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We construct a map of deflections of ultrahigh-energy cosmic rays by extragalactic magnetic fields using a mag-
netohydrodynamical simulation of cosmic structure formation that realistically reproduces the positions of
known galaxy clusters in the Local Universe. Large deflection angles occur in cluster regions, which, however,
cover only an insignificant fraction of the sky. More typical deflections of order &1° are caused by crossings of
filaments. For protons with energies E ≥ 4 × 1019 eV, deflections do not exceed a few degrees over most of the
sky up to a propagation distance of 500 Mpc. Given that the field strength of our simulated intergalactic mag-
netic field forms a plausible upper limit, we conclude that charged particle astronomy is in principle possible.
© 2004 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Considerable effort is presently being undertaken
around the world to create [1, 2] experiments devoted to
determining the composition, energy spectrum, and
arrival directions of ultrahigh-energy cosmic rays
(UECRs). This challenge is in part motivated by the
Greisen–Zatsepin–Kuzmin (GZK) puzzle [3], which
became particularly acute with Fly-Eye and AGASA
data [4], and by the realization that the UECR flux at
E > 1019 eV is probably dominated by the emission of
sources which are quite different from conventional
galactic sources. The directional information may
allow the identification of UECR sources, provided pri-
mary particles are not deflected too much by galactic
and intergalactic magnetic fields (IGMFs).

Several arguments suggest that UECRs are electri-
cally charged nuclei, most likely protons. The possibil-
ity of neutral particles is not ruled out but needs not be
discussed here since such rays point back to the sources
anyway. It is possible that a fraction of UECRs is com-
prised of iron nuclei, see, e.g., [5]. However, according
to an analysis of inclined events recorded by the Hav-
erah Park shower detector [6], above 1019 eV, less than
30% of the primary cosmic rays can be iron nuclei at
the 95% confidence level. In what follows, we normal-
ize our results to the case of protons. The case of other
nuclei can be recovered by multiplication with their
charge, Z.

¶This article was submitted by the authors in English.
0021-3640/04/7912- $26.00 © 20583
Galactic magnetic fields (MF) with Bgal ~ 1 µG are
not expected to produce significant deflections at
extremely high energies, E * 1020 eV in the case of pro-
tons. Even at lower energies E ~ 4 × 1019 eV, strategies
have been proposed which allow source identification
without detailed knowledge of the galactic MF [7].

The very attractive perspective to do astronomy with
proton primaries might however be spoiled by the pres-
ence of strong IGMFs. So far, evidence of the presence
of IGMFs has been found only within, or very close to,
rich clusters of galaxies. The most relevant observa-
tions are those based on Faraday rotation measurements
(RMs) of the polarized radio emission of sources
located within or behind clusters and on the synchro-
tron emission of relativistic electrons in the intracluster
MF. The results of both methods imply the presence of
MFs with strength at the µG level extending up to
1 Mpc from cluster centers. The coherence length of
the field is inferred to lie in the range 10–100 kpc (see
recent review [8] and references therein). Such fields
certainly do induce large deflections of UECR protons
that cross clusters of galaxies. However, galaxy clusters
fill only a tiny fraction of the volume of the universe, so
that we may expect them to produce large deflections at
best over a small portion of the sky [9, 10]. Outside
clusters, only upper limits on the IGMF strength are
available. They are at the level of 1–10 nG for fields
extending over cosmological distances with coherence
lengths in the range from 50 to 1 Mpc, respectively
[11]. These bounds do not hold for MFs in clustered
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regions, like filaments connecting galaxy clusters,
where the field might be as large as 10–7 G. In principle,
either a weak all pervading smooth field or stronger
fields localized in a complex web of filaments may pro-
duce sizable deflections of UECRs over a large portion
of the sky. It is hence evident that a better knowledge of
the large-scale magnetic structure of the universe is
called for.

In this letter, we approach this problem by means of
numerical simulations of cosmic structure formation,
where we combine the collisionless dynamics of the
dark matter component with the magnetohydrodynam-
ics (MHD) of the magnetized gas. Our basic hypothesis
is that the MFs observed in rich clusters of galaxies are
the outcome of an MHD amplification process powered
by the hierarchical formation of clusters. This assump-
tion is supported by the results of previous simulations
which, under the same hypothesis that we adopt here,
succeeded in reproducing the general features of RMs in
several observed clusters [12]. The tiny seed field required
to initiate the amplification process may be either of pri-
mordial origin [13] or the result of a battery associated
with the initial stages of structure formation [14].

Simulations of the magnetic structure of the Uni-
verse and of the UECR propagation within it have been
previously attempted by several authors [14–16]. A
novel achievement of our work is that we have per-
formed constrained simulations, which reproduce the
observed large scale structures in the nearby universe,
leaving essentially no ambiguity for the choice of
observer position. This is quite relevant in the present
context, since it has been shown [16] that the angular
distribution, as well as the energy spectrum, of UECRs
reaching an observer located in a weakly magnetized
region may differ considerably from that seen by a
strongly magnetized one. Furthermore, by tracing
UECR trajectories in the simulated magnetic struc-
tures, we are able to construct maps of expected UECR
deflections as a function of distance that, for the first
time, account for the actual large-scale structure as seen
from the Galaxy.

MHD simulations of the Local Universe. We use
initial conditions that were constructed from the IRAS
1.2-Jy galaxy survey by first smoothing the observed
galaxy density field on a scale of 7 Mpc, evolving it lin-
early back in time, and then using it as a Gaussian con-
straint for an otherwise random realization of the
ACDM cosmology. In [19], it was shown that these
constrained initial conditions, when evolved to the
present time, reproduce the observed density and veloc-
ity field of the Local Universe. In addition, they allow a
direct identification of prominent clusters (Virgo,
Coma, Centaurus, Hydra, Perseus, A3627, and Pavo)
with counterparts formed in the simulation, which are
found at the right places, and with approximately the
correct observed masses. We extended the initial condi-
tions of [19] by adding gas, together with an initial MF.
The volume filled by high resolution particles within
our simulation is a sphere of radius ~115 Mpc centered
on the Milky Way. This region comfortably includes the
entire local super cluster (LSC) and is modeled with a
maximum spatial resolution of 10 kpc. The simulation
uses 51 million gas particles of mass 6.9 × 108 M(,
51 million high-resolution dark matter particles, and an
additional 7 million boundary particles in the distant
low-resolution region.

We evolved the initial conditions with the newest
version of the GADGET code [17], adding the mag-
netic smoothed particle hydrodynamics (MSPH) tech-
nique [12] to follow MF evolution. Previous work [12]
showed that magnetic seed fields in the range of (1–5) ×
10–9 G at redshift z∗  . 20 will be amplified due to the
structure formation process and reproduce RMs in clus-
ters of galaxies. This corresponds to B(z∗ )(1 + z∗ )–2 .
0.2 – 1 × 10–11 G at the present time in the unclustered
intergalactic medium (IGM). It was also demonstrated
that the MF amplification process completely erases
any memory of the initial field configuration in high
density regions like galaxy clusters. Therefore, we can
safely set the coherence length lc(zin) of the initial seed
field to be infinite in our simulation. Although this
assumption is probably unrealistic, it does not lead to
underestimation of the UECR deflections. Concerning
the initial strength of the MF, we used the highest value
which still allowed previous MSPH simulations to suc-
cessfully reproduce RMs in clusters; i.e., the results
presented here give safe upper bounds on UECR deflec-
tions.

Clusters are generally connected by magnetized fil-
amentary structures of gas and dark matter, where high-
density filaments often harbor small clusters or groups.
We find that shock fronts and shear flows are ubiquitous
in these filaments, giving rise to substantial MHD
amplification in these structures, boosting the MF
intensity far above the expectation of adiabatic com-
pression alone, as pointed out in [12]. We also identified
low density filaments where the MF is roughly aligned
along their axis, with a strength of ~10–4 µG. This is
consistent with a purely adiabatic amplification of the
seed MF due to the compression of field lines. We find
no significant MF in the neighborhood of the Milky
Way’s position, which is contrained to lie within a
sphere of 7 Mpc around the origin. We find a group of
four halos aligned within the super galactic plane in this
region, corresponding to the Local Group. Due to the
lack of small-scale constraints, it is not certain which of
the four galaxies should be best associated with the
Milky Way, but this does not affect our results. Because
it is a small galaxy group, the MFs associated with the
group are sufficiently weak to not lead to significant
deflections, despite covering a large fraction of the sky.

Deflections of charged UECRs. Having obtained a
3D model of MFs in the Local Universe, we can con-
struct an associated map of deflections of charged par-
ticles under the action of the Lorentz force. We consider
here only protons with energy E = 4 × 1019 eV. This is
JETP LETTERS      Vol. 79      No. 12      2004
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Fig. 1. Full sky map (area preserving projection) of deflection angles for UECRs with energy 4 × 1019 eV using a linear color scale.
All structure within a radius of 107 Mpc around the position of the Galaxy was used. The coordinate system is galactic, with the
galactic anticenter in the middle of the map. Positions of identified clusters are marked using the locations of the corresponding
halos in the simulation. Note that deflections internal to the Milky Way have not been included
the threshold value for the process of photo-pion pro-
duction in collisions with cosmic microwave back-
ground (CMB) photons (p + γCMB  p(n) + π0(+)). The
energy loss length is large, lE ~ 1000 Mpc (for a recent
review, see, e.g., [18]), and initially higher proton ener-
gies quickly degrade into this range. Neglecting energy
losses and taking E = 4 × 1019 eV to be the energy at
detection, we obtain upper bounds for the deflections of
protons with higher energy, since the deflection angle
decreases, linearly increasing the energy.

We do not follow particle trajectories directly;
instead, we compute accumulated deflections along
rectilinear paths. This is a reasonable simplification
since we are not interested in actual source positions
but rather in finding directions with small deflections.
In Fig. 1, we show a deflection map obtained by tracing
an isotropic distribution of protons from a maximal dis-
tance of dmax = 107 Mpc to the observer. Recall that
Fig. 1 represents a map of deflections, not a distribution
of arrival directions. The former is independent of the
assumed distribution of UECR sources.

The pattern of clusters and filaments is clearly visi-
ble in Fig. 1. Large deflections are produced only when
protons cross the central regions of galaxy clusters, and
most of these strong deflections are found along a strip
which can be approximately identified with the Great
Attractor. The observed positions of Virgo, Coma,
Hydra, and Centaurus lie in this region. Their locations
JETP LETTERS      Vol. 79      No. 12      2004
quite precisely coincide with regions where the deflec-
tions exceed 4°. Perseus and other minor clusters pro-
duce large deflections in other well-delineated regions
of the sky. Outside clusters, which occupy only a small
fraction of the sky, deflections of 1°–2° occur along an
intricate network of filaments, covering a larger area.

The regions with δ ! 1° correspond to voids where
the MF strength is even smaller than 10–11 G.

In order to investigate the relative importance of
deflectors at different distances, we also produced
deflection maps that only included deflectors up to
some maximum distance. We observe no significant
deflections produced at distances smaller than 7 Mpc.
Massive clusters at large distances (~100 Mpc) produce
large deflections but cover only a negligible fraction of
the sky, so that the bulk of the deflections is produced
by passages through filaments.

In Fig. 2, we plot the fraction of the sky, A(δth), over
which deflections larger than δth are found for different
propagation distances. We see that deflections larger
than 1° are to be expected over less than 20% of the sky
up to the distance d = 107 Mpc. For large distances d,
we find that A(δth, d) approaches a self-similar behav-
ior, viz. A(δth, d) = A0(δth × (d0/d)α). Numerically, we
observe α = 0.8 for 70 < d/Mpc < 110. Self-similarity
is consistent with the assumption that the density of
deflectors (filaments) reaches a constant value at large
distances. Since MFs are uncorrelated in different fila-



586 DOLAG et al.
ments, multiple filament crossings should produce a
“random walk” in the deflection angle, resulting in α =
0.5. The value of α = 0.8 we observe may hence indi-
cate that the regime of multiple filament crossings is not
yet reached over the distances probed by our simula-
tion. We include an extrapolation of A(δth, d) up to a dis-
tance of 500 Mpc in Fig. 2, shown for two values of α,
the observed one of α = 0.8, and the expected one for
large propagation distances, α = 0.5. We expect that
these two curves bracket the range of true deflections at
E ~ 4 × 1019 eV.

We comment finally on the potential effect of the
unclustered component of the IGMF, i.e., the field in
voids and low-density regions outside clusters and fila-
ments, the coherence length of which, lc, is uncon-
strained by our simulations. If lc ! d the proton trajec-
tory makes a random walk through the magnetic
domains, and the overall deflection is given by

Hence, observable deflections are not produced by the
unclustered component of the IGM if lc is smaller than
a few tens of Mpc. Note that such small coherence
lengths are expected from most of the proposed gener-
ation mechanisms of seed IGMFs [13]. The few mech-
anisms predicting larger lc generally give rise to MFs
which are too weak to produce observable deflections
of UECRs. Furthermore, an unclustered IGMF does not
exist at all if the seed field is generated by a battery
powered by structure formation [14].

CONCLUSIONS
We presented the first map of UECR deflections in

the Local Universe that is based on a simulation that
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Fig. 2. Cumulative fraction of the sky with deflection angle
larger than δth for several values of propagation distance
(solid lines). We also include an extrapolation to 500 Mpc,
assuming self-similarity with α = 0.5 (dashed line) or α =
0.8 (dotted line). The assumed UECR energy for all lines is
4.0 × 1019 eV.
realistically reproduces the known large-scale structure
around the Galaxy while simultaneously following the
MHD amplification of MFs during cosmic structure
formation. The positions and masses of the most prom-
inent clusters are reproduced well in our simulation.
This is an important advantage of our technique. Since
local structures subtend large angles on the sky, it is
important to be able to reliably identify “bad” regions
of expected large deflections, a task that can be accom-
plished using our map, thereby providing important
guidance for UECR source identification. Provided our
basic hypothesis about the origin of IGMF is correct,
our results should be understood as upper bounds for
the expected deflection angles, because we have used
the largest seed field still compatible with the RM in
clusters, and secondly, we neglected UECR energy
losses on the path to the detector. The actual observa-
tion of stronger deflections would imply that the evolu-
tion of the IGMF is not merely passive, possibly indi-
cating a pollution of the IGM by physical process such
as galactic winds.

We have also extrapolated the distribution of deflec-
tion angles to very large source distances in a statistical
manner. Out to 500 Mpc and at E ≥ 4 × 1019 eV, typical
deflections are smaller than the angular resolution of
current ground array UECR detectors over more than
half of the sky (but may exceed the angular resolution
of stereo fluorescent detectors). This result is consistent
with an observed small-scale clustering of UECR
arrival directions [20]1 and with evidence for a BL
Lacs–UECR correlation [24] in the energy range E ~
4 × 1019 eV being due to protons [25]. On the other
hand, our results do not support models which invoke
strong MFs in the Local Universe to solve the GZK
anomaly as well as models which explain small-scale
clustering by magnetic lensing.

We conclude that charged particle astronomy should
in principle be possible regardless of the way the GZK
problem is resolved.
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zentrum der Max-Planck-Gesellschaft,” with CPU time
assigned to the “Max-Planck-Institut für Astrophysik.”
Fig. 1 has been produced using HEALPix [26].
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The mass difference between the K+ and K0 mesons induces mixing of the (980) and f0(980) resonances. The

mixing amplitude is large, on the order of mK(  – )1/2 ≈  near the  thresholds, and its phase

changes sharply by 90°. A high-energy experiment on the π–p  ηπ0n reaction in a polarized target is pro-

posed. In this experiment, the presence of (980)–f0(980) mixing can be unambiguously and simply identified

by the presence of a large jump in the azimuthal asymmetry of the cross section for production of the ηπ0 sys-
tem in the S wave near the  thresholds. Our estimates of the magnitude of the polarization effect, which is
expected to be observed in the experiment, are almost model-independent. © 2004 MAIK “Nauka/Interperiod-
ica”.
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The determination of the nature of light scalar reso-
nances is one of the main problems of nonperturbative
QCD. Indeed, their nature is important for the under-
standing of basic consequences of QCD for hadron
world: confinement physics and the way of realizing
chiral asymmetry for low energies. Practically nobody
refutes the nontrivial nature of well-identified light sca-
lar resonances. In particular, there is much evidence of

their four-quark (q2 ) structure (see, e.g., [1] and ref-
erences cited therein). In this work, a new method of
studying the nature of a0(980) and f0(980) resonances in
polarization experiments is proposed. This method is

based on the (980)–f0(980)-mixing phenomenon,
which, in particular, carries important information
about the relation of these resonances to the  chan-
nels.

The mixing of the (980) and f0(980) resonances
was theoretically found as a threshold phenomenon in

the late 1970s [2]. Interest in the (980)–f0(980) mix-
ing has recently been renewed [3–16]. However, the
existence of this phenomenon has not yet been corrob-
orated in direct experiment. This work presents a qual-

itatively new proposal on a search for the (980)–
f0(980)-mixing effect. We propose a high-energy exper-
iment on the π–p  ηπ0n reaction in a polarized tar-
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get. In this experiment, the presence of the (980 –
f0(980) mixing can be unambiguously and simply iden-
tified by the presence of a large jump in the azimuthal
(spin) asymmetry of the cross section for the produc-
tion of the ηπ0 system in the S wave near the 
thresholds.

In view of parity conservation, the differential cross
section for the π–p  (ηπ0)Sn reaction1 on polarized

protons with fixed momentum  of incident π–

mesons has the form

(1)

Here, t is the square of the 4-momentum transfer from
π– to ηπ0; m is the invariant mass of the ηπ0 system; ψ
is the angle between the normal to the reaction plane,
formed by the momenta of the π– meson and ηπ0 sys-
tem, and the proton polarization transverse to the π–

beam; P is the degree of this polarization; d2σ/dtdm =
|M++ |2 + |M+ – |2 is the cross section on unpolarized pro-
tons, where M+ + and M+ – are the s-channel helicity
amplitudes without and with the flip of the nucleon
helicity; and I(t, m) = 2Im(M++ ) is the contribution

1 The subscript S indicates that the ηπ0 system has relative orbital
angular momentum L = 0, i.e., is in the S wave.
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responsible for the azimuthal asymmetry of a cross sec-
tion. The dimensionless normalized asymmetry A(t, m) =
I(t, m)/[d2σ/dtdm] – 1 ≤ A(t, m) ≤ 1 is determined using
the experimentally measured quantities I(t, m) and
d2σ/dtdm. Asymmetry is related to a certain t interval or
a certain m interval and is specified by the ratio of the
corresponding integrals of I(t, m) and d2σ/dtdm with
respect to t or m, respectively. We are interested only in
the range m ≈ 1 GeV, where, according to the experi-
ments on the π–p  ηπ0n reaction in nonpolarized

targets for  = (BNL) 18.3 [3, 17, 18], (ITEP) 38 [19,
20], (IHEP) 32 [20], and (CERN) 100 [20] GeV, the

production of the (980) resonance dominates the
mass spectrum of the (ηπ0)S system; i.e., π–p 

(980)n  (ηπ0)Sn.

In view of G-parity conservation, t-channel
exchanges with the quantum numbers of the b1 and ρ2
Regge poles contribute to the M+ – and M++ amplitudes,
respectively, for high energies and low –t values [4]. We

denote these amplitudes as  and . The mixing

of the  and f0(980) resonances breaks G-parity con-
servation. Thus, exchange by the π Regge pole
becomes possible in the π–p  (ηπ0)Sn reaction due

to the π–p  f0(980)n  (980)n  (ηπ0)Sn pro-
cess [2, 4].2 As is known, the π-exchange amplitude is
large for low –t values. In addition, the absolute value

and phase of the (980)–f0(980) transition amplitude

depend drastically on m near the  thresholds. All
these properties of the π–p  (ηπ0)Sn reaction lead to
important physical consequences, which can easily be
observed in polarization experiments due to the unique
possibility of observing the interference between the
amplitudes of the ρ2 and π exchanges.

We turn to quantitative estimates of the expected
polarization effect. Virtually all information about the

π-exchange amplitude  breaking G parity is
known, including its absolute normalization [2, 4, 21]:

(2)

Here, απ(t) = απ(0) +  ≈ 0.8(t – )/GeV2 is the π

Regge-pole trajectory; aπ = gπNN / s;

2 This process can also proceed due to a1 exchange. However, esti-

mates based on [21] show that the corresponding amplitude 

is negligible compared to other contributions.
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/4π ≈ 14.3;  is the coupling constant of

f0(980) with the π+π– channel; s ≈ 2mp ; Λπ/2 = /2 +

ln(s/s0) is the residue slope; s0 = 1 GeV2; δB(m) is the
smooth and large (about 90°) phase of elastic back-
ground under the f0(980) resonance in the S-wave
ππ  ππ reaction in the channel with the isospin I =
0 [2, 21]; (m) = (m)/[ (m) (m) –

(m)], where the off-diagonal element (m) of

the polarization operator describes the (980)–
f0(980)-transition amplitude [2]; 1/Dr(m) is the propa-
gator of the nonmixed resonance r = [a0(980), f0(980)]

with mass mr; Dr(m) =  – m2 +  –

; ab = (ηπ0, K+K–, K0 ) and (π+π–, π0π0,

K+K–, K0 ) for r = a0(980) and f0(980), respectively;

the diagonal element (m) of the polarization opera-
tor of the resonance r corresponds to the contribution of
the intermediate state ab [21]; and Γrab(m) =

Im[ (m)]/m = ρab(m)/16πm is the r  ab
decay width, where grab is the coupling constant of r to

the ab channel (here,  = /2), ρab(m) = [(m2 –

)(m2 – )]1/2/m2, and m± = ma ± mb. Since the

(980) and f0(980) resonances are close to the 

thresholds and strongly coupled to the  channels,

the (980)–f0(980)-transition amplitude (m)
must be greatly determined by the contributions from

the K+K– and K0  intermediate states [2]. With allow-
ance for isotopic symmetry of the coupling constants,
the sum of the loop diagrams f0(980)  K+K– 

(980) and f0(980)  K0   (980) gives [2]

(3)

where m ≥ 2  and (m) should be replaced by

i| (m)| in the range 0 ≤ m ≤ 2mK. Figure 1 shows the
resonance behavior of the (a) absolute value and
(b) phase of expression (3). We note that, for the
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Fig. 1. (a) Absolute value and (b) phase of the (980)–f0(980) transition amplitude given by Eq. (3); (c) the BNL data for dσ/dt

for the π–p  (980)n  (ηπ0)Sn reaction [3, 4] (footnote 2); the solid line is a fit of these data in the ρ2-exchange model,

and the dotted line is dσπ/dt for the π–p  f0(980)n  (980)n  (ηπ0)Sn reaction related to the π exchange, for  =

18.3 GeV.
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thresholds, | (m)| ≈ | /16π|[(  –

)/ ]1/2 ≈ 0.1265| /16π|, which is

equal in order of magnitude to mK(  – )1/2 ≈

. From Eqs. (2) and (3), it also follows that the

contribution of the  amplitude to d2σ/dtdm in this
range is primarily determined by the product of the ratios

of coupling constant squared; i.e., | |2 ∝  (π+π– 

ηπ0) ∝  ( / )( / ).

Using the Regge-pole model, we write the  and

 amplitudes in the form
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ln(s/s0) are the trajectory, residue, and the residue
slope of the jth Regge pole, respectively [one can
approximately take (t) ≈ –0.21 + 0.8t/GeV2 and

(t) ≈ –0.31 + 0.8t/GeV2], and (m) =
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of the (980) resonance with allowance for mixing
[2]. The real situation is very interesting. The available
BNL [3], IHEP [19, 20], and CERN [20] data on the t

distributions of π–p  (980)n  (ηπ0)Sn events

integrated with respect to m near the (980) peak for-
mally do not require the introduction of the b1-exchange
amplitude. In the range 0 ≤ –t ≤ (0.6–0.8) GeV2, all these
data are well approximated by the simple exponential
Cexp(Λt) [4, 19, 20], which implies that they can be

described by using only the  amplitude nonvanish-
ing at t  0 [4]. For example, the corresponding fit of
the normalized BNL data [3] on the differential cross

section dσ/dt for the π–p  (980)n  (ηπ0)Sn
reaction (see Fig. 1c)3 gives χ2/n.d.f = 15.75/22 and
dσ/dt = [(945.8 ± 46.3) nb/GeV2]exp[t(4.729 ±
0.217)/GeV2]. Therefore, it is natural to estimate first
the contributions only from the ρ2 and π exchange
mechanisms.

The dotted line in Fig. 1c shows the differential

cross section dσπ/dt = dm caused by the π
exchange and corresponding to the range 0.8 ≤ m ≤ 1.2 GeV

3 Experimental points in Fig. 1c are the BNL dN/dt data for  =

18.3 GeV [3], which are normalized to the cross section for

(1320) formation in the π–p  (1320)n reaction, as was

done in [4]. According to the estimate obtained in [4], the total

cross section for the π–p  (980)n  (ηπ0)Sn reaction at

18.3 GeV is approximately equal to 200 nb. We attribute this
value to the m range from 0.8 to 1.2 GeV and to the entire range
t ≤ 0. Note that this value agrees well with the estimate given for
σ in [19].

a0
0

a0
0

a0
0

M++
ρ2

a0
0

Plab
π–

a2
0

a2
0

a0
0

M+–
π 2

∫

JETP LETTERS      Vol. 79      No. 12      2004



(980)–f0(980) MIXING AND SPIN ASYMMETRYa0
0 591
Fig. 2. Manifestation of the (980)–f0(980) mixing in the π–p  (980)n  (ηπ0)Sn reaction on a polarized target for

 = 18.3 GeV in the model including the ρ2 and π exchanges. The solid lines are (a) dσ/dm and (b) I(m) for 0 ≤ –t ≤ 0.025 GeV2

and (c) the corresponding asymmetry A (0 ≤ –t ≤ 0.025 GeV2, m). The common sign of I(m) and asymmetry is taken arbitrarily. The
long-dashed line in (a) is the ρ2-exchange contribution. The short-dashed lines are (a) dσ/dm and (b) I(m) smoothed using Gaussian
distribution in m with a dispersion of 10 MeV and (c) the corresponding asymmetry.
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and  = 18.3 GeV, i.e., to the BNL energy for which
Λπ/2 ≈ 4.5 GeV–2 [22, 23]. When drawing this line for
dσπ/dt, quantity | (m)| in Fig. 1a, and lines in Fig. 2

illustrating the expected polarization effect, we use the
following approximate parameters of the f0(980) and

a0(980) resonances:  ≈ 0.980 GeV, /16π ≈

0.1 GeV2, /16π ≈ 0.4 GeV2, δB(m) ≈ 35.5° +

47°m/GeV,  ≈ 0.9847 GeV, /16π ≈

/16π ≈ 0.4 GeV2, and /16π ≈ 0.25 GeV2;

see, additionally, [2, 21, 24–28]. We note that the sharp
90° change in the phase of the amplitude (m)

between the  thresholds, which is of crucial impor-
tance for the polarization phenomena, is independent of

the parameters of the f0(980) and (980) resonances
(see Fig. 1b and Eq. (3)). The integration of dσπ/dt with
respect to t yields σπ ≈ 10.9 nb; i.e., the π-exchange
contribution to the total cross section for the π–p 

(980)n  (ηπ0)Sn reaction, which is approxi-
mately equal to 200 nb for 18.3 GeV [4], is equal to
about 5.5%. We emphasize that the indicated value of
cross section σπ should be treated as a very reliable
lower estimate [2, 4]. The cross section dσπ/dt at the
maximum positioned at t ≈ –0.0149 GeV2 is approxi-
mately equal to 139 nb/GeV2, comprises approximately
14.7% of (dσ/dt)|t ≈ 0 (Fig. 1c). However, the main con-
clusion is that virtually the whole dσπ/dt value comes
from the narrow m range near the  thresholds
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(Fig. 1a), whereas the total cross section dσ/dt comes
from the integration over an m range that is at least an
order of magnitude wider. Thus, for low –t values and
m values near the  thresholds, the π-exchange contri-
bution can be comparable with the basic ρ2-exchange
contribution allowed in G parity. Figure 2 shows dσ/dm =

 + | |2]dt, /dm = dt, and

I(m) = (t, m)dt = Im[ ( )*]dt for  =

18.3 GeV to –t values from 0 to 0.025 GeV2, as well as
the corresponding asymmetry A (0 ≤ –t ≤ 0.025 GeV2, m).
The parameters of the ρ2 exchange, which are substi-
tuted into Eq. (5), correspond to the fit of the BNL data
discussed above (Fig. 1c). Since the relative sign of the
ρ2 and π exchanges is unknown, I(m) and asymmetry
are determined except for the sign. As is seen in Fig. 2,
the polarization effect due to the interference between

the  and  amplitudes is large. It can be mea-
sured by the characteristic jump of asymmetry in the m
range from 0.965 to 1.01 GeV. The corresponding dif-
ference between the maximal and minimal values of
asymmetry, which is smoothed due to finite resolution
in m (see caption to Fig. 2), is equal to 0.95 (Fig. 2c).
We note that the obtained pattern does not noticeably
change if the BNL data shown in Fig. 1c are refitted
such that the fixed pion-exchange contribution shown
in this figure is added to the ρ2-exchange contribution.
We illustrate the effect only in the –t range from 0 to
0.025 GeV2 for brevity. Figures similar to Fig. 2 were
drawn for ranges 0 ≤ –t ≤ 0.05, 0.1, and 0.2 GeV2,
where the relative value of the polarization effect
remains virtually unchanged. Moreover, we carefully
examined the situation arising when a b1-exchange con-
tribution of up to 40% of the total reaction cross section

KK
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is included. However, even in this case, the b1-exchange
contribution is immaterial for low –t values. The main
conclusion for this range is that the asymmetry relating
to any of the ranges 0 ≤ –t ≤ 0.025, …, 0.1 GeV2 shows
a jump by a value close to 1 in the m range from 0.965
to 1.01 GeV owing to the π-exchange admixture.

We emphasize that the detection of an asymmetry
jump does not require high resolution in the invariant
mass of the ηπ0 system, which would be absolutely
necessary for the detection of the manifestation of the

(980)–f0(980) mixing in the ηπ0 mass spectrum in
experiments with nonpolarized targets.

At present, experiments with polarized beams and
targets are on the rise. Therefore, the above proposal
seems to be opportune. Due to the closeness of the π,
ρ2, and b1 Regge trajectories, the indicated polarization
effect can be studied for any high energy, e.g., in the
range from 8 to 100 GeV. The corresponding experi-
ments on the π–p  ηπ0n reaction on polarized pro-
tons can be carried out at KEK, BNL, IHEP, CERN
(COMPASS), ITEP, FNAL, and Institut für Kernphysik

(Jülich). The observation of the (980)–f0(980) mix-
ing would open one more interesting page in the inves-

tigation of the mysterious (980) and f0(980) states.
The general concept of using polarization phenomena

as an effective tool for the observation of the (980)–
f0(980) mixing is based on a large change (≈90°) in the

phase of the (980)–f0(980)-transition amplitude in a

narrow m range (8 MeV) between the K+K– and K0

thresholds and naturally applies to other reactions.
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Radiative Muon Pair Production in High-Energy 
Electron–Positron Annihilation Process¶
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The lowest order radiative correction to the differential cross section of process of muon pair production with
the emission of a hard photon at high energy electron–positron annihilation are calculated. Taking into account
the emission of additional soft and hard photon, the cross section can be put in the form of the Drell–Yan pro-
cess in leading logarithmical approximation. Applying the crossing transformation, we obtain the cross section
of the radiative electron–muon high-energy scattering process. Virtual and soft photon emission contributions
of the nonleading form are tabulated for several typical kinematical points. The limit of the small invariant mass
of a muon pair is in agreement with our previous analysis. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 13.66.De; 13.66.Lm; 13.40.-f
The process of muon pair production, as well as
radiative muon pair production, at high energy in elec-
tron–positron collisions is commonly used for calibra-
tion purposes. This process was investigated in detail in
the Born approximation in a series of papers of Baier
and Khoze [1], where the mechanism of returning to
resonant region was found.

One of the motivations of our investigation is the
high theoretical accuracy required for the description of
the differential cross section. Additional interest
appears in the case of small invariant mass of the muon
pair. For this case the radiative muon pair production is
provided for by the initial state hard photon emission
kinematics. It can be used as a calibration process in
studying the hadronic systems of small invariant
masses created by a virtual photon. The lowest order
radiative corrections (RCs) in that kinematics to the
Born cross section as well as the leading logarithmic
(LL) and next-to-leading (NL) contributions in all
orders of perturbation theory (PT), were considered in
our recent paper [2].

Besides the practical applications [3, 4], we pursue
another aim in this paper. The problem is to check the
validity renormalization group (RG) predictions con-
cerning hard processes of type 2  3.

Basing on exact (with power accuracy O( /s))
calculations, we confirm the Drell–Yan form of the
cross section of radiative muon pair production in LL.
Estimation of nonleading contributions for several
kinematics points are given as well.

Mµ
2

¶This article was submitted by the authors in English.
0021-3640/04/7912- $26.00 © 20593
In conclusion, we set the cross section for crossing
processes: radiative electron–muon scattering and
muon pair production by photon on electron in LL.

1. Born cross section and RC. In this paper, for the
process

(1)

we use the following kinematics:

(2)

where M(m) is muon (electron) mass. Here, all kine-
matical invariants are much larger than the muon (elec-
tron) mass, but we take into account terms of order
ln(M/m):

(3)

The differential cross section of the process with the
lowest order RC has the form

(4)
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It’s convenient to separate starting from the Born level
definite contributions from hard photon emission by
electron and muon block and their interference:

(5)

where [5]

(6)

The standard evaluation of additional soft photon
emission contribution gives [6]

(7)

Here, we denote
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and ε, ε± are the energies (in cms) of electron and muon
and λ is “photon mass.”

Let us now consider RCs arising from the Dirac
form factor of leptons and vacuum polarization (the
Pauli form factor contribution is suppressed in our kine-
matics). They are

(10)

with [6]

(11)

Here, sj is the kinematical invariant s or s1. The contri-
butions from the vacuum polarization from the heavy
lepton τ and hadrons Πτ, Πh are given in [7].

2. Calculations of box-type RCs. Consider now
amplitudes arising from box-type Feynman Diagrams
(FDs). There are twelve such FDs, or 48 squared matrix
elements. In calculation we restrict ourselves to consid-
eration of only three box-type FDs. Really, the total
contribution of interference of box-type and Born
amplitudes can be expressed in the form

(12)

where  +  = M0, ( ) are electron (muon)
block emission part of the Born matrix element, and Be
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is the electron emission part of contribution to the box-
type amplitude with uncrossed photon legs (see Fig. 1).
Note that, calculating the Be, we must consider the pen-
tagon-type FD (see Fig. 1b) and two remaining ones
(see FD Figs. 1a, 1c).

The substitution operators P1, 2 work as

(13)

The operator P1 “changes” the photon emission
from electron line to muon line. The application of
operator P2 makes it possible to obtain the contribution
from FD in Fig. 1 FD with crossed virtual photon lines.
As a result we obtain

(14)

The expression for  is rather cumbersome. The
whole contribution to ∆NL (which does not contains
large logarithms) would be given in form of the table
below.

3. Vertex-type FDs. Let now consider the contribu-
tion arising from FDs with vertex-type insertions Ve

(see Fig. 2). The other vertex contributions appear from
these by using substitutions

(15)

with operator P3 denned as

(16)

The total answer for vertex-type contribution reads

(17)

4. Master formula. Extracting the explicate depen-
dence on vacuum polarization in the form 1/|1 – Π|2 and

P1 f p+ p–; q+ q– k1, ,,( ) f q+ q–; p+ p–;  k1–,,( );=

P2 f p+ p–; q+ q– k1, ,,( ) f p+ p–; q– q+;  k1,,( ).=

∆box ρs ρλ+( )
tt1

uu1
-------- ∆B

NL
.+ln–=

∆B
NL

ReΣMvertM0* 1 P1+( ) 1 P3+( )Ve M0
e( )*,=

P3 f p+ p–; q+ q– k1, ,,( ) f p– p+;  q+ q–;, k1,,( ).=
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NL s( )+ ]–

–
1
2
---

mµ
1
2
---mi+

m0
---------------------- ρs1

L–( )2[

+ 2 ρs1
L–( ) ρλ L–( ) 3 ρs1

L–( )– ∆v
NL s1( )+ ] .

Fig. 1. Set of box-type FDs used in calculation.
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collecting the leading and nonleading terms arising
from soft photon emission, vertex and box-type FD
contributions, as well as lepton form factors, we arrive
at the formula

(18)

This expression is free from the infrared singularities,
as well as from squares of large logarithms. The form
of ∆lead is consistent with renormalization group pre-
scriptions,

(19)

with P∆ being the δ part of the kernel of the evolution
equation,

(20)

∆soft ∆box ∆vert ∆ ff+ + + ∆lead ∆NL.+=
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ε±
------ln

3
2
---.+=

Numerical estimation of the ∆NL part of the K factor exclud-
ing nonleading terms arising from hard noncollinear photon
emission (which depends on experimental setups) and the
terms proportional to ln∆ε/ε, ln∆ε/ε± arising from soft pho-
ton emission

N e– e+ c– c+ ∆NL

1 0.59 0.66 0.29 –0.66 6.77

2 0.67 0.67 0.50 0.30 3.24

3 0.68 0.65 0.69 –0.50 8.68

4 0.59 0.56 –0.30 –0.30 8.35

Fig. 2. Set of vertex FDs used in our calculation.
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An additional hard photon emission contribution in
leading logarithmical order can be taken into account
using the quasi-real electron method [8]. It results in the
replacement P2 by the whole kernel of evolution equa-
tion of twist 2 operators

(21)

As a result we arrive at the compact form of the
cross section

(22)

and the structure functions D(x, s) having the standard
form [9]

(23)

The phase volumes entering the left and right parts of
the master equation are different:

(24)

The lower limits of the energy fractions integrations xm,
ym are determined by the experiment setup conditions.
The quantity K (so called K factor) collects all the non-
leading contributions. It has contributions from virtual,

P z( ) P 1( ) z( ) P∆δ 1 z–( ) PΘ z( )+[ ] ,
∆ 0→
lim= =

P∆ 2 ∆ 3
2
---, PΘ z( )+ln Θ 1 ∆– z–( )1 z2+

1 z–
-------------.= =

dσe
+
e

– µ+µ–γ→ p– p+ q– q+ k1, , , ,( )
dΓ

-------------------------------------------------------------------------

=  x1 x2

z–d
z–
-------

z+d
z+
-------De x1 s,( )De x2 s,( )

y+

1

∫
y–

1

∫d

xm

1

∫d

xm

1

∫

× Dµ
y–

z–
---- s1, 

  Dµ
y+

z+
----- s1, 

 
1

α
π
---K+ 

 

1 Π sx1x2( )– 2
------------------------------------×

×
dσe

+
e

– µ+µ–γ→ x1 p– x2 p+ Q– Q+ k1, , , ,( )
dΓ1

---------------------------------------------------------------------------------------,

Q±
z±

y±
-----q±, y±

ε±

ε
----,= =

De x s,( ) δ 1 x–( ) α
2π
------P 1( ) x( ) s

m
2

------ …,+ln+=

Dµ y s1,( ) δ 1 y–( ) α
2π
------P 1( ) y( )

s1

M
2

------- ….+ln+=

dΓ
d3q–

ε–
----------

d3q+

ε+
----------

d3k1

ω1
----------δ p+ p– q+ q–– k1––+( ),=

dΓ1

d
3
Q–

E–
------------

d3Q+

E+
------------

d3k1

ω1
----------=

× δ x2 p+ x1 p– Q+ Q–– k1––+( ),

E±
z±

y±
-----ε±.=
soft, and hard photon emission terms. In the table
below, we give its value for typical experimental points
of the considered process, keeping all contributions
except ones arising from additional hard photon emis-
sion.

5. CONCLUSIONS

Our consideration was devoted to the lowest order
RCs. Nevertheless, the result obtained reveals the low-
est order expansion of the structure functions D. So, the
general Drell–Yan form of cross section is established,
which is valid in all orders of PT. The order of magni-
tude of nonleading terms can be estimated from the
table.

Without additional calculations, we can obtain by
analogy with the result given above the cross section of
crossing process—radiative electron–muon scattering:

(25)

It can be constructed in complete analogy with the
Drell–Yan form of cross section of the above process
e+e–  µ+µ–γ, using in the right-hand side as a hard
subprocess the Born cross section:

(26)

with

(27)

It is worth noting that the value of the K factor for the
last process is not known.

All the 1-loop integrals used of scalar, vector, and
tensor types were published in our previous papers
[10]. It is important to note that numerical values of
nonleading terms for process of radiative muon pair
production for the case of small muon invariant mass
we find completely in agreement with the result of our
paper devoted to this kinematical situation [2], where it
was calculated analytically.

We are grateful to grant RFBR no. 03-02-17077,
and E.K. and V.B., to INTAS no. 00-00-366.
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Previous studies have shown how the three generations of the Standard Model fermions can arise from a single
generation in more than four dimensions and how off-diagonal neutral couplings arise for gauge-boson Kaluza–
Klein recurrences. These couplings conserve family number in the leading approximation. While an existing
example, built on a spherical geometry, suggests a high compactification scale, we conjecture that the overall
structure is generic and work out possible signatures at colliders compatible with rare decays data. © 2004
MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

One reason to invoke more than four space-time
dimensions is to obtain elegant solutions for several
long-standing problems of particle physics [1] (see [2]
for a review). In particular, in the frameworks of “large
extra dimensions,” models have been suggested [3, 4]
and studied [5] where three generations of the Standard
Model (SM) fermions appear as three zero modes local-
ized in the four-dimensional core of a defect with topo-
logical number three. When both fermions and Higgs
boson are localized on a brane, the overlaps of their
wave functions may result in a hierarchical pattern of
fermion masses and mixings [6]. This occurs naturally
in the models under discussion [3]. If the gauge fields
are not localized on a brane (localization of them is a
complicated issue [7]), then their Kaluza–Klein (KK)
modes mediate flavor-changing processes. For the case
of the compactification of two extra dimensions on a
sphere [8], and with one particular pattern of charge
assignments, the constraints from a flavor violation
were discussed in [9]. A distinctive feature of the mod-
els of this class is the (approximate) conservation of the
family number. This letter aims to discuss, without
appealing to a particular model, the phenomenology of
flavor-violating KK bosons in this class of theories, to
be searched in future experiments.

2. DISTINCTIVE FEATURES 
OF “SINGLE-GENERATION” 

EXTRA-DIMENSIONAL MODELS

If our four-dimensional world is nothing but a core
of a topological defect in (4 + D) dimensions, then spe-

¶This article was submitted by the authors in English.
0021-3640/04/7912- $26.00 © 20598
cific interactions of matter fields with the defect may
induce localization of massless modes of these fields
inside the core of the defect. Identification of the SM
fields with these (almost massless compared to the
scale of the defect) modes allows the extra dimensions
to be large but unobserved (see [2] for a review and list
of references). In particular, the index theorem guaran-
tees the existence of N linearly independent chiral zero
modes of each fermion field in the bosonic background
with topological number N. This suggests to use N = 3
to obtain three generations of the SM fermions from a
single one in extra dimensions. Quite nontrivially, the
linear independence of the three modes results in their
different behavior at the origin, which may give rise to
a naturally hierarchical pattern of masses of the fermi-
ons of three generations. We concentrate here on the
most elaborated example of two extra dimensions
(D = 2), though our qualitative results hold for a more
involved case of higher dimensions as well.

With D = 2, the two extra dimensions can be param-
etrized in terms of one radial, r, and one angular, φ, vari-
able. The location of the defect corresponds to r = 0; we
suppose that the compactification preserves rotational
invariance and allow φ to vary from 0 to 2π. The defect
itself has a structure of the U(1) vortex. The definition
of r and its maximal value depend on the compactifica-
tion scheme. The three light four-dimensional families
of particles arising from a single family in six dimen-
sions are characterized then by different winding prop-
erties in φ: three families enumerated by n = 1, 2, 3 have
the following wave functions,

These wave functions correspond, in four dimen-
sions, to the gauge eigenstates of the SM fermions. To

ψn f n r( )ei 3 n–( )φ.∼
004 MAIK “Nauka/Interperiodica”
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the first approximation, both the theory and the back-
ground possess rotational invariance (shifts in φ supple-
mented by U(1) transformations). The fermion mass
matrix originates from a φ-independent scalar field and
is thus perfectly diagonal, while the mass spectrum
results from the (in principle calculable) overlap of the
wave functions of the scalar and fermions, giving the
usual hierarchy between families. At this level, the
mass and gauge eigenstates coincide, the family num-
ber corresponds to the six-dimensional angular
momentum and is thus exactly conserved (note that this
still does not forbid processes where both quark and
lepton flavors change oppositely, e.g. K  µ ). Mix-
ing between fermions of different species, leading to
the desired Kobayashi–Maskawa (K–M) matrix, arises
as a suppressed, second-order effect controlled by an
auxiliary scalar field with winding number one, which
generates transitions between adjoining generations.

We will be concerned here with the gauge interac-
tions. The lowest mode of the gauge bosons in four
dimensions left massless by the vortex localization of
the fermions eventually acquires mass by the Brout–
Englert–Higgs formalism. The electrically neutral such
bosons stay as usual diagonal in their interactions with
the fermionic mass eigenstates. The charge universality
is provided by the fact that the lowest mode of a gauge
boson is constant in transverse dimensions and overlap
integrals of the normalized fermionic wave functions
with this mode coincide with each other. This is not the
case for the higher KK modes of the vector particles;
their profiles in (r, φ) are determined by

where l = 1, 2, … and –l ≤ m ≤ l. Nontrivial profiles alm
cause different overlaps with fermions of different fam-
ilies, while nonzero windings result in transitions
between generations.

Angular excitation of, for example, the first KK
mode of Z boson behaves in six dimensions as

After integration in extra dimensions, we obtain an
effective four-dimensional Lagrangian with complex
vector field Z', which generates “horizontal” transitions
between families in which the generation number
changes by one unit.

Such transitions are of course severely limited by
the high mass of the excitations, but also, in the first
approximation (neglecting the K–M mixing), they do
conserve the family number. For instance, the follow-
ing processes are possible:

e

Alm r φ,( ) alm r( )eimφ,=

Z' e iφ± .∼

s d Z' s d ,+⇒ ⇒+

s d Z' µ e,+⇒ ⇒+

s d Z' τ µ .+⇒ ⇒+
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The first process in the first order in Z' exchange thus
conserves strangeness (and only small corrections
linked to Cabibbo mixing would affect this), but the
second, while conserving family number, is a typical
flavor-changing neutral current (FCNC) interaction,
violating both strangeness and electron number. While
the last reaction is only possible in collisions, the study
of rare KL decay puts strong limits on the mass and cou-
pling constant of the Z' [9] (similar relations hold for
the photon and gluon angular excitations).

For the time being, we wish to retain these main
characteristics of the model: families are associated to
some “winding number,” conserved in excited boson
exchanges up to small Kobayashi–Maskawa correc-
tions. The detailed spectrum and strength of coupling of
the gauge boson excitations will depend on the exact
geometrical implementation. A fully worked-out exam-
ple was presented in detail in [9], leading however to a
particularly high mass spectrum.

We conjecture that the same structure would remain
intact in other implementations. In [9], we supposed
that the wave functions of fermions and the first KK
mode of the gauge boson overlap strongly. Then, the
effective Lagrangian for the interaction between fermi-
ons and flavor-changing bosons contains the same cou-
pling constant as interaction with the lowest KK modes,
i.e., the usual gauge bosons. However, in particular
models the profiles of fermionic wave functions can be
shifted, which means more freedom in couplings. Let
us denote the absolute value of the overlap integral in
extra dimensions between the wave functions ψi, ψj of
the fermions of generations i, j and the wave function
ψZ' of the Z excitation as

Then, ( , µ) interaction through Z' is described by

The structure of this term coincides with the interaction
of , e, and Z in SM with the strength g = gEWκ12. Inter-
actions of other leptons and quarks arise in a similar
way.

The main restriction on the mass scale of the model
with κij . δi, i + 1 arises from the limit on the branching
ratio for the process KL  e. Taking into account
that κ12 can be different from 1, the strongest restriction
from the rare processes gives [9]

In the simplest case when all κij ~ κδi, i + 1,

The decay width of the excited Z and photon results
mainly from their decay into fermions (with the possi-

ψZ'ψiψ jd
2x∫ κ ij.=

e

gEWκ12

2 θWcos
------------------Zµ'

1
2
---eγµγ5µ

1
2
--- 2 θWsin

2
– 

  eγµγ5µ– .

e

µ

MZ' * κ12 100 TeV.×

κ  & 
MZ'

100 TeV
---------------------.
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bility of model-dependent additional scalar decay chan-
nels) and, by simple counting of modes, is estimated as

Similarly, the width of the first photon angular exci-
tation is given by

The first KK excitation of the gluon is wider due to the
larger coupling constant,

A typical value of Γ is of order 10–3 GeV for κ . 10–2

and MZ' = 1 TeV. In what follows, we will assume that
the masses of all the FCNC bosons are equal,

as in the case of spherical model of [9].

3. COLLIDER SEARCHES

The vector bosons discussed here can, in principle,
be observed at colliders due to the flavor-changing
decay modes into (µe) and (τµ) pairs. The correspond-
ing process is very similar to the Drell–Yan pair pro-
duction. A typical feature of the latter is the suppression
of the cross section with increasing resonance mass at a
fixed center-of-mass energy [10]. This suppression is
due to the falloff of the structure functions at large
momenta of quarks.

The flavor-changing decays of this kind have a dis-
tinctive signature: antimuon and electron (or their anti-
particles) with equal and large transverse momenta in
the final state. Observation of just a few such pairs with
the same invariant masses would give a strong argu-
ment in flavor of the flavor-changing boson in the s
channel and would help to distinguish the effects dis-

Γ Z'( ) κ2MZ'

MZ

-------- 12.5Γ Z νν→ κ2MZ'

MZ

-------- 1.8 GeV.×≅×=

Γ γ'( ) 16
3
------κ2 2θW

Mγ'

MZ

--------Γ Z νν→ κ2Mγ'

MZ

-------- 1.3 GeV.×≅sin
2

=

Γ G'( ) κ2MG'

MZ

-------- 7.2 GeV.×≅

MZ' Mγ' Mg' M,= = =

Fig. 1. Number of events for (µ+e–) pairs production as a
function of the vector bosons mass M with κ = M/100 TeV.
cussed here from, say, (loop-induced) flavor violation
in supersymmetry. Even stronger evidence would be
provided by the observation of higher KK modes
(which of course requires larger center-of-mass
energy).

We estimate the number of events for the case of pp
collisions with the help of the CompHEP package [11].
For our calculation, we use the expected LHC value of

100 fb–1 for luminosity and  = 14 TeV. The number
of (µ+e–) events is presented in Fig. 1 for different val-
ues of the vector bosons mass M and κ adjusted to κ =
M/100 TeV. The same plot for (µ–e+) pairs is given in
Fig. 2.

Note that production of (µ+e–) pairs is more proba-
ble than (µ–e+), because the former process can use
valence u and d quarks in the proton, while the latter
only involves partons from the sea. The same numbers
are also representative for the (µ–τ+) channel.

There are also other signatures of FCNC effects, in
particular, with hadronic final states, when ( , c) or

( , s) jets are produced. The dominant contribution to
these processes arises from the interactions with higher
KK modes of gluons, which have large coupling con-
stant. For a mass of MG' = 1 TeV, we estimate the num-
ber of events as N = 1.2 × 103. But, potentially large SM
backgrounds should be carefully considered for such
channels.

4. CONCLUSIONS

We have considered FCNC effects in models with
approximate family-number conservation mediated by
the heavy vector bosons in a class of models. From our
estimations, there is reason for searching for such
FCNC bosons with masses of order 1 TeV at LHC. The
main signature is the production of (µ+e–) or (µ–τ+)
pairs with equal and large transverse momenta of lep-
tons. Production of ( c) quarks is more probable but

s

t

b

t

Fig. 2. Number of events for (µ–e+) pairs production as a
function of the vector bosons mass M with κ = M/100 TeV.
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less clear-cut due to the large background from SM pro-
cesses.

On the other hand, the models with heavy vector
bosons, whose interactions conserve the family num-
ber, can be tested in experiments studying rare pro-
cesses. The strongest and least model-independent
limit on the mass of these bosons arises from the limit

on KL  µ±  branching ratio (in this process, the
family number does not change). Discovery of this
decay without signs of rare processes which violate the
generation number (such as µe conversion) would sup-
port significantly the models discussed here. Future
experiments on the search of lepton-flavor violating
kaon decays are thus of great importance (see [12] for
relevant discussion).
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The Glauber theory description of particle– and nucleus–crystal Coulomb interactions at high energy is devel-
oped. The allowance for the lattice thermal vibrations is shown to produce a strong absorption effect, which is
of prime importance for quantitative understanding of the coherent Coulomb excitation of ultrarelativistic par-
ticles and nuclei passing through the crystal. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 25.75.-q; 11.80.-m
In this communication, we discuss the origin and
estimate the strength of the absorption effect in coher-
ent particle– and nucleus–crystal Coulomb interactions
at high energy.

Generally, the multiloop corrections generate the
imaginary part of the scattering amplitude even if the
three-level amplitude is purely real. For example, the
purely real Born amplitude of the high-energy Cou-
lomb scattering in crystal acquires the imaginary part
due to the multiple scattering (MS) effects [1]. How-
ever, in the widely used static/frozen lattice approxima-
tion (SL approximation), the account of rescatterings
alters only the overall real phase of the full amplitude,
thus producing no absorption effect [2]. Indeed, to the
SL approximation, the exact scattering matrix placed
between the ground states of crystal 〈exp(iχ)〉  is
approximated by exp(iχ) and the imaginary part of the
scattering amplitude

,

which is

,

disappears. With the allowance for the lattice thermal
vibrations, the Coulomb phase shift function gets a
nonvanishing imaginary part which is interpreted as an
absorption effect, the phenomenon related to the cre-
ation and annihilation of excited intermediate states of
crystal and as such manifesting itself only beyond the
SL approximation.

The account of the lattice thermal vibrations pro-
vides a natural ultraviolet (UV) regulator of the theory
and, as we shall see, enables quantitative understanding
of the phenomenon of the coherent Coulomb excitation
of relativistic particles and nuclei passing through the

1 iχ( )exp〈 〉–

~
i
2
--- χ2〈 〉 χ〈 〉 2–[ ]

¶This article was submitted by the author in English.
0021-3640/04/7912- $26.00 © 20602
crystal. The latter is the goal we pursue in this commu-
nication.

We start with the well-known example of the coher-
ent Coulomb elastic scattering of charged particle or
nucleus (charge Z1) by a linear chain of N identical
atoms in a crystal target. The interatomic distances in
crystal, a, are large compared to the Thomas–Fermi

screening radius r0, a ~ 3–5 Å @ r0 = rB  ~ 0.1 Å,
where Z2 is the atomic number of the target atom and rB

is the Bohr radius [3]. The relevant impact parameters,
b, satisfy the condition b ! a, and the amplitudes of
scattering by different atomic chains parallel to a given
crystallographic axis are incoherent.

In the eikonal approximation [1], the phase shift
function is the sum of the phase shifts contributed by
the individual atoms,

The ground state of crystal we describe by the uncorre-
lated wave function

where the positions of the N atoms which make up the
target are defined by the 3D vectors rj, j = 1, …, N, and
the 2D vectors sj are the projections of these vectors on
the impact parameter plane. Hence, the amplitude of
small-angle elastic scattering has the following form:

(1)

where q is the 2D vector of the momentum transfer, and
the incident particle momentum p is assumed to be
large enough to satisfy the condition of applicability of

Z2
1/3–

χ χ µ b sj–( ).
j 1=

N

∑=

Ψ ψ rj( ),
j 1=

N

∏=

F q( ) ip b bJ0 qb( ) 1 iχ µb( )[ ]exp〈 〉 N–{ } .d∫=
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the straight paths approximation, p/q2 @ aN. The latter
condition ensures the coherence of interactions with
different atoms. In Eq. (1), the screened Coulomb phase
shift contributed by the individual atom is

(2)

with β = 2αZ1Z2 and µ = . Hereafter, Jν(x), Iν(x), and
Kν(x) are the Bessel functions. The brackets 〈 〉  signify
that an average is to be taken over all configurations of
atoms in the ground state of crystal.

After the azimuthal integration, the term 〈exp(iχ)〉
takes the form

(3)

The 2D vector s describes the position of the target
atom in the impact parameter plane. The one-particle
probability distribution ρ(s) is as follows:

(4)

For the most commonly studied elements at room tem-
perature, the ratio µ/Ω varies in a wide range, from
µ/Ω ~ 0.1 to µ/Ω ~ 1 [3]. Consider first the region of
small impact parameters. For b ! 1/2Ω, only small s
such that µs & 1 contribute. One can set then in Eq. (3)
K0(µs) .  and integrate over s. The result is

(5)

In Eq. (5), Φ(a, b; z) is the confluent hypergeometric
function. From (5), it follows, in particular, that

(6)

and in the weak coupling regime, β ! 1,

(7)

while, for β * 1,

(8)

Therefore, at small impact parameters, b & Ω–1, the
intensity of outgoing nuclear waves as a function of N
exhibits exponential attenuation.

χ µb( ) βK0 µb( ),–=

r0
1–

iχ( )exp〈 〉 d2sρ s( ) iχ µ b s–( )[ ]exp∫=

=  Ω2b2–( ) x x–( )expd∫exp

× I0 2bΩ x( ) iβK0 µ x/Ω( )–[ ] .exp

ρ s( ) z ψ s z,( ) 2d∫ Ω2/π( ) Ω2s2–( ).exp= =

1/µs( )log

iχ( )exp〈 〉 µ
Ω
---- 

 
iβ

Γ 1 iβ
2
-----+ 

  Φ iβ
2
-----– ; 1; Ω2b2– 

  .=

iχ( )exp〈 〉 b 0=
πβ

2 πβ/2( )sinh
-------------------------------

1/2

=

iχ( )exp〈 〉 b 0=  . 1
π2β2

48
-----------,–

iχ( )exp〈 〉 b 0=  . πβ πβ
4

------– 
  .exp
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The absorption effect becomes weaker toward the
region of large impact parameters b * 1/2Ω ,

(9)

For still larger b, b @ 1/2Ω , making use of the asymp-
totic form I0(z) . (2πz)–1/2exp(z) and the condition

(10)

yields

(11)

From (11), (5), (1), it follows that the absorption is
especially strong for impact parameters

(12)

For b & ba, the atomic chain acts like an opaque “black”
disc. Certainly, the value of this finding differs for dif-
ferent observables and for different processes proceed-
ing at different impact parameters.

Integrating once by parts reduces F(q) to the form
convenient for evaluation of the total cross section,

(13)

At small q and large N, only large impact parameters,
b @ µ–1, may contribute to F(q). This is the multiple
scattering effect [1, 2], which gives rise to the domi-
nance of ultraperipheral collisions in the coherent par-
ticle–crystal interactions. Then, for q & q0 = µ/ξ and
ξ @ 1, the steepest descent from the saddle-point

(14)

in Eq. (13) yields

(15)

The effect of lattice thermal vibrations at small q
appears to be marginal and reduces to the factor
exp(µ2/4Ω2N) in (15), which is irrelevant in the region
of large N, where the amplitude F(q) coincides with the
elastic scattering amplitude given by the SL approxi-
mation [2].

iχ( )exp〈 〉 N
 . iχ( )exp〈 〉 b 0=

N

× 1
Nβ2

16
---------- Ωb( )4 …+ + .

ω dχ
db
------ µβK1 µb( ) ! Ω= =

iχ( )exp〈 〉

. 2Ω s sd

πbs
------------- Ω2 b s–( )2–[ ] iχ µs( )[ ]expexp∫

. iχ( ) ω2/4Ω2
–[ ]exp .exp

b & ba
1

2µ
------ πµ2β2N

4Ω2
-------------------.log=

F q( ) ipµN
q

-------------=

× b bJ1 qb( ) iχ' iχ( )exp〈 〉 iχ( )exp〈 〉d N 1–( ).

0

∞

∫

b0 µ 1– ξ iπ/2+[ ]=

F q( ) . 
ipb0

q
----------J1 qb0( ).
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If q * q0, the stationary phase approximation gives
the elastic scattering amplitude of the form

(16)

where η =  @ 1. This is the lattice vibra-
tions, which provide a natural momentum cutoff and
ensure the convergence of the integral for the coherent
elastic scattering cross section,

(17)

which, for ξ @ 1, is simply

(18)

From Eq. (15), by means of the optical theorem, we find
the total cross section

(19)

Consequently, at high energy and for ξ @ 1, σel ≈ σtot.

Now, let us turn to the process of the coherent Cou-
lomb excitation of ultrarelativistic particles and nuclei
passing through the crystal. This way of the experimen-
tal study of rare processes was proposed in [4–10].

The ultrarelativistic projectile nucleus (mass num-
ber A, charge Z1, and four-momentum p) moving along
a crystal axis undergoes a correlated series of soft col-
lisions, which give rise to diagonal (A  A, A*  A*)
and off-diagonal (A  A*, A*  A) transitions. In
[4, 5, 9], it was proposed to study the electric dipole
transition in 19F, the excitation of the state |Jπ = 1/2–〉
from the ground state |1/2+〉 . The phenomenological
matrix element of the transition 1/2+  1/2– is [11]

(20)

where both u(p') and u(p) are bispinors of initial and
final states of the projectile, d is the transition dipole
moment, and ε is the photon polarization vector. The
transverse and longitudinal components of the 4-vector
p – p' are denoted by q and κ, respectively. In what fol-
lows, q = |q|. Because of the large value of the lifetime
of the 110 keV level 19F(1/2–) [12], the decay of excited
state inside the target crystal can be safely neglected.
Due to the smallness of the transition dipole moment,
d . 5 × 10–8 keV–1, the excitation amplitude is much
smaller than the elastic Coulomb amplitude for all q up

F q( ) . 
ip η–
µq

---------------- iqη
µ

--------– 
  q2

4Ω2N
--------------– 

  ,expexp

µβN /q( )log

σel
π
p2
----- q2 F q( ) 2 πξ2

µ2
-------- q2d

q2
--------J1

2 qξ
µ
------ 

 

0

q0
2

∫≈d∫=

+
π
µ2
----- q2d

q2
-------- µβN

q
----------- 

  q2

2Ω2N
--------------– 

  ,explog

q0
2

∞

∫

σel
π
µ2
-----ξ2.≈

σtot
4π
p

------ImF 0( ) 2π
µ2
------ξ2

.≈=

1
2
---

}
1
2
---du p'( )γ5 q̂ε̂ ε̂q̂–( )u p( ),=
to q ~ Z1/d and can be considered as a perturba-
tion [11]. Thus, the multichannel problem reduces to
the one-channel one.

The high-energy helicity-flip Born amplitude of the
transition 1/2+  1/2– in collision of the projectile-
nucleus with N bound atoms in crystal reads

(21)

where s = (σ1, σ2, σ3) is the Pauli spin vector, {σi, σj} =
2δij, and the amplitude we constructed is to be regarded
as an operator which transforms the initial helicity state
of the projectile into its final state. In the denominator
of Eq. (21), λ2 = µ2 + κ2. In the Glauber approximation,
the longitudinal momentum transfer, which determines
the coherency length, lc ~ κ–1, reads [13]

(22)

where M is the mass of projectile and ∆E is the excita-
tion energy.1 

The structure factor of crystal S(κ) to the first order
in g is

(23)

If the projectile momentum satisfies the resonance con-
dition [4, 5, 7, 9],

(24)

S(κ) ~ N. Then, to the first order in g (Born approxima-
tion), the cross section of the coherent excitation of the
projectile in scattering on a chain of N atoms in crystal
is

, (25)

where g = dZ2. The central idea of [4–10] based
on the Born approximation is that the transition rate can
be enhanced substantially due to coherency of interac-
tions, which is assumed to be sustained over the large
distance scale. The law σex ∝  N2 is expected to hold true
up to the crystal thicknesses N = L/a ~ 105–106 in tung-
sten target. In [10], the Born approximation for the
coherent excitation of Σ+ in high-energy proton–crystal
interactions pγ  Σ+ was assumed to be valid up to
N ~ 108. However, the account of the initial- and final-
state Coulomb interactions dramatically changes the
dependence of σex on N. For example, even in the dia-

1 The Fresnel corrections to the Glauber approximation which are
neglected here become important for large N or large q, diminish-
ing the coherency length and bringing about an additional sup-
pression of coherent processes [14].

4πα

Fex
B q( ) S κ( ) p

2π
------ g sq( )

q2 λ 2
+

---------------- q2

4Ω2
----------– 

  ,exp=

κ M∆E
p

-------------,=

S κ( ) κ2

4Ω2
----------–

κNa/2( )sin
κa/2( )sin

-----------------------------.exp=

M∆E
p

-------------
2πn

a
---------, n 0 1 2…,, ,= =

σex
B π

p2
----- q2 Fex

B q( ) 2 g2N2

4π
------------∝d∫=

4πα
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mond crystal,

(26)

and ω2/2Ω2 . 2β2µ2/Ω2 ~ 1/20 (see [15] for more
details). Thus, the Born approximation becomes irrele-
vant already at N * 10.

The evaluation of the transition amplitude on a chain
of N identical atoms including all the multiphoton
t-channel exchanges reads

(27)

Equation (27) contains two bracketed factors. The first
one corresponds to the nuclear excitation amplitude in
scattering on the atom bound in crystal. At small impact
parameters, b & 1/2Ω ,

(28)

Because of both the multiple scattering effect and
absorption, only b @ µ–1 may contribute to Fex(q). In
this region of impact parameters,

(29)

The second factor in (27) describes the initial- and
final-state interactions of the projectile and has been
calculated above. Then,

(30)

where nq = q/|q|. The contribution of the domain q &
q0 = µ/ξ to the excitation cross section can be neglected
as far as Fex ∝  q for q & q0. If q @ q0 and ξ @ 1, the
stationary phase approximation gives the coherent exci-
tation amplitude of the form

(31)

We see that the helicity-flip dynamics removes the fac-
tor 1/q from elastic amplitude (16), thus making the UV
regularization of the excitation cross section indispens-
able. The latter is evaluated as

(32)

σex σex
B 1 Nω2

2Ω2
-----------– 

 ∼

Fex q( ) p
π
--- d2b iqb( )exp∫=

× f ex
B iχ( )exp〈 〉 iχ( )exp〈 〉 N 1– .

f ex
B iχ( )exp〈 〉

. S κ( ) g
2πb
--------- snb( ) 1

2
---Ω2b2

 
  1

2
---Ω2b2– 

  .expsinh

f ex
B iχ( )exp〈 〉

. S κ( ) g
4π
------ snb( )λK1 λb( ) iχ( ) ω2

4Ω2
----------– 

  .expexp

Fex q( ) gp
2π
------S κ( ) snq( ) b bJ1 qb( )d

1/µ

∞

∫≈

× λK1 λb( ) iNχ( ) Nω2/4Ω2–( ),expexp

Fex q( )
ipg snq( )

2πβ
-----------------------S κ( )

N
-----------λ

µ
--- η δη–( )exp≈

× iqη
µ

--------– 
  q2

4Ω2N
--------------– 

  .expexp

σex
π
p

2
----- q2 Fex q( ) 2d∫ g2N1 δ–

8π
-----------------C

N
δγ
------ 

  ,log∼=
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where C = γ∆∆2Γ(∆), γ = 2Ω2/β2µ2, ∆ = λ/µ, and δ = ∆ –
1 ~ κ2/2µ2 ! 1. In (32), we set simply S(κ) = N. Thus,
the account of multiple scatterings and absorption turns
the Born approximation cross section σex ∝  N2 into
σex ∝  N1 – δ . In the limit of p  ∞ and δ  0,

(33)

The dependence of σex on N differs from that of fully

unitarized σel ∝  . The reason is that, in σex, we
sum the eikonal diagrams to all orders in β but only to
the first order in g. Such a unitarization procedure is, of
course, incomplete, but this is of no importance for
practical purposes since the smallness of d2Ω2 makes
the next-to-leading-order corrections negligibly small

up to N ~ α /δΩ2d2 ~ 1012.

Thanks are due to N.N. Nikolaev for useful com-
ments.
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A qualitative analysis of the chiral phase transition in QCD with two massless quarks and nonzero baryon den-
sity is performed. It is assumed that, at zero baryonic density, ρ = 0, the temperature phase transition is of the
second order. Due to a specific power dependence of baryon masses on the chiral condensate, the phase transi-
tion becomes of the first order at the temperature T = Tph(ρ) for ρ > 0. At temperatures Tcont(ρ) > T > Tph(ρ),
there is a mixed phase consisting of the quark phase (stable) and the hadron phase (unstable). At the temperature
T = Tcont(ρ), the system experiences a continuous transition to the pure chirally symmetric phase. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 12.38.Mh; 25.75.Nq; 11.30.Rd
It is well known that chiral symmetry is valid in per-
turbative quantum chromodynamics (QCD) with mass-
less quarks. It is expected also that chiral symmetry
takes place in full-perturbative and nonperturbative
QCD at high temperatures (T * 200 MeV) if heavy
quarks (c, b, t) are ignored. Chiral symmetry is strongly
violated, however, in hadronic matter, i.e., in QCD at
T = 0 and low density. What is the order of phase tran-
sition between two phases of QCD with broken and
restored chiral symmetry with varying temperature and
density is not completely clear now. There are different
opinions about this subject (for a detailed review, see
[1, 2] and references therein).

In this paper, we discuss the phase transitions in
QCD with two massless quarks, u and d. Many lattice
calculations [3–6] indicate that, at zero chemical poten-
tial, the phase transition is of the second order. It will be
shown below that the account of baryon density drasti-
cally changes the situation and the transition becomes
of the first order, and, at high density, the matter is
always in the chirally symmetric phase (see also [7]).

Let us first consider the case of zero baryonic den-
sity and suppose that the phase transition from chiral-
ity-violating phase to the chirality-conserving one is of
the second order. The second-order phase transition is
generally characterized by the order parameter η. The
order parameter is a thermal average of some operator,
which may be chosen in various ways. The physical
results are independent of the choice of the order
parameter. In QCD, the quark condensate, η =
|〈0| u |0〉| = |〈0| d |0〉| ≥ 0, may be taken as such a
parameter. In the confinement phase, the quark conden-
sate is nonzero, while in the deconfinement phase, it is
vanishing.

The quark condensate has the desired properties: as
was demonstrated in the chiral effective theory [8, 9], η

u d
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decreases with increasing temperature and an extrapo-
lation of the curve η(T) to higher temperatures indi-

cates that η vanishes at T =  ≈ 180 MeV. Here, the
superscript “0” indicates that the critical temperature is
taken at zero baryon density. The same conclusion fol-
lows from the lattice calculations [3, 6, 10], where it
was also found that the chiral condensate η decreases
with an increase of the chemical potential [11, 12].

Apply the general theory of the second-order phase
transitions [13] and consider the thermodynamical

potential Φ(η) at the temperature T near . Since η
is small in this domain, Φ(η) may be expanded in η:

(1)

For the moment, we neglect possible derivative terms in
the potential.

The terms proportional to η and η3 vanish for gen-
eral reasons [13]. In QCD with massless quarks, the
absence of η and η3 terms can be proved for any pertur-

bative Feynman diagrams. At small t = T – , the
function A(t) is linear in t: A(t) = at, a > 0. If t < 0, the
thermodynamical potential Φ(η) is minimal at η ≠ 0,
while at t > 0, the chiral condensate vanishes, η = 0. At
small t, the t dependence of the coefficient B(t) is insig-
nificant and may be neglected. The minimum, , of the
thermodynamical potential can be found from the con-
dition, ∂Φ/∂η = 0:

(2)

It corresponds to the second-order phase transition,
since the potential is quartic in η and, if the derivative
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terms are included in the expansion, the correlation

length becomes infinite at T = .

Turn now to the case of finite but small baryon den-
sity ρ (by ρ, we mean here the sum of baryon and anti-
baryon densities). For the moment, consider only one
type of baryon, i.e., the nucleon. The temperature of the
phase transition, Tph, is, in general, dependent on the

baryon density, Tph = Tph(ρ), with Tph(ρ = 0) ≡ . At
T < Tph(ρ), the term proportional to Eρ, where E =

 is the baryon energy, must be added to ther-
modynamical potential (1). As was shown in [14, 15],
the nucleon mass m (as well as the masses of other
baryons) rises due to the spontaneous violation of the
chiral symmetry and is approximately proportional to
the cubic root of the quark condensate: m = cη1/3, with
c = (8π2)1/3 for a nucleon. At small temperatures T, the
baryon contribution to Φ is strongly suppressed by the
Boltzmann factor e–E/T and is negligible. Below, we
assume that the proportionality m ~ η1/3 is valid in a
broad temperature interval. Arguments in favor of such
an assumption are based on the expectation that the
baryon masses vanish at T = Tph(ρ) and on dimensional

grounds. Near the phase transition point, E =  ≈
p + c2η2/3/2p. At η  0, all baryons are accumulating
near zero mass and a summation over all baryons gives
us, instead of Eq. (1), the following:

(3)

where C = /2pi. The term ρ  is absorbed
into Φ0 since it is independent on the chiral condensate
η. The typical momenta are of the order of the temper-
ature, pi ~ T. Thus, Eq. (3) is valid in the region η ! T3.
In the leading approximation, the term C can be consid-

ered to be independent of the temperature at T ~ .

Due to the last term in Eq. (3), the thermodynamical
potential always has a local minimum at η = 0, since the
condensate η is always nonnegative. At small t < 0,
there also exists a local minimum at η > 0, which is a
solution of the equation

(4)

At small enough baryon density ρ, Eq. (4) (visual-
ized in Fig. 1a) has, in general, two roots, η1 < η0 and
η2 > η0, where η0 = (–at/3B)1/2 is the minimum of the
first term in the right-hand side of Eq. (4). The calcula-
tion of the second derivative ∂2Φ/∂η2 shows that the
second root η2 (if it exists) corresponds to a minimum
of Φ(η) and, therefore, is a local minimum of Φ. The
point η = η1 corresponds to a local maximum of the
thermodynamical potential since, at this point, the sec-
ond derivative is always nonpositive.
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The thermodynamical potential Φ(η, ρ) at (fixed)
nonzero baryon density ρ has the form plotted in
Fig. 1b. At low enough temperatures (curve T1), the
potential has a global minimum at η > 0 and the system
resides in the chirally broken (hadron) phase. As the
temperature increases, the minima at η = 0 and η =

 > 0 become equal in height (curve T2 ≡ Tph). At this
point, the first-order phase transition to the quark phase
takes place. At somewhat higher temperatures, T = T3 >
Tph, the η > 0 minimum of the potential still exist but
Φ(η = 0) < Φ( ). This is a mixed phase, in which the
bubbles of the hadron phase may still exist. However, as

η2

η2

Fig. 1. (a) Graphical representation of Eq. (4): I is the first
term and II the second term (with the opposite sign) in the
right-hand side of the equation. (b) The thermodynamic
potential (3) vs. the chiral condensate at a fixed baryon den-
sity ρ > 0. At low enough temperatures, T = T1, the system
resides in the chirally broken (hadron) phase. The first-order
phase transition to the quark phase takes place at Tph = T2 >
T1. At somewhat higher temperatures, T3 > Tph, the system
is in a mixed state. The temperature T4 ≡ Tcont corresponds
to a continuous transition to the pure quark phase, in which
the thermodynamic potential has the form T5.
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the temperature increases further, the second minimum
disappears (curve T4 ≡ Tcont). This temperature corre-
sponds to a continuous transition to the pure quark
phase, in which the thermodynamic potential has the
form T5.

Let us calculate the temperature of the phase transi-
tion, Tph(ρ), at nonzero baryon density ρ. The transition
corresponds to the curve T2 in Fig. 1b, which is defined
by the equation Φ( , ρ) = Φ(η = 0, ρ), where  is
the second root of Eq. (4) as discussed above. The solu-
tion is

(5)

and the second minimum of the thermodynamic poten-
tial is at  = (4a(T(0) – Tph(ρ))/5B)1/2.

At a temperature slightly higher than Tph(ρ), the
potential is minimal at η = 0, but it also has an unstable
minimum at some η > 0. The existence of metastable
state is also a common feature of the first-order phase
transition (e.g., the overheated liquid in the case of a
liquid–gas system). With a further increase of the den-
sity ρ (at a given temperature), the intersection of the
two curves in Fig. 1a disappears and the two curves
only touch one another at one point, η = . At this
temperature, a continuous transition (crossover) takes

η2 η2
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3/5 B

4
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2/5
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η2

η4

Fig. 2. The qualitative phase diagram at finite baryon den-
sity and temperature based on the analysis (a) without and
(b) with indication of the approximate second-order transi-
tion domain.
place. The corresponding potential has the characteris-
tic form denoted as T4 in Fig. 1a. The temperature T4 ≡
Tcont is defined by the condition that the first (4) and the
second derivatives of Eq. (3) vanish,

(6)

and the value of the chiral condensate, where the sec-
ond local minimum of the potential disappears, is given

by  = (2a(Tcont(ρ) – )/5B)1/2. At temperatures T >
Tcont(ρ), the potential has only one minimum and the
matter is in the state with the restored chiral symmetry.
Thus, in QCD with massless quarks, the type of phase
transition with the restoration of the chiral symmetry
strongly depends on the value of baryonic density ρ. At

a fixed temperature, T < , the phase transition
occurs at a certain critical density, ρph. According to
Eq. (5), the critical density has a kind of a “universal”

dependence on the temperature, ρph(T) ∝  [  – T]5/3,
the power of which does not depend on the parameters
of the thermodynamic potential, a and B.

The expected phase diagram is shown qualitatively
in Fig. 2a. This diagram does not contain an endpoint,
which was found in lattice simulations of the QCD with
a finite chemical potential [16, 17]. We expect that this
happens because, in our approach, a possible influence
of the confinement on the order of the chiral restoration
transition was ignored. Intuitively, it seems that, at low
baryon densities, such an influence is absent indeed: the
deconfinement phenomenon refers to the large quark–
antiquark separations, while the restoration of the chiral
symmetry appears due to fluctuations of the gluonic
fields in the vicinity of the quark. However, the confine-
ment phenomenon dictates the value of the baryon size,
which cannot be ignored at high baryon densities, when
the baryons are overlapping. If the melting of the bary-
ons occurs in the hadron phase depicted in Fig. 2a, then,
at high enough density, the nature of the transition
could be changed. This may give rise to the appearance
of the endpoint observed in [16, 17]. The domain where
the inequality |at | @ Cρη2/3, ρ ≠ 0, is fulfilled has spe-
cific features. In this domain, the phase transition looks
like a smeared second-order phase transition: the spe-
cific heat has (approximately) a discontinuity at the
phase transition point, ∆Cp = a2Tc/B. The correlation

length increases as (T – )–1/2 at T –   0. The
latter rises if we include the derivative terms in the
effective thermodynamical potential. The phase dia-
gram with this domain indicated may appear as shown
in Fig. 2b. Note that the applicability of our consider-

ations is limited to the region |T – |/  ! 1 and
low baryon densities.

In real QCD, the massive heavy quarks (the quarks
c, b, t) do not influence on this conclusion, since their
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concentration in the vicinity of T ≈  ~ 200 MeV is
small. However, the strange quarks, the mass of which

ms ≈ 150 MeV is just of order of expected , may
change the situation. This problem deserves further
investigation.
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Electromagnetoacoustic Transparency 
of a Paramagnetic Crystal
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The possibility of synchronously controlling the hypersound and light propagation in a low-temperature para-
magnet under the action of a high-power resonance optical pumping is studied theoretically. The effect com-
bines the properties of electromagnetic and acoustic induced transparencies. It is shown that, for certain values
of control parameters (external electric field strength and pumping intensity), the paramagnet may become
transparent simultaneously to light and sound. The group velocities of sound and light may become comparable
in magnitude. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.50.Gy; 32.80.Qk; 43.25.Ed
Historically, after the discovery of optical coherent
effects, their acoustic analogues were discovered
within a few years. For example, acoustic self-induced
transparency [1, 2] was predicted and discovered a few
years after the discovery of optical self-induced trans-
parency [3]. A similar situation took place with electro-
magnetically induced transparency (EIT) [4–6] and its
analogue, i.e., acoustic induced transparency (AIT) [7].
In both cases, a three-level resonant medium becomes
transparent at the center of the absorption line under the
action of high-power pumping. The main difference
between AIT and EIT is the extent to which the group
velocity decreases. In the EIT case, this velocity can be
six orders of magnitude lower than the velocity of light
c in vacuum [4–6], while the decrease in the velocity of
sound in the AIT case amounts to only a few tenths of a
percent [7]. In the EIT case, the group velocity of light
in a medium may become equal to the velocity of
sound. Consequently, an effective interaction between
light and sound is possible. It was shown, for example,
in [8] that, if the velocities of light and sound are close,
the Mandelstam–Brillouin scattering changes qualita-
tively. The question arises: what happens to light and
sound in the case of their resonance with the transitions
in a single atom? Paramagnetic ions implanted into a
crystal matrix are a suitable object for such investiga-
tions. It is well known that paramagnetic ions can effec-
tively interact with lattice vibrations, as well as with
coherent light [9, 10].

The possibility of coherent propagation of light and
hypersound in a system of paramagnetic impurities
under the EIT conditions will be discussed in this study.

Let us consider a system of paramagnetic ions situ-
ated in a cubic crystal in the form of impurities. It
should be emphasized that paramagnetic ions with an
effective spin S = 1 experience the strongest interaction
0021-3640/04/7912- $26.00 © 20610
with lattice vibrations [9, 10]. When the crystal is
placed in an external magnetic field B0 directed along
the z axis (which is one of the fourfold axes of the crys-
tal), the electron ground level splits into three Zeeman
sublevels. Examples of such ions are Fe2+ and Ni2+ ions
in the MgO crystal matrix [1, 9, 10]. Optical (probe and
pump) fields induce quantum transitions between the
given Zeeman triplet and the upper-lying electronic
level, which is assumed to be a singlet and, hence, does
not exhibit the Zeeman splitting. Let us suppose that
high-power resonant electromagnetic pumping occurs
at the transition 2  3 and weak (electromagnetic
and longitudinal acoustic) resonant signal pulses oper-
ate at transitions 1  3 and 1  2, respectively
(Fig. 1). The pump and signal pulses propagate at right
angles to the external magnetic field along the y axis,
which is also a fourfold axis. The characteristic fre-
quencies of acoustic and optical probe fields belong to

     

                  

Fig. 1. 

 

Energy level diagram for a paramagnetic ion, where
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and arrows indicate the transitions induced by high-power
resonant electromagnetic pumping 
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fields.
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the ranges ω21 ~ 1011–1012 s–1 and ω31 ~ 1014–1015 s–1.
The pump frequency ω32 is close to frequency ω31. We
disregard the transition induced by longitudinal relax-
ation, in which the middle level of the Zeeman triplet is
involved; i.e., we can effectively speak of a three-level
system, in which all transitions are allowed.

The Hamiltonian of the interaction between an atom
and the aforementioned fields has the form

(1)

Here,

,

where " is the Planck’s constant; d3j (j = 1, 2) is the
dipole moment of transition j  3; Ep and Ee are the
strengths of the optical pump field and the signal com-
ponent, respectively; G11 is the spin–phonon interaction
tensor component, connecting the paramagnetic ion
with the longitudinal component of the deformation
field [9, 10]; and εyy is the strain of the crystal under the
action of hypersound.

We will use the semiclassical approach [11, 12], in
which atoms are described quantum-mechanically with
the help of the equation for the density matrix

(2)

and fields are described by the classical wave equations
[7]. The equations for the acoustic wave and the signal
component of the electromagnetic field have the form

(3)

(4)

respectively, where a is the velocity of longitudinal
sound in a crystal free of paramagnetic impurities, n is
the concentration of paramagnetic ions, ρ is the mean
density of the crystal, f(∆) is the inhomogeneously
broadened contour at transition 1  2, and ∆ is the
acoustic frequency detuning from the central frequency
of the inhomogeneously broadened contour. We disre-
gard the inhomogeneous broadening of transition
1  3, since the transition frequency is much higher
than the inhomogeneously broadened width. We
assume that the homogeneous broadening is predomi-
nant at this transition.

Equations (3) and (4) were derived from the initial
wave equations using the procedure for reducing the
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equation order from second to first [13], in view of the
fact that the concentration of paramagnetic ions is so

low that η|| = 9 n/8"ω21ρa2 ! 1 and ηe =

n/"ω31 ! 1. Assuming that a ≈ 5 × 105 cm/s,
ω31 ~ 1014 s–1, ω21 ~ 1012 s–1, ρ ≈ 2 g/cm3, G11 ~ 10–13 erg,
n ~ 1017 cm–3, and d31 ~ 10–18 CGSE units for Ni2+ ions
in a MgO crystal [1], we obtain η|| ~ ηe ~ 10–6.

In Eq. (2) for the density matrix, we pass to enve-
lopes by representing the fields acting on an atom and
the nondiagonal elements of the density matrix in the
form

(5)

Here, Ωp, Ωe, Ω||, and Rij are slowly varying envelopes
and 

 

ω

 

ij

 

 and 

 

k

 

ij

 

 are the transition frequencies and the cor-
responding wave numbers.

For the system of equation to remain consistent, the
following synchronism conditions must be satisfied for
the acoustic and optical probe waves:

(6)

Taking these conditions into account, we can rewrite
the system of constitutive Eqs. (2) in the form

(7)

where  Γ  is the relaxation rate for diagonal elements (for
simplicity, we use here the approximation of a single
longitudinal relaxation time); 
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 are the transverse
relaxation rates at corresponding transitions; 
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detunings of field frequencies from the atomic frequen-
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levels, which satisfy the following condition: W1 +
W2 = ρ11 + ρ22 + ρ33 = const ≤ 1. The equilibrium pop-
ulation W3 of the third level can be set to zero. The mid-
dle level of the Zeeman triplet is occupied; however, we
disregard the change in its population because of the
relaxation process.

We consider the steady-state regime, where the left-
hand side of equations in system (7) can be assumed to
be zero. In addition, we take into account only the lin-
ear contribution Ωe and Ω||. As a result, assuming that
Γ ! γ31 and Ωp ≥ γ32, γ31, we obtain

(8)

(9)

where αij = ∆ij – iγij. To take into account the inhomo-
geneous broadening at transition 1  2, we assume
that the contour has the Lorentzian shape: f(∆) =
(γ/π)/(γ2 + ∆2), where γ–1 is the dephasing time for ele-
ments ρ21 due to inhomogeneous broadening. We
assume that ∆21 = ∆ + δω21, where δω21 is the hyper-
sound detuning from the center of the inhomoge-
neously broadened contour. As a result of integration
with respect to detunings, and assuming that γ @ γ21 [1,
10], we arrive at the conclusion that the expression for
R21 is formally preserved to within the substitution
α21  β21, where β21 = δω21 – iγ.
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Fig. 2. Schematic diagram of the profiles of refractive index
(upper graph) and absorption coefficient (lower graph) of
hypersound and light in the absence (dashed curves) and
presence (solid curve) of a high-power resonant electro-
magnetic pumping.
Substituting the obtained expressions for the ele-
ments of the density matrix into wave equations (3) and
(4) and taking into account relations (5), we obtain the
dispersion relation

(10)

where the complex quantity α is defined as

By solving this quadratic equation and neglecting the
products ηeη|| as squares of small parameters, we obtain
two independent dispersion branches, namely, optical
ke and acoustic k||:

(11)

In the dispersion equation, we managed to separate
the optical and acoustic branches owing to the low con-
centration of paramagnetic impurities. For an arbitrary
concentration, two photon–phonon dispersion branches
are obtained from relations (11). Under these condi-
tions, in contrast to our case, the properties of light can-
not be separated from the properties of hypersound.

After the use of the second condition (6) and sepa-
ration of the real and imaginary parts, we determine the
relations connecting the detunings and the frequencies
of the optical and acoustic probe fields:

(12)

The first condition from (12) can be satisfied by varying
magnetic field B0 and, hence, by varying the transition

frequency  = gµBB0/" (g is the Landé factor and µB

is the Bohr magneton). The absorption curves for these
waves completely coincide, while the dispersion curve
for the electromagnetic wave is displaced upwards rel-
ative to the dispersion curve for sound by the constant
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Boltzmann constant. In this case, we can assume that,
prior to the action of pulses, only the ground level was
populated; i.e., W1 = 1 and W2 = 0. Setting ω21 ~ 1012 s–1,
we draw the conclusion that this condition holds at T !
10 K. Then, for the group velocities of light and sound,
we obtain

(13)

respectively, where the absorption coefficients are
given by

(14)

Relations (13) exactly coincide with the Loudon
formula [14, 15] for the energy transfer rate.

Let us estimate the absorption lengths and the group
velocities in the presence and absence of pumping. We
consider two cases. In the first case, we use the parame-
ters of medium for Ni2+ ions in a MgO crystal considered
above and assume that [1] ω31 ~ 1014 s–1, γ ~ 108 s–1, γ31 ≈
6 × 107 s–1, and Ωp ≈ 4 × 109 s–1, which corresponds to
intensity I ~ 1010 W/cm2. Using relations (13), we
obtain ω21 ~ 1012 s–1. Under these conditions, the
absorption coefficients for longitudinal sound and the
signal component of the electromagnetic field are κ ≈
10 cm–1 in the presence of pumping and κ0 ≈ 2 ×
104 cm–1 in its absence (Ωp = 0). The corresponding
absolute absorption lengths are l ≈ 0.1 cm and l0 ≈ 4 ×
10–5 cm. It can be seen that, in the presence of high-
power pumping, the absorption length increases by
three orders of magnitude, reaching a value of 1 mm. In
this case, the group velocities of light and sound are
v ge ≈ 6 × 106 cm/s, c/v ge ≈ 5 × 103, v g|| ≈ 4.8 × 105 cm/s,
a/v g|| ≈ 1.05. Thus, pumping creates a transparency
region for the signal optical and acoustic components
of the pulse. Light is slowed down by four orders of
magnitude, while the velocity of sound virtually
remains unchanged (its relative variation does not
exceed 5%). However, in this case the absorption length
is small. For this reason, we consider the second case,
where light is slowed down to a smaller extent, but the
absorption length is larger. We assume that the pumping
intensity is I ~ 1011 W/cm2, i.e., Ωp ~ 1010 s–1. Then, the
absolute absorption lengths are l ~ 1 cm and l0 ≈ 4 ×
10−5 cm. For the group velocities, we obtain in this case
v ge ≈ 4 × 107 cm/s, c/v ge ≈ 700, v g|| ≈ 5 × 105 cm/s, and
the relative change in the velocity of sound is smaller
than 1%.
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Thus, we have predicted the propagation regime in
which high-power electromagnetic pumping makes it
possible to produce a transparency region for resonant
light and sound. Under these conditions, the propaga-
tion of light and sound can be controlled simulta-
neously. In this case, the group velocity of the probe’s
electromagnetic component is substantially slowed
down, unlike the acoustic component. This circum-
stance can be used to obtain synchronous propagation
of light and hypersound in a system of paramagnetic
impurities. In this case, the optical and acoustic waves
can exchange energy, which can result in the formation
of the coupled photon–phonon states. To describe such
phenomena, it is necessary to take into account nonlin-
ear effects in the propagation of optical and acoustic
signal fields, as was done in [16] for EIT.
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Spectra of light losses are studied at a fixed angle of incidence of a collimated beam on the surface of an opal
anisotropic photon crystal at various observation angles. It is shown that the structure of the forward- and back-
scattered light spectra is connected with the existence of several directional photonic forbidden bands. It is dem-
onstrated that back scattering is enhanced and forward scattering is suppressed in the frequency region of pho-
tonic forbidden bands. It is suggested that a scattering band associated with photon localization at the photonic
gap edge is observed. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.25.Fx; 42.70.Qs
Light penetration from the free space into a photonic
crystal (PhC) depends on the excitation of PhC eigen-
modes by the light wave. This process is determined by
the PhC symmetry, the direction of the beam incidence,
and the light polarization. However, some of the PhC
modes remain unexcited. Because the process of bind-
ing occurs through multiple scattering, a certain frac-
tion of the incident electromagnetic (EM) wave inten-
sity is lost in this case. On the contrary, photons scat-
tered by defects inside a uniform PhC are transferred by
all its modes. A comparison of the photon band struc-
ture parameters obtained from experiment with respect
to external and internal light sources is of undoubted
interest. The introduction of an additional light source
into a PhC is connected with significant technological
difficulties, and the data obtained are a complicated
function of the emitter position in the unit cell, excita-
tion conditions, and the spectral composition of radia-
tion. An alternative source—lattice defects—leads to
the appearance of modes that are not eigenmodes of a
perfect lattice. As a result, radiation in a nonideal lattice
is transferred by both diffuse and ballistic mechanisms.
It is evident that this disadvantage is inherent in any
experimentally designed PhCs because of their non-
ideal ordering.

For a low concentration of defects, a borderline sit-
uation exists where the modes of PCs with perfectly
packed and slightly disordered lattices differ insignifi-
cantly. Here, elastic scattering can be considered as a
perturbation resulting in a photon jump to another
eigenmode of the ordered PhC, that is, in redistribution
of the light flux inside the PhC. Photonic band gaps
(PBGs) are generated because of the formation of spa-
tially closed photon trajectories [1]. Because scattering
to free-space modes is insignificant in three-dimen-
sional (3D) PhCs, this fact predetermines a strong lat-
tice effect on the scattered light. In particular, in the
case of a directional PBG, it could be expected that
0021-3640/04/7912- $26.00 © 20614
scattering depends on the observation direction because
of the anisotropy of the PhC itself.

An artificial opal is a model 3D PhC with a direc-
tional PBG. In recent years, opal films were synthe-
sized with a concentration of defects reduced by a fac-
tor of more than 100, as compared with jewelry opals
[2]. These opals had as few as one defect per 100 unit
cells [3]. In opal films, the mean free path of photons is
comparable with or exceeds the crystal thickness, that
is, ballistic photon propagation predominates. Hence, a
substantial fraction of the scattered light is transferred
by singly scattered photons [5], which behave as pho-
tons emitted by an internal source radiating in accor-
dance with the PhC symmetry [4].

The known data on the effect of defects on light
propagation in opals are related mainly to bulk opals
with a high defect density [6, 7, 4], whereas the scat-
tered light itself has seldom been a subject of investiga-
tion [6, 8]. Nevertheless, important parameters have
been determined in recent studies, such as the light
attenuation length in the opal PBG and the mean free
path of photons outside the PBG. At present, data on
film opals are fragmentary [9]. Our experiments dem-
onstrated that scattered light spectra in bulk and film
opals are radically different. For example, the structure
of forward-scattered light spectra in films is determined
by the PBG in the incidence and detection directions
[5], whereas only the PBG in the exit direction is
important in bulk opals [4].

In this work, a connection of the scattering spectra
with the ordering of the opal lattice is demonstrated.
The structure of back-scattered and forward-scattered
light spectra is considered, and spectral features of the
scattered light are compared with the transmission
spectra as functions of the orientation of the opal
lattice.
004 MAIK “Nauka/Interperiodica”
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Opal films were prepared either by drying a suspen-
sion of polymer spheres of the same diameter on a glass
substrate or by crystallization in a meniscus upon pull-
ing the substrate out of the suspension. Annealing at
80°C is used to stabilize opal. In both cases, the spheres
are crystallized into a face-centered cubic lattice with
the (111) growth plane parallel to the substrate. The
films crystallized in the meniscus have a more perfect
lattice, which is confirmed by the observation of a sur-
face diffusion pattern [10]. For comparison, samples of
three types were selected. Two of them were prepared
by drying under either normal conditions (type 1) or
increased humidity (type 2), and the other was prepared
by crystallization in a meniscus (type 3). The diameters
of spheres were 325, 300, and 348 nm for films of types
1, 2, and 3, respectively.

The measurements of light-scattering spectra were
carried out upon illuminating the sample with a halogen
incandescent lamp, whose light was collected into a
parallel beam 1 mm in diameter. The FS and BS spectra
were measured at the normal incidence of the probe
beam (θ = 0°). The scattered light was collected from a
cone with a cone angle of about 10°. The angle α
between the cone axis and the [111] axis of the opal lat-
tice was varied at a step of 5° from 0° to 85° in forward
scattering and from 35° to 85° in back scattering (Fig. 1).
The light transmission was measured in a standard con-
figuration, where the angle of incidence was equal to the
angle of transmission, θ = α. The opal lattice was ori-
ented in the type 3 film using the surface diffraction pat-
tern in such a way that the angle of detection varied along
the LKL’ direction of the Brillouin zone [9].

Fig. 1. Schematic diagram of the collection of forward- and
back-scattered light at light incidence perpendicular to the
opal film surface. Beam refraction at interfaces is not
shown.

-

-
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The scattering act, which changes the photon prop-
agation direction, can occur both at the entrance into
the PhC and at a defect inside the PhC. Because of the
small film thickness and the macroscopic method of
light collection, the contributions to the detected signal
from these two sources were not separated experimen-
tally.

FS spectra obtained for angles θ = 0° and α = 40° for
opals differing in the degree of ordering are compared
with their transmission spectra for θ = 0° and 40° in
Fig. 2. Assuming that the relative width of the PBG
minimum ∆ω/ω0n, where "ω0n is the central frequency
of the nth PBG in the transmission spectrum, is directly
related to the lattice crystallinity, one can point to the
ordering dependence of the scattering spectra. In the
case of a weakly ordered opal film of type 1 (Fig. 2a),
the (111) PBG minimum had ∆ω/ω01 ≈ 0.17, and its
position weakly depends on the angle. It turned out that
the FS spectrum of this sample had no features associ-
ated with the PBG. In the case of a more perfect lattice

Fig. 2. Panels (a), (b), and (c), respectively, show forward-
scattering (FS) spectra at θ = 0° and α = 40° for films of
three types (thickened lines) in comparison with their trans-
mission (T) spectra for (T0) θ = 0° and (T40) θ = 40°.

-
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of the type 2 opal with ∆ω/ω01 ≈ 0.095 (Fig. 2b), the FS
spectrum has a split minimum for a certain observation
angle. The position of its bands coincides well with "ω0
of the PBG along the directions of light incidence and
detection. The spectrum of the type 3 opal (Fig. 2c) is
formed even better. It has ∆ω/ω01 ≈ 0.08, which is close
to the theoretical value ∆ω/ω01 ≈ 0.063 [11]. The bands
in the FS spectrum of this opal are comparable with the
width of minima in the transmission spectrum.

The losses due to forward scattering in weakly
ordered films grow with increasing frequency. On the
contrary, the intensity of the FS light in films with a
lower concentration of defects does not vary over the
spectrum outside the PBG, counting in favor of the pre-
dominance of the frequency-independent scattering
mechanism. This behavior excludes from consideration
Rayleigh scattering, which is assumed to be the main
mechanism of losses in weakly ordered opals [3].

Light passed through a medium with disorder has
ballistic and diffuse components. If the mean free path
exceeds the film thickness, then even a singly scattered
photon can reach the detector ballistically. In this case,
it can be considered that singly scattered photons carry
information on the directional PBG, rather than the bal-
listic component of the transmission spectrum. Thus,
the FS light spectrum along a certain direction is com-
posed of singly and multiply scattered photons. The
spectrum of singly scattered photons has an intensity
modulation in accordance with the spectral position of
the PBG [5], whereas multiply scattered photons com-
pose a structureless background. In compliance with
this fact, the differences in the FS spectra of opals of
types 1, 2, and 3 are due to the masking contribution of
the diffuse component. In the subsequent discussion, I
will consider only the spectra of type 3 samples,
because these spectra exhibit the lowest diffuse compo-
nent.

It is natural to compare the scattering spectra with
the opal transmission spectra. The minima of the trans-
mission spectra in the LKL’ direction correspond to dif-

fraction by the (111) and  planes and also by the
(220) planes [12]. The correspondence of the observed
transmission spectra to the diagram of optical modes of
opal is the subject of a separate investigation [10]. The
dependence of "ω0 of the opal PBG on the observation
angle in the transmission spectra is described well
within the Bragg approximation. The transmission
spectrum at θ = 0° exhibits a well-defined minimum
with "ω01 = 1.39 eV (Fig. 2c), which corresponds to the
diffraction resonance by the (111) planes of the fcc opal
lattice or to a weighted superposition of gaps between
the first and fourth bands and the second and third
bands, and also a sharp decrease at "ω > 2.2 eV. As the
detection angle increases, the (111) minimum shifts
toward high frequencies. Starting at angle θ ≥ 20°, a

minimum arises from diffraction by the  planes
at the frequency "ω02, though the photonic gap in this

111( )

111( )
direction is not opened. The departure from the Bragg
model appears because of two-plane diffraction in the
region of angles of incidence from 40° to 50°; with
regard to the refraction of light in opal, this corresponds
to the ΓΚ  direction of the Brillouin zone. One more
minimum appears in the transmission spectrum starting
at θ = 35°, near "ω03 = 2.3 eV, and remains virtually at
the same frequency as the angle increases. This mini-
mum may be assigned to the attenuation of transmis-
sion between the seventh and eighth opal modes [13].

Let us compare the FS and BS spectra of type 3 sam-
ples. The intensity of the FS light decreases for the
directions and frequencies determined by the PBG
(Fig. 2c). The intensity of the BS light increases in two
bands. One of them is located near the low-frequency
PBG edge along the direction of light incidence and is
independent of the angle α, and the other shifts toward
high frequencies as the angle α increases (Fig. 3a). The
latter band of the BS spectrum is complementary to the
dispersion minimum of the FS spectrum (Fig. 3b),
whereas the former is shifted by 0.091 eV with respect
to the nondirectional minimum in the FS spectrum.

The angular dispersion of the features in the FS and
BS spectra is shown in Fig. 4 in comparison with the
dispersion of the minima in the transmission spectrum.
The dispersion band in the FS spectrum complies well
with the Bragg model, though its shift with respect to
the corresponding minimum of the transmission spec-
trum is clearly defined. The most pronounced differ-
ence between the FS spectra and the transmission spec-
tra is the absence of the minimum from diffraction by

the  planes. It is unclear so far whether this dis-
tinction is of a fundamental nature or is associated with
an insufficient resolution of the scattering spectra. The
BS spectra exhibit a band due to the (111) PBG. Part of

the branch from the  PBG can also be con-
structed, though the corresponding bands are very weak
(Fig. 2c). It is interesting to note that no systematic shift
of the BS band from the position of the (111) PBG is
observed. There are bands in the FS and BS spectra that
weakly depend on the observation angle (Fig. 4a). Both
these bands correspond to light scattering along the
direction of incidence; however, the dispersions of
these bands are different.

Apparently, the main mechanism of the light scatter-
ing detected behind the opal film is the scattering by
defects, whereas the losses at the air–opal interface are
rather manifested in the back scattering. The minima in
the FS light spectrum correspond to the decrease in the
losses of the forward-scattered light by virtue of the
effect of the opal PBG. The decrease in the forward
scattering at the minimum corresponding to the PBG
along the direction of light incidence is a consequence
of the diffraction reflection in the [111] direction. Its
central frequency is firmly fixed by the angle of light
incidence. Similarly, the decrease in the intensity of the
FS light at the frequencies of the (111) PBG along the

111( )

111( )
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detection direction is a consequence of the decrease in
the number of optical modes in the photonic gap. The
necessity of the scattering act for the observation of
both minima in the FS spectrum is evident from the fol-
lowing simple consideration: a flux propagating inside
the PhC collinearly with the incident beam is necessary
for the observation of a minimum along the direction of
beam incidence, whereas the propagation of a second-
ary flux along the direction determined by the angle α
is necessary for the appearance of a minimum along the
detection direction. It is evident in Fig. 5a that the sum-
mation of the scattered light over all angles leads to the
pulling of the high-frequency edge of the PBG mini-
mum along the direction of light incidence and to the
absence of directional minima. This behavior is in
agreement with the results of the numerical simulation
of scattering in a slightly disordered 2D PhC [14].

Fig. 3. (a) Back-scattering (BS) spectra at α = 35° and 70°
(thickened lines, curves are shifted along the ordinate axis)
in comparison with the transmission spectrum at θ = 0°
(dashed curve). (b) BS and FS spectra at θ = 0° and α = 40°.

T0
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The consideration of the trajectories of photons
scattered in the opal film and reaching the detector
aperture shows that the red shift of the photonic-gap
frequency in the FS spectrum with respect to the gap in
the transmission spectrum can be explained both by the
difference in the PhC band curvatures above and below
the PBG frequency [14] and by purely geometrical fac-
tors. It is evident from the scheme in Fig. 5b that beams
reaching the detector are scattered at different depths.
Beam 1 has a smaller scattering angle than beam 2, and,
hence, the PBG in the direction of its propagation is less
frequency-shifted than in the direction of beam 2. The
intensities of the scattered light add up with a weight
factor taking into account the diagram of scattering
directionality in directions 1 and 2. Because the inten-
sity varies with the angle as I ~ 1/α3/2, the conclusion
can be drawn that the observed PBG position with
respect to the propagation direction of beam 3, for
which the detection angle is nominally determined,
should exhibit an effective red shift.

The band in the BS spectrum that depends on the
detection angle is conjugated with the corresponding

Fig. 4. (a) Angular dispersion of minima in the transmission
spectrum (black symbols in panels (a) and (b)): squares are
the PBG between the second and third bands, circles are the
PBG between the fifth and sixth bands, and triangles are the
PBG between the seventh and eighth bands. Minima in the
PS spectrum (light symbols): squares are due to diffraction
by the (111) planes, and circles are due to diffraction by the
(220) planes. (b) Maxima in the BS spectrum (light sym-
bols): circles are due to diffraction by the (111) planes, and

squares are due to diffraction by the  planes. Half-
filled symbols in both panels correspond to nondispersion
bands.

111( )
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band in the FS spectrum; that is, it is the band of light
diffraction reflection along the detection direction. In
this case, the sources of light are both the losses at the
air–opal interface and the scattering by near-surface
defects. The position of this band is less subject to the
effect of the geometry of light collection, because light
propagation from the opal depth is suppressed in this
direction.

The nondispersion band in the BS spectrum charac-
terizes the losses due to the binding of the incident light
with the PhC in the region of photonic-gap edge. It
should be noted that the maximum of this band lies at
the PBG edge along the [111] axis, because it coincides
in frequency with the maximum of the first derivative of
the transmission spectrum at θ = 0°. It can be suggested
that this BS band is caused by a change in the PhC
transmission: the PhC transmission much below the
PBG frequency is analogous to the transmission of a
uniform medium, light is reflected by the PhC within

Fig. 5. (a) The FS spectrum summed over all angles α
(thickened line) and the transmission spectrum at θ = 0°.
(b) Schematic diagram explaining the red shift of the dis-
persion minimum in the FS spectra.
the PBG, and the scattering significantly increases at
the PBG edge because of the localization of optical
modes. Of the two back-scattering enhancement mech-
anisms, namely, weak localization due to the interfer-
ence of scattered photons [15] and strong localization at
the PBG edge [16], preference should be given to the
latter. The reason is that weak localization is indepen-
dent of the frequency and is observed in a limited range
of scattering angles with respect to the normal to the
surface because of a sharp decrease in the interference
contribution as the optical path length increases. It
should be noted that, first, the nondispersion FS mini-
mum is shifted with respect to the angle-independent
BS maximum and, second, these features are the mani-
festations of different processes of light propagation in
the PhC.

In conclusion, it should be emphasized that studying
the light scattering in a PhC is of both practical and fun-
damental interest, because this phenomenon is related
to both optimization of light losses in various optical
devices and investigation of light propagation in PhCs.
In this work, the structure of spectra of light scattered
in 3D opal PhCs has been discussed and classified. It is
shown that diffractions associated with the observation
angle decrease losses due to forward scattering, which
is compensated by an increase in the intensity of the
back-scattered flux. On the contrary, the angle-indepen-
dent features of the loss spectra are not complementary
to each other. The angle-independent minimum in the
FS spectrum corresponds to the decrease in the inten-
sity of light penetrating into the PhC in the range of
PGB frequencies in the direction of the incident beam
because of its diffraction reflection. The nondispersion
band in the BS spectrum is a result of a decrease in the
rate of light flux transfer toward the PBG edge. It has
not been possible so far to separate the contributions to
the decrease in forward scattering that come from the
localization at the photonic-gap edge and from the dif-
fraction because of the frequency intervals in which
these mechanisms are operative overlap.
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Magnetic hysteresis and demagnetization of a simple cubic lattice of Ising spins is studied in the framework of
the generalized mean-field approximation taking into account spatial fluctuations of the local magnetic field.
The existence of a dynamic phase transition is demonstrated. © 2004 MAIK “Nauka/Interperiodica”.
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Magnetic hysteresis is, on the one hand, an example
of a dynamic nonequilibrium process having important
practical applications in various magnetic devices and,
on the other hand, the general property of physical sys-
tems of a definite type. One such system (uniaxial fer-
romagnet) can be described by the Ising model, which
was studied both numerically and analytically by many
authors. However, in most publications in this field, the
stationary properties of the model were studied, while
the nonequilibrium effects associated with the transi-
tions of the magnetic system between two equivalent
states differing in the direction of the magnetic moment
have been studied insufficiently. Such dynamic effects
in the Ising model were studied both in the mean-field
approximation [1, 2] and by the Monte Carlo simula-
tion [3–6]. For a ferromagnetic system in a varying
magnetic field He(t) = H0sinωt, the dynamic order
parameter is the magnetization j(t) averaged over a
period of field variation,

(1)

It was shown [2] that the system undergoes a dynamic
phase transition, with the transition curve separating (in
the H0, T coordinates) phases with  ≠ 0 (in the region

of small values of H0 and T) and phases with  = 0 (in
the region of large values of H0, T). This is shown sche-
matically in the inset in Fig. 1. According to some indi-
cations, this transition is a true thermodynamic transi-
tion, because it is accompanied by the characteristic
features in the susceptibility and specific heat [6]. Many
authors claim that this transition curve contains a tri-
critical point separating the curve into two segments,
namely, a high-temperature segment, in which the tran-
sition is smooth, and a low-temperature segment, in
which the transition occurs jumpwise [4, 7]. However,
it was stated in a recent publication by Korniss et al. [8]
that the dynamic phase transition cannot be a first-order

j
ω
2π
------ j t( ) t.d∫°=

j

j
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transition and that all previous conclusions drawn on
the basis of the Monte Carlo method are the results of
the analysis of finite-size systems.

Since an exact solution does not exist even for a
steady-state 3D Ising system (not only in a magnetic
field but also without it), the mean-field theory is the
main analytic method for studying such a system. It
was in the framework of this theory that the dynamic
properties of Ising systems were studied. This work is
aimed at the analysis of such properties within the
framework of the generalized mean-field model taking
into account spatial fluctuations of the effective local
magnetic field.

Fig. 1. Temperature dependence of the magnetization of a
simple cubic lattice of Ising spins interacting with nearest
neighbors (the result obtained in the generalized mean-field
theory). Circles correspond to the magnetization of the sys-
tem subjected to demagnetization. The inset shows sche-
matically the dynamic phase-transition curve; TCP marks a
hypothetical tricritical point.

≠
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Let us consider a system of magnetic moments µ in
the form of a 3D lattice of Ising spins; we will describe
this system by its spin variables sj = ±1, j = 1, 2, …. At
a finite temperature T, thermal fluctuations lead to spin
flip from state +1 to state –1 and back. The probabilities
of such transitions determine the relaxation equation for
one of the parameters of the system. For example, the
probability P(s1, s2, …, +sj, …, sN; t) of realizing a
certain spin configuration at time t is defined by the equa-
tion [1]

(2)

where wj(sj) and wj(–sj) are the probabilities of the jth
spin flip from state +1 and –1, respectively. In accor-
dance with the detailed balancing principle, we have

(3)

where the probabilities P0(s1, …) correspond to a ther-
modynamically equilibrium configuration. These prob-
abilities are related by the Boltzmann relationship

(4)

where ∆jE is the energy difference between the states
differing only in the direction of the jth spin. Obviously,
∆jE = 2Ej, where the energy of the jth spin in state
sj = +1

(5)

is determined by its interaction with the external mag-
netic field He and the remaining spins, and Jjk is the
energy of interaction with the kth spin. Equations (3)–
(5) imply that

(6)

Using Glauber’s receipt [9], we can write the indi-
vidual probabilities wj(sj) and wj(–sj) satisfying relation
(6) in the form

(7)

where Ω is a parameter having the meaning of the fre-
quency with which spin tries to change its orientation.

d
dt
-----P s1 s2 … +s j … sN; t, ,, , ,( )

=  w j s j( )P s1 s2 … +s j … sN; t, , , , ,( )
j

∑–

+ w j s j–( )P s1 s2 … s j– … sN; t, , , , ,( ),
j

∑

w j s j( )P0 s1 s2 … +s j … sN, , , , ,( )
=  w j s j–( )P0 s1 s2 … s j– … sN, , , , ,( ),

P0 s1 s2 … s j– … sN, , , , ,( )
P0 s1 s2 … +s j … sN, , , , ,( )
------------------------------------------------------------

∆ jE
kT
---------– 

  ,exp=

E j µHe sk J jk

k j≠
∑+=

w j s j( )
w j s j–( )
------------------

1 s j E j/kT( )tanh–
1 s j E j/kT( )tanh+
--------------------------------------------.=

w j s j( ) 1
2
---Ω 1 s j E j/kT( )tanh–[ ] ,=

w j s– j( ) 1
2
---Ω 1 s j E j/kT( )tanh+[ ] ,=
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Generally speaking, this frequency depends on the tem-
perature and configuration of all spins in the system,
though it is usually assumed to be constant. With such
a choice, the equilibrium state of the system coincides
with the state following from the mean-field equation
(see below).

The average (over configurations) value of the jth
spin at time t is given by

(8)

where summation is over all spin configurations. Sub-
stituting Eq. (2) into Eq. (8) and using relations (7), we
obtain [1]

(9)

This equation could be simplified in the spirit of the
mean-field theory by substituting 〈 〉  

, where 〈Ej〉  = µHe + 〈sk〉  and
taking into account that the relative magnetization j of
the system is proportional to 〈sj〉 . This would lead to the
equation

(10)

which describes the magnetization relaxation to a ther-
modynamically equilibrium state defined by the stan-
dard mean-field equation j =  +

j )/kT]. The approximate nature of this equation
follows if only from analysis of the results of its appli-
cation to the situation where the external field is absent
(He = 0) and only the interaction with the nearest neigh-
bors is significant; we denote the energy of this interac-
tion by J. In this case,  = zJ, where z is the num-
ber of nearest neighbors. The critical temperature pre-
dicted by the mean-field equation in this case is equal
to kTC = zJ; for a simple cubic lattice, this gives kTC =
6J. However, a practically exact result [10] is kTC =
4.51J.

For this reason, we will simplify Eq. (9) using a dif-
ferent procedure that is a generalization of the mean-
field model. We introduce the effective molecular field
H3 acting on the chosen spin from the remaining spins:

(11)

For different spins, this field is different and can be
described by the distribution function F(j, H3) depend-

s j〈 〉 s jP s1 … sN; t, ,( ),
s( )

∑=

d
dt
----- s j〈 〉 Ω s j〈 〉 E j/kT( )tanh〈 〉–[ ] .–=

E j/kT( )tanh

E j〈 〉 /kT( )tanh J jkk j≠∑

dj
dt
----- Ω j

µHe j J jk∑+

kT
--------------------------------- 

 tanh– ,–=

µ( He[tanh

J jk∑

J jk∑

H3
1
µ
--- sk J jk.

k j≠
∑≡
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ing on the system magnetization. Then, Eq. (9) can be
written in the form

(12)

and the problem can be reduced to the determination of
the function F(j, H3). Unfortunately, exact calculation
of this function requires the inclusion of spin correla-
tions [11], but the appropriate method is currently
unknown. However, we can derive an approximate
expression for this function; to find out the extent to
which the result obtained in the mean-field theory is
improved in this case, we calculate the corresponding
value of the critical temperature and compare it with the
exact value mentioned above. For this purpose, we con-
sider a simple cubic lattice of Ising spins with the inter-
action between nearest neighbors.

The interaction energy of the jth spin with its nearest
neighbors in a simple cubic lattice is the algebraic sum
of six terms with the same absolute value J; the sign of
these terms is determined by the relative orientation of
the spin in question and the neighboring spins. The
number of corresponding configurations is 26 = 64.
Their distribution in the effective magnetic field H3 and
the probabilities of these configurations in a system
with magnetization j are given in the table.

The corresponding distribution function has the
form

(13)

dj
dt
----- Ω j

µ He H3+( )
kT

---------------------------- F j H3,( ) H3dtanh

∞–

∞

∫–
 
 
 

,–=

F j; H3( ) = 
1
64
------ 1 j+( )6δ 6hJ( ) 6 1 j+( )5 1 j–( )δ 4hJ( )+[

+ 15 1 j+( )4 1 j–( )
2δ 2hJ( ) 20 1 j+( )3 1 j–( )

3δ 0( )+

+ 15 1 j+( )2 1 j–( )
4δ 2hJ–( )

+ 6 1 j+( ) 1 j–( )5δ 4hJ–( ) 1 j–( )6δ 6hJ–( ) ] ,+

Configurations of the magnetic moments of nearest neigh-
bors in a simple cubic lattice and their probabilities

Effective
magnetic

field, µH3/J

Number
of possible

configurations

Configuration
probability in a system
with magnetization j

6 (++++++) (1/64)(1 + j)6

4 (+++++–) (6/64)(1 + j)5(1 – j)

2 (++++––) (15/64)(1 + j)4(1 – j)2

0 (+++–––) (20/64)(1 + j)3(1 – j)3

–2 (++––––) (15/64)(1 + j)2(1 – j)4

–4 (+–––––) (6/64)(1 + j)(1 – j)5

–6 (––––––) (1/64)(1 – j)6

C'6
0 1=

C'6
1 6=

C'6
2 15=

C'6
3 20=

C'6
4 15=

C'6
5 6=

C'6
6 1=
where hJ ≡ J/µ. Substituting this function into Eq. (12),
we obtain the equation describing the time evolution of
the system magnetization:

(14)

where he ≡ µHe(t)/J and θ ≡ kT/J are the reduced values
of the external varying field and temperature, respec-
tively.

First of all, let us find the Curie temperature
obtained in the given approximation for our system for
He = 0. To do this, it is sufficient to equate the right-
hand side of Eq. (14) to zero, which gives

(15)

where

(16)

The Curie temperature is determined by the condition
B+ – 16/3 = 0; by solving the corresponding equation,
we obtain θC = kTC/J = 5.08, which is much closer to the
exact result than the mean-field value. Equation (15)
also defines the temperature dependence j0(T) of the
equilibrium magnetization of the system, as shown in
Fig. 1.

Let us now consider magnetic relaxation effects in
the given system of spins. The traditional (most often
considered) phenomenon among these effects is hyster-
esis; in addition, we will also consider the process of
demagnetization from the saturated state. Both these
phenomena are described by the dependence j(He) of
the system magnetization on the varying magnetic field
He(t). When hysteresis is analyzed theoretically, the
time dependence of the field is usually chosen [3] in the
form of a constant-amplitude sinusoid: He(t) =
H0sinωt. On the other hand, experiments are usually
carried out with a linear sweep of the field. For this rea-
son, we sought the solution of relaxation Eq. (14) for a
magnetic field varying in time according to a saw-tooth
dependence with a gradually decreasing tooth height
(inset in Fig. 2). The period of oscillations decreased
synchronously with the field amplitude, and the total

dj
d Ωt( )
-------------- j

1
64
------ 1 j+( )6 he 6hJ+( )/θ[ ]tanh{–=

+ 6 1 j+( )5 1 j–( ) he 4hJ+( )/θ[ ]tanh

+ 15 1 j+( )4 1 j–( )2 he 2hJ+( )/θ[ ]tanh

+ 20 1 j+( )3 1 j–( )3 he/θ[ ]tanh

+ 15 1 j+( )2 1 j–( )4 he 2hJ–( )/θ[ ]tanh

+ 6 1 j+( ) 1 j–( )5 he 4hJ–( )/θ[ ]tanh

+ 1 j–( )6 he 6hJ–( )/θ[ ]tanh } ,

j0
2 A A2 36B– B+ 16/3–( )–[ ] 1/2

–
6B–

-------------------------------------------------------------------------,=

A 10 3 2/θ( )tanh 6/θ( )tanh–[ ] 0,>=

B± 5 2/θ( )tanh 4/θ( )tanh 6/θ( )tanh 0.>+±=
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time of the process was 2000/Ω . Thus, in the course of
unified calculation, we obtained the hysteresis loop
and, at the same time, determined the state to which the
system passed as a result of demagnetization. The
results of such calculations are presented in Figs. 2
and 3. The former shows the evolution of magnetiza-
tion/demagnetization of the system at various tempera-
tures, while the latter illustrates the effect of spin-inter-
action energy characterized by the effective field hJ =
J/µ on this process.

It can be seen from Fig. 2 that the area of the hyster-
esis loop monotonically decreases with increasing tem-
perature. The process of demagnetization pushes the
system into a state with a magnetization whose absolute
value always coincides with the thermodynamically
equilibrium (at a given temperature) magnetization j0
defined by Eq. (15). As for the sign (i.e., direction) of
the final magnetization, it depends on the details of

Fig. 2. Field dependences j(he) of the system magnetization
with the spin–spin interaction energy hJ = +1 at various
temperatures. The final value of magnetization is deter-
mined by the temperature: it is finite at θ < θC and is zero at
θ > θC. The inset shows the time dependence of the mag-
netic field.
JETP LETTERS      Vol. 79      No. 12      2004
demagnetization process itself and can be either posi-
tive or negative.

Similarly, Fig. 3 demonstrates that the hysteresis
loop increases with the energy of spin–spin ferromag-
netic interaction and is absent for the antiferromagnetic
interaction (lower panel in Fig. 3).

The field dependences of the magnetization shown
in Figs. 2 and 3 clearly demonstrate the existence of
dynamic phase transition. The latter is manifested in a
sharp variation of the average (over a period of field
oscillations) magnetization of the system  ≡
(ω/2π)  from zero to a finite value, when the field

amplitude becomes smaller than a certain critical value
he0 (depending on the temperature and oscillation fre-
quency). This is a general property of stochastic
dynamic systems with fluctuations of the type of kinetic
Ising model [5, 6]; at present, such systems can be
investigated only using Monte Carlo simulation. In this
case, the transition is manifested in the solution of the
mean-field generalized relaxation equation. It is illus-
trated by the dependences of the average magnetization

 of the system on the cycle number in the demagneti-
zation process shown in Fig. 4. At a high temperature

j

j td∫°

j

Fig. 3. Field dependences j(he) of the magnetizations of the
systems with different spin–spin interaction energies hJ at
temperature θ = 4 corresponding to the Curie temperature
for a system with hJ ≈ 0.8.
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(θ = 5.5 > θC = 5.08 for hJ = 1), when the ground state
of the system is paramagnetic, the hysteresis loops are
symmetric and the average magnetization is close to
zero (the latter differs from zero only due to the finite
rate of the decrease in the amplitude of saw-tooth-field
variation, which amounts to 5% per oscillation half-
period in our calculations). On the contrary, at a low
temperature (θ = 4.5 < θC), the ground state of the sys-
tem is ferromagnetic and spontaneous symmetry break-
ing takes place (Fig. 4). The system falls into one of the
two possible states with opposite signs of magnetiza-
tion, characterized by an equilibrium magnetization ±j0.

Fig. 4. Dependence of the average magnetization  of a sys-
tem with hJ = 1 on the number of the cycle in the process of
demagnetization from the saturated state. The two curves
for the ferromagnetic state (θ = 4.5) correspond to the pro-
cesses with differing (by 30%) periods of field variation.
The inset shows the dynamic phase-transition curve of the
system.

j

This occurs when the field amplitude achieves the crit-
ical value he0. The temperature dependence he0(θ) is
precisely the factor that determines the dynamic phase-
transition curve. The inset in Fig. 4 shows the shape of
this line for a system with hJ = 1.

The next step may be analysis of the behavior of the
system placed in a varying magnetic field with a small
random component. In this way, the role of fluctuations
can be simulated.

This study was supported by the Russian Founda-
tion for Basic Research (project nos. 03-02-17029 and
02-02-16974).
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The problem of anomalous light tunneling through periodically modulated metal films is examined in a purely
analytical approach. The approach uses large magnitude of the dielectric permittivity of metals in the visible
and near-infrared (it is equivalent to that resulting in the Leontovich boundary conditions for semi-infinite prob-
lems). It is shown that the anomalous transparency recently discovered experimentally is caused by the excita-
tion of single- or double-boundary surface plasmon polaritons due to film modulation. Dependences of the res-
onance transparency on parameters of the problem are analyzed in detail, and the optimum parameters (optimal
layer thickness and optimal modulation amplitude) corresponding to extreme values of the transmittance of
both zero and nonzero diffraction orders have been found. Classifying the possible types of resonances has
allowed the identification of special and nontrivial features of the effect. In particular, we predict strong nonze-
roth-order anomalous transparency. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.25.Bs; 73.20.Mf; 78.20.-e
Despite the great amount of papers on the photon–
SPP (surface plasmon polariton) transformations in
periodical structures that appeared over the past
decades (it is sufficient to mention [1–3]), the exper-
iment concerning transparency of metal films [4]
which is caused by the effect was realized only
recently. Since this first observation of the extraordi-
nary optical transmission through subwavelength
hole arrays, many theoreticians have contributed to
explaining the effect [5–11]. But still the qualitative
analytical picture of the light tunneling phenomenon
is not sufficiently covered. The majority of the expla-
nations are based upon numerical calculations (to the
best of the author’s knowledge, the only exceptions
are [5, 9], but paper [5] contains only crude quantita-
tive estimates, while paper [9] deals with the case of
a strictly normal incidence onto the harmonically
modulated film; moreover, the second spatial field
harmonic was not taken into account in the latter
paper, which prevented finding the true position of
the resonance). Numerical approaches do not make it
possible to obtain a deep intuitive insight into the
problem.

While the principal channel for anomalous light
transmittance for normal incidence and nonsymmetri-
cal dielectric surrounding is in a nonspecular direction,
most papers on the subject examined the zeroth-order
transmittance and reflectivity alone (an exception is the
recent paper [12]). The nonzeroth-order transmittance

¶This article was submitted by the authors in English.
0021-3640/04/7912- $26.00 © 20625
can exceed the zeroth-order value of a few tens that of
zeroth-order. This means that the process of light tun-
neling in the case of “single-boundary-localized” (SB)
excitation (when an SPP is localized at one face of the
metal film only) can be to no lesser a degree effective
than under the “double-boundary-localized” (DB) exci-
tation (with SPP localized at both sides of the film; see
the experiment of [13]).

This letter suggests a thorough new analytical
examination of the effect. We will discuss both spec-
ular and nonspecular transmittance. General results
are obtained for both oblique and normal incidence.
Simple estimates are given for 2D periodic struc-
tures, and it is shown that they are similar to those
for 1D gratings, contrary to conclusions of some
writers (see [10, 14]). Our approach also makes it
clear that the main resonance effects depend on the
existence of the periodicity itself, being rather
insensitive to the specific type of modulation (mod-
ulation of the dielectric permittivity [5, 9] or dielec-
tric pillars [6, 12], cylindrical [11] or square [10]
holes, relief corrugations [7]). However, the type of
modulation can influence polarization properties of
the periodically modulated film, as will be shown in
a future paper.

Let a p (TM)-polarized monochromatic wave (time
dependence of the form exp(–iωt) is omitted) of mag-
netic field amplitude Hi be incident onto a metal film
surrounded by dielectric media with permittivities εσ,
σ = ±, from the medium with ε–. Let the dielectric per-
004 MAIK “Nauka/Interperiodica”
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mittivity of the film be periodically modulated along
the x direction, ε(x) = ε(x + Λ), and the plane of inci-
dence coincide with the xz plane (see Fig. 1). Owing
to the symmetry, only the y component of the mag-
netic field is nonzero. Seeking the solution in the form
of a Fourier–Floquet expansion and taking into
account the radiation conditions, we obtain, in the
dielectric media,

where d is the film thickness and Hσ(x, z) denote
field strengths in the media with the dielectric per-
mittivity εσ, i.e., for z ≥ d (z ≤ 0) if σ = + (σ = –),
respectively.

The solution in the film can be represented as

where  = k , Re  ≥ 0, and ε0 denotes some mean
value of ε(x) with Reε0 < 0. For simplicity, we will
neglect the dependence upon z of the transformation

coefficients (TCs) (z) here and below. This approxi-
mation is equivalent to the one resulting in the imped-
ance (Leontovich) boundary conditions for semi-infi-
nite problems (cf. [15]) and takes account of the large

Hσ x z,( ) δσ –, Hi ik–|zz ikxx+( )exp=

+ Hn
σ ikσ nz z δσ +, d–( ) iknxx+ )[ ]exp ,

n

∑

knx kx ng, kσ nz+ σ εσk
2

knx
2– , g 2π/Λ,= = =

Re Im εσk
2

knx
2–{ } 0, σ≥, ±,=

H x z,( ) Hi hn
σ z( ) iknxx σk̃z+[ ] ,exp

n σ,
∑=

k̃ ε0– k̃

hn
σ

H i H0
–

H1
–

x

d

kt g

k1|t

kSPPε–

e

H1
+

H0
+ε+

k 'SPP

z

θ

Fig. 1. Geometry of the problem. Nonsymmetric dielectric
surrounding of a metal film. A single SB metal–superstrate
first-order resonance, k1x . K–, is shown. The circles (

show that the magnetic field is guided along the y axis.
dielectric permittivity, |ε(x)| @ 1, along with the
assumption of a small modulation,1 |ε(x) – ε0| ! |ε0|. In
addition, we neglect the impact of bulk modulation on
the diffraction; that is, the permittivity modulation is
taken into account in the boundary conditions only. An
analogous model was first applied in [17] to explain the
Wood anomalies.

Using continuity of the electric and magnetic field
tangential components, we can express the TCs outside

the metal, Rm ≡ /Hi and Tm ≡ /Hi, in terms of the

inner TCs, ,

(1)

to obtain the following infinite set of linear equations
(cf. [18]):

By equating to zero the determinant of diagonal in dif-

fraction order 2–2 submatrices of the  matrix,

 = || ||,

we obtain the SPP dispersion relation for the nonmod-
ulated film. When the spatial field harmonics are far
away from eigenmodes of the nonmodulated film (non-

resonance conditions), the coefficients  are of the

order of unity,| | . |βσ|n| ~ 1, whence the estimate for
the determinant is |dn| ~ expΦ'. Under the nonresonance

conditions, the matrix  is diagonal-dominated; that

is, elements of the off-diagonal submatrices  ∝  ξn – m

for m ≠ n and, hence, are small as compared with that

of the diagonal ones, . On the contrary, under the

1 For an arbitrary film thickness, the approximation is certainly

valid under the restriction |ε(x) – ε0| ! . But, this condition,

while being sufficient, seems to be far from necessary, as follows
from comparison with straightforward numerical calculations (cf.
[16]). Evidently, in the limit d  ∞, the validity condition is
much less restrictive, |ε(x) – ε0| ! |ε0|. Moreover, the structure of
the solution obtained is completely analogous to the one for the
film with a corrugated relief (see forthcoming papers).
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resonance conditions, the determinant of  decreases
by several orders of magnitude. For thick films,
exp(−Φ') ! 1, and for the determinant to decrease sig-

nificantly, the condition | | ! 1 or |βσ|m| & |ξ0| must
hold. As for the diffraction problem, βσ|m can possess
either purely real or purely imaginary values only; the

minimum of | | (namely, | |min = ) is achieved

for βσ|m = –i , which yields an SPP dispersion relation
for the boundary between the metal and the dielectric
half-spaces.2 The magnitude of the determinant at this
point is |dm | ~ expΦ'. Denoting the resonance dif-
fraction orders as r, r', etc., and the set of the resonance
orders as 5, we can write the resonance condition as

Im( ) . 0, or, in a more explicit form,

(2)

Evidently, equation with τ = +(–) corresponds to the
forward (backward) direction of SPP propagation rela-
tive to the incident wave; σ = –(+) corresponds to SPP
excitation at the metal–superstrate (substrate) interface.

Analogously, the condition | | @ |ξ0| defines the
nonresonance subset of diffraction orders, 1, where the
integers belonging to 1 are denoted as N, M, etc.

Accordingly, the matrix  is decomposed into two
submatrices with resonance (nonresonance) diffraction

orders,  = || || (  = || ||), and two mixed

matrices,  = || ||, and  = || ||. The corre-

sponding right-hand sides have been denoted as  =

|| || and  = || ||. Decomposing the submatrix  =

|| || into a block-diagonal and a nondiagonal
matrix, we have

where the norm of the matrix  is small, as its elements
are proportional to the small modulation amplitude,

 ~ . Then,  = . As a result, we can

solve the nonresonance subsystem for , N ∈  1, in an

explicit form as || || = (  – || ||) and repre-

2 For thin films, the dispersion relation changes substantially. If
ε+ = ε– and |Φ| ! 1, there are two very distinct resonance points,

βr . –2i /Φ' and βr . –i Φ'/2 (see [19]).
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sent the resonance subsystem as

(3)

where || || ≡  – , || || ≡  – .

For further analytical treatment, we will consider
this solution in the main approximation, taking into

account the terms linear in , in , and quadratic

terms in . In this approximation, it is sufficient to
restrict the analysis by the zeroth-order term in the

series expansion  =  + O( ). Then,

(4)

Here,  = –σ,  = 1 – δσ, σ'.

All the external TCs of Eq. (1) are expressed in

terms of the inner TCs with resonance indices, .
Thus, the solution of the resonance diffraction problem
reduces to that of the resonance subsystem (Eq. (3)).
For instance, in the main approximation,

(5)

where  and  are the well-known transmittance
and reflectivity coefficients corresponding to the non-
modulated film.

The energy flux in the dielectrics is determined by
the energy TCs, giving a ratio of the z components of
the corresponding Poynting vectors to that of the inci-
dent wave,

When considering the simplest resonance (|dr | ! 1
for the unique number r, in view of the condition

| | ! 1 for one or simultaneously both values of σ,
the latter can hold for ε– = ε+), resonance subsystem (3)
includes two equations for two main Fourier field
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Fig. 2. A single nonsymmetric metal–superstrate SB resonance for a sinusoidal grating. Dependences of homogeneous wave TCs
on the angle of incidence, ∆θ = θ – θi, for incidence from air onto a Ag film on the quartz substrate, ε+ = 2.31. Wavelength λ =

1.06 µm (ξ0 = –0.133i + 0.00071), spacing Λ = 7.41 µm (κ = 0.143), film thickness d is shown in skin depths,  = 1.53i .

The arrows in τ0 and ρ0 indicate the Rayleigh anomalies (branch points β–|1 = 0).

ξ̃ 1± ξ0
'

amplitudes,  and . The solution presented permits
easy numerical calculations for films of arbitrary thick-
nesses, but to achieve a better insight into the problem
and having comparison with the experiment in mind, we
concentrate on the results for thick films, exp(–Φ') ! 1.
In the framework of approximation (4), we obtain from
Eq. (3)

(6)

where

(7)

Assuming absorption to be small,  ! | |, we restrict
ourselves to modulation of the imaginary part of ξ only.

Then, am = | |2. The denominator, , retains contri-
butions of first-order resonance-to-nonresonance scat-
tering processes and vice versa. The processes involv-
ing inhomogeneous waves result mainly in a shift of the
resonance, while those involving homogeneous ones
give rise to the widening. Also, consider the TC for the
rth diffraction order. As will be seen below, it may be of
great interest for the SB resonance, since, with ε+ ≠ ε–,
the corresponding Fourier field component may repre-
sent an outgoing wave in one of the half-spaces. Using
Eqs. (6) and (1), and considering a quasi-harmonic

modulation, | |  | |, we have

hr
+ hr
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The specular coefficients can be simplified as

(8)

where ∆R0 ≡ (R0 – )/  and ∆T0 ≡ (T0 – )/ .
We neglect ξ0 in comparison with βσ|0, which is valid
for not too grazing incidence.

Let examine an substantially nonsymmetric situa-
tion, where the resonance condition is fulfilled for a
sole number r and a fixed sign of σ, |βσ|r| ! 1, i.e., an
SPP mode is excited at the one of metal–dielectric
interfaces. While being the simplest example of SPP
excitation, it may provide a very nontrivial light trans-
mission. We choose the case of the metal–superstrate
resonance, σ = –. Estimating the values |βσ|r| in the res-
onance vicinity as |β–|r| . |ξ0| and |β+|r| . 1 (see the dis-
cussion above Eq. (2)), we have, for the minimal mag-

nitude of the denominator ,

(9)

Then, Eq. (7) results in |∆T0| ~ . |∆T0|

increases with an increase of ar to become of order one
for the modulation amplitude ar ~ |ξ0|. The zeroth-

order transmittance exhibits a saturation for ar  

(see Fig. 2) at the level |T0|max ~ |ξ0|–1| |, being

enhanced by the factor |ξ0|–1 as compared with | | .
4|ξ0|exp(–Φ') ! 1. The maximal zeroth-order transmit-
tance τ0 at Φ' = 3 (three skin depths) is about several
percent (for |ξ0| . 0.1), while, in the experiment of
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Ebbesen et al., the maximal transmittance was about
several percent for Φ' = 7. Such an increase apparently
may be due to different reasons. First, it is evident that
the validity of all above formulas is restricted by the
smallness of the modulation amplitude, and, therefore,
we cannot suggest a rigorous estimate of the effect for
hole array. Second, while measuring the transmitted
light intensity in the experiment, the detector could
fully register not only the zeroth-order channel but
other homogeneous outgoing channels as well (the
details concerning the position of the detector have not
been reported, in spite of this being an essential point;
hence, we cannot make a positive judgment). Note that,
in spite of the low transmittance, the reflectivity may
have deep resonance minima, and they appear to be
more pronounced in the case of SPP excitation at the
front surface (σ = –) than at the back (σ = +), which fol-
lows directly from Eq. (8) for |β–|r| ! 1 and |β+|r| ! 1,
respectively (cf. also [8]).

The transmittance can be increased in two possible
ways. One is to adjust the parameters so that excitation
of a DB SPP should exist (see below). The other relates
to the specific case when the diffraction order of a, SPP
excited at one of the interfaces corresponds to a propa-
gating wave in the opposite-side dielectric half-space,
and we arrive at “nonzeroth-order, plasmon enhanced
light transmittance” Consider the latter case in some
detail.

Let a light wave be incident from the dielectric of
lower optical density, ε– < ε+, and the diffraction order
r correspond to both the homogeneous outgoing wave
in the substrate and the SB SPP on the front interface
(see Fig. 1 for r = 1). In Fig. 2, the ρ0 minima and τ1, τ0
maxima correspond to excitation of a, SPP; τ0 pos-
sesses typical Fano profile. The rth-order transmitted
wave becomes the principal channel for light tunneling,

resulting in Tr . 4 exp(–Φ)/[  + 2ξ0exp(–2Φ)].

Since  includes a term proportional to | |2, there

exists an optimal modulation depth, ar = aopt ~ , cor-
responding to the highest transmittance (see Fig. 3):

τr|max ~ exp(–2Φ') exceeds the maximum value of

τ0 by the factor . This value of ar differs only
weakly from that corresponding to a totally suppressed
specular reflection for the case of diffraction at the
interface between the metal and dielectric half-spaces
(see [20]). This result is universal for different metals if
we renormalize the modulation amplitude using its

characteristic value,  so that w = | |/  and wopt

~ 1. A close-to-total light transmittance, τr ~ 1, takes
place for film thicknesses of order Φ' ~ | |/2 (see
Fig. 3).

A strong nonzeroth-order anomalous transmittance
can also occur under the condition that the zeroth-order
wave in the substrate is inhomogeneous (ε– > ε+;

ξ̃ r β̃– r

β̃– r ξ̃ r

ξ0'

ξ0'
–1

ξ0'
–1

ξ0' ξ̃ r ξ0'

ξ0'ln
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cf. Kretshmann geometry, [19]). Then, for such an
angle of incidence with which the zeroth diffraction
order corresponds to SPP excitation on the far interface,

sinθ . K+, the Nth-order diffracted waves with

| sinθ + Nκ| < , N < 0, κ < 2  are homoge-

neous ones. The corresponding TCs can become of the
same order as the τr of the previous case. The first
observation of this effect (in the simplest case and for a
dielectric grating deposited on the metal film) was
reported in [12]. Besides, for a long-spacing nonhar-

monic grating, κ < , the transmitted energy flux is

redistributed between these diffraction orders in accor-
dance with the Fourier spectrum of the grating. 

ε–

ε– ε+ ε+

ε+

Fig. 3. Modulation amplitude and film thickness depen-
dences of the transmittance and reflectivity (for d = 2, in

terms of skin depths δ = (k–1| |), and for w = 1.53,  =

iw ), corresponding to a nonsymmetric, single metal–

superstrate SB resonance. The angle of incidence is θ = 60°;
other parameters are the same as in Fig. 2.

ξ0
'' ξ̃ 1±

ξ0
'
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Let us briefly discuss more complicated SPP reso-
nances. Along with the resonances related to the excita-
tion of one SPP, double and fourfold resonances can
occur under some specific conditions, which result in
complex spectral and angular dependences and in addi-
tional enhancement of the transmittance peaks (reflec-
tance dips). Recall that, for given values of εσ and
period Λ, the resonance condition of Eq. (2) defines a
resonance curve in the λ–θ (vacuum wavelength and

angle of incidence) in the region –  < Kσ – τrκ <

, which is enumerated by two signs, σ, τ, and the
integer r. Then, for a fixed θ (and a fixed period), there
is a specific value of the wavelength, and vice versa, for
a fixed λ, there is a specific value of angle of incidence
corresponding to SPP excitation. In the generic case,
these curves corresponding to different values of r and
σ do not intersect. Then, we arrive at a single SB reso-
nance (SBS).

Under specific conditions, different resonance
curves may intersect. An intersection of two curves
specifies the values of κ and θ corresponding to a dou-
ble resonance. If these curves correspond to equal σ
(and two different resonance orders, r' ≠ r), then a
simultaneous excitation of two SPPs on one of the
interfaces holds. These SPPs are coupled due to the
periodicity, and we arrive at a double SB resonance
(SBD). SBDs do not significantly enhance the peak
transmittance magnitudes (reflection minima) as com-
pared with the single resonance; however, they result in
complex wavelength and angle of incidence depen-
dences. Specifically, the interresonance modulation

amplitude, , can strongly effect the resonance
behavior even for small magnitudes of order *  (cf.
[20], where a comprehensive examination of such res-
onances is performed for diffraction on metal–dielec-
tric interfaces). Note that, for symmetric film surround-
ings, ε+ = ε–, we arrive at the fourfold resonance.3 

A significant enhancement of the transmittance can
be achieved during simultaneous excitation of SPPs on
both interfaces, coupled due to the finite film thickness,
i.e., when a double DB resonance (DBD) occurs. This
corresponds to the intersection of two curves with dif-
ferent σ. Equations (6)–(8) describe the symmetric
DBD as well, and the transmittance enhancement is
caused by the fact that the minimal magnitude of the

resonance denominator, , is squared in comparison
with Eq. (9), while the nominator does not decrease like
in the case of an SBD resonance. The greatest relative
change of the zeroth-order transmittance is of order

|∆T0| ~ | |2/| |min ~ | |2(  + | |2 + …)–2. Therefore,

3 The fourfold DB resonance (DBF) can also exist under the condi-
tion that the ratio of the refraction indices of the surrounding
dielectrics (or, more exactly, the values of K+ and K–) is equal to
that of two integers resulting in simultaneous intersection of four
resonance curves. Note that threefold resonance is impossible.

ε–

ε–

ξ̃ r r'–

ξ0'

d̃r

ξ̃ r d̃r ξ̃ r ξ0' ξ̃ r
zeroth-order transmittance (along with reflectance and
absorbance) anomalies are expressed much stronger for
the DB resonances. This fact is in agreement with
experimental data and numerical calculations for nor-
mal incidence (cf. [6, 13]). The detailed analysis (to be
published elsewhere) for this specific case is in agree-
ment with results for harmonic modulation presented in
the theoretical paper [9] (up to the shift of the resonance
peak and dip positions due to scattering processes
involving second-order inhomogeneous diffracted
waves, which we take into account).

The approach developed allows a natural generali-
zation to 2D periodic structures (cf. [21] for the half-
space problem). The main difference consists in the fact
that we have to appeal to a 2D Fourier expansion,

(r) = exp[(in1g1 + in1g1)r],  = 0, where

r = (x, y) and g1, g2 are reciprocal vectors relating to
minimum translations of the reciprocal lattice. Similar
changes need to be performed for the Fourier–Floquet
expansion of the electromagnetic field. Consequently, a
resonance enhancement of the transmittance can be
caused by excitation of an SPP in any diffraction order,
now numbered by a pair of integers (r1, r2). The approx-
imate resonance condition reads as |kt + r1g1 + r2g2| .
K±, where kt is the tangential component of the wave
vector of the incident wave, |kt | = k–sinθ =

ωc−1 sinθ.4 The resonance contribution to the TCs
depends on the incident polarization and orientation of
the SPP excited. Specifically, it depends on the angle ϕ
between the SPP propagation direction relative to the
incident plane. No data on the polarization of the inci-
dent and transmitted light are given in the majority of
experimental works (like the information concerning
orientation of the incidence plane); exceptions are [14,
22].5 Therefore, in the generic geometry, we can obtain
a nontrivial transformation of the polarization of the
zeroth-order transmitted wave, similar to that discussed
for the resonance reflection (cf. [23, 24]). Simple esti-
mates for the magnitudes of these coefficients are anal-
ogous to that presented above for the 1D grating.

We have shown that the principal point for the light
tunneling enhancement is the existence of well-defined
surface modes (SPPs) at the interfaces. A great effect
can be caused by the zeroth-order transmittance (which
has been observed experimentally and discussed theo-
retically) and other diffraction orders as well. The latter
may exceed the zeroth-order transmittance, τ0, by fac-

tors of about  in the case of SB resonance, while

4 In the majority of experimental works devoted to the problem, the
double periodicity is realized by square hole arrays (i.e., (g1 · g2) =
0, g1 = g2).

5 Simple calculations show that the zeroth-order TC angle depen-
dence with (without) change of polarization can be approximated
to sin2ϕ(cos2ϕ) for the impedance modulation. For the relief
modulation, it is necessary to change the angle ϕ to ψ, where ψ is
the angle between the incident plane and the vector r1g1 + r2g2.

ξ̃ ξ̃n1n2n1 n2,∑ ξ̃00

ε–

ξ0'
–1
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both zeroth- and nonzeroth-order transmittances under
DB resonance diffraction on nonharmonic grating may
be comparable.

The analytical approach has allowed us to perform a
transparent analytical treatment and identify the role of
different parameters. It shows as trivialities some
results which seem nontrivial within other approaches.
While the modulation is supposed to be small, it is in a
sense arbitrary (defined by an arbitrary Fourier expan-
sion), in contrast to numerical calculations where the
spectral composition of modulation is fixed.
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Thermodynamic parameters of defects (presumably, defective SiO molecules) in the network of amorphous
SiO2 are obtained by analyzing the viscosity of the melt with the use of the Doremus model. The best agreement
between the experimental data on viscosity and the calculations is achieved when the enthalpy and entropy of
the defect formation in the amorphous SiO2 network are Hd = 220 kJ/mol and Sd = 16.13R, respectively. The
analysis of the network defect concentration shows that, above the glass-transition temperature (Tg), the defects
form dynamic percolation clusters. This result agrees well with the results of molecular dynamics modeling,
which means that the glass transition in amorphous SiO2 can be considered as a percolation phase transition.
Below Tg, the geometry of the distribution of network defects is Euclidean and has a dimension d = 3. Above
the glass-transition temperature, the geometry of the network defect distribution is non-Euclidean and has a
fractal dimension of df = 2.5. The temperature Tg can be calculated from the condition that percolation arises in
the defect system. This approach leads to a simple analytic formula for the glass-transition temperature: Tg =
Hd/(Sd + 1.735R). The calculated value of the glass-transition temperature (1482 K) agrees well with that
obtained from the recent measurements of Tg for amorphous SiO2 (1475 K). © 2004 MAIK “Nauka/Interperi-
odica”.

PACS numbers: 61.43.Dq; 64.60.Ak; 64.70.Pf; 66.20.+d
Percolation transitions attract considerable interest,
because they offer an explanation for a wide class of
phenomena [1–3]. For example, the glass transition in
spin glasses is explained on the basis of the percolation
theory [4]. At the same time, the nature of glass transi-
tion in oxide systems is not yet clearly understood [5–
8]. Amorphous SiO2, as the simplest glass-forming
material, is suitable for use in the model studies in this
area of research. At temperatures higher than Tg = 1475 K,
amorphous SiO2 transforms to the supercooled liquid
state, whereas, below Tg, it is in the glassy solid state.
The changes occurring in the atomic system as the tem-
perature passes through Tg have been much investi-
gated. According to the concept proposed by Hunt, the
material at temperatures above Tg is in the percolative
transport regime, while at low temperatures, it is in the
diffusive transport regime [5]. Major progress in the
understanding of the structural changes of an amor-
phous material passing through Tg was achieved with
the help of the molecular dynamics (MD) modeling [6]
and, in particular, by studying the Voronoi polyhedra
(analogues of the Vigner–Seitz cell) [7, 8]. The MD
experiments showed that, in the liquid state, percolation
clusters composed of Voronoi coordination polyhedra
with low-density atomic configurations are formed in
the material, while no such clusters occur in the solid
(glassy) state [7]. However, in the solid state, percola-
tion clusters of Voronoi coordination polyhedra with
high-density (compact) atomic configurations are
0021-3640/04/7912- $26.00 © 20632
formed [7, 8]. Since the percolation clusters of Voronoi
coordination polyhedra with low-density atomic con-
figurations exist in the liquid state only, it is possible to
distinguish between the liquid and solid (glassy) states
of amorphous materials on the basis of the MD experi-
ments [7]. At the same time, the MD experiments show
that, near the glass-transition temperature, the geome-
try of an amorphous material changes because of the
formation of the fractal percolation clusters [2].

This paper shows that, as the temperature passes
through Tg in amorphous SiO2, a percolation transition
occurs in the system of the network defects presumably
consisting of defective SiO molecules. The transition
can be traced analytically, making it possible to derive
a simple expression for the glass-transition tempera-
ture. The analytic calculation is based on the Doremus
viscosity model (D model) relating the viscosity of the
amorphous material to the thermodynamic parameters
of the network defects [9–11].

An amorphous material can be represented by a
topologically disordered network. The three-dimen-
sional network of amorphous SiO2 consists of SiO4 tet-
rahedra bridged by oxygen atoms. A perfect network of
an amorphous material has no defects at absolute zero,
but defects arise at finite temperatures T. The formation
of defects depends on the Gibbs free energy of a defect:

(1)Gd Hd TSd,–=
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where Hd is the enthalpy and Sd is the entropy of forma-
tion of one mole of defects. Doremus assumed that the
diffusion and viscous flow in silicates proceed through
the formation of defective SiO molecules. The forma-
tion of these defects favors the appearance of five-coor-
dinate Si and O atoms, which was confirmed experi-
mentally in [9]. The formation of defects in the network
of amorphous SiO2 can be represented by the reaction

(2)

where (–Si–)net and (–O–Si–)net refer to the network and
(–Si–)defect and (–O–Si–)defect are the bond-rupture
defects. Let the concentration of the elementary blocks
of the network be C0 and the defect concentration be
[(−Si–)defect] = [(–O–Si–)defect] = Cd. Then, [(–Si–)net] =
[(–O–Si–)net] = (C0 – Cd). The equilibrium reaction con-
stant for (2) depends on the change in the Gibbs energy
G = 2Gd:

(3)

Hence, the equilibrium content of defects is determined
as (see also [11, 12])

(4)

To calculate the concentration of network defects in
amorphous SiO2, it is necessary to know the numerical
values of the enthalpy Hd and entropy Sd of defect for-
mation. Both these quantities, Hd and Sd, are involved in
the expression for the viscosity in the D model [10, 11]:

(5)

where k is the Boltzmann constant, r is the defect
radius, D0 = fαλ 2ν, f is the correlation factor, α is the
symmetry parameter, λ is the hopping distance, ν is the
frequency, and Sm and Hm are the entropy and enthalpy
of defect motion. By processing the experimental data
on viscosity, it is possible to obtain the exact values of
Hd and Sd. The results of this analysis are shown in
Fig. 1, which displays the viscosity of amorphous SiO2
calculated from Eq. (5) and the experimental data on
viscosity from [13, 14]. The best agreement between
the viscosity calculated from Eq. (5) and the experi-
mental data [13, 14] is achieved with Hd = 220 kJ/mol
and Sd = 16.13R, where R is the universal gas constant.
Note that the value Hd = 220 kJ/mol is practically equal
to half the strength of one bond for Si in SiO2
(443 kJ/mol [15]), which agrees with the physical
meaning of this quantity.

–Si–( )net –O–Si–( )net+

–Si–( )defect –O–Si–( )defect,+

K ∆G/RT–( ).exp=

Cd C0

Gd/RT–( )exp
1 Gd/RT–( )exp+
-------------------------------------------.=

η T( ) kT
6πrD0
----------------

Sm

R
-----– 

 exp=

×
Hm

RT
------- 

  1
Sd

R
-----– 

  Hd

RT
------- 

 expexp+ ,exp
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Now, let us consider the evolution of the network
defect concentration in amorphous SiO2 with increas-
ing temperature. The results of calculating the relative
concentration ρ = Cd/C0 of defects by Eq. (4) are shown
in Fig. 2.

The defect clusterization is unlikely as long as the
defect concentration is small. As the defect concentra-
tion increases, the formation of clusters becomes more
and more probable. The relative defect concentration is
a function of temperature, ρ(T) = Cd/C0, and increases
with temperature T. A percolation cluster of network
defects is formed when the relative defect concentra-
tion ρ = Cd/C0 reaches the critical value:

(6)ρ T( ) ρc.=

Fig. 1. Viscosity of amorphous SiO2: the curve is calculated
from Eq. (5), and the experimental data are taken from
[13, 14].

Fig. 2. Concentration of network defects in amorphous
SiO2. Above Tg, the defect geometry becomes fractal with
the dimension df = 2.5.
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For a three-dimensional space, the critical density value
is determined by the Scher–Zallen invariant ϑc = 0.15 ±
0.01 [1, 16]. Hence, one can determine from Eq. (6) the
percolation transition temperature. Taking into account
that ρ(T) in equilibrium can be determined from
Eq. (4), we obtain for the glass-transition temperature

(7)

At temperatures T < Tg, no percolation clusters occur in
the material and the geometry of the network defects
remains Euclidean (d = 3). When T > Tg, a percolation
cluster is formed with the fractal geometry of dimen-
sion df = 2.5 [2]. The network defects are mobile, and,
hence, the percolation cluster is dynamic in character
(from the viscosity data and from Eq. (5), it follows that
the enthalpy of the network defect motion is Hm =
525 kJ/mol). Dynamic percolation clusters with the
dimension df = 2.6 were experimentally observed in
emulsions [17]. It is also significant that the relaxation
processes near the percolation threshold are nonexpo-
nential and described by the Kohlrausch law [2–5]. At
temperatures T > Tg, amorphous SiO2 is a supercooled
liquid, while below Tg, it transforms to the glassy state.
Formula (7) for amorphous SiO2 yields Tg = 1482 K.
This value is only slightly higher than the known value
of Tg = 1450 K (see, e.g., [6]). However, it virtually
coincides with the recent data of scanning calorimetric
measurements: (Tg)exp = 1475 K [18].

Thus, the glass formation in amorphous SiO2 can be
considered as a percolation transition in the system of
network defects (presumably, defective SiO molecules)
with a change in the geometry of the defects from frac-
tal in the liquid state to Euclidean in the glassy state.

Tg

Hd

Sd R 1 ϑ c–( )/ϑ c[ ]ln+
-----------------------------------------------------.=
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The magnetic properties of strongly correlated Fermi systems are studied within the framework of the fermion-
condensation model—phase transition associated with the rearrangement of the Landau quasiparticle distribu-
tion, resulting in the appearance of a plateau at T = 0 exactly in the Fermi surface of the single-particle excitation
spectrum. It is shown that the Curie–Weiss term ~T –1 appears in the expression for the spin susceptibility χac(T)
of the system after the transition point at finite temperatures. The behavior of χac(T, H) as a function of temper-
ature and static magnetic field H in the region where the critical fermion-condensation temperature Tf is close
to zero is discussed. The results are compared with the available experimental data. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 71.10.Hf; 71.27.+a; 75.30.Cr
In recent years, the behavior of strongly correlated
Fermi systems in magnetic fields has attracted much
attention of both researchers and theorists. In the Lan-
dau theory, the magnetic susceptibility χac(T, H) =
δ}/δH (} is the magnetic moment of the system)
depends neither on the static magnetic field H nor on
temperature T until the field and temperature are not too
high. However, experimentally, χac varies with temper-
ature down to absolute zero, and its dependence on H is
also far from trivial even at low magnetic fields H [1–
8]. To explain the first fact, Anderson’s localization the-
ory is often invoked [9], and for the field dependence,
one often uses the theory of second-order phase transi-
tions [10–12]. In an alternative approach [13–15], the
anomalies in the behavior of the strongly correlated
systems in an external magnetic field are treated within
the framework of the generalized Fermi-liquid theory,
where these anomalies arise in the vicinity of the
Fermi-condensation point, i.e., in the vicinity of the
phase transition occurring in the Fermi system when
the standard quasiparticle distribution (Fermi step at
zero temperature, nF(p) = θ(pF – p)) becomes unstable
[16–26]. As a result, the nF(p) distribution changes to a
new n0(p) distribution that minimizes the total energy
E0 of the system. It differs from nF(p) in a certain
momentum interval pi < p < pf that comprises the Fermi
momentum pF. The Fermi surface “expands”: a plateau
ξ(p) = 0 appears at pi < p < pf in the single-particle exci-
tation spectrum. The collection of single-particle exci-
tations in this region of momentum space is referred to
as fermion condensate (FC). At finite temperatures, the
degeneracy of ξ(p) in the FC region is removed and the
0021-3640/04/7912- $26.00 © 20635
ξ(p) plateau is slightly inclined. Its slope is proportional
to T [18]:

(1)

After these preliminary remarks, we are in a posi-
tion to study the magnetic properties of strongly corre-
lated Fermi systems. We will first consider the real part
of low-frequency spin susceptibility χac(T, ω  0) in
zero static magnetic field H. Being the second varia-
tional derivative of the energy E0 with respect to the
external field, Reχac(T) is expressed through the real
part of the polarization operator P(T) = (70GG7),
where 70 = µBs is the bare vertex function (µB is the
Bohr magneton), 7 is the total vertex function, and G
is the single-particle Green’s function. The brackets
stand for integration over all intermediate variables.

Using the standard renormalization procedure, one
can rewrite this integral in the form including only the
poles Gp of the Green’s function G. This part of G is
expressed as Gp(p, ε) = [ε – ξ(p) + iγ(ε)]–1, where the
single-particle spectrum ξ(p) = e(p) – µ is measured
from the chemical potential µ, while the damping con-
stant γ increases after the transition because of the high
density of the FC states. However, the damping is still
not strong in the energy range ε ~ T that makes the main
contribution to the thermodynamic characteristics: γ(p,
ε ~ T) ~ T [21]. Consequently, it is not this quantity that
is responsible for the anomalies in the real part of χac.
If so, the renormalization procedure can be modified
using the conventional quasiparticle Green’s function
Gq(p, ε) = [ε – ξ(p)]–1. It differs from the Fermi-liquid
function only in the spectrum ξ(p), which no longer

ξ p T 0,( ) T
1 n0 p( )–

n0 p( )
----------------------, pi p p f .< <ln=
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coincides with ξFL(p) = pF(p – pF)/M*. As a result, one
has [27, 28]

(2)

where g0 is the zero harmonic of the Landau phenome-
nological quasiparticle scattering amplitude near the

Fermi surface, χ0(T) = – Π0(T), and

(3)

The function n(ε) in this integral has the standard form
n(ε) = [1 + exp(ε/T)]–1. For definiteness, we restrict our-
selves to the three-dimensional case, where the volume
element in the momentum space is dv  = d3p(2π)3.

The use of Eqs. (2) and (3) beyond the transition
point gives the usual T-independent Pauli susceptibility.
After the fermion condensation, the substitution of
Eq. (1) into Eq. (3) leads to

(4)

with the dimensionless constant

(5)

proportional to the FC density. In the presence of spin–

spin interactions, Eq. (4) is replaced by Re (T) =

(T) + g0(ρ)/  or, equivalently, by

(6)

Therefore, even beyond the quasiparticle description,
we arrive at the Curie–Weiss law for χac(T) with the
Weiss temperature ΘW = –g0(ρ)νfρ. As was shown in
[15], g0(ρ) is zero at ρ = ρ∞, so that ΘW is small in the
vicinity of the fermion-condensation point. Experimen-
tally, the Curie–Weiss behavior of the spin susceptibil-
ity χac(T  0) for a small value of ΘW takes place in
a two-dimensional liquid 3He [1, 2] and in a two-
dimensional electron gas [3]. Unfortunately, a check of
the proposed theory through the direct measurement of
the single- particle spectra is as yet hardly possible. The
electronic systems of some compounds with an aniso-
tropic Fermi surface, e.g., of NaxCoO2 are more suit-
able for such a verification, because spin susceptibility
of this compound has been experimentally measured at
various doping levels x [29–31]. We note in this con-
nection that the fermion condensation in anisotropic
systems ordinarily involves only part of the Fermi sur-
face, while the remaining part does not participate in

Reχac T( )
χ0 T( )

1 g0Π0 T( )–
-----------------------------,=

µB
2

Π0 T( ) Re Gq p ε,( )Gq p ε,( )n ε( ) d4 p

2π( )4i
---------------∫=

≡ n ξ( )d
ξ p( )d

-------------- v .d∫

χ0 T 0( ) ν f

µB
2

T
------ρ=

ν f ρ 1– n0 p( ) 1 n0 p( )–( ) vd∫=

χac
1–

χ0
1– µB

2

Reχac T 0( ) ν f

µB
2

T ΘW–
-----------------ρ.=
the transition and its T-independent contribution

amounts to the renormalization of the (T = 0) term.
Unfortunately, the quality of existing experimental data
on single-particle spectra [32] is insufficient for check-
ing the above relationships, because the energy resolu-
tion is low.

We now turn to the situation where the fermion-con-
densation temperature Tf is close to zero. This particular
case of quantum critical point was considered in [13].
In this case, the anomalous behavior of χac(T  0) is
determined by the deviation of the spectrum ξ(p) from
the Landau form. In the absence of static magnetic
fields, such deviations can be examined using the Lan-
dau formula [27]

(7)

where  = p2/2M is the bare single-particle spectrum,
f(θ) is the spin-independent component of the phenom-
enological quasiparticle-interaction function ^(θ) =

f(θ) = g(θ)s1s2 with cosθ = p1p2/ , and p1 and p2 are
momenta of colliding particles.

The fermion-condensation point is found from the
condition that the left-hand side of Eq. (7) turns to zero
at the Fermi surface; this condition reads

(8)

where f1 = f1(p∞, p∞) is the first harmonic of the Leg-
endre polynomial expansion of the f(θ) amplitude and
p∞ is the momentum of Fermi system with critical den-
sity ρ∞. If the nF(p) distribution is rearranged as a sec-
ond-order phase transition, then dξ/dp reaches mini-
mum exactly at the Fermi surface, giving

(9)

where  = (df1(p∞, p)/ , and then single-particle
spectrum takes the form ξ(p, T = 0, ρ∞) = ξ3e∞(p –

p∞)3/ , where e∞ = /2M,

(10)

and  = (d2f1(p∞, p)/ .

At T ≠ 0, a term with effective mass [13]

(11)

χac
1–

∂e p( )
∂p

--------------
∂ep

0

∂p
-------- f p p1,( )

∂n ξ p1( )( )
∂p1

------------------------- v 1,d∫+=

ep
0

pF
2

p∞M f 1/3π2 1,=

p∞
2 M f 1' /3π2 1,=

f 1' dp )p∞

p∞
3 p∞

2

ξ3 p∞
3 M f 1''/9π2,–=

f 1'' d p2 )p∞

ξ p T ρ∞, ,( ) p∞
p p∞–

M* T ρ∞,( )
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p p∞–( )3
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3
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arises in ξ(p, T, ρ∞). The dependence of M*(T, ρ∞) on T
can be determined by expanding f1(p∞, p)p2 under the
integral in Eq. (7) in powers of (p – p∞). Then,

(12)

According to Eq. (8), the zero term in this expansion
and the free term in Eq. (7) cancel out. This equation
can be further simplified using the particle number con-
servation condition rewritten in the integral form:

(13)

Simple algebra yields

(14)

Here, the contribution from the cubic term is omitted
because it is small at low T. After substituting Eq. (14)
into Eq. (12), the latter takes the form

(15)

This relation was derived using Eqs. (8)–(10). To sim-
plify the solution, we pass to the new coordinates z =

ξ(p)/T, τ = T/e∞, and y = τ–1/3 (p – p∞)/p∞. Then,

(16)

1
M* T ρ∞,( )
-------------------------- f 1' p∞ 2 f 1+( ) p p∞–( )∂n ξ p( )( )

∂p
----------------------- pd

3π2
--------∫=

+
1
2
--- f 1'' p∞

2 4 f 1' p∞ 2 f 1+ +( ) p p∞–( )2∂n ξ p( )( )
∂p

----------------------- pd

3π2
--------.∫

pF
3 p3∂n ξ p( )( )

∂p
----------------------- p.d∫–=

pF p pF–( )∂n ξ p( )( )
∂p

----------------------- pd∫
+ p pF–( )2∂n ξ p( )( )

∂p
----------------------- pd∫ 0.=

M
M* T ρ∞,( )
--------------------------

3ξ3

2
--------

p p∞–( )2

p∞
2

----------------------∂n ξ p( )( )
∂p

----------------------- p.d∫=

ξ3
1/3

M
M* τ ρ∞,( )
-------------------------

3
2
---κξ 3

1/3τ2/3,=

Fig. 1. Temperature dependence of the magnetic suscepti-
bility of CeRu2Si2 in a magnetic field of 0.02 mT. Circles
show the data from [8] and solid line is for the calculation
of this work.
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where κ enters two equations,

(17)

and

(18)

and, obviously, depends neither on ξ3 nor on T. One can
see from Eq. (16) that the effective mass M*(T, ρ∞) at
the critical point of an isotropic system decreases with
increasing T as T–2/3.

By calculating κ, one can not only determine the
effective mass but also calculate the susceptibility
χ0(T  0, ρ∞) using Eq. (3). After some algebra, one
gets

(19)

where N0(0) = pFM/π2 is the density of single-particle
states in the absence of interaction and

(20)

As before, the inclusion of spin–spin interaction g0
results in the appearance of a temperature-independent
parameter, so that

(21)

at sufficiently low temperatures.
Therefore, the critical index α, which characterizes

the temperature behavior of spin susceptibility at the
quantum critical point, is equal to 2/3 [15], in distinc-
tion to 1/2 obtained in [13]. As was pointed out above,
g0 turns to zero at the fermion-condensation point. As a
result, the temperature-independent term in Eq. (21)
becomes small in the vicinity of this point. A compari-

z y 3κ y2+[ ]=

κ y2 ez

1 ez+( )2
-------------------- z,d

∞–

∞

∫=

χ0 τ 0 ρ∞,( ) µB
2 N0 0( )Xτ 2/3– ,=

X
2

3ξ3
1/3

----------- ez

1 ez+( )2
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κ y2+
--------------.

∞–

∞

∫=

χac
1– τ 0 ρ∞,( ) µB

2– g0 N0
1– 0( )X 1– τ2/3+[ ]=

Fig. 2. Inverse magnetic susceptibility of
YbRh2(Si0.95Ge0.05)2 as a function of temperature. Dashes
are the data from [7] and solid line is for the calculation of
this work.
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son of the results of theoretical calculations with the
data obtained in [7, 8] (Figs. 1, 2) confirms the validity
of this conclusion.

Analysis shows that heat capacity in the vicinity of
quantum critical point also behaves in a different way
than in the Fermi-liquid theory. Indeed, using the for-
mula for heat capacity at ρ = ρ∞ and T  0

(22)

one can easily obtain the expression

(23)

after the same algebra as in the calculation of χ0(T 
0, ρ∞), where

(24)

is independent of temperature. Therefore, C(T  0,
ρ∞) ~ T1/3. Such a behavior of C(T) is observed in
YbRh2(Si0.95Ge0.05)2 at T < 50 mK (see Fig. 1 in [7]).

Clearly, the density ρ in a real experiment is always
different from the critical value ρ∞. As a result, one
more dimensionless parameter M*(ρ)/M appears in the
formulas before the transition point, after which it gives
way to the parameter νf characterizing the FC density.
In particular, Eq. (19) for small νf is replaced by

(25)

One can see that the FC contribution dominates at

τ  0 when τ < . Such a behavior is observed in
YbRh2(Si0.95Ge0.05)2 at T < 0.3 K [7].

The presence of the ξ(p) plateau manifests itself
much more efficiently in the resistivity ρ(T): if this pla-
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Fig. 3. Dependences of the ratios (solid line) (T/ε∞)2/3M*/M
and (dashes) (µBH/ε∞)2/3M*/M on the scaling variable R =
µBH/T for ξ3 = 1.
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teau exists, a particle can be scattered into the FC. This
contribution is independent of νf and proportional to the
temperature T (see Eq. (7.13) in [19]), whereas the off-
condensate contribution to ρ(T) is proportional to T4/3

because of the softening of the ξ(p) spectrum. Indeed,
the resistivity of YbRh2(Si0.95Ge0.05)2 varies linearly
with T at low T (see Fig. 2 in [7]).

We now consider the situation where an additional
static magnetic field H is applied to the system. In this
case, a new dimensionless parameter R = µBH/T comes
into play. Two subsystems appear with the single-parti-
cle spectra ξ+(p) and ξ–(p) shifted by µBH, n(ξ(p)) in
Eqs. (7), (13), (14) is replaced by [n(ξ+(p)) + n(ξ–(p))]/2,
where n(ξ±(p)) = [1 + exp(ξ(p)/T ± R/2)]–1, and ξ(p) is
given by Eq. (11). At sufficiently small H, the differ-
ence in effective masses  and  can be ignored,

so that (H, T) = (H, T) = M*(H, T). To find
M*(H, T), one can again use Landau relation (7) gener-
alized to the case of external magnetic fields. Then,
after the same transformations as were carried out
above, one obtains

(26)

By passing, as before, to dimensionless variables, we
find

(27)

where κ(R) is determined from the condition

(28)

while the variables y and z are related by Eq. (17). In the
limit T  0, or, equivalently, R  ∞, these equa-
tions are solved analytically to give M*(H, T = 0, ρ∞) ~
H–2/3. The critical index 2/3, which determines, accord-
ing to this equation, the change in the effective mass
M*(H, T = 0, ρ∞) in a static magnetic field, was found
by a different method in [13]. The behavior of M*(H, T,
ρ∞) at finite R values is determined by the numerical
solution of the set of Eqs. (17) and (28). The depen-
dences of the (T/ε∞)2/3M*(H, T, ρ∞)/M and
(µBH/ε∞)2/3M*(H, T, ρ∞)/M ratios on the variable R are
shown in Fig. 3 for ξ3 = 1. The fact that the first ratio
tends to a constant at R ! 1 illustrates the analytically
found asymptotic behavior M*(H = 0, T, ρ∞) ~ T–2/3,
while the tendency of the second ratio to a constant in the
limit R @ 1 reflects the behavior of effective mass in the
inverse asymptotic form M*(H, T = 0, ρ∞) ~ H–2/3.
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The calculation of magnetic moment }(H, T, ρ∞) in
the limit R  ∞ gives }(H, T  0, ρ∞) ~ H1/3. This
dependence is in accordance with the one obtained in
[13] and with the experimental data obtained in [8]. In
the general case of finite R, the magnetic moment
}(H, T, ρ∞) and the spin susceptibility χ(H, T, ρ∞)
demonstrate the scaling behavior, as follows from
Eqs. (3), (17), and (28):

(29)

(30)

where the function X(R) is given by

(31)

and /dR = X(R).
By acting in a similar way, one can easily obtain the

expression C(H, T, ρ∞)/T for the finite R values:

(32)

where

(33)

The results of numerical calculations are presented
in Fig. 4. This figure also shows the ratio of the suscep-
tibility χac(T) to its value at the peak point TP, calcu-
lated as a function of the T/TP ratio in this work and
found in [8] for three values of magnetic field. The
comparison shows that our calculation provides good
quantitative description of the scaling behavior of mag-
netic susceptibility, with the result being independent
of the parameter ξ3. It is worthy of note that this scaling
is destroyed in the three-dimensional systems when the
magnetic field starts to affect the orbital motion of par-
ticles.

It follows from Eqs. (30) and (32) that the ratio W =

χac(H, T, ρ∞)Tπ2/ C(H, T, ρ∞) is a function of only
variable R. In the R  0 limit, i.e., in the absence of
the external field, calculation gives W . 6. For the
opposite limit R  ∞, i.e., at T  0, and for the
external field H @ T/µB, one obtains W . 3, which is
close to the result of the Landau theory.

We note in conclusion that we have studied the
behavior of strongly correlated Fermi systems in an
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external field in the range of parameters where the
effective mass M* diverges and the standard Fermi-liq-
uid description fails. We have found that, as the point
where M* = ∞ is approached, the spin susceptibility
χac(T  0) starts to diverge following the law

(T  0) ~ Tα with the critical index α = 2/3. After
the phase-transition point, where a plateau appears in
the spectrum of single-particle excitations, the critical
index changes to α = 1. Thus, as the correlations
become stronger, the spin susceptibility changes its
behavior from the Pauli type to the Curie–Weiss type
without any evidence of the localization of single-par-
ticle motion.

We are grateful to J.W. Clark, V.R. Shaginyan, and
V.M. Yakovenko for discussion of the problem. This
work was supported in part by the Russian Ministry of
Science (project no. NSh-1885.2003.2), NSF (grant
no. 9900713), and McDonnel Center for Space Sci-
ences.
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Finely dispersed carbonizate powders were studied with the aim of revealing their suitability for producing
hyperpolarized noble gases. In the temperature and frequency dependences obtained over a wide range of tem-
peratures and magnetic fields for the spin–lattice relaxation times of the magnetic moments of 3He, 1H, and 13C
nuclei, anomalous features caused by the suppression of the exchange between surface paramagnetic centers in
a magnetic field were observed. It is shown that the interaction with magnetic moments of the 1H nuclei situated
near the paramagnetic centers is the main polarization-leakage channel for the noble-gas nuclear spins. © 2004
MAIK “Nauka/Interperiodica”.

PACS numbers: 76.60.Es
At present, optical pumping [1, 2] and polarization
of solid 3He and 129Xe by “crude force” in strong mag-
netic fields at ultralow temperatures, followed by fast
melting [3], are the main methods of obtaining hyper-
polarized noble gases, such as 3He and 129Xe. The first
method is characterized by a rather low output, while
the second requires complex equipment and a large
amount of coolants for producing ultralow tempera-
tures (lower than 1.3 mK). That is why the study of the
possibility of using the dynamic polarization of noble-
gas nuclear spins is of undeniable interest. This method
is based on the polarization transfer from the electronic
subsystem (e.g., paramagnetic centers of a solid sub-
strate contacting the noble gas or the corresponding liq-
uid) to the nuclear spins. An obvious advantage of this
method is the fact that, since the polarization of elec-
tron-spin system exceeds, under the same conditions,
the polarization of nuclear magnetic moments by more
than a factor of 1000, no complex cryogenic equipment
is required to achieve ultralow temperatures and strong
magnetic fields. The output of this method is also
expected to be higher than in the case of optical pump-
ing.

The dynamic polarization of liquid or gaseous 3He
can be accomplished using the Overhauser and solid
state effects. In the first method, spin-polarization
transfer to nuclei occurs from delocalized electron
moments (conduction electrons in metals), while the
second method is based on the polarization transfer
from the localized electron magnetic moments in
dielectrics. The solid state effect is more preferable to
liquid 3He for the reasons pointed out in [4]. In [5], it
was proposed that finely dispersed powders of dielec-
tric Van-Vleck paramagnets should be used as a solid
0021-3640/04/7912- $26.00 © 200641
substrate. Finely dispersed carbonizate powders [6]
with a well-developed surface capable of adsorbing
large amount of gas and containing many paramagnetic
centers at their surfaces [7] also show considerable
promise as substrate. The EPR line of these centers is
strongly narrowed due to the exchange interaction and
can be easily saturated. Magnetic coupling between the
surface paramagnetic centers and the 3He nuclear spins
was revealed from the change in the EPR spectra upon
filling a tube with carbonizate by gaseous 3He [8]. Clas-
sical estimate of the maximal enhancement of the 3He
NMR signal for the scalar second-type relaxation [9]
gives a value of 430 in this case.

Nevertheless, attempts to dynamically polarize 3He
gas in this system have failed [6]. This failure can be
due to the presence of polarization-leakage channels to
magnetic nuclei of other types in the system. The car-
bon–noble gas systems contain, apart from the polar-
ized noble gas, nuclei of other carbon isotope 13C (nat-
ural abundance 1.108%) and the OH chains remaining
after pyrolysis and containing 1H nuclei. The purpose
of this work was to thoroughly study this system and
reveal the main channels through which the electron-
spin polarization can be carried away, so that one can
choose in the future a carbon type that will have the
minimal parasitic polarization-leakage channels.

SAMPLE PREPARATION

Carbon obtained by fructose pyrolysis was used as a
starting material. To obtain finely dispersed carbon-
izate, a fructose powder was placed in a tube evacuated
by a backing pump. Upon heating, the fructose tubes
melted and, at temperatures above 600°C, started to
04 MAIK “Nauka/Interperiodica”
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decompose into carbon and water. Continuously evacu-
ated chemical decay products foamed the fructose mass
and, after the pyrolysis was completed, the final prod-
uct consisted of small bubbles with thin walls (about
1 µm). It is likely that one can control the fructose
foaming by varying the temperature and heating rate
and, hence, vary the wall thickness and chemical com-
position. Therein lies the main distinction from carbon-
izates prepared through the wood pyrolysis, because in
this case the wall thickness fully depends on the struc-
ture of the wood used.

Grinding gave a powder consisting of small flakes.
Then, the powder was sieved through a set of sieves to
calibrate the particle sizes. Upon measuring the EPR
linewidth in the course of filling the tube with gaseous
3He, one could judge the presence of a magnetic cou-
pling between the paramagnetic samples and 3He

Fig. 1. Frequency dependence of the 13C NSLR rate.
Approximation of the experimental data by Eq. (1) is shown
by the solid line. Approximation parameters: C = (0.25 ±
0.1) × 10+9 and τ = (11.2 ± 0.7) × 10–9 s.

Fig. 2. Temperature dependence of the 13C NSLR rate.
nuclei. Since this change was most pronounced in the
powders with particles 150–250 µm in size, they were
used in our study of the nuclear spin–lattice relaxation
(NSLR).

EXPERIMENTAL

To study the NSLR, the powder was poured into a
U-shaped quartz tube. The tube was pumped out for
several days at a temperature of 200°C by a diffusion
pump. The increased temperature was used for a more
efficient evacuation of absorbed water, to attain good
reproducibility of the proton NSLR results. After cool-
ing the sample to room temperature, the tube was her-
metically sealed. To study the 3He NSLR, the corre-
sponding gas was admitted into the tube up a pressure
of 0.9 atm before sealing. The helium volume in the
tube was equal to 1.8 cm3 per 80 mg of carbonizate. The
amount of inert gas absorbed by the carbonizate at
room temperature was negligibly small. Our estimates
of the carbonizate surface area showed that only a 3He
monolayer could form at low temperatures in the case
of complete gas absorption. The NMR spectrometer
coil was winded as a bare single-core copper wire over
the quartz tube, and the tube was fixed through the pro-
truding stems. This allowed us to minimize the influ-
ence of constructive elements containing 1H nuclei. The
NSLR was measured using a pulsed spectrometer with
a working frequency range of 4–35 MHz. The spin–lat-
tice relaxation rate was measured by the standard
method with the detection of spin–echo recovery after
the pumping pulse. The temperature below 4.2 K was
achieved by evacuating the vapor of liquid 4He from the
cryostat. To measure the temperature dependences
above 4.2 K, a flow-type helium anticryostat was used.

RESULTS 

We measured the frequency (or, in other words,
field) and temperature dependences of the 13C and 1H
nuclear relaxation times in the sample, as well as the
nuclear magnetization of gaseous 3He in contact with
carbonizate.

The magnetization recovery curve for the 1H and
3He nuclei is well described by a single exponential,
whereas the same curve for 13C has a more complicated
shape 1 – exp(–(t/T1)α) typical of the nuclear magnetic-
moment relaxation in powders [10]. The frequency
dependence of the 13C NSLR time is shown in Fig. 1.
The coefficient α does not change its value of 0.66 over
the entire frequency and temperature ranges. This
dependence can be described by the expression

(1)

which is valid for the nuclear-spin relaxation through
the paramagnetic impurities [9] in the fast-diffusion

T1
1– Cτ

1 τ2 2πν( )2+
-------------------------------,=
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approximation. In Eq. (1), τ ~ 10 ns is the characteristic
correlation time of the system of paramagnetic spins.

One can clearly distinguish two regions in the tem-
perature dependence of the 13C NSLR time (Fig. 2). At
temperatures below 10 K, the NSLR rate is propor-
tional to T2. The fact that the NSLR rate is independent
of temperature above 10 K is evidence of the presence
of mechanisms restricting relaxation.

In contrast to the frequency dependence of the 13C
NSLR rate, the dependences of the 1H and 3He NSLR
rates have a more complicated form (Fig. 3). One can
also see that these dependences are similar. At low tem-
peratures, the relaxation rate increases approximately
as T0.36 at 30 MHz and as T0.08 at 3 MHz. For the 1H
nuclei, the relaxation rate increases, though it is decel-
erated more and more with temperature, and, starting at
60 K, the NSLR slows down with increasing tempera-
ture.

DISCUSSION

Since all measured NSLR times are short, one can
assume that the nuclear magnetic-moment relaxation
through the paramagnetic impurities is the dominant
relaxation mechanism. Unpaired electrons placed at the
surfaces of carbon particles are paramagnetic centers
(PCs) in the substance under study. These PCs are com-
bined into clusters, whose inner exchange interaction
strongly narrows the EPR line [7]. In fact, we observed
signals from three types of nuclei differently arranged
about the paramagnetic centers:

(1) from the 13C nuclei homogeneously distributed
over the volume of carbon grain;

(2) from protons situated at the sample surface in the
immediate vicinity of the paramagnetic centers,
because an unpaired electron most likely appears as a
result of breaking the C–OH bond; and

(3) from the spins of the 3He nuclei situated outside
the particle volume.

Spin relaxation of the 13C nuclei is nonexponential
and corresponds to the relaxation in a system with a
limited size and α = 0.66 [10]. The coefficient α = (D +
d)/6 is determined by the dimensionality D of nuclear
distribution and the reduced dimensionality d of the
distribution of dipole–dipole interaction between the
nuclear magnetic moment and the paramagnetic cen-
ters. Since the particle thickness (≈1 µm) far exceeds
the mean distance (≈1 nm) between the nuclei of less-
abundant 13C isotope, one can assume that the 13C dis-
tribution in the particle volume is three-dimensional.
Then, the reduced dimensionality d corresponding to
the distribution of the average distance between the
paramagnetic centers and the 13C nuclei equals 1. The
system of paramagnetic centers is placed at the particle
surface, so that the nuclear spin diffuses to the nearest
PC, i.e., perpendicular to the particle surface. In this
case, the parameter d describes the variation of a “one-
JETP LETTERS      Vol. 79      No. 12      2004
dimensional” parameter, namely, the particle thickness
in the powder. At low temperatures, the temperature
and frequency dependences can be explained by fast
spin diffusion [9]. The parameter τ ~ 11 × 10–9 s
obtained from the approximation of the frequency
dependence is determined by the characteristic
exchange-interaction time in the paramagnetic clusters,
because it is much shorter than both the PC spin–lattice
relaxation time T1 ~ 10–3 s and the PC spin–spin relax-
ation time T2 ~ 10–6 s.

The observed increase in the relaxation rate with
temperature is caused by the rise in the fluctuation
amplitude of the local fields produced by the paramag-
netic centers. However, the same local fields hamper
the magnetization transfer from the 13C nuclei located
inside the carbon particle to the rapidly relaxing 13C
near the surface PCs, so that the NSLR rate at tempera-
tures above 10 K becomes temperature-independent. In
summary, one can say that the 13C spin relaxation is
governed by two processes: spin diffusion from the par-
ticle volume to the surface and relaxation of the near-
surface 13C nuclei in the strongly fluctuating PC mag-
netic fields. The temperature dependence of the NSLR
rate illustrates the transition between the two regimes:
at low temperatures, the bottleneck of this process is
determined by the 13C relaxation in the fluctuating
fields of surface PCs, and at temperatures above 10 K,
by the magnetization transfer between the 13C nuclei
through the spin diffusion in inhomogeneous local
magnetic fields.

The relaxation of 1H spins situated at the particle
surfaces has a nondiffusive character. One can also note
that the 1H linewidth (∆ = 48 kHz) is larger than the 13C
(∆ = 14 kHz) and 3He (∆ = 4.2 kHz) NMR linewidths
because of the stronger PC local fields on the 1H nuclei.
One can see in Fig. 3 that, despite the fact that the major

Fig. 3. Frequency dependences of the 1H and 3He NSLR
rates at T = 4.2 K. Approximations of the experimental data
(h 1H and s 3He) by Eq. (2) are shown by the solid lines.
The parameter K = (35 ± 2) × 10–9 s is the same for both
nuclei.
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part of 3He nuclei are situated outside the particle vol-
ume, the nuclear magnetic moments of 3He relax in a
similar way as 1H. This is likely explained by the high
spin-diffusion rate in the 3He gas [11], as a result of
which the magnetization transfer from the bulk 3He to
the 3He nuclei adsorbed at the surface of carbon parti-
cles is fast, so that the bottleneck for 3He NSLR is
determined by the relaxation of the surface 3He spins
having a relatively low magnetic specific heat in the PC
local fields.

It is reasonable to assume that both the isolated PCs
and the clusters of exchange-coupled PCs exist at the
surface of carbon particles. This exchange interaction
should be rather weak, because it is destroyed upon the
absorption of the paramagnetic O2 molecules and, in
part, of the inert 4He atoms [8]. For this reason, one can
expect that the exchange between the electronic centers
will also be suppressed with an increase in magnetic
field. In the model suggested, the NSLR rate of protons
and 3He spins is given by

(2)

where the indices is and clust correspond to the isolated
PCs and the clusters, respectively. The first term in
Eq. (2) accounts for the second-type scalar relaxation

[9], so that  ~ ν–2. Assuming that the exchange
interaction between the paramagnetic centers is caused
by a partial and rather weak overlap of electron shells,
one can represent the magnetic-field (frequency)
dependence of the second term in Eq. (2) in the form

(3)

Since the parameter K includes only the properties of
electron shells and should be independent of the types
of relaxing nuclei, its values obtained by approximating
the frequency dependences are the same for the 3He and
1H NSLRs (Fig. 3).

T1
1– T1 is,

1– T1 clust,
1– ,+=

T1 is,
1–

T1 clust,
1– Kν–( ).exp∼

Fig. 4. Temperature dependences of the proton NSLR rate
in different magnetic fields.
It is likely that the possible magnetic-field-
induced suppression of the interaction between the
PCs in the cluster practically did not affect the 13C
NSLR rate, because, due to the small gyromagnetic
ratio, all measurements were performed in magnetic
fields stronger than for 3He and 1H. This caused an
appreciably lower 13C NSLR rate. The experiment on
measuring the EPR dipolar linewidth in strong mag-
netic fields (about 3 T) can provide direct confirma-
tion of the suggested field-induced exchange-interac-
tion suppression.

The NSLR model suggested above is in agreement
with the experimentally measured temperature depen-
dence of the proton relaxation rate in different mag-
netic fields (Fig. 4). The increase in the slope of tem-
perature curve and the decrease in the relaxation rate
in a higher magnetic field correspond to the increase
in the relative contribution of the first term in Eq. (2)
as a result of the field-induced suppression of
exchange interaction in clusters. The observed fre-
quency-independent maximum in the proton relax-
ation rate (at temperatures on the order of 60–70 K)
and the subsequent change in the temperature depen-
dence are likely associated with the initiation of
mobility of the surface PCs and, as a consequence,
with a change in the NSLR mechanism.

We intend to gain more detailed information on the
exchange clusters and their role in the NSLR from the
planned experiments on measuring the temperature
dependence of the relaxation rate of liquid and gaseous
3He in the pores of carbon powders.

We note in conclusion that it is the 1H nuclei that are
responsible for the main spin-polarization leakage
channel in the dynamic polarization using finely dis-
persed carbonizate powders, because these nuclei inter-
act with the paramagnetic centers more strongly than
the magnetic moments of polarized 3He nuclei. The 13C
relaxation is much slower and cannot account for the
polarization-leakage channel. Therefore, for the suc-
cessful dynamic polarization of noble gases using car-
bonizates, one should, first of all, develop a technique
for their preparation without proton impurities. When
preparing activated carbon from wood, this can be done
by cleaning from resins with water vapor under high
pressure. In the case of carbonizates prepared from
monosaccharides, this can be done by choosing the
pyrolysis temperature regime to provide a deeper sam-
ple pyrolysis.
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We have derived an explicit nonperturbative expression for decoherence of quantum oscillations in a qubit by
Gaussian low-frequency noise. Decoherence strength is controlled by the noise spectral density at zero fre-

quency, while the noise correlation time τ determines the time t of crossover from the 1/  to the exponential
suppression of coherence. We also performed Monte Carlo simulations of qubit dynamics with noise which
agree with the analytical results. © 2004 MAIK “Nauka/Interperiodica”.
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t

Despite the large number of successful demonstra-
tions of coherent quantum oscillations in individual [1–
8] and coupled [9] Josephson-junction qubits, quantita-
tive understanding of these oscillations is so far limited.
The main area of discrepancy between experiment and
theory is qubit decoherence. The typical quality factors
of reported oscillations, while not as large as required
by potential applications in quantum computation, are
still quite large in physics terms (typically not less than
20–30). This fact should imply weak decoherence
describable by the standard perturbation theory in
qubit-environment coupling (see, e.g., [10]). Several
basic features of this theory, however, do not agree with
experimental observations. Most importantly, observed
decay time T2 of coherent oscillations is typically
shorter than the energy relaxation time T1 even at opti-
mal qubit bias points [3, 4, 11], where perturbation the-
ory predicts no pure dephasing terms. Another discrep-
ancy is between the observed two-qubit decoherence
rate [9] and its values that can be obtained from the per-
turbation theory under natural assumptions [12].

Qualitatively, the basic reason for discrepancy
between T1 and T2 is the low-frequency noise that can
reduce T2 without changing significantly the relaxation
fates. Mechanisms of low-frequency, or specifically 1/f,
noise exist in all solid-state qubits: background charge
fluctuations for charge-based qubits [13], impurity
spins or trapped fluxes for magnetic qubits [14]. Mani-
festations of this noise are observed in the echo-type
experiments [11]. Low-frequency noise for qubits is
also created by the electromagnetic fluctuations in fil-
tered control lines.

The goal of our work is to develop a quantitative the-
ory of low-frequency decoherence by studying qubit
dynamics under the influence of Gaussian noise with
small characteristic amplitude v 0 and long correlation

¶This article was submitted by the authors in English.
0021-3640/04/7912- $26.00 © 20646
time τ. In this case, we obtained an explicit nonpertur-
bative expression describing decay in time of coherent
qubit oscillations. The strength of decoherence in this
expression is controlled by the noise spectral density at

zero frequency, Sv(0) ∝  τ. For long correlation times

τ @ ∆–1, where ∆ is the qubit tunnel amplitude, τ can
be large even for weak noise v 0 ! ∆ and our analytical

results are exact as a function of τ in this limit. We
also performed direct numerical simulations of the low-
frequency qubit decoherence. The simulation results
confirm the analytical expressions and show that our

main conclusions, cross-over from the 1/  to the
exponential suppression of coherence at time t . τ and
the strength of decoherence controlled by the noise
spectral density Sv(0) at zero frequency, are valid for
quite large noise amplitudes v.

The Hamiltonian of a qubit with a fluctuating bias
energy v(t) (see inset in the figure) is

(1)

where ε is the average bias, and σ’s here and below
denote Pauli matrices. In this work, we mostly focus on
the situation when the noise v(t) has characteristic cor-
relation time τ, i.e., the noise correlation function and
its spectral density can be taken as

(2)

where v 0 is the typical noise amplitude and 〈…〉
denotes average over different realizations of noise. We
assume that the temperature T of the noise-producing
environment is large on the scale of the cut-off fre-
quency 1/τ and can be treated as classical. In the regime

v 0
2

v 0
2

v 0
2

t

H
1
2
--- ∆σx ε v t( )+( )σz+[ ] ,–=

v t( )v t'( )〈 〉 v 0
2e t t'– /τ– , Sv ω( )

2v 0
2τ

1 ωτ( )2+
-----------------------,= =
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of interest, 1/τ ! ∆, the temperature can obviously be
still small on the qubit energy scale.

The two effects of the weak noise on the dynamics
of qubit (1) are the transitions between two energy
eigenstates with energies ±Ω/2, Ω ≡ (∆2 + ε2)1/2, and
“pure” (unrelated to transitions) dephasing that sup-
presses coherence between these states. Within the
standard perturbation theory, the transition rate is pro-

portional to Sv(Ω) = 2 /Ω2τ. One can see that the con-
dition of weak noise v 0 ! ∆ makes the transition rate
small compared to both ∆ and 1/τ, ensuring that the per-
turbation theory is sufficient for the description of tran-
sitions. As was discussed qualitatively in the introduc-
tion, the fact that the noise correlation time is long, τ @
∆–1, makes the perturbation theory inadequate for the
description of pure dephasing. For low-frequency

noise, a proper (nonperturbative in τ) description is
obtained by looking at the accumulation of the noise-
induced phase between the two instantaneous energy
eigenstates. If v 0 ! ∆, one can determine the rate of
accumulation of this phase by expanding the energies in
noise amplitude v(t). Also, in this case, the dephasing
rate is larger than the transition rate and can be calcu-
lated disregarding the transitions. The factor F(t)
describing suppression in time of coherence between
the two states (i.e., suppression of the off-diagonal ele-
ment ρ12 of the qubit density matrix in the energy basis:
ρ12(t) = F(t)ρ12(0)e–iΩt) can be written then as follows:

(3)

For Gaussian noise, correlation function (2) deter-
mines the noise statistics completely, and it is conve-
nient to take the average in Eq. (3) by writing it as a
functional integral over noise. For this purpose, and also
for use in the numerical simulations, we start with the
“transition” probability p(v1, v2, δt) [15] for the noise to
have the value v2 a time δt after it had the value v1:

(4)

Using this expression, we introduce the probability of
specific noise realization as p0(v 1)p(v 1, v 2, δt1)p(v 2, v 3,

δt2)…, where p0(v) = (2π )–1/2exp{–v 2/2 } is the
stationary Gaussian probability distribution of v. Tak-
ing the limit δtj  0, we see that the average over the
noise can be written as the following function integral:

v 0
2

v 0
2

F t( ) i
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2Ω3
--------------------+ t'd
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t
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Since the average in Eq. (3) with weight (5) is now
given by the Gaussian integral, it can be calculated
straightforwardly:

(6)

where ν ≡  and α ≡ ετv 0/Ων3/2.

Equation (6) is our main analytical result. To ana-
lyze its implications, we start with the case ε = 0, where
pure qubit dephasing vanishes in the standard perturba-
tion theory. Dephasing (6) is still nonvanishing, and its
strength depends on the noise spectral density at zero

frequency Sv(0) = 2 τ through ν = , s ≡
Sv(0)/∆. For small and large times t, Eq. (6) simplifies to

(7)
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The rate γ of exponential qubit decoherence at long times
t @ τ for ε = 0 and noise with characteristic amplitude v0
and correlation time τ. Solid line gives analytical results
from Eq. (8). Symbols show γ extracted from Monte Carlo
simulations of qubit dynamics. Inset shows schematic dia-
gram of qubit basis states fluctuating under the influence of
noise v(t).
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where

(8)

Besides suppressing coherence, the noise also shifts the
frequency of qubit oscillations. The corresponding fre-
quency renormalization is well denned for t @ τ:

(9)

Suppression of coherence (7) for t ! τ can be qual-
itatively understood as the result of averaging over the
static distribution of noise v. In contrast to this, at large
times t @ τ, the noise appears to be δ-correlated, the
fact that naturally leads to exponential decay (7). This
interpretation means that the two regimes of decay
should be generic to different models of the low-fre-
quency noise. Crossover between the two regimes takes
place at t . τ, and the absolute value of F(t) in the cross-
over region can be estimated as (1 + s2)–1/4; i.e., s deter-
mines the amount of coherence left to decay exponen-
tially. Rate (8) of exponential decay shows a transition
from the quadratic to square-root behavior as a function
of Sv(0) that can be seen in the figure, which also shows
the decay rate extracted from numerical simulations of
Gaussian noise. Our numerical procedure was based on
direct Monte Carlo simulations of coherent oscillations
of a qubit with Hamiltonian (1) that start in one of the
eigenstates of the σz operator. The qubit density matrix
was averaged over up to 107 realizations of noise that
were built using transition probability (4). The rate γ of
pure dephasing was extracted from the long-time
behavior of the off-diagonal element of the density
matrix by subtracting the transition-induced dephasing

rate Sv(∆)/4 ≡ /(2∆2τ) from the total oscillation
decay rate. One can see from the figure that the analyt-
ical and numerical results agree well for quite large
noise amplitudes v.

Nonzero qubit bias ε leads to additional dephasing
F(t)/F0(t) described by the last exponential factor in
Eq. (6). The contribution from F0(t) is of the same form
as in e = 0 case but now with s  s(∆/Ω)3. Similarly
to F0(t), the additional dephasing exhibits the crossover
at t . τ from “inhomogeneous broadening” (averaging
ever the static distribution of the noise v ) to exponential
decay at t @ τ. In contrast to the zero-bias case, the
short-time decay is now Gaussian:

We see that, again, the rate of exponential decay
depends nontrivially on the noise spectral density Sv(0),
changing from direct to inverse proportionality to Sv(0)
at small and large s, respectively.

γ 1
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Our approach can be used to calculate the rate of
exponential decay at large times t for Gaussian noise
with arbitrary spectral density Sv(ω). Such a noise can
be represented as a sum of noises (2), and appropriate
transformation of variables in this sum enables one to
write the average over the noise as a functional integral
similar to (5). For calculation of the relaxation rate at
large t, the boundary terms in integral (5) can be
neglected and it is dominated by the contribution from
the “bulk,” which can be conveniently written in terms
of the Fourier components

Then, 〈…〉  = …exp{–(1/2) /Sv(ωn)}.

Combining this equation and Eq. (3), we get at large t

(10)

For an unbiased qubit, ε = 0, this equation coincides
with the one obtained by more involved diagrammatic
perturbation theory in quadratic coupling [16].

In summary, we developed a nonperturbative theory
of qubit dephasing by Gaussian low-frequency noise
and performed Monte Carlo simulations of qubit
dynamics with this noise. The theory agrees well with
simulations and shows that the decoherence strength is
controlled by the noise spectral density at zero fre-
quency. It allows for generalizations in several experi-
mentally relevant directions and should be useful for
analysis of observed shapes of quantum qubit oscilla-
tions.
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The kinetics of photoconductivity is studied in silicon doped with B, Al, Ga, In, P, As, and Sb with concentrations
of 1016–1018 cm–3 at 4.2 and 10.5 K placed in an 8-mm microwave electric field under pulsed impurity excitation.
It is found that infrared absorption by impurity pairs and a slow component of photoresponse relaxation arise at
close impurity concentrations. It is shown that this component is due to an increase in the polarization hopping
conductivity in the presence of the optical charge exchange of impurity states—isolated impurities and impurity
pairs and dipoles (pairs of the major and compensating impurities). The hopping transfer processes of ion charges
in the course of relaxation are analyzed. It is shown that the main contribution to polarization photoconductivity
comes from hopping transitions in impurity pairs at relatively small concentrations and from hopping with the par-
ticipation of isolated ions at increased concentrations. © 2004 MAIK “Nauka/Interperiodica”.
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1. Hopping polarization photoconductivity. The
initial goal of the study started in 1987 was to develop
a contactless method for measuring the relaxation time
of impurity photoresponse in silicon doped with group
III and V elements with concentrations N > 1016 cm–3.
For this purpose, the phase and amplitude of the photo-
response of samples was studied as a function of the
modulation frequency f of the exciting radiation at con-
stant and microwave (MCW) bias voltages [1]. The
photoresponse relaxation time in a constant electric
field at 20 K did not exceed 10–7 s and decreased by two
or three orders of magnitude with decreasing tempera-
ture and increasing concentration of the compensating
impurity Nc. The same relaxation times of the photore-
sponse UMCW in a microwave field and their depen-
dences on the temperature and compensation were
found at f > 1 MHz; that is, the process in both cases
was determined by the cascade capture of free charge
carriers by ionized impurities [2]. However, it was
found in [3, 4] that, in an MCW field at T < 20 K, not
only the fast component but also the slow photore-
sponse component appear in the photoresponse UMCW.
The relaxation time of this component estimated from
the dependence of the response on f turned out to be of
order 10–5 s at 5 K. Under low-frequency (f ~ 1000 Hz)
excitation, UMCW increased both with decreasing T and
with increasing N and Nc. At 5 K, the ratio of the MCW
responses under low-frequency and high-frequency
excitation reached almost three orders of magnitude
[4]. Similar regularities were observed in studying ger-
manium with As [5] and gallium phosphide with Te [6].
Thus, the slow relaxation of the impurity photore-
sponse in doped semiconductors was manifested only
0021-3640/04/7912- $26.00 © 20650
in an MCW electric field. From here, it followed that
this phenomenon was associated with hopping photo-
conductivity (PC). Here, there is a perfect analogy with
[7], where the hopping conductivity σ of doped silicon
was studied in an alternating electric field. Carrier hop-
ping between neutral and ionized impurities induced by
the alternating field changes the distances between the
major and compensating impurity ions, that is, changes
the dipole moments. This conductivity is of the polar-
ization type and exceeds the percolation conductivity
by several orders of magnitude even at low frequencies.
It was suggested that excitation can change the hopping
conductivity of a semiconductor through the accumula-
tion of charge carriers in long-lived excited 1S states of
impurities with large orbitals. Optical transitions
between these states and the ground 1S state are forbid-
den in the dipole approximation. The charge-carrier
photoexcitation cross section in such transitions in sili-
con does not exceed 10–18 cm2 [8], which corresponds
to a radiative lifetime of order 1 s. This suggestion is
also confirmed by the fact that the slow relaxation of
UMCW has not been exhibited in silicon doped with Bi
and Ga at N ~ 3 × 1016 cm–3 [3, 4]. Bi, Ga, and Al impu-
rities have high-lying excited states whose energies are
close to the energies of optical phonons [9]. Therefore,
a captured charge carrier from these higher lying states
can rapidly relax to the ground state bypassing the
excited 1S states. A number of experimental results [10]
were in agreement with the model of MCW PC [11]
with the participation of long-lived excited states of
impurities. However, some experiments were contra-
dictory to such an interpretation. Thus, a decrease in the
excitation intensity led to an increase in the relaxation
004 MAIK “Nauka/Interperiodica”
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time of UMCW from 10 µs in [3, 4] to 500 µs in [10].
Taking into account the formation of D– or A+ centers
[12] did not explain such a strong dependence of the
relaxation rate on the excitation conditions. Further-
more, it was found that the slow relaxation of UMCW
was also exhibited in silicon doped with Ga and Al if
N > 5 × 1016 cm–3. Finally, estimates for the probability
of transitions with the emission of acoustic phonons [4]
showed that the lifetimes of the excited 1S states in sil-
icon did not exceed 10–10 s. For these reasons, a new
approach to the problem of the polarization conductiv-
ity of doped silicon was developed in [13–15].

2. Impurity pairs. The approach is based on taking
into account the interaction of impurities. In contrast to
fast-diffusing impurities forming close pairs, group III
and V impurities are randomly distributed over silicon
crystal lattice sites. In the latter case, there is no well-
defined boundary between pairs and isolated impuri-
ties. However, it is possible to distinguish a group of
impurities that must play a leading part in the hopping
polarization PC. We will clarify the situation using a
system of two protons and two electrons as the simplest
analogue. This system is described by the known pat-
tern of the one-electron terms of hydrogen molecule
(Fig. 1) [16]. Here, the energy differences between the
dashed and solid lines correspond to the decrease in the
energies E of electron ionization and excitation to the
2S state as compared to the energies for distant protons.
It is evident that the regions in which the energies
decrease substantially correspond to distances r ≈ (2–

Fig. 1. One-electron terms of the hydrogen molecule (r is
the distance between protons, and a is the Bohr radius). The
differences between the solid and dashed lines correspond
to the decrease in the ionization and excitation energies E
with respect to the isolated atoms (r = ∞). Points correspond
to the relative contribution of the electron transition
between the neutral and ionized atoms to the conductivity σ
due to an 8-mm electric field [7].
JETP LETTERS      Vol. 79      No. 12      2004
5)a, where a is the Bohr radius. In this case, the energy
of both neutral and ionized “molecules” is lower than
for the isolated hydrogen atom and ion. A similar situ-
ation must also take place in the case of impurity pairs
in crystals [17], but at different scales of distances and
energies, depending on the value of impurity Bohr radii r.

Figure 1 also displays the contribution of carrier
hopping to the polarization conductivity dσ(r/a)/d(r/a)
as a function of r/a calculated for an 8-mm MCW elec-
tric field at a random impurity distribution [7]. It is evi-
dent that impurity pairs localized in the region r/a = (2–
5) also make the main contribution to the hopping
MCW conductivity. If the concentration of such pairs
N2 ! N, then

, (1)

where v 0 = (4/3)π  [13]. Quadratic dependences char-
acteristic of the concentration of pairs with a decreased
ionization energy were detected in silicon with an In
impurity [18] by the temperature dependence of the
Hall constant and in silicon with a P impurity [19] by
absorption in bands shifted toward regions of lower
energies with respect to photoexcitation peaks of iso-
lated impurities. Similar dependences of the absorption
coefficient k on N were observed for a number of other
group III and V impurities [20]. The broad absorption
spectra of these bands (Fig. 2) are a superposition of the
contribution of pairs at various distances between the
impurities. The structure of bands is different for both dif-

N2 v 0N2=

r0
3

Fig. 2. Spectral dependences of the absorption coefficients
k at 4.2 K for silicon with the concentration of impurities N
(1016 cm–3): (1) B (7.6), (2) Al (15), (3) Ga (16), (4) In (40)
[21], (5) As (18), (6) Sb (2.6), and (7) P (1.5).
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ferent impurities and transitions to different excited states
but is independent of the impurity concentration N.

In order to compare the results obtained in [20] with
the data obtained using Eq. (1), the zones in which the
integral absorption corresponds to the concentrations
N2 of the impurities localized at distances no longer
than r0 = 5a are hatched in Fig. 2. In this case, the impu-
rity Bohr radii a are assumed to be e2/2εEi (here, e is the
electron charge, ε = 12 is the dielectric constant, and Ei

is the ionization energy). The zone widths were deter-
mined from the ratio of their areas to the areas of nar-
row absorption peaks at transitions to the correspond-
ing excited states of impurities with the known small
(N < 1015 cm–3) concentrations. The dependences of the
concentrations of impurities in the pairs N2 on the con-
centrations N of doping impurities obtained on the basis
of Eq. (1), [20], and Fig. 2 are shown in Fig. 3 [13–15].
For an In impurity, the same figure also shows the
dependence of N2 on N from [18] and the values of N2
estimated from [18] by the photoconductivity spectrum
and from [21] by the absorption spectrum. It is seen that
the values of N2 for the In impurity determined from
different experiments agree with each other. The solid
lines correspond to Eq. (1) for a B impurity (a = 1.3 nm)
and an In impurity (a = 0.38 nm). Long-wavelength
absorption is revealed at Nv 0 > 10–2. Thus, the stronger

Fig. 3. Dependence of the concentrations of impurities in
pairs N2 on the concentrations of the main impurities N in
Si doped with (1) B, (2) P, (3) Sb, (4) As, (5) Al, (6) Ga, and
(7) In by absorption [21] and photoconductivity [18] and
(8) In by the Hall effect [18].
the localization of charge carriers in the ground state of
impurities, the higher the concentrations at which
absorption by pairs is observed. Moreover, the slow
relaxation of UMCW arises in the same regions of con-
centrations of various impurities. This fact is an impor-
tant indication of the participation of the impurity pairs
in MCW PC.

3. Optical charge exchange of impurity states
and the relaxation of excitation. Consider a situation
in n-type silicon at thermodynamic equilibrium and low
temperatures. The doping impurity pairs at N @ Nc
were weakly ionized. The doping impurity ions are
mainly localized on the nearest distances from the com-
pensating ions, forming pairs of a different type,
namely, dipoles in a concentration of N+ –. Thus, at T =
5 K, N = 1016 cm–3, and Nc = 1014 cm–3, the concentra-
tion of ions N+ that are not bound into dipoles does not
exceed 0.1Nc and decreases with increasing N and Nc;
that is, N+ – ≈ Nc [2]. At low temperatures, ions in the
dipoles make no contribution to the MCW conductivity,
because electron hopping from more distant impurities
to dipoles is possible only upon energy absorption.

Excitation results in the random ionization of an
impurity, whereas the capture of free carriers leads to
optical charge exchange decreasing N+ – and increasing
N+ and . Electron hopping between such ionized and
neutral impurities makes a contribution to MCW PC.
Under experimental conditions, silicon is excited by
radiation pulses with intensity I and duration ∆t, which
is much longer than the lifetime of free charge carriers
τ but much shorter than the relaxation time of UMCW.
Then, a steady-state concentration of free charge carri-
ers n = ISN/αNc (where S is the photoionization cross
section and α is the capture coefficient) is reached in a
time exceeding τ = 1/αNc, and the charge-exchange
process can be described by the equations [14, 15]

(2)

from which 

(3)

At N @ Nc, the amplitudes of UMCW due to the charge
exchange of isolated impurities and impurities in pairs
are proportional to Nc. It also follows from Eq. (3) that
the limiting charge exchange of impurities is reached if
more than Nc ionizations (ISNt > Nc) proceed in time t
in a unit volume. Then, a steady nonequilibrium state is
reached in the crystal

(4)

N2
+

dN+–/dt ISN αnN+–;–=

N+– Nc N–  ! N ,+=

dN2
+/dt IS N2 N2

+–( ) αnN2
+,–=

N+ N 1 N /Nc+( ) 1– 1 ISt 1 N /Nc+( )–( )exp–[ ] ,=

N2
+ N 1 N /Nc+( ) 1– 1 ISt 1 N /Nc+( )–( )exp–[ ] .=

N+ Nc; N+– Nc
2/N  ! Nc;≈≈

N2
+ N2Nc/N≈ v 0NNc ! N2, N+.=
JETP LETTERS      Vol. 79      No. 12      2004



IMPURITY PAIRS AND EXCITATION RELAXATION IN DOPED SILICON 653
A further increase in intensity must lead only to an
increase in the concentration of free carriers rather than
to a noticeable change in the ion concentration. It is
clear from Eq. (4) that only a small fraction of impuri-
ties in pairs is ionized in charge exchange, while  !
N+. Therefore, the contribution of hopping to UMCW
with the participation of isolated impurity ions should
also be taken into account, despite the fact that the hop-
ping probability in this case is substantially smaller
than in pairs.

The relaxation of excitation proceeds as a result of
electron transitions between neutral and ionized impu-
rities. The neutralization of an ionized impurity in a
pair can be accomplished as a result of a single hopping
with energy release at any r/a > 1, and its rate should
not strongly depend on the temperature. However, the
probability that a third impurity is located at a small or
even medium distance from the pair must decrease with
decreasing r/a. Therefore, the rate of charge relaxation
for “close” pairs must be lower than for “distant” pairs,
and the relaxation of UMCW must be nonexponential. A
crude estimate shows [15] that the relaxation rate can
vary in the range 107–101 s–1 at N ≈ 1016 cm–3. However,
the relaxation time must increase proportional to Na3

and only weakly depend on Nc, because impurities in
the vicinity of pairs are mainly neutral.

The isolated impurity ions can make a contribution
to MCW PC (Fig. 1) until they are bound into dipoles.
Localization occurs as a result of the hopping drift of
the ion charge in the constant electric field of compen-
sating impurity ions. The average drift time is the Max-
wellian relaxation time of the space charge [11, 14, 15]

(5)

determined by the local conductivity of the medium σ =
eµN+. At the extreme optical charge exchange (N+ ≈
Nc), the time dependence of the concentration N+ can be
described by the equation

(6)

Here, τm itself depends on the concentration of isolated
ions N+. For comparison with experiment, it is conve-
nient to write Eq. (6) in the form

(7)

An increase in the relaxation rate due to an increase in
the hopping conductivity µ with both increase in Nc and
increase in N and T must be a characteristic manifesta-
tion of this component of UMCW. It should be expected
that hopping with the participation of N+ ions will be
manifested at relatively high concentrations N. At lower
concentrations, when the charge relaxation time is
larger than the pulse excitation period, a quasi-steady-
state concentration N+ will be reached, and this compo-
nent of UMCW will not be observed. Thus, the effects of
impurity concentration and temperature on the relax-

N2
+

τm ε/4πµeN+,=

N+ Nc t/τm–( ).exp=

ε/4πeµNc( )– Nc/N
+( ) N+/Nc( )ln t.=
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ation of MCW PC with the participation of pairs and
isolated impurities must be substantially different. This
allows us to elucidate the conditions under which one
of the processes predominates.

4. Relaxation of polarization photoconductivity.
In order to investigate the impurity photoresponse
kinetics [13–15], doped silicon samples were excited
by CO2-laser radiation pulses (10.6 µm) with a fre-
quency of about 200 Hz. The time dependences of the
photoresponses in constant and microwave electric
fields were analyzed with a gate integrator with an aper-
ture of 0.5 or 5 µs. The pulse duration, ∆t ~ 0.5 µs, was
much longer than the lifetime of free charge carriers τ
but much shorter than the relaxation time of UMCW. The
energy of pulses at Nc ~ 1014 cm–3 usually did not
exceed 10–6 J and was sufficient for the saturation of the
slow component of the MCW signal. A further increase
in the intensity gave rise to an increase in only the fast
component of UMCW, which repeated the response at a
constant bias. The fast and slow components of UMCW
were of the same polarity corresponding to an increase in
the absorption of MCW radiation owing to an increase in
the conductivity of the samples upon excitation.

The dependences of the photoresponse UMCW on
time t are shown in Fig. 4 for silicon doped with a num-
ber of group III and V impurities. It is evident in the fig-
ure that the relaxation of the response is nonexponential
for all impurities. The start of relaxation corresponds to
times of 10–50 µs, which increase to 0.5–2.5 ms as the
detection delay increases. It is also seen in the figure
that the relaxation rate depends on the nature of impu-
rities. Thus, at N = 6 × 1016 cm–3, the relaxation rate in
silicon with P, Al, and Ga decreases as the Bohr radius
a of these impurities decreases.

The relaxation time of UMCW depends on the con-
centration N of main impurity as well. The time depen-
dences of UMCW for silicon doped with boron in relatively
small concentrations are shown in Figs. 5 and 6. It is seen
that the relaxation time changes initially from 25 µs (N =
1.8 × 1016 cm–3) to 10 µs (N = 4 × 1016 cm–3) and from
1.2 ms to 0.5 ms at a detection delay of 1 ms, that is,
decreases as approximately 1/N. However, it is evident
in Fig. 5 that the time dependences at equal concentra-
tions N differ insignificantly even if concentrations Nc

in the samples differ by several times. On the other hand,
the response amplitude increases with increasing Nc. This
agrees with [4], where it was found for a series of samples
doped with B (N = 3.3 × 1016 cm–3) and compensated
with P that UMCW ~ Nc at modulation frequency f =
1 kHz of intense (20–50 mW) excitation.

Such simple dependences were observed for boron
concentrations N < 5 × 1016 cm–3, and then the slower
component of the relaxation of UMCW was exhibited
again (Fig. 7). It is seen in the figure that the time
dependences of UMCW at 4.2 K are similar at t > 0.5 ms,
though the concentrations N and Nc in the samples
strongly differ. However, as the temperature was
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increased to 10.5 K, the relaxation rate did not change
at N = 2.4 × 1016 cm–3 but increased by approximately
one order of magnitude at N = 5.5 × 1016 cm–3. From
here, it follows that hopping transitions between pairs
of the main impurity make the main contribution to the
polarization PC at relatively small boron concentra-
tions (Figs. 5, 6), whereas the slow relaxation of UMCW
associated with the contribution to PC from isolated
ions appears with increasing N. In the latter case, the
time dependence of UMCW ~ N+ must be described by a
logarithmic law (Eq. (7)).

The time dependences of UMCW are shown in Fig. 8
for two samples transformed according to Eq. (7) to the
form

(8)

It is evident that straight lines fit the experimental
points well. The slope of these lines corresponds to

U 0( )/U t( )[ ] U t( )/U 0( )[ ]ln t.=

Fig. 4. Time dependences of the photoresponse of Si doped
with impurities in concentrations (1016 cm–3) (1) In (10),
(2) Sb (2.6), (3) Ga (6), (4) B (2.4), (5) Al (6), (6) P (6), and
(7) As (18) in a microwave electric field UMCW.
−ε/4πeµNc. Hence, it follows that the mobility µ does
not depend on time and has a usual physical meaning.
Figure 8 demonstrates that, in sample 1 (N = 5.5 × 1016,
Nc = 5 × 1015 cm–3), σ(0) = 2.4 × 10–8 Ω–1 cm–1 at 4.2 K
and σ(0) = 2 × 10–7 Ω–1 cm–1 at 10.5 K; the hopping
mobilities µ are equal to 3 × 10–5 and 2 × 10–4 cm2 V–1 s–1.
In sample 2 (N = 1.15 × 1017, Nc = 1014 cm–3), σ(0) =
2 × 10–8 Ω–1 cm–1 and µ = 1.25 × 10–3 cm2 V–1 s–1 at
4.2 K. These results confirm that the hopping transi-
tions of isolated ions N+ contribute to the polarization
PC. However, the absolute values of hopping conduc-
tivity in the constant field of compensating impurity
ions are several orders of magnitude greater than the
values typical of doped silicon at a thermodynamic
equilibrium. Moreover, the conductivity of sample 1
increases as the temperature increases from 4.2 to
10.5 K by only one order of magnitude, whereas an
increase in σ by a factor of approximately 250 should
be expected for the activation energy E3 = 4.3 meV cor-
responding to a concentration of 5.5 × 1016 cm–3 (see
[22, 23] and references cited therein). Such a discrep-
ancy is natural for two reasons. First, at low tempera-
tures in the absence of excitation, most of the ions of the
main impurity are bound into dipoles [3] which make
no contribution to hopping conductivity. Second, the
drift of the charge of main impurity ions occurs as a
result of several jumps in the potential well over the

Fig. 5. Time dependences of UMCW for Si doped with B and

P in concentrations N, Nc (1016 cm–3): (1) (1.8, 10–2),

(2) (3.3, 10–2), (3) (3.3, 2 × 10–3), and (4) (3.95, 10–2).
The aperture is 0.5 µs.
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states of impurities with energies decreasing as com-
pensating impurity ions are approached. This charge
transfer is activationless, and its rate can be completely
independent of temperature. It is possible that the
observed temperature dependence is associated with
the thermal ionization of the dipoles at 10.5 K [2],
which leads to an increase in the equilibrium concentra-
tion N+ and in the relaxation rate. Thus, hopping con-
ductivity in the constant electric field of point charges,
which determines the relaxation rate of MCW PC, rad-
ically differs from percolation conductivity in an exter-
nal field. At the values of conductivity determined from
the dependences in Fig. 8, the slow component of its
relaxation in a constant field would be readily detected
even at 4.2 K. However, even at elevated temperatures
and with a sufficiently sensitive detection method, this
component could not be distinguished.

Conclusions. Based on the experiments performed,
a simple explanation is offered for the physical nature
of the hopping photoconductivity of doped silicon in a
microwave electric field. It is relied upon taking into
account interactions due to which impurities can reside
in the states of isolated atoms and ions, pairs of the
main impurity, and dipoles (pairs of ions of the main
and compensating impurities). From the spectra of
absorption bands, the concentrations of impurity pairs

Fig. 6. Time dependences of UMCW for Si doped with B and

P in concentrations N (1016 cm–3) and Nc = 1014 cm–3: (1)
(1.8), (2) (2.4), (3) (3.3), and (4) (3.95). The aperture is 5 µs.
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N2 were estimated for silicon doped with B, Al, Ga, In,
P, As, and Sb with concentrations N(1016–1018 cm–3). It
is found that these bands are manifested if N2 > 10–2N.
In this case, the stronger the localization of the charge
carrier in the ground state of impurities, the higher the
concentrations at which long-wavelength absorption is
exhibited. It is shown that the absorption by impurity
pairs and the slow relaxation of MCW PC occur at close
concentrations N. The relaxation of MCW PC under
pulse impurity photoexcitation is nonexponential, and
its rate increases with increasing N but weakly depends
on the temperature and compensation. Using a boron
impurity as an example, it has been shown that these
regularities are fulfilled at N < 5 × 1016 cm–3. As the
concentration increases, the slower component of
MCW PC appears again, and its rate increases with
increasing temperature and compensation. The regular-
ities observed are explained by the optical charge
exchange of impurities in various states upon their pho-
toionization. As a result, the concentration N+ – of the
dipoles into which ions of the main and compensating
impurities were bound before excitation decreases, and
the concentrations  of ionized impurities in pairs
and isolated ions N+ increase. These ions can partici-
pate in hopping transitions and contribute to MCW PC.
As the excitation intensity increases, the limiting opti-

N2
+

Fig. 7. Time dependences of UMCW for Si doped with B and

P in concentrations N, Nc (1016 cm–3): (1) (2.4, 10–2), 4.2 K;

(2) (2.4, 10–2), 10.5 K; (3) (11.5, 10–2), 4.2 K; (4) (5.5, 0.5),
4.2 K; and (5) (5.5, 0.5), 10.5 K.
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cal charge exchange is reached, at which the slow com-
ponent of MCW PC is saturated. The relaxation of
charge exchange occurs as a result of the hopping trans-
fer of ion charges. One jump would suffice to neutralize
a pair, and this fast relaxation process predominates at
low concentrations N. Isolated ions contribute to PC
until they become again bound into dipoles in the time
of hopping-charge drift in the electric field of compen-
sating impurity ions. The rate of the process in this case
is determined by the space-charge relaxation time, that
is, by the conductivity of the medium, which depends
both on the concentration of the main and compensat-
ing impurities and on temperature. Thus, MCW PC
with the participation of isolated ions is exhibited at
high concentrations and a significant compensation.
The drift occurs in the potential wells of compensating
impurity ions and is not associated with percolation.
The local conductivity, which determines the drift time,
exceeds the percolation conductivity of silicon with a
close impurity composition by several orders of magni-
tude.

The studies in 1987–2001 were performed with the
participation of O.I. Smirnova. This work was sup-
ported by the Russian Foundation for Basic Research,
project nos. 93-02-2070, 96-02-16243, 99-02-16078,
and 02-02-16272.

Fig. 8. Time dependences of the photoresponse [U(0)/U(t)] ·
ln(U(t)/U(0)) for Si doped with B and P in concentrations N,
Nc (1016 cm–3): (1) (11.5, 10–2), 4.2 K; (2) (5.5, 0.5), 4.2 K;
and (3) (5.5, 0.5), 10.5 K.
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