of the persistence of the stationary flux is
determined by the condition that the time required for a
nucleus to cross the region δn0 in the size space should
be substantially shorter than that taken for a nucleus of
the critical size to emerge from the vicinity of the criti-
cal point (δn0):

(41)
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Substitution of the corresponding values of δn0 and
Wn, n + 1 in relationship (40) yields

and, taking into account expression (26) for nc, we
obtain

(42)

Thus, the time for the stationary flux to set in, or the
time for the first nucleus to appear (the incubation
period), is inversely proportional to the squared electric
field.

Note that we have found relationship (35) [or (36)]
for the stationary flux of the nucleating domains. There
are presently methods permitting one to solve the Fok-
ker–Planck nonstationary equation (11) and to find the
nonstationary flux of polarization switching domains
[12, 13]. However, the main process of the formation of
the new phase starts in the next stage when the system
contains so many nuclei that they change the supersat-
uration in the system (in our case, the field in the ferro-
electric), which results in the nucleus flux becoming
dependent on time. This stage will be studied in the
future.
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Abstract—Nonlinear d-dimensional vector σ models, such as O(N), SU(N), and CPN, are considered in the
limit of an infinite number of components N. It is shown that the equation for the two-point correlation function
in these models is similar to the Schrödinger equation for a quantum particle moving in a δ-function potential
well (–T)δ(x), where T is the temperature. This equation adequately describes the systems under study both
above and below the Curie point. Within this approach, the critical behavior of the SU(N)-invariant Ginzburg–
Landau model in an external uniform magnetic field is determined in the vicinity of the upper critical magnetic
field. The critical indices in this case are the same as in the spherical model in a random magnetic field. An exact
equation describing the Hc2(T) curve of continuous phase transitions is derived, which allows one to determine
the asymptotes of this curve in strong and weak fields. The relation between the one-particle Schrödinger equa-
tion and critical phenomena is analyzed, and applications of this method to various models in solid state physics
and statistical mechanics are discussed. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The approach based on an expansion in powers of the
small parameter 1/N, where N is the number of the com-
ponents of an order parameter, is extensively used in
modern statistical mechanics and quantum field theory.
It is well known that statistical models in the limit of an
infinite N are ideal theoretical objects, which allow
investigators to elucidate the essential features of sys-
tems belonging to a continuous symmetry group [1–8].

The standard method for investigating field-theoret-
ical models and many-particle systems consists in solv-
ing an infinite set of the nonlinear Schwinger–Dyson
equations [1–3, 6]. It can easily be shown that the limit
of N  ∞ is equivalent to the Hartree–Fock approxi-
mation, and, therefore, solving the corresponding equa-
tions presents no problems. In this paper, the two-point
correlation functions 〈 (x)Sb(0)〉  in the nonlinear σ
models in this limit are shown to be a solution to the
one-particle Schrödinger equation (SE) for a particle
moving in the potential (–T)δ(x), where T is the temper-
ature. It should be remarked that this result is true for a
variety of nonlinear vector σ models, such as CPN,
O(N), and SU(N).

It is of interest that this SE was proposed in the con-
text of quantum field theory many years ago as a non-
relativistic “toy” model for field effects such as dimen-
sional transmutation and dynamical generation of mass
[9]. It is worth noting that some aspects of this problem
were recently discussed in [10], where the behavior of
the energy and radius of a bound state of a quantum par-
ticle was analyzed near the threshold value of the

Sa*
1063-7834/01/4301- $21.00 © 20009
potential-well depth. It was found that the critical
behavior of these quantities is characterized by the
same critical indices as in the spherical model, that is,
by those for an N-component Heisenberg ferromagnet
in the limit of N  ∞ [10].

Analogous renormalization group (RG) equations
arise in studying the properties of a low-density Bose
gas with short-range interaction [11, 12] and in consid-
ering phase transitions in systems that contain extended
linear components (strings), such as Abrikosov vortex
lines, polymers, dislocations, domain walls (in the two-
dimensional case), etc. [13], which could be considered
to have nothing to do with nonlinear σ models with a
large N.

In this paper, we will show that these facts are man-
ifestations of the universal critical behavior of nonlin-
ear vector σ models in the large-N limit. All these mod-
els turn out to be equivalent to the conventional SE with
a δ-function potential. Therefore, the critical phenom-
ena in statistical physics possess a very simple and, per-
haps, useful interpretation in terms of one-particle
quantum mechanics.

A basic and very efficient method for investigating
critical phenomena is the RG method [2, 3]. Among
investigators, there is a widespread opinion that this
method works well only in the case of systems with an
infinite number of degrees of freedom, where ultravio-
let divergences take place in perturbation-theory dia-
grams. In quantum mechanics, these divergences are
absent and, therefore, the RG method is inappropriate.
However, it should be remembered that this reasoning
fails in the case of singular quantum mechanical poten-
001 MAIK “Nauka/Interperiodica”
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tials, for example, those of the δ-function type, which
require ultraviolet regularization. The RG transforma-
tion in quantum mechanics is a so-called isospectral
deformation, i.e., a transformation of the potential
energy that leaves the spectrum unchanged. The theory
of these transformations is closely related to the theory
of solitons and is now a well-developed field of mathe-
matical physics, to which a great number of books,
reviews, and articles are devoted (see, e.g., [14, 15]).

The SE method is also used in this paper for investi-
gating the SU(N)-invariant Ginzburg–Landau (GL)
model in an external uniform magnetic field. This model
describes type-II superconductors in the vicinity of the
upper critical field Hc2(T) and is of great importance for
solid state physics and applications. The model was pro-
posed in the early 1950s, and its history is described in
detail in the literature (see reviews [16, 17]).

For the infinite-N case, the GL model in the vicinity
of Hc2(T) was first calculated by Affleck and Brézin
[18] in 1985 and has been considered repeatedly in the
literature since then (unfortunately, without reference
to [18] in some cases, see [19–21] and the discussion in
[22, 23]). In contrast to the conventional spherical
model, solution of the GL model in this limit is not triv-
ial and the results obtained by different groups of inves-
tigators were contradictory to each other. The correct
result, first obtained in [24], was unexpected. It was
found that the true ground state of this model at N = ∞
differs essentially from the Abrikosov ground state,
which is unstable (see below), and the previously
derived solutions are erroneous [24]. In this paper, we
show that the SE method gives results that are similar
to those obtained in [24].

This paper is organized as follows: In Section 1, we
derive the SE for the two-point correlation function in
a d-dimensional SU(N)-symmetrical nonlinear σ model
in the infinite-N limit. In Section 2, the RG method is
used to investigate the equation derived and interesting
parallels between quantum mechanics and the theory of
phase transitions are discussed. The critical properties
of the GL model in the vicinity of the upper critical
magnetic field are investigated in Section 3. Finally, the
method developed here is applied to other statistical
models and the results are discussed in the concluding
section.

Some results obtained by the author in [25] are used
in this paper.

1. SCHRÖDINGER EQUATION 
FOR THE TWO-POINT CORRELATION 

FUNCTION

Let us consider an SU(N)-symmetric spin model
constructed on a d-dimensional hypercubic lattice. Its
Hamiltonian has the usual form

(1)H J SiS j* H.c.+( ),
i j,〈 〉
∑–=
P

where the variable S = (S1, …, SN) is an N-component
(complex) unit vector

(2)

The angular brackets in 〈i, j〉  signify the summation
over the nearest neighbors, and J is the exchange inte-
gral.

The nonlinear σ model is the continuum limit of the
lattice model in Eq. (1):

(3)

Here, a summation convention over repeated indices
µ = 1, …, d and a = 1, …, N is adopted. The partition
function for the system with the Hamiltonian (3) is
written in the form

(4)

where the spin coupling constant J is conveniently
included in the temperature T.

Let us now derive an equation for the two-point cor-
relator in the disordered phase (at T > Tc) in which the
SU(N) symmetry is not broken:

(5)

Following [5], we represent the correlator in Eq. (5)
in the form of a continual integral:

(6)

in which A1(S(x), λ(x)) is the effective action and λ(x)
is the Lagrange multiplier that ensures the fulfillment
of the condition given by Eq. (2). Integrating with
respect to the fields Sa(x) yields [5]

(7)

where ∆ is the Laplace operator and

(8)

Sa x( )Sa* x( ) 1.=

H
J
2
--- ddx ∂µSa

2.∫=

Z DSaDSa*
H
T
----– 

  δ S 2 1–( ),exp
a 1=

N

∏∫=

Gab x( ) Sa x( )Sb 0( )〈 〉 .=

Gab x( ) 1
Z
--- DSaDSa*DλSa x( )Sb* 0( )

a 1=

N

∏∫=

× A1 S x( ) λ x( ),( )–[ ] ,exp

Z DSaDSa*Dλ A1 S x( ) λ x( ),( )–[ ] ,exp
a 1=

N

∏∫=

A1 S x( ) λ x( ),( ) 1
2T
------ ddx ∂µSa

2 λ S 2 1–( )+[ ] ,∫≡

Gab x( ) 1
Z
--- DλG x y; λ,( ) A2 λ x( )( )–[ ] ,exp∫=

Z Dλ A2 λ x( )( )–[ ] ,exp∫=

A2 λ x( )( ) 1
2T
------ ddx λ x( ) N

2
----Tr ∆– λ x( )+( )log– ,∫=

G x y; λ,( ) y 1
∆– λ+

----------------- x .=
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It should be emphasized that the quantity TN remains
constant as N  ∞, and, therefore, the continual inte-
gral in Eq. (7) can be calculated by the saddle-point
method [2, 3, 5]:

(9)

where λ0 is the saddle-point value. An equation for the
desired Green’s function has a simple form [2–5]

(10)

where m2 ≡ λ0. Using Eq. (2), which can be considered
as the boundary condition at the equal arguments,
Gcc(0) = 1, the inhomogeneous equation (10) can be
transformed into a homogeneous one. Indeed, inserting
unity into the right-hand side of Eq. (10), namely,
Tδabδ(x) = Tδabδ(x)Gcc(x), we obtain

(11)

In the symmetrical phase (at T > Tc), we conveniently
introduce the “wave function” Gab(x) ≡ δabΨ(x). Sub-
stituting it into Eq. (11), we obtain an equation for the
eigenfunctions and eigenvalues:

(12)

where the Hamiltonian  is

(13)

Equation (12) is the time-independent Schrödinger
equation for a quantum particle moving in a δ-function
potential, and the one-particle Green’s function corre-
sponds to the lowest eigenvalue in the spectrum of
Hamiltonian (13). We note that this equation is
obtained as the result of two limiting processes (contin-
ual and N  ∞) in the lattice model described by
Eq. (1). The sign of the coupling constant T corre-
sponds to attraction; that is, the particle moves in a
potential well that has a single discrete energy level.
Geometrically, this result is due to the fact that the spin
variable belongs to a compact manifold, namely, the
S2N – 1 sphere.

As was already noted, the boundary condition for
the wave function is Eq. (2). Since we deal with the
one-particle Schrödinger equation, the energy of the
discrete level is not the energy of a bound state of two
particles belonging to the multiplet with N components
of the model at hand.

2. QUANTUM MECHANICS OF ONE PARTICLE 
AND CRITICAL PHENOMENA 

In this section, the RG method is applied to the SE
with a δ-function potential and the analogies between
phase transitions and threshold phenomena in quantum
mechanics are discussed in detail in the spirit of [9, 10].

Let us find the eigenfunctions and eigenvalues of the
discrete spectrum of the d-dimensional Schrödinger

Sa x( )Sb* 0( )〈 〉 TδabG x y; λ0,( ),=

∆– m2+[ ]Gab x( ) Tδabδ x( ),=

∆– m2+[ ]Gab x( ) Tδabδ x( )Gcc x( ).=

ĤΨ x( ) E Ψ x( ),–=

Ĥ

Ĥ ∆– TNδ x( ), E– m2.= =
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equation (12). This can readily be done using the Fou-
rier transform

(14)

where

(15)

It follows from Eq. (14) that

(16)

The last equation relates the bound-state energy and the
coupling constant (temperature) T [9]. The integral in
the right-hand side of Eq. (16) diverges, because δ(x) is
a singular potential in d ≥ 2 dimensions and a cutoff Λ =
a–1 has to be introduced at short distances (a is the width
of the well).

The bound-state energy is an observable physical
quantity which does not depend on the choice of cutoff.
Therefore, the dependence of the coupling constant
T(Λ) on Λ must be such that E is independent of Λ. In
fact, this is the simplest case of an isospectral deforma-
tion, i.e., a transformation of the potential energy that
leaves the spectrum unchanged. It is well known that in
the one-dimensional case there is an infinite group of
such deformations which is isomorphic to the symme-
try group of the Korteweg–de Vries (KdV) equation
[14, 15]. However, in the case at hand, we deal with the
d-dimensional Schrödinger equation (12), rather than
with the KdV equation.

After an elementary calculation of the integral,
Eq. (16) becomes

(17)

where Sd is the area of a unit d-dimensional sphere. In
the spirit of the theory of critical phenomena, it is con-
venient to introduce a dimensionless coupling constant
t = TΛ2 – d, which obeys the equation

(18)

From this equation, it follows that there is a critical
value of the coupling constant or the Curie temperature

k2 m2+( )ψ k( ) TNΨ 0( ),=

ψ k( ) ddxΨ x( ) ikx–( ),exp∫=

Ψ x( ) ddx

2π( )d
-------------ψ k( ) ikx( ).exp∫=

Ψ 0( ) TNΨ 0( ) ddk

2π( )d k2 m2+( )
------------------------------------,∫=

1 TN
ddk

2π( )d k2 m2+( )
------------------------------------.∫=

1 TN
SdΛd 2–

2π( )dd 2–
-------------------------- Kdmd 2––

 
 
 

,=

Sd
2πd /2

Γ d/2( )
-----------------, Kd

1

2d πd/2( )Γ d/2( )π d 2–( )/2sin
------------------------------------------------------------------,= =

Λ dt
dΛ
------- d 2–( )t t2.–=
1
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(a fixed point)

(19)

The equations derived above can be discussed either in
terms of elementary quantum mechanics or in terms of
the modern theory of phase transitions and critical phe-
nomena.

Let us first consider the motion of a quantum parti-
cle in a singular potential well.

In the two-dimensional case, the Hamiltonian
involves only dimensionless parameters and is scale-
invariant. Nonetheless, there is a single discrete energy
level in the spectrum, |Ebs | ≡ m2, whose emergence
implies dynamic mass generation. A bound state
always exists in such a well, no matter how deep it is. If
the space dimension is higher than two, there is a
threshold depth of the well above which there is a sin-
gle discrete energy level. In a shallow well, i.e., below
the threshold, there is no gap in the spectrum and only
a continuous spectrum exists, which starts from zero. It
is the presence of the threshold that essentially distin-
guishes the two-dimensional case from a higher dimen-
sional case.

The bound-state energy Ebs is a continuous function
of the coupling constant and decreases according to the
law |Ebs | ~ |T – Tc |1/(d – 2) as the threshold is approached
from above. At the same time, the characteristic size
(extension in space) of the wave function of the bound

state ξ ~  increases as ξ ~ τ–ν, where τ = (T – Tc)/Tc.

Tc
d 2–( ) 2π( )d

NSd

------------------------------Λ2 d– .=

Ebs
1

Table 1.  Correspondence between quantum mechanics and
statistical physics

Quantum mechanics Statistical physics

Wave function ψ(x) Correlator G(x) = 〈S(x)S*(0)〉
Quantum well –T[δ(x)] Coupling constant T

Bound state Dynamical mass generation

Energy gap Ebs Inverse correlation radius ξ–1

Generator of isospectral 
deformations

Beta function β(T)

Threshold Tc Curie temperature Tc

Ebs ~ (T – Tc)
ν; ξ ~ (T – Tc)

–ν;

ν = 1/(d – 2) ν = 1/(d – 2)

T > Tc; T > Tc;

ψ(x) ~ x(1 – d)/2exp(–x/ξ) G(x) ~ x(1 – d)/2exp(–x/ξ)

T ≤ Tc; ψ(x) ~ x2 – d T ≤ Tc; spin waves

G(x) ~ x2 – d

No analog Local order parameter 〈S(x)〉
P

The asymptotic form of the wave function of the dis-
crete spectrum for large distances x @ ξ is

(20)

Below the threshold, T ≤ Tc, the energy gap disappears,
Ebs = 0, and the wave function follows the power law

(21)

Now, we discuss the spin model at hand in terms of sta-
tistical mechanics. For simplicity, let us consider a
d-dimensional Heisenberg ferromagnet with N  ∞,
in which a second-order phase transition occurs at the
Curie point, defined by Eq. (19), at d ≥ 2. In the sym-
metrical phase, the pair spin Green’s function is given
by Eq. (20). In the ordered phase, the gap in the spec-
trum disappears and massless Goldstone excitations
(spin waves) arise in the system, with their correlator
being the power function given by Eq. (21). The beta
function in Eq. (18) is the well-known Gell-Mann–Low
function in the spherical model, whose critical indices
are given by formulas of quantum mechanics:

In the two-dimensional case, the continuous symmetry
cannot be broken spontaneously (Mermin–Wagner the-
orem). For this reason, the Curie temperature [nontriv-
ial fixed point given by Eq. (19)] vanishes and the crit-
ical index for the correlation radius ν becomes infinite.
Dynamical mass generation (asymptotic freedom)
takes place in the system; that is, all excitations have
nonzero masses. In terms of quantum mechanics, this
theorem means that there is no threshold depth for a
two-dimensional potential well.

Clearly, the analogy between quantum mechanics
and critical phenomena is not perfect, because sponta-
neous breaking of symmetry does not occur in quantum
mechanics of a finite number of particles. In other
words, the wave function of the ground state always
exhibits the full symmetry of the Hamiltonian. This
means that in quantum mechanics there is no analog for
the order parameter. In quantum mechanics, the phase
transition is associated with the energy gap vanishing
according to the power law in the spectrum near the
threshold and with the different behavior of the correla-
tion function above and below the threshold; more spe-
cifically, the asymptotic form of Green’s function
changes over from an exponential to a power law (as in
the case of the Berezinskiœ–Kosterlitz–Thouless transi-
tion [2, 4, 8]).

The results of this section are summarized in Table 1.
In concluding this section, we make a remark with

reference to the critical indices in the spherical model.
In the three-dimensional case, these indices and their
certain combinations coincide with their respective
counterparts for the two-dimensional Ising model on a

Ψ x( ) x/ξ–( )exp

x d 1–( )/2
-------------------------.∼

Ψ x( ) x2 d– .∼

ν 1
d 2–
------------, η 0.= =
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001



THE LARGE-N LIMIT IN STATISTICAL PHYSICS 13
dynamical planar lattice (DPL) [1, 26]. Furthermore, in
d = 8/3 dimensions, we obtain critical indices that are
identical to those of the three-component Potts model
on the DPL. These critical indices are listed in Table 2.
To avoid misunderstanding, it should be stressed that
we do not assert that all critical indices coincide, which
is impossible for systems with different space dimen-
sions d. Indeed, some scaling relations involve d explic-
itly, for example, dν – 2 = –α and δ = (d + 2 – η)(d – 2
+ η). In particular, the spherical model and the models
on a DPL mentioned above have different indices ν and
η. Thus, there is an interesting, but incompletely under-
stood, relation between the conventional Schrödinger
equation and statistical models on dynamical planar lat-
tices.

3. SU(N)-INVARIANT GINZBURG–LANDAU 
MODEL IN AN EXTERNAL UNIFORM 

MAGNETIC FIELD

In this section, the critical behavior of the SU(N)-
symmetric nonlinear GL vector σ model in an external
magnetic field is investigated in terms of the
Schrödinger equation. This model describes the proper-
ties of type-II superconductors in the vicinity of the
Hc2(T) curve of phase transitions. We consider the case
of large N values. As a preliminary, we make some gen-
eral remarks.

It is well known that an external magnetic field rad-
ically alters the critical properties of superconductors
[16, 17]. It primarily hinders the growth of critical fluc-
tuations in the plane perpendicular to H. The character-
istic scale in this plane is the magnetic length lH =

, which is much less than the correlation
radius ξ in the region of strong fields. Therefore, the
critical fluctuations in this plane are frozen and are of
little importance; the effective space dimension
decreases by 2: deff = d – 2 (dimensionality reduction).
In particular, the lower critical dimensionality becomes
equal to 4.

A critical question is the kind of phase transition. If
critical fluctuations are ignored and the phase transition
is treated in the mean-field approximation, one will
arrive at a continuous phase transition to a mixed state,
which consists of a lattice of Abrikosov vortices.
Unfortunately, a straightforward application of the RG
method fails in this case for at least two reasons.

First, the RG equations are written for the (6–ε)-
dimensional space (near the upper critical dimensional-
ity) [27, 28] and the applicability of their (one-loop)
solutions for d = 3, i.e., below the lower critical dimen-
sionality, is highly questionable.

Second, the application of the RG method to the
standard ψ4 model in an external magnetic field leads to
RG equations with an infinite number of invariant
charges; that is, in effect, the theory is unrenormaliz-
able, which involves severe problems [27, 28].

hc/eH
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The unrenormalizability can be overcome, for
example, by the 1/N-expansion method [2, 3]. The
characteristic feature of this approximation is the
absence of symmetry between the particle–hole and
particle–particle channels, because the latter channel is
suppressed in the 1/N expansion. For this reason, the
Abrikosov solution is unstable and the lower critical
dimensionality is equal to 4 [29].

An ingenious method was proposed in [29], where
this difficulty was resolved by modification of the
quadric interaction. The SU(N)-symmetric term
( φa)2 was replaced by 2( φa)2 – φb φb, which
possesses the O(N) × U(1) symmetry. This change in
the symmetry of the original system restores the stabil-
ity of the vortex lattice arising as the result of the first-
order phase transition.

In paper [18], as was mentioned in the Introduction,
the 1/N expansion was used and it was found that the
first-order phase transition occurs in the SU(N)-symmet-
ric GL model when d ≥ 4. In later publications [19–21],
however, it was advocated that a continuous phase tran-
sition takes place in the system. Although this question
is of academic interest, because the dimension d ≥ 4 is
unphysical, the correct result obtained recently in [24]
is very interesting.

In [2, 4], a convenient technique was proposed,
which is commonly combined with the 1/N expansion.
It is assumed that below Tc only one of the N compo-
nents of the order parameter condenses. This compo-
nent can be any component, because the model pos-
sesses continuous symmetry, say, SU(N). Integrating
over the other N – 1 Goldstone modes, one obtains the
effective action for the remaining component and for
the auxiliary field λ(x) (the Lagrange multiplier). This
method is commonly used and it works well, e.g., in the
case of a Heisenberg ferromagnet. In this method, how-
ever, the ordered phase is implicitly assumed to be spa-
tially homogeneous. The homogeneity of the conden-
sate allows one to perform rotations in spin space.
However, the order parameter is not spatially homoge-
neous in the Abrikosov phase. It can be shown that a
true minimum of the free energy is attained when all
N components of the order parameter condense and

φa* φa* φa* φa*

Table 2.  Critical indices of the d-dimensional spherical
model (SM) for d = 3 and 8/3, as well as of the Ising model
(IM) and three-component Potts model (PM) on dynamical
planar lattices (DPLs)

Critical 
index

SM in d dimen-
sions

SM (d = 3) and 
IM on DPL

SM (d = 8/3) 
and PM on DPL

α (d – 4)/(d – 2) –1 –2

β 1/2 1/2 1/2

γ 2/(d – 2) 2 3

δ (d + 2)/(d – 2) 5 7

dν d/(d – 2) 3 4
1
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form a complicated structure, which consists of the
interlocked Abrikosov vortex lattices [24]. It is signifi-
cant that the resultant density of the condensate
remains constant in the limit as N  ∞.

Let us now consider the nonlinear GL σ model,
whose Hamiltonian has the well-known form

(22)

where Φ0 = hc/2e is the magnetic flux quantum. The
vector potential Aµ is conveniently taken in the sym-
metrical gauge

(23)

and the magnetic field B is applied along the z axis. The
partition function is

(24)

Our prime interest is in the gauge-noninvariant cor-
relation function

(25)

where Gab(r, r' ) is Green’s function for the d-dimen-
sional Hamiltonian operator

(26)

This function can be written explicitly in an auxil-
iary gauge [30]:

(27)

where ω = 2eB/c is the cyclotron frequency (we use the
system of units in which " = 1, 2m = 1) and z and z' are
the (d – 2)-dimensional longitudinal coordinates. The
integral in Eq. (27) is taken along the straight line con-
necting the points r and r'.

Taking into account the restriction imposed by
Eq. (2) on the complex fields, we obtain the SE for the
effective wave function,

(28)

H
1
2
--- ddx ∂µ i

2π
Φ0
------Aµ+ 

  Sa

2

,∫=

A
1
2
---B r,×=

Z DSaDSa*
H
T
----– 

  δ S 2 1–( ).exp
a 1=

N

∏∫=

Gab r r',( ) Sa r( )Sb* r'( )〈 〉 ,=

i∂µ
2π
Φ0
------Aµ–– 

  2

m0
2

+ Gab r r',( ) = Tδabδ r r'–( ).

Gab r r',( ) Tδab i
2π
Φ0
------ dxµAµ

r

r'

∫–
 
 
 

4π( ) 2 d–( )/2exp=

× du
ωu 2 d–( )/2

2 uω/2( )sinh
------------------------------- m0

2u–
z z'–( )2

4u
------------------–





exp

0

∞

∫

–
ω
8
---- 1

2
---uω 
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=  TNδ r r'–( )Ψ r r',( ),
PH
which describes the motion of a quantum particle in a
external uniform magnetic field and a δ-function poten-
tial well. Here, δabΨ(r, r' ) ≡ Gab(r, r' ).

This simple SE is completely equivalent to the orig-
inal SU(N)-symmetric nonlinear GL σ model. It should
be stressed that the δ-function potential in this equation
is of fundamental importance, because in the absence
of this potential we have a trivial equation describing
Gaussian fluctuations.

According to quantum mechanics, there is always a
bound state for a particle moving in a three-dimen-
sional potential well in a uniform magnetic field, no
matter how deep the well is [31]. This means that, in
our case, the phase transition does not occur if d = 3.

Equation (28) can be readily solved [25]. In what
follows, we derive an exact formula for the upper criti-
cal field Hc2(T). Using the boundary condition for the
wave function at equal arguments, one can obtain an
equation that relates the temperature and the “physical”
mass m (the reciprocal of the correlation radius ξ):

(29)

When deriving this relation, the mass renormalization

 + ω/2 = m2 was performed. Along the curve of the
phase transition, we have m = 0. After simple algebra,
we obtain from Eq. (29)

(30)

where

(31)

Here, T(0) is the superconducting transition tempera-
ture in a zero magnetic field and H0 ~ 105 T is the mag-
netic field scale in the model at hand. The right-hand
side integral of Eq. (30) is convergent for d > 4 and
divergent for d ≤ 4; that is, if the dimensionality is less
than four, the phase transition does not occur at all
(because of the dimensionality reduction). It is signifi-
cant that, when deriving the exact equation (30), we did
not employ the lowest Landau level (LLL) approxima-
tion [18, 27].

This approximation, sometimes referred to as the
ultraquantum limit, is valid in the range of extremely
strong fields, where lH ! a ! ξ.

Using the exact solution, we will investigate its
asymptotic behavior in the range of weak fields,
where the LLL approximation fails, and in the range
of strong fields, where we will calculate corrections to
the LLL approximation.

Ψ x x,( ) TNω
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In the case of weak fields, s ≡ H/H0 ! 1, we obtain

(32)

where Ad is a constant equal to

(33)

Equation (32) describes the vicinity of the critical end
point T = Tc, H = 0, in which several phases exist. A
characteristic feature of this point is the divergence of
the second derivative of T(H) with respect to H,
T ''(H) ~ H(d – 6)/2, as H  0.

In the range of strong fields s @ 1, we have

(34)

The corrections to the LLL approximation are expo-
nentially small, which is not surprising because there is
a gap between the lowest Landau level and higher lev-
els. In the limit as T  0, the Hc2(T) curve goes to
infinity.

Thus, the second-order phase transition occurs in
the model at hand only in the case of the dimensionality
d ≥ 4; the critical indices are ν = 1/(d – 4) and η = 0
[21, 24, 25]. If the dimensionality is less than four, the
phase transition does not occur because of the dimen-
sionality reduction effect.

The critical indices calculated above coincide with
those of the spherical model in a random magnetic
field. In both models, the dimensionality reduction
effect takes place and both belong to the same univer-
sality class. The reason for the latter is still unclear.
This may be an accidental coincidence, because the
GL model differs significantly from the spherical
model: there is no frozen disorder and no hidden super-
symmetry in it [2, 32].

4. CONCLUSION

In this paper, we showed that, in the large-N limit,
all d-dimensional nonlinear vector σ models, such as
O(N), SU(N), and CPN, are equivalent to the
Schrödinger equation for a particle moving in a δ-func-
tion potential well. This equation, as well as the beta
function, has the same, universal form for all models,
because, as is well known, all systems that possess con-
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tinuous global symmetry are almost identical when N is
large [5]. Mathematically, however, this seems some-
what strange, because SU(∞) ≠ SO(∞).

More complicated gauge and matrix theories are not
equivalent to the Schrödinger equation. This is because,
in contrast to these, the vector models in the spherical
limit are systems of free massless Goldstone particles
[2, 5].

In itself, solution of the canonical SU(N)-symmetric
GL model in an external magnetic field in the limit of
N  ∞ is undoubtedly of interest. However, this
model, unfortunately, possesses a number of nonphysi-
cal features which are not observed in real type-II
superconductors. Among these features are primarily
the absence of a vortex lattice below the Hc2(T) curve of
phase transitions; the continuous transition to the
homogeneous condensate state [20], which occurs in
dimensions higher than four; the astronomical values of
the upper critical field H0 ~ 105 T; the low-temperature
asymptotic behavior of the upper critical field
[Hc2(T)  ∞ as T  0] inconsistent with the exper-
iment; etc.

Thus, the GL model, while exactly solvable in the
limit under consideration, is obviously nonrealistic and
needs modification.

At present, there is no one physically reasonable
way of clearing all troubles (see, e.g., [33]). An interest-
ing procedure in which the symmetry of the initial
action is modified was proposed in [29] and discussed
in this paper. It is also well known how to construct the
GL model in physical dimensions d ≥ 2 in such a way
that a phase transition occurs in it. An example of such
a model is a model of a superconductor on the lattice in
a magnetic field [25, 34–36].

The method developed in this paper leads to a some-
what surprising interpretation of the SU(N)-symmetric
GL model on the lattice. In this model, the two-point
correlator obeys the discrete Schrödinger equation on
the lattice in an external magnetic field. In terms of
solid state physics, this equation describes a Bloch
electron moving via sites of a d-dimensional lattice
placed in an external uniform magnetic field; further-
more, the lattice has a δ-function potential well, pro-
duced by an impurity atom. This is the famous Azbel–
Harper–Hofstadter problem [37–39]. The electron can
be captured by the impurity and form a bound state.
The threshold depth of the potential well for the forma-
tion of the bound state depends on the magnetic field,
and it is this dependence that describes the Tc(H) curve
in a superconductor. For the magnetic flux Φ through a
plaquette whose magnitude is given by the relation
Φ/Φ0 = 2πp/q, where p and q are relatively prime inte-
gers, the Tc(q) dependence can be calculated numeri-
cally.

The SE method can also be applied to other models
in statistical physics and quantum field theory, e.g., to
the supersymmetric O(N)-symmetric nonlinear Witten
1
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σ model [40, 41]. The universal beta function in
Eq. (18) was also arrived at in the two-particle sector of
the Kadar–Parisi–Zhang model [42]. Applications of
the SE method to lattice systems and to models with
disorder will be considered elsewhere.
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Abstract—The switching kinetics in ferroelectrics in the bulk polarization switching stage and in the final stage
of the process are studied. Consideration is given to the specific case of switching of intrinsic ferroelectrics with
180° domains. A complete system of equations describing the switching processes and taking into account the
change in repolarization in the course of a phase transformation is derived. The solution of this system is found.
All the main characteristics of the switching process are calculated; namely, the evolution of the domain size
distribution function is revealed and the time dependences of the domain density and flux are determined. An
expression describing the variation in repolarization with time is obtained. The mechanisms of domain growth
are studied. An equation for calculating the switching current and its variation with time is derived. A method
is proposed for determining a number of constants for ferroelectric crystals by studying the switching current
evolution. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This study is a continuation of the investigation in
[1] into the switching processes in ferroelectric crystals
in an electric field. In the present work, we will con-
sider the main and final stages in the switching process
and derive analytic expressions for the switching cur-
rent. Earlier [1], we noted that any first-order phase
transition can be conventionally divided into three
stages. In the first stage, the system does not yet “feel”
the formation of a new phase and its thermodynamic
parameters remain almost unchanged. In the subse-
quent stages of the phase transformation, the thermody-
namic parameters vary and their variations affect the
nucleation process. It turns out [1] that in the first stage
of the phase transformation, it will suffice to determine
the stationary flux of the nuclei, which specifies a
boundary condition to the coupled equations describing
the next stage of the phase transition. We turn now to its
study.

2. KINETICS OF BULK POLARIZATION 
SWITCHING IN A FERROELECTRIC CRYSTAL

According to the general theory of phase transitions
[2–4], after the maximum in the size spectrum of nuclei
has reached the critical size in its evolution, fluctuations
no longer affect the growth of nuclei of the new phase
significantly. Therefore, the master kinetic equation for
first-order phase transitions (see Eq. (11) in [1]) can be
recast in the form

 (1)∂f
∂t
-----

n∂
∂+ Vn f n t,( )[ ] 0,=
1063-7834/01/4301- $21.00 © 20090
where Vn is the growth rate of a nucleus and f(n, t) is
the size distribution function of the switched domains.
Thus, the term describing the fluctuations is disre-
garded in this stage. In this stage of the phase transition,
the repolarization in the system is not a constant quan-
tity: it varies in the course of the phase transformation,
because the formation of polarization switching nuclei
changes the overall polarization of the crystal. Hence,
Eq. (1) for the distribution function should be comple-
mented by an equation describing the conservation of
the total dipole moment in the crystal.

We write this equation in the differential form

 (2)

Here, ξ is the relative repolarization (the notion of repo-
larization was introduced in Section 2 of [1]), Pz10 is the
equilibrium value of the polarization, pzi is the dipole

moment of the unit cell volume ω, J( )pzi/Pz10 is the
polarization switching source generated by the external

field, and pi/Pz10, Vnf(n, t)dn is the rate of “polariza-

tion consumption” by the new-phase domains. Now, we

determine the source J( ). The field applied to a fer-
roelectric will change the direction of polarization in its
unit cells. In order to find the number of elementary
polarization vectors formed per unit volume of the
crystal in a unit time, we will proceed as we did when

calculating the domain growth rate in [1]. Let J( ) be
the number of elementary polarization vectors induced
by the field. Using the results obtained in [1], we can
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immediately write an expression for the number of
switched cells appearing in a unit volume of the crystal
per unit time; that is,

 

where  = Nννexp(–V0/kBT),  is the energy barrier
height required for an elementary dipole in a cell to turn
from a state with one direction of polarization to
another in the absence of an external field, Nν = 1/ω is
the number of unit cells per unit volume of the crystal,
ω is the volume per unit cell, ν is the frequency of atomic

vibrations in the cell,  is the external field of the source
at the instant of the onset of bulk polarization switching,
and  is the field that acted on the system before actu-

ation of the source. Recalling that  = Pz10 + χε0  [1],
where χ is the permittivity and ε0 is the permittivity of
free space, we obtain

 (3)

where τ = kBTχε0/ . In a general case, the source

(J( )pzi)/Pz10 can be time dependent. By analogy with
[2–4], the coupled equations (1) and (2) can be solved
numerically for sources of any kind, specifically of
pulsed action. We rewrite Eq. (2) in the form

(4)

If the time τ is short enough to allow neglection of
derivative ξ'(t) due to the smallness of its change in this
stage, the system of Eqs. (1) and (2) has an analytical
solution. A method of solving such systems was devel-
oped in [2, 4]. Equation (4) can be recast now as

(5)

Equations (1) and (5) describe the switching kinetics in
ferroelectric crystals. In order to solve them, we need to
know the expression for the domain growth rate Vn. It
was obtained in [1] in the form

(6)

where H is the height of the nucleus, which we
accepted approximately equal to ω1/3, and β0 is the
equilibrium flux of the unit cells.

As was shown in [2, 3], in this stage of the phase
transition, the supersaturation (in our case, repolariza-
tion) changes insignificantly and is still sufficiently
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large, so that the size n of the forming and growing
nuclei is considerably exceeds the critical value; i.e.,
n @ nc. In this connection, we recast expression (6) as

Vn = 2constEz(t)n1/2, (7)

where const = β0(πHω)1/2pzi/kBT.

The system of equations is now complete, and we
can find its solutions. To accomplish this, we rewrite
Eq. (7) in the form

(8)

where t0 is the characteristic time of the growth

Next we introduce the dimensionless radius ρ of the
nuclei in order to make the growth rate independent of
n; i.e., we transform the variable to ρ = n1/2.

Because f(n, t)dn = g(ρ, t)dp, Eqs. (1) and (2) can be
rewritten as

(9)

(10)

with boundary and initial conditions of the form g(0, t) =
I(ξ(t))t0/ξ(t), g(ρ, 0) = 0 (ρ > ρc), λ =

2kBTχε0/(t0 pziPz10), and ξ0 = (  – Pz10)/Pz10. When
deriving the last equation, we transformed the variable
from ξ0 to ξ0.

The coupled equations (8)–(10) fully describe the
switching kinetics in ferroelectrics in the stage when
the maximum in the nucleus size distribution has not
yet reached critical size [2–4] and the rate of change of
supersaturation is small compared to the flux of
switched nuclei entering the system. This system can
be solved by the method developed in [4]. The solution
has the following form:

 (11)

N(t) = I(ξ0)tkϕk(T(t)), (12)

 (13)

where I(t) is the flux of the switched domains at the
instant of time t; N(t) is the density of the newly
formed, switched domains at the instant t; and ξ(t) is
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the relative repolarization at the instant t. Here, Γ is a
parameter [4] defined as

where Rmin is the minimum work needed to form new-
phase nuclei in a ferroelectric, the expression for which
was obtained in [1]. In this case,

The distribution function of the switched regions in the
magnitude of polarization can be written in the form

(14)

Here, I(ξ0) is the flux of nuclei, which is found from
Eq. (36), derived in [1]:

 

(15)

where the auxiliary function ϕk(x) is determined from
the solution to the equation dϕk/dx = exp(–xkϕk) subject
to the condition ϕk(0) = 0 [2, 4], k is a coefficient
depending on the mechanism of the nucleus growth [2–

4], and τ = (kBTχε0)/( ). In this case, k = 1.

The maximum size of the switched region can be
determined from the relationship

 

Then,

 

This equality can be used as a definition of the renor-
malized time.

We note in conclusion that the solution (11)–(15)
has a meaning only for Γ @ 1. If the converse is true,
the system should be solved numerically.

We turn now to the study of the later stage in the
evolution of an ensemble of switched regions.
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3. OSTWALD RIPENING OF AN ENSEMBLE 
OF SWITCHED DOMAINS

Ostwald ripening is the final stage of a phase transi-
tion where no new nuclei are formed and the repolariza-
tion tends to zero [2, 3]. In these conditions, a specific
interaction sets in among the switched domains. The
mean size of the polarization switching nuclei in the
ensemble will grow as a result of “dissolution,” i.e., the
rotation of the polarization vector “against the field”
and the growth of large nuclei due to aligning a part of
the polarization vectors with the field.

In this process, the average magnitude of repolariza-
tion in the crystal will decrease. This is due to the
decrease in the free energy of the system as a result of
diminishing the interface and, accordingly, diminishing
stresses at the domain walls. In a general case, large
domains will absorb small ones. A specific interaction
sets in between the polarization switching nuclei,
because each domain feels the cooperative polarization
field of the whole domain system. This should be con-
nected with the law of conservation of the total polar-
ization in the system [see Eq. (2)]. We rewrite Eqs. (1)
and (2) with the variables R and t, where R is the radius
of the switched regions. Since

f(n, t)dn = f(R, t)dR, 

we have

 (16)

In the stage of Ostwald ripening, domains of different
sizes compete because of the growth of the critical
nuclei in the system, which become comparable in
radius to domains.

In the case when the domain dimensions become
comparable with the critical size, we should take into
account not only the flux of the cells attaching to a
domain, but the reverse cell flux bringing about disso-
lution of a domain as well. Therefore, in order to
describe the growth rate of domains, we turn to Eq. (6).
Recall that En can be expressed through the number of
particles according to expression (24) derived in [1].
After simple manipulations, we obtain the following
equation for the domain growth:

 (17)

This equation was derived taking into account expres-
sion (26) from [1].

Note that expression (17) for domain growth rate
was obtained under the assumption that the domain
wall grows through equiprobable attachment of struc-
tural elements to any point on its surface. This mecha-
nism of the growth corresponds to the growth of rough
crystal surfaces [2, 3, 5] and is called the normal mech-
anism. As is well known from the theory of crystal
growth [5], there are two more possible mechanisms of

∂f
∂t
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R∂
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crystal face growth, namely, the layer-by-layer process
and the growth through two-dimensional formation of
nuclei with their subsequent coalescence. In the stage
of nucleation and bulk polarization switching, the
domains are still small in size and their surfaces are not
fully formed. For this reason, we considered only one
mechanism of their growth, the most probable one. In
the later stage of the evolution, the polarization switch-
ing approaches zero and the conditions are close to
equilibrium. In this case, the domain wall surfaces can
be smooth. As a result, the domains can increase in size,
apart from their growth by the normal mechanism,
through the layer-by-layer growth of their faces. In this
connection, we now consider the other growth mecha-
nisms in more detail.

4. MECHANISMS OF DOMAIN GROWTH

We will not study the domain growth by two-dimen-
sional nucleation for two reasons. First, its description
would require more comprehensive knowledge of the
domain-wall surface structure. As a rule, the formation
of two-dimensional nuclei is most probable on face
defects which enhance the formation considerably.
Second, after the formation of two-dimensional nuclei,
the wall continues to grow by the layer-by-layer mech-
anism.

In order to calculate the rate of domain growth by
the layer-by-layer mechanism, we reason as follows.
Let a domain consist of N faces and two-dimensional
nuclei are formed on each of the domain faces so that
they completely fill its surface.1 In a general case, these
nuclei can be represented in the form of two-dimen-
sional flat plates, for instance, squares with a linear
dimension of face l. The area of each of these two-
dimensional nuclei can be estimated as Sc ≈ π(l/2)2, or

Sc ≈ π , where rc is the radius of a disk-shaped two-
dimensional nucleus inscribed into the square. The
number of nuclei making up the domain face of height
H is N ≈ H/2rc. The volume of the bubble domain thus
faceted is the sum of the volumes of its identical rect-
angular parallelepipeds, whose base is the two-dimen-
sional square. The thickness of these parallelepipeds is
equal to the domain radius R.

The change in the thermodynamic potential of an N-
faced domain can be written as

 (18)

where ∆µ(R) is the mean difference of chemical poten-
tials between the medium and the switched domain. In
a general case, rc is a function of R. To a first approxi-
mation, the relation between rc(R) and R can be consid-

1 If a face is filled incompletely, charges appear at the interface
between the medium with one direction of polarization and the
nucleus polarized in the opposite direction, which violates the
continuity of the normal component of the electric field (see [1]).

rc
2

∆Φ ∆µN
H

2rcω
------------ScR– σN

H
2rc

-------Sc,+=
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ered linear. The critical radius of a two-dimensional
nucleus on the domain surface is determined by the
mean value of ∆µ(R) at this surface,

 (19)

where σst is the surface tension of a step. The chemical
potential difference between the medium and the
switched domain ∆µ(R) is found from expression (24)
derived in [1], in which the number of particles n is
expressed in terms of the domain radius R.

In order to determine the critical size of the domain
thus faceted, we differentiate ∆Φ with respect to R and
equate the resulting expression to zero. As a result, we
find (this can be readily shown, and we do not present
here a detailed derivation) that the critical radius of this
domain is determined by expression (26) obtained in
[1]. This means that the critical radius of domains
bounded in this way does not differ from that of unfac-
eted domains. Therefore, we can write an expression
for the rate of layer-by-layer growth of domains. For
this purpose, we invoke the analogy between the
growth of bounded nuclei studied in [6, 7] and that of
domains. This analogy implies that the growth rate of a
domain along the normal to its surface should be pro-
portional to the difference between the fluxes of the unit
cells, which are attached to and detached from the unit
area of the step. In addition, this rate is proportional to
the fraction of the area of the domain side surface to
which switched cells are attached. This area fraction S
is equal to the number of two-dimensional nuclei form-
ing the domain face of height H, i.e., H/2rc. Denoting
the flux of the unit cells which are attached to the unit
area of the step by βst(E) and the flux of detaching cells
by βst(En), we obtain for the domain growth rate

 (20)

Substituting S = 2(πHω)1/2n1/2 into Eq. (20) gives

 (21)

The coefficients βst(E) and βst(En) depend on the
external field E. To calculate them, we use the tech-
nique applied in [1] and write the expression for the
domain wall growth rate:

 (22)

In this expression, βst0 = Nstνstexp(–νst0/kBT), Nst is the
number of unit cells at the step, νst is the frequency of
atomic vibrations in cells at the step, ν ~ νst , and Vst is
the energy expended on transferring an atom in the cell
from one state to another as a result of polarization
switching at the kink in an equilibrium state and with
no field applied.
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Thus, we considered two domain growth mecha-
nisms, which we believe to be the most probable ones.
We now express Eqs. (17) and (22) not in terms of the
number of particles n in a domain but through domain
radius R. As a result, the rate of domain growth by the
normal mechanism is represented in the form

 (23)

A similar transformation of Eq. (22) yields the fol-
lowing relationship for the domains growing by the
layer-by-layer mechanism:

 (24)

We turn now to an analysis of the relationships derived.
The balance equation (2) has the form

 (25)

where

 

As in [2, 8], we assume that the source ξ0(t)dt decays

in time and can be approximated by the polynomials
ξ0(t) = (ξ0/τ)tn – 1, where n ≥ 0 is the field growth index
and ξ0 and τ are from the calculations above. For sim-
plicity, we assume that the source is uniformly distrib-
uted in the sample.

The coupled equations (16) and (25), together with
Eq. (23) or Eq. (19), which describe the growth rate of
nuclei, make up a complete system and formally coin-
cide fully with the equations describing the late stage in
a first-order phase transition [8] (the Ostwald ripening
stage).

The solution to such a system was first obtained by
Lifshitz and Slezov (see [2, 3, 8]). However, there also
exists a different and more rigorous asymptotic treat-
ment [9] (see also [2]), whose results will be used here.
The Ostwald ripening stage can occur only in the case
when the external field either is turned off after the for-
mation of switched domains or varies with time so that
the index n in Eq. (25) becomes smaller than n < 2/p,
where p is the growth index, p = 2 for the growth of
nuclei by the rough process, and p = 3 for the layer-by-
layer growth of nuclei. Then, the mean size of nuclei
will vary with time as a result of evolution [3, 9] as

R(t)  const' · t1/p, (26)
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where p = 2 if the growth of nuclei is rate-limited by the
boundary kinetics and p = 3 for the layer-by-layer
growth. The density of the nuclei varies with time as
follows:

N(t)  const'' · t (n – 3/p). (27)

The nucleus size distribution functions in dimension-
less coordinates have the same form for the late stage of
all phase transitions. Rather than write them out here,
we refer the reader to [2, 3, 8, 9].

We note in conclusion that because both the mean
and critical sizes in the Ostwald ripening stage vary
with time by relationship (26), the repolarization
change with time should be as follows:

ξ(t)  const''' · t–1/p. (28)

In Eqs. (26)–(28), const', const'', and const''' are con-
stants depending on the actual domain growth mecha-
nism. These constants are readily found in the Lifshitz–
Slezov theory [2, 3, 8, 9]. According to [9], in a general
case, these constants are not determined theoretically
and can be found only from comparison of the theoret-
ical expressions with experimental data.

The relaxation of repolarization to the equilibrium
state was studied experimentally [10]. The experimen-
tal curves were fitted by damped exponentials. As fol-
lows from our theory, in the late stages, these exponen-
tials should be functions of type (28). In an earlier
stage, as follows from Eq. (13), repolarization decays
exponentially in time.

5. SWITCHING CURRENT IN FERROELECTRICS

The dependence of the switching current density on
time in a ferroelectric capacitor can be written as fol-
lows [11]:

(29)

where dQ/dt is the rate of change in the ferroelectric
volume fraction Q which has not yet switched and Pz10
is the starting value of the spontaneous polarization of
the ferroelectric. In the earliest switching stage, i.e., in
the first stage of the phase transition, which we studied
in [1], the switching current should be zero. Indeed, the
expression for the nucleus flux I derived in [1]
describes the switching process only in the case when
no noticeable volume fraction of the crystal has become
involved in the phase transition and the rate of change
in the crystal volume fraction is zero. The main switch-
ing current will start to flow when the system enters the
stage of bulk polarization switching. The time of the
onset and the duration of this stage can be estimated
from formula (15). To calculate the switching current in
this stage, we pursue the following reasoning. The vol-
ume fraction, or the degree of sample volume filling by
the nuclei of the new phase, can be calculated using two
approaches. One of them is based on the well-known
Kolmogorov–Avrami method [12, 13]. This method

J 2Pz10
dQ
dt
-------,–=
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was employed in [11] to determine the switching cur-
rent. However, it is known [2, 3] that quantities such as
the nucleation rate and the growth rate of the nuclei,
which enter into the Kolmogorov–Avrami expression,
are not parameters of this theory. They are calculated
from other considerations. It is these parameters that
we have just found. Now, we can insert them into the
Kolmogorov–Avrami expression and calculate the cur-
rent.

However, the Kolmogorov–Avrami expression is
valid only in the case when the growth rate of nuclei
does not depend on their radius and the repolarization
remains constant throughout the process. As is seen
from Eqs. (11)–(13), this is not so. Therefore, applica-
tion of this theory to the process of transformation is
not justified from the physical standpoint. Note that
attempts at correcting this drawback have recently
appeared [14]. However, we will use another approach,
which makes it possible to describe rigorously the pro-
cess of filling the system volume by growing nuclei
with due regard for the change in the repolarization and
the dependence of the growth rate of nuclei on their
size.

This approach is based on the system of kinetic
equations derived above [Eqs. (1)–(10)]. In the general
case, the switching domains, as nuclei of the new phase
[2, 3, 15], can collide with one another and coalesce. If
the system is sufficiently tenuous, we can assume the
collisions to be primarily binary. To take them into
account, we add the collision integral to the right-hand
side of Eq. (1). This procedure was employed in [15] to
take into account the collisions between nuclei in vol-
ume and surface systems. We can write the equation of
evolution for the distribution function of polarization
switching domains with inclusion of their possible col-
lisions and coalescence; that is,

(30)

(31)

where I(t) is the rate of nucleation, Z = 1 – Q  is the
degree of filling of the ferroelectric volume by the
polarization switching domains, and β is the coagula-
tion kernel [15] [it is assumed that f(n, t) = 0 at n < n0].
Because the functions Vn and I(t) depend on the repo-
larization ξ(t), Eq. (30) should be complemented by the
law of polarization conservation. We rewrite Eq. (4)
with due regard for the fact that part of the unit volume
of the ferroelectric is already occupied by switched
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regions. The region filled by the polarization switching
nuclei is given by

(32)

Then, the law of conservation (4), which was writ-
ten taking into account that nucleation occurs only in
empty sites, can be recast as

(33)

where the ratio Pz/Pz10 accounts for the difference in the
volume fraction occupied by switched cells in the equi-
librium state and in the completely switched state in the
presence of the field.

By solving the set of Eqs. (30)–(32) with the use of
Eqs. (11)–(13), we can find all the main characteristics
of the switching process. For some kinds of coagulation
kernels, it is possible to obtain analytic expressions.
Comprehensive analysis of the system requires knowl-
edge of the mechanisms by which polarization switch-
ing domains interact with one another. These coupled
equations were analyzed in the specific case of the
growth of crystalline new-phase nuclei on the substrate
surface [2, 3, 15]. For rigorous calculations of the
switching current, we can use the analogy and invoke
these results. We consider the application of this
method in the simplest case, without inclusion of
domain coalescence; i.e., the integral in the right-hand
side of Eq. (30) is taken equal to zero. We write the
expression for Z(t) in the variables ρ and t bearing in
mind that ρ = n1/2 and f(n, t)dn = q(ρ, t)dρ. Differenti-
ating Z(t) with respect to time and transforming it with
the use of Eqs. (8), (9), and (37) under the condition
that q(ρ, t)|ρ → ∞ = 0, we obtain

(34)

where t0 is the characteristic growth time introduced
earlier [see Eq. (8)] and N is the number of created
nuclei. In the latter expression, the prime denotes the
time derivative. Differentiating Eq. (34) once more
with respect to time yields

(35)

where I(ξ(t)) is the flux of the nuclei.

Since the equation for the switching current con-
tains not Z ' but Q  = (1 – Z)', the switching current takes
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Fig. 1. Time dependences of (a) polarization switching and (b) switching current in different electric fields Ez at I0 ~ 1038, α ~ 10,
t0 ~ 10–13 s, Pz/Pz10 ~ 1.5, and S ~ 10–9 m2. Ez (V m–1): (1) 106, (2) 1.5 × 105, and (3) 105.
the form

(36)

Thus, Eq. (36) together with Eq. (33) make up cou-
pled equations for calculating the dependence of the
switching current on time and applied field. We trans-
form Eq. (33) to the form

(37)

Substituting Eq. (37) in Eq. (36) yields

(38)

This equation determines the dependence of the super-
saturation on time. The initial conditions here are that
the switching current, its derivatives with respect to
time, and the supersaturation are zero.

The I(ξ) dependence was found earlier in [1]; we
recast it in the form

I(ξ) = I0ξ1/2e–a/ξ, (39)
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where

The constants I0, t0, and α entering into the expression
for the flux of the nuclei I(ξ) can be determined by
comparing the theoretical dependences of the switch-
ing current with the experiment. These data can be used
to obtain a number of the parameters for ferroelectrics
(surface tension σ, the kinetic coefficients β0, etc.).
Moreover, the equations derived make it possible to
determine the flux and the number of the switched
domains formed in the course of polarization switch-
ing.

Thus, investigation of the polarization current in fer-
roelectrics opens up a unique possibility for studying
some parameters of materials, which are difficult to
determine otherwise.

Note that if the mechanisms of domain coalescence
are known, solving the complete system (36)–(39) will
provide more complete and accurate information on
these constants. It should be remembered that in devel-
oping our theory, we assumed that the ferroelectric
crystal was a perfect dielectric, the leakage current was

I0

Nνβ0 HωpziPz10

2 kBTχε0

------------------------------------------; α
πHωσ2χε0

2kBT pziPz10
-----------------------------.= =
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zero, and that there were no pinning centers impeding
domain wall motion. Usually, ferroelectric crystals
contain defects of various types. Nucleation is known
to proceed more intensively at defects. In principle, this
can be taken into account. Such a study was performed
in the specific case of nucleation of a new phase on the
surface of a substrate [2].

6. DISCUSSION OF THE RESULTS 
AND COMPARISON WITH THE EXPERIMENT

Now, we estimate some of the relationships obtained
for TGS crystals with 180° domains. According to
[16, 17], these crystals are characterized by the follow-
ing parameters: the Curie temperature Tc ~ 322 K, sur-
face tension σ ~ 0.6 × 10–3 J m–2 at T ~ 302 K, Pz10 ~
3 × 104 µC m–2, χ ~ 20, ε0 = 8.85 × 10–12 F m–1, ω ~
6.7 × 10–28 m3, and Nν ~ 1/ω. Hence, it follows that in the
field E = 105 V m–1, the critical domain size calculated
from Eq. (27) derived in [1] should be Rc ~ 10–1 µm,
which is in good agreement with the data obtained in
[16]. Substituting the data in Eq. (42) of [1] and accept-
ing the estimate β0 ~ 1031 m–2 s–1 yields, for the time of
establishment of a stationary flux, t ~ 10–10 s for fields
E ~ 105 V m–1. In a similar way, we can estimate the flux
I of the nucleating domains from Eq. (38) derived in [1].
For instance, if the switching field is V ~ 107 V m–1, then,
for the same crystal at the same temperature, we have

I = 1044 exp(–H108) m–3 s–1.2 For H = 5 × 10–10 m,
I ~ 1039 m–3 s–1.

For H ~ 10–8 m, the constants entering into for-
mula (39) have the following approximate values: I0 ~
1038, α ~ 10, and t0 ~ 10–13 s. Figures 1a and 1b show
the time dependences of the polarization switching and
the switching current in different fields for the same
values of the constants (TGS crystals), Pz/Pz10 ~ 1.5,
and the sample area S ~ 10–9 m2, which were calcu-
lated from Eqs. (32)–(39). We readily see that the
switching current curves calculated follow qualita-
tively well the evolution of the switching current in
ferroelectrics [18, 19].

In conclusion, we note that switching processes in
ferroelectric crystals of a broader class [18–20] can be
studied in a similar way to intrinsic ferroelectrics with
180° domains. To do this, one should introduce addi-
tional terms into the Gibbs thermodynamic potential
and take into account the attendant elastic energy com-
ponents. We are planning to further pursue this
approach. Nevertheless, the equations derived in this
work should retain their general form.

2 The reader interested in the dependence of the nucleation rate on
H should refer to [1]. We accepted therein that H ~ 1/ω1/3. In a
general case, the nucleation rate depends, as this can be seen, on
sample thickness. In thin films, which consist, as a rule, of small
crystallites, the probability of nucleation of polarization switch-
ing domains should depend considerably on the crystallite size.

H

PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
ACKNOWLEDGMENTS

We are grateful to A.G. Ambrok for his assistance in
the numerical computation of Eqs. (30) and (39).

This work was supported in part by the Russian
Foundation for Basic Research (project nos. 98-03-
32791 and 99-03-32768), the Russian Center “Integra-
tion” (project no. A0151), the NATO Grant “Science of
Peace” (grant Stp 973252), and the CONACYT Grant
(project no. 32208).

REFERENCES

1. S. A. Kukushkin and A. V. Osipov, Fiz. Tverd. Tela
(St. Petersburg) 43 (1), 80 (2001) [Phys. Solid State 43,
82 (2001)].

2. S. A. Kukushkin and A. V. Osipov, Usp. Fiz. Nauk 168
(10), 1083 (1998) [Phys. Usp. 41, 983 (1998)].

3. S. A. Kukushkin and A. V. Osipov, Prog. Surf. Sci. 56
(1), 1 (1996).

4. S. A. Kukushkin and A. V. Osipov, J. Chem. Phys. 107,
3247 (1997).

5. A. A. Chernov, in Modern Crystallography, Vol. 3: Crys-
tal Growth (Nauka, Moscow, 1980; Springer-Verlag,
Berlin, 1984).

6. S. A. Kukushkin and T. V. Sakalo, Fiz. Tverd. Tela
(St. Petersburg) 34 (4), 1102 (1992) [Sov. Phys. Solid
State 34, 587 (1992)].

7. S. A. Kukushkin and T. V. Sakalo, Acta Metall. Mater. 41
(4), 1237 (1993).

8. V. V. Slezov, Phys. Rev. 17, 1 (1995).
9. S. A. Kukushkin and A. V. Osipov, Zh. Éksp. Teor. Fiz.

113, 2193 (1998) [JETP 86, 1201 (1998)].
10. V. V. Gladkiœ, V. A. Kirikov, and E. S. Ivanova, Fiz.

Tverd. Tela (St. Petersburg) 39 (2), 353 (1997) [Phys.
Solid State 39, 308 (1997)].

11. Y. Ishibashi and Y. Takagi, J. Phys. Soc. Jpn. 31, 506
(1971).

12. A. N. Kolmogorov, Izv. Akad. Nauk SSSR, Otd. Mat.
Estestv. Nauk, Ser. Mat. 3, 355 (1937).

13. M. Avrami, J. Chem. Phys. 7, 1103 (1939).
14. V. G. Dubrovskiy, Phys. Status Solidi B 171, 345 (1992).
15. A. V. Osipov, Thin Solid Films 261, 173 (1995).
16. L. I. Dontzova, N. A. Tikhomirova, and L. A. Shuvalov,

Ferroelectrics 97, 87 (1989).
17. Ferroelectrics and Antiferroelectrics, Ed. by G. A. Smo-

lenskiœ et al. (Nauka, Leningrad, 1974).
18. C. L. Wang, L. Zhang, W. L. Zhong, and P. L. Zhang,

Phys. Lett. A 254, 297 (1999).
19. N. N. Kraœnik and L. S. Kamzina, Fiz. Tverd. Tela

(St. Petersburg) 37 (4), 999 (1995) [Phys. Solid State 37,
542 (1995)].

20. V. V. Lemanov, E. P. Smirnova, and E. A. Tarakanov, Fiz.
Tverd. Tela (St. Petersburg) 39 (4), 714 (1997) [Phys.
Solid State 39, 628 (1997)]. 

Translated by G. Skrebtsov



  

Physics of the Solid State, Vol. 43, No. 1, 2001, pp. 98–109. Translated from Fizika Tverdogo Tela, Vol. 43, No. 1, 2001, pp. 96–107.
Original Russian Text Copyright © 2001 by Baranov, Badalyan, Azamat.

                                                                       

MAGNETISM 
AND FERROELECTRICITY
Magnetic Resonance of Exchange-Coupled Copper Complexes
in Perovskite-Structure Crystals: The Potassium Tantalate 

and Cuprate Superconductors
P. G. Baranov, A. G. Badalyan, and D. V. Azamat
Ioffe Physicotechnical Institute, Russian Academy of Sciences

Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia
Received April 25, 2000

Abstract—This paper reports on parallel EPR studies of high-temperature superconductors based on the
cuprate perovskites RBa2Cu3O6 + x (R = Y, Gd, Nd) and of KTaO3 : Cu, which also has a perovskite structure.
EPR measurements performed on copper-doped KTaO3 crystals revealed Cu2+–Cu2+ copper pair centers. The
copper ions making up pairs are assumed to occupy adjacent tantalum sites. The pair centers are chains consist-
ing of two equivalent Cu2+ ions and three oxygen vacancies aligned in the 〈100〉  direction. The crucial point in
the model proposed is the presence of an oxygen vacancy sandwiched between two Cu2+ ions, whereas the outer
vacancies do not necessarily occupy neighboring sites. In this structure, complete charge compensation is
achieved. Ferromagnetic exchange coupling takes place between the two copper ions. An investigation of the
exchange and superhyperfine interactions of copper centers in crystalline potassium tantalate has permitted the
estimation of the respective interactions in crystals of the cuprate superconductors which exhibit magnetic res-
onance signals due to exchange-coupled copper clusters in the case of oxygen deficiency. © 2001 MAIK
“Nauka/Interperiodica”.
The discovery of high-temperature superconductors
(HTSCs) based on cuprate perovskites [1] has stimu-
lated an ever-increasing interest in the investigation of
the copper–oxygen-vacancy complexes in these com-
pounds. Electron paramagnetic resonance (EPR) is the
main method used to study the structure of copper com-
plexes in various materials; suffice it to mention that the
first observation of EPR was made by Zavoœsky on cop-
per ions as far back as 1944 [2]. In a number of EPR
studies of HTSC compounds of the RBa2Cu3O6 + x type
(where R = Y, Gd, Nb; x varies from 0 to 1), there was
success in observing broad unresolved magnetic reso-
nance (MR) lines [3–5], which could be conventionally
assigned to the copper ions. These MR spectra depend
substantially on the concentration of oxygen (oxygen
vacancies) in the HTSCs. It is of interest to find model
objects that are structurally close to the cuprate perovs-
kites and in which the copper–oxygen-vacancy com-
plexes can form. The main objective underlying our
studies is, on the one hand, to provide convincing argu-
ments that the MR lines observed in the HTSCs [3–5]
do belong to copper complexes and, on the other, to
obtain quantitative information on the exchange, hyper-
fine (HF), and superhyperfine (SHF) interactions and
g factors for the copper complexes in materials
approaching the cuprate perovskites in their properties.
These studies are assumed to culminate in providing
information on the electronic structure of these com-
plexes and the spatial distribution of the wave func-
tions. It is also essential to understand which of the cop-
1063-7834/01/4301- $21.00 © 20098
per ions—in chains or in the planes—are responsible
for the observed MR signals. For our studies, we chose
copper-doped KTaO3 crystals, in which the oxygen
vacancies play a major part in the charge compensation
of the copper impurity ions. In this paper, we report on
an EPR observation of copper pair centers in these
crystals. The preliminary results were published in [6].

1. EXPERIMENTAL TECHNIQUES

We used the ceramics and single crystals of the
R−Ba–Cu–O cuprate superconductors (R = Y, Nd, Gd,
Sm) prepared in various laboratories. The starting sam-
ples were, as a rule, pure single-phase superconductors
with TC . 90 K, and they exhibited only microwave
absorption in a zero magnetic field (low-field signal)
and the strong microwave-absorption fluctuations char-
acteristic of the superconducting phase. The quenching
was done by heating the samples to various tempera-
tures (up to 1050 K) in air and rapidly cooling them
subsequently in water or liquid nitrogen. In the course
of annealing, the samples were heated and maintained
at various temperatures in air or in a vacuum, after
which they were cooled slowly (over 1–5 min).

The Gd–Ba–Cu–O and Nd–Ba–Cu–O crystals were
grown by direct RF melting in a cold crucible [3] and
represented actually a sandwich made up of thin plate-
lets about 1 µm thick. The total sample thickness was
approximately 50–100 µm. The c axis was normal to
the platelet plane.
001 MAIK “Nauka/Interperiodica”
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The KTaO3 : Cu crystals were grown by spontane-
ous crystallization in a platinum crucible [6]. The cop-
per concentration in the charge varied from 0.05 to
0.5 mol %. The angular dependences were measured by
rotating the sample about the 〈100〉  or 〈110〉  axis.

We used the standard JEOL EPR spectrometer oper-
ating in the X and Q ranges at frequencies of 9.3 and
35 GHz, respectively. The sample temperature in the
EPR studies could be varied smoothly within the 3.5- to
300-K range in a helium-flow cryostat. The MR mea-
surements in the Q range at 1.6 K were carried out in a
laboratory-designed instrument providing microwave
power modulation in the cavity.

2. EXPERIMENTAL RESULTS

2.1. YBa2Cu3O6 + x

Consider first the results obtained in the MR studies
of the YBa2Cu3O6 + x compounds. YBa2Cu3O6 + x crys-
tals are believed to have ionic bonding, with the oxygen
concentration (x) playing a specific part, because it rad-
ically affects the physical properties of this crystal.
Depending on the actual oxygen concentration x, the
YBa2Cu3O6 + x compound crystallizes in two phases,
orthorhombic and tetragonal. The orthorhombic phase,
presented conventionally in Fig. 1a, is obtained at oxy-
gen concentrations corresponding to the values of x
lying within the 0.5–1 interval, while at lower oxygen
concentrations the tetragonal phase sets in. Figure 1a
shows the accepted numbering of the various inequiva-
lent positions of copper and oxygen. The crystal has a
layered perovskite-like structure, which consists of two
IICuO2 planes in the unit cell (the figure shows four unit
cells) separated by a Y ion layer. The Y ions are coupled
with oxygen through the Ba and ICu layers. For inter-
mediate values of x, the structure of the crystal depends
on the way in which the oxygen is removed. Theoretical
calculations of the phase diagram in the x–T plane pre-
dict the formation of more complex phases with peri-
odic filling of the chains, the appearance of chains of a
finite length, etc. (see, e.g., [7]).

There are two inequivalent copper positions in these
crystals, with the copper ions residing in the CuO2

planes (IICu) and in the chains (ICu); it is assumed that
the charge state of the copper depends on the x param-
eter. The stoichiometric oxygen composition x can be
varied by annealing the crystal in an atmosphere with a
preset partial pressure of oxygen, followed by quench-
ing of the crystal.

At x = 0, YBa2Cu3O6 is an antiferromagnetic insula-
tor with the IICu2+ ions magnetically ordered on the
CuO2 plane. It is assumed that the chain copper ions
(ICu) are in the zero-spin state ICu+. It is believed that
when oxygen is added (0 < x ≤ 1), it becomes incorpo-
rated into the copper chains and acts as an acceptor by
capturing electrons from the IICuO2 plane and creating
holes in it. Thus, in the limiting case of YBa2Cu3O7, we
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have an intrinsic p-type semiconductor. In these condi-
tions, the hole concentration for x = 1 is 5 × 1021 cm–3

(one hole per unit cell).

The x = 1 structure has layers formed of apex-
joined, square-based oxygen pyramids with the IICu
ions inside and chains of planar oxygen squares con-
taining ICu ions. The decrease in the oxygen content
from O7 to O6 is associated with the breakdown of the
chains up to their total disappearance, and the connec-
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Fig. 2. MR signals (the absorption derivative), which were
detected at 35 GHz at a temperature of 8 K in a Gd–Ba–Cu–O
crystal quenched from 1020 K, for two crystal orientations
in the magnetic field, B || c and B ⊥  c. The EPR spectra were
obtained by the conventional method, with a 5-G magnetic
field modulated at a frequency of 100 kHz.
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Fig. 3. MR spectra obtained in the Y–Ba–Cu–O ceramic at
5 K in the X range: (1) starting ceramic with TC = 95 K; (2–
4) after quenching in air at 950, 1030, and 1100 K, respec-
tively; and (5–7) after a 5-min annealing at 500, 550, and
615 K, respectively. The observed fluctuations are due to the
presence of the superconducting phase in the sample and are
not background noise. The narrow line is due to the DPPH.
P

tion of this process with the loss of superconducting
properties is usually interpreted to be due to a decrease
in the hole concentration in the IICuO2 planes which are
responsible for these properties. As is seen from
Fig. 1a, the YBa2Cu3O7 crystal is divided into planar
two-dimensional conducting IICuO2 regions separated
by yttrium ions and the latter can be readily replaced by
practically any rare-earth ion without a substantial
change in the electrophysical (including superconduct-
ing) properties of the crystal. It is believed that the cop-
per in the IICu layers resides in the +2 oxidation state
for any value of x, whereas the state of the chain copper
undergoes a change from ICu3+ at x = 1 to ICu+ at x = 0.

It is known that quenching an R–Ba–Cu–O cuprate
superconductor from temperatures above 750 K [8]
results in an oxygen deficiency (a decrease in the
x parameter) and, accordingly, in a decrease in TC. The
plot relating the critical temperature TC with the oxygen
content x has two plateaus near 90 (x ~ 6.9) and 50 K
(x ~ 6.5). When ceramics and crystals of the 1–2–3 type
are quenched in air from temperatures above 1000 K,
the superconducting phase in these samples practically
disappears and strong MR signals are observed.

Figure 2 displays MR spectra measured at 35 GHz
on a Gd–Ba–Cu–O crystal quenched in air from a tem-
perature of 1020 K. The spectra are given for two crys-
tal orientations in a magnetic field, B || c and B ⊥  c. The
measurements were performed at 8 K. The EPR spectra
were obtained by the standard technique, with the mag-
netic field modulated at 100 kHz (the modulation
amplitude 5 G), and, therefore, the signal has the shape
of the derivative. The MR absorption signals obtained
at a temperature of 1.6 K (with the microwave power
modulated at a frequency of 200 Hz) were measured on
quenched Gd–Ba–Cu–O and Nd–Ba–Cu–O crystals.

Similar MR signals were also observed on a Y–Ba–
Cu–O ceramic after quenching in air from different
temperatures (Fig. 3). Spectrum 1 was obtained on the
starting ceramic with TC = 95 K before the quenching.
One readily sees microwave absorption fluctuations
typical of the superconducting state. This sample also
exhibited a strong low-field signal (not shown in the
figure) characteristic of the superconducting state.
Spectra 2, 3, and 4 were measured on the same ceramic
after quenching in air from the temperatures of 950,
1030, and 1100 K, respectively. The microwave absorp-
tion fluctuations are seen to decrease strongly in ampli-
tude because of the decreasing fraction of the supercon-
ducting phase in the ceramic, and an MR signal with a
g factor of ~2.20 and a linewidth of about 400 G
appears. The narrow line belongs to diphenyl β-picryl
hydrazyl (DPPH). Thus, the MR signal intensity is in
anticorrelation with the fraction of the superconducting
phase in the material under study.

The superconducting properties lost in the quench-
ing of the material can be partially recovered by anneal-
ing the material in air, after which the MR signal again
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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falls practically to zero. Spectra 5, 6, and 7 in Fig. 3
were measured on the same ceramic after annealing in
air for five minutes at 450, 550, and 615 K, respectively.
Annealing results in the recovery of the superconduct-
ing phase with TC . 50 K. To recover the superconduct-
ing phase completely, the annealing should be done in
an oxygen environment. It should be pointed out that
annealing brings about some changes in the MR signal
and causes the g factor to decrease; i.e., the MR line
shifts toward higher fields.

Both in crystals and ceramics, the MR signals
appear at temperatures below ~40 K and their intensity
increases strongly with decreasing temperature. Esti-
mates show that the intensity of the MR signals corre-
sponds to spin concentrations of the order of 1020 cm–3,
which implies that these signals cannot be due to impu-
rities. The MR signals are anisotropic; in magnetic
fields oriented parallel to the c axis of the crystal, the
resonance is observed in higher magnetic fields; i.e.,
the lines correspond to smaller g factors. The magni-
tude of the g factor depends on the type of the 1–2–3
compound, because, in the Nd–Ba–Cu–O crystal, the
anisotropy is smaller than in Gd–Cu–Ba–O, but in all
the materials studied g⊥ c > g||c, where g||c and g⊥ c are the
g factors for the MR signals measured in an external
magnetic field parallel and perpendicular to the crystal
c axis, respectively. In the case of the ceramic, natu-
rally, we obtain an averaged g factor. As follows from
studies performed in the X and Q ranges, the MR signal
anisotropy increases and the lines broaden substantially
with an increasing microwave frequency [4, 5].

The presence of the superconducting phase in a
crystal appreciably affects the shape and position of the
MR lines. Figure 4a presents the MR signal of a Gd–
Cu–Ba–O crystal quenched from a temperature of
1020 K that contains a small fraction of the supercon-
ducting phase (curve 1) and an MR signal of the start-
ing crystal with TC ~ 60 K (curve 2). The spectra were
obtained first in the B ⊥  c orientation and then for B || c,
immediately after a rotation through 90° and five min-
utes after the rotation. In the first sample, the B || c spec-
trum did not change with time, while in the supercon-
ducting sample, we observed a substantial variation of
the signal with time. Similar relaxation effects in MR
signals were observed when the superconducting crys-
tal was turned rapidly through 360°. Figure 5a displays
an MR signal measured in the B ⊥  c orientation on the
same superconducting crystal as in Fig. 4 (1) immedi-
ately after the cooling (in this magnetic-field orienta-
tion, the crystal was cooled to the measurement temper-
ature), (2) after a rapid turn of the crystal through 360°,
and (3–6) at different instants of time after the start of
the first rotation (between the instants corresponding to
curves 4 and 5, the crystal was again turned rapidly
through 360°). Figure 5b shows the variation of the MR
signal in time after two turns through 360° at 18 K
(solid line) and after a 360° turn at 9.5 K (dashed line).
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The figures at the solid line specify the instants of time
at which the MR measurements of Fig. 5a were made.

2.2. KTaO3 : Cu

The KTaO3 : Cu crystals were studied in two fre-
quency ranges (X and Q) in the 4- to 300-K interval.
Figure 6 presents the orientational dependences of the
EPR spectra measured on the KTaO3 : Cu crystal at a
frequency of 35 GHz and a temperature of 300 K. The
crystal was rotated in a magnetic field in the {100}
plane. While there is a large number of EPR lines, prac-
tically all of them belong to three types of copper cen-
ters, namely, to two single Cu2+ centers and one copper-
pair type, Cu2+–Cu2+, with the spin S = 1. Studies in two
frequency ranges were necessary for a final assignment
of the EPR spectra, because in this case one can sepa-
rate the EPR line shifts due to a change in the electronic
g factor from those originating from the fine, hyperfine,
and superhyperfine structures. The EPR spectra of cop-
per are extremely informative, because they contain
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Fig. 4. (a) MR signals measured at 10 K for two magnetic-
field orientations in a Gd–Ba–Cu–O crystal (1) quenched
from 1020 K and (2) in the starting superconducting crystal
with TC ≈ 60 K. The spectra were first measured in the B ⊥  c
orientation and, after this, in the B || c geometry immediately
following a 90° rotation and 5 min thereafter. (b) Low-field
signal measured in the superconducting crystal in which the
MR signal (2) was observed. B1 is the microwave field.
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signatures of practically all the interactions detectable
by the EPR technique; more specifically, the g factor
shifts providing information on the character of the
wave functions of the copper ions (single and paired),
the fine structure in the copper pair, the HF interaction
between the unpaired electron and the nuclear magnetic
moment of the copper atom, and the SHF interaction
between the unpaired electron and the ligands. The
temperature dependences of the EPR intensity offered
the possibility of deducing the character of the
exchange interaction in copper pairs, which is very
likely to be ferromagnetic; i.e., the state with the maxi-
mum spin (S = 1) has the lowest energy.

The spectrum in Fig. 6 obtained in the B || [100] ori-
entation contains the EPR lines (identified by vertical
bars) corresponding to the two types of Cu2+ centers
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Fig. 5. (a) MR signals measured in the B ⊥  c orientation in
the superconducting crystal referred to in Fig. 4: (1) imme-
diately after the cooling (the sample was cooled in this mag-
netic-field orientation to the temperature of the measure-
ment), (2) after a rapid 360° turn of the crystal, and (3–6) at
different times after the beginning of the first rotation
(between the measurements 4 and 5, the sample was again
turned rapidly through 360°). (b) Variation of the MR signal
amplitude in time after two 360° turns at 18 K (solid line)
and after a 360° turn at 10 K (dashed line). The figures
adjoining the solid line refer to the corresponding MR spec-
tra in Fig. 5a.
P

denoted by Cu2+(1) and Cu2+(2). Both centers were
found (within experimental error) to have a tetragonal
symmetry. Unlike the low-symmetry crystal
RBa2Cu3O6 + x, in the KTaO3 cubic crystal, the tetrago-
nal axis of the Cu2+ centers may be aligned with any of
the three equivalent 〈100〉  directions with equal proba-
bility and, therefore, the EPR spectrum taken in the
B || 〈100〉  geometry exhibits the EPR lines correspond-
ing to the magnetically inequivalent centers with B || z
(where z is the tetragonal symmetry axis of the center)
and B ⊥  z simultaneously. When the orientation devi-
ates from B || 〈100〉 , the signal corresponding to B ⊥  z
undergoes a further splitting. To simplify the general
pattern and to make a comparison of the copper EPR
spectra in KTaO3 : Cu with the MR results obtained in
uniaxial crystals of the 1–2–3-type compounds, Fig. 6
presents the experimental (points) and theoretical
(lines) dependences only for the copper centers ori-
ented along the [001] axis. Additionally, for the B || [001]
and B || [010] orientations, Fig. 6 contains only the
parts of the EPR spectra that correspond to the angles
Θ = 0° and Θ = 90° (one cannot naturally separate these
spectra completely). The theoretical orientational
dependences of EPR signals are shown for the copper
pairs by solid lines and for the single copper centers
[for Cu2+(2) only] by dashed lines.

The EPR spectra obtained for each type of the Cu2+

centers in the B || z orientation consist of four relatively
broad lines due to the HF interaction. Copper has two
stable isotopes, Cu63 (69.2%) and Cu65 (30.8%); both
isotopes have nuclear spins I = 3/2 and nuclear g factors
close in magnitude, and, therefore, for the ratio of the
individual linewidths to the line separations observed
experimentally in the EPR spectra, it is difficult to
detect the copper isotopic splitting. In some orienta-
tions, each copper HF component reveals an additional
splitting caused by the SHF interaction with the
ligands. This additional structure is not seen in Fig. 6
for Θ = 0° and only affects the width of individual lines,
because the spectra are presented over a broad range of
magnetic fields. In Fig. 6, the SHF interaction mani-
fests itself partially in the B ⊥  z EPR component, which
remains fixed in all magnetic-field orientations when
rotated in the {100} plane.

The spin Hamiltonian describing the EPR spectra
has the standard form

(1)

where S = 1/2 for the Cu2+ centers; the first term is the
Zeeman interaction; the second and third terms corre-
spond to the HF and SHF interactions, respectively;

µB is the Bohr magneton;  is the g tensor;  is the HF
interaction tensor; and  is the tensor describing SHF
interaction with the nucleus of the ith ligand ion.

Ĥ µBB g S⋅ ⋅ S A I⋅ ⋅ S âi Ii,⋅ ⋅
i 1=

N

∑+ += ↔ ↔

g↔ A
↔

âi
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Fig. 6. Orientational dependences of the EPR spectra observed in KTaO3 : Cu crystals in the Q range at 300 K. The crystal was
rotated so that the 〈100〉  axis was perpendicular to the dc magnetic field. Fragments of the measured EPR spectra are shown only for
the B || [001] and B || [010] orientations. The points specify the experimental positions of the EPR lines for single and pair copper
centers oriented only along one of the [001] crystal directions (one-third of all centers in the crystal). The solid (Cu2+–Cu2+ pairs)
and dashed [Cu2+(2)] lines refer to theoretical calculations.
The parameters of the spin Hamiltonian (1) for the
Cu2+(1) and Cu2+(2) centers at 300 K are as follows: for
Cu2+(1): g|| = 2.24, g⊥  ≅  2.04, A|| = 173 × 10–4 cm–1, and
A⊥  ≅  30 × 10–4 cm–1; and for Cu2+(2): g|| = 2.20, g⊥  ≅
2.04, A|| = 193 × 10–4 cm–1, and A⊥  ≅  30 × 10–4 cm–1;
here, the || and ⊥  symbols denote the parallel and per-
pendicular magnetic-field orientations with respect to
the local z axis of the center, respectively. These data
are close to the results reported in [9]. The EPR spectra
observed have a resolved SHF structure, and we report
the first observation of two different kinds of SHF inter-
actions which differ in the magnitude and character of
the orientational dependences. The SHF structure with
a small splitting, of the order of 0.3 mT (we call it a
weak SHF interaction), was modulated in the magnetic
field by a structure with a splitting of about 1.5 mT
(accordingly, we call it a strong SHF interaction). The
strong SHF-interaction structure in Fig. 6 is partially
resolved for Θ = 90°. For centers whose orientation was
close to B || z, an SHF structure with a splitting of
0.3 mT for Cu2+(1) and of 0.37 mT for Cu2+(2) was
observed. When turned by more than 20° from this ori-
entation, the lines broadened and the structure corre-
sponding to the weak SHF interaction was practically
PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      200
unresolved; the structure due to the strong SHF interac-
tion persisted and comprised at least seven lines with
symmetrically distributed intensities. We believe that
the total resolved SHF structure observed is due only to
the interaction with the Ta5+ ions (the validity of this
statement will be corroborated below). More specifi-
cally, the weak interaction is due to the Ta5+ ions on the
tetragonal axis of the center (the local z axis), while the
strong interaction is associated with the four equivalent
Ta5+ ions located in the equatorial plane perpendicular
to the local z axis of the center. The anomalous intensity
ratios of the strong SHF interaction components are
apparently due to the existence of a strong quadrupole
interaction (the tantalum nuclei are characterized by
one of the largest known quadrupole moments). The
existence of a strong quadrupole SHF interaction with
tantalum ions was proved by ENDOR for iron nuclei in
KTaO3 [9]. It appears only natural that the SHF interac-
tion for the oxygen ions sandwiched between the cop-
per and tantalum ions and participating in electron spin
transfer from copper to tantalum could not be detected
in the conditions of this experiment because of the low
natural abundance of the 17O isotope having a nuclear
spin, although our estimates suggest that this interac-
1
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tion should be fairly strong; therefore, the EPR spectra
of a KTaO3 crystal enriched in the 17O isotope should
be substantially different from the ones in Fig. 6. It
should be pointed out that the relative concentrations of
the Cu2+(1) and Cu2+(2) centers depend on the sample
and vary over a broad range.

Besides the EPR spectra of single Cu2+ copper ions,
EPR spectra belonging to copper pairs were observed
in KTaO3 : Cu crystals with enhanced copper concen-
trations [6], which is apparently the first observation of
copper pairs in perovskite crystals. Figure 6 shows sev-
eral groups of lines of the Cu2+–Cu2+ copper pair center
denoted by (Cu–Cu) in the upper spectrum, which was
measured in the B || 〈100〉  orientation. As in the case of
the Cu2+ centers, there are lines with the B || z (Θ = 0°)
and B ⊥ z (Θ = 90°) orientations, with z aligned with
〈100〉  and also being the tetragonal axis of the center
symmetry. In contrast to the Cu2+ centers, there are two
groups of lines for the parallel and perpendicular orien-
tations each, with the distance between the centers of
these groups in a parallel magnetic-field orientation
being about twice that for the perpendicular orienta-
tion, which implies that we have here the EPR spectra
characteristic of the triplet states (S = 1) of axial sym-
metry, with the fine-structure splitting substantially
smaller than the Zeeman splitting. The angular depen-
dence of these groups of lines is also characteristic of a
triplet center. For Θ = 0°, each (Cu–Cu) group contains
seven HF lines, with a width of ~2.5 mT and an inten-
sity ratio of approximately 1 : 2 : 3 : 4 : 3 : 2 : 1, which
is a signature of the interaction of an unpaired electron
with two equivalent nuclei of the spin I = 3/2. The HF
structure constant in the spectrum of the new center is
approximately one-half the sum of the HF constants for
the Cu2+(1) and Cu2+(2) centers. All this argues in favor
of the new EPR spectrum (in Fig. 6) belonging to an
exchange-coupled pair of equivalent Cu2+ ions sitting at
neighboring tantalum sites, with the z axis of the center
directed along the 〈100〉  axis of the crystal.

The Hamiltonian of an exchange-coupled pair that
includes the isotropic exchange interaction of two iden-
tical magnetic centers with the spins S1 = S2 = 1/2 and
the Zeeman interaction (but does not take into account
the HF and SHF interactions) can be written as [10]

(2)

where J is the isotropic exchange constant; µB is the

Bohr magneton; and  is the copper dimer g tensor,
which was found to be equal, within experimental error,
to the average magnitude of the g tensors of the two sin-
gle copper centers, Cu2+(1) and Cu2+(2). In the case
where the isotropic exchange constant J @ gµBB, the
situation realized for the copper pairs in our experi-
ment, the system can conveniently be recast in the rep-
resentation of the total spin equal to zero or unity. Note
that the exchange energy does not have a simple scalar
form as the first term in Eq. (2) does but rather is char-

Ĥ JS1 S2⋅ µBB g S1 S2+( ),⋅ ⋅+=
↔

g
↔

P

acterized by an anisotropy (in our case, apparently, a
weak enough one) which can be described by a more

general expression of the type S1 ·  · S2. For an axial
system with spin S = 1, this anisotropy can be taken into
account by adding the fine-structure term to the spin
Hamiltonian (1) which reduces to one-half the HF and
SHF interaction constants:

(3)

The spin Hamiltonian parameters for the Cu2+–Cu2+

center in the KTaO3 : Cu crystal for 300 K are as fol-
lows: |D| = 420 × 10–4 cm–1, g|| = 2.22, g⊥  = 2.04, A|| =
90 × 10–4 cm–1, and A⊥  ≅  15 × 10–4 cm–1. It should be
added that in the K1 – xLixTaO3 : Cu crystal |D| = 455 ×
10–4 cm–1, which is slightly larger than in KTaO3 : Cu,
so that the D parameter is very sensitive to weak
changes in the crystal structure. In the case of pairs, we
detected only an SHF structure with a small splitting of
~1.5 G in the B || z orientation.

A study of the temperature dependence of the EPR
signal showed that the amplitude of the copper pair-
center signal increases with the temperature decreasing
to 3.5 K. This observation suggests that the isotropic
exchange most likely has a ferromagnetic character;
i.e., the triplet spin state has a lower energy than the sin-
glet one.

Spectra of the Cu2+–Cu2+ pair centers were detected
in potassium tantalate crystals within a broad copper
concentration range, and their relative intensity
increases with the copper concentration. It was found
that the observed spectrum is stronger in the samples in
which the Cu2+(1)- and Cu2+(2)-center concentrations
are roughly equal in value. The presence of one
vacancy in the nearest environment of Cu2+ is not
enough for complete charge compensation. On the
other hand, single Cu2+ centers with two nearest neigh-
bor vacancies along 〈100〉  can form and one cannot rule
out the possibility that one of the oxygen vacancies is
not in the nearest neighborhood on the 〈100〉  axis,
because in this case an excess positive charge would
appear. Two such centers, Cu2+(1) and Cu2+(2), fully
satisfy the charge neutrality condition even if located at
a considerable distance from each other. If two Cu2+

ions occupy adjacent tantalum sites, they form a pair
center, whose model is shown in Fig. 1b and which has
the form of a chain of two equivalent Cu2+ ions and
three oxygen vacancies strung out along the 〈100〉  axis.
The crucial point in this model is the presence of an
oxygen vacancy between two Cu2+ ions (inner
vacancy); the outer vacancies may be farther away from
the copper. In this structure, complete charge compen-

J
↔

Ĥ µBB g S⋅ ⋅ D Sz
2 1

3
---S S 1+( )–+=

+ S
A
2
--- I1 I2+( )⋅ ⋅ S

âi

2
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∑+

↔

↔
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sation obtains. This is apparently what accounts for the
appearance in the crystals studied of copper pair con-
centrations exceeding by several orders of magnitude
the values obtained from a statistical analysis of the
pair formation. Because g|| > g⊥  ≥ 2, the wave functions
of each of the Cu2+ ions in a pair have the form 3d(x2 –
y2), where the local axis z is directed along the pair axis
〈100〉 . Therefore, the exchange coupling in the pair can
be mediated by the pz orbital of the oxygen ion, which
also argues for the model proposed, because the ferro-
magnetic exchange following from our experiments
finds a natural explanation in this way.

This model of the Cu2+–Cu2+ pair center can be log-
ically extended to a model of two single copper centers,
with each of them representing a copper ion with one or
two nearest neighbor oxygen vacancies along the 〈100〉
direction. In other words, single centers are actually
two constituents of the pair center. This conclusion gets
additional support from the fact that only one type of
pair center was observed, with its parameters (the g fac-
tor and the HF and SHF interaction constants) being
equal in magnitude, with a high precision, to the aver-
age values of the corresponding parameters of the two
single Cu2+(1) and Cu2+(2) centers. As was already
mentioned, for the copper pairs there has been success
in detecting only an SHF structure with a small split-
ting, ~1.5 G, in the B || z orientation. This observation
easily finds an explanation in terms of the proposed
model of the pair center; indeed, because the weak SHF
interaction originates from two tantalum ions lying on
the local z axis, this structure changes only insignifi-
cantly as one goes over from single Cu2+ ions to their
pairs. The decrease in the splitting to one-half that for
the single Cu2+ ions has the same nature as the corre-
sponding decrease in the HF interaction constant [in
accordance with expression (3)]. The structure due to
the strong SHF interaction with the tantalum ions lying
in the equatorial plane (equatorial Ta ions), which is
perpendicular to the center z axis, is not resolved,
because the situation for the pair differs radically from
that for single copper ions; indeed, there are eight equa-
torial Ta ions located in the two planes that are perpen-
dicular to the axis of the copper pair center and pass
through each copper ion. Thus, the number of the Ta
ions doubles, whereas the SHF splitting decreases by
one half, and it is this that probably results in the unre-
solved SHF structure.

Consider the SHF interaction, which is essential for
obtaining information on the spin-density spatial distri-
bution in the Cu2+ centers and Cu2+–Cu2+ pairs. As was
already mentioned, the observed SHF structure sug-
gests the existence of several types of interaction with
inequivalent ligand ions. If we exclude the interaction
with impurities, KTaO3 has ligand ions of three types,
namely O2–, K+, and Ta5+. The SHF interaction with
oxygen may be disregarded, because only a very small
fraction of the natural oxygen (0.038% 17O) has a non-
zero nuclear spin. In contrast to oxygen, the potassium
PHYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
and tantalum nuclei have magnetic, I, and quadrupole,
Q, moments: for 39K (93.26%), I = 3/2 and Q = 0.054;
and for 181Ta (99.99%), I = 7/2 and Q = 3.44. The iso-
tropic HF interaction constant for potassium atoms
(for the 4s electron) is 228 MHz, whereas the corre-
sponding constant for the tantalum ion (6s electron) is
15020 MHz and the anisotropic HF interaction con-
stant (5d electron) is 445.4 MHz (without the angular
coefficient) [11]. The isotropic and anisotropic HF
interaction constants for the inner s and p electrons of
the K+ (3s, 3p) and Ta5+ (5s, 5p) ions were theoretically
calculated with the use of the wave functions given in
[12]; it is essential that the constants for tantalum
exceed those for potassium by more than 50 times.
Thus, even if the electron spin density is transferred
equally to the potassium and tantalum nuclei (which, in
actual fact, is not the case, because the spin-density
transfer to the tantalum should be substantially larger
due both to the covalency effects and to the wave-func-
tion overlap), the SHF interaction constant with potas-
sium should be negligible compared to that with tanta-
lum. Therefore, there are solid grounds for believing
that the SHF structure observed in the experiments
originates only from the interaction with the tantalum
ions. There are at least two major mechanisms capable
of contributing to the electron spin density at the tanta-
lum nuclei. The first of them is due to the overlap of the
wave functions related to the cluster under study,
because the wave functions of different ions are, in gen-
eral, not orthogonal to one another. This mechanism
ensues from the Pauli principle, which brings about a
spin-density redistribution resulting from the redistri-
bution of the electron charge densities in filled shells
having oppositely directed spins. This effect was first
considered for the case of F centers in ionic crystals
[13]. For the Pauli principle to be satisfied, the wave
function of the cluster under study was presented in the
form of a determinant. It should be stressed that in these
conditions one observes the appearance of a spin den-
sity inside filled electronic shells of the originally dia-
magnetic ligand ions, for instance, in the case of
KTaO3, in the inner shells of K+ (3s, 3p, etc.), Ta5+ (5s,
5p, etc.), and O2– (2s, 3p, etc.). The covalency is a rad-
ically new effect in which an electron is transported
between a magnetic ion and its diamagnetic environ-
ment. The most essential illustration is provided by the
case of an electron with the appropriate spin being
transferred from the filled shell of a ligand to the free
energy level of a magnetic ion [for instance, in the case
of the Cu2+(3d 9) ions, an electron with the appropriate
spin is transferred from the O2– ion to the only empty
orbital in the copper 3d shell to make the shell filled]. It
should be noted that, considered from the physical
standpoint, both of the above effects provide the same
contribution to the SHF interaction and, therefore,
these contributions are practically indistinguishable
(however, their contributions to the HF interaction for
the magnetic ion are opposite in sign and in this case
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there exists, at least in principle, the possibility of their
separation). Because the tantalum ions are located in
the second coordination shell with respect to the copper
ions, the spin density transport takes place primarily via
the oxygen; i.e., this is a two-step process and, hence, it
is less efficient than the transfer to the oxygen. Never-
theless, the observed SHF interaction with the tantalum
ions may provide indirect information on the spin den-
sity at the oxygen ions, which appears important when
studying HTSC compounds.

Consider both possible mechanisms of cation–cat-
ion spin-density transport from the copper ion to the
tantalum ions lying in the equatorial plane. Figure 1b
suggests that the main contribution should be provided
by the Cu–O–Ta 180° bond in the xy plane, i.e., the one
perpendicular to the local copper-center z axis. The
arrangement of the K+ ions is apparently unfavorable
for the spin density transfer from the copper to the tan-
talum. An analysis of the overlap and covalency effects
yields the following expression to estimate the con-
stants of the isotropic, as, and anisotropic, ap, SHF
interaction with the four equivalent tantalum ions in the
equatorial plane:

(4)

where C1 = (8π/3)gµBgIµN; C2 = (2/5)gµBgIµN; gI and
µN are the nuclear g factor and nuclear magneton,
respectively;  is the density of the 5s-electron

wave function of the Ta5+ ion; 〈3d|2pσ〉  is the two-center
overlap integral of the 3d wave function of copper with

the 2pσ wave function of oxygen; the  coefficient
takes into account the fact that one should use the group
integral involving the 3d(x2 – y2) wave function of cop-
per and the corresponding molecular orbital, which is
composed of the 2pσ orbitals of the equivalent equato-
rial oxygen ions; γ is a parameter taking into account
the covalent transport between the oxygen and copper;
and 〈2p|5s〉  and 〈2p|5p〉  are the overlap integrals of the
2p wave function of oxygen with the 5s and 5p wave
functions of Ta5+. The overlap integrals were calculated
with the use of the wave functions presented in [12].
Our estimates show that, for a covalency coefficient
chosen as 15%, as ~ 1 mT; i.e., it is in approximate
agreement with the strong isotropic SHF interaction
constants observed experimentally. Note that the exper-
imentally measured anisotropic SHF interaction con-
stant with the tantalum ions (about 0.5 mT) cannot be
accounted for if one accepts relation (4). One has to
invoke an additional mechanism of spin-density trans-
fer to the tantalum nuclei. Such a mechanism could be
a strong covalent transfer of oxygen electrons to the
empty 6s and 5d shells of tantalum. In this case, the
spin density at the oxygen, which is produced through

as C1
1
4
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2 0( );=
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4
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Ψ5s
2 0( )

3
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covalent transfer of one of the oxygen electrons to the
Cu2+ copper ion, is preserved in the covalent oxygen-
electron transfer to the tantalum as well. The weak SHF
interaction with the two tantalum ions at the tetragonal
axis of the center may be due to an admixture of the
3d(z2) excited orbital caused by the electron–lattice-
vibration coupling.

3. DISCUSSION OF RESULTS

The main objective of this work was to establish the
nature of the magnetic resonance, which is observed in
the HTSCs based on the 1–2–3-type perovskite
cuprates, from EPR studies of the copper complexes in
KTaO3 : Cu. As was already mentioned, an estimation
of the MR signal intensity yielded a center concentra-
tion above 1020 cm–3, which implies that the signal
could be due only to the matrix ions, i.e., the copper and
oxygen ions. We believe that the signal is associated
with copper, because it would be difficult to explain
such a large MR linewidth of oxygen, which practically
does not have nuclei with magnetic moments. The
123-type materials have copper ions of two types,
which are located in the ICu chains and IICu planes, and
the problem consists in correctly identifying the
observed MR signal with the type of copper ion
involved.

We introduce the following coordinate frames
(Figs. 1a, 1b): Z, X, and Y are related to the crystallo-
graphic axes c, a, and b of YBa2Cu3O6 + x, respectively,
while for the KTaO3 : Cu crystal the vertical axis [001]
corresponds to the Z axis; the local axes of the copper
pair center are denoted by z, x, and y, with z directed
along the pair-center axis. Consider first the possibility
of the formation of copper pairs (or of a larger number
of copper ions) in the planes. In doing this, we shall
look for a structure similar to the one in Fig. 1b,
because such a structure has the g factors observed
experimentally for the MR. The copper pair structure
shown in Fig. 1b cannot be realized in a plane, because
the copper is in the pyramids, which allows wave func-
tions of the type 3d(X2 – Y2) or 3d(3Z2 – R2). One usu-
ally considers 3d(X2 – Y2) states at the copper sites and
2pσ(X, Y) states at the oxygen sites in the IICuO2 plane,
where the σ index refers to the σ bonding. However, in
this case, the relation observed in our experiments
between the g factors, g⊥ c > g||c, cannot be satisfied.

Our preceding papers [3–5] discussed the possibil-
ity of the MR signal being related to the in-plane copper
and oxygen ions. It was assumed that the MR signals
observed in [3–5] were due to individual magnetically
ordered clusters containing a certain number of
exchange-coupled Cu2+ ions. These magnetic clusters,
forming in the course of quenching in HTSC samples,
are in a metastable state; when annealed above room
temperature, they begin to diffuse and overlap to pro-
duce fractal percolation networks, which give rise to
HYSICS OF THE SOLID STATE      Vol. 43      No. 1      2001
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superconductivity [14]. The clusters have a quasi-one-
dimensional structure with magnetic ordering in direc-
tions perpendicular to the c axis. Our new data obtained
in EPR studies of copper complexes in the KTaO3 : Cu
crystals apparently allow the assignment of the MR sig-
nals to the chain copper complexes. The short-range
order in the chains substantially affects the electronic
properties of the superconductor; therefore, an investi-
gation of copper chains is of particular interest for the
problem of the superconducting state and the role of the
two types of copper in the onset of this state. The results
obtained by us along these lines fit perfectly into the
phase separation model, because the doping of the con-
ducting IICuO2 plane achieved through charge transport
from the chains to the plane is of a local nature and the
hole concentration is qualitatively in anticorrelation
with the appearance of the magnetic resonance signal.

In Fig. 1a, a fragment containing two ICu2+ copper
ions is highlighted, which is similar in shape to the
vacancy–copper complex in the KTaO3 : Cu crystal
presented in Fig. 1b. For the sake of convenience,
Fig. 1a displays the structure of the YBa2Cu3O7 crystal,
in which there are ideal ICu chains with the four nearest
neighbor oxygen ions lying in the plane perpendicular
to the a axis. As was already mentioned, the orienta-
tional dependences of MR signals in the 1–2–3-type
materials imply that g⊥ c > g||c. A comparison of this
relation with the results of the study of copper pairs in
KTaO3 crystals suggests that the axis of the copper pair
(the z axis) should be directed perpendicular to the c
axis of the HTSC crystal. Then the condition g|| > g⊥  ≥ 2
for the local axes of the copper pair will be met and the
wave functions of each Cu2+ ion in the pair will have the
form 3d(x2 – y2), where the z axis is aligned with the
〈100〉  pair axis. It should be pointed out that, because
the KTaO3 crystal is cubic, the copper-pair center axes
(the z axes) in this crystal can be oriented along three
equivalent 〈100〉  directions, whereas in the
YBa2Cu3O6 + x crystal there is only one such axis (tak-
ing into account the formation of twins, there can be
two z axes in the ab plane).

We consider the two copper complexes in Figs. 1a
and 1b in more detail taking into account the distances
between the copper ions, as well as between the copper
and the oxygen. The YBa2Cu3O7 base structure can be
derived from that of a standard, BaCuO-based perovs-
kite by tripling the vertical extent of the unit cell, with
substituting a Y atom in one of the cells for the Ba atom
and changing the number of the oxygen atoms. The
chains consisting of the ICu, IO, and IVO atoms emerge
from the planes because of the oxygen vacancies form-
ing when the VO atoms are removed. The main struc-
tural parameters of YBa2Cu3O7 in the orthorhombic
phase at 300 K are as follows (in Å) [15]: a = 3.828, b =
3.888, c = 11.65; the bond lengths: ICu–IO ≅  ICu–IVO =
1.94, IICu–IIO = 1.92, IICu–IIIO = 1.96, IICu–IVO = 2.3,
and ICu–VO ≅  a/2. The bond lengths, both in the plane
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and in the chains, are approximately equal, except the
IICu–IVO bond in the IICuO5 pyramid, and are in agree-
ment with those in the other perovskite compounds.
Because the IICu–IVO distance is larger than the dis-
tances from the copper atoms to the other nearest oxy-
gen atoms, the copper–oxygen plane coupling with the
copper–oxygen chains, which is mediated by the IVO
atoms, is weak enough to permit considering the given
structure as layered. When an oxygen atom is removed
from the IO position (the YBa2Cu3O6 phase) or the
vacancy is filled by the VO oxygen atom (the
YBa2Cu3O8 phase), the crystal symmetry becomes
higher (tetragonal). It is highly probable that at inter-
mediate oxygen concentrations a statistical distribution
of the oxygen vacancies between the IO and VO posi-
tions sets in.

Consider the general characteristics of the two cop-
per pair complexes shown in Fig. 1 for the YBa2Cu3O7
and KTaO3 crystals:

(1) The lattice constant of KTaO3 a = 3.88 Å; i.e.,
the bond length between the copper occupying the tan-
talum site and oxygen, Cu–O, is 1.91 Å, which is about
equal to the bond length ICu–VO ≅  a/2 = 1.92 Å in
YBa2Cu3O7. Thus, the distance between two ICu2+ ions
in the ICu2+–ICu2+ pair practically coincides with that
between the two Cu2+ ions in the Cu2+–Cu2+ pair in the
KTaO3 crystal.

(2) Between the two Cu2+ ions in a pair, there is an
oxygen vacancy in both cases.

(3) In both cases, each copper ion is surrounded by
four O2– oxygen ions located in the plane perpendicular
to the pair axis.

(4) As follows from an analysis of the g factors, the
wave functions of the Cu2+ ions in each pair have the
same form, namely, 3d(x2 – y2), where the z axis coin-
cides with the bond axis in the pair. This electron con-
figuration is a consequence of the Jahn–Teller effect
and should bring about substantial lattice relaxation
near the copper centers, in which the equatorial oxygen
ions displace toward the axis of the center, whereas the
axial ligand ions move apart.

This work assumes that, at some oxygen concentra-
tions (near x ≈ 0.5), clusters of pairs or of a larger num-
ber of ferromagnetically ordered copper ions
exchange-coupled through oxygen vacancies and hav-
ing a total electronic spin S > 1/2 are formed in the cop-
per (ICu) chains. The formation of such magnetic clus-
ters is associated with oxygen redistribution around the
ICu ions in chains. It is assumed that the copper in the
IICu layers is in the oxidation state of +2 for all values
of x, whereas the state of the chain copper changes from
ICu3+ at x = 1 to ICu+ at x = 0. Thus, at intermediate oxy-
gen concentrations x, copper clusters of several ICu2+

ions are very likely to form. Note that the neighboring
copper ions surrounding the ICu2+ clusters can be in the
1
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diamagnetic ICu+ state [similar to the Ta5+ diamagnetic
ions around the copper complex in the KTaO3 crystals
(Fig. 1b)]. The bonding with the in-plane copper ions,
which is mediated by the IVO oxygen, is too weak to
exert a noticeable effect on the magnetic properties of
the complex chain-copper centers.

Taking into account the general structural character-
istics of the copper pair centers in YBa2Cu3O7 and
KTaO3, we believe that one may justifiably use the EPR
spectral parameters of the copper pair centers in KTaO3
in interpreting the MR spectra observed in the 1–2–3-
type compounds. An investigation of the copper pair
centers in KTaO3 produced the following results:

(1) The exchange interaction in a pair has a ferro-
magnetic nature; i.e., the triplet state has a lower
energy, with the singlet state lying substantially above
the former (apparently by more than 5 cm–1, because
we did not succeed in observing a manifestation of this
splitting in our experimental conditions).

(2) The fine-structure splitting (the D parameter) is
small. Thus, the exchange interaction between copper
ions is predominantly isotropic and is due to the direct
exchange interaction between two Cu2+ ions with the
wave functions 3d(x2 – y2). The magnitude of the D
parameter depends substantially on the structural non-
uniformities of the crystal; for instance, the introduc-
tion of a Li impurity changes the value of D.

(3) The HF structure results in a width of the mag-
netic resonance line envelope of about 40 mT. Taking
into account the fine structure, the linewidth increases
about twofold.

The above models can readily be extended to clus-
ters containing more copper ions, but in this case the
total electronic spins S > 1. Such clusters were dis-
cussed in [16, 17]. Because clusters of different sizes in
an HTSC crystal are apparently statistically distributed,
this results in a distribution of the g factors and of the
fine-structure parameter D; the HF structure due to the
interaction with copper is not resolved. The interactions
between clusters also probably result in a broadening of
the MR lines. As for the total width of the unresolved
MR line, it is apparently determined by the HF struc-
ture and the distributions of the fine-structure parame-
ter D and of the g factor, because of the copper com-
plexes being of different sizes. It should be stressed that
our results on KTaO3 indicate that the D parameter is
small, which precludes its effect on such characteristics
as the low-temperature dependence of the HTSC heat
capacity, whereas the exchange splittings very likely lie
within the ranges that would allow an explanation for
this dependence. In addition, it should be noted that
there is a ferromagnetic order and, therefore, the state
with the maximum possible spin is energetically pref-
erable.

The annealing-induced shift of the g factor of the
magnetic clusters (Fig. 3) indicates that the cluster
structure depends on the heat treatments. The size and
P

shape of the clusters apparently change. One cannot
rule out the possibility that the g factors (the internal
magnetic fields) can be affected to a certain extent by
vortex magnetic fields; the latter depend on the fraction
of the superconducting phase in the sample, which
increases with the anneal temperature. Thus, it may be
conjectured that the magnetic resonance is represented
by the total signal of many clusters differing in the g
factor. This spread manifests itself particularly strongly
in the MR linewidth in the Q range, where it is substan-
tially larger than in the low-frequency X range.

We believe that the MR signals observed in the
HTSCs are due to ferromagnetically ordered individual
clusters containing a certain amount of the ICu2+ ions,
which are exchange-coupled through oxygen vacan-
cies.

The temperature dependences of the resonance
magnetic fields (and g factors) measured in the X and Q
ranges for different HTSC crystal orientations in a
magnetic field [4, 5] resemble in shape those observed
in quasi-one-dimensional ferromagnets [18]. It was
shown that the resonance magnetic fields for such
quasi-one-dimensional systems with small spin-
aligned regions should be strongly temperature depen-
dent. The resonance field is lower in the direction of the
easy magnetization axis; i.e., our experimental data
suggest that the easy axis in magnetic clusters lies in a
plane perpendicular to the c axis of the crystal, which
corresponds to the z axis in our experiments.

As can be seen from the MR spectra in Figs. 4 and
5, the superconducting phase can coexist with the MR,
as a result of which the MR lines are strongly broad-
ened, and one observes relaxation effects which mani-
fest themselves in the variation of the linewidth due to
rotating the sample and in a subsequent partial recovery
of the initial linewidth and shape in time. These exper-
iments strongly suggest that magnetic clusters act as
pinning centers for the magnetic flux vortices, thus per-
mitting their use to probe vortex fields in HTSC mate-
rials.
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