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Abstract—A solution of hydrogen in the AB2 intermetallic compound with a C-15 structure is considered. The
ordering of hydrogen atoms is investigated, which consists in forming their unequal distribution among the sub-
lattices of the A2B2 interstices. It is demonstrated on the basis of qualitative analysis and numerical calculations
that, in HfV2Dx compounds, the evolution of the redistribution of the interstitial atoms and their low-tempera-
ture order can be different depending on the hydrogen content in the solution and the energy parameter of the
system p ≡ V2/V1. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In AB2 intermetallic compounds with a C-15 struc-
ture (ZrTi2, HfV2, TaV2, YFe2, etc.), interstitial hydro-
gen (deuterium) atoms are distributed among the AB3
and A2B2 interstices [1–4]. The former interstices are
called the e-type interstices (32 interstices per unit
cell), and the latter are referred to as the g-type inter-
stices (96 interstices per unit cell). A set of e interstices
is partitioned into 8 face-centered cubic (FCC) sublat-
tices, and a set of g interstices, into 24 FCC sublattices.
In ZrTi2H4 compounds, hydrogen atoms occupy e
interstices [1], whereas in TaV2Dx (1.3 < x < 1.6), they
are concentrated in g interstices [3]. In YFe2Dx (1.3 <
x < 2.9), deuterium is located in interstices of both
types [4].

The following is known about the HfV2Dx system
under investigation [2]. The metallic matrix HfV2 with
a C-15 structure is cubic at T > 120 K and undergoes
distortions at lower temperatures. At room temperature
and H2 pressure of dozens of atmospheres, the metal
lattice absorbs hydrogen up to the composition
HfV2H4.5. Hydrogen (deuterium) starts to escape from
the sample only when T > 400 K. The majority of
D atoms are located in the g-type interstices, and only
a certain part of them occupies e interstices [2]. As the
temperature decreases, all D atoms are concentrated in
g interstices [2]. (The H and D interstitial atoms are
almost identically distributed in the lattice, and in the
following, we will disregard their isotopic difference.)
In the HfV2H4 compound, hydrogen atoms at low tem-
peratures are nonequiprobably distributed over g inter-
stices, i.e., predominantly occupy several g sublattices,
which results in the corresponding distortion of the
matrix [2]. This process is referred to as orientation
ordering of hydrogen [5]. Formation of the superstruc-
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ture in a single sublattice is not observed even down to
liquid-helium temperatures [2].

In the following consideration, we will assume that,
in the temperature range covered, the composition
HfV2H(D)x does not vary and that hydrogen is distrib-
uted only in the g-type interstices.

Reasoning from the model of the static concentra-
tion waves for several sublattices [6], Irodova [5] listed
all possible nonequiprobable distributions of the inter-
stitial atoms among 24 sublattices and singled out the
unique distribution which, in the HfV2D4 compound,
corresponds to the stoichiometric composition of the
solid solution and satisfies the requirements of the
interlocking effect in the hydrogen–hydrogen interac-
tion. Note that the interlocking effect limits the mini-
mum distance at which the interstitial H atoms can be
located in this compound. It was found that the corre-
sponding distribution function has two long-range
order parameters.

The goal of this work was to describe the evolution
of the ordering in the HfV2H(D)x system by the distri-
bution function of hydrogen in g sublattices, which was
proposed in [5] for the HfV2D4 compound.

2. MATHEMATICAL FORMULATION 
OF THE PROBLEM

Under conditions of nonequiprobable distribution of
the interstitial atoms over the sublattices and the
absence of a superstructure in each of them, the form-
ing structure can be specified by a set of the hydrogen
concentrations in each of the sublattices n(z) (z = 1,
2, …, 24). Irodova [5] introduced a certain numbering
of g sublattices and proposed the following distribution
function for the HfV2D4 system:

n(z) = [cw1 + η1γ1(w2 – 2w3) + η2γ2w4]z. (1)
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Here, n(z) is defined as the ratio Nz/N, where Nz is the
number of interstitial atoms in the z sublattice with N
sites; wi are the vectors in a 24-dimensional space of
FCC sublattices [5]

(2)

the symbol […]z denotes the z component of the vector;
η1 and η2 are the order parameters which describe the
degree of ordering; γ1 and γ2 are normalizing factors;
and c is the mean concentration of hydrogen in a single
sublattice,

c = Σzn(z)/24. (3)

(Compound AB2H4 corresponds to the value c = 1/3.)
Function (1) does not depend on the coordinates of

the sites in the sublattice and is a function of only the
temperature (due to the temperature dependence of the
order parameters). For different z, this function takes
the following three values:

(4a)

(4b)

(4c)

The values [η1 = 1, η2 = 1] correspond to the total
order of the type [n1 = 1, n2 = 0, n3 = 0], which is
achieved when

c = 1/3, γ1 = 1/6, γ2 = 1/2. (5)

Below, it will be seen that at the same values of c, γ1,
and γ2, the total order can also be described by a set of
occupation numbers [n1 = 0, n2 = 0, n3 = 1] which cor-
respond to the order parameters [η1 = –2, η2 = 0]. (The
total disorder, n1 = n2 = n3 = c, corresponds to values
[η1 = 0, η2 = 0].)

In the case when c ≠ 1/3, as the temperature
decreases, only the state of the maximum order is
achieved if at least one of the occupation numbers ni is
not equal to 0 or 1.

Our purpose was to determine the temperature
dependences of the equilibrium order parameters η1(T)
and η2(T) and the equilibrium occupation numbers of
the sublattices n1(T), n2(T), and n3(T). Usually, η1(T)
and η2(T) are determined as the coordinates of the
absolute minimum of the free energy F(η1, η2; c, T).
Thus, the problem is reduced to the determination of

w1 111111111111111111111111{ } ,=

w2 111111110000111111110000{ } ,=

w3 111100001111111100001111{ } ,=

w4 111111110000111111110000{ } ;=

n1 c η1γ1 η2γ2+ +=

z = 1 2 7 8 13 14 19 20, , , , , , ,( ),

n2 c η1γ1 η2γ2–+=

z = 3 4 5 6 15 16 17 18, , , , , , ,( ),

n3 c 2η1γ1–=

z = 9 10 11 12 21 22 23 24, , , , , , ,( ).
P

the free energy function of the hydrogen subsystem and
the search for its extrema.

3. SOLUTION OF THE PROBLEM

3.1. The free energy function of the ordering sub-
system. From the definition of entropy S = kBlnW,
where W is the number of microscopic states which
correspond to a given macroscopic state (in our case, to
a given number of the interstitial atoms), and taking
into account the partitions of g positions into Z0 sublat-
tices, we obtain the following expression for the
entropy of the subsystem of H atoms:

(6)

where Nz = Nn(z). Taking into account that n(z) can take
only three different values [see Eq. (3)] and that the
number of sublattices for which n(z) = n1, n2, and n3 is
the same and is equal to ν = Z0/3, we have

(7)

The interaction energy of the interstitial atoms can
be represented in the form

E(H) = (1/2)Σr, r'V(r – r')n(r)n(r'), (8)

where V(r – r') is the potential of the H–H interaction,
n(r) designates the probability that the H atom occupies
the interstice with the radius vector r; and r and r' run
through all interstices of the A2B2 type.

Taking into account that r can be represented in the
form r = R + hp (where R runs through all sites of a sin-
gle FCC sublattice of A atoms and vector hp enumer-
ates all 24 A2B2 interstices which surround a given A
atom) and that in each of these 24 sublattices no super-
structure is formed, we can write V(r – r') = Vz, z'(R –
R') and represent the sum in Eq. (8) in the form

E(H) = (N/2)Σz, z'Vz, z'(0)n(z)n(z'), (9)

where

Vz, z'(0) ≡ (1/N)ΣR, R'Vz, z'(R – R') (10)

and n(z) and n(z') are given by expression (1).

It can be shown by substitution of expression (1)
into Eq. (9) that this equation can be reduced to the fol-
lowing form:

(11)

S H( ) kBΣz N!/ Nz! N( Nz )– ![ ]{ }ln=

z = 1 2 … Z0, , ,( ),

S H( ) NZ0kB/3( )Σ j n j n jln 1 n j–( ) 1 n j–( )ln+[ ]–=

j = 1 2 3, ,( ).

E η1 η2,( ) NkB/2( )=

× V0c2 V1 η1γ1( )2 V2 η2γ2( )2+ +{ } ,
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where V0, V1, and V2 are the energy constants (in
Kelvins),

(12)

Here, v1, …, v5 are the linear combinations of the
Fourier components of the H–H interaction potential,

(13)

where terms Vz, z'(0) are determined by formula (10).
Thus, the free energy F(H) = E(H) – TS(H) for all

H atoms which are located in the Z0 interstitial sublat-
tices is represented as

(14)

where the occupation numbers of the sublattices nj (j =
1, 2, 3) are determined by formulas (4). The total num-
ber of H atoms which are located in all sublattices, NH =
ΣzNz, is assumed to be constant.

3.2. Extrema of the free energy function. It is well
known that the coordinates of the extrema of the
F(η1, η2; c, T) function in the (η1, η2) plane should sat-
isfy the equations

∂F/∂η1 = 0, ∂F/∂η2 = 0, (15)

which, in the case of function (14), take the following
form:

(16a)

(16b)

The type of extremum is determined by the determi-
nant ∆(η1, η2; c, T),

(17)

In the case of function (14), we have

(18a)

(18b)

V0 24/kB( ) v 1 2v 2 2v 3 4v 4+ + +[ ] ,≡
V1 24/kB( ) 2 v 1 v 2–( ) 4 v 3 v 4–( )+[ ] ,≡

V2 16/kB( ) v 1 v 2– 2 v 3 v 5–( )+[ ] .≡

v 1 V1.1 0( ) V1.3 0( ) V1.14 0( ) V1.16 0( ),+ + +≡
v 2 V1.5 0( ) V1.6 0( ) V1.17 0( ) V1.18 0( ),+ + +≡

v 3 V1.2 0( ) V1.13 0( ), v 4 V1.7 0( ) V1.19 0( ),+≡+≡
v 5 V1.3 0( ) V1.16 0( ),+≡

F η1 η2; c T,,( ) NkB 1/2( ){=

× V0c2 V1 η1γ1( )
2

V2 η2γ2( )2++[ ]
+ T Z0/3( )Σ j 1 2 3, ,= n j n jln 1 n j–( ) 1 n j–( )ln+[ ] } ,

n1n2 1 n3–( )2/ 1 n1–( ) 1 n2–( )n3
2[ ]{ }ln

=  V1η1γ1/8T ,–

n1 1 n2–( )/ 1 n1–( )n2[ ]{ }ln V2η2γ2/8T .–=

∆ η1 η2; c T,,( ) ∂2F/∂η1
2( ) ∂2F/∂η2

2( )=

– ∂2F/∂η1∂η2( )
2
.

∂2F/∂η1
2( ) NkBγ1

2 V1 8T n1 1 n1–( )( ) 1–[+{=

+ n2 1 n2–( )( ) 1– 4 n3 1 n1–( )( ) 1–+ ] } ,

∂2F/∂η2
2( ) NkBγ2

2 V2 8T n1 1 n1–( )( ) 1–[+{=

+ n2 1 n2–( )( ) ] } 1– ,
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(18c)

The minimum corresponds to ∆(η1, η2) > 0 and

(∂2F/∂ ) > 0; the maximum, to ∆(η1, η2) > 0 and

(∂2F/∂ ) < 0; and the saddle point, to ∆(η1, η2) < 0.

3.3. The domain of the free energy function.
Function (14) is defined in the P' domain of the (η1, η2)
plane in which the occupation numbers of the sites of
the sublattices (n1, n2, n3) simultaneously satisfy the
conditions

0 ≤ nj ≤ 1 (j = 1, 2, 3). (19)

The form of the P' domain depends on the concen-
tration c of the solution, but in any event, it is symmet-
ric with respect to the axis η1, since function (14) is
invariant with respect to the replacement of η2 by –η2
(when n1  n2, n2  n1). This means that if the state
{η1(T), η2(T)} is an equilibrium state, the state {η1(T),
–η2(T)} will also be an equilibrium state. Therefore, the
domain of the definition P' can be treated as two “half-
domains” P which are located in the half-planes η2 > 0
and η2 < 0 (Fig. 1).

∂2F/∂η1∂η2( ) 8NkBTγ1γ2=

× n1 1 n1–( )( ) 1– n2 1 n2–( )( ) 1––[ ] .

η1
2

η1
2

(a)

(b)
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Fig. 1. Domains P' of the free energy function. c = 0.25 and
0.375.
1
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Table 1.  Characteristics of the corner points of domain P in which the free energy function (14) is defined for c < 1/3 and c > 1/3

c i η1(i) η2(i) ε(i)

<1/3 g n2 = 0 –cγ1 0 V1c2

η2 = 0

d n2 = 0 c/2γ1 3c/2γ2 c2/4(V1 + 9V2)

n3 = 0

>1/3 f n3 = 1 –[(1 – c)/2γ1] (3c – 1)/2γ2 [V1(1 – c)2 + V2(3c – 1)2]/4

n2 = 0

b n1 = 1 (0.5 – c)/γ1 1 V1(0.5 – c)2 + V2

n2 = 0

d n1 = 1 c/2γ1 (2 – 3c)/2γ2 [V1c2 + V2(2 – 3c)2]/4

n3 = 0

Note: The conditions which determine the corner points, the coordinates of corner points, and relative values of the energy at these points
are given.

γ2
2

Earlier [7, 8], we showed that in the limits of domain
P', the ordering in the temperature range from T = Tk at
point O (η1, η2 = 0) to T = 0 K at one of the corner
points f, b, or d (or at the similar points f ', b', and d ') is
described by a sequence of equilibrium states located
within the limits of one half-plane. Therefore, we will
restrict our consideration to the analysis of the free
energy extrema located within the limits of one of the
“half-domains” P when η2 ≥ 0.

3.4 Analytical treatment of extrema of the
F function. It is clear that along the η1 axis, where n1 =
n2 = c + η1γ1 ≡ n0, Eq. (16b) is satisfied at all points, and
each value of η1 can be related to temperature T1(η1),

(20)

at which Eq. (16a) is also satisfied. The type of this
extremum is specified by determinant (17), which in
this particular case takes the following form [8]:

(21)

Here, we introduced the temperature parameters
τ1(η1) and τ2(η1),

(22a)

τ2(η1) ≡ –(V2/16)[n0(1 – n0)]. (22b)

Note that the stability of the ordered state implies
negative values of V1 and V2. Then, it is evident from
expressions (21) and (22) that the extremum on the η1
axis is a minimum if T1(η1) > τ1(η1) and τ2(η1), a max-

T1 η1( ) V1γ1/8( )η1/ 2 n0{ln[–=

× 1 n3–( )/ 1 n0–( )n3[ ] } ] ,

∆ η1 0; c T,,( ) NkB( )2γ1
2γ2

2V1V2=

× 1 T1 η1( )/τ1 η1( )[ ]–( ) 1 T1 η1( )/τ2 η1( )[ ]–( ).

τ1 η1( ) V1/16( ) n0 1 n0–( )[ ] 1–{–≡

+ 2 n3 1 n3–( )[ ] 1– } 1–
,

P

imum if T1(η1) < τ1(η1) and τ2(η1), and a saddle point if
T1(η1) falls in the range between τ1(η1) and τ2(η1).

Let us consider the straight line η2 = η1. Along this
line, we have n2(η1, η2) = n3(η1). In this case, with the
additional constraint V2 = V1 ≡ V, Eqs. (16a) and (16b)
coincide and are satisfied at the corresponding temper-
ature T2(η1),

T2(η1) = –(V/8)η1/[2ln{n1(1 – n3)/[(1 – n1)n3]}]. (23)

Similarly, we can be sure that on the straight line
η2 = –η1, where n1(η1, η2) = n3(η1) with the additional
constraint V2 = V1 ≡ V, the set of Eqs. (16a) and (16b) is
satisfied at temperatures determined as

T3(η1) = –(V/8)η1/[2ln{n2(1 – n3)/[(1 – n2)n3]}]. (24)

In all other cases, the numerical solution of the set
of Eqs. (16) is required in order to determine the loca-
tion of the extrema of function (14).

As noted above, the ordered state of the system at
T = 0 K is described by the coordinates of one of the
corner points of domain P. For concentrations c ≤ 1/3,
these are points g and d (Fig. 1a), and in the range 1/3 <
c < 2/3, these are points f, b, and d (Fig. 1b). Table 1
presents the coordinates of the extreme points η1(i) and
η2(i) and the corresponding relative values of the inter-
nal energy ε(i) ≡ [E(i)/2NkB – V0c2], where E(i) is deter-
mined by Eq. (11).

Now, we consider the differences δεi, i ' ≡ ε(i) – ε(i ').
It follows from Table 1 that at c < 1/3, when the corner
points g and d exist, the following equation holds:

δεd, a = [3c2/4]|V1|(1 – 3p), (25a)

and at c > 1/3 (corner points f, b, and d), we have 

δεd, f = [(1 – 2c)/4]|V1|[1 – 3p], (25b)
HYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
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Fig. 2. The process of redistribution of H atoms among the sublattices of the interstices. The case of 24 sublattices. The ordered state
of H atoms is described by the distribution function (1) and free energy function (14). c = 1/3 and p = 0.25. (a) The trajectories of
the extrema in the (η1, η2) plane. Thick and thin lines are the trajectories of the absolute and local minima, respectively; the
sequences of the crosses and triangles are the segments of the trajectories which correspond to the saddle points and the maximum,
respectively. (b) Temperature dependences of the coordinates of extrema whose trajectories are shown in Fig. 2a. (c) Temperature
variation of the equilibrium occupation numbers of sites in different sublattices n1, n2, and n3. (d) The free energies which corre-
spond to the left (fL) and right (fR) local minima and to the disordered state of the system (f0).
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δεd, b = [(1 – 4c + 3c2)/4]|V1|[1 – 3p], (25c)

δεb, f = (3c/4)[(2/3) – c]|V1|[1 – 3p]. (25d)

In formulas (25a)–(25d), we introduced the energy
parameter 

V2/V1 ≡ p, (26)

which characterizes the given ordering system.
It follows from Eq. (25) that p = 1/3 ≡ p0 is a critical

value: at small concentrations (c < 0.5) and low temper-
atures (T ≈ 0 K), in the case when p < p0, the absolute
minimum of the free energy is located at the corner
points g and f, and in the case when p > p0, it will be
located either at point d for c < c0 or at point b for c >
c0. Here, c0 is determined from the condition

1 – 4c + 3c2 = 0 (27)

(see Eq. (25c)) and is equal to 1/3.
Hence, in particular, it follows that if the HfV2Dx

system is characterized by the energy parameter
p > 1/3, then, for x ≤ 4 (c ≤ 1/3), the equilibrium state at
T = 0 K is the d state [η1 = η2 = 3c], which describes the
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distribution of hydrogen of the type {n1 = 3c, n2 = n3 =
0}, and in the range 4 < x < 6 (1/3 < c < 1/2), it is the b
state [η1 = 3(1 – 2c), η2 = 1], which describes a hydro-
gen distribution of the type {n1 = 1, n2 = 0, n3 = 3c –1}.
However if p < 1/3 in this system, then, at x ≤ 4, the
equilibrium state is the g state [η1 = 3(c – 1), η2 = 0]
with a distribution of the type {n1 = 0, n2 = 0, n3 = 3c},
and in the range 4 < x < 6, it is the f state [η1 = 3(c – 1),
η2 = 3c –1] with a distribution of the type {n1 = 3c –1,
n2 = 0, n3 = 1}.

3.5 Numerical solution of the equations for
extrema of the free energy function. The set of
Eqs. (16a)–(16b) was solved by numerical methods sim-
ilar to those employed in [9]. The sequence of the values
of η1(T) and η2(T) was determined at the fixed parame-
ters c, p, and V1 of the ordering system. Figures 2–4 dis-
play the results of calculations for c = 1/3; V1 = –25920 K;
and p = 0.25, 0.335, and 0.4. (The value of V1 is deter-
mined from the condition of the existence of the order–
disorder phase transformation in the HfV2D4 com-
pound at Ttr ≈ 120 K [2].) These figures illustrate the
behavior of the compounds with identical concentra-
tions which differ by the energy parameter p. Examples
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are provided by the systems with p < 1/3 (Fig. 2),
p > 1/3 (Fig. 3), and p ≈ 1/3 (Fig. 4). In the temperature
range Ttr ≥ T > 0, in each case, we determined (i) the
sequence of the extreme locations of the F function in
the (η1, η2) plane (Figs. 2a, 3a, 4a); (ii) temperature
dependences of the coordinates of the η1(T) and η2(T)
extrema (Figs. 2b, 3b, 4b) and the occupation numbers
of sublattices n1(T), n2(T), and n3(T) (Figs. 2c, 3c, 4c);
and (iii) the free energies associated with two local
minima and with the disordered state (Fig. 2d).
Figures 2a–4a show the trajectories of the extrema, and
Figs. 2b–4b depict the temperature dependences of the
coordinates of the extrema. In these figures, thick and
thin lines correspond to the absolute and local minima,
respectively, and the sequences of the crosses and trian-
gles, to the saddle point and the maximum, respec-
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Fig. 3. The same as in Figs. 2a–2c. c = 1/3 and p = 0.4.
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tively. Figures 2c–4c display the occupation numbers
of the sublattices and the values of ni(T) which corre-
spond to only the absolute minimum of the free energy
function. In these figures, thick and thin lines represent
the concentrations of the interstitial atoms in the sublat-
tices that are to be occupied by and to be freed from the
H atoms, respectively. Figure 2d shows the free energy
and the values of f(η1, η2; c, T) ≡ {F(η1, η2; c, T)/NkB –
V0c2}, which correspond to the disordered state f0 and
are calculated along the trajectories of the left (L) and
right (R) local minima. It is evident that among these
latter extrema, the absolute minimum is that which
corresponds to the lesser value of the free energy. At
p < 1/3, we have f0 ≥ fR ≥ fL (Fig. 2d), and at p > 1/3 and
p ≈ 1/3, we obtain similar dependences, but in the
former case, f0 ≥ fL ≥ fR, and in the latter case, f0 ≥ fR ≈ fL.
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4. BRIEF DISCUSSION OF THE RESULTS
AND CONCLUSION

In Figs. 2–4, the behavior of a system is described
by the distribution function (1) and the free energy
function (14). As can be seen, the ordering which is
assumed to be equilibrium in the HfV2D4 system, i.e.,
{n1 ≈ 1, n2 ≈ 0, n3 ≈ 0} [2, 5], will be such only if the
energy parameter of the system is p > 1/3. In the case of
the system with p < 1/3, the evolution of the process
will proceed according to another scenario, which cor-
responds to the determination of the absolute minimum
in the left local minimum, and will finish in the forma-
tion of an ordering of the type {n3 ≈ 1, n1 ≈ 0, n2 ≈ 0}.

It is necessary to emphasize that, in a metal matrix
with cubic symmetry, both distributions {n1 ≈ 1, n2 ≈ 0,
n3 ≈ 0} and {n3 ≈ 1, n1 ≈ 0, n2 ≈ 0} are identical from
the physical point of view. A difference between them
will occur only in the case when a preferential direction
exists in the crystal due to another subsystem (for
example, a subsystem of the magnetic atoms). At the
same time, it should be pointed out that the evolution of
the ordering in systems with p < 1/3 and p > 1/3 is
somewhat different: in the former case, below the
order–disorder transition temperature (T < Ttr), a distri-
bution of the type {n3 > n1 = n2} is formed at any values
of p < 1/3; and in the latter case when T < Ttr , the dis-
tribution {n1 > n2 > n3} is formed, and (n2 – n3) is the
greater, the smaller the difference (p – 1/3).

As regards the kind of the order–disorder phase
transition, it turned out to be the phase transition of the
first kind at p = 0.25 and 0.335 and the transition of the
second kind at p = 0.4.

In conclusion, we note that all the above results
were obtained under the assumption of the thermody-
namic independence of the subsystem of the interstitial
atoms, without regard for their influence on other sub-
systems, for example, on the deformation of the metal
matrix or on the exchange interaction in the subsystem
of the magnetic atoms.

5. SUPPLEMENT

Clearly, the question arises as to the applicability of
the presented results to other hydrides with the AB2Dx

structure. For this purpose, we analyzed (as was sug-
gested by the referee) the structure of the YMn2D4.3
compound investigated in [10]. 

It turned out that the results of the neutron diffrac-
tion investigations of YMn2D4.3 could be conveniently
interpreted [10] on the basis of the rhombohedral dis-
torted primitive cell of the FCC lattice which contains
24 interstices of the A2B2 type (a single one from each
of 24 sublattices). In this cell, hydrogen positions are
represented as being located in the planes perpendicu-
lar to the crystallographic axis [111] [10], i.e., satisfy-
ing the equation x + y + z = L. If we put the origin of
coordinates on the [111] axis in such a way that adja-
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cent Y atoms take the coordinates (1/8 1/8 1/8) and

( /8 /8 /8) (we employ a Cartesian frame of refer-
ence unlike the oblique frame used in [10]), the planes
occupied by the A2B2 interstices correspond to the val-
ues L = 3/4, 1, 11/8, 13/8, 2, and 9/4. For each of the L
planes, Table 2 presents the numbers of interstitial sites
NL (within a given primitive cell), the indices Qz of sub-
lattices which contain these sites, and the probabilities
nL of the occupation of the given interstices by D atoms
(according to [10]).

The boldface indices in Table 2 correspond to the
sublattices in which, according to the distribution func-
tion (1) in the case when x = 4, the probability of the
occupation of the sites at [η1 = 1, η2 = 1] should be
equal to n1 = 1. As can be seen, the hydrogen ordering
proposed in [10] does not conform to the distribution
function proposed in [5] and considered in the present
work. This indicates the different behavior of the
hydrogen subsystem in YMn2Dx and HfV2Dx com-
pounds.

It is necessary to note that the hydrogen subsystem
in other compounds of the RMn2Dx type (R = Gd, Tb,
Dy, and Ho) is ordered in the same manner as the
YMn2Dx compound [11]. In our opinion, this unambig-
uously indicates the crucial importance of the magne-
toelastic interaction in these hydrides, which is caused
by the magnetic moments of manganese and rare-earth
atoms.

Unfortunately, the free energy function (14) does
not allow one to take into account the role of the mag-
netic subsystem. Therefore, the analysis of the RMn2Dx

hydrides should be the subject of a special investigation
based on the function which includes additional terms
accounting for the magnetoelastic interaction.
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Abstract—Specific features in the structural evolution of a Pd–Mo alloy after its electrolytic saturation with
hydrogen are studied by x-ray diffraction. It is revealed that these features depend on the concentration of
absorbed hydrogen, the initial defect structure, and the character of its transformation upon hydrogen satura-
tion. The factors responsible for the structural evolution depend on the concentration of alloy components and
the difference between the hydrogen affinities, Debye temperatures, and elastic constants of the components. A
model proposed for the evolution of the structure and elastic stresses in palladium–metal–hydrogen systems
accounts for the above factors. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Several years ago, Piskovets et al. [1] found that the
strength characteristics of steel-rolled products vary
with time in a nonmonotonic manner. Since this effect
disappeared after coating a sheet with a special hydro-
gen-impenetrable film, the authors assumed that non-
monotonic time variations in the mechanical properties
are brought about by hydrogen migration over a metal.
However, actual rolled products are strongly fouled by
numerous impurities. For this reason, the elaboration of
approaches to the scientific solution of the problem
concerning the elimination of stochastic variations in
the physical properties requires investigation of a mate-
rial which readily dissolves hydrogen but is not prone
to severe fouling. Palladium and its alloys are among
the most known materials of this type. It was revealed
that, after the saturation with hydrogen, these alloys
also exhibited a nonmonotonic (oscillating or stochas-
tic) time dependence of the structural and phase trans-
formations. This was especially true for Pd–W [2–4]
and Pd–Er [5–9] alloys. A similar stochastic character
of time variations in the strength parameters of steels
and in the structural characteristics of palladium sys-
tems suggests the similarity of the factors responsible
for the origin of these phenomena. In this respect, it is
very important to answer questions as to how wide the
range of materials for which these nontrivial phenom-
ena are observed is and as to which physical factors are
responsible for nonmonotonic structural transforma-
tions and their features.

In this work, the Pd–Mo alloy was chosen as the
object of investigation. This alloy is very interesting
from the viewpoint of searching for the physical factors
responsible for the structural evolution of hydrogen-
containing metal alloys, because it is characterized by
1063-7834/01/4302- $21.00 © 20207
a nonlinear dependence of the hydrogen solubility on
the concentration of its components [10] and also by a
substantial difference between the hydrogen affinities,
elastic constants, and Debye characteristic tempera-
tures of the components. At the same time, a small dif-
ference in the atomic radii of Pd and Mo [10, 11] allows
us to disregard this factor in our consideration. In this
case, a strong nonlinear dependence of the hydrogen
solubility on the Mo concentration is an additional cir-
cumstance that can provide a better insight into the
nature of the phenomenon under investigation with the
use of the data on the structural evolution of alloys in
this system (upon their saturation with hydrogen and
subsequent relaxation) as a function of the component
concentration in the alloy. In order to ensure the close
conditions for hydrogen saturation of the regions with
different compositions and strains, the samples to be
studied were cut from a Pd–Mo alloy ingot that did not
undergo complete homogenization, and hence, each
sample involved regions with several compositions.

2. SAMPLES, EXPERIMENTAL TECHNIQUE, 
AND DATA PROCESSING

The samples were investigated by x-ray diffraction
methods [5–9] on a DRON-UM2 diffractometer
equipped with a PC 486DX2 computer for control of
the experiment and a Pentium Pro computer for the
experimental data processing. X-ray experiments were
performed with monochromated CuKα1 radiation. The
(111), (200), (220), (311), and (222) diffraction lines
were recorded.

We studied two samples cut from the same Pd–Mo
(5 at. %) alloy ingot. After the cutting on a machine, the
sample surface was ground and polished. As follows
001 MAIK “Nauka/Interperiodica”
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from the diffraction data, the distribution of compo-
nents over the samples is inhomogeneous and even
two-phase in coherent-scattering regions whose crys-
tallographic planes (311) are parallel to the sample sur-
face (Fig. 1). Both phases have a face-centered cubic
structure. Note that the solubility of molybdenum in
palladium is equal to 30–35 at. %, and only face-cen-
tered cubic and body-centered cubic phases can exist in
a two-phase equilibrium state [12]. Therefore, the ini-
tial structural state of the studied samples is nonequilib-
rium.

Analysis of all the diffraction profiles was per-
formed according to the Origin software package and
other original programs. The (311) diffraction profiles
were decomposed into two components. The location,
the half-width w, and the integrated intensity were
determined for each component. For clarity of repre-
sentation, these components of the (311) line will be
designated as follows: for sample 1, the line located at
the smaller 2θ angle (which corresponds to a higher
palladium concentration) will be termed component I
and the second line will be referred to as component II;
for sample 2, these lines will be called components III
and IV, respectively. It is seen from Fig. 1 that compo-
nents I and III are approximately twice as wide as com-
ponents II and IV.

The samples under investigation were electrolyti-
cally saturated with hydrogen for 1 h at a current den-
sity of 80 mA/cm2 and then were stored in air under
normal conditions.

As was shown in [13, 14], the grinding and polish-
ing of palladium alloy samples give rise to elastic
stresses. This results in such an increase (dependent on
the Miller indices hkl) in the interplanar distances that
the values of ahkl = dhkl(h2 + k2 + l2)1/2 calculated from
the experimental data are different.

The observed dependence of ahkl on the indices hkl
has the following form:

ahkl = a0 + a0σKhkl . (1)

2θ, deg

(a)I, rel. units

I

II

(b)

0.5°

IV

III

Fig. 1. Diffraction profiles (311) for samples (a) 1 and (b) 2.
P

Here, a0 is the lattice parameter of a cubic crystal in the
absence of the elastic stress σ and

where Ehkl is the Young modulus; S11, S12, and S44 are
elastic compliance constants; (2S11 – 2S12 – S44) = ∆ is
the anisotropy constant; and Γ = (h2k2 + h2l2 +
k2l2)/(h2 + k2 + l2)2. If the elastic stress σ is positive (the
interplanar distances are increased along the normal to
the sample surface), we have a100 > a111. If σ < 0, then
a100 < a111.

Since the quantity a0σKhkl is no more than 1% of the
a0 value, relationship (1) can be rewritten as

ahkl = a0 + σ'Khkl , (2)

σ' = σa0. (3)

In this case, the absolute error in the determination of
a0 is no more than 0.0001a0, which does not exceed the
experimental error in the determination of ahkl. The
same is also true for the quantity σ, which is deter-
mined from expression (3).

The unknown values of a0 and σ are calculated by
the least-squares method. It is clear that inexact values
of the S11, S12, and S44 constants will affect the a0 and σ
values determined from the experiment. However, for
the given set of aexp, the difference between ahkl and
ah'k'l ' , that is,

ahkl – ah'k'l ' = const(Γhkl – Γh'k'l '), (4)

is independent of the elastic compliance constants, pro-
vided that a0 and σ are identical for coherent-scattering
regions of all the orientations. Therefore, if the discrep-
ancy for any one of the ahklcalcd values is larger than the
error of its determination, this can be explained only by
the fact that the values of a0 and σ for coherent-scatter-
ing regions of this orientation are different. Hence, in
the case when the ahklexp value was found to be consid-
erably different from ahklcalcd, this blunder for ahkl was
rejected and the values of a0 and σ were calculated once
again. In this work, we used the mean values of S11, S12,
and S44 calculated from the corresponding values for
pure metals.

3. RESULTS OF THE EXPERIMENT

Figure 2 displays the ahkl values calculated for all
the recorded diffraction lines [two ahkl values are given
for the (311) line] for both samples. These values
turned out to be close for both samples (except for com-
ponents II and IV). The least-squares calculations
without regard for a311exp gave the following results: a0

= (3.884 ± 0.001) Å and σ = (28 ± 3) kg/mm2 for sample
1 and a0 = (3.885 ± 0.001) Å and σ = (24 ± 3) kg/mm2

for sample 2. Thus, the values of a0 and σ are virtually

Khkl 1/Ehkl S11 2S11 2S12– S44–( )–= =

× h2k2 h2l2 k2l2+ +( )/ h
2

k2 l2+ +( )
2

S11 ∆Γ ,–=
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Fig. 2. Lattice parameters a for coherent-scattering regions of different crystallographic orientations (hkl) for samples (a) 1 and
(b) 2: (A) the experimental data prior to saturation, (B) the experimental data after saturation, and (C) the results of calculations by
formula (2).
identical for both samples. The found value of a0 is
0.002–0.003 Å less than that obtained in [10, 11],
which can be explained by the sufficiently high concen-
tration of excess vacancies in the studied samples.

The ahklcalcd values calculated from formula (2) with
the use of the found values for a0 and σ are also shown
in Fig. 2. It can be seen that, within the limits of exper-
imental error, these values coincide with ahklexp for all
the lines, except for (311). Compared to the calculated
data, the experimental values are larger for the wide
components (I and III) of the (311) line and smaller for
its narrow components (II and IV).

According to [10, 11], the lattice parameter a for the
Pd–Mo alloy changes only by 0.002 Å with a variation
in the CMo concentration in the range 2.5–10 at. %. This
change is substantially less than the difference between
a311exp and a311calcd . Therefore, the value of σ for the
(311) line can be estimated using the a0 parameter
determined above. For components I, II, III, and IV,
the found σ values are equal to 40, 10, 35, and
15 kg/mm2, respectively.

The ahklexp values obtained for the hydrogen-satu-
rated samples after their storage for 50 h under normal
conditions are also depicted in Fig. 2. It is seen that the
saturation with hydrogen and subsequent relaxation
lead to the change in sign of elastic stresses. After
rejecting blunders for a311exp, the calculations of a0 and
σ gave the following results: a0 = (3.8876 ± 0.0004) Å
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and σ = (–31 ± 1) kg/mm2 for sample 1 and a0 =
(3.8893 ± 0.0005) Å and σ = (–24.4 ± 1.4) kg/mm2 for
sample 2. The a0 values were found to be somewhat
larger than the initial values. This implies that a certain
portion of hydrogen is retained in the lattice.

Moreover, we determined the σ values (under the
assumption that a0 is constant) for regions that corre-
spond to components I, II, III, and IV. These values are
equal to –30, –5, –40, and –10 kg/mm2, respectively. It
should be noted that the found values of σ are not exact,
because the actual values of a0 remain unknown. By
assuming that the latter values can differ by 0.002 Å,
the calculated σ values can differ by 5–7 kg/mm2. Even
so, it is evident that the experimental values of σ con-
siderably differ for coherent-scattering regions of dif-
ferent orientations, including coherent-scattering
regions of different compositions with the (311) orien-
tation.

Of particular interest is the change in a311exp imme-
diately after the hydrogen saturation of the samples and
subsequent relaxation (Figs. 3, 4). For component II
with the minimum value of aexp in the initial state, this
parameter remains virtually unchanged upon saturation
and relaxation. For component IV, aexp decreases upon
saturation and remains constant upon relaxation. For
components I and III, the aexp parameters increase
upon saturation. Note that this increase for component
I is twice as large as that for component III. In the
1
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course of relaxation, the behavior of the aexp parameters
differs substantially.

For component I, the aI value in the course of relax-
ation remains virtually unaltered for the first 3.5 h and
then sharply decreases (this decrease is observed up to
the tenth hour after the onset of relaxation). Thereafter,
the aI parameter oscillates with an amplitude close
to 0.002 Å. The mean value of aI is equal to 3.870 Å.
Note that aI decreases with an increase in the relaxation
time. For component III, aIII in the course of relaxation
decreases for the first 10 h and then remains constant.
The reached value of aIII is 0.0025–0.003 Å less than
the value of aI.

Now, we dwell on the change in the width w for all
components of the (311) line in the course of saturation
(Figs. 3, 4). The widths of components II and IV prior
to the saturation are approximately equal to 0.3° and do
not change upon saturation and relaxation (for this rea-
son, they are not shown in these figures). For compo-
nents I and III, the saturation brings about almost a
twofold increase in the width w.

Upon relaxation, the width of component I remains
unchanged for the first 3.5 h and then increases by a
factor of 1.5 for 2.5 h. As can be seen from Fig. 4, by
that time (6 h after the onset of relaxation), the aI
parameter decreases considerably. Thereafter, the
width wI, 3 h later, decreases by almost one order of

aII

wI

aI

0.5

1.0

1.5

w
, d

eg

init 0

3.870

a, Å

Int, h
1 2 3 4 5 6

3.875

3.880

3.885

3.890

3.895

3.900

3.905

3.910

Fig. 3. Time dependences of the lattice parameters aI and aII
and the half-width wI for components of the (311) diffrac-
tion profile of sample 1.
P

magnitude and then again increases by a factor of 2.5
for 20–30 h. Thus, the change in wI is nonmonotonic.
The width of component III also first decreases and
then somewhat increases.

4. DISCUSSION

Prior to discussing the results, we determine the Mo
(Pd) concentration in regions I–IV and the dependence
of σ on the Mo concentration.

As was shown in [10], the solubility of hydrogen in
the Pd–Mo alloys drastically decreases (by a factor of
20–100 depending on the pressure) as the molybdenum
concentration CMo increases from 2.5 to 7.5 at. %. A
further increase in CMo from 7.5 to 10 at. % is accom-
panied by a slower decrease in the solubility. Such a
change in the solubility allows us to estimate the
molybdenum concentration in regions I–IV. Specifi-
cally, the Mo concentration in region II is higher than
7.5 at. %, because the component that corresponds to
this region remains virtually unchanged upon the
hydrogen saturation. This can be explained by the fact
that hydrogen is not absorbed in this region. The CMo
concentration in region IV is somewhat decreased,
since this region absorbs a certain amount of hydrogen,
which manifests itself in a small variation in the aIV
parameter upon the hydrogen saturation. According to
the estimates, region IV contains 5–6 at. % Mo. The

aIV

wIII

aIII

1.5

w
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eg
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init
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3.870
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3.885
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Fig. 4. Time dependences of the lattice parameters aIII and
aIV and the half-width wIII for components of the (311) dif-
fraction profile of sample 2.
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molybdenum content is minimum in region I for which
an increase in the a parameter is maximum upon the
saturation. From the ratio between the changes in the a
value for regions I and III, we obtain that the Mo con-
centration in these regions is close to 2.5 and 3.5–4.0 at.
%, respectively. Therefore, the molybdenum content in
the regions under investigation increases in the follow-
ing order: I < III < IV < II. As follows from the data
obtained in the preceding section, the σ values in these
regions are as follows: 40, 35, 15, and 10 kg/mm2. This
indicates that, under the same deformation conditions,
the smaller the molybdenum concentration, the larger
the elastic stresses in these regions.

Let us consider factors that determine the depen-
dence of σ on the Mo concentration and the change in
σ after hydrogen saturation. The fact that elastic
stresses arise in the studied alloys directly follows from
the data on the shift in locations of diffraction maxima
(prior to the hydrogen saturation) with respect to their
locations in the case of a cubic structure. Earlier, the
elastic stresses in strained alloys were found in pure
metals (Cu and Pd [13, 14]), and the change in the sign
of stresses upon the hydrogen saturation was observed
in pure Pd and Pd alloys with Cu, Hf, Sm [14], and Er
[15]. In strained metals, the elastic stresses responsible
for an increase (dependent on the indices hkl) in the a0
parameter along the normal to the sample surface
should be provided by defect complexes which are
enriched with interstitial atoms and, hence, have a spe-
cific volume larger than the specific volume of the
matrix. In [15], they were termed the D–M complexes,
where M is the type of interstitial atoms. The observed
change in sign of these stresses [14, 15] was explained
by the fact that the specific volume of complexes
becomes less than the specific volume of the matrix due
to a high binding energy of hydrogen with defects in Pd
[16]. The latter complexes were referred to as the H–D–
M complexes [15]. It was shown that the magnitude and
the sign of σ for hydrogen-saturated systems depend on
the alloy composition, the type of initial D–M com-
plexes, the amount of hydrogen absorbed by the H–D–
M complexes, and the binding energy of hydrogen with
alloy components and defects.

It is evident that the elastic stress σ in the initial state
should depend on the composition of the D–M com-
plexes, their number, and strength. Moreover, the
change in σ upon the hydrogen saturation should also
be affected by the degree of variation in these quantities
after saturation. According to the model proposed in
[15], these complexes in the Pd–Mo system are the
Pd−Mo complexes. However, in the Pd–Er system con-
sidered in [15], the cores of the H–D–M complexes are
formed by impurity atoms (Er) with a higher hydrogen
affinity and a substantially larger atomic radius as com-
pared to those of the Pd atoms. At the same time, the
Mo atoms, which, according to this model, are the
cores of the H–D–M complexes in the Pd–Mo system,
have radii identical to those of the Pd atoms, and their
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hydrogen affinity is less than that of the Pd atoms.
Therefore, in order to describe the behavior of systems
of the Pd–Mo alloy type, it is insufficient to introduce
only the Pd–Mo–H complexes into consideration. In
this case, it is necessary to include complexes of one
more type. These are the Pd–Pd–H complexes whose
cores are formed by the Pd–Pd interstitial complexes.

Now, we demonstrate that the inclusion of these
complexes in consideration for the studied system pro-
vides a plausible explanation for an increase in σ with
an increase in the Pd concentration and a stronger
change in this quantity upon the hydrogen saturation.
Indeed, the magnitude of σ should be determined by the
number of the D–M complexes and their strength. In
turn, these quantities should be governed by the num-
ber of atoms incorporated into the complexes, and this
number should depend on the ability of atoms to
occupy interstices. It is easily seen that the latter factor
should be associated with elastic characteristics of the
studied system, specifically with the shear modulus and
root-mean-square displacements of atoms. Let us now
compare the shear moduli for the most typical slip sys-
tems in the body-centered cubic lattice of molybdenum
and the face-centered cubic lattice of palladium. These
moduli are defined by the same relationship G =
[(4/3)(S11 – S12) + (1/3)S44]–1 [17]. Substitution of the
elastic compliance constants for Mo and Pd [18] into
this expression gives the ratio GMo/GPd = 4.05. A con-
siderably lesser value of the shear modulus for Pd cor-
relates with its lower Debye characteristic temperature:
ΘPd = 275 K and ΘMo = 425 K [19]. It is also interesting
that the anisotropy constants ∆ for Pd and Mo have dif-
ferent signs and differ by more than one order of mag-
nitude. These data indicate that the Pd–Pd complexes
are formed much more readily than complexes of the
Pd–Mo type. Therefore, the Pd–Pd complexes actually
should be formed in the system under consideration,
and their concentration should be substantially higher
than the concentration of the Pd–Mo complexes and
increase nonlinearly with an increase in the Pd concen-
tration. This explains an increase in the elastic stress σ
in the initial state with an increase in the Pd concentra-
tion. From this result, it immediately follows that the
change in σ upon the hydrogen saturation should be
maximum in coherent-scattering regions in which the
palladium content is higher, because it is in these coher-
ent-scattering regions that the amount of dissolved
hydrogen is maximum.

Thus, the behavior of the Pd–Mo system can be
explained by the formation of the Pd–Mo and Pd–Pd
complexes. The concentration of the latter complexes
should be sufficiently high, because they are responsi-
ble for the appearance of elastic stresses and the change
in their sign upon hydrogen saturation. Consequently,
these complexes can be termed active, unlike the
Pd−Mo complexes, which are referred to as passive.

Let us discuss the change in σ upon relaxation. For
component II, the parameter aII and, correspondingly,
1
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σ in the course of relaxation remain virtually
unchanged, which can easily be explained by a low
hydrogen solubility at the Mo concentration corre-
sponding to this component. The noticeable decrease in
aIV and σ for coherent-scattering region IV upon satu-
ration can be due to the fact that all hydrogen dissolved
upon saturation is instantaneously (and almost com-
pletely) absorbed by the Pd–Pd complexes, thus trans-
forming them into the Pd–Pd–H complexes already at
the saturation stage. Therefore, the aIV parameter
decreases even upon saturation, and the observed con-
stancy of aIV upon further relaxation indicates a high
stability of the resulting complexes.

Compared to coherent-scattering regions II and IV,
regions I and III are characterized by a lower Mo con-
centration and, hence, contain a larger amount of dis-
solved hydrogen. As a result, the ahklexp parameter
increases immediately after saturation. In this case, the
number and the strength of the Pd–Pd complexes in
coherent-scattering region I are likely larger than those
in region III.

Since the hydrogen solubility in the Pd–Mo alloys
nonlinearly depends on the Mo concentration, this con-
centration can be treated as a controlling parameter
[20] which is responsible for the specific features in the
evolution of the Pd–Mo–H system. The obtained data
demonstrate that the Pd content (as well as the H con-
tent after saturation) in coherent-scattering region I is
somewhat higher than that in coherent-scattering
region III. Consequently, the amount of absorbed
hydrogen in region I is so large that hydrogen has no
time to be captured in traps at the saturation stage, and
this process predominantly occurs at the degassing
stage. According to this model, the change in σ takes
place at the initial stage of relaxation (rather than upon
saturation) in coherent-scattering region III and even
after a certain latent period in coherent-scattering
region I.

It is interesting that the dependences of the aIII
parameter for coherent-scattering regions I and III are
different in character. This difference can be associated
with a larger amount of hydrogen absorbed by coher-
ent-scattering region I and also with the fact that a cer-
tain portion of hydrogen is unbound by the Pd–Pd–H
complexes. In this case, the observed oscillations in aI
for coherent-scattering region I at relatively late stages
of relaxation can be due to the behavior of hydrogen-
saturated regions in the “neighborhoods” of the Pd–Pd–
H complexes.

Now, we dwell on the behavior of the widths w of
components in the processes under investigation. For
components II and IV, the w values upon relaxation
remain constant. This implies that the changes in w are
unrelated to the Pd–Pd–H complexes. The widths wI
and wIII increase upon saturation, and this increase can
be attributed to an increase in the dispersion of the
parameters a and σ at the expense of an additional inho-
mogeneity in the distribution of absorbed hydrogen
P

over the corresponding regions due to the dependence
of the hydrogen solubility on the molybdenum concen-
tration. Upon relaxation, this inhomogeneity decreases
gradually.

Since coherent-scattering region I contains a larger
amount of absorbed hydrogen, no changes in macro-
characteristics such as aI and wI are observed at the ini-
tial stage of relaxation: it takes additional time to ini-
tiate the relaxation of the excited hydrogen-supersatu-
rated system. Then, there occurs a very rapid process of
trap formation, which involves the absorption of hydro-
gen atoms by the Pd–Pd complexes, i.e., the formation
of the Pd–Pd–H complexes. Owing to the supersatura-
tion of the system with hydrogen, the capture of hydro-
gen atoms in traps at the initial stage leads to an
increase in the inhomogeneity in the system, which
results in an increase in w. It seems likely that the cap-
ture of hydrogen in traps begins with regions in which
the hydrogen content is not very high, whereas the
hydrogen atoms in the regions supersaturated with
hydrogen compete with each other for sites in their
quasi-equilibrium arrangement. However, at the later
stages when all traps are filled with hydrogen atoms,
the spread in the ahkl values decreases considerably. A
more ordered distribution of traps also becomes possi-
ble, which eventually results in a narrowing of diffrac-
tion maxima.

A further change in aI and wI has a relaxation char-
acter with indications of self-organization processes,
which are more pronounced for the aI parameter. These
processes resemble phenomena revealed in our earlier
work [2] for Pd–W alloys with similar characteristics.
In particular, the width of diffraction maxima for the
Pd–W (7 at. %) alloy upon the hydrogen saturation first
increased, then decreased, after which again increased,
and thereafter remained constant [2]. The dependence
w(t) was represented by a relaxation curve whose char-
acter reflected the features of variation in the degree of
inhomogeneity of the system after the hydrogen satura-
tion. The oscillating behavior observed in the present
work for the aI parameter upon relaxation can be asso-
ciated with the cooperative migration of hydrogen
atoms between traps and the matrix (recall that the sys-
tem remains nonequilibrium throughout the observa-
tion). Moreover, since the changes in ahkl can be caused
by variations in the values of a (owing to the hydrogen
migration) and σ, the oscillating behavior of ahkl can be
brought about by the change in each of these quantities.
This process is stimulated by the following factors:
although the traps become more stable in the course of
saturation with hydrogen, the resulting deficit of hydro-
gen in the matrix leads to the inverse process—the
migration of hydrogen into the matrix. It is more prob-
able that the processes under consideration are associ-
ated with the redistribution of hydrogen atoms between
the matrix and the neighborhoods of traps, because
hydrogen atoms are unlike to leave traps in the course
of rather short-term relaxation due to their high stabil-
HYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
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ity. This type of hydrogen migration can be accompa-
nied by a considerably weaker change in the degree of
inhomogeneity, and as a result, the relaxation curve
w(t) decays more rapidly than the aI(t) curve.

In a more detailed analysis of the relaxation curves,
it should be remembered that actually we deal with
both variations in the hydrogen concentration in the
matrix and variations in the stress σ due to variations in
the hydrogen concentration in traps, as well as with
variations in the dispersion of these quantities. The
minimum of the total dispersion can be determined by
the coincidence of minima of all these dispersions.

5. CONCLUSION
The structural evolution of the Pd–Mo alloys after

their saturation with hydrogen is determined by the fol-
lowing factors: the Mo concentration which nonlin-
early affects the amount of dissolved hydrogen in the
system, the difference between the hydrogen affinities
of Mo and Pd, and the differences between their Debye
temperatures and elastic characteristics which are
responsible for the different initial defect structures.
Since the Debye characteristic temperature and the
shear modulus of Pd are less than those of Mo, the
strain of the Pd–Mo alloys brings about the formation
of interstitial, predominantly Pd–Pd complexes (possi-
bly, the interstitial dislocation loops), which give rise to
elastic stresses. These stresses increase with an increase
in the Pd concentration. Furthermore, the concentration
of dissolved hydrogen also increases, and, as a result,
the higher the palladium concentration, the larger the
change in σ upon the saturation of the alloy with hyd-
rogen.

As a consequence, no structural transformations
occur in the alloy with a high Mo concentration (more
than 7.5 at. % Mo) upon the hydrogen saturation. In the
alloy with a Mo concentration close to 5–6 at. %, the
hydrogen atoms have already been completely
absorbed by the Pd–Pd complexes upon saturation,
which leads to the immediately change in σ. In the pal-
ladium alloys with a lower Mo concentration (2.5–
3.5 at. %), not all hydrogen atoms absorbed by the sys-
tem are captured by the traps. In this case, the evolution
of the system is governed by the hydrogen atoms cap-
tured in traps and the hydrogen atoms remained in the
quasi-ideal part of the system.
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Abstract—Quantum oscillations of the magnetothermoelectric coefficient αii(B) are investigated in semime-
tallic Sb–Bi and Sb–As alloys in stationary magnetic fields up to 15 T and at temperatures from 1.9 to 30 K.
Quantum oscillations of αii(B) of a giant amplitude are observed when the longitudinal or transverse magnetic
field is oriented along a binary C2 axis or a bisectory C1 axis and also when rotating the transverse magnetic
field in angle ranges up to [+55°, –55°] around them. © 2001 MAIK “Nauka/Interperiodica”.
Quantum oscillations of the resistance ρii(B) and the
thermoelectric coefficient αii(B) in a normal metal
(semimetal) are known to be affected in a different way
by changes in the scattering processes and by the
dependence of the relaxation time of charge carriers on
energy τ(ε) in a magnetic field. For example, the τ(ε)
dependence in a magnetic field is not of great impor-
tance [1] for the Shubnikov–de Haas effect as the oscil-
lation amplitudes are not very large (~10% of the
monotonic part of the resistance) and, in principle, can
reach the value of the monotonic part only in suffi-
ciently high fields. The opposite situation occurs for the
diffusive part of the magnetothermoelectric coefficient
at low temperatures (the net thermoelectric coefficient
consists of two components: the diffusive component
and that one associated with the phonon-drag effect);
its monotonic part is proportional to ~(kT/εF) and is
very small, and the dependence of the relaxation time
of charge carriers on energy in a magnetic field can
result in [1] anomalously large oscillation amplitudes
of αii(B).

In the present work, the quantum oscillations of
ρii(B) and αii(B) are investigated in high-quality sam-
ples of Sb (the Fermi surface of Sb consists of three
electron pockets centered at the L points and six hole
pockets localized at the H points of the Brillouin zone
[2]) and the alloys AsxSb1 – x (x ≤ 0.5) and Bi1 – xSbx (x ≥
0.25) in stationary magnetic fields up to 15 T and at
temperatures from 1.9 to 30 K. The measurements are
performed in the International Laboratory of High
Magnetic Fields and Low Temperatures (Wroclaw,
Poland). The samples for the measurements are pro-
duced by a zone-melting method, and their composi-
tion was controlled by laser spectroscopy techniques
and by x-ray microprobe analyzers. The main results
obtained are presented below.

In Sb, the quantum oscillation amplitudes of α ii(B)
are not large and amount to as much as several percent
1063-7834/01/4302- $21.00 © 20214
of the monotonic component. In contrast, in the alloys
AsxSb1 – x (x ≤ 0.3) and Bi1 – xSbx (x ≥ 0.5), whose Fermi
surface is similar to that of Sb [3, 4], the quantum oscil-
lations of the αii(B) exhibited giant amplitudes (in some
samples, αii(B)osc/αii(B)mon ~ 16) at the orientation of
the longitudinal or the transverse magnetic field along
a binary C2 axis or a bisectory C1 axis and at the rota-
tion of the transverse field in an angle range ∆θ around
them (Figs. 1, 2). When the As concentration in the As–
Sb alloys is increased, ∆θ decreases from about [+35°,
–35°] at x = 0.05 to [+20°, –20°] at x = 0.3, and when
the Bi concentration in the Bi–Sb alloys is increased,
∆θ increases from [+35°, –35°] at x = 0.95 to [+55°,
−55°] at x = 0.5. It should be noted that the giant quan-
tum oscillations (GQO) of the magnetothermoelectric
coefficient exhibited the same period as the oscillations
of ρii(B). The Fourier analysis of these oscillations
clearly separated out the frequencies inherent in the
energy spectrum of Sb [2] and its alloys with As and Bi.
Their identification and their dependence on the alloy
composition are presented in [3, 4]; the oscillating part
of the magnetoresistance was no more than 10% of the
monotonic part of the ρii(B).

The quantum oscillations of the magnetothermo-
electric coefficient in the case when the magnetic field
is oriented outside the ∆θ range (with an accuracy of
3−5 %) are described by the existing theories [5, 6]

,

and their amplitude is not anomalously large.
The temperature dependences of the GQO ampli-

tude of the magnetothermoelectric coefficient (T) in
the Sb-based alloys with Bi and As (Fig. 3), as well as
the temperature dependences of the longitudinal mag-
netoresistance in Bi, exhibited a nonmonotonic charac-
ter with a maximum at T = Tm (Tm ≤ 11 K), whose posi-
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tion was dependent on the alloy composition and the
sample quality. It should be noted that the nonmono-
tonic change in the oscillation amplitudes of the longi-
tudinal magnetoresistance with temperature was
explained in [7] on the basis of the two-band model of
the energy spectrum accounting for the electron–
phonon and electron–impurity interactions and the
dependence of the relaxation time of the charge carriers
on the magnetic field.

In addition, it has been found that the GQO ampli-
tude of the magnetic-field–dependent thermoelectric
coefficient (B) changes (Fig. 4) according to a

power law (B) ~ Bk, with the power k being depen-
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Fig. 1. Quantum oscillations of the magnetothermoelectric
coefficient in Sb-based alloys with Bi and As: (1) Bi0.1Sb0.9,

T = 5.2 K, —T || B– || C2; (2) Bi0.15Sb0.85, T = 6.3 K, —T || C1,

B– || C2; (3) As0.1Sb0.9, T = 9.4 K, —T || C2, B– || C1; and

(4) As0.05Sb0.95, T = 6.4 K, —T || C1, B– || C2.
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dent on B (k ≈ 4–5.5 at B ≤ 7–9 T and k ≈ 1.2–2.4 at
B > 9 T) and being of a considerably larger value than
in the case of a purely diffusive contribution to the net
thermoelectric coefficient [8].

A remarkable feature in the behavior of the magne-
tothermoelectric coefficient is observed when reversing
the magnetic field direction [9]. For example, when the
magnetic field is oriented along the positive direction
with respect to the C2 axis (B+ || C2), we have
α22(B1)osc < α22(B1)mon, whereas for the opposite direc-
tion of the magnetic field (B– || C2), we have
α22(B1)osc @ α22(B1)mon.
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Fig. 2. Magnetic-field dependences of the thermoelectric
coefficient in the Bi0.3Sb0.7 alloy at 5.2 K, the field is rotated
in the trigonal–bisectory plane: (1) θ = 0° (B || C3), (2) θ = 10°,

(3) θ = 55°, (4) θ = 76°, (5) θ = 23°, (6) θ = 90°, (B– || C1), and

(7) θ = 270°, (B+ || C1). The ordinate-axis scale is 1 : 4 for
(7). The angle dependence of the magnetothermoelectric
coefficient in Bi0.3Sb0.7 at 5.2 K is shown in the inset.
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The amplitude of quantum oscillations of α22(B1)
changes insignificantly (~15%) as the magnetic field is
reversed. Thus, the above-mentioned feature is mainly
associated with α22(B1)mon, which, as a result of the tilt-
ing of the electron and hole constant-energy surfaces
with respect to the basal plane [9], contains even (qua-
dratic) terms in the magnetic field and odd (linear in B)
terms changing their sign as the field orientation is
reversed from B+ to B–. Therefore, α22(B)mon varies in
wide limits with the rotating magnetic field, which
undoubtedly results in variations in the ratio between
the monotonic and oscillating parts of the magnetother-
moelectric coefficient.

However, the manifestation of quantum oscillations
of the magnetothermoelectric coefficient with an anom-
alously large amplitude is not associated with the
mixed-parity terms, because in the case of B || C1,
where the odd terms are absent, the GQO of α11(B2) are
observed at both B+ and B–.

The phonon drag of charge carriers must be of
importance [10, 11] in the temperature range 1.9–30 K,
where the magnetothermoelectric coefficients in Sb and
its alloys with As and Bi are measured. The phonon-
drag effect is strong in Sb (referred to as “total” in [10])
and predominantly contributes to the thermoelectric
coefficient when compared to the diffusive component.
The anomalies of the quantum oscillations of the mag-
netothermoelectric coefficient are not detected in Sb,
which supports the conclusion made in [12] that only
the strong phonon drag of charge carriers (without
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Fig. 3. Temperature dependences of the amplitudes of the
quantum oscillations of the magnetothermoelectric coeffi-
cient in the Bi0.15Sb0.85 alloy at B– || C2, —T || C1, and dif-
ferent magnetic fields: (1) 11.234, (2) 9.765, (3) 8.64, and
(4) 6.2 T.
P

additional scattering mechanisms except the phonon
one) does not result in the GQO of αii(B).

The phonon-drag effect is considerably weaker in
the AsxSb1 – x (x ≤ 0.3) and Bi1 – xSbx (x ≥ 0.5) alloys,
because the phonons are scattered not only by electrons
and holes, but also by structural defects and neutral
impurities. Many experimental facts are evidence for
the strengthening of these scattering mechanisms:
small values of the thermoelectric coefficient [13, 14]
and of the monotonic part of the magnetothermoelec-
tric coefficient, insignificant changes [14] in the com-
ponents of the resistivity tensor in the temperature
range 4.2–77 K, the small ratio of the residual resis-
tances of samples 2 ≤ ρ300 K/ρ4.2 K ≤ 10, and rather high
values of the Dingle temperature of charge carriers

(  ≤ 12 K) [3, 4], as well as the relatively low mobil-
ities of the electrons and holes in the alloys (the mobil-
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Fig. 4. Magnetic-field dependences of the amplitudes of the
quantum oscillations of the magnetothermoelectric coeffi-
cient in the Sb-based alloys with As and Bi: (1) As0.1Sb0.9,

B– || C1, —T || C2, T = 6.53 K; (2) BiO0.35Sb0.65, the angle

between C1 and B– is 30°, —T || C2, T = 4.6 K;

(3) Bi0.15Sb0.85, B– || C2, —T || C1, T = 5.2 K; (4) As0.05Sb0.95,

B– || C2, —T || C1, T = 6.4 K; (5) Bi0.1Sb0.9, B– || C2, —T ||
C1, T = 5.8 K; and (6) Bi0.05Sb0.95, B– || C1, —T || C2, T =
5.6 K. The ordinate-axis scales are 4 : 1 for (1, 3, 4), and
2 : 1 for (2).
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ities of charge carriers in the alloys are more than two
orders of magnitude lower than those in Sb).

In conclusion, the phonon-drag effect is weakened
in the AsxSb1 – x (x ≤ 0.2) and Bi1 – xSbx (x ≥ 0.5) alloys
because of the phonon scattering not only at electrons
and holes, but also at structural defects and neutral
impurities in the case of the magnetic-field orientation
within the angle range ∆θ (when the cross sections of
the electron and hole Fermi surfaces, as well as the
cyclotron masses of charge carriers, are close in values
[3, 4]). In this case, the relaxation times of charge car-
riers in the alloys contain additional terms that depend
differently on energy in the magnetic field (as sup-
ported by the magnetic-field and temperature depen-
dences of GQO of αii(B)) and are responsible for the
anomalous contributions to the quantum oscillations of
the magentothermoelectric coefficient.
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Abstract—The heat conductivity and electrical resistivity of a polycrystalline YbAgCu4 sample were measured
in the 4.2–300-K temperature range. It is shown that at low temperatures (in the region corresponding to the
coherent Kondo lattice) the Lorenz number behaves in accordance with a theoretical model developed for
heavy-fermion materials. © 2001 MAIK “Nauka/Interperiodica”.
In recent years, studies of intermetallic compounds
of the type LnMCu4 (where Ln stands for a rare-earth
element and M stands for In, Ag, Au, Cd, Mg, Tl, Zn,
or Pb [1, 2]), which crystallize in an AuBe5-type fcc lat-
tice [C15b structure, space symmetry group

F 3m( )], have attracted the interest of scientists in
the world’s leading laboratories. These compounds
possess fairly unusual physical properties. Of particular
interest in this respect are YbInCu4 and YbAgCu4.

At Tν ~ 40–80 K and atmospheric pressure, YbInCu4
exhibits a first-order isostructural phase transition from
a Curie–Weiss paramagnet (state with localized mag-
netic moments) at T > Tν to a Pauli paramagnet, a com-
pound with a rare-earth ion of mixed valence (nonmag-
netic Fermi-liquid state), for T < .1 

YbAgCu4 is a typical heavy-fermion compound.
However, in contrast to the classical heavy-fermion
materials, it is categorized into “moderately” heavy fer-
mion systems [6], because its γ, the coefficient of a term
linear in temperature in the electronic specific heat, is
only ~200–250 mJ/mol K2 [1, 2, 4, 7–11], while in clas-
sical heavy-fermion systems, γ > 400 mJ/mol K2.

YbAgCu4 possesses properties typical of a Kondo
lattice [2, 7, 12–14]. It undergoes a transition from a
single-impurity Kondo regime at high temperatures,
T > TK (TK is the Kondo temperature), to a coherent
Kondo lattice heavy-fermion regime in the low-temper-
ature domain, T < TK. The TK temperature derived from
measurements of various physical effects ranges from

1 The system existing at T < Tν is called the “light” heavy-fermion
system [3]. The main references to experimental and theoretical
publications dealing with YbInCu4 can be found in [1, 4, 5].

4 Ta
2

Tν
1063-7834/01/4302- $21.00 © 20218
40 to 130 K [14–20]. Calculations yield 86 K [5].
Experimental values cluster most frequently around
~60–65 K.

The calculated and experimental values of the car-
rier effective mass in YbAgCu4 for T < TK are ~86m0 [5]
and ~60m0 [2, 17], respectively (m0 is the electronic
mass). No magnetic ordering is observed in YbAgCu4
down to ~0.45 K [2]. The Yb valence is +3 in this com-
pound. This follows from magnetic susceptibility data,
by which the experimental value of the Yb ion effective
magnetic moment µeff is ~(4.25–4.6)µB, which is close
to that for the free Yb+3 ion (J = 7/2), µeff = 4.54 µB, as
well as from LIII x-ray measurements [1, 18] and XPS
and BIS spectra [17].

The Debye temperature Θ of YbAgCu4 is 245–279 K
[1, 16]. The above data on YbAgCu4 will be necessary
in analyzing our experimental data on the heat conduc-
tivity of this compound. To make the picture complete,
we present a list of the physical parameters of YbAgCu4
which have been studied in various laboratories around
the world in recent years.

The magnetic susceptibility χ [1, 2, 6, 9, 12, 21–24];
magnetization [16, 21, 24]; magnetostriction [21]; heat
capacity [1, 2, 8, 9, 16, 21–24]; electrical resistivity ρ
[1, 2, 7, 9, 16, 22]; ∆ρ/ρ(H) [16]; thermopower [25, 26];
Hall constant [1, 8]; variation in ρ, χ, and thermopower
under hydrostatic pressure [13, 27–31]; and linear
expansion coefficient [6] were measured over a broad
temperature range in YbAgCu4. Neutron scattering
experiments were carried out [15, 19, 32], photoelec-
tron spectra [14] and NMR [20] were studied, and band
structure investigations were performed both experi-
mentally [17] and theoretically [33, 34].
001 MAIK “Nauka/Interperiodica”
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The study of the heat conductivity κ of YbAgCu4 is
dealt with in two publications [35, 36] which presented
the same experimental data on κ of this material.2 We
note immediately that our analysis of the results on κ
for YbAgCu4 will be based on an approach radically
different from the one employed in [35, 36]. We mea-
sured the heat conductivity and electrical resistivity of
YbAgCu4 within the 4.2- to 300-K range on a cast poly-
crystalline sample. The sample was prepared by the
technique described in [38]. YbAgCu4 was synthesized
from doubly distilled Yb remelted in a tantalum cruci-
ble (to remove the oxide), Ag of 99.99% purity, and
OSCh-V3-grade Cu. The alloy components taken in
stoichiometric ratios were remelted in a thin-walled
(wall thickness ~0.1 mm), sealed tantalum container
evacuated to ~10−4 mm Hg. The samples were melted
in an induction furnace. The sample to be studied was
characterized by x-ray diffraction on a DRON-2 setup
(CuKα radiation). The lattice constant a was measured
as 7.076 Å. According to literature data, the a constant
of YbAgCu4 varies from 7.054 to 7.087 Å [1, 2, 6, 9, 12,
20, 22, 25, 32, 34]. The quantities κ and ρ were mea-
sured on a setup similar to the one used in [39].

Figure 1 presents the results obtained for the ρ(T) of
the YbAgCu4 sample studied by us. Also shown for
comparison are the literature data for this material [1, 7,
9, 13]. The ρ(T) relation is seen to follow the behavior
typical of heavy-fermion compounds. In the low-tem-
perature region (T < TK, coherent Kondo lattice), ρ(T)
can be presented in the form [9, 13]

ρ = ρ0 + AT2. (1)

Here, ρ0 is the residual resistivity. The A coefficient is a
measure of the electronic density of states at the Fermi

level, A ~ N(EF); in addition, A ~ 1/  [9, 13].

Figure 2 plots ρ as a function of T2 for the YbAgCu4
obtained in this work and in [9].

Figures 3 and 4 display our experimental data on the
total heat conductivity κtot of YbAgCu4. Also shown in
Fig. 3 for comparison are the data for κtot of YbAgCu4
quoted in [35, 36].3 The behavior of the κtot(T) of our
sample is similar to that reported in [35, 36]. For a
metal, κtot can be written in the form 

κtot = κph + κe, (2)

2 Our publications [4, 37] on the study of the heat conductivity of
YbInCu4, LuInCu4, and LuAgCu4 mentioned that we did not suc-
ceed in finding references to measurements of κ for these materi-
als. Indeed, among the copious literature devoted to the investiga-
tion of LnMCu4 compounds (Ln = Yb, Lu; M = In, Ag), we could
not find any reference to [35, 36]. We have stumbled on them only
recently. We hope the authors of [35, 36] will excuse us for over-
looking this.

3 Unfortunately, the original data for ρ(T) on the sample studied are
not presented in [35, 36].
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Fig. 1. Temperature dependence of the electrical resistivity
of YbAgCu4. (1) Our data, (2) data from [9], (3) [13],
(4) [1], and (5) [7].
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Fig. 2. ρ vs. T2 relation. (1) Our data and (2) data of [9].
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Fig. 3. Temperature dependence of κtot of YbAgCu4. (1)
Our data and (2) data of [35, 36].
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where κph and κe are the lattice and electronic compo-
nents of heat conductivity, respectively. κe obeys the
Wiedemann–Franz law

κe = LT/ρ, (3)

where L is the Lorenz number. For T * Θ and very low
temperatures for “clean” samples, and for low and high
temperatures for “dirty” samples of metals, we have
L = L0[40], where L0 is the Sommerfeld value of the
Lorenz number (L0 = 2.45 × 10–8 WΩ/K2). The sample
studied by us may not be considered a clean metal, and,
therefore, one may assume, as a first approximation,
that L = L0 throughout the temperature range studied.

It is also known [41] that the behavior of L(T) in
heavy-fermion systems differs substantially from that
in both clean and dirty metals. According to [41], L/L0
first grows with increasing temperature from T = 0 K as
L/L0 ~ T2 passes through a maximum, falls off to 0.648,
and then increases again and reaches unity around T ~
TK to remain equal to unity afterwards up to high tem-
peratures.

Figure 4 presents a calculation of κph from Eqs. (2)
and (3) made under the assumption that L = L0. One
readily sees that, from 300 K down to T0 = 60 K, κph(T)
follows a nearly linear dependence (κph ~ T0.8). For T <
60 K, a deviation from this relation is observed (see
Fig. 4 and, on an enlarged scale, Figs. 5b and 6a). Put-

κtot

κph

A

40

30

20

10

0

κ,
 W

/m
 K

100 200 300

T0

T, K

Fig. 4. Temperature dependence of κtot and κph of
YbAgCu4.
P

ting aside, for the time being, the discussion of the
nature of this dependence of κph on T for T > 60 K,
which is not typical of crystalline materials, we shall
instead consider the reason for the deviation of κph from
the T0.8 scaling observed for T < 60 K. It was found
(Fig. 5) that the temperature T0 in the κph(T) depen-
dence corresponds to the temperature at which the
regime in the ρ(T) dependence changes from incoher-
ent for T > T0 to coherent for T < T0. One may conjec-
ture that the deviation κph(T) from the κph ~ T0.8 relation
for T < T0 results from a wrong choice of the Lorenz
number in Eq. (3). In order to remove this deviation, L
should be less than L0. Figure 6b presents an L/L0 cal-
culation made under the assumption that κph for T < T0

is equal to the values corresponding to the dashed line I.
As can be seen from Figs. 6b and 6c, our L/L0(T) rela-
tion obtained for YbAgCu4 agrees well with the tem-
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Fig. 5. Comparison of (a) ρ(T) and (b) κph(T) relations of
YbAgCu4 in the low-temperature region (square A in
Fig. 4).
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perature dependence of the Lorenz number proposed in
[41] for heavy-fermion systems. Our attempt to isolate
the electronic component of heat conductivity from κtot
of YbAgCu4 [which would permit one to subsequently
estimate L/L0(T)] by a standard technique involving the
use of LuAgCu4 as a reference material [37] failed. Fol-
lowing this technique, one could suggest that the values
of κph for YbAgCu4 and LuAgCu4 should be approxi-
mately equal in magnitude, so that κe of YbAgCu4
would be found from the relation

(4)

However, as can be seen from Fig. 7, at two points, 1
and 2, we have κph(LuAgCu4) = κtot(YbAgCu4) in the
low-temperature domain and, hence, κe(YbAgCu4) cal-
culated from Eq. (4) (as well as L) will be zero, while
within the 10- to 60-K region they should even be neg-
ative, which appears absurd.

The behavior of κph at temperatures T > 60 K
remains a mystery. What could be the reason for the
unusual temperature scaling κph ~ T0.8 of crystalline

κ e YbAgCu4( ) = κ tot YbAgCu4( ) κph LuAgCu4( ).–

(a)

(c)

(b)
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Fig. 6. Experimental dependences (a) κph(T) (square A in
Fig. 4) and (b) L/L0(T) obtained for YbAgCu4. (c) Overall
behavior of the theoretical relation L/L0(T) for heavy-fer-
mion systems [41]. TK is the Kondo temperature.
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materials? Interestingly, a similar temperature depen-
dence of κph is also observed in YbInCu4 [4]. This
behavior of κph(T) is characteristic of strongly defected,
close to amorphous materials, as well as of semicrystal-
line materials (i.e., amorphous substances containing
crystallized regions) [42]. The heat conductivity of
LuInCu4 and LuAgCu4 behaves differently [37] (these
materials are related to YbInCu4 and YbAgCu4). The
κph(T) relation in them exhibits features characteristic
of conventional, heavily defected crystalline objects;
namely, κph increases with temperature from T = 0 K
and passes through a maximum, to subsequently fall off
according to the law κph ~ T–0.5. One could try to assign
the unusual behavior of κph(T) of YbAgCu4 (compared
to LuAgCu4) to phonon scattering from the crystal-
field-split paramagnetic levels of the Yb ions in
YbAgCu4 [13, 28], as this has been observed in a large
number of rare-earth materials [43, 44]. But then,
according to [44], κph of YbAgCu4 should be smaller
than that of LuAgCu4 throughout the temperature range
covered. However, as is evident from Fig. 8, this holds
true only for T * 80 K, whereas in the 4- to 80-K inter-
val, on the contrary, κph of LuAgCu4 exceeds that of
YbAgCu4. Thus, we can conclude that in the case of
YbAgCu4, we have not succeeded in observing an
effect of the crystal field on κph. Unfortunately, we still
cannot offer an unambiguous answer as to why
YbAgCu4 (as well as YbInCu4) exhibits a nonstandard
temperature dependence of κph.
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Abstract—The conditions for the formation of a vortex structure in a thin superconducting film under the
action of a stray field of stripe domain structure of a uniaxial ferromagnet are determined. The critical magne-
tization of the magnetic material is calculated, above which the mixed state of the superconductor becomes
energetically favored over the Meissner phase. It is shown that the critical magnetization decreases monotoni-
cally with decreasing thickness of the superconducting film and is of the order of ten gauss in typical actual
situations. The critical-current anisotropy in a superconducting film with an induced vortex structure is dis-
cussed qualitatively. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is known that the exchange interaction between
the spin subsystem of a ferromagnet and the conduction
electrons of a type II superconductor can give rise to
spatially inhomogeneous states [1–3] similar to the
cryptoferromagnetic state of ferromagnetic supercon-
ductors [4, 5]. In layered structures with electromag-
netic interaction between localized spins of the magnet
and paired electrons of the superconductor, the forma-
tion of magnetic domains can be suppressed when the
thickness of the ferromagnetic layers is less than a crit-
ical value [6–11]. The occurrence of weak couplings
[12] and artificial pinning [13] and depinning of Abri-
kosov vortices [14, 15] in ferromagnet–superconductor
systems is of particular interest for practical applica-
tions.

Experimental studies of transport phenomena in
type II superconductors revealed that the critical cur-
rent increases with the concentration of ferromagnetic
impurities [16]. It was established that vortices are
attracted to impurities, and this attraction is due to elec-
tromagnetic interaction of the magnetic moments of
impurity atoms with paired electrons of the supercon-
ductor [16, 17]. The influence of ferromagnetic coat-
ings and applications on the distribution and motion of
vortices in a superconducting film can be different,
depending on the geometry of the system and the prep-
aration method, which determines, in particular, the
mechanisms of interaction between the electrons of the
superconductor and the spin magnetic moments of the
bound electrons of the ferromagnet. For example, the
application of an array of small ferromagnetic particles
to the superconductor surface leads to an increase in the
critical current and to size effects [13] similar to those
1063-7834/01/4302- $21.00 © 20224
observed in superconductors with artificial periodic
structural defects [18, 19]. Based on calculations of the
pinning forces for the case of a cylindrical cavity in an
infinite superconducting sample [20], the authors of
[13] also attributed the strengthened fluxon pinning to
the electromagnetic interaction between vortices and
the magnetization. Depinning of vortices can occur in
systems with other geometries. An example is a ferro-
magnet–superconductor layered system placed in a tan-
gential external magnetic field, the strength of which is
close to the value at which the second-order phase tran-
sition occurs from the single-domain to a multidomain
state [14, 15]. In the vicinity of this phase transition, the
magnetic susceptibility is large and the interaction
between the vortex subsystem and the magnetization
compensates for the effect of the stray field of vortices.
This leads to a decrease in the energy associated with
the displacements of vortices from their equilibrium
positions and to a decrease in the critical current,
because the stray-field energy is positive.

The critical current has much to do with the exist-
ence of vortices and their pinning. Because the super-
conducting layer is contiguous with a ferromagnetic
layer, superconductivity is partially destroyed and the
superconductor passes to a mixed state even in a zero
external magnetic field. For this reason, the critical
points of the ferromagnet–superconductor system can
be lower than those of the single superconducting film,
especially if the superconductor is in the Meissner
phase in the absence of the ferromagnet.

In Section 1 of this paper, we analyze the conditions
for the occurrence of the mixed state in superconduct-
ing films under the influence of the stray field of the
stripe domain structure of a uniaxial ferromagnetic
001 MAIK “Nauka/Interperiodica”
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film. An analogous problem was considered in [12] (see
also [9]). However, as will be shown below, the esti-
mates made in [12] are of very limited usefulness,
because the vortex energy depends heavily on the thick-
ness of the superconducting film, the period of the
domain structure, and the material parameters of the
system. In Section 2, we discuss the critical-current
anisotropy in a superconducting film with a vortex lat-
tice induced by a field of magnetic domains.

1. THE FORMATION OF VORTICES

We consider the influence of the domain structure of
a ferromagnetic film on the state of a superconducting
film contiguous with it. Only the electromagnetic inter-
action between the spin subsystem of the magnet and
the conduction electrons of the superconductor is taken
into account; that is, we assume that the superconduct-
ing and ferromagnetic layers are separated by an insu-
lating spacer of thickness δ such that ξ ! δ ! λ, where
ξ is the correlation length of the order parameter and λ
is the London penetration depth of the magnetic field
into the superconductor. The ferromagnet possesses
magnetic anisotropy of the “easy axis” type with an
anisotropy constant β = 4πQ > 0 (Q is the quality factor
of the magnet) and with the easy axis na perpendicular
to the plane of the films. Since most high-temperature
superconductors are typical type II superconductors,
we restrict our consideration to the case of supercon-
ductors characterized by a large Ginzburg–Landau
parameter κ = λ /ξ @ 1. Furthermore, we ignore vortex
pinning due to defects of the superconductor. The
geometry of the structure is shown in Fig. 1.

The formation of the mixed state caused by the stray
field of a domain structure was analyzed in [12], where
the case of a semiconducting half-space contiguous with
a film of a uniaxial ferromagnet was considered. The
vortices were assumed to arise when the tangential com-
ponent of the domain stray field in a superconductor
boundary layer of a thickness of the order of the London
penetration depth λ exceeds the lower critical field
Hc1 ≅  (Φ0/4πλ2)lnκ [17], where Φ0 = 2 × 10–7 G cm2 is
the flux quantum. Obviously, this criterion is valid if the
thickness of the superconducting film l is much larger
than the period D of the domain structure (l @ D).

In actual ferromagnet–superconductor systems, as a
rule, the thickness of the superconducting film l is
small, l ! D. Furthermore, for high-quality films of
high-temperature superconductors, we typically have
l < λ. Under these conditions, the simple criterion used
in [12] for the transition to the mixed state is inapplica-
ble. In infinitely thin superconducting films, the lower
critical field is large in the case of tangential external
fields and is zero for normal external fields. Therefore,
when analyzing the conditions for the existence of vor-
tices in thin films, one should take into account not only
all the components of the stray field of magnetic
domains, but also its gradient. If one ignores hysteretic
PHYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
effects, the natural criterion for the formation of a vor-
tex structure will be the equality of the Gibbs energies
of the system in the Meissner and mixed states.

The energy G of the ferromagnet–superconductor
system in an external field H0 has the form

(1)

where V is the total volume of the system; Vf and Vs are
the volumes of the ferromagnetic and superconducting
layers, respectively; and α is the exchange stiffness
parameter of the ferromagnet. In Eq. (1), the first inte-
gral term is the magnetic-field energy; the second is the
sum of the Zeeman, exchange, and uniaxial-anisotropy
energies, respectively; and the third term is the kinetic
energy of the superconduction current.

The spatial distribution of magnetization M and of
magnetic field H in the ferromagnet and vacuum is
described by the magnetostatics equations

(2)

and the equation of state

(3)

while the distribution of the magnetic field H in the
superconductor is described by the London equation

(4)

G
1

8π
------ dv H H0–( )2

V

∫=

– dv H0M
α
2
---∂M

∂xi

--------∂M
∂xi

-------- β
2
---My

2+ + 
  λ2

8π
------ dv ∇ H×( )2,

Vs

∫+

V f

∫

curlH 0, divB 0= =

M Heff× 0,=

H λ2 ∇ ∇ H×( )×( )+ Φ0 drνδ r rν–( ),∫
ν
∑=

x

I

II

–L

0

y

1

na

Fig. 1. Geometry of the system consisting of a uniaxial fer-
romagnet (I) and a type II superconductor (II). The insulat-
ing spacer is not shown.
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where B = H + 4πM is the magnetization induction,
Heff is the effective magnetic field

(5)

and rν is the position vector of the infinitely small ele-
ment drν of the νth vortex; the summation in Eq. (4) is
performed over all vortices and the integration is car-
ried out over the entire length of each vortex. The
boundary conditions should be satisfied for the tangen-
tial components of magnetic field H and the normal
component of magnetic induction B such that they are
continuous through the interface of the two media. In
addition, the normal component of the superconduction
current density js should vanish at the surface of the
superconductor.

If the thickness of the ferromagnetic layer is fairly
large and there is no external magnetic field, the magnet
is divided into domains, with their size depending only
slightly on the superconductor state [21]. In uniaxial
ferromagnets, at temperatures far away from the orien-
tational phase transition point, only the invariants qua-
dratic in the magnetization are of importance in the
anisotropy energy. Therefore, the direction of magneti-
zation at any point in the single ferromagnetic film is
independent of the magnitude of the saturation magne-
tization M0 and the stray field He of the domains is pro-
portional to the saturation magnetization. Assuming
that the distribution of the spin magnetic moments over
the ferromagnet is the same as that in the absence of the
superconductor, let us find the critical magnetization at
which the Meissner phase becomes energetically unfa-
vorable in comparison with a mixed state. In this case,
a calculation of the critical magnetization reduces to an
analysis of the conditions for the transition from the
Meissner to a mixed state of a single superconducting
film placed in an external nonuniform magnetic field
identical to the stray field of the domain structure He.

Heff H βMyny α∇ 2M,–+=

M

Fig. 2. Abrikosov vortex lattice created in a thin supercon-
ducting film by the stray magnetic field of the stripe domain
structure of a ferromagnet with its saturation magnetization
exceeding its critical value.
P

We calculate the magnetic field and the Gibbs
energy of the single superconducting layer 0 < y < l
with an arbitrary vortex structure under the assumption
that the external magnetic field He is periodic and its
sources are not situated in the region y > 0. Then, the
field He is potential in the half-space y > 0 and the y

dependence of its Fourier transform  =

 in this region has the form

(6)

where q is a two-dimensional vector q = {qx , 0, qz}.

Following Brandt [22], we represent the total mag-
netic field as the sum of the field of sources Hsource, the
field of vortices Hv, and the stray field Hstray:

(7)

where Hv is the sum of the field of real vortices Hvr and
the field of the vortex images Hvi:

(8)

The source field Hsource consists of the external field He

and the field of the Meissner currents HMeis : Hsource =
He + HMeis. Expressions for the fields Hv, Hsource, and
Hstray are presented in the Appendix.

Accordingly, the Gibbs potential of the vortex sub-
system G can be written as

(9)

where Gsource is the interaction energy between the vor-
tices and the external field,

(10)

Gv is the energy of the real vortices and their images,

(11)

and Gstray is the stray-field energy of the vortices,

(12)

If the thickness of the superconductor is small (l !
D), the tilt of the vortex lines can be ignored and it is
sufficient to simply consider the superconducting film
with a system of vortex lines perpendicular to the film
surface (Fig. 2). If we extend the vortex lines in the
layer to infinity, so that they become infinite straight
vortex lines in an infinite superconductor, then we will
have

(13)

H̃e y( )
dx zHe r( ) iqr–( )expd∫

H̃e y( ) H̃e 0( ) qy–( ),exp=

H Hsource Hv Hstray,+ +=

Hv Hvr Hvi.+=

G Gsource Gv Gstray,+ +=

Gsource 1/4π( ) dv HMeis Hv Hstray+( )[∫=

+ λ2 ∇ HMeis×( ) ∇ Hv Hstray+( )×[ ] ] ;

Gv 1/8π( ) dv Hv( )2 λ2 ∇ Hv×( )2+[ ] ;∫=

Gstray 1/8π( ) dv Hstray( )2 λ2 ∇ Hstray×( )2+[ ] .∫=

Hvi 0, P+≡ P– P,= =

Φ+ Φ–– TP/ q T q Tl/2coth+( )[ ] ,–= =
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where the notation of the Appendix is used. We assume
that the external field is independent of the coordinate z
and that the field component Hez is zero. Substituting
formulas (A1)–(A6) of the Appendix into Eqs. (9)–(12)
and taking Eq. (13) into account, we arrive at the fol-
lowing expressions for the components of the Gibbs
potential:

(14)

(15)

(16)

Here, Hek is the amplitude of the one-dimensional Fou-
rier transform in the coordinate x and K0(x) is the zero-
order MacDonald function; sµν = 0 if the µth and νth
vortices have the same sense and sµν = 1 if they are
oppositely sensed. In the radicand in Eq. (14), the term
ξ2 is introduced to prevent the divergence of the self-
energy of each of the vortices. As can be seen from
Eqs. (14)–(16), only the energy Gsource depends on the
saturation magnetization and, therefore, the critical
magnetization is determined immediately from the
equation G = 0 in a fairly general way.

To determine the conditions for the existence of vor-
tices specifically, let us consider the transition of the
superconducting film from the Meissner to a mixed
state under a stray field of the stripe domain structure.
We assume that the magnetization in the domains is
directed perpendicular to the surface of the ferromag-
netic layer and the thickness of domain walls is small
(equal to zero). The distribution of the normal compo-
nent of the stray field of the domains in the interface of
the magnetic and the superconducting media Hey(0) is
described by the expression

(17)

and, therefore,

(18)

The equilibrium number of vortices in the supercon-
ducting film increases monotonically with increasing
saturation magnetization of the ferromagnetic layer.

Gv Φ0
2l/ 4π2λ2( )[ ] 1–( )

sµνK0

µ ν,
∑≅

× xµ xν–( )2 zµ zν–( )2 ξ2+ + /λ( ),

Gstray
1

4π
------ dq

4π2
--------Φq

–P q– ,∫=

Gsource
1

4π2
-------- dkΦq

– q = knx( )Hey k– 0( ).

∞–

+∞

∫–=

Hey 0( ) 4M0 1/n( ) πn/2( )sin
2

n ∞–=

+∞

∑–=

× 1 kn L–( )exp–[ ] πknx( ), knsin 2πn/D,=

H̃ey 0( ) 8πiM0 1/n( ) πn/2( )sin
2

n ∞–=

+∞

∑=

× 1 kn L–( )exp–[ ]δ k kn–( ).
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Therefore, the critical saturation magnetization corre-
sponds to the case where, within one spatial period of
the domain structure, there appear at most two oppo-
sitely sensed vortices (vortex–antivortex pair) in the
thin superconducting film, l ! D (Fig. 3).

Substituting Eq. (18) into Eq. (16) for Gsource, we
find

(19)

where N is the number of vortex–antivortex pairs in the

superconducting film and . At L/D ≥ 1,
the terms in the sum in Eq. (19) fall off rapidly with
increasing n and it will suffice to keep only the first
term in order to estimate Gsource. The energy Gv is given
by Eq. (14) as before.

If there is only one vortex–antivortex pair in the film
(Fig. 3), then

(20)

In this case, for fairly thick superconducting films
l @ λ, we find

(21)

(22)

(23)

Gsource = 8Φ0M0N /πλ2( )–

×
πn/2( ) knR( )sinsin

2

nτnkn τn kn τnl/2( )coth+[ ]
---------------------------------------------------------------

n 1=

∞

∑ 1 knL–( )exp–[ ] ,

τn
2 kn

2 λ 2–+=

Pq 2iΦ0/λ2T2( ) qxR( ).sin=

Gv Φ0
2l/4π2λ2( )≅ K0 κ 1–( ) K0 2R ξ+( )/λ( )–[ ] ,

Gstray Φ0
2/4π2λ( ) π 2–( )/2 π Jν 2R/λ( )[–{=

– Jν 2R/λ( ) ] / πν ν 0→sin 2R/λ–( ) } ,exp+

Gsource 2Φ0M0D/π2( ) Cl2 2πR/D( )[–≅
+ Cl2 π 2πR/D–( ) ] ,

–R R D/2

M

–D/2

y

x0

1

–L

Fig. 3. Ferromagnet–superconductor system with a stripe
domain structure in the magnet and a pair of oppositely
sensed vortices in the superconductor (schematic). The
arrows indicate the directions of magnetization and the vor-
tex lines.
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where Jν(x) and Jν(x) are the Anger and the Bessel
functions of order ν, respectively, and Cl2(x) is the
Clausen function of the second order. From Eqs. (21)
and (22), it follows that the effect of the stray field is
small for fairly thick superconducting films
(Gstray/Gv ∝ λ /l ! 1). At R/λ @ 1, we have an asymp-
totic formula

such that the Gstray(R) dependence is weak and can be
neglected in comparison with the Gsource(R) depen-
dence. The energy Gv virtually does not depend on the
vortex–antivortex distance 2R for R/λ @ 1, while the
magnitude of Gsource reaches its maximum at R = D/4.
Putting R = D/4 and equating G to zero, we find the crit-
ical magnetization Mc to be

(24)

In contrast to the estimate of the critical field made in
[12], Eq. (24) involves the factor D/l; therefore, the crit-
ical magnetization and the corresponding critical field
can be very small. For instance, for a superconducting
film of YBa2Cu3O7 with a Curie temperature of Tc ≅
90 K, λ = 3 × 10–5 cm, l = 10–4 cm, lnκ ∝  1, and a
domain structure period equal to D = 5 × 10–4 cm, we
have 4πMc ∝  20 G; that is, the equilibrium state of such
a film with a ferrite coating is usually mixed. The
Meissner phase can be energetically favorable in a sys-
tem of a superconducting film with a small London
penetration depth λ and a diluted magnet or a magnet
near the magnetization compensation point.

If there is a vortex–antivortex pair within each spa-
tial period of the domain structure, then

(25)

and the critical magnetization (in the approximation
made) is identical to that given by Eq. (24). This is
because, in effect, we neglected the interaction between
the vortices. When this interaction is taken into
account, the critical magnetization for the periodic dis-
tribution of the vortices is found to be only slightly
smaller than that for a single vortex–antivortex pair.

If the spacing between the vortices is much larger
than λ, the dominant contribution to the energy Gstray is
due to large wave numbers and, therefore, Gstray is
approximately equal to the sum of the stray-field ener-
gies of noninteracting vortices:

(26)

Jν 2R/λ( ) Jν 2R/λ( )–[ ]
ν  ! 1

λ /2πR( ) πν ,sin≅

Mc Φ0l/16λ2D( ) κ .ln≅

Pq 4πiΦ0/λ2T2D( ) knR( )δ qx kn–( )sin
n ∞–=

+∞

∑=

Gstray Φ0
2N /8π2( ) dq

λ4T3 T q Tl/2( )coth+[ ]
--------------------------------------------------------.

0

∞

∫≅
P

Estimating the integral in Eq. (26) gives

(27)

It is seen that, within an order of magnitude, Gstray does
not exceed Gv for any thickness of the superconducting
film and, therefore, we can neglect the influence of the
vortex stray field.

Keeping only the first term of the sum in Eq. (19),
we obtain the following order-of-magnitude estimate of
the critical magnetization in the thickness range of the
superconducting film ξ ! l ! D:

(28)

According to Eq. (28), Mc decreases monotonically
with decreasing film thickness l. At λ2/lD @ 1, the crit-
ical magnetization is almost entirely independent of l,
because the screening of the magnetic flux by the
superconducting film is weak.

2. ANISOTROPY OF THE CRITICAL CURRENT

If the magnetization of the magnetic material
exceeds its critical value, the superconducting layer
will be in the mixed state and, even when the excess of
the magnetization above the critical value is small, the
number of vortices created by the field of the domain
structure with period D @ λ will be large.

Let us consider the case where a conduction current
of density j0 flows along the superconducting layer and
the current density is uniform over the yz cross section.
Each element of a vortex line is subjected to the
Lorentz force fL caused by the current, and the result
depends on the thickness of the superconducting layer
and the direction of motion of the charge carriers with
respect to the domain walls.

Figure 4 shows a system of vortices in a fairly thick
superconductor (l @ λ, D). The superconducting layer
completely screens the stray field of domains, and the
vortices do not reach the upper surface of the supercon-
ductor. When the current flows perpendicular to the
domain walls, the resultant Lorentz forces acting on
both halves of a vortex are equal in magnitude but
opposite in direction, so that the vortex remains immo-
bile. As the conduction current increases, the situation
remains qualitatively the same until the rearrangement
of the vortices, the motion of the vortex structure, and
the magnetic loss associated with this motion become
possible. However, when the current flows along the
domain walls (Fig. 4), some vortices are expelled and
some are drawn in the bulk of the superconductor. At a
certain value of the conduction current, the vortices
most deeply penetrating into the superconductor can
combine to form a single infinite vortex line. This vor-
tex penetrates further into the bulk of the superconduc-

Gstray Φ0
2N /8πλ( ) l/2λ( )coth

1–∝
× 1 l/2λ( )coth+[ ] .ln

Ṁc Φ0l/16λ2D( ) 1 2πλ /D( ) l/2λ( )coth+[ ]∝

× 1 2πL/D–( )exp–[ ] 1– κ .ln
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tor, thereby causing a rearrangement of the vortex
structure and a transition of the superconductor into a
resistive state.

If the superconducting layer is thin (l ! λ), the vor-
tex lines will be virtually perpendicular to its surface
(Fig. 5) and the effect of the conduction current will be
different in character. When the current is perpendicu-
lar to the domain walls, the vortices become mobile,
because the shear rigidity of the vortex lattice is low.
Therefore, one might expect the critical current to be
small if there is no vortex pinning in the superconduct-
ing film. In the case where the current is parallel to the
domain walls (Fig. 5), the vortex structure becomes
unstable when the current is sufficiently large so that
the nearest neighbor vortex–antivortex pairs annihilate
and new pairs are created.

Thus, the critical current in the ferromagnet–super-
conductor system can be highly anisotropic. However,
for anisotropy of the critical current to be observed, the
superconducting material must be very pure.

II fL j0

M
I

Fig. 4. Schematic distribution of the linear density of the
Lorentz forces fL exerted on the vortices by the conduction
current with a density j0(y) flowing through a thick super-
conducting film.

II

M

fL j0

I

Fig. 5. Schematic distribution of the linear density of the
Lorentz forces fL exerted on the vortices by the conduction
current with a density j0(y) flowing through a thin supercon-
ducting film.
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APPENDIX

Solving the equations of state (3) and (4) in combi-
nation with the magnetostatics equations (2) and the
boundary conditions at the surface of the superconduc-
tor, we arrive at the following expressions for the Fou-
rier transforms of the magnetic field:

The field Hsource produced by external sources and
the Meissner currents in the superconducting layer is

(A1)

inside the superconducting layer (0 < y < l) and

(A2)

outside this layer, where

For convenience, we have dropped the index q from the
Fourier transforms of the field and from the coefficients
a, b, Ψ–, and Ψ+.

The field of real vortices Hvr is described by the
expression

(A3)

and the field of the vortex images Hvi is given by

(A4)

where

H̃sourcex z, iqx z, a Tycosh b Tysinh+( ),=
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=  
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Ψ+ q y l–( )–[ ] , y l>exp


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T2 q2–( ) Tlsinh–=

× q 2qT Tlcosh T2 q2+( ) Tlsinh+[ ]{ } 1–
H̃ey 0( ),

Ψ+ 2T 2qT Tlcosh T2 q2+( ) Tlsinh+[ ]–
1–{=

+ q 1– ql–( )exp } H̃ey 0( ),

a ψ– q 1– H̃ey 0( ), b– T /q( ) ψ– q 1– H̃ey 0( )+[ ] .= =

H̃vr 4π/Φ0( ) drµṼ y yµ–( ) iqrµ–( ),exp∫
µ
∑=
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Expressions for the stray field Hstray are similar to
Eqs. (A1) and (A2). Inside the superconducting layer
(0 < y < l), we have

(A5)

and outside this layer, we have

(A6)

where

The position vectors rµ of the vortex lines outside the
superconductor can be conveniently varied when com-
puting the field.
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Abstract—The heat conductivity of polycrystalline zinc sulfide is investigated under hydrostatic pressure up
to 0.35 GPa in the temperature range 273–420 K. It is found that an increase in the uniform pressure leads to
an increase in the heat conductivity coefficient of ZnS. The Bridgman parameter characterizing the volume
dependence of the heat conductivity is determined experimentally. A correlation between the heat conductivity
coefficient under uniform compression and the evolution of the phonon spectrum is established. © 2001 MAIK
“Nauka/Interperiodica”.
Investigations into the heat conduction in solids sub-
jected to uniform compression are of great importance
for understanding the heat transfer processes associated
with crystal lattice dynamics. However, these investiga-
tions involve significant technical difficulties, and, as a
consequence, mechanisms of heat conduction in solids
under pressure are still not clearly understood. The
experimental data often poorly agree with their theoret-
ical interpretation.

The heat conduction in nonmetallic crystals sub-
jected to uniform compression changes as a result of
the decrease in the crystal volume. The volume depen-
dence of the heat conductivity is expressed in terms of
the Bridgman parameter g = –(∂lnκ/∂lnV)T, where κ is
the heat conductivity coefficient and V is the volume of
the sample. This expression can be transformed into the
dependence of κ on the pressure P, which can be deter-
mined experimentally; that is,

(1)

where BT is the isothermal bulk modulus. As a conse-
quence of an increase in the pressure and the ensuing
decrease in the volume, the lattice vibration frequencies
and the bond anharmonicity change and the interatomic
forces increase. This manifests itself as an increase in
the Debye temperature (Θ) and a decrease in the Grü-
neisen constant (γ).

The lattice heat conductivity of substances contain-
ing more than one atom per unit cell can be determined
in the temperature range near and above Θ according to
the generalized Leibfried–Schlemann formula [1]

(2)

where B is the coefficient depending on the lattice
structure and the type of chemical bonding in the mate-

g
∂ κln
∂ Vln
------------ 

 
T

– BT
∂ κln
∂P

------------ 
 

T

,= =

κ Bn1/3δMΘ3γ 2– T 1– ,=
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rial; n is the number of atoms per unit cell; δ3 is the
mean volume occupied by one atom in the crystal; 

is the mean atomic mass; and  and  are the mean
values of the Debye temperature and the Grüneisen
constant, respectively, for all phonon branches contrib-
uting to the heat transfer. It is seen from Eq. (2) that an
increase in Θ and a decrease in γ with a rise in pressure
increase the heat conductivity coefficient. Therefore,
the Bridgman parameter for solids is positive. How-
ever, this parameter was found to be negative for a
series of substances (ice, NH4F, and CuCl) [2–5]. The
anomalous g values in these substances were explained
by negative values of the Grüneisen constant for trans-
verse acoustic phonons and the predominant contribu-
tion of transverse phonons to the heat transfer as com-
pared to other phonon branches [2–5].

Zinc sulfide exhibits a negative γ value for trans-
verse acoustic phonon branches [6–9]. Therefore, one
can expect a negative or a small positive value of the
Bridgman parameter for ZnS. The aim of the present
work was to determine experimentally the Bridgman
parameter and to elucidate the role of various phonon
branches in heat transfer in ZnS.

Zinc sulfide is a compound with a simple crystal
structure and well-known elastic constants and phonon
spectrum [6–9]. The elastic constants and the sound
velocity, which were experimentally found for ZnS
polycrystals, differ insignificantly from these parame-
ters for single crystals [9]. Since the heat conductivity
of ZnS is high for nonmetallic crystals [10, 11], the
absolute values noticeably change under the action of
temperature and pressure, which is essential in analysis
of the experimental data.

We investigated polycrystalline zinc sulfide samples
with a grain size of 1–2 µm, which were prepared by
the recrystallization compacting of a ZnS powder under

M
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vacuum. The sample density was almost equal to that of
the single crystal. According to the x-ray diffraction
analysis, the samples had a cubic structure (β-ZnS
sphalerite).

The heat conductivity coefficient of ZnS was inves-
tigated as a function of pressure by the absolute com-
pensation method in the stationary thermal regime
according to the procedure described in [12]. The mea-
surements were performed under isobaric conditions in
the temperature range 273–420 K and isothermal con-
ditions at a pressure ranging up to 0.35 GPa with a step
of 0.05 GPa.

1
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Fig. 1. Temperature dependences of the heat conductivity
coefficient for polycrystalline zinc sulfide in various iso-
baric regimes: (1) under vacuum and at (2) atmospheric
pressure, (3) 0.1 GPa, and (4) 0.35 GPa.

Fig. 2. Pressure dependences of the heat conductivity coef-
ficient for polycrystalline zinc sulfide at different tempera-
tures T (K): (1) 273, (2) 300, (3) 360, and (4) 420.
P

The values of κ were measured under increasing and
decreasing pressures in the experimental setup. No hys-
teresis and residual phenomena were found upon the
pressure relief. In addition, the temperature depen-
dence of κ was measured with the same samples under
vacuum by the absolute stationary method on a setup
similar to the A-type installation described in [13].

The experimental data obtained are displayed in
Figs. 1 and 2. The results of the κ measurements under
vacuum (installation [13]) and at atmospheric pressure
(installation [12]) coincide within the limits of experi-
mental error.

Analysis of the absolute values and temperature
dependences of the heat conductivity coefficient of ZnS
samples shows that the main mechanism of heat trans-
fer in these samples in the temperature range covered is
determined by crystal lattice vibrations. Since the elec-
trical resistivity of ZnS is high, the electron-assisted
heat transfer can be ignored. Owing to the optical trans-
parency of the samples studied, we could expect that
the heat transfer in these samples is realized through
electromagnetic radiation (κphot). The estimate of κphot
was obtained according to the Hensel formula

(3)

where σ0 is the Stefan–Boltzmann constant, n is the
refractive index, and k is the absorption coefficient.
Using the k values reported in [14] and n taken from
[15], we found that κphot < 10–3 W/(m K) for the poly-
crystal with a grain size of 1–2 µm. This value com-
prises 0.006% of the heat conductivity coefficient for
polycrystalline ZnS. Therefore, the photon-assisted
heat transfer in ZnS can be ignored in the temperature
range covered. The correctness of this approximation is
also confirmed by the linear temperature dependence of
the thermal resistance in this temperature range. Thus,
the κ quantity obtained in the experiment is determined
only by heat transfer through crystal lattice vibrations
in samples.

The temperature dependence κ ~ T–1 which was
obtained experimentally in the absence of pressure,
indicates that the heat in zinc sulfide is transferred by
phonons and the phonon scattering mechanisms are
determined by the phonon–phonon processes and
phonon scattering by defects. The latter processes make
a constant contribution to the thermal resistance of
samples in the temperature range covered. The smaller
absolute values of κ for our samples in comparison with
the available data for a ZnS single crystal [10] (by
about 35% at 300 K) are due to strong phonon scatter-
ing by defects near grain boundaries in the fine-grained
polycrystalline ZnS sample.

Figure 2 shows the pressure dependences of the heat
conductivity coefficient for ZnS at four fixed tempera-
tures: 273, 300, 360, and 420 K. The heat conductivity
increases with an increase in pressure, which indicates

κphot
16
3
------

n2σ0T3

k
-----------------,=
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a positive Bridgman parameter for the ZnS samples.
By using the pressure dependence of the heat conduc-
tivity coefficient (Fig. 2), we calculated the Bridgman
parameter g for different temperatures according to for-
mula (1). The bulk moduli BT were taken from [9] in
which the BT values were obtained for ZnS polycrystals
similar to our samples. The calculation by formula (1)
for 273 K yields the parameter g = 13. As the tempera-
ture increases, the Bridgman parameter increases and
reaches g = 16 at 420 K. A similar increase in g with
temperature was found for alkali metal halides [16].
This was explained by the fact that the role of longitu-
dinal phonons in heat transfer increases with a rise in
temperature [16]. Since the Grüneisen constant for lon-
gitudinal phonons is considerably larger than that for
transverse phonons, the value of g also increases as the
contribution of longitudinal phonons to heat transfer
becomes more significant.

The following relationship for the Bridgman param-
eter was obtained with the use of expression (2) [1]:

(4)

Since γ = –(∂lnΘ/∂lnV)T by definition and the volume
dependence of the Grüneisen constant is defined as q =
–(∂lnγ/∂lnV)T, we have

(5)

With this formula and the known values of γ and q, we
can estimate the value of g.

As a rule, the Grüneisen constant is calculated from
the data on thermal expansion or from the experimental
dependences of the elastic constants on pressure. In the
former case, at T ≥ Θ when all acoustic phonon
branches are excited, γ is the arithmetic mean of γi for
all the acoustic phonon branches. The value γ = 0.75 for
ZnS at 300 K was found from the data on thermal
expansion [8]. The γ value for zinc sulfide, which was
determined from the pressure dependences of the elas-
tic constants, differs insignificantly from the above
value: γ = 0.83 [7]. Since the unit cell of the ZnS crystal
lattice contains two atoms, zinc sulfide is characterized
by three optical phonon branches in addition to the
acoustic branches. The mass ratio of zinc and sulfur
atoms is MZn/MS = 2.05. According to [17, 18], both an
extra heat transfer by optical phonons and scattering of
acoustic phonons by optical phonons become possible
at this ratio of atomic masses in the unit cell. The Grü-
neisen constant γ averaged over its values for both
acoustic and optical branches should be used in the case
when the optical phonons contribute to the heat trans-
fer. According to the technique applied in [5], the 
value was determined by the formula

(6)

g
∂ κln
∂ Vln
------------ 

 
T

– 3
∂ Θln
∂ Vln
------------- 

 
T

– 2
∂ γln
∂ Vln
------------ 

 
T

1
3
---.–+= =

g 3γ 2q
1
3
---.–+=

γ

γ
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where ΘTA and ΘLA are the Debye temperatures for
transverse and longitudinal acoustic branches, respec-
tively; ETO and ELO are the Einstein temperatures for
transverse and longitudinal optical phonons, respec-
tively; and γTA, γLA, γTO, and γLO are the Grüneisen con-
stants for the transverse and longitudinal acoustic and
optical branches, respectively. Using the data of γi, Θi,
and Ei taken from [6], we obtained the Grüneisen con-
stant averaged over all phonon branches:  = 1.6.

In the temperature range T ≥ Θ, q is determined by
the expression [19]

(7)

where α is the linear expansion coefficient and  is
the pressure derivative of the adiabatic compressibility.
Relationships 3α(  – 1)T ! 1 (α = 6.8 × 10–6 K–1 [8]

and  = 4.45 [6]) and q . γ are valid for zinc sulfide
in the temperature range covered. Then, formula (5)
takes the form

(8)

By neglecting the contribution of optical phonons to
heat transfer and taking γ = 0.83 in Eq. (8), we have g =
3.82, which is 3.5 times less than the g value obtained
from the experimental data. If the optical phonons also
participate in the heat transfer (this becomes possible at
the above ratio of atomic masses in the unit cell of
ZnS), we must take  = 1.6 in calculations of g with the
use of formula (8). In this case, we have g = 7.7, which
is closer to the g value found experimentally. This sug-
gests the participation of optical phonons in the heat
transfer in ZnS.

The considerable difference between the values of g
that were found directly from the dependence lnκ =
f(P) and those that were calculated with the use of rela-
tionship (8) is not surprising even with due regard for
the contribution of optical phonons to the heat transfer.
Indeed, the atomic mass ratio in the unit cell, the con-
figuration of the unit cell, the anisotropy, and the type
of interatomic bonding were disregarded when g was
determined according to formula (4). All this could lead
to a change in g with respect to the value calculated by
formula (4). As was shown in [16], if the atomic mass
ratio in the unit cell is not equal to unity, g is larger in
comparison with the value found from expression (4),
because formula (2) takes no account of the differences
between the masses of ions forming the unit cell.

Zinc sulfide is a material that possesses an elastic
anisotropy. The elastic anisotropy is described by the
parameter ξ = C11/C44 and characterizes the predomi-
nance of the axial polarization of vibrations over the
longitudinal–transverse polarization. A correlation
between κ and the elastic anisotropy was noted in [17]:
as ξ increases, the heat conductivity increases, too.

γ

q γ 1 3α BS
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Since, for ZnS, the pressure derivative for C11 is nine
times greater than that for C44 [6], the elastic anisotropy
also increases with a rise in pressure, which leads to an
increase in the g value obtained experimentally.

The value of g can also increase due to pressure-
induced shifts of peaks of the density of phonon states.
The high-frequency peaks shift toward higher frequen-
cies, and the low-frequency peaks are displaced to the
low-frequency range [6]. As a result of the increase in
the energy gap between the transverse and longitudinal
acoustic phonons, as well as between optical phonons,
the probability of the scattering of these phonons by
one another decreases. In this case, the lattice heat con-
ductivity increases with pressure, resulting in an
increase in g.

Thus, the investigation into the pressure dependence
of the heat conductivity coefficient of polycrystalline
ZnS allowed us to determine the Bridgman parameter g
from the experimental data. The increase observed in g
with an increase in temperature indicates an enhance-
ment of the role played by optical and transverse acous-
tic phonons in the heat transfer. The g value obtained
from the experimental dependence lnκ = f(P) was
larger than that determined from the data on the Grü-
neisen constant. This can be explained by the approxi-
mations in the choice of the γ and q values, the devia-
tion of the atomic mass ratio in the unit cell from unity,
the decrease in the phonon–phonon scattering due to
the shift of the peaks of the density of phonon states
under uniform compression, and the elastic anisotropy
in ZnS.
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Abstract—The effect of the interfaces of a multilayer spherical microcrystal on a charged particle is investi-
gated. The case is considered where an intermediate layer with space-dependent permittivity exists near the
interfaces. The dependence of the potential energy of the charged particle on distance is established by the
method of the classical Green’s functions. For the example of an HgS/CdS spherical structure, the energy of the
ground and excited states of an electron is calculated both in the presence of an intermediate layer with space-
dependent permittivity and in its absence. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Advances in the physics of quantum quasi-zero-
dimensional nanostructures are associated not only
with the constantly increasing possibilities associated
with the technology of the production of perfect and
complex heterosystems, but also with the development
of more adequate theoretical models of these struc-
tures.

The first theoretical works [1–8] wherein analysis
was carried out on the experimental excitonic absorp-
tion spectra of CuCl and CdS nanocrystals dispersed in
glass matrices [9–11] were based on a simple model of
a spherical, infinitely deep potential well for electrons
and holes. On the basis of this model, important theo-
retical results were obtained which qualitatively agree
with the experiment. In particular, it was shown that the
short-wave shift of the maximum of the absorption
coefficient is inversely proportional to the quantity mea2

(me is the electron mass and a is the radius of a quantum
dot) if ah ! a ! ae and a ! ah, ae (ah and ae are the Bohr
radii of an electron and a hole) and to the quantity (me +
mh)a2 when the radius of the nanocrystal satisfies the
condition a @ ah, ae.

In [12–17], for heterosystems of a different nature,
the existence of bound surface charges was taken into
account through the potential of the electrostatic image
forces. The conditions for the occurrence of the bound
states of electrons near interfaces were investigated.
The effect of the surface polarization charges of the het-
erostructure on the exciton energy and on the oscillator
strength of the transition to the exciton state was stud-
ied. The calculations demonstrated that, in the case of
closeness of the dielectric constants of the layers of the
heterosystem, a model of a square infinite potential
1063-7834/01/4302- $21.00 © 20235
well can be taken as a basis and the influence of the sur-
face charges can be taken into account by the perturba-
tion theory.

Further experimental investigations made it possible
to produce heterostructures in which various semicon-
ductor compounds are used for the nanocrystal and the
matrix [18–21].

In recent years, multilayer nanosystems wherein a
quantum dot contains a nucleus and several semicon-
ducting layers [20] have been intensely investigated.
Interesting results were obtained for heterosystems
with closely located quantum wells [20–25].

The theoretical works in which the heterosystems
mentioned above have been investigated are based on
the models of quantum points where an electron and a
hole are located in finite potential wells. This approach
allows one to provide a possible explanation for the
genesis of the energy spectrum in the case of two parti-
cles, the tunneling between the layers of complex nano-
heterosystems, and the splitting of the energy levels for
closely located quantum dots [20, 24, 25].

Modern technology of the production of complex
nanoheterostructures of semiconductors and dielectrics
makes it possible to produce them with sufficiently
high quality. However, in actual practice, it is very dif-
ficult to produce an inhomogeneous system with a jum-
plike variation of all physical parameters at the inter-
face [26, 27]. Among these parameters are the work
function, the effective masses of the electrons (holes),
and the dielectric constants of the materials.

It is evident that, in a heterostructure, there always
exists an intermediate layer where some physical
parameter varies from its value corresponding to one
semiconductor (dielectric) to the value corresponding
to another crystal [27].
001 MAIK “Nauka/Interperiodica”
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In this work, we consider an intermediate layer in
order to take into account the smooth variation of the
dielectric constant of the materials near the interfaces
of a heterosystem. A model of such a layer is proposed,
and in this model, an expression is obtained for the
potential energy of a charged particle in a multilayer
spherical heterostructure with intermediate regions
near the interfaces. For a spherical HgS/CdS structure,
the energy of the ground and excited states of the elec-
tron is calculated both in the presence of an intermedi-
ate layer with space-dependent permittivity and in its
absence.

1. FORMULATION OF THE PROBLEM

A multilayer semiconductor nanoheterosystem is
considered (Fig. 1); it is composed of crystals with
dielectric constants ε1, ε2, …, εn. The interfaces of the
heterosystem are concentric spheres with radii R1,
R2, …, Rn – 1. The dielectric constant of the materials
near the interfaces in regions of thicknesses L1, L2, …,
Ln – 1 depends upon the coordinate r (r is the distance
from the center to a given point) and is defined by the
formula

where

ε r( )
1
2
--- 1 S r( )–{ } εi,

i 1=

n

∑=

S r( ) γ1 f
r R1–

L1
-------------- 
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Fig. 1. Model of a spherical multilayer nanoheterosystem.
P

 is a monotonic function such that

for any value of i (i = 1, 2, …, n – 1).
A point charge q located at r0 generates a potential

φ(r, r0) at point r. This potential is a solution to the
Poisson equation 

where δ(r – r0) is the Dirac delta-function. The poten-
tial energy of the charge in the polarization field
induced by this charge is determined by the formula

(1)

where

(2)

By means of the substitution

φ(r, r0) = –4πq[ε(r)ε(r0)]–1/2G(r, r0), (3)

the Poisson equation is simplified:

∇ 2G – V(r)G = δ(r – r0), (4)

where

and G(r, r0) is the Green’s function.
The solution of Eq. (4) is carried out by the method

of successive approximations. This method assumes a
small value of “potential” V(r). This is the case when

which is satisfied in most experiments [18–20], since
heterosystems consist of semiconductors with closely
related features. Green’s function can be represented in
the form of a rapidly convergent series:

G = G(0) + G(1) + G(2) + … ≡ G(0) + ∆G. (5)

In zero approximation, Eq. (4) has the form

∇ 2G(0)(r, r0) = δ(r – r0).
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To within a constant multiplier, G(0) is the potential of a
point charge; therefore,

(6)

When the corrections of higher orders of smallness are
consecutively considered, the equation for G(n) can be
worked out to

∇ 2G(n) – V(r)G(n – 1) = 0, n = 1, 2, 3, …,

where

(7)

It follows from Eqs. (2), (3), (5), and (6) that φ(r) in
Eq. (1) is determined by the corrections of higher orders:

(8)

where

∆G(r, r) = G(1)(r, r) + G(2)(r, r) + ….

If we expand the functions in a Fourier series,

and substitute the result in Eq. (7), we arrive at

After passing to a spherical frame of reference and inte-
grating with respect to q1 and q2, the formula for G(1)

becomes

The correction G(2)(r, r) is obtained in a similar man-
ner:
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where

These results are reasonably general. To make them
more specific, it is necessary to take into account an
explicit form of the function V(r) and to express it via
small parameters γi. If we expand V(r) in a power series
in γi and keep only the terms which are proportional to

γi and , V(r) is represented by the formula

Now, ∆G can be written in the form

(9)

As indicated by Eqs. (1) and (8), the general expression
for the potential energy of the charge is represented via

–
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the corrections to Green’s function in Eq. (9):

The heterosystems which consist of two, three, and
even four layers have been investigated experimentally
[20]. It is an easy matter to obtain an analytical expres-
sion for U(r) in each case, in particular, for a two-layer
(nanocrystal–matrix) system when

and the potential energy of the charge can be repre-
sented in the form

(10)

Detailed determination of U(r) is possible after specifi-

cation of the function f = f  is carried out. In the

case of the considered heterostructures, this function is
not known. Analysis reveals that the final results virtu-

ally do not depend on the specific form of f = f

if it is a smooth function. In this paper, it is assumed
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Table 1.  Parameters of the materials

Crystal me(m0) Ve, meV ε

HgS 0.036 –5000 11.36

CdS 0.2 –3800 5.5
PH
that

It is appropriate to represent the potential energy in
the form

U(r) = U1(r) + U2(r), (11)

where U1(r) includes the terms proportional to γi and

U2(r) includes those proportional to :

Figure 2 represents the dependences U = U(r)
(curve b) and U1 = U1(r) (curve c) for the nanocrystal
HgS/CdS for R = 50 Å and L = 5 Å (physical parame-
ters are represented in Table 1). If we include the polar-
ization charges on the interface in the case of a jump-
like change in the dielectric constant, the potential
energy of the charged particle will have a Coulomb
character [12–17] and the function U(r) will suffer a
discontinuity at r = R (curve a in Fig. 2):
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where

and F(x, y, z, u) is the hypergeometric function. How-
ever, if ε = ε(r) has the form of Eq. (10), then, as can be
seen from Fig. 2, the function U(r) becomes continuous
(curve b) and varies nonmonotonically in the interme-
diate layer and in its vicinity. In this case, the major
contribution to U(r) is made by the term U1(r) (curve c).
It is significant that a decrease in the width of the inter-
mediate layer L is accompanied by a sharper U(r)
dependence, and in the case L  0, we obtain the
known result for the potential of the image forces
(curve b coincides with curve a).

2. THE ENERGY OF THE ELECTRON 
IN s STATES IN THE HgS/CdS SYSTEM

A two-layer spherical nanoheterosystem which con-
sists of a HgS nucleus embedded in a CdS matrix is
considered.

The Hamiltonian of the electron has the form

H = T + V(r) ≡ H0 + U(r),

where

V(r) = V0(r) + U(r),

H0 = T + V0(r).

The main part of the Hamiltonian (H0) is chosen such
that the Schrödinger equation describing this system
can be solved exactly when perturbation U(r) is dis-
carded:

According to the choice of the model of the hetero-
system, potential energy V0(r) has the form of a spher-
ically symmetrical finite (Fig. 3) or infinite square
potential well. Perturbation U(r) is taken to be a poten-
tial which has the form of Eq. (11) or Eq. (12).

When employing either model for the majority of
the actual systems, we can limit ourselves to correc-
tions of the first and second orders in perturbation
theory:

(13)
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where

Therefore, in order to find  and , it is necessary to
determine the wave functions for the basic Hamilto-
nian.

First, we consider the model in which, in the zeroth
approximation, the electron moves in a radial-symmet-
ric potential of the form

The electron has different effective masses in the differ-
ent media:

Vnn' Rn0U r( )Rn'0r
2

r.d∫=

En' En"

V0 r( )
V1, 0 r R< <
V2, R r ∞.< <




=

m
m1, 0 r R< <
m2, R r ∞.< <




=

Fig. 2. Dependence of the potential energy of the charged
particle upon its distance from the center of the nanocrystal.
(a) U(r) with the interface polarization charges included and
(b) U(r) and (c) U1(r) with no interface polarization charges.
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Fig. 3. Model of a finite potential barrier in the presence of
an intermediate layer (curve a) and in the absence of this
layer (curve b).
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Table 2.  Energies of the ground and excited states ( , ) and corrections to these energies (∆E0, ∆E1) as functions of the
radius R for a finite potential well when the width of the intermediate layer is L = 5 Å and for an infinite potential at the interface

R, Å

The potential well

finite infinite

, meV , meV ∆E0, meV ∆E1, meV , meV , meV ∆E0, meV ∆E1, meV

20 –636 – 30.78 – 1411 9246 42.03 46.56

25 –757 – 28.18 – 471 5485 33.62 37.24

30 –841 – 25.62 – –40 3442 27.96 30.95

35 –902 – 23.31 – –348 2211 23.89 26.48

40 –948 – 21.11 – –548 1411 20.76 23.26

45 –984 –73 19.27 10.53 –685 863 18.33 20.67

50 –1012 –244 17.92 13.19 –783 471 16.34 18.59

E0
0 E1

0

E0
0 E1

0 E0
0 E1

0

In order to determine the energy spectrum, it is neces-
sary to solve the time-independent Schrödinger equa-
tion

Taking into account the spherical symmetry, a solution
to this equation can be represented in the form

Ψnlm(r, Θ, ϕ) = Rnl(r)Ylm(Θ, ϕ).

If we consider the s states of the particle (l = 0) and

the energy range V1 ≤  ≤ V2, the radial part of the
wave function can be expressed in terms of the Bessel
spherical functions

where

In order to determine the unknown coefficients, the
conditions of continuity of the wave functions and of

"
2

2
-----— 1

m
----—– V0 r( )+

 
 
 

Ψ r( ) En
0Ψ r( ).=

En
0

Rn0 r( )
A j0 rkn( ), 0 r R< <

Bh0
– irχn( ), R r ∞,< <




=

kn
2 2m1

"
2

--------- En
0 V1–( ), χn

2 2m2

"
2

--------- V2 En
0–( ).= =

Table 3.  Corrections to the energies (∆E) as functions of the
width of intermediate layer (L) for R = 50 Å

L, Å 1 2 3 4

∆E0, meV 16.42 17.71 17.85 17.89

∆E1, meV 8.92 11.24 12.42 12.91
P

the density of the probability flux across the interface
and the normalization condition are employed,

(14)

Substituting the wave functions

(15)

and their derivatives into Eq. (14) and using the condi-
tion for a nonzero solution, we arrive at the following

dispersion equation, from which the energies  (n =
0, 1, 2, …) of s states can be determined:

For comparison, we also consider the model of an
infinite potential barrier at the interface, for which the
dispersion equation is simplified:

sin(Rkn) = 0.

The first and second corrections to the energy of the nth
state are given by Eq. (13).
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3. ANALYSIS OF THE RESULTS

Using the formulas obtained in the preceding sec-

tions, we computed the energies of s states (  and

∆En =  + ) in the HgS/CdS nanoheterosystem
(Table 2).

The energy levels of the ground and excited states
exist in the model of an infinite square potential well for
any values of the radii of the nanocrystal. An increase
in R leads to lowering of the energy levels, including
the electrostatic image forces resulting in increased
energies.

For the model of a finite potential well, a discrete
energy level emerges in the system when R ≥ 7 Å. An
increase in the radius of the nanocrystal also leads to
lowering of the level. When the radius of the nanocrys-
tal becomes greater than 42 Å, a second discrete level
comes into existence in the quantum well. As regards
the correction ∆E to the energy caused by the existence
of the intermediate layer with variable permittivity, an
increase in radius R causes this correction to decrease.
Physically, this is because an increase in R leads to a
decreased effect of the interface on the energy levels of
the system.

The calculations demonstrate that the correction to
the energy depends on the energy level. For a state with
a greater energy (Table 3), the correction decreases.
Furthermore, ∆E depends on the thickness of the inter-
mediate layer: a decrease in L is accompanied by a
decrease in ∆E. The ∆E(L) dependence is heavier for
the states with greater energies.

4. CONCLUSION

Thus, in this paper, an expression is obtained for the
potential energy of a charged particle in a spherical
multilayer heterosystem with intermediate regions near
the interfaces where the permittivity is a smooth func-
tion of the distance. It is shown that, in contrast to the
classical potential of the image forces, the potential
energy is a continuous function in this case. Different
models of the spherical HgS/CdS nanostructure are
considered. In these models, the energies of the ground
and excited states of the electron are calculated both
when the intermediate layer exists and when it is
absent. Analysis of the obtained results is carried out.
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Abstract—A new interpretation of the nature of the resonance in the quantum-yield K spectra of boron in the
crystal 3C BN is proposed. This interpretation is based on calculation of the electronic energy band structure
of the nonstoichiometric boron nitride 3C BN0.99, which is carried out by the local coherent potential method
in the multiple-scattering approximation. The tops of the valence band and of the XANES range of nonsto-
ichiometric and perfect crystals of boron nitride are compared with the x-ray photoelectron spectrum of 3C
BN and the BK-absorption edge spectrum. The electronic states near the BK-absorption edge are modeled and
discussed for the relaxed and metastable states caused by the formation of vacancies in the nitrogen sublattice.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Selective peaks (resonances) in the K-absorption
(quantum-yield) spectra of boron have been recognized
for more than a quarter of a century [1–3] and still
remain a subject of current investigations [4]. This is
because high-temperature wide-band-gap semiconduc-
tors have found extensive application in micro- and
optoelectronics [5]. In the spectrum of boron nitride
with both hexagonal [3] and zinc-blende (cubic) struc-
tures [4], there is an energy gap between the top of the
valence band and the resonance in the K-absorption
spectrum of boron, which can be as large as 6 eV [3].
The selective peaks in the BK XANES of hexagonal
boron nitride are associated with an excited state which
arises when a 1s electron of boron is knocked out and
an x-ray exciton is formed [1]. The excited state is spa-
tially localized near the B-atom core and, according to
[3], possesses p symmetry, because the selective peak is
associated with the transition of a 1s electron to an
excited level corresponding to a boron 2p orbital that is
not involved in the formation of bonds in planar hexag-
onal nets. In the cubic c-BN, the presence of a selective
peak in the BK XANES is associated in [4] with the
creation of an excited state of the Wannier-exciton type
(so-called core exciton) in the shell of a boron atom.

In this paper, we calculate the electronic band struc-
ture of the nonstoichiometric boron nitride c-BN0.99 in
the framework of the multiple-scattering theory and
offer a new interpretation of the resonances in the
BK-XANES spectra of boron nitride.
1063-7834/01/4302- $21.00 © 20242
1. CALCULATION TECHNIQUE

The electronic band structure of the nonstoichio-
metric boron nitride c-BN0.99 is calculated by the local
coherent potential method in the framework of multi-
ple-scattering theory [6]. The crystal potential is calcu-
lated in the virtual-crystal model [7]. This method is
notable for the reason that it allows one to investigate
systems with crystal symmetry imperfections and, spe-
cifically, to calculate the electronic structure of nonsto-
ichiometric c-BN0.75 [6]. When calculating the poten-
tial, we take into account the contributions to the elec-
tronic density from neighboring atoms and the
Coulomb potential of 30 coordination shells. The
exchange potential is calculated in the Slater Xα
approximation with an exchange correction of α = 2/3.
The effective crystal potential is found as the sum of the
Coulomb, exchange, and Madelung potentials. A defi-
cit in atoms in the nitrogen sublattice can lead to lattice
softening due to dangling bonds and to lattice relax-
ation causing the lattice parameter to decrease [8]. The
crystal muffin-tin potential is calculated for the equilib-
rium state with a lattice parameter of 6.78608 a.u. and
for a nonequilibrium state with a = 6.83136 a.u. The
first seventeen shells of neighbors were taken into
account when considering the electron multiple scatter-
ing for each of the three clusters used for the calcula-
tions. The clusters consisted of 265 atoms each.

The local partial electronic densities of states for
a vacancy and B and N atoms can be calculated from
001 MAIK “Nauka/Interperiodica”
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the formula [9]

(1)

where index A specifies the type of atom in the cluster,
l is the orbital quantum number, R(E, r) is a radial wave
function, and T is the matrix element of the scattering
operator. The total electronic density of states (TDOS)
of the atoms in 3C BN is calculated under the assump-
tion that there are two types (B1 and B) of scattering
boron atoms:

(2)

where x is the concentration of nitrogen vacancies in
the crystal. Boron atoms of type 1 (B1) are those nearest
to a nitrogen vacancy; the other boron atoms are
assumed to be situated in a perfect c-BN crystal. This
separation is possible because the vacancy concentra-
tion is low (less than 10%).

2. RESULTS AND DISCUSSION

Figure 1 shows an experimental x-ray photoelectron
spectrum (XPS) of a real crystal of c-BN1 – x, the TDOS
of the nonstoichiometric boron nitride c-BN0.99 (in the
unrelaxed state), and the BK-XANES (quantum-yield)
spectrum of c-BN. Analysis of the electronic spectra of
the nonstoichiometric c-BN0.99 and their comparison
with those of the stoichiometric c-BN allow one to
make some suggestions. For example, in the vicinity of
the XANES, the electronic structure of the nonstoichi-
ometric c-BN0.99 exhibits a fine structure which is not
typical of the stoichiometric c-BN. This structure is
associated with localization of the unoccupied s and
p states of boron atoms of type 1 (peaks a3 and b3) and
of the vacancy states (peak a2). It is significant that the
unoccupied energy level 1.34 Ry involved in the elec-
tron scattering by vacancies coincides with the position
of the CE resonance peak in the BK-XANES spectrum
of c-BN. Therefore, an excited 1s electron passes to the
unoccupied vacancy p states, rather than to the boron
2p states as indicated in [3]. The unoccupied boron
p states (peaks a4 and b4) are localized in a high-energy
range and cannot be responsible for the CE resonance.
As indicated in [4], the CE resonance and the spectral
features in its vicinity are associated with the 1s and 2s
Wannier core excitons. It should be noted that these
excitonic levels cannot be described in terms of the
one-electron boron 2s states localized at energies of
1.22 and 1.46 Ry, which are responsible for the
K-absorption edge structure just below the threshold.
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The absence of the CE resonance (1.34 Ry) in the cal-
culated energy bands in [4], in our opinion, can be due
to the one-electron approximation used. This approxi-
mation is known to give one-electron states which can
differ from the excitonic states belonging to the whole
crystal [10]. Since the selection rules for quantum tran-
sitions can be violated in real crystals (with lattice
imperfections) [10], one can assume the occurrence of
the process of excitonic excitation mentioned above,
namely, the transition of a boron 1s electron to the exci-
tonic level, as proposed in [1, 4]. However, if in the
boron nitride crystals studied the nitrogen sublattice
exhibited nonstoichiometry, as was the case with the
crystals studied in [11, 12], then one can assume that
the CE resonance (1.34 Ry) is associated with vacan-
cies. The presence of vacancies in c-BN crystals can be
due both to the conditions under which the x-ray
absorption spectra were recorded and to the conditions
of crystal synthesis. Since the data on the lattice param-
eter of the crystal studied are not presented in [4], we
consider both possibilities.

It is known that, e.g., in a CdS crystal under irradia-
tion, sulphur atoms are observed to be emitted [13] and,
therefore, among other structural imperfections, vacan-
cies are created. Since recombination is not an instan-
taneous process, one can assume, as in [13], that two
states can arise in a c-BN crystal; one state is equilib-
rium (with the lattice parameter a = 6.78608 a.u.) and
the other is unrelaxed (a = 6.83136 a.u.). The former
state can be in an as-grown crystal, as in [12], or it can
arise when quantum-yield spectra are recorded. In the
approximation employed in this paper, we also calcu-
lated the electronic density of states for the equilibrium
state in c-BN0.99, in which there is no shift of the top of
the valence band to lower energies, in contrast to the
case of boron B1 (Fig. 1c). It is significant that, in the
equilibrium state, there is an energy gap of 2 eV
between peak a2 due to vacancies and an unoccupied
one-particle electronic energy level, 1.5 eV, of a boron
atom. In the unrelaxed state, the calculated density of
unoccupied electronic states of a boron atom with an
energy of 1.34 Ry is very low. Thus, in a c-BN0.99 crys-
tal in the unrelaxed state, there is some probability that
a 1s electron of a boron atom will pass to the unoccu-
pied states associated with both a vacancy and a boron
atom (peak a3).

The reason for the formation of vacancies in a c-BN
crystal during absorption spectrum recording [4], in our
opinion, has to do with the conditions under which the
quantum-yield spectrum was measured. For example,
the surface of a sample under irradiation can heat up,
which leads to thermal activation of the diffusion of
boron (nitrogen) atoms in the bulk of the sample, as was
the case with the hexagonal h-BN and cubic c-BN after
heat treatment [14]; on the other hand, charge accumu-
lation will occur on the surface, resulting in a decrease
of the potential and, perhaps, in the singularity of the
state with an energy of 1.34 Ry. The formation of struc-
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tural defects (vacancies for the most part) in diamond-
like semiconductors under laser radiation was experi-
mentally established in [13]. It was shown that, when
irradiated at 300 K by nanosecond pulses (20 ns) of a
ruby laser (λ = 0.69 µm, and the energy of a quantum
being less than the energy gap width), single crystals of
CdS accumulate structural defects in their surface
region. Hall effect measurements also showed [13] that
the concentration of donor centers in a surface layer
approximately 0.6 µm thick became two orders of mag-
nitude higher after a sevenfold increase in the irradia-
tion dose (relative to the initial value 1014 cm–3). The
facts presented above are evidence in favor of our state-
ment that the CE resonance in the BK XANES of boron
nitride is associated with vacancies.
P

Of interest is the energy gap between the CE reso-
nance and the Fermi level in c-BN0.99. This energy gap
equals 4.6 eV and is 1.4 eV smaller than the energy sep-
aration between the short-wave limit of the emission
band and the selective peak (in the quantum yield) for
the hexagonal boron nitride h-BN [2]. This difference
can be explained in terms of the energy band structure
of h-BN, in which the band gap is larger [15, 16].

The Fermi level EF is found from the formula

Nve 2 N E( ) E,d

0

EF

∫=
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where the factor of 2 is due to the spin degeneracy and
Nve is the number of valence electrons (per unit cell) in
the compound. The number Nve does not allow for the
2s electrons of nitrogen, whose energy lies below the
zero of the muffin-tin potential.

In the nonstoichiometric c-BN0.99, the electronic
spectrum is rearranged near the top of the valence band,
so that the state with an energy of 0.4 Ry becomes
localized. This state can be considered the ground state
for valence electrons of nitrogen atoms. The p states of
a vacancy on the nitrogen sublattice, which are local-
ized with an energy of about 0.60 Ry (peak D2), make
a contribution (proportional to their concentration) to
peak D1 in the TDOS curve for c-BN0.99. The largest
contribution to this feature is made by the occupied s
and p states of boron and nitrogen atoms.

Thus, the CE resonance in the range just below the
K-absorption (quantum-yield) edge of boron in c-BN,
in our opinion, can be associated not only with an
excited state of the crystal of the Wannier core-exciton
type, but also with the transition of a 1s electron to
unoccupied vacancy states. The model of the resonance
in the absorption spectrum of boron in c-BN proposed
in this paper is consistent with the published experi-
mental data on the structure of the electronic spectra of
real crystals of 3C BN. This model enhances the under-
standing of the nature of the selective peak in the BK
XANES of cubic boron nitride. If our interpretation of
the CE peak in the K-absorption spectrum of boron is
true, the intensity of this peak has to be proportional to
the vacancy concentration, which can be high in a real
crystal.
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Abstract—The UV absorption spectra of beryl crystals exposed to fast neutrons with a fluence of 1014–
1019 cm–2 are investigated. It is found that as the fluence of particles increases, a characteristic fan-shaped
broadening of the long-wavelength edge is observed for the impurity adsorption band with a charge transfer.
The experimental results are interpreted on the basis of the generalized Urbach rule in the approximation of an
induced quasi-dynamic disorder. The effective cross section of radiation-induced lattice disordering in the crys-
tals under investigation is estimated at a value (σ = 2.58 × 10–18 cm2) close to the neutron amorphization cross
sections for other crystalline silicates. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Intensive studies of radiation resistance of solids
and practical application of fast neutron flows from
nuclear reactors for modifying the physical properties
of materials require an analysis of the regularities of
induced defect formation. The structural disorder cre-
ated by neutron irradiation and the nature of the result-
ing crystal lattice distortions are similar in many
respects to atomic disordering associated with thermal
and deformation effects [1–3]. Radiation-induced
effects have been studied in detail for semiconductors,
alkali halide crystals, and simple wide-gap oxides [1,
4]. At the same time, the behavior of complex oxide-
based insulators in radiation fields has been studied
insufficiently. The presence of several types of anionic
and cationic sublattices in such objects and the related
possibility of forming a variety of complex defects give
rise to a complex energy excitation spectrum in the
electronic and vibrational subsystems of the crystal. In
this case, an analysis of the response to irradiation for
particular types of distortions is complicated and
requires the application of special approaches using
generalized microscopic parameters characterizing the
structural disorder of the system as a whole.

By way of an approach to an analysis of the radia-
tion-induced disorder in multicomponent oxide crys-
tals, we can interpret the temperature behavior of the
optical spectra of disordered materials on the basis of
the equivalence principle of the static and dynamic
components of the overall atomic disorder [5, 6]. This
approximation makes it possible to clarify the role of
atomic disordering effects in the spectral and tempera-
ture characteristics of the object on a qualitative as well
as a quantitative level [7].

In this work, we studied the radiation-induced disor-
dering in a beryl single crystal. This crystal is a beryl-
1063-7834/01/4302- $21.00 © 0246
lium–aluminum–silicon triple oxide and is of practical
interest as a promising matrix for creating quantum
amplifiers in the microwave range. The beryl crystal
Be3Al2Si6O18 belongs to the group of ring silicates. Its
crystal structure is formed by hollow channels built up
of the rings of six SiO4 tetrahedra which are arranged
one above another and rotated relative to one another
through a certain angle. The channels are connected
into a three-dimensional lattice via Al3+ and Be2+ cat-
ions in the sixfold- and fourfold-coordinated oxygen
environments, respectively. The main microscopic
impurity is formed by chromium and iron atoms in var-
ious charge states and atomic positions, which can
serve at the same time as a peculiar probe for studying
the radiation-induced modification of the properties of
the oxide. The aim of this work was to analyze the opti-
cal spectra of beryl single crystals irradiated by fast
neutrons in the UV range.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

The samples under investigation were cut in the

direction parallel to z([ ]) from a nominally pure
beryl single crystal grown by using the solution–melt
technique. In the final form, the samples were transpar-
ent plane-parallel 5 × 5-mm plates of thickness 0.7 mm
with polished surfaces of optical quality.

The crystals were irradiated in air by fast neutrons
in an IBR-30 reactor. The sample temperature during
irradiation did not exceed 50°C. The exposure time was
chosen so that the fluence Φ of particles varied from
1014 to 1019 cm–2. The irradiation by fast neutrons ruled
out transmutation effects, and a smooth variation in the
fluence allowed us to dose the radiation-induced dam-
age in the crystal lattice.

1120
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The UV absorption spectra of the crystals were
measured on a Specord M40 spectrophotometer at
room temperature.

3. RESULTS

Figure 1 shows the measured dependences of the
absorption coefficient α on the photon energy hν for the
initial beryl single crystal and irradiated samples. The
corresponding fluences Φ are indicated in this figure. It
can be seen that, for all the samples, the curves can be
successfully approximated by linear characteristics
(solid straight lines) in semilogarithmic coordinates.
With increasing fluences in the range Φ < 1017 cm–2, the
straight lines describing the spectral dependences
exhibit a parallel displacement to the low-energy range.
As the fluence increases to Φ > 1017 cm–2, the straight
lines continue their displacement toward lower ener-
gies, but their slope decreases. It should be noted that
extrapolation to the high-energy range of the spectrum
leads to the intersection of the straight lines at a single
point. The region of convergence of the curves in Fig. 1
is marked by the circle.

Figure 2 displays the induced absorption spectra,
which were obtained by subtracting the spectrum of the
initial crystal from the spectrum of the sample exposed
to neutrons with the corresponding fluence. It is clearly
seen that the observed dependences can also be approx-
imated by straight lines in semilogarithmic coordinates.
For Φ = 1014–1018 cm–2, the straight lines have the same
slope, which noticeably decreases in the range of Φ ≈
1018 cm–2 and remains unchanged upon a further
increase in the fluence.
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Fig. 1. Optical absorption spectra of beryl crystals irradiated
by fast neutrons. The fluences Φ are indicated for each
symbol.
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Figure 3 shows the dependence of the reciprocal
logarithmic slope E0 = ∂h/∂α on the neutron fluence Φ.
The experimental point on the ordinate axis corre-
sponds to the slope in the initial unirradiated sample. It
can be seen that for Φ < 1018 cm–2, the parameter E0
remains constant within an error of 3% (closed circles)
for the main absorption spectra (Fig. 1). However, upon
a further increase in the neutron flux, the slope
increases from 0.102 ± 0.003 to 0.158 ± 0.005 eV.
Curve 1 in Fig. 3, which is drawn through experimental
points, visually illustrates the behavior described
above. The inset to Fig. 3 shows the values of E0 for
induced absorption (open circles). We can clearly see
two regions of constant values of the slope: E0 =
0.120 ± 0.004 eV for Φ = 1014–1018 cm–2 and E0 =
180 ± 0.005 eV for Φ > 1018 cm–2.

In the general case, the parameter E0 characterizes
the width of the corresponding optical band and simul-
taneously reflects the degree of overall structural disor-
der which is present in the system and affects the opto-
electronic transitions [5]. We will analyze the obtained
results from the viewpoint of increasing atomic disor-
der in a crystal exposed to fast neutrons.

4. DISCUSSION

Irradiation by fast neutrons creates a variety of
defects in the bulk of silicate matrices with various
degrees of ordering of the silicon–oxygen sublattice.
Among these defects, distortions of the oxygen-defi-
ciency type, which are detected as paramagnetic E '-
centers, are most abundant and have been studied most
thoroughly [2, 8, 9]. In the optical absorption spectra of
phenacite Be2SiO4 and quartz α-SiO2 crystals, which
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are akin to beryl, these centers correspond to bands at
5.6 and 5.9 eV, respectively [2, 8, 9]. Along with E '-

centers, complementary hole-type -centers, as well
as mono- and divacancies of oxygen, are also detected.
The latter are associated with twofold-coordinated sili-

con atoms  in crystalline silicates (the so-called B2

band in optical absorption spectra) [8, 10, 11]. It was
proved earlier [2] that the absorption induced in irradi-
ated beryl crystals falls in the region of strong absorp-
tion characteristic of the original matrix. The formation
of paramagnetic E '-centers in beryl exposed to fast neu-
trons is recorded by the corresponding EPR signals and
by measurements of the thermally stimulated electron
emission [2].

The spectra observed for all the samples under
investigation correspond to the long-wavelength edge
of the wide absorption band associated with an optical

transition with a charge transfer O2–   (iron
impurity at the beryllium site) [12]. In our experiment,
the characteristic bands associated with the generation
of E '-centers are completely masked by a more intense
charge transfer band. Thus, we can assume that, in this
case, the transformation of the impurity absorption
band edge reflects the overall disordering processes
occurring in the bulk of the crystal.

The obtained exponential dependences (see Fig. 1)
can be described using the Urbach rule [13, 14]. It was
shown earlier [5, 15] that the spectral–temperature
dependence of the absorption edge can be represented
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2 1
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E
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Fig. 3. Dependence of the disorder parameter E0 on the neu-
tron fluence. Curve 1 and dark circles correspond to experi-
mental data, and curve 2 is the result of an approximation by
formula (3). The inset shows the dependence of Φ on the
parameter E0 for induced absorption; the axes are the same
as in the main figure.
P

by an exponential dependence of the general form

(1)

where α0 is a constant; hν is the photon energy; Eg(T)
is the temperature function of the optical gap width (the
most probable energy of the optoelectronic transition in
the present case); and E0(T, X) is the function of the
overall disorder in the system, which can be repre-
sented as the sum of the parameters of static and
dynamic disordering of lattice atoms [16, 17]:

(2)

Here, 〈u2〉T and 〈u2〉X are the mean square displacements
of lattice atoms from their equilibrium positions, which
are associated with dynamic (thermal phonons) and
static (“frozen” phonons) disorders, respectively. The
coefficient K has the meaning of the second-order
deformation potential constant. The value of E0 of the
logarithmic slope of a spectral curve characterizes the
averaged smearing of band tails or selective bands in
the electron density of states due to breaking of the
atomic ordering [5, 18, 19].

The parameter X is used here for denoting static dis-
order. By analogy with the conventional temperature T
used to characterize the dynamic component of disor-
der, the parameter X can have the meaning of an effec-
tive temperature at which the phonon disorder is “fro-
zen” and which, therefore, can characterize the static
disorder in the crystal structure. The universal depen-
dence (1) makes it possible to obtain the “crystalline”
(with a fan-shaped shift in temperature) and “vitreous”
(with a parallel shift in temperature) versions of the
Urbach rule, disregarding either the static or the
dynamic term, respectively, in the function E0(T, X) of
the overall disorder [5, 6].

However, an analysis of Eqs. (1) and (2) leads to
another important conclusion. The parameters T and X
are absolutely equivalent. Hence, the absorption edge at
a fixed parameter T should exhibit, apart from the tradi-
tional Urbach fan in temperature, a fanlike behavior in
the parameter X, which is related to the “freezing” tem-
perature. In our case, it is just the parameter X which is
varied upon a change in the neutron fluence.

Indeed, Fig. 1 shows a typical Urbach fan in Φ at
room temperature. For small fluences, the spectral
characteristics exhibit a parallel displacement, but their
slope decreases upon a further increase in the fluence.
In this case, the coordinates of the focal point Ef (4.03 ±
0.05 eV, 75 ± 5 cm–1) are in good agreement with the
parameters of the maximum of the optical absorption
band under investigation (Em ≈ 4.05 eV) [20]. Qualita-
tively similar patterns for various crystals with Urbach
fans in temperature can be found in the well-known
review by Kurik [13].

α hν T X, ,( ) α0

hν Eg T( )–
E0 T X,( )

--------------------------- 
  ,exp=

E0 T X,( ) K u2〈 〉 X u2〈 〉 T+( ).=
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The electron transition energy Eg can be written as a
function of different types of disorder through the sec-
ond-order deformation potential constant D, that is,

(3)

where Eg(0, 0) is the transition energy in the absence of
disorder, which takes into account zero-point thermal
and “frozen” vibrations. Using Eq. (2), we can write
[17, 21, 22]

(4)

Substituting this expression into Eq. (1), we can deter-
mine the ratio D/K for each straight line in Fig. 1. The
obtained values fall in the range (0.20–0.50) ± 0.05 (see
table).

In the above approach, Eg(0, 0) coincides with the
energy of the focal point. The experimental depen-
dence (4) was plotted by Cody et al. [17] for amor-
phous hydrogenized silicon. In our case, the values of
Eg for different samples are unknown. It can be
assumed only for the original crystal that this quantity
corresponds to the band maximum, i.e., Eg(0, 293 K) =
4.05 eV. However, since we consider the band edge and
assume that Eg is a linear function of hν in semiloga-
rithmic coordinates, we can plot the dependence hν(E0)
for different values of the absorption coefficient. Figure
4 shows such functions for α = 10–25 cm–1. Moreover,
assuming that the averaged value of D/K = 0.35, we can
calculate the function Eg(E0) (Fig. 4). It can be seen
from this figure that the calculated straight line and the
straight lines approximating the obtained experimental
dependences converge at the point (0 eV, 4.08 ±
0.05 eV). The energies that correspond to focal points
in Figs. 1 and 4 coincide to within the experimental
error. Thus, the obtained dependences α(hν) and hν(E0)
are fan-shaped, which can be interpreted as a manifes-
tation of the quasi-dynamic nature of the neutron-
induced structural disorder.

In turn, the dose dependence E0(Φ) (see Fig. 3) has
a functional form similar to the typical temperature
dependence of the optical band half-width for crystals
(see, for example, [23]). For small fluences, i.e., low
temperatures of phonon freezing, the slope varies insig-
nificantly. For Φ > 1018 cm–2 (high freezing tempera-
ture), the parameter under investigation increases con-
siderably. As a first approximation, the observed rela-
tion between the parameter E0 and the degree of
structural disorder makes it possible to describe the

Eg X T,( ) Eg 0 0,( ) D u2〈 〉 X u2〈 〉 T+( ),–=

Eg X T,( ) Eg 0 0,( ) D
K
----E0 X T,( ).–=
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dynamics of the disordering process in the form

(5)

Here, E0(0) is the slope of the spectral curve for the ini-
tial unirradiated sample, σ is the effective cross section
of structure disordering, and C is a constant numeri-
cally characterizing the increment of E0 in the range of
fluences Φσ ! 1.

The approximation of experimental data by for-
mula (5) is shown in Fig. 3 (curve 2). In this case, σ =
2.58 × 10–18 cm2 and C = 6 × 10–4 eV. The disordering
cross section is close to the values of similar quantities
characterizing the amorphization of the crystal struc-
ture of the orthosilicate Be2SiO4 (σ = 1 × 10–19 cm2) and
the simple oxide α-SiO2 (σ = 3 × 10–19 cm2), in which
neutron irradiation also intensively generates anion–
vacancy defects [24]. At the same time, Fig. 3 shows
that for large fluences (≈1019 cm–2), the calculated
dependence (curve 2) noticeably deviates from the
experimental dependence (curve 1). In this range of Φ,
the cross section of the process itself is apparently a
function of the neutron fluence, which decreases upon
an increase in Φ. Although the exact form of the σ(Φ)
dependence is unknown, the variation in the cross sec-
tion for large Φ indicates substantial transformations of
the structure and properties of the crystal, which, in
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Fig. 4. Linear dependences of the optical transition energy
on the disorder parameter E0 for discrete absorption coeffi-
cients. Symbols mark the experimental results correspond-
ing to the indicated values of α. The dependence Eg(E0) is
calculated using formula (4).
Table

Dependence of D/K on the neutron fluence

Φ (cm–1) 0 5 × 1014 1.15 × 1015 7.5 × 1017 1.35 × 1018 6.6 × 1018 8.8 × 1018

D/K: 0.25 0.31 0.33 0.52 0.43 0.35 0.35
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turn, affects the efficiency of radiation-induced pro-
cesses.

The nontrivial dependence of the cross section σ on
fluence Φ is in excellent agreement with the dose
dependence of the parameter E0 for induced absorption.
The inset to Fig. 3 clearly illustrates the two-stage dis-
ordering in the range of fluences under investigation.
The region Φ < 1018 cm–2 apparently corresponds to
processes of primary defect formation under neutron
irradiation. In particular, the radiation-induced genera-
tion of E '-centers dominates in this region [2]. At Φ >
1018 cm–2, the formation of other defects (e.g., oxygen
divacancies, oxygen hole-type centers, and defect com-
plexes) and radiation-induced annealing are intensified
considerably. This is accompanied by an increase in the
overall disordering of the atomic lattice, which mani-
fests itself in a sharp increase in the disorder parameter
E0 for induced absorption (see the inset to Fig. 3).
Moreover, for these values of neutron fluence, the slope
parameters of the main spectral dependences (see
Fig. 3) increase, curves 1 and 2 in Fig. 3 noticeably
diverge, and the effective disordering cannot be
described in the constant cross section approximation
any longer.

Thus, assuming that the parameter E0 reflects the
overall disorder in the lattice of a complex oxide, we
conclude that the magnitude of the neutron fluence cor-
responds to a quite definite equilibrium temperature of
structural disordering. In other words, the modification
of optical spectra of the studied objects under neutron
irradiation can be successfully analyzed on the basis of
the generalized Urbach rule taking into account the
equivalence principle of static and dynamic disorders.
With this approach, the observed effects of radiation-
induced damage of the structure and modification of
the properties of beryl crystals should be treated as a
result of the formation of an induced quasi-dynamic
disorder. At the same time, the closeness of the effec-
tive cross sections of beryl disordering and the cross
sections of amorphization in quartz and phenacite indi-
cates the important role of the silicon–oxygen sublat-
tice of the crystals in radiation-induced processes and,
hence, the similarity of the mechanisms of defect for-
mation in the structure of simple and complex oxides
belonging to the class of silicates.
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Abstract—The dynamics of the photorefractive response in the Bi12TiO20 crystal with double-ionized donor cen-
ters and shallow traps is analyzed. Consideration is given to the time dependences of the recording of a photore-
fractive grating in the absence of an external electric field, its storage in the dark, and its development upon the
application of an external field and turning on of a reading light beam. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

When recording holographic gratings in photore-
fractive sillenite crystals, the effects of a nonmonotonic
diffraction efficiency [1–3], the development of a latent
image [4], and photostimulated light absorption [5] are
observed that cannot be described in terms of the sin-
gle-level monopolar model of band transport [6]. In
order to consider the processes of photostimulated
absorption of light, an additional shallow trap is intro-
duced into the model [7] and the nonmonotonic time
dependence of the photorefractive response in nomi-
nally undoped crystals of B12SiO20 and Bi12TiO20 is
usually explained by the effect of minority charge car-
riers (holes) on it [1–3]. However, it follows from
Grachev’s work [8, 9] that, in the region of impurity
absorption, the contribution of holes to the photocon-
ductivity of these materials is negligible in comparison
with that of electrons.

In this paper, we show that the specific features of
holographic recording effects observed in sillenite
crystals can be explained based on the model [10] that
includes deep donor centers (that allow double ioniza-
tion) and shallow traps.

RESULTS AND DISCUSSION

The set of material equations that describes the pro-
cesses of a redistribution of charges in such a crystal is
as follows:

(1)

(2)

∂ND
1+

∂t
------------ SDI ND ND

1+ ND
2+––( )=

– γ1nND
1+ γ2nND

2+ S1IND
1+,–+

∂ND
2+

∂t
------------ S1IND

1+ γ2nND
2+,–=
1063-7834/01/4302- $21.00 © 20251
(3)

(4)

(5)

where ND, MT, and NA are the total concentrations of
donors, shallow traps, and acceptors, respectively;

, , M, and n are the concentrations of single-
and double-ionized donors, filled shallow traps, and
electrons, respectively; SD, S1, and ST are the photoion-
ization cross sections and γ1, γ2, and γT are the recombi-
nation constants for neutral donors (D), single-ionized
(index 1) and double-ionized (index 2) donors and shal-
low traps (T), respectively; β is the coefficient of ther-
mal excitation of shallow traps; µ is the electron mobil-
ity; kB is the Boltzmann constant; T is the temperature;
e is the electron charge; and ε is the static permittivity
of the crystal.

We consider a photorefractive grating that was
formed in the crystal upon the interaction of a reference
and signal light beams with intensities IR and IS, respec-
tively. For the interference pattern, we have

(6)

where I0 = IR + IS is the average intensity, m = 2 /I0

is its contrast, and the grating vectors K = Kz0 and the
external applied field E0 = E0z0 are assumed to be
directed along the z axis of the coordinate system. In
the approximation of small contrast (m ! 1), Eqs. (1)–
(5) can be linearized by representing the solutions for

∂M
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the functions (z, t), (z, t), M(z, t), n(z, t), and
E(z, t) in the form

(7)

ND
1+ ND

2+

F z t,( ) F0 t( )=

+ 0.5 F1 t( ) iKz( )exp F2* t( ) iKz–( )exp+[ ] .
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Fig. 1. Dynamics of the variation of the amplitude of the
space-charge field of a photorefractive grating with a period
Λ = 5 µm depending on the conditions of its formation. The
reference and signal beam are switched off at time t = 1000 s;
the dc electric field with an amplitude E0 = 17.5 kV/cm is
switched on at t = 1400 s; the reading beam is switched on
at time moments ts = (1) 2000, (2) 2500, and (3) 3000 s.
P

The use of the approximations of quasi-continuous illu-
mination (∂n/∂t = 0) and low intensity (I0), when the
average concentration of electrons is small as com-
pared to the average values for other charge gratings,
yields two sets of equations for the amplitudes of the

zero ( , , M0, and n0) and first ( , , M1,
and n1) spatial harmonics. The first of them included
equations that contained no amplitudes of the first har-
monics and the external field; this system was inte-
grated numerically for the case where the illumination
is switched on at moment of time t = 0 for the initial

conditions (0) = NA, (0) = 0, and M0(0) = 0.
The resultant dependences of the average concentra-

tions of charges (t), (t), M0(t), and n0(t) were
then used for the numerical integration of the set of
equations for the first spatial harmonics. The technique
of the analysis of the dynamics of the photorefractive
response permitted us to simulate the switching on and
off of the reference and signal beams and the dc exter-
nal field applied to the crystal at arbitrary time
moments. The amplitude of the first harmonic of the
space charge was determined in accordance with Eqs.
(5) and (7) from the equation

(8)
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Fig. 2. Dynamics of the variation of (a) the average values and (b) amplitudes of spatial harmonics for various centers: (1) shallow
traps; (2) single-ionized and (3) double-ionized traps; and (4) electrons. The conditions of the grating formation are the same as in
Fig. 1.
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Fig. 3. Time dependences of the shift (normalized to the spatial period) of charge gratings along the coordinate  z relative to their
initial positions for various centers: (1) shallow traps; (2) single-ionized and (3) double-ionized donors; and (4) electrons. The con-
ditions of the grating formation are the same as in Fig. 1.
Typical curves that characterize the dynamics of the
variation of the field of the space charge of the photore-
fractive grating with period Λ = 2π/K = 5 µm depend-
ing on the conditions of recording and development of
the grating are shown in Fig. 1 for the Bi12TiO20 crystal
with parameters MT = ND = 1025 m–3, NA = 1022 m–3,
SD = 6.5 × 10–6 m2/J, ST = 10–4 m2/J, S1 = 2.5 × 10–6 m2/J,
γ1 = 3.5 × 10–17 m3/s, γT = 2.6 × 10–17 m2/s, γ2 = 4.9 ×
10−18 m3/s, β = 5.5 × 10–5 s–1 [10], and µ = 2 ×
10−6 m2/(V s). After the illumination of the crystal at the
moment of time t0 = 0 with an interference pattern with
a contrast m = 0.1 and average intensity I0 = 100 W/m2,
the amplitude of the first harmonic of the space-charge
field begins growing owing to the diffusion mechanism
of grating formation. Note that this growth occurs
against the background of the simultaneous changes in

the average values of the concentrations , , and
M0 of the single-ionized and double-ionized donors and
shallow traps (Fig. 2a). The average concentration of
electrons in the conduction band monotonically
increases (curve 4 in Fig. 2a); i.e., the process of the
formation of the grating occurs under conditions of
non-steady-state photoconductivity. As a result, the
space-charge field grows nonmonotonically; after it
reaches a maximum at t ≈ 200 s, the field begins slowly
decreasing (Fig. 1). Note that the nonsteady photocon-
ductivity was indicated as the possible cause of the non-
monotonic character of the dynamics of the space-
charge field in [9].

We assume that both light beams that form the pho-
torefractive grating are switched off simultaneously at
t1 = 1000 s (IR = IS = 0, m = 0). Because of the sharp
drop in the concentration of electrons in the conduction
band, which can only be thermally excited into it from
shallow traps, the processes of redistribution of charges
over the existing levels at t > t1 become strongly decel-
erated. However, if for the average concentrations
(Fig. 2a) their decrease is virtually unnoticeable, the

N0
1+ N0

2+
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fall-off of the space-charge field E1 in the dark can eas-
ily be seen in Fig. 1.

After a dc external field with an amplitude E0 =
17.5 kV/cm is applied to the crystal at the moment of
time t2 = 1400 s, a monotonic growth of the amplitude
of the first spatial harmonic begins even in the absence
of both light beams (Fig. 1). The process continues until
only the reading beam (with intensity IR = 100 W/m2) is
switched on at a certain moment of time t = t s. In all
three cases presented in Fig. 1, the switching-on of the
reading beam leads to a fast growth of the amplitude of
the grating until a value |E1 | ≈ 280 V/cm is reached,
which is followed by a relatively slow decrease. Thus,
the model suggested describes the effects of the enhance-
ment of the latent image in the crystal in the dark upon
the application of an external field and its development
upon the switching-on of the reading beam, which were
earlier observed experimentally in [4].

The physical cause of the effects of the enhance-
ment and development is a spatial shift of charge grat-
ings corresponding to single- and double-ionized
donors and shallow traps relative to one another with-
out changing their amplitudes. This can clearly be seen
in Figs. 2b and 3, which display the dynamics of the

first spatial harmonics of the concentrations (t),

(t), M1(t), and n1(t) and of their shifts along the
coordinate z relative to the initial position. In the dark,
this shift begins after an external field is switched on at
time t2 = 1400 s and is slow because of the low conduc-
tivity of the crystal. Note that the spatial shift of the
charge gratings in an external field can be treated as the
excitation of trap-charge-exchange waves (TCEWs)
[11]. Immediately after the switching-on of the reading
beam at time t = t s, the electron concentration in the
conduction band increases sharply, and the velocity of
the TCEWs increases as well. However, in the absence
of a signal beam at t > t s, there occurs a noticeable
increase in the rate of the decrease in the amplitude of

N1
1+

N1
2+
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the charge gratings (Fig. 2b), which leads to a slow
decrease in the amplitude of the space-charge field
(Fig. 1), i.e., to the erasure of the photorefractive grat-
ing by the reading beam.
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Abstract—The temperature dependence of the pulse conductivity σ for crystals of alkali halides with the
NaCl-type lattice is measured at different densities j of excitation with an electron beam of picosecond duration.
It is demonstrated that an increase in j leads to a weakening of the σ(T) dependence. This effect is due to the
overlap of the wave functions of recombination centers and a decrease in the activation energy of separation of
genetic electron–hole pairs. © 2001 MAIK “Nauka/Interperiodica”.
Earlier [1–3], we reported the data on the lifetime τ
of conduction band electrons generated by an electron
beam of picosecond duration in alkali halide crystals
with a NaCl lattice. It was shown that, in the ranges of
excitation densities and temperatures under investiga-
tion, τ was shorter than 100 ps. The simplest situation
was observed for KCl: τ was limited by the bimolecular
recombination of electrons with autolocalized holes (Vk

centers) at excitation densities j ≤ 103 A/cm2 [2].
The temperature dependence of conductivity σ(T),

which was measured at a relatively low excitation den-
sity, allowed us to propose a model according to which
the major portion of the electrons and holes undergo a
thermalization in genetic (or correlated) pairs; i.e., the
thermalized electrons occur in the Coulomb field of the
Vk center and rapidly recombine. The conductivity
observed is associated with electrons leaving their
genetic partners due to temperature fluctuations (this
process requires the activation energy E) and also with
a small portion of electrons which are already capable
of leaving their genetic partners at the thermalization
stage [3].

This paper is devoted to the investigation into the
pulse conductivity of KCl, KBr, and NaCl crystals
upon excitation with an electron beam. The parameters
of the excitation pulse were as follows: 0.2 MeV, 50 ps,
and 102–104 A/cm2. The time resolution of the measure-
ment procedure was ~150 ps, and the temperature
range was 12–300 K. The σ(T) dependence was studied
for various excitation densities. The experimental
results for two excitation densities are shown in the fig-
ure. It follows from the figure that an increase in j leads
to weakening the σ(T) dependence (see insets in the
figure).

Let us consider this result for KCl in the framework
of the model similar to that proposed in [3]. Since the
quasi-stationary approximation is valid for experimen-
tal conditions, the concentration of band electrons in
1063-7834/01/4302- $21.00 © 20255
the case of the bimolecular recombination is deter-
mined from the expression

(1)

where V is the thermal velocity of electrons, S is the
effective cross section of the e–Vk recombination, and
G(T) is the generation rate for electrons contributing to
conduction. As in [3], the Coulomb interaction cross
section S is approximated with the exponential law 

(2)

The generation rate G is represented as

(3)

where G0 is the rate of generation of the electron–hole
pairs by the electron beam and GΓ is the e–Vk recombi-
nation rate of the correlated electron–hole pairs. The G0
quantity is calculated using the expression [4]

(4)

n
G T( )

VS
-------------,=

S CT α– .=

G T( ) G0 GΓ ,–=

G0
jE

2Eqd
------------,=

Parameters of relationship (7) for the KCl crystal

Parameter

j = 300 A/cm2 j = 700 A/cm2

G0 = 1.71 × 
1027 cm–3 s–1

G0 = 3.99 × 
1027 cm–3 s–1

Gk, cm–3 s–1 1.7 × 1027 3.93 × 1027

C, cm2 K3.5 2.65 × 10–4 3.21 × 10–4

E, eV 0.06 0.04

α 3.5 3.5
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where E = 0.15 MeV is the effective energy of the beam
electrons, Eq is the band gap, and d is the crystal thick-
ness. The expression for GΓ can be written in the form

(5)

where Gk is the generation rate of the correlated elec-
tron–hole pairs and the parenthetic quantity is the prob-
ability that the electron will leave its genetic partner
due to thermal fluctuations. The thermal velocity of
electrons is described by the following expression:

(6)

where m* = 0.5m0 is the effective electron mass.

GΓ Gk 1 e E/kT––( ),=

V
3kT
m*
---------,=
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Temperature dependences of the conductivity for KCl, KBr,
and NaCl crystals at different excitation densities j, A/cm2:
(1) 300 and (2) 700. The σ conductivities normalized to the
largest values are shown in the insets.
P

In terms of expressions (1)–(6), the formula for the
experimental data processing takes the form

(7)

The mobility µ(T) was taken from [5, 6].
The solid curves in the figure were constructed

using formula (7) for the parameters given in the table.
Two conclusions follow from the data presented. First,
the overwhelming majority of the electrons and holes
undergo a thermalization in genetic pairs (Gk ≈ G0).
Second, an increase in j leads to a decrease in E.

The latter conclusion allows us to suppose that the
recombination centers (Vk centers) at high excitation
densities are not isolated centers. A similar effect was
observed for medium- and highly doped semiconduc-
tors in which the ionization energy gradually decreases
and tends to zero as the impurity concentration
increases (see, for example, [7]). In our case, the elec-
tron undergoing thermalization in the genetic pair can
be considered as being trapped in the upper excited
state of the Vk center. As n increases with an increase in
the excitation density j under experimental conditions,
the onset of overlapping of the wave functions of the
centers and the lowering of the activation barrier E
bring about the weakening of the σ(T) dependence.
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Abstract—The mechanism of the formation of nanometric-size deformation steps at the surface of plastically
deformed crystals is discussed theoretically. Such steps are detected by means of a scanning tunneling micro-
scope or by high-resolution speed filming. The analysis shows that the exponential step distribution by height
is due to the double cross slip (DCS) of screw dislocations and that the growth kinetics of separate steps is deter-
mined by the kinetics of the Frank–Read dislocation sources appearing as a result of the DCS. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Step formation at slip line exits at the crystalline
surface is a well-known phenomenon observed in the
process of plastic deformation of crystals. The steps
form the characteristic linear deformation relief at the
surface when a single slip system operates [1–5]. As the
other slip systems (planes) start to operate and the
deformation increases, the relief becomes more com-
plex, the steps roughen, and the slip lines become wavy.

Direct optical observations of the deformation relief
allow one to determine the step height and the distance
between the slip lines when these parameters are
greater than 0.3 µm. The use of an optical interferome-
ter or the method of making surface replicas with their
further analysis by an electron microscope allows one
to increase the resolution up to 10–100 nm [2, 3, 6, 7].

Due to the studies made, it has been discovered that
the slip line formation process has a hierarchic charac-
ter and takes place at different scale levels from 10 nm
up to 100 µm [1–7]. At the same time, the dislocation
structures in deformed crystals have largely been inves-
tigated by means of microscopic methods (selective
etching [8], transmission electron microscopy [5, 9]).
As a result, a connection between the process of step
formation at the crystalline surface and the formation
and motion of dislocations was established.

A new method for investigation of the relief at the
surface of plastically deformed crystals was developed
recently. This is scanning tunneling microscopy (STM)
[10–14]. This method has a high resolution (up to
1 nm). Its other advantage is the possibility of the time
observation of the deformation relief and its separate
details. However, due to an insufficient scanning rate,
the kinetics of the formation of deformation steps and
slip lines can be studied only at time intervals exceed-
1063-7834/01/4302- $21.00 © 20257
ing 10 s. Before the advent of STM, the dynamics
(kinetics) of the formation of slip lines and of the cor-
responding deformation steps in the nanometric range
was studied by means of high-resolution speed filming
(HSF) [4, 6, 15]. This method was used over a broad
time interval of 10–6–103 s but with lower (up to 10 nm)
resolution than STM. Thus, the above-mentioned meth-
ods complement one another as to the duration range of
examining nanometric objects. A high potential resolu-
tion of the STM method supposes a high quality of the
specimen surface, in particular, the total absence of or
minimal thickness of surface oxide films. The experi-
ments made with gold [13, 14] have shown that the data
obtained by this method for other metals do not consid-
erably differ in a qualitative or quantitative way from
those obtained for gold.

In this work, we conducted a theoretical analysis of
some results obtained by STM and HSF methods.
These results concern the histograms of the deforma-
tion step height distribution and the kinetics of their
formation. Analysis shows that the steps observed by
the techniques mentioned above do indeed have a
deformation origin and are due to the characteristic dis-
location processes developing in the crystal with the
applied mechanical stress.

1. THE HEIGHT DISTRIBUTION 
OF THE DEFORMATION STEPS

Figure 1 shows, in semilogarithmic coordinates, the
data obtained from histograms of the height distribu-
tion of the steps (the number of steps with a given
height H per unit area) for polycrystalline copper [11]
and molybdenum [12] samples. It is clear that the data
001 MAIK “Nauka/Interperiodica”
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exhibit an exponential Poisson distribution

(1)

where n0 is a constant and Hc = 28 (Cu) and 66 nm
(Mo).

Deformation steps at the crystalline surface can be
formed as a result of the action of the dislocation
sources placed at the surface, near the surface, or in the
bulk of the crystal. The latter sources can be formed, for
example, as a result of the double cross slip (DCS) of
screw dislocations [16]. Since the amount of disloca-
tions generated by one source usually equals 10–200
[4], the step height should be of the order of 3–60 nm.
This corresponds to the step size observed by HSF and
STM methods. As an example, the table lists the char-
acteristic (elementary, see Section 2) step sizes Hm for
a number of metals and the corresponding amounts of
dislocations mmax = Hm/b, where b is the Burgers vector
of a dislocation.

One of the possible assumptions concerning the
exponential height distribution of deformation steps
given by Eq. (1) is that this distribution is due to the
exponential distribution of the dislocation sources with
respect to the number of dislocations generated by
them. However, there are no experimental data and the-
oretical calculations based on this mechanism.

The other mechanism for the Poisson step height
distribution could be connected with the DCS mecha-
nism for screw dislocations. The DCS, as has been

n H( ) n0
H
Hc

------– 
  ,exp=

1

2

0 50

10–1

1

n, µm2

H, nm
100 150

10

Fig. 1. The height distribution densities of the deformation
steps (1) in Cu [11] and (2) in Mo [12].
P

shown experimentally, is the basic mechanism of the
dislocation multiplication and of the formation of slip
lines in crystals [8, 16–18]. According to this mecha-
nism, the probability density of the transition (ejection)
of the screw segment of a dislocation to the neighboring
parallel slip plane, placed at a distance h, is determined
by the equation [16, 17, 19, 20]

(2)

where hc is the characteristic ejection distance. If the
ejection distance h > h0, where

(3)

then the Frank–Read dislocation source is formed at the
parallel plane, which produces a novel slip line. If the
ejection distance of the screw segment of a dislocation
is smaller than h0, then a static edge dipole is formed
instead of a slip line. In Eq. (3), µ is the shear modulus,
τ is the mechanical stress applied to the crystal, τf  is the
friction stress for a dislocation, and ν is the Poisson
ratio.

The ejection distance distribution of screw disloca-
tion segments and the height distribution of edge
dipoles according to the probability in Eq. (2) are well-
proven facts [16–21]. The straight line 1 in Fig. 2 dem-
onstrates the integral distribution, namely, the number
of dipoles N for which the ejection distance exceeds h,
in copper (obtained in [16] by processing the data
of [9])

(4)

where NΣ is the total number of dipoles and hc = 20 nm.

It was shown that the distance between the slip lines
Λ in the nanometric range also exhibits an exponential
distribution (obtained in [18] by processing the data of
[6] for the Cu10Al alloy, curve 3 in Fig. 2)

(5)

From the slope of the exponential portion of this curve,
we find that Λc = 65 nm.

The straight line 2 in Fig. 2 shows the result of inte-
gration of the distribution in Eq. (1) for the deformation
steps in copper (straight line 1 in Fig. 1)

(6)

where NΣ = n0S and S is the area of the crystal surface
studied. It is obvious that there is a statistical connec-
tion between the distributions in Eqs. (4)–(6). To deter-
mine this connection, let us consider the mechanism of

P h( ) hc
1– h

hc

----– 
  ,exp=

h0
µb

8π 1 ν–( ) τ τ f–( )
------------------------------------------,=
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  ,exp=
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the formation of slip lines in the nanometric range of
the interline distances [20].

Figure 3 illustrates the consecutive formation of
four of such slip lines with a DCS of screw dislocations.
These lines form a slip band ab. The motion of screw
segments of dislocations between parallel slip planes is
shown by solid arrows. The dislocation sources that
appear as a result of the DCS are shown by filled cir-
cles. For simplicity, the mean ejection distance of a
screw segment to the parallel slip plane h is considered
to be everywhere the same. The relation between the
plastic deformation (the shear γ) in the band, the step
height H, the mean distance between the slip lines at the
crystal surface Λ, and the distance between the active
slip bands h is given by the relations

(7)

where ϕ is the tilt angle of the slip plane to the crystal
surface. In particular, for ϕ = 45° and γ ! 1, we get H ≈

γh and Λ = h. These relations explain the statis-
tical connection between the ejection distance of the
screw segment into a parallel slip plane h, the distance
between the slip lines at the crystal surface Λ, and the
size of the corresponding surface deformation steps H,
that is, the stochastic character of the elementary slip in
the nanometric range of these parameters and the expo-
nential character of their distribution.

According to Eq. (3), the slip lines are not formed if
the ejection distances of the screw segments of disloca-
tion loops satisfy the inequality h < h0. This fact
explains the deviation of the distribution of the dis-
tances between the slip lines from the exponential
law (5) for small values of Λ (curve 3 in Fig. 2). Similar
deviations from the exponential law are sometimes
observed for distributions of deformation steps [11]. As
for the distribution of edge dipoles, a deviation from the
exponential law was not observed in this case, at least
for the well-studied LiF crystals [16, 21].

2. THE KINETICS OF FORMATION 
OF DEFORMATION STEPS

The use of the HSF and STM methods made it pos-
sible to study the kinetics of formation of separate
deformation steps and slip lines. In Fig. 4a, the experi-
mental points demonstrate the time dependence of the
step height at the first stage of deformation of the
Cu12Al alloy [4]. The step height changes from zero up
to a maximal value Hm. It is also seen that the step
growth rate gradually tends to zero. This means that the
dislocation source that generates the corresponding slip
line stops operating.

The generation rate of the dislocation loops by a
source is determined by the following simple equation:

(8)

γtan
H

Λ H/ ϕtan+
-----------------------------, Λ h

ϕsin
-----------,= =

2 2

dm
dt
------- u

lF
----

u
λ s

-----m,–=
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where m is the number of loops, u is the dislocation
velocity, lF is the critical length of the Frank–Read
source, and λs is the free path of the screw segments of
a loop between the DCS acts. Since the step height
equals H(t) = bm(t) and changes each time a disloca-
tion appears at the crystalline surface, we obtain the fol-
lowing time dependence of the step height by integrat-
ing Eq. (8):

(9)H t( ) Hm 1 t
tm

----– 
 exp– 

  ,=

1

s

h
Ha

Λ b

234

Fig. 3. Formation of the deformation steps in the slip band
under the action of dislocation sources (shown with circles).
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Fig. 2. Distribution (1) of the number of dipoles with respect
to the distance exceeding h [16, 20], (2) of the deformation
steps with the height exceeding H [11] in copper, and (3) of
the distance between the slip lines exceeding Λ in a Cu10Al
alloy [6].
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where Hm = bmmax, mmax = λs/lF is the number of dislo-
cations generated by a source till it stops (see table),
and tm = λs/u is the characteristic operating time of the
dislocation source.

(a)
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log(l – H/Hm)
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1
(b)

Fig. 4. Kinetics of the formation of a separate deformation
step in a Cu12Al alloy [4] in (a) normal and (b) semiloga-
rithmic coordinates.

0 5

0.01

τf, MPa

h–1
c , nm–1

10 15 20

0.02

Fig. 5. Dependence of the inverse value of the characteristic
DCS distance hc upon the friction stress τf in LiF crystals [16].

Characteristic values of the deformation steps Hm and the
numbers of dislocations generated by dislocation sources
mmax in some metals [10–14]

Metal Hm , nm mmax, nm

Cu 15 59

Au 22 76

Mo 18 66

Pd 5 18
P

Figure 4a shows the time dependence of the relative
step height H(t)/Hm calculated by Eq. (9). The expo-
nential dependence H(t) is plotted in Fig. 4b in semi-
logarithmic coordinates  – H/Hm) versus t. From
the slope of this straight line, we find the characteristic
operating time of the dislocation source in the alloy
studied: tm = 29.6 s.

One also finds from Eqs. (8) and (9) that the growth
rate of a step at the initial instant

(10)

is determined by the initial rate of dislocation genera-
tion by the source (0) = u/lF and depends linearly on
the maximal height of the step Hm. Such a proportion-
ality, with the characteristic time tm = 8 × 10–7 s, was
indeed observed by the HSF method in the Cu30Zn
alloy [15].

The characteristic operating time of a dislocation
source tm = λs/u depends upon the distance λs between
the obstacles that initiate the DCS acts and upon the
dislocation velocity u = /bρ, where  and ρ are the
mean plastic strain rate and the dislocation density in
the crystal, respectively. It is evident that this operating
time can be varied largely depending on the crystalline
structure and the deformation conditions. For example,
under the conditions of loading in [12–14], this time
can be as long as several minutes and even several
hours. Indeed, for  = 10–6–10–5 s–1, ρ = 1012 m–2, b =
0.256 nm (Cu), and λs = 10–4–10–3 m, the operating
time is 102–104 s. For the critical length of a source lF =
3 µm, the number of dislocations generated by the
source is mmax = λs/lF = 30–300 and the step size is Hm =
10–100 nm.

Let us also evaluate the mean value of the crystallo-
graphic shear related to a single deformation step (an
elementary slip line). It follows from Eq. (7) that the
mean shift

(11)

is determined by the parameters of the elementary dis-
location processes. For hc = 20 nm and the other param-
eters indicated above, the shift is about 0.3–1.2. Since
all the parameters considered are sensitive to structural
variations and depend on the concentration of obstacles
to the dislocation motion in the crystal, the shift is also
a structure-sensitive parameter. According to [16, 20],

we have λs ~ lF ~ hc ~  and, therefore, γ ~ τf; that is,
the shift varies in proportion to the friction stress of dis-
locations. Such a dependence, indeed, takes place [16].
In Fig. 5, the results of treatment of the data from [16]

(1log

H 0( ) Hm/tm b
u
lF
----= =

ṁ

ε̇ ε̇

ε̇

γtan
Hm

2hc

------------≈
bλ s

2hclF

----------------=

τ f
1–
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on the DCS studies in LiF crystals are shown as an
illustration of the relation between the cross slip param-
eter hc and the friction stress τf. The critical slip stress
is taken for the friction stress in crystals with different
concentrations of calcium ions.

Another very important fact revealed by the STM
and HSF methods is the time sequences of the forma-
tion of the deformation steps and the slip lines. For
example, it was found in [12] that large deformation
steps are formed as a result of the successive addition
of elementary steps described by Eq. (9). Figure 6 dem-
onstrates a sequence of three such elementary steps
(curve 1) plotted in accordance with Eq. (9). These
steps are synchronized in time and shifted relative to
each other by a time lag of ∆t = 10tm. The superposition
of elementary steps means that either the dislocation
sources operate at slip planes very close together
according to the scheme of Fig. 3 or the source opera-
tion has a cyclic character due to the analogous charac-
ter of its activation. If the scheme of Fig. 3 is valid
(solid arrows and filled circles), then the time that
passes between the end of the operation of one source
and the beginning of the operation of the next source is
determined by the development time of the DCS act. It
was also observed in experiments [12] that, in many
cases, the already formed or just growing big steps
abruptly start to diminish their height. Figure 6 illus-
trates the disappearance of such a big step (curve 2).
Curves 3–6 in the lower part of this figure demonstrate
the frequently observed case when separate elementary
steps, after reaching the height limit, start to decrease in
their heights and disappear. A new step appears in their
place after some time (after ∆t = 7tm in Fig. 6).

What is the reason for such an inverse step motion?
This can be related to the following: (1) a dislocation
source of the opposite sign starts to operate near the
step, (2) the operating source is reversed for some rea-
sons and starts to generate dislocations of the opposite
sign, and (3) the conjugate slip systems (planes)
become active. Figure 3 shows, by the dashed arrows
and circles, the case when at the point marked by the
letter s the DCS initiates the transitions of the screw
segments into the initial slip planes. This leads to the
creation of dislocation sources in these planes. These
sources are opposite in sign to the previously operating
sources and cause the steps to disappear. Crystal blocks
of nanometric sizes displacing in opposite directions
were observed in [14]. As a result of these displace-
ments, the surface of a plastically deformed crystal
“breathes.”

Thus, due to the elementary DCS acts and the oper-
ation of dislocation sources, the plastic deformation of
crystals has a stochastic character on the nanometric
distance scale. It was shown in [18] how the next scale
level arises from this “nanometric” chaos and how
PHYSICS OF THE SOLID STATE      Vol. 43      No. 2      200
mesoscopic dislocation and deformation structures of
the micrometric scale are formed.
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Abstract—A system of equations describing the process of plastic deformation in a crystal is used to investi-
gate self-sustained traveling structures theoretically. The equations for the velocity and density of dislocations
are shown to describe two types of instability which are associated with anomalous damping of dislocations and
structural disordering, respectively. Specific models are proposed for these two cases and investigated theoret-
ically. Wavelike solutions, such as traveling fronts, solitons, and periodic waves, are found to exist. © 2001
MAIK “Nauka/Interperiodica”.
INTRODUCTION

One of the most important problems of physical
metallurgy is explanation of the intricate lawlike regu-
larities of the occurrence and evolution of inhomoge-
neous dislocation structures observed in experiments
on the plastic deformation of a material. In spite of
advances having been made in experimental studies of
deformed solids [1, 2], many phenomena that accom-
pany the process of plastic deformation remain unex-
plained theoretically. In particular, it is unclear why
plastic flow is unstable and deformation of a crystal
proceeds discontinuously and is frequently accompa-
nied by localization of the plastic flow [3–5].

Physically, this phenomenon has much to do with
the softening of the material. One of the typical causes
of loss of strength was first established by Cottrell [6]
to be the anomalous damping of dislocations (negative
friction). This effect is most pronounced in alloys,
where the dependence of the damping force F(V) acting
on dislocations on their velocity V is depicted by an
N-shaped curve at elevated temperatures. It was
assumed that, at the critical point corresponding to the
peak of the F '(V) curve, dislocations break away from
the impurity-atom atmosphere locking them, which
leads to the plastic flow becoming unstable on the neg-
ative-friction portion of the curve. At lower tempera-
tures, this instability [F(V) < 0] can have a dynamic
nature and be due, for example, to the dispersion of the
elastic moduli at high dislocation velocities [7] or to
thermoplastic instability [8, 9]. In addition to this
mechanism of instability of plastic deformation, there
can be instability associated with a “dry”-friction type
loss of strength of the material (structural softening). In
this case, moving dislocations destroy obstacles that
impede them (e.g., precipitates [3]) and the barrier
damping of dislocations is decreased.

The unstable modes of plastic deformation directly
or indirectly associated with the instability mechanisms
indicated above were considered in many papers [3–5,
8–11], but their consistent unified analysis has not been
1063-7834/01/4302- $21.00 © 20263
conducted in the literature. In this paper, we propose
models based on general equations of the dynamics of
dislocations [4, 7] and employ them to investigate
wavelike modes of plastic deformation associated with
the mechanisms of crystal softening mentioned above.

1. BASIC EQUATIONS
Mathematically, the problem of unstable modes of

plastic deformation can be formulated using a set of
nonlinear equations describing the time variation of the
density of continuously distributed dislocations. These
evolution equations follow from the law of conserva-
tion of the Burgers vector of a system of dislocations.
This vector is conserved during various reactions and
multiplication of dislocations [4, 7]. The Burgers vector
conservation law can be written in the form of a differ-
ential consistency equation

∂αik/∂t + eilm∂jmk/∂xl = 0,

which relates the tensors of the density αik and of the
flux jik of dislocations [7]. These tensors are expressed
in terms of the scalar dislocation density ρa(r, t) as

where va(r, t) is the average velocity dislocation glide
and the index a enumerates the possible directions of
the Burgers vector b of a dislocation relative to the unit
vector l tangential to the dislocation line. The set of
evolution equations for the dislocation density ρa(r, t)
follows from the consistency equation and has the form

(1)

which reduces to the continuity equation if the local
interaction of dislocations is neglected (Ga = 0). This
can be done if the plastic deformation is localized in a
narrow slip band and is dynamic in character. In this
case (further considered here) the equation of motion

α ik libk
aρa, jik

a

∑ eijm l jbk
aρavm

a ,
a

∑= =

∂ρa

∂t
-------- divρava+ Ga ρa( ),=
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for dislocations, from which the velocity va(r, t) can be
found, has the form [7]

(2)

In the right-hand side of Eq. (2), the first term is the
Peach–Köhler force per unit dislocation length, with

 being the component of the external stress tensor

in the slip plane of dislocations;  is the component
of the long-range internal stress tensor which is pro-
duced by a system of distributed dislocation charges

and is a functional of ρa; (Cj , αj) is the “dry”-fric-
tion stress caused by various local obstacles, which are
distributed in space with density Cj and have stopping-
force characteristics αj;  is the effective dislocation
mass tensor; and Fi(va) is the dissipative friction force.

Equations (1) and (2) are derived under the assump-
tion that the radius of curvature Rc of the dislocation
lines is much larger than the average spacing  between
dislocations. In this approximation, dislocations as a
whole can be treated as straight lines, and, when study-
ing the evolution of the entire ensemble of dislocations,
one can divide this ensemble into smaller ensembles,
each of which is a system of parallel dislocation lines.
In this paper, we will investigate the dynamics of one of
these ensembles.

Let us consider an ensemble of dislocations in a slip
band of a width L > . The x axis is taken to be along
the slip direction of the given slip system of disloca-
tions. Let the plastic flow involve a subsystem of posi-
tive edge dislocations (b ⊥  l) characterized by a density
ρ+(r, t) = ρ(r, t), with its equilibrium value being equal

to (r, t) = ρ0. Then the plastic flow in the slip band
chosen is described by the set of equations

(3)

(4)

where the stress field σint acting on dislocations in their
slip plane is given by [12, 13]

(5)

Here, ψeff(r) = DerD (y/rD)K0(r/rD) is the effective
stress (Airy function) of edge dislocations, r = (x, y) is
the position vector (r ⊥  l), rD is the screening radius of
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∞

∫–=

sinh
PH
the elastic field of dislocations, K0(r/rD) is the Mac-
Donald function, and De = Gb/2(1 – ν) [13].

Dry-friction stress σf is usually considered a fitting
parameter. However, in the case of structural crystal
softening, the quantities Cj and αj can be a function of
dislocation density ρ; therefore, one should generally
assume that σf = σf(ρ).

The set of Eqs. (3) and (4) has a time-independent
uniform solution:

ρ = ρ0, v = v0, (6)

where v0 is determined from the requirement of the
right-hand side of Eq. (3) being equal to zero,

F(v0) = bσext – bσf(ρ0) = bσt , (7)

while the density ρ0 is determined from the boundary
conditions. The effective stress (Airy function) ψeff(r)
in Eq. (5) reduces to the classical expression ψ(r) =
−Deyln(r/r0) [11] at small distances (r ! rD) and expo-
nentially decreases in the dislocation glide direction

[K0(r/rD) . ] at large distances r @ rD.
We will assume that the time-independent density of
mobile dislocations ρ0 is a small fraction of the total

dislocation density ρtot (ρ0 ! ρtot). Because  = µρtot,
where µ is a dislocation parameter of order unity [12],

we have rD .  !  = . Therefore, the elastic
field of each mobile dislocation is screened and only
the effective interaction of dislocations is important; for
these conditions, integral formula (5) can be simplified.

Introducing the relative coordinates ξ = x' – x and
η = y' – y and expanding the function ρ(r') = ρ(r + x) in
a power series in x = (ξ, η), we obtain the following
approximate expression in the case of rD ! r:

(8)

where Ae is given by

(9)

Since the set of Eqs. (3), (4), and (8) involves only
one spatial coordinate, we will assume that ρ = ρ(x, t)
and v = v(x, t).

πrD/2re
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2. INSTABILITY OF PLASTIC DEFORMATION

Let us analyze the stability of the time-independent
uniform solution (6) of the set of Eqs. (3) and (4) taking
into account the assumptions made about σint(ρ) and
σf(ρ). Linearizing the original equations and introduc-
ing dimensionless quantities

(10)

we arrive at the equations

(11)

(12)

Here, we have also introduced the dimensionless vari-
ables x ' = x/τv0 and t ' = t/τ and the parameters β =

bAeρ0/m* , τ = m*v0/bσt, a = – (ρ0)ρ0/σt, and γ =
F '(v0)v0/bσt. For wavelike solutions n, u ~ exp(λt ' –
ikx '), we obtain the dispersion relation

λ2 + λ(γ – 2ik) – ik(γ + α) + k2(β – 1) = 0,

from which it follows that the unstable-mode branch is
characterized by λ+ = µ + iω given by

(13)

(14)

Therefore, the solution becomes unstable (Reλ+ = µ >
0) in two cases,

γ < 0 (15)

and

a > γ , γ > 0. (16)

In the case of inequality (15), we have an instability
that is associated with negative friction [F '(v) < 0] in
the dislocation dynamics (we will refer to this instabil-
ity as that of the first type), while in the case of inequal-
ity (16), an instability (of the second type) occurs
because the barrier damping of the dislocations in the
slip band becomes weaker as the dislocation density

increases [ (ρ0) < –γ σf /ρ0]. It should be noted that
there is an instability threshold in the latter case.

As follows from Eq. (13), the instabilities corre-
sponding to inequalities (15) and (16) occur in the wave
number range 0 < k2 < ∞. The fact that the spectrum of
unstable modes contains zero-wavelength harmonics
signifies that the set of Eqs. (3) and (4) has no stationary
nonhomogeneous solutions in the class of continuous
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functions. This will not be the case if the viscosity of
the dislocation “gas” is taken into account. Physically,
viscosity arises because moving dislocations pass into
adjacent slip planes, thereby transferring their momen-
tum into those planes. In gases, this is known to be the
reason for internal friction between layers [14].

It can easily be shown that if the right-hand side of
Eq. (3) contains the term ηvxx responsible for viscosity
(η is the coefficient of dynamic viscosity), the spec-
trum of the unstable modes will be limited and, there-
fore, the problem will become regular. In this case,
expressions (13) and (14) for the branch of unstable
modes are redefined by the change in parameter γ
(γ  γ + νk2, where ν = η/m* τ is the dimensionless
coefficient of kinematic viscosity).

We will consider the set of nonlinear Eqs. (3) and
(4) further and separately for each type of instability
with regard to the specific features of plastic deforma-
tion and the assumption made above.

3. DEFORMATION WAVES IN THE CASE
OF ANOMALOUS DISLOCATION DAMPING

Let us consider a model in which the first-type insta-
bility occurs [ (v) < 0]. The possible dependence of
the dry-friction stress on dislocation density will be
ignored (σf = const). In this case, with allowance made
for viscosity, the original set of Eqs. (3) and (4) takes
the form

(17)

(18)

where σ = σt = const and the nonlinear function F(v) is
depicted by an N-shaped curve like that shown in
Fig. 1a.

The straight line bσ = bσt can be positioned differ-
ently with respect to the F(v) curve. We consider the
case where these two lines intersect at three points, cor-
responding, e.g., to velocities v0, v1, and v2 (v0 < v1 <
v2). Therefore, the system described by Eqs. (17) and
(18) has three equilibrium states, two of which are sta-
ble (at v = v0 and v = v2), while the third is unstable (at
v = v1).

In order to find stationary solutions of the traveling-
wave type to Eqs. (17) and (18), we introduce the vari-
able ξ = x – ct, which is characteristic of self-similar
waves, and assume that v = v(ξ) and ρ = ρ(ξ). Substi-

v 0
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------- v
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-------+ 
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tuting these functions into the original equations and
integrating Eq. (18), we obtain

(19)

(20)

It is convenient to introduce the variable W = dv/dξ
and investigate Eqs. (19) and (20) in the (v, W) phase
plane. Eliminating the variable ρ between these equa-
tions, we arrive at the set of equations

(21)

(22)

This set has three fixed singular points in the phase
plane, namely, (v0, 0), (v1, 0), and (v2, 0). At the (v1, 0)
point, we have a focus, while the (v0, 0) and (v2, 0) sin-
gular points, through each of which two trajectories
pass, are saddle points. Only those stationary solutions
are stable which are represented by the separatrixes
going from one saddle point to the other; these solu-
tions correspond to certain values c± of the wave veloc-
ity (Fig. 1a).

Equations (21) and (22) can be reduced to the
boundary-value problem

(23)

m* v c–( )
dv
dξ
------- bAe

dρ
dξ
------– ηd2v

dξ2
--------- bσt F v( ),–+ +=

ρ ρ0

c v 0–
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ηdW
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v0 v1 v2 v

0

W
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v(ξ)

v2

v0
ξ

(b)

(a)

c– c+

v(x, 0)

Fig. 1. (a) Phase portrait for the set of Eqs. (21) and (22) in
the (v, W) phase plane and (b) the process of formation of a
strengthening (c = c–) and a softening wave (c = c+) caused
by a local perturbation v(x, 0) (schematic).
P

with boundary conditions W(v0) = W(v2) = 0.
We will treat this problem analytically under the

assumption that v ! c (the validity of this assumption
will be substantiated below). Approximating F(v) by a
cubic polynomial F(v) = κ(v – v0)(v – v1)(v – v2) and
assuming that W = δ(v – v0)(v – v2), we find

(24)

(25)

where Vδ = v1 + (δη/m*)(v0 + v2 – 2v1).
The wavelike solutions differ in character depending

on parameter δ. It follows from Eqs. (24) and (25) that
there are two types of solitary waves; they correspond to
two different values of the parameter δ (δ+ > 0, δ− < 0)
and have different propagation velocities, c+ and c−.
Integrating the equation W = dv/dξ = δ(v – v0)(v – v2),
we find the profile of these waves:

(26)

where Λδ = |δ(v2 – v0)|–1 is the characteristic width of
the wave front, zδ = |δ|/δ, and C0 is a constant of integra-
tion.

From Eq. (26), it follows that at positive δ = δ+, we
have a switching wave from the v0 state to the v2 state
(softening wave), while at negative δ = δ–, we have a
switching wave from v2 to v0 (strengthening wave). As
η  0, the width of the softening wave front tends to
zero, because Λ+ . 2η/m*(v2 – v0) in this case, whereas
the width of the strengthening wave front tends to Λ– .
m*/κ(v2 – v0). Therefore, Λ– @ Λ+ in this limit.

Now, we analyze the possible situations occurring
with the solutions given by Eq. (26). Let a perturbed
dislocation density ρ(x, 0) (x ∈  Ω) be produced in a
region Ω of a slip band at an initial instant of time.
Internal stresses σint ~ ∂ρ/∂x that arise in this case give
rise to a changed dislocation velocity v(x, 0) ≈ v2.
Because of this, the right-hand boundary of the pertur-
bation will propagate as a softening wave with a veloc-
ity of c = c+, while its left-hand boundary will propa-
gate as a strengthening wave with a velocity of c = c–
(Fig. 1b).

Let us estimate the propagation velocity of the
strengthening wave front. Assuming that the motion of
dislocations is “nonrelativistic,” i.e., that the disloca-
tion velocity ν is much less than the sound velocity ct,
the parameter β is calculated to be

from which it follows that parameter β can be fairly
large. Accordingly, the velocity of the solitary wave is

c c± Vδ/2 Vδ
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seen from Eq. (24) to tend to the value c ~ ct  @ v,

and, therefore, it increases as  with increasing dis-
location density in the slip band. Physically, this result
is clear. Dislocations in the softening wave front gener-
ate a high internal stress field σint > 0, which causes dis-
locations to move rapidly and thereby ensures a high
switching-wave phase velocity close to the sound
velocity when dislocation density ρ0 is fairly high. Sim-
ilar arguments can be used and estimates made in the
case of the strengthening wave (where σint < 0).

The velocity of the softening wave c+ is higher than
the strengthening wave velocity c– under the condition
that v0 + v2 – 2v1 > 0. In this case, the wave fronts of
these waves move father apart with relative velocity:

(27)

In the opposite case of v0 + v2 – 2v1 < 0, the soften-
ing wave does not arise, because it is suppressed by the
strengthening wave. Therefore, there is a critical value
of flow stress σ = σc (corresponding to the condition
∆c = 0) below which (σ < σc) the perturbation of the
dislocation density decays and the material is deformed
macroscopically smoothly, without generation of inho-
mogeneous wavelike structures. At a certain critical
load (σ = σc), the propagation of a soliton of a peculiar
dissipative kind becomes possible; the leading and
trailing edges of the pulse move with the same velocity

c+ = c– = v1/2 + . The width of a soliton
of this kind depends on the conditions under which it
arises.

In solving the initial-value problem, we took the
boundary conditions in the form v(±∞, t) = v0. How-
ever, in the case of active loading of the crystal, where
the plastic strain rate is kept fixed, the boundary condi-
tions should be taken to be v(–∞, t) = v2 and v(∞, t) =
v0 in the problem in question. Under these conditions,
only the softening wave arises. When passing through
the entire crystal, this wave produces a zone of local-
ized plastic deformation in which dislocations move
with an increased velocity equal to v2.

4. STATIONARY STRUCTURAL 
SOFTENING WAVES

Now, we consider a model that exhibits the second-
type instability associated with structural softening

(a > γ ). For the sake of definiteness, we assume that
the dissipative damping of the dislocations is purely
viscous; i.e., F(v) = Bv, where B is the viscous damp-
ing constant. In this case, the parameter γ involved in
the condition for the instability of plastic deformation

ρ0/ρtot

ρ0

∆c c+ c– . 
1 8ηκ /m*2+

4
------------------------------------–=

× v 0 v 2 2v 1–+( ) 1 2v 1+ /v 0 β( ).

v 1
2/4 βv 0

2+

β
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is equal to unity. We also assume that the dependence
of the dry-friction stress on the dislocation density has
the form σf ~ (K + ρ)–1, where K is a constant (the
Michaelis–Menten law [15]). In our problem, this law
can be shown to be valid by using the following line of
reasoning.

Let dislocations cut obstacles (e.g., precipitates)
when moving through them, so that these obstacles
exhibit less resistance to each subsequent dislocation
moving in the same slip plane and their stopping-force
characteristics αj decrease. On the other hand, the
deformation (cutting) of an obstacle by dislocations
leads to an increase in the obstacle’s surface energy;
therefore, the obstacles tend to relax to their initial state
with initial stopping-force characteristic α0j. Taking
these processes into account, one can write the kinetic
equation for the variable αj

(28)

which, combined with Eqs. (3) and (4), forms a com-
plete set. Here, τα is the relaxation time to equilibrium
value α0j and κ(C0j) is a constant characterizing the
interaction between the dislocations and stoppers. We
assume that recovery of the configuration of the obsta-
cles occurs rather quickly (τα ! τ). Therefore, αj varies
adiabatically and one can put ∂αj/∂t = 0 in Eq. (28);
from which it follows that αj(ρ) = α0j/(1 + κταρ). Fur-
ther, putting σf ~ αj, we finally obtain σf(ρ) = σ0f/(1 +
κταρ), where σ0f is the friction stress in the absence of
softening. It should be noted that the work-softening
mechanism considered above is not the only possible
one for which the density of structural defects Cj is con-
stant.

With the assumptions formulated above, the original
equations take the form

(29)

(30)

From Eq. (29), the steady-state velocity can easily
be determined to be v0 = b[σext – σ0f/(1 + κταρ0)]/B.
This value can differ significantly from the velocity V =
b(σext – σ0f)/B in the absence of the softening effect. For
example, if the crystal softening is limited by friction
stress, we have σeff = σext – σ0f ! σext . In this case, V !
v0 . bσext/B(1 + p), where the parameter p = (κταρ0)–1

is less than or of order unity.
We will seek inhomogeneous wavelike solutions of

Eqs. (29) and (30) in the class of self-similar solutions

∂α j

∂t
--------

α0 j α j–
τα

------------------- κα jρ,–=

m* ∂v
∂t
------- v

∂v
∂x
-------+ 

  b– Ae
∂ρ
∂x
------ η∂2v

∂x2
---------+=

+ bσext
bσ0f

1 κταρ+
---------------------– 

  Bv ,–

∂ρ
∂t
------

x∂
∂ ρv( )+ 0.=
1
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Fig. 2. Stationary periodic solutions of the set of Eqs. (29)
and (30) found by solving Eqs. (31) and (32): (a) phase tra-
jectories beyond the limit cycle in the (v, W) phase plane for
small-amplitude (c = 1) and cnoidal oscillations (c =
0.9983) and (b) the shape of cnoidal waves of density ρ(x, t)
and velocity v(x, t) of dislocations which propagate with a
phase velocity of c = 0.9983c0. Calculations were per-
formed for the parameters a = 5.2, β = 25, and ν = 0.1. The
variables v, ρ, W, and ξ are normalized to v0, ρ0, τ–1, and v0,
τ, respectively, and the phase velocity c is normalized to

c0 = v0(1 + ).β
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Fig. 3. Stationary solitary-wave solutions of the set of equa-
tions (29) and (30) found by solving Eqs. (31) and (32): (a)
the phase trajectory that is the separatrix passing through the
(0, 1) saddle point in the (W, v) phase plane and (b) the
shape of solitary waves in the form of solitons for density
ρ(x, t) and velocity v(x, t) of dislocations which propagate
with a phase velocity of c = 1.051c0. Calculations are per-
formed for the same values of parameters as those in Fig. 2.
P

by putting v = v(ξ) and ρ = ρ(ξ), where ξ = x – ct. Sub-
stituting these into the original equations, we obtain

(31)

(32)

where

Equation (31) describes a nonlinear oscillator with a
damping force R(v) . Therefore, the problem is
reduced to investigating the motion of a particle in an
effective potential well U(v), which has the form of an
integral of Q(v). The function Q(v) vanishes at singular
points v = v0 and v = v0[1 + (c/v0 – 1 – a(1 + p))/p] =
vc, at which the potential U(v) has extremal values. The
maximum of U is reached at v = min{v0, vc}, while the
minimum is at v = max{v0, vc}. The equilibrium state
at v = vc, which arises in the system because of the
change of variables, is always absolutely unstable, in
contrast to the physically reasonable state at v = v0.
This means that the solutions of Eq. (31) that describe
finite motion can exist only in the vicinity of the mini-
mum of the potential U= U(v0) for c < v0(1 + a). [It is
easy to verify that vc < v0 if c < v0(1 + a).] Possible
solutions that describe infinite motion must satisfy the
condition v(±∞) = v0, which can be the case only if
c > v(1 + a), i.e., when the motion is represented in the
(v, ) phase plane by a separatrix going out and then
entering the saddle point (v0, 0).

First, we consider possible solutions of Eq. (31) that
describe finite motion, which is a self-oscillation of the
variable v. This oscillation will be undamped if the
work of the damping force is equal to zero in the aver-
age, which will be the case if

c ≤ c0 = v0(1 + ).

The maximum wave velocity (c = c0) corresponds to
small-amplitude oscillations, |v – v0| ! v0. In this case,
Eq. (31) can be approximated by

(33)

η∂2v

∂ξ2
--------- R v( )

dv
dξ
-------+ Q v( )–

∂U
∂v
-------,–= =

ρ ρ0

c v 0–
c v–
--------------, v c<( ),=

R v( ) m* v c–
β c v 0–( )v 0

c v–( )2
-----------------------------+ ,–=

Q v( ) B v v 0–( )
a 1 p+( )v 0

p c v–( ) c v 0–+
------------------------------------------ 1– .=

v ξ'

v ξ'

β

η∂2v
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which is easily integrated by putting dv/dξ = W. The
result is

where ν = η/m* τ and vw is the value of v for W = 0.

In the (v, W) phase plane, this equation describes a
family of closed trajectories which represents small-
amplitude waves in the continuous system described by
Eqs. (29) and (30). Stationary waves of a relatively
large amplitude propagate with a velocity c, which is
only slightly less than c0. In this case, the stationary
wavelike solutions of Eqs. (29) and (30) correspond to
the limit cycle of Eq. (31) in the (v, W) phase plane
(Fig. 2a). The wave velocity c is uniquely determined
by the wave amplitude, which, in turn, depends on the
given initial conditions. The corresponding wavelike
solutions for the density and average velocity of dislo-
cations are shown in Fig. 2b.

Now, we consider solitary waves in the system
described by Eqs. (31) and (32). As indicated above,
Eq. (31) describes the motion of a particle of mass η in
potential U(v) in the presence of damping force
R(v) , which depends on the velocity of propagation
of the solitary wave c. The possible values of c lie in the
interval cmin < c < cmax. The lower limit cmin = v0(1 + a)
is determined by the boundary conditions v(±∞) = v0,
while the upper limit cmax = v0[1 + a(1 + p)] follows
from the condition vc < c in Eq. (32), i.e., from the con-
dition for the positiveness of density ρ.

For a given potential U(v), there is only one value of
velocity c at which the energy loss due to damping in
infinite motion of the particle (corresponding to the
motion along the separatrix in the phase plane) is
strictly equal to zero. A numerical solution of Eq. (31)
reveals that, in this case, the motion along a closed tra-
jectory in the phase plane corresponds to a solitonlike
solution (Fig. 3). The soliton velocity c is close to the
minimum value cmin = v0(1 + a).

The invariant solutions found by using Eq. (31) are
the basic elements for a solution to the Cauchy problem
for the continuous system described by Eqs. (29) and
(30). Numerical calculations for this system show that
these solutions describe the asymptotic behavior of the
solution to the Cauchy problem for a wide class of ini-

v
v 0
------ 1– 

  2 vw

v 0
------ 1– 

  2

–
2ν
3

------=

× Wτ a β–

3 β
---------------- 1 3Wτ β

a β–
-------------------– 

 ln+ ,

v 0
2

v ξ'
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tial values. After the process is developed, the wave
consists of two parts, a head and a tail. The head is a
solitary wave in the form of a soliton, while the tail is a
periodic wave, which gradually lags behind the head

with a relative velocity equal to ∆c . v0(a – ).
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Abstract—The kinetics of pore formation upon plastic deformation of crystals with a cesium chloride structure
was studied as the first stage of a first-order phase transition in a deformable media. The shape and the critical
dimensions of microvoids depending on the critical shear stress were found. The number of critical microvoids
per unit volume arising per unit time on the surface of a slip plane was determined based on the kinetics of for-
mation of pairs of charged vacancies. The volume fraction of pores at the initial stage of plastic deformation in
CsBr and CsI crystals was estimated. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Nonuniform plastic deformation in crystals is asso-
ciated with the local appearance of microvoids, such as
vacancies, divacancies, and their clusters. Experimen-
tal and theoretical investigations of the interrelation
between the nonconservative slip (climb) of disloca-
tions and the “density defect” in ionic crystals have
been known for a long time [1–3]. The results of exper-
imental investigations [2, 3] mainly concern the deter-
mination of the concentration of vacancies that arise
upon nonconservative motion of dislocations in crys-
tals with a sodium chloride structure, at normal temper-
ature. Among the investigations of this kind, direct
observations of microvoids that show the initial kinet-
ics of fracture upon deformation of crystals are of great
importance [4, 5]. However, for ionic crystals, the
direct observations with the help of optical microscopy
imply the use of annealing of the crystals after a certain
degree of plastic deformation is attained; therefore, the
coalescence of vacancies that had been generated dur-
ing deformation is primarily ensured by the thermal
effect on the crystal.

In this work, we theoretically estimate the contribu-
tion of slip to the process of pore formation in an ionic
crystal. The investigation is based on the work [6]
devoted to the formation of a new phase in the volume
of a material. It was shown in [6] that, under certain
conditions, microvoids begin nucleating in a solid not
through the diffusion of vacancies but rather by the
mechanism of vacancy generation near the surface or
directly at the surface of a pore and through their direct
passage from the solid to the pore. In this work, we con-
sider the state of a metastable equilibrium that arises
near a slip surface. The process of shear on the slip sur-
face generates microvoids of a type that is more favor-
able energetically than spherical microvoids; namely,
1063-7834/01/4302- $21.00 © 20270
these are spherical segments that are bounded by a slip
plane. This feature of the failure process carries no sig-
nificant changes into the analysis of the phase transition
providing that the newly formed porous phase does not
affect the slip process. On this assumption, the subse-
quent analysis will be considered as the first approxi-
mation for two principal parameters of pore formation:
the critical radius of a void and the number of voids that
arise per unit time per unit volume after the onset of
plastic deformation in the crystal. In this work, this
model is applied to the estimation of pore formation in
cesium halides with a cesium chloride structure at the
initial stage of plastic deformation.

1. MODEL OF VOID NUCLEATION 
AT A SLIP SURFACE

It is well known that the driving force of any first-
order phase transition is the difference of the thermody-
namic potentials of the new and old phases. In the case
of solutions, such a potential difference is the conse-
quence of the difference in the concentrations and, cor-
respondingly, in the energy states of atoms in the new
and old phases. Upon growth of voids under a load, the
driving force for their formation is the difference in the
thermodynamic potentials of the continuous medium
(old phase) and pore (new phase). This difference of
potentials is a consequence of the difference in the
states of a vacancy in a solid and in a pore when the
solid is under a load.

In the case of a “weak metastability,” the main char-
acteristics of the process of pore formation will be
determined as before [6] on the basis of the classical
theory of nucleation. We only emphasize that in this
case the new phase is formed on a slip surface. When a
nucleus of a new phase is formed on a substrate, the
minimum work, as is known [7], is proportional to the
001 MAIK “Nauka/Interperiodica”
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wetting angle. The angle Θ between the tangent to the
surface of the void and the slip surface at the point of
their contact will be considered to be analogous to the
wetting angle in the theory of nucleation of disperse
particles on a substrate upon deposition from a solu-
tion. In addition, we assume that the newly formed
nucleus of a void does not interact with the substrate
(slip plane). In this case, the minimum work of the for-
mation of a nucleus of the new phase is written as [7]

(1)

where , in turn, is the minimum work of formation
of a nucleus in the volume of a loaded material and is

given by the relation [6]  = 4πr3(µ(σv) –
µ'(σv))/3Qv + 4πγr2 [6], where µ and µ' are the chemi-
cal potentials of structural elements that comprise the
nucleus of the void, Ωv is the volume of such a struc-
tural element, and σv is the tensor of stresses corre-
sponding to the metastable state of a localized region.

The surface tension of the substrate required in the
new model of formation of the phase represents the
work of formation of a unit area of the slip surface (γ2).
The angle Θ is determined by the equality [7] Θ =
arccos(γ2/γ), where γ is the surface tension of the free
surface of the void. The quantity Z is the ratio of the
volume of a spherical segment to a spherical nucleus of
radius r. It is determined by the equality Z = (1/4)(2 –
3cos(Θ) + cos3(Θ)) [7] and can be written as

(2)

Let us assume for simplicity that a slip begins in a sin-
gle system. Let Ωτ be the volume of the structural ele-
ment at the upper face of which a shear stress acts and
Sb be the area of the slip surface. Then, the work of for-
mation of the slip surface per unit area of this surface is
written in the first approximation as γ2 = εmaxτmaxΩτ/Sb,
where εmax is the deformation caused by τmax in a vol-
ume Ωτ . Since for a cubic crystal we have Ωτ = Sbh,
where h is the distance between the slip planes, the spe-
cific work of formation of the slip surface has the form

(3)

Simulation of the formation of a substrate in the
form of a slip plane in a crystal defines the argument in
Eq. (2) as a tensor with one nonzero component τmax.
The chemical potentials µ(σv) and µ'(σv) in the case
where the substrate is represented by a slip plane can be
linked, in the first approximation, without allowance
for the hydrostatic compression, as follows:

where εmaxτmaxΩv is the work done by shear stresses
upon the formation of a structural element. The role of
a structural element in this model, which considers the
nonuniform slip in ionic crystals, is played, in view of

Amin Z Θ( )Amin
0 ,=

Amin
0

Amin
0

Z 1/4( ) 2 3γ2/γ– γ2/γ( )3+( ).=

γ2 εmaxτmaxh.=

µ τmax( ) µ' τmax( ) εmaxτmaxΩv,+=
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the requirement of the electrical neutrality of the crys-
tal, by a pair of charged vacancies. The volume Ωv of
the structural element is the sum of the volumes of a

positive and a negative ion  + . The zero value
of the derivative of the minimum work of formation

 of a spherical nucleus in the bulk of the material
without a substrate yields the critical radius of the
nucleus

(4)

The kinetics of formation of microvoids near a slip
plane in terms of a steady-state flux of nuclei I is treated
as in [6]. The flux I in a unit volume per unit time can
be written on the basis of known formulas [6, 7] as

(5)

where Dc is the diffusion coefficient in the space of
dimensions and a is the parameter of the cubic lattice.
In the general case [6], Dc is determined by the critical
size, the radius of the structural element, its volume,
and the kinetic parameter (measure of the flux of struc-
tural elements that pass from the medium into the
nucleus). It follows from Eq. (4) that, in the model with
nonuniform slip, the diffusion coefficient in the space
of dimensions has the form

(6)

where β is the kinetic parameter, T is the temperature,

Ωv is the volume of a vacancy pair, and av = 3 /4π
is the effective size of the structural element.

In expression (6), we should determine the parame-
ter β [Å eV–1 s–1], which is related to the rate of incor-
porating a vacancy pair into the nucleus of a pore per
unit area per unit time β0 [Å–2 s–1] as follows: β =
β0Ωvav/T (β0 is defined by an activation formula given
in [1, 7]). The generation of vacancies as distortions of
a slip plane can be ascribed, in the first approximation,
to the effect of the maximum shear stress, whose mag-
nitude is calculated through the effective shear modulus
related to the nonuniformity of the slip. Thereby, the
energy of formation of a vacancy pair Ei is estimated as
Ωvεmaxτmax without allowance for the energy of elastic
relaxation. If the number of like dislocations per unit
area of the slip surface is N, then

(7)

where ν is the frequency and q is the number of slip
directions in the slip plane. The minimum work of for-
mation of a nucleus for r = rc, which substantially
affects the magnitude of the flux I of critical nuclei in a

Ωv
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Amin
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I
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Some characteristics of CsBr and CsI single crystals with a structure of the cesium chloride type

τmax, GPa rc , Å Z Ωv, Å3 Vc, Å3 β, Å2/eV s Dc, Å2/s IVc

CsBr 0.86 19 0.01 50 290 102–106 10–1–0.5 × 103 10–5–10–1

CsI 0.68 24 0.10 60 5200 10–1–103 10–4–0.5 10–13–10–10
unit volume per unit time, decreases by a factor of 1/Z
in comparison with the volume model of pore forma-
tion [6] and is expressed as

(8)

With allowance for Eqs. (2), (4), (5), (6), and (8), the
expression (5) for the flux takes on the form

(9)

In this expression, the geometric factor is determined
by dependences (2) and (3). If the specific work of slip-
surface formation γ2 is small relative to the surface ten-
sion at a given temperature, the flux of pores has a max-

imum at εmaxτmax = 41/3Z1, where Z1 = hγ/ . If the spe-
cific work of the slip-surface formation is close to the
surface tension at a given temperature, then the maxi-
mum flux of pores can arise at εmaxτmax = 31/2Z1/(1 +

3 )
1/3

. The proportionality between εmaxτmax and γ,
which is characteristic of the classical model of brittle
fracture by cleavage [8], leads in this case to a localized
pore formation in the crystal.

It follows from Eq. (9) that the maximum flux in a
unit volume depends on the crystal structure, slip sys-
tem, and surface tension. If we assume that temperature
variations from crystal to crystal in a series of experi-
ments on plastic deformation do not affect the slip sys-
tem, then the maximum flux I increases with increasing
temperature. In the general case, i.e., upon the deforma-
tion of an arbitrary crystal, the temperature dependence
of the flux is nonlinear, since quantities entering into
Eq. (9), such as the number of slip lines per unit area of
the surface, the maximum shear stress, and the surface
tension, all depend on temperature.

2. DISCUSSION

Measurements of the density defect upon plastic
deformation of sodium chloride are known [2] to give
values on the order of 10–2 to 10–4, which is character-
istic of plastic deformation of ionic crystals at normal
temperature. This model for the crystals with a sodium
chloride structure yields values of the critical size so
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I
Nν TZΩvεmax

2 τmax
2

8qπa4avγ γ
----------------------------------------------=

×
εmaxτmax

T
-------------------Ωv

4πZγ3

Tεmax
2 τmax

2
-----------------------+

 
 
 

–
 
 
 

.exp

av
2

Z1
3

P

small that the introduction of the concept of surface
tension cannot be justified. As the model crystals, we
chose the halides CsBr and CsI, which have low and,
consequently, close to realistic, values of the maximum
shear stress τmax in the {110} plane in the direction
〈001〉 . According to the Frenkel model [1], we have
τmax = Gb/(2πh) for shear in a volume Ωτ , where G is
the shear modulus, b is the Burgers vector, and εmax =
0.25. The allowance for the nonuniformity of slip in a
chosen slip system (MacKenzie hypothesis [8]) means
the choice of the shear modulus being equal to the mod-
ulus of rigidity (G = C44), whose magnitudes for the
CsBr and CsI crystals are 7.6 and 6.2 GPa, respectively
[9]. The distance between the slip planes and the abso-
lute magnitude of the Burgers vector are expressed

through the lattice parameter a (h =  and b = a) for
the chosen slip system, in which, according to [10], a =
4.29 Å for CsBr and 4.57 Å for CsI. The critical radius
in Eq. (4) and, especially, flux in Eq. (9) substantially
depend on the surface tension, which for ionic crystals
is of order γ ≈ 0.01 eV/Å2 [11]. The volume of a
charged vacancy pair Ωv was calculated according to
[10] as the sum of the volumes of a positive and a neg-
ative ion. In the {110} plane, there are two slip direc-
tions [9]; consequently, q = 2 and, according to [1], N =
108–1012 m–2. The order of the magnitudes of the
kinetic parameter β, dispersion Dc, and volume fraction

of microvoids (IVc) (Vc = Z4π /3) found by formulas
(7)–(9) are given in the table.

The estimates of the critical radius by formula (4)
given in the table show that the critical radii for the
halides with structures of the cesium chloride type are
on the order of a few tens of angstroms. The magni-
tudes of the geometrical factor found by formulas (3)
and (2) differ for crystals differing in even only the lat-
tice parameter, which is essential for the estimation of
the main characteristic of the process I in view of rela-
tionship (1). The table illustrates two results character-
istic of real physical processes in ionic crystals. One is
related to the different intensity of formation of critical
nuclei after the onset of plastic deformation; the other
consists in a slip along the plane in which the maximum
shear stress is operative. The effects of this or other
ionic process on the crystal state are estimated with the
help of the parameter β. The same parameter is impor-
tant for determining the order of dispersion Dc in
Eq. (6); a significant variation of this quantity is a sign
of brittle behavior of the material (scatter in the sizes of
microvoids).

2a

rc
3
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In this model, the specific work of the shear stress
(τmaxεmaxh) for the first time is related to surface ten-
sion. This relationship looks as the well-known direct
proportionality between the cleavage energy and the
surface tension in the crystal [8], but, in contrast to the
latter, it has the sense of the maximum localization of
fracture on a microscopic level in the beginning of plas-
tic deformation of the crystal.
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Abstract—The structure of an interphase boundary is studied theoretically. The external magnetic field normal
to the Cu–O layers at which an interphase boundary is formed in the La2CuO4-type four-sublattice antiferro-
magnet is determined. The effect of interplanar interactions on the structure of the interphase boundary is ana-
lyzed. The dependence of the stationary dynamics of this boundary on the external magnetic field is investi-
gated. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The La2CuO4 compound is an antiferromagnet with
a weakly noncollinear structure whose unit cell con-
tains four magnetic copper ions. If a strong magnetic
field is directed normal to the Cu–O planes, spin angu-
larity from the Cu–O planes toward the magnetic field
vector is observed and transition to a weak ferromag-
netic state occurs [1]. A similar transition was revealed
experimentally in [2], and the phase transition field was
determined. It is known that stoichiometric La2CuO4
exhibits no ferromagnetic moment in zero or weak
magnetic fields [3]. However, a weak ferromagnetism
was found in weakly oxygen-doped crystals in external
magnetic fields H < 50 Oe [4]. In the case when the
impurity oxygen is ordered over certain positions in the
unit cell of La2CuO4, a weak ferromagnetic moment m
normal to the Cu–O plane can appear in zero fields.
This phenomenon was revealed experimentally in [5].

It is known that an intermediate state can exist upon
the formation of thermodynamically stable interphase
boundaries in magnetically ordered crystals in the
vicinity of a first-order phase transition. If the external
magnetic field changes, the phase equilibration is dis-
turbed and the interphase boundary begins to move.
The dynamics of similar boundaries was investigated
within the model of two-sublattice antiferromagnets,
including orthoferrites, and the vibrations and drift of
the boundary were revealed in an alternating field [6].
No consideration was given to the structure and
dynamic properties of the interphase boundaries in
four-sublattice La2CuO4.

This paper is devoted to theoretical investigation of
the structure and stationary dynamics of an interphase
boundary which is formed in a four-sublattice antifer-
romagnet of the La2CuO4 type in an external magnetic
field normal to the Cu–O layers. The specific feature of
1063-7834/01/4302- $21.00 © 20274
the interphase boundary under consideration is that it is
formed by rotating magnetizations for only two of four
magnetic sublattices. The magnetizations of the two
other sublattices of the domain wall exhibit small devi-
ations from the antiferromagnetic axes, which coincide
for the antiferromagnetic and weak ferromagnetic
states.

2. ENERGY DENSITY AND THE STRUCTURE 
OF THE INTERPHASE BOUNDARY

We will start from the following form of a free
energy density written in terms of the ferromagnetic mj

and antiferromagnetic lj (j = 1, 2) vectors [7, 8]:

(1)

Here, the Cartesian z axis is normal to the Cu–O layers;
M0 is the saturation magnetization of sublattices; He

and he describe the intra- and interlayer exchange inter-
action, respectively; α is the parameter of the nonuni-
form exchange interaction; HD is the Dzyaloshinski
field; HAZ and HAY are the fields of tetragonal and rhom-
bic anisotropies, respectively; ha is the field of an inter-
planar anisotropy; H is the external magnetic field (in
what follows, it will be considered to be directed along
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the z axis); and Hm is the magnetostatic field deter-
mined by the equations of magnetostatics.

The character of the ground state is determined by
minimization (1), which gives two possible phases:

Antiferromagnetic ordering corresponds to the first
phase (in the single-domain state, the antiferromagnetic
vectors I1 and I2 are antiparallel). For the second phase,
vectors I1 and I2 are parallel and a nonzero weak ferro-
magnetic moment m = m1 + m2 exists. The stability
regions of the weak ferromagnetic and antiferromag-
netic phases overlap (Fig. 1a). The transition between
the phases occurs through a jump (the first-order phase
transition) in the field H = He(he + ha)/HD, which is
determined by the equality of the energies for both
phases. The magnitudes of the fields

determine the boundaries of the existence regions of the
metastable phases. According to [1, 9], an antiferro-
magnetic phase with m = 0 is formed in La2CuO4 at he +
ha > 0 in zero or weak fields. A weak ferromagnetic
phase with mz = 2(HD + H)/He is formed in the field
H > 30 kOe. The symmetry analysis carried out by
E.A. Turov demonstrated that the transition from the state
with m = 0 to the state with m ≠ 0 in the field H ↑↑  z is
the magnetic structural phase transition from an antifer-

romagnetic structure (I+ τ–) to another antiferro-

magnetic structure (I+ τ+) [9]. This transition is
reduced to a repositioning of the signs of the sublattice
magnetizations M3 and M4, i.e., to the change of the l2
direction to the opposite direction. In the field H ↑↓  z,
this effect is reduced to the change of sign for I1. Below,
we will consider the structure and stationary dynamics
of the interphase boundary in the field H ↑↑  z. In this
case, the interphase boundary can be formed only
through the rotation of the I2 vector.

According to [8], La2CuO4 can contain domain
walls with a rotation of I1 and I2 in the Cu–O plane (xy)
and the plane normal to the Cu–O layers (yz). Earlier
[10, 11], we showed that the existence of domain
boundaries with rotation of the I1 and I2 vectors in the
yz plane becomes possible in sufficiently strong exter-
nal magnetic fields parallel to the Cu–O layers. Here,
we consider the fields H normal to the Cu–O layers,
and hence, we will restrict our consideration to the case
of interphase boundaries with rotation of the sublattice
magnetizations in the Cu–O layer (xy planes). It is

I( ) He HAY he ha+ +( ) HD HD H–( )+ 0,>
l2 ↑↓ l1 ↑↑ y,

II( ) He HAY he– ha–( ) HD HD H+( )+ 0,>
l2 ↑↑ l1 ↑↑ y.

H1 HD He HAY he ha+ +( )/HD,+=

H2 HD– He HAY he– ha–( )/HD–=

2x
+2y

–

2x
+2y

–
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assumed that the plane of a one-dimensional interphase
boundary is located normally to the x axis. In this struc-
ture, the magnetization vector of the sample m = m1 +
m2 has only one component parallel to the z axis. In this
case, the magnetostatic field is Hm = –16πM0(m1x +
m2x)ex = 0. For a flat one-dimensional wall which exe-
cutes a stationary motion, we have Mn = Mn(x – Vt)
(n = 1, 2, 3, and 4), where V is the velocity of the
domain wall motion. For mj and Ij with allowance made
for |mj | ! |Ij | and changing over to angular variables
Ij = (–1)j + 1(sinθj , cosθj , 0), the Landau–Lifshitz equa-
tions of motion can be written as

(2)

where θ+ = θ1 + θ2 and θ– = θ1 – θ2.

(3)

In Eqs. (2), the parameters are β2 = 2(HAY +

/He)/M0, δx = 2(he – ha)/M0, δy = 2(he + ha)/M0, χ⊥  =
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Fig. 1. (a) Magnetic phases and (b) the structure of the inter-
phase boundary.



276 SHAMSUTDINOV, NAZAROV

 

2M0/He, c = g is the minimum phase veloc-
ity of spin waves, g is the gyromagnetic ratio, λ is the
dimensionless Hilbert damping parameter, and h =

χ⊥ HDH/ .

Now, we determine the structure of an interphase
domain wall with the boundary conditions

(4)

In Eqs. (2), we expand θ+ and θ– into the series

(5)

where ϑ i and ψi are small deviations from θ0. The zero
member θ0 of the expansion into series (5) corresponds
to the rotation of the I2 vector in the Cu–O plane when
the position of the I1 vector is invariant. The remaining
members of the expansion are due to the interplanar
interactions. The first-order members, as will be shown
below, correspond to the deviation of I1 in the domain
boundary from the equilibrium direction I1 ↑↑  y. The

α M0He/2

M0
2

θ± ξ ∞–( ) 0, θ± ξ ∞( ) π,±= =

dθ±
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Fig. 2. Angle distribution (a)  = θ1(ξ)/(δx/β2) for devia-

tion of I1 from the antiferromagnetic axis and (b) ∆  =

(θ2(ξ) – θ0(ξ))/( / ) in the domain boundary.

θ̃1

θ̃2

δx
2 β2

2

~

P

second-order members correspond to the deviation of
I2 from the distribution θ0 = θ0(ξ). 

Substituting expansion (5) in Eqs. (2), we derive the
following equation for θ0 in a zero approximation with
respect to small parameters δx, δy, h, and λ:

The solution of this equation that satisfies the
boundary conditions (4) is

(6)

For an immobile wall (V = λ = 0), in a first approx-
imation with respect to small parameters δx, δy, and h,
we derive the following equations:

(7)

(8)

where the differential operators  and  take the form

(9)

The solution of the homogeneous equation (7) takes
the form ϑ1 – ψ1 = const/ . From the solvability
condition for Eq. (7), we determine the field at which
the interphase boundary is formed; that is,

(10)

This field coincides with the field of the first-order
phase transition between antiferromagnetic and weak
ferromagnetic states. According to the estimates for
La2CuO4, the external magnetic field of the transition
antiferromagnet  weak ferromagnet corresponds to
the field of the phase transition HC ≈ 30 kOe [9]. For
La2CuO4 + x enriched with oxygen, the field HC  0.

Upon rotation of the I2 vector, the I1 vector deviates
from the equilibrium state by a small angle θ1 due to
interactions between the layers. From Eq. (8), using the
boundary conditions (4), we obtain

(11)

This function is plotted in Fig. 2a. The largest deviation
θ1 is reached in the center of the interphase boundary
max(θ1) ~ δx/β2, and θ1 becomes zero at ξ  ±∞. For
La2CuO4 [12], we obtain the estimate δx/β2 ≈ 0.1.
Hence, it follows that max(θ1) ≈ 0.06 ! θ0 ≈ π/2. The
rotation of the ferromagnetic and antiferromagnetic
vectors in such an interphase boundary is shown in
Fig. 1b. The terms of expansion (5), which correspond

d2θ0
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to the second order of smallness, describe the distortion
of the interphase domain wall structure θ0 = θ0(ξ) with
the rotation of the I2 vector. The form of this distortion
is described by the expression

where G(ξ, ξ') is the Green function for the equation

G(ξ, ξ') = δ(ξ – ξ'). The form of this distortion is
shown in Fig. 2b. The largest distortion of the structure
is reached at the interphase boundary edges in the
vicinity of points ξ ≈ ±1.6. In this case, max(∆θ2) ≈
0.13(δx/β2)2 ! θ0(|ξ| = 1.6) ≈ 0.4.

The additions of ∆E to the interphase boundary
energy due to the interplanar interactions δx represent a
small quantity. Actually,

(12)

where E0 = 2 . It is seen that the first correction
∆E1, which is determined by the deviation of I1 due to
interplanar interactions, decreases the interphase
boundary energy. Each sequential correction for energy
decreases as (δx/β2)2. The estimates demonstrate that
∆E1 ≈ –0.0035E0 and ∆E2 ≈ 3 × 10–7E0; i.e., ∆E2 !
|∆E1 | ! E0. Thus, the energy additions due to the inter-
planar interactions are very small quantities, specifi-
cally ∆E2, which is determined by the deviation of θ2
from θ0. For this reason, the ∆θ2 distortions can be
ignored when investigating the stationary dynamics of
the interphase boundary.

3. STATIONARY DYNAMICS 
OF THE INTERPHASE BOUNDARY

Upon deviation of the external magnetic field from
the value that corresponds to the interphase boundary
formation, the interphase boundary moves toward
increasing volume of the energetically favorable phase.
At fields H > HC, the energetically favorable phase is
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the weak ferromagnetic phase. The weak ferromag-
netism vector as a function of the coordinate ξ and
velocity V in the external field takes the form

For an antiferromagnetic phase, mz = 2H/He, whereas
for a weak ferromagnetic phase, mz = 2(HD + H)/He.
The magnitude of a weak ferromagnetic moment at the
center of the interphase boundary strongly depends on
the velocity of the interphase boundary motion
(Fig. 3a). In a first approximation with respect to the
small parameters of the problem (λ is taken as one more
small parameter), Eq. (2) for the velocity in terms of
Eq. (4) has the following form:

(13)

mz m1z m2z+=

=  
1

He

------ HD 1 θ0cos–( ) 2H
V

∆ V( )g
----------------

dθ0

dξ
--------+ + 

  .
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2

1

0 10 ξ–10
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V/c

1
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0 1 2 3 4 h1
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Fig. 3. External magnetic field dependences of (a) the ferro-
magnetic vector m at velocities (1) V/c = 0.1, (2) V/c = 0.6,
and (3) V/c = 0.99 and (b) the velocity of the interphase
boundary at (1) λ ~ 10–3, (2) λ ~ 10–4, and (3) λ ~ 10–5. h1 =
(H1 – HC)/HC is the metastability boundary of an antiferro-
magnetic phase.



278 SHAMSUTDINOV, NAZAROV
where

From the solvability condition for Eq. (13), we obtain

(14)

It is seen from Eqs. (14) that the interphase moves in
fields differing from the field of the interphase bound-
ary formation HC. In this case, the velocity of its motion
increases as the field approaches the value H1, which
corresponds to the metastability boundary of the anti-
ferromagnetic phase. The velocity of the interphase
boundary motion strongly depends on λ. Taking into
account that  @ HeHAY [12], it can easily be shown
that, at λ ! λC, where

the V velocity approaches the minimum phase velocity
of spin waves c ~ 104 m/s already in the fields close to
HC and far from the metastability boundary field H1.
For λ @ λC, the velocity does not necessarily reach the
limiting value even at H = H1. The dependence of the
interphase boundary velocity on the external magnetic
field for different λ is shown in Fig. 3b. The energy of the

moving interphase boundary is E(V) = E/ .
Note that at velocities V < c, the deviation of the I1

vector from the antiferromagnetic axis is also deter-
mined from Eq. (8) and has form (11). This deviation
can be considered a solitary wave (Fig. 2a) which
moves with velocity V. It should be noted that we
neglected the deviation of Ij from the xy plane when we
considered the structure and velocity of the interphase
domain wall motion. According to the estimates, this
assumption is justified at velocities V < c. This con-
straint is met for the region of the existence of the inter-
phase boundary. In this case, the main approximations
|mj | ! |Ij | ≈ 1 and ∆(V) @ a0 (a0 is the lattice constant),
which were used to solve the Landau–Lifshitz equa-
tions, are also fulfilled.

4. CONCLUSION

The theoretical investigations demonstrated that the
interface between the antiferromagnetic and weak fer-
romagnetic phases is formed in an external magnetic
field which is normal to the Cu–O layers and equal to
the field of the first-order phase transition. Unlike the
known models of interphase boundaries in two-sublat-
tice antiferromagnets, the interphase boundary in the
four-sublattice antiferromagnet is formed by rotating

F θ0 V,( ) λV
gM0β2∆ V( )
-----------------------------

dθ0

dξ
--------

δy h–
β2 ξcosh
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V
ρ
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2α M0

He HeHAY HD
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------------------------------------------.=

HD
2

λC he ha+( )/HD 10 4– ,∼≈

1 V2/c2–
P

only one of the two antiferromagnetic vectors in the
Cu–O layer through 180°. The other antiferromagnetic
vector executes a small deviation from the antiferro-
magnetic axis due to interplanar interactions. This devi-
ation is nonuniform over the thickness of the interphase
boundary. In magnetic fields exceeding the field of the
first-order phase transition, the interphase boundary
moves with a maximum velocity in the field that corre-
sponds to the metastability boundary of the antiferro-
magnetic phase. Approaching of the velocity of the
interphase boundary to the minimum phase velocity of
spin waves, i.e., to a nonlinear motion mode, turned out
to be strongly dependent on the ratio of the damping
parameter to its characteristic value, which is deter-
mined by the ratio of the interplanar interaction fields
to the Dzyaloshinski field.
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Abstract—The low-frequency dynamic magnetization of a superparamagnetic particle is studied. It is shown
that selective suppression of higher harmonics in the spectrum of the system can occur with a variation in both
the temperature (noise-induced resonance) and the excitation intensity (force-induced resonance). © 2001
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Studies on stochastic resonance have revealed many
remarkable features of nonlinear stochastic oscillators.
In particular, so-called noise-induced resonance (NIR)
was discovered, which can occur in both double-well
[1] and single-well potentials [2]. The NIR effect is
selective suppression of higher harmonics in the system
response to a sinusoidal perturbation in the presence of
noise of a rather high intensity. At the present time, var-
ious applications of NIR are discussed for developing
signal-processing techniques in order to optimize stan-
dard circuits [3] and to devise new-type detectors [4].

A model of an overdamped nonlinear oscillator
placed in a thermal reservoir is commonly used when
studying the stochastic resonance and related phenom-
ena theoretically (see, e.g., review [5]). A real and sim-
ple object suited for this purpose is a single-domain
magnetic particle. Recent precise measurements
showed [6, 7] that the magnetic behavior of isolated
nanoparticles is adequately described by Brownian
magnetodynamics (superparamagnetism). We will con-
sider a statistical ensemble of such particles without
regard for their interaction. Stochastic resonance in a
superparamagnet was treated in [8–12] in the linear-
response approximation. Some features of the super-
paramagnet response to a finite-amplitude excitation
were considered in [13–15], and the magnetodynamics
in a strong stationary field was investigated in [16].
However, the occurrence of NIR in such systems has
not yet been discussed.

In [1, 2], the existence of NIR was shown using the
small-parameter method; the spectrum of the response
was expanded in a power series in a parameter ξ (the
ratio of the external excitation energy to the thermal
energy), and the kth harmonic was calculated dropping
all terms with orders higher than ξk. Therefore, the the-
ory developed in [1, 2] is true for ξ < 1.
1063-7834/01/4302- $21.00 © 20279
In this paper, we briefly analyze the response of a
system with an unharmonic potential which is under
the action of a stationary (bias) field and an alternating
(exciting) field, whose amplitudes are fairly large.
Going beyond the perturbation theory reveals that NIR
is a typical feature of the nonlinear behavior of a ther-
malized oscillator and is always accompanied by
another effect which we refer to, by analogy, as force-
induced resonance (FIR). FIR is also selective suppres-
sion of higher harmonics, but the control parameter is
the excitation intensity in this case.

1. RESULTS AND DISCUSSION

Let us consider a nanoparticle of a ferromagnet
whose size is so small (~10 nm) that it is a single-
domain particle. Therefore, its magnetic state is
entirely determined by the orientation of its magnetic
dipole moment whose value equals µ = IV, where I and
V are the magnetization and the volume of the ferro-
magnetic particle, respectively; far from the Curie
point, the value of µ can be assumed to be constant. If
the particle is embedded in a solid matrix, the motion of
the dipole moment will be due solely to its rotation in
the particle and can be described by a unit vector e or
by two spherical coordinates θ and φ (with the polar
axis taken to be along the easy magnetization axis).
When rotating, the vector m = µe experiences the bulk
magnetic anisotropy field (characterized by a symmet-
ric double-well potential), the bias field H0 and the
time-harmonic field H1(t) = H1cosωt (the vectors H0
and H1 are assumed to be along the anisotropy axis).
The excitation frequency ω is assumed to be small in
comparison with the Larmor frequency, ω ! γ(H0 +
H1), where γ is the gyromagnetic ratio.

The magnetodynamics of a single-domain particle
placed in a thermal reservoir of temperature T is
described by an equation of the Fokker–Planck type
001 MAIK “Nauka/Interperiodica”
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[17, 18] for the orientation distribution function W(e, t)
of the magnetic moment:

(1)

where  is the infinitesimal rotation operator with
respect to the angles of the vector e and U is the orien-
tation-dependent component of the particle energy. The
characteristic time of the rotational diffusion of the vec-
tor e is

(2)

where β = V/T and λ is the dimensionless damping con-
stant involved in the Landau–Lifshitz equation. In the
case under study, the potential depends only on the
polar angle θ and has the form

(3)

with the dimensionless parameters

(4)

where K > 0 is the magnetic anisotropy energy density.
When using the kinetic description based on Eq. (1),

the physical quantities are calculated averaging the cor-
responding “microscopic” variables with respect to the
distribution function W(θ, t). Of prime interest is the
magnetization M(t) = IΦ〈cosθ〉, where Φ is the volume
concentration of particles in the system. Rather than
M(t), we will use the dimensionless function m(t) =
M(t)/IΦ = 〈P1(cosθ)〉 , where P1(cosθ) is the Legendre
polynomial.

By expressing the kinetic equation in terms of the
moments 〈Pl(cosθ)〉  and using Eqs. (3) and (4), we
arrive at a set of differential–difference equations [14,
19]

(5)

We use these equations to investigate generation of the
multiple harmonics of the magnetization. Representing
the statistical moments in the form of a frequency Fou-
rier series, 

. (6)

Equation (5) is reduced to an infinite-matrix equation,
which allows one to find the set of amplitudes blk(ω)
with any degree of accuracy by the matrix sweep
method. The subset {b1k(ω)} of this set, according to
Eq. (6), determines the spectrum of oscillations of the

2τẆ ĴW Ĵ U/T Wln+( ),=

Ĵ

τ βI/2λγ,=

U/T σ θ ξ0 ξ1 ωtcos+( ) θ,cos–cos
2

–=

ξ0 βIH0, ξ βIH1, σ βK ,= = =

2τ d
dt
----- Pl〈 〉 l l 1+( ) Pl〈 〉 2σ l 1–( )l l 1+( )

2l 1–( ) 2l 1+( )
-------------------------------------- Pl 2–〈 〉–+

+
l l 1+( )

2l 1–( ) 2l 3+( )
-------------------------------------- Pl〈 〉 l l 1+( ) l 2+( )

2l 1+( ) 2l 3+( )
-------------------------------------- Pl 2+〈 〉–

– ξ0 ξ ωtcos+( )l l 1+( )
2l 1+

----------------- Pl 1–〈 〉 Pl 1+〈 〉–[ ] 0.=

Pl〈 〉 blk ω( )eikωt

k 0≥
∑=
P

magnetization, which can be written as

(7)

where m0 is the constant component and mk with k ≥ 1
are the harmonic amplitudes; these quantities are all
real and nonnegative by definition. For the sake of con-
venience, the set of material parameters in Eq. (7) is
taken different from that in Eq. (4); the quantities α ≡
ξ/ξ0 and ε = σ/ξ0 are temperature independent.

We will seek a solution of the set of Eqs. (5) for
magnetically isotropic particles (ε = 0). As in the case
considered in [1, 2], the influence of noise is most pro-
nounced in the adiabatic regime, i.e., when ωτ  0.
In this limit, an asymptotic form of solutions to the
complete set of Eqs. (5) for the nonequilibrium system
can be found using the quasi-Boltzmann distribution
function W(t) ∝  exp(–U/T), where the energy is given
by Eq. (3). A numerical solution of the complete set of
Eqs. (5), checked against the asymptotic formulas for
the m1–5 harmonic amplitudes of the magnetization, is
shown in Fig. 1 in the form of tone diagrams; the shade
is lighter for larger values of mk. When the bias field H0
is constant, the parameter α is proportional to the
amplitude of the exciting field and the parameter ξ0 has
the physical meaning of the inverse temperature. The
dark “arms” in Figs. 1c–1e correspond to the regions
around the level lines αk = αk(ξ0) along which the cor-
responding amplitudes (m3, m4, m5) are zero. Since the
contrast of the diagrams is poor and these lines are hid-
den from view in the vicinity of the abscissa axis, these
are intensified by light markers. As one moves in the
diagram, crossing the zero-level line corresponds to
suppression of the corresponding harmonic in the sys-
tem response. It should be noted that for the system
under study, as in the case of the oscillations considered
in [1, 2], the zero-level lines for the first two harmonics
are trivial and coincide with the coordinate axes in the
(α, ξ0) plane; that is, the first and second harmonics are
not selectively suppressed.

In [1, 2], NIR was defined as selective suppression
of higher harmonics in the system response to an excit-
ing field of a low intensity when the noise intensity is
varied. In Fig. 1, the corresponding range of the system
parameters is represented by the narrow band α ! 1
adjacent to the ξ0 axis. The set of Eqs. (5) is not subject
to these limitations and allows one to describe the
behavior of the system for any excitation levels. From
Fig. 1, it follows that NIR also occurs for α > 1, i.e., in
the range where nonlinearity is significant. In this case,
the slope of the zero-level lines αk = αk(ξ0) with respect
to the straight lines α = const (along which the temper-
ature of the system is varied) decreases with the
increasing excitation amplitude.

Now, we will show that, in the adiabatic limit, sat-
uration takes place as ξ0  ∞ for all zero-level
lines. To do this, we note that the asymptotic values

m t( ) mk α ξ0 ε ωτ, , ,( ) i kω ϕk–( )[ ] ,exp
k 0≥
∑=
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Fig. 1. Magnetization harmonic amplitudes mk as a function of the parameters α = H1/H0 and ξ0 ∝  1/T for different values of k:
(a) 1, (b) 2, (c) 3, (d) 4, and (e) 5. A light tone corresponds to a larger amplitude.
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αk(ξ0 = ∞) can be found from the condition that the
kth coefficient of the Fourier series for the Langevin
function L[ξ0(1 + α cosx)] in cos(nx) vanishes. Replac-
ing the function L by a step function, we obtain the
estimate

(8)

This quantity is maximal for the third harmonic
[α3(∞) = 2] and decreases to unity as k  ∞.

According to Eq. (8), as the excitation level
approaches αk(∞) from below, “temperature stabiliza-
tion” of NIR for the kth harmonic occurs; namely, the
ξ0 range in which the magnetization mk is close to zero
increases indefinitely. From Fig. 1, it also follows that,
in accordance with Eq. (8), NIR does not occur in the
range α > αk(∞).

α k ∞( ) π/k( ), k 3≥( ).sec=
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The configuration of the “valleys” (the lines of the
minima of the amplitudes mk in Fig. 1 suggests another
mode of higher harmonics suppression different from
NIR. If we take the exciting field amplitude α, rather
than the temperature (ξ0), as the control parameter, we
should consider the lines parallel to the α axis in Fig. 1
in this case. It is seen that a straight line ξ0 = C = const
(independent of α) is certain to intersect the zero-level
line if the constant C lies in the (ξ0k , ∞) interval.1

Therefore, the spectrum is controlled by varying the

1 The value ξ0k corresponds to the point at which the zero-level line
of the kth harmonic ceases to coincide with the ξ0 axis. In the adi-
abatic limit, ξ0k can be found from the (k + 1)th cumulant of the
equilibrium (ξ = 0) distribution function of the system as a root of
the equation Qk + 1(ξ0k) = 0 [2].
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intensity of the regular action (force) rather than the
temperature (noise); that is, we have a force-induced
resonance.

Each zero-level line in Fig. 1 can be roughly divided
into three portions: a rapid increase, a crossover, and
saturation described by the asymptotic expression (8).
Comparing the points at which the straight lines paral-
lel to the coordinate axes of Fig. 1 intersect these por-
tions, we arrive at the conclusion that NIR is sharp and
FIR is broad in the rapid-increase region, both reso-
nances have comparable widths in the crossover region,
and FIR is sharp and the NIR has an infinitely increas-
ing width in the saturation region.

2. CONCLUSION

Thus, we have shown that, in forced low-frequency
oscillations of the dipole moment of a superparamag-
netic particle, the third and higher harmonics can be
selectively suppressed. This effect can be revealed in
two alternative ways: by varying the noise level (noise-
induced resonance [1, 2]) or by varying the excitation
intensity (force-induced resonance). The results
obtained are directly applicable to specific physical
systems such as magnetically isotropic nanoparticles
dispersed in a solid matrix and colloidal suspensions of
single-domain particles (magnetic fluids). In the latter
case, magnetic anisotropy can be arbitrary, because it is
effectively “switched off” in the low-frequency range
in the case where particles have mechanical rotational
degrees of freedom [18]. It is clear that, if the magnetic
quantities are replaced by their respective electric coun-
terparts, the results obtained in this paper will also be
true for the nonlinear polarization in polar liquids and
colloids. Theoretically, the results suggest that the com-
bined noise-induced and force-induced resonances are
a universal property of any stochastic nonlinear oscil-
lator.

It is significant that the influence of the polydisper-
sity of real magnetic nanosystems on a possible exper-
imental observation of NIR and FIR is essentially dif-
ferent. Indeed, in the case of NIR, the amplitude of a
harmonic becomes minimal as the parameter ξ0 is var-
ied. According to Eq. (4), this parameter is proportional
to the particle volume. Therefore, in a polydisperse sys-
tem, there is a continuous set of critical values of ξ0
rather than a single value and NIR either will be very
broadened in comparison with that in a monodisperse
system or will not occur at all. In the case of FIR, the
variable parameter is the ratio ξ/ξ0 = H1/H0, which is
independent of the particle size, as is seen from Eq. (4).
Since the zero-level lines are virtually parallel to the
abscissa axis in Fig. 1 in the range ξ0 > 2, the conditions
for FIR virtually do not depend on the parameter ξ0
which is sensitive to polydispersity. Therefore, in a
polydisperse superparamagnetic system, the force-
induced resonance for any kth harmonic in the magne-
tization, corresponding to a minimum of the mk(α)
PH
function, will not be noticeably broadened in compari-
son with that in the monodisperse system considered
above.

The characteristic-parameter ranges in which the
resonances described above should occur are easily
accessible. Indeed, according to Fig. 1, the NIR and
FIR effects are pronounced for ξ0 > 1, α ~ 1, and fre-
quencies ωτ ! 1. Let us make an estimate for a system
of particles of gamma iron oxide of a typical size of a ~
10 nm; the magnetization of the material is I ≈ 400 G.
From Eq. (4), it follows that, at room temperature, ξ0 is
of the order of unity in a bias field H0 ~ T/πIa3 ~
200 Oe. The amplitude H1 of the exciting alternating
field should be of the same order of magnitude, because
α = ξ/ξ0 = H1/H0. As for the upper limit of the frequency
band for the nanoparticles in question, with λ ~ 0.1 and
the gyromagnetic ratio γ ~ 2 × 107 Oe s–1 (electrons), we
obtain ω ≈ 12λγT/πIa3 ~ 105 s–1.

It should be noted that, before [1, 2], the effect
which can be called force-induced resonance with
respect to the orientational order parameter 〈P2〉  was
discovered in [20, 21] when theoretically investigating
induced birefringence in dipole colloids.
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Abstract—Experimental data and theoretical papers on the magnetic anisotropy (MA) of rare-earth–transition
metal intermetallic compounds are reviewed. Discrepancies between the experimental data obtained by differ-
ent authors, as well as between these data and the theoretical calculations of the MA constants, are indicated.
A technique is proposed for determining the crystal-field parameters and the effective charges  of ions in
intermetallic compounds. Using experimental Mössbauer and NMR spectroscopic data, possible values of 
are determined for R2T17 – x and R2T17 – xTix compounds, which allow one to find the MA constants of these sys-
tems with different R and T in a unified way. The problem of the sign of the contribution from the rare-earth
metal sublattice to the MA is discussed. The heavy x dependence of this contribution in the R2T17 – xTix system
is explained to be due to the contribution to the crystal field from Ti ions in the dumbbells. © 2001 MAIK
“Nauka/Interperiodica”.

Qi*
Qi*
INTRODUCTION

In the 1980s and 1990s, much research was devoted
to the magnetism of compounds of rare-earth (RE) met-
als, which offer considerable promise as magnetic
materials [1–3]. Nevertheless, many problems remain
to be solved, among them the physical mechanisms that
determine important physical characteristics of these
materials, such as the magnetization, Curie point TC,
and magnetic anisotropy (MA) constant, which is
defined by the equation

. (1)

Of even greater interest are the heavy dependences of
the magnetic properties on the material composition, in
particular, on different substitutional and interstitial
impurities.

A typical example is Sm2Fe17-based systems. The
undoped compound has its TC located near 400 K and a
MA of the “easy-plane” type. The introduction of an
interstitial impurity of nitrogen (Sm2Fe17Nx) causes the
sign of the MA to change, and the constant K1 becomes
as large as 10 MJ/m3 for x = 3. The addition of a small
amount of a substitutional impurity of titanium
(Sm2Fe17 – xTix, x = 0.75) also leads to a considerable
change in K1 [2]. This dramatic effect of impurities on
the MA is basically due to their influence on the param-
eters Amn of the crystal field acting on the magnetic RE
ions. It is well known (see, e.g., [3]) that nitrogen ions
enter interstitial positions of the 9e type in Sm2Fe17
(which are situated in the RE-ion planes perpendicular

%MA K1 θsin
2 …+=
1063-7834/01/4302- $21.00 © 20284
to the c axis, θR = π/2) and make a negative contribution
to the parameter A20 defined by

(2)

where the summation is carried out over all ions of the
lattice, θR is the polar angle of the vector R, and Q*(R)
is the corresponding effective ion charge. According to
Eq. (2), we have a positive (easy-plane-type) contribu-
tion to K1(Sm) for Q*(N ) < 0. In the SmFe11Ti com-
pound, on the contrary, nitrogen ions enter 2b positions
located along the c axis with respect to R ions (θR = 0)
and make a negative (easy-plane-type) contribution to
K1(Sm). Therefore, the sign of the nitrogen-ion contri-
bution to MA depends on the geometric factors.

In addition to the geometry, the distribution of the
charge density of different ions in compounds is of
importance. The screening of ionic charges in a metal
(caused, in particular, by conduction electrons) can lead
to their strong renormalization and even to the change
in their sign [4].

Possible radical distinctions of the crystal-field
model in metals were discussed by Coehorn [5], who
assumed that the 6p and 5d electrons of the RE ion
itself, which are located within its Wigner–Seitz
sphere, make a dominant contribution to the parameter
A20. Their anisotropic distribution is dictated by the
electron densities of the adjacent cells. This model is
associated in [5] with the well-known “microscopic”-

A20 Q∗ R( )
3 θR 1–cos

2

2R3
-----------------------------,

R

∑–=
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Effective charges in the R2Fe17 compounds calculated by different methods

Compound (6c) Ref.

Nd2Fe17 0.42 0.13 0.24 –0.03 0.24 –0.54 [7]

Sm2Fe17 0.24 0.11 0.06 –0.06 0.11 –0.45 [7]

Nd2Fe17 0.97a –1.28 –0.84 –0.24 0.79 –0.15 [8]

Sm2Fe17 3 0.06 0.06 0.06 0.06 [9]

Tb2Fe17 2.95 0.62 0.62 0.62 0.97

Note: The values we calculated from the NMR data [10] are presented in the last row.
a The charge is likely to have been calculated without regard for the  f electrons of Nd.

QR
* Q f

* Qd
* Qh

* Qdb
* QN

*

atom model of Miedema in the alloy cohesion theory.
In this case, the sign of A20 is opposite to that in the ion
model in the point-charge approximation. However,
based on the experimental data, Malaman et al. [6]
drew the conclusion that the usual crystal-field mecha-
nism determined by the adjacent ionic charges is likely
to be dominant.

In principle, the effective ionic charges can be found
using currently available calculations of the electronic
band structures. These calculations were also carried
out for the R2T17 compounds, and the number of elec-
trons Ne was found in a sphere of a radius R0 centered
at an ion site [7]. The effective ionic charge can easily
be estimated as Q* = Qr(R0) – Ne, where Qr(R0) is the
charge of the ionic core, without the outer shell [for
example, Qr(f 6s2) = 8 for Sm and Qr(3d64s2) = 8 for
Fe]. The values of Q* thus obtained for Sm2Fe17 for R0

equal to the ionic radius are listed in the table. It is seen
that the charges Q* of Sm and Fe ions at different posi-
tions are small in magnitude. For nitrogen ions at the 9e
positions, we have Q* = –0.45 for x = 3; that is, nitrogen
atoms are acceptors. Using the charge distribution
found, the authors of [7] calculated the MA and
reported that the result was in good agreement with
experiment, but no details were presented in [7]. Fur-
thermore, the charges Q* calculated in [8] for Nd2Fe17

differ drastically from those found in [7], which means
that the results are unstable with respect to the calcula-
tional technique and to the approximations made in cal-
culating the electronic band structure.

In actuality, however, the charges Q* calculated in
the way indicated above cannot be used immediately in
crystal-field theory. First, the expressions for the effec-
tive charge that determines the value of K1 including the
screening effect of conduction electrons were found in
[4] to have a more complicated structure and involve
both the total screening charge and its derivatives. For
the spherical charge density distribution, we have

(3)Q∗ R( ) Q0 Qel R( ) 4
3
---πR3 Z R( ) RZ' R( )–[ ] ,–+=
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where Qel(R) is the conduction electron charge within a
sphere of a radius of R centered at the point-charge
position,

(4)

and Z(R) is the charge density; therefore, (R) =
4πr2Z(R). Second, it is significant that the charge Q*(R)
is taken for the distances R between RE atoms and the
ions producing the crystal field; these distances are
nearly twice as large as the atomic radii R0. It was
shown in [3] that, in order to explain the experimental
value of K1 in Sm2Fe17N3, the charge  of the nitrogen
ion should be taken to be –0.15, rather than the value of
–0.45 in the second row of the table.

Thus, there is a need to develop a crystal-field model
for compounds with ions of different species, which
will allow the crystal-field parameters to be uniquely
determined from the experimental data, in particular,
from the data on magnetic properties and from the
NMR and Mössbauer spectroscopic data.

The unknown parameters of this model will be the
effective ionic charges .

1. A TECHNIQUE FOR CALCULATING
THE CRYSTAL-FIELD PARAMETERS

AND EFFECTIVE CHARGES

A consistent theoretical and experimental determi-
nation of the parameters  is of importance to the
understanding of the MA of compounds. The MA con-
stant defined in Eq. (1) is given by the expression

(5)

Here,  is the mean square radius of the f shell, J is
the total angular momentum of the RE ion, αJ is the
Stevens factor, and the crystal-field parameter A20 is
given by Eq. (2). Because the effective ionic charges
Q* depend on the distance, their values are different

Qel R( ) 4π ρ2 ρZ ρ( )d

0

R

∫=

Qel'

Q*

Qi*

Qi*

K1 3e2A20 r f
2〈 〉 α J J J 1/2–( ).–=

r f
2〈 〉
1
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even for equivalent positions of the RE-ion neighbors
differing in their distance from the RE ion. Therefore,
the charges Q* are characteristics of pairs of ions and
they tend to zero at large distances (complete screen-
ing). Perhaps this is an added reason for using the near-
est neighbor approximation and for not taking into
account a large number of neighbors on the lattice
when calculating the sum in Eq. (2).

A rough estimate of Q*(R) based on valence argu-
ments is not valid for metallic magnets, where this
quantity varies over a wide range and can even change
its sign because of screening effects [4].

In the simplest case of pure RE metals, Eq. (5) leads
to reasonable results, but even in this case, Q* is nearly
twice as small as its nominal value for trivalent RE ions
(Q = 3). For multicomponent compounds, the situation
is far more complicated, because we have several
parameters  and only one observable quantity K1.
The poor accuracy of the relevant experimental data
makes it difficult to make use of the higher order anisot-
ropy constants; in addition, the effective charges
involved in them are different from those given by
Eq. (3).

For these reasons, it is helpful to separate the contri-
butions of ions at different sites by comparing the mag-
netic anisotropies of compounds differing in one struc-
tural element with a given . As an example, we refer
to the interstitial impurities B = H, N, and C in the
R2T17Bx systems or the substitutional impurities in the
R2Fe17 – xTix compounds. Using the change in the MA
constant ∆K1 due to the introduction of an impurity, we
can write additional equations to determine the corre-
sponding . Of course, the charges  of the host
ions can change in this case, but one might expect this
effect to be insignificant.

The individual contributions can also be separated
taking into account the difference in structural elements
of closely related structures. For example, in the case of
rhombohedral (r) and hexagonal (h) structures of
R2Fe17, one can separate the charges  of Fe ions in
the dumbbells and R ions at the 2b and 2d sites.

In the h structure, in contrast to the r structure, all
the 6c dumbbells that lie on the edges of the unit cell in
the r structure are displaced to the centers of the hexa-
gons in the RT planes and substituted for the R atoms of
the unit cell of the r structure. The most important dis-
tinction is that there appear two types of R sites, one of
which is the 2b site (having only R atoms as its nearest
neighbors along the c axis) and the other is the 2d site
(the nearest neighbors along the c axis are dumbbells).
Because of the displacement indicated above, the unit
cell becomes one-third shorter along the c axis.

For the sake of convenience, we divide Eq. (2) into
the terms corresponding to different structural elements
of the lattice. Using the standard notation for the atomic

Qi*

Qi*

Qi* Qi*

Qi*
P

sites in the r lattice, Eq. (2) can be written in the nearest
neighbor approximation as

(6)

Here, the lattice is assumed to be perfect and the
charges  at the h, b, and d sites, to be identical. A
calculation gives

(7)

where a and c are the r-lattice parameters and y = 2a/c.
Expressions (7) are similar to the well-known formulas
for the hcp and RCo5 structures [1, 11]. The contribu-
tions given by Eq. (7) are the same for the r and h struc-
tures, while the contributions A20(c) from the dumb-
bells of T ions are different. In the r structure, the near-
est neighbors of an R(6c) ion along the c axis are one
T(6c) dumbbell and one R(6c) ion. In the h structure,
two types of nearest neighbor ion configurations are
possible for R ions: (i) two R ions (the 2b site) and
(ii) two dumbbells (the 2d site). Accordingly, the terms
in Eq. (6) are

(8)

(9)

where 2δdb is the dumbbell length (about 0.2c). Equa-
tions (6)–(9) can be used both to calculate K1 from for-
mula (5) and to interpret the values of A20 obtained from
NMR and Mössbauer spectra for different types of
RE-ion lattice sites. The latter provides additional
equations for the charges , which makes the set of
equations more determinate. Since the compounds
R2T17 with various R differ little in their parameters, we

may expect that the charges  thus found will be uni-
versal for all compounds with this structure.

Unfortunately, there is little available experimental
data from which A20 can be determined for different
ionic sites, and their accuracy is not satisfactory. For
Tb2Fe17, three NMR lines were measured [10] to be
H1 = 1.9 ± 2.6 K, H2 = –0.6 ± 2.6 K, and R = 0.9 ± 2.6 K.
A considerable margin of error for H is due, in particu-
lar, to the uncertainty in the Sternheimer antishielding
factor γ∞ for the nucleus, which enters the relation

A20 12A20 h( ) 6A20 f( ) A20 c( ).+ +=

Qi*

A20 h( ) e2

2
----

2 y2–( )Qh*

c/6( )3 1 y2+( )5/2
---------------------------------------,–=

A20 f( ) 27e2

2
-----------

Q f*

a3
-------,=

A20
r 6c( )

e2QR
* 6c( )

c/3( )3
-----------------------–

2e2QT
*

c/3 δdb–( )3
---------------------------,–=

A20
h 2b( )

2e2QR
* 2b( )

c/3( )3
---------------------------,–=

A20
h 2d( )

2e2QT
*

c/3 δdb–( )3
---------------------------,–=

Qi*

Qi*
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between the crystal-field parameter and the crystal-
field gradient Vzz,

(10)

where 1 – σ2 is the shielding factor for f electrons. In
intermetallic compounds, the ratio A20/Vzz ranges gen-
erally from –20 to –60. However, within the series of
compounds in question, the value of γ∞ is constant to a
reasonable accuracy. For example, according to [12],
A20/Vzz = –46 ± 3 for R2T17.

The corresponding average values of A20 in units of

K/  (a0 is the Bohr radius) are

The values H1 and H2 correspond to the 2b and 2d sites
of Tb ions in the hexagonal phase, respectively, while R
corresponds to the Tb(6c) ion in the rhombohedral
phase (both phases coexist in Tb2Fe17). Substituting
numerical values of the parameters c and a and putting
δdb = 0.1 Å and e2/Å3 = 2.3 × 105 erg/cm2, for the Tb(6c)
site in the r lattice and the 2b and 2c sites in the h lattice,
we obtain the equations

(11)

Here,  is the Fe-ion charge in the dumbbell and it

has been assumed that  =  =  =  that is,
only two different Fe-ion charges (in the planes and in
the dumbbells) are taken into account. Thus, we have a
set of three nonhomogeneous equations in four
unknowns. Physically, it is clear that (2b) and

(6c) have about the same value. However, when
they are identical, the set of Eqs. (11) becomes indeter-
minate, because the determinant of the corresponding
set of homogeneous equations vanishes. A physically
reasonable solution is obtained if we assume that

(2b) = 3, i.e., that this charge is equal to its nominal
value for the R3+ ion. In this case, from Eqs. (11) we
obtain

If we assume that (2b) = 2, the charges  will
become about 30% smaller. It should be noted that the
correspondence of the I and II NMR lines to the 2b and
2d sites is not uniquely established. However, inter-

A20
1
4
---

1 σ2–
1 γ∞–
--------------Vzz,–=

a0
2

A20
B20

α J r f
2〈 〉

----------------

253 H1–

80 H2

120 R.–





= =

12.4Q f* 1.4QR* 6c( ) 3.9Qdb* 6c( )+ +– 0.26,=

12.4Q f* 2.8QR* 2b( )+– 0.55,=

12.4Q f*– 7.8Qdb* 6c( )+ 0.17.–=

Qdb*

Q f* Qh* Qb* Qd*

QR*

QR*

QR*

QR* 6c( ) 2.95, Q f* 0.62, Qdb* 0.97.= = =

QR* Qi*
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changing the corresponding right-hand sides of Eqs. (11)
affects the charges  only insignificantly, because the
contributions to the left-hand sides of these equations
nearly compensate each other.

Similar results are also obtained for the compounds
Er2Fe17 and Er2Ni17; the corresponding experimental
values of A20 were found in [13] and [14], respectively.
In this case, in spite of significant differences in A20, the

charges  also appear to differ only insignificantly.

In the case where A20 (and the local values of K1) for
R sites of the 2b and 2d types are opposite in sign, non-
collinear structures can form (and these were actually
observed in Tb2Fe17 and Er2Fe17 and in the respective
nitrides [15]) and spin-reorientational phase transitions
occur depending on the temperature.

2. MAGNETIC ANISOTROPY 
OF THE R2T17 AND R2T17 – xTix SYSTEMS

The crystal-field parameters of Er2Fe17 were calcu-
lated in [9] in the point-charge approximation. The
shielding parameter was taken to be σ2 = 0.9, so that

 = (1 – σ2)A20 = 0.1A20. The charges  and 
were assumed to be the same for all sites. Using the
experimental Mössbauer spectra, these charges were
found to be 3 and 0.06, respectively (see table). It

should be noted that earlier a value of  = –0.5 was
found [16] in the same way for the Nd2Fe14B system for
a given  = 3.

In [9], the following crystal-field parameters were
determined for Er ions:

With these values and  = 3, Eqs. (11) give  = 0.7

and  = 1.2. The values of A20 for Tm and Nd ions
were found in [9], but only the data for nitrides
R2Fe17N3 were presented there. Thus, the results of [9]
are partly supported by a more detailed calculation with
no phenomenologically introduced screening. In this
case, the decrease in A20 (as is the case with Tb2Fe17) is
due to the balance of the contributions, opposite in sign,
from the Fe ions in the mixed RFe plane and the R ions
[to A20(2b)] or from the Fe ions in the mixed RFe plane
and the Fe ions in the dumbbells [to A20(2d)]. Thus, in
our model, the contributions from different sites are
described in detail and the important role of the Fe-ion
dumbbells, whose effective charge differs noticeably
from that of the Fe ions at other sites, is revealed.

From the experimental Mössbauer spectra for

Er2Ni17, it was found that A20(2b) = –183 K/  and

A20(2d) = –418 K/ . With these values, solving

Qi*

Qi*

A20
* QR

* QFe
*

QFe
*

QR
*

r f
2〈 〉 A20

* 2b( ) 191 K, r f
2〈 〉 A20

* 2d( ) 180 K.–= =

QR
* Q f

*

Qdb
*

a0
2

a0
2
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Eqs. (11) yields the effective charges (2b) = 3,

 = 0.6, and  = 1, which are close to the corre-
sponding values for Er2Fe17 presented above.

In order to determine K1(Sm) for Sm2Fe17, we use
the NMR data for Tb2Fe17 from [11], where, in addition
to two h-phase lines corresponding to Tb sites of the 2b
and 2d types in the h lattice, a line corresponding to the

r phase was observed. Because the value (6c) =

−120 K/  calculated for terbium is virtually the same
as those for other RE ions, we use it to make an estimate
in the case of Sm2Fe17 and find K1(Sm) = 0.36 MJ/m3.
Since the margin of experimental error of the NMR
measurement (±2.6 K) is large in comparison with the
average value 0.9 K, the accuracy of our calculation is
poor. Nevertheless, the result is reasonable and agrees
with the wide scatter of the experimental data on
K1(Sm) (including the change in sign) available in the
literature.

A dramatic effect of the substitutional Ti impurity in
Sm2Fe17 – xTix on the value of K1 was observed in [2]. At
relatively small values of x < 0.75, the magnitude of K1
was drastically decreased, so that its extrapolation to
x = 0.8 gave K1  0, whereas the contribution from
the Fe sublattice (as determined by comparing with
Y2Fe17 – xTix) was varied only insignificantly. It
should be noted that, among the transition metals
investigated, only titanium causes K1 to increase in
Sm2Fe17 − xMxNyCz, as was shown in [17] for the sys-
tems with x < 0.4.

In view of the wide scatter of the experimental val-
ues of K1(Sm2Fe17), it is convenient to introduce the
quantity

(12)

With the values taken from [2], we find ∆K1(Sm, x =
0.75) . 3 MJ/m3. In our effective-charge model, this
change is due to the substitution of Ti for Fe ions and
can be calculated from the formula

(13)

This relation has been derived under the important
assumption that titanium substitutes for the iron at the
6c sites in the dumbbells. If the 17 Fe ions in the formula
unit were all replaced with equal probabilities, the effect
would be much weaker. Substituting expression (13)
into the first equation in Eqs. (11), we can find the
change in the crystal-field parameter ∆A20, which is
related to ∆K1(Sm, x) by Eq. (5). The value of A20 thus
obtained is actually an average, because the effective
charge given by Eq. (13) is the average ionic charge of
the nearest neighbors upon replacement of the Fe ions
in the dumbbells. This value will, in general, be differ-

QR*

Q f
* Qdb

*

A20
r

a0
2

∆K1 Sm x,( ) K1 Sm2Fe17 x– Tix( )=

– K1 Y2Fe17 x– Tix( ) K1 Sm x 0=,( ).–

Q∗ Fe( ) Qdb* Fe( ) x
2
--- Qdb* Ti( ) Qdb* Fe( )–[ ] .+
P

ent from the local quantity A20 obtained from the exper-
imental NMR and Mössbauer spectra. The latter local
quantity (in the nearest-neighbor approximation)
should have two values corresponding to the SmFe(6c)
and SmTi(6c) configurations. Unfortunately, there are
no experimental data of this kind for Sm2Fe17 – xTix.

Nevertheless, we can calculate ∆Q* from Eq. (13)
by considering ∆K1(Sm, x) to mean the quantity

(14)

The coefficient x/2 in Eq. (14) is introduced because
only one-half of the overall number of Sm sites contrib-
utes to the change in anisotropy caused by Ti-ion dop-
ing. The possible substitution of Ti ions for both Fe ions
in the dumbbell has not been taken into account in
Eq. (14). Using Eq. (14) and putting K1(Sm, Fe) =

0.36 MJ/m3, ∆K1(Sm, Ti) = 3 MJ/m3, and (2b) = 3,

we find ∆Q* = (Ti) – (Fe) = 0.6 from Eq. (13).

Therefore, if (Fe) = 1, we have (Ti) = 1.6.

Thus, the large increase in K1(Sm) caused by the
introduction of titanium into Sm2Fe17 can be explained
by the difference in the effective charge of iron and tita-
nium, due to which the balance of the contributions to
the crystal field which was in the undoped compound is
disturbed. (In this case, the specific positions of Ti ions
are of importance.) The question concerning possible
deeper physical reasons for this balance (which is typi-
cal for intermetallic compounds and is unlikely to be
accidental) is an open question. An alternative explana-
tion of the significant influence of titanium can be
based on the assumption that all effective charges in the
host lattice are fairly small because their heavy screen-
ing by conduction electrons and, therefore, the local
disturbance produced by the Ti impurity become sig-
nificant.

A similar analysis of the magnetic anisotropy of
the compounds RFe11Ti (R = Y, Sm, Tb), single crys-
tals of which have recently been investigated [18], is
of interest.
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Abstract—The magnetic anisotropy and spin-reorientation phase transitions in single crystals of the RFe11Ti
(R = Lu, Ho, and Er) compounds and their hydrides are investigated. Measurements are carried out on capaci-
tance and torque magnetometers. The magnetic anisotropy constants K1 and K2 are determined by the mathe-
matical processing of experimental magnetization curves in terms of the phenomenological theory of the aniso-
tropic ferromagnet magnetization. It is demonstrated that the hydrogenation strongly affects the magnitude and
the sign of magnetic anisotropy constants, as well as the spin-reorientation phase transitions. The hydrogenation
of the HoFe11Ti compound leads to the change in sign of the magnetic anisotropy constant K1. The inference is
made that a change in the atomic volume and the axial ratio c/a cannot result in the observed effects. A change
in the magnetic anisotropy constants upon hydrogenation is primarily due to the change in the interaction of the
quadrupole moment of a 4f electron subshell of rare-earth ions with surrounding ions of the crystal lattice and
also with valence and conduction electrons. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, compounds RFe11Ti with a crystal
structure of the ThMn12 type have been extensively
studied in a number of laboratories [1–3]. Owing to the
features of crystal and magnetic structures, these alloys
are convenient model objects for investigating the fun-
damental problems in the physics of magnetic phe-
nomena.

The RFe11Ti compound can be treated as a two-sub-
lattice magnet [2]. The rare-earth metal and iron sublat-
tices contribute to the net magnetization and anisot-
ropy. The magnetic moments in both sublattices are
ordered ferromagnetically for light rare-earth metals
and ferrimagnetically for heavy rare-earth metals. The
net anisotropy is predominantly contributed by the
rare-earth metal sublattice at low temperatures and by
the iron sublattice at high temperatures. The compensa-
tion for contributions to the anisotropy from two sublat-
tices in some compounds, for example, TbFe11Ti and
DyFe11Ti, leads to spin-reorientation transitions with a
change in temperature [4, 5].

The aim of this work was to investigate in detail the
effect of hydrogenation on the magnetocrystalline
anisotropy constants of the RFe11Ti (R = Lu, Ho, and Er)
compounds. In order to solve the posed problem, we
measured the magnetization curves for single crystals of
LuFe11TiH, HoFe11TiH, and ErFe11TiH hydride com-
1063-7834/01/4302- $21.00 © 20290
pounds for the first time. The measured curves were
compared with similar curves for the initial samples of
LuFe11Ti, HoFe11Ti, and ErFe11Ti single crystals.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The procedures of preparing the RFe11Ti samples
and checking their quality were similar to those
described earlier in [6]. The samples in the form of sin-
gle-crystal blocks with a misorientation of 1°–2° were
used for magnetic measurements. The crystals were
checked according to the Laue x-ray diffraction pat-
terns. The samples were prepared in the form of disks
(for measurements on a torque magnetometer) ~0.3–
0.4 mm thick and ~4 mm in diameter. The planes of
disks coincided with the crystallographic planes (110)
or (001). The magnetization curves were measured
with samples in the form of balls ~2 mm in diameter.

Single crystals were hydrogenated according to the
technique described in detail in our earlier work [7].
The hydrogen content in hydrides for all the studied
compositions was equal to approximately one hydro-
gen atom per formula unit. The error δ in the determi-
nation of the amount of absorbed hydrogen was δ =
±0.05 hydrogen atom per formula unit (H atoms/f.u.).
001 MAIK “Nauka/Interperiodica”
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X-ray powder diffraction analysis of hydrides was
performed on a “DRON-2” diffractometer (CuKα) by
using powder samples. According to analysis, the stud-
ied samples were single-phase and crystallized in the
ThMn12 structural type. The lattice parameters are in
good agreement with the data available in the literature
[8]. The x-ray diffraction patterns contain the reflec-
tions that correspond only to this structure. The α-Fe
impurities, which sometimes occur in iron-rich cast
alloys, are not observed in the x-ray diffraction pat-
terns.

The magnetic measurements were carried out on
torque and capacitance magnetometers. The experi-
mental curves of the mechanical torque were recorded
on a torque magnetometer in the temperature range 77–
700 K in magnetic fields up to 13 kOe. The torque
moments were measured in 2° intervals upon rotation
of single crystals with respect to the magnetic field. The
magnetization curve were obtained with a capacitance
magnetometer at the International Laboratory of Strong
Magnetic Fields and Low Temperatures (Wroclaw,
Poland) in the temperature range from 4.2 to 300 K in
fields up to 140 kOe.

The magnetic anisotropy constants were determined
by a method consisting in a special mathematical pro-
cessing of the magnetization curves, which were mea-
sured along the easy and hard magnetization directions
with the use of the theoretical relationships derived on
the basis of the phenomenological theory of the magne-
tization of anisotropic magnets [9].

3. RESULTS AND DISCUSSION

3.1. Effect of hydrogenation on the magnetic
anisotropy of the LuFe11Ti compound. The magneti-
zation curves for the LuFe11Ti and LuFe11TiH single
crystals at 4.2 K are displayed in Fig. 1. It is seen that
the saturation magnetization upon hydrogenation
noticeably increases (by ~10%). The magnetization
PHYSICS OF THE SOLID STATE      Vol. 43      No. 2      200
curve measured along the easy magnetization axis
(EMA) (the c axis coinciding with the [001] crystallo-
graphic direction) is saturated in relatively weak fields,
whereas the magnetization curve in the field perpendic-
ular to the c axis in the basal plane (the [110] direction])
reaches saturation in fields higher than the magnetic
anisotropy field HA (54 kOe for LuFe11TiH and 40 kOe
for LuFe11Ti). The magnetic anisotropy constant K1
was determined by the relationship

where MS is the saturation magnetization (magnetic
moment per unit volume).

The high magnetocrystalline anisotropy (K1 = 1.9 ×
107 erg/cm3) of LuFe11Ti compounds is explained by a
partial “defreezing” of the orbital angular momentum L
of iron ions in the anisotropic local crystal field, which
strongly differs for different crystallographic positions.
In this case, the orbital angular momentum component
L is aligned along the easy magnetization axis and, in
turn, orients the total spin angular momentum due to
the spin–orbit interaction.

The above assumption concerning the nature of the
magnetocrystalline anisotropy was confirmed by the neu-
tron diffraction investigation performed by Yang et al.
[10], who showed that, for example, in the YFe11Ti
compound, the magnetic moments localized on iron
atoms (which, in the ThMn12 structure, occupy three
nonequivalent positions 8i, 8j, and 8f) are equal to 1.92,
2.28, and 1.8 µB, respectively. These values substan-
tially differ from those observed for bivalent and triva-
lent iron ions (4 and 5µB, respectively). A similar situ-
ation most likely occurs for the LuFe11Ti compound.
Hence, it follows that the iron sublattice magnetism, to
a certain degree, has a band character.

Let us consider the effect of hydrogenation on the
magnetic ordering temperature of the LuFe11Ti com-
pound. It is known that the hydrogenation brings about
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Fig. 1. Magnetization curves for (a) LuFe11Ti and (b) LuFe11TiH single crystals along the [001] and [110] directions at 4.2 K.
1



 

292

        

NIKITIN 

 

et al

 

.

                 
Table 1.  Crystal lattice parameters a and c, unit cell volume V, magnetic anisotropy constant K1, and specific saturation mag-
netization σS for the LuFe11Ti compound and its hydride at T = 4.2 K

Compound a, Å c, Å c/a V, Å3 ∆V/V, % K1 × 107, 
erg/cm3 TC, K HA, kOe σS, emu/g

LuFe11Ti 8.42 4.78 0.57 338.9 – 1.9 490 40 130

LuFe11TiH 8.48 4.79 0.56 344.5 1.6 2.13 545 54 144
an increase in interatomic distances and the unit cell
volume and, for a number of compounds, such as
R2Fe17, a substantial increase in the Curie temperature
[11]. For the LuFe11Ti compound, the Curie tempera-
ture TC is determined by the exchange interactions
between iron atoms, because a lutecium ion has no
localized magnetic moment.

In our work, the Curie temperature TC was deter-
mined as the temperature of the sharpest decrease in the
magnetization upon the transition from the ferromag-
netic state to the paramagnetic state in a weak magnetic
field. The TC temperature for LuFe11Ti was found to be
490 K, which is substantially less than the TC tempera-
ture for metallic iron. The performed calculations of
interatomic distances in the LuFe11Ti compound dem-
onstrated that the shortest distances between Fe atoms
are observed in the pairs 8f–8f (2.358 Å) and 8i–8i
(2.390 Å). At these short Fe–Fe distances, the negative
exchange interactions become possible. The hydroge-
nation of the LuFe11Ti compound leads to a noticeable
increase in the lattice constant a and the unit cell vol-
ume V (the relative change in the volume ∆V/V ≈ 1.6%)
and only a slight change in the lattice constant c (see
Table 1). The Curie temperature for LuFe11TiH hydride
substantially increases (almost by 55 K). An increase in
the TC temperature can be due to an increase in the
exchange energy with an increase in the distances
between iron atoms and the atomic volume.

The introduction of hydrogen into the crystal lattice
of the LuFe11Ti compound is also accompanied by a
considerable increase in the saturation magnetization
(Fig. 1) at T = 4.2 K (σS = 130 emu/g for LuFe11Ti and
144 emu/g for LuFe11TiH). Our investigations revealed
that the dependence σS(T) for the LuFe11TiH com-
pound, as for the initial compound, exhibits a typical
ferromagnetic behavior with a monotonic decrease in
the magnetization σ upon heating.

It was also of interest to obtain information on the
character of the effects responsible for the change in the
magnetic anisotropy upon hydrogenation. As is known,
the relationship for the magnetic anisotropy constant K1
within the single-ion theory of localized moments takes
the form [12]

(1)

However, the application of this formula for esti-
mating the change in K1 due to a variation in the mag-

K1 MS
3 1 c/a( )2–[ ] .∼
P

netization and the axial ratio η = c/a upon hydrogena-
tion leads to inadequate results. As follows from the
data presented in Table 1 and formula (1), the K1 con-
stant should vary by ~2.7%, whereas the experimental
change in K1 appears to be larger and is equal to ~10%.

Consequently, the magnetic anisotropy theory in the
approximation of the single-ion model in our case is
inapplicable. The hydrogenation is attended not only by
the change in the crystal fields produced by the charges
of surrounding ions, but also by strong effects of differ-
ent nature.

The RFe11Ti compounds absorb up to two hydrogen
atoms per formula unit. In this case, the process of
introducing light elements, such as hydrogen, can be
treated as the process of forming the RFe11TiHx (where
x is the hydrogen concentration) compound with quite
new magnetic properties (Curie temperature, saturation
magnetization, and magnetic anisotropy). In the
ThMn12 structure, hydrogen atoms can occupy inter-
stices of two types: tetrahedral and octahedral depend-
ing on the hydrogen concentration. Hydrogen atoms
occupy octahedral sites at low hydrogen concentrations
(x ≤ 1) and begin to occupy tetrahedral sites at the
hydrogen concentrations x > 1. Upon hydrogenation of
LuFe11Ti, the hydrogen concentration x is equal to ~1,
and, hence, hydrogen atoms occupy octahedral inter-
stices [13]. From the experimental data (Table 1), it fol-
lows that the hydrogenation leads to an increase in the
unit cell volume. This results in a narrowing of the 3d
band of collective 3d electrons. A change in the local
environment of Fe atoms due to the incorporation of
hydrogen atoms brings about a weakening of valence
bonds between iron atoms and the redistribution of the
electron density of the valence [14] and conduction
[15] electrons. Most likely, it is these effects that can
explain the increase in the magnetic anisotropy con-
stant of the LuFe11TiH compound, which was observed
in the present work.

Thus, the investigation performed demonstrates that
the hydrogenation of LuFe11Ti single crystals leads to an
increase in the Curie temperature, the saturation magne-
tization, and the magnetic anisotropy constant K1.

3.2. Effect of hydrogenation on the magnetic
anisotropy of the HoFe11Ti single crystal. Unlike
Lu3+ ions, Ho3+ ions possess a nonzero localized mag-
netic moment. The crystal data (the a and c unit cell
parameters and the unit cell volume V) for HoFe11Ti
and its hydride are listed in Table 2. The relative change
HYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
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Fig. 2. Magnetization curves for the HoFe11Ti single crystal along the [001], [110], and [100] crystallographic directions at different
temperatures.
in the unit cell volume ∆V/V upon hydrogenation is
equal to 1.2%. The axial ratio c/a, as for LuFe11Ti,
slightly decreases as a result of the incorporation of
hydrogen atoms into octahedral sites.

According to the magnetic properties and the mag-
netic anisotropy measured using the torque and capaci-
tance magnetometers, the HoFe11Ti single crystal
exhibits a uniaxial magnetic anisotropy over the entire
studied range of temperatures from 4.2 K to the Curie
points, which is anomalous for compounds of this
class. This is explained by the fact that the crystal field
potential acting on Ho rare-earth ions is considerably
contributed by the crystal field parameters of orders
higher than the second order, namely, by the fourth-
order and sixth-order parameters [4].

Figure 2 depicts the experimental field dependences
of the magnetization for the HoFe11Ti single crystal
PHYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
along the easy magnetization axis [001] and the axes
[110] and [100] in the basal plane at different tempera-
tures in fields up to 70 kOe. As follows from Fig. 2,
HoFe11Ti is a high-anisotropy magnet (the magnetic
anisotropy field HA is substantially higher than 70 kOe
at T = 4.2 K). Note that the HA field considerably
decreases with an increase in the temperature (for
example, HA = 35 kOe at T = 300 K).

Table 2.  Crystal data for the HoFe11Ti single crystal and its
hydride

Composition a, Å c, Å c/a V, Å3 ∆V/V, %

HoFe11Ti 8.46 4.75 0.5615 339.9 –

HoFe11TiH 8.50 4.76 0.5600 343.9 1.2
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The magnetization curves for the HoFe11Ti single
crystal along the [110] and [100] directions in the basal
plane (Fig. 2) show a sharp jump of the magnetization
in the temperature range 4.2–80 K at the specific
threshold fields Hcr. This can be explained by the irre-
versible rotation of the magnetization vector at H = Hcr.
The obtained anomalous dependences of the magneti-
zation on the magnetic field strength are confirmed by
the experimental data published earlier for HoFe11Ti
single-crystal samples [4]. It should be noted that the
transitions attended by a sharp jump in the magnetiza-
tion at H = Hcr are the first-order transformations.
These transitions—the first-order magnetization pro-
cesses (FOMP)—were theoretically studied by a num-
ber of researchers [9, 16]. They occur as a result of
changing over the magnetization vector between two
nonequivalent minima of the free energy of anisotropy
in a sufficiently strong magnetic field. The theory of the
FOMP-type processes for uniaxial ferromagnets was
treated in detail by Asti and Bolzoni [9] with allowance
made for the third-order magnetic anisotropy constants.
However, the experimental observation of these transi-
tions in rare-earth–Fe intermetallic compounds involves
certain experimental problems associated with the
necessity of using sufficiently perfect single crystals,
strong magnetic fields, and low temperatures. By assum-
ing that the antiparallel orientation of magnetic moments
in the rare-earth and iron sublattices is retained in fields
up to 100 kOe, we now consider the possibility of
describing the experimental magnetization curves on the
basis of the theoretical relationships obtained in [9]. Our
assumption seems to be sufficiently justified, because the
applied magnetic fields are substantially weaker than the
exchange fields: the exchange field within the Fe sublat-
tice is equal to 8.1 × 106 Oe, and the exchange field
between the sublattices is 2.7 × 106 Oe.

According to the theory [9], upon magnetization of
a uniaxial ferromagnet in the direction perpendicular to
the tetragonal c axis, the expression for the total energy
with due regard for the anisotropy constants of the first
K1, second K2, and third K3 orders is written as

(2)

where θ is the angle between the magnetization vector
MS and the c axis. The equilibrium equation dF/dθ = 0
is given by

(3)

With the use of the normalized variables h =
2H/ |HA1 | and m = M/MS = sinθ (HA1 = 2K1/MS), we
obtain

(4)

where x = K2/K1 and y = K3/K1.

As follows from [9], two types of the first-order
transitions induced by the magnetic field can take

F K1 θsin
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K2 θsin
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K3 θsin
6
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HMS 2 θ K1 2K2 θsin
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3K3 θsin
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h 2m 1 2xm2 3ym4+ +( )K1/ K1 ,=
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place: FOMP-1 and FOMP-2, which differ in the final
magnetization state. At FOMP-1, the magnetization
jumpwise changes to the saturation state. At FOMP-2,
the magnetization in the final state does not reach satu-
ration and the condition for the transition is the equality
of energies in the initial and final states. Upon magne-
tization perpendicular to the c axis (in the basal plane),
the condition for the first-order transition is written in
the form

(5)

where m1 and m2 are the relative magnetizations prior
to and after the transition. Both quantities obey the sta-
bility condition. Then, we have a set of equations

(6)

The critical fields and the magnetization in the transi-
tion range are defined by the relationships

(7)

where

(8)

For the RFe11Ti compounds with a tetragonal sym-
metry, the magnetic anisotropy energy at low tempera-
tures is considerably contributed by the anisotropy con-
stants of the second  and third  orders in the basal
plane. Taking into account the anisotropy in the basal
plane, the energy defined by formula (2) can be rewrit-
ten in the following form:

(9)

For the [100] direction, we have cos4ϕ = 1 and the
effective constants (K2 + ) and (K3 + ) can be
used in the relationship for the total energy. Similarly,
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Fig. 3. Magnetization curves for the HoFe11TiH single crystal along the [001], [110], and [100] crystallographic directions at dif-
ferent temperatures.

T = 300 K
for the [110] direction, cos4ϕ = –1 and the effective
constants take the form (K2 – ) and (K3 – ).

The mathematical treatment of the hcr, m1, and m2
experimental values with the above formulas gives the
following magnetocrystalline anisotropy constants for
HoFe11Ti at T = 4.2 K: K1 = 4.7 × 107, K2 = –9.1 × 107,

K3 = 6.8 × 107,  = 1.0 × 107, and  = –2.2 ×
107 erg/cm3.

As can be seen from Fig. 3, the threshold fields are
not observed in the field dependences of the magnetiza-
tion for HoFe11TiH, which indicates the absence of
first-order phase transitions in hydride upon magnetiza-
tion. In this case, the magnetic anisotropy constants can
be calculated during the mathematical treatment of the
magnetization curve σ(H) along the [001] axis with the
use of equations following from the theory proposed in

K2' K3'

K2' K3'
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[9]. Upon magnetization along the c axis, the expres-
sion for the total energy has the form

(10)

and the equilibrium equation dF/dθ = 0 is written as

(11)

By using the normalized variables m = M/MS = cosθ
and HA1 = 2K1/MS, we obtain

(12)

In this case, it is possible to determine reliably only the
K1 constant, because the theory from [9] ignores the
anisotropy in the basal plane. The saturation field can
be determined from Eq. (12) at m = 1,

(13)
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According to our experimental data (Figs. 2, 3), the
magnetic anisotropy in the basal plane of the HoFe11Ti
and HoFe11TiH single crystals at low temperatures (T <
120 K) is rather pronounced. The magnetization curves
along the [100] and [110] axes in the basal plane differ
from each other at the fields H > Hcr . Moreover, the
critical fields for HoFe11Ti differ for these crystallo-
graphic directions. In particular, Hcr at T = 4.2 K is
equal to 21 kOe for the [110] direction and 28 kOe for
the [100] direction. The correct inclusion of the anisot-
ropy in the basal plane calls for further development of
the theory. However, in order to estimate a change in
the magnetic anisotropy constant K1 for HoFe11TiH
hydride, it is possible to apply the above theoretical
relationship (13), because the field dependence of the
magnetization along the easy magnetization axis does
not depend on the magnetic anisotropy in the basal
plane. The mathematical treatment of the curves along
the [110] and [001] directions for hydride at the tem-
perature T = 4.2 K with the use of formula (11) leads to
the following constants: K1 = –1.52 × 107 erg/cm3, (K2 –

) = –1.96 × 107 erg/cm3, and (K3 – ) = 2.05 ×
107 erg/cm3.

With the above results, we now consider Fig. 3 in
more detail. It is seen from Fig. 3 that the magnetization
curves for HoFe11TiH hydride substantially differ from
those for the initial HoFe11Ti compound. At T = 300 K,
the curves have the form typical of a uniaxial state: the
tetragonal axis c is the easy magnetization axis, and the
[110] and [100] axes in the basal plane are the hard
magnetization axes. Upon cooling below 140 K, the
curves transform due to the spin reorientation. A further
decrease in the temperature brings about a change in
the direction of the easy and hard magnetization axes
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Fig. 4. Experimental curves of the mechanical torque L for
the HoFe11TiH single crystal in the magnetic field H =
13 kOe at different temperatures.
P

(Fig. 3); namely, at T < 80 K, the [110] axis lying in the
basal plane becomes the easy magnetization axis.
Therefore, the magnetic anisotropy radically changes
in character, which can be explained by the formation
of a cone structure in the HoFe11TiH hydride in the low-
temperature range. As shown above, the hydrogenation
leads to the change not only in the magnitude of the
first-order magnetic anisotropy constant K1, but in its
sign as well. The absence of saturation in the σ(H)
curves along the [110] and [100] directions at T = 4.2 K
is associated with the rotation of the magnetic moment
from the position corresponding to local minima of the
magnetic anisotropy energy toward the direction of the
magnetic field.

The curves of the mechanical torque moments L(θ)
measured over a wide range of temperatures made it
possible to determine the spin reorientation tempera-
ture TSR = 140 K for HoFe11TiH. The experimental
curves L(θ) measured in the (010) plane at different
temperatures in the field H = 13 kOe are depicted in
Fig. 4. At T = 300 K, the crystallographic directions
[001] (L = 0 and ∂L/∂θ < 0) and [110] (L = 0 and
∂L/∂θ > 0) are the easy and hard magnetization axes,
respectively. As the temperature decreases below TSR =
140 K, the spin-reorientation transition takes place as
evidenced by the appearance of additional maxima and
minima near the [001] direction. The character of the
L(θ) curves indicates the presence of the EMA–EMA
cone second-order phase transition with a decrease in
the temperature.

Therefore, analysis of the magnetization curves
σ(H) in the temperature range 4.2–300 K also indicates
that, as the temperature T decreases below 140 K, the
magnetic anisotropy constant K1 changes sign (K1 > 0
at T > TSR and K1 < 0 at T < TSR) and the [110] direction
becomes the easy magnetization axis. In HoFe11TiH
hydride, the threshold fields are absent and, what is par-
ticularly important, the [001] direction at T < 80 K is
not the easy magnetization direction. Furthermore, the
results obtained demonstrate that the magnetic anisot-
ropy in the basal plane (001) upon cooling very
strongly increases, becomes equal, and, likely, even
exceeds the anisotropy in the (110) plane.

Thus, the complex investigation performed allows
us to argue that the cooling of the HoFe11TiH hydride
actually leads to the EMA–EMA cone spin-reorienta-
tion transition. The main magnetic characteristics
(Curie temperature, saturation magnetization, and the
spin-reorientation transition temperature) for HoFe11Ti
and its hydride are presented in Table 3.

3.3. Effect of hydrogenation on the magnetic
anisotropy of the ErFe11Ti compound. The magnetic
properties of ErFe11Ti single crystals in fields up to
12 kOe were previously studied by Andreev et al. [17].
The magnetic properties of ErFe11Ti and ErFe11TiH
powder samples oriented in magnetic fields as high as
240 kOe were investigated by Isnard and Guillot [18].
HYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
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Table 3.  Magnetic data for the HoFe11Ti single crystal and its hydride

Composition
σS, emu/g

TC, K TSR , K
Easy magnetization direction

4.2 K 300 K 4.2 K 300 K

HoFe11Ti 75.2 76.5 518 – c axis c axis

HoFe11TiH 83.3 93 561 140 EMA cone c axis

Table 4.  Structural and magnetic properties of the ErFe11Ti single crystal and its hydride

Composition a, Å c, Å c/a V, Å3 ∆V/V, % TC, K
σS, emu/g

TSR , K
295 K 77 K

ErFe11Ti 8.480 4.775 0.563 343.4 – 515 96 81 50

ErFe11TiH 8.507 4.781 0.562 346.0 0.8 563 99 86 41
The purpose of our investigation is to study the mag-
netic properties of the ErFe11Ti and ErFe11TiH single
crystals in magnetic fields up to 140 kOe in the low-
temperature range 4.2–100 K. The structural and main
magnetic characteristics obtained in our work for these
samples are given in Table 4.

Figure 5 shows the magnetization isotherms for the
ErFe11Ti single crystal at different crystallographic
directions. It is seen that the [001] direction is the easy
magnetization axis. The magnetization curves σ(H)
along the [100] and [110] axes are strongly nonlinear in
character and have inflection points in the field range
H ~ 10 kOe. The inflection points can be explained by
the presence of magnetic moment projection onto the
basal plane in the absence of field, i.e., by the occur-
rence of a cone of the easy magnetization axis. As the
temperature increases, the σ(H) curve becomes more
linear, which indicates a decrease in the moment pro-
jection onto the basal plane upon heating. The data
obtained earlier by Andreev et al. [17] demonstrate the
transformation of the easy magnetization cone into the
easy magnetization axis at T > 60 K. This statement
does not contradict our experimental data. The mag-
netic anisotropy constants for the ErFe11Ti compound,
which were determined according to the technique
described in [9], are as follows: K1 = –4.6 × 107 erg/cm3

and K2 = 18.4 × 107 erg/cm3.

In order to determine more exactly the spin-reorien-
tation transition temperature, the temperature depen-
dences of the susceptibility were studied for the initial
ErFe11Ti compound and its hydride [19]. The results of
measurements are listed in Table 4, from which it can
be seen that the hydrogenation leads to the shift in the
transition temperature toward the low-temperature
range.

The hydrogenation of ErFe11Ti results in an increase
in the magnetic anisotropy of the single crystal. The
hydrogenation produces the strongest effect on the
magnetic anisotropy constant K1 (K1 = –3.67 ×
PHYSICS OF THE SOLID STATE      Vol. 43      No. 2      200
107 erg/cm3), whereas the change in the constant K2 =
18.3 × 107 erg/cm3 is insignificant. The cone of the easy
magnetization axes is clearly observed in the σ(H)
curves at T = 4.2 K, which manifests itself in the pres-
ence of the spontaneous magnetic moment component
not only along the [001] axis, but along the [110] and
[100] axes as well. These spontaneous moments can be
found by the extrapolation of the σ(H) curves to H 
0. The apex angle of the cone can be defined as 2θ0 =
2 σ0||/σ0⊥ ), where σ0|| and σ0⊥  are the spontane-
ous magnetic moments measured along the tetragonal
axis and in the basal plane. For the ErFe11Ti compound
at T = 4.2 K, θ0 = 22°, the hydrogenation brings about
a decrease in the apex angle of the cone and the θ0 angle
becomes equal to 18°. Our magnetic data enable us to
conclude that the cone structure in ErFe11Ti hydride is
formed at a lower temperature, namely, at T ≈ 40 K,
which is in agreement with the experimental data on the
magnetic susceptibility measured for the same single
crystals [19].

The results of the measurements performed make it
possible to construct the magnetic phase diagrams for
the RFe11Ti (R = Lu, Ho, and Er) single crystals
(Fig. 6). As can be seen, the LuFe11Ti and LuFe11TiH
compounds are the uniaxial magnets. The hydrogena-
tion leads to an enhancement in the uniaxial magnetic
anisotropy of the iron sublattice. In the HoFe11Ti com-
pound, the spin-reorientation transition is not observed
and the c axis is the easy magnetization axis over the
entire studied temperature range of magnetic ordering.
By contrast, for the ErFe11Ti compound, an increase in
the temperature results in the EMA cone–EMA spin-
reorientation transition at TSR = 50 K. At 4.2 K, the cal-
culated contribution of the rare-earth sublattice to the
K1 constant is positive for holmium (K1Ho > 0) and neg-
ative for erbium (K1Er < 0). According to the single-ion
anisotropy model for the RFe11Ti compounds with R =
Sm, Tm, Nd, Tb, and Dy, the sign of the K1R constant
coincides with the sign of the Stevens factor αJ. For the

(arctan
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Fig. 5. Magnetization curves for the ErFe11Ti and ErFe11TiH single crystals along the [001], [110], and [100] crystallographic direc-
tions at different temperatures.

ErFe11Ti ErFe11TiH1 – δ
HoFe11Ti and ErFe11Ti compounds studied in the
present work, the contributions from the Ho3+ (αJ < 0)
and Er3+ (αJ > 0) ions to the K1R constant are opposite
in sign to the Stevens factor. This can be explained by
the fact that the crystal field potential affecting the Ho
and Er rare-earth ions is considerably contributed by
the magnetocrystalline interaction parameters of orders
higher than the second order. As a consequence, the
P

magnitude of the magnetic anisotropy constant K2 at
low temperatures appears to be larger than that of the K1

constant and the cone structure is formed at T < 50 K in
ErFe11Ti. The hydrogenation leads to an increase in the
magnetic anisotropy of the iron sublattice. However,
the hydrogenation exerts even a stronger effect on the
magnetic anisotropy of the rare-earth sublattice and
brings about a substantial change in the K1 and K2 mag-
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netic anisotropy constants (including the change in sign
of the K1 constant for HoFe11Ti) and also, likely, the
corresponding change in the magnetocrystalline inter-
action parameters. As a result of hydrogenation, the
HoFe11TiH compound upon heating undergoes the
EMA cone–EMA spin-reorientation transition at TSR =
140 K. Upon hydrogenation of ErFe11TiH, the region of
the uniaxial states increases and the spin-reorientation
transition is shifted toward the low-temperature range
(TSR = 41 K).

All these changes occur against the background of
an increase in the atomic volume, on average, by ~1.2%
(even though the deviations from this value are
observed depending on the sort of rare-earth metal).
They could be attributed to a change in the distance
between iron and rare-earth metal atoms. However, the
data on the effect of hydrostatic pressure on the mag-
netic anisotropy constants for the HoFe11Ti compound
demonstrate that the quantity ∂K/∂p is close to zero
[20]. Therefore, it can be inferred that changes in the
atomic volume and the axial ratio c/a cannot lead to the
observed effects, such as the change in sign of the mag-
netic anisotropy constant upon hydrogenation. This
effect is predominantly contributed by the change in the
crystal field, specifically in the electric field gradient at
the rare-earth ion site, upon introduction of hydrogen
into the crystalline lattice. These fields act on the aniso-
tropic 4f subshell with a nonzero orbital angular
momentum and a nonzero quadrupole moment in the
case of Ho and Er rare-earth ions. As is known, hydro-
gen atoms in the RFe11Ti crystal lattice (a tetragonal
structure of the ThMn12 type) occupy octahedral holes
(at x ≤ 1) located on the c axis, which induces additional
electric fields acting on rare-earth ions.

The interstitial atoms modify the contributions to
the electric field gradient, which are associated with the
change in the interaction of the 4f electron subshell
with surrounding ions and also with 5s25p6 valence and
conduction electrons [14, 15].

0

ErFe11TiH

HoFe11TiH

LuFe11TiH

LuFe11Ti

HoFe11Ti

ErFe11Ti

100 200 300 400 500 600
T, K

Fig. 6. Magnetic phase diagrams for the RFe11Ti (R = Lu,
Ho, and Er) compounds and their hydrides. Hatched regions
correspond to the EMA cone, and M || c in nonhatched
regions.
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Abstract—The temperature dependence of heat capacity Cp(T) was studied for nine rare-earth hexaborides
MB6 (M = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy) at temperatures of 5–300 K. Using the correspondence prin-
ciple for lattice heat capacities of isostructural compounds, the lattice contribution C1(T) and the excess contri-
bution ∆C(T) to the heat capacity of the hexaborides were determined. The lattice heat capacity C1(T) is repre-
sented as the sum of the Debye contributions of the metal and boron sublattices: C1(T) = CM(T) + 6CB(T). The
Debye temperatures θM and θB of the metal and boron sublattices were determined. The anomalies in the excess
heat capacity ∆C(T) = Cp(T) – C1(T) are related to the magnetic ordering effects, the Schottky contribution, and
the Jahn–Teller effect. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

One of the main problems in studying the heat
capacity of magnets is the separation of the various
contributions to the total heat capacity. In the general
case, the total heat capacity of a magnet is written as the
sum of lattice (Cl), electron (Ce), nuclear (Cn), ferro- or
antiferromagnetic (Cf or Caf), and paramagnetic (Cpm)
contributions [1], to which a contribution from an
anharmonic component (Cα) is added at high tempe-
ratures.

The contribution from free electrons Ce(T) linearly
changes with temperature in a wide temperature range.
The other contributions to heat capacity at high temper-
atures are complex functions of the temperature. There-
fore, in order to separate the total heat capacity into the
lattice and excess components, the method of the corre-
spondence of lattice heat capacities of isostructural
compounds [2, 3] is frequently used. In the simplified
version of this method, the lattice heat capacities are
assumed to be proportional to the molar masses. Peys-
son et al. [4] compared the calculated Debye heat
capacities of CeB6 and of nonmagnetic LaB6 to deter-
mine excess (magnetic) heat capacity.

RESULTS AND DISCUSSION

In this paper, we made an attempt to separate the lat-
tice and the excess components of the heat capacities of
nine rare-earth hexaborides MB6 (M = La, Ce, Pr, Nd,
Sm, Eu, Gd, Tb, and Dy) at temperatures of 5–300 K,
as well as to determine the contributions of the metal
and boron sublattices to the excess heat capacity of
these hexaborides.
1063-7834/01/4302- $21.00 © 20300
In Fig. 1, our experimental data [5–12] on the heat
capacities Cp(T) of the above nine hexaborides are
compared with the data of other investigators [4, 13–
17]. Note the following characteristic features in the
Cp(T) curves: (i) the existence of anomalies in Cp(T) at
low temperatures (except for SmB6 and LaB6), which
have a complex form in some hexaborides; and (ii) the
close-to-linear course of the Cp(T) curves at enhanced
temperatures.

The separation of the lattice component of the heat
capacity was performed on the assumption that at room
temperature, all the contributions to the heat capacity of
hexaborides, except for the lattice one, are negligibly
small and that the heat capacity of LaB6 contains only
a lattice component in the entire temperature range
investigated [18]. Following [3], we assume that the lat-
tice heat capacities of isostructural compounds repre-
sent identical functions of the thermodynamic and
Debye temperatures f(θ/T). The ratio of the character-
istic temperatures of the lanthanum hexaboride and the
hexaboride of any other rare-earth metal at room tem-
perature,

,

is assumed to be constant for a given hexaboride in the
whole temperature range investigated. The Debye tem-
peratures of the hexaborides at 300 K and the corre-
sponding values of r are given in the table. From the
relation

θLaB6
300 K( )/θMB6

300 K( ) r=

θMB6
T( ) θLaB6

T( )/r=
001 MAIK “Nauka/Interperiodica”
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and tabulated Debye functions [19], we determined the
temperature variations of the lattice heat capacities
Cl(T) of the hexaborides in the range of 5–300 K
(Fig. 1).
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Fig. 1. Molar heat capacity Cp(T) of rare-earth hexaborides:
(1) lanthanum; (2) cerium; (3) praseodymium; (4) neody-
mium; (5) samarium; (6) europium; (7) gadolinium; (8) ter-
bium; and (9) dysprosium. Solid lines, our data [5–12];
dashed lines, the lattice contributions to heat capacities; data
points, borrowed from [4, 13–17].
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By subtracting the lattice components from the total
heat capacities, we determined the temperature depen-
dence of the excess heat capacities of the hexaborides:

∆C(T) = C(T) – Cl (T).

Figure 2 displays typical dependences ∆C(T) for
some hexaborides.

The sharp anomalies in the ∆C(T) curves at low tem-
peratures are due to processes of magnetic ordering.

The diffuse maxima in the region of moderate tem-
peratures (100–200 K, see Fig. 2) represent the Schot-
tky contributions. The dashed lines in the figure corre-
spond to the calculated Schottky heat capacities of
CeB6, NdB6, and PrB6 according to the data of [20, 21]
on the splitting of energy levels by the crystal electric
field [11].

The anomalies near 30–40 K in the ∆C(T) curves of
DyB6 (Fig. 2) and GdB6 and TbB6 (not given in the fig-
ure) appear to be due to the Jahn–Teller effect [22].

Fig. 2. Excess heat capacities ∆C = C – Cl of some rare-
earth hexaborides: (1) cerium; (2) praseodymium; (3) neo-
dymium; (4) samarium; and (5) dysprosium. Dashed lines
correspond to the calculated Schottky contributions.
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The anomalies of the temperature dependences of
the excess heat capacity ∆C(T) of the hexaborides will
be considered in our future publications.

The molar lattice heat capacity of a hexaboride is
written as the sum of Debye heat capacities of the metal
and boron sublattices:

The characteristic temperature of the boron sublat-
tice θB was determined from the value of the gram-
atomic heat capacity at T = 300 K:

Here, Cl(300 K) is the total lattice heat capacity of a
hexaboride at T = 300 K. From it, the heat capacity of
the metal sublattice is subtracted, whose magnitude at
T = 300 K is assumed to be close to the DuLong’s one.

CMB6
T( ) CM T( ) 6CB T( ).+=

CB 300 K( ) 1
6
--- Cl 300 K( ) 0.98 3⋅ R–[ ] .=

100

50

0 100 200 300
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Fig. 3. Heat capacity of the lanthanum hexaboride: (1)
experimental values of Cp(T); (2–4) calculated temperature
dependences of the heat capacities of the boron sublattice
6CB, lanthanum sublattice CLa, and electron gas Ce, respec-
tively; and (5) the total calculated heat capacity CLa +
6CB + Ce.
P

The characteristic temperature θM(T) of the metal
sublattice is determined by the extrapolation (to abso-
lute zero) of the θM(T) dependence in the region of
5−100 K obtained from the temperature dependence of
the heat capacity of the metal sublattice:

CM(T) = Cl (T) – 6CB(T).

The thus-obtained magnitudes of the characteristic
Debye temperatures of the metal (θM) and boron (θB)
sublattices are listed in the table. It can be seen that, for
all the hexaborides studied, the values of θM are close to
one another.

As an example, Fig. 3 shows the temperature depen-
dences of the heat capacities of the lanthanum and
boron sublattices in LaB6 calculated from the obtained
values of θLa and θB, as well as the total calculated heat
capacity of lanthanum hexaboride with allowance for
the contribution of free electrons. As is seen from the
figure, the calculated magnitudes satisfactorily agree
with the experimental ones. Figure 4 shows experimen-
tal Cp(T) curves for the lanthanum, neodymium, samar-
ium, and gadolinium hexaborides for the temperature
range of 5–1000 K according to [23, 24] and the calcu-
lated dependences

for these hexaborides. It was assumed that the magni-
tudes of the electron contributions Ce(T) to the heat
capacity of lanthanum hexaboride and to that of rare-
earth metals are identical and are equal to Ce(T) = 2.5 ×
10–3 T [8]. The contribution to the heat capacity caused
by thermal expansion was calculated for all the
hexaborides by the relation Cα(T) = 3αCpT/a, where α
is the thermal expansion coefficient of LaB6 equal to
5 × 10–6 K–1 [6] and a is a constant equal to 0.74 [25].
As is seen from the figure, the calculated Cp(T) curves
satisfactorily agree with the experimental data.

Note that the magnitudes of θB in the approach
assumed prove to be somewhat underestimated, since
they are obtained without allowance for the Schottky
contribution to the heat capacity of the hexaborides at
T = 300 K. The Schottky heat capacity for CeB6, NdB6,
and PrB6 (Fig. 2) at T = 300 K is 1–4 J/(mol K). Neglect

CMB6
T( ) CM T( ) 6CB T( ) Ce T( ) Cα T( )+ + +=
Characteristic temperatures of rare-earth hexaborides (300 K) at T = 300 K, Debye temperatures of the metal (θM) and

boron (θB) sublattices, and the Debye temperature ratios r = (300 K)/ (300 K)

Compound LaB6 CeB6 PrB6 NdB6 SmB6 EuB6 GdB6 TbB6 DyB6

, K 1085 1140 1080 1044 1065 1220 1113 990 970

r 1 0.9518 1.005 1.039 1.019 0.8893 0.9748 1.096 1.119

θM, K 205 203 210 200 210 198 212 207 208

θB, K 1230 1293 1218 1170 1200 1383 1254 1025 1074

θMB6

θLaB6
θMB6

θMB6
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of the Schottky contribution leads to an underestima-
tion of (300 K) by 15–30 K and of θB by 20–50 K.
Therefore, at T = 1000 K, the calculated values of 6CB

and, consequently,  prove to be overestimated by
0.5–1.5 J/(mol K). This value is less than the error of
determining heat capacity near T = 1000 K and can be
neglected. The magnitude ∆θB = ±150 K should, appar-
ently, be regarded as the absolute error of θB magni-
tudes listed in the table.
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Fig. 4. Heat capacities of some rare-earth hexaborides in a
range of 5–1000 K: (1) lanthanum; (2) neodymium;
(3) amarium; and (4) gadolinium. Solid lines represent cal-
culated curves; (1–4) experimental values (below 300 K,
they only include the lattice part of heat capacity).
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CONCLUSION

The main results of this work are as follows: (a) the
lattice contribution to the heat capacity of rare-earth
hexaborides can be separated from the total heat capac-
ity on the basis of the correspondence principle for the
lattice heat capacities of isostructural compounds;
(b) at temperatures of 5–1000 K, the heat capacity of
the crystal lattice of rare-earth hexaborides can be rep-
resented as the sum of contributions of noninteracting
Debye sublattices of a metal and boron; and (c) using
the characteristic temperatures of the sublattices θM and
θB, one can calculate the lattice heat capacity of rare-
earth hexaborides to temperatures of up to 1000 K.
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Abstract—The electrical conductivity of LaMnO3 crystals was measured at room temperature to determine that
the transition to a stable magnitude of electric current corresponding to the applied voltage has a relaxational
nature with a characteristic time of about 10 min. The steady-state value of the current depends on the preceding
voltage applied to the sample. The effect was observed in both dc and ac measurements. Detailed characterization
of the crystals was performed using magnetic and x-ray methods. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Lanthanum manganite-based perovskite-like com-
pounds La1 – xAxMnO3 (where A are usually divalent
ions Ca2+ or Sr2+) are of great interest because of the
effect of giant magnetoresistance [1, 2], which is prom-
ising for applied microelectronics. Part of the available
works is devoted to relaxation phenomena in mangan-
ites. Thus, in [3], the relaxation of magnetization (mag-
netic viscosity) in thin ferromagnetic films of mangan-
ites is reported. Fisher et al. [4], in their work per-
formed on single crystals of La1 – xAxMnO3, revealed
the relaxation of electrical resistivity ρ related to the
relaxation of magnetization and suggested a phenome-
nological explanation of the effect based on the
assumption of the magnetically non-single-phase state
of the samples. In both cases, relaxation processes were
observed upon varying the external magnetic field H. In
this work, we studied the resistivity of LaMnO3 single
crystals and found the relaxation of ρ upon the applica-
tion of electric voltage to the sample in the absence of
a magnetic field.

Lanthanum manganite LaMnO3 has a perovskite
structure that is distorted by Jahn–Teller interactions in
the system of Mn3+ ions. The exchange interaction in
the (100) planes is ferromagnetic; the interaction
between these planes is antiferromagnetic. The Néel
temperature of LaMnO3, according to different authors,
[5–7] varies between 100 and 141 K. In the presence of
an overstoichiometric oxygen, part of the Mn3+ ions
transforms into the tetravalent state; correspondingly,
LaMnO3 + δ (δ > 0) acquires an uncompensated mag-
netic moment. At δ = 0.15, LaMnO3 becomes ferro-
magnetic. Most authors believe that it is the Zener dou-
ble exchange [8] that is responsible for the ferromag-
netic interaction. The physical properties of
stoichiometric LaMnO3 have been studied insuffi-
1063-7834/01/4302- $21.00 © 20305
ciently. In the first works in which its magnetic proper-
ties were studied, LaMnO3 was assumed to be antifer-
romagnetic (see, e.g., [8, 9]). However, later, the major-
ity of authors arrived at a conclusion that it exhibits
weak ferromagnetism [2, 6]. The electrical properties
of LaMnO3 have also not been studied in detail. Uri-
shibara et al. [10] reported that it is a semiconductor
and only reveals intrinsic conductivity and that the elec-
trical resistivity ρ of pure stoichiometric LaMnO3 at
room temperature is 2 × 102 Ω cm. Note that most
investigations of physical properties of LaMnO3 were
performed on polycrystalline samples.

EXPERIMENTAL

The LaMnO3 samples that were studied in this work
were prepared by zone melting using laser heating [11].
Their structure was studied by powder x-ray diffraction
and x-ray diffraction topography; they showed the pres-
ence of numerous twin boundaries (of six types) char-
acteristic of the orthorhombic structure of LaMnO3
[11]. The sample that has been studied had the shape
of a parallelepiped with dimensions of 5 × 3 × 6 mm.

The magnetization of the LaMnO3 crystals were
conducted on a vibration-sample magnetometer in a
temperature range of 77–300 K in magnetic fields of up
to 13 kOe; the measurements of the hf susceptibility
were performed by the induction method at a frequency
of 20 MHz.

RESULTS AND DISCUSSION

Figure 1 displays the magnetization curve σ(H) at
77 K. It can be satisfactorily described by the depen-
dence σ = σ0 + χH characteristic of the weak ferromag-
nets, with a residual magnetization σ0 = 1.9 emu/g. We
001 MAIK “Nauka/Interperiodica”



 

306

        

GUBKIN 

 

et al

 

.

                                                                                                                
observed identical (within the experimental error) mag-
netization curves for both the plane ab and the direction
parallel to the c axis of the crystal; this is undoubtedly
related to the large density of twins (as is seen from
[12], where more perfect crystals were used in the
investigation, the LaMnO3 crystals possess a significant
anisotropy). Figure 2 shows the temperature depen-
dence of the magnetic permeability µ(T); the inset dis-
plays the temperature dependence of the specific mag-
netization σ(T) (all the curves were recorded during
heating). Both dependences correspond to three exter-
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Fig. 1. Magnetization curve σ(H) of a LaMnO3 crystal at 77 K.
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Fig. 2. Temperature dependence of the magnetic permeabil-
ity µ of an LaMnO3 crystal in different magnetic fields:
(1) H = 0, (2) 2, and (3) 8 kOe. In the inset, the temperature
dependence of the magnetization σ(T) is shown in different
magnetic fields: (1) H = 6.2, (2) 3, and (3) 0 kOe.
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nal magnetic fields differing in magnitude. At T = 126 K,
a sharp peak of the hf susceptibility is observed, which
is easily eliminated by a small (in comparison with the
characteristic exchange fields) external field. It is pre-
cisely at this temperature that the residual magnetiza-
tion σ0 vanishes (see curve 3 in the inset). The peak
appears to be due to specific features of the process of
technical magnetization, i.e., by the motion and rota-
tion (under the effect of the magnetic field) of macro-
scopic objects (“domains”) in a weak ferromagnet. The
presence of spontaneous magnetization (which is
approximately one-fiftieth of that which would exist
upon ferromagnetic ordering of the magnetic moments
of the Mn3+ ions) is most likely related to the sublattice
angularity rather than to the presence of some amount of
ferromagnetic inclusions in the antiferromagnetic matrix.
The temperature of the disappearance of σ0 appears to
represent the Néel point or is at least close to it.

The electrical resistivity of LaMnO3 crystals was
studied by the two-probe technique in both dc and ac
(50 Hz) regimes. The contacts located on the opposite
faces of a sample were prepared by the evaporation of
silver. The estimation of the electrical resistivity, based
on the sample dimensions and the configuration of the
electrodes, yields values ρ ~ 102 Ω cm at room temper-
ature. Thus, it would be a sufficiently correct procedure
to replace the magnitudes of R(Ω) by ρ(Ω cm) in
Figs. 3–5. Note that, in the LaMnO3 crystal that was
studied in our work, no magnetoresistance was
observed in the temperature range of 77–300 K. How-
ever, we revealed that, when an electric voltage was
applied to the sample, the magnitude of the current cor-
responding to this voltage was established within a time
period of about 10 min rather than immediately. Below,
we describe in detail the main features of this process.

Figure 3 displays the variation of the electrical resis-
tance R of an LaMnO3 single crystal as a function of the
time t at a temperature of 290 K upon the application of
a constant electric voltage U. The voltage U was suc-
cessively increased from 1 to 9 V (curves 1–9, respec-
tively), after which it was successively decreased from
9 to 1 V (curves 8'–2', respectively). The experiment
was performed as follows. At time moment t = 0, a volt-
age U = 1 V was applied to the sample and the variation
of R in time was observed for 10 min (the resistance
decreased in magnitude and finally reached an approx-
imately constant value at the end of this period). After
this, the voltage was increased to 2 V and again the R(t)
dependence was measured, etc., until a voltage U = 9 V
was reached. After application of the voltage U = 9 V
and measuring the R(t) dependence, the voltage U was
decreased to 8, 7, …, 1 V and each time measurement
of R(t) was performed. In this case, the resistance R
increased with time (see primed curves in Fig. 3).

In the stable state, i.e., after a 10-min holding of the
sample under a constant voltage, the resistances R
taken from the unprimed curves do not coincide with
those taken from the primed curves. The less the differ-
HYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
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ence between the largest applied voltage and the
decreased voltage, the less the difference of the resis-
tances ∆R. The ∆R(U) dependence is shown in the
right-hand lower corner of Fig. 3. Even after a much
longer holding of the sample under a voltage (30 min),
the ∆R difference does not tend to zero.

Figure 4a shows the R(t) dependences for the fol-
lowing experiment. First, a voltage U = 1 V is applied
to the sample and is kept for the 10 min that are
required, as was indicated above, for the sample to
acquire a stable value of R. Then, the voltage is
increased to 8 V and the resistance variation is mea-
sured for ten minutes (curve 8). After this, the sample is
again held at U = 1 V until an equilibrium magnitude of
R is established and the R(t) dependence is recorded at
U = 7 V, etc. In other words, the sequence of the volt-
ages applied to the sample was as follows: 1, 8, 1, 7, …,
1, 2 V. A similar experiment was performed using
another sequence of voltages applied to the sample,
namely, 9, 2, 9, 3, …, 9, 8 V (Fig. 4b). On the basis of
these two experiments, we constructed the R(U) depen-
dence for stable values of R, i.e., at t ~ 10 min (Fig. 5).
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Fig. 3. Time dependences of the electrical resistance R at
T = 290 K at different values of the applied voltage U. The
numerals 1, 2, 3, …, 9 correspond to the voltages 1, 2, 3, …,
9 V, respectively; the unprimed curves were obtained with
the voltage being increased; the primed curves correspond
to decreasing voltage. ∆R is the difference between the
asymptotic (equilibrium) values of R obtained from the
primed and unprimed R(U) curves.
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It is seen from Fig. 5 that the R(U) dependences for
both experiments are similar.

The results of measurements of the LaMnO3 resis-
tance at lower temperatures, in the temperature range of
200–290 K, do not differ qualitatively from the above
results. Below 200 K, no time dependence of R(t) was
observed.

The “diffuse” times of the “settling” of stable mag-
nitudes of electrical resistance suggest the possible
influence of ionic conduction and the formation of a
double diffusion layer in the region of the contacts. The
ionic conductivity is characteristic of most insulators
with a perovskite structure; it is characteristic of the
LaMnO3 crystals as well [13]. Therefore, we repeated
the above experiments in the ac mode; in this case, the
settling time for establishing a stable current is several
orders of magnitude greater than the time of the change
of the polarity of the applied voltage to the opposite.
The R(t) curves that were obtained in this case were
quite analogous to those shown in Figs. 2–4. We also
used copper electrodes instead of silver; however, the
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Fig. 4. Time dependences of the electrical resistance R at
T = 290 K for various sequences of the applied voltage U
(see the main text): (a) 1, 8, 1, 7, …, 1, 2 V; and (b) 9, 2, 9,
3, …, 9, 8 V.
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change of the electrode material also had no effect on
the course of the time dependences of R. Thus, the
effect observed cannot be explained by a directional
diffusion of ions in an electric field.

Note that all the above curves can be explained
merely by the process of settling of the temperature that
is varied because of the release of Joule heat in a semi-
conductor sample upon the passage of an electric cur-
rent. However, from a comparison of the observed vari-
ations of the current with the temperature dependence
of the sample resistance (which is activated in nature,
with an activation energy of about 0.17 eV), it is seen
that the sample temperature should change by 10–15 K
in this case. However, the thermocouple fixed directly
at the sample exhibited no temperature changes upon
current passage.

Finally, there are experimental data [14] that indi-
cate that the passage of a low-frequency alternating
electric current through samples of La0.7Pb0.3MnO3
changes their electrical properties (in particular, the
microwave conductivity). The nature of this effect is
unknown, but Volkov et al. [14] suggested a qualitative
interpretation based on the concept of the phase separa-
tion of magnetic phases in the sample. Therefore, it
cannot be ruled out that the relaxation curves that we
observed in this work are related to the effect of the
flowing electric current on the magnetic homogeneity
of LaMnO3.
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Fig. 5. Stable values of the electrical resistance R at various
applied voltages U (T = 290 K) with the voltage (a) being
successively increased and (b) decreased.
P

CONCLUSION

Thus, when studying electrical and magnetic prop-
erties of LaMnO3 single crystals, we revealed a relax-
ational nature of the process of transition to a stable
magnitude of current when a constant or alternating
voltage was applied to the sample. We failed to find a
consistent explanation for the obtained experimental
R(t) curves. Additional investigations are required to
clarify whether the effect observed is one more mani-
festation of the complex relation between the charge
carriers and magnetic subsystem characteristic of the
perovskite-like manganites or if this is a specific conse-
quence of some other factors.

REFERENCES

1. S. Jin, T. H. Tiefel, M. McCormack, et al., Science 264,
413 (1994).

2. É. L. Nagaev, Usp. Fiz. Nauk 166, 833 (1996) [Phys.–
Usp. 39, 781 (1996)].

3. O. Iglesias, F. Badida, A. Labarta, and L. Balsells,
J. Magn. Magn. Mater. 140–144, 399 (1995).

4. L. M. Fisher, A. V. Kalinov, S. E. Savel’ev, et al.,
J. Phys.: Condens. Matter 10, 9769 (1998).

5. E. O. Wollan and W. C. Koehler, Phys. Rev. 100, 545
(1955).

6. G. Matsumoto, J. Phys. Soc. Jpn. 29, 606 (1970).

7. R. Pauthenet and C. Veygret, J. Phys. (Paris) 31, 65
(1970).

8. C. Zener, Phys. Rev. 82, 403 (1951).

9. J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk,
Phys. Rev. 124, 373 (1961).

10. A. Urishibara, Y. Moritomo, T. Arima, et al., Phys. Rev.
B 51, 14103 (1995).

11. A. M. Balbashov, M. K. Gubkin, V. V. Kireev, et al., Zh.
Éksp. Teor. Fiz. 117 (3), 542 (2000) [JETP 90, 474
(2000)].

12. V. Yu. Ivanov, V. D. Travkin, A. A. Mukhin, and
S. P. Lebedev, J. Appl. Phys. 83, 7180 (1998).

13. M. S. Islam and M. Cherry, Solid State Ionics 97, 33
(1997).

14. N. V. Volkov, G. A. Petrakovskiœ, K. A. Sablina, and
S. V. Koval’, Fiz. Tverd. Tela (St. Petersburg) 41, 2007
(1999) [Phys. Solid State 41, 1842 (1999)].

Translated by S. Gorin
HYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001



  

Physics of the Solid State, Vol. 43, No. 2, 2001, pp. 309–310. Translated from Fizika Tverdogo Tela, Vol. 43, No. 2, 2001, pp. 297–298.
Original Russian Text Copyright © 2001 by Bezmaternykh, Potselu

 

œ

 

ko, Erlykova, Édel’man.

                                                                                                                     

MAGNETISM
AND FERROELECTRICITY
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Abstract—High-quality single crystals of copper metaborate CuB2O4 with a volume exceeding 1 cm3 are
grown. The optical absorption spectra of these crystals are recorded for the first time owing to their sufficiently
large size. The spectra exhibit a broad transmission window in the visible region and an intense absorption peak
around ~2.0 eV, which is already split into two bands at room temperature. A weak anisotropy is revealed in
unpolarized light upon light beam propagation along the a and c axes. The spectra are compared with the
absorption spectrum of CuGeO3. © 2001 MAIK “Nauka/Interperiodica”.
Nowadays, copper oxide compounds are of particular
interest in connection with a large variety of low-tempera-
ture magnetic phases. Until recently, the CuGeO3 crystal
received the greatest attention. Although CuB2O4 crystals
were synthesized as early as 1964 [1], their properties
were studied in only a few works. In particular, the lack
of information on the optical properties of CuB2O4 can
be explained by the extremely small sizes of samples
that have been prepared successfully to date.

The crystal structure of CuB2O4 was first deter-
mined in [1] and then refined in [2–4]. The crystal
belongs to the tetragonal crystal system with space
group I 2d. The unit cell contains twelve formula
units. The unit cell parameters are a = 11.506 Å and c =
5.644 Å [2]. The copper ions occupy positions of two
types. In the first positions, the oxygen ions form a per-
fect square, and in the second positions, they are
arranged in a distorted octahedron. In the latter case,
the long axis is inclined at a certain angle to the basal
plane and the angles in the base plane are not equal.

The magnetic properties of copper metaborate
CuB2O4 were first studied in [5]. It was found that this
crystal is paramagnetic at temperatures above 21 K, a
phase transition to a weakly ferromagnetic state takes
place at 21 K, and the Morin transition is observed at
10 K. Since the copper ions occupy nonequivalent,
strongly distorted sites in CuB2O4, its optical properties
can be rather interesting. The present work reports the
first results of an investigation into the absorption spec-
tra of copper metaborate in the visible and near ultravi-
olet spectral regions.

Single crystals of CuB2O4 were grown from the ter-
nary Li2O–CuO–B2O3 system by solution–melt crystal-
lization. The choice of the solution–melt composition
{43.6 wt % (B2O3 + 0.5Li2O) + 56.4 wt % CuB2O4}
was based on the diagram given in [4]. The solution–
melt mass was 100 g. The initial components were lith-
ium carbonate (analytical grade), copper oxide (analyt-

4

1063-7834/01/4302- $21.00 © 20309
ical grade), and boron oxide (high-purity grade). The
solution–melt batch was prepared by successive melt-
ing of B2O3, Li2CO3, and CuO in a platinum crucible at
a temperature of 1000°C. The solution–melt saturation
temperature was 915°C. The crystals were grown by
slow cooling in the temperature range 915–850°C. The
maximal size of crystals grown on a single-crystal seed
was 2 × 1.5 × 1.5 cm3.

Samples in the form of disks 0.01–0.06 cm thick and
0.05 cm in diameter were prepared for optical measure-
ments. The disks were cut so that their faces were per-
pendicular to the a or c axis. The disk faces perpendic-
ular to the a and c axes were polished. The absorption
spectra were recorded at room temperature on an
UVICON 943 spectrophotometer in the spectral range
300–900 nm (which corresponds to the energy range
4.14–1.38 eV).

The figure shows absorption spectra for two sam-
ples of different orientations, which were cut from the
same single crystal. The spectra for the other samples
had a similar shape. The absorption is rather high in the
larger part of the range covered and drastically decreases
in the energy range 2.65–3.27 eV, which shows up as a
transmission window. At energies below 2.5 eV, the
spectra contain a broad maximum which consists of
two peaks at ~2.3 and ~1.7 eV. The absorption edge
corresponds to ~3.5 eV. A spectral anisotropy clearly
manifests itself in the unpolarized light. The absorption
edge for the section normal to the a axis is shifted
toward higher energies in comparison with that for the
section normal to the c axis. The intensities of peaks in
the low-energy region of the spectrum studied vary dif-
ferently. For the plane normal to the a axis, the short-
wavelength component is more intense and the long-
wavelength component is less intense as compared to
the spectrum of the section normal to the c axis.

Let us compare the spectrum obtained with the spec-
trum of CuGeO3, the optical properties of which were
thoroughly studied in [6, 7]. The spectra under investiga-
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tion are quite similar to each other. First of all, this con-
cerns the location and shape of the fundamental absorp-
tion edge and the presence of a broad band in the low-
energy region of the spectrum. However, there are
essential differences. A broad structureless absorption
band at ~1.75 eV is observed for CuGeO3 at room tem-
perature. It is split into three bands upon cooling. The
low-energy component of the maximum observed in
the long-wavelength spectral region of CuB2O4 coin-
cides in location with the absorption band of CuGeO3,
but its amplitude is halved. This band was associated
with transitions between the Cu2+ d levels in distorted
CuO6 octahedra [7]. The second, more intense maxi-
mum in the absorption spectrum of CuB2O4 has no ana-
logue in the spectrum of CuGeO3. This maximum is
most likely caused by electron transitions in Cu2+ ions
located in oxygen squares.

It is well known that bivalent copper ions have a 3d9

electron configuration, which is characterized by only
one term, namely, 2D. In the cubic field, this term is
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Optical absorption spectra of CuB2O4 at room temperature
for samples cut perpendicularly to the (1) a and (2) c axes.
P

split into two terms 2T2 and 2E, which represent the
lower levels in the tetrahedral and octahedral fields,
respectively. The degeneracy of these states can be
removed in a lower symmetry field. Thus, the peaks
observed in the spectra of CuB2O4 can be associated with
the transitions 2Eg  2T2g (1.75 eV) and 2T2  2E
(2.3 eV). Both transitions are allowed. Therefore, their
intensity should not, in principle, depend on the distor-
tion of crystallographic sites of the Cu2+ ion, as is the
case in forbidden transitions. The difference in the
intensities of the 2Eg  2T2g bands in CuGeO3 and
CuB2O4 is most likely due to the difference in their
band structures. The spectral anisotropy revealed in
unpolarized light cannot be explained without regard
for the band structure. The bands associated with pure
single-ion transitions should not exhibit such anisot-
ropy. The band structure of CuB2O4 was not calculated.
We expect that the first data on the optical spectra of
copper metaborate, which are presented here, will stim-
ulate calculations of the band structure of this com-
pound.
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Abstract—A quasi-one-dimensional single crystal of [Nd2(Cl3COO)6(H2O)3]n · nH2O in which chains are built
up of two alternating neodymium-ion dimer fragments is studied by the EPR technique. It is found that aniso-
tropic interactions between neodymium ions in a chain are responsible for the complex shape of the EPR spec-
trum. Two groups of EPR signals are distinguished in the spectrum. Each group corresponds to one of the chain
dimers disturbed by the interaction with neighbors in the chain. The shape of the EPR spectra is interpreted as
a superposition of the spectra of chain fragments which have different lengths and are formed by the alternating
magnetic triplet and nonmagnetic singlet states in the chain. Consideration is given to two cases when two alter-
nating dimer fragments are either equivalent or nonequivalent to each other. It is shown that the spectral shape
is primarily determined by the superposition of the spectra of an isolated triplet state (S = 1), two interacting
triplet states, and three interacting triplet states whose weighting contributions differ for the above two cases.
The tensors of the anisotropic spin–spin interaction are determined, and the contribution from the isotropic
component of the interaction is estimated. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One-dimensional magnetic systems have attracted
considerable attention as model objects for the devel-
opment of theoretical concepts concerning exchange
interactions [1, 2]. In the last decade, particular interest
has been expressed by researchers in chains with alternat-
ing interactions. In the present work, we investigated the
properties of the chains with a strong anisotropy of spin–
spin interaction. For this purpose, we chose neodymium
ions which exhibit both an anisotropy of local properties
and anisotropic interactions. It is for these neodymium
ions that the splitting of the EPR line due to the dipole–
dipole interaction between the nearest neighbors in a con-
centrated crystal was observed by Bleaney et al. [3]. Using
the [Nd2(Cl3COO)6(H2O)3]n · nH2O compound as an
example, in this work, we studied the specific features
of the EPR spectra of chains built up of nonequivalent
fragments. The anisotropy of spin–spin interactions
between neodymium ions and the chain structure of a
crystal predetermined the main aspects of our investi-
gation: the character of the anisotropic interaction
between neodymium ions and its manifestation in the
EPR spectra. It should be noted that the observed EPR
spectra have a complex shape. It was necessary to pro-
pose a model that would describe the observed spectra
and could explain the characteristic features of the
given system.
1063-7834/01/4302- $21.00 © 20311
2. STRUCTURAL DATA

According to our data, the unit cell parameters of
the [Nd2(Cl3COO)6(H2O)3]n · nH2O crystal are as fol-
lows: a = 11.66 Å, b = 12.92 Å, c = 15.46 Å, α = 71.2°,
β = 78.1°, and γ = 65.2°. These parameters coincide
(within 0.2 Å) with those for the [Er2(Cl3COO)6(H2O)3]n ·
nH2O crystal, which indicates that these crystals are isos-
tructural. Crystals of [Er2(Cl3COO)6(H2O)3]n · nH2O
[4, 5] and neodymium crystals are built up of polymer
chains running parallel to the [011] axis. Pairs of rare-
earth ions linked through either four carboxyl groups or
two carboxyl groups and one oxygen atom of a water
molecule alternate in the chain. The environment of the
rare-earth ions and bridging ligands is schematically
represented in Fig. 3 in [4]. The chains are arranged in
layers aligned parallel to the (100) plane. 

The complexes of four neodymium ions form a repet-
itive chain fragment. Hereafter, the pairs of equivalent
rare-earth ion fragments linked by four carboxyl groups
will be referred to as dimers. In this terminology, the
chains are composed of two alternating structurally non-
equivalent dimers Nd1–Nd1 and Nd2–Nd2. All rare-earth
ions (specifically, neodymium ions) have an eightfold
coordination in the form of a square antiprism [4, 5].

The Nd1–Nd1, Nd1–Nd2, and Nd2–Nd2 distances are
equal to 4.430, 4.823, and 4.267 Å, respectively. It is seen
that the distance between dimer fragments is larger than
the distances between ions inside the dimers.
001 MAIK “Nauka/Interperiodica”
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Fig. 1. EPR spectra of the [Nd2(Cl3COO)6(H2O)3]n · nH2O
crystal at T = 4.2 K for several orientations of the magnetic
field in the ac plane. Arrows show the “forbidden” transi-
tions.
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Fig. 2. Angular dependences of the resonant fields of the
experimental EPR lines (points) for magnetic field orienta-
tions in the ZX plane. ϑ  is the angle between the directions
of the magnetic field and the Z axis. Solid lines represent the
calculated angular dependences of the resonant fields for
two nonequivalent dimers without regard for the anisotropy
of intradimeric interaction (thin lines) and for one of the
dimers with inclusion of the interaction anisotropy (thick
lines).
3. RESULTS

The EPR spectra of the [Nd2(Cl3COO)6(H2O)3]n ·
nH2O crystal were studied in the X band in the temper-
ature range 4.2–30 K. At T > 20 K, the EPR spectra are
broadened and the fine structure of the spectra becomes
less resolved. The angular dependence of the spectra was
investigated in three mutually perpendicular planes. The
crystals grew with a well-defined ac plane. For this reason,
the angular dependence was examined first in this plane
and then in the other two orthogonal planes.

The EPR spectra contain a large number of lines
whose location depends on the orientation of a single
crystal in the magnetic field. The characteristic spectra
are displayed in Figs. 1a–1c. Note that the spectra
shown in Figs. 1b and 1c correspond to the orientations
differing by only 5°. The angular dependences of the
resonant fields of the experimental EPR lines in the ac
plane designated as ZX are depicted in Fig. 2.

Analysis of the angular dependences of the resonant
fields demonstrates that the tendency of their variation
is primarily due to the anisotropy of the g values for
neodymium ions. Figure 2 shows the angular depen-
dences of the resonant fields for two nonequivalent
dimers (thin lines), which are determined only by the
angular dependences of two {g} tensors whose princi-
pal values and orientations are given in Table 1. As can
be seen, the calculated angular dependences of the res-
onant fields satisfactorily reflect the tendency of varia-
tion in the center of gyration of two groups of lines in
the spectra. The case in point is the tendency of varia-
tion in the center of gyration of particular groups of
lines. Consequently, the accuracy in the determination
of the {g} tensors is not very high. However, the
revealed separation of the spectrum into two groups of
lines made it possible to analyze these spectra in more
detail. It should be remarked that the low-field lines
shown by smaller-sized circles in Fig. 2 (in the range
B ~ 100 mT) had a noticeably lower intensity and were
ignored at this stage. The high-field EPR lines in the ab
plane will be discussed below. Now, we only note that
each group of lines in this range is split into two sub-
groups, one of which is considerably shifted toward the
high-field range.

It is evident that the observed spectral structure is
determined by the interactions between neodymium
ions in the chain. The splittings due to the spin–spin
interaction are observed virtually for all orientations of
the magnetic field with respect to the crystallographic
axes of the crystal. The magnitudes of splittings associ-
ated with the anisotropic component of the interaction
do not exceed the Zeeman interaction energy.

Analysis of the angular dependence demonstrates
that the spectra for the majority of orientations can be
represented as a superposition of the spectra of two
nonequivalent dimers disturbed by the interaction with
their neighbors in the chain.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
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4. DISCUSSION

The ground term (4f 3)4I9/2 of a trivalent neodymium
ion in a low-symmetry field is split into five Kramers
doublets. At high temperatures, when all the doublets
are occupied, fast relaxation times are characteristic of
the systems containing neodymium ions. At low tem-
peratures, when only one (the lowest-lying) out of five
doublets is occupied, the electron paramagnetic reso-
nance occurs as the result of transitions between the
levels of this doublet [6, 7]. Hence, the effective spin
S ' = 1/2 is introduced for the description of the reso-
nance at single neodymium centers. The splitting of the
doublet in a magnetic field is described by the effective
g tensor whose degree of anisotropy is completely gov-
erned by the anisotropy of the ground state. Since there
are two nonequivalent centers, two tensors {g1} and
{g2} are used for the representation of the interactions
between neodymium ions and the magnetic field. In
order to describe the Nd1–Nd1, Nd1–Nd2, and Nd2–Nd2
interionic interactions in a chain fragment containing
four ions, it is necessary to introduce the three tensors
of spin–spin interaction {K11}, {K12}, and {K22},
respectively. The Hamiltonian for describing these
interactions in an infinite chain can be written as fol-
lows:

(1)

Here, the first two terms represent the Zeeman interac-
tion and the next three terms describe the spin–spin
interactions. The three tensors of the spin–spin interac-
tion {Ki, i + 1}, {Ki + 1, i + 2}, and {K i + 2, i + 3} sequentially
characterize three interactions {K11}, {K12}, and {K22}
along the chain. The components of these tensors are
equal to the sums of contributions from the exchange
{Kex} and dipole–dipole {Kd–d} interactions (for exam-

ple, {Ki, i + 1} =  + ). Moreover, in this
form, the interaction tensors include the isotropic Kiso =
1/2(Kxx + Kyy + Kzz) and anisotropic (the {K '} tensors
with zero spur) components of interaction. In the strict
sense, the two tensors that describe the interactions
between equivalent centers (intradimeric interactions) are
symmetric and the tensor that represents the interaction
between nonequivalent centers (interdimeric interaction)
is nonsymmetric. However, since the latter tensor
accounts for the weakest interactions, its nonsymmetric
form is neglected.

Hamiltonian (1) describes only the interactions
between the nearest neighbors. As a rule, the shape of the
spectra of concentrated systems, including one-dimen-
sional systems, is analyzed taking into account only the
anisotropy of dipole–dipole interaction [6–8]; in this
case, the exchange interaction is assumed to be purely
isotropic and is accounted for in a separate way. The

H gi{ } µBB Si Si 1++( )(∑=

+ gi 2+{ } µBB Si 2+ Si 3++( ) Si Ki i 1+,{ } Si 1++

+ Si 1+ Ki 1+ i 2+,{ } Si 2+ S+ i 2+ Ki 2+ i 3+,{ } Si 3+ ).

Ki i 1+,
ex{ } Ki i 1+,

d–d{ }
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isotropic exchange interaction in chains can result in
the averaging of a hyperfine or fine structure of interact-
ing centers when the interaction energy exceeds the
corresponding splittings. In the case of the interaction
between nonequivalent centers, the isotropic exchange
whose energy is higher than the difference in the Zee-
man energies averages the EPR lines of nonequivalent
centers. Making allowance for the dipole–dipole inter-
actions leads to a change in the width and the shape of
the line of an individual center and, in the general case,
to a broadening of the spectrum. The exception is pro-
vided by interactions of the Ising type when only the z
components of spins SizSi + 1, z participate in the
interaction. The exact solution of Hamiltonian (1), in
this case, gives a set of frequencies that describe dis-
crete transitions for an infinite chain. For this type of
interaction between centers, it can be expected that the
spectrum will consist of several signals [9], as is
observed in experiments. Since the local properties of
neodymium ions are strongly anisotropic, this assump-
tions is quite reasonable but should be proved. We can
exactly calculate (and will calculate below) only the
dipolar contribution to the parameters of the spin–spin
interaction. Therefore, we considered the possibility of
simulating the spectrum with a shape similar to that
observed in the experiment for the anisotropy of inter-
action in the general form. The functions of dimer frag-
ments are chosen as the basis functions. The functions
of dimer fragments, in which spins with S = 1/2 are cou-

Ki i 1+,
zz

Table 1.  Principal values and directions of the {g1}, {g2},

and { } tensors

Principal value
Principal direction

X Y Z

gx1 0.55 ± 0.05 0.682 –0.335 0.650

gy1 1.35 ± 0.05 0.259 0.941 0.254

gz1 3.75 ± 0.05 –0.698 –0.035 0.715

gx2 0.70 ± 0.05 0.968 0.231 0.093

gy2 1.40 ± 0.05 –0.235 0.972 –0.032

gz2 3.40 ± 0.05 –0.082 –0.053 0.995

(+)0.08 cm–1 –0.620 0.225 0.747

(+)0.03 cm–1 –0.342 –0.939 0.03

(–)0.11 cm–1 0.706 –0.257 0.660

0.042 cm–1 0.654 –0.366 0.661

0.048 cm–1 0.237 0.919 0.313

–0.090 cm–1 –0.731 –0.078 0.678

K11'

Kxx'

Kyy'

Kzz'

Kxx
'd–d

Kyy
'd–d

Kzz
'd–d
1
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pled through the exchange interaction, are split into the
singlet S and the triplet T; that is,

where |m1, m2〉  is the product of the projections of the
spin states of two interacting ions in the dimer.

The splitting between the singlet and the triplet is
determined by the isotropic component of the interac-
tion, and its anisotropic component results in the triplet
splitting. The EPR spectra of dimers are associated
with the transitions between the triplet states, because
the transitions between the singlet and triplet states in
the general case are forbidden [7, 10]. Now, we sepa-
rately consider two cases: a chain composed of non-
equivalent dimer fragments and a chain consisting of
identical fragments. In the latter case, the system can be
described using only one {g} tensor and two tensors of
spin–spin interaction (inside the dimers and between

S 1/2 1/2–,| 〉 1/2 1/2,–| 〉–( )/ 2,=

T+ 1/2 1/2,| 〉 , T– 1/2– 1/2–,| 〉 ,= =

T0 1/2 1/2–,| 〉 1/2 1/2,–| 〉+( )/ 2,=

(‡)

(b)

50
B, mT

100 150 200 250 300

Fig. 3. Model spectra of fragments containing three inter-
acting dimers (solid lines) and a closed fragment consist-
ing of four dimers (dashed lines) for g1 = 3.2 and g2 = 1.5:
(a) K11, zz = K22, zz = 0.120, K11, xx = K11, yy = K22, xx =
K22, yy = 0.015, K12, zz = 0.03, and K12, xx = K12, yy =

−0.015 cm–1 and (b) K11, zz = K22, zz = 0.220, K11, xx =
K11, yy = K22, xx = K22, yy = 0.115, K12, zz = 0.03 and K12, xx =

K12, yy = –0.015 cm–1.
P

the dimers). This situation is close to that observed in
the studied system in the ac plane at the angle θ ~ 20°
(Fig. 2). The spectral shape for this orientation allows
us to assume that the {g} tensors for two dimers, as well
as the interaction in these dimers, are close to each
other. We dwell on analysis of this system in order to
demonstrate certain regularities in the EPR spectra. The
experimental spectrum for this orientation is displayed
in Fig. 1a.

4.1. EPR spectra of a chain consisting of non-
equivalent dimers. We analyzed the spectra of chain
fragments containing N spins (N = 2, 4, 6, 8, and 10)
and the possibility of extrapolating the obtained results
to infinite chains. In the case of nonequivalent dimers,
we simulate the spectra for orientations at which the
difference between the Zeeman energies is larger than
the interaction energy. As can be seen from the angular
dependence of the EPR spectra, the last situation is
realized for the majority of orientations of the studied
crystal.

Under this approximation, the simulated spectrum
involves two parts. In particular, for a fragment consist-
ing of three dimers in which the central dimer with g1
interacts with two nearest neighbors with g2, we have

Similarly, the dimer with g2 interacts with the two near-
est dimers with g1.

First, let us consider a simpler case when the chain
is built up of alternating nonequivalent dimers with spin
S = 1/2 and the energy of interaction between them is
less than the difference between the Zeeman energies.
It is known that, in this case, the effect of nondiagonal
terms of the interaction on the energy spectrum mani-
fests itself in the second order of the perturbation the-
ory and is inversely proportional to the difference
between the Zeeman energies of the neighboring cen-
ters. Consequently, as a first approximation, it is suffi-
cient to include only the diagonal terms (the flip–flop
processes are inefficient). This situation is similar to the
interaction in the Ising model: the signal of each non-
equivalent center is split into three components due to
the interaction with two nearest neighbors [9]. In the
studied crystal, the dimer fragments are treated as non-
equivalent fragments. As follows from the model spec-
tra depicted in Figs. 3a and 3b, only for the chain in
which the energy of interaction between the dimers is
considerably less than that of the intradimeric singlet–
triplet splitting, an increase in the number of fragments
virtually does not affect the spectral shape (otherwise,
the chain should be analyzed with due regard for the
alternation of equivalent and nonequivalent fragments).
The closed chains (the last spin interacts with the first
spin) simulate the situation close to that observed for an

Nd2 Nd2 Nd1 Nd1 Nd2 Nd2

K22 K12 K11 K12 K22

g2 g1 g2
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infinite chain when each dimer a is surrounded by two
dimers b (where a and b are nonequivalent dimers). For
simplicity, the spectra were calculated under the
assumption that the directions of the principal axes of
the interaction tensors and the {g} tensor coincide and
the magnetic field is aligned along the z axis. The shape
of the model spectra is determined by the ratio between
the interaction parameters {K11}, {K22}, and {K12} and
reproduces substantial changes observed in the shape
of experimental spectra. As mentioned above, the spec-
tra were calculated for the magnetic field oriented
along the z axis of the tensors. Hence, the parameters of
the interaction tensors were varied in calculations, even
though the observed dependences of the splitting were
obtained upon change in the orientation of the magnetic
field with respect to the principal axes of these tensors.

The spectra calculated within the six-spin approxi-
mation enable us to determine the parameters of the
interaction between equivalent centers (intradimeric
interactions) and to estimate the parameter of the inter-
action between nonequivalent centers (interdimeric
interaction) for each specific orientation with respect to
the direction of the magnetic field. Moreover, the inter-
action between dimers leads to the mixing of singlet–
triplet states, and the transitions between the triplet and
singlet states (which are forbidden in a dimer fragment)
become partly allowed when the interaction between
the dimers is taken into account. The energies of these
transitions depend on the isotropic contribution of the
intradimeric interaction. The experimental spectra con-
tain weak signals that correspond to these transitions,
and their location makes it possible to determine the
isotropic contribution:  ≅ | 0.12 ± 0.03| cm–1. These
results will be discussed below.

4.2. EPR spectra of a chain consisting of equiva-
lent dimers. The angular dependence of the spectra
demonstrates that the hyperfine structure in the spectra
is observed irrespective of the difference between the
Zeeman energies of the two dimers. Consequently, the
conditions that allow for the hyperfine structure of the
EPR spectrum are realized in the studied crystal even in
the case of equivalent dimer fragments in the chain.
First of all, we note that the discrete spectrum of an infi-
nite chain composed of identical fragments can be
observed for the Ising interaction (or interaction close
to the Ising type) between the fragments.

The {K12} tensor of interaction. Let us calculate the
dipole–dipole contribution to the {K12} tensor. The ten-
sor of the dipole–dipole interaction

(2)

K11
iso

H µ0µB
2 /4πr3( )SipS jq gipsg jqs 3str 2– gipsg jqs–{ }=
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(where each of the p, q, s, and t indices takes the values
X, Y, and Z [7]) is nonsymmetric in the case of interac-
tion between nonequivalent ions. The components of
the tensor defined by relationship (2) were calculated in
the X 'YZ ' coordinate system which was rotated with
respect to the XYZ coordinate system in such a way that
the Z3 axis was aligned along the radius vector r12 con-
necting the nonequivalent neodymium fragments. As
follows from the parameters listed in Table 2, the inter-
action along the Z ' axis is virtually one order of magni-
tude stronger than the interactions in the perpendicular
directions [for simplicity, we neglected the differences
between the principal values of the {g1} and {g2} ten-
sors (see Table 1)] and the tensor is substantially non-
symmetric. The antisymmetric component of interac-
tion results in the mixing of singlet–triplet states, the
splitting between which is larger than the energy of
interaction between the dimer fragments. Therefore, to
a first approximation, we can ignore the antisymmetric

interaction and retain only the  component in
analyzing the tensor of the dipole–dipole interaction
between the dimers.

The EPR spectra of chains under the assumption of
the Ising character S1{K12}S2 of the interaction are

depicted in Fig. 4. The spectra simulated at K12, zz = 
(see, for example, Fig. 4a) disagree with the experi-
mental spectrum for the given orientation (Fig. 1a). The
experimental parameter of interaction is less than the
dipole–dipole interaction parameter. This suggests the

presence of an exchange contribution { } to the
parameters of the spin–spin interaction {K12}. Figure
4b shows the EPR spectrum of a chain involving dimers
coupled by the Ising interaction with the parameters
that provide the best agreement with the experimental
spectrum. In this case, the K12, zz parameter is less than

the  parameter. The difference between the
shapes of the simulated and experimental spectra
argues for a non-Ising form of the interaction.

The EPR spectrum of a chain without constraint on
the anisotropy of the {K12} tensor. Recall that the inter-
action between the neodymium ions in a dimer frag-
ment results in the states with the total spins S = 0 and
S = 1. When the interactions inside the dimers are stron-
ger than the interaction between the dimers, the triplet
magnetic states and singlet nonmagnetic states of the
dimers can be chosen as the zeroth approximation.
Then, to a first approximation, the infinite chain can be
treated as a sequence of magnetic and nonmagnetic

K12 zz,
d–d

K12 zz,
d–d

K12
ex

K12 zz,
d–d
Table 2.  Components of the { } tensor (cm–1) for dipole–dipole interaction between dimers in the Z'X'Y coordinate system

–0.012 0.0 0.028 0.0 0.008 0.0 –0.028 0.0 –0.079

K12
d–d

Kxx
d–d Kxy

d–d Kxz
d–d Kyx

d–d Kyy
d–d Kyz

d–d Kzx
d–d Kzy

d–d Kzz
d–d
1
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states alternating with a certain probability, which gives
rise to fragments consisting of magnetic centers with
different lengths. The probability of population of the
triplet state T in the dimer is given by the relationship

P = X/(1 + X), (3)

where X = 3exp(– /kT). When the singlet and triplet
states in the chain alternate in a random way, the prob-
ability that the cluster is formed by n interacting triplets
can be written as [11]

Pn = Pn(1 – P)2, n = 1, 2, 3… .

The ratio between the intensities of the spectra of iso-
lated and interacting triplets is determined by the quan-
tity X.

In the studied temperature range, the interaction
energies are less than kT and the difference between the
level populations due to the Boltzmann distribution can
be neglected. Then, the ratio between the probabilities
that the fragment is formed from one (P1), two (P2), or
three (P3) triplet states is P1 : P2 : P3 = 3/4 : 9/16 : 27/64.
Now, we demonstrate that the spectra of these three
fragments make the main contribution to the spectrum
of the chain. The spectra calculated as the sum of the
contributions from isolated, two interacting, and three

K11
iso

100
B, mT

150 200 250 300

(‡)

(b)

Fig. 4. Model spectra of three equivalent dimer fragments
(g1, 2 = 3.2) whose interaction is described only by the
K12, zz component: (a) K12, zz = K22, zz = 0.08, K11, zz = 0.21,

and K11, xx = K11, yy = K22, xx = K22, yy = 0.12 cm–1 and (b)
K12, zz = 0.052, K11, zz = K22, zz = 0.194, and K11, xx =

K11, yy = K22, xx = K22, yy = 0.128 cm–1.
P

interacting triplets (Fig. 5d), as a whole, reproduce the
shape of the spectrum for the orientation when the
dimers can be considered equivalent (Fig. 1a).

A further increase in the length of the fragment
results in a further decrease in the probability of its for-
mation. Although the intensity shows no sharp decrease
when changing over to four and five interacting triplets
(Fig. 6a), the shape of the spectra calculated as the sum
of contributions does not change considerably upon
addition of contributions from four and five interacting
triplets (Fig. 6b).

Therefore, the shape of the spectrum of a chain built
up of dimers is predominantly determined by a super-
position of the spectra of isolated, two interacting, and
three interacting triplet states. For the equivalent
dimers, the weighting contributions from these spectra
correspond to the probabilities of the formation of the
appropriate fragments in an infinite chain. In the case
when the dimers are strongly nonequivalent, it is suffi-
cient to take into account the interaction with the two
nearest dimers, and, correspondingly, the probabilities
of the isolated and interacting triplet states will differ
from those in an infinite chain.

Note that the spectra calculated within the proposed
model reproduce the experimental spectra for the orien-

(‡)

(b)

(c)

(d)

0
B, mT

50 100 150

Fig. 5. Calculated spectra of (a) an isolated triplet, (b) two
interacting equivalent triplets, and (c) three interacting
equivalent triplets. (d) The sum of these spectra with the
weighting contributions P1 : P2 : P3 = 16 : 12 : 9. Triplet

splitting D = 0.04 cm–1. The parameters of the interaction
between triplets are K12, zz = 0.008 cm–1 and K12, xx = K12, yy =

–0.004 cm–1. Line width is δB = 8 mT.
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tation at which the parameters of the anisotropic inter-
action and the g tensors coincide (Figs. 1a, 5d). The
experimental and calculated spectra are in agreement
when the spurs of the {K11} and {K22} tensors are non-
zero and the anisotropy of the parameters is comparable
in magnitude to the anisotropy of the interdimeric inter-
action. To a first approximation, the spectra are deter-
mined only by the interaction between the triplet states.
However, as was noted above, the interaction between
dimers leads to the mixing of the singlet–triplet states.
This gives rise to partially forbidden signals which are
not observed in the model spectra in Fig. 5. For the res-
onant fields of the “forbidden transitions,” the relation-
ships that are obtained with due regard only for the
interaction K12, zzS1zS2z between three dimers coincide
with the corresponding expressions for the isolated
dimer. For example,

(4)

where hν is the energy of the radio-frequency quantum.
From relationship (4), we determined the isotropic
component of the interaction

Anisotropy of the intradimeric interaction. The
parameters of the anisotropic intradimeric interaction
were calculated from the angular dependence of the
resonant fields without regard (at this stage) for the
splitting due to the interaction between dimers. Within
this assumption, the observed angular dependence of
the EPR spectra is interpreted as a superposition of the
angular dependences of the spectra for two dimers.

Figure 2 displays the angular dependence of the res-
onant fields for one of the two dimers, which was cal-
culated with due regard for the anisotropy of interac-
tion. The principal values of the anisotropic interaction
tensor with a nonzero spur (  = Kii – (1/3)ΣKii) and
the direction cosines of this tensor are presented in
Table 1. The parameters of the anisotropic interaction
were determined to within a sign from analysis of the
angular dependence. The parenthetic signs (see Table 1)
obtained from analysis of the dipolar and exchange
contributions are hypothetical. The calculated angular
dependence of the resonant fields for a dimer with
intradimeric interaction described by the {K11} tensor
adequately reproduces the experimentally observed
tendency of variation in the resonant fields near {g1}.
For certain orientations, the lines are split as a result of
the interactions between dimers in the chain. It is worth
noting that the high-field part of the spectrum in the XZ
plane at angles of 130°–150° is clearly separated into
two groups of lines (the overall spectrum for this orien-
tation contains three groups of lines), which is charac-
teristic of the fine structure of the dimer fragment. Note
that one group of signals is substantially shifted toward
the high-field range beyond the fields permissible in our
experiment (900 mT). We will restrict our consider-

B hν K11
iso– 1/2 K11 zz, K11 xx,–( )–( )/µBg11,=

K11
iso 0.12 0.03±  cm 1– .≅

Kii'
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ation to a quantitative description of the interaction for
only one dimer fragment, because both dimer frag-
ments are characterized by close parameters of the
anisotropic interaction (the differences between these
parameters are of the order of the accuracy in their
determination).

It is seen from Table 1 that the maximum splitting
caused by the {K11} interaction is observed near the
minimum value of the {g} tensor. As already noted, the
tensor of the spin–spin interaction is the sum of contri-
butions from the {Kd–d} dipole–dipole and {Kex}
exchange interactions. Analysis of the orientations of
two {g} tensors and the directions of bonds in two
structurally nonequivalent polyhedra suggests that the
spectral part under consideration can be associated with
the dimer fragment in which Nd–Nd distance is equal
to 4.439 Å. In this case, the radius vector directions of
two dimer fragments (Nd1–Nd1 and Nd2–Nd2) correlate
with the directions of the z axes of two {g} tensors. The
radius vector of the dimer fragment under investigation
(referred to as the first dimer) forms an angle of 11°
with the gz direction and lies virtually in the ZX plane
(the radius vector of the other dimer fragment makes an
angle of 8° with the corresponding gz direction). These
results are consistent with the data for the crystal field
of a distorted square antiprism [12]. In the principal

(‡)

(b)

0
B, mT

50 100 150

Fig. 6. (a) Model spectra of three (dotted line), four (dashed
line), and five (solid line) interacting triplets and (b) the
overall spectra calculated taking into account the contribu-
tions from three (dotted line), four (dashed line), and five
(solid line) interacting triplets. The parameters of the inter-
action are the same as in Fig. 5.
1
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axes of the {g} tensor, the tensor of the dipole–dipole
interaction can be represented with an accuracy of
0.001 cm–1 in the form

The principal values and directions of the principal
axes (with respect to the XYZ coordinate system) of the
tensor of the dipole–dipole intradimeric interaction are
given in Table 1.

By changing over to the tensor with zero spur, we
calculated the dipolar contribution to the anisotropic
component of the spin–spin interaction {K '}. The
directions of principal axes of the {Kd–d} tensor are
close to those of the {g} tensor. The splitting observed
near the z orientation of the {g} tensor coincides in
order of magnitude with the splitting expected for the
dipole–dipole interaction. However, the splitting in the
high-field range exceeds the value expected for this
interaction, which suggests the presence of an exchange
contribution to the anisotropic interaction. Earlier,
Baker et al. [13, 14] proposed a simple model for the
interrelation between the parameters of the anisotropic
exchange interaction on effective spins and the effec-
tive g values under the assumption that the exchange on
actual spins is isotropic; i.e., JS1 · S2. In this case, the
parameters of the anisotropic exchange on the effective
spins are proportional to gigj and, after changing over to
the tensor with zero spur, the diagonal terms are pro-

portional to  – 1/3Σ .

For a dimer formed by equivalent neodymium ions,
the proportionality coefficients that characterize the
exchange contribution to  and  are as follows:

 ~ (  – 1/3Σ ) = –5.2 and  ~ (  – 1/3Σ ) =

8.9, respectively. Since the parameters  =  +

 and  =  +  are virtually equal in
magnitude (Table 1), it is reasonable to assume that the
contributions from the exchange and dipole–dipole
interactions are opposite in sign. This reasoning leads
to the signs of the total anisotropic interaction that are
given in the table and correspond to the antiferromag-
netic isotropic interaction on actual spins. It should be
noted that Kiso was estimated at ~ 0.12 cm–1 by analyz-
ing the spectral shape. The same result follows from the
treatment of the exchange interaction on the effective
spins with the use of the g values: the magnitudes of

(1/3)Σ  and  – (1/3)Σ  are virtually identical due
to the smallness of gxx. However, it should be remarked
that the spur of the dipole–dipole interaction tensor is
also nonzero in the case of strongly anisotropic g val-
ues.
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5. CONCLUSION

The above investigation demonstrated that the
observed spectral features can be explained as follows.

(1) The parameters of interaction ({K11}, {K22}, and
{K12}) differ along the chain, and the chain properties,
to a first approximation, are governed by the dimer
fragments. At each specific instant, the dimer is either
in the singlet state S or in the triplet state T, and the
chain can be treated as a sequence of these states arising
in a random way. The T–T triplet–triplet and S–T sin-
glet–triplet interactions give rise to substantially differ-
ent features in the EPR spectrum. The former interac-
tions are responsible for additional splittings in the
spectrum as compared to the spectrum of an isolated
triplet, and the latter interactions lead to the appearance
of additional weaker signals. These signals correspond
to the forbidden transitions in a noninteracting dimer.
The interactions between dimers partially remove this
forbiddenness. The degree of forbiddenness depends
on the ratio between the parameters of interactions
inside and between the dimers. The observation of
these additional, partially forbidden signals made it
possible to determine the isotropic component Kiso ~
0.12 cm–1.

(2) The substantial anisotropy is characteristic not
only of the interaction inside the dimer fragments but
also of the interaction between the dimers.

Analysis of the shape of the model spectra allowed
us to make certain inferences concerning the ratio
between the parameters of interactions at which the
anisotropic interaction can give rise to splittings in the
spectra of chains. It is important that both interdimeric
and intradimeric interactions have dipolar and
exchange components.
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Abstract—The temperature dependences and critical behavior of the dielectric constant were studied in
NaV2O5 along the c axis in a frequency range of 1 MHz–1GHz and a temperature range of 4.2–300 K. An anal-
ysis of the data obtained, along with literature data on the heat capacity, magnetic losses, and the ultrasound
velocity, indicates that the various physical quantities demonstrate similar temperature dependences in the
vicinity of the transition, which corroborates the conclusion on the universality of the critical behavior in
NaV2O5. Deviations from the predictions of the standard theory of second-order phase transitions were found,
such as the asymmetry of the critical behavior above and below the transition and the presence of an anomalous
base line. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

After the discovery of the first inorganic spin-Peierls
compound CuGeO3, great attention was attracted to
another low-dimensional metal oxide compound,
NaV2O5. Based on EPR and magnetic susceptibility
data, it was first supposed that a spin-Peierls transition
occurs in NaV2O5 at a temperature Tc ~ 35 K [1, 2].
However, later experiments demonstrated substantial
deviations from the spin-Peierls behavior (see, e.g.,
[3]). Moreover, detailed structural studies [4] showed
that all the vanadium atoms are equivalent above the
transition temperature and have an average charge
+4.5. Therefore, the very existence of chains of spins
S = 1/2 that correspond to V4+ ions that are necessarily
required for the development of spin-Peierls instability
[5], as well as interpretation of the low-temperature
magnetic transition [1, 2], was doubted. In [6], a model
was suggested according to which NaV2O5 should be
considered not as a pure spin-Peierls material, but
rather as a spin ladder with the filling of 1/4, in which
the chains of spins S = 1/2 can arise as a result of the
localization of electrons at the sites and at the legs of
the ladder.

In any case, the magnetic anomaly that is observed
in the system such as a spin ladder at T = Tc suggests
that, along with spin ordering, a substantial role can be
played by processes of charge ordering; therefore,
investigation of the dielectric properties of NaV2O5 can
prove very important for the understanding of the ori-
gin of the transition in this compound. Measurements
of the temperature dependence of the dielectric con-
stant ε(T) in a frequency range of 0.1–100 kHz showed
the presence of a strong anisotropy and a λ-type anom-
1063-7834/01/4302- $21.00 © 20320
aly along the c axis [7]. Analogous critical behavior
was revealed for the heat capacity c(T) [3, 8], ultra-
sound velocity V(T) [9], thermal expansion coefficient
α(T) [8], and magnetic losses χ''(T) in the microwave
range [2]. However, a quantitative analysis of the criti-
cal behavior of NaV2O5 has not been yet performed and
no information on its critical exponents has been pub-
lished.

This paper has two aims. First, if charge ordering in
NaV2O5 does occur, the physical picture of the transi-
tion can prove to be similar to phase transformations in
ferroelectric materials; thus, it is desirable to obtain
information on the behavior of the dielectric constant
ε(T) in a maximally wide frequency range. For exam-
ple, one can expect the appearance of dispersion of the
dielectric constant at higher frequencies as compared to
those used in [7].

Another task consisted in a quantitative analysis of
the available data on the critical behavior of various
physical quantities in the vicinity of the critical temper-
ature Tc and in a comparison of the observed λ-type
anomalies in NaV2O5 with theoretical predictions for
second-order phase transitions.

EXPERIMENTAL

In order to investigate the temperature dependence
of the dielectric constant ε(T), we chose high-quality
crystals of NaV2O5 of a characteristic size of 0.8 × 7 ×
0.15 mm; the electric field was oriented along the c
axis. The measurements were performed in a frequency
range ω/2π = 1 MHz–1 GHz using a specially designed
experimental setup based on an HP4191A Hewlett
Packard impedance analyzer [10] that permitted us to
001 MAIK “Nauka/Interperiodica”
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gradually regulate and stabilize the sample temperature
in a range of 4.2–300 K. The active part R of the imped-
ance of the NaV2O5 sample, Z = R – iX, at low temper-
atures proved to be much greater than the reactive one
(R @ X) and substantially higher than the sensitivity of
the measuring device (~105 Ω) (the dc resistance of the
sample was ~107 Ω). Thus, we were able to measure the
quantity X = (ωC)–1, from which, using the standard
formula for a plane capacitor, we calculated the dielec-
tric constant ε(T). The absolute error of measuring ε
was mainly determined by the accuracy of the measure-
ments of the geometrical dimensions of the capacitor;
in our case, it did not exceed 20%. At the same time, the
relative accuracy of measurements was much better
(was about 10–4).

RESULTS AND DISCUSSION

A typical curve of the temperature dependence of
the dielectric constant ε(T) measured along the c axis at
a frequency ω/2π = 150 MHz is shown in Fig. 1. A
decrease in the temperature from ~300 to 150 K leads
to an increase in ε by about 2.4%. At temperatures of
T < 150 K, the ε(T) curve first saturates and then, at Tc =
33.2 K, demonstrates a clear anomaly of the λ type with
an amplitude of the jump of about 0.5%. The successive
cycles of cooling and heating in the vicinity of Tc show
no noticeable hysteresis, which agrees with the fact that
the magnetic transition in NaV2O5 is a second-order
phase transition.

The virtually temperature-independent base line on
which the λ anomaly is observed (Fig. 1) makes it pos-
sible to accurately perform a quantitative analysis of
the critical behavior (see the next section). Note that a
similar feature in ε(T) that was recorded in [7] was
observed against a strong temperature dependence,
which appeared to be due to the incorrect allowance for
the parasitic contribution of the connecting cables.

It is of interest that, in the entire frequency range
investigated (1 MHz–1 GHz), no noticeable dispersion
of the dielectric constant ε(ω, T = const) was revealed
and the condition ε(ω, T = const) ≈ const was fulfilled
at all temperatures studied. This suggests that, in the
given frequency range, the condition ωτ ! 1 is satisfied
for the characteristic time τ of the relaxation processes
and, therefore, the magnitude of τ in NaV2O5 should be
substantially less than 1.6 × 10–11 s.

Before proceeding with the analysis of the critical
behavior in NaV2O5 in the vicinity of Tc, we briefly
summarize the main theoretical predictions for the sec-
ond-order phase transitions [11–14].

Let us represent the temperature dependence of a
physical quantity y(T) in the vicinity of the transition as
the sum of two contributions:

(1)
y T( ) A1 B1 f 1 T Tc–( ), for T Tc,>+=

y T( ) A2 B2 f 2 T Tc–( ), for T  < Tc,+=
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where f1, 2(x  0) = ∞ and the indices 1 and 2 refer to
the parameters above and below the second-order tran-
sition, respectively. In a widely applied approximation,
the divergent part f1, 2(T – ) can be written in the
form [13]

(2)

In this case, the scaling theory [13] requires that the
critical exponents above and below the transition tem-
perature be equal; i.e., p1 = p2 = p.

Since there is an anomaly of the dielectric constant
in NaV2O5, it is natural to consider the transitions in
ferroelectrics as the starting physical model. This class
of phase transitions was studied in detail and is
described well by the Landau theory [11]. The dielec-
tric constant (without allowance for fluctuations) fol-
lows the Curie law and, for the case where y ≡ ε, the fol-
lowing relations between the parameters in Eqs. (1) and
(2) are valid: A1 = A2 = 0, |B1| = 2|B2|, and p1 = p2 = 1 [11].
The heat capacity c(T) in the same approximation expe-
riences a finite jump and the following conditions should
be fulfilled: B1 = B2 ≡ 0 and A2 > A1 [11, 12]. The allow-
ance for fluctuations leads to the appearance of a diver-
gence in c(T) at the transition point with p1 = p2 = 0.5
[11].

Figures 2a and 2b display the temperature depen-
dences of the dielectric constant and of the diverging
part of the heat capacity δc(T) borrowed from [3]. It is
seen that both the ε(T) and δc(T) dependences in
NaV2O5 demonstrate substantial deviations from the
above-described “classical” behavior, even if we sup-
pose that the diverging part of ε(T) is superimposed by
a substantial temperature dependence, so that we have
A1, 2 ≠ 0 in Eq. (1). First of all, it proved to be impossi-
ble to approximate the experimental data for ε(T) and
δc(T ), as well as the critical behavior of χ''(T ) ([2],
Fig. 2c) and the anomalous part of the velocity of ultra-
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Fig. 1. Temperature dependence of the dielectric constant of
NaV2O5 along the c axis at a frequency of 150 MHz.
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Fig. 2. Critical behavior of (a) the dielectric constant, (b) the anomalous parts of the heat capacity [3], (c) magnetic losses χ''(T) at
a frequency of 36.2 GHz, and (d) the velocity of ultrasound [9]. Data points correspond to experimental data; solid lines, to loga-
rithmic approximations using Eq. (3); and arrows indicate the transition points listed in the table.
sound propagation ∆V/V(T) ([9], Fig. 2d) using rela-
tions (1) and (2). When analyzing the data using the
least-squares method according to the Levenberg–Mar-
quardt algorithm, a clear tendency p1, 2  0 is
observed, which is accompanied by a corresponding
growth of the parameters B1, 2. This indicates that the
physical characteristics of NaV2O5 should exhibit either
a logarithmic divergence or a finite jump at T = Tc.
Below, we will analyze both these possibilities quanti-
tatively.

In the case of a logarithmic divergency, the func-
tions f1, 2(T – Tc) coincide and have the form [14]

(3)

Note that for the ferroelectric materials, the changeover
from a power dependence (2) to a logarithmic depen-
dence (3) reflects the lowering of the dimensionality of
the fluctuations [11], which seems sufficiently natural
for low-dimensional systems such as NaV2O5.

Since the critical temperature is known, Eqs. (1)–(3)
contain two adjustable parameters above and below the
transition and the ranges T > Tc and T < Tc can be ana-
lyzed separately. The use of Eqs. (1)–(3) to approxi-
mate experimental data does not lead to the appearance
of the above-noted problems with the divergence of the
numerical procedure. As follows from Fig. 2, in which

f 1 2, T Tc–( ) T Tc–
Tc

--------------- .ln=
PH
solid lines correspond to the results of numerical calcu-
lations using Eqs. (1)–(3), the use of the logarithmic
law (3) leads to a good enough agreement with the
experiment for all investigated physical quantities.

Nevertheless, in the case of logarithmic divergence
as well, the relations between the parameters in Eq. (1)
differ markedly from those expected in the standard
theory [11–14]. For a second-order phase transition, the
condition |B1 | = |B2 | should be fulfilled [14], whereas
the analysis of the experimental data gives |B2 | ≈ 2|B1 |,
|B2 | ≈ 3|B1 |, and |B2 | ≈ 1.4|B1 |in the case of the heat
capacity, dielectric constant, and magnetic losses,
respectively. The “best” coincidence is observed for
the velocity of ultrasound, although, even in this case,
|B2 | ≈ 1.2|B1 |. Such an asymmetry of the λ point upon
phase transition (|B2 | > |B1 |) is accompanied by the ful-
fillment of the inequality |A1 | > |A2 | for ε(T), δc(T), and
χ''(T) (Figs. 2a–2c). It should be emphasized that, in the
Landau theory, the greater value of the heat capacity
always corresponds to the phase with a finite value of the
order parameter and the condition |A1| < |A2| should be ful-
filled for NaV2O5 [10–13].

Another unexpected aspect of our analysis is that all
physical quantities demonstrate universal critical
behavior described by logarithmic divergence (3). At
the same time, the existent theory of second-order
phase transitions predicts different critical behavior for
YSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
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Fig. 3. Analysis of the critical behavior of experimental data shown in Fig. 2 using the phenomenological relationship (4) (see the
main text). For designations, see Fig. 2.
various quantities, e.g., for heat capacity and the dielec-
tric constant [11, 13].

In view of the observed deviations from the standard
theory of second-order phase transitions, which gives a
“rigid” description of the structure of the critical
region, the question arises as to what extent this result
is stable toward the choice of a mathematical proce-
dure. Remember that the case of p  0 in the power
divergence (2) may correspond to not only a logarith-
mic behavior but also to a finite jump of a physical
quantity. In the case of a finite jump, we may choose the
functions f1, 2 in the following model form:

(4)

A phenomenological description of the experimental
data shown in Fig. 2 using formulas (1) and (4) is dis-
played in Fig. 3. In spite of the fact that the number of
free parameters in this case reaches four, the numerical
procedure of the approximation of the experimental
data was well convergent and the results of the calcula-
tions were independent of the initial values of the
parameters. The characteristic error of determining the
parameters A1, 2, B1, 2, and D1, 2 was ≈15%; the errors of
determining the critical exponents p1, 2 are given in the
table.

As follows from Fig. 3, the suggested procedure of
the approximation based on Eqs. (1) and (4) permits us

f 1 2, T Tc–( ) T Tc–
p1 2, D1 2,+( )

1–
.=
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to satisfactorily describe the shape of all experimental
curves demonstrating critical behavior. Note that the
relationships between the parameters A and B that were
found above (|A1 | > |A2 | and |B1 | < |B2 |) remain valid and
the universality of the form of the anomaly at the tran-
sition point is confirmed. The table contains the calcu-
lated values of the critical exponents occurring in for-
mula (4), along with the corresponding transition tem-
peratures. Although the values of Tc differ within 3 K
(this may be related to the susceptibility of the transi-
tion to the quality of crystals), below the transition, all
exponents prove to be approximately equal (p2 ≈ 1.1)
and are independent of the type of physical quantity
analyzed.

In the temperature range of T > Tc, the universality
is retained for ε(T), δc(T), and ∆V/V(T), for which the

Critical exponents for NaV2O5

Quantity Refs. p1(T > Tc) p2(T < Tc) Tc , K

ε This work 0.59 ± 0.04 1.14 ± 0.04 33.2

χ'' [2] 0.60 ± 0.02 1.09 ± 0.12 36.1

∆V/V [9] 0.69 ± 0.03 1.19 ± 0.04 34.8

δc [3] 1.84 ± 0.06 1.06 ± 0.09 33.6

[15] 1.59 ± 0.05 1.08 ± 0.06 33.5
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critical exponent is p1 = 0.6–0.7 (see table). At the same
time, the heat capacity is characterized by twofold–
threefold greater values p1 = 1.6–1.8, although even in
this case, the exponent p1 is not coincident with the cor-
responding value p2 for T < Tc. Thus, the comparison of
critical exponents corresponding to the regions above
and below the critical temperature upon the description
of the critical region using formulas (1) and (4) gives
additional grounds to believe that the usually accepted
symmetry of fluctuations is broken in NaV2O5.

CONCLUSION

Thus, we showed that the critical behavior of vari-
ous physical quantities, including the dielectric con-
stant measured along the c axis, demonstrates notice-
able deviations from the predictions of the standard the-
ory. The most significant of them are the asymmetry of
the critical region above and below the transition point;
the appearance of anomalous base lines, against the
background of which the features are observed; and the
virtually identical form of critical curves irrespective of
the physical quantity considered (this aspect is espe-
cially strongly pronounced at T < Tc). To date, it is not
completely clear whether or not the experimental data
for NaV2O5 can be interpreted in terms of an appropri-
ately modified Landau theory. We may suppose that the
true critical region for NaV2O5 is narrower and the fea-
tures observed are not related to fluctuations. More-
over, we cannot rule out that the smearing of features
near Tc may be related to structural defects of the
NaV2O5 crystals. Nevertheless, one of the results of this
paper is the occurrence of a finite jump in the dielectric
constant of NaV2O5 at T = Tc rather than the infinite
divergence (ε  ∞). Therefore, in order to decisively
answer the question of the nature of the anomalous crit-
ical behavior of NaV2O5, additional measurements of
the divergences of physical quantities are required
using a greater temperature resolution.
PH
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Abstract—The thermodynamics and kinetics of polarization switching in ferroelectrics are studied in the
framework of the field theory in the vicinity of the critical point of first-order phase transitions. The study is
exemplified by the switching of intrinsic ferroelectrics with 180° domains. An expression describing the depen-
dence of the domain critical size on the switching field is derived. The switching process is studied at high
switching fields. Relationships for calculating the field dependence of the number of switched domains are
obtained. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Earlier [1, 2], we studied polarization switching in
ferroelectrics acted upon by an electric field below the
Curie temperature and constructed the binodal and
spinodal curves. They are shown in the figure. A theory
of polarization switching in ferroelectrics far from the
critical point of first-order phase transitions was devel-
oped [1, 2]. In order to analyze switching processes in
the vicinity of the critical point, it is necessary to use
the field theory of nucleation [3]. This paper will deal
with this approach.

2. THE FIELD THEORY OF THE NUCLEATION 
OF SWITCHED REGIONS

According to [3], the Hamiltonian of a ferroelectric
near the critical point (see figure) can be written in the
form proposed by Ginzburg and Landau1:

(1)

where Φ0 denotes the thermodynamic potential terms
which do not depend on the degree of polarization, T is
the temperature of the medium in which the crystal is
immersed, Ez is the z component of the electric field, Tc

is the Curie temperature, and a and b are the coeffi-
cients of the thermodynamic potential expansion in
powers of Pz.

Because we are interested in the relaxation of the
order parameter Pz, we have to establish whether the
latter is retained in the phase transition or not. Depend-

1 See paper [1] for the expansion of the thermodynamic potential in
powers of the order parameter Pz (Eq. (1) in [1]).

H Pz{ }

=  Φ0
δ
2
--- ∇ Pz( )2 a

2
--- T Tc–( )Pz

2 b
4
---Pz

4 EzPz–+ + + r,d∫
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ing on the answer to this question, the kinetic equation
describing the order-parameter relaxation will have
essentially different forms.

A ferroelectric phase transition brings about atomic
displacements, which implies that the polarization vec-
tor does not necessarily retain its total magnitude. This
sets ferroelectric phase transitions apart from magnetic
phase transitions in which the elementary magnetic
moment originating from the exchange coupling does
not vanish as the temperature passes through the Curie
point; i.e., the total magnetic moment in a ferromagnet
is retained. Therefore, in this case, we can write,
according to [3], the following equation describing the
order parameter relaxation:

(2)

where Γn is the kinetic coefficient, δH{Pz}/δPz is the
variational derivative, and fe is the external force simu-
lating the thermal ensemble.

1
Γn

-----
∂Pz

∂t
--------

δH Pz{ }
δPz

--------------------– f e,+=

T

1

–Pz10

2

–PzS1 PzS2 Pz20 Pz

(1) Phase equilibrium line for a ferroelectric with states of
“polarization-up” Pz and “polarization-down” –Pz; Pz1, 20
are equilibrium values of the polarization. (2) Spinodal
curve bounding the regions within which the polarization of
a ferroelectric can in no case be uniform; Pz1, 2s are the
boundaries of the metastability region.
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The following designations are used: a(Tc – T) = α,

r = ξ, t '(2/Γn|α|) = t, (ξ, t) = Pz(ξ, )/ϕS, ϕS =

, and z = .

In order to solve Eq. (2), it is necessary to know the
domain shape. As a first approximation, we assumed
[1] that the domains have a cylindrical shape. By calcu-
lating the variational derivative for the case of cylindri-
cal symmetry and substituting it in Eq. (2) for fe = 0, we
obtain

(3)

where Θ is the angle in the cylindrical coordinate
system.

According to [3], this equation can be solved if the
width of the nucleus boundary ξ0(t) is small compared
to the nucleus size. In this case, Eq. (3) can be recast in
the form

(4)

The solution to this equation is well known and has the
form [3–6]

(5)

where  = (2 /α )Ez.

The velocity of the nucleus boundary motion can be
represented in the form

(6)

where β0 = 0 and βn = const at n @ 1 are determined by
the boundary conditions. Substituting Eqs. (5) and (6)
in Eq. (4) yields

(7)

2δ/ a P̃z t′

α /b z̃ 2δ/ α

∂P̃z

∂t '
--------

´
∂2P̃z

∂ξ2
---------- 2 P̃z P̃z

3
–( ) Ez+ +=

+
1
ξ
---

∂P̃z

∂ξ
-------- 1

ξ2
-----

∂2P̃z
2

∂Θ2
-----------

∂2P̃z

∂z̃2
----------,+ +

∂P̃z

∂t '
--------

´
∂2P̃z

∂ξ2
---------- 2 P̃z P̃z

3
–( ) Ez+ +=

+
1
ξ0
-----

∂P̃z

∂ξ
-------- 1

ξ0
2

-----
∂2Pz

2

∂Θ2
-----------

∂P̃z

∂z̃2
--------.+ +

P̃z ξ ξ0 Θ t ',( )–[ ]tanh± Ẽz

4
-----,+=

Ẽz b a

ξ0 Θ t ',( ) ξ0
n t '( ) nΘ βn+( ),cos

n 0=

∞

∑=

dξ0

dt'
-------- 1

ξ0
-----–

3
2
--- Ẽz,+=

dξ0
n

dt'
--------

n2 1–

ξ0
2

--------------ξ0
n.–=
P

From here, for (t '), we have

and for the nucleus growth rate, we obtain

(8)

The quantity (1/Ez)( |α|/3 ) is nothing else
but the radius of the critical nucleus; i.e.,

(9)

Introducing the correlation radius as rc = , we
obtain

On the other hand, it can be shown that the critical
radius is related to the interface half-width l(x) as

(10)

where lx ~ (1/Ez).
A comparison of Eq. (9) with the expression

describing the field dependence of the critical nucleus
(see [1]) reveals their similarity. However, unlike the
latter expression, Eq. (9) contains a number of con-
stants which cannot always be determined. In order to
take into account the effect of small-scale fluctuations
on nucleation, it is necessary to analyze Eq. (2). This
can be done by analogy with [3]. In the presence of
small-scale fluctuations, Eqs. (7) take the following
form:

(11)

where V(ξ0, t ') describes the response of the field

(ξ0, t ') to the force f (ξ0, t ') and is the solution to the
equation

By analogy with [3], it can be shown that a random
fluctuation of the force f (ξ, t ') results in small fluctua-

ξ0
n

ξ0
n t '( ) ξ' 0( ) n2 1–( )

ξ0 t''( )
------------------ t ''d

0

t'

∫– ,exp=

1
Γ α
----------

dr0

dt
-------2 α

2δ
-------------- 1

r0
---- 2δ

α
------–

3 b

α α
-----------------Ez,+=

dr0

dt
------- Γ 3 2δ b

2 α
---------------------Ez

δ
r0
----– 

  .=

2δ b

Rc
2δ α

3 bEz

-----------------.=

2δ/ α

Rc
2
3
---

rc

Ẽz

-----.=

Rc
4
3
---l x( ),=

2δ/ α

dξ0

dt'
-------- 1

ξ0
-----–

3
2
--- Ẽz 6V ξ0 t ',( ),+ +=

dξ0

dt'
--------

n2 1–

ξ0
2

--------------ξ0
nU– 6V ξ0

0 t' t ',( )( ),+=

P̃z

∂2V
∂t'

--------- ∇ 2V 4V– f ξ t',( ).+=
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tions of the amplitude (ξ0, t '); i.e., it makes the
nucleus boundary slightly diffuse.

In order to calculate the flux of the nuclei formed in
a unit crystal volume per unit time, we can use the Kol-
mogorov equation for the probability distribution of the
critical configurations of the order parameter field, as
was done, for instance, in [3]. On the other hand, we
can use the expression derived for the nucleus flux in
[1] (see Eqs. (34), (35) in [1]). Indeed, the expression
for the flux derived there was based on the solution of
the Fokker–Planck equation, which was obtained under
practically the same limitations as the ones accepted in
solving the Kolmogorov equation. Therefore, we can
substitute the critical radius (9) into the expression for
the nucleus flux (Eq. (35) in [1]), with due regard for
the fact that, according to [4], surface tension near the

critical point can be represented as σ = α3/2.

Finally, we obtain 

(12)

where β0 is the kinetic coefficient, ω is the unit cell vol-
ume, and Nv is the number of unit cells per unit volume
of the crystal. The specific expressions for these quan-
tities are given in [1]. Substituting Eq. (12) into Eq. (38)
derived in [2], we can readily obtain an equation deter-
mining the switching current in the vicinity of the crit-
ical point.

Note that the representation of the Hamiltonian in
the form of Eq. (1) and, accordingly, Eq. (12), becomes
possible in the vicinity of the critical point in which the
Landau mean-field theory is valid. The region of its
applicability is specified by the Ginzburg–Levanyuk
criterion Gi [4], subject to the condition that

(13)

and

where Rmax is the maximum work needed to form the
new phase, which was calculated in [1]. Conditions (13)
indicate, on the one hand, that the Landau theory is
valid and, on the other hand, that the system is in the
region of weak metastability. Far from Tc, i.e., at T ! Tc,
in the region of weak metastability, we cannot, in the
general case, use an expansion of type (1) and should
instead invoke the results obtained in [1, 2].

P̃z

2 2δ
3b

-------------

I
Nvβ0H1/2ω3/2α1/4Ez

1/2

2 kBTb1/4
--------------------------------------------------- 4πHδα5/2

9b3/2kBTEz

---------------------------–
 
 
 

,exp=

Gi

kBTc( )2b2

δ3
----------------------- ! α  ! 1=

Rmax

kBT
---------- @ 1,
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3. NUCLEATION OF SWITCHED REGIONS
NEAR THE INSTABILITY REGION

Let us consider the figure and expressions (1) and
(4) given in [1]. We expand the thermodynamic poten-
tial in the vicinity of the Pz20 point (see Eq. (1) in [1]),
which corresponds to the boundary of the metastable
region, in a Taylor series and obtain

(14)

Let

Note that the derivative Φ'(Ps) is nothing other than the
chemical potential at the point Ps. The second deriva-
tive Φ''(Ps) in the effective Hamiltonian taken at point
Ps is zero; i.e., Φ''(Ps) = 0, because the spinodal is found
from the condition that the second derivative of the
effective Hamiltonian vanishes. With this in mind,
Eq. (14) can be recast as

(15)

In Eqs. (14) and (15),

(16)

Note that Φ''(Ps) was found with the use of Eqs. (1) and
(3) taken from [1].

We introduce a new variable

and denote

Now, we can write the effective Hamiltonian in the
form

(17)

This Hamiltonian coincides with the one obtained in
[3]. For the equations of motion of such a system, we
obtain

(18)

where Γn is the kinetic coefficient and fst(x, t) is the
external force simulating the thermal ensemble.
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Let the fluctuating fields in the metastable phase be
small, ϕ . 0, so that the field fluctuation amplitude in a
region with dimensions of the order of the correlation
radius R0 is small compared to ϕ = µ/q.

At the onset of the metastable state, the system occurs
near the relative minimum of the effective Hamiltonian
at ϕ = 0. Random fluctuations can produce a supercritical
configuration with ϕ > ϕ0, which is unstable upon further
growth of the ϕ amplitude. As a result, this element of the
ferroelectric volume transforms into a stable state with
the polarization vector aligned with the field. In the case
of small fluctuations, i.e., for

this process will predominantly pass through the criti-
cal configuration ϕ(x),

(19)

which corresponds to the minimum work required to
form a nucleus of a supercritical size. Now, we can use
the results obtained in an analysis of this system in [3]
and described, for example, in [5, 6], to derive an
expression for the flux of the polarization switching
nuclei that overcome the activation barrier at high
fields. As follows from the calculations, this expression
has the form

(20)

where, according to [3, 5], λ0 ~ 6.59, H{ϕ0} = 40, and
the largest attainable superpolarization ξmax =
|Pz1s |/ |Pz10 | – 1 (see [1]).

Thus, in the case of large polarization switching, the
switched regions are small and the fluctuations affect
not only their boundary but also the switched region as
a whole. As is evident from the last equation, the rate of
domain formation at a large polarization switching dif-
fers substantially from that in the region of weak meta-
stability (see Eq. (36) in [1]).

4. POLARIZATION SWITCHING KINETICS 
IN THE REGION OF INSTABILITY (SPINODAL 

DECOMPOSITION OF THE SWITCHED 
FERROELECTRIC)

In our opinion, spinodal decomposition cannot be
experimentally realized in ferroelectrics under polar-
ization switching conditions. Actually, there are two
possible ways for its realization. One of them consists
in moving along the horizontal axis (see figure) until
crossing the boundary, to enter the region bounded by
the line of absolute instability. According to the theory,

γ
µsc( )3/2

kBTq2
------------------ 1,≥=

δH
∂ϕ
-------

ϕ0 x( )
0,=

I ξ( )
λ0

4πγ
--------- H ϕ0{ } qPz10

2 ξmax ξ–( )2–{ } ,exp=
P

this should entail polarization switching throughout the
crystal volume without nucleation. However, as was
shown in [4], the electric fields involved should exceed
the experimentally observed coercive fields by more
than an order of magnitude. As follows from our previ-
ous study, polarization switching nuclei start to form in
a ferroelectric before the instability line is reached.
However, at high fields, domains can be of the same
size and become aligned in rows, a process resembling
spinodal decomposition.

The second way to reach the instability region,
which can sometimes be realized in solid solutions,
consists in a fast cooling (quenching) of the solid solu-
tion lying above the spinodal down to the temperature
that corresponds to the region within the spinodal. In
our opinion, this process cannot occur in ferroelectrics
under switching conditions. Indeed, in the case when a
ferroelectric occurs at a temperature above the Curie
point, the polarizing field lowers the symmetry of the
crystal. When this crystal is cooled below the Curie
temperature, the phase transition becomes diffuse; i.e.,
no spinodal decomposition can take place in such a sys-
tem. If there is no external field, a second-order phase
transition is observed as the temperature crosses the
critical line. If the field is turned on at the instant of this
transformation, the transition becomes diffuse. These
processes, however, are beyond the scope of this work.
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of 90° Domains in Epitaxial Ferroelectric Thin Films
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Abstract—The influence of the domain boundary width on the statics of single 90° elastic domains (twins) in
epitaxial ferroelectric tetragonal films grown on a cubic substrate is theoretically investigated. The inhomoge-
neous internal stresses arising in polydomain epitaxial systems are calculated by the effective dislocation
method. The elastic energy stored in the heterostructure is determined. The equilibrium domain size is found
and the stability diagram for single domains at different wall widths is constructed by minimizing the total inter-
nal energy of the system. It is demonstrated that, as the domain boundary width 2w increases, the stability
region of 90° domains increases and qualitatively changes for ultrathin films when the parameter 2w exceeds
the specific critical value 2wcr . The equilibrium width 2w* of domain walls in thin films is predicted to be larger
compared to the width 2w0 of domain boundaries in a macroscopic crystal. © 2001 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

In recent years, thin ferroelectric films have become
the subject of numerous studies owing to their wide-
spread use in the design of various devices, such as
memory cells (DRAM and FeRAM), electrooptic
switches, piezoelectric transducers, and pyroelectric
detectors. The physical properties of thin films substan-
tially depend on the character of their interaction with
a substrate, which should be taken into account when
these films are employed for technical purposes. Of
particular interest are epitaxial thin films, because the
specific features of the film–substrate interaction are
most pronounced in these systems. One of these fea-
tures is the generation of internal stresses due to the lat-
tice misfit of the film and the substrate. These stresses
can decrease through the formation of misfit disloca-
tions in the high-temperature paraelectric phase.
Another mechanism of the stress relaxation consists in
forming a polydomain structure of the twin type upon
transition from the paraelectric to the ferroelectric
state. The polydomain structures were experimentally
observed in PbTiO3, Pb(ZrxTi1 – x)O3, (Pb1 – xLax)TiO3,
KNbO3, and YBa2Cu3O7 thin films grown on different
substrates [1–8]. The formation of elastic domains can
bring about a change in the macroscopic properties of
films, specifically in their dielectric and piezoelectric
responses [9, 10].

In all previous theoretical investigations of domain
structures in ferroelectric films, the boundaries between
90° domains were treated as infinitely thin [9–17].
However, experimental observations in crystals, as a
rule, revealed ferroelectric domain walls with a finite
width. The order parameter within the domain wall var-
ies in a continuous way, and its spatial variations can be
1063-7834/01/4302- $21.00 © 20329
characterized by the effective wall width 2w, which, in
different crystals, ranges from 1 to 5 nm in the direction
normal to the domain walls [18, 19]. Moreover, the
domain boundary width 2w can substantially increase
at temperatures near the ferroelectric transition point Tc

[20]. Since the distribution of internal stresses over a
film and, hence, the stored elastic energy of an epitaxial
system should depend on the 2w parameter, the influ-
ence of finite wall width should be taken into consider-
ation in constructing the domain structure theory for
ferroelectric films.

In the present work, this theory is developed as
applied to single 90° domains in thin tetragonal films
grown on a cubic substrate. The inhomogeneous stresses
are calculated by the effective dislocation method [15, 16],
which allows a correct inclusion of the influence of a free
surface. First, we construct the dislocation–disclination
models of mechanical stress sources in heterostructures
with 90° domain walls of a finite width (Section 2). These
models are used for calculating the elastic energy and
the equilibrium size of a single 90° domain at different
wall widths 2w (Section 3). Then, the stability diagram
of single 90° domains in a tetragonal film at fixed
parameters 2w is constructed using the energy
approach (Section 4).

2. DISLOCATION–DISCLINATION MODELS
OF THE c/a/c AND a/c/a STRUCTURES

WITH A FINITE DOMAIN WALL WIDTH

Let us consider thin single crystals with a perovskite
(BaTiO3 and PbTiO3) symmetry. The crystals are
grown at the temperature Tg > Tc on a cubic substrate
whose boundary is parallel to the crystallographic
plane (001). In the paraelectric cubic phase (T > Tc), the
001 MAIK “Nauka/Interperiodica”
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crystallographic axes of the film are parallel to the cor-
responding axes of the substrate. In the ferroelectric
phase (T < Tc), the tetragonal axis c is aligned along one
of the edges of the initial cubic lattice. Therefore, three
different types of elastic domains can be formed in the
film: the c domains with the tetragonal axis perpendic-
ular to the film surface and the a1 and a2 domains in
which the c axes are aligned along the [100] and [010]
directions, respectively.

Our prime interest here is in the c/a/c structure in a
tetragonal film (Fig. 1). This structure is obtained by
introducing a single a domain of size d into a single-
domain film of the c type (the c monovariant). The a/c/a
structure is formed in a similar way by introducing the
c domain into the a monovariant. It is assumed that two
90° domain walls are tilted at an angle of 45° with
respect to the “film–substrate” planar interface, are par-
allel to each other, and have the same width 2w > 0.
These domain structures play an important role at the
initial stage of the formation of a polydomain structure
in an epitaxial system at temperatures near Tc and have
already been considered in [16] for the case of infinitely
thin walls.

In the linear approximation, we ignore the devia-
tions of order parameters in the ferroelectric film from
their equilibrium values in a free bulk crystal. Hence,

the spatial distributions of spontaneous strains (r)
(i, j = 1, 2, 3) in the epitaxial film can be calculated for
the polydomain state of a free film. At a given distribu-

tion (r), the elastic strains Sij(r) and the internal
stresses in the film are calculated by the effective dislo-
cation method as follows.

For the single-domain state of a film, the elastic
stress field is homogeneous in the epitaxial layer and is
absent in the substrate [11]. In the paraelectric phase of
the film, the elastic strain components Sαβ (α, β = 1, 2)
in the plane are equal to the corresponding misfit strains

 which arise from the mismatch between the lattice

Sij
0

Sij
0

Sαβ
m

x2

x3
x1

45°

w
w

w
w

a ac

b b

d

H

Fig. 1. Dislocation–disclination model of the c/a/c structure
with a finite domain boundary width 2w. Positive and nega-
tive wedge disclinations are designated by closed and open
triangles, respectively. Symbols ⊥  indicate the edge disloca-

tion density . The dislocation density component  is
not shown.

ρ21
Σ ρ12

Σ

P

parameters of the film and the substrate. In the chosen
crystallographic coordinate system (x1, x2, x3) with the
x3 axis perpendicular to the film–substrate interface
(Fig. 1), the misfit strains are written as

(1)

where a0 is the lattice parameter for a free film at T > Tc

and b* is the effective substrate lattice parameter [21],
which accounts for the stress relaxation caused by the
formation of misfit dislocations at the film–substrate

interface. The spontaneous strains  (i, j = 1, 2, 3) arise
below the transition temperature Tc. Therefore, the elas-
tic strain components Sαβ (α, β = 1, 2) in the plane
change and can be approximated by the difference

Sαβ ≅   –  at  ! 1.

For the polydomain state of a film, the total strains

(r) can be represented as (r) = Sij(r) + [ (r) –

]δ(Vf), where δ(Vf) is the Dirac delta function for the

film volume Vf . In this formula, the components 
(i = 1, 2, 3) are formally taken equal to the elastic
strains Si3 in the paraelectric phase of the film. On the

other hand, the total strains (r) in the epitaxial sys-
tem should satisfy the compatibility condition

εmkiεnlj  = 0, where εmki is the antisymmetric Levi-
Civitá tensor. Here, the subscripts after the comma indi-
cate the differentiation with respect to the relevant
coordinates, and the Einstein summation convention is
applied. We introduce the densities ρni(r) of effective
dislocations with the use of the relationships εmkiρni, k =
εmkiεnljSij, kl [15]. After the calculations, we obtain the
following expression for ρni(r):

(2)

where δl(Σ) (l = 1, 2, 3) is the Dirac delta function for the
film–substrate interface Σ with the normal directed
toward the substrate. The first term in formula (2) corre-
sponds to the stress sources localized on the surface Σ.
The last term in formula (2) describes the stress sources
arising within the film, for example, in the presence of
junctions between domain walls of different orienta-
tions [16].

By designating the lattice parameters of the tetrago-
nal phase in a free crystal as a and c > a, nonzero spon-

taneous strains can be written in the form  =  =

(a – a0)/a0 and  = (c – a0)/a0 inside the c domain and

in the form  = (c – a0)/a0 and  =  = (a – a0)/a0

in the a domain. The  components of the spontane-

ous strain tensor can be transformed into the  com-
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ponents in the Cartesian coordinate system ( , x2, )

with the  axis perpendicular to the domain walls. The

, , and  components are identical in the c

and a domains, whereas the  components in the

adjacent domains differ in sign. Note that the , ,

and  components do not vary in going through the
domain walls. Therefore, to a first approximation, they
can be taken constant within the walls. It can also be

assumed that the shear component  varies within
the wall according to the theoretical calculations car-
ried out for domain boundaries within the thermody-
namic approach [18, 22, 23]. In the framework of
these theories, the variation in the order parameter Q
inside the wall for intrinsic ferroelastics is represented as
Q ~ /w). A hyperbolic tangent profile is also a
good approximation for the distribution of the shear
strain inside the 90° domain wall in intrinsic ferroelec-

trics with a perovskite structure [23]:  ~ /w).
In order to simplify calculations, we assume that the

strain  varies linearly inside the wall of a finite
width 2w. Then, for the c/a/c structure, we have

 = (c – a) /(2wa0) inside the c/a wall,  = –(c –

a)(  – d/ )/(2wa0) inside the a/c wall,  = –(c –

a)/(2a0) in the c domains, and  = (c – a)/(2a0) in the
a domain.

In the case under consideration, it can be assumed

that the  and  strains do not depend on the x2

coordinate and the  component is constant through-
out the film. Then, for the c/a/c structure, from formu-
las (1) and (2), we derive the following nonzero dislo-
cation densities at the film–substrate interface Σ:

(3a)

(3b)

x1' x3'

x3'

S1'1'
0 S22

0 S3'3'
0

S1'3'
0
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0 S22

0
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S1'3'
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x3'(tanh
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0 x3'(tanh
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S1'3'
0 x3' S1'3'

0

x3' 2 S1'3'
0

S1'3'
0

S11
0 S33

0

S22
0

ρ12
Σ Saδ3 Σ( ),–=

ρ21
Σ

Saδ3 Σ( ), x1 2w;–<

1
2
--- Sa Sc Sc Sa–( )

x1

2w
-----------+ + δ3 Σ( ),

2w– x1 2w;≤ ≤

Scδ3 Σ( ), 2w x1 d 2w;–< <

1
2
--- Sa Sc Sc Sa–( )

d x1–

2w
--------------+ + δ3 Σ( ),

d 2w– x1 d 2w;+≤ ≤

Saδ3 Σ( ), x1 d 2w;+>

=
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where d is the size of the a domain along the x1 axis
(Fig. 1). Moreover, in these relationships, we introduced
the misfit strains Sa ≡ (a – b*)/a0 and Sc ≡ (c – b*)/a0. The

components  and  are two continuous distribu-
tions of edge dislocations for which the Burgers vectors
are aligned along the x2 and x1 axes and the lines are
directed along the x1 and x2 axes, respectively.

In addition to the two surface components  and

, there is a nonzero bulk dislocation density compo-

nent , which for the c/a/c configuration, can be
written as

(4)

where  and  are the regions inside the c/a and
a/c walls, respectively. The Burgers vectors of all the
edge dislocations in relationship (4) are perpendicular

to the domain walls. The  density corresponds to a
set of bounded dislocation walls which are continu-
ously distributed within the domain boundaries of
width 2w. The dislocation distribution (4) induces the
same stress field as two ensembles of rectilinear wedge
disclinations [24] which continuously fill a part of the
film–substrate interface inside the domain walls. The

surface disclination density is ξ = (Sc – Sa)/(2 w), and
the signs of disclinations located at the c/a and a/c
boundaries are opposite.

The complete model of the c/a/c structure with a lin-

ear profile of the spontaneous strain  inside the
domain walls of width 2w involves the homogeneous

and inhomogeneous distributions  [formula (3a)]

and  [formula (3b)] of effective edge dislocations
and also two ensembles of disclinations with the den-

sity ξ = (Sc – Sa)/(2 w) within the c/a and a/c walls
(Fig. 1). All the defects are located at the film–substrate

interface, and the Burgers vector of the  dislocations
inside the walls varies in a linear manner. The complete
model for the a/c/a structure can be obtained from the
model for the c/a/c structure by replacing Sa with Sc and

Sc with Sa in formula (3b) for  and also by reversing

the signs of disclinations; the component  remains
the same.

3. ENERGY AND THE EQUILIBRIUM 
GEOMETRIC PARAMETERS OF THE c/a/c 
AND a/c/a DOMAIN CONFIGURATIONS 

WITH A FINITE WALL WIDTH

The constructed models of the c/a/c and a/c/a struc-
tures enable us to calculate the internal stresses Tij in the
epitaxial systems under consideration as the sum of the

ρ12
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 and  stresses produced by the effective disloca-
tions and disclinations. In order to simplify the calcula-
tions, the film–substrate system will be treated as elas-
tically isotropic and homogeneous and its elastic prop-
erties will be described by the effective shear modulus
G and the Poisson ratio ν.

The  stresses of the dislocation ensembles (3a)
and (3b) are determined by the integration of the specific

analytical functions  obtained by Head [25] over the
film–substrate interface. These functions provide a means
of calculating the stresses of a single rectilinear edge dis-
location aligned parallel to a free surface of the elastic

half-space. In particular, the  component for the
c/a/c configuration is calculated as follows:

(5)

where (x, y) is the function given in [25] and 2L is

the film size along the x1 axis. In turn, the  stress of
the disclination ensemble in the c/a/c structure is calcu-

lated by integration of the (x, y) function (which is
used for determining the relevant stress component of a
single rectilinear wedge disclination [26]) within the
domain walls:

(6)

According to the general theory of defects [26], the
elastic energy Wel is the sum of the energies Wb and Wξ
of the dislocation and disclination ensembles and also
the energy Wbξ of the interaction between them. The Wb

and Wξ components are calculated as the works done by
the inherent stresses when displacing the edges of a cut
during the formation of defects of particular types. For
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– f 11
ξ x1 x1' d–– x3,( ) ]dx1' .
P

example, the dislocation energy Wb for the c/a/c struc-
ture is written as

(7)

where H is the film thickness (it is assumed that 2L @ H).
The sum of the integrals dependent on L in relation-
ship (7) is equal to the elastic energy Wc of the c mono-
variant. Hereafter, all the energies will be measured
from this quantity Wc by determining the difference
∆Wb = Wb – Wc. The integral expression for the discli-
nation energy Wξ is given by

(8)

The energy Wbξ of interaction between the dislocation
and disclination ensembles can be obtained from for-

mula (7) by replacing the dislocation stresses  by

twice the stresses 2  of the disclination system. With
direct calculations, it is possible to demonstrate that
Wbξ ≡ 0 due to the symmetry of our problem.

After the substitution of formula (5) into relation-
ship (7) and formula (6) into relationship (8), we first
integrate with respect to the coordinate x3 and trans-

form the remaining double integrals over x1 and  into
single integrals. This procedure leads to the analytical
expressions for the energies ∆Wb and Wξ. By summing
the dislocation ∆Wb and disclination Wξ components,
we obtain the elastic energy ∆Wel (reckoned from the
energy of the c monovariant) for the c/a/c configuration
in the form

Wb
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(9)

with the dimensionless function g(x) defined by the
relationship

(10)

At small strains Sa and Sc ! 1, the ratio 2(1 + ν)Sa/(Sa –
Sc) in formula (9) can be replaced by the parameter

Sr/ , where Sr ≡ (b* – a)/(c – a) ≈ Sa/(Sa – Sc) is the rel-

ative misfit strain [21] with threshold value  ≡ 1/(2 +
2ν). Then, except for the common factor, the elastic
energy ∆Wel becomes the function of three dimensionless
parameters, d/H, 2w/H, and Sr/ . For the a/c/a structure,
the ∆Wel energy measured from the energy of the a mono-
variant can be written in the form similar to formula (9) if
the parameter Sr/  is replaced by 2 – Sr/ . Note that the
∆Wel energy [formula (9)] at 2w  0 asymptotically
goes over into the expression for the elastic energy of
the c/a/c structure with infinitely thin walls, which was
earlier obtained in [16].

The changes ∆Uc/a and ∆Ua/c in the Uc/a and Ua/c
internal energies of heterostructures upon formation of
the c/a/c and a/c/a configurations are represented by
the sum of the elastic energy ∆Wel and the self-energy
W self of two 90° walls. Here, we neglect the change in
the energy of film depolarization, because ferroelec-
trics of the perovskite family are characterized by a rel-
atively high electrical conductivity. Therefore, bound
polarization charges are almost completely compen-
sated for by free charge carriers [27].

The self-energy of walls can be written as W self =

2 σH with the same specific surface energy σ for
both walls. The change ∆Uc/a = Uc/a – Uc in the internal
energy (reckoned from the energy Uc of the c monova-
riant) upon formation of the c/a/c structure is repre-
sented using formula (9) in the form

(11)

where the function F(d/H, 2w/H) is defined by the
expression in the curly brackets in the right-hand side
of formula (9) and the characteristic film thickness is
H0 ≡ σ(1 – ν)/[G(Sa – Sc)2] (H0 ~ 1 nm in BaTiO3 and
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PbTiO3 films [9]). Relationship (11) for ∆Uc/a is valid
only in the absence of overlap between domain walls

(d ≥ 2 w). In the presence of overlap, it can be
assumed, to a first approximation, that the ∆Uc/a energy

at d < 2 w linearly varies from 0 at d = 0 to ∆Uc/a

determined by formula (11) at d = 2 w. A similar
approximation is also applicable to the ∆Ua/c energy of
the a/c/a structure.

The numerical solution of the equation ∂U/∂d = 0
with U = ∆Uc/a or U = ∆Ua/c provides a way of deter-
mining the equilibrium domain size d* for the c/a/c or
a/c/a configurations, respectively. From formula (9), it
follows that the normalized domain size d*/H0 is a
function of the normalized wall width 2w/H0, the misfit

parameter Sr/ , and the film thickness H/H0. The
dependences of the parameter d*/H0 on the misfit

parameter Sr/  at a fixed thickness H/H0 = 10 for three
values of the wall width 2w/H0 are shown in Fig. 2.
These dependences are symmetric with respect to the

line Sr/  = 1, and the size d*/H0 monotonically

increases as the parameter Sr approaches . The

curves correspond to the c/a/c configurations at Sr/  <

1 and the a/c/a configurations at Sr/  > 1. In the case of

Sr/  = 1, these configurations have the same internal

2

2

2

Sr
0

Sr
0

Sr
0

Sr
0

Sr
0

Sr
0

Sr
0

c/a/c a/c/a

3 3

2 1 1 2

1.61.41.21.00.80.60.4

100

90

80

70

60

50

40

30

20

10

0

Misfit parameter, Sr/S
0
r

E
qu

ili
br

iu
m

 d
om

ai
n 

si
ze

, d
* /H

0

Fig. 2. Dependences of the equilibrium domain size d* (in

terms of H0) on the misfit parameter  = 2(1 + ν)(b* –

a)/(c – a) at different normalized wall widths: (1) 2w/H0 ≤ 1,
(2) 2w/H0 = 10, and (3) 2w/H0 = 30. The film thickness is
defined as H = 10H0.

Sr/Sr
0

1



334 EMEL’YANOV
energies. The character of the dependence d*(Sr/ ) at
a fixed film thickness H/H0 is determined by the param-
eter 2w/H0. Note that, at relatively small wall widths
(2w ≤ 10H0 at H = 10H0), the domain size d* jumpwise

decreases from d* > 2 w to zero (Fig. 2, curves 1, 2).
At the same time, at large wall widths (2w > 10H0 at
H = 10H0), these jumps occur from the values of d* =

2 w in a horizontal plateau (Fig. 2, curve 3) whose
size increases with an increase in the wall width. In any

case, domains with the size d < 2 w appear to be unsta-
ble, which is associated with the use of a linear approxi-
mation for the energy ∆U when the walls overlap.

4. STABILITY DIAGRAM FOR THE c/a/c 
AND a/c/a STRUCTURES

AT A SPECIFIED WALL WIDTH

The changes ∆U* in the internal energies upon for-
mation of the c/a/c and a/c/a stable polydomain config-
urations can be determined by substituting the optimum
domain width d* (calculated in the preceding section)
into relationship (11). The obtained quantity ∆U*/σH is
a function of three parameters: the normalized wall
width 2w/H0, the misfit parameter Sr/ , and the film
thickness H/H0. In order to construct the stability dia-

gram for the c/a/c and a/c/a structures on the Sr/ –H/H0
coordinates, let us compare the equilibrium energies of
polydomain configurations with the energies of single-
domain states at the fixed parameters 2w/H0. At Sr/  <
1, the c monovariant is always more energetically
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P

favorable than the a monovariant [12]. Therefore, in
this case, it is sufficient to analyze the energies of the
c/a/c configurations. From relationships (11) and (10),
it follows that the inequality  < 0, which is nec-
essary for the stability of the c/a/c structure, is met only
for films with thickness H larger than the specific criti-
cal thickness H*. By solving the equation  = 0, it
is possible to find the dependence of the normalized
critical thickness H*/H0 on the misfit parameter Sr/ .
In the stability diagram, this dependence is described
by the line of the energy equivalence for the c/a/c struc-
ture and the c monovariant. Three of these lines at
Sr/  ≤ 1 for three values of the 2w/H0 parameter are
depicted in Fig. 3.

The right-hand side of the diagram at Sr/  > 1 can
be constructed in a similar way by analyzing the ener-
gies of the a/c/a configurations at different parameters
2w/H0. The lines of the energy equivalence for the a/c/a

structure and the a monovariant at Sr/  ≥ 1 are dis-
played in Fig. 3 for three values of the 2w/H0 width.
The stability region of polydomain states lies between
two vertical lines Sr/  = 0 and 2 and is symmetric with

respect to the straight line Sr/  = 1. As the wall width
2w increases, the stability region of the c/a/c and a/c/a
structures becomes wider, especially for films with
small thickness H ≤ H0. At 2w ≥ 20H0, the equivalence
lines overlap at different parameters 2w/H0. In this case,
the structure with the larger wall width 2w turns out to
be more stable at the thicknesses H ≤ 2H0 and the config-
uration with the smaller width 2w is stable at H ≥ 5H0.
Figure 3 shows the situation when the lines constructed
at 2w/H0 = 10 and 20 in a certain region virtually merge
together but do not intersect.

By using relationships (9)–(11), it is possible to dem-
onstrate that the equilibrium domain size d* in ultrathin

films (H ! H0) is equal to d* ≅  2 w in the stability
region of polydomain states; i.e., the parameter d* does
not depend on the misfit parameter Sr/ . In turn, the
value of d* in very thick films (H @ 10H0) is independent
of the wall width 2w, because, in this case, d* ≅
(3π/5)H(Sr / ) for the c/a/c structure and d* ≅
(3π/5)H(2 – Sr/ ) for the a/c/a structure. These results
and relationship (11) make it possible to derive the
asymptotic expressions for the equilibrium energy

 of the c/a/c structure for large and small film
thicknesses H:
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It follows from relationship (12a) that, for films with
domain walls with a finite width 2w > 0, the inequality

 < 0 that determines the condition for stability of
the c/a/c structure can be fulfilled even for ultrathin
films with thickness H ! H0. This becomes possible

when the misfit parameter Sr/  exceeds the critical

value , which is defined as  = 2/3 + H0/w for the
c/a/c structure. For the a/c/a configuration, the same is

true at Sr/  less than  = 4/3 – H0/w. Certainly, the
c/a/c and a/c/a structures in ultrathin films can be stable

configurations only when the conditions  ≤ 1 and

 ≥ 1 are met. The last inequalities are satisfied for
films with a wall half-width w larger than the critical
value wcr = 3H0. The larger the parameter w ≥ wcr, the
wider the stability region of the polydomain state at
H < H0. In the case of w < wcr for ultrathin films, the
monovariants are the stable configurations at any misfit

parameters except for Sr/  = 1.

From formula (12b) it follows that, at the large film
thicknesses H @ 10H0, the  and  energies
are independent of the wall width 2w. Therefore, at the
sufficiently large parameters H/H0, the curves con-
structed in Fig. 3 for different values of 2w/H0 merge
together. Note that the domain size d* jumpwise decreases
down to zero in the lines of the energy equivalence for the
polydomain states and monovariants (Fig. 3), as is

observed in Fig. 2 for the dependences d*(Sr/ ). For
films with thickness H larger than the specific thickness
Hcr, these jumps in the equivalence lines occur from the

values of d* > 2 w, whereas, at H ≤ Hcr, the equilib-

rium size in these lines decreases from d* = 2 w to
zero. The Hcr /H0 parameter monotonically increases
with an increase in the domain boundary width 2w/H0.
Note that Hcr /H0 is relatively large for wide walls
(Hcr /H0 ~ 100 at 2w/H0 = 20).

As was assumed above, the wall width 2w in the epi-
taxial film coincides with the equilibrium width 2w0 of
the domain boundaries in a macroscopic single crystal.
However, in order to determine the equilibrium wall
width 2w* in the polydomain film, the total internal
energy ∆U [see formula (11) in Section 3] should be
minimized with respect to the parameter 2w. The
energy ∆U involves two competing components: the
elastic energy Wel ≡ Wel(w) and the self-energy of the
domain walls σ ≡ σ(w). Analysis of relationship (9)
demonstrates that the elastic component Wel(w) mono-
tonically decreases with an increase in the domain wall
width 2w when the other parameters are fixed. This is
associated with a weakening of long-range stresses in
the epitaxial layer with an increase in the wall width. It
is also evident that the self-energy σ(w) of the domain
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boundaries becomes minimum at w = w0. Examination
of the dependence ∆U(w) leads to the conclusion that
the equilibrium wall width 2w* in a polydomain film is
always larger than the wall width 2w0 in a free crystal.
It is also possible to predict that the 2w* parameter will
considerably increase in the case of the stable polydo-
main states in thin films with thickness H ≤ 5H0 ~ 5 nm.
At the same time, for films with thickness H ≥ 30H0 ~
30 nm, it is believed that the width 2w* of walls in the
film does not differ from the width 2w0 of domain
boundaries in a free crystal for the observed parameters
2w0 = 1–5 nm.

5. CONCLUSION

The above analysis of the influence of the domain
boundary width on the statics of 90° domains in the epi-
taxial ferroelectric thin films allowed us to draw the fol-
lowing conclusions.

(1) In thin films (H < 100 nm), the domain structures
with 90° walls of finite width are universally more sta-
ble configurations as compared to similar structures
with infinitely thin domain boundaries.

(2) The polydomain configurations with a finite wall
width 2w > 0 can exist in ultrathin films with thickness
H < 1 nm. This inference corrects the conclusions con-
cerning the instability of 90° domains with infinitely
thin walls in these films [13, 15, 16].

(3) The equilibrium width of the 90° domain walls
in films with thickness H < 10 nm can be substantially
larger than the wall width in the bulk crystal.
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Abstract—The epitaxial heterostructures YBa2Cu3O7 – δ/BaTiO3/YBa2Cu3O7 – δ and
YBa2Cu3O7 − δ/(5 nm)SrTiO3/BaTiO3/(5 nm)SrTiO3/YBa2Cu3O7 – δ are grown by the laser evaporation
method on an LaAlO3(100) substrate. The permittivity of a BaTiO3 layer is approximately doubled (T = 300 K)
when a SrTiO3 thin layer is inserted between a ferroelectric layer and superconducting cuprate electrodes. A
maximum in the temperature dependence of the permittivity for a barium titanate layer in the
YBa2Cu3O7 − δ/(5 nm)SrTiO3/BaTiO3/(5 nm)SrTiO3/YBa2Cu3O7 – δ heterostructure is shifted by 70–80 K
toward the low-temperature range with respect to its location in the corresponding dependence for the BaTiO3
bulk single crystal. The bias voltage dependence of the permittivity for the BaTiO3 grown layers exhibits a
clearly pronounced hysteresis (T = 300 K). The superconducting transition temperature for the lower
YBa2Cu3O7 – δ electrode in a superconductor/ferroelectric/superconductor heterostructure considerably
depends on the rate of its cooling after the completion of the formation process. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The BaTiO3 (BTO) compound is one of the best
known representatives of a large family of perovskite-
like ferroelectrics. The data obtained over the last 50 years
on the dielectric properties of single-crystal and bulk
ceramic BTO samples and also (Ba, Sr)TiO3 (BSTO)
solid solutions (close to the barium titanate region)
allowed researchers to conclude that these ferroelec-
trics are promising materials for use in memory cells
[1], electrooptic systems [2], and infrared detectors [3].
For various practical applications in microelectronics
and microwave technology, BTO compounds should be
prepared in the form of a film whose free surface (or
both surfaces) contains conducting electrodes. The
available data [4, 5] indicate that the absolute permittiv-
ities ε for polycrystalline films, their temperature
dependences, and the response to the external electric
field substantially differ from those for the bulk single
crystals [6]. No systematic investigations into the
dependence of the dielectric parameters of BTO epitax-
ial films on structure have hitherto been performed.

A close similarity between the crystal structures of
cuprate superconductors and perovskite-like ferroelec-
trics offers strong possibilities of forming epitaxial
superconductor/ferroelectric/superconductor hetero-
structures.

The purpose of this work was to investigate the
structure and the parameters of BTO epitaxial films
1063-7834/01/4302- $21.00 © 20337
grown on YBa2Cu3O7 – δ (YBCO) surface. In order to
reveal the dependence of the permittivity of a barium
titanate layer sandwiched between thin-film super-
conducting cuprate electrodes on the microstructure
of BTO/YBCO interfaces, we grew three-layer
YBCO/BTO/YBCO systems and heterostructures in
which strontium titanate thin (5 nm) layers were
inserted between a ferroelectric layer and supercon-
ducting films. The mechanisms favorable for improv-
ing the microstructure of the YBCO/BSTO interface
upon introduction of a SrTiO3 (STO) buffer layer were
discussed earlier in [7, 8].

2. EXPERIMENTAL TECHNIQUE

The heterostructures YBCO/BTO/YBCO and
YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO were grown
by the laser evaporation method (KrF, λ = 248 nm,
τ = 30 ns) on a LaAlO3(100) (LAO) substrate. Poly-
crystalline disks of YBCO, BTO, and STO, which
were prepared according to the standard ceramic pro-
cedure, were used as targets. The laser radiation den-
sity at the target surface was 1.5 J/cm2. The oxygen
pressure PO and the substrate temperature TS in the
course of the growth of the YBCO/BTO/YBCO and
YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO hetero-
structures were equal to 0.5 mbar and 750°C, respec-
tively. Upon completion of condensation, the hetero-
001 MAIK “Nauka/Interperiodica”
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structures were cooled to room temperature in an oxygen
atmosphere (PO = 1 atm) at the rate vT = 5−25 K/min.

The phase composition and the structure of the
grown heterostructures were studied by x-ray diffrac-
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Fig. 1. (a) X-ray diffraction pattern (CuKα, ω/2θ) for the
YBCO(200 nm)/BTO(700 nm)/YBCO(200 nm) hetero-
structure grown on the LAO(100) substrate: (1) YBCO(006)
peak, (2) CuKβ peak of LAO, (3) CuKβ peak of BTO, and
(4) CuKβ peak of YBCO. Incident and reflected x-ray beams
during the recording of the x-ray diffraction pattern lie in the
plane perpendicular to the LAO(100) surface. vT = 5 K/min.
(b) X-ray diffraction pattern (CuKα, ω/2θ) for the same het-
erostructure, but recorded with incident and reflected x-ray
beams lying in the plane perpendicular to the LAO(101) sur-
face: (1) YBCO(103) peak, (2) YBCO(206) peak, (3) CuKβ
peak of LAO, and (4) CuKβ peak of BTO. The inset shows
the rocking curve (CuKα, ω – 2θ) measured for BTO(200)
x-ray peak for the same heterostructure.
P

tion (Philips X’pert MRD, ω/2θ- and φ-scans, rocking
curves). In order to determine the unit cell parameters
of the ferroelectric layer and superconducting films
forming the superconductor/ferroelectric/superconduc-
tor heterostructure, the x-ray diffraction patterns were
recorded with incident and reflected x-ray beams lying
in the plane perpendicular to either the LAO(100) sur-
face or the LAO(101) surface. The unit cell parameter
a⊥  of the ferroelectric layer in the direction perpendic-
ular to the substrate plane was calculated using the 2θ
value for the x-ray BTO(400) reflection. The unit cell
parameter a|| in the substrate plane was determined
from the relationship 1/d(303) = [(3/a⊥ )2 + (3/a||)2]1/2,
where d(303) is the interplanar distance calculated with
the 2θ value for the x-ray BTO(303) reflection.

The data on the surface morphology of the grown
films BTO and YBCO were obtain with an atomic-
force microscope (NanoScope-IIIa).

Electrodes (S = 0.2 × 0.2 mm2) in the upper super-
conducting film and holes in the ferroelectric layer (for
the formation of a contact with the lower YBCO elec-
trode) were produced by photolithography and ion
etching (Ar, 0.2 mA, 500 V).

The capacitance C and the loss tangent for the
prepared capacitor structures YBCO/BTO/YBCO and
YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO were mea-
sured on an hp 4263A LCR meter (f = 100 kHz) with
a bias voltage Vb = ±2.5 V applied to the supercon-
ducting electrodes and without it. The bias voltage
was considered positive when “+” was applied to
the  upper electrode. The permittivity was determined
from the expression C = εS/d, where d = 700 nm is
the  ferroelectric layer thickness. The resistance R of
the YBCO films grown on the LAO(100) and
BTO/YBCO/LAO(100) substrates was measured with
an LCR meter (f = 100 Hz) by the four-point probe
method according to the van der Pau technique. The
resistivity ρ of superconducting films was calculated by
the formula ρ = (πd1/ln2)R [9], where d1 = 200 nm is
the superconducting film thickness. The superconduct-
ing transition temperature TC for the YBCO films was
determined from the temperature dependences of the
resistance and the magnetic susceptibility χ. The criti-
cal current density jC was determined from the current–
voltage characteristics measured for bridges (50 µm
long and 8 µm wide) prepared in the YBCO films by
photolithography and ion etching methods.

3. RESULTS AND DISCUSSION

The BTO layers grown on the YBCO/LAO and
STO(5 nm)/YBCO/LAO surfaces were investigated by
x-ray diffraction and atomic-force microscopic meth-
ods. No systematic differences in their structure and
surface morphology were revealed. However, the
measured permittivity ε of the ferroelectric layer in
the YBCO/BTO/YBCO heterostructure was consid-

δtan
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Fig. 2. X-ray (CuKα) φ-scan for the BTO(111) reflection of the YBCO/BTO/YBCO/LAO heterostructure grown on the LAO(100)
substrate at vT = 5 K/min. The inset shows peaks in φ-scans (on an enlarged scale) for (1) YBCO(113), (2) BTO(111), and
(3) LAO(111) reflections of the same heterostructure.
erably less than ε for the BTO layer in the
YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO hetero-
structure. First, we will analyze the structural data for
the grown layers and, then, discuss the specific features
of the temperature and field dependences of the dielec-
tric parameters of a BTO layer and also the origin of the
degradation in the superconductivity parameters of
YBCO films in multilayer epitaxial heterostructures.

3.1. Structure and morphology of the surface of
layers forming the superconductor/ferroelec-
tric/superconductor heterostructure. As follows
from the x-ray diffraction data, the grown heterostruc-
tures were free from inclusions of minor phases
(Figs. 1a, 1b). A small difference in the crystal lat-
tice parameters upon lattice matching of LAO(100),
YBCO(001), BTO(100), and STO(100) favors epi-
taxial growth of the YBCO/BTO/YBCO and
YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO hetero-
structures on the lanthanum aluminate surface. The
superconducting films and the intermediate barium
titanate layer were well oriented in the azimuthal
direction and with respect to the normal to the
substrate plane (Figs. 1a, 1b, 2). The x-ray diffrac-
tion patterns of the YBCO/BTO/YBCO and
YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO hetero-
structures, which were recorded with the incident and
reflected x-ray beams lying in the plane perpendicular
to the LAO(100) surface, contain only the YBCO(001),
BTO(n00), and LAO(n00) peaks (Fig. 1a). The x-ray
diffraction patterns which were obtained with incident
and reflected x-ray beams lying in the plane perpendicular
to the LAO(101) surface, in addition to the (n0n) peaks of
PHYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
the substrate and the ferroelectric layer, involve the (103),
(206), and (309) peaks of the superconducting films
(Fig. 1b). Four equidistant peaks are observed in the x-ray
φ-scans for the BTO(111) and YBCO(113) reflections
measured for the YBCO/BTO/YBCO/LAO and
YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO/LAO het-
erostructures (Fig. 2). The full widths at half-maximum
(FWHM) of the peaks in the φ-scan for the
YBCO(113), BTO(111), and LAO(111) reflections of the
YBCO/BTO/YBCO/LAO heterostructure are equal to
1.06°, 0.73°, and 0.26°, respectively (see inset in Fig. 2).
The width of the peak in the φ-scan for the
YBCO(113) reflection of the superconducting film
grown on the LAO(100) substrate is equal to 0.45°.
From the x-ray diffraction data obtained, we deter-
mined the following orientational relationships for
films forming the superconductor/ferroelectric/super-
conductor heterostructure: YBCO(001)[010]//
BTO(100)[010]// YBCO(001)[010]//LAO(100)[010].

According to the x-ray diffraction data, the unit cell
parameter for a BTO layer (T = 300 K) in the direction
perpendicular to the substrate plane a⊥  = 3.997 ± 0.001 Å
is less than the corresponding parameter in the sub-
strate plane a|| = 4.020 ± 0.001 Å. This fact allows us to
conclude that the c axis in the BTO layer grown on the
YBCO(001)/LAO(100) surface is predominantly ori-
ented along the substrate plane. The orientation of the
polar axis in BTO epitaxial films is considerably
affected by mechanical stresses arising from the differ-
ence between thermal expansion coefficients β of the
ferroelectric material and the substrate [10]. In the tem-



340 BOŒKOV, CLAESON
300

600

170 nm

nm

300

600

75 nm

nm

3

500 nm

µm

1

2

(a)

(b)

(c)

Fig. 3. Morphology of free surfaces of (a) the BTO(700 nm)
layer grown on the YBCO(001)/LAO(100) surface,
(b) the YBCO(200 nm) film on the LAO(100) surface,
and (c) the YBCO(200 nm) film on the
BTO(100)/YBCO(001)/LAO(100) surface. Images are
obtained with an atomic-force microscope.
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perature range 100–800°C, the thermal expansion coef-
ficient for barium titanate (β = 14.2 × 10–6 K–1 [11]) is
substantially larger than that for lanthanum aluminate
(β = 9.2 × 10–6 K–1 [12]), which is responsible for the
appearance of tensile mechanical stresses in the sub-
strate plane in a BTO layer grown on the
YBCO(001)/LAO(100) surface. The mechanical
stresses arising in the BTO film due to the difference
between the crystal lattice parameters for BTO(100),
YBCO(001), and LAO(100) partially relax at tempera-
tures close to TS during the formation of misfit disloca-
tions.

The full width at half-maximum of the rocking curve
for the BTO(200) reflection of the YBCO/BTO/YBCO
and YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO hetero-
structures falls in the range 0.4°–0.5° (see inset in
Fig. 1a). The full width at half-maximum of the rocking
curve for the (200) reflection of the substrate is equal to
0.22°. The considerable width of the rocking curves for
BTO epitaxial films in the YBCO/BTO/YBCO and
YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO hetero-
structures is explained by a high density of structural
defects (grain boundaries, oxygen vacancies, misfit dis-
locations in interface regions, etc.). The degradation of
the film structure is associated with a low mobility of
adsorbed particles on the surface of a growing BTO film.

The peaks of the lower and upper YBCO films in
the x-ray ω/2θ-scan for the YBCO/BTO/YBCO/LAO
and YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO/LAO
heterostructures (vT = 5 K/min) were not resolved
even at 2θ > 100° (Figs. 1a, 1b). The unit cell param-
eters (c = 11.682 ± 0.001 Å and a = 3.862 ± 0.001 Å)
for YBCO films in the YBCO/BTO/YBCO and
YBCO/STO(5 nm)/ BTO/STO(5 nm)/YBCO hetero-
structures, which were determined from the x-ray dif-
fraction patterns, are in good agreement with the data
available in the literature for films and bulk samples of
YBCO with a small deviation from the stoichiometry
with respect to oxygen [13].

It can be seen from Fig. 3a that the BTO layer
grown on the surface of a superconducting film has a
granular structure. The sizes of crystal grains in the
ferroelectric layer are equal to 100–150 nm (Fig. 3a).
As follows from the widths of peaks in the x-ray φ-
scans for the BTO(111) reflection, the azimuthal mis-
orientation of crystallites in the ferroelectric layer, on
the average, is equal to 0.7°. The main reason for the
azimuthal misorientation of crystallites in the BTO
layer is the difference between the crystal lattice
parameters (∆a ~ 4%) upon the lattice matching of
BTO(100) and YBCO(001). The sizes of crystal
grains in the YBCO film grown on the LAO(100) sur-
face are two or three times less than those in the BTO
layer grown on the YBCO(001)/LAO(100) surface
(Fig. 3b). The surface of the YBCO film grown on the
BTO(100)/YBCO(001)/LAO(100) surface was rough
because of the large-sized crystallites rising above the
HYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
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δtan
other part of the superconducting film by 50–120 mm
(Fig. 3c).

3.2. Dielectric parameters of a BTO layer.
The   measured permittivities ε for a BTO(100)
layer in the YBCO/BTO/YBCO and YBCO/STO
(5 nm)/BTO/STO(5 nm)/YBCO parallel-plate capaci-
tor structures are substantially less than the permittiv-
ity measured along the a axis for BTO single crystals
(T = 4.2–400 K) [6]. The reason for the low ε values,
which were measured for a barium titanate layer
inserted between two superconducting cuprate elec-
trodes, is the deviation from the stoichiometry in the
boundary regions of the BTO layer and the YBCO film
and, as a consequence, the formation of a material
layer with a low permittivity near the interface. At
T = 300 K, the permittivity of a BTO layer in the
YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO multi-
layer heterostructure is approximately twice as large as
that of the ferroelectric layer in the YBCO/BTO/YBCO
heterostructure (Fig. 4). The increase in the permittivity
ε of the BTO layer upon introduction of STO(5 nm)
buffer layers into the heterostructure is caused by
improving the microstructure of ferroelectric–super-
conductor interfaces [7]. In the case when the
superconducting cuprate electrodes in the
YBCO/BTO/YBCO capacitor structure is replaced by
electrodes made of SrRuO3 (at T < 800°C, SrRuO3 is
PHYSICS OF THE SOLID STATE      Vol. 43      No. 2      200
chemically inert to barium titanate and provides a
smaller difference in the crystal lattice parameters as
compared to YBCO), the permittivity ε of a ferroelec-
tric layer increases by a factor of three or six [14] (inset
in Fig. 4).

The maximum in the dependence ε(T) for a BTO
layer in the YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO
capacitor structure is shifted by 70–80 K toward the
low-temperature range with respect to its location in the
temperature dependence of the permittivity for a BTO
single crystal [6]. The stabilization of the cubic phase
at temperatures below 390 K was observed in BTO
ceramic films with a crystallite size of the order of
20 nm [1]. A considerable shift in the maximum in the
ε(T) dependence toward the low-temperature range was
observed for BTO epitaxial films with a decrease in the
size of crystalline blocks from 200 to 50 nm [14].

When the bias voltage (±2.5 V) is applied to the
superconducting electrodes, the maximum in the ε(T)
dependence for a BTO layer in the YBCO/BTO/YBCO
and YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO capac-
itor structures shifts toward the high-temperature range
(Fig. 4). An increase in the Curie temperature TC for
BTO single crystals in the electric field was clearly
demonstrated in [15].
1
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A clearly pronounced hysteresis is observed in the
dependences of the permittivity for a BTO layer at T =
300 K on the bias voltage applied to YBCO electrodes
(Fig. 5). The measured dependences ε(Vb) indicate
that, at T = 300 K, the BTO layer in the grown hetero-
structures is in the ferroelectric phase. When the volt-
age Vb changes from –2.5 to +2.5 V, the ε(Vb) curves
for a BTO layer in the YBCO/BTO/YBCO and
YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO hetero-
structures exhibit a clear maximum, which is shifted
toward negative Vb values with respect to the point
Vb = 0. This shift of the maximum in the ε(Vb) curves
for the BTO layer is partly determined by the differ-
ences in electronic parameters of the lower and upper
interfaces between the ferroelectric and the supercon-
ductor. A drawing of the YBCO/BTO/YBCO parallel-
plate capacitor structure is shown in the inset in Fig. 5.

The appearance of a maximum in the (T)
curves for a BTO layer in the YBCO/BTO/YBCO and
YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO hetero-
structures at T ≈ 160 K is explained by the interaction
of electromagnetic radiation with ferroelectric
domain walls. When a bias voltage of ±2.5 V is
applied to the superconducting electrodes, the value
of  for the BTO layer decreases (T < 200 K),
which is caused by an increase in the mean domain

δtan

δtan
PH
size in an external electric field. The drastic increase
in  with an increase in temperature at T > 300 K
(Fig. 4) is associated with an increase in the electrical
conductivity of a ferroelectric layer due to the ioni-
zation of donor centers (oxygen vacancies [8]). In
the  temperature range 300–400 K, the  value for
a BTO layer in the YBCO/BTO/YBCO and
YBCO/STO(5 nm)/BTO/STO(5 nm)/YBCO hetero-
structures increases when measurements are carried out
in an external electric field.

3.3. Parameters of YBCO films in the
YBCO/BTO/YBCO heterostructure. The values of
TC and jC for YBCO films grown on the LAO(100) sur-
face fall in the ranges 88–91 K and (1–3) × 106 A/cm2,
respectively. The Curie temperature TC for an YBCO
film in the BTO(700 nm)/YBCO(200 nm)/LAO(100)
heterostructure essentially depends on the cooling rate
of the sample after the completion of the condensation
process. At vT = 25 K/min, the TC temperature, which
was determined from the temperature dependence of χ
for the YBCO film coated with a BTO layer 700 nm
thick, is equal to 50–55 K (see inset in Fig. 6) and the
unit cell parameter c of the superconductor lies in the
range 11.71–11.70 Å. As the cooling rate vT decreases
to 5 K/min, the TC  temperature for an YBCO layer in
the BTO(700 nm)/YBCO(200 nm)/LAO(100) hetero-

δtan

δtan
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Fig. 6. Temperature dependences of (1) ρ for the YBCO(200 nm) film grown on the LAO(100) substrate and (2) ρ/2.5 for a super-
conducting film 200 nm thick grown on the BTO(700 nm)/YBCO(200 nm)/LAO(100) substrate. vT = 5 K/min. The inset shows
temperature dependences of the magnetic susceptibility for the (1, 2) BTO(700 nm)/YBCO(200 nm)/LAO(100) and (3) YBCO(200 nm)/
BTO(700 nm)/YBCO(200 nm)/LAO(100) heterostructures formed at different rates vT, K/min: (1) 25 and (2, 3) 5.
structure increases to 85 K (inset in Fig. 6) and the unit
cell parameter c decreases approximately by 0.02 Å.
The BTO(700 nm) layer grown on the surface of the
YBCO film is the antidiffusion buffer which sub-
stantially decreases the rate of oxygen saturation of
the YBCO film. The capacitance C of the
YBCO/BTO/YBCO capacitor structure, which was
cooled at the rate vT = 25 K/min, is 50–80% less than
that of the structure cooled at the rate vT = 5 K/min. At
high cooling rates vT, the thickness of a layer with vio-
lated stoichiometry increases. This layer has a low per-
mittivity ε and is located at the YBCO/BTO interface.
The thickness of the layer with a low permittivity ε
increases at the expense of both the ferroelectric layer
and the superconducting film. According to [16], the
YBCO oxygen-depleted ceramic samples are charac-
terized not only by high resistivity ρ, but also by low
permittivity ε/ε0 < 10.

As follows from the data shown in Fig. 2, the azi-
muthal misorientations of crystallites in the upper and
lower YBCO films in the YBCO/BTO/YBCO hetero-
structure differ by a factor of two or four. An increase in
the misorientation of crystal grains in the YBCO film
brings about an increase in the stoichiometry violation in
the intercrystalline boundary region. The large azimuthal
misorientation of the crystallites is one of the reasons for
PHYSICS OF THE SOLID STATE      Vol. 43      No. 2      200
an increase in the resistivity ρ and a decrease in the crit-
ical current density jC for the YBCO film formed on the
BTO(700 nm)/YBCO(200 nm)/LAO substrate, as com-
pared to these parameters for a superconducting film
grown on the LAO(100) substrate.

4. CONCLUSION

The fundamental similarity between the structures
of perovskite-like ferroelectrics and cuprate supercon-
ductors is favorable to the growth of oriented BTO lay-
ers on the surface of YBCO epitaxial films. The
BTO(700 nm) layer grown on the YBCO(001) surface
consists of crystal grains separated by low-angle
boundaries. The stoichiometry violation in the
YBCO/BTO interface region encourages the formation
of a layer with a low permittivity ε. At T = 300 K, the ε
value for the BTO layer, which was calculated from the
capacitance of the YBCO/BTO(700 nm)/YBCO and
YBCO/STO(5 nm)/BTO(700 nm)/STO(5 nm)/ YBCO
capacitor structures, is considerably less than the per-
mittivity of barium titanate single crystals. An increase
in the loss tangent  with an increase in the temper-
ature at T > 300 K is caused by an increase in the elec-
trical conductivity of the ferroelectric layer. The
BTO(700 nm) layer grown on the YBCO film surface is

δtan
1
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the antidiffusion barrier which sharply decreases the rate
of oxygen saturation of the superconductor. The azimuthal
misorientation of crystal grains in the YBCO(001) film
grown on the BTO(100)/YBCO(001)/LAO(100) surface
and also the defects arising in the bulk of crystallites
due to roughening of the free surface of a ferroelectric
layer are responsible for the degradation of the super-
conductivity parameters of the upper YBCO layer in
the YBCO/BTO/YBCO heterostructure.
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Abstract—The heat capacity of Pb2MgTeO6 is measured in the temperature range 80–300 K. It is found that
the heat capacity exhibits an anomaly associated with the phase transition at T0 = 186.9 K. The thermodynamic
parameters of the structural transformation are determined. The effect of hydrostatic pressure up to 0.5 GPa on
the phase transition temperature is examined. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Oxygen-containing compounds with a perovskite
structure ABO3 (Pm m, Z = 1) are usually considered
model objects owing to the great diversity of their phys-
ical properties and the relatively simple structure of
their crystal lattice. The specific feature of perovskites
is the striking flexibility of their structure, which makes
it possible to change their atomic composition over a
wide range and, thus, to achieve the desirable proper-
ties of materials. One possible way of affecting their
properties is to replace the B cation by two different
cations B' and B". At certain ratios between ionic radii
and charges, the cations can undergo an ordering with
the formation of an elpasolite structure (ordered per-
ovskite) A2B'B"O6 (Fm m, Z = 4). A change in the
degree of ordering of the B' and B" cations can substan-
tially affect the physical properties of compounds and
the nature of their structural transformations. The com-
positionally disordered (partly or completely) com-
pounds are relaxors; i.e., they undergo diffuse
(smeared) phase transitions and exhibit a dispersion of
permittivity. Conversely, the ordered compounds
undergo sharp phase transitions with a decrease in the
temperature.

Despite extensive investigations of these com-
pounds by different methods, many fundamental prob-
lems still remain unsolved. For all these compounds,
the symmetry of distorted phases and even their num-
ber, as well as the mechanism of phase transitions, have
been debated in the literature up to now. Particular
attention has been concentrated on a large family of
lead-containing compounds Pb2B'B"O6, among which
are different-type relaxors and compositionally ordered
perovskites.

The Pb2MgTeO6 compound was first studied in [1, 2].
The dielectric measurements performed by Politova
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and Venevtsev [2] revealed a small anomaly in ε(T) near
190 K. The first-order phase transition at this tempera-
ture was confirmed by the structural investigations car-
ried out by Baldinozzi et al. [3]. Apart from the anom-
aly observed at ~190 K, a small change in the permit-
tivity was found at 145 K in [4]. Some parameters of
the Raman spectra also exhibited an anomalous behav-
ior in the temperature range 150–142 K. It should be
noted that this feature was observed only in measure-
ments upon cooling.

Baldinozzi et al. [4, 5] proved that the low-temper-
ature phases are the incommensurate phases with the
modulation vector (δδδ), where δ is close to 0.107 at
8 K. Analysis of the experimental data allowed these
authors to make the conclusion that the phase transfor-
mation at 190 K is an improper ferroelastic transition.
A trigonal ferroelastic distortion arises as a secondary
order parameter upon mode condensation at an incom-
mensurate point of the Brillouin zone. The intermediate
and low-temperature phases have the R m(δδδ) and
R (δδδ) symmetries, respectively.

The phase transition to the incommensurate phase is
a fairly rare phenomenon in mixed oxygen-containing
perovskites. Only three representatives of this family
with the aforementioned transitions, namely,
Pb2CoWO6 [6, 7], Pb2CdWO6 [8], and PbSc1/2Ta1/2O3
[9], are known to date. The characteristic feature of the
Pb2MgTeO6 compound is an extremely wide stability
range of the incommensurate phase. No transitions to
the commensurate phase was found down to 6 K [3, 4].

Another feature of the Pb2MgTeO6 compound is a
rather unusual temperature behavior of the thermal
ellipsoid parameters for lead ions. According to struc-
tural investigations, the Pb2B'B"O6 compounds are
characterized by a high degree of positional disordering
of lead ions in the initial cubic phase. For a number of

3
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compounds (Pb2CoWO6 [10], Pb2MgWO6 [11], and
Pb2CdWO6 [8]), the thermal ellipsoid parameters of
lead ions become normal in the distorted phases, which
suggests the ordering of lead ions. For other elpasolites,
specifically for Pb2MgTeO6 [5], these parameters
remain anomalously large. Moreover, soft modes were
revealed in all these compounds. At present, the order-
ing processes, soft modes, and their interaction upon
successive structural transformations in ordered per-
ovskites have been studied intensively.

In the present work, we thoroughly investigated the
p–T phase diagram and the heat capacity of the
Pb2MgTeO6 compound over a wide range of tempera-
tures. The purpose of this work was to determine the
thermodynamic parameters of the phase transitions and
to elucidate the role of the ordering processes in two
groups of oxygen- and lead-containing elpasolites,
which differ in the behavior of the thermal ellipsoid
parameters of lead ions. It is this heat capacity that can
provide reliable information on phase transitions, irre-
spective of their nature and mechanisms. At the same
time, the data on the thermodynamic characteristics of
the phase transitions (enthalpies and entropies) are
required in the refinement of different models for struc-
tural transformations. In turn, analysis of the p–T phase
diagrams enables one to gain a better insight into the
interrelation between successive structural distortions
in different representatives of the family under consid-
eration.

2. EXPERIMENTAL TECHNIQUE

The powder samples to be studied were prepared by
solid-phase synthesis from a stoichiometric mixture of

100

100
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Heat capacity, J/(mol K)

150 200 250 300
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150
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Fig. 1. Temperature dependence of the heat capacity of
Pb2MgTeO6. The dashed line represents the lattice heat
capacity.
P

initial oxides [3] and were used earlier in structural and
Raman studies [4, 5]. Analysis of x-ray diffraction pat-
terns showed that the sample contains a minor amount
of Pb3TeO6 and PbTeO3 impurities. No indications of
the composition disordering of Mg and Te ions was
found.

The heat capacity was measured using an adiabatic
calorimeter in the temperature range 80–300 K. A pow-
der sample (4.25 g) was placed in an indium cell and
was sealed in a helium atmosphere. The heat capacity
of the cell was measured in a separate experiment. The
measurements were carried out upon continuous and
discrete heating. In their immediate vicinity, the phase
transitions were investigated by the quasi-static ther-
mogram method at the mean rates of temperature
change |dT/dt | ≈ (1–1.5) × 10–2 K/min.

The effect of hydrostatic pressure on the phase tran-
sition temperature was studied with the same sample as
was used in the calorimetric measurements. The change
in the phase transition temperature was determined by
differential thermal analysis with the use of a copper–
germanium thermocouple. A quartz reference sample
was placed on one junction of the thermocouple, and a
small copper vessel (~0.05 cm3) with the studied com-
pound in it was placed on another junction of the ther-
mocouple. The high sensitivity of the thermocouple
made it possible to measure the phase transitions with
a small change in the enthalpy. A pressure as high as 0.5
GPa was produced in a chamber of the cylinder–piston
type, which was connected to a booster. A mixture of a
silicone oil and pentane was used as a pressure transmit-
ting medium. The pressure was measured by a manganin
resistance pressure gauge, and the temperature was mea-
sured using a copper–constantan thermocouple. The
errors of measurements were equal to ±10–3 GPa and
±0.3 K, respectively.

3. RESULTS

The results of our measurements of the heat capac-
ity Cp(T) are displayed in Fig. 1. It is seen that Cp(T)
exhibits only one anomaly with a maximum at T0 =
187.1 ± 0.5K. Figure 2 shows the experimental data on
the heat capacity in the temperature range in which,
according to Baldinozzi et al. [4], specific features in
the behavior of the permittivity and the Raman spec-
trum parameters are observed as a result of the second
phase transition. The measurements were performed
upon heating and cooling. In experiments upon cool-
ing, the sample was preliminarily heated above 190 K,
i.e., above the temperature of the transition from the
cubic phase. A relatively small, regular scatter of the
experimental points with respect to the smoothed curve
Cp(T) upon both heating and cooling indicates that any
anomaly in the heat capacity of the studied sample in
the temperature range 133–147 K is absent, to within
about 0.5% of the total heat capacity of the sample.
HYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
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Thermographic investigations in the vicinity of the
phase transition allowed us to refine the transition tem-
perature T0 = 186.9 ± 0.1 K and to determine its hyster-
esis δT0 = 0.63 ± 0.05 K. The experimental heat capac-
ities measured using a continuous heating technique
upon heating and cooling in the phase transition range
are displayed in Fig. 3. The anomaly observed in the
heat capacity is strongly asymmetric. Note that the heat
capacity decreases considerably more slowly in the

(a)

1
2

(b)
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Fig. 2. (a) Temperature dependences of the heat capacity
measured upon continuous and discrete heating of
Pb2MgTeO6 in the range of the second phase transition
assumed in [9] and (b) deviations of the experimental points
from the smoothed dependences: (1) heating and (2) cooling.
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Fig. 3. Temperature dependences of the heat capacity mea-
sured upon (1) heating and (2) cooling in the vicinity of the
phase transition in Pb2MgTeO6.
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temperature range above the phase transition. As follows
from the thermographic data, the latent heat of the phase
transition has a small value (δH0 = 200 ± 10 J/mol). The
corresponding change in the entropy is δS0 = δH0/T0 ≅
1.1 J/(mol K). A slight difference between the phase
transition temperature and the temperature reported in
the literature can be associated with difficulties in its
accurate determination from the data of dielectric mea-
surements and a high rate of change in temperature
dT/dt in these experiments [4].

The integrated thermodynamic characteristics of the
phase transition were obtained in processing the anoma-
lous contribution of the heat capacity ∆Cp(T) = Cp(T) –
Cl(T). The lattice heat capacity Cl(T) was determined
by the approximation of the experimental data far from
the phase transition temperature with the use of the
Debye and Einstein functions. The temperature depen-
dence of the lattice heat capacity is shown by the
dashed line in Fig. 1. The heat capacity anomaly is
observed in a rather wide range of temperatures (from
130 to 230 K). The entropy of the phase transition was
calculated by integration of the ∆Cp(T)/T function. The
temperature dependence of the entropy of phase transi-
tion is displayed in Fig. 4. The total entropy change ∆S0

is equal to 2.59 ± 0.25 J/(mol K). The ratio δS0/∆S0 ≈
0.42 indicates that the phase transition is the first-order
transformation close enough to a tricritical point.

Figure 5 shows the p–T phase diagram of
Pb2MgTeO6. No anomalies that could be assigned to
the pressure-induced transitions (except for the transi-
tion from the cubic phase) were found in the pressure
range covered. The phase boundary is described by the
linear dependence T(p) = a + bp with the coefficients
a = 186.9 ± 0.1 K and b = –6.07 ± 0.10 K/GPa.

100
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∆S/R

125 150 175 200 225

0.1

0.2
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Fig. 4. Temperature dependence of the entropy of phase
transition in Pb2MgTeO6.
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4. DISCUSSION AND CONCLUSIONS

The main thermodynamic characteristics of the
phase transitions in Pb2MgTeO6 and two oxygen-con-
taining ordered perovskites studied in our earlier works
[12, 13] are listed in the table. It is seen that the entropy
change upon the phase transition in Pb2MgTeO6 is sub-
stantially less than the quantity ∆S for the other studied
compounds. In order to elucidate the reasons for this
difference, we will consider the structural characteris-
tics of the cubic and distorted phases in these com-
pounds.

The cubic phase in Pb2MgTeO6, as well as in the
other representatives of this family, is characterized by
a high degree of positional disordering of lead ions [10,
11]. The refinement of the structure of the Fm m phase
in Pb2MgWO6 and Pb2CoWO6, in the case when the
lead ions have only one position and occupy only the 8c
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Fig. 5. The p–T phase diagram for Pb2MgTeO6.

Structural and thermodynamic characteristics of phase tran-
sitions in Pb2B'B''O6 ordered perovskites

Characteristic Pb2MgWO6 Pb2CoWO6 Pb2MgTeO6

T1, K 312.8 ± 0.2 302.7 ± 0.5 186.9 ± 0.1

G1 Pmcn Incommen-
surate

R (δδδ)

δT1, K 2.45 ± 0.2 ~1 0.63 ± 0.05

dT1/dp, K GPa–1 –32.8 ± 1.5 37.4 ± 5.0 –6.07 ± 0.10

∆S1/R 1.69 ± 0.14 1.15 ± 0.18 0.31 ± 0.03

T2, K 256.2 ± 0.5

G2 Pmcn

δT2, K 11.4

dT2/dp, K GPa–1 –220 ± 38

∆S2/R 0.18 ± 0.02

Reference [11, 12, 13] [7, 13] [4, 5], this 
work

3

P

sites, leads to large values of the thermal vibration
parameters and the R factors. The best R factors are
obtained for the case when the lead ions move in a mul-
tiple-well potential and occupy 12 equivalent positions
[10, 11]. Unfortunately, the available experimental data
were insufficient to perform a similar analysis for
Pb2MgTeO6 [5]. Nonetheless, the large thermal param-
eter suggests that lead ions in this compound are also
displaced from the 8c positions and disordered.

In Pb2MgWO6 and Pb2CoWO6, the phase transi-
tions bring about the ordering of the lead atoms. In
Pb2MgTeO6, the thermal parameters of lead ions
remain anomalously large with a decrease in the tem-
perature, which indicates that the lead ions remain dis-
ordered in the low-temperature distorted phase [5]. A
similar situation is also observed in PbFe0.5Nb0.5O3
[14], PbSc0.5Nb0.5O3 [15], and PbFe0.5Ta0.5O3 [16].

In the cubic phases of all the aforementioned com-
pounds, the thermal parameters of oxygen ions are also
rather large. As the phase transition temperature is
approached upon cooling, the thermal ellipsoid for the
oxygen ions becomes increasingly flattened, which was
attributed [5] to the softening of the modes responsible
for the phase transition.

As regards the structural features associated with
the lead ions, it seems likely that there exists a differ-
ence between the compounds in which the main distor-
tion is rhombohedral and those in which it is pseudot-
etragonal. In the latter compounds, no positional disor-
dering of the lead ions is observed in the low-
temperature phase. Actually, in Pb2MgWO6 and
Pb2CoWO6, the large thermal ellipsoid parameters for
the lead ions in the cubic phase become normal below
the phase transition temperatures [11]. The significant
role of the lead ordering in the mechanism of phase
transitions is also confirmed by the results of calorimet-
ric investigations of these compounds [12, 13]: the
entropy change is ∆S/R ≈ ln4 – ln6.

One reason for this behavior of the lead ions can be
their tendency toward the formation of tetrahedral coor-
dination polyhedra PbO4 [17]. These polyhedra were
found in the pseudotetragonal low-temperature phase
of Pb2MgWO6 [11]. In the case of rhombohedral sym-
metry, the ordering of the lead ions on a threefold axis
can result only in the PbO3 configuration. The PbO4
configuration can be realized in this symmetry when
the lead ions are displaced from the threefold axis and
are disordered over several positions. The absence of a
substantial change in the positional disordering of lead
ions upon phase transition in Pb2MgTeO6 is supported
by the entropy change ∆S/R = 0.31, which was obtained
in the present work.

The parameters of the p–T phase diagrams for the
compounds under considerations (see table) are also
noteworthy. The substantial difference in the values of
dT1/dp stands out. In this respect, it is necessary to
return to the question about the existence of the second
HYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001



HEAT CAPACITY AND THE p–T PHASE DIAGRAM 349
phase transition in Pb2MgWO6. As was noted in our
earlier work [13], the p–T diagrams for the Pb2MgWO6
and Pb2CoWO6 compounds can be treated as related.
To put it differently, the line of the phase transition
Fm m  Pmcn in the magnesium compound is split
when the unit cell volume changes and the intermediate
incommensurate phase is formed in cobalt elpasolite.
In our opinion, this is the main reason why both the
magnitudes of dT1/dp and their signs differ for these
elpasolites. A small shift in T1 under a pressure in
Pb2MgTeO6 counts in favor of the difference in the
mechanism of phase transition in this compound,
which is in agreement with the data of structural and
calorimetric investigations. As regards the second
phase transition in this compound, the question remains
open.

ACKNOWLEDGMENTS
This work was supported by the Russian Foundation

for Basic Research (project no. 00-15-96790) and the
Krasnoyarsk Regional Scientific Foundation (project
no. 9F0213).

REFERENCES
1. G. Bayer, J. Am. Ceram. Soc. 46, 604 (1963).
2. E. D. Politova and Yu. N. Venevtsev, Dokl. Akad. Nauk

SSSR 209 (4), 838 (1973) [Sov. Phys. Dokl. 18, 264
(1973)].

3. G. Baldinozzi, Ph. Sciau, J. Moret, and P. A. Buffat,
Solid State Commun. 89 (5), 441 (1994).

3

PHYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
4. G. Baldinozzi, Ph. Sciau, and A. Bulou, J. Phys.: Con-
dens. Matter 9, 10531 (1997).

5. G. Baldinozzi, D. Grebille, Ph. Sciau, et al., J. Phys.:
Condens. Matter 10, 6461 (1998).

6. H. Tamura, Ferroelectrics 21, 449 (1978).
7. Ph. Sciau, K. Krusche, P. A. Buffat, and H. Schmid, Fer-

roelectrics 107, 235 (1990).
8. Ph. Sciau and D. Grebille, in Proceedings of the Interna-

tional Conference on Aperiodic Crystals, Aperiodic’94
(World Scientific, Singapore, 1994), p. 460.

9. C. A. Randell, S. A. Markgraf, A. S. Bhalla, and K. Baba-
Kishi, Phys. Rev. B 40, 413 (1989).

10. G. Baldinozzi, Ph. Sciau, and J. Lapasser, Phys. Status
Solidi A 133, 17 (1992).

11. G. Baldinozzi, Ph. Sciau, M. Pinot, and D. Grebille, Acta
Crystallogr., Sect. B: Struct. Sci. B51, 668 (1995).

12. I. N. Flerov, M. V. Gorev, and Ph. Sciau, Fiz. Tverd. Tela
(St. Petersburg) 41 (9), 1686 (1999) [Phys. Solid State
41, 1544 (1999)].

13. I. N. Flerov, M. V. Gorev, and Ph. Sciau, J. Phys.: Con-
dens. Matter 12, 559 (2000).

14. N. Lampis, Ph. Sciau, and A. G. Lehmann, J. Phys.: Con-
dens. Matter 11, 3489 (1999).

15. C. Malibert, B. Dkhil, J. M. Kiat, et al., J. Phys.: Con-
dens. Matter 9, 7485 (1997).

16. A. G. Lehmann and Ph. Sciau, J. Phys.: Condens. Matter
11, 1235 (1999).

17. N. Revezzi and Ph. Sciau, J. Solid State Chem. 139, 332
(1998).

Translated by O. Borovik-Romanova



  

Physics of the Solid State, Vol. 43, No. 2, 2001, pp. 350–354. Translated from Fizika Tverdogo Tela, Vol. 43, No. 2, 2001, pp. 336–340.
Original Russian Text Copyright © 2001 by Bagautdinov, Brown, Yuzyuk, Dmitriev.

                                                                                                                                                                                                

LATTICE DYNAMICS 
AND PHASE TRANSITIONS
X-ray Diffraction Study of a Sequence 
of Phase Transitions in Cs2HgCl4 Crystals

B. Sh. Bagautdinov1, 2, I. D. Brown2, Yu. I. Yuzyuk3, and V. P. Dmitriev3

1 Institute of Solid-State Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia
2 Brockhouse Institute of Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1 Canada

e-mail: bagautdi@issp.ac.ru
3 Research Institute of Physics, Rostov State University, pr. Stachki 194, Rostov-on-Don, 344014 Russia

Received April 5, 2000; in final form, June 29, 2000

Abstract—The temperature behavior of lattice parameters and diffraction patterns of the reciprocal lattice in
Cs2HgCl4 crystals is studied by x-ray diffraction in the temperature range from 4.2 to 300 K. A sequence of
phase transitions is observed and attributed to the evolution of incommensurate and commensurate modulations
along the crystallographic a and c axes of a unit cell in the initial Pnma structure. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Cesium tetrachloromercurate Cs2HgCl4 belongs to
the family of A2BX4 crystals and has a β-K2SO4 struc-
ture (Pnma, Z = 4, c > a > b) at room temperature [1].
Most of the known compounds with incommensurate
phases belong to the A2BX4 family. Investigations into
the physical properties of Cs2HgCl4 crystals revealed a
series of phase transitions occurring upon cooling [2–
7]. The behavior of the 35Cl NQR lines and permittivity
suggests [3, 6] the existence of a transition in the
incommensurate phase below 219 K. Dielectric mea-
surements also revealed the polar properties in the tem-
perature ranges 196.4–184.5 and 172.1–164.7 K. The
combination of incommensurate and ferroelectric
phases stimulates interest in the Cs2HgCl4 compound.
However, the available data on the temperatures of
phase transitions in Cs2HgCl4 and their sequence are
contradictory. In order to clarify the structural aspects
of the sequence of phase transitions in Cs2HgCl4 crys-
tals, we carried out a systematic x-ray diffraction inves-
tigation of the configuration of the reciprocal lattice
and measured the interplanar spacings in a wide tem-
perature range from 4.2 to 300 K.

2. EXPERIMENTAL TECHNIQUE

Crystals of Cs2HgCl4 were grown by evaporation
from an aqueous solution at room temperature [1]. We
studied optically transparent single-crystals (100),
(010), and (001) sections 1.8 × 1.5 × 0.3 mm in size,
which were cut from the same crystal. The samples
intended for measurements were placed in a helium
cryostat, ensuring constancy of temperature to within
0.05 K. The temperature evolution of satellite reflec-
tions was studied on a Huber high-resolution four-cir-
1063-7834/01/4302- $21.00 © 20350
cle diffractometer with a rotating anode (CuKα radia-
tion, graphite monochromator). The intensities of
x-rays reflected from the sample surface were recorded
in the θ/2θ and θ scan modes and from the undistorted
network of the reciprocal lattice (q scan mode). The
scanning along the chosen directions of the reciprocal
lattice was carried out with a step ∆q = 0.005. An anal-
ysis of the systematic absences in diffraction reflections
and the search for satellite reflections were carried out
by scanning in the basal planes (hk0), (0kl), and (h0l).
The lattice parameters were measured on a Siemens
D500 two-circle diffractometer (CuKα radiation)
adapted for single-crystal goniometry. The interplanar
spacings along the crystallographic axes of the initial
high-temperature Pnma phase were determined from
the centers of gravity of the Bragg reflections (12, 0, 0)
(diffraction angle 2θ ~ 140°), (0, 8, 0) (2θ ~ 108°), and
(0, 0, 16) (2θ ~133°) recorded in the θ/2θ scan mode.
The accuracy of measurements was no worse than 2 ×
10–4 Å.

3. RESULTS AND DISCUSSION

3.1. Modulation along the a axis. The configura-
tion of the Cs2HgCl4 reciprocal lattice of the initial
Pnma phase with systematic absences (hk0: h = 2n + 1,
0kl: k + l = 2n + 1) remained unchanged upon cooling
to 221 K. Below Ti = 221 K, satellite reflections
appeared in the diffraction experiment on the (hk0)
reflecting plane in the direction of the a* axis, indicat-
ing the evolution of structural modulations (Fig. 1). The
positions of the first-order satellite reflections are
described by the vector q = (4/5 – δ)a* from the
allowed reflections (hk0: h = 2n) or by the vector q =
(1/5 + δ)a* from the forbidden reflections (hk0: h = 2n
+ 1), where a* is the reciprocal lattice vector for the ini-
001 MAIK “Nauka/Interperiodica”
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tial Pnma phase and δ is the incommensurability
parameter. The temperature behavior of the first-order
satellite (4/5 – δ, 6, 0) is illustrated in Fig. 2. The
changes in the position and intensity of satellite reflec-
tions upon a change in temperature indicate a incom-
mensurate nature of modulation. The behavior of the
modulation wave vector q = (1/5 + δ)a* as a function
of temperature is shown in Fig. 3. Satellites appear at
Ti = 221 K with δ = 0.045 and upon cooling, approach
the rational positions that correspond to the wave vec-
tor q = 1/5a* at 185 K with δ = 0. In this case, the sat-
ellite intensity abruptly decreases and vanishes upon
further cooling below 184 K. Heating of the samples
reveals a hysteresis behavior: commensurate modula-
tions with q = 1/5a* cover the temperature range from
184 to 195 K, after which the modulation vector tends
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Fig. 1. Diffraction patterns for the series (h60) in the (a) ini-
tial Pnma phase (T = 293 K) and (b) temperature range of
the incommensurate phase (T = 197 K). In addition to Bragg
reflections, satellite reflections are detected in the incom-
mensurate phase.
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Fig. 2. Temperature behavior of the satellite reflection
(4/5 − δ, 6, 0). The change in the position and intensity can
be clearly seen.
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Fig. 3. Temperature dependences of the wave vector of
modulations along the a* axis upon (1) cooling and (2) heat-
ing of the sample.
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to the value q(Ti). The global nature of the hysteresis
loop embracing the temperature ranges of the existence
of the incommensurate and commensurate phases is
probably associated with the interaction of modulations
with structural defects. No satellites of higher harmon-
ics were detected, which points to the predominantly
sinusoidal shape of the modulation wave. In the entire
temperature range above 184 K, Bragg reflections obeyed
the conditions corresponding to the glide planes a
(hk0: h = 2n) and n (0kl: k + l = 2n). These conditions
are in accord with the space groups of the initial
paraelectric Pnma phase, the averaged Pnma structure

Fig. 4. Maps of the distribution of the scattered intensity in
a region on the (0kl) plane at (a) 293, (b) 177, and (c) 135 K.
Satellite reflections are detected along the axis c* (panels b
and c).
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in the incommensurate phase, and the polar Pn21a
phase. In the temperature range of the incommensurate
phase (195–221 K), the satellites correspond to the
condition hk0m: k + m = 2n, which indicates the
Pnma(α, 0, 0)0ss group typical of A2BX4 compounds
in the four-dimensional superspace representation [8].
Since dielectric measurements [5, 6] revealed the polar
properties in the temperature range of the commensu-
rate phase (184–195 K), the corresponding space group
is noncentrosymmetric, i.e., Pn21a.

3.2. Modulation along the c axis. Below 184 K, sat-
ellites are detected in the (0kl) and (h0l) planes of the
reciprocal lattice in the direction of the c* axis. Figure 4
shows a map of the two-dimensional distribution of the
scattered intensity on the (0kl) plane. It can be seen that
at low temperatures, satellites are observed in the posi-
tions corresponding to q = γc*. Consequently, the direc-
tion of modulations of the structure changes at 184 K: the
wave vector q = αa* is transformed into q = γc*. A
detailed temperature analysis of satellites along the c*
axis revealed the following transformations of the mod-
ulation wave vector: T1 = 184 K, q = c*/3; T2 = 175 K,
q = 2c*/5; T3 = 172 K, q = (3/7 – δ)c*; T4 = 169 K,
q = 3c*/7; T5 = 163 K, q = c*/2; and T6 = 112 K, q = c*/2
(Fig. 5). The structure with a unit cell doubled along the
c axis (q = c*/2) remains unchanged down to 4.2 K.
Thus, all phase transitions in Cs2HgCl4 crystals in the
temperature range from 221 to 163 K are associated
with rearrangements of modulations. At 112 K, Bragg
reflections were detected in the positions 0k0: k = 2n,
indicating a phase transition with a change in the
symmetry of the structure from P21/c (163–112 K) to
Pc. It should be noted that in incommensurate phases
of most of the A2BX4 compounds, modulations prop-
agate along the pseudohexagonal axis a, while mod-
ulations along the c axis were detected only in a few

180175170165160155
T, K

Wavevector of c*-axis modulaton, c*

0.50

0.46

0.42

0.38

0.34

Fig. 5. Temperature dependence of the wave vector of mod-
ulations along the c* axis. The data are obtained during sam-
ple cooling.
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Fig. 6. Temperature dependences of the interplanar spacings d(100), d(010), and d(001) and the lattice volume of the Cs2HgCl4 crystal.
Measurements are made in the heating mode. For convenience of comparison with the lattice parameters, the volume data are pre-
sented in the power form. The phase transition at T5 = 163 K is accompanied by a change in volume by 0.3%.
A2BX4 compounds [9]. Cs2HgCl4 is the first crystal of
the A2BX4 family in which the structure is modulated
first along the axis a* and then along the c* axis of the
initial Pnma structure.
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3.3. Temperature behavior of interplanar spac-
ings. The structure of the Cs2HgCl4 crystal at room
temperature was characterized by the following lattice
parameters: a = 9.8136(9) Å, b = 7.6018(6) Å, and
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Thermal expansion coefficients in the temperature ranges of Cs2HgCl4 phases (×10–5 K–1)

Temperature range, K Wave vector α100 α010 α001

300–221 – 3.98 7.64 3.66
221–195 (1/5 – δ)a* 4.11 9.53 1.13
195–184 1/5a* 3.39 11.03 0.59
184–175 1/3c* 9.42 6.31 –4.69
175–172 2/5c* 5.69 8.99 –4.55
172–169 (3/7 – δ)c* 2.79 10.18 –4.11
169–163 3/7c* 3.48 13.41 –3.89
163–112 1/2c* 7.67 13.35 –3.24
112–4.2 1/2c* 3.09 7.11 –1.64
c = 13.4201(9) Å [10]. The relationship c ~ b indi-
cates a pseudohexagonal structure of the β-K2SO4 type.
The results of measurements of the interplanar spacings
d(100), d(010), and d(001) and the lattice volume as func-
tions of temperature in the range from 4.2 to 300 K are
displayed in Fig. 6. The thermal expansion coefficients
that correspond to the regions of the existence of the
observed phases are presented in the table. The temper-
ature dependences of the parameters exhibit clearly
manifested anomalies in the phase transition range at
T1 = 184 K and T5 = 163 K. The jumps in the parameters
and the temperature hysteresis loops (∆T = 1.5 K) in the
vicinity of these temperatures indicate a first-order phase
transition. A distinguishing feature of the thermal expan-
sion of Cs2HgCl4 is the slowing down of variation in the
parameter c upon a transition to the incommensurate
phase and the sign reversal of the thermal expansion coef-
ficient below 184 K. It should be noted that, upon a transi-
tion to the incommensurate state, many crystals display a
similar slowing down of variations in the thermal expan-
sion coefficient and even its vanishing along a direction
perpendicular to the wave vector [11].

Thus, the above analysis led to the conclusion that
starting from Ti = 221 K, processes associated with a
rearrangement in the modulated structure occur in
Cs2HgCl4 crystals upon cooling. This manifests itself in
the behavior of satellite reflections. As a result of cool-
ing, the incommensurate and commensurate modulated
states are formed in the structure. Eight phase transi-
tions were found at the temperatures Ti = 221 K (q =
(1/5 + δ)a*), Tc = 195 K (q = a*/5), T1 = 184 K (q =
c*/3), T2 = 175 K (q = 2c*/5), T3 = 172 K (q = (3/7 –
δ)c*), T4 = 169 K (q = 3c*/7), T5 = 163 K (q = c*/2),
and T6 = 112 K (q = c*/2). A distinguishing feature of
modulations in Cs2HgCl4 is their switching over from
the pseudohexagonal direction a to the perpendicular
direction c. The variations in the interplanar spacings
occur with jumps in the first-order phase transition
range at 184 and 163 K.
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Abstract—A heat transfer process is studied in a one-dimensional lattice of coupled rotators in which the ori-
entation interaction between neighboring units is described by the periodic potential. Using this system as an
example, it is demonstrated for the first time that one-dimensional lattices with a finite thermal conductivity
in the thermodynamic limit can exist without substrate potential. As the temperature increases, the given sys-
tem transforms from the state with an infinite thermal conductivity to the state with a finite thermal conduc-
tivity. The finiteness of the thermal conductivity stems from the existence of localized stationary excitations
that interfere with heat transfer in the lattice. The lifetime and the concentration of these excitations increase
with an increase in the temperature, which leads to a monotonic decrease in the thermal conductivity coefficient.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Heat conduction in a one-dimensional lattice is a
classical problem concerned with the justification of
the macroscopic Fourier thermal conductivity law (the
proportionality of the heat flux to the temperature gra-
dient) at the microscopic level. Anomalies of the ther-
mal conductivity in nonlinear systems are well known,
beginning with the famous work of Fermi, Pasta, and
Ulam [1]. In integrable systems (harmonic lattices and
Toda chains) and systems close to them, temperature
gradients are not formed and the Fourier law is not valid
(the systems possess an infinite thermal conductivity).
According to [2], the nonintegrability of a system is the
necessary condition for finiteness of the thermal con-
ductivity. However, recent works dealing with the
Fermi–Pasta–Ulam lattice [3–5] and the diatomic Toda
chain [6] demonstrated that the nonintegrability alone
does not ensure fulfillment of the Fourier law. The non-
integrability of these systems leads to the formation of
a linear temperature gradient, but the heat flux is pro-
portional to 1/Nα (rather than to 1/N), where 0 < α < 1
and N is the dimensionless length of the chain. There-
fore, these systems also possess an infinite thermal con-
ductivity in the thermodynamic limit N  ∞. The
analytical estimates made by Lepri et al. [5] in the low
amplitude strain approximation indicate that any one-
dimensional chain with an acoustic phonon branch
should have an infinite thermal conductivity.

On the other hand, there exist a number of specially
constructed one-dimensional nonintegrable systems
that are characterized by a finite thermal conductivity
[7, 8]. A finite thermal conductivity was found within
1063-7834/01/4302- $21.00 © 20355
the Frenkel–Kontorova model [9, 10] and also for a
chain with other anharmonic potentials of a substrate
[11]. In this case, the linear temperature gradient is
formed and the heat flux is proportional to 1/N. An
essential feature of all these models is the presence of
an external potential that simulates the interaction
between the chain and substrate. These systems have no
translational invariance, and the total momentum is not
preserved in them. Hatano [6] assumed that the external
potential plays the key role in providing a finite thermal
conductivity. It was hypothesized that an infinite ther-
mal conductivity is inherent in all the isolated one-
dimensional lattices in which the lack of external forces
leads to preserving the total momentum of the system.

This paper is concerned with the numerical simula-
tion of a heat transfer process in a one-dimensional lat-
tice with a preserved momentum (more precisely, an
angular momentum), namely, the chain consisting of
identical rotators with a periodic potential of the inter-
action between the nearest neighbors. In this system, an
increase in the temperature leads to a crossover from an
infinite to a finite thermal conductivity, which does not
contradict the main inference made in [5] but disproves
the above hypothesis. It was shown that this behavior of
the system is associated with the excitation of localized
rotational modes which concentrate the thermal energy
and are efficient phonon scatterers.

2. MODEL

An example of the one-dimensional lattice consist-
ing of identical rotators is provided by a linear macro-
molecule which can undergo torsional strains (internal
001 MAIK “Nauka/Interperiodica”
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rotations around rigid valence bonds) in addition to lon-
gitudinal strains. In this case, the interstitial interaction
potential is a periodic function (upon rotation through
360°, a unit transforms into the initial state).

As a model, we chose a chain of molecules sepa-
rated by a fixed distance l. We assume that the mole-
cules can execute only rotations around the chain axis.
Let φn(t) be a variable that specifies the rotation of the
nth monomer in the chain in a fixed coordinate system.
Then, a dimensionless Hamiltonian of the system has
the form

(1)

where the dot designates the differentiation with
respect to time t and the interstitial interaction potential
(rotation potential) U(φ) is the nonnegative periodic
function with a period of 2π, which satisfies the follow-
ing conditions: U(0) = 0, U'(0) = 0, and U''(0) = 1.

For definiteness, we will use the interaction poten-
tial in the simplest form

(2)
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1
2
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Fig. 1. Distributions of (a) the local heat flux Jn and (b) the
local temperature Tn over a chain with periodic interaction
potential (N = 500, N0 = 50, T+ = 0.11, T– = 0.09, and the

averaging time t = 5 × 106).
P

3. CHAIN THERMALIZATION

The Nosé–Hoover thermostat is usually used in
numerical simulations of thermal conductivity [3, 4, 6].
However, Fillipov et al. [12] showed that this thermostat
does not provide an adequate chain thermalization. Hence,
we employed the classical Langevin thermostat.

Let us consider a finite chain consisting of N units.
The chain ends are immersed in the Langevin thermo-
stat at temperatures T+ and T–. The appropriate set of
equations of chain motion has the form

(3)

where F(φ) = dU(φ)/dφ, N0 is the length of the terminal
chain fragments immersed in the thermostat, γ is the
relaxation coefficient, and ξn and ηn denote the Gauss-
ian white noise that simulates the interaction with the
thermostat 〈ξ n(t)〉  = 0, 〈η k(t)〉  = 0, 〈ξ n(t1)ηn(t2)〉  = 0,
〈ξ n(t1)ξk(t2)〉  = 2γT+δnkδ(t2 – t1), and 〈η n(t1)ηk(t2)〉  =
2γT−δnkδ(t2 – t1).

The set of equations of motion (3) was integrated
numerically. After the attainment of a thermal equilib-
rium, the chain is characterized by the temperature gra-
dient

(4)

and the local heat flux

(5)

where jn = –[F(φn + 1 – φn) + F(φn – φn – 1)] /2. The cal-
culations were carried out with the parameters γ = 0.1;
N0 = 50; N = 150, 200, 300, 500, 700, 900, 1300, 1700,
2100, and 2400; and the initial conditions for the

ground state of the chain . The lat-
tice came into thermal equilibrium with the thermostat
for time t = 105. The mean values of the temperature
gradient (4) and the local heat flux (5) were determined
from the subsequent dynamics of the system for time
t = 106–107.

This method of thermalizing the chain allows us to
solve the problem of the boundary conditions. The dis-
tributions of the heat flux Jn and the temperature profile
Tn over the chain (Fig. 1) demonstrate that a free heat
flux is observed in an internal chain fragment N0 < n ≤
N – N0. The temperature gradient is linear, and the local
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heat flux does not depend on the number of the chain
unit: Jn = J. Consequently, the thermal conductivity
coefficient can be determined using only an internal
chain fragment; that is,

(6)

where N1 = N – 2N0 is the length of this fragment. The
limiting value

(7)

corresponds to the thermal conductivity coefficient of
the chain at the temperature T = (T+ + T–)/2.

The thermal conductivity coefficient can also be
found from the Green–Kubo formula [13]:

(8)

where c(t) = 〈Js(τ)Js(τ – t)〉 τ is the correlation function

and Js(t) =  is the total heat flux in the chain.

The correlation function c(t) was determined with
the use of a finite cyclic chain with N = 4000, which
was completely immersed in the Langevin thermostat.
The dynamics of the isolated chain was considered
after the attainment of thermal equilibrium between the
chain and the thermostat. In order to improve the accu-
racy in the determination of the correlation function,
we used its value averaged over 500 different realiza-
tions of the initial chain thermalization.

4. THERMAL CONDUCTIVITY OF A CHAIN 
WITH THE PERIODIC POTENTIAL 
OF INTERSTITIAL INTERACTION

The numerical simulation of the chain dynamics
revealed a critical temperature in the range 0.2 < T0 < 0.3.
At T < T0, the chain shows an infinite thermal conduc-
tivity, and at T > T0, its thermal conductivity has a finite
value. The dependence of κ on N1 at temperatures T =
0.2 and 0.3 is displayed in Fig. 2. It is seen from Fig. 2
that, at T = 0.2, the thermal conductivity coefficient κ
increases as  with an increase in the chain length
N1. Therefore, limit (7) is equal to infinity. At T = 0.3,
as the chain length N1 increases, the thermal conductiv-
ity κ(N1) tends to the finite value κ = 31.8; i.e., the ther-
mal conductivity of the chain is finite at this tempera-

κ N1( ) J N1/ T N0 1+ T N N0––( ),=

κ κ N1( )
N1 ∞→
lim=

κ c
1

NT2
---------- c τ( ) τ ,d

0

t

∫N ∞→
lim

t ∞→
lim=

jn t( )
n∑

N1
0.26
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ture. The dependence κ(N1) at temperature T = 1 is given
in the table.

Investigation into the behavior of the correlation
function c(t) at t  ∞ confirmed the statement that
the thermal conductivity of the chain is a finite quantity.
At temperature T > T0, the correlation function expo-
nentially tends to zero; hence, it follows that the inte-
gral in formula (8) converges, and, therefore, the ther-
mal conductivity coefficient κc has a finite value. The
character of the decrease in the correlation function
with an increase in the time is clearly seen from Fig. 3.
At T0 < T < 2, the function monotonically tends to zero
(Fig. 3a). At T > 2 (Fig. 3b), c(t) is an oscillating
decreasing function [oscillations encourage a more
rapid convergence of the integral in formula (8)]. As
follows from the table, two methods used to determine
the thermal conductivity coefficient lead to very close
results.

Let us now consider the dependence of the thermal
conductivity coefficient κ on the chain temperature T.
According to the calculations of the thermal conductiv-

1

3

4

2

4

3

lnN1

lnκ

5 6 7 8

4

5

Fig. 2. Dependences of the natural logarithm of the thermal
conductivity coefficient κ on the natural logarithm of the
internal chain fragment length N1. Circles 1 correspond to
the numerically calculated values at temperature T = 0.2
(T+ = 0.21 and T– = 0.19). Straight line 2 approximating this
dependence has the slope δ = 0.26. Squares 3 indicate the
numerically calculated values at temperature T = 0.3 (T+ =
0.33 and T– = 0.27). Straight line 4 approximating this
dependence has zero slope (κ = 31.8).
Dependences of the thermal conductivity coefficient κ on the length N1 of an internal chain fragment and the thermal conduc-
tivity coefficient κc calculated by the Green–Kubo formula at temperature T = (T+ + T–)/2

T+ T– κ(50) κ(100) κ(200) κ(400) κ(600) κ(800) κc

0.33 0.27 21.14 23.67 25.96 29.04 29.59 29.54 28.47

1.1 0.9 0.506 0.574 0.634 0.572 0.613 0.612 0.55
1
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ity from the Green–Kubo formula (8), the κ coefficient
decreases monotonically with an increase in the tem-
perature. This dependence is depicted in Fig. 4. The
thermal conductivity tends to infinity at T  T0 and
exponentially decreases at T  ∞.
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Fig. 3. (a) Exponential decay of the correlation function c(t)
at temperature T < 2 (T = 0.5 and thermal conductivity coef-
ficient κc = 5.044) and (b) oscillations of the function at T > 2
(T = 2.5 and thermal conductivity coefficient κc = 0.014).
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Fig. 4. Dependence of the thermal conductivity coefficient
κ on the chain temperature T.
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5. DEPENDENCE OF THE HEAT FLUX
ON TEMPERATURE GRADIENT

Now, we dwell on the dependence of the heat flux J
on the temperature difference ∆T. For this purpose, we
consider a finite chain containing N = 300 units with
zero temperature at the right end (T– = 0). Then, the
temperature difference is defined as ∆T = T+. In this
case, the heat flux can be defined as the friction work at
the right end of the chain:

(9)

The numerical integration of the set of equations of
motion (3) demonstrates that this value coincides with
the local heat flux in an internal chain fragment: Jn = J0
at n = N1 + 1, …, N – N1. This coincidence confirms that
the local heat flux (5) is correctly determined.

Figure 5 shows the dependence of the heat flux J0 on
the temperature difference ∆T. As can be seen from
Fig. 5, the heat flux first increases monotonically with
an increase in the temperature difference. At the tem-
perature T = Tr = 1.3, the flux reaches a maximum (sat-
uration). A further increase in the temperature differ-
ence brings about a gradual decrease in the flux. Such
an unusual behavior of the system is associated with the
specific properties of phonons and the presence of
localized rotational modes in the chain at high temper-
atures, which prevents phonon motion. Let us analyze
in detail the properties of these excitations.

6. PERIODIC WAVES OF CONSTANT PROFILE

We consider the dispersion law of nonlinear peri-
odic waves

(10)

where z is the wave variable (z = n – st) and φ(z) is the
periodic function with the period L (φ(z + L) ≡ φ(z)).
Within the low amplitude approximation (|φ(z)| ! π),
the dispersion equation takes the form

(11)

where q = 2π/L is the wave number and L is the wave-
length (L ≥ 2). The phase wave velocity is defined as s =
ω(q)/q [the velocity of low-amplitude long-wavelength
phonons s0 = ]. The nonlinearity of the

interstitial interaction potential leads to the fact that the
velocity (frequency) of the periodic wave (10) depends
not only on the wavelength L, but also on its amplitude A.

The form and the velocity of the wave can be deter-
mined by the pseudospectral method [14]. The numeri-
cal calculations revealed that, for each wavelength L ≥ 2,
there exists a maximum amplitude A(L). The amplitude
of the periodic wave cannot exceed this value [A ≤ A(L)],
and the amplitude of relative rotations of chain mole-

J0 γ Tn.
n N N1– 1+=

N

∑=

φn t( ) φ n st–( ) φ z( ),≡=

ω2 q( ) 2 1 qcos–( ),=

ω q( )/q
q 0→
lim 1=
HYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001



ON THE FINITE THERMAL CONDUCTIVITY 359
cules Aϕ = max |φ(z + 1) – φ(z)| is not larger than its nat-
ural maximum equal to 2. The periodic waves have the
property of energy saturation; the maximum energy
E(L) therein corresponds to the temperature T(L) . 1.8.

Analysis of the periodic waves allows us to con-
clude that the chain of coupled rotators is characterized
by the critical temperature T0 ≈ 1.8, above which the
vibrational modes of the chain cannot be thermalized.
At T = T0, the vibrational modes are saturated, become
unstable, and begin to lose excess energy. A further
increase in the temperature does not lead to an increase
in the total energy of the vibrational modes in the chain.
The nonlinearity of vibrational modes stems from the
negative anharmonicity of the interstitial interaction
potential and, hence, results in a monotonic increase in
their heat capacity with an increase in the temperature.

7. LOCALIZED ROTATIONAL MODES

Since the interstitial interaction energy is limited,
localized rotational modes can exist in the chain. In a
more general case, these modes were thoroughly stud-
ied by Takeno and Peyrard [15]. The rotational mode
corresponds to the rotation of one molecule when its
neighbors remain virtually immobile. To a first approx-
imation, the mode dynamics is approximated by the
rotation of one molecule at the fixed neighbors. Within
this approximation, the motion of a molecule is
described by the pendulum equation. At the energy E ≥
maxU(φ) = 2, the motion of a molecule corresponds to
a uniform rotation. As the energy E increases, the rota-
tion frequency ω monotonically increases from 0 to
+∞. The motion of neighboring molecules affects the
rotation. The numerical simulation of the rotation dem-
onstrated that the localized excitation is stable only at
frequencies ω ≥ ω0 = 2.173. The frequency dependence
of the rotational energy is well approximated by the
parabola ω2/2, which corresponds to the energy of free
rotation of one molecule in the chain. As the energy
increases, the heat capacity of the mode monotonically
decreases and tends to 1/2 (the heat capacity of an iso-
lated rotator) at E  ∞.

Thus, the system under investigation exhibits
phonons (nonlinear vibrational modes) with the fre-
quency spectrum 0 ≤ ω ≤ 2 and localized rotational
modes with the frequency spectrum ω ≥ ω0 > 2. The
appearance of the rotational modes in the chain should
lead to a decrease in the heat capacity of the system.

8. DISTRIBUTION OF THERMAL VIBRATION 
ENERGY OVER NONLINEAR MODES

Now, let us analyze the frequency distribution of
thermal vibration energy in a chain. To accomplish this,
we numerically determine the density of distribution of

the frequency spectrum of the  func-
tion.

φ̇n t( ) iφn t( )[ ]exp
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For a chain with the harmonic interaction potential
U(φ) = φ2/2, the density of energy distribution is given
by

(12)

where ωa = 2 is the maximum frequency of phonons.

At a low temperature (T = 0.1), the energy distribu-
tion virtually coincides with distribution (12). In this
case, the total energy is distributed among the vibra-
tional modes with frequencies ω < ω0. An increase in
the temperature leads to a shift in the spectrum toward
the frequency range of localized rotations ω > ω0 (Fig. 6).

E ω( ) 2T /π ωa
2 ω2– , 0 ω ωn,≤ ≤=

0 1

0.04

∆T

J0

2 3 4 5
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Fig. 5. Dependence of the heat flux J0 on the temperature
difference ∆T (N = 300, N0 = 50, T+ = ∆T, and T– = 0).
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Fig. 6. Distributions of the thermal vibration energy E over
frequencies ω for a particle in the chain at temperature
T = (1) 1.4, (2) 2, (3) 3, and (4) 5.
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The thermalization energy of vibrational modes is
defined as

The dependence of the energy Ev on temperature T
is depicted in Fig. 7. At T ! 2, the Ev energy increases
in direct proportion to the temperature. A considerably
slower increase in the energy is observed at T ≈ 1, and
the energy reaches a maximum at T = 2.5. A further
increase in the temperature results only in an insignifi-
cant decrease in the energy. As was predicted above, the
energy saturation of low-frequency vibrational modes
takes place. As the temperature increases still further,
an increase in the energy is observed only for stationary
localized rotational modes.

Since the energy transfer in the chain can occur only
through phonons (vibrational modes), their energy sat-
uration explains the unusual dependence of the heat
flux J0 on the temperature gradient ∆T (Fig. 5). How-
ever, the saturation effect cannot be responsible for the
finite thermal conductivity of the chain. Its explanation
requires consideration of the interaction between
phonons and localized rotational modes.

9. EFFECT OF LOCALIZED EXCITATIONS
ON THE ENERGY TRANSFER

The rotational modes (localized rotations) are the sta-
tionary excitations of the chain. These modes cannot
contribute to the thermal energy transfer and should lead
to a decrease in the thermal conductivity of the chain.
Now, we examine their interaction with thermal phonons.
For this purpose, we consider the chain containing
N = 300 molecules with temperatures T+ = 0.02 > 0 at the
left end and T– = 0 at the right end. At the initial instant,

the chain is in the ground state (φn ≡ 0 and ). The
rotational mode with the energy E = 16 is placed at site

Ev E ω( ) ω.d

0

ω0

∫=

φ̇n 0≡

0 1
T

Ev

2 3 4 5

0.5

Fig. 7. Dependence of the phonon thermalization energy Ev
(per unit of the chain) on the chain temperature T.

1.0
P

n = N/2 in the center of the chain. Let us analyze the
heat transfer in the chain. The distribution of the energy
En over the chain is shown in Fig. 8a, and the dependence
of the mode (localized rotation) energy E on time t is
displayed in Fig. 8b. It can be seen from Fig. 8 that the
localized mode at the chain center impedes the motion
of all thermal phonons. As a result, only the left half of
the chain undergoes thermalization and the right half
remains nonthermalized (Fig. 8a). The pressure exerted
by phonons on the localized mode in the chain center
results in its progressive destruction. The energy of the
mode decreases monotonically (Fig. 8b). At the instant
t = 28000, the localized excitation is destroyed and the
heat flux arises in the chain. The simulation performed
allows us to conclude that the localized excitations
interfere with the heat transfer in the chain and have a
finite lifetime in the thermalized chain.

In order to elucidate how the localized modes affect
the energy transfer, we investigate the thermal energy
relaxation in the chain. It is assumed that a finite chain
with N = 300 is immersed in the Langevin thermostat.
After the thermalization of the chain, the thermostat is
removed. Friction is introduced at the chain ends to
ensure energy absorption. To accomplish this, it is suf-
ficient to put T+ = T– = 0 in the set of equations of
motion (3). The numerical simulation of the dynamics
revealed the presence of localized rotational modes in
the chain. At temperature T = 1, their lifetime is short.
These modes are rapidly destroyed as a result of inter-
action with phonons and do not preclude energy with-
drawal from the chain (Fig. 9a). At temperature T = 2,
the localized rotations have long lifetimes and exert an
appreciable effect on the mechanism of the energy
withdrawal. The withdrawal takes place only after the
destruction of the terminal localized modes. As a result
of this process, only one localized state remains in the
chain (Fig. 9b). A stepwise character of the energy with-
drawal is especially pronounced at temperature T = 3
(Fig. 9c).

Therefore, the heat transfer in the chain can be qual-
itatively described as a sequence of random local
energy crossovers which occur upon each destruction
of a stationary localized mode. An increase in the tem-
perature brings about an increase in the energy of these
modes, their lifetime, and, hence, the time intervals
between random energy crossovers. This mechanism,
together with the phonon saturation effect, explains a
decrease in the heat flux J0 with an increase in the tem-
perature at T > T0 (Fig. 5).

10. A CHAIN WITH THE HYPERBOLIC 
POTENTIAL OF INTERSTITIAL INTERACTION

The above results should evidently be legitimate for
a chain with any periodic potential of interstitial inter-
action. The finiteness of the thermal conductivity is due
to the presence of stationary, strongly localized rota-
tional modes in the chain. These modes arise only
HYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
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Fig. 8. Interaction of the rotational mode with thermal phonons: (a) distribution of the energy En over the chain and (b) dependence
of the mode energy E on time t.

4

owing to the boundedness of the interaction potential.
For comparison, we consider a chain with the
unbounded hyperbolic interaction potential

(13)

Similar to the periodic potential (2), potential (13) has
a negative quartet anharmonicity but is the unbounded
function. At φ  ±∞, the potential increases as the
linear function ±φ – 1.

The numerical simulation showed that a chain with
potential (13) has an infinite thermal conductivity over
the entire temperature range covered. As the length N1
of an internal chain fragment increases, the thermal

conductivity coefficient κ of the chain increases as ,

U φ( ) 1 φ2+ 1.–=

N1
δ
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where the exponent δ is less than unity. For example, at
T = 2, the exponent δ is equal to 0.29. At all tempera-
tures, the correlation function c(t) tends to zero as tα

(−1 < α < 0). In particular, at T = 2, the exponent α is
equal to –0.82. Hence, it follows that the integral in the
Green–Kubo formula (8) diverges and the thermal con-
ductivity coefficient κc is equal to infinity. Conse-
quently, taken alone, the negativeness of the quartet
anharmonicity (in complete agreement with the conclu-
sions made in [3–6]) does not ensure finite thermal con-
ductivity. This allows us to conclude that the bounded-
ness of the interaction potential plays the key role in
providing finite thermal conductivity of an isolated
chain.
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Fig. 9. Energy relaxation of the thermalized chain at temperature T = (a) 1, (b) 2, and (c) 3. Dependences of the local energy En on
the number n of the chain unit and on the time t. At the initial instant, the system has the temperature T; then, the dynamics of the
chain with the absorbing ends is considered (N = 300, N0 = 50, and T+ = T– = 0).
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11. TEMPERATURE DEPENDENCE
OF THE HEAT CAPACITY FOR A CHAIN

For a system with the unbounded interaction poten-
tial (13), the heat capacity of a chain C = d〈E〉/dT
increases monotonically with an increase in tempera-
ture T (Fig. 10). In a chain with the periodic interaction
potential (2), the heat capacity associated with the exci-
tation of periodic waves also increases monotonically,
but the heat capacity governed by the rotational modes
decreases with an increase in the temperature. There-
fore, the heat capacity increases at T ≤ 0.4 and mono-
tonically decreases at T > 0.4 (Fig. 10). Consequently,
it can be concluded that the vibrational modes predom-
inantly contribute to the heat capacity of the system in
the former temperature range, and the rotational modes,
in the latter range. Thus, the main contribution to the
nonlinear dynamics is made by the negative anharmo-
nicity at T ≤ 0.4 and the boundedness of the interaction
potential at T > 0.4. The temperature that corresponds
to the heat capacity at a maximum is close to the tem-
perature of the crossover from an infinite to finite ther-
mal conductivity.

In a chain with the bounded interaction potential,
the heat capacity C tends to 1/2 at T  ∞. The heat
capacity C = 1/2 corresponds to a system of uncoupled
particles. Qualitatively, we can assert that an increase in
the temperature is accompanied by a phase transition
from a system of coupled particles to a system of free
particles.

Thus, the investigation of the chain consisting of
identical rotators with a periodic potential of interac-
tion between the nearest neighbors demonstrated that
an increase in the temperature is attended by a cross-
over from an infinite to a finite thermal conductivity.
This is in agreement with the main result obtained by
Lepri et al. [5], who showed that any isolated one-
dimensional chain should possess an infinite thermal
conductivity due to the absence of long-wavelength
phonon scattering. The arguments of these authors are
valid only for low-amplitude strains, i.e., for low tem-
peratures.

An increase in the temperature of the chain under
investigation gives rise to localized rotational excita-
tions which prevent free motion of phonons. Note that
the localized excitations—discrete breathers—also
exist in the Fermi–Pasta–Ulam chain [3–5]. The funda-
mental difference resides in the fact that they do not
preclude motion of long-wavelength phonons. The
breathers can only filter off phonons with a particular
wavelength [16], whereas the rotational excitations pre-
vent the motion of all phonons, irrespective of their
wavelength and frequency.

In the chain under consideration, phonons possess a
finite energy capacity. As the temperature increases,
their energy increases until a maximum is reached. A
further increase in the temperature does not lead to an
increase in the energy. The periodic waves become
unstable, and their excess energy upon decay goes into
PHYSICS OF THE SOLID STATE      Vol. 43      No. 2      200
the formation of stationary rotational excitations which
interfere with the heat transfer. In this case, the mecha-
nism of the heat transfer can be described as a sequence
of random local energy crossovers that occur upon each
destruction of stationary excitation. This mechanism
accounts for a decrease in the thermal conductivity of
the chain with an increase in the temperature. Actually,
as the temperature increases, an increase in the energy
is observed only for localized excitations. Their life-
time increases, and, hence, the frequency of local
energy crossovers decreases. The heat capacity of the
chain decreases monotonically with an increase in the
temperature and tends to 1/2, which corresponds to the
heat capacity of a system consisting of uncoupled par-
ticles. In the high-temperature limit, the system under
consideration transforms into a chain of uncoupled
rotators with zero thermal conductivity.
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Abstract—The energies of the quasi-stationary states of electrons and holes in an open composite cylindrical
quantum wire are calculated within the effective-mass approximation by means of the S-matrix theory. Specific
calculation is carried out for the HgS/CdS/HgS system. The poles of the S matrix in the complex energy plane
are studied. The dependences of the lifetimes of quasiparticles in quasi-stationary resonance states on the lon-
gitudinal quasi-momentum and geometric parameters of the nanosystem are obtained. It is shown that the quasi-
particle lifetimes in the resonance states exponentially diminish as the longitudinal quasi-momentum increases.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The attention of many scientists has been drawn to
the physical processes that occur in one-dimensional
and zero-dimensional nanosystems after the first suc-
cesses in the creation of semiconductor quantum-dot
and quantum-wire lasers were achieved in the 1990s [1,
2]. A vast amount of both theoretical and experimental
works now exists in this field of research. Ordered
arrays of quantum dots and wires, as well as multilayer
spherical nanoheterostructures, can be created by mod-
ern technological methods [3, 4]. This stimulated inter-
est in the theoretical study of quasiparticle spectra and
the interaction between quasiparticles (electrons, holes,
excitons, and phonons) in these systems. The theory
describing the spectra of electrons, holes, and excitons
and the interaction between these quasiparticles and
phonons was developed for spherical multilayer nano-
systems in [3, 5, 6] and for cylindrical multilayer nano-
systems in [7]. It is assumed in the theory that the exter-
nal medium in which a multilayer spherical nanostruc-
ture is situated is a maximal potential barrier in
comparison with the internal layers and, thus, that the
system is closed.

Modern technological methods (for example, the
ion-substitution method [3, 4]) make it possible to cre-
ate so-called open nanoheterostructures, in which the
potential energy of a quasiparticle is minimal in the
external medium and, therefore, the quasiparticle can
move to infinity. The energy spectrum is quasi-station-
ary in these systems, and, therefore, the corresponding
states are characterized by finite lifetimes due to the
fact that the quasiparticles can penetrate through the
potential barriers of the nanosystem.

Open systems are interesting, because they can be
used as an elementary base for computers [8].
1063-7834/01/4302- $21.00 © 20365
The quasi-stationary spectrum of electrons and
holes in an open spherical HgS/CdS/HgS nanohetero-
structure was theoretically studied in [9]. The spherical
symmetry of the system made it possible to extend the
S-matrix method known from nuclear theory [10] to the
case where the mass of a quasiparticle in the different
layers of the system is different and, therefore, to inves-
tigate the energy spectrum and lifetimes of electrons
and holes in the quasi-stationary states.

The aim of this paper is to theoretically investigate
the resonance energies and lifetimes of electrons and
holes in the quasi-stationary states of an open compos-
ite cylindrical quantum wire (CCQW), in particular, in
the HgS/CdS/HgS nanosystem. The solution of this
problem is more complicated than that in the case of an
open composite spherical quantum dot (CSQD) [9],
since the cylinder nanosystem has lower symmetry and
the electrons and holes have a quasi-momentum (paral-
lel to the axial axis). This results in a complicated ana-
lytical expression for the S-matrix; the resonance ener-
gies and lifetimes can be calculated from this expres-
sion only numerically.

1. THE HAMILTONIAN AND WAVEFUNCTIONS 
OF AN ELECTRON AND A HOLE 

IN AN OPEN CCQW
We investigate the electron and hole spectra of an

open cylinder nanostructure (composite cylindrical
quantum wire) which consists of an HgS core (well 0)
and a CdS layer (barrier 1) placed in an infinite HgS
medium (well 2). The scheme of the open CCQW and
the schematic diagram of the potential energies of an
electron and a hole in it are shown in Fig. 1. Since we
are not going to investigate the behavior of electrons
and holes in a magnetic field here, their spins are not
taken into account. Assuming the energy bands of the
001 MAIK “Nauka/Interperiodica”
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light and heavy holes to be independent in the partic-
ular HgS/CdS/HgS composite cylindrical quantum
wire under investigation, the theories for electrons
and holes are the same in the effective-mass approx-
imation; for this reason, further calculations are per-
formed only for the electron without loss of general-
ity. The difference between the spectral properties of
the electrons and holes appears only in the stage of
numerical calculations because of the difference in
the effective masses of the quasiparticles and in the
potential fields acting on them. Relevant analysis is
given in the next section.

In the cylindrical coordinate system with the ori-
gin at the center of the heterostructure, the electron
is characterized by effective mass µ(ρ) and potential
energy U(ρ), which are functions of the distance

x

Ue µ0
e µ1

e µ0
e

0

Uh

0

~~

µ0
h µ1

h µ0
h

ρ

ρ
Eg CdS Eg HgS

(b)

ρ1

ρ0

ρ

ϕ
0 y

(‡)

z

z

r

0 1 2HgS

CdS
HgS

Fig. 1. (a) Geometric scheme and (b) schematic potential-
energy diagram for an electron and a hole in the CCQW.
P

from the axial axis of the CCQW, because their mag-
nitudes are different in the different media:

(1)

Since the effective mass depends on ρ, the Shrödinger
equation has the following form [11, 12]:

(2)

Taking into account the axial symmetry, a solution of
this equation is sought in the form

(3)

where R(ρ) is a radial wave function.

Substituting Eq. (3) into Eq. (2) yields the following
equation for the radial wave function:

(4)

It is seen from Eq. (4) that the magnetic quantum num-
ber m and quasi-momentum k are parameters of the
equation and, therefore, of the function Rmk(ρ). It makes
sense to seek this function in the form

(5)

Substituting Eq. (5) into Eq. (4) results in three equa-
tions of the same type,

(6)

whose solutions are linear combinations of Hankel
functions of different arguments:
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(7)Rmk ρ( )

Rmk
0 ρ( ) Am

0( ) Hm
– χ0ρ( )[=

+ Hm
+ χ0ρ( ) ] , ρ ρ0<

Rmk
1 ρ( ) Am

1( ) Hm
– iχ1ρ( )[=

+ Smk
1 E( )Hm

+ iχ iρ( ) ] , ρ0 ρ0 ρ1≤ ≤

Rmk
2 ρ( ) Am

2( ) Hm
– χ0ρ( )[=

+ Smk E( )Hm
+ χ0ρ( ) ] , ρ ρ1,>

=
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where

(8)

All coefficients A and both S matrices are uniquely
determined by the conditions of continuity of the wave
function and of the probability flux density at both
boundaries between the media and by the normaliza-
tion condition.

Analytical calculations result in the following
expression for Smk(E):

χ0

2µ0

"
2

--------E k2– , iχ1

2µ1

"
2

-------- U E–( ) k2–= = .
(9)

where

(10)

(11)

Smk E( )
µ0Fm E( )Hm

– χ0ρ1( ) µ1χ0 Hm 1–
– χ0ρ1( ) Hm 1+
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-------------------------------------------------------------------------------------------------------------------------------------,=
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i2m 1– πIm χ1ρ1( ) Km χ1ρ1( ) Smk
1 E( ) 1–[ ]–
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– iχ1ρ0( ) Jm 1– χ0ρ0( ) Jm 1+ χ0ρ0( )–[ ] µ0χ1Jm χ0ρ0( ) Hm 1–
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------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=
and Im(z) and Km(z) are the modified Bessel functions
(Bessel functions of an imaginary argument). The scat-
tering matrix Smk(E) is a complicated complex function.
According to the general theory [10], quasi-stationary
states are determined by the S-matrix poles in the com-
plex energy plane:

(12)

The real part E1 is equal to the energy of the quasi-sta-
tionary state, while the imaginary part E2 = Γ/2 deter-
mines the broadening associated with quasiparticle tun-
neling through the barrier.

For the S matrix of an open spherical nanohetero-
structure [9], analytical solutions of the dispersion
equation for l = 0, 1 have been found. In contrast to this
case, the similar problem for the cylindrical nanosys-
tem under investigation can be solved only numerically.
It should also be noticed that a new fundamental feature
appears in this problem: contrary to the zero-dimen-
sional problem, the S matrix depends on two variables,
E and k, in the one-dimensional problem. Due to this
fact, both the energy (E) and lifetime (τ) of the quasi-
particle in quasi-stationary states are functions of the
quasi-momentum.

An example of the numerical calculation of the real
and imaginary parts of the S matrix and the position of

its pole in the complex plane of energy  is shown in
Fig. 2. The calculation was carried out for the electron
at k = 0 in the HgS/CdS/HgS composite cylindrical

Ẽ E1 iE2.–=

Ẽ

quantum wire with the material parameters listed in
Table 1 and the geometric parameters ρ0 = 15aHgS and
ρ1 – ρ0 = 5aCdS. The results correspond to the vicinity
of the energy of the lowest quasi-stationary state E10
(n = 1, m = 0).

It is seen from Fig. 2 that the behavior of the
S matrix as a function of the complex variable  is dis-
tinctive: both the real and imaginary parts of the S
matrix are smooth functions everywhere in the complex
plane, except in the close vicinity of the pole (~10–5 meV),
where they undergo an unremovable discontinuity at
the same point (E10, –iΓ10/2).

2. RESULTS AND DISCUSSION

Analytical calculation of the S matrix and the posi-
tions of its poles in the complex energy plane makes it
possible to study the resonance energies E and lifetimes
τ of the quasi-stationary states of electrons and holes as
functions of their quasi-momentum and geometric
parameters of the CCQW.

Ẽ

Table 1.  The crystal parameters

Crystal µe/m0 µh/m0 a, Å Eg, eV Ve, eV Vh, eV

CdS 0.2 0.7 5.818 2.5 1.35 0.65

HgS 0.036 0.044 5.851 0.5 0 0
1
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Fig. 2. (a) Dependences of the real and imaginary parts of the S matrix on  = E1 – iE2 and the position of its pole in the complex

plane at nHgS = 15 and nCdS = 5 and (b) the lines of constant values of ReS and ImS in the complex  plane (“topogram”).

Ẽ

Ẽ

Figure 3 shows the calculated resonance energies

 and lifetimes  of electrons and holes in
several quasi-stationary states of the HgS/CdS/HgS
composite cylindrical quantum wire as functions of
the longitudinal quasi-momentum k at ρ0 = 15aHgS and
ρ1 – ρ0 = 5aCdS. This figure also shows the dispersion
laws of the quasiparticles in the components of the

CCQW (  = ,  = Ue, h + ). The

electron energy is measured from the bottom of the
HgS conduction band (the top of the corresponding
panel), and the hole energy is measured from the top of
the HgS valence band (the bottom of the panel).

As is seen form Fig. 3, the EHgS(k) and ECdS(k)
curves divide the (E, k) plane into three domains. In
domain I, there are no poles of the S matrix and, there-

Enm
e h, k( ) τnm

e h, k( )

EHgS
e h, "

2
k2

2µHgS
e h,-------------- ECdS

e h, "
2k2

2µCdS
e h,-------------
P

fore, no quasiparticle states. In domain II, the S matrix

has poles in the plane of complex energy  = E – iΓ/2
at specific values of quasi-momentum k. The real and
imaginary parts of the corresponding complex energy,
E and Γ/2, are nonzero and determine the resonance
energy and lifetime τ ~ Γ–1 of the quasiparticle in the
quasi-stationary state. The quasiparticles are in station-
ary states of the continuous energy spectrum (|S | = 1) in
domain III.

Let us consider the quasi-stationary states of elec-
trons and holes corresponding to the most interesting
domain, domain II, in detail. As is seen, there is a num-
ber of quasi-stationary states in which the electrons and
holes can move along the inner cylinder of the CCQW
with quasi-momentum k.

The number of energy bands is determined by the
geometric parameters of the CCQW, the effective mass,

Ẽ
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and the potential energy of the quasiparticle. The main

features of  are the following. The dependence
of the quasiparticle energy on the quasi-momentum is

closely approximated by the quadratic law  =

 +  in all resonance states. Here,  is

determined by the corresponding pole of the S matrix at
k = 0 and the values of the quasiparticle effective

masses , correlated by the presence of the different
media in the CCQW, are close to the corresponding
effective masses in HgS (Table 2). The correlated effec-

Enm
e h, k( )
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tive mass of the quasiparticle increases only slightly
with the band index N, because the “effective height” of
the potential barrier decreases and the quasiparticle
moving along the inner HgS cylinder penetrates more
and more deeply into the CdS, where its effective mass

Table 2.  Correlated effective masses in the resonance states

nm 10 11 20 21 30 31

0.0363 0.0371 0.0372 0.0376 0.0385 0.0391

0.0453 0.0461 0.0463 0.0477 0.0499 –

µnm
e

µnm
h

1
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is larger than that in HgS. All the bands of quasiparticle
resonance energies EN are characterized by maximal

longitudinal quasi-momentum , which is signifi-

cantly less than π/a. The value of  is derived from
the equation

(13)

Obviously, the larger the N, the less the value of .

The important feature of the resonance spectrum of
quasiparticles in the open CCQW is that the quasiparti-

cle lifetime ( ) in the specific (nm) state decreases
sharply (exponentially) as the longitudinal quasi-
momentum increases (Figs. 3b, 3d). For example, as is
seen from Fig. 3b, the electron lifetime in the (10) state
at k = 0.2 is three orders of magnitude less than that at
k = 0. Physically, this is because the effective height of
the potential barrier decreases with an increase in k and
the quasiparticle has a larger probability of penetrating
into the outside of the CCQW. For the same reason, the
lifetimes of the quasiparticles decrease sharply with a
growth in N.
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In connection with the revealed peculiarity of the
open CCQW, it can be concluded that a quantum wire
of this type can be used as a separator of quasiparticles
through their quasi-momenta in nanotechnology: it can
eliminate (through the barrier) fast quasiparticles and
transmit slow quasiparticles moving in the inner cylin-
der (potential well).

Figure 4 shows the calculated dependences of the
energies Enm and lifetimes τnm = "/Γnm of an electron
and a hole in the state with magnetic quantum numbers
m = 0 and 1 on the geometric parameters of the cylinder
nanosystem. The solid lines correspond to k = 0, and the
dashed lines, to k = 0.15. Since the positions of the res-
onance energy levels Enm of the electron and the hole
are virtually unchanged, their values are schematically
shown in Fig. 4c. The dependences of the lifetimes of
the electron and the hole τnm on the number of CdS
monolayers nCdS are shown in Figs. 4a and 4b, respec-
tively.

Regardless of the value of the quasi-momentum, the
lifetime of both quasiparticles in all states exponen-
tially increases with the barrier thickness. At a fixed
barrier thickness, the smaller the energy of the corre-
sponding state, the larger the lifetime. Physically, this is
because a decrease in the quasiparticle energy in a fixed
state is equivalent to an increase in the effective power
HYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
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of the barrier, which prevents the particles from pene-
trating through the barrier and, therefore, increases the
lifetime in the quantum well. Since the inequality
mh > me occurs, the lifetime of the hole is always larger
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Fig. 5. Dependences of the resonance energies Enm (dashed
lines) and lifetimes τnm (solid lines) on the width of the
potential well nHgS at nCdS = 5 for (a) the electron and
(b) the hole.
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than the electron lifetime, all other things being equal,
because it is more difficult for the hole to penetrate
through the barrier.

Figure 5 shows the calculated dependences of the
energies Enm and lifetimes τnm of an electron (Fig. 5a)
and hole (Fig. 5b) on the width of the material of the
well (nHgS) at a fixed width (nCdS = 5) of the barrier
material. It is seen from this figure that an increase in
the width of the quantum well results in a quadratic-law
decrease in the absolute value of the ground-state
energy. In this case, as was already mentioned, the life-
times of the electron and the hole in the corresponding
states increase.

It is interesting to compare the energies and life-
times of the quasiparticles in the CCQW and corre-
sponding CSQD having identical radii of their wells
and equal widths of their barriers. In this case, since the
systems possess different symmetry, it makes sense to
compare only those energy levels (and corresponding
lifetimes) that have the same index counted from the
lowest level.

In this case, as is seen from Fig. 6, if k = 0 and the
geometric parameters of the wells and barriers of the
CCQW and CSQD are the same, the corresponding
energy levels in the quantum wire are always lower
(and the lifetimes in these states are larger) than those
in the quantum dot. The result obtained is clear from
the physical point of view; since the volume of the cyl-
inder well is infinitely large in contrast to that of the
spherical well under the same conditions, the corre-
sponding levels in the quantum wire are lower than
those in the quantum dot and, therefore, the power of
the barrier in the quantum wire is larger than that in the
quantum dot. The ratio between the lifetimes reflects
this fact.

Thus, the S-matrix method makes it possible to cal-
culate the spectral characteristics of both composite
spherical [9] and open cylindrical quantum nanostruc-
tures with resonance quasi-stationary states. The gen-
eral conclusion is that the positions of the energy levels
Ec
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of the electron and the hole are almost insensitive to the
thickness of the barriers, but very sensitive to the width
of the quantum wells. Changes in the width of the well
and of the barriers are accompanied by essential
changes in the quasiparticle lifetimes in the quasi-sta-
tionary states. The fact that the lifetimes of the quasi-
particles in the resonance states exponentially decrease
with an increase in their quasi-momenta makes it pos-
sible to use open CCQWs as spatial separators of qua-
siparticles through their velocities in elements of nano-
technological devices.
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Abstract—A cathodoluminescence band in the green spectral region is observed in silicate matrices when the
excitation density exceeds a certain threshold value. This band is due to the formation of silicon nanoclusters
4–5 nm in size and becomes manifest at SiO2/Si interfaces when impurities are introduced into the silicate
matrix, as well as under electron-beam irradiation. © 2001 MAIK “Nauka/Interperiodica”.
The cathodoluminescence (CL) spectra of thermally
grown oxide films on silicon are determined by the type
of substrate used and the actual film preparation condi-
tions [1, 2]. The main objective of this work was to
investigate the dependence of CL spectra on the struc-
ture of silicate matrices and to determine the conditions
for the modification of this structure under electron-
beam irradiation, which gives rise to the appearance of
emission bands in the 2.0- to 2.5-eV interval.

1. EXPERIMENTAL TECHNIQUES

The main methods used in the study were local
cathodoluminescence, transmission electron micros-
copy (TEM), and measurement of the current–voltage
(I–V) characteristics.

The subjects of the study were primarily SiO2 films
grown on n- and p-type silicon by high-temperature
oxidation in dry or humid oxygen, as well as model sys-
tems, more specifically, silicon dioxide/silicon films
doped during their formation by boron and copper, var-
ious quartz glasses, opals, α quartz, and uranium-doped
silicon dioxide.

2. EXPERIMENTAL RESULTS

Cathodoluminescence spectra of silicate systems,
including thermally grown films, have two well-known
bands associated with native SiO2 defects, namely, a
red one peaking at 1.9 eV (due to non-bridging oxygen)
and a blue one peaking at 2.65 eV (twofold-coordinated
silicon) [3, 4]. We developed a technique of layer-by-
layer analysis of oxide films by cathodoluminescence
with a spatial resolution no worse than 10 nm [1, 2].
Depth-resolved studies of thermal films showed that
cathodoluminescence spectra obtained from a film–
substrate interface feature additional bands in the green
spectral region (2.0–2.5 eV). The position and intensity
1063-7834/01/4302- $21.00 © 20373
of these bands vary depending on the silicon type and
the technology of the film preparation. The bands are
the strongest for films grown on p silicon. A layer-by-
layer analysis of thermal oxide films on p silicon
showed that the band in the green spectral region
appears on the interface and on the adjoining oxide lay-
ers 0.1–0.2 µm thick. This band peaks at 2.2–2.3 eV.
The bands measured on n silicon are much weaker and
are seen as a shoulder on the strong blue band (2.65 eV).
This shoulder shifts in position from 2.1 eV at the inter-
face to 2.4 eV near the surface for a 0.4 µm thick film
[4]. It should be noted that the position and intensity of
these bands correlate with the density of the oxide film
and the position of the green band maximum correlates
with the micropore size. TEM images of oxide films
grown on p silicon reveal that the film density near the
interface (up to 0.1–0.2 µm thick) is substantially
smaller than that in the outer layers [2], with the oxide
density changing in a jump. This may be due to boron
redistribution in the Si–SiO2 system. The interface
reveals microrecesses up to 6 µm in diameter. The
diameter of the microrecesses and their number
decrease as one moves away from the Si–SiO2 interface
[5]. There is a certain correlation between the CL inten-
sity distribution in the 2.0- to 2.5-eV region and the sil-
icate matrix density.

To establish the nature of the centers responsible
for the green bands, we studied cathodoluminescence
spectra of various silicate systems, as well as of sili-
con dioxide with impurities differing strongly in their
properties, namely, boron, copper, and uranium. In
order to compare the experimental spectra and deter-
mine the position of the maxima of the broad bands
with a higher accuracy, the spectra obtained were
deconvolved into their constituents. This deconvolu-
tion was made using the ORIGIN 6.0 code. This was
done under the assumption that the band shape can be fit-
001 MAIK “Nauka/Interperiodica”
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ted by Gaussians. The thin lines in the figures presented
in this paper show the results of the deconvolution.

Figure 1 presents cathodoluminescence spectra of
silicon oxide with a uranium impurity. One readily sees
that the higher the uranium content, the lower the inte-
grated emission intensity and the more pronounced the
green shift of the emission spectrum.

Figure 2 displays the cathodoluminescence spectra
of an oxide film doped by boron and copper. The spec-
tra of samples containing small amounts of impurities
(boron and copper) exhibit the bands as a weak shoulder,
but one can also see an additional UV band (3.1–3.2 eV).
The emission spectrum of the sample with a higher
copper content is similar to the CL spectrum of ura-
nium-doped (8 wt %) silicon oxide. These results allow
one to conclude that the composition of the silicon
dioxide emission depends on the impurity content
rather than on the nature of the impurity element. This
implies that the variation of the emission spectra is
associated with the formation of some structural
defects in the silicate matrix itself.
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Fig. 1. Cathodoluminescence spectra of uranium-doped SiO2.
Uranium content (wt %): (a) 1, (b) 3, and (c) 8.
P

Similar cathodoluminescence spectra in the green
region (2.1–2.2 eV) appear in various silicate matrices
as the excitation density increases. The spectral varia-
tion with excitation density has the same pattern for all
the samples studied (Fig. 3). Note that each of the sili-
cate matrices studied here can be associated with a cer-
tain threshold excitation density, above which the emis-
sion band peaking at 2.1–2.2 eV appears in the spec-
trum. For porous materials (opals, silica gels), this
threshold is 20–40 times lower than that for denser
ones. As the excitation density is increased further, the
2.1- to 2.2-eV band becomes dominant. In [6], this
band is assigned to silicon nanoclusters.

High excitation densities not only stimulate radia-
tion-induced defect formation in silicate systems but
also result in a strong local heating of the sample. This
may entail evaporation and partial decomposition of the
material. The decomposition brings about removal of
oxygen, producing free silicon atoms in the bulk of the
silicate matrix, which may form nanoclusters in the
pores which are created in the course of decomposition
or are already available in the structure of this matrix.
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Fig. 2. Cathodoluminescence spectra of a SiO2 film acti-
vated by various impurities: (a) boron and (b, c) copper
(10 and 20 wt %, respectively).
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The size of the nanoclusters is determined by that of the
voids in the sample.

These considerations underlie the choice for further
study of a sample with known dimensions of its voids,
namely, opal. Opals are regularly arranged arrays of sili-
con oxide spheres 200–250 nm in diameter. Opals have
voids measuring 5, 10, and 15 nm. As the excitation den-
sity is increased, small nanoclusters form, which subse-
quently fill the smallest (5 nm) pores. The scatter in the
size of such pores is small, and they should produce a
relatively narrow band in the CL spectrum. Figure 4
presents opal spectra obtained under the same excitation
conditions but for different exposure times to electrons.
One readily sees that the blue and UV bands shift to longer
wavelengths after prolonged irradiation of opals by
electrons, while the 2.2-eV band becomes more distinct
and intense. Optical and scanning electron microscope
images reveal clearly pronounced changes in the struc-
ture of the excited microvolume; i.e., the silicate matri-
ces undergo modification. In addition to spectral studies,
we also measured the absorbed electron current in modi-
fied and unmodified opals. In the modified regions of the
opal, the absorbed current was found to exceed that in the
unmodified ones by 10–20 times, which implies the
formation of conduction channels in these regions. The
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Fig. 3. CL spectra obtained at high excitation densities (20 kV,
50 nA, beam diameter 3 µm) for (a) opal, (b) SiO2 : Cu/SiO2/Si
films (CCu = 10 wt %), and (c) a thermally grown film.
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formation of silicon nanoclusters in opals following the
modification was confirmed by TEM images. The TEM
studies reveal that, on the surface of SiO2 spheres
250 nm in diameter, there are silicon nanoclusters 4 to
5 nm in size.

The results of this study can be summed up as fol-
lows:

(i) Local heating of silicate matrices by a high-
power electron beam results in modification of the sam-
ples, entailing the formation of silicon nanoclusters.
This modification is the most pronounced in porous
materials, namely, opals and silica gels.

(ii) Introduction of impurities in silicate matrices
gives rise to the formation of interfaces at which silicon
nanoclusters are deposited.

(iii) Electron irradiation of silicate materials can be
used to produce silicon nanoclusters in a silicate
matrix, with the matrix itself serving as the source of
silicon and the geometry of the nanocluster arrange-
ment being determined by the diameter and trajectory
of the electron beam [7].

(iv) The green band, perhaps, is associated with the
Si–SiO2 interface [8].
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Abstract—An analysis is made of experimental data on the dependence of the energy distributions of Li, Na,
and Cs atoms emitted in electron-stimulated desorption on their concentration on the surface of oxidized tung-
sten and molybdenum substrates.
Systematic investigation into the electron-stimulated
desorption (ESD) of neutral particles began, in contrast to
that of ions, comparatively recently [1]. The ESD of
lithium and cesium atoms from the oxidized surface of
tungsten (Li, Cs/O–W) and of sodium atoms from that
of molybdenum (Na/O–Mo) have been studied [2, 3]. It
was found that the energy distribution of desorbed
atoms is a standard Gaussian, which shifts toward
lower energies with increasing coverage Θ (i.e., the rel-
ative concentration of alkali adatoms) while practically
not changing in shape and width. It is well known that
the ground state of an adsorption system varies substan-
tially with coverage [4, 5], which is particularly true for
the adsorption of alkali metals. Therefore, the absence of
any distinct changes, however small, in the shape of the
ESD atom energy-distribution profile appears strange at
first glance. We analyze here the experimental data of
[2, 3] in order, first, to find the conditions favoring a con-
stant width of the energy distribution and, second, to
discuss the physical reasons for this phenomenon.

Consider the energy diagram of desorption (for
more details, see [2]) shown in Fig. 1. The potentials of
the “ground” and “excited”1 states can be presented by
the Morse, V1, and Born, V2, potentials, respectively:

(1)

Here, D and B are energy constants; γ and β are the
characteristic reciprocal lengths of the V1 and V2 poten-
tials, respectively; and x0 is the equilibrium distance of
the adatom from the substrate surface. When formu-
lated in this way, the problem becomes equivalent to
that of ion desorption [6]. As follows from Fig. 1, the

1 The quotation marks are to stress that, strictly speaking, the des-
orption process considered here can actually be the last step in a
multistage process (see discussion in [2, 3]).

V1 = D γ x x0–( )–[ ]exp{ } 2 γ/2( ) x x0–( )–[ ]exp{ } ,–

V2 = B βx–( ).exp
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width of the energy distribution of desorbed atoms ∆E
can be written as

(2)

where ∆x is the potential-well half-width in the ground
state (Fig. 1) and

(3)

We now require d(∆E)/dΘ = 0 and take into account
that B(x0(Θ)) = Emax(Θ), where Emax is the kinetic
energy at which the energy distribution of ESD atoms
N(E) has a maximum (Fig. 1). We thus obtain

(4)

∆E V2 x0 ∆x–( ) V2 x0 ∆x+( )–=

=  2B x0( ) β∆x( ),sinh

B x0( ) B βxx0
–( ).exp=

dy
dΘ
------- y

d Emax Θ( )ln
dΘ

-----------------------------, y β∆x,≡tanh–=

V1—Morse potential
V2—Born potential
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Fig. 1. Schematic of desorption process for zero coverage
Θ. The potential energies of an atom in the “ground”
adsorbed state, V1, and in the “excited” state, V2, are shown
on the left by thick solid lines. The thin line specifies the
probability for an adatom to reside in the vicinity of the
equilibrium point x0 in the “ground” state. The ESD atom
distribution N(E) in kinetic energy E is shown on the right.
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where y is the reduced dimensionless half-width of the
potential well. If we assume, by way of simplification, that
the shift of Emax is directly proportional to the coverage,
i.e., that dEmax(Θ)/dΘ = –k, where k is a constant, then

(5)

If the maximum in the energy distribution shifts
with increasing coverage toward lower energies (k > 0),
as was observed in [2, 3], then the potential well
becomes broader.

Let us make some estimates. Using the data of [6],
we set β = 3.5–7 Å–1 and ∆x ~ α–1, where α is the char-
acteristic reciprocal length of the wave-function decay
in the ground state (α = 17–32 Å–1). Then y ≈ 0.1–0.5,

 ≈ y, and the variation of the well half-width
δ(∆x) can be calculated from the expression

(6)

where ∆Emax(Θ) is the shift of the peak position in the
energy distribution due to a coverage transition from Θ1
to Θ2 = Θ1 + ∆Θ. One may conveniently accept Emax(Θ)
to be equal to [Emax(Θ1) + Emax(Θ2)]/2. Having deter-
mined ∆Emax(Θ) from the experiment for certain values
of ∆Θ, one can find the change in the relative potential-
well width δ(∆x)/∆x.

The results of treatment of the experimental data
presented in [2, 3] are listed in the table. The values of
the kinetic energy of the ESD atoms and of the relative
broadening of the potential well are very small. There-
fore, it is clear that determination of δ(∆x)/∆x will
unavoidably be done with errors (possibly, quite large).
However, the fact that the well width increases with
increasing coverage may be considered proven.

dy
dΘ
-------

k
Emax Θ( )
-------------------- y.tanh=

ytanh

δ ∆x( )
∆x

--------------
∆Emax Θ( )
Emax Θ( )

------------------------,–=

ESD energy Emax corresponding to the maximum in the N(E)
distribution of the ESD atoms and the relative potential-well
half-width δ(∆x)/∆x/∆x vs. coverage Θ

Θ 0.05 0.125 0.25 0.375 0.5 0.75

Li/O–W

[2]

Bmax, eV – 0.225 0.21 – 0.195 0.17

δ(∆x)/∆x – – 0.069 0.074 0.137

Cs/O–W

[2]

Emax, eV 0.39 0.38 0.375 0.36

δ(∆x)/∆x – 0.032 0.02 0.041

Na/O–Mo

[3]

Emax, eV 0.22 0.2 0.19 0.17

δ(∆x)/∆x – 0.118 0.065 0.097
P

Using the definition in Eq. (3) of the quantity B(x0),
we obtain

(7)

On the other hand, because B(x0(Θ)) = Emax(Θ) (see
Fig. 1), we have

(8)

The first factor in Eq. (8) is positive, because an
alkali adatom is depolarized with increasing coverage;
indeed, as Θ changes from 0 to 1, the adatom transfers
from a nearly ionic state with a radius ri to a nearly
atomic state with a radius ra > ri [4, 5], so that, for an
estimate, one can set

(9)

where n ≤ 1 is the number of electrons on an alkali ada-
tom. The second term in Eq. (8) is negative, which fol-
lows from experiments [2, 3]. Hence, B(x0) is a decreas-
ing function, which is in agreement with Eq. (7).

As follows from Eq. (9),

(10)

It can be shown (see, e.g., [7] and the references
therein) that, if one takes into account the dipole–dipole
repulsion of equally charged adatoms,2 the dependence
of the occupation number of electrons n on coverage,
i.e., dn/dΘ, can be written in the form

(11)

Here, ρ is the density of states on the adatom at the
energy coinciding with the Fermi level in the substrate;
φ is the work function of the oxidized metal substrate;
I is the ionization potential of the alkali atom; Γ is the
adatom quasi-level half-width; ξ is an energy parameter
describing the dipole–dipole repulsion of adatoms; l is
one-half of the surface-dipole arm, which, for our prob-
lem, may be set equal to the sum of x0 and the oxygen
atom radius; NML is the number of alkali metal atoms in
a monolayer that are adsorbed per unit area of the sub-
strate surface; e is the electronic charge; and A is a
numerical coefficient (~10), which is only weakly
dependent on the adsorbed layer geometry.

Having calculated n in a self-consistent way, one
can find B(x0) and, hence, the parameters of the Born
potential. When calculating the “ground” state described

2 The dipole is formed by the charged adatom and its image in the
metal.

dB x0( )
dx0

----------------- βB x0( )– 0.<=

dB x0( )
dx0

-----------------
dx0

dΘ
-------- 

 
1– dEmax Θ( )

dΘ
----------------------- 

  .=

x0 nra 1 n–( )ri,+=

dx0/dΘ rc ri–( ) dn/dΘ( ).=

dn/dΘ 3/2( ) Θ 1 n–( )ρξ ,=

ρ π 1– Γ
φ I– Θ3/2ξ 1 n–( )–[ ]2 Γ2+

------------------------------------------------------------------,=

ξ 2e2l2NML
3/2 A.=
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by the Morse potential, one has simply to take into account
the dependence of x0 and D on the coverage by equating D
to the adsorption energy Eads. Thus, by deriving the values
of Emax(Θ) and Eads(Θ) from the experiment, one can
extract additional information on the microscopic charac-
teristics of the adsorption system.

Thus, we have formally established that, in order to
explain the observed energy distributions, the potential
well should broaden and the Born repulsion should
decrease with increasing coverage. Consider the physi-
cal mechanism of these variations.
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Fig. 2. Schematic of the desorption process for finite cover-
ages Θ. (a) Variation of the Morse (V1  W1 = V1 – eFx)
and Born (V2  W2 = V2 – eFx) potentials in the electric
field F created by the surface dipoles. The thin lines identify
the terms corresponding to zero coverage. (b) Variation of
the W1 potential corresponding to the equilibrium position

x0 under adatom depolarization; W1(x0)  ( ),

where  > x0 is the new equilibrium position correspond-

ing to a finite adatom concentration Θ. The thin line identi-
fies the term corresponding to zero coverage.

W1
* x0

*

x0
*
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Figure 2a schematically presents the effect exerted
on a single adatom by the electric field (to make the
presentation more revealing, the field strength F is
assumed constant) produced by all other adatoms. We
readily see that, first, the width of the potential well
increases (the thick lines) compared to the case of a sin-
gle adatom (the thin lines), and, second, the amplitude
of the Born potential decreases. However, the changes
in the potentials W1, 2 = V1, 2 – eFx become noticeable
only for x > x0. As a result of the latter fact, the lower
edge of the energy distribution N(E) shifts toward lower
kinetic energies, while its upper edge shifts only insig-
nificantly. Note that the energy distribution N(E) grows
in width.

Figure 2b shows the dependence of the Morse
potential on the equilibrium distance x0, which

increases (x0   > x0) with increasing coverage Θ
because of the adatom depolarization. As follows from
Fig. 2b, this results in a considerable shift of the upper
edge of N(E) toward lower kinetic energies, which
exceeds the shift of the lower edge. In this way, the
increase of the potential-well width compensates the
broadening of N(E). Thus, the shift of the adatom equilib-
rium position caused by depolarization and the field-
induced potential-well broadening can, generally speak-
ing, result in both broadening and contraction of the N(E)
distribution of ESD atoms, depending on the actual shape
and mutual position of the Morse and Born potentials. In
the desorption of alkali metals from oxidized tungsten and
molybdenum surfaces, these effects cancel.
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Abstract—A study is reported on a system consisting of a Si layer on the surface of rare-earth metals (REMs),
which is the reverse of a rare-earth metal on silicon, the system of current widespread interest. Interaction of
silicon with the (0001) surface of trivalent La and Gd single-crystal layers grown on a W(110) surface is studied
by Auger spectroscopy combined with layer-by-layer argon-ion etching of the system and photoelectron spec-
troscopy. It is found that silicon interacts with the La(0001) and Gd(0001) surfaces even at room temperature
with the formation of silicide, but no mutual mixing of the silicon and substrate atoms occurs. When the
Si/La(0001) and Si/Gd(0001) systems are heated at 400°C, silicon does not diffuse into the bulk of the metal
substrate or to the REM/W(110) interface. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, investigations into physicochemical
processes in rare-earth-metal–silicon systems have
been attracting considerable attention [1]. Interest in
these systems is stimulated by their technological
potential and the fundamental problems concerning the
formation and properties of a metal–semiconductor
interface. Most studies of rare-earth-metal–Si systems
deal with adsorption of the metal and epitaxial growth
of rare-earth metal (REM) silicides on the surface of a
single-crystal silicon substrate [1–5]. The increasing
interest in layered systems has recently initiated studies
dealing with the formation of thin layers of semicon-
ductors, specifically of silicon, on the surface of metals
[6, 7]. Earlier [8], we investigated the specific features
of the electronic and crystal structures of the systems
formed upon deposition of thin silicon layers onto the
surface of single-crystal Gd(0001) and Dy(0001) lay-
ers, followed by their heating. It was shown that these
systems represent essentially single-crystal Gd and Dy
layers with Gd and Dy silicide islands lying on the sur-
face of the corresponding metal layers and occupying a
small area of the surface of the system.

This paper reports on a study of the systems formed
by room-temperature deposition of Si layers, 3 to 50 Å
thick, onto the (0001) face of Gd and La single-crystal
layers with subsequent heating. The systems were
investigated by Auger electron spectroscopy combined
with layer-by-layer ion etching and photoelectron spec-
troscopy. The objects chosen for the study were the
Si/Gd(0001) and Si/La(0001) systems, because the first
of them has already been investigated and could serve
as a reference for the present experiment and the sec-
1063-7834/01/4302- $21.00 © 20380
ond system could be used for comparing the results
obtained on the Si/Gd and Si/Dy structures with sys-
tems in which a light trivalent REM is used as a sub-
strate for silicon adsorption. This work was aimed at
investigating the processes involved in the interaction
of silicon with the (0001) surface of single-crystal La
and Gd layers in the course of silicon deposition onto
their surfaces and subsequent heating of the systems.
We found that the deposited silicon chemically reacts at
room temperature with the Gd(0001) and La(0001) sur-
faces to form the corresponding silicide, with no
mutual diffusion of the silicon and metal atoms. As the
thickness increases, silicon forms a surface solid layer
coating the metal surface and the silicide produced on
the interface. When the Si/Gd(0001) and Si/La(0001)
systems thus formed are heated at 400°C, silicon does
not diffuse into the bulk of La and Gd or to the
REM/W(110) interface.

2. EXPERIMENTAL TECHNIQUE

The interaction of silicon with the (0001) surface of
La and Gd single-crystal layers grown on the W(110)
surface was studied by photoelectron and Auger elec-
tron spectroscopy during Si thin-film deposition onto
the surface of the metal layers, followed by heating, and
in the course of layer-by-layer argon-ion etching of the
system thus formed. The photoelectron spectroscopy
experiments were carried out on a TGM-3 channel of
the BESSY-I synchrotron storage ring (Berlin) with the
use of a WSW–ARIES electron analyzer with angular
and energy resolution. The total energy resolution of
the system was about 150 meV. The photoelectron
spectra presented in this work were measured in the
001 MAIK “Nauka/Interperiodica”
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photoelectron takeoff direction normal to the sample
surface at an excitation energy of 35 eV, which corre-
sponds approximately to electron emission from the
center of the Brillouin zone of La and Gd crystals.
Auger electron spectroscopy and layer-by-layer argon-
ion etching were performed under laboratory condi-
tions similar to those of the experiments conducted on
the BESSY-I. The Auger spectra were recorded with a
four-grid retarding-field secondary-electron analyzer at
a primary electron energy of 1 keV. The layer-by-layer
etching of the samples was carried out by argon ions
with a kinetic energy of 1 keV (the angle of incidence
on the sample was 60°). The vacuum in both experi-
mental setups was better than 1 × 10–10 torr and deteri-
orated to 5 × 10–10 torr during the deposition of the
metal and silicon films. During the layer-by-layer etch-
ing, the argon pressure was 1 × 10–6 torr.

The La and Gd single-crystal layers, about 100 Å
thick and with the (0001)-oriented surface, were pre-
pared by the standard technique on the W(110) surface,
which provides high crystal perfection and surface
cleanness [9]. The metal layers were deposited from a
tantalum crucible heated by electron bombardment,
and silicon was evaporated from a silicon plate (n-Si)
heated by direct dc passage.

3. RESULTS

Figure 1 shows the Auger electron spectra of a clean
La(0001) surface with 3-, 15-, and 50-Å-thick silicon
layers deposited onto it at room temperature and the
spectra of a 15-Å-thick Si/La(0001) system formed
upon heating at 400°C for 5 min. The lanthanum
La(NOO), La(NOV), and silicon Si(LVV) Auger peaks
at 59, 78, and 90.5 eV, respectively, are characteristic
features of these spectra. Adsorption of a 3-Å-thick Si
layer on the La(0001) surface gives rise to the silicon
Si(LVV) feature in the Auger spectrum of the system. A
further increase in silicon concentration on the surface
of the system to 15 Å and, subsequently, to 50 Å results
in an increase in the intensity of the silicon Auger sig-
nal; in the process, the intensity of the signals associ-
ated with Auger transitions in the metal decreases grad-
ually, and for a silicon layer 50 Å thick, these signals
are not observed in the spectrum. It is readily seen from
Fig. 1 that the Auger peaks of both lanthanum and sili-
con in the Si/La(0001) system vary only weakly in
energy in all stages of film formation and lie approxi-
mately at the positions that correspond to the pure bulk
crystals of the metal and silicon. At the same time, the
shape of the Si(LVV) Auger peak undergoes changes.
This shape is qualitatively characterized by the A/B
ratio of the height of the maximum to the depth of the
minimum with respect to the background level, as is
shown in Fig. 1. The shape of the peak obtained for the
Si layer 50 Å thick coincides with that characteristic of
pure crystalline silicon [10]. The shape of the Si(LVV)
Auger peak for a 3-Å-thick silicon layer differs from
that for pure crystalline silicon, which manifests itself
PHYSICS OF THE SOLID STATE      Vol. 43      No. 2      200
in an increase in the A/B ratio. Upon heating the 15-Å-
thick Si/La(0001) system at 400°C, the intensity of the
lanthanum Auger signals in the spectrum increases to a
value close to their initial intensity measured before sil-
icon deposition on the metal surface. The shape of the
silicon Auger peak varies substantially, and the A/B
ratio for the system formed as a result of the heating is
increased compared to that for pure silicon.

The Auger spectra of the Si/Gd(0001) system (Fig. 2)
change in the same way as those of Si/La(0001). Fig-
ure 2 shows the Auger spectra for a clean Gd(0001) sur-
face, silicon layers (3, 12, and 50 Å thick) deposited
onto the Gd(0001) surface at room temperature, and a
12-Å-thick Si/Gd(0001) system heated at 400°C. The
Si/Gd(0001) system is characterized by gadolinium
Auger peaks at kinetic energies of 111 eV [Gd(NOV)]
and 141 eV [Gd(NVV)] and by a silicon Si(LVV) Auger
peak at 92 eV. Similar to the Si/La(0001) system, dep-
osition of silicon onto the Si/Gd(0001) surface results
in an increase in the intensity of the silicon Auger signal
and a gradual decrease in the intensity of the metal
Auger signals. Adsorption of a thick Si layer leads to
the formation of a system whose Auger spectrum is
similar to that of pure silicon. Heating the 12-Å-thick
Si/Gd(0001) system at 400°C brings about an increase
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Fig. 1. Evolution of the Auger electron spectra in the course
of room-temperature deposition of silicon layers of different
thicknesses (3, 15, and 50 Å) onto the surface of an
La(0001)/W(110) single-crystal layer and after heating of
the system at 400°C. 
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in the intensity of the Gd Auger signals and a change in
the shape of the silicon Auger peak. As in the case of
Si/La(0001), the shape of the Si(LVV) Auger peak,
which differs from that of bulk silicon, is also
observed for the system formed upon the adsorption
of a thin Si layer 3 Å thick on the Gd(0001) surface at
room temperature.

Figure 3 displays the photoemission spectra
recorded at a normal photoelectron takeoff from the
sample surface for a clean Gd(0001) surface, after dep-
osition of a 50-Å-thick Si layer onto the surface of the
metal, and for a 50-Å-thick Si/Gd(0001) system heated
at 500°C for 5 min. The spectrum of the clean
Gd(0001) surface is characterized by peaks corre-
sponding to photoemission from surface states near the
Fermi level, d states of the valence band at a binding
energy of approximately 1.2 eV, and 4f states of the
metal at 8.3 eV. The emission near 6 eV is due to a
slight oxygen impurity present on the metal surface. As
is seen from Fig. 3, after the deposition of the Si layer
50 Å thick onto the Gd(0001) surface, the features cor-
responding to the surface states and the Gd valence
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Fig. 2. Evolution of the Auger electron spectra in the course
of room-temperature deposition of silicon layers of different
thicknesses (3, 12, and 50 Å) onto the surface of a
Gd(0001)/W(110) single-crystal layer and after heating of
the system at 400°C. 
P

band practically disappear in the spectrum of the sys-
tem and the 4f signal of the metal decreases substan-
tially in intensity (by approximately a factor of four). At
the same time, a new broad feature is observed at a
binding energy of approximately 2 eV. Heating of the
system thus formed at 500°C restores the spectral fea-
tures characteristic of a clean Gd(0001) surface. In this
case, the 4f electron photoemission intensity increases
to a value close to that of the Gd 4f electrons from a
clean Gd(0001) surface. As a result, after the heating,
the photoemission spectrum of the 50-Å-thick
Si/Gd(0001) system becomes similar to that of the
clean Gd(0001) surface before silicon deposition.

The inset to Fig. 3 shows the photoemission spectra
of the region of the Gd 4f electronic states which were
recorded at a resonant excitation energy of 148.1 eV.
The spectra are shown for a clean Gd(0001) surface, a
35-Å-thick Si layer deposited onto the Gd(0001) surface
at room temperature, and a 35-Å-thick Si/Gd(0001) sys-
tem subjected to heating at 400°C. Analysis of the
results obtained revealed that the spectra contain sev-
eral components corresponding to the emission of 4f
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Fig. 3. Photoelectron spectra of the Gd valence band and Gd
4f electrons for a clean Gd(0001)/W(110) layer and a 50-Å-
thick Si/Gd(0001)/W(110) system formed at room tempera-
ture and after heating at 500°C. The inset shows photoemis-
sion spectra of the Gd 4f electrons at the photoexcitation
energy hν = 148.1 eV, which corresponds to the resonant
excitation energy of the 4d–4f transition in the metal, for a
clean Gd(0001) surface, and a 35-Å-thick Si/Gd(0001) sys-
tem produced at room temperature and after heating at 400°C. 
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electrons of different groups of atoms. The spectrum of
a clean Gd(0001) surface consists of the component B
due to photoemission from atoms in the bulk and the
photoemission component S originating from atoms
localized on the Gd surface. As is seen from the figure,
adsorption of a 35-Å-thick Si layer reduces the inten-
sity of the surface component S as compared to the total
intensity of emission from the 4f states and results in
the appearance of a new 4f emission component R.
Heating the system brings about an increase in the
intensity of the surface component and a decrease in
that of the new component.

4. DISCUSSION

As follows from an analysis of Figs. 1 and 2, depo-
sition of a thin Si layer 3 Å thick onto the La(0001) and
Gd(0001) surfaces at room temperature results in the
appearance of a Si(LVV) Auger peak in the spectra of
the systems and its shape differs from that in the Auger
spectrum of pure single-crystal silicon [10]. Because
the Si(LVV) Auger peak is an indication of the chemical
state of the Si atoms, the difference between its shape
and the shape of the peaks characteristic of pure bulk
silicon suggests a change in the chemical state of the
silicon atoms in these systems compared to that in bulk
silicon. This implies that, at room temperature, silicon
chemically interacts with REM atoms on the La(0001)
and Gd(0001) surfaces. This is supported by the
appearance of a new reactive component R in the Gd 4f
photoemission spectrum of the system formed by room-
temperature deposition of a silicon layer 35 Å thick on
the Gd(0001) surface (see inset in Fig. 3). 

Further deposition of silicon results in a weakening
of the metal substrate signals in the Auger spectra of the
Si/La and Si/Gd systems, and they disappear com-
pletely at a silicon layer thickness of 50 Å. The features
associated with the valence band and the surface state
of the metal overlap with a new broad feature in the
photoemission spectrum of the system (Fig. 3).
According to studies on the electronic states of the Si
valence band, this feature observed in the photoemis-
sion spectrum of the 50-Å-thick Si/Gd(0001) system
can be assigned to the formation of sp3 hybridized
bonds between silicon atoms [11]. Therefore, it can be
concluded that deposition of a sufficiently thick silicon
layer (50 Å) onto an REM surface at room temperature
brings about the formation of a continuous layer of sil-
icon with the properties of bulk Si, which covers the
metal surface and the silicide layer formed at the inter-
face.

The formation of a continuous silicon layer on the
surface of the system produced by room-temperature
deposition of a 50-Å-thick silicon layer onto the
La(0001) and Gd(0001) surfaces allows us to conclude
that, at room temperature, atoms from the deposited sil-
icon layer and from the metal substrate do not undergo
mutual diffusion to the extent which would involve a
PHYSICS OF THE SOLID STATE      Vol. 43      No. 2      200
considerable part of the deposited silicon. It can be
assumed that the high stability of the La(0001) and
Gd(0001) single-crystal surfaces or of the silicide layer
formed on these surfaces at room temperature creates a
barrier to mutual diffusion of the silicon and metal
atoms. The question naturally arises as to whether such
a barrier can be overcome, for instance, by heating the
system to a high temperature at which mutual diffusion
of the silicon and metal atoms would take place.

As can be seen from the Auger spectra of the 15-Å
Si/La(0001) and 12-Å Si/Gd(0001) systems heated at
400°C, the heating results in an increase in the intensity
of the Auger signals of the metals as compared to sili-
con (Figs. 1, 2). The shape of the Si(LVV) Auger peak
also changes and becomes similar to that observed in
the case of the epitaxial REM silicides on the surface of
single-crystal silicon [10]. The fact that the energy
location of the Auger peaks virtually does not change
for the system after the heating, as compared to a clean
metal surface and a bulk silicon layer, suggests a cova-
lent nature of the chemical interaction with a weak
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Fig. 4. Relative variation of the Si(L23VV), La(N45O23V67),
and Gd(N45O23V67) Auger peak amplitudes in the course of
layer-by-layer etching of (a) 15-Å Si/La(0001)/W(110) and
(b) 12-Å Si/Gd(0001)/W(110) systems preliminarily
heated at 400°C.
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charge transfer between the atoms, which is character-
istic of chemical bonding in REM silicides. The heating
of even a thick (50 Å) Si layer deposited onto the
Gd(0001) surface at room temperature produces a sys-
tem whose valence-band photoemission spectrum is
similar to that of a clean Gd(0001) surface, even though
the presence of silicon on the surface becomes manifest
in the observation of a reactive component in the 4f
electron photoemission of the metal (see inset in Fig. 3).
This means that the system consists of considerable
areas of clean metal surface and regions coated by
metal silicide occupying a smaller part of the surface
area of the system. This is supported by the fact that the
silicide does not provide a noticeable contribution to
the valence-band photoemission spectra of the heated
system. If we assume that upon heating, silicon atoms
form silicide which builds up on the surface in the form
of islands, it becomes difficult to understand why the
silicide formed from a silicon layer 50 Å thick weakly
manifests itself in the valence-band photoemission
spectra of the system. It can be assumed that the major
part of silicon leaves the surface in the course of heat-
ing. One possible explanation for this effect could be
the diffusion of silicon into the bulk of the metal sub-
strate or to the REM/W(110) interface. 

In order to establish whether Si atoms diffuse under
heating of the system into the bulk of the metal or to the
REM/W(110) interface, the heated 12-Å Si/Gd(0001)
and 15-Å Si/La(0001) systems were subjected to layer-
by-layer etching with Ar+ ions. The etching of each
layer was followed by the recording of Auger electron
spectra. Analysis of the results obtained revealed
dependences of the intensities of the Si(LVV),
La(NOV), and Gd(NOV) Auger signals on the depth of
the removed layer, which are displayed in Figs. 4a and
4b for the Si/La(0001) and Si/Gd(0001) systems,
respectively. These dependences reproduce the depth
profiles of the silicon and metal concentrations in the
system. We readily see that the intensity of the silicon
Auger signal and, hence, the silicon atom concentration
on the surface of the system decrease with an increase
in the thickness of the removed layer. As the depth of
etching increases, the silicon concentration in both the
Si/La and Si/Gd systems decreases almost to zero and
the silicon Auger signal does not appear until the etch-
ing is terminated; in this case, the Auger spectra contain
only the signal due to the tungsten substrate. The inten-
sities of the La and Gd Auger signals undergo changes
at the beginning and the end of the etching, i.e., at the
Si/REM and REM/W(110) interfaces, which is
accounted for by the effect of the interface structure.
On the whole, the Auger signal intensity of the metal in
the system varies only weakly with the depth of the
removed layer and decreases to zero at the end of the
etching, when the Auger signal due to the tungsten sub-
strate appears.

The depth profiles of the Si and metal atoms in the
Si/La(0001) and Si/Gd(0001) systems indicate that Si
P

is present only on the surface of the systems and not in
the bulk of the metal or at the REM/W(110) interface.
Therefore, we can conclude that heating of the
Si/La(0001) and Si/Gd(0001) systems does not give
rise to diffusion of silicon atoms into the bulk of the
metal substrate or to the tungsten substrate interface.
This suggests that, upon heating of the Si/La(0001) and
Si/Gd(0001) systems, silicon and silicide formed at the
interface between the deposited silicon layer and the
metal substrate diffuse over the surface of the single-
crystal metal layer and build up on surface defects, such
as breaks in the metal layer, or at the sample boundary,
which may become a subject of further study of the
Si/REM system.

5. CONCLUSION

The present study of the Si/La(0001) and
Si/Gd(0001) systems by photoemission and Auger
electron spectroscopy combined with layer-by-layer
Ar+ ion etching allowed us to conclude that deposition
of a silicon layer onto Gd(0001) and La(0001) surfaces
at room temperature activates the formation of silicide
at the Si/REM interface; however, no mutual diffusion
of silicon and metal atoms occurs. Further deposition of
silicon brings about the formation of a continuous sili-
con layer on the surface of the system. When the
Si/La(0001) and Si/Gd(0001) systems are heated at
400°C, silicon atoms do not diffuse into the bulk of the
substrate or to the REM/W(110) interface. It was con-
jectured that silicon and silicide formed at the Si/REM
interface at room temperature diffuse under heating
over the (0001) surface of the single-crystal metal and
build up on surface defects and at the sample boundary.
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Abstract—The effective equation of motion for describing the alternation of monomers of different sorts along
a heteropolymer chain is proposed. This equation is used for constructing a self-consistent supersymmetric
scheme that makes it possible to derive equations for the structure factor and the Green function. The effects of
memory and ergodicity loss are studied as functions of the temperature and the intensity of the frozen disorder
in the alternation of monomers. The phase diagram that determines the existence domains of nonergodic and
frozen states is constructed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, considerable interest has been
expressed by researchers in disordered heteropolymers
which represent random sequences of monomers of dif-
ferent sorts (see [1–3] and references therein). As the
temperature decreases, these systems can undergo
phase transformations of two types: glass transition and
microphase separation. In the course of the glass tran-
sition, among the possible states of an infinite set, a dis-
ordered heteropolymer chooses the sole nonequilib-
rium but stationary state at which a certain conforma-
tion and a sequence of alternating monomers (of the
DNA-type molecule) are fixed. The problem of describing
these transitions reduces to the development of the sim-
plest and most adequate procedure for averaging thermo-
dynamic quantities over a frozen disorder. A similar prob-
lem first arose in the study of spin glasses [4].

The microphase separation phenomenon inherent in
block copolymers resides in the formation of a spatial
periodic distribution of monomers in the form of one-
dimensional lamellar structures, hexagonal lattices of
cylinders, body-centered lattices of spheres, etc. [2, 3].
The characteristic feature of these structures lies in the
fact that the chemical bond between blocks prevent the
macroscopic separation observed in homopolymer
solutions. The microphase separation was initially
studied in terms of the mean-field theory for an A–B
block copolymer with an arbitrary fraction f of mono-
mers of the A sort [5]. It was found that, at f ≠ 0.5, a
decrease in the temperature leads to a first-order phase
transition with the formation of a spatial periodic struc-
ture whose wavelength 2π/k0 is of an order of the block
size and does not depend on the temperature. Since the
phase transition results in the divergence of the struc-
ture factor on the surface of a sphere k0 ≠ 0 rather than
at the only point k0 = 0 (as is the case in the macrophase
separation), the order parameter fluctuations make a
divergent contribution to the thermodynamic quantities
1063-7834/01/4302- $21.00 © 20386
[6]. As a result, at f = 0.5, a continuous second-order
phase transition transforms into a weak first-order
phase transition and the phase diagram changes sub-
stantially [7]. When changing over from the block
copolymer to the disordered heteropolymer, both trans-
formations (glass transition and microphase separation)
take place; however, there appears a strong temperature
dependence of the spatial period [1, 8]. Moreover, the
field approach demonstrated that fluctuations suppress
both the microphase separation and the glass transition
in a disordered polymer [9, 10].

As in the case of spin glasses [4], the theory of dis-
ordered heteropolymers is based on the replica method
(see [1]). In addition, the transfer-matrix method [11],
the kinetic approach [12], and other methods [13] were
used; however, the range of their applicability appeared
to be appreciably narrower than that of the replica
approach. At the same time, it is known from the spin
glass theory that the replica method in the framework of
the Sherrington–Kirkpatrick model [14] turns out to be
equivalent to the supersymmetric approach [15]. Except
for the known disadvantages of the replica method, the
advantage of the supersymmetric approach stems from
the fact that only two superfield components with a
clear physical meaning play a significant part within
the simplest scheme [16].

The supersymmetric scheme, as applied to poly-
mers, was proposed by Vilgis [17]; however, this
approach had no further development. The present
work was undertaken with the aim of filling this gap. As
will be shown below, the introduction of the supersym-
metric approach for describing the system with a frozen
disorder is as natural as the application of complex cal-
culus to the phase transition theory (see also [18]).

This paper is organized as follows. In Section 2, we
obtain the effective equation of motion for describing
the alternation of monomers of different sorts along a
polymer chain [19]. The form of this equation is speci-
001 MAIK “Nauka/Interperiodica”
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fied by the effective Hamiltonian of an disordered het-
eropolymer, which is defined in Section 3. In Section 4,
on the basis of the standard generating functional
method [20], which accounts for the effective equation
of motion, we construct the supersymmetric field the-
ory for describing the behavior of the system. In Sec-
tion 5, we expand the supersymmetric correlator in the
optimum basis set and deduce the structure factor and
the retarded Green function for which the self-consis-
tent equations are found [21]. These quantities allow us
to describe (Section 6) the memory and nonergodicity
parameters as functions of the Flory parameter and the
frozen disorder in the alternation of monomers of dif-
ferent sorts. The discussion of the results obtained is
given in Section 7.

2. EFFECTIVE EQUATION OF MOTION

As is known, the field scheme for stochastic systems
is based on the Langevin dynamic equation [20]. How-
ever, the presence of covalent bonds forming the poly-
mer chain renders this scheme inefficient, because the
dynamic theory of polymers is much more complex
compared to statistical mechanics of usual many-parti-
cle systems [22]. Therefore, in order to describe the dis-
ordered heteropolymer, it is necessary to obtain the
effective equation of motion instead of the dynamic
equation.

Let us consider the simplest case of a homopolymer
that can be considered a Gaussian chain for which the
probability density of determining the vector R con-
necting the chain origin with the Nth node is specified
by the function Ψ(R, N). This function satisfies the
Schrödinger equation with the imaginary time –iN [22]:

(1)

where N @ 1 is the number of monomers, D = b2/6 is
the effective diffusion coefficient determined by the
Kuhn segment length b, and U(R, N) is the external
field. In the limit N  ∞, the solution to Eq. (1) can
be written as

(2)

where the functional integration is performed over the
dependence of the coordinate r(n) of a monomer on its
number n in the chain; and the action S(R, N) ≡
SRN{r(n)} = , which corresponds to the

chain ends at the fixed points r(0) = O and r(N) = R, is
determined by the Lagrangian of the Euclidean field
theory [20, 22]:

(3)

Here, the first term obtained in the continuum approxi-
mation r(n + 1) – r(n)  dr(n)/dn plays the role of
kinetic energy and accounts for the presence of a cova-

∂Ψ/∂N D∂2/∂R2 U R N,( )–( )Ψ,=

Ψ R N,( ) SR N, r n( ){ } /2D–( )Dr n( ),exp∫=

L0 r n( )( ) nd
0

N∫

L0
1
2
--- dr n( )

dn
-------------- 

 
2

2DU r n,( ).+=
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lent bond between chain monomers [22]. Substitution
of distribution (2) into Eq. (1) gives the Jacobi-type
equation

(4)

By introducing the generalized momentum p ≡ ∂S/∂R
and the total derivative dp/dN ≡ ∂p/∂N + (p∂/∂R)p, we
reduce the nonlinear equation (4) to the Burgers linear
equation

(5)

Relationships (1)–(5) provide the basis for the theory of
direct polymers, the kinetic theory of surface roughen-
ing, etc. (see [23]).

In our case, an important point is that the Schrödinger
equation (1) transforms into the Fokker–Planck equa-
tion [24]

(6)

if we introduce the probability

(7)

The dependence of this probability on R is governed
by the effective potential

(8)

where the force F is related to the initial potential U as
follows:

(9)

According to the theory of stochastic systems [25], the
Fokker–Planck equation (6) corresponds to the Lan-
gevin equation

(10)

which determines the stochastic dependence R = R(N).
Here, the Langevin source ζ is fixed by the white noise
conditions

(11)

where the angle brackets designate the averaging over
distribution (7).

In order to change over from the above case of a
homopolymer to the main subject of our investigation,
namely, the disordered heteropolymer A–B, it is neces-
sary to take into account that the stochasticity manifests
itself not only in the spatial arrangement of monomers,
but also in the alternation of their sorts A and B along
the chain. Formally, this is reflected by assigning the
Ising variable θ(n) to each nth node [θ(n) = 1 if the nth
monomer is of the A sort and θ(n) = –1 in another case].
With an increase in the node number n, the variable
θ(n) changes in much the same manner as the spin

∂S
∂N
------- D

∂2S

∂R2
--------- 1

2
--- ∂S

∂R
------- 

 
2

– 2DU .+=

dp/dN D ∂2p/∂R2 2∂U/∂R+( ).=

∂P
∂N
------- D

∂2

∂R2
--------- ∂

∂R
-------F– 

  P,=

P R N,( ) Ψ R N,( ) V R( )/2D–{ } .exp=

V F R,d∫–≡

U
1

4D
-------F2 1

2
--- ∂F

∂R
-------.+=

∂R/∂N F R N,( ) ζ N( ),+=

ζ N( )〈 〉 0, ζ N( )ζ N'( )〈 〉 2Dδ N N'–( ),= =
1
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reorientation in the Glauber dynamics [26]. For the

effective spin σ(n) ≡ θ(n) – , which is reckoned

from the mean value , the transfer matrix method
leads to the correlator [11]

(12)

where the bar means the averaging over the composi-
tion (frozen) disorder, l is the correlation length, and f
is the fraction of monomers of the A sort.

It can easily be shown that the pseudospin variable
σ(n) defined by the exponential correlator (12) obeys
the effective equation of motion

(13)

where the stochastic source s(n) is represented by the
white noise

(14)

According to Eq. (13), the relationship between the
microscopic quantity σ(n) and the stochastic variable
s(n) has the form 

(15)

Conditions (14) are met when the white noise s(n) is
described by the Gaussian distribution

(16)

with the frozen disorder intensity 4C2l–1. Correspond-
ingly, the order parameter is determined by the local
mean

(17)

Hereafter, the monomer volume will be taken equal to
unity.

Compared to equality (10), the effective equation of
motion for field (17) should contain the term D∂2η/∂r2,
which accounts for the presence of an inhomogeneity.
By changing over to the Fourier transform,

(18)

for which this inhomogeneity takes the form –Dk2ηk ,
we obtain

(19)

Here, as before, the continuum limit n @ 1 is used for
the effective time n, the characteristic monomer scale is
specified by the renormalized segment length a ≡ D1/2 =
6–1/2b, the force fk = –∂*/  [cf. relationship (8)] is

θ n( )
θ n( )

σ n( )σ n'( ) C2 n n'– /l–( ),exp=

C2 4 f 1 f–( ), f 1/2( ) 1 θ n( )+( ),≡≡

dσ/dn σ/l– s n( ),+=

s n( ) 0, s n( )s n'( ) 2C2l 1– δ n n'–( ).= =

σ n( ) e n m–( )– /ls m( ) m.d

0

n

∫=

P s n( ){ } 4C2π/l( ) 1/2– l
4C2
--------- s2 n( ) nd

0

N

∫–
 
 
 

exp=

η r n,( ) 4C2( ) 1/2– σ n( )δ r r n( )–( ).≡

ηk n( ) N 1/2– η r n,( )e ikr– r,d∫=

∂ηk/∂n ak( )2ηk– ∂*/∂ηk*– ζk+ .=

∂ηk*
P

determined by the effective Hamiltonian *, and the
white noise is fixed by the conditions

(20)

where the angle brackets mean the averaging over the
thermal disorder, which, unlike the white noise condi-
tions (11), is normalized to unity.

3. EFFECTIVE HAMILTONIAN

In order to derive the effective Hamiltonian *{η} ≡
Ω'{m} [27] which determines the form of Eq. (19), we
consider the thermodynamic potential Ω'{m} obtained
by averaging over the conformation and composition
disorders. The corresponding mean of the order param-
eter (17) has the form

(21)

According to the standard procedure [20], the statistical
sum of the system can be written in the form of a func-
tional integral

(22)

Here, χ > 0 is the Flory composition parameter, the first
δ-function takes into account the incompressibility con-
dition, and the second δ-function accounts for the defini-
tion of the order parameter (21). Then, it is necessary to
represent the δ-functions in the form of a Laplace func-
tional expansion in terms of the auxiliary fields Jρ and
Jm. As a result, relationship (22) takes the exponential

form with the index ,

where the last term is the free energy averaged over
conformational and configurational sets at the specified
fields Jρ and Jm. The stationary values  and  of
these fields are determined by the conditions δΩ/δJρ = 0
and δΩ/δJm = –m. Substitution of these values into the

ζk〈 〉 0, ζk* n( )ζk' n'( )〈 〉 δkk'δ n n'–( ),= =

m r( ) η r n,( )〈 〉
n

∑≡ 4C2( ) 1/2–=

× σ n( )δ r r n( )–( )〈 〉 .
n

∑

Z Dm r( ) C2χ m2 r( ) rd∫ 
 
 

exp∫=

× δ δ r r n( )–( ) 1–
n

∑
 
 
 

× δ 4C2( ) 1/2– σ n( )δ r r n( )–( ) m r( )–
n

∑
 
 
 

.

Jρ Jmm+( ) rd Ω Jρ Jm,{ }–∫

Jρ Jm
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functional Ω{Jρ, Jm} gives the thermodynamic potential

defined by the expression Z = ,

where (for more details, see [1, 11, 28])

(23)

Here, the contribution from the inhomogeneity is
included in the quadratic term, the appearance of the
terms proportional to l–1 is associated with the proce-
dure of averaging over the frozen disorder in distribu-
tion (15), and the term containing the kernel wkk' =
4N –1(la)–2(k2 + k'2)–1 arises from the averaging over
distribution (7) (the given relationship is consistent
with the results obtained in [1, 11], whereas the replica
method leads to the opposite sign [9, 29]). The last term
accounting for the self-action effects can be repre-
sented by the expansion [1, 11]

(24)

As mentioned above, the applied method is based on
formulas (12), which enable one to express the correla-
tors of the frozen disorder with the use of transfer
matrices. The replica method is more popular. In the
framework of this method, the field Jm and the order
parameter m acquire the replica index α over which the
summation from 1 to n  0 should be carried out in
Hamiltonian (23) [4]. Then, the quadratic contribution
is given by

(25)

where Aαα(k)  2τk in the limit n  0 for the coin-
cident replicas. As was shown by the example of spin
glasses, the characteristic feature of the systems with a
frozen disorder resides in a hierarchic structure of the
state space, which is characterized by a random overlap
of different replicas [4]. Consequently, the overlap
parameter Aαβ(k) in the second term in formula (25) is
a stochastic quantity over which the averaging should
be performed. We assume that the corresponding distri-
bution has the simplest Gaussian form

(26)

with the variance  ≡ ,
which is specified by the parameter σ (see [9]). Then,

Dmk Ω' mk{ }–( )exp∫

Ω' τk mk
2

k

∑ 1
2
--- wkk' mk

2 mk'
2

kk'

∑ ν r( ) r,d∫+ +=

τk τ ak( )2, τ l 1– C2χ .–≡+≡

v µ/3!( )m3– λ /4!( )m4,+=

µ 12C3C2
1/2– l 1– , λ 24 1 5C3

2/C2+( )l 1– ,≡≡

C2 4 f 1 f–( ), C3 1 2 f– .≡≡

1
2
--- Aαα k( ) mα k( ) 2

kα
∑ 1

2
--- Aαβ k( )mα k( )mβ k–( ),

k
α β≠

∑+

3 Aαβ k( ){ } 1
8
--- uk1k2

1– Aαβ k1( )Aαβ k2–( )
k1k2
α β≠

∑–

 
 
 
 
 

exp∝

uk1k2
σ2 la( ) 2– N 1– k1

2 k2
2+( ) 1–
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after the averaging of the statistical sum Z =

, the second term in formula (25)

takes the form

(27)

As a result, the thermodynamic potential (23) has the
replica form

(28)

Relationship (28) eliminates the above contradiction in
the choice of the effective Hamiltonian form: the posi-
tive contribution determined by the second term is
associated with the interreplica interaction (see [1, 11]),
whereas the negative contribution found in [9, 29]
stems from the overlap of replicas. The different origin
of these terms manifests itself in the fact that the former
term leads to the renormalization of the quantity τk and
the latter term is responsible for the memory and non-
ergodicity effects.

In order to perform this renormalization (see [27]),

one of the multipliers  in the second term in
relationship (28) should be replaced using the mean-
field approximation by the bare Green function ,

which corresponds to v = 0 and  and is deter-
mined by the equality independent of the number of the
replica α; that is,

(29)

The parameters r and k0 can be found by substituting
relationship (29) into the corresponding Dyson equa-
tion:

(30)

Then, after the integration over the wave vector k', we
obtain

(31)

According to the first of these equalities, as the initial
temperature difference τ increases, the positive param-
eter r smoothly increases with the asymptotics r ~ τ–2 at
τ < 0 and r ~ τ at τ @ 1 (Fig. 1a). This means that the

Dmk Ω' mk{ }–( )exp∫
1
2
--- uk1k2

mα k1( )mβ k1–( )mα k2–( )mβ k2( ).
k1k2
α β≠

∑–

Ω' τk mα k( ) 2
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2
--- wk1k2

mα k1( ) 2 mα k2( ) 2

k1k2

α

∑+=

+ v mα( ) rd∫
α
∑ 1

2
--- uk1k2

mα k1( )mβ k1–( )
k1k2
α β≠

∑–

× mα k2–( )mβ k2( ).

mα k( ) 2

Gk0

uk1k2
0=

Gk0

1– r 2a2 k k0–( )2.+=

Gk0

1– τk wkk'Gk'0
.

k'

∑+=

r τ 3/4π( )l 2– 2r( ) 1/2– ,+=

k0
1– 2π1/2l 2r( )1/4a.=
1
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fluctuations in the absence of self-action stabilize the dis-
ordered heteropolymer with respect to the microphase
separation [9]. Specifically, according to the condi-
tion r > 0, only the first-order phase transition is possi-
ble. The second equality (31) determines the depen-
dence of the spatial period λ = 2π/k0 on the parameter r,
which is inherent in disordered heteropolymers [1]. As
can be seen from Fig. 1b, an increase in the temperature
difference τ leads to a monotonic increase in the value
of λ from 0 to ∞. Note that the larger the correlation
length l, the faster the change in the period λ near the
point τ = 0.

The final expression for the Hamiltonian of the dis-
ordered heteropolymer follows from the thermody-
namic potential (28) renormalized by fluctuations:

(32)

* τk ηα k( ) 2

kα
∑ v ηα( ) rd∫

α
∑+=

–
1
2
--- uk1k2

ηα k1( )ηβ k1–( )ηα k2–( )ηβ k2( ),
k1k2
α β≠

∑

rk r 2a2 k k0–( )
2
, uk1k2

σ2 la( ) 2– N 1– k1
2 k2

2+( ) 1–
.≡+≡

1

2

3

(a)

1

–2 0 τ

r

1

2

3
λ /a (b)

100

–2 0 2 τ

10

Fig. 1. Dependences of (a) the parameter r and (b) the period
λ on τ at different correlation lengths l = (1) 0.5, (2) 1, and
(3) 10.
P

Here, the kernel v(ηα) is defined by relationships (24),
in which m is replaced by ηα.

4. INTRODUCTION OF SUPERFIELD

With the aim of constructing the supersymmetric
scheme, let us consider the generating potential [20]

(33)

where the angle brackets mean the averaging over the
noise ζk(n), the δ-function accounts for the form of the
effective equation of motion (19), and the determinant
is the Jacobian of transformation from the variable ζk to
ηk. Now, we write the δ-function as a Laplace func-
tional integral over the field ϕk(n). To derive relation-
ship (33) in a canonical exponential form, we represent
the determinant with the use of the Grassmann conju-
gate fields ψk(n) and , which satisfy the condi-
tions [20]; that is,

(34)

where the curly brackets designate the anticommutator.
The averaging in relationship (33) over ζk(n) with a
Gaussiann distribution defined by formulas (20) gives
the standard representation of the partition function

(35)

Here, the dot designates the derivative with respect to
the effective time and the prime denotes the functional
derivative with respect to field (17).

With the use of direct substitution, it is easy to show
that the Lagrangian which corresponds to the last equality
in relationships (35) takes the canonical form [21]

(36)

by introducing the supersymmetric operators

(37)

Z ηk{ } δ
∂ηk

∂n
---------

δ*
δηk*
---------- ζk–+ 

  det δζk

δηk
--------- ,=

δ*/δηk* ∂*/∂ηk* 2a2 k k0–( )2ηk,+≡

ψk n( )

ψ ψ,{ } ψ ψ,{ } ψψ{ } 0,= = =

Dψ∫ Dψ∫ 0, ψψD2ψ∫ 1,= = =

D2ψ DψDψ,≡

Z η{ } P η ϕ ; ψ ψ,,{ } DϕD2ϕ ,∫=

P η ϕ ; ψ ψ,,{ } S η ϕ ; ψ ψ,,{ }–( ),exp=

S L n, L ϕη̇ ψψ̇ ϕ2/2––( )[∫=d

0

N

∫=

+ *' η{ } ϕ ψ*'' η{ } ψ–( ) ]dr.

L Λ Φ( )d2θ, Λ $Φk*( ) $Φk( ) * Φk{ } ,+
k

∑≡∫=

d2θ dθdθ≡

$ ∂
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∂
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and the four-component superfield

(38)

where the Grassmanian coordinates θ and  meet the
same conditions (34) as the fields ψ and . The func-
tional *{Φ} has the form defined by relationship (32),
in which the order parameter ηkα is replaced by the
superfield Φk(θ). In this case, the replica index α goes
over into the Grassmanian variable θ, which is the for-
mal reason for the identity between the replica method
and the supersymmetric approach. The advantage of
the latter approach is provided by the Grassmanian
properties (34) whose fulfillment corresponds to the
replica limit n  0.

According to [16, 21], the combination  deter-
mines the density of antiphase boundaries and the use
of the four-component superfield corresponds to the
strong segregation limit [2, 3]. We restrict our consider-
ation to the simpler case of a weak segregation for
which the interfaces are absent. Then, superfield (38)
reduces to the two-component form

(39)

Here, we introduced the self-consistent nilpotent quan-
tity . Correspondingly, Lagrangian (36) takes
the simple form

(40)

When written in terms of components of field (39), the
equation of motion

(41)

leads to equations for the order parameter η(n) and the
amplitude of the most probable fluctuation ϕ(n) of the
conjugate field (see [21]).

5. CORRELATORS

In order to determine the supercorrelator

(42)

we multiply the equation of motion (41) by  and
carry out the averaging. As a result, for the bare corre-
lator that corresponds to the parameters v = u = 0 in
Hamiltonian (32), we obtain [21]

(43)

Φ η ψθ θψ θθϕ ,+ + +=

θ
ψ

ψψ

φ η ϑ ϕ .+=

ϑ θθ≡

L λ φ( ) ϑ , λ φk*Dφk

k

∑ * φk{ } ,+≡d∫=

D
∂
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∂ϑ
-------– 

  ∂
∂n
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Dφk δ*/δϕk*–=

Ck n ϑ ; n' ϑ ',,( ) φk* n ϑ,( )φk n' ϑ ',( )〈 〉 ,≡
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0( ) ϑ ϑ ',( )

1 rk iν–( )ϑ rk iν+( )ϑ '+ +

rk
2 ν2+

------------------------------------------------------------------= .
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Here, we used the “frequency” Fourier transform

(44)

The Grassmanian structure of relationship (43) sug-
gests that an arbitrary supercorrelator can be expanded
in terms of the supersymmetric unit vectors

(45)

Any X, Y, and Z of these unit vectors satisfy the func-
tional product

(46)

Specifically, the supersymmetric unit vectors (45) con-
form to the following multiplication rules: A2 = A, B2 = B,
BT = T, and TA = T; all the other products are equal to
zero. Therefore, the set A, B, and T is complete and it
is convenient to expand supercorrelator (42) in this set:

(47)

Hereinafter, the subscripts k and ν will be omitted for
brevity. By using definitions (39) and (42) for the coef-
ficients of expansion (47), we have

(48)

Thus, the quantities G± are the advanced and retarded
Green functions and S is the structure factor. According
to relationships (43), (45), and (47), the components of
the primeval correlator C(0) have the standard form

(49)

The self-consistent behavior of the system is deter-
mined by the Dyson equation, which, as applied to the
heteropolymer, takes the form [18, 21]

(50)

where u = σ2(2N)–1(lak0)–2 is the characteristic value of
the interreplica overlap potential ukk' at k = k' ≡ k0. By
analogy with relationship (47), the self-energy super-
function S, which describes the self-action effects can
be expanded in terms of supersymmetric unit vectors:

(51)

Then, with due regard for relationship (49), the compo-
nents of the Dyson equation (50) have the form [21]

(52a)

(52b)

Here, the term containing the δ function is associated
with the presence of the frozen disorder.

For the purpose of closing system (52), the compo-
nents of the self-energy superfunction should be expressed
in terms of supercorrelators. The use of the supersymmet-
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ric perturbation theory [21] demonstrates that the
matrix element of the self-energy superfunction with
allowance made for the cubic and biquadratic anharmo-
nicities [see expression (24)] can be written as

(53)

where z ≡ {r, n, ϑ}. An essential feature of this relation-
ship is that the multiplication of matrix elements of the
C(z, z' ) supercorrelators should be considered in the
usual rather than in the functional sense [15, 21]. As a
result, the components of the self-energy superfunction
(53) take the form

(54a)

(54b)

It should be noted that, here, we used the space–time
representation.

6. INCLUSION OF THE MEMORY
AND NONERGODICITY EFFECTS

According to Edwards and Anderson [30], we intro-
duce the composition memory parameter q ≡ 〈η (n =
N)η(n = 0)〉  whose magnitude determines the correla-
tion in the alternation of monomers along the entire
polymer chain. Moreover, we use the nonergodicity
parameter ∆ ≡ g0 – g, which is defined by the difference
between the isothermal g0 ≡ G–(ν = 0) and thermody-
namic g ≡ G–(ν  0) susceptibilities. Then, the main
correlators can be written in the extended form

(55)

where the subscript 0 indicates the terms corresponding
to the ergodic system without memory. Substitution of
components (55) into relationships (54) gives

(56a)

(56b)

Here, the terms vanishing in the absence of memory are
separated, the terms nonlinear with respect to the G±0
and S0 correlators are combined in the Σ±0 and Σ0 com-
ponents, and the product S0∆ ≈ 0 is omitted. It is charac-
teristic that the “time” representation has been applied to
determine components (56) of the self-energy superfunc-
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2 n( )G±0 n( ),+≡

Σ n( ) 1
2
--- µ2 λ2

3
-----q+ 

  q2 µ2 λ2

2
-----q+ 

  qS0 n( ) Σ0 n( ),+ +=

Σ0 n( ) 1
2
--- µ2 λ2q+( )S0

2 n( ) λ2

6
-----S0

3 n( ).+≡
P

tion, whereas the Dyson equation involves them in the
“frequency” representation. This problem can be over-
come by using the fluctuation-dissipative theorem [21]:

(57a)

(57b)

where expression (56b) is included in the last relation-
ship.

Substitution of the Fourier transforms of compo-
nents (55) and (56) into the Dyson equation (52b) with
due regard for relationships (57) leads to the following
expressions:

(58)

(58a)

The first of these equations corresponds to δ-like con-
tributions at ν = 0 (this is indicated by the subscript 0)
and reflects the memory effects, and the second equa-
tion is defined at the frequency ν  0. In this case, the
characteristic product G+G–  g2, and the pole of the
structure factor (58a), that is, 

(59)

determines the point of ergodicity loss. By inserting the
corresponding components (56a) and (57b) of the
energy eigenfunction into the Dyson equation (52a)
and taking into account the definition g ≡ G–(ν  0),
we obtain the equation that relates the microscopic sus-
ceptibility to the memory parameter; that is,

(60)

The set of Eqs. (58)–(60) describes the thermodynamic
behavior of the disordered heteropolymer near the
point of the ergodicity loss. By analogy with the spin
glass theory [4], relationships (58) and (60) play the role
of Sherrington–Kirkpatrick equations, and Eq. (59) deter-
mines the point of the de Almeida–Thouless instability.
In this case, it should be remembered that, for a noner-
godic system, it is necessary to differentiate the macro-
scopic and microscopic memory parameters q0 and q
and the corresponding susceptibilities g0 and g (see [18,
21]). This hierarchy is explained by the fact that the
microscopic characteristics that correspond to the limit
ν  0 are the usual thermodynamic parameters and
depend on the temperature (the Flory parameter χ). At

S0 n 0( ) G±0 ν 0( ) g,≡=

Σ±0 ν 0( ) Σ0 n 0( )=

≡ 1
2
--- µ2 λ2q+( )q2 λ2

6
-----g3,+

q0 1 ug0
2 1

2
--- µ2 λ2

3
-----q0+ 

  q0g0
2–– C2l 1– g0

2,=

S0

1 Σ0+( )G+G–

1 u µ2 λ2q/2+( )q+[ ]G+G––
-----------------------------------------------------------------------.=

u µ2 λ2

2
-----q+ 

  q+ g 2–( ), g G– ν 0( ),≡=

1 rg– ug2 µ2

2
-----g g q+( )2 q2–[ ]+ +

+
λ2

6
-----g g q+( )3 q3–[ ] 0.=
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the same time, the macroscopic quantities q0 and g0 cor-
respond to the point ν = 0, depend on the frozen disor-
der parameter l, and, in the nonergodic region, acquire
the values characteristic of the ergodicity loss point.

Since the system consisting of three Eqs. (58)–(60)
is insufficient for determining the four parameters q0,
g0, q, and g, it should be completed by the equality

(61)

which is a microscopic analog of Eq. (58) obtained
after the separation of singular components. As is
known from the spin glass theory [4], nonergodic sys-
tems exhibit a hierarchy of such singularities which
corresponds to a set of infinitely decreasing “frequen-
cies” ν  0. It is clear that Eqs. (58) and (61) corre-
spond to ν = 0 and the minimum ν among these fre-
quencies. In turn, equality (59) at ν = 0 gives

(62)

Equations (58) and (60)–(62) form the complete system
for the determination of the q0, g0, q, and g quantities.

7. DISCUSSION

According to equalities (58) and (62), the macro-
scopic memory parameter q0 is determined by the cubic
equation

(63)

The characteristic dependences q0(l ) on the frozen dis-
order intensity are displayed in Fig. 2. At f = 0.5, when
the contents of the A and B monomers are identical, the
first term in Eq. (63) disappears and q0 ∝  l1/3. In the case
of diluted copolymer, for which the condition f ! 1
(C2 ! C3) is met, we obtain the dependence q0 ∝  fl1/2.

The simultaneous solution of Eqs. (58), (60), and (62)
gives the ergodicity loss point χ0 whose location as a
function of the correlation length l is shown in Fig. 3
(heavy line). It is characteristic that a nonzero value of
the χ0 parameter appears at the l value that exceeds the
critical point. With a further increase in l, the χ0 param-
eter reaches a maximum and, then, decreases monoton-
ically. In this case, as could be expected, the ergodic
region lying below the χ0(l) dependence decreases with
an increase in the correlation length. The condition
dg/dχ = –∞, together with Eqs. (60) and (61), leads to
the equality

(64)

This equality determines the Flory parameter χf at the
freezing point, below which the microscopic suscepti-
bility g is equal to zero (Fig. 4). The corresponding

q 1 ug2–
1
2
--- µ2 λ2

3
-----q+ 

  qg2– C2l 1– g2,=

u µ2 λ2

2
-----q0+ 

  q0+ g0
2– , g0 G– ν  = 0( ).≡=

µ2/2 λ2q0/3+( )q0
2 C2l 1– .=

u µ2 g f q+( ) λ2

2
----- g f q+( )2+ + g f

2– .=
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dependence χf (l) on the correlation length is depicted
by the thin line in Fig. 3. It is significant that the χf (l)
curve lies below the ergodicity loss curve χ0(l) and has
the same shape. The influence of the fraction of mono-
mers of the A sort on the χ0 and χf parameters is illus-
trated in Fig. 3a. These parameters increase as the het-
eropolymer composition deviates from the equiatomic
composition. A more complex behavior is observed

1

2

3

q0

l

103

102

101

10–3

10–4

10–5

10–6

101010810610410–210–610–10 102

10–2

10–1

Fig. 2. Dependences of the macroscopic memory parameter
q0 on the correlation length l at different monomer fractions
f = (1) 0.5, (2) 0.3, and (3) 0.1.
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Fig. 3. Dependences of the characteristic Flory parameters
at the ergodicity loss point χ0 (heavy lines) and the freezing
point χf (thin lines) on the correlation length l for (a) σ = 0
and different compositions f = (1) 0.5 and (2) 0.3 and (b) f =
0.5 and different interreplica overlap parameters σ = (1) 0
and (2) 2.
1
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with an increase in the interreplica overlap parameter σ
(Fig. 3b). As the σ parameter increases, both parame-
ters χ0 and χf increase at small l, whereas the χ0 param-
eter decreases at large l.

Figure 4 displays the dependences of the macro-
scopic g0 and microscopic g susceptibilities on the
parameter χ (below the ergodicity loss point χ0, these
susceptibilities, as well as the corresponding memory
parameters q0 and q, coincide). The dependence g(χ)
terminates at the point χ = χf , below which the suscep-
tibility g takes a zero value corresponding to the frozen
state. Above the ergodicity loss point χ0, the macro-
scopic susceptibility g0 is constant and microscopic
susceptibility g [determined by the simultaneous solu-
tion of Eqs. (60) and (61)] decreases monotonically. As
can be seen from Fig. 4a, as the composition deviates
from f = 0.5, the susceptibilities at the ergodicity loss
and freezing points decrease and the corresponding val-
ues of χ0 and χf increase. Figure 4b depicts the depen-
dences g(χ) and g0(χ) at different correlation lengths l.
As expected, an increase in l results in a narrowing of
the ergodic region. The influence of the interreplica

(a)

1

2

g0

g
g

0.6

0.3
0 50 100χf χ0

(b)

1

2

g

0.9

0.3
0 40

3

(c)

1

20.6

0.3
0 40

χ

Fig. 4. Dependences of the microscopic g and macroscopic
g0 susceptibilities on the χ parameter for (a) σ = 0, l = 0.1,
and different compositions f = (1) 0.5 and (2) 0.3; (b) f = 0.5,
σ = 0, and different correlation lengths l = (1) 0.05, (2) 0.1,
and (3) 0.2; and (c) f = 0.5, l = 0.1, and different interreplica
overlap parameters σ = (1) 0 and (2) 2.
P

overlap is shown in Fig. 4c. An increase in the corre-
sponding parameter σ brings about a decrease in the
susceptibilities g(χ) and g0(χ), and, hence, the interrep-
lica overlap hinders the glass transition in the het-
eropolymer.

The dependences of the microscopic memory
parameter q on the thermodynamic parameter χ are dis-
played in Fig. 5. The distinctive feature is the absence
of memory in the frozen region (below χf). The nonzero
value of q appears at the freezing point χf , and a further
increase in χ leads to an increase in the memory param-
eter. The jumpwise behavior of the q parameter sug-
gests that this transition is a first-order transformation.
It is evident that the contribution from fluctuations to
the thermodynamic potential of the heteropolymer is
the physical reason for the above jump. It can be seen
from Fig. 5a that the dependence q(χ) becomes more
flattened as the composition deviates from f = 0.5. By
contrast, an increase in the correlation length l results in
a steeper increase in the memory parameter (Fig. 5b).
Finally, as is seen from Fig. 5c, the effect of the inter-
replica overlap parameter σ above and below the ergod-
icity loss point turns out to be opposite.

(a)1

20.1

0 40 80χf χ0

(b)

1

2
0.2

0 40

3

(c)

1
2

0.1

0 40
χ

q

Fig. 5. Dependences of the microscopic memory parameter
q on the Flory parameter χ for (a) σ = 0, l = 0.1, and different
compositions f = (1) 0.5 and (2) 0.3; (b) f = 0.5, σ = 0, and
different correlation lengths l = (1) 0.05, (2) 0.1, and (3) 0.2;
and (c) f = 0.5, l = 0.1, and different interreplica overlap
parameters σ = (1) 0 and (2) 2.
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As follows from the data shown in Fig. 6, the noner-
godicity parameter ∆(χ) monotonically increases with
an increase in χ beginning with the ergodicity loss point
χ0. The deviation of composition from f = 0.5, a decrease
in the correlation length l, and an increase in the inter-
replica overlap σ lead to a weakening of the nonergod-
icity effects.

The form of the phase diagram, which determines
the possible thermodynamic states at different Flory
parameters χ and compositions f, plays an important
role in the search for new polymers with controlled
properties. According to Fig. 7, this diagram for both
the freezing point χf (f) and the ergodicity loss point
χ0(f) has the form of a concave curve. Note that the region
of large χ values and compositions close to f = 0.5 corre-
sponds to the nonergodic nonfrozen state. As the values
of χ and |f – 1/2| decrease, the system undergoes a tran-
sition, first, to the ergodic state and, then, to the frozen
state. A comparison of Figs. 7a and 7b shows that the
regions of the nonfrozen and nonergodic phases become
wider with an increase in the correlation length l. By con-
trast, it is seen from Figs. 7a and 7c that the overlap
between replicas results in their narrowing.

1 2
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40 80χ0

1

2

(b)
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40 60
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20
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40 6020

χ

∆

Fig. 6. Dependences of the nonergodicity parameter ∆ on
the χ parameter for (a) σ = 0, l = 0.1, and different
compositions f = (1) 0.5 and (2) 0.3; (b) f = 0.5, σ = 0, and
different correlation lengths l = (1) 0.05, (2) 0.1, and (3) 0.2;
and (c) f = 0.5, l = 0.1, and different parameters σ = (1) 0 and
(2) 2.
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Abstract—A study of photovoltage was made for a series of sandwich structures on the basis of poly(3-dode-
cylthiophene) films having characteristic thicknesses 100 and 500 nm and being deposited on n-Si and p-Si sub-
strates from a solution. Semitransparent Al and Au electrodes were obtained on the surfaces of these films by
thermal evaporation. A clear photoresponse was obtained in films on an n-Si substrate. Two distinct spectral
components of the photovoltage were observed in the 1.3- to 3.6-eV (900–300 nm) energy range for incident
quanta. The first component corresponds to the absorption edge of the Si substrate (1.4–1.6 eV). The other cor-
responds to the π–π* absorption of the polythiophene films (1.7–2.1 eV). The dependences of the photovoltage
upon radiation intensity are different for these two spectral components. The relaxation time of the photore-
sponse for the second component, corresponding to the absorption in the film, is 10–20 min. This is 3–4 orders of
magnitude higher than the relaxation time for the first component. A model of the potential barrier at the poly-
thiophene/n-Si interface, allowing one to explain the main experimental results, is proposed. This barrier
is formed as a result of the chemical interaction of the polythiophene molecules with the substrate. © 2001
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Recently, the electronic properties of thin films of
semiconductor polymers such as polypyrrole, polyphe-
nylene venylene, and polythiophene have attracted the
great interest of researchers [1–3]. This is due to the
possibility of using these films in light-emitting and
photoelectric microelectronic devices [3–5]. The
charge transport in such structures is discussed under
the assumption that the potential varies linearly through
the thickness of the film [6]. The study of the interac-
tion of such organic films with metals and semiconduc-
tors is of importance for understanding the physico-
chemical mechanisms of photovoltaic processes. The
interaction processes that accompany the thermal dep-
osition of organic films are intensively studied by elec-
tronic spectroscopy [7, 8]. It is shown that the interac-
tion of aromatic macromolecules, such as poly-
thiophene, with metallic or semiconductor substrates is
typically accompanied by the formation of donor–
acceptor bonds with a negative-charge transfer from the
interface into the substrate [7, 9–11]. To take these pro-
cesses into account, one needs to go beyond the linear
approximation to the potential variation in the film and
take into consideration the potential barrier at the inter-
face.

The results of investigations of the photovoltage
spectrum and of the dependences of the photovoltage
upon radiation intensity and its transient characteristics
are analyzed in this work for a series of structures con-
taining poly(alkylthiophene) films. The phenomena
1063-7834/01/4302- $21.00 © 20397
observed are discussed taking into account both the
energy band characteristics of these films and the prop-
erties of the potential barrier at the boundary between
the film and the n-Si substrate.

1. EXPERIMENT

The layered structures under investigation were
based on films of regular poly(3-dodecylthiophene)
(PDDT) (Fig. 1) deposited from its solution in xylene.
The film thicknesses were 500 and 100 nm, as deter-
mined by both the capacity voltage characteristics
method [12] and optical interference microscopy. The
length of the polymer PDDT chains was as large as
50 thiophene monomers, as follows from comparison
of the optical absorption spectra for the films studied
with literature data [13, 14].

The films were deposited on n-Si and p-Si substrates
(10 Ω cm) which were subjected to etching in HF and
boiling in an H2O2/H2SO4 mixture before film deposi-
tion. After this standard procedure, a 3–4 nm thick sili-
con oxide layer remained on the surface [12]. The
upper electrodes were deposited on the film surface by
thermal evaporation of semitransparent layers of Au or
Al in vacuum (10–5 torr) and had a cross-section area of
0.1 cm2. The decrease in the intensity of incident radi-
ation inside the semitransparent electrode was mea-
sured and taken into account in the course of analysis
of the photovoltaic characteristics.
001 MAIK “Nauka/Interperiodica”
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The investigation of photovoltage was carried out
under atmospheric conditions at room temperature on
an automatic setup, which was described in detail in our
previous work [15]. To measure the spectral character-
istics, radiation of an intensity of 1014 photon/(cm2 s)
was used. This corresponds to (2–7) × 10–5 W cm–2 in
the range of incident quantum energies, 1.3–3.6 eV,
used (900–300-nm wavelength range).

2. RESULTS AND DISCUSSION

A distinct photovoltaic effect is detected in struc-
tures prepared on an n-Si substrate. The external elec-
trode possessed a positive potential relative to the sub-
strate. Its values were as large as 0.15 V under the
action of 1014 photon/(cm2 s) radiation in the visible
wavelength range. The observed photovoltage values
are considerably higher than those presented in the lit-
erature for analogous structures [5]. The photovoltage
in the n-Si/film/Au structure exhibits a distinct spectral
dependence in the 1.3–3.6 eV quantum energy range
(Fig. 2). The photovoltage spectrum has two distinct
components. One of them (the sharpest peaks) is situ-
ated within the 1.4–1.6 eV energy range. This compo-
nent is due to radiation absorption in the boundary layer
of the n-Si substrate [13, 16]. The other spectral com-
ponent of the photovoltage is represented by a broader

S

(CH2)11CH3

(CH2)11CH3

S

Fig. 1. Chemical structure of a fragment of the poly(3-dode-
cylthiophene) molecule.
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Fig. 2. The photovoltage spectrum for the n-Si/PDDT/Au
structure. The radiation intensity is 1014 photon/(cm2 s).
P

peak in the 1.7–2.2 eV range. Its energetic position cor-
responds to the absorption energy of the interband π–
π* transitions in the polythiophene film. This energy
lies in the 2.1–2.2 eV range according to the spectrum
of the optical absorption of the PDDT films [13] and to
the literature data [2, 17]. It should be noted that we
also detected two spectral components when studying
the photovoltage in structures based on semiconductor
organic films of a different type on n-Si substrates [15].

The dependences of the photovoltage upon radiation
intensity and the transient characteristics are found to
be different for these two voltage components. The
dependences of the photovoltage in the n-Si/PDDT/Au
structures upon radiation intensity are shown in Fig. 3.
In the case of the spectral component resulting from
radiation absorption in the film (a quantum energy of
1.9 eV), the intensity dependence of the photovoltage
(Fig. 3a) has a power-law character with an exponent of
about 0.5. When the incident quantum energy is 1.4 eV
(Fig. 3b), the photovoltage increases in proportion to
the logarithm of the intensity. This is typical of the pho-
tovoltage resulting from the photoexcitation of charge
carriers in the depletion Schottky layer [18].

Relaxation times as long as tens of seconds (Fig. 4a)
are typical of transient photovoltage characteristics in
the absorption band of PDDT films. This can be due to
localized states and the low mobility of charge carriers
in these films, as was indicated in the literature [3, 19].
The relaxation time of the transient characteristics is
several orders of magnitude lower near the absorption
edge for silicon, 1.4 eV (Fig. 4b).

For the structures with an n-Si substrate, the discov-
ered photovoltaic effect does not depend upon the
external electrode material (Au or Al). Moreover, anal-
ogous results were obtained by us in the case when a
slow electron beam in vacuum was used instead of an
external electrode [20].

One can conclude that the external electrode/film
interface does not influence the observed effect. An
interesting experimental result is that the photovoltage
characteristics are the same for the 100- and 500-nm
thick PDDT films. This suggests that even the photo-
voltage observed in the spectral PDDT absorption band
is due to processes proceeding in the film region near
the n-Si/film interface rather than in the bulk of the film.
In the studied structures with the p-Si substrate, the
photovoltaic effect was not observed. The photovoltage
was also not detected in the structures of the
metal/film/metal type for different combinations of
substrates and upper electrodes made of Au and Al.

The occurrence of photovoltage with two compo-
nents in the studied structures with an n-Si substrate
can be explained using a band energetic diagram
(Fig. 5). A simplified version of this diagram was pre-
viously used by us to explain the conduction properties
of a series of structures based on PDDT films [13]. Dif-
ferent values of the band energetic parameters of n-Si,
HYSICS OF THE SOLID STATE      Vol. 43      No. 2      2001
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PDDT films, and metal electrodes are used in the dia-
gram. These values correspond to the data of [4, 6, 16],
as well as to our data on the optical absorption of the
PDDT films [17]. The band edges Ec and Eν in PDDT
are understood in the same sense as in the case of non-
crystalline semiconductors [2]. Of great importance in
the formation of photovoltage is the band bending
occurring in the vicinity of the n-Si/PDDT interface
(Fig. 5). The amount of band bending in n-Si and in the
film have been evaluated using the fact that the photo-
voltage growth reaches its saturation for intensities
exceeding 5 × 1014 photon/(cm2 s). It is assumed that
there is a thin SiO2 layer at the interface. The role of this
layer in the observed photovoltaic processes has not yet
been completely elucidated.

The main reason for the band bending (Fig. 5) is a
PDDT π-electron orbital pulling towards the substrate.
The existence of such a charge transfer was proven
experimentally by studying the interaction of various
aromatic molecules with a silicon surface [7, 9–11].
Additional negative charge at the interface causes the
formation of a depletion layer in n-Si. Pulling of the
π-electron orbitals of PDDT molecules as a result of the
donor–acceptor interaction with the substrate leads to
the formation of a positive charge layer in the PDDT
film near the interface. The characteristic thickness of
such a layer is 10 nm [7, 9]. The photo holes, excited in
this layer, drift towards the interface and compensate its
negative charge. This is accompanied by lowering of
the potential barrier at the interface, which leads to cre-
ation of the photovoltage component in the 1.7–2.2 eV
quantum energy range. The value of the barrier lower-
ing is proportional to the concentration of the photoex-
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Photovoltage, V
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0.12

2.5 × 1012

Incident intensity, photon/(cm2 s)
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(b)

0.10

0.08

Fig. 3. Dependences of the photovoltage radiation intensity
for the energies of incident quanta of (a) 1.9 and (b) 1.4 eV.
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cited holes, which leads to the power-law dependence
of the photoresponse on intensity (Fig. 3a). Slow relax-
ation of the photovoltage is caused by photohole drift in
the vicinity of the polarization barrier in the film. The
other photovoltage component, situated in the 1.4–1.6 eV
quantum energy range, is associated with photoelectric
processes in the depletion n-Si layer taking place
according to the Schottky mechanism, which explains
the linear dependence of the photovoltage on the loga-
rithm of the intensity and the relatively rapid photovolt-
age relaxation. The absence of the photovoltage in the
studied structures with the p-Si substrate is due to the
fact that even if the formation of the donor–acceptor
bonds at the interface is possible, the negative charge
will be screened by the majority charge carriers in the
p-Si. Since the concentration of these carriers is fairly
large, band bending in the vicinity of the interface will
virtually not take place.
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Fig. 4. Transient photovoltage characteristics for the
n-Si/PDDT/Au structure for the energies of incident quanta
of (a) 1.9 and (b) 1.4 eV.
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Fig. 5. Band energetic diagram for the n-Si/SiO2/PDDT/Au
(or Al) structure. The Fermi energy of the metal electrodes,
the electron affinity, the ionization potential of Si, and the
ionization potential of the PDDT film are measured in eV.
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