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Abstract—The response of the electrons of an fcc copper (001) film to an external electrostatic field is calcu-
lated. In order to determine the distribution of the screening charge, the equations of the electron density-func-
tional theory are solved self-consistently by an original method. The position of the “image plane,” which is
involved in a correct asymptotic expression for the exchange-correlation potential in the vacuum region, is first
determined when performing a quantum-mechanical calculation for an anisotropic crystal film. The nonlinear
electron response is characterized by the evolution of the “center of gravity” of the induced charge, which is
also investigated. The calculations take into account the crystal structure of the film, and the results differ essen-
tially from the predictions of the “jelly” model. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Correct treatment of the screening of an external
electrostatic field by a metal surface is essential for
understanding many physical phenomena: atom and
electron scattering at a metal surface, tunneling through
a surface barrier, lattice dynamics of clean and adsor-
bent-covered crystals, generation of the second har-
monic of an electromagnetic field on its reflection from
the surface of a metal, etc. The physics of these phe-
nomena consists in the nonlocal response of conduction
electrons to the external electric field. After the classi-
cal work of Lang and Kohn [1], many studies were
devoted to this problem. However, all of them, with rare
exception, are based on the jelly model, which does not
take into account the anisotropy of the lattice of a real
crystal. Only in [2–5] were quantum-mechanical calcu-
lations of the induced electron density performed for
the (001) surfaces of Al and Ag in a realistic model of
the crystal potential, and the results differ essentially
from those obtained in the jelly model.

In this paper, a self-consistent calculation of the
electron response to an external electrostatic field is
first carried out for an (001) film of fcc copper, a metal
for which the jelly model is certain to be inadequate.

1. MODEL AND CALCULATION TECHNIQUE

In order to find the electron states of a (001) film of
copper, we self-consistently solve a set of equations of
the electron density-functional (EDF) theory written in
1063-7834/01/4303- $21.00 © 20401
atomic units (e = " = m = 1):

 (1)

 (2)

[Θ(x) is the Heaviside step function], with boundary
conditions corresponding to the electron bound states
lying below the continuous spectrum. For a crystal film
oriented perpendicular to the z axis, this means that

 (3)

 (4)

where Rn is a two-dimensional lattice translation vector
and q is the number of uncompensated electrons in a
unit cell Ω of the film.

According to Eq. (2), the electron density ρ(r, q) is
the sum over all energy bands n and quasi-momenta k
corresponding to the occupied one-particle states with
energies En(k, q) lying below the Fermi level EF (q).

The Coulomb contribution to the effective potential
V[ρ; r, q] is calculated by a method described in [6]; the
method explicitly takes into account the electrical neu-
trality of the volume of the metal film (Fig. 1):

 (5)
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where ρ∞(r) is the self-consistent electron density of
the electrically neutral infinite crystal. This “frozen
electron bulk density” model is based on a strict asymp-
totic form of the electron wave function deep within the
crystal film [7] and agrees with self-consistent calcula-
tions of the electronic structure of metal films. The
model allows one to improve the stability of self-con-
sistent calculations for a charged film and, on the other
hand, to achieve much progress toward analytical solu-
tion of the Poisson equation with non-muffin-tin elec-
tron density ρ(r, q). In combination with the calcula-
tional technique described below, this model makes it
possible to considerably simplify a self-consistent solu-
tion of the Kohn–Sham equations (1) and (2) and to
take advantage of the available numerous calculations
of the electronic structure of infinite crystals.

The exchange-correlation contribution to V[ρ; r, q]
is written in the local density approximation by using
the Hedin–Lundqvist interpolation formula with the
parameters presented in [8].

For an electrically neutral system (q = 0), the bound-
ary conditions in the vacuum region [Eq. (4)] corre-
spond to a potential which asymptotically tends to zero
(the wave functions of the discrete spectrum fall off
exponentially). In the case of a charged film, the elec-
trostatic potential in the vacuum region varies linearly
with the distance from the film surface, as is the case
with the potential of a charged surface [6]. For this rea-
son, as in many other papers concerned with calcula-
tions of the electronic structure of charged films, we
assume that, in vacuum, on either side of the film, there
is an infinitely high potential barrier at a distance zB
from the film surface, where the electron density is neg-
ligibly small. This barrier is placed far from the film,
and its effect on the occupied states can be ignored if
the condition V[ρ; zB, q] > EF (q) is fulfilled. At the

Fig. 1. Different regions of the unit cell of the film. I (ΩI) is
the bulk region, II (ΩII) is the surface region, and III (ΩIII)
is the vacuum region (the portions of MT spheres situated in
the bulk region of the unit cell are hatched).
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same time, its presence makes it possible to treat the
effect of uncompensated charges of both signs in terms
of stationary states.

Equations (1)–(4) are solved self-consistently by an
original method described in detail in [9, 10]. In this
method, the set of coordinate functions chosen for the
Ritz variational procedure is such that the surface
region and the bulk of the film can be effectively sepa-
rated and the computational effort is greatly reduced. In
some sense, our method is analogous to the “embed-
ding” method (as applied to the case of a film), which
was employed in [2, 3] for calculating the electron
response of semi-infinite Al and Ag crystals.

In our method, when performing the Ritz variational
procedure, the following expansion of the wave func-
tion is used:

 (6)

where (r) = 1 if r lies in the volume ΩI of the film

(Fig. 1); otherwise, we have (r) = 0.
In Eq. (6), φjk(r) are the eigenfunctions of the

Hamiltonian for the infinite crystal

 (7)

These eigenfunctions are subject to the Bloch boundary
conditions in Eq. (3) in the film plane and to the homo-
geneous boundary conditions at the z = ±bs planes lying
in the surface region (Fig. 1),

 (8)

where n is an outward normal to the surface of the
region bounded by the z = ±bs planes and Ls is a con-
stant. In what follows, we assume that the film is sym-
metrical relative to the z = 0 plane; therefore, the func-

tions (r, q) possess a definite parity p. Clearly, the
Sturm–Liouville problem specified by Eqs. (7) and (8)
meets the requirements imposed by symmetry on the

functions (r).

It is known that, in fcc copper, the potential in the
bulk is closely approximated by the muffin-tin (MT)
potential, and Eq. (7) can be solved efficiently by the
film version of Green’s function method [9–12].

As in the embedding method, the function (r, q)
is taken in the form of a linearized augmented-plane
wave (LAPW) [13] in the film surface regions lying
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above the S+ and below the S– surfaces (Fig. 1). In the
space between the sphere in the film surface region, we
have

 (9)

where the parity p coincides with the parity of the state,
Kµ is a reciprocal lattice vector of the film, r = (u, z),
j = {n, µ}, and kn = nπ/(a2 – a1), with n = 0, 1, 2, … .

The convergence of the variational calculation
depends heavily on the position of the z = a1 and z = a2
planes (Fig. 1). For a (001) film of fcc copper, the opti-
mal positions are a1 = t – 3.5rs and a2 = t + 3.5rs, where

z = t is the uppermost atomic plane and rs = A /4 is
the radius of the MT sphere (the lattice parameter A =
6.8309 a.u. is taken to be equal to its bulk value for cop-
per).

Within the ith MT sphere in the surface layer, we
have

 (10)

where (ri; El, q) is a solution (normalized in the MT
sphere) to the Schrödinger equation with effective
potential V[ρ; ri, q] averaged over the angles corre-

sponding to the energy El; (ri; El, q) is its derivative
with respect to energy; ri = r – ti, where ti is the position
vector of the ith atom of the surface layer; and Ylm(ri)
are the spherical functions of the polar angles of the
vector ri.

In the vacuum region, (r, q) is a linear combina-
tion of the solution (corresponding to the energy Ev and
normalized in volume ΩIII, see Fig. 1) to the equation
with effective potential V[ρ; r, q] averaged over the
film plane

 (11)

and the derivative to this solution  with respect to
the energy. At z > 0, we have

 (12)
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tiability of the basis functions at the surfaces of the MT
spheres and at the film surface z = b.

It should be stressed that, as in the LAPW method,
the film muffin-tin (FMT) potential is used only for
constructing the set of coordinate functions. The effec-
tive potential in the surface region is not of the MT
form in our method, which is quite important and
should be taken into account when describing the elec-
tron states of a metal film [10].

The basis functions defined above suffer a disconti-
nuity at the surface-and-bulk region interfaces S±. For
this reason, the functional to be minimized is written in
the form [14]

 (13)

where the Hamiltonian  = – ∆ + V[ρ; r, q] is given

everywhere over the unit cell Ω of the film; ΨI and ΨII
are the wave functions in the bulk (ΩI) and surface (ΩII)
regions, respectively; and n is an outward normal to the
boundary of ΩI. Minimizing this functional with the
functions in Eq. (6) leads to a set of homogeneous lin-
ear equations,

 (14)

whose matrix is Hermitian and has a block form. Only

the elements of the diagonal blocks  and S22 are lin-
ear functions of the energy, (Sij)JJ = (Hij – EOij)JJ,
whereas the elements of the Hermitian conjugate

blocks  and  are E independent. Thus, the prob-
lem is reduced to a generalized eigenvalue problem and
single minimization allows one to determine all eigen-
values En(k) in a given energy interval.

It is significant that the surface-layer potential
affects only the elements of the block S22, whose
dimension is determined by the number of surface lay-
ers. This block is the same for even and odd states,
which reduces the computational effort. The blocks S11,
S12, and S21 need not be recalculated when surface per-
turbations are taken into account or when the self-con-
sistency procedure is carried out, if the self-consistent
bulk electron density is used. Details of the derivation
of Eq. (14) and an explicit form of the matrix elements
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are presented in [9]. In [9, 10], it was shown that the
accuracy of the electronic-structure calculation method
described above is comparable to that of the film
LAPW method. The effect of the coordinate function
parameters on the rate of convergence of the variation
procedure was also analyzed in those papers. The effect
of the centers of linearization of LAPW functions is
identical to that in the film LAPW method [15]. The
Sturm parameters noticeably affect only the rate of con-
vergence of the variation procedure. After the parame-
ters a1 and a2 had been optimized, we used 80 LAPW
functions and about ten Sturm functions for the states
of the same parity. The dimensionality of the basis was
verified by comparing the calculation for the electri-
cally neutral film with other available calculations and
the experiment.

|ρind(z, q)|, 10–5 a.u.
30
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Fig. 2. Distribution of the induced electron density for the
uncompensated electron number q equal to (1) 0.03 and
(2) –0.03. The distance is measured from the geometrical
surface of the crystal (arrows indicate the positions of the
film surface z = b and atomic planes).

Table 1.  Distribution of the uncompensated electron number
q over different surface regions of a (001) film of copper: qvac
is in the vacuum region, qinter is in the regions between the
spheres of the surface layer, and qspher is in the MT spheres

q qvac qinter qspher

–0.03 –0.0176 –0.0100 –0.0024

–0.02 –0.0123 –0.0069 –0.0008

–0.01 –0.0063 –0.0033 –0.0004

0.01 0.0061 0.0031 0.0008

0.02 0.0117 0.0053 0.0030

0.03 0.0183 0.0083 0.0034
P

2. SCREENING OF AN ELECTRIC FIELD 
BY A (001) FILM OF COPPER

An investigation of the electron response of metals
to an external electrostatic field in the framework of the
EDF theory is of considerable interest for two principal
reasons. First, at the present time, this is the only
method by which the effect of exchange correlation on
the response functions of inhomogeneous systems can
be treated. Second, the EDF theory makes it possible to
go beyond the linear response regime, since one can
easily calculate the electron density induced by an

external field of strength % = –  (Sωs is the area of

the cross section of the unit cell by the plane z = const):

 (15)

In what follows, we consider the case of fields |%| ≤
4.2 × 109 V/m (|q| ≤ 0.03), which are practicable [16]
and, at the same time, satisfy the condition V[ρ; zB, q] ≥
EF (q), which rules out the presence of artificial states
near the infinite barrier at sufficiently large zB for nega-
tively charged films. The fulfillment of this condition
was checked at each calculation stage.

Figure 2 shows a typical distribution of the induced
electron density over a straight line that is normal to the
(001) surface of a Cu film and passes through the
nucleus of an atom in the second surface layer. From
Fig. 2 and Table 1, which lists data on the distribution
of the induced charge over different regions of the sur-
face layer, it is seen that most of the screening charge is
concentrated in the very thin layer near the film surface
(z = b). The peak of ρind(z, q) is shifted from the last
atomic plane toward the vacuum region by approxi-
mately half the spacing between the atomic planes.
This distribution of the screening charge in a (001) film
of Cu is similar to that obtained by calculating the elec-
tron response of the (001) surfaces of Ag [3] and Al [2].
The fraction of q contained in a surface MT sphere is
small, but the polarization of the screening charge in this
region is significant (Fig. 3). We note that calculations
revealed no noticeable polarization of the electronic
charge in a surface MT sphere in Al [2], but in a metal
with d electrons (Ag), this effect was observed [3].

Friedel oscillations of the electron density in the
bulk of the crystal are suppressed in the frozen bulk
density model (5) employed in this paper. We estimated
the error associated with this approximation in the jelly
model, according to which, in the bulk of the crystal,
we have [17]

 (16)

where kF = (3π2 )1/3 and  = 0.0125  (a0 is the Bohr
radius) is the bulk value for a copper crystal. The coef-
ficients A(q) and α(q) are determined by matching
Eq. (16) with the calculated induced electron density at

4π
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interfaces S+ and S–. The corresponding distribution for
q = 0.03 is represented by the dashed curve in Fig. 2.
The number of uncompensated electrons outside the
surface region as calculated by Eq. (16) is –3.9 × 10–5.
This justifies the approximation in which only one
atomic layer of the surface region is taken into account
in the case of a (001) film of fcc copper. When electrons
are present in excess (q > 0), the peak of the induced
density distribution (Fig. 2) is lower and its shift toward
the vacuum region is larger than in the case of a deficit
of electrons (q < 0). This effect is physically clear and
takes place in both the jelly model [16] and models tak-
ing the crystal structure into account [2, 3].

However, the magnitude of the shift of the center of
gravity of the induced charge,

 (17)

in the (001) film of fcc copper (Fig. 4), which depends
on the nonlinear response of the electron density, dif-
fers essentially from the jelly model prediction [16]. In
the limit as q  0, this quantity gives the position of
the image plane z0 of the metal, which is involved in a
correct asymptotic expression for the exchange-corre-
lation potential given by the EDF theory for a finite
crystal [1, 17]:

 (18)

the image plane is of primary importance in the physics
of many surface phenomena. In order to decrease the
error when calculating the quantity

 (19)

we regularize the differentiation, as in [3], by smooth-
ing the calculated zq dependence by the method of least
squares (Fig. 4). For the distance measured from the
geometrical surface of the crystal, we obtain

zq = z0 + z1q = 1.03 + 4.03q (a.u.). (20)

The error in determining zq associated with the suppres-
sion of Friedel oscillations in the film volume ΩI can be
estimated from Eq. (16) and does not exceed 0.01 a.u.
A comparison with the results of other papers is per-
formed in Table 2. The data listed in the “Jelly model”
column are obtained by linear interpolation of the cal-
culations from the cited papers for the density parame-
ters re/a0 = 2 and 3 to a value of re/a0 = 2.67 correspond-
ing to a copper crystal. The values of z0 presented in the
“Experiment” column are model calculations with fit-
ting parameters found from the experimental data (the
energies of states of the Rydberg type) having a direct
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relationship to the position of the image plane. From
Table 2, it is seen that our results lie in the middle
between the jelly model results and the calculations
based on the fitting parameters.

Table 2.  Position of the image plane for (001) Cu (relative
to the geometrical surface of the crystal, in a.u.)

Jelly model Experiment Our
calculation[18] [18] [19] [20] [21] [22]

1.42 1.32 1.43 1.35 0.57 0.48 1.03

ρ10
ind(r, q), 10–5 a.u.

1000

500

0

–500
0 0.5 1.0 1.5

r, a.u.

1

2

rs/2

zq, a.u.
1.5

1.0

0.5

0
–0.03 –0.02 –0.01 0 0.01 0.02 0.03

q, a.u.

Fig. 3. Variation of the dipolar component of the induced
electron density in a surface MT sphere for q equal to
(1) 0.01 and (2) 0.03.

Fig. 4. Center of gravity zq of the induced electron density
for the charge q (the distance is measured relative to the geo-
metrical surface of the crystal).
1
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The coefficient of the term linear in q in Eq. (20) is
related to the quadratic response of the electron density
ρ2(r). Indeed, we have

 (21)

and, therefore,

 (22)

According to [23], in the low-frequency limit (ω/ωp <
0.1, where ωp is the plasma frequency in the bulk of the
crystal), we have

 (23)
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0

–20 –15 –10 –5
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Fig. 5. Difference in the density of states between the
charged (q = 0.01) and neutral (001) films of Cu.

Fig. 6. Difference in the local density of states between the
bulk and surface atomic layers of the (001) film of copper
(data from [24]).
P

where ρ2ω(z) is the second-harmonic amplitude of the
electron density in a time-harmonic uniform electric
field of amplitude %0 applied perpendicular to the metal
surface. Thus, the coefficient of q in Eq. (20) character-
izes the second-harmonic intensity generated on reflec-
tion of low-frequency electromagnetic waves at the
metal surface. The value of z1 calculated in [23] in the
jelly model for re/a0 = 3 is 8.14 a.u. Our calculated
value of z1 for a (001) film of copper equals 4.03 a.u.,
which is about half as large as the jelly model predic-
tion and differs from the hydrodynamic model result
[23] by a factor of about 100. We note that, when the
electron screening is calculated for the (001) surface of
Ag with allowance made for the crystal structure [3],
the value of z1 is found to be about a third as large as the
jelly model result. Thus, it is important to take the crys-
tal structure into account when the nonlinear response
is treated theoretically.

Figure 5 shows the dependence of the electron den-
sity of states on the external electrostatic field for a
(001) film of copper. From Fig. 2 and the results of [3],
it follows that the charge induced in a metal by an exter-
nal electrostatic field is a perturbation strongly local-
ized near the surface. Therefore, according to perturba-
tion theory at small values of q, the difference in the
density of states between the electrically neutral and
the charged film (Fig. 5) is most significant for surface
states. This conclusion correlates well with the data
from [24] on the difference in the local density of states
between the bulk and surface regions of a (001) film of
copper (Fig. 6), which is additional support for the
results obtained and, on the other hand, suggests a sim-
ple method for determining the energy localization of
surface states.

The Stark shift of surface states lying 1.5 eV below

the Fermi level (Fig. 5) equals  =  ≈  ≈

0.1 a.u., which is of the same order of magnitude as the
Stark shift of occupied (001) surface states of Ag in an
external electrostatic field.
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Abstract—The density of filled electronic states of noble metals (Au, Ag, Cu) below the Fermi level is studied
by low-energy electron backscattering spectroscopy (0–10 eV) by using a specially designed hypocycloidal
electron spectrometer capable of high energy (≤50 meV) and angular (~1°–5°) resolution. The features
observed in the electron scattering spectra are established to agree well with the extrema of the theoretically
calculated density-of-states distributions. The results obtained amplify substantially the information provided
by UV and x-ray photoelectron spectroscopy. © 2001 MAIK “Nauka/Interperiodica”.
The energy structure of the valence bands of noble
metals is very complex, and their density of states
exhibits a number of features. Analysis of the available
literature data shows that high-energy (>100 eV) elec-
trons are hardly suitable to probe the features in the
valence-band structure. Therefore, the information on
the density of states in the valence bands of metals has
thus far been obtained primarily by ultraviolet and
x-ray photoelectron spectroscopy (UPS and XPS,
respectively) with a high angular resolution [1–6]. The
development and use of electron spectrometers capable
of a high energy resolution (6–50 meV) offers the pos-
sibility of obtaining more detailed information on the
density-of-states distribution of both filled and empty
bands in metals, as well as on the density of the surface
states [7, 8]. Bombardment of a surface by low-energy
electrons (particularly near the threshold for inelastic
scattering) results in a strong perturbation of the target
orbitals, and the electron–target potential suffers a
noticeable deformation [9]. This perturbation accounts
for the excitation of the transitions in solids which are
optically forbidden or IR inactive [3, 9] by low-energy
electrons.

The experiments were carried out on a high-vacuum
setup with oil-free pumping, which consisted of the fol-
lowing main units: an ultrahigh-vacuum chamber hous-
ing a hypocycloidal electron spectrometer, a goniome-
ter with the samples to be studied, an electron-heated
sample holder and an effusion atom source, a power
supply, and a multichannel system for the primary- and
scattered-electron current measurement. The chamber
was placed inside Helmholtz coils, which produced the
uniform magnetic field necessary for the spectrometer
operation.
1063-7834/01/4303- $21.00 © 20408
The hypocycloidal electron spectrometer designed
by us [10] and shown schematically in Fig. 1 served to
produce a monoenergetic electron beam and to analyze
the elastically and inelastically scattered electrons. It
consists of two successively placed electron-energy
analyzers, one of which operates as a monochromator
and the other is used to analyze the elastically or inelas-
tically scattered electrons. The spectrometer makes use
of the fact that electrons acted upon by crossed electric
and magnetic fields, besides propagating forward, drift
in a transverse direction, i.e., perpendicular to both E
and H. Note that the magnitude of the drift does not
depend on the electron velocity vector. Therefore, on
passing the crossed analyzer fields, the electrons scat-
tered through 180° are displaced a certain distance
from the primary beam axis. By placing the collector at
this distance, one can detect the elastically backscat-
tered electrons. The detection of the inelastically scat-
tered electrons is made possible by the provision of seg-
ment-shaped diaphragms in the analyzer electrodes
[10].

The main characteristics of the spectrometer are as
follows: primary beam current ~10–8 A, scattered-elec-
tron current ~10–9 to 10–10 A, beam diameter ~0.5 mm,
full width of the electron energy distribution in the beam
~14–20 meV, and the energy resolution ~20–50 meV.
The instrument is unique in that it can operate at very
low energies (practically from zero up), with the pri-
mary electron-beam intensity being practically energy-
independent and the spectrometer transmission being
~95%.

Prior to measurements, the electron spectrometer
and the samples were heated at a temperature T ~ 1000–
1300 K in a vacuum of 10–6 Pa for 50–60 h, after which
001 MAIK “Nauka/Interperiodica”
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the surface was cleaned by high-energy electrons. The
vacuum in the chamber during the measurements was
~10–8 Pa. The sample surface cleanness was monitored
by checking for the presence of the fine structure in the
measured relations.

This equipment permitted performing experiments
of the following two types.

(1) Measurement of the energy dependence of elec-
trons scattered elastically through 180°. To do this, one
applies optimum constant potentials to the monochro-
mator and analyzer electrodes and measures the current
to collector 15 as a function of the electron energy,
which is determined by the potential difference between
electrodes 1 (cathode) and 14 (sample) (Fig. 1). The inci-
dent electron energy is varied from 0 to 10 eV in
0.02-meV steps. Because, as was already mentioned,
the primary beam intensity does not depend on energy,
the opening of the inelastic scattering channels should
become manifest in the form of minima in the energy
dependence of the intensity of elastically scattered
electrons.

(2) Detection of electrons with a constant residual
energy Er, down to practically zero energy. These mea-
surements are done by maintaining a constant potential
difference between analyzer 9 and sample 14 while
varying the incident electron energy. In this case, the
features in the scattering will be seen as maxima in the
energy dependences.

The spectrometer operation and the experimental
technique used are described in detail in [10].

This paper reports on testing these techniques for
their applicability to the investigation of the electronic
energy structure in solids. Because the electrons scat-
tered elastically from metal targets are sensitive only to
specific features in the density of filled states, we chose
noble metals for our study; their band structure has
been studied most thoroughly, both theoretically and
experimentally [1]. As was shown in [4], electrons with
energies from 30 to 200 eV have the smallest mean free
path in solids, whereas for electrons of energy ~1 eV it
can reach 103 Å. The latter means that electrons with
energies of 0–10 eV can be used to probe not only the
surface but also the bulk electronic states.

The complexity of the band structure of noble met-
als is due to their having two groups of s, p, and d elec-
trons differing strongly in the degree of localization.
Unlike the s and p electrons, the d electrons are strongly
localized, although more weakly than in free atoms.
Hybridization of the s, p, and d states gives rise to a
superimposition of the localized d states on the broad,
smoothly varying background of the s- and p-state dis-
tribution, which brings about the formation of resonant
d states [1].

For this study, we chose bulk polycrystalline sam-
ples of gold, silver, and copper with their surface pol-
ished to grade 12 perfection.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 3      200
Figures 2–4 present elastic scattering spectra and
spectra of constant residual energy obtained in low-
energy electron scattering through 180° from Au, Ag,
and Cu. While, in order to reveal features in the energy
distribution of scattered electrons, the authors of earlier
papers had to find the first (and, quite frequently, the
second) derivative of the scattered electron intensity
with respect to energy, our technique, as seen from the

Fig. 1. Schematic of the hypocycloidal electron-backscat-
tering spectrometer. (1) Indirectly heated oxide cathode; (2)
extraction electrode; (3, 4) input and output selector elec-
trodes, respectively; (5, 6) inner and outer electrodes of the
cylindrical selector capacitor, respectively; (7–9) analyzer
input and output electrodes; (10, 11) inner and outer elec-
trodes of the analyzer cylindrical capacitor, respectively;
(12, 13) spectrometer accelerating electrodes; (14) sample;
(15) collector of backscattered electrons; and (16) primary
electron-beam monitoring collector.
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figures, allows this to be obtained without any addi-
tional processing of the measured relations.

Gold is one of the best studied noble metals. Photo-
emission spectra [12] (curve 3 in Fig. 2) and theoretical
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Fig. 2. Valence-electron energy distribution for gold.
(1) Energy dependence of the elastically backscattered elec-
tron intensity, (2) calculated density-of-states function [11],
(3) experimental valence-band photoelectron spectrum [12],
and (4) valence-band photoelectron spectrum obtained with
a synchrotron beam at 10.2-eV exciting photon energy [13].

Fig. 3. Valence-electron energy distribution for silver.
(1) Energy dependence of the elastically backscattered elec-
tron intensity, (2) electron backscattering spectrum of con-
stant residual energy Er ~ 0 eV, (3) theoretically calculated
density-of-states function [14], and (4) experimental valence-
band photoelectron spectrum [15].

I, arb. units
PH
calculations of the density of states [11] (curve 2 in
Fig. 2) reveal two broad maxima in the density of elec-
tronic states in the valence band at ~3–4 eV and ~6–7 eV,
with the latter maximum, as shown by calculations
[11], being due to the contribution of relativistic interac-
tion effects. Synchrotron radiation was used [13] to study
the electron spectra at energies from 10.2 to 90 eV. The
photoelectron intensity distribution in energy obtained
at a photon energy of 10.2 eV was found to have the
shape of curve 4 in Fig. 2, with a clearly pronounced
fine structure within the 0- to 2-eV interval and one
broad maximum from 2.5 to 4.5 eV. As the exciting
photon energy increases, the photoelectron spectrum
deforms strongly and, at excitation energies above 50 eV,
acquires the shape of curve 3 in Fig. 2. Because we
studied the intensity of elastically scattered electrons at
energies below 10 eV (curve 1 in Fig. 2), the feature at
~6.0 eV is only weakly pronounced here. However,
within the 0- to 3-eV interval, the fine structure of the
spectrum is more distinct than that in curve 4. This con-
firms the strong dependence of the matrix elements
determining the electron excitation probability from
filled states below the Fermi level on the energy of
exciting particles in the case of gold. The absence of
features in the 0- to 2-eV interval in the calculated bulk
density-of-states functions and their presence in photo-
electron spectra at comparatively low exciting-photon

0
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Fig. 4. Valence-electron energy distribution for copper.
(1) Energy dependence of the elastically backscattered elec-
tron intensity, (2) electron backscattering spectrum of con-
stant residual energy Er ~ 0 eV, (3) theoretically calculated
density-of-states function [1], and (4) experimental valence-
band photoelectron spectrum [16].
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energies and in the spectra of elastically scattered elec-
trons give one grounds to relate the features in curve 1
located at 0.50, 1.00, and 1.70 eV to surface electronic
states below the Fermi level, excitation from which has
a resonant nature.

The theoretical and experimental photoelectron
spectra of silver are summarized in monograph [1]. By
calculations [14], the density-of-states function and the
photoelectron spectra of valence-band electrons should
exhibit five maxima at energies 4–7 eV below the Fermi
level, with one of them being substantially weaker in
intensity than the other four (curve 3 in Fig. 3). In the
experimental XPS and UPS spectra, one sees only two
maxima, while at energies from 0 to 4 eV no fine struc-
ture was found at all [15] (curve 4 in Fig. 3). Practically
no fine structure is seen in the energy dependence of the
elastically backscattered intensity at 3–8 eV measured
for silver either (curve 1 in Fig. 3). At the same time, the
spectra of constant residual energy of scattered elec-
trons (curve 2 in Fig. 3) follow a radically different pat-
tern. These spectra exhibit four clearly pronounced
maxima at 3–7 eV, with their energy positions being in
satisfactory agreement with calculations. The maxima
at energies below 3 eV should be assigned to surface
states lying below the Fermi level.

The valence band in copper is formed by the filled
3d band overlapping with the half-filled 4s and empty
4p bands to produce one partially filled band, in which
the upper edge of the filled levels lies slightly lower
than that of the 3d band [17, 18]. This is what accounts
for the complex valence-band structure of copper [1].
The calculated and UPS and XPS data for the density
of states of valence electrons and photoelectron spectra
can be found in [4, 16, 19–21]. Theoretical calculations
suggest that the photoelectron spectra should have
three distinct and two weak maxima (curve 3 in Fig. 4).
The experimental x-ray and photoelectron spectra
exhibit only one broad maximum with a very weakly
pronounced fine structure (curve 4 in Fig. 4). Only the
spectra of photoelectrons emitted perpendicular to the
Cu(111) surface have three maxima at photon energies
of ~11 eV and only two maxima at 6–9 eV (see
Fig. 3.57a in [4]). Note that an increase in photon
energy gives rise not only to an increase in the intensity
of the second and third maxima, but also to a noticeable
increase in the separation between all maxima. For cop-
per, unlike gold and silver, a maximum whose position
is independent of the incident photon energy is
observed in the region 0–4 eV below the Fermi level.
This maximum is assigned to the emission of electrons
from surface states. The fine structure of the valence
band obtained in our spectra of elastically scattered
electrons (curve 1 in Fig. 4) is less distinct than in the
spectra of constant electron residual energy (curve 2 in
Fig. 4). In contrast to UPS and XPS, our spectra of elec-
trons elastically backscattered through 180° exhibit five
features in the 2- to 6-eV interval and their positions
PHYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
agree with the calculated maxima in the valence-band
density-of-states function below the Fermi level.
According to [4, 22], the features at 0.60–0.80 eV
should be identified with surface states located below
the Fermi level in the bulk. The features with energies
of ~1.00 and ~1.50 eV are also apparently of the sur-
face nature, because they are not seen in the calculated
bulk spectra.

The above results permit the following conclusions:
(1) The backscattering spectra of low-energy electrons
are very sensitive to features in the energy distribution
of the density of states in the valence band and can be
employed to study the electron energy spectrum in met-
als. (2) The proposed technique is suitable for probing
not only the surface but also the bulk electronic states
of solids. (3) Low-energy electron backscattering spec-
tra yield more complete information on details in the
density of filled states distribution than the UPS and
XPS methods which are currently widely used. This
advantage becomes particularly significant when the
matrix elements determining the excitation probability
depend strongly on the energy of exciting particles.
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Abstract—The evolution of thermomagnetic perturbations in the resistive state of superconductors is consid-
ered. A qualitative pattern of the formation and further development of nonlinear stationary structures that
describe the final stage of thermal and electromagnetic perturbations in a superconductor is investigated. The
wave propagation velocity and the wave front width in a superconductor are estimated. © 2001 MAIK
“Nauka/Interperiodica”.
Energy dissipation during the motion of vortices
leads to ohmic heating of a superconductor. As a result,
a certain region of the superconductor is heated to a
temperature T > Tc, where Tc is the critical temperature.
An increase in the temperature in a local region of the
sample brings about a decrease in the critical current jc
and the emergence of a vortex electric field E at the
same region.

The effect of superconductivity quenching due to
thermal heating of the vortex lattice has been experi-
mentally studied for a long time. Early experiments [1]
revealed that the vortex electric field E is induced under
ohmic heating in a superconductor through which a
direct current with a density jc flows. According to the
balance between dissipative and nonlinear effects, the
transition to the resistive state is accompanied by the
emergence of various modes of the “switching wave”
type, i.e., the regime of a wave motion that switches a
sample from the superconducting to the normal state.
Examples of these modes can be provided by thermal
waves, namely, a steady-state propagation of a normal
zone [2] or nonlinear thermomagnetic waves [3] in
superconductors.

In this work, we studied the qualitative pattern of
formation and the profile of nonlinear dissipative struc-
tures, i.e., stationary traveling waves which describe
the final stage of the evolution of thermal and electro-
magnetic perturbations in the resistive state of super-
conductors.

The evolution of thermal and electromagnetic per-
turbations in a superconductor is described by the non-
linear one-dimensional heat conduction equation [3]

 (1)νdT
dt
------ κ d2T

dx2
--------- JE+= ,
1063-7834/01/4303- $21.00 © 20413
the Maxwell equation

 (2)

and their related equation of the critical state

 (3)

where ν and κ are the heat capacity and thermal con-
ductivity coefficients, respectively; and jc and jr are the
densities of the critical and resistive currents, respec-
tively.

The model under consideration is essentially non-
linear, because the right-hand side of Eq. (1) contains a
term describing the Joule heat generation in the region of
the resistive phase. An exact solution to the essentially
nonlinear parabolic partial differential equations (1)–(3)
does not exist.

Note that the evolution of perturbations of the tem-
perature T(x, t) and the fields E(x, t) and H(x, t) is deter-
mined by the equation of critical state (3). Because of
considerable analytical difficulties, we will restrict our-
selves to considering the Bean model [4] and assume
that the critical current density is independent of the
external magnetic field; i.e., djc/dH = 0. The depen-
dence jc(T) is described by the relationship jc(T) = j0 –
a(T – T0), where T0 is the initial temperature of the
superconductor and the quantity a = 

describes the thermally activated weakening of the
Abrikosov vortex pinning by lattice defects. The depen-
dence j(T) in the region of the electric field E > Ef (Ef is
the boundary of the linear section in the current–volt-
age characteristic of the superconductor) can be
approximated by a piecewise linear function j(E) ~ σfE,
where σf is the effective conductivity. The dependence
j(E) is essentially nonlinear in the flux creep region E <
Ef [5]. Here, we will consider a perturbation with a suf-

4π
c2
------dj

dt
----- d2E

dx2
---------,=

j jc T H,( ) jr E( ),+=

d jc/dT T T0=
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ficiently high amplitude (E > Ef) and use the linear
dependence jr(E).

We seek a solution to the initial set of equations as a
function of the new self-simulated variable ξ(x, t); that is,

 (4)

which describes a traveling wave that moves with a
constant velocity v along the x axis [3].

After substitution of relationships (4) into the initial
set of equations and performing a trivial differentiation,
we obtain the following set of equations for the variable
ξ(x, t):

 (5)

 (6)

 (7)

T Θ ξ x t,( )[ ] , E E ξ x t,( )[ ] ,= =

H H ξ x t,( )[ ] ; ξ x vt,–= =

νv dT
dξ
------–

d
dξ
------ κ dT

dξ
------ jE,+=

dE
dξ
-------

4πv
c2

----------- j,–=

E
v
c
----H .=

P

EE1 E20

E

V
2

1
E1
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Z0

Fig. 1. Phase portrait of Eq. (10).

Fig. 2. Nonlinear waves of two types.
P

The corresponding thermal and electrodynamic bound-
ary conditions for Eqs. (5)–(7) have the form

 (8)

It should be noted that inclusion of the temperature
dependences of the parameters κ and ν substantially
complicates analytical calculations of the wave evolu-
tion dynamics that is described by the set of Eqs. (5)–
(7). In most cases, changes in the local values of these
parameters in the sample can be considered small com-
pared to the characteristic scale of temperature varia-
tions. Hence, we can take these parameters to be con-
stant. Indeed, the investigation revealed that the thermal
conductivity almost does not affect the character of the
stationary wave propagation. This stems from the fact
that the thermal flux κ(dT/dξ) vanishes at stationary
points of the system at ξ  ±∞. However, the tem-
perature dependence of the heat capacity should be
taken into account. Such a dependence is represented
as ν ≈ ν0(T/T0) over a wide range of temperatures [5].

By eliminating variables T(x, t) and H(x, t) with the
aid of relationships (5) and (7) and employing the
boundary conditions (8), we obtain a differential equa-
tion for the E wave distribution:

 (9)

Here, we introduced the following dimensionless
parameters:

 

where L is the depth of the magnetic field penetration
into the sample and tκ is the thermal time of the problem.

According to the qualitative theory [6], the equilib-
rium states are found from the condition

 (10)

An evident property of set (10) is the absence of closed
curves that are fully composed of the phase trajectories
in the phase plane (E, dE/dξ). The proof of this state-
ment can be based on the Bendixson criterion [7]. The
number of stationary points (one or three) and their

T ξ +∞( ) T0,
dT
dx
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type are determined by the parameter

 (11)

The three equilibrium points E = 0, E = E1, and E = E2
correspond to the condition P < Pk = 1/2 (Fig. 1). There
is only one singular point E0 = 0 at P > Pk. The parabola
and the quartic curve in Eq. (10) are tangent at P = Pk;
i.e., this condition corresponds to the coincidence E1 =
E2 = E* = 6/7(aT0/σf).

The direct solution of Eq. (10) yields the following
waves:

 (12)

Analysis of the phase plane shows that the points E0 =
0 and E = E2 are stable nodes and that E = E1 is a saddle.
In addition to the separatrix E1E0, set (10) has the sep-
aratrix E1E2 connecting the points E1 and E2 (Fig. 2).
This means that two types of waves with amplitudes
∆E = E1 and E2 – E1 can exist in the superconductor.
Evidently, wave 1 has an amplitude of the order Ek at
P  Pk; its velocity is determined by equality (10) at
E = E1. Equation (10) has two stationary points at P !
Pk: E0 = 0 is a stable node and E1 = 2β2τEκ is a saddle.

The separatrix that connects these two equilibrium
states corresponds to a “difference”-type solution with
amplitude Ee, which is related to the wave velocity vE
and the wave front width ∆z by the following equations:

 (13)
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Wave 2 has a small amplitude at P  Pk,

 (15)

and its velocity is inversely proportional to the ampli-
tude at P ! Pk. Such an exotic dependence of vE on
∆E = Ee most likely means that the waves of this type
are unstable. Note that observation of the second-type
waves becomes possible in finite-sized samples with
asymmetric boundary conditions.

In conclusion, it should be noted that the above
investigations prove the possibility of applying the
results obtained to high-temperature superconductors
cooled to liquid-nitrogen temperatures (T = 77 K), pro-
viding that the values of the physical parameters of the
sample are known.
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Abstract—The effective Hamiltonian for a realistic multiband p–d model is developed. In the case of electron
doping, the Hamiltonian coincides with that for the standard t–J model. For hole doping, the singlet–triplet t–
J model takes place. © 2001 MAIK “Nauka/Interperiodica”.
In recent years, more and more attention has been
paid to investigations of the electronic structure and
properties of systems with strong electron correlations
(SEC), as an understanding of the processes occurring
in these systems is the key in the explanation of the phe-
nomenon of high-temperature superconductivity
(HTSC). It is widely believed that the most interesting
in this respect is the consideration of a CuO2 layer, as
such high values of the critical temperatures Tc of com-
pounds containing this layer are most likely to be due
to the presence of this layer and to the transformation
of the electronic structure in it caused by doping. One
of the problems appearing here is to construct an ade-
quate model which will make it possible to describe the
main HTSC properties completely enough.

The aim of this work is to find the effective Hamil-
tonian for the multiband p–d model [1] in the case of
the presence of two-particle singlet and triplet states in
the system in addition to the one-particle states. It is
shown that this singlet–triplet model is asymmetric
with respect to electron and hole doping.

The single-band Hubbard model [2] is one of the
simplest models describing, at the same time, the main
low-energy properties of the systems with SEC. How-
ever, the chemical composition of copper oxides can in
no way be taken into account in this model. This draw-
back was partly eliminated in the three-band p–d
model, which is a generalization of the Hubbard model
for the CuO2 layer [3]. A lot of spectral methods with
high excitation energies, such as x-ray spectroscopy
and x-ray electron spectroscopy, have been described in
the framework of this model.

There are some essential points that still remain
unclear. One point is the difference in behavior between
the electron- and hole-doped systems. The issue is that
1063-7834/01/4303- $21.00 © 20416
a spin exciton, associated with singlet–triplet excitation
of the two-hole term, is created in the hole-doped sys-
tems. This excitation is absent in the electron-doped
systems [4]. Another fact which is ignored by the three-
band model is the nonzero occupancy of  orbitals,

which is evident from experiments on the polarization
dependence of CuL3 x-ray absorption spectra [5]. The
correlation between the Tc and the occupancy of 

orbitals was also detected there. Taking this into
account, it can be stated that a more realistic model of
the CuO2 layer must involve  and  orbitals of

copper, as well as px and py orbitals of each oxygen ion.
When considering the systems which involve the apical
oxygen, it is necessary to account for the pz orbital of
oxygen. A similar model was proposed in [1], the
Hamiltonian of which has the form

 (1)
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Here, r and i are sites of copper and oxygen; λ =
{ , } and α = {px, py, pz} are orbital indices for

a given site of copper and oxygen, respectively; εd and

εp are the energies of  and  holes on copper and

of the px, py, pz states of oxygen, measured from the
level of the chemical potential µ; Ud and Up are the on-
site Coulomb interactions; tpd is the transfer integral
between the nearest neighbors of copper and oxygen;
tpp is the oxygen–oxygen transfer integral; Vdd, Vpp, and
Vpd are the interatomic Coulomb interactions; and Jdd

and Jpp are the exchange interaction integrals.

As can be seen, the Hamiltonian (1) accounts for all
the main types of the relevant interactions in copper
oxides. The simplest calculation in this model has been
done for CuO4 [4] and CuO6 clusters [6] by the precise-
diagonalization method. It has been shown that the
energy difference between the two-particle singlet 1A1g

and triplet 3B1g is intimately related to the involvement
of the  orbitals. With this orbital neglected, it turns

out that the triplet with energy ε2t lies above the singlet
with energy ε2S by an amount of the order of 2 eV and,
therefore, can be ignored in a low-energy description,
which leads to the three-band model. However, as the
energy of the  orbitals approaches the energy of the

 orbitals, the singlet–triplet splitting decreases,

and, at certain values of the parameters, the crossover
of the singlet and triplet occurs. A similar result was
obtained for the CuO6 cluster by the self-consistent-
field method [7] and also by the perturbation theory [8].
This gives reason for a thorough investigation of the
processes associated with the presence of not only the
two-particle singlet in the system but also the triplet.

For copper oxides and, particularly, a CuO2 layer, the
CuO6 cluster is the unit cell they have in common. This
cell was considered in [9], where by using the cluster
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perturbation theory first stated in [10] the following
Hamiltonian was obtained on the basis of Eq. (1):

 

 (2)

 

Here, the energies ε1, ε2S, and ε2t are related to the level
of the chemical potential µ and superscripts 0, a, and b
on the transfer integral tfg indicate the appearance of the
quasiparticle in the lower (0), the upper singlet (b), and
in the upper triplet (a) Hubbard bands.

In this case, the local basis is constituted by the
functions which correspond to the no-hole and one-
hole terms, namely, |0〉  for nh = 0 and |σ〉 ≡ {|↑〉 , |↓〉}  for
nh = 1, and also to the two-hole terms with the singlet
state (S) |2〉  ≡ |↓, ↑〉 and the triplet state (t) |tM〉  ≡ {|t0〉 ,
|t2σ〉, |t2 〉}.

For this basis, the condition of its completeness is
written as

 (3)

Using the Hamiltonian (2) as the original one, we can
obtain an effective Hamiltonian of the singlet–triplet
model by excluding the interband (between the lower
and upper Hubbard bands) transitions from it. For this
purpose, we use the method proposed in [11].

First, we define projection operators P1 and P2

 (4)
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for completeness of the basis of the projection opera-
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the operators Pn yield the following four relationships:

 (7)

 (8)

 (9)

(10)

As can be seen from the above relationships, P1HP1 and
P2HP2 describe the processes in the lower and upper
Hubbard bands, respectively. The interband transitions
are described by the terms P1HP2 and P2HP1.

The interband transitions may be further excluded
by using an operator method of the perturbation theory.
We present the Hamiltonian in the form

 (11)

where H' = P1HP1 + P2HP2, H'' = P1HP2 + P2HP1, and
η is a formal parameter (we ultimately put it equal to
unity). The essence of this method is in the following:
applying the canonical transformation

 (12)

we can choose the operator F such that the terms of the

Hamiltonian  that are linear in η, namely, the terms
responsible for the interband transitions, will be equal
to zero.

As can be readily shown, the requirement imposed
brings about the following equation for the operator F:

 (13)

Then,  is defined as
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Omitting the solutions of Eqs. (13) and (14) pre-
sented in [11], we obtain as a result
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energy between the lower and upper Hubbard bands.
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When studying the low-energy processes, one can
consider the processes in the lower and upper Hubbard
bands separately, because there is an appreciable
energy gap (2–4 eV) between them.

For the systems with electron doping (n-type sys-
tems), the Fermi level εF is situated in the lower Hub-
bard band. In this case, the influence of the upper band
can be ignored resulting in the common t–J model (see,
e.g., [11, 12]). The corresponding Hamiltonian has the
form

 (16)

with Jij being the exchange integral

 (17)

It has also been accounted for that

 

For the systems with hole doping (p-type systems), the
εF is situated in the upper band. In this case, we have a
model which takes into account the transitions involv-
ing the two-particle singlet and triplet. We shall further
refer to this model as the singlet–triplet model.

By applying the commutation relations for the Hub-
bard operators and omitting the three-center terms, we
find the Hamiltonian of the singlet–triplet model in the
form

 (18)

where Ht is the kinetic part of the Hamiltonian and HJ
is the term involving all processes associated with the
exchange interaction.

In an explicit form, these terms are written as
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Here, δJij is a correction to the exchange integral Jij in
Eq. (17) due to the contribution from the triplet

 (19)

In closing, it should be noted that the obtained effective
Hamiltonian of the singlet–triplet model in Eq. (18) is
the generalization of the t–J model to the case of the
presence of the two-particle triplet in the system. How-
ever, the allowance for this triplet results in quite appre-
ciable changes in the Hamiltonian, such as the renor-
malization of the exchange integral in Eq. (17) and also
the appearance of the term of the “density–density”

type, .

A more important feature of the singlet–triplet
model is the asymmetry regarding the systems of the n
and p type. This effect was experimentally observed. In
particular, the fact that holes suppress antiferromag-
netism more strongly than electrons do was observed in
La2 – xSrxCuO4 in contrast to Nd2 – xGexCuO4 [13]. The
conditions for the existence of the superconducting
phases are also different for the hole and electron super-
conductors. Restricting ourselves to only the electronic
mechanisms of superconductivity, we also see that the
spin-fluctuation mechanism, known for the t–J model
(see review [14]), operates in n-type superconductors,
while, in addition to the spin-fluctuation mechanism of
the creation of the pairs, the pairing due to the singlet–
triplet transitions can occur in p-type superconductors
with the complicated band structure at the top of the
valence band described by the Hamiltonian Ht. A simi-
lar pairing mechanism was proposed for multiband
metals as early as 1969 [15].
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Abstract—The spatial ordering of charges in mixed-valence systems is considered. The dependence of the cor-
relation sphere radius on the iron impurity content is obtained from the balance equation for the d holes and
neutral centers in the short-range order cluster of a Fe3+ ion. The penetrating hard sphere model is proposed for
the rigorous description of the spatial ordering in mixed-valence systems and the calculation of correlation
functions. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Experimental investigations of HgSe : Fe crystals
(see reviews [1, 2]) showed that the anomalous depen-
dences of kinetic characteristics, such as the conductiv-
ity [3, 4], thermopower [5], longitudinal and transverse
Nernst–Ettingshausen effects [6–9], and others, on the
iron impurity concentration nFe and the temperature T
are determined by the specific features of electron scat-
tering by a spatially correlated system of mixed-
valence iron ions. The study of spatial ordering is of
considerable importance for the interpretation of the
unusual physical properties and other mixed-valence
systems [1–12].

Crystals HgSe : Fe are convenient model objects for
investigating the role of interimpurity Coulomb corre-
lations in mixed-valence systems. In these crystals, the
mixed-valence Fe3+–Fe2+ state is formed at concentra-
tions nFe > n* = 4.5 × 1018 cm–3 when the Fermi level
reaches the iron d level (εd = 0.21 eV) and is fixed at it.
[1]. A further increase in the iron impurity content does
not affect the concentration of Fe3+ ions (n+ = n*) and
leads only to an increase in the concentration of Fe2+

ions which are neutral in the lattice (n0 = nFe – n+). In
the system of Fe2+ and Fe3+ ions with the same energy,
positive charges on iron ions (d holes) can be redistrib-
uted over lattice sites occupied by iron ions. Therefore,
the Coulomb repulsion between d holes in mixed-
valence systems results in spatial correlations in their
arrangement: the higher the iron impurity concentra-
tion nFe, the larger the number of free sites for the redis-
tribution of d holes and the higher the degree of order-
ing of the correlated system of Fe3+ ions. The spatial
ordering of Fe3+ ions brings about a change in the char-
acter of electron scattering by the correlated system of
Fe3+ ions and in low-temperature anomalies of the ther-
mogalvanomagnetic effects in HgSe : Fe crystals [2–9].
1063-7834/01/4303- $21.00 © 20420
The change in the Coulomb energy with an increase
in the degree of ordering of d holes was analyzed in
[13]. It was proved that the Coulomb repulsion prima-
rily results in an increase in the distance between the
closest spaced d holes, which provides the maximum
gain in the free energy. Hence, a correlation sphere of
radius rc is formed around each Fe3+ ion. This sphere is
free of other d holes. These holes pass into a spherical
layer in the region rc < r < r1, where r1 is the radius of
the first coordination sphere for a perfect face-centered
close packing of Fe3+ ions (for the Coulomb repulsion,
the face-centered close packing possesses the mini-
mum free energy). This redistribution of charges in sys-
tems of mixed-valence iron ions furnishes a means for
approximating the system of Fe3+ ions by a system of
hard spheres with the diameter d = rc. In the framework
of this model, Fe3+ ions cannot be separated by dis-
tances less than the hard sphere diameter. The degree of
ordering in the hard sphere system is determined by the
packing parameter η = (πn+d3)/6, which is equal to the
ratio between the volume occupied by hard spheres and
the total volume of the system.

In order to describe the spatial ordering of Fe3+ ions,
Wilamowski et al. [14] proposed the short-range corre-
lation model (SRCMI) which is based on the approxi-
mation of the pair correlation function by a step func-
tion. As was shown in [3], the SRCMI variant of the
short-range correlation model is limited by weak inter-
impurity correlations. Another variant of the short-
range correlation model (SRCMII), which is valid for
arbitrary magnitudes of Coulomb correlations in the
system of Fe3+ ions, was proposed in [3]. The latter
model made it possible to calculate quantitatively the
dependence of the electron mobility µ(nFe) over a wide
range of iron concentrations. The calculated depen-
dence of the mobility was in good agreement with the
experimental data. This allowed the authors to deter-
mine the empirical dependence of the packing parame-
001 MAIK “Nauka/Interperiodica”
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ter [the correlation sphere radius rc(nFe)] on the iron
impurity content. The SRCMII model was substanti-
ated in [13, 15].

Within the same model, the spatial ordering of Fe3+

ions in the mixed-valence system of HgSe : Fe crystals
was treated in [16]. However, consideration was given
to a nonaveraged short-range order cluster at n0 < n+
when the value of rc(nFe) is limited by the number of
free sites n0 in the spherical layer rc < r < r1. The depen-
dence of the correlation sphere radius on the iron impu-
rity content, which was obtained in [16], turned out to
be considerably weaker than those derived in [2, 3, 17].
Reasoning from this discrepancy, the author of [16]
concluded that the results of calculations carried out in
[2, 3, 17] are invalid. In fact, the situation is quite the
opposite. Only one configuration of the short-range
order cluster out of an infinitely large number of possi-
ble configurations was taken into account in analysis of
the spatial ordering in the system of mixed-valence iron
ions in [16]. Below, it will be shown that the statistical
weight of this configuration in the formation of the cor-
relation sphere is equal to zero. In Section 2, we con-
sider the balance equation for the d holes and neutral
centers that participate in the formation of the correla-
tion sphere and obtain the dependence of the correla-
tion sphere radius rc(nFe). It is shown the Coulomb
repulsion of positive charges on iron ions leads to the
correlated arrangement of neutral centers with respect
to charged centers. Contrary to the inference made in
[16], this is responsible for the interference scattering of
electrons. In this case, the reciprocal of the electron
relaxation time is not an additive sum of contributions
from neutral and charged centers. The method for calcu-
lating the partial distribution functions for a system of
mixed-valence ions within the penetrating hard sphere
model is proposed in Section 3. In Section 4, we discuss
the dependence of the electron mobility µ(nFe) in the
framework of both the model proposed in our earlier
works [3, 13, 17] and the concepts advanced in [16].

2. MODEL DESCRIPTION 
OF SPATIAL ORDERING IN A SYSTEM 

OF MIXED-VALENCE IRON IONS

Let us consider the spatial ordering in the system of
mixed-valence ions in HgSe : Fe crystals. Assume that
iron ions with the concentration nFe > n+ (n+ is the con-
centration of Fe3+ ions or d holes) are randomly distrib-
uted over lattice sites. In the absence of the Coulomb
repulsion between d holes, the subsystems of charged
and neutral centers are spatially distributed in a chaotic
way. These subsystems can be treated as statistically
independent. It is assumed that the temperature T is
equal to 0, and vacant (Fe3+) and filled (Fe2+) d states of
iron impurities have the same energy. At t = –∞, we adi-
abatically slowly switch on the Coulomb repulsion
[U(t) = exp(–εt)U(Ri, j)] between d holes, which

can be redistributed over randomly arranged Fe2+ sites.
i j,∑
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At the instant t = 0 (in the presence of the Coulomb
repulsion), a correlation sphere of radius rc is formed
around each Fe3+ ion. This sphere does not contain
other d holes, which pass into the spherical layer region
that corresponds to the first peak in the pair correlation
function g(r) ([13, Fig. 1]). Therefore, the dependence
rc(nFe) should be found from the balance equation for d
holes and neutral centers that participate in the transfers
between the correlation sphere and the spherical layer.

Another scheme for determining the rc(nFe) depen-
dence was proposed in [16]. The probability W(n+, rc, r1)
of finding an iron impurity for which the nearest d holes
are located in the spherical layer rc < r < r1 was intro-
duced. It was assumed that the concentration n+ of d
holes can be represented in terms of this probability

(1)

It was argued that the probability of a correlated
arrangement of particles W(n+, rc, r1) can be determined
by considering a random distribution of particles in the
system of mixed-valence iron ions (in the absence of
Coulomb repulsion between d holes). The probability
WN that the subsystem composed of N particles occupy-
ing the volume V will be found in the system comprised
of N0 particles filling the volume V0 can be obtained
using the combinatorics [18]

 (2)

According to [16], substitution of N = 0, V = Vc, V0 =
V1, and N0 = n+V1 (where V1 is the volume of the first
coordination sphere) into relationship (2) gives the
sought probability W(n+, rc, r1)

(3)

where W0 is the probability that no d holes occur in the
volume Vc at a random distribution of particles. The
basic equation of the theory developed in [16] is
derived from formulas (1) and (3)

 (4)

First and foremost, we note that N and N0 in relationship
(2) are integers [18], whereas N0 in formula (3) is a frac-

tion: N0 =  = n+V1 = 5.92, where  = NWN is
the mean number of particles in the volume V1. An
interesting situation arises when calculating the mean
number of particles  in the correlation sphere Vc

with the use of formula (2) under the assumption that

N0 =  = 5.92:  = NWN(Vc, V1). In this case,

the value of  = n+Vc can be obtained only at Vc  0

n+ nFeW n+ rc r1, ,( ).=

WN

N0!
N! N0 N–( )!
------------------------------ V

V0
------ 

  N

1 V
V0
------– 

  N0 N–

.=

W n+ rc r1, ,( ) W0 1
Vc

V1
------– 

  n+V1

= = ,

η NFe( )
n+Vc

8
-----------

N+V1

8
------------- 1

n+

nFe
------- 

 
1

n+V1
------------

– .= =

N1 N1 N 0=

N0∑

Nc

N1 Nc N 0=

N1∑
Nc
1



422 KULEEV, ARAPOVA
and N0 = [ ]. These misunderstandings are associated
with introducing the notions of the density and the
mean number of particles for the microscopic volumes
Vc and V1. The point is that, according to [18], V0 and
N0 in formula (2) are macroscopic quantities (the total
volume and the number of particles in it), for which it
is possible to introduce the mean number of particles

 = nV in the volume V. However, the probability WN

of finding N particles in the volume V at a specified
value of  should be defined by the Poisson formula
(see [18, formula (114.3)])

 (5)

Then, W0 = exp(–n+Vc), and, from formula (3) derived
in [16], we have

 (4a)

At n0/n+ ! 1, it follows from relationship (4a) [as from
relationship (4)] that η(NFe) ~ 1/8n0/n+. However, at
n0 @ n+, the packing parameter increases infinitely,
whereas, according to the initial assumptions [16], the
subsystem of d holes at n0/n+  ∞ forms a Wigner
crystal with a cubic structure and η(NFe) < 0.74. These
contradictions indicate that formula (3) derived in [16]
is incorrect and gives no way of determining the rc(NFe)
dependence. Below, we will show that the sole config-
uration with zero filling W0 of the short-range order
cluster, which was taken into consideration in [16],
remains unchanged upon switching-on of the Coulomb
repulsion between d holes and does not contribute to
the formation of correlation spheres for the subsystem
of charged centers.

For this purpose, we now analyze the balance of d
holes and neutral centers that participate in the transfers
between the correlation sphere of radius rc and the

N1

N

N

WN
N

N
N–( )exp

N!
-----------------------------.=

η NFe( )
n+Vc

8
-----------

1
8
--- 1

n0

n+
-----+ 

  .ln= =

t = –∞

t = 0
Nc = 0 Nc = 1 Nc = 2

r1

Fig. 1. A scheme for spatial redistribution of d holes at dif-
ferent fillings of a short-range order cluster. Circles are neu-
tral centers, and crosses are charged centers.

rc
P

spherical layer rc < r < r1 upon switching-on of the Cou-
lomb repulsion between d holes. Let us draw the corre-
lation sphere of radius rc around each Fe3+ ion and

determine the mean number  of d holes in the vol-
ume Vc and also the mean number of vacant sites (neu-

tral centers)  for their redistribution in the spherical

layer V1 – Vc = (4π/3)(  – ) at the instant t = –∞. At
n0 < n+, the volume of the correlation sphere is limited
from above by the number of vacant sites in the spher-
ical layer rc < r < r1. In this case, at t = 0, d holes fill all
the vacant sites in the spherical layer (the lattice sites
occupied by Fe2+ ions). Therefore, the mean value of
Vc(nFe) at the given concentrations nFe, n+, and n0 can be

found from the equality  = . A scheme for this
redistribution at different fillings of the short-range
order cluster is displayed in Fig. 1. As can be seen from
Fig. 1, the configuration with Nc = 0 remains unaltered
after the switching-on of the Coulomb repulsion
between d holes, and hence, its contribution to the bal-
ance equation will be equal to zero. According to [16],
the probability W(n+, rc , r1) involves such configura-
tions of the short-range order cluster in which a neutral
ion Fe2+ is located at the center of the correlation
sphere. It is clear that these configurations are nonphys-
ical—they are unstable with respect to the switching-on
of the Coulomb repulsion between d holes and should
be excluded from consideration. Their inclusion leads
to the fact that the probability W(n+, rc , r1) tends to zero
when the concentration of neutral centers tends to infin-
ity (n0  ∞) and the system of positive charges on
iron ions tends to the maximum degree of ordering (in
[16], this is a Wigner crystal with a cubic structure).

Unlike [16], we take the total volume of the system as
the volume V0 and N0 = nFeV0, where nFe > 5 × 1018 cm–3.
Then, the Poisson formula (5) can be used for the prob-
ability of different fillings of the correlation sphere Vc.

Since Nc  =  = n+Vc, for the mean num-

ber of d holes that leave the correlation sphere by the
time t = 0, we obtain the same result as in [13]. In a sim-
ilar manner, it can be demonstrated that the mean num-
ber of vacant sites  in the spherical layer is defined
as

 (6)

From the equality  = , with due regard for rc = d,
we find at n0 < n+

 (7)

These expressions allow for the fact that ∆N1 for the
face-centered close packing is approximately equal to

Nc
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r1
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5.92. Out of 12 atoms that form the first coordination
sphere, only 5.92 atoms leave the region with r < r1. In
the framework of the proposed scheme, it is possible to
treat the problem rigorously at low concentrations of
neutral centers n0 ! n+. In this case,  ! 1 and  ! 1,
and, hence, we can restrict our consideration to the only
configuration with Nc = 1. Then, from the equality

 (8)

by expanding the exponents into a series in terms of a
small parameter, we again have relationship (7). Thus,
the obtained dependence of the packing parameter on
the iron impurity concentration is identical to that
derived in the work [13], in which analysis was per-
formed for the averaged short-range order cluster.

In analysis of the spatial ordering of d holes in the
system of mixed-valence iron ions, the author of [16]
used a number of physically incorrect assumptions.
First, in the probability W(n+, rc , r1), he included non-
physical configurations of the short-range order cluster,
in which a Fe2+ ion neutral in the lattice is located at the
center of the correlation sphere. Second, he accounted
for the sole configuration W0 of a random distribution
of d holes (whose statistical weight in the formation of
the correlation sphere is equal to zero) and equated it to
the probability W(n+, rc , r1). Hence, the basic equation
of the theory proposed in [16] is incorrect. The depen-
dence of the packing parameter at n0 < n+ is approxi-
mately described by relationship (7). Our result agrees
with the empirical equation obtained for the packing
parameter in [3]. It should be noted that further reason-
ing in [16] about the estimate of the packing parameter,
the effect of fluctuations on the correlation sphere
radius, and the width of the peak of the first coordina-
tion sphere start from false assumptions which are sup-
ported neither by experimental data nor by theoretical
calculations.

A superficial approach to the complex problem of
the spatial ordering in the system of mixed-valence iron
ions led the author of [16] to the categorical conclusion
that the interference electron scattering by charged and
neutral centers in the system of mixed-valence iron ions
is absent. Unfortunately, any mathematical calculations
that confirm this inference are absent in [16]. We do not
intend to dispute the well-known fact that the structure
factor is S+0(q) = 0 and the interference electron scatter-
ing by neutral and charged centers is absent for a ran-
dom distribution of ions in mixed-valence systems.
However, the distribution of neutral centers (Fe2+ ions)
in the mixed-valence system is not random [17]. Since
d holes and neutral centers can only exchange places
with each other, the sites of d holes in the correlation
sphere will be occupied by neutral centers. Therefore,
the local concentration of d holes in the correlation
sphere is equal to zero and the concentration of neutral
centers is determined by the total concentration of iron
impurities (Fig. 2). In the region of the peak that corre-
sponds to the first coordination sphere, at n0 < n+, the

Nc N0

Nc Nc–( )exp N0 N0–( ),exp=
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situation is the reverse: the concentration of neutral
centers is equal to zero, and the concentration of d holes
is determined by the total concentration of iron impuri-
ties. As a result, the function g++(r) that describes cor-
relations in the system of charged centers (++) and the
function g+0(r) that includes correlations in the system
(+0) substantially deviate from unity, which corre-
sponds to a chaotic distribution of particles in the short-
range order cluster.

Figure 2 shows a scheme for the redistribution of d
holes and neutral centers in the averaged short-range
order cluster for one Fe3+ ion. In this case, it is possible
to introduce the partial radial distribution functions
Nαβ(r) = 4πr2Nβgαβ(r) [17]. The quantity Nαβ(r)dr gives
the number of particles of the β(0+) sort in the spherical
layer from r to r + dr when a particle of the α(0+) sort
is placed at the origin of the coordinates. For a chaotic
distribution of particles, gαβ(r) = 1 and the number of
particles in the volume Vc is equal to the product of the
concentration by volume. As is seen from Fig. 2, the
region Vc in which the local concentration of neutral
centers at n0 ! n+ can appreciably exceed n0 is formed
near each charged center. Consequently, it can be stated
that the Coulomb repulsion between d holes brings
about an efficient attraction of neutral and charged cen-
ters. Thus, the Coulomb repulsion between d holes in
the system of mixed-valence iron impurities results not
only in the spatial ordering of charged centers (Fe3+ ions)
but also in the correlated arrangement of neutral centers
with respect to charged centers. Therefore, the redistri-

N++(r)

rrc r1

g++(r)

rrc r1

N+0(r)

rrc r1

g+0(r)

rrc r1

NFe(r)

N++(r)

N+0(r)

N+0(r)

N++(r)

NFe(r)

Fig. 2. A scheme for spatial redistribution of d holes in a
short-range order cluster for one Fe3+ ion. NFe(r), N++(r),
and N+0(r) are the radial distribution functions of iron impu-
rities, d holes, and neutral centers, respectively, for a ran-
dom system (dashed lines) and a correlated mixed-valence
Fe3+–Fe2+ system (solid lines). g++(r) and g+0(r) are the
pair correlation functions.
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bution of charges in the mixed-valence Fe3+–Fe2+ system
leads to the interference scattering and can considerably
affect the kinetic characteristics of HgSe : Fe crystals.

3. PARTIAL DISTRIBUTION FUNCTIONS
FOR A MIXED-VALENCE SYSTEM 

WITHIN THE PENETRATING 
HARD SPHERE MODEL

In order to describe rigorously the spatial ordering
of ions in the mixed-valence Fe2+–Fe3+ system, it is
necessary to introduce four partial correlation functions
gαβ(R12), which characterize the probability of finding an
ion of the α(0, +) sort at the point r2 when an ion of the
β(0, +) sort is located at the point r1 (where R12 = r1 – r2).
It is unlikely that first-principles calculations of the
gαβ(R12) functions with the use of Bogoliubov–Born–
Green–Kirkwood–Yvon-like chains of equations can
be applied to this system, because an equation for the
fourth-order correlation function gαβ(r1, r2, r3, r4)
should be uncoupled to obtain physically reasonable
results even for single-component systems [19]. There-
fore, in the present work, as in [3, 17], the gαβ(r) func-
tions will be determined using a set of the Ornstein–
Zernike equations and the Percus–Yevick approxima-
tion. The results obtained within this approximation are
in good agreement with Monte Carlo and molecular
dynamics calculations. This approach was successfully
applied to the calculation of thermodynamic and
kinetic properties for liquid metals and alloys [19]. The
set of the Ornstein–Zernike equations relates the total
correlation functions hαβ = gαβ – 1 to the direct correla-
tion functions cαβ

 (9)

The Percus–Yevick approximation enables us to close
the set of the Ornstein–Zernike equations by expressing
the cαβ(r) functions (which describe direct correlations
between particles) through the pair correlation func-
tions

 (10)

where Uαβ(r12) is the interaction potential of the α and
β ions located at the points r2 and r1, respectively. Sub-
stitution of relationship (10) into formula (9) gives the
set of nonlinear integral equations whose rigorous solu-
tion was obtained only for a model system of a hard
sphere mixture [20].

Before proceeding to the solution of the problem,
we note a number of aspects which are determined by
the specific features of the mixed-valence system.

(i) Iron impurity ions replace Hg2+ ions in the lattice
sites, and their distribution over the sites as a whole is
random. Therefore, there exists the minimum distance
∆Rmin ~ a0 (where a0 = 6.2 × 10–8 cm is the lattice con-
stant) between iron ions. Taking into account Coulomb

hαβ r12( ) = cαβ r12( ) nγ r3cαβ r13( )hαβ r32( )d∫ .
γ + 0,=

∑+

cαβ r12( ) 1 Uαβ r12( )/kT( )exp–{ } gαβ r12( ),=
P

correlations of iron ions at the temperature of sample
preparation T ~ 103 K, we obtain ∆Rmin ~ 10–7 cm.

(ii) An important circumstance simplifying the
problem is the fact that not all the gαβ(r) functions are
independent. If an iron ion occupies the α site, this is a
Fe2+ ion with the probability x0 = n0/nFe or a Fe3+ ion
with the probability x+ = n+/nFe. Since the total proba-
bility of finding either the Fe2+ ion or the Fe3+ ion at the
given distance r from the considered ion of the α sort is
equal to the probability of finding the iron impurity, the
partial functions gαβ(r) obey the identities [19]

 (11)

where G(r) is the pair correlation function of the distri-
bution of iron impurity ions. By ignoring the occur-
rence of the minimum distance between iron impurity
ions (|r | > ∆Rmin), the function G(r) can be taken equal
to unity due to a random distribution of iron ions over
the lattice sites. When the condition |r | > ∆Rmin is taken
into account, the system of iron impurities can be
approximated by a system of hard spheres with the
diameter df = ∆Rmin and the packing parameter ηf =

(πnFe )/6. In this case, the G(r) function is determined
from the solution of the Ornstein–Zernike equation for
a single-component system of hard spheres [21]

 (12)

This equation was solved in [21]. The direct correlation
function has the form

 (13)

Since the Coulomb repulsion between d holes at n0 > 0
leads to the formation of correlation spheres in the sub-
system of charged centers with rc > df, the spatial order-
ing of charges in the mixed-valence system can be
described within the penetrating hard sphere model
[22, 23]. For a number of specific cases, a system of the
Ornstein–Zernike equations in the Percus–Yevick
approximation for the penetrating hard sphere model
was approximately solved in [22, 23].

It follows from relationships (11) that, in order to
determine the spatial distribution of ions in the mixed-
valence system in the framework of the penetrating
hard sphere model, it is sufficient to find one partial pair
distribution function, for example, g++(r), and the other
functions can be expressed in terms of this function.
Therefore, the system of the Ornstein–Zernike nonlin-
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ear integral equations can be reduced to the sole equa-
tion. For further manipulations, it is convenient to take
the Fourier transform of system (9), because the system
of integral equations for the Fourier components hαβ(q)
and cαβ(q) transforms into the system of algebraic equa-
tions

 (14)

This system can be solved for the Fourier components
of the direct correlation functions

 

 

 (15)

 

From expressions (11), it is possible to obtain the rela-
tionships for the Fourier components of the total corre-
lation functions

 

 (16)

 

where cf(q) is the Fourier transform of the direct correla-
tion function for iron impurities [2]. From formulas (15)
and (16), it follows that the direct correlation functions
in the penetrating hard sphere model are related by the
expressions

 (17)

Let us introduce the designations (q) = hαβ(q) – Hf(q)

and (q) = cαβ(q) – cf (q). Then, for the (q)
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functions, we obtain

 (18)

At n0  0, (q)  0 and the partial distribution

functions hαβ(q) tend to Hf (q). Since   0 at
n0  0, (n+/n0)2 (q)  0, and, hence, (q)
tends to zero faster as compared to (n0)2. In the limiting
case of high iron impurity concentrations (n+/n0) ! 1,
we have h00(q)  Hf (q) and the system of neutral
centers turns out to be disordered due to a chaotic dis-
tribution of iron ions over the lattice sites. In the coor-
dinate space, the Ornstein–Zernike equation within the
penetrating hard sphere model takes the form

 

 (19)

 

At n0  0, we have h++(r)  H(r) and c++(r) 

cf (r) and, correspondingly, (r)  0 and (r)  0.

Detailed analysis of Eq. (19) and its solution is a
sufficiently tedious problem and will be published in a
separate work. Here, the influence of the interference
scattering on the dependences of the electron mobility
µ(NFe) will be examined using an approximate scheme
for calculating the partial correlation functions ga3(r)
and the corresponding structure factors [17]. The struc-
ture factor S++(q) is determined from the solution of the
Ornstein–Zernike equation in the Percus–Yevick
approximation for the subsystem of d holes within the
hard sphere model in much the same manner as was
done in [2–4, 13]. The pair correlation functions g+0(r)
and g00(r) and the corresponding structure factors
S+0(q) and S00(q) are derived from relationships (11).

h̃++ q( ) c̃++ q( ) 1 n+ 1
n+

n0
-----+ 

  c̃++ q( )–
 
 
 

1–

,=

h̃+0 q( ) h̃0+ q( )
n+

n0
-----h̃++ q( ),–= =

h̃00 q( )
n+

n0
----- 

 
2

= h̃++ q( ).

c̃αβ

h̃00

c̃++ c̃++

h̃++ r( ) c̃++ r( ) n+ 1
n+

n0
-----+ 

  rc̃++ r'( )h̃++ r r'–( ),d∫+=

h̃++ r( ) h++ r( ) H f r( ),–=

c++ r( ) 1
U++ r( )

kBT
---------------- 

 exp– g++ r( ),=

c̃++ r( )

c++ r( ) c f r( ), 0 r d f< <–

c++ r( ), d f r rc< < d+=

0, r rc.>





=

h̃+ c̃++
1



426 KULEEV, ARAPOVA
S+0(x)
4

3

2

1

0

1
2
3
4

S+0(0)

1.5

1.0

0.5

5 10 15 20
NFe, 1018 cm–3

0.5 1.0
x

Fig. 3. Dependences of the structure factor S+0 on the
reduced wave vector x = q/2kF at different iron impurity

concentrations NFe, 1018 cm–3: (1) 5, (2) 7, (3) 9, and (4) 15.
The vertical line x = 1 separates the range of wave vectors
q < 2kF which contribute to the electron momentum relax-
ation. The inset shows the dependence of S+0(x = 0) on the
iron impurity concentration.
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Fig. 4. Dependences of the electron mobility on the iron
impurity concentration at the alloy scattering parameter
Λ = 0.2. Curves 1, 1a, 1b, and 1c are calculated using the
empirical equation for η(NFe). Curves 2, 2a, and 2b are
determined with the use of rc(NFe) defined by formula (4)
derived in [16]. (1a, 2a) Contributions to the mobility due
to the scattering by a correlated system of Fe3+ ions,
(1b, 2b) dependences of the mobility without inclusion of
the interference scattering of electrons [S+0(q) = 0], (1c)
contribution to the mobility due to the alloy scattering
µal(NFe), and (3) the electron mobility upon scattering by a
random system of donors. Symbols indicate the experimental
data on µ(NFe), taken from [1] (circles) and [25] (triangles).
PH
Setting G(r) = 1, we obtain

 (20)

The formula for the Fourier transform of the direct cor-
relation function C++(q) is given in [2, 3, 24]. The struc-
ture factors (20) correspond to the solution of the set of
the Ornstein–Zernike equations for the partial pair cor-
relation functions when neglecting the effect of the
ordering of neutral centers on spatial correlations in the
system of Fe3+ ions. At N0  0, correlations in the
system of d holes disappear; in this case, S++(q)  1
and S+0(q)  0. Note that, at high concentrations
(N0 @ N+), the structure factor S+0(q) tends to 0 and
S00(q)  1, as should be expected for a random distri-
bution of particles.

The dependences S+0(q) at different iron impurity
concentrations are depicted in Fig. 3. As is seen from this
figure, the structure factor S+0(q) only slightly varies in
the wave vector range of interest and it is possible to
assume with a good approximation that S+0(q) = S+0(0).
From the inset in Fig. 3, it can be seen that the value of
S+0(0) insignificantly deviates from unity in the range
of an increase and a maximum of the electron mobility
µ(NFe). In the phenomenological description of µ(NFe)
in [3], it was assumed that S+0(q) = 1. As will be shown
below, the effective value of S+0(q) is actually some-
what less than unity. Therefore, the authors of [3]
appeared to be substantially closer to the truth as com-
pared to the author of [16], who believed that S+0(q) = 0.

4. INTERFERENCE SCATTERING 
OF ELECTRONS BY A SYSTEM 

OF MIXED-VALENCE IRON IONS
IN HgSe : Fe CRYSTALS

Now, we analyze how the interference scattering of
electrons affects the dependence of the electron mobility
µ(NFe) on the iron impurity content. As in [2–4], assume
that the value of µBH is equal to 3 × 104 cm2/V s upon
electron scattering by randomly distributed donors with
the concentration Nd = N*. However, as can be seen from

Fig. 4, the experimental value of  in the concentra-

tion range 4 × 1018 cm–3 < Nd < 5 × 1018 cm–3 is somewhat
less [25]. Let us express µ(NFe) in terms of µBH for the
electron scattering by the system of mixed-valence iron

S++ q( ) 1 n+c++ q( )–( ) 1– ,=

S+0 q( ) S0+ q( )
n+

n0
----- 1 S++ q( )–( ),= =

S00 q( ) 1
n+

n0
----- 

  S++ q( ) 1–( ).+=

µBH*
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ions [17]

 

 (21)

 

where ΦBH ≈ 2.26 [3], Λ is the alloy scattering parame-
ter, and

 (22)

Here, ν = 2 for Φ++, ν = 1 for Φ0+, and ν = 0 for Φ00.
Thus, the relaxation of the electron momentum by the
correlated system Fe2+–Fe3+ in the general case is deter-
mined by three contributions: the scattering by charged
centers, the scattering by neutral centers, and the inter-
ference contribution. Figure 4 shows the dependences
µ(NFe) and also the contributions µ++(NFe) and µal(NFe)
(alloy scattering) to the mobility, which were calculated
in the framework of our model [3, 17] and the concepts
proposed in [16]. In order to avoid errors associated
with the use of the weak spatial correlation model in the
determination of g++(r) (formula (8) for f(rc, r) in [16]),
the mobility was calculated using the structure factors
Sαβ(q) (20) obtained from the solution of the Ornstein–
Zernike equations in the Percus–Yevick approxima-
tion. Curves 1, 1a, 1b, and 1c were computed with the
empirical equation for the packing parameter η(NFe) [3]

 (23)

where ηL = 0.45. Curves 2, 2a, and 2b were obtained
with expression (4) derived in [16] for the packing
parameter.

It is seen from Fig. 4 that the µ(NFe) values calcu-
lated without regard for the interference scattering of
electrons by charged and neutral (in the lattice) iron
ions (curve 1b in Fig. 4) lie considerably higher than
the experimental data. It is evident that the interference
mechanism plays an important part in the relaxation of
electron momentum in HgSe : Fe crystals and should be
included in calculation of the electron mobility. A com-
parison between curves 1 and 2, which are calculated at
the same parameters and differ only in the dependences
rc(NFe), does not count in favor of the model proposed
in [16]. Taking into account two fitting parameters
(Λ and ηL) and assumptions made in calculations, a
good quantitative agreement between µ(NFe) in our
model (curve 1) and the experimental data should not
be excessively overrated. However, within the model
advanced in [3, 13, 17], it is possible to describe the
dependence µ(NFe) over a wide range of iron impurity

µ NFe( ) µBH* ΦBH kF( )/Φ kF( ),=

µ NFe( ) µ++
1– NFe( ) µ+0

1– NFe( ) µ00
1– NFe( )+ +( ) 1–

,=

Φ kF( ) Φ++ kF( )=

+ Λ 2
n0

n+
----- 

 
1/2

Φ+0 kF( ) ΛΦ00 kF( )
n0

n+
-----+ ,

Φαβ kF( ) 2
x3Sαβ 2kFx( )

x2 bs
1–+( )ν------------------------------ x, bsd

0

1

∫ 2kFrs.= =

η ηL 1
η
ηL

------
NFe

N+
--------– 

 exp– ,=
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concentrations. The use of the dependence rc(NFe) rep-
resented by formula (4) derived in [16] leads to a very
slow increase in the packing parameter and, corre-
spondingly, µ++(NFe) with an increase in the iron impu-
rity concentration (Fig. 4, curve 1a). As a consequence,
the discrepancy between the results obtained within the
approach proposed in [16] and the experimental data
from [1] in the range of an increase and a maximum of
the mobility appears to be sufficiently large: the value
of [(µ(NFe) – µBH)/µBH] is less than the experimental
value by a factor of two or three. In the framework of
this approach, the dependence µ(NFe) at any fitting
parameters Λ and r1 cannot be described in the range of
an increase and a maximum of the mobility.

Let us now consider the problem concerning the
correctness of using S++(q) and the pair correlation

χ*

2.0

1.5

1.0

0.5

2

1 3 4

(a)

0
0.2 0.4 0.6 0.8

η

∆Nc, ∆Nss
5

4

3

2

1
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Fig. 5. (a) Dependences of the reduced compressibility
χ* = χ(T, η)/χ(T, 0) on the density η (packing parameter)
for the system. Curves 1–3 are calculated from the expan-
sion of the structure factor in a power series of the density
with inclusion of (1) first-order terms χ* = 1 – 8η [14],
(2) second-order terms χ* = 1 – 8η + 34η2 [16], and
(3) third-order terms χ* = 1 – 8η + 34η2 – 108η3. Curve 4
is determined from the solution of the Ornstein–Zernike
equation within the Percus–Yevick approximation. (b)
Dependences of the number of d holes (1) ∆Nc in the corre-
lation sphere and (2) ∆Nss in the spherical layer rc < r < 2rc
on the density η (packing parameter).
1
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function f(rc, r) defined in the model of weak Coulomb
correlations between Fe3+ impurity ions [16]. To
accomplish this, let us examine the behavior of such a
physical quantity as the isothermal compressibility
χ(T, η) with an increase in the density of the system
(packing parameter) [19]

 

The value of S++(0) = (1 – η)4/(1 + 2η)2 determined
from the solution of the Ornstein–Zernike equation
within the Percus–Yevick approximation [5] monoton-
ically decreases with an increase in the packing param-
eter (Fig. 5). In the framework of the weak correlation
model [14], upon approximation of g(r) by a step func-
tion, S++(0) = 1 – 8η and the compressibility of the sys-
tem becomes negative at η > 1/8. According to [16], the
inclusion of the next expansion term results in S++(0) =
1 – 8η + 34η2. In this case, as the packing parameter η
increases, the compressibility of the system decreases at
η < 1/8, sharply increases at η > 1/8, and becomes larger
than the compressibility of an ideal gas [S++(0) = 1] at
η > 0.235. This behavior of the compressibility indi-
cates that the weak correlation model can be used only
at η < 1/8. Another more serious circumstance that cast
some doubt on the results obtained within this model is
the violation of the particle conservation law upon order-
ing of d holes. The mean number of d holes that passed
from the correlation sphere (0 < r < rc) ∆Nc = n+Vc = 8η
should be equal to the excess number of d holes that
appeared in the region r > rc

 

For the pair correlation function f(rc, r) defined in the
model of weak Coulomb correlations between Fe3+

impurity ions [16], ∆Nss = 34η2. The particle conserva-
tion law is violated over the entire range of packing
parameters with the exception of the value η = 0.235, at
which the weak correlation model has already been
inapplicable (Fig. 5).

The nonphysical behavior of χ(T, η) at η > 1/8 and
the violation of the particle conservation law suggest
that the use of the weak correlation model [16] cannot
be treated as justified. The main thing resides in the fact
that the application of this model makes no sense. First,
for the hard sphere system, there is the rigorous analyt-
ical solution of the Ornstein–Zernike equation within
the Percus–Yevick approximation [19, 21], which is
free of the above disadvantages. This solution can be
used in the range of both weak and strong Coulomb
correlations of d holes in the system of mixed-valence
iron ions. Second, the experimentally observed
increase in the mobility cannot be explained within the
weak correlation approximation: the experimental ratio
µmax(NFe)/µBH is equal to ~4 at NFe ~ (1–2) × 1019 cm–3,
whereas the ratio calculated according to [16] (even
without regard for the alloy scattering) is two times less
[µ++(NFe)/µBH ≤ 2]. Our calculations give µ++(NFe)/µBH

χ T η,( ) n+kBTS++ 0( ).≅

∆Nss 4πn+ r2h++ r( ) r.d

r rc>
∫=
P

~ 8 in this concentration range. Therefore, the experi-
mental dependence of the electron mobility on the iron
impurity content in HgSe : Fe crystals at low tempera-
tures cannot be described within the approximations
made in [16].

5. CONCLUSION

Thus, in the present work, the spatial ordering of
charges was considered for the mixed-valence system.
The dependence of the correlation sphere radius on the
iron impurity content was obtained from the balance
equation for d holes and neutral centers in the short-
range order cluster of the Fe3+ ion. It was demonstrated
that the basic equation that determines the dependence
rc(NFe) in [16] is incorrect. The penetrating hard sphere
model was proposed for the rigorous description of the
spatial ordering in the mixed-valence system and the
calculation of partial correlation functions. The rela-
tionships between the direct correlation functions were
derived. This made it possible to reduce sets of four
Ornstein–Zernike equations to one nonlinear integral
equation for the pair correlation function of d holes in
the mixed-valence system. Detailed critical analysis of
the results obtained in [16] was carried out. Contrary to
the conclusion drawn in [16], we proved that the spatial
redistribution of charges in the mixed-valence system
leads both to spatial correlations in the subsystem of
charged centers and to the correlated arrangement of
neutral centers with respect to charged centers. This is
responsible for the interference scattering, which plays
an important role in the relaxation of electron momen-
tum and should be taken into consideration in calcula-
tions of the electron mobility. It was shown that the use
of the weak Coulomb correlation model cannot be
treated as justified. This model gives no way of fitting
the results of calculations to the experimental mobili-
ties in HgSe : Fe crystals.
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Abstract—A system that contains two sorts of impurity centers spatially distributed in a random way is con-
sidered. Not all impurities of the first sort are ionized, and all the impurities of the second sort are ionized. Spa-
tial correlations in the system of impurity ions of the first sort are investigated under conditions when the cor-
relation radius of an impurity ion is limited from above due to a deficit of neutral impurities. The influence of
randomly spatially arranged small-sized donors (impurities of the second sort) on correlations in the system of
impurity ions is analyzed. The equations for describing the effect of small-sized donors on correlations in the
system of impurity ions are obtained. The electron mobility at zero temperature is calculated by the example of
HgSe : Fe (the correlated system of impurity centers consists of iron atoms and small-sized donors whose con-
centration is higher than the Mott concentration). © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Impurity scattering makes the main contribution to
the electron mobility in semiconductors at low temper-
atures. Under normal conditions, when the multiple
scattering is negligibly small, the coherent component
of scattering is associated with the correlations in the
spatial arrangement of impurity centers. In recent
years, the interference scattering effects that lead to an
increase in the electron mobility have been extensively
studied in HgSe : Fe compounds in which correlations
in the arrangement of Fe3+ iron ions are significant [1, 2].
Earlier [3], I proposed a theory for describing the spa-
tial correlations of impurity ions in solids and consid-
ered the specific case when particles of one sort served
as correlated scatterers. The theory was applied to anal-
ysis of the electron mobility in HgSe : Fe upon scatter-
ing by the correlated system of iron ions [3]. However,
real impurity systems are multicomponent systems
involving impurity centers of different sorts. Particu-
larly, in the case of HgSe : Fe, the mobility is deter-
mined by the scattering from Fe3+ iron ions, Fe2+ iron
atoms neutral with respect to a lattice, and the so-called
intrinsic donors whose concentration depends on the
degree of sample purification and is an uncontrollable
quantity. In this respect, the calculation of the mobility
upon scattering of electrons by a multicomponent sys-
tem of correlated impurity ions is a topical problem. In
the present work, the theory proposed in [3] was gener-
alized to this case and the electron mobility in HgSe : Fe
compounds at low temperatures was considered as an
example.
1063-7834/01/4303- $21.00 © 20430
2. RELATIONSHIP BETWEEN CORRELATION 
FUNCTIONS AND THE MOBILITY 
UPON ELECTRON SCATTERING

BY MULTICOMPONENT IMPURITY SYSTEMS

Our theory is based on the relationship obtained
within the Born approximation at T = 0 for the relax-
ation time of electron momentum upon elastic scatter-
ing by a system of impurity centers [4, 5], that is,

 (1)

For a homogeneous and isotropic spatial distribu-
tion of impurity centers, we have

 (2)

Here, αβ(r) is the pair correlation function, which
relates the mutual arrangement of impurity centers of
the α and β sorts; Vα(q) is the matrix element of the
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scattering potential; nα is the partial concentration of
impurity centers; ne is the electron concentration; and
εF is the Fermi energy. For simplicity, the volume V of
the system under consideration is taken equal to unity.

The boundaries of the applicability of our simple
theory are determined by two conditions. The condition
of validity of the Boltzmann kinetic equation for a
degenerate electron gas is represented by the inequality
"/τεF ! 1. The condition of validity of the Born
approximation is defined by the inequality |V | !

kFa. Here, kF is the wave number of an electron at

the Fermi surface and a is the effective range of the
potential.

Formulas (1) and (2) allow us to calculate numeri-
cally the mobility µ = eτ/m only in two specific cases:
either when all the scattering centers are spatially dis-
tributed in a random way or for the scattering by a cor-
related distribution of scatterers of one sort. In the case
of multicomponent correlated systems of scatterers, the
calculation of the mobility µ from formulas (1) and (2)
can be brought to completion only under additional
model assumptions that reflect specific features of the
problem. As such a particular system, let us consider
correlated impurity centers in HgSe : Fe and also exam-
ine the behavior of the electron mobility at T = 0.

In HgSe : Fe, the impurity scattering is contributed
by iron atoms, whose concentration nF is specified in
the sample preparation, and intrinsic donors, whose
concentration nD is an uncontrollable quantity and
characterizes the sample purity. The sources of elec-
trons in the conduction band are iron atoms, whose
energy level lies in the conduction band, and intrinsic
donors, whose concentration is higher than the Mott con-
centration that corresponds to the metal–dielectric tran-
sition. At electron concentrations lower than a certain
critical value nc, all the iron atoms are ionized, and the

concentration of impurity ions is n+ = ne =  + nD,

where  is the concentration of Fe3+ ions. When the
condition ne = nc is met, the Fermi level is fixed at the res-
onance level of iron [1, 2]. Therefore, at nF + nD > nc, the
concentration of iron ions becomes constant and a part
of iron atoms remain in the Fe2+ state, which is neutral
with respect to the lattice. In this case, the concentra-
tions of impurity centers are related to each other by the
expressions

 (3)

Here, nr is the total concentration of all impurity centers

and  is the concentration of Fe2+ atoms neutral with
respect to the lattice. It is assumed that all the impurity

"
2
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centers are spatially arranged in a random manner.
However, iron ions under the repulsion of the Coulomb
forces are spatially redistributed and tend to be spaced as
far apart as possible, which leads to correlations in the
system of impurity centers [2]. Let us introduce the par-

tial correlation functions (r), (r), and (r),
which describe correlations in the mutual spatial
arrangement of iron ions, small-sized donor ions, and
neutral iron atoms, respectively. Furthermore, the

mixed correlation function (r) determines correla-
tions in the arrangement of iron ions relative to neutral

iron atoms, the function (r) defines correlations in
the location of iron ions with respect to small-sized

donor ions, and the function (r) describes correla-
tions in the arrangement of neutral iron atoms relative
to small-sized donor ions.

Then, in the framework of the model used [2], the
relaxation time τ according to formulas (1) and (2) is
expressed through the Fourier transforms of six partial
correlation functions

 (4)

Here, V0(q) is the matrix element of the potential of
scattering by a neutral iron atom; V+(q) is the matrix
element of the potential of scattering by the impurity
ion (we assume that all the impurity ions irrespective of
their nature have the same scattering potential); and

(q), (q), (q), (q), (q), and (q)
are the Fourier transforms of the partial correlation
functions.

The specificity of multicomponent systems resides
in the fact that the partial correlation functions in these
systems are not independent, but are related to each
other by universal equations. These universal equations
make it possible to reduce the number of partial corre-
lation functions to be calculated by choosing an appro-
priate model. One universal equation can be obtained
by expressing the total correlation function (r)
(describing correlations in the system of impurity cen-
ters) in terms of the partial correlation functions

 (5)

The second universal equation is derived when the total
correlation function (r) of the subsystem consisting
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of iron atoms is expressed through the partial correla-
tion functions

 (6)

Since all the impurity centers are spatially arranged in
a random fashion, we have the equality

 (7)

Recall that correlations in the system of scatterers are
determined solely by the ordering of Fe3+ ions. The
Coulomb repulsion redistributes iron ions in such a way
that a sphere of radius rc, inside which iron ions are
absent, can be drawn around each iron ion. This implies

that the correlation function (r) differs from unity.
On the other hand, neutral iron atoms occur in the
sphere of radius rc, which surrounds an iron ion, and,

hence, the correlation function (r) also differs from
unity. Similarly, correlations in the arrangement of iron

ions with respect to an intrinsic donor ion [ (r) ≠ 1]
result in the correlation in the location of neutral iron

atoms relative to a small-sized donor ion [ (r) ≠ 1].
In this case, it is essential that the spatial redistribution
of iron ions should not bring about correlations in the
mutual arrangement of neutral iron atoms. Actually,
since iron atoms themselves are spatially arranged in a
random way, the density of iron atoms and, hence, the
density of iron ions fluctuate in the space. In spatial
regions, where the density of iron ions is anomalously
large, the energy of the Coulomb repulsion is also
anomalously high. As the concentration of iron atoms
increases, iron ions are redistributed in such a way as to
reduce the energy of the Coulomb repulsion. In this
case, it is clear that the distribution of neutral iron
atoms in regions with an anomalously large density of
ions most efficiently decreases the energy of the sys-
tem. Since density fluctuations are spatially distributed
in a random manner, the mutual arrangement of neutral
iron atoms also turns out to be close to random. In this
respect, within our model, we assume that the distribu-
tion of neutral iron atoms is close to random and set

 (8)

Note that the problem concerning the relation between
the partial correlation functions in HgSe : Fe in the ide-
alized case of pure sample (nD = 0) was considered in
[6]. Certain heuristic equations that relate the partial
correlation functions in the system composed of parti-
cles of two sorts (A and B) were taken by the authors of
[6] from [7]. These equations (formulas (1) and (2) in
[7]) were obtained under the assumption that the corre-
lation functions that describe the mutual arrangement
of particles of the A sort relative to each other and par-
ticles of the B sort with respect to each other differ little
[“when gA(r) and gB(r) are the same”]. In the case of
HgSe : Fe, the energy of interaction between neutral
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iron atoms is small as compared to the energy of the
Coulomb repulsion between iron ions. Therefore, the

correlation functions (r) and (r) bear no simi-
larities to each other, and the heuristic equations
(obtained in [7]) in our case are inapplicable. In our the-
ory, the relations between the partial correlation func-
tions were derived using the universal Eqs. (5) and (6),
which follow from the definition of the total correlation
function for a system involving particles of several
sorts.

By using the Fourier transform of Eqs. (5) and (6)
with due regard for relationships (7) and (8), the partial
correlation functions that describe correlations in the
arrangement of neutral atoms can be expressed in terms
of the partial correlation functions that determine cor-
relations in the system of impurity ions

 (9)

Substitution of expression (7)–(9) into formula (4)
gives the final relationship for the relaxation time τ of
the electron momentum

(10)

According to formula (10), the interference scattering
term expressed through the partial correlation functions
is the larger, the larger the difference between the scat-
tering potentials, and tends to zero in the limit
V+(q)  V0(q). This property of formula (10) is a con-
sequence of our model assumptions, according to
which impurity centers are spatially distributed in a
random way [relationship (7)], and correlations are
determined solely by the spatial arrangement of iron
ions. Therefore, the interference terms in the scattering
appear only owing to the difference between the poten-
tials of scattering by neutral centers and ions.

Since the potential of electron scattering by neutral
iron atoms is small compared to that by iron ions, we
take into account the inequality V0(q) ! V+(q) and set
V0(q) = 0 in the term involving the correlation functions
in formula (10). Within this approximation, correla-
tions in the arrangement of neutral iron atoms make
zero contribution to the interference and the formulas
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for the calculation of the electron mobility µ take the
form

(11)

where

 

Here, µ0 is the electron mobility associated with the
scattering by neutral iron atoms and µ+ is the mobility
stemming from the scattering by impurity ions.

3. CALCULATION 
OF CORRELATION FUNCTIONS

The correlation function (q) for HgSe : Fe com-
pounds in the idealized case of pure samples (nD = 0)
was calculated within the “hard” sphere model in [2, 3,
8]. The hard sphere diameter rc (in our case, this quan-
tity plays the role of the correlation sphere radius) was
identified with the minimum distance between iron
ions. The larger the ratio C = nF/ , the larger the dis-
tance that can separate iron ions, and, hence, the larger
the value of rc. In each of the works [2, 3, 8], the authors
used their own basic equation of the theory that relates
the hard sphere diameter rc to the concentrations of iron

atoms nF and iron ions  and this is the main differ-
ence between these works. The influence of intrinsic
donors on the correlation effects in HgSe : Fe com-
pounds was taken into consideration in [9, 10]. This
was achieved by a simple modification of the basic
equation of the theory that was written for nD = 0.
Before proceeding to the construction of a more realis-
tic model that includes intrinsic donors, it is necessary
to examine the basic equation of the theory for the case
of nD = 0.

First and foremost, we consider the limiting case

C  1. In this case, Vc  ! 1 (Vc = 4π /3 is the cor-
relation sphere volume) and the correlation sphere do
not overlap. By definition, only neutral iron atoms
occur in the correlation sphere. Consequently, the vol-

ume occupied by iron ions is equal to 1 – Vc . The
concentration of iron ions is equal to the iron atom con-
centration multiplied by the volume occupied by iron
ions. Therefore, in the limiting case C  1 (recall that

C = nF/ ), we have

 = nF(1 – Vc ). (12)
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In the limit nF/   1, the basic equation of the the-
ory should transform into Eq. (12) (in this case,

(dη/dC)  1/8, where η = Vc /8 is the packing
coefficient). Now, we compare the asymptotics of the
basic equations underlying the theories proposed in
[2, 3, 8] with Eq. (12).

In [2], the basic equation of the theory was postu-
lated in the form

Vc  = 1 – exp(–VcnF). 

In the limit C  1, this equation takes the form

 

and (dη/dC)  1/4. Therefore, the equation derived
in [2] has an incorrect asymptotics and overestimates
the rate of increase in the packing coefficient by a factor
of two.

In [8], the postulated basic equation of the theory
was as follows:

 

where the fitting parameter ηL is equal to 0.45. In the
limit C  1, this equation has the form

 

and (dη/dC)  2ηL. Consequently, the asymptotics
of the equation derived in [8] is also incorrect. More-
over, this equation overestimates the rate of increase in
the packing coefficient by one order of magnitude.
Thus, the calculations in [2, 8] were based on the equa-
tions that exhibit an incorrect asymptotics in the limit

C = nF/   1. Therefore, the estimates performed
in these works cannot lay claim to the quantitative
description.

In my previous work [3], the basic equation of the
theory was derived by methods of statistical physics
and takes the form

 (13)

where n+ is the concentration of impurity ions, n is the
concentration of impurity centers, Vm is the maximum
value of the correlation volume Vc, and nm = n+Vm is the
number of impurity ions that are redistributed from this
volume to the spherical layer rc < r < rm. Upon redistri-

bution of iron ions, Vm = V1 = 2π /3 (where r1 is the
radius of the first coordination sphere for a face-centered
cubic structure) and nm = a = 5.92 [3]. Equation (13) has
the correct asymptotics and transforms into Eq. (12) in
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the limit nF/   1. Thus, our theory that includes
the influence of small-sized donors on correlations in
the arrangement of iron ions is based on Eq. (13).

In order to calculate the mobility µ by formulas (11),
it is necessary to compute two correlation functions

(q) and (q) in the framework of the hard sphere
model. In this case, it should be taken into account that
the presence of small-sized donors spatially arranged in
a random manner weakens correlations in the location
of iron ions. At sufficiently large concentrations of
small-sized donors, when the energy of interaction
between iron ions is considerably less than the energy
of interaction between iron ions and small-sized

donors, the correlation function (q) is equal to zero

[ (r) = 1] and correlations in the system of impurity

ions are described only by the function (q), which
defines correlations in the arrangement of iron ions
with respect to small-sized donors. We will restrict our
consideration to not very high concentrations of small-
sized donors. In this case, it is possible to construct a
simple model that furnishes a means of performing
numerical calculations. Let the condition nF + nD > nc

be met. Then, an increase in the iron concentration
leads to the ordering of iron ions, which tend to be
spaced as far apart as possible. In doing so, it is clear
that each small-sized donor can be surrounded by a cor-
relation sphere of certain radius  such that only neu-

tral iron atoms occur in the correlation volume  =

4π /3 around each small-sized donor. For iron ions, it
is energetically unfavorable to be inside these correla-
tion volumes due to the Coulomb repulsion between
iron ions and small-sized donors. Therefore, iron ions
are redistributed only over iron atoms that are located
outside the correlation spheres of radius . Let us
eliminate these iron atoms from consideration by cut-

ting the correlation volumes  together with small-
sized donors (the centers of these volumes) from the
system of impurity centers and calculate the correlation
function that describes the mutual arrangement of iron
ions in this “perforated” system. Since small-sized
donors are spatially arranged in a random way, the loca-
tion of iron atoms in this perforated system is also ran-
dom. Hence, it is assumed that the correlation functions
in this perforated system should be calculated in the
same way as in the system that is comprised of randomly
arranged iron atoms in the ideal sample (nD = 0). Note
that Eq. (13) in which the iron atom concentration nF is
replaced by the effective concentration  = nF(1 –

nD) should be used as the basic equation of the the-
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ory. As a result, the equation for the determination of
the Vc parameter takes the form

 (14)

The basic equation (14) of the theory enables us to cal-

culate the correlation function (q) provided that the

correlation volume  is known.
Evidently, upon redistribution of iron ions with

respect to the spatially fixed small-sized donor ions, the

maximum correlation volume  is equal to the vol-
ume per impurity ion, i.e., Vm = 1/n+, and the number of
ions nm redistributed from this volume is equal to unity.
Substitution of Vm = 1/n+ and nm = 1 into Eq. (13) gives
the second equation in our set of equations for deter-

mining the correlation volume 

 (15)

In the limiting case nF/   1, when the correlation
spheres do not overlap, the volume occupied by iron

ions is equal to 1 – Vc  – nD. Consequently, in this
limiting case, the correlation volumes and the concen-
trations of impurity ions are related by the equation

 (16)

At nF/   1, Eq. (14) transforms into Eq. (16), and,

since Vc  , Eq. (15) coincides with Eq. (16).
Therefore, Eqs. (14) and (15) have the correct asymp-

totics. If the expression for the correlation volume 
from Eq. (15) is substituted into Eq. (14), instead of the
set of two coupled equations (14) and (15) we can write
the equivalent set consisting of two independent equa-
tions

 (17a)

 (17b)

The condition nF + nD > nc determines the lower bound-
ary of the nF values at which the set of Eqs. (17) is valid.
The upper boundary can be obtained from the follow-
ing reasoning. The correlation radius rc cannot be larger
than the screening length, because, at larger distances,
the Coulomb interaction between ions is negligibly
small and ions are not redistributed. The screening
length can be calculated by the Thomas–Fermi formula
rTF = 6πnee2/κεF. The maximum packing coefficient is

estimated as ηm = πrTFF3 /6. The set of Eqs. (17) is
valid only in the range of iron atom concentrations nF
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at which rc < rTF, because the packing coefficient only
in this range is limited from above by a deficit of iron
atoms. Therefore, at high concentrations of iron atoms,
we are forced to restrict ourselves to an estimate and to
set η = ηm. The numerical estimates were obtained
using the following parameters: nc = 4.5 × 1018 cm–3,
εF = 210 meV, m = 0.07m0, and κ = 20 [1]. At these
parameters, the Thomas–Fermi screening length rTF is
equal to 6.8 × 10–7 cm and the packing coefficient is
limited from above by ηm = 0.475(nc – nD)/nc.

The set of Eqs. (17) permits us to calculate the cor-
relation functions in the framework of the hard sphere

model. The correlation function (r), which
describes the arrangement of small-sized donors rela-
tive to an iron atom, is computed by the formula

 (18)

The correlation function (r), which defines the
mutual arrangement of iron ions, is calculated by the
Percus–Yevick method [5].

Here, it is pertinent to recall that the mobility in our
theory is calculated from the Boltzmann kinetic equa-
tion in the Born approximation with due regard for the
screening of the Coulomb potential for impurity ions
within the Thomas–Fermi linear theory. The fulfillment
of the corresponding conditions requires the smallness
of a number of parameters, which for HgTe : Fe in the
order of magnitude are as follows: "/τεF ≈ 3 × 10–3

(condition for applicability of the Boltzmann equation),
(kF aB)–1 ≈ 0.1 (condition for applicability of the Born
approximation in the case of the Coulomb scattering
potential), and e2/κ εF ≈ 5 × 10–2 (condition for applica-
bility of the Thomas–Fermi theory). Here,  is the mean
distance between electrons; aB is the Bohr radius; and τ
is the relaxation time of electron momentum, which was
estimated from the mobility µ = 4 × 104 cm2/V s. The
above estimates indicate that the high concentration of
conduction electrons (ne ≈ 4.5 × 1018 cm–3) in the case of
HgSe : Fe ensures the smallness of the basic parameters
of our theory developed for calculating the mobility in
a degenerate electron gas.

4. ELECTRON MOBILITY AT T = 0

We start the discussion of the results of calculations
with the mobility µ+ associated with the scattering by
impurity ions, which is calculated by formulas (11),
(17), and (18). The results of calculations are conve-
niently analyzed by separating two relative contribu-
tions to the electrical resistivity from formula (11) for
µ+: the contribution ∆ρFD/ρ0 from the interference due
to the correlation in the arrangement of iron ions with
respect to small-sized donors and the contribution
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∆ρFF/ρ0 from the interference due to the correlation in
the mutual arrangement of iron ions, that is,

 (19)

where

 

Here, ρ0 is the resistivity calculated for a random distri-
bution of impurity ions. The total contribution ∆ρ from
the interference effects to the resistivity is equal to
∆ρFD + ∆ρFF. The electron scattering by the impurity ion
will be described as the scattering by a screened Cou-

lomb center with V+(q) = (4πe2)/κ(q2 + ). Within this
approximation, formula (11) for µ+ in the limit

(q)  0 and (q)  0 transforms into the
well-known Brooks–Herring formula for the mobility.
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Fig. 1. Dependences of the electrical resistivity on the con-
centration of small-sized donors nD. Contributions of the
interference to the resistivity: the heavy line corresponds to
the contribution of the interference –∆ρ/ρ0 upon scattering
by impurity ions, curve 1 represents the contribution of the
interference –∆ρF/ρ0 upon scattering by iron ions, and
curve 2 shows the contribution of the interference –∆ρFD/ρ0
upon scattering by iron ions and small-sized donors. Con-
centration of iron atoms nF = 5 × 1018 cm–3.
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Figure 1 displays the numerical data on the electri-
cal resistivity as a function of nD for the specific case
nF = 5 × 1018 cm–3. Curve 1 shows the contribution
−∆ρFF/ρ0 (from the interference upon scattering by iron
ions) to the resistivity. This contribution to the electri-
cal resistivity (19) is the product of the integral involv-
ing the correlation function by the concentration factor

/nc, which monotonically decreases with an
increase in nD. According to relationship (17b), the

packing coefficient η = π (nc – nD)/6 can only
increase with an increase in the concentration of small-
sized donors, and, hence, the hard sphere diameter rc

increases with an increase in nD. Therefore, at rc < rTF,

the integral { (q)} is a monotonically increasing
function of nD and the quantity –∆ρF/ρ0, which is the
product of a monotonically decreasing function by a
monotonically increasing function, reaches a maxi-
mum at a certain concentration of small-sized donors.
Curve 2 depicts the contribution –∆ρFD/ρ0 (from the
interference associated with the correlation in the
arrangement of iron ions with respect to small-sized
donors) to the resistivity. As follows from Eq. (17a), the
hard sphere diameter  monotonically increases with
an increase in nD. As a consequence, the integral

{ (q)} monotonically increases with an increase in

nD, while the concentration factor nD reaches a max-
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Fig. 2. Dependences of the mobility µ+ upon scattering by
impurity ions on the concentration of small-sized donors nD

at different concentrations of iron atoms nF, 1018 cm–3:
(1) 5, (2) 8, (3) 10, (4) 20, (5) 30, and (6) 40.
PH
imum at nD = nc/2. Therefore, the resistivity –∆ρFD/ρ0
reaches a maximum at the small-sized donor concentra-
tion close to nc/2. The total contribution –∆ρ (heavy
line in Fig. 1) from the interference to the electrical
resistivity contains two terms and also exhibits a maxi-
mum. Since the contribution from the interference to
the electrical resistivity is negative, the dependence of
the electron mobility µ+ upon scattering by impurity
ions on the concentration of small-sized donors has a
maximum.

The dependences of the electron mobility µ+ on the
concentration of small-sized donors are depicted in
Fig. 2. The value of µ+0 = 3.5 × 104 cm2/V s (where
µ+0 = e/mn+{1} is the electron mobility upon scattering
by randomly arranged impurity ions) was used in cal-
culations. As can be seen from Fig. 2, the relative
mobility at a maximum ∆µ+/µ+0 decreases with an
increase in the iron concentration. For example,
∆µ+/µ+0 = 0.4 at nF = 5 × 1018 cm–3 (curve 1) and
∆µ+/µ+0 = 0.1 at nF = 4 × 1019 cm–3 (curve 6). This
behavior directly follows from formulas (17), accord-
ing to which the higher the concentration of iron atoms,
the closer the hard sphere diameter to its limiting value,
and, hence, the smaller the possible increment in the
hard sphere diameter upon an increase in the concentra-
tion of small-sized donors. As the concentration of iron
atoms nF increases, the location of the maximum in the
µ+(nD) curve shifts toward the range of small concentra-
tions nD. As follows from our calculations, the maxi-
mum mobility is observed at small-sized donor concen-
trations nDm ≤ 2 × 1018 cm–3.

The influence of small-sized donors on the electron
mobility in HgSe : Fe was first studied in [9]. The com-
putational scheme used in this work involved two
inconsistencies. First, the calculations were based on
the basic equation of the theory for the determination of
the hard sphere diameter, which was postulated in [2].
This equation has an incorrect asymptotics in the limit

  nF and, hence, cannot be used for the descrip-
tion of correlation in the arrangement of iron ions. Sec-

ond, the authors of [9] assumed that (q) = (q).
However, correlations in the mutual arrangement of
iron ions and correlations in the arrangement of iron
ions with respect to a spatially fixed small-sized donor
ion are described by different correlation functions. It is
natural that the results obtained in the present work
quantitatively differ from the results derived in [9],
even though the essence and the main features of this
phenomenon were correctly described and interpreted in
[9]. In this work, the dependence of the electron mobility
on the concentration of small-sized donors was experi-
mentally investigated using HgSe : Fe samples doped
with Ga (nF = 1019 cm–3, and nGa = 0.2 × 1018 cm–3). Ran-
domly arranged Ga atoms are ionized, because they
correspond to the metallic side of the Mott transition,
and represent small-sized donors whose concentration
can be determined experimentally. The concentration
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of intrinsic small-sized donors in these samples was
assumed to be negligibly small as compared to the
concentration of Ga atoms. However, the study of
these samples did not allow the authors to reveal a
nonmonotonic character of the µ+(nD) dependence.
The reason for the negative result can easily be seen
from Fig. 2, in which calculated curve 4 corresponds
to nF = 2 × 1019 cm–3. Actually, according to our calcu-
lations, the mobility at nD = 0 is larger than that at nD =
2 × 1018 cm–3. In order to find the nonmonotonic behav-
ior, it is necessary to have a set of sufficiently pure sam-
ples with Ga concentrations in the range 0 < nGa < 2 ×
1018 cm–3. Moreover, it is desirable to choose samples
with low iron concentrations nF ≥ 4.5 × 1018 cm–3. In the
wake of the work [9], the effect of Ga on the electron
mobility in HgSe : Fe was considered in [10]. The cal-
culations in this work were based on the equation for
the determination of the hard sphere diameter, which
was postulated in [8]. In our work, it was demonstrated

that this equation in the limit /nF  1 has an incor-
rect asymptotics and overestimates the rate of increase
in the packing coefficient by one order of magnitude
with an increase in the concentration of iron atoms.
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Fig. 3. Dependences of the mobility µ on the concentration
of iron atoms nF: (1) the mobility µ+ determined by the
impurity ion scattering and (2) the mobility µ0 due to scat-
tering by neutral iron atoms. The heavy line indicates the
total mobility µ associated with the scattering by impurity
centers. Points are the experimental data taken from (a) [12],
(b) [11], (c) [13], and (d) [14].
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Hence, we will not compare the estimates obtained in
[10] with the results of our calculations.

Now, let us dwell on the contribution from the elec-
tron scattering by neutral iron atoms to the mobility. As
follows from formulas (11), the total electron mobility µ
is expressed in terms of the mobility µ+ associated with
the scattering by impurity ions and the mobility µ0 due to
the scattering by neutral impurities through the formula

µ–1 =  + . Here, µ0 = A/(nF – ), where A is the
constant independent of the concentration of neutral iron
atoms. The constant A was determined from the experi-
mental data taken from [11], according to which
µ = 2.2 × 104 cm2/V s at the concentration of iron atoms
nF = 5.8 × 1020 cm–3. At this concentration nF and the
concentration of small-sized donors nD = 1.5 × 1018 cm−3,
the calculated mobility µ+ is equal to 1.9 × 105 cm2/V s
and the constant A is 1.46 × 1025 cm–1 V–1 s–1.

The results of calculations of the mobility for the ide-
ally pure sample (nD = 0) are shown in Fig. 3. As the iron
concentration increases, the mobility µ+ (curve 1)
increases as a result of a partial ordering in the arrange-
ment of iron ions, and the mobility µ0 (curve 2) decreases
owing to an increase in the concentration of neutral iron
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Fig. 4. Dependences of the mobility µ on the concentration
of iron atoms nF at different concentrations of small-sized

donors nD, 1018 cm–3: (1) 0, (2) 1, (3) 1.5, (4) 2, (5) 2.5, and
(6) 3. Points are the same experimental data as in Fig. 3.
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atoms that are spatially arranged in a random way. As a
consequence, the dependence of the total mobility µ on
the concentration nF exhibits a maximum. The maximum
mobility µ = 9 × 104 cm2/V s is reached at the concentra-
tion of iron atoms nF = 5 × 1019 cm–3. In this case, µ+ =
1.2 × 105 cm2/V s and µ0 = 3.2 × 105 cm2/V s. The exper-
imental data displayed in Fig. 3 are taken from [11–14].
In experiments, the maximum electron mobility µ =
1.1 × 105 cm2/V s was observed at the iron concentration
nF = 2 × 1019 cm–3. It should be remembered that the cal-
culated data shown in Fig. 3 were obtained for the ideally
pure sample (nD = 0). In real HgSe : Fe samples, the con-
centration of small-sized donors that are spatially
arranged in a random manner can be as high as nD = 2 ×
1018 cm–3. Since the presence of small-sized donors at
concentrations in the range 0 < nD < 2 × 1018 cm–3 favors
an increase in the degree of ordering in the system of
impurity ions, we calculated the mobilities µ(nF) at dif-
ferent concentrations nD. Curves 1–6 in Fig. 4 corre-
spond to the concentrations nD = 0, 1, 1.5, 2, 2.5, and
3 × 1018 cm–3. According to our calculations, the maxi-
mum mobility µ = 9.5 × 104 cm2/V s is observed at nD =
1018 cm–3 (curve 2). At concentrations nD > 1018 cm–3,
the electron mobility decreases with an increase in the
concentration of intrinsic donors.

5. CONCLUSION

Thus, in the present work, the basic equation of the
theory proposed in [3] for the ideally pure sample (nD =
0) was generalized to the real case of systems contain-
ing a sufficiently large amount of small-sized impurity
donors. The application of the developed theory to the
specific case of HgSe : Fe made it possible to calculate
the dominant contribution (more than 80%) to an
increase in the mobility. In our opinion, a good agree-
ment with the experimental data suggests that the the-
ory advanced can be useful for interpreting experiments
related to investigations of interimpurity correlations in
semiconductors.
P
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Abstract—The mechanism of the emf appearing in a semiconductor under heating in the absence of external
temperature gradients, an effect revealed by the present authors, is considered. The experiments were performed
on samarium sulfide (SmS) single crystals. It is shown that the emf is generated by an abrupt change in the
samarium ion valence, which results from the ion screening by the electrons activated into the conduction band.
We succeeded in obtaining emf pulses 1.3 s long with an amplitude of up to 2.5 V at T ~ 460 K, as well as CW
emf generation within the 375- to 405-K temperature interval with a maximum value of ~50 mV. © 2001 MAIK
“Nauka/Interperiodica”.
Earlier, we reported on the anomalous behavior of
the thermopower in samarium monosulfide (SmS) sin-
gle crystals at T = 435–455 K, which consisted in the
generation of emf spikes of amplitude larger than
10 mV [1]. This effect was assumed to be connected
with the semiconductor–metal phase transition in SmS.
This work aimed at studying this effect and revealing
the mechanism of the emf generation in the course of
the phase transition.

Samarium monosulfide undergoes an abrupt isos-
tructural (NaCl–NaCl) transition from the semicon-
ducting to metallic state after the electrons have
reached a critical concentration in the conduction band
[2]. This concentration has been experimentally
reached in two ways to date, namely, by doping SmS
and by acting on a sample mechanically [3]. In the lat-
ter case, the phase transition can be induced by a pres-
sure (hydrostatic, uniaxial, indentor) which is the low-
est on record for semiconducting materials [3–5]. The
mechanism of this phase transition is based on the
screening of the samarium-ion electric potential by the
conduction electrons. The pressure-induced transition
proceeds in two stages: (1) an abrupt increase in the
conduction electron concentration through activation
from ions which occupy interstitial lattice sites and
have an activation energy Ei ~ 0.045 eV (Sm2+ 
Sm3+ + ) and (2) a similar change in the valence state
of the samarium ions sitting at lattice sites through acti-
vation of electrons from the 4f levels with an activation
energy Ef = 0.23 eV. Both transitions are of the Mott
type and terminate in the expulsion of the Ei impurity
levels and of the 4f 6 levels into the conduction band.
Stage (1) stimulates stage (2) in that it donates electrons
to the conduction band in a sufficient amount [6]. The
realization of stage (2) is also made possible by the fact

e
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that, at the critical phase-transition pressure (650 MPa),
the 4f 6 levels approach the conduction band bottom by
~0.1 eV, so that their pressure-induced shift is
~0.16 meV/MPa [1].

This work considers the possibility of inducing a
phase transition by heating SmS single crystals. Heat-
ing within the temperature interval studied can stimu-
late only stage (1) of the phase transition [1]. Because
the concentration of the interstitial samarium ions in
SmS is Ni ~ 1020 cm–3 [6], the conduction band should
acquire ~1020 cm–3 additional electrons. However,
impurity ions are distributed nonuniformly over the
sample volume; therefore, the Mott transition in the
defect system should not occur simultaneously
throughout the sample. As a result, a concentration gra-
dient of the conduction electrons will appear. Thus, by
measuring the signal from two arbitrarily chosen points
of the sample, one will generally observe the genera-
tion of an emf. It is this consideration that governed the
configuration of our experiments.

Besides the emf measurements, we studied the ther-
mal regimes of the sample regions to which the emf sig-
nal wires were connected, as well as the temperature
variation dynamics in these regions. The temperature
was measured by two copper–constantan thermocou-
ples attached to the opposite end faces of the sample.
The emf signal was obtained from the same faces. The
sample was placed into an ampoule not much larger in
volume than the sample and filled with vacuum oil. The
ampoule was mounted in a container, likewise filled
with oil and also with SiO2 powder to preclude convec-
tive flows. The container was suspended inside a vessel
with oil which was heated. In this way, we succeeded in
eliminating practically all the temperature drops form-
ing over a sample under heating and, as a consequence,
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Dynamics (1, 2) of temperature variation at the sample end faces, (3) of their temperature difference, and (4) of the emf gen-
erated in the course of the heating and cooling of a SmS single crystal.

2

parasitic emf signals. The signals from the two thermo-
couples were computer processed and displayed in the
course of the experiment.

The samples were SmS single crystals ~2.5 × 2 ×
1 mm in size, which were cleaved along the [100],
[010], and [001] planes from a larger single crystal and
had a conduction electron concentration n = (3–4) ×
1018 cm–3. This value was derived from Hall measure-
ments made on a large number of single crystals
cleaved from the large crystal investigated and reflects
not the measurement error but the expected difference
in the values of n in the different regions of the samples
studied.

Figure 1 plots the temperatures of both end faces of
the sample (curves 1, 2), the difference between their
temperatures (curve 3), and the output signal (curve 4)
versus time.

The temperatures of the end faces are seen to vary
synchronously under heating, which implies the
absence of a temperature gradient across the sample. A
similar situation is observed when the sample is cooled
down to T = 440 K. At this temperature, the sample
undergoes a jumplike drop in temperature recorded
simultaneously at both its faces. This drop is equal to
∆T ≈ 28 K. As the temperature is further decreased, the
temperatures of the two end faces vary differently;
P

namely, the temperature of one of them decreases
smoothly (curve 1), whereas that of the other exhibits
irregular downward deviations (curve 2). This behavior
is accounted for by the generation of an emf (curve 4).
Note the following features of the effect, which are in
agreement with its proposed model: (1) Depending on
the actual temperature, SmS can exist in two states
(phases). (2) The transition from the high- to the low-
temperature region involves an absorption of thermal
energy. (3) Generation takes place only if the sample
regions to which the signal wires are attached are at dif-
ferent temperatures.

Consider these features in more detail.
(1) Because the temperature T = 440 K separating

the regions of existence of the two assumed SmS states
lies in the region of thermopower (α) anomalies, we
may invoke here the data of [1]. While the low-temper-
ature phase of SmS is obviously its semiconducting
state, which is characteristic of room and lower temper-
atures and has a conduction-electron activation energy
Ei = 0.05 eV, the high-temperature phase has a conduc-
tion activation energy of ~0.2 eV. The two phases also
differ in the temperature dependence of the ther-
mopower; namely, the low-temperature one exhibits a
decrease in α with increasing T, which is typical of
semiconductors, whereas in the high-temperature
phase, α is small, constant, and even rises slightly with
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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T [1]. Within the proposed model of the effect, the
abrupt increase in the activation energy to a value close
to that of the samarium ion 4f levels, Ef = 0.23 eV, can
be explained as being due to the disappearance of the Ei
states as a result of the Mott-type phase transition (ion-
ization of all Sm2+ interstitials with increasing temper-
ature). The behavior of α(T) is in agreement with this
explanation [1].

(2) The absorption of energy in the transition from
the high- to the low-temperature phase may be associ-
ated with the structural changes the SmS undergoes
when the interstitial samarium ions transfer from the
tri- to divalent state, because the radius of Sm3+ is con-
siderably larger than that of Sm3+ (1.14 and 0.96 Å,
respectively [7]). We attempted to estimate the charac-
teristic transition time τ from the duration of the jump
in T. Figure 2 presents the dependence of T on time in
the region of the jump, which was obtained in the same
conditions as the curves in Fig. 1, but in another heating
cycle of the sample. The measured value is τ ~ 0.1 s.1 It
is small enough to permit a rough estimation of the
energy expended in the phase transformation of the sam-
ple, Q = cv∆T, where c = 1.8 J/(cm3 K) is the heat capac-
ity of the semiconducting SmS [8] and v ≈ 0.005 cm3 is
the sample volume. The result is Q ≈ 0.23 J. This yields
46 J/cm3 (8.3 × 103 J/kg) for the specific energy of the
phase transition under study. This value is less by two
orders of magnitude than the metal–semiconductor
phase-transition energy in SmS [8, 9], which is in good
agreement with the fact that, according to the model
under consideration, the number of samarium ions
transferring from the tri- to divalent state in the SmS
metal–semiconductor transition is larger by two orders
of magnitude than in our case (~1022 and 1020 cm–3,
respectively).

1 This value may prove to be an overestimate because of the limited
possibilities of this experiment.
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Fig. 2. Determination of the characteristic time of the SmS
single-crystal transition from the high- to low-temperature
phase (the point-to-point time interval is 0.1428 s).
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(3) The last feature gives one grounds to maintain
that the emf generated in this experiment originates
from the thermopower. In this case, the temperature
gradient across the sample arises due to the transition
from the high- to low-temperature phase proceeding
incoherently over the sample volume. This can be veri-
fied by calculating the temperature dependence of the
thermopower from the data in Fig. 1, i.e., by dividing
the values of the emf on curve 4 by the values of ∆T
taken from curve 3. The α(T) relation obtained in this
way for the 385- to 415-K interval, where ∆T ≠ 0, is dis-
played in Fig. 3. It behaves in agreement with the α(T)
relation obtained in [1], which attests to the mecha-
nisms of the effects having a common nature.

One can thus maintain that one of the mechanisms
of the emf generation observed under heating of SmS
single crystals consists in the onset of temperature gra-
dients in the sample volume as the system of strained
samarium ions undergoes local phase transitions, and it
is these gradients that generate the emf by the conven-
tional thermoelectric mechanism.

The maximum value of the gradient recorded in our
experiment is ∆T ≈ 125 K. Considering that α in SmS
does not exceed 100 µV/K for T ≥ 400 K, the magni-
tude of the emf generated by the above mechanism
should not exceed 12 mV. However, emf spikes as high
as 80 mV were observed [1], which certainly cannot be
fully accounted for within this mechanism of the effect.

The maximum emf spike that we succeeded in
detecting in this work was 2.5 V in a pulse 1.3 s long
(Fig. 4). The pulse occurred at the temperatures of the
sample end faces equal to 445 and 480 K, respectively.
This pulse may be due to a large conduction-electron
concentration gradient setting in at the phase transition in
the strained samarium ion system (Sm2+  Sm3+ + ),
which occurs locally near one of the end faces. As fol-
lows from an electrostatics calculation, generation of a
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Fig. 3. Temperature dependences of the thermopower of
SmS single crystals: (1) data of Fig. 1 and (2) from [1].
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potential-difference pulse with an amplitude of 2.5 V
may be expected for the actual sample and contact geom-
etry if a phase transition takes place in a region of radius
~0.2 µm.2 This second mechanism of emf generation is
more sensitive than the first one to selection of the points
of wire attachment to the sample, as well as to the actual
conditions of heat influx and removal. By properly vary-
ing these experimental parameters on a larger single-
crystal SmS sample measuring 9.5 × 5 × 5 mm and hav-
ing n = 2 × 1019 cm–3, we succeeded in obtaining CW
generation with a signal of ~50 mV (Fig. 5). This signal
may be assumed to be an envelope of a large number of
pulsed signals. The region where this effect is observed,
375–405 K, is shifted toward lower temperatures com-
pared to the one recorded in [1], which is in accord with
the proposed model, because the magnitude of n in this
sample was higher than that in the sample studied in [1].

Thus, heating SmS single crystals gives rise to emf
generation. This effect is associated with a change in
the samarium ion valence as a result of a Mott-type
phase transition occurring in the system of impurity
(interstitial) Sm2+ ions. There are two grounds for the
generation of the emf: (i) the onset of temperature gra-
dients in the sample as a result of absorption and release
of the phase-transition energy and (ii) the formation of
conduction-electron concentration gradients because of
a change in the valence Sm2+  Sm3+ + . The results
obtained, in particular, those presented in Fig. 4, sug-
gest the possibility of applying this effect to the conver-
sion of thermal to electrical energy.

2 We calculated the potential difference between two points (where
the wires were attached to the sample) of the electrostatic field of
a sphere (the sample region where the phase transition occurs),
which was charged uniformly with a volume charge density ρ =
1020  cm–3 and was placed in a medium with a dielectric permit-
tivity ε = 18 (semiconducting SmS [10]).
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Fig. 4. Maximum emf pulse obtained when heating a SmS
single crystal.
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Abstract—The absorption spectra of Tl1 – xCuxInS2 single crystals (x = 0; 0.005; 0.010; 0.015) are interpreted
using experimental data. The allowed interband direct transitions are determined, and the energy gap, binding
energy, temperature-shift coefficient, Bohr radius, and reduced effective mass of the exciton are estimated. ©
2001 MAIK “Nauka/Interperiodica”.
An investigation of the physical properties of

TlM  compounds (M is In, Ga; C is S, Se, Te) and
solid solutions based on these compounds is of practi-
cal importance in establishing the relationship between
the properties and the composition of these materials
and in controlling their optical properties.

According to crystallographic data, layered TlInS2

single crystals are described by the –C2/c space
group. There are 16 TlInS2 formula units in the unit cell
and Z = 8 in the primitive cell [1]. It has been shown [2]
that the fundamental absorption edge in TlInS2 crystals
corresponds to the energy 2.512 eV at 77 K and 2.363 eV
at 300 K. Two exciton peaks at 2.58 and 2.87 eV have
been revealed in the absorption spectra of TlInS2 single
crystals at 10 K [3]. It is also known [4] that CuInS2
crystals have a direct band gap and are characterized by
a large absorption coefficient (α ≥ 104 cm–1), which
makes them a perspective material for fabricating pho-
tocells.

It seems to be of interest to study the TlInS2–CuInS2
system, namely, the effect of the partial replacement of
thallium ions by copper ions on the exciton characteris-
tics of layered TlInS2 single crystals. Such an investiga-
tion is the subject of the present paper.

To determine the mutual solubility of the TlInS2–
CuInS2 compounds, samples of the Tl1 – xCuxInS2 alloys
were fabricated by fusing stoichiometric alloying com-
positions in quartz ampoules, pumped down to a vac-
uum of 1.3 × 10–3 Pa, by the two-temperature synthesis
method. The differential thermal and x-ray phase anal-
yses were used to control the single-phase state of the
alloys over the entire concentration interval. The equi-
librium diagram of the TlInS2–CuInS2 system [5] was
constructed on the basis of the data of the differential
thermal and x-ray phase analyses and resistivity mea-
surements. This diagram is a quasi-binary section of the
quaternary Tl–Cu–In–S system and represents an
eutectic diagram (the eutectic alloy contains 50 mol %
TlInS2 and CuInS2 and melts at 995 K) with the solid-
solution regions restricted to 3.0 mol % on the TlInS2

C2
VI

C2h
6
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side and to 2.0 mol % on the CuInS2 side. The layered
Tl1 – xCuxInS2 single crystals with x = 0; 0.005; 0.010;
0.015 were grown by the Bridgman–Stockbarger
method.

The Tl1 – xCuxInS2 samples used to measure the opti-
cal properties were obtained by cutting massive single
crystals along the natural cleavage plane and were
approximately 20 µm thick. When making measure-
ments, the cleavage plane of the crystals was oriented
perpendicular to the optical axis of the experimental
setup. The exciton spectra of the Tl1 – xCuxInS2 samples
were studied on a special setup for integrated investiga-
tions of the optical and photoelectric spectra of semi-
conductor crystals by modulation spectroscopy meth-
ods. The setup was based on a KSVU-6M computing
complex, which makes it possible to automate record-
ing and mathematical processing of the spectra. The
setup resolution was 0.1 meV. The investigations were
performed in a wide temperature range by using a
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Fig. 1. Absorption spectra of a TlInS2 single crystal at dif-
ferent temperatures: (1) 20, (2) 40, (3) 60, and (4) 80 K; the
crystal thickness is 23 µm.
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helium optical cryostat UTREKS with a temperature-
stabilizing system (the stabilization precision was
0.02 K). The optical measurements were carried out in
the temperature interval 20–200 K.

Figure 1 shows the absorption spectra of a TlInS2
single crystal at different temperatures. The spectra of
Tl1 – xCuxInS2 crystals at x = 0.005, 0.010, and 0.015 are
shown in Figs. 2, 3, and 4, respectively. The wavelength
range investigated was 4600–5050 Å.

The investigation of the absorption spectra of the
Tl1 – xCuxInS2 single crystals showed that the absorption
edge shifts to higher energies with decreasing tempera-
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Fig. 2. Absorption spectra of the Tl0.995Cu0.005InS2 single
crystal at different temperatures: (1) 20, (2) 70, (3) 120, (4)
140, (5) 160, and (6) 180 K; the crystal thickness is 20 µm.
P

ture, and a clearly pronounced absorption band associ-
ated with direct transitions to the exciton state was
observed in the vicinity of the fundamental absorption
edge. An exciton peak at 2.58 eV was revealed in
TlInS2 at 20 K (Fig. 1). As was mentioned above, the
same exciton peak in TlInS2 was also revealed in [3] at
10 K. As the temperature decreased from 200 to 20 K,
the exciton absorption maximum shifted to higher ener-
gies.

It can be seen from Figs. 1–4 that, for the crystals
studied, the intensity of the exciton peaks decreases
only slightly with the temperature growth from 20 to
80 K and diminishes considerably with a further
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Fig. 3. Absorption spectra of the Tl0.99Cu0.01InS2 single crys-
tal at different temperatures: (1) 20, (2) 60, and (3) 80 K; the
crystal thickness is 18 µm.
Table 1.  Energy positions of the maxima of the exciton peaks in the Tl1 – xCuxInS2 single crystals (x = 0; 0.005; 0.010; 0.015)
at different temperatures

T, K
Eex(n = 1), eV

TlInS2 Tl0.995Cu0.005InS2 Tl0.99Cu0.01InS2 Tl0.985Cu0.015InS2

20 2.5800 2.5483 2.5609 2.5493

30 2.5462

40 2.5758 2.5452 2.5583 2.5457

50 2.5415

60 2.5680 2.5389 2.5504 2.5415

70 2.5337

80 2.5588 2.5301 2.5415 2.5327

90 2.5255

100 2.5198 2.5332 2.5229

110 2.5137

120 2.5091 2.5249 2.5127

140 2.5250 2.4990 2.5132 2.4995

160 2.4870 2.5005 2.4880

180 2.4741 2.4890 2.4750

200 2.4915 2.4775 2.4608
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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increase in temperature from 80 to 200 K. In addition,
the exciton peaks broaden noticeably with increasing
temperature. In comparison with the TlInS2 single crys-
tals, the exciton absorption band in the Tl1 – xCuxInS2
single crystals was shifted to lower energies. The ener-
gies corresponding to the exciton-peak maxima at dif-
ferent temperatures are presented in Table 1.

As can be seen from Figs. 1–4, broadening of the
exciton absorption band was observed with an increase
in the content of copper in the crystals investigated.

Figure 5 shows the temperature dependence of the
spectral position of the maximum of the exciton
absorption band in the Tl0.985Cu0.015InS2 single crystal
(curve 2). The Eex(T) dependence for TlInS2 is also pre-
sented here for comparison (curve 1). The experimental
Eex(T) dependence is characterized by two slopes. In
the interval 20 ≤ T ≤ 60 K, the temperature-shift coeffi-
cient of the exciton peak in TlInS2 is ∂Eex/∂T = –2.8 ×
10–4 eV/K; in the interval 60 ≤ T ≤ 200 K, it is –5.8 ×
10–4 eV/K. Partial replacement of thallium ions in
TlInS2 by copper ions affects the temperature-shift coef-
ficient of this exciton peak only slightly. For example, for
Tl0.985Cu0.015InS2, we have ∂Eex/∂T = –2.2 × 10–4 eV/K
within the interval 20 ≤ T ≤ 60 K and –6.1 × 10–4 eV/K
within the interval 60 ≤ T ≤ 200 K.

Along with the main exciton band, a second band
corresponding to n = 2 was observed at low temperatures
(T = 20 K) in the absorption spectra of the Tl1 – xCuxInS2
crystals at x = 0; 0.005; and 0.010 (Figs. 1–3). The sec-
ond exciton peak was highest in the TlInS2 crystals. The
amplitude of this peak decreased with an increasing
content of copper, and, finally, at x = 0.015, the second
exciton peak was not revealed at all (Fig. 4). Using the
energy difference between the maxima corresponding
to the ground and first excited exciton states, we deter-

mined the exciton binding energy  in the crystals
studied (Table 2).

It should be pointed out that the exciton binding
energy grew as the content of copper in the TlInS2 crys-
tals increased. From the low-temperature (T ≈ 25 K)
data on the absorption spectra of the TlInS2 single
crystals [6], the exciton binding energy was calculated
to be 25 meV. This result is consistent with our data.
The obtained values of the exciton binding energy
made it possible to estimate the exciton Bohr radius
(a*) and reduced effective mass (m*) of the exciton in

Eb
ex
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the Tl1 – xCuxInS2 crystals whose values are also pre-
sented in Table 2. The value of the dielectric constant
(ε ≈ 11) used in calculating a* and m* was taken from
[7].
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Fig. 4. Absorption spectra of the Tl0.985Cu0.015InS2 single
crystal at different temperatures: (1) 20, (2) 60, (3) 100,
(4) 140, (5) 160, and (6) 180 K; the crystal thickness is 17 µm.

Fig. 5. Temperature dependence of the energy position of the
maximum of the exciton absorption band in the (1) TlInS2
and (2) Tl0.985Cu0.015InS2 single crystals.
Table 2.  Exciton characteristics of the Tl1 – xCuxInS2 single crystals at T = 20 K

Crystal composition Crystal
thickness, µm

, eV
(n = 1)

, eV
(n = 2)

, meV a*, Å m*

TlInS2 23 2.5800 2.5947 20 33 0.17m0

Tl0.995Cu0.005InS2 20 2.5483 2.5710 31 21 0.27m0

Tl0.99Cu0.01InS2 18 2.5609 2.6012 54 12 0.46m0

E1
ex E2

ex

Eb
ex
1
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Using the values of the exciton binding energy, we
also determined the energy gap. For example, at T =
20 K, Eg is equal to 2.60 eV for TlInS2 and 2.5793 eV
for Tl0.995Cu0.005InS2.

Thus, it can be concluded that partial replacement of
thallium by copper in TlInS2 single crystals results in a
modification of the absorption spectra and a change in
the exciton characteristics, which makes it possible to
control the optical parameters of these single crystals.
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Abstract—The quantum mechanics of an electron–nuclear system with strong electron–phonon coupling is
considered. First, a two-site model is treated in the adiabatic approximation. As the coupling constant increases,
electron transfer undergoes qualitative changes; more specifically, a potential barrier forms in the adiabatic
potential, the electron transfer becomes associated with the tunneling of nuclei through the barrier, and the level
splitting in the system falls off exponentially. The properties of a similar crystal model are discussed. It is shown
that electron transfer in a crystal in the case of strong coupling is likewise associated with the tunneling of nuclei
through barriers in the deformation space. Strong coupling modifies the electron–electron interaction terms.
The Hamiltonian (exchange) terms, which are not associated with electron transfer, are only weakly modified.
At the same time, the terms involving transfer (the band terms) undergo exponential reduction and vanish in the
limit as M  ∞ (M is the ion mass) and the carriers become small polarons. This reduction provides a basis
for the natural mechanism of enhancement of the isotope effect. © 2001 MAIK “Nauka/Interperiodica”.
Recent years have witnessed increasing interest in
phenomena associated with strong electron–phonon
coupling (the polaron effect). This interest was initiated
by the observation of a colossal magnetoresistance in a
number of manganates (a discovery promising a con-
siderable application potential), which stimulated
intense investigation of their properties (structural,
magnetic, optical, transport, etc. [1–5]). One of the
most important results of that investigation is certainly
the establishment of the essential role of electron–
phonon coupling (EPC), in particular, of polaron
effects, which should be taken into account when inter-
preting experimental data. Note the discovery of a giant
isotope effect in these compounds [6]. It was found [7]
that substitution of O18 for the O16 isotope transferred
some insulating manganates to the conducting state;
that is, isotope substitution changed the nature of the
ground state. This phenomenon could hardly be possi-
ble in the absence of a mechanism of enhancement of
the isotope effect, which is readily realized under
strong EPC.

Earlier, attention was focused on polarons in con-
nection with the discovery of high-temperature super-
conductivity, where the bipolaron model [8] was con-
sidered as a candidate capable of interpreting the mech-
anism of the phenomenon. Irrespective of the success
(or failure) in this field, the interest in this model as an
alternative to the BCS theory is fully justified and its
study may reveal a number of characteristics of the
superconducting state which the BCS model leaves
unclarified.

This paper reports a study of the behavior of an elec-
tron interacting with lattice vibrations as a function of
the strength of this interaction, which is made within the
adiabatic approximation. We consider the simplest one-
1063-7834/01/4303- $21.00 © 20447
electron two-site model (a pair of cation–anion com-
plexes), which allows detailed investigation of its
properties.1 This model is used as a basis to discuss
how these properties manifest themselves in a crystal.
It is pointed out that for a strong enough EPC, a number
of characteristics of the crystal undergo qualitative
changes. In particular, the Hamiltonian terms describ-
ing electron–electron interaction become substantially
modified.

1. ADIABATIC POTENTIALS 
IN THE TWO-SITE MODEL

The Hamiltonian of the two-site model under study
has the form

 

 (1)

 

where  = i"d/dxi is the momentum operator of

nucleus i;  and  are the operators of creation and
annihilation of the electron at site i, respectively; i = 1, 2;

1 The usefulness of such a study was pointed out by us in [9]. Note
that this model treated in terms of the adiabatic approximation
was the subject of investigation in numerous publications. How-
ever, we have found it reasonable to give here a fairly complete
account of it, while focusing attention on the points of particular
significance for crystals.

H H0 V , H0+ T U x1 x2,( ),+= =

T
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M and ω are the nuclear mass and vibration frequency,
respectively; xi is the nuclear coordinate; g is the EPC
constant; and J is an energy constant depending on the
wave function overlap of electrons at different sites and
determining the electron level splitting at g = 0. The
Hamiltonian in Eq. (1) is invariant under a simulta-
neous interchange of indices (1, 2)  (2, 1) of the
electronic and nuclear operators (see [9]). We shall
limit ourselves here to considering only the one-elec-
tron states, which makes valid the relation

 (2)

A possible realization of this model is shown in
Fig. 1, where two identical cation–anion complexes are
depicted. The complex consists of four anions which
are located at the vertices of a rhombus centered on a
cation. The electron migrates among the cations. It is
assumed that deformation changes only the length of
the rhombus diagonal. The deformation may be charac-
terized by the position xi (i = 1, 2) of one of the vertices.
The reckoning is done from the equilibrium position in
the absence of the electron.

In the one-electron problem, the EPC in this model
depends only on the difference x1 – x2. In our earlier
study [9], we considered only the two-site model and,
therefore, the terms depending on x1 + x2 were dropped.
Having in mind an analysis of a more general model,
we intend to retain both variables x1 and x2 up to a cer-
tain moment. [All the parameters of the Hamiltonian in
Eq. (1) coincide with those introduced in [9], but the
energy is displaced by –g2/2Mω2.]

Now, we shall look for the steady-state wave func-
tion of Hamiltonian (1) in the form

 (3)

The quantities Ci(x1, x2) satisfy the coupled equations

 (4)

We determine the adiabatic potentials E±(x1, x2) by

n̂1 n̂2+ 1.=

Ψ C1 x1 x2,( )a1
+ 0| 〉 C2 x1 x2,( )a2

+ 0| 〉 .+=

H1 x1 x2,( )C1 JC2+ EC1,=

JC1 H2 x1 x2,( )C2+ EC2,=

Hi x( ) T
Mω2 x1

2 x2
2+( )

2
--------------------------------- 2gxi.–+≡

2

0

x2

1

0

x1

Fig. 1. Two-site model. Filled circles are anions and open
circles are cations.
P

dropping the kinetic energy terms in Eq. (4),

 (5)

and by equating the determinant of system (5) to zero,

 (6)

The coefficients in Eq. (6) are symmetric functions of
x1 and x2; therefore, the adiabatic potentials E± should
likewise be symmetric functions of x1, x2.

In the specific case of J = 0, there are two nonsym-
metric terms:

 (7)

For E1(x1) ≥ –Ep, these terms cross at the x1 = x2 line,

where E1 = E2 = Mω2  – gx1. The equality sign

corresponds to xc = g/Mω2. An arbitrarily small
finite value of J  symmetrizes the potential, because the
terms diverge by ±|J | at the xc point.

Introduce the variables zi = xi/x0 and x0 = g/Mω2 and
the notation:2

 (8)

Thus, we obtain for the adiabatic terms E±(x1, x2),

 (9)

(see Fig. 2). (Note that ε±(z1, z2) are analytical functions
of z1, 2, because for real J ≠ 0, the branching points of
the functions in Eq. (9) lie off the real axis. An excep-

2 The dimensionless parameter η does not depend on the ion mass
and is the most important characteristic of the adiabatic potential.
It coincides with the parameter η1 introduced by Holstein [10]
(for other reasons) and defines the boundary between the large,
η1 > 1, and small, η1 < 1, polarons. (Note that the quantity Ep in
Eq. (8) is half the polaron shift introduced in [10].)
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tion to the case is J = 0, where the derivatives suffer a
discontinuity.) For C1(z1, z2) and C2(z1, z2), we obtain

 (10)

The extrema of the adiabatic terms are defined by
the expressions

from which

(11a)

(11b)

The term E+ has its only minimum at (1/ , 1/ ) in
the (z1, z2) space. The term E– also has a minimum at

point (1/ , 1/ ), if η2 > 1. For η2 < 1, the (1/ ,

1/ ) point becomes a maximum, with two minima
appearing at the points

 

and

 

Thus, in the absence of EPC (g = 0), the level surfaces
of the adiabatic potentials E±(x1, x2) are paraboloids of
rotation displaced vertically by ± J, with minima at the
(0, 0) point. Introducing a nonzero EPC lowers the
symmetry (to reflection through the x1 = x2 plane and
rotation by π about the vertical axis passing through

x1 = x0/ , x2 = x0/ ) and displaces the minima to the

(x0/ , x0/ ) point. If g exceeds the threshold value
gc (see Appendix 1) corresponding to η = 1, the lower
term E– undergoes a qualitative change, namely, the

extremum at point (x0/ , x0/ ) splits into three

extrema, more specifically, a maximum at (x0/ ,
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x0/ ) and two minima of equal depth. The adiabatic
change in deformation from one minimum to the other
is accompanied by an electron transfer between the
sites and involves overcoming the energy barrier in the
(x1, x2) space.

It is appropriate now to cross over to the variables

 (12)

In these variables, the Hamiltonian in Eq. (1) will
take the form

 

 (1a)

 

where  and  are the corresponding momentum
operators.3 The X-dependent terms in Eq. (1a) do not
couple with the electronic variables, and, therefore, in
an analysis of the electron system, it is sufficient to
retain only the U2(x) term in the Hamiltonian and to
look for the wave function in the form

 (3a)

3 The model described by the Hamiltonian in Eq. (1a) was used in
the classical papers of Holstein [10, 11], as well as in the treat-
ment of the problem of interband light absorption by a small
polaron in [12].

2
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Fig. 2. Adiabatic terms ε±(z) ≡ E±(z)/Ep of the two-site
model. ±zc are the turning points for the lowest energy level
"ω/2. The region between them is classically inaccessible.
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The coupled equations (4) can now be recast as

 (4a)

In Eq. (4), we have introduced the notation

 

Equation (9) yields a relation for the adiabatic terms
(z ≡ x/x0),

 (9a)

and, from Eq. (10), the C1 and C2 coefficients are found
to be

 (10a)

We now find the first and second derivatives of E±(z)
with respect to z to determine the extrema and renor-
malize the frequency:

 (13)

 (14)

The extrema of the adiabatic terms E±(z) lie at z = 0
and

 (15)

Note that E±|z = 0 = ±J. The upper adiabatic term E+(z)
has only one extremum, a minimum at z = 0. The lower
term, E–(z), has its only minimum at z = 0 for η > 1 and
one maximum at z = 0 and two minima at z = ±zc for
η < 1, so that for η < 1, there is a potential barrier (see
Fig. 2). For the energies at the minima in Eq. (15), we
obtain

 (16)

The barrier height is the difference between E–(0) and
E–(zc):

 (17)

The frequency renormalization is given by the term in
parentheses in Eq. (14) for z = zc:

 (18)
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(the vibration mode corresponding to the minus sign
softens, and that corresponding to the plus sign hard-

ens). At z = 0,  = (1 ± η–1)ω2. Note that the ion mass
enters Eqs. (5)–(16) only through the combination
Mω2, which has the meaning of the elastic constant and
in fact does not depend on M. The dependence on M
appears only when solving the Schrödinger equation
with potential energy E±(x).

2. NUCLEAR VIBRATIONS

Now, let us take into account the term with the
nuclear kinetic energy. As can be seen from Eq. (5), the
coefficients C1(x1, x2) and C2(x1, x2) are determined to

within the factor χ(x1, x2). Therefore, solutions (x)

and (x) to the coupled equations (4a) should be
looked for in the form

 (19)

in other words, the vibronic electron wave function can
be written as

 (20)

where C1(x) and C2(x) are defined by Eq. (10a). Note
that for z = zc,

 (21)

and for z = 0,

 (22)

One readily obtains

 (23)

Here, T(x) is the kinetic energy operator of the vibrating
system:

 (24)

Taking into account the kinetic energy gives rise to the
appearance of a second dimensionless parameter (in
addition to η):

 (25)

This is customarily called the adiabaticity parameter,
because the condition of applicability of the adiabatic
approximation is ν @ 1. Straightforward estimation
gives ν ~ (M/m*)1/2 = κ –2, where κ is a fundamental
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parameter of the Born–Oppenheimer approximation
[13]. It should be stressed that it does not depend on the
EPC constant g.

As follows from Eq. (23), the χ(x) function should
satisfy two different equations, which, generally speak-
ing, is impossible. This implies that the concept of the
adiabatic potential is valid only under certain condi-
tions imposed on the parameters of the problem.4

Indeed, the problem under study here has two length
dimension parameters, namely, x0 = g/Mω2, which is
determined by the actual form of the potential energy
and is independent of the nuclear mass, and ln =

 ∝  , the oscillator length, which deter-
mines the radius of the nth oscillator state. The ratio
(ln/x0)2 can be written as

 (26)

If this ratio is small and the parameter η is not too
small, then, for low energy levels in Eq. (23), one may
neglect the action of the kinetic energy operator on the
Ci(x) functions and recast the first terms in Eq. (23) in
the form Ci(x)Tχ(x). Then, Eqs. (23) reduce to one
equation:

 (27)

For η < 1, the potential E–(x) describes two potential
wells separated by a barrier. If we formally make the
barrier infinite (by making J and Ep infinite at a fixed
J/Ep = 2η ratio), then in a steady state, the nuclear wave
function will be localized in one of the wells and its
amplitude in the other well will be zero. Each energy
level will be twofold degenerate and the wave functions
can be written as χ(x – x0zc) and χ(x + x0zc) and will not
overlap. The total electron–nucleus functions of the
doublet will be

 (28)

Because of χ being sharply decreasing functions, we
have replaced Ci(x) in the right-hand part of Eq. (28) by
their values at x corresponding to the points of the min-
ima of the adiabatic potential E–. Obviously enough,
the matrix element of any operator coupling the Ψ1 and
Ψ2 states is zero. Therefore, the probability of electron
hopping between the sites is zero. Note that in the states

4 In order for Eq. (23) to be satisfied, one should look for a solu-

tion, in place of Eq. (19), in the form (x) + ∆Ci(x). The limited
nature of the concept of the adiabatic potential is discussed in [13,
Chapter 4, Appendices VII, VIII].
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in Eq. (28), there is a certain correlation between the
state of the vibrational system and the electron charge
distribution between the sites. For instance, in the Ψ1
state, the fractions of the charge at sites 1 and 2 are (1 +

)/2 and (1 – )/2, respectively, with the
deformation being localized near site 1 (Fig. 1). Note
also that taking into account EPC in the adiabatic
approximation makes the electronic charge density
spread to the adjacent site 2 with a weight (1 –

)
2
/4.

If the barrier height is finite, the χ(x zc) func-
tions overlap and the electron can now hop between the
sites, thus splitting the doublet in Eq. (28). We shall call
this situation at η < 1 the strong-coupling case (having
in mind strong electron–phonon coupling).

For η > 1, the barrier vanishes and the E± terms have
the only extremum, namely, a minimum at zc = 0.
Recalling Eq. (22), the wave function can be presented
in the form

 (29)

Because both electron states have equal weights, the
above correlation no longer operates, as in the case of
EPC neglect. The part played by the EPC consists in
making the adiabatic potentials nonparabolic and in
producing corrections to the electron wave function.
For η @ 1, the wave functions and the energies of the
low-energy states are close to the corresponding quan-
tities for the system in the absence of EPC (the weak-
coupling case):

 (30)

[Here,  are the eigenfunctions of the harmonic
oscillator.] The corresponding effects can, in principle,
be treated, making a perturbation expansion in weak
electron–phonon coupling.

Thus, in our system, we have a realization of one of
the two qualitatively different states described by
Eqs. (28) and (29), depending on the presence or
absence of an energy barrier in the lowest adiabatic
term E–. This barrier is a consequence of the formation
of two minima in E–(x1, x2) for η < 1. The transition
between these two states occurs in the vicinity of η = 1,
where a singularity can exist in the parameter space.
Analytical study of the region of disappearance of the
barrier is fairly difficult to perform even in terms of the
two-site problem. (It would be expedient to carry out
this study numerically on the basis of the above consid-
erations.)
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3. LEVEL SPLITTING 
IN THE ADIABATIC APPROXIMATION

To find the level splitting, which originates from the
existence of an energy barrier in the lowest adiabatic
term, we shall use the quasi-classical approximation
(QA). Generally speaking, the QA is valid for strongly
excited levels. However, the harmonic oscillator levels
determined in the QA coincide with their exact values.
Because the adiabatic potentials in our problem are
oscillator-like in the region of interest to us here, it can
be assumed that the QA also remains adequate in the
region of small quantum numbers n. In the strong cou-
pling case, the adiabatic potential E–(x) represents two
wells separated by a barrier (Fig. 2). A solution to the
problem on the splitting ∆E of a deep level with energy
E of the order of –Ep obtained for such a potential in the
QA is given in [14, problem 3, p. 208]:

 (31)

The nuclear wave functions of the doublet can be
written as

 (32)

where ϕi(x) is the quasi-classical wave function for the
ith well. The integration is performed between the turn-
ing points a and b;  is the frequency of classical
motion with energy E in the potential well E–(x). [The
argument of the exponential in Eq. (31) decreases with
increasing excitation energy if tunneling occurs from
an excited state.]

Consider the splitting of the lowest level with a quan-
tum number n = 0. The energy of this excitation (the

zero-point energy) is , where 
[which coincides with Eq. (18)]. The result depends on
the product of the parameters ην ≡ η3 = J2/("ωEp). For
η3 < 1, one obtains

 (33)

For η3 > 1 (to be more exact, in the adiabatic limit of
M  ∞), one can neglect the zero-point energy and
integrate from –x0 to x0. The prefactor in Eq. (31)

∆E
"ω̃
π

------- 1
"
---– p xd

a

b

∫ 
 
 

,exp=

p 2M E E– x( )– .=

χ± x( ) 1

2
------- ϕ1 x( ) ϕ2 x( )±( ),=

ω̃

"ω̃/2 ω̃ ω 1 η2–=

∆E
2 2

π
---------- "ωEp

2Ep

"ω
---------– 

  .exp=
P

remains the same, so that the integral in the argument
of the exponential in Eq. (31) will be

(34)

Thus, in this case, we have5

 (35)

In a number of cases, estimates can be made by
means of the approximate expression

 (36)

In this approximation, in view of Eq. (32), the dou-
blet wave functions can be expressed through the wave
functions in Eq. (28) in the form

 (37)

In contrast to Eq. (28), they match the symmetry of the
Hamiltonian in Eq. (1) [i.e., they possess a definite par-
ity under the interchange of indices (1, 2)  (2, 1)].
Note the structural similarity of these functions to the
wave functions in the strong-coupling approximation
(or the MO LCAO approximation in molecular theory),
where the steady-state wave function is constructed as
a superposition of site-localized electron functions with
universal coefficients determined by the symmetry of
the system. However, in this case, the localized
“atomic” functions are actually electron–deformation
complexes. This two-site model was studied in [9] in
the “antiadiabatic” limit ν < 1 by using a perturbation
expansion in J, an approximation opposite to ours.6 In
this model, there is an analog of the above barrier and,
hence, an analog of the splitting of the lower doublet.
This splitting J* was found to be

 (38)

5 In [11, expression (116)] for ∆E obtained by the WKB method is
presented without derivation. It coincides with our Eq. (33) to
within a factor of the order of unity (~0.87).

6 The question of the smallness parameter remains open. While the
condition ν < 1 ensures decreased expansion terms with increas-
ing order, it is actually not fully realistic, because it assumes the
quantity J (which is of the order of the electronic energy Ee) to be

small compared with "ω, which is of the order of ~Ee  (m
is the electronic mass). At the same time, the expansion in powers
of J also contains the combination J/2Ep ≡ η, i.e., a parameter
which is small in the strong-coupling case. In reality, the expan-
sion in powers of a quantity of the kind of ηαν1 – α may take place

[for instance, (ην)1/2 ≡ ] and the condition of validity of the

approach in [9] will turn out to be less restrictive than ν < 1.
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When Eqs. (33) and (35) are compared with J* in
Eq. (38), calculated to the first order in J, it is seen that
the quantity ∆E always contains a phonon exponential,7

but the prefactor J is replaced by (2 /π)  or

. Thus, while in the adiabatic region the prefactor
J* is no longer substantially dependent on J,8 the
dependence on this quantity becomes manifest in its
argument because of the factor f(η).

Note that, in Eq. (35) for ∆E, only the quantities ω
and  ∝  depend on the ion mass M. Therefore,
as M  ∞ in the η < 1 region, the value of ∆E decays

exponentially as exp( ); in this limit, the electrons
are strongly localized at the sites and no charge transfer
takes place between the sites. As is shown in [9], this
exponential smallness is present in all those terms of the
power series expansion in J that are responsible for the
splitting of the term; that is, the presence was established
outside the bounds of the adiabatic approximation, with
the latter serving only as a method for summation of the
series. As for the terms responsible for the shift of the
doublet centroid (the corrections to the polaron shift),
they remain finite in the limit as M  ∞.9

In the weak-coupling limit, all terms of the pertur-
bative expansion in EPC for ∆E vanish for M  ∞
and the electronic states are delocalized and form an
unperturbed doublet with a splitting 2J:

 (39)

Thus, depending on the value of the parameter η, the
problem under study allows two branches of solutions,
namely, the weak-coupling limit in Eq. (39) for η > 1 and
the strong-coupling limit in Eq. (28) for η < 1. The most
substantial effect of the strong coupling is the appear-
ance of the exponentially small factor exp(–Ep/"ω),
which is capable of reducing some characteristic
parameters by several orders of magnitude. The expo-
nential in Eq. (35) also accounts for the enhancement of
the isotope effect [6].10 Indeed, the replacement of a
nucleus of mass M with a nucleus of mass M + ∆M
results in Eq. (35) becoming multiplied by

 (40)

7 Perturbation theory does not impose any restrictions on the mag-
nitude of the argument of the exponential in Eq. (38). However,
only the case of this argument being large in magnitude is of
interest.

8 Strictly speaking, the prefactor depends on J because of the
appearance of the factor 1 ± η2 [see Eq. (18)], which brings about
its additional decrease for the lowest (corresponding to the minus
sign) term.

9 The prefactor scales with M as M–1/4 in Eq. (33) or as M–1/2 in
Eq. (35).

10This mechanism was considered in connection with the model of
the bipolaron superconductor [15].
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For a realistic value λ = 10 of the EPC parameter and
∆M/M = 0.1, isotopic substitution should change the
magnitude of J* by e times, which can radically affect
the electronic characteristics (for instance, convert an
insulator to a metal). Therefore, the results of [7] can
also be treated as a weighty argument for the existence
of substances in which the above strong coupling is
realized.

Note that the “barrier” exponential, which results in
an effective decrease of J* (the “barrier effect”) and
accounts for the enhancement mechanism, appears
already in the lowest order terms in J, with further
growth of J for η < 1 only modifying it.

4. MODEL OF A POLARON CRYSTAL

Consider the simplest model of a crystal consisting
of the above cation–anion complexes, namely, a regular
n-gon, where n can be arbitrarily large. The Hamilto-
nian of this model can be written as

 (41)

The canonical transformation [16]

 (42)

eliminates the Hamiltonian terms linear in xi and trans-
forms the electron operators

 (43)

The canonical transformation preserves the commu-

tation relations, and, therefore,  and  are Fermi
operators. We thus come to

 (44)

The transformed operator  creates an electron at site
m and the corresponding optimum deformation. For
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  âm
+ ,exp=

ãm
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+ ãm 1+ ãm 1+
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ãm
+



454 FIRSOV, KUDINOV
η < 1, this complex is a small polaron. For J = 0, this
transformation exactly diagonalizes the Hamiltonian
and, in the strong-coupling case, η < 1, offers the pos-
sibility of constructing perturbation theory in J. For J =
0, there is n-fold degeneracy with respect to the site
index m. In the lowest energy state, all the oscillator
quantum numbers are zero and the polaron energy
spectrum is described by the band term of the Hamilto-
nian with a renormalized J* defined by Eq. (38) (the
polaron-induced band narrowing). The wave function
of a polaron with quasi-momentum k can be presented
in the form

 (45)

The region where the perturbation theory is valid is
bounded only by the ν < 1 condition.

Consider this problem in the adiabatic approxima-
tion. We proceed as before and finally obtain coupled
equations which can be used to determine the coeffi-
cients Ci(x1, …, xn) and the adiabatic potentials
Ei(x1, …, xn):

 

 

 

 (46)

One can readily verify that the determinant of this sys-
tem ∆(E) does not change under cyclic permutation of
the indices (1, 2, …, n). Therefore, the coefficients of
the algebraic equation ∆(E) = 0 and, hence, the adia-
batic potentials Ei(x1, …, xn), being functions of the
deformations x1, …, xn, are invariant under these per-
mutations. (For J = 0, the adiabatic potentials Ei = U0 –

gxi are not invariant under these permutations, but
they are symmetrized even for an infinitely small J [see
Eq. (9) for the two-site model].)

In the absence of EPC (g = 0), the adiabatic poten-

tials are Ei = U0 + , with  = const. The only extre-
mum (minimum) lies at the point x1 = x2 = … = xn = 0.
For small enough g, one observes only a shift of this

minimum to the point x1 = x2 = … = xn = ; this shift
depends on i and does not break the symmetry of the
Hamiltonian.

For an infinitely small J and g ≠ 0, the lowest adia-
batic term has n minima at the points (xm = x0, xm' = 0)
with m' ≠ m and m = 1, …, n). When all xi  ∞, this
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P

term asymptotically approaches an n-dimensional parab-
oloid in the n-dimensional deformation space (x1, …, xn).
(One should not confuse this space with real space, in
which the lattice sites exist.) The low-lying electron
states are localized on the complexes. Transfer to an
adjacent site (|m – m' | = 1) involves overcoming one
energy barrier. One can easily estimate its height for an
infinitely small J. The depth of the minimum at point
(x0, 0, …, 0) is obviously equal to 2Ep (i.e., to the
polaron shift). The barrier height corresponds to the
minimum energy Emin at the line xi = xj, at which the
energies Ei and Ej,

 

of the two minima, i and j, coincide. One readily sees

that this point is x = x0  and Emin = –Ep; i.e., that the
barrier height is 2Ep. (In a similar way, one can easily
describe the structure of all n adiabatic terms in the
J  0 limit; however, this structure is not used in this
work and we drop the corresponding consideration.)

Note that an electron transfer from site m to site m'
involves overcoming |m – m' | barriers in the deforma-
tion space.

In principle, the electron energy spectrum should be
determined from the Schrödinger equation in the
n-dimensional deformation space, which is similar to
Eq. (27). This would entail formidable mathematical
difficulties.

Note, however, that the electron Hamiltonian He can
be reasonably simulated in the strong-coupling approx-
imation by the expression

 (47)

where the summation is run over the nearest-neighbor
sites m and 2Im, m' is the level splitting in the two-site
problem with a pair of sites m, m'. There are grounds
to expect that our model of the crystal could be satisfac-
torily approximated in the ν > 1 adiabatic region by
replacing I with the quantity ∆E given by Eq. (35),
which has the same meaning. Therefore, in order to
describe electron transfer in the adiabatic regime, it is
sufficient to renormalize the J parameter. (Note that for
small η, the modulus of the argument of the barrier
exponential is large.)

In view of the results presented in Section 1 and
Appendix 1, it can be maintained that the above set of
potentials Ei with n minima forms when g is in excess
of a certain gc; therefore, we have a threshold effect.
Because the adiabatic-potential structure is described
by the only dimensionless parameter η = J/2Ep, the cor-
responding criterion takes on the form η < ηc.
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5. ELECTRON–ELECTRON INTERACTION

Now, we consider the changes induced by strong
EPC in electron–electron interaction. The Hamiltonian
of this interaction in the site representation has the form

 (48)

where A are numerical functions and σ is the spin
index. The canonical transformation given by Eq. (42)
gives rise to the appearance of the following operator
products under the summation sign in Eq. (48):

 (49)

The terms of the sum in Eq. (48) satisfying the relations

 (50)

are not connected with real electron transfer between
the sites (these are the main terms of the Coulomb inter-
action and of the direct exchange). One readily sees that
the operator factor in Eq. (49) for these terms becomes
unity. Therefore, strong EPC has no noticeable effect
on the phenomena associated with these terms (ferro-
and antiferromagnetism), there is no barrier effect, and
the mechanism of enhancement of the isotope effect
does not operate. This relates in equal measure to the
mechanisms of indirect exchange via an intermediate
state with the formation of a pair at a site, because the
electron transfer is here a virtual process (see Appen-
dix 2). The band-narrowing effect raises the problem of
modifying the criterion of realization of the insulating
or conducting state (similar to the well-known Mott cri-
terion) because of the need of taking magnetic order
into account.

The higher order terms in J will hopefully contain
only the ν- (i.e., M-) independent parameter η.

Note also that strong EPC gives rise to the appear-
ance of a negative term –2Ep adding to the Hubbard
repulsion, which does not depend on the ion mass.

Consider the terms of Eq. (48) describing the real
electron transfer process. These are, for instance, the
term with m1 ≠ m2, if neither of these indices coincides
with m3 and m4. The operator product (49) in these
terms is not unity. When considered to the lowest order
in J, factors exp(–2Ep/"ω) appear at the corresponding
coefficients A (which brings about their reduction due to
the barrier effect). In particular, the operator product (49)
for the term in Eq. (48) with

 (51)
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is

 (52)

To the lowest order in J, the corresponding coefficients
A renormalize with a factor exp(–8Ep/"ω),11 which is
substantially larger than the reduction exp(–2Ep/"ω) of
the one-electron bandwidth. This reduction accounts
for the mechanism of the isotope effect enhancement in
the phenomena for which the terms under consideration
are responsible.

Note that in crystals where the enhancement of the
isotope effect takes place, the possibility of fine control
of the parameters by properly varying the isotope com-
position is offered.

In the M  ∞ limit, electrons are fully localized
and the model under consideration transforms to the
Heitler–London model.

The above estimates are based on the lowest order
perturbation theory in J, which is valid for ν < 1. In
view of the fairly obvious barrier nature of the phenom-
ena under study here in the ν < 1 case, one can assume
with a fair degree of confidence that, in the ν > 1 region,
the corresponding quantities should likewise be propor-
tional to the appropriately modified barrier exponential,
provided the barrier regime with η < 1 is realized.
(Analysis of a perturbation-series expansion made for
the two-site model [9] yielded supportive evidence for
this assumption.)

Because all the main parameters involved in the adi-
abatic approach are of a local nature, it appears reason-
able to carry out a comprehensive investigation of the
mechanisms of concrete phenomena occurring in the
adiabatic region ν > 1 on “small” models similar to the
above two-site configuration.

6. DISCUSSION OF RESULTS

There can be no reasonable doubt that the effect of
the interaction of an electron with nuclei under weak
electron–phonon coupling and in the limit of infinitely
heavy nuclei reduces to a static field acting on the elec-
tron. The band structure characteristics (the bandwidth
∆E, the effective mass m*, etc.) remain finite in this
limit.

On the other hand, the most remarkable conse-
quence of the formation of the above-considered
energy barrier in the adiabatic potential for the process
of site-to-site “transfer” of nuclear displacement and of
the associated reduction of the effective electron-band
width is that the electron transfer mechanism no longer
operates in the M  ∞ limit; that is, the electrons

11The presence of this renormalization was pointed out in [17].
One of the present authors (EKK) uses this opportunity to point
out that this factor was introduced in [17] with an exponent half
as much as it should be (this did not, however, in any way affect
the conclusions drawn there).

i
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become fully localized. In this case, ∆E  0 and
m*  ∞ exponentially (with the direct consequence
that the isotope effect is enhanced with increasing elec-
tron–phonon coupling). This means that there is an
essential qualitative difference between the cases of
strong and weak electron coupling with phonons. One
could think that this result is a consequence of the adi-
abatic approximation and that going beyond it would
make electron transfer possible in this limit. However,
the fact that, in the two-site model, the exponentially

small factor exp(– ) is present in all terms of the
perturbation-series expansion in J for the doublet split-
ting indicates that, in actuality, this situation is not real-
ized.

The barrier effect results in a substantial modifica-
tion of both the band term of the Hamiltonian (with the
carriers becoming small polarons) and the interaction
terms. [The most important features of this modifica-
tion become particularly revealing after canonical
transformation (42) of the Hamiltonian.] When per-
forming first-principles calculations, the possibility of
its realization should be taken into account in their very
first stages. The constants g, J, and A entering the model
Hamiltonians (41) and (48) will then be expressed
through the fundamental constants e, ", m, and M.
[When analyzing experimental data, one should use the
known semiphenomenological estimates of these con-
stants (the Fröhlich constant, etc.) with caution,
because the conditions for which they were derived
may not apply here.]

We have been primarily considering the region of
the well-pronounced barrier effect, η < ηc, where the
carriers are known to be small polarons. Large polarons
(LP) can form outside this region if the EPC is not too
weak. All studies of the LP problem of which we are
aware made use of various versions of direct variational
methods (which, by their nature itself, cannot be euris-
tically solid) within a narrow interval of parameter vari-
ation. This raises the importance of studies in this area,
with the region of the intermediate strength of EPC
(η ≥ ηc) in the limit of M  ∞ being of particular
interest. One could conceive, in principle, the following
alternatives:

(1) Throughout the η > ηc region and with M  ∞,
we have m*  m0 (m0 is the effective electron mass
at g = 0) and there is no qualitative difference between
the weak-EPC and LP cases.

(2) In the η > ηc region and with M  ∞, we have
m*  ∞, but this increase is weaker than an exponen-
tial one. (A similar result is presented, e.g., in [18].) As
the EPC continues to decrease (i.e., η continues to
grow), we have m*  m0 for η > η1. This could be
interpreted as the formation of an LP, i.e., of the elec-
tron–deformation bound state in the ηc < η < η1 region.
The appearance of a barrier at η < 1 brings about an
exponential growth of m* and transformation of the
large polaron to a small one.

M

P

A self-consistent analytical treatment of the region
of the intermediate coupling strength would entail for-
midable mathematical difficulties, even in terms of the
simple model employed in this work. The difficulties
originate from the LP extending over many lattice sites,
so that using “small” models of the two-site kind would
no longer have any sense. Numerical methods seem
more appropriate here. Such studies of the model
described by Eq. (41) are currently being intensely pur-
sued (see, e.g., [18–25]). The analytical relations for
m* obtained by various authors are reviewed in [21].
These relations are found to agree with the numerical
results of both [21] and a number of other publications.
They agree fairly well with alternative (1).

However, the behavior of the band characteristics
for M  ∞ has not been investigated thus far. In the
light of the above consideration, it appears to be of
interest to carry out such a study based on exact diago-
nalization of the Hamiltonian by numerical techniques.

APPENDIX 1

THE THRESHOLD EFFECT

The adiabatic potential has the form E(x1, x2) =

(Mω2/2)(  + ) + ξ(x1, x2), where ξ(x1, x2) does not
have singularities and tends to zero with g  0. For
g = 0, there is a single minimum at x1 = x2 = 0. As g
increases, the formation of additional extrema should
be preceded by a flattening of the minimum, which
occurs at the critical point

 (A1.1)

For g = 0, we have ∆(2) = (Mω2)2. For small g, condi-
tion (A1.1) cannot be satisfied. The additional extrema
appear only after g has exceeded a certain threshold
value gc. These considerations also remain valid in the
case of a larger number of the quantities xi.

APPENDIX 2

INDIRECT-INTERACTION CONSTANTS

The second-order correction to the Hamiltonian
determining the splitting of the lowest degenerate level
with energy E0 has the form

 (A2.1)

Here, i and i ' are the quantum numbers of this level and
V ' is the off-diagonal part of the perturbation. The sum-
mation runs over all excited states (the denominator is
always negative). Let the band term of the Hamiltonian

have the form Hb = . The cor-
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rection to the exchange constant due to the formation of
a virtual pair can be written as

(A2.2)

Here, EH > 0 is the Hubbard energy, |0〉  is the ground
state of the unperturbed vibrational system, and
|nm, nm + g〉 are the states of this system with excitations
at sites m and m + g. Equation (A2.2) can be recast in
the form

 

 (A2.3)

 

Using relations (32) from [9], the sum in Eq. (A2.3) can
be transformed to

 (A2.4)

For "ω/EH  0, ∆Iexc is finite, ∆Iexc = –J2/EH; that is,
as in the first-order term, there is no barrier effect.
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Abstract—Careful experimental investigations into the behavior of the thermal resistance of single-crystal silicon
are carried out in the immediate vicinity of the temperature of an anharmonicity sign inversion (Ti = 121.1 K),
where phonon thermal resistance approaches zero. An anomalous positive deviation of the total thermal resis-
tance (W) from the linear part of the temperature dependence with a maximum at 121.1 K is found in the tem-
perature range 105–130 K. The temperature behavior of W in this range indicates that the mean free path of
phonons is limited by a characteristic size of structural defects and that its temperature dependence exhibits spe-
cific features in the vicinity of Ti. It is established that the character of the temperature dependence of W above
and below Ti is different. A linear functional relation between the total thermal resistance and the isobaric ther-
mal strain is revealed at positive and negative anharmonicities of atomic vibrations. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The results reported in this paper were obtained in
the course of experimental investigations into the tem-
perature dependence of the thermal resistance of silicon
upon anharmonicity sign inversion [1]. Careful experi-
mental investigations at temperatures close to 121.1 K
made it possible to analyze the specific features of the
total thermal resistance (W) for both the positive and
negative anharmonicities of atomic vibrations. These
investigations are of interest, since the phonon thermal
resistance (Wph) and the thermal expansion coefficient
β, unlike the heat capacity, are determined only by the
anharmonicity of atomic vibrations. It is obvious that
Wph should be equal to zero at β = 0. However, the phe-
nomenon of high-temperature phonon superthermal
conductivity upon anharmonicity sign inversion, which
is suppressed by scattering at boundaries and defects of
crystals, has not yet been investigated.

2. THEORETICAL BACKGROUND
AND EMPIRICAL FACTS

The theory [2–5] of scattering upon anharmonic
phonon–phonon interactions is based on the quasi-har-
monic approximation. Therefore, this theory interprets
the dependence Wph = f(T) only qualitatively at low and
high temperatures when the density of phonon energy
states approaches saturation. According to [2, 6], the
assumption that the disturbing anharmonic term is
small in the expansion of the potential energy of inter-
atomic interaction and, especially, the harmonic
approximation [7], do not provide clear notions of the
1063-7834/01/4303- $21.00 © 20458
phonon scattering mechanism. For the same reason, the
obvious singularity in the Wph behavior upon anharmo-
nicity sign inversion has not yet been discussed. Apart
from silicon, the anharmonicity sign inversion is typi-
cal of almost all loose-packed covalent substances. The
specific features of the thermal resistance of these sub-
stances manifest themselves as inflection points of the
curves W  = f(T) at relevant temperatures [8]. An anom-
alous behavior of the phonon thermal conductivity was
found earlier for germanium in the temperature range
covering Ti [9].

The Grüneisen constant serves as a parameter of the
anharmonicity of thermal vibrations: 

 (1)

where β is the thermal expansion coefficient, ν is the
sound velocity, and cp is the heat capacity. Since all
expressions for calculating the phonon thermal resis-
tance [2, 3, 10],

 

involve the square of the Grüneisen parameter, it is
believed that inclusion of the negative thermal resis-
tance is not a particular problem. However, Wph should
be singular at Gr = 0, all things being equal. Further-
more, the Grüneisen parameter varies within ~10%
with temperature and does not reflect a practically
observed increase in the thermal resistance by several
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orders of magnitude. The temperature dependence of
Wph in appropriate expressions is specified by the dou-
ble scattering integral (determined in the harmonic
approximation) and the heat capacity.

As a rule, the authors of experimental studies of the
objects under consideration (see [8]) give no data on the
thermal resistance in the immediate vicinity of the tem-
perature Ti of the anharmonicity sign inversion. In our
earlier work [1], it was demonstrated for the first time
that the anomalous deviation from the linear part of the
temperature dependence of W increases with a decrease
in the contribution of phonon scattering at the bound-
aries. It was also noted [1] that a one-to-one relation
between the thermal resistance and isobaric thermal
strain in the form

 (2)

was revealed for more than twenty substances (includ-
ing silicon) over the entire range of positive anharmo-
nicity. Here, W0 is the residual thermal resistance,
which is determined by the phonon scattering at static
defects; Wph is the characteristic phonon thermal resis-
tance; and βT = (dV/dT)pT/V. When analyzing the theo-
retical expressions for Wph, these empirical facts neces-
sitated switching our attention from the Grüneisen
parameter, which is responsible for anharmonicity, to
the double scattering integral.

3. EXPERIMENTAL TECHNIQUE
The thermal resistance of silicon was investigated by

absolute stationary and quasi-stationary methods in the
range 80–150 K. The operating parts of the samples were
prepared in the form of rods ~25 mm long with cross sec-
tions of 3.76 × 3.93 mm and 5.82 × 5.73 mm. The rods
were cut from one piece of single-crystal silicon (semi-
conductor grade) doped with phosphorus (ρ = 10 Ω m).
The single crystal was grown by the Czochralski tech-
nique (in Podol’sk). The dislocation density was no
more than 106 cm–3. On the one end, each sample had a
sprig ~2.5 mm in diameter and ~5 mm in length. This
sprig was used to mount the sample through a collet
chuck on a rod, which in turn was brought into contact
with a thermostating liquid. The temperature gradient
was produced along the 〈111〉  direction of the crystal
growth. In addition to the main (gradient) heater, the
measuring cell was equipped with a background heater
mounted on a temperature-controlled rod in order to
increase the average temperature. The temperature gra-
dient, which was provided by the main heater, was esti-
mated in terms of the field superposition. The tempera-
ture difference across the operating part of the sample
was measured using a differential copper–constantan
thermocouple. The average temperature of the sample
operating part was estimated using the formula Tr = T +
(T2 – T1)/2, where T2 – T1 is the thermoelectric power
for a differential thermocouple at a temperature T. The
temperature T was measured by an absolute copper–
constantan thermocouple mounted on the opposite side

W W0 WphβT+=
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of the sample at the level of the lower junction of the
differential thermocouple. The junctions of the differ-
ential and absolute thermocouples were soldered to sil-
ver contacts, which were obtained via fusing a silver
paste. The diameter and layer thickness of each contact
were no more than 0.5 and 0.01 mm, respectively. The
gas pressure maintained in the measuring cell was no
more than 0.1 Pa. The problem of accounting for heat
transfer from the main heater and other parameters
which determine the limiting total error of measure-
ments was solved by comparing the results obtained for
the sample with a cross section of 14.78 mm2 and ref-
erence data [3] (standard of the absolute magnitude).
The data obtained in [11] (the error of their determina-
tion was about ±5%) for a sample of approximately the
same cross section (~15 mm2) were taken as a basis for
the quantities recommended in [3]. Since we were
interested in the behavior of W  = f(T) in the vicinity of
Ti, the comparison was performed at temperatures of
100 and 150 K, i.e., outside the range of the anomalous
deviation of the dependence W  = f(T). The sample with
a cross section of 33.95 mm2 was investigated under the
same conditions. For better resolution of the specific
features of the dependence W  = f(T) in the vicinity of
Ti, the sample with a cross section of 33.95 mm2 was
studied in the quasi-stationary regime, which provided
a change in the temperature of the alcohol–liquid nitro-
gen thermostating solution at a rate of less than 2.5 ×
10–4 K/s at a constant power of the main heater without
switching on the background heater. Repeated mea-
surements demonstrated good reproducibility of the
data obtained at a thermal drift velocity of 4 × 10–4 K/s.
Temperature gradients of the sample and thermostat-
ing liquid were measured with a step of ~0.1 K. The
sensitivity to thermal resistance variation with an
increase in the temperature in the quasi-stationary
regime was limited by the temperature gradient vari-
ance, which was no more than ±0.2%. This restriction
was related to the detection limit of a R3003 compara-
tor. Since the thermogram of a thermostating liquid in
the temperature range under investigation was linear,
corrections for the temperature gradient across the sam-
ple were applied. The scatter in the data obtained in the
stationary regime was substantially larger (±0.7%)
because of the necessity of estimating the gradient pro-
duced by the background heater. The measurements in
the stationary regime were performed in order to inves-
tigate the dependence W  = f(T) in the vicinity of Ti
upon heating and cooling.

4. RESULTS AND DISCUSSION

The difference in thermal resistance of the two silicon
samples with cross sections of 14.78 and 33.95 mm2 was
no more than ~ 2%. It seems likely that, for samples
with a cross section of more than 15 mm2, the influence
of boundaries on the absolute values of thermal resis-
tance, which was observed in [1], considerably
decreases with an increase in the sample cross section.
1
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The averaged data on the thermal resistance measured
for the two samples upon heating and cooling are dis-
played in Fig. 1. The variance of the data on W, which
restricted the sensitivity of measuring this parameter,
was equal to ±0.7%. The maximum thermal resistance
for the samples of different sizes was observed at the
same temperature, 121.1 K.

The total thermal resistance is determined by the
contributions of different scattering mechanisms:

 (3)

where Wb and Wd are the thermal resistances due to
scattering of phonons by the boundaries and defects,
respectively. The behavior of the linear part of the tem-
perature dependence of W for both samples is generally
determined by the third term in Eq. (3), whereas the dis-
crepancies in the absolute values are determined by the
second term, because Wd is identical for both samples.
The estimate made for ∆W at Ti according to the for-
mula

 (4)

where γ is the density and s1 and s2 are the thicknesses
of the samples, confirms that this difference is small
(~3 × 10–5 mK/W) at Ti as compared to the absolute
value of Wi (1.65 × 10–3 mK/W). The numerical con-
stant K was determined from the boundary thermal
resistance and the size of the silicon sample for which
the recommended data were available in the literature.

The theoretical Leibfried–Shleman expression [2,
3] for the phonon thermal resistance has the form

 (5)

where A is the numerical constant; Va, Ma, and Ca are
the atomic volume, mass, and heat capacity, respec-
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∆W
K
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Fig. 1. Temperature dependences of the total thermal resis-
tance of silicon: (1) averaged data for the samples with cross
sections of 14.78 and 33.95 mm2 and (2) data taken from [8].
P

tively; a is the lattice parameter; TD is the Debye tem-
perature; and S is the surface containing the wave vec-
tors allowed by the energy conservation law. The Gr2

values for silicon at temperatures above 200 and below
80 K, which were calculated according to Eq. (1) using
the known values for b, β, and cp [12–14], were equal
to approximately 1.5 × 10–2 and decreased to zero at
121.1 K. This trend for Gr2, according to Eqs. (3) and
(5), should provide the minimum value of the total ther-
mal resistance at 121.1 K. The opposite behavior of
W  = f(T) suggests the decisive role of Wd and its tem-
perature dependence in Eq. (3), which competes with
the temperature dependence of Wph. Defects in the form
of dislocation loops (swirls) are almost always present
in single-crystal silicon [15]. They comprise a spiral
vortexlike system with diameter D > 10–6 m, which
consists of strips extended along the growth direction.
The pattern formed by these defects was observed on
the end surface of the silicon ingot from which the stud-
ied sample was cut. The boundaries of swirls represent
lattice distortions with local mass fluctuations. The
presence of defects in the form of a dislocation core
implies a mass deficit, and as the temperature Ti is
approached, the force constants increase. In these cases
[2, 3], the mean free path of phonons should exceed the
characteristic distance D ≈ 10–6 m between the defect
regions. The mean free path l ≈ 10–5 m, which was esti-
mated from the maximum value of W, satisfies the con-
dition for Rayleigh scattering, which was observed at
wavelengths exceeding the defect size by a factor of 2π.
The validity of this interpretation is confirmed by the
fact that the lattice distortions in a dislocation core are
extended approximately over one or two interatomic
distances (a). The preferential length of heat waves at
these temperatures is of the order of (2a)TD/T [10],
where TD/T for silicon is approximately equal to 2π.

Phonon scattering by a stress field produced by dis-
locations usually exceeds scattering by a dislocation

W, 10–3 mK/W
1.67

1.65

1.63

1.61

1.59

1.57
117 118 119 120 121 122 123 124

1
2

T, K

Fig. 2. Temperature dependences of the total thermal resis-
tance of silicon: (1) our data for the sample with a cross sec-
tion of 33.95 mm2 and (2) data taken from [8].
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core interpreted as a point defect [2, 10]. However, in
the case under consideration, the former scattering is
small, because the Grüneisen parameter approaches
zero at T  121.1 K and the effect revealed is unre-
lated to scattering by a stress field.

The Wph contribution to the total thermal resistance
increases above and below Ti = 121.1 K. Figure 2 dis-
plays the total thermal resistance W for a sample with a
cross section of 33.35 mm2 in the immediate vicinity of
Ti, where the mean free path of phonons approaches
infinity and is restricted by the size of defects. The
behavior of the dependence W  = f(T) in the vicinity of
Ti is governed only by the variation in the temperature
gradient across the sample at a constant heater power.
The reason for this is that the thermogram recorded
using an absolute thermocouple is strictly linear in this
temperature range. The behavior of W  = f(T) above and
below Ti (Fig. 2) indicates that the mechanisms of
phonon scattering by defects at the positive and nega-
tive anharmonicities of atomic vibrations are different.
The minimum total thermal resistance W in the range of
positive anharmonicity (at 122.2 K) does not contradict
the known notions of the scattering theory. Above
121.1 K, the total thermal resistance somewhat
decreases when Wph approaches zero at T  Ti,
because the singularity of the function Wph = f(T) sup-
presses the dependence of Wd on T upon scattering of
phonons by dislocations. The scattering mechanism at
the negative anharmonicity, when the quasi-elastic
force in the atomic motion equations changes sign, on
average, for all atoms [16], remains unclear. The solu-
tion of this problem calls for further theoretical investi-
gations in order to elucidate the specific features of the
surfaces containing those wave vectors that are allowed
by the energy conservation law at positive and negative
anharmonicities.

Analysis demonstrated that the reference data on W
for Si [8] (at positive and negative anharmonicities in
the ranges from Ti to 1200 K and from 80 K to Ti,
respectively1) can be approximated by expressions of
form (2) with correlation coefficients (r) close to unity: 

 (6)

 (7)

The linear functional relations between the thermal
resistance and isobaric thermal strain above and below
Ti also exist for other substances, for example, for InSb
[8]:

 (8)

 (9)

1 At a temperature of ~ 80 K, the negative values of β reach a max-
imum absolute value.

W 2.03 10 3–× 2.11βT  r = 0.998( ) T Ti> ,+=

W 1.63 10 3–× 5.04βT  r = 0.991( ) T Ti< .+=

W 6.03 10 3–× 10.55βT  r = 0.999( ) T Ti> ,+=

W 5.84 10 3–× 26.13βT  r = 0.993( ) T Ti< .+=
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The angular coefficients in Eqs. (6)–(9) (characteristic
thermal resistances) are determined by the characteris-
tic forces of the interatomic interaction, as was shown
in [17]. Upon inversion of the anharmonicity sign,
these forces undergo a jumplike change according to
Eqs. (6)–(9), which indicates the difference in the
phonon energy spectra above and below Ti. The first
term in these expressions is determined by the contribu-
tion W0 = Wd + Wb, and the second term is governed by
Wph. Therefore, it is reasonable to suppose that the
change in the cross section of phonon scattering by
phonons at the positive and negative anharmonicities of
atomic vibrations is unambiguously determined by the
change in the isobaric thermal strain.

5. CONCLUSION

The above investigations allowed us to make the fol-
lowing conclusions.

(1) Anomalous behavior of the thermal resistance of
silicon in the temperature range 105–130 K is deter-
mined by the competition between the mechanism of
phonon–phonon scattering and the mechanism of
phonon scattering by defects, involving the Rayleigh
scattering as the specific case.

(2) Phonon scattering by defects is more significant
than scattering at boundaries in the vicinity of Ti with
an increase in the sample cross section.

(3) The characteristic force of the interatomic inter-
action changes jumpwise upon a transition from the
positive to negative anharmonicity of atomic vibrations
in silicon and vice versa. This behavior of W is appar-
ently characteristic of all substances exhibiting inver-
sion of the anharmonicity sign.
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Abstract—Characteristics of a phonon generator in the form of a pulse-heated metallic film, viz., the time depen-
dences of the film temperature and the kinetics of phonon ejection from the film into a substrate, are considered.
The time dependences of the film temperature are calculated for cadmium telluride, diamond, and silicon sub-
strates. It is shown that the duration of film cooling substantially exceeds the heating pulse length and the film con-
tinues to generate phonons with lower frequencies at the end of heating pulse. The inference is drawn that the film
cooling should be correctly taken into account in analysis of the propagation of nonequilibrium acoustic phonons,
specifically for phonon processes occurring in nanostructures.© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nanostructure physics, which has rapidly progressed
in the last three decades, and the wide practical appli-
cations of superlattices and quantum wells in micro-
and optoelectronics have required new information in
the field of electron–phonon interactions, features of
phonon spectra, and specificity of the acoustic phonon
propagation in these structures.

For example, the limiting factor in quantum-dot and
cascade lasers is the carrier relaxation with emission of
optical phonons. After the conversion of optical
phonons into acoustic phonons, the acoustic phonon
transport is the final stage of the processes occurring in
these devices [1, 2].

The quality of surfaces and interfaces can be charac-
terized with phonon pulses, because the wavelengths of
phonons used in the heat (phonon) pulse technique are
comparable to the scale of inhomogeneities in nano-
structures [3].

It should be emphasized that experimental investi-
gations into the kinetics and dynamics of acoustic
phonons in nanostructures (heterostructures, double
wells, and superlattices) require knowledge of the
space–time characteristics of a phonon pulse; other-
wise, all the features of scattering by interfaces and,
especially, resonance phenomena appear to be
“smeared” and the results obtained cannot be inter-
preted in an adequate way.

The purposes of the present work were as follows. (1)
The calculation of the characteristics of a phonon gener-
ator—a heated metallic film: the temperature (phonon
frequency) and the kinetics of phonon ejection from the
film into a substrate. (2) The simulation of the phonon
generation process with the use of the generator charac-
teristics in Monte Carlo calculations of heat pulses, which
is necessary for analysis of experimental heat pulses.
1063-7834/01/4303- $21.00 © 20463
2. HEAT (PHONON) PULSE TECHNIQUE

The so-called heat pulse technique is virtually the
sole method that makes it possible to investigate exper-
imentally the propagation of nonequilibrium acoustic
phonons. A general scheme of the experimental heat
pulse technique and the principal processes with the
participation of nonequilibrium phonons are shown in
Fig. 1.

1

2

3

4

G1

G2

S

D

Fig. 1. A general scheme of the experimental heat pulse
technique and the principal processes involving nonequilib-
rium phonons: (1) ballistic propagation, (2) elastic scatter-
ing, (3) spontaneous decay, and (4) reflection from the
boundary or ejection from the sample into a substrate. Des-
ignations: G1 = generation, G2 = generation, and D = detec-
tion.
001 MAIK “Nauka/Interperiodica”
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Nonequilibrium phonons are generated in the sam-
ple S due to the pulse excitation P. The required excita-
tion is usually achieved with light or current heating of
a metallic film applied on the sample surface (G1),
when phonons enter the sample through an interface.
Moreover, this can be attained by photoexcitation with
light characterized by a photon energy larger than the
band gap of the studied material (G2), when the
phonons are generated directly in the sample. The gen-
erated phonons propagate through the sample (1) and
undergo processes of elastic scattering (2), spontaneous
anharmonic decay (3), etc. (Fig. 1). Phonons absorbed
in detector D generate a signal. The features of pro-
cesses involving nonequilibrium phonons and the con-
ditions of their propagation can be judged from the
form of a time-resolved signal.

Analysis of the resulting time-resolved responses of
a detector presents considerable difficulties. One way
of performing this analysis is to compare the experi-
mental responses with those calculated by the Monte
Carlo method [4–6]. This makes it possible to evaluate
the features of processes that characterize phonon prop-
agation, for example, the intensity of elastic scattering
of nonequilibrium acoustic phonons by point defects in
the studied sample [7, 8], the characteristic sizes of
grains forming the sample [9], etc.

However, these calculations require the description
of all elementary processes with the participation of
nonequilibrium phonons. The theoretical treatment of
processes such as elastic scattering and decay of
phonons has been carried out repeatedly [10–12], and
the results of calculations according to the proposed
models were confirmed experimentally. At the same
time, there are only a few works concerned with the
experimental verification of theoretical treatments of
certain processes, for example, phonon scattering by
interfaces [13].

As regards the phonon generation, the situation is
rather complicated because several experimental meth-
ods are used for generating nonequilibrium phonons
[14, 15]. Let us briefly describe the physical differences
in these generation techniques.

Photoexcitation brings about the formation of hot
carriers which relax toward conduction band edges for
a time of the order of 10–12 s with the emission of opti-
cal phonons. These phonons decay into longitudinal
acoustic phonons with approximately the same energy
for a time of the order of 10–10 s.

In the case of a pulse-heated metallic film applied on
the semiconductor surface, the phonons are generated
through a somewhat different mechanism: the energy is
absorbed in the metal in which a quasi-equilibrium dis-
tribution of phonons is rapidly achieved owing to the
electron–phonon interaction and phonons enter the
sample through the interface.

The high-frequency phonons generated under pho-
toexcitation are vigorously scattered by point defects,
P

which provides a means of determining the elastic
phonon scattering constant [7, 8].

The lower-frequency phonons generated by a metal-
lic film have larger free paths, which enables one to
obtain information on the phonon scattering by inter-
faces [9]. Furthermore, by varying the excitation
parameters (energy, pulse length, and excitation spot
area), it is possible to change the frequency of phonons
generated by the metallic film in the range 0.1–3.0 THz.
This is especially important in the study of resonant
phonon scattering in superlattices with quantum dots,
because the characteristic wavelengths of these
phonons (λ = 600–20 Å) coincide with the characteris-
tic sizes of inhomogeneities.

When simulating the phonon generation process, it
is necessary to determine the spatial region, the dura-
tion of phonon generation, and the distribution of gen-
erated phonons over the energy (frequency) and polar-
ization.

Upon photoexcitation with a pulse of length longer
than 10–10 s, it can be assumed that longitudinal acoustic
phonons with energies of an order of half the energy of
optical phonons (which is equal, for example, to 20 THz
for diamond and 7.5 THz for silicon) are generated dur-
ing the course of the pulse.

For a heated metallic film, it is believed that the
phonon distribution over polarizations is proportional
to the density of states [16] and the phonon frequency
is determined by the film temperature. Therefore, it is
necessary to calculate the temperature and characteris-
tic cooling times of the metallic film.

3. CALCULATION OF THE TIME DEPENDENCE 
OF THE TEMPERATURE FOR A METALLIC FILM

The problem of determining the temperature of a
metallic film on an insulating (semiconductor) sub-
strate upon pulse excitation was posed repeatedly.
However, as far as we know, the algorithm that can be
used to simulate the phonon generation process by the
Monte Carlo method has never been described in the
literature. In the case when there is a need to estimate
the frequency of phonons emitted by a film into a sub-
strate, it is often assumed that phonons are ejected only
during the excitation pulse. Then, their frequency is
determined from the equation for the frequency corre-
sponding to a maximum of the Planck distribution

 (1)

and the film temperature T is derived from the appropri-
ate estimates.

In order to obtain the dependence of the temperature
of a metallic film on an insulating substrate, it is neces-
sary to solve the energy balance equation. The problem
can be simplified under the following assumptions.

(i) Let the film be “thin”; i.e., its heating time is
shorter than the excitation pulse length. This is true
even for pulses whose length is only a few fractions of

hν 2.82kBT ,=
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a nanosecond when the duration of film heating is
shorter than the excitation pulse length. The heating
time of the film does not exceed τ* ~ Cρd2/κ (where C
is the heat capacity, ρ is the density, and κ is the thermal
conductivity coefficient). For a gold film with thickness
d = 1500 Å at 20 K, we have τ* = 4.5 × 10–12 s. At lower
temperatures, this value is even smaller.

(ii) It is assumed that the substrate “is not heated”
and, at any instant, its temperature is equal to the ambi-
ent temperature T0. This assumption holds for the
majority of single crystals in which the mean free paths
of thermal phonons at liquid-helium temperatures are
determined by the scattering at sample boundaries and
lattice defects and can be as much as several millime-
ters, so that an equilibrium temperature higher than the
ambient temperature is not reached. Otherwise, it is
necessary first to estimate the fraction of phonons that
return from the substrate to the film and then to solve
the self-consistent problem.

(iii) Heat transfer from the film to the surrounding
medium (for example, liquid helium) is ignored. This
assumption is valid when the sample is placed in vac-
uum. However, even if the sample resides in helium at
high excitation levels when the film temperature
becomes higher than the boiling temperature of liquid
helium, a gaseous helium “bubble” is formed at the
film–helium boundary, thus preventing heat removal.

(iv) Heating of the film in the transverse direction is
neglected.

In the general case, under the above assumptions,
the equation has the form

 (2)

where W(t) is the power density at the excitation pulse;
d, S, ρ, and C(T) are the thickness, irradiated area, den-
sity, and heat capacity of the film material, respectively;
and P(T, T0) is the heat flux from the film to the sur-
rounding medium.

Within the “short” excitation pulse approximation
(adiabatic approximation), when the acquired energy
can be considered to be absorbed in the film [P(T, T0) =
0], its maximum temperature TAD can be estimated
from the condition

 (3)

where EP and τP are the energy and length of the exci-
tation pulse, respectively, and the integral of the heat
capacity C(T) is taken over the ambient temperature
from T0 to TAD. The integral should be calculated taking
into account that the heat capacity at low temperatures
strongly depends on the temperature.

In the “long” excitation pulse approximation (sta-
tionary approximation), the stationary temperature TST
of the film can be evaluated from the condition

 (4)

SW t( ) dSρ( )C T( )dT /dt P T T0,( ),+=

EP Sdρ C T( ) T ,d

T0

TAD

∫=

EP

τP

------ P TST T,( ),=
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where P(TST, T0) is the heat flux from the film to the
surrounding medium. Weis [17] obtained good agree-
ment between the experimentally measured stationary
temperatures and those calculated according to the
given method when the heat flux was computed within
the acoustic matching model [18].

However, it is important to know not only the max-
imum temperature of the film, but also the time depen-
dence of the film temperature, because the lower-fre-
quency phonons generated by the cooling film can sub-
stantially affect the overall pattern of the energy
transfer. The energy flux from the film to the substrate
was calculated in terms of the acoustic matching theory
[18]:

 (5)

where kB is the Boltzmann constant; " is the Planck
constant; cL and cT are the longitudinal and transverse
sound velocities in the film, respectively; T and T0 are
the temperatures in the film and substrate, respectively;
and ΓL and ΓT are the coefficients of phonon transmis-
sion through the interface.

Solution of Eq. (2) with the initial condition
T(t = 0) = TB results in the time dependences of the film
temperature and the energy flux from the film to the
substrate.

Figure 2 displays the calculated temperature of a
gold film on a natural diamond substrate as a function
of the pulse energy for typical excitation conditions. As
can be seen, the maximum temperature of the film
weakly depends on the excitation energy due to a strong
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Fig. 2. Time dependences of the temperature of a gold film
1500 Å thick on the diamond substrate at typical excitation
energies EP: (1) 0.001, (2) 0.003, (3) 0.01, (4) 0.03, and
(5) 0.1 µJ. The excitation pulse length τP is 10 ns and the
excitation spot diameter dP is 50 µm. The inset shows the
normalized time dependences of the energy flux at the same
excitation energy densities.
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temperature dependence of the heat capacity and the
fourth power of temperature in the formula for the
energy flux from the film to the substrate. For example,
for curves 1 and 5, the excitation energies differ by a
factor of 100, whereas the maximum temperatures dif-
fer only three times.

The inset in Fig. 2 shows the dependences of the
energy flux from the film to the substrate. It should be
noted that the times of film cooling are considerable
and equal to tens of nanoseconds; all this time, the film
generates nonequilibrium phonons.

A comparison of the temperature of the film with the
stationary temperature TST estimated by formula (2) is
given in Fig. 3. It can be seen that, in this case, the tem-
perature close to TST is reached at times longer than
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Fig. 3. Time dependences of the temperature of a gold film
1500 Å thick on the diamond substrate at excitation pulse
lengths τP = (1) 10 and (2) 20 ns and their comparison with
the stationary temperature TST at the same power density

EP/(τPπ2 /4) = 2.0 kW/mm2 (see curve 3 in Fig. 2). Dot-
ted lines show further behavior of the temperature in the
case of a longer excitation pulse at the same power density.

dP
2

Fig. 4. Time dependences of the temperature of a gold film
1500 Å thick on different substrates: (1) CdTe, (2) silicon,
and (3) diamond. Conditions: τP = 10 ns, EP = 0.01 µJ, and
dP = 50 µm.
P

50 ns. It is worth noting that, over the course of tens of
nanoseconds when the phonon ejection is still notice-
able, the film temperature has already been substantially
lower than the estimated temperature. Consequently, the
film generates a greater portion of low-frequency non-
equilibrium phonons which have appreciably larger free
paths compared to elastic scattering by point defects and,
thus, can considerably affect the recorded heat pulses.
This is the reason why the correct inclusion of the film
cooling in simulation of the nonequilibrium phonon
propagation is so important for analysis of experimen-
tal responses.

Figure 4 depicts the time dependences of the tem-
perature for a gold film on different substrates which
are most frequently used in experiments. It is seen that
these dependences of the film temperature differ con-
siderably. However, it should be noted that the pro-
posed model disregards the return of phonons from the
substrate to the film, which, in actual fact, can occur as
a result of vigorous scattering of phonons by lattice
defects in the substrate or the formation of a local ther-
mal equilibrium region—a “hot phonon spot” [19]. The
effect of this scattering is relatively small for materials
such as silicon and diamond in which the mean free
paths of phonons with actual frequencies (<3 THz,
which correspond to temperatures below 50 K) are
equal to hundreds of microns. At the same time, for
binary compounds (for example, CdTe), where the
mean free paths of phonons are several orders of mag-
nitude smaller, this effect changes the kinetics of film
cooling, which, in turn, can lead to an increase in the
temperature of the film and the time of its cooling [20].

It should be particularly emphasized that we cannot
answer beforehand the question as to which approxi-
mation—stationary or adiabatic—gives the most cor-
rect estimate of the maximum temperature for a given
film/substrate pair of materials or specific excitation
conditions.

4. EXPERIMENT

In order to test the proposed model, we performed
the following experiment. A gold bolometer in the form
of a meander 0.35 × 0.50 mm in size and 1500 Å thick
was evaporated onto a sample prepared from the type
IIa natural diamond. For the bolometer, the dependence
R(T) was linear in the temperature range 4–330 K and
the value of dR/dT was equal to 28.2 mΩ/K. The bolom-
eter was irradiated with UV pulses of an LGI-21 nitrogen
laser at the liquid-helium temperature T = 4.2 K. Upon
phonon generation, it is usual practice to decrease the
size of a phonon source and, hence, to use a sharp
focusing of an excitation beam. However, since the
value of dR/dT was small and, moreover, it was neces-
sary to obtain a uniform illumination of the bolometer,
the experimental parameters were chosen as follows:
the size of the excitation spot was increased to 0.5 mm
and the excitation energy was equal to 3.6 µJ. The pulse
length was 7.5 ns.
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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A comparison of the calculated and experimentally
measured dependences of the film temperature is given
in Fig. 5. It can be seen that the time dependence and
the magnitude of the film temperature are in good
agreement, which, in our opinion, conclusively proves
the correctness of the above treatment.

5. SIMULATION OF NONEQUILIBRIUM 
PHONON GENERATION BY THE MONTE 

CARLO METHOD

The Monte Carlo simulation of the generation of
nonequilibrium phonons for further calculations of
their propagation in the sample consists in computing
random coordinates xi, yi, and zi of the point at which
the ith phonon is generated; the time ti of its generation;
frequency νi; polarization pi; and the direction of its
propagation. In the case when the pulse-heated metallic
film serves as a phonon generator, the x and y coordi-
nates are assumed to be uniformly distributed in a spec-
ified excitation region, the z coordinate corresponds to
the irradiated boundary of the sample, and the distribu-
tions of initial phonons over frequencies and times of
their generation should be chosen in such a way as to
reproduce the calculated dependences of the film tem-
perature and the energy flux from the film to the sub-
strate on the time.
The time dependences of the film temperature T(t) and
the energy flux Q(t) from the film to the substrate are
the initial data for the construction of the algorithm for
simulating the generation of nonequilibrium phonons.
Since the characteristic frequencies of generated
phonons are proportional to the film temperature, the
quantity N(t) = Q(t)/T(t) is proportional to the number
of phonons generated at a given instant of time. The
function

 

has the meaning of the probability that a phonon will be
generated at an instant of time t; i.e., it is the time dis-
tribution function of phonon generation. Then, the ran-
dom quantity ti = p–1(ri) (where ri is the random number
uniformly distributed within the interval 0–1) is the
time ti of generation of the ith phonon and the depen-
dence T(t) makes it possible to obtain the film temper-
ature Ti at this instant of time. The temperature Ti deter-
mines the frequency distribution of phonons generated
by the film.

The function n(u) = u2/(exp(u) – 1) (where u =
hν/kBTi) is proportional to the density of the frequency
distribution of the phonon number. Then, the frequency
of the ith generated phonon is determined by the rela-
tionship νi = uikBTi/h, where u1 = q–1(ri), ri is the ran-
dom number uniformly distributed in the interval 0–1,

and q(u) = (s)ds/ (s)ds.
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Since the dependences T(t), Q(t), and others had a
complex shape, the integration was performed numeri-
cally, the results of calculations were tabulated, and the
values of inverse functions were determined by the
interpolation and then were also tabulated.

The phonon polarization pi was chosen in a random
way with the probability proportional to the density of
states. The Θi and φi angles, which determine the direc-
tion of the phonon wavevector, were also randomly
chosen in a hemisphere from uniform distributions in
the intervals [0, π/2] and [0, 2π], respectively. More-
over, it is possible to introduce an additional check in
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Fig. 5. Comparison of the calculated and experimental depen-
dences of the temperature for a gold film 1500 Å thick on the
diamond substrate. Computational and experimental parame-
ters: τP = 7.5 ns, EP = 3.6 µJ, dP = 0.50 mm, and T0 = 4 K.

Fig. 6. Comparison of heat pulses calculated using different
algorithms for phonon generation and the experimental data.
Circles correspond to the experimental response of a detector
(gold film 1500 Å thick on diamond substrate, τP = 7.5 ns,
EP = 0.005 µJ, dP = 0.25 mm, and T0 = 2 K). Dotted lines
represent the calculated response upon generation of
phonons with a frequency of 0.93 THz (which corresponds
to the temperature TAD = 15.8 K) for a time τP. The solid
line indicates the response calculated within the proposed
model of phonon generation.
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order to exclude errors such as the appearance of
phonons with frequencies higher than those realized
physically.

Thus, the execution of the given algorithm results in
a set consisting of the time ti of generation of the ith
phonon; its frequency νi; the polarization pi; the coordi-
nates xi, yi, and zi of the point at which the ith phonon is
generated; and the direction of the wavevector, which is
specified by the angles Θi and φi.

Figure 6 illustrates the importance of the correct
inclusion of the features of phonon generation. 

(i) Circles show the experimental heat pulse, which
was measured in a single crystal of the type IIa natural
diamond with the use of the pulse-heated gold film as a
phonon generator under the following excitation condi-
tions: EP = 0.005 µJ, τP = 7.5 ns, and dP = 0.25 mm. In
this case, the estimates of the film temperature give the
values TAD = 15.8 K and TST = 25.1 K. 

(ii) The dotted curve represents the heat pulse,
which was calculated by the Monte Carlo method under
the assumption that phonons are generated only during
the excitation pulse, have a frequency of 0.93 THz
(which corresponds to a temperature of 15.8 K), and are
scattered only by isotopes. In this case, the mean free
paths of phonons are equal to tens of centimeters and it
seems that the heat pulse should be very sharp. How-
ever, taking allowance for the fact that the film cools
down for a considerable time and generates phonons all
this time results in quite a different situation. 

(iii) The solid line in Fig. 6 depicts the results
obtained by simulating the propagation of nonequilib-
rium phonons with inclusion of the above algorithm of
phonon generation. It is seen that the results of simula-
tion agree well with the experimental data.

It should be noted that attempts to explain the
observed heat pulse length in any one way, for example,
by scattering from point defects, lead to very large elas-
tic scattering constants, which are undeniably invalid.
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Abstract—The band structure of hexagonal tungsten carbide (β-WC) containing vacancies in metal and carbon
sublattices is investigated within the first-principles full-potential linear muffin-tin orbital (LMTO) approach
for a model of 16-atom supercells. Specific features of the formation of “vacancy” states are discussed, and the
formation energies of defects and their charge states are estimated. The results obtained are compared with pre-
vious calculations and available experimental data. © 2001 MAIK “Nauka/Interperiodica”.
 1. INTRODUCTION

Lattice vacancies belong to the most commonly
encountered type of point (zero-dimensional) defects
of a crystal lattice. They substantially affect the proper-
ties of nonstoichiometric compounds within their
homogeneity region.

It is known that no ideal (perfect) crystals occur at
T > 0. At present, the nonstoichiometry of compounds
is associated with its main feature, namely, the experi-
mentally observed discrepancy between the chemical
composition and the number of sites in crystal sublat-
tices [1]. In other words, classification of all crystal
phases as stoichiometric and nonstoichiometric com-
pounds depends on the potentials of currently available
methods for experimental observation of the effects
brought about by lattice vacancies.

Cubic (B1 type) carbides of Group IV and V transi-
tion metals represent one of the most well-known
classes of nonstoichiometric compounds with very
wide homogeneity regions. For example, titanium car-
bide with a cubic structure exists in the concentration
region from TiC1.00 to TiC0.49 [2]. The characteristic
feature of these phases is the variable concentration of
structural vacancies in one (carbon) of the sublattices,
whereas the metal sublattice is usually considered as
occupied completely [2, 3]. The band structure of car-
bon-incomplete cubic carbides has been investigated
elsewhere [4–7]. Unlike the cubic (B1) carbides, the
higher group transition metal carbides which belong to
other crystallographic types usually have considerably
narrower regions of homogeneity [2, 3].

One of the latter carbides of most interest is the
tungsten monocarbide (β-WC), which has a hexagonal

structure (the  symmetry). Tungsten monocarbide
is one of the most mechanically resistant and refractory

D3h
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carbide materials (Tmel = 3058 K); its catalytic activity
is comparable to that of platinum [2].

Tungsten monocarbide has a narrow homogeneity
region in which the carbon content varies in the range
37–48 at. %. Until recently, the metal lattice of tungsten
carbide was assumed to be completed.

Rempel et al. [8] were the first to reveal the presence
of both C and W vacancies in tungsten carbide. These
data were obtained by the electron–positron annihila-
tion technique whose sensitivity to the vacancy content
was estimated at ~10–4 vacancies per atom [9].

The purpose of the present work was to investigate
the band structure of the hexagonal tungsten carbide
containing lattice defects of both types, namely, C and
W vacancies. Using the self-consistent nonempirical
full-potential linear muffin-tin orbital (FPLMTO)
method, we analyzed the nature of vacancy states and
general variations observed in the band spectrum of
nonstoichiometric WCx and WyC due to structural
defects. The formation energies of the C and W vacan-
cies were calculated numerically. Based on the analysis
of their charge states, we interpreted the experiments on
the positron annihilation [8].

Note that, so far, the band-theory calculations have
been performed for the electronic structure of “ideal”
tungsten carbides with hexagonal (β-WC [4, 10–16])
and metastable cubic (of the B1 type [7, 13, 15, 17, 18])
structures.

2. MODEL AND CALCULATION PROCEDURE

Tungsten monocarbide β-WC has a hexagonal

structure (space group –P6m2) formed by packing
hexagonal monolayers of W and C atoms in the
ABAB… stacks. In the β-WC structure, the W and C
atoms reside in a trigonal–prismatic environment. In

D3h
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this case, the W and C atoms have [WC6W8] and [CW6]
coordination polyhedra, respectively. The unit cell con-
tains one formula unit (Z = 1), and the W and C atoms
occupy the positions (a) 000 and (d) 1/32/31/3, respec-
tively. The unit cell parameters are a = 2.9065 Å and
c = 8.366 Å [2, 3].
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Fig. 1. Total (upper curve) and local densities of states for
β-WC.

Fig. 2. Total (upper curve) and local densities of states for
WC0.875. The densities of states for nonequivalent atoms W
and C in the W8C7VC supercell are given.
P

For modeling WC, we used a 16-atom supercell
with the initial composition W8C8. The W8C7VC and
W7VWC8 supercells (VC and VW denote the vacancies in
the C and W sublattices, respectively) corresponded to
the defect carbides of the formal stoichiometries
WC0.875 and W0.875C, respectively.

The band structures of WC, WC0.875, and W0.875C
were calculated by the self-consistent FPLMTO
method [19, 20] in the local-electron-density approxi-
mation [21]. The actual crystal potential and charge
density used in the FPLMTO method make it possible
to calculate with a high accuracy the total energy of the
system and the physical properties of crystals (lattice
dynamics, structural stability, etc. [19–26]), which are
determined by the total energy. The muffin-tin orbitals
were calculated in the standard 3k basis set with the
kinetic energies –k2 = 0.01, 1.0, and 2.3 Ry. The com-
putations were performed in the scalar–relativistic
interpretation of valence electrons (6s, 6p, and 5d for W
and 2s and 2p for C).

3. RESULTS AND DISCUSSION

The total and local densities of states (TDOS and
LDOS, respectively) for β-WC are shown in Fig. 1.
According to the previous computations [4, 10–16], the
carbide valence band consists of two main subbands (A
and B) separated by the energy gap. The lower subband A
is formed by the contributions of the C 2s states, whereas
the subband B has a substantially hybrid character and is
formed by overlapping the W 5d and C 2p states. The
Fermi level (EF) is located close to the local DOS mini-
mum which separates the bands of bonding and anti-
bonding W–C states. These features of the band structure
determine the extreme cohesion characteristics of β-WC
[4], unlike the metastable cubic carbide phase in which
W-5d-like bands of the antibonding type are occupied to
a large extent [4, 7].

The total and local densities of states for nonstoichi-
ometric WC0.875 and W0.875C are shown in Figs. 2 and 3.
Introduction of the C vacancy results in the appearance
of the near-Fermi peak of C and the substructure of the
DOS distribution for the hybrid B band (Fig. 2). These
variations can be explained by the nature of the forma-
tion of vacancy states [4, 6]. As is seen from Fig. 2, the
vacancy states form two symmetric peaks A' and B',
which are separated by the DOS minimum. Their origin
is caused by a local distortion of the crystal field in the
vicinity of VC and a partial decrease in the splitting of
the d states, which coordinate the defects of W atoms as
bonding and antibonding ones. As a result, certain W d
states regain their antibonding states. This scheme is
clearly illustrated with the local density of states of the
C vacancy and the local densities of states of the W
atoms which surround the vacancy (Fig. 2). It is seen
that the A' and B' LDOS peaks of the VC defect reflect a
decrease in the energy of the bonding W d states (A'
peak) and an increase in the energy of the antibonding
W d states (B' peak) in the defect region as compared to
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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those in the complete crystal (Fig 1). Judging from the
LDOS shape for atoms in the W8C7VC cell, the atoms of
at least two coordination spheres undergo a perturba-
tion of the electron density in the presence of a vacancy.
This effect is demonstrated by the electron density map
for WC0.875 (Fig. 4).

The general mechanism of the perturbing effect of
the W vacancy is similar to that described previously
and is associated with the variation in the electronic
states of the carbon atoms nearest to VW. The transition
of a certain portion of C 2p states to the region of anti-
bonding states clearly manifests itself in the LDOS pro-
file of the C1 carbon atoms nearest to the vacancy (peak
A' in Fig. 3). As a result, the C and W vacancies bring
about the “depletion” of certain bonding states, EF
shifts downward in the energy scale, and the density of
states at the Fermi level substantially increases. Note
that the density of states at the Fermi level N(EF) for
metal vacancies increases more rapidly (see table).

Calculations of the cohesion (Ecoh) and vacancy for-
mation (Ev) energies, which were carried out according
to the procedure described in [24, 25], yielded the fol-
lowing results (see table): (i) the presence of vacancies
of both types deteriorates the cohesion properties of
WC and (ii) Ev(W) > Ev(C) in accordance with the
preferential formation of C vacancies in WC. The latter
result can be qualitatively explained in terms of inter-
atomic interactions in WC. As follows from computa-
tions (see also [4, 10–16]), the chemical bond in WC
has a mixed covalent–metallic–ionic character [4]. For
this reason, the preferential formation of C vacancies is
determined by the lower energy expenditure in break-
ing six carbon–metal covalent bonds (in a trigonal
prism—the [CW6] coordination polyhedron). By con-
trast, the formation of a metal vacancy requires the
additional breakage of eight metallic bonds between
the receded metal atom and the metal atoms forming its
second coordination sphere (the [WC6W8] coordination
polyhedron).

At present, experimental investigations of the elec-
tronic structure of nonstoichiometric WCx and WyC are
practically absent. Rempel et al. [8] obtained the eval-
uated data on the charge density distribution in β-WC
by using the electron–positron annihilation technique.
These authors measured the positron lifetime τ in the
samples exposed to radiation (the electron energies
were 1.0 and 2.5 MeV), revealed the bounded (local-
ized) positron states for two types of structural defects,
and found that the lifetime of a positron captured by the
C vacancy (τC ~ 136 ps) was considerably shorter than
that in the case of the W vacancy (τW ~ 175 ps) [8]. The
increased value of τW was explained in [8] by the lower
electron density in the region of metal vacancies sur-
rounding the carbon atom, whereas the C vacancies are
surrounded by tungsten atoms with a higher electron
density; hence, it follows that τC < τW.

The calculations performed allow direct estimations
of the electron density distribution in the coordination
PHYSICS OF THE SOLID STATE      Vol. 43      No. 3      200
spheres of the W and C vacancies (see table). It is seen
that Q(VW) < Q(VC), which qualitatively correlates with
the relationship τC < τW [8]. Taking into account that
positrons in β-WC annihilate primarily with the elec-
trons removed from positively charged nuclei [9], we
also compared the so-called intersphere electron densi-
ties (Qis). The obtained values were Qis(WC0.875) =
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Fig. 3. Total (upper curve) and local densities of states for
W0.875C. The densities of states for nonequivalent atoms W
and C in the W7VWC8 supercell are given.
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2.98e > Qis(W0.875C) = 2.77e, which is in agreement
with the difference in τ revealed for VW and VC in β-WC
[8]. Undoubtedly, in order to obtain the quantitative
estimate of τ, it is necessary to solve a special problem
with the introduction of the positron wavefunctions into
the basis set.
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Abstract—The constants of the superhyperfine interaction of Gd3+ with the 19F nuclear spins in the first four
coordination shells were determined from the ENDOR spectra of a trigonal BaF2 : Gd3+ center. These data were
used for analysis of the crystalline lattice distortions in the vicinity of the impurity ion. It was found that the
largest displacements of fluorine nuclei occurred in the vicinity of the ion compensator and the impurity ion.
To calculate the anion positions within the first coordinate shell, whose electron–nuclear interaction with Gd3+

depends considerably on chemical bonds in the Gd3+  complex, an empirical model is used for the isotropic
constants of the superhyperfine interaction of Gd3+ with fluorine nuclei in cubic centers, with allowance made
for the impurity ion polarization. © 2001 MAIK “Nauka/Interperiodica”.

F8
–

INTRODUCTION

Trigonal impurity centers Gd3+ and BaF2 are formed
in the process of crystal growth due to the compensa-
tion for the excess positive impurity charge by the F–

ion at the nearest interstitial site along the C3 axis.
Local distortions of the neighboring anion surrounding
(the first coordinate shell) of Gd3+ produced by the Fk

compensator were analyzed by us in [1] on the basis of
the superposition model for the spin Hamiltonian (SH)
constants of the second and fourth ranks [2]. These con-
stants describe the Stark splitting of the ground state of
the 157Gd3+ trigonal centers in SrF2 and BaF2. Some
results of our previous investigations of the superhyper-
fine interaction (SHFI) of Gd3+ with BaF2 ligands are
also taken into account. In this work, we consider the
local structure of the trigonal Gd3+ in the BaF2 center in
detail on the basis of the results of the ENDOR investi-
gation of SHFI of Gd3+ with the 19F nuclei (the nuclear
spin I = 1/2) of the first four coordination shells and
with the compensating ion. The SHFI studied by the
ENDOR method is determined for the individual Gd3+–
19F couple. This allows one to calculate the ligand coor-
dinates relative to the impurity ion, when the Gd3+ and
19F ions interact as two point magnetic dipoles. To
determine the coordinates of the nearest ligands, for
which the short-range interaction contributions (cova-
lence, overlapping of the electron shells of the impurity
and of the surrounding ions) to the SHFI are large, a
model describing the radial dependences of the elec-
tron–nuclear interaction constants is needed. The
empirical model taking into account the covalence and
the Gd3+ and F– (polarized by the electric field of the
surrounding ions) electron shell overlap was proposed
in [3] and used by us in [4] for determining the radial
1063-7834/01/4303- $21.00 © 20473
dependences of the SHFI constants for the cubic Eu2+

and Gd3+ centers in crystals with a fluorite-type struc-
ture. In this work, such a model, also taking into
account the impurity ion polarization, is utilized for
description of the isotropic constants of the trigonal
Gd3+ center in BaF2.

1. RESULTS OF ENDOR STUDIES 
AND DISCUSSION

The trigonal and cubic EPR spectra of Gd3+ (elec-
tron spin S = 7/2) with the intensity ratio 20 : 1 were
observed in the BaF2 crystals with the GdF3 impurity
(0.01 wt % in the charge), grown by means of the
Stockbarger method. The EPR of the trigonal center at
T = 4.2 K is well described by the standard SH with
parameters given in [5] in the coordinate system (called
the laboratory coordinate system in what follows)
where the principal symmetry axis of the C3 center is

parallel to Z and to [111], the X axis is parallel to [ 2],
and Y is parallel to [ 10].

The ENDOR measurements were carried out
mainly for the external magnetic field orientation along
the crystal symmetry axes (C3, C2, C4). The fragments
of angular dependences in the vicinity of these axes
were studied in specific cases. Due to the presence of
the compensating ion, the local symmetry of some
anions was lowered from C3v to Cs and the distances
between anions and Gd3+ were changed. The latter led
to a considerable increase in the number of the ENDOR
signals with respect to the case of the cubic Gd3+ center
in BaF2. This made the interpretation and description of
the spectra more complicated.
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For virtually all orientations, the ENDOR signals
that were determined by the fluorine nuclei being the
nearest neighbors of the impurity ion and situated at
equivalent sites (in Fig. 1, they form regular triangles)
had a fine structure associated with indirect nuclear
interaction through an impurity ion [6, 7].

Our calculations of such a structure showed that its
center coincides with the ENDOR signals position in
the absence of the indirect interaction. For this reason,
the frequencies correspondent to the positions of the
structure centers are used for the determination of the
SHFI constants.

By symmetry, the eight fluorine nuclei nearest to
Gd3+ are separated into two groups. Figure 1 shows two
non-equivalent nuclei lying on the C3 axis with the

local symmetry C3v (nuclei of the 111 and  type) and
two nonequivalent equilateral triangles whose planes
are perpendicular to the C3 axis. These triangles consist

of the fluorine nuclei of the second type: 11 , 1 1, and

11, 1, 1 , 1  (local symmetry of the nuclei is Cs).
Here and henceforth, the figures that specify the type of
nuclei correspond to the F– coordinates in the undis-
torted lattice.

The SH part that is necessary for description of the
SHFI ligands of the Cs symmetry has the following
form in the local coordinate system attached to any
selected nucleus (the z axis is parallel to the Gd3+–19F

111

1 1

1 11 1 1 11

Fig. 1. A part of the local surrounding of the trigonal impu-
rity center in BaF2. The ligands nearest to Gd3+ and the flu-
orine nuclei of the second to fourth coordination shells that
are displaced relative to the cubic center are shown.
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bond axis, the x axis lies in the plane containing the
bond axis and C3):

 (1)

The notation in Eq. (1) is commonly used [6, 7]. We
note that only the S3I-type terms whose contributions to
the ENDOR frequencies are greater than the experi-
mental error (≥5 kHz) are taken into account in the
Hamiltonian. The corresponding SH for the C3v sym-
metry ligands is given by Eq. (1) in which AE = (Ayy –
Axx)/2 = 0.

With a set of experimental and calculated ENDOR
frequencies for each nucleus, the SHFI constants were
determined by the numerical minimization of the mean
square deviation for all orientations of a magnetic field
simultaneously. A computer diagonalization of the
energy matrix, obtained from the Hamiltonian contain-
ing both the part describing the splitting of the ground
state [5] and Hn reduced to the laboratory coordinate
system, was carried out. The angles Θ and ϕ transform-
ing the local coordinate system for each fluorine
nucleus into the laboratory system (which are the
ligand angular coordinates) were included in a standard
way [6] into relations for the ENDOR frequencies and
were also determined in the course of the minimization
process.

Calculations show that the SHFI of Gd3+ with the flu-
orine nuclei of the second and more distant coordination
shells, including even Fk (independently of the local
ligand symmetry), is described by axially symmetric
SHFI tensors (in the local coordinate system) and As = 0,
AE = 0, A1 = A2 = 0, and Azz = –2Axx = –2Ayy = 2Ap. Such
a situation takes place when the SHFI is determined by
the dipole–dipole interaction between the impurity ion
and 19F. Thus, the quantity  = Ap – Ad associated with
the short-range interaction in the Gd3+–19F couple (usu-
ally, As >  for fluorides [3, 4, 6–9]) equals zero. In
this case, the anisotropic constant Ap = Ad = ggnµµn/R3

[3, 4, 6], where Ad is the dipole–dipole interaction con-
stant and R is the distance between Gd3+ and 19F.

The constants of the SHFI compensator and of the
anions of the second, third, and fourth coordination
shells of the impurity ion are presented in Table 1. Both
the calculated coordinates of these ligands in the labo-
ratory coordinate system and their deviations from the
corresponding values for the cubic Gd3+ center in BaF2
are also shown. The azimuthal angles ϕ are not pre-
sented, since, in the limits of calculation error, they do
not differ from the corresponding values for the cubic
center. It is evident from the data of Table 1 that the

Hn As 2Ap+( )O1
0 S( )O1

0 I( ) As Ap– AE–( )+=

× O1
1 S( )O1

1 I( ) As Ap– AE+( )Ω1
1 S( )Ω1

1 I( )+

+ A1 4A2+( )O3
0 S( )O1

0 I( ) A1 3A2–( )+

× O3
1 S( )O1

1 I( ) Ω3
1 S( )Ω1

1 I( )+( ) gnβn HI( ).–

Ap'

Ap'
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Table 1.  The SHFI constants and the fluorine nuclei coordinates for the second to fourth coordination shells, including the
compensator, in the trigonal Gd3+ center in BaF2, and their deviations ∆R = R – Rcub and ∆Θ = Θ – Θcub from the coordinates
of the corresponding nuclei in the cubic Gd3+ in BaF2 center [1]

Shell The nucleus type
(the number of nuclei) Ap, kHz R, Å Θ, deg ∆R, Å ∆Θ, deg

2 311(3) 534(3) 5.18(1) 31.0(2) 0.10(1) 1.9(3)

(3), (3) 573(4) 5.06(1) 58.8(2) –0.02(2) 0.4(3)

(3) 567(3) 5.08(1) 80.5(2) 0.00(2) 0.3(3)

(3) 565(3) 5.08(1) 100.0(2) 0.01(1) 0.3(3)

(3), (3) 566(4) 5.08(1) 121.7(2) 0.01(1) 0.3(3)

(3) 576(3) 5.08(2) 150.6(2) –0.01(2) –0.1(3)

3 313(3) 232(2) 6.83(2) 22.7(2) 0.14(3) 0.7(3)

(3) 246(2) 6.70(2) 48.6(4) 0.00(3) 0.0(6)

(3), (3) 247(2) 6.70(2) 82.5(3) 0.00(3) 0.1(4)

(3), (3) 247(2) 6.70(1) 97.5(5) 0.00(3) –0.1(6)

(3) 246(4) 6.70(1) 131.5(4) 0.00(3) 0.0(6)

(3) 249(2) 6.68(3) 157.9(5) –0.02(5) –0.2(6)

4 333(1) 137(1) 8.15(2) 0 0.16(5) 0

511(3) 145(2) 8.00(3) 38.0(3) 0.01(7) 0.1(5)

(3), (3) 144(2) 8.01(3) 56.4(4) 0.02(7) 0.1(6)

(3), (3) 145(4) 8.00(7) 70.5(9) 0.0(1) 0(1)

(3), (3) 145(4) 8.00(7) 109.5(9) 0.0(1) 0(1)

(3), (3) 144(2) 8.01(3) 123.6(4) 0.02(7) –0.1(6)

(3) 144(2) 8.00(3) 141.0(3) 0.01(7) –0.1(5)

(1) 145(2) 7.99(4) 180 0.00(7) 0

Fk 533(3) 5.18(1) 0 – –

113 311

113

131

131 113

131

313

133 331

133 331

331

331

511 151

115 333

115 333

151 511

151

333
ligands of the 311, 313, and 333 types, which are
located near the compensator (Fig. 1), are displaced the
most. This displacement leads to an increase in the
spacing in the Gd3+–19F couple and in the polar angles
Θ ≠ 0°, 180°. The other fluorine ions are localized in the
same positions as in the cubic impurity center (within
the calculation errors, connected with the dispersion of
the ENDOR experimental frequencies) [4]. Thus, one
can consider that Gd3+ replacing Ba2+ is not displaced
towards the compensator, while Fk is displaced from the
center of the interstice of the perfect BaF2 lattice
towards the impurity ion. Analogous results were
obtained in [9], where the trigonal centers Yb3+ in SrF2
and BaF2 were studied.

The SHFI constants and the Θ angles for the fluorine
nuclei nearest to the Gd3+ (in their local coordinate sys-
tem), obtained from the ENDOR spectra, are given in
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Table 2. The constants As are directly connected with the
fluorine nuclei in triangles by the Θ angles, since, due to
the Coulomb repulsion, one should have Θ > Θcub, which

is realized for the 11 -type nuclei in the upper triangle
(Fig. 1). For nuclei of the 1 type in the lower triangle,
we have Θ ≅  Θcub. Noticeable angular and radial dis-
placements of nuclei of the first coordination shell are
usually accompanied by displacements in the second
coordination shell [3, 8, 9]. However, all 19F atoms that
are placed near the 1- and -type anions have
(within the error limits) the same coordinates as in
cubic centers. Taking into account this circumstance
and the fact that the impurity ion itself is not displaced,
one can assume that the coordinates of the fluorine
nuclei nearest to Gd3+ and placed far from the compen-
sator, below the XY plane (Fig. 1), are the same as in the

1
11

11 111
1
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Table 2.  The SHFI constants and the angular coordinates of the nearest neighbor ligands in the trigonal Gd3+ in BaF2 center
together with the values of distances, induced dipole moments, and isotropic constants calculated in the framework of the pro-
posed model

Type of a nucleus 111

The local ligand symmetry C3v Cs Cs C3v

As, MHz –2.447(5) –1.755(4) –1.755(5) –1.560(4)

Ap, MHz 5.118(3) 4.625(3) 4.598(3) 4.638(2)

AE, kHz – –1(4) 2(4) –

A1, kHz –0.9(3) –1.1(4) –0.9(5) –0.8(3)

A2, kHz –0.27(9) –0.17(7) –0.12(7) –0.26(9)

Θ, deg 0 71.0(1) 109.6(1) 180

R, Å (calculation) 2.388 2.408 2.431 2.431

dz, eÅ (calculation) 0.143 0.097 0.070 0.055

dx, eÅ (calculation) 0 0.04 0.017 0

As, MHz (calculation) –2.467 –1.751 –1.744 –1.574

111 111 111
cubic impurity center. Thus, the local anion surround-
ing of Gd3+ can be divided into two regions separated
by the XY plane. This plane is parallel to {111} and
passes through the impurity ion (Fig. 1). In the first
region, which contains the compensating ion, the dis-
placements of the 19F atoms (in comparison with the
case of the cubic Gd3+ center in BaF2) are noticeable in
the shells no more distant than the fourth coordination
shell, while in the second region, the displacements are

not observed. Therefore, R( 1) = R( } = 2.431 Å (the

distances of Gd3+ to the 1- 1 -type nuclei) [3]. It is
considerably more difficult to evaluate R for the
remaining two types of the nearest neighbor anions,
since their neighboring fluorine nuclei are displaced
with respect to their positions in the case of the cubic
impurity center. At the same time, the constants As

(Table 2), which are determined by the short-range
interaction, are large and different. Thus, the analogous
contributions to the anisotropic SHFI are, most proba-
bly, not equal to zero [3, 4, 8, 9].

It follows from the obtained results that the nearest
ligands having the local symmetry Cs are described by
the SH of a higher symmetry (since AE ≈ 0). We believe
that this is connected not only with the restrictions of
the experimental precision, but also with the low value
of the trigonal distortion. This is supported, by the way,

by similar values of the parameter  for trigonal and

cubic centers [1]. Thus, the SHFI in the Gd3+–19F cou-
ple can be analyzed in the same manner as in the cubic
center, namely, by taking into account only small
changes in the chemical bonds with small changes in
the electron structure of these ions caused by the tran-
sition from the cubic center to the trigonal one.

11 111

11 11

b4
0

P

2. DETERMINATION OF THE DISTANCES 
TO THE NEAREST NEIGHBOR LIGANDS

Before we come to the determination of the distance
to the ligands nearest to Gd3+ in the trigonal center, let
us try to get rid of the weaknesses of the empirical
SHFI model. This model was proposed by Baker [3]
and used by us [4] for description of the As and Ap con-
stants in five Gd3+ cubic centers in crystals with a fluo-
rite-type structure.

Baker’s notion of the reasons for the electric dipole
moments D induced at ligands was incorrect and
rejected in [4]. However, it was assumed in [4] that the
contributions to As and Ap associated with the ligand
polarization did not depend explicitly upon the distance
R in the Gd3+–19F couple and were determined only by
the value of D = dz = αEz [3] (here, α is the fluorine ion
polarizability for a given crystal; Ez is the electric field
on 19F directed along the axis of the couple bond; this
field is determined by the excess positive charge of the
impurity and by the displacements of the surrounding
ligands). This approximation can also be rejected, if
one represents As (and Ap) in the following form (on the
basis of theoretical expressions for the SHFI constants
derived in the approximation linear in Ez [3]):

As = As(R)(1 + KsD). (2)

Here, As(R) = As(R0)(R0/R)n is the contribution to the
isotropic constant dependent on the distance from the
ligand and determined by the covalence parameters and
the overlap integrals of the 4f and the polarized 5s and
5p states of Gd3+ with the 1s and 2s states of F– [3, 8,
10–12]; As(R0) is the model parameter, which is equal
to the above contribution for R = R0 = 2.37 Å (R0 is
taken to be the same as in [1]). The quantity As(R)KsD
is the second contribution, where Ks is the model
parameter connected with the mixing of the 2p and 3s
states of the fluorine ion. Since this p–s mixing is deter-
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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mined by the matrix element 〈2pz|dz|3s〉/ |E3s – E2p |, this
contribution is proportional to D.

To determine the radial dependence of As, which
should be same for all Gd3+ cubic centers in isostructural
crystals, it is necessary to eliminate D. Varying the Ks
and n parameters in such a way that the function As(R) =
As/(1 + KsD) describes all five relations, we obtain Ks =
−4.4(1)1/e Å and n = 3.0(2) for As(R0) = –3.62(6) MHz
(e is the magnitude of the electron charge).

The As(R) function for the cubic impurity centers is
plotted in Fig. 2. This is a weak power-law dependence
with n = 3, which is, probably, due to the fact that the
constant As depends on two terms which are roughly
equal in value, but opposite in sign. These terms are
related to the different electron shells of the interacting
ions. Indeed, according to evaluations in [3, 8], the 4f
electrons give a positive contribution to As, whereas the
contribution from the 5s and 5p electrons is negative, if
one takes into account their overlapping with the 2s
electrons of F–. Taking into consideration the 1s shell
leads to positive contributions to the isotropic constant
[3, 6, 8, 10]. Although all these terms have different
radial dependences [8], their sum can have a negligible
dependence on R over a small range of distances.

The results of the analogous analysis of the isotro-
pic SHFI constant for the Eu2+ cubic impurity centers
in the same crystals can serve as proof of the adequacy
of the chosen description of As. In this case, the value
of the induced dipole moment D of the fluorine ions is
determined only by the ligand displacements [4]. It is
found that Ks = –4.2(2)1/e Å, n = 5.7(3), and As(R0) =
–3.94(6) MHz. It can be seen that the values of Ks,
related to the changes in the electron structure of F–

(i.e., to the partial occupation of the 3s states), are
approximately the same for the isoelectron impurity
ions. This confirms, in our opinion, the validity of the
chosen model.

To analyze the case of the trigonal Gd3+ in BaF2, let
us first suppose that the distance to all nearest neighbor
fluorine atoms R = 2.431 Å (as in the cubic center). Cal-
culations show that the dipole moment induced at the
11 -type nucleus is greater than at the nearest neighbor
nuclei in the cubic center, i.e., ∆D = Dtrig – Dcub > 0 (for

1, ∆D < 0), and this inequality remains true over the
2.44 > R > 2.38 Å range. This is due to the fact the dx

component of the induced dipole moment appears for
the fluorine nuclei in the trigonal center with the Cs

local symmetry. This leads to an additional displace-
ment of the 2px 3s states of F–. In a linear (with respect
to D) approximation, for the trigonal impurity centers,
one should use the value D = dz + dx in Eq. (2), in con-
trast with the cubic centers.

Let us compare the values of the isotropic constants
for the 11 - and 1-type nuclei (see Table 2) with the
value As = –1.808(6) MHz for the cubic impurity center
in BaF2 [4]. According to Eq. (2), one should have for

1

11

1 11
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11  ∆As = As(trig) – As(cub) > 0 (∆As < 0 for 1). On
the contrary, in our case, we have ∆As > 0 and virtually
the same values of As (see Table 2) for both types of flu-
orine nuclei. We also note that the calculated values of
As(R) can be divided into two groups for all four types
of nuclei (even for the same values of R): two values
above and two below the As(R) dependence obtained
for the cubic impurity centers (Fig. 2). It is impossible
to explain such a spread of the As(R) values by small
changes in only the ligand electron structure due to
their polarization. Thus, there is another contribution to
As as a minimum, which is determined by changes in the
Gd3+ electron structure as one goes from the cubic to the
trigonal centers. An analogous conclusion can made
from a comparison of the SHFI constants for the fluorine
nuclei situated at the C3 axis (the C3v local symmetry),
where the character of the chemical bonds is the same as
in the Gd3+ in BaF2 cubic center.

On the other hand, it is clear that Gd3+ is also polar-
ized and has an induced dipole moment D1 || C3, which
is due to electric fields of the compensator and to asym-
metric displacement of ligands. This leads to mixing of
the Gd3+ electron states [6, 7, 10–12] and, as a result, to
a change in the unpaired spin density at the ligands.

It is clear from Fig. 2 that, for the 11 - and 1-type
nuclei, the values of As(R) are situated below and above
the curve, respectively. The values of ∆As = As(R)(trig) –
As(R)(cub), caused by polarization of Gd3+, are almost
equal in value but opposite in sign. The same is true for
the D1 projections along the bond axes. The remaining
two fluorine nuclei are also unambiguously connected
with the direction of the D1 projection. They can be
directly related to the values of the isotropic constants,

1 11

1 11

As(R), MHz
–2.0

–2.5

–3.0

–3.5

–4.0

–4.5

–5.0
2.2 2.3 2.4 2.5 2.6 2.7

R, Å

111

111
-

111
- -

111
- - -cub

trig

Fig. 2. As(R) values for fluorine nuclei nearest to the Gd3+

ions in the cubic impurity centers of the following crystals:
CaF2, CdF2, SrF2, PbF2, BaF2, and in the trigonal center of
BaF2. The curve corresponds to the determined functional
dependence for the cubic centers.
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in accordance with the sign of ∆As (see Table 2). Since
we consider the contributions to As, we can conclude
that the unpaired-spin density of the Gd3+ electrons at
19F varies proportionally to D1cosΘ along the bond
axis. Hence, for a description of the isotropic constants
of the nearest neighbor ligands in the trigonal impurity
center, one should add to Eq. (2) the term taking into
account the change in the electron structure of Gd3+

induced by its polarization

 (3)

In order to obtain the distance R to the nearest neighbor
fluorine nuclei, it is necessary to make a comparison
between the values of As calculated from Eq. (3) and the
experimental data. To do this, one should know the
model parameters (R), D, and D1. These parameters
were first estimated assuming that R = 2.431 Å. It was
found that there is no such value of (R) which gives
values of As close to the experimental ones simulta-
neously for all four types of nuclei. However, a compar-
ison of calculated and experimental values shows that
one should have R(111) < R( ). Such an inequality cor-
responds to the character of the possible shift of the near-
est neighbor ligands, since Fk will, without any doubt,
also shift 19F(111) in the same direction, when approach-
ing the impurity ion. Varying the values of R(111) and
R(11 ), we obtained that the best agreement with the
experiment is realized when R(111) = 2.388 Å, R(11 ) =
2.408 Å, and (R) = –38.3(2)(R0/R)9 MHz/eÅ.

The induced dipole moments D and D1 were calcu-
lated in the model of point charges and point dipoles.
The charge and dipole sources were the impurity ion
and all anions inside a shell with the radius larger than
≥10 Å (the center of the shell coincided with the ion at
which the dipole moment was determined), as well as the
nearest neighbor cations. The positions of anions of the
second to fourth coordination shells were known from
experiment. The positions of the nearest neighbor cat-
ions and of the distant F– were considered to be the same
as their positions in the cubic impurity center [4]. In this
case, the dipole moment of Gd3+ is D1 = 0.0318 eÅ if
α = 1 and 0.87 Å3 for F– in BaF2.

Note that the distances to the nearest ligands deter-
mined here are close to those obtained from the super-
position model for the constants of the initial splitting
and of the quadrupole interaction in the trigonal
157Gd3+ : BaF2 center [1].

The additional term in Eq. (3) is, most probably,
connected with the partial filling of the empty 5d shell
due to the mixing of even and odd states of the polar-
ized Gd3+. This term is proportional to the matrix ele-
ments having the form 〈4f |D1|5d〉/ |E4f – E5d | [6, 10–12],
since the energy E5d, as it is known, is the lowest one for
the exited states. It is clear that this mechanism will
lead to a change in the unpaired spin density of the Gd3+

electrons at ligands in the trigonal center, in compari-

As As R( ) 1 KsD+( ) Ks' R( )D1 Θ.cos+=

Ks'

Ks'

111

1
1

Ks'
P

son with the cubic center. Thus, it will change the
SHFI. For the cubic centers, such a process was first
considered in theoretical work [10]. It was assumed there
that the main reason for this process was the transfer of
an electron from the ligand to the empty 5d and 6s shells.
This transfer made a contribution ∆As = –8 MHz to the
isotropic constant for CaF2 : Gd3+. Since the odd compo-
nents of the crystalline field are absent in the cubic cen-
ters, an odd electric field of a virtual hole was introduced
in [11, 12], in order to mix the impurity states. This field
appears at a ligand due to the electron transfer. A calcu-
lation of the contribution to the isotropic constant (using
our parameter (R)) from the field of the virtual hole at
19F gives ∆As ≥ 8 MHz. Adding ∆As from [10] to this
value, we obtain a change in As, which is close to zero.
Therefore, the conclusion can be made that the above-
discussed mechanism virtually does not change the iso-
tropic constants in the Gd3+ cubic impurity centers in flu-
orites. Note that changes in the electron structure of
ligands were not taken into account in [10–12].

Some other physical mechanisms which influence
the electron structure of the impurity centers with the
cubic local symmetry were also considered in [10–12].
For example, according to [10–12], changes in the pop-
ulation of the 5s and 6s states of impurity centers are
possible. In the trigonal center discussed in our work,
there is also a direct influence of the odd crystalline
field upon the populations of these states. However, the
intrinsic electron–nuclei interaction in the 157Gd trigo-
nal center should be changed considerably in compari-
son with this interaction in the BaF2 cubic center. Nev-
ertheless, this is not observed [1, 4]. Hence, one may
conclude that the spin density at the 5s and 6s states is
not changed considerably when one goes from the
cubic to the trigonal impurity center in BaF2.

To analyze the anisotropic constants Ap of the nearest
neighbor nuclei, one can use the relations analogous to
Eq. (3), where all indices s should be replaced by p, since
the change mechanisms for these constants are analo-
gous to those discussed above. It is found that (R0) =
–1.94(5) MHz, n =16(1), Kp = –8(1) 1/eÅ (for the cubic
centers), and  = –7(6) MHz/eÅ. Due to the presence

of a large error in , the anisotropic constants for four
types of the nearest neighbor fluorine nuclei in the trigo-
nal center have a worse description than in the cubic cen-
ters. Most likely, this is connected with the model imper-
fection. Indeed, one should take into account the contri-
butions from both σ and π bonds to  [3, 6, 8, 10–12],
while we have considered only the changes in σ bonds,
since it is not clear at the moment how π bonds should
change. Moreover, one should possibly take into account
the contributions to Ap from the multipole corrections.
These corrections are connected with the deviation from
sphericity for polarized Gd3+ in the Gd3+–19F couple
[12].

Ks'

Ap'

K p'

K p'

Ap'
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CONCLUSIONS

Thus, the following results are obtained in this work.
(1) Analysis of the distances calculated from the exper-

imentally determined SHFI constants for the trigonal
BaF2 : Gd3+ center shows that anion surrounding of Gd3+

(the first four coordination shells of the fluorine atoms)
can be divided into two regions separated by the plane
passing through the impurity ion and located perpendicu-
lar to the main symmetry axis of the impurity center. In the
first region, there are considerable displacements of the
19F near the compensator and Gd3+. In the second one,
which is placed far from the compensator, the fluorine ion
coordinates are the same as in the cubic center.

(2) A comparison of the experimental and calculated
values of As for the fluorine nuclei nearest to the impu-
rity center shows that a model describing the SHFI
interaction constants for the Gd3+ cubic centers in fluo-
rites can also be successfully used for the trigonal cen-
ter. To do this, one should take into account the contri-
bution to As associated with the change in the electron
structure of the impurity due to its polarization by an
odd electric field produced by the surroundings.

(3) The distances to the fluorine nuclei of the first
coordinate shell are determined. These distances are
found to be close to their values as estimated in the
framework of the superposition model for the initial
splitting and quadruple interaction parameters in the
157Gd3+ in BaF2 trigonal center.

(4) The equality (within the experimental error) of
the constants of the intrinsic electron–nuclear interac-
tion for the 157Gd isotope in the cubic and trigonal cen-
ters of BaF2 indicates that the Gd3+ polarization in the
trigonal center does not lead to a noticeable change in
the spin densities of any impurity ion s states when
compared with the cubic center.
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Abstract—The influence of a constant magnetic field on the electroplastic effect induced by an electric current
in silicon crystals is investigated. It is found that the preliminary magnetic field treatment of silicon crystals
leads to a weakening of the electroplastic effect. A possible mechanism of the phenomena observed is dis-
cussed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Earlier [1–7], it was noted that the dislocation
behavior in alkali halide crystals, metals, and com-
pound semiconductors in a magnetic field exhibits a
number of specific features.

Experiments revealed that application of a magnetic
field can substantially affect the plastic properties of
crystals. This phenomenon was termed the magneto-
plastic effect. The magnetoplastic effects can be posi-
tive and negative; that is, the magnetic field can bring
about both hardening and softening of crystals, respec-
tively. Application of the magnetic field can result in a
drastic increase in the internal friction of dislocations
trapped by paramagnetic impurities [1].

The effect of an electric current on the microplastic-
ity stimulated by the magnetic field in aluminum single
crystals was also investigated elsewhere [6]. Unfortu-
nately, despite a considerable body of experimental
data and a diversity of models interpreting the magne-
toplastic effect, there is no consistent theory for
describing available experimental data within a unified
context.

As regards the class of simple semiconductor crys-
tals (specifically, silicon crystals), the data on the influ-
ence of magnetic field on the dislocation mobility in
these crystals are virtually not available in the litera-
ture.

At the same time, investigation of this phenomenon
is undoubtedly an urgent problem of modern semicon-
ductor physics, because its solution can provide a better
insight into the physical mechanisms responsible for
the plastic and strength properties of semiconductor
crystals.

On the other hand, it is well known that the mag-
netic susceptibility of diamagnetic and paramagnetic
crystals is rather sensitive to the presence and the
amount of dislocations in these crystals. Novikov et al.
[8] proved that the presence of nongrowth dislocations
1063-7834/01/4303- $21.00 © 20480
in single-crystal silicon samples brings about a
decrease in the diamagnetism (the generation of para-
magnetic centers) and a change in the static susceptibil-
ity of silicon. These authors also revealed a certain cor-
relation between the magnetic susceptibility and the
density of nongrowth dislocations. Vavilov et al. [9]
adduced the relevant experimental and theoretical argu-
ments in support of the possible magnetic ordering of
electron spins on dislocation structures in silicon and,
in particular, pointed to the possibility of realizing a
ferromagnetic ordering in the dislocation core. Thus,
there is an inverse effect, namely, the influence of struc-
tural defects on the magnetic properties of crystals.

In this respect, it was expedient to elucidate how the
constant magnetic field affects the dynamic behavior of
dislocations in silicon crystals. The velocity of disloca-
tion motion was chosen as an indicator and a measure
of this effect.

In our recent work [10], we carried out a preliminary
investigation into the influence of magnetic field on the
dynamic behavior of dislocations in initial silicon crys-
tals. It was experimentally found that the applied mag-
netic field alone does not provide a dislocation motion.
Considerable variations in the dynamic behavior of dis-
locations were observed only in the case when the sam-
ples were subjected to mechanical deformation after the
magnetic field treatment. The treatment of silicon sam-
ples in a magnetic field with magnetic induction B =
0.17 T for a certain time (tMF ≥ 7 days) and a further
mechanical loading brought about an increase in the
starting stresses and the delay time of the onset of dis-
location motion and also a decrease in the dislocation
velocity approximately by a factor of three. Therefore,
silicon crystals underwent a hardening after the prelim-
inary magnetic field treatment. The characteristics of
the dislocation mobility turned out to be sensitive only
to a magnetic field whose induction reached a specific
threshold value (B = 0.17 T). The properties acquired
by silicon samples in the course of magnetic treatment
001 MAIK “Nauka/Interperiodica”
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did not disappear immediately after the magnetic field
was withdrawn, but they were retained for a short time
(about 1 h). In other words, the magnetic memory
inherent in dislocation-containing silicon samples after
their treatment in a magnetic field has a short-term
character.

In our opinion, a possible reason for the observed
effects can be the changes induced by the magnetic
field in a defect system of silicon (decomposition of
large-sized complexes, diffusion of individual point
defects both from the bulk of the matrix and along the
dislocation line toward a dislocation, and increase in
the cluster power around dislocations). The magnetic-
field-induced change in the system of point defects
interacting with elastic fields of dislocations leads to a
change in the dynamic behavior of dislocations due to
the magnetic field treatment of the samples.

The results obtained demonstrate that the transfor-
mations revealed in the structure after the magnetic
treatment are somewhat similar to changes observed in
the processes of strain ageing in steels after their treat-
ment with a pulsed field [11].

From our point of view, the investigation into the
influence of a constant magnetic field on the dislocation
mobility is topical by itself and also with relation to the
interpretation of the well-known electroplastic effect,
which was observed in metals [12] and revealed in sili-
con crystals in our earlier works [13, 14]. It was of
interest to clarify the role played by the magnetic field
in the electroplastic effect induced in silicon crystals
upon passage of an electric current.

The purpose of the present work was to investigate
how the magnetic field affects the electroplastic effect
in silicon crystals excited by an electric current.

2. EXPERIMENTAL TECHNIQUE

In experiments, we used n-type and p-type silicon
samples (20 × 4 × 0.4 mm in size), which were grown
by the Czochralski technique and doped during the
growth with phosphorus and boron, respectively. Stress
concentrators—scratches cut in the [1 0] direction on
the (111) surface—served as a source of dislocation
half-loops. The dislocation motion was caused by
bending around the [11 ] axis (the four-support bend-
ing method). The length of segments in dislocation
half-loops introduced into the samples varied from 10
to 100 µm; i.e., the dislocations under investigation
were the short surface dislocations. The starting and
terminal positions of dislocation half-loop ends were
fixed by chemical etching and then were examined with
a metallographic microscope. The silicon samples
under investigation were subjected to mechanical ten-
sile stresses. The influence of magnetic field on the
electroplastic effect was studied by the four-support
bending method. This method differed from the tradi-
tional technique in that the cylindrical tungsten elec-
trodes served as two lower supports. The voltage was

1

2
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applied across these electrodes, which made it possible
to pass an electric current through the samples immedi-
ately in the course of their mechanical deformation.

After the introduction of isolated dislocations, the
silicon samples were subjected to the magnetic treat-
ment: the samples with preliminarily introduced dislo-
cations were placed in a constant magnetic field with
the induction B = 0.17 T. The duration of the magnetic
field treatment was 7 days.

The samples treated in the magnetic field were sub-
jected to a static loading with simultaneous passage of
a direct electric current. The fundamental quantity stud-
ied in this work was the dislocation path length L. The
influence of the magnetic treatment on the dislocation
path length was investigated in the temperature range
T = 823–923 K at the mechanical stress σ = 63.5 MPa
and the current density j = (0.2 – 1.0) × 106 A/m2. Thus,
the magnetic treatment was carried out at room temper-
ature and the thermally activated dislocation motion
was initiated at temperatures of 823–923 K. After the
high-temperature mechanical deformation, the samples
were subjected to chemical etching. The dislocation
path length was determined from the positions of the
dislocation half-loop ends prior to and after the
mechanical deformation of the samples.

The experimental data obtained in the present work
allowed us to reveal a number of features in the motion
of dislocation segments in the silicon crystals which
were subjected to the preliminary magnetic treatment.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Let us consider how the magnetic treatment of sili-
con samples affects the electroplastic effect.

As was noted above, the treatment of the initial sili-
con crystals in a magnetic field leads to the pinning of
dislocations in the starting positions and a decrease in
the velocity of dislocation motion. The electroplastic
effect manifests itself in the silicon crystals excited by
a direct current and implies an increase in the velocity
of dislocation motion and a decrease in the starting
stresses. Therefore, it can be assumed that the electro-
plastic effect is unlikely to be caused only by the influ-
ence of the dc magnetic field. Most probably, the elec-
troplastic effect is associated with a diversity of other
factors.

In our opinion, it is of interest not only to determine
the contribution of the dc magnetic field to the electro-
plastic effect, but also to analyze the influence of the
preliminary magnetic field treatment on the magnitude
of this effect.

As can be seen from the dependences depicted in
Fig. 1, the velocity of dislocation motion upon excita-
tion by the direct electric current in the silicon samples
subjected to the magnetic treatment (curve 2) is less
than that in the samples which were not treated in the
magnetic field and were excited only by the current
(curve 3). In this case, as follows from the experimental
1
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data, the dislocation velocity after the magnetic treat-
ment of samples decreases approximately by a factor of
three, irrespective of the density of the current exciting
these samples. At the same time, the velocity of dislo-
cation motion in the silicon crystals untreated in the
magnetic field depends on the current density [14].

If the magnitude of the electroplastic effect is taken
to mean the ratio between the dislocation velocities in
the current-excited and initial crystals, it turns out that
the magnitude of the electroplastic effect after the mag-
netic treatment decreases approximately by a factor of
three. For example, at a temperature of 923 K, the mag-
nitude of the electroplastic effect is equal to 15 for the
samples excited by the direct current and 5 for the crys-
tals treated in the magnetic field. The preliminary
investigations revealed that, upon electric insulation of
silicon crystal samples subjected to the magnetic treat-
ment, the dislocation velocity in these crystals
decreases to zero. Consequently, the electroplastic
effect induced by the electric field in the silicon crystals
treated in the magnetic field not only decreases (as in
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Fig. 1. Dependences of the mean dislocation path length L on
the time t of applying the mechanical stress σ = 63.5 MPa at
a temperature of 923 K for (1) the initial silicon crystal sam-
ples (subjected to tensile deformation), (2) silicon crystal
samples treated in a magnetic field (B = 0.17 T) with subse-
quent extension under electric current passage ( j = 1 ×
106 A/m2), and (3) silicon samples subjected to tensile defor-
mation with simultaneous passage of an electric current
( j = 1 × 106 A/m2).

Fig. 2. Temperature dependences of the velocity of disloca-
tion motion in silicon crystals strained under a mechanical
stress of 63.5 MPa. The designations are the same as in Fig. 1.
P

the case of electric current), but also changes sign.
However, these data require further checking and
refinement.

Now, we consider the temperature dependence of
the velocity of dislocation motion. Figure 2 displays a
series of the experimental dependences V = f(1/T) for
the initial samples and the samples treated in the mag-
netic field. These dependences were used to calculate
the activation energies of dislocation motion for the
samples which were preliminarily subjected to the
magnetic treatment and then were excited by the direct
current and the samples which were excited only by the
direct current without preliminary treatment in the mag-
netic field. The activation energies were found to be
almost the same for both samples: EMF + I ≈ EI ≈ 0.75 eV.
For the initial silicon samples, the calculated activation
energy Einit was equal to ≈2.03 eV.

The observed effect of the magnetic field on the dis-
location mobility in diamagnetic silicon can be gov-
erned by a diversity of factors. In particular, the change
in the dynamic behavior of dislocations in the initial sil-
icon crystals due to their magnetic field treatment can
be explained by the rearrangement of a system of point
defects and defect complexes which interact with elas-
tic fields of dislocations [15].

Let us analyze the influence of magnetic field on the
electroplastic effect. As was noted in our earlier works
[13, 14], a possible reason for the electroplastic effect
can be the change in the charge state of dislocations and
their environment, which results in a decrease in the
Coulomb component of the interaction between dislo-
cations and trapping centers and also in the height of
barriers that fix dislocations in the starting positions.
Moreover, from our point of view, the electroplastic
effect can also be associated with the influence of an
excess energy that is locally released in the dislocation
region upon recombination of carriers during the pas-
sage of an electric current in crystals. This energy facil-
itates the formation and motion of charged double dis-
location kinks.

The experimental results obtained in the present
work can be qualitatively interpreted by invoking the
model proposed by Kveder et al. [16]. This model treats
the spin-dependent recombination of free carriers
through dislocation dangling bonds in magnetic fields.
The electron (or hole) trapping from shallow levels into
dislocation dangling bonds is a spin-dependent process.
In this case, the trapping probability depends on the
polarization of a spin chain of dislocation dangling
bonds and the direction of the electron spin.

It seems likely that the magnetic field in our experi-
ments brings about a change in the polarization of a
paramagnetic spin center and a decrease in the trapping
probability. As a result, the probability of carrier
recombination decreases.

As follows from the experimental results obtained
in this work, in the silicon crystals treated in the mag-
netic field and excited by the direct current, the velocity
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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of dislocations changes and the activation energy of
their motion remains virtually constant. The latter
result indicates that the effects observed are associated
with the change in the preexponential factor in the
empirical formula obtained by Maeda et al. [17] for the
dislocation velocity in silicon crystals excited by an
electron beam. The preexponential factor in this for-
mula involves the recombination frequency ν multi-
plied by the quantum yield η [17]. According to [17],
we can assume that the magnetic field affects the
recombination frequency which is determined by the
rate of the formation of carriers, their lifetime, and trap-
ping cross section of the kink.

Therefore, as in [16], it can be assumed that silicon
crystals contain both purely fluctuation trapping cen-
ters and purely spin trapping centers which behave dif-
ferently in fast capture events in the presence of field
effects, in particular, “magnetic” effects. The change in
the state of spin trapping centers after the treatment of
silicon samples in the magnetic field leads to the
change in the magnitude of the electroplastic effect. In
the case when the silicon crystals subjected to the pre-
liminary magnetic treatment are excited by the electric
current, the electroplastic effect decreases approxi-
mately by a factor of three. According to the experi-
mental data, a decrease in the electroplastic effect is
characteristic of the entire studied range of current den-
sities. It should be noted that a threefold decrease in the
electroplastic effect is observed independently of the
density of the current exciting the silicon samples.

The last result suggests that, under the given exper-
imental conditions, the spin-dependent recombination
is virtually independent of the current density and,
according to [16], depends only on the polarization of a
dislocation dangling bond chain with respect to the
direction of the electron spin.

All the above experimental findings require a
detailed theoretical interpretation. However, it has
already been possible to draw the inference about the
practical importance of the results obtained in this
work.

Since the dangling bonds of silicon are responsible
for the spin-dependent recombination channel, it is
clear that the magnetic field treatment of silicon sam-
ples leads to the “neutralization” of spin trapping cen-
ters and a decrease in the recombination probability.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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Abstract—The strength of sheet glass treated by etching in a hydrofluoric acid with subsequent deposition of
an amorphous hydrogenated carbon coating 50 nm thick is investigated. The carbon coating is applied by ion
magnetron sputtering of a chemically pure graphite target. It is shown that the strength of the sheet glass after
coating is retained at a level of 2.4 GPa. The leaching of the surface glass layer upon treatment in water at a
temperature of 96°C prior to the deposition of a coating leads to an increase in the strength by 12%. The crack-
ing resistance of the glass is examined by the microindentation technique. It is revealed that the load Pc which
corresponds to the formation of 50% of all the cracks increases by a factor of three upon deposition of the coat-
ing and by a factor of 15 after the preliminary leaching of the glass surface. The assumption is made that the
preliminary leaching of the glass surface considerably enhances the adhesion of the hydrogenated carbon film
to the glass surface and, thus, improves its protective properties. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, amorphous hydrogenated carbon or
diamond-like coatings have attracted the particular
attention of researchers owing to their unique proper-
ties, such as high hardness, wear resistance, chemical
durability, transparency, etc. [1]. These properties allow
the use of diamond-like films as protective coatings by
way of their deposition onto various materials.

The structure of diamond-like films, which represents
amorphous hydrogenated carbon a-C : H, has been
investigated thoroughly [1–3]. It was shown that this
structure depends on the preparation conditions and can
vary over a wide range from structures close to diamond
to a graphite-like structure. As a rule, the structure of
a-C : H films is considered a mixture of nanometer-sized
structures with carbon in the sp3- and sp2-hybridization
states. Such properties as the density, microhardness,
band gap, and others depend on the fraction of a particu-
lar structure and the hydrogen content [4–6].

Note that the protective properties of a film substan-
tially depend on its adhesion to a substrate material.
High stresses at the film–substrate interface can result
in the peeling of the film and its fracture [7]. These phe-
nomena are observed, for example, upon film deposi-
tion onto silicide-forming metals. By contrast, the film
deposition onto carbide-forming metals provides a
good adhesion of carbon films to the substrate. For this
reason, in some cases, improvement in the adhesive-
ness is achieved with intermediate layers, for example,
from silicon [7].
1063-7834/01/4303- $21.00 © 20484
It was of interest to investigate the possibility of
applying amorphous hydrogenated coatings on a glass
treated by chemical polishing in hydrofluoric acid. It is
well known that, after the removal of a surface defect
layer by etching in hydrofluoric acid, commercial sheet
glasses possess a high strength which is close in the
order of magnitude to the theoretical value [8, 9]. On
the other hand, it is also known that glasses in a high-
strength state are extremely sensitive to mechanical
contacts with solids. This is explained by the fact that
inorganic glasses upon indentation can undergo a plas-
tic deformation without fracture only within a very lim-
ited volume [10]. Therefore, any contact with a solid,
especially when sharp and hard dust particles occur in
the contact area, usually leads to the formation of
microcracks and a decrease in the strength.

The main problem of retaining the high strength of
a glass is to prevent the formation of new defects which
can serve as stress concentrators on the glass surface.

This problem can be solved in part either by plasti-
cizing the surface layer of a glass [11, 12] or by creating
compressive stresses in this layer [13–15]. Another
method that can be used in a combination with the
above techniques consists in preparing protective coat-
ings on the glass surface.

The aim of the present work was to investigate the
influence of thin amorphous hydrogenated carbon
(a-C : H) coatings on the strength and cracking resis-
tance (resistance to the formation of cracks) of a glass
treated by chemical polishing.
001 MAIK “Nauka/Interperiodica”
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2. EXPERIMENTAL TECHNIQUE

An a-C : H coating was applied by ion magnetron
sputtering of a chemically pure graphite target in a vac-
uum chamber. In these sputtering systems, electrons
emitted by a target are captured by a magnetic field,
which prevents their bombardment of substrates and a
heating to high temperatures [16]. After the preliminary
evacuation to a pressure of 10–5–10–6 torr, the chamber
was filled with a working gas (80% argon and
20% hydrogen). The working gas pressure was brought
up to ~5 × 10–3 torr. In this case, the discharge voltage
was 370–400 V and the current strength was main-
tained equal to 0.5 A. A sample in the form of a glass
plate was fastened on a metal disk, which was located
at a distance of 130 mm above the cathode target. Dur-
ing the sputtering of the target, the disk was rotated
about its axis and along the chamber perimeter, which
provided a uniform deposition of the coating. A nega-
tive potential of 24 V was applied to the disk.

The thickness of a deposited film was determined by
the ellipsometric method with the use of an LÉF-3m
instrument operating in a reflection geometry at the
wavelength of a He–Ne laser. Under the above sputter-
ing conditions and a sputtering time of 30 min, the coat-
ing thickness was equal to ~50 nm.

The optical absorption spectra of the films prepared
under the specified sputtering conditions were mea-
sured on a Hitachi U-3410 spectrophotometer. It was
found that the optical band gap in these films is equal to
~2 eV, which is characteristic of films containing amor-
phous hydrogenated carbon formed from the nano-
structures with the sp3- and sp2-hybridizations of car-
bon electron shells [3].

The amorphous hydrogenated carbon films were
deposited onto glass plates 1.4 × 120 × 120 mm in size,
which were cut from the commercial sheet soda–lime–
silica glass prepared by vertical drawing. The high
strength of glass samples of the given size was achieved
by chemical polishing (etching to a depth of 0.05 mm)
in an aqueous solution of hydrofluoric acid under the
conditions which excluded the damage of their operat-
ing surfaces [8]. Selected samples after the etching
were further treated in water at a temperature of 96°C
for 1 h. After the deposition of the coating, each plate
was cut into four parts, and the obtained samples 1.3 ×
60 × 60 mm in size were tested for strength.

The strength was determined by the central symmet-
ric bending method. The diameter of a ring support was
equal to 40 mm and the diameter of a loading ring was
8.5 mm. The formulas for calculating the stresses for a
rigid plate [9] could not be used in this case, because
the deflection of samples with a strength higher than
0.5 GPa exceeded one-half the sample thickness.
Therefore, the calculations of the strength were
performed using the calibration curve obtained with
the reference tables for flexible plates [17]. The accu-
racy in determination of the strength was ~5%. At
least 25–40 samples were tested in each case.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 3      200
The resistance of strengthened glasses to crack for-
mation (cracking resistance) upon contact with solids
was studied by the microindentation technique—the
indentation of a standard Vickers diamond pyramid
with an apex angle of 136° into the glass. Twenty
indentations for each load were made with a PMT-3
microhardness gauge. The number of radial cracks
emanating from corners of an indentation was mea-
sured after the unloading of an indenter. The case when
four cracks emanated from four corners in each inden-
tation was taken as 100%. Indentations were produced
with loads from 0.5 to 10.2 N. The cracks can be
formed immediately after the unloading of the indenter
or after a while. Therefore, in order to decrease the scat-
ter in the data, the measurements were performed
within 30 min after the unloading of the indenter.

The curves of the probability of forming radial
cracks (the number of cracks in percentage) as a func-
tion of the indenter load characterize the cracking resis-
tance of a glass prior to and after the deposition of the
coating.

3. RESULTS AND DISCUSSION

The results of measuring the strength prior to and
after the deposition of the coating are given in the table.
The mean strength of the glass treated by etching in
hydrofluoric acid is equal to 2.4 GPa with a variation
coefficient of 10%, which is close to the data on the
strength measured earlier by central symmetric bend-
ing of a rigid plate [9].

Experimental data on the strength of a glass treated by etch-
ing in hydrofluoric acid prior to and after deposition of the a-
C : H coating

Conditions of glass
surface treatment

Mean
strength
σ, GPa

Number
of samples

Variation
coefficient

γ, %

Etching in hydrofluoric acid 2.4 42 10

The same with subsequent 
deposition of the a-C : H 
coating under standard 
conditions1

2.4 29 15

1.12 11 50

The same but at a discharge 
voltage of 430 V

0.7 18 60

Etching in hydrofluoric acid 
with subsequent treatment 
in water at 96°C

2.7 24 14

The same with subsequent 
deposition of a-C : H coating 
under standard conditions1

2.7 26 10

1.42 18 50

1 Standard conditions of coating deposition: working gas pressure,
5 × 10–3 torr; voltage, 370–400 V; ionic current, 0.5 A; negative
bias at the substrate, –24 V; time, 30 min; and coating thickness,
50 nm.

2 Possible instability in the form of ionic current surges upon bom-
bardment of a target.
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The deposition of coatings can result both in an
increase in the strength of a glass due to a decrease in
the attack of environment and in a decrease in the
strength when, for one reason or other, the deposition of
the coating brings about the formation of new defects
on the surface.

Strength σ, GPa
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3.0

2.5

2.0
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Fig. 1. Strength of the sheet glass subjected to (a) etching
in hydrofluoric acid and (b) subsequent deposition of the
a-C : H coating 50 nm thick and the sheet glass subjected to
(c) treatment with water at 96°C for 1h after the etching in
hydrofluoric acid and (d) subsequent deposition of the
a-C : H coating 50 nm thick. Horizontal lines correspond to
the mean strengths.
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Fig. 2. Dependences of the relative number of cracks (n/N)
formed upon indentation of a Vickers diamond pyramid into
a glass on the indenter load for the glasses subjected to dif-
ferent surface treatments: (1) etching in hydrofluoric acid
and (2) subsequent deposition of the a-C : H coating 50 nm
thick and (3) treatment with water at 96°C for 1h after the
etching in hydrofluoric acid and (4) subsequent deposition
of the a-C : H coating 50 nm thick.
P

The tabulated data on the glass strength measured
after the deposition of the a-C : H coating can be sepa-
rated into two groups (see table). In the first group, the
mean strength is equal to 2.4 GPa (the variation coeffi-
cient is 15%), which is virtually identical to the strength
of the glass without coating. In the other group of exper-
iments, which were performed under the same condi-
tions of coating deposition, the strength considerably
decreases (down to 1 GPa) and the variation coefficient
increases to 50%; i.e., in this group of experiments, high
values of the strength (greater than 2 GPa) are observed
together with very small strengths of ~0.5 GPa.

The amorphous hydrogenated carbon film is formed
upon deposition of carbon onto the glass surface under
the conditions of an argon–hydrogen plasma. As was
shown in our earlier work [18], the bombardment of the
glass surface by argon ions at voltages higher than
400 V and a gas pressure of 10–1 torr brings about a
decrease in the glass strength. At a lower pressure of
10–2 torr, the strength virtually does not decrease. Fur-
thermore, it was revealed that the presence of hydrogen
in the plasma does not lead to a considerable decrease
in the strength [18].

Since the a-C : H coating was deposited under a pres-
sure of 10–3–10–2 torr and at a voltage of 360–400 V, the
presence of argon and hydrogen ions should produce an
insignificant negative effect on the strength.

As a rule, a decrease in the strength was observed in
the case when the gas discharge became unstable,
which manifested itself in short-term ionic current
surges. The number of experiments in which the sput-
tering of coating exhibited instability was as much as
~30% of all the experiments.

An increase in the discharge voltage above 400 V
and, correspondingly, in the rate of target sputtering
also leads to a decrease in the strength of a glass after
the deposition of the coating.

The data on the strength of glass samples subjected
to etching with subsequent treatment in water at a tem-
perature of 96°C are also listed in the table. This treat-
ment results in an increase in the strength to 2.7 GPa,
i.e., by 12%. The same strength was found after the
deposition of the a-C : H coating. It should be noted
that, in this case, too, the instability of target sputtering
and a decrease in the strength were observed in a num-
ber of experiments (~30%).

Thus, the results obtained indicate that the amor-
phous hydrogenated carbon coating does not lead by
itself to a decrease in the glass strength (Fig. 1). How-
ever, the technique used in the present work for the dep-
osition of coatings by sputtering a solid target is likely
characterized by a certain instability which is associ-
ated with the structure of the target material and jumps
in the intensity of the beam of particles bombarding the
target. It is quite possible that, under certain conditions,
not only individual ions or atoms but their aggregates
can be knocked out of the target. The deposition of
these aggregates onto the glass surface (substrate) can
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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bring about a local heating of the surface and, as a con-
sequence, the formation of microdefects.

The next part of this work is concerned with the
investigation into the protective properties of the coat-
ing. The purpose of this part of the present work is to
answer the question of how much the thin amorphous
hydrogenated carbon film (~50 nm thick) can increase
the cracking resistance of the glass, i.e., the resistance
of the glass to formation of cracks upon contact with
solids.

Figure 2 shows the dependences of the number of
cracks formed upon indentation of a diamond pyramid
into the glass on the indenter load. The cracking resis-
tance of materials is usually characterized by the load
Pc which corresponds to the formation of 50% of all the
cracks.

As can be seen from Fig. 2, this load for the glass
treated by etching in a hydrofluoric acid is equal to
~0.5 N (curve 1). After the deposition of the a-C : H coat-
ing, the cracking resistance curve is shifted toward the
right (curve 2) and the value of Pc increases to 1.7 N.

The cracking resistance increases still further when
the etched glass is treated in water at 96°C for 1 h prior
to the deposition of the coating. In this case, the value
of Pc increases to 7.5 N, i.e., by a factor of 15 compared
to Pc for the glass without coating.

Therefore, the treatment of glass in water at an ele-
vated temperature, which, as is known, leads to the
leaching of the surface layer of the glass [19], strongly
affects the protective properties of the film. Upon
leaching of the glass in water, alkali metal ions leave
the surface glass layer, whereas hydrogen ions pene-
trate into the glass; i.e., the ion-exchange process
occurs. For example, upon treatment in boiling water
for 1 h, the concentration of hydrogen ions in the sur-
face layer increases two or three times, and the concen-
tration of sodium ions likewise decreases by a factor of
two or three [20]. As a result of this process, the struc-
ture of the surface glass layer is modified: a sufficiently
strong Coulomb cation–oxygen interaction gives way
to a considerably weaker interaction between the ≡Si–
OH silanol groups due to hydrogen bonding. This leads
to an increase in the molecular mobility of the structure
of the surface layer and enhances its relaxation ability
[11, 12].

Indeed, as can be seen from Fig. 1, the curve char-
acterizing the cracking resistance of the glass without
coating is shifted toward the right after the treatment in
water; i.e., the resistance to the crack formation
increases by almost a factor of 2.5 (Pc = 1.2 N). How-
ever, as was shown above, the largest increase in the
cracking resistance is observed in the case when a thin
layer of the a-C : H coating (~50 nm) is deposited onto
the leached glass.

It is known that radial cracks are formed under
residual tensile stresses which arise on the glass surface
after the unloading of the indenter. Kurkjian et al. [21]
proved that the emergence of radial cracks substantially
PHYSICS OF THE SOLID STATE      Vol. 43      No. 3      200
depends on the attack of the environment: the crack for-
mation increases in a corrosive medium and decreases
or ceases in a neutral medium.

In this respect, we believe that the protective prop-
erties of a very thin amorphous hydrogenated carbon
layer are associated with a decrease in the attack of the
environment, namely, water vapors, on the glass sur-
face during the penetration of the indenter and after its
unloading. The higher the adhesion of the coating to the
glass surface, the stronger its protective properties can
be. In the case when the adhesion is insufficient, the
film peels at the indenter boundaries or in adjacent
regions and water molecules penetrate to stressed bonds,
which results in the formation of microcracks.

It seems likely that the treatment of glass in water
prior to the deposition of the coating brings about an
increase in the adhesion of the hydrogenated carbon
film to the glass due to the removal of sodium ions from
the glass surface. Electric fields of alkali metal cations
can hamper good adhesion of carbon atoms deposited
onto the glass surface. By contrast, an increase in the
hydrogen content in the surface layer of the glass can
encourage the formation of hydrogenated carbon com-
plexes.

4. CONCLUSION

Summarizing the results of the present work, we can
draw the following inferences. The deposition of amor-
phous hydrogenated carbon coatings onto the glass in
the high-strength state does not reduce its strength.
However, the technique used in this work for the sput-
tering of a graphite target does not necessarily ensure
the stability of the coating deposition process, which, in
some cases, leads to a decrease in the glass strength.

The protective properties of the amorphous hydro-
genated carbon coating depend on the adhesion of the
film to the glass surface. The preliminary leaching of
the glass surface upon treatment of the glass in water at
a temperature close to the boiling point considerably
improves the protective properties of the a-C : H film,
which brings about an increase in the resistance of glass
to the crack formation upon mechanical contacts.
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Abstract—A change in the electrical conductivity, σ, is observed in the manganese perovskite La1 – xCaxMnO3,
with x = 0 and 0.3 under saturation of the magnetic resonance transitions of Mn ions. This effect has a maximum
in the temperature range of the magnetic phase transition of the compounds. Two contributions to the change
in σ are found. The first, dominating in LaMnO3, is an increase in σ caused by heating of the sample under
magnetic resonance. The second is a σ decrease due to reorientation of the Mn spins, observed in
La0.7Ca0.3MnO3. © 2001 MAIK “Nauka/Interperiodica”.
1Recently, much interest has been directed to the
properties of the mixed valence compound
La1 − xCax O3 (LCMO) due to the appear-

ance of “colossal” magnetoresistance at the paramag-
netic–ferromagnetic (PM–FM) transition. The ferro-
magnetic coupling is strongest at x ≈ 0.3–0.4, which
gives the maximum Curie temperature TC ≈ 250 K [1].
The correlation between the conductivity and magnetic
ordering of Mn ions has been attributed to the double-
exchange (DE) mechanism [2–4] with a connection to
the Jahn–Teller interaction to take into account the
electron–lattice interaction [5] and the formation of lat-
tice polarons [6, 7]. Recently, it was shown [8, 9] that
the sharp decrease in the resistance of La1 – xCaxMnO3

(0.15 < x < 0.4) near TC can be explained by the col-
lapse of the carrier density due to the tendency of
polarons to form immobile bound pairs in the PM phase
and the dissociation of the pairs in the FM phase.

As follows from all the models presented, the resis-
tivity ρ(T) of the manganese perovskites depends
strongly on the average spin projection 〈Sz〉  of the Mn
ions. EPR investigations of LCMO in the PM phase
[10–13] have shown that all Mn3+ and Mn4+ ions con-
tribute to a broad unresolved EPR line, characterized
near room temperature by a g-factor of about 2 and a
linewidth ∆Bpp = 10–20 mT. The shape and width of
this line depend on the Ca doping x, the temperature,
and the sample preparation. Accurate measurements of
the EPR line intensity have shown that the magnetic
susceptibility is proportional to 〈Sz〉  and coincides with
the susceptibility of the Mn system determined by dc
magnetometry [12]. As the temperature is lowered

1 This article was submitted by the authors in English.

Mn1 δ–
3+ Mnδ

4+
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towards the PM–FM transition, the amplitude and the
width of the EPR line increase gradually. Upon passing
TC, the EPR line remarkably broadens attaining a width
of ∆Bpp = 100–200 mT. An additional broad line with
g > 2 attributed to the FM phase [13] is usually
observed below the PM–FM transition.

In the PM phase (T > TC), where the EPR line of the
Mn ions is easily detectable, the value of 〈Sz〉  can be
changed by a resonant microwave field strong enough
to saturate the EPR transitions. A consequent change
can be observed in ρ(T) by using electrical contacts on
a sample. This technique of the electrical detection of
magnetic resonance (EDMR) gives direct information
about the relation between the transport properties and
the average spin projection of Mn ions and allows one
to detect the contribution of the magnetic field to the
conductivity of LCMO in relatively weak magnetic
fields B < 1 T. So far, the EDMR method has been used
only for investigating paramagnetic centers in semicon-
ductors. In this paper, we report the first observation of
a change in ρ(T) induced by a microwave resonance
field in manganese oxide perovskites.

Ceramic samples of La1 – xCaxMnO3 with x = 0 and
0.3 were synthesized by mixing stoichiometric
amounts of high-purity oxides La2O3, CuCO3, and
MnO2 and heating them at 1320°C for 35 h with inter-
mediate grindings. Then the powder was pressed into a
pellet, sintered at 1375°C in air for 22 h, and finally
annealed at 1520°C for 13 h. For the EDMR investiga-
tions, samples of the size 0.5 × 0.5 × 0.5 mm were cut
from the pellet and provided with electrical contacts sol-
dered with In on two opposite ends. The magnetic prop-
erties of the samples were investigated by an rf-SQUID
magnetometer.
001 MAIK “Nauka/Interperiodica”
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The EDMR experiments were performed with an
EPR spectrometer at the microwave frequency of
9.024 GHz and powers up to P ≅  400 mW, employing
100-kHz field modulation with an amplitude of Bm ≈
1 mT. The spectrometer allows simultaneous observa-
tion of the usual EPR spectra and of the changes in σ
under scanning the magnetic field B. To establish a sta-
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Fig. 1. Temperature dependences of (a) the magnetic
moment M and (b) the resistivity ρ for (1) La0.7Ca0.3MnO3
and (2) LaMnO3.

Fig. 2. (a, d) EPR and (b, c, e, f) EDMR signals observed in
La0.7Ca0.3MnO3 at (a, b, c) T = 275 and (d, e, f) 250 K for
the currents I obtained by application of a positive and a
negative voltage V across the sample. All measurements are
made for P = 400 mW, sufficient to saturate the Mn EPR
transitions.
P

ble measurement current of I = 0.1–20 mA, in the
geometry of I || B, a dc voltage V was applied to the
contacts through a load resistor RL > 10RS, where RS is
the resistance of the sample. The amplitude of the oscil-
lating voltage across the ends of the sample at the
100 kHz field modulation frequency was detected by a
lock-in amplifier, allowing us to observe only the field-
dependent part of RS. The temperature of the sample
was varied over a range of 70–300 K in a helium gas-
flow cryostat.

Figure 1a shows the temperature dependence of the
magnetic moment M(T) for the La0.7Ca0.3MnO3 and
LaMnO3 samples measured in the field B = 0.2 mT after
zero field cooling. With these data, the PM–FM transi-
tion at TC ≈ 250 K can be clearly revealed in LCMO
with x = 0.3. The magnetic anomaly observed in
LaMnO3 below T ≅  170 K and the decrease in M(T) for
T < 120 K can be attributed to antiferromagnetic order-
ing. The temperature dependences of ρ measured
directly in the cavity of the EPR spectrometer at B ≅  0
are plotted in Fig. 1b. These measurements were made
by a two-point-contact method, such that the resistivity
of the contacts can give the contribution to the mea-
sured values. The resistivity of La0.7Ca0.3MnO3 has a
drop below T ≅  250 K corresponding to the PM–FM
transition. The resistivity of LaMnO3 shows a semicon-
ductor-like behavior for T < 300 K.

The change in ρ under magnetic resonance was
found in La0.7Ca0.3MnO3 for microwave powers 100 <
P < 400 mW. The EDMR signals observed at T = 275
and 250 K for opposite directions of the current I are
shown in Fig. 2 (curves b, c, e, and f ). The shape of
these signals is similar to that of the EPR line of Mn
ions with g ≈ 2 (curves a and d). The change in the sign
of the EDMR signal S taking place when I is reversed
can be explained simply by a 180° phase shift of the
alternating (100 kHz) voltage appearing across the
sample. This confirms that the EDMR signal really
originates from a change in ρ under saturation of the
EPR transitions. The sign of this change was estab-
lished independently with the same installation by
comparing the sign of the EDMR signal with the sign
of the resonance change in the photoconductivity
caused by spin-dependent recombination in irradiated
silicon [14]. This experiment revealed that the resistiv-
ity of La0.7Ca0.3MnO3 increases under magnetic reso-
nance.

The amplitudes of the EPR and EDMR signals
increase when the temperature decreases from 300 to
250 K. Below TC, the EPR and EDMR lines are consid-
erably broadened and disappear below T ≅  220–230 K.
The amplitude of the EDMR line S increases roughly lin-
early with the square root of the microwave power up to
P ≅  400 mW, whereas the EPR line exhibits the usual sat-
uration behavior [15] already above P ≅  20 mW. Under
saturation of the EPR transitions, the ratio between the
numbers of Mn ions with spin-up and spin-down orien-
tations decreases. This leads to a decrease in 〈Sz〉 and,
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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consequently, to a decrease in σ, in accordance with the
proposed models [2–9]. The relative change in the resis-
tance of the sample under magnetic resonance ∆RS/RS is
~10–3, which is surprisingly low when account is taken
of the much larger change of ∆〈Sz〉/〈Sz〉 ~ 0.1–0.3 esti-
mated from the saturation of the EPR line.

As can be seen from Fig. 2 (traces e, f), an additional
change G in the background signal, depending on the
magnetic field, is observed at T = 250 K. This is the
contribution of the magnetoresistance to the total resis-
tivity of the sample. The electrically detected signals S
and G show different dependences on the value of I
(Fig. 3). While S exhibits a saturation at I ≅  5 mA, G has
no saturation up to I = 50 mA. This suggests that differ-
ent physical mechanisms are responsible for the EDMR
line S and for the magnetoresistance signal G. The sat-
uration of S with increasing I, as well as the low value
of ∆RS/RS, can be attributed to scattering of carriers by
localized magnetic moments of Mn ions. This interac-
tion can strongly reduce the Mn spin relaxation time,
and, therefore, higher microwave power is needed to
saturate the EPR transitions. It is equivalent to the
reduction of ∆〈Sz〉/ 〈Sz〉  at a fixed microwave power. This
can explain the saturation of S when I is increased. The
G signal does not depend on the microwave resonance
condition and is, therefore, independent of the Mn
relaxation time.

The S and D signals observed at the 100 kHz modu-
lation frequency of B were not found in LaMnO3.
Instead, a strong change in σ was detected in the range
of 100 < T < 200 K when measuring the dc component
of I under magnetic resonance. The recorded traces of
the EPR signal and the dc resistivity of LaMnO3 are
shown in Fig. 4. The resistivity decreases under EPR,
whereas the EDMR signal in La0.7Ca0.3MnO3 corre-
sponds to an increase in ρ. Taking into account the high

Fig. 3. Dependences of the amplitudes of (1) the S and (2)
G signals (Fig. 2) on the value of the dc current I through the
La0.7Ca0.3MnO3 sample at T = 250 K.
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sensitivity of ρ to temperature (Fig. 1b), the EDMR sig-
nals in LaMnO3 can be explained by heating of the
sample by the microwave field under the magnetic res-
onance of Mn ions.

In conclusion, we are the first to apply the EDMR
method for investigating the manganese oxide perovs-
kites La0.7Ca0.3MnO3 and LaMnO3. Two contributions
leading to EDMR signals of opposite signs are found.
The decrease in ρ observed in LaMnO3 is related to
heating of the sample by the microwave field under
magnetic resonance. Instead, in La0.7Ca0.3MnO3, the
increase in ρ is caused by the magnetic resonance reori-
entation of the Mn spins, in agreement with the DE
mechanism [2–4]. Saturation of the EDMR signal with
increasing the dc current through the sample and an
additional nonresonant change in ρ, related to magne-
toresistance, are observed in La0.7Ca0.3MnO3. All these
signals have a maximum amplitude near the magnetic
phase transitions of the samples.
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Abstract—Off-stoichiometric manganese monosulfides α-MnxS (1 ≤ x ≤ 1.25) are synthesized, and their crys-
tal structure and magnetic properties are studied in the 4.2- to 300-K range. The compounds have a NaCl fcc
lattice. Increasing the manganese ion concentration x in the antiferromagnetic semiconductors α-MnxS is found
to result in concentration- (xc ~ 1.05) and temperature-driven (Tc ~ 50 K) magnetic transitions from the antifer-
romagnetic to ferromagnetic state, with the cubic structure remaining unchanged. © 2001 MAIK “Nauka/Inter-
periodica”.
It is customarily assumed [1, 2] that manganese
monosulfide, similar to MnO and NiO, is a classical
second-type antiferromagnet, with the magnetic unit
cell being a doubled crystallographic cell. The mag-
netic moments associated with the Mn2+ ions lie in the
(111)-type planes and exhibit ferromagnetic in-plane
and antiferromagnetic intraplane ordering. This mag-
netic structure is typical of rare-earth metal oxides with
a LaMnO3-type perovskite structure [3]. Interest in
manganese monosulfide increased after the discovery
in its solid solutions FexMn1 – xS of a colossal negative
magnetoresistance [4], whose mechanism, as well as
ferromagnetic nature, remains unclear. It thus appeared
of interest to perform an integrated investigation of the
physical properties of manganese monosulfide.

This paper presents the results of an investigation into
the temperature behavior of the structure (100–300 K)
and magnetic properties (4.2–300 K) of the α-MnxS
sulfides (1.00 ≤ x ≤ 1.25). The investigation was car-
ried out on single-crystal (x = 1.00) and polycrystal-
line (x = 1.00, 1.05, 1.15, and 1.25) samples. The tech-
nology used to prepare the polycrystals was described
in [5]. The α-MnxS single crystal was obtained by sul-
fidization of molten metallic manganese. The x-ray
characterization of the samples was performed on a
DRON-2.0 diffractometer with CuKα radiation within a
grazing angle region of 0° to 70°. The magnetization of
the samples was measured with a SQUID magnetome-
ter in the temperature range from 4.2 to 300 K in a mag-
netic field of 100 Oe.

The x-ray diffraction measurements showed that at
300 K the samples have the fcc NaCl lattice typical of
manganese monosulfide. The lattice parameter for the
single crystal with x = 1.00 is a = 5.216 Å, and for the
polycrystal, a = 5.222 Å, which is close to the data
1063-7834/01/4303- $21.00 © 20493
quoted in [2] (a = 5.22 Å). At T ~ 166 K, the lattice
parameter exhibits an anomaly similar to the one
observed at 150 K in [2], which indicates a rhombohe-
dral distortion of the cubic lattice. The lattice parameter
decreases with decreasing temperature (Fig. 1a); this
decrease becomes sharper for T < 166 K, but within the
100 < T < 122 K region, it is practically temperature-
independent. The results of the structural study of the
single crystal are corroborated by optical measure-
ments made on the same crystal [6]. Optical measure-
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ments and a calculation of the temperature coefficient
of expansion yield Ts = 162 ± 2 K for the temperature
of the structural transition in single-crystal manganese
monosulfide. As the manganese concentration in MnxS
(1.00 ≤ x ≤ 1.25) increases at 300 K, the cubic cell
parameter of the polycrystalline sample varies from
5.222 Å (x = 1.00) to 5.218 Å (x = 1.25).

Figure 1b shows the temperature dependence of
the magnetization of single-crystal α-MnS measured
in a magnetic field perpendicular to the (100) plane.
This dependence is similar to the one reported in [2]
and passes through a maximum at TN = 157 K, which
is evidence of a transition from the paramagnetic to
antiferromagnetic state. Similarly to the α-MnS single
crystal studied in [2], in our crystal, the antiferromag-
netic transition is observed to occur in the region of
existence of the distorted NaCl structure. The magnetic
P

susceptibility of α-MnS at TN is 76.2 × 10–6 cm3/g
(66.28 × 10–4 cm3/mol), which is in accord with avail-
able data (63.5 × 10–4 cm3/mol [2]). In the 200–400-K
region, the magnetic susceptibility obeys the Curie–
Weiss law with a paramagnetic Curie temperature of
~–600 K.

Figure 2a presents the temperature dependence of
magnetization for the α-MnxS sulfide with x = 1.05
measured in a field of 100 Oe. The magnetization of
this sample measured within the 45–270-K region
behaves similarly to α-MnS manganese monosulfide.
At TN = 155 K, one observes a maximum indicating the
transition from the paramagnetic to antiferromagnetic
state. At the Neél temperature, the magnetic suscepti-
bility for x = 1.05 is close to that found for x = 1.00. At
Tc ~ 40 K, a second magnetic transition similar to that
observed in the Cr0.5Mn0.5S solid solution [7] was dis-
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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covered. The temperature dependence of magnetization
measured on a ZFC sample exhibits a sharp peak at Tc
(the Hopkinson effect) (Fig. 2a). The FC magnetization
measured at H = 100 Oe is characteristic of ferromag-
nets and is evidence of a transition from the antiferro-
magnetic to ferromagnetic state. The ZFC magnetiza-
tion measured on this sample (x = 1.05) at 4.2 K is
95.3 × 10–4 emu/g.

Figure 2b displays the temperature dependence of
ZFC magnetization for the x = 1.15 sulfide. The magne-
tization of this sample within the 4.2–50-K interval
behaves as it does in the sample with x = 1.05 (Fig. 2a).
The transition point to the low-temperature ferromag-
netic phase in this sulfide is Tc = 45 K. For T > Tc, the
magnetization of the sulfide with x = 1.15 differs in
behavior from that observed in the previously men-
tioned samples. As the temperature increases, the mag-
netization drops to 370 K, with an anomaly seen at T =
133 K. In the 133- to 370-K interval, the sample with
x = 1.15 does not obey the Curie–Weiss law character-
istic of the manganese monosulfide (x = 1.00) in the
paramagnetic region. The magnetization measured at
4.2 K in a field of 100 Oe is 266.7 × 10–4 emu/g, which
is an order of magnitude higher than that of samples
with lower manganese contents. The temperature
dependence of the magnetization of the sulfide with x =
1.25 is shown in Fig. 2c; it is similar to that observed in
the x = 1.05 sample.

On comparing our results with the available data on
the conductivity of off-stoichiometric manganese sul-
fides [5], we note that the increase in magnetization
observed to occur in the MnxS system at 300 K is
accompanied by metallization of the samples, with the
electrical resistivity ρ at 300 K decreasing by two
orders of magnitude as x varies from 1.00 to 1.05. The
temperature dependence of the electrical resistivity of
off-stoichiometric manganese sulfides at 77–300 K
behaves similarly to ρ(T) for the monosulfide with x =
1.00 and exhibits a sharp break at the points of struc-
tural and antiferromagnetic transitions.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
Thus, we have found that manganese monosulfide
undergoes concentration- and temperature-driven mag-
netic transitions. At room temperature, lattice compres-
sion occurring with increasing manganese concentra-
tion is accompanied by an increase in the magnetiza-
tion by an order of magnitude and a decrease in the
electrical resistivity by two orders of magnitude. A sim-
ilar situation is observed to occur in the cation-substi-
tuted sulfides MexMn1 – xS (Me = Cr, Fe) [7]. The simi-
larity between the concentration dependences of the
lattice parameter, magnetization, and electrical resistiv-
ity suggests that ferromagnetism in the MnxS and
MexMn1 – xS sulfides may set in by similar mechanisms.
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Abstract—Longitudinal and transverse magnetostrictions of polycrystalline samples of intermetallic com-
pounds RMn2Ge2 (R = Sm or Gd) are measured in pulsed magnetic fields up to 250 kOe. It is found that linear
magnetostrictive strains of about 10–3 arise in a temperature range in which the magnetic field causes a change
in the magnetic state of a manganese magnetic subsystem. The results obtained are described within the model
of a two-sublattice ferrimagnet with a negative exchange interaction in the manganese subsystem in terms of a
strong dependence of this interaction on interatomic distances. © 2001 MAIK “Nauka/Interperiodica”.
Magnetism of intermetallic compounds RMn2Ge2 (R
is a rare-earth element or yttrium) is determined by two
magnetic subsystems which are formed by the magnetic
moments of manganese and a rare-earth element, respec-
tively. These compounds have a layered tetragonal crys-
tal structure of the ThGe2Si2 type (space group I4/mmm).
The following hierarchy of exchange interactions is real-
ized in these compounds: the Mn–Mn positive exchange
in a layer is the strongest exchange interaction; the
exchange interactions between the neighboring layers of
manganese, as well as the interactions between the rare-
earth element and manganese, are one order of magni-
tude weaker; and the R–R exchange interaction is two
orders of magnitude weaker (see review [1] and refer-
ences therein). An important feature is that the parameter
of the Mn–Mn interlayer exchange interaction strongly
depends on interatomic distances (primarily, within the
layer) and changes sign from positive to negative as the
unit cell parameter a increases to a critical value acr ≈
4.045 Å [1, 2]:

λ = ρ(a – acr). (1)

Since the unit cell parameter a at room temperature
exceeds the critical value acr for intermetallic com-
pounds with light rare-earth elements (La, Nd, Pr, or
Sm), the magnetic ordering of the manganese sub-
system in these compounds has a ferromagnetic charac-
ter. For SmMn2Ge2, the sign of the Mn–Mn interlayer
exchange interaction changes with a decrease in the
temperature to 150 K. The reason for this is that the
thermal expansion at this temperature results in a
decrease in the unit cell parameter a to the acr value and
the manganese subsystem transforms to the antiferro-
magnetic state [1, 3–5]. In intermetallic compounds
with heavy rare-earth elements (Gd, Tb, Dy, Ho, Er, or
Tm), the magnetic ordering of the manganese subsystem
has an antiferromagnetic character, because a < acr. As
the temperature decreases, the transition of a manga-
nese subsystem to the ferromagnetic state is observed
1063-7834/01/4303- $21.00 © 20496
in intermetallic compounds with a negative Mn–Mn
interlayer exchange interaction (Sm, Gd, Tb, or Dy).
This transition is induced by magnetic ordering of the
rare-earth subsystem [1]. For Sm- and Gd-containing
intermetallic compounds, this transition occurs at a tem-
perature of about 100 K [4–6]. Note that the magnetic
transitions associated with the change in the magnetic
state of a manganese subsystem are accompanied by
considerable magnetoelastic strains. The thermal expan-
sion measurements revealed that the relative variation of
the unit cell parameter a is of the order of 10–3 [4, 5, 7].
This strain can be explained by the above dependence
of the Mn–Mn interlayer exchange interaction on inter-
atomic distances. According to [8], the exchange mag-
netostriction depends on the θ angle between the direc-
tions of magnetic moments M of manganese in neigh-
boring planes:

∆a/a = –2ρM2acosθ/N, (2)

where M is the magnetic moment of manganese and N
is the corresponding elastic modulus.

If the Mn–Mn interplanar exchange interaction is
negative, the external magnetic field can also vary the
state of the manganese subsystem. Field-induced mag-
netic phase transitions were observed for SmMn2Ge2
[2, 4] and GdMn2Ge2 [9, 10].

The purpose of this work was to investigate the
magnetoelastic strains arising upon field-induced mag-
netic phase transitions in Sm- and Gd-containing inter-
metallic compounds.

Polycrystalline samples of the SmMn2Ge2 and
GdMn2Ge2 intermetallic compounds were obtained by
melting initial components in an induction furnace
under quasi-levitation conditions in an argon atmo-
sphere. The samples were homogenized by annealing at
750°C in a dynamic vacuum for a week. The phase
homogeneity of the samples was checked by an x-ray
diffraction technique.
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Field dependences of the longitudinal and transverse magnetostrictions of SmMn2Ge2 at different temperatures.
The transverse and longitudinal magnetostrictions
of the samples were measured in the temperature range
10–300 K in pulsed magnetic fields up to 250 kOe by
the method of quartz piezoelectric sensors being glued
onto the sample [11]. In order to determine the temper-
atures of spontaneous magnetic phase transitions, the
magnetic susceptibility was measured in alternating
magnetic fields of an order of several oersteds.

SmMn2Ge2. In the SmMn2Ge2 intermetallic com-
pound, the manganese subsystem is ferromagnetically
ordered at room temperature, whereas the samarium
subsystem is in the paramagnetic state. Upon cooling,
the first-order phase transition of the manganese sub-
system to the antiferromagnetic state is caused by the
change in the sign of the Mn–Mn interlayer exchange
interaction due to thermal expansion, whereas the
samarium subsystem remains paramagnetic. As fol-
SICS OF THE SOLID STATE      Vol. 43      No. 3      200
lows from the measurements of magnetic susceptibility
and thermal expansion [7], the temperature of this tran-
sition in the sample under study is equal to T1 = 150 K.
This value agrees well with the available data [4, 5].
Further cooling is accompanied by a reverse first-order
transition of the manganese subsystem to the ferromag-
netic state. This transition is determined by the ferro-
magnetic ordering of the samarium subsystem. The
temperature of the reverse transition which we deter-
mined was T2 = 100 K. This value is also in agreement
with the data obtained in [4, 5, 7]. Since the rare-earth–
manganese exchange interaction in intermetallic com-
pounds containing light rare-earth elements is positive,
the magnetic moments of the samarium and manganese
subsystems are parallel to each other.
1
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The field dependences of the longitudinal and
transverse magnetostrictions of SmMn2Ge2 at differ-
ent temperatures are shown in Fig. 1. It is seen that in
the temperature range T2 < T < T1, in which the man-
ganese system is ordered antiferromagnetically, the
magnetostriction is substantially larger than that at tem-
peratures outside this range. This is explained by the fact
that the field in this temperature range, as was demon-
strated in [3, 5], induces the transition of the manganese
subsystem to the ferromagnetic state, and the magneto-
striction is caused by the magnetoelastic strains arising
upon this transition. As is seen from Fig. 1, the magneto-
striction associated with the antiferromagnet–ferromag-
net transition in the manganese subsystem is positive and
almost isotropic (λ|| ≈ λ⊥ ). The temperature dependences
of the longitudinal and transverse saturation magneto-
strictions are shown in Fig. 2. As follows from [4, 5, 7],
the spontaneous transition of the manganese subsystem
from the ferromagnetic to the antiferromagnetic state at
temperature T1 and the reverse transition to the ferro-
magnetic state at temperature T2 are accompanied by a
decrease and increase, respectively, in unit cell parame-
ter a. It is reasonable to suppose that the magnetostrictive
strains, which arise upon field-induced transition of the
manganese subsystem from the antiferromagnetic to the
ferromagnetic state, are also caused by the magnetoelas-
tic strains affecting the a parameter. Since the anisotropy
at these temperatures is relatively small, the transition
from the antiferromagnetic to ferromagnetic state in the
field range investigated occurs at any orientation of the
magnetic field with respect to the crystal axes [3]. In this
case, the longitudinal magnetostriction of a polycrystal-
line sample should be equal to the transverse magneto-
striction:

λ|| = λ⊥  ≈ 2∆a/3a, (3)

80
0

T, K

λ||, λ⊥  × 103

T1

T2

100 120 140 160

0.5

1.0

1
2

Fig. 2. Temperature dependences of (1) the longitudinal and
(2) transverse saturation magnetostrictions of SmMn2Ge2.
Phase transition temperatures T1 and T2 are marked by
arrows.
P

where ∆a is the change in unit cell parameter a upon
spontaneous transition from the antiferromagnetic to
ferromagnetic state. A comparison of the λ|| and λ⊥
magnetostrictions with the ∆a/a ratio taken from [7]
justifies this relationship. A small difference between
longitudinal and transverse magnetostrictions can be
explained by the fact that the polycrystalline sample is
not absolutely isotropic and has a certain texture. The
influence of the crystal texture on the magnetic proper-
ties of the RMn2Ge2 intermetallic compounds was also
observed in [12].

GdMn2Ge2. The measurements of the thermal
expansion [7] and magnetic susceptibility for the sam-
ples under investigation demonstrated that the transi-
tion of the manganese subsystem from the antiferro-
magnetic to ferromagnetic state with a simultaneous
ferromagnetic ordering of the gadolinium subsystem
occurs upon cooling below T2 = 97 K. Since the gado-
linium–manganese exchange interaction is negative,
the intermetallic compound is a ferrimagnet at T < T2.
For the ferrimagnetic range (below 97 K), as follows
from the data obtained in [9, 10], the magnetic field
normal to the tetragonal axis of the crystal induces the
first-order magnetic phase transition from the ferrimag-
netic to the triangular phase in the magnetic field range
covered. In this case, the magnetic moments of the gad-
olinium and manganese subsystems of the ferrimag-
netic phase are aligned parallel to the tetragonal axis. In
the triangular phase, the magnetic moment of the gad-
olinium subsystem is parallel to the magnetic field,
whereas the magnetic moments of the two neighboring
manganese planes deviate variously from this direction
and form a certain angle θ. Above 97 K, if the manga-
nese subsystem is antiferromagnetic and the gadolin-
ium subsystem is paramagnetic, the magnetic field ori-
ented along the tetragonal axis induces the first-order
phase transition of the manganese subsystem to the fer-
romagnetic state [9].

The field dependences of the longitudinal and trans-
verse magnetostrictions for one of the GdMn2Ge2 sam-
ples investigated are shown in Fig. 3. It is seen that the
magnetostriction has a metamagnetic character both
above and below the T2 temperature; namely, the abso-
lute value of magnetostriction increases after a certain
critical field is reached. In this case, the longitudinal
and transverse magnetostrictions are negative below
the T2 temperature and positive above this temperature.
This character of magnetostriction can be explained
under the assumption that the magnetoelastic strains
observed are caused by the aforementioned field-
induced metamagnetic transitions due to the field-
induced change in the magnetic state of the manganese
subsystem. Different magnetostriction signs above and
below T2 = 97 K can be explained by the fact that, at
low temperatures, the field disturbs the ferromagnetic
ordering in the manganese subsystem. Above this tem-
perature, the manganese subsystem in the magnetic
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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Fig. 3. Field dependences of the longitudinal and transverse magnetostrictions of GdMn2Ge2 at different temperatures.

0

field transforms to the ferromagnetic state.1 Identical
signs and approximately equal magnitudes of the longi-
tudinal and transverse magnetostriction of GdMn2Ge2
indicate that the magnetostriction is essentially a bulk
quantity. The temperature dependences of the longitu-
dinal and transverse saturation magnetostrictions of
GdMn2Ge2 are depicted in Fig. 4. These magnetostric-
tions agree in order of magnitude with the data obtained
from the thermal expansion measurements for
GdMn2Ge2 [7].

However, it should be noted that the field depen-
dences of the magnetostriction measured for different

1 We failed to measure the saturation magnetostriction in the range
T2 = 97 < T < 240 K, because the field of the metamagnetic transi-
tion at these temperatures exceeds the field of 250 kOe, which
was achieved in our experiments.
YSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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Fig. 4. Temperature dependences of (1) the longitudinal and
(2) transverse saturation magnetostrictions of GdMn2Ge2.
Phase transition temperature T2 is marked by the arrow.
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samples are similar in character but significantly differ
in details, specifically in the degree of smearing of the
metamagnetic transition. This is clearly seen from com-
parison of the field dependences for λ|| and λ⊥ , which
are shown in Fig. 4. In these experiments, the λ|| and λ⊥
quantities were measured along the same direction,
whereas the field was oriented parallel and normal to
the direction of the magnetostriction measurements for
the longitudinal and transverse magnetostrictions,
respectively. The saturation magnetostrictions are also
somewhat different. This is apparently caused, as was
already noted, by the existence of the crystal texture in
the samples. A comparison of the magnetostriction
magnitudes for six different GdMn2Ge2 samples
showed that the mean scatter of the absolute magneto-
striction values reaches 30%. For this reason, the values
of magnetostrictions displayed in Figs. 3 and 4 should
be considered only as estimates.

Thus, the measurements demonstrated that a giant
magnetostriction is observed for the SmMn2Ge2 and
GdMn2Ge2 intermetallic compounds due to a change in
the magnetic ordering of the manganese subsystem in
the magnetic field. The large magnetoelastic effects for
the intermetallic compounds investigated confirm the
conclusion that the Mn–Mn exchange interactions
strongly depend on interatomic distances.
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Abstract—An experimental study is reported on the temperature dependences of the magnetic susceptibility,
electrical resistivity, magnetoresistance, thermo- and magnetothermopower, and on the Hall effect of the poly-
crystalline lanthanum manganites La0.67 – xRxSr0.33MnO3 (x = 0 and 0.07, R = Eu, Gd) within the 77- to 430-K
temperature range. Replacement of a small amount of lanthanum by europium or gadolinium was found to
result in a considerable decrease in the resistivity and in a change in the pattern of its temperature dependence.
The temperature dependence of both the ordinary and anomalous Hall coefficients near the Curie temperature
is shown to be determined by the change in the number of carriers in delocalized states. A method is proposed
for separation of the hole and electronic contributions to thermopower in the ferromagnetic region. The con-
duction mechanisms are discussed in terms of the concept of mobility edge motion. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The large (“giant”) magnetoresistance observed near
the Curie temperature TC in La1 – xDxMnO3 lanthanum
manganites (D stands for a divalent metal) accounts for
the interest in these materials. It was assumed for a long
time that the magnetic and transport effects in these man-
ganites are determined by Mn4+ ion content. Recent stud-
ies showed, however, that this is an oversimplification
and that there is a number of other factors which con-
siderably affect the properties of these complex oxides
[1, 2]. For instance, replacement of a part of the lantha-
num by yttrium [3, 4] or aluminum [5] noticeably
reduces the Curie temperature, although these elements
have the same valence. A noticeable change in the Curie
temperature and magnetization was observed when a
small part of the lanthanum in La0.67 – xSr0.33MnO3 and
La0.67Ba0.33MnO3 was replaced by other rare-earth ele-
ments [6, 7], and these changes cannot be assigned to
deformation of the unit cell induced by substituting an
ion of a smaller radius for lanthanum.

This paper reports on an integrated study of the
magnetic and transport properties of polycrystalline 

La0.67 – xSr0.33MnO3 (LaSr subsequently),
La0.60Gd0.07Sr0.33MnO3 (LaGdSr),

and 
La0.60Eu0.07Sr0.33MnO3 (LaEuSr). 

A comparison of the temperature dependences of the
magnetic properties, resistivity, Hall effect, and ther-
mopower of these compounds permits one to draw cer-
tain conclusions on the charge state of the rare-earth ele-
ment, as well as to reveal the changes in the properties
1063-7834/01/4303- $21.00 © 20501
of individual crystallites induced by variation of their
size. Comparative analysis of the experimental data
obtained and of literature information on the resistivity
and thermopower of single crystals of various lantha-
num manganites offers the possibility of separating the
contributions due to electrons and holes to conduction
and thermopower in the ferromagnetic temperature
region. The discussion is based on the semiphenomeno-
logical theory developed in the next section, which per-
mits description of the main properties of the tempera-
ture dependences of the conductivity and thermopower.

1. THEORY

There is no universally accepted interpretation of
the anomalies in the transport effects in lanthanum
manganites. The microscopic models discussed in
reviews [1, 2] contain constants which are difficult to
determine; in addition, calculations are usually pre-
sented for resistivity only, which precludes their appli-
cation to integrated studies. A semiphenomenological
approach with a small set of parameters, which have a
clear physical meaning and allow experimental mea-
surement, currently appears more acceptable. The rela-
tions presented below were obtained by generalizing
the results published in [8, 9].

We use for the calculation of σ the expression pro-
posed by Mott:

(1)σ ∂F
∂E
------– 

  σE E,d

E1

E2

∫=
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where F(E) is the Fermi function and integration is per-
formed between the energies E1 and E2, which are the
lower and upper mobility edges, respectively. The ther-
mopower S can be conveniently calculated by the
Mott–Fritzsche relation [10]:

(2)

where kB is the Boltzmann constant, e is the modulus of
the electronic charge, and the D(E) function takes into
account the contributions of the spin and lattice degrees
of freedom to the heat flux. One usually considers the
situation in which the Fermi energy EF lies close to one
of these energies while being distant enough from the
other, so that either the upper or the lower limit in
Eqs. (1) and (2) may be set to infinity. As will be seen
later, there are grounds to believe that in lanthanum
manganites, both mobility edges are close to the Fermi
level. Relations applicable to this situation seem to be
lacking in the literature, and, therefore, we present their
brief derivation.

The position of the mobility edges is determined by
the degree of disorder in the system. At low tempera-
tures, nonmagnetic disorder prevails. The growth of
magnetic fluctuations near the Curie temperature shifts
the mobility edges toward the band center, so that the
region of delocalized states narrows. We shall assume,
in accordance with [8, 9], that the variation of E1 and E2
induced by the variation of the magnetic field H and
temperature can be described as 

(3)

where m = M/Ms(0), M(H, T) is the magnetization, H is
the magnetic field, Ms(T) is the spontaneous magnetiza-
tion, and ∆ij are parameters extracted from the experi-
ment. We shall be primarily interested in the case of the
metallic state setting in the ferromagnetic region and of
the insulating state in the paramagnetic region.

The crystal resides in the metallic state if the Fermi
level lies between E1 and E2 and |EF – E1|, |EF – E2| @ T. In
this case, σ =  and the conductivity changes
because of the changing carrier mobility. Relation (2)
yields the well-known Mott expression for the ther-
mopower:

(4)

where σ'(EF) = (∂σE/∂E . We here took into
account that in the region of metallic conduction, the
carrier concentration in delocalized states is high and
one should assume that D = 0 [9].

S
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e
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)E EF=
P

Near the Curie temperature, a metal–insulator tran-
sition occurs, and the Fermi level turns out to be in the
region of localized states. Because Hall measurements
suggest that holes are the majority carriers in the mate-
rials of interest to us here, we shall assume the transi-
tion to be due to the crossing of EF and E2, in which
case, in the insulating phase, we have EF > E2 > E1.
Assuming that σE = σm (σm is the minimum metallic
conductivity) for E1 < E < E2, we obtain from Eq. (1)

σ = σm(f(y2) – f(y1)), (5)

where y1, 2 = (EF – E1, 2)/T and f(y) = (ey + 1)–1. To
derive an expression for the thermopower, we estimate
the integral containing the D(E) function by means of
the first theorem of the mean, and, as a result, a term
proportional to /T will appear in the expression for
the thermopower. Assuming, as before, that σE = σm, we
come to

(6)

As is evident from Eqs. (5) and (6), the closeness of the
lower mobility edge brings about a decrease in the con-
ductivity and thermopower. These changes are not sig-
nificant if y1 @ |y2 | and y1 @ 1. In this case, the terms
containing y1 may be disregarded, which yields the fol-
lowing simple expressions in the immediate vicinity of
the metal–insulator transition [9]:

(7)

(8)

Here, ρm = ; the resistivity activation energy is Eρ =

 – m2, where  = EF – ∆20 and  = ∆21; and the

thermopower activation energy is ES = Eρ – . The
thermopower is typically about 100 µV/K. Using Eqs. (7)
and (8), we have succeeded in satisfactorily describing
the resistivity peak and the thermopower near TC in the
La0.8Ba0.2MnO3 single crystal in which no metal–insu-
lator transition takes place, but in the ferromagnetic
region, the Fermi level does not lie far from the mobil-
ity edge [9].

In addition, relation (7) turned out to be valid for the
ρ(T, H) relation in the La0.5Sr1.5MnO4 antiferromagnet

[11], although, in the latter case,  may have a differ-

ent meaning. The quantity  decreases with increas-

ing doping, and  is of the order of 103 K in all cases,
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which apparently reflects a similarity in structure of the
wave functions in all manganites.

Lanthanum manganites with Mn4+ concentrations in
excess of 0.5 are insulators at any temperature. Obvi-
ously enough, at a slightly lower Mn4+ concentration,
the E2 – E1 difference should become small compared
to T, at least in the paramagnetic state. In this case, the
temperature dependences of the resistivity and ther-
mopower will differ qualitatively in behavior from
Eqs. (7) and (8). To verify this, we write the expressions
following from Eqs. (5) and (6) for the case E2 – E1 ! T,
|EF – E1, 2 | ! T:

(9)

(10)

where  = (E1 + E2)/2. We readily see that the linear
growth of resistivity with temperature in the paramag-
netic state, where E1, 2 = const, is not sufficient proof of
a “true” metallic state and is fully consistent with the
temperature dependence of an activation-type ther-
mopower. The temperature dependences of the resistiv-
ity and thermopower of an La0.6Sr0.4MnO3 single crys-
tal [12] suggest that it is this situation that occurs in this
single crystal.

The concept of the σE function undergoing a jump at
the mobility edge is a fairly rough approximation. The
σE function is actually a continuous function, such that
in the vicinity of the mobility edge (for definiteness, the
upper one), one can set [13] σE = C(E2 – E), C > 0 for
E < E2. The temperature dependences of the conductiv-
ity and thermopower for y1 @ 1 turn out to follow the
same pattern as suggested by Eqs. (4), (7), and (8);
however, because  = –C for the region of metallic
conduction with E2 > EF > E1, one obtains from Eq. (4)

(11)

Note that lanthanum manganites with Mn4+ contents
of the order of 25–30% have carriers of different types.
No separation of the corresponding contributions to the
transport coefficients has thus far apparently been car-
ried out, although in some favorable cases this is pos-
sible. We shall present below an example of such
analysis.

2. EXPERIMENTAL RESULTS
AND DISCUSSION

The powders of nominal composition
La0.67Sr0.33MnO3 and La0.60R0.07Sr0.33MnO3 (R = Eu, Gd)
were prepared by coprecipitation from a solution. The
precursors thus prepared were pressed at room temper-
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ature and annealed afterwards in an oxygen flow at
1200°C for 12 h. The techniques used to measure the
magnetic properties, resistivity, thermopower, and the
Hall effect were described in our previous publications
[9, 14, 15].

The magnetization curves follow a behavior typical
of ferromagnets. The values of the Curie temperature
TC determined by the method of thermodynamic coef-
ficients are listed in the table. Doping with Eu or Gd
results in a decrease in TC. For T < TC and in magnetic
fields H ≥ 6 kOe, the magnetization M is described by
the relation M = Ms + χH.

Figure 1 presents plots of the temperature depen-
dence of susceptibility χ(T). LaGdSr exhibits a growth
of χ with decreasing T in the ferromagnetic region; for
LaEuSr, this growth is less pronounced; and for LaSr, it
does not occur at all. The increase in χ with decreasing
temperature can be assigned to the presence of para-
magnetic ions. In LaGdSr, such ions are obviously the

Curie temperature and coefficients a0, a1, and a2 in Eq. (14)
for La0.67 – xRxSr0.33MnO3 and La0.75Sr0.25MnO3

Sample TC, K a0, 
µV/K

a1, 
10–2 µV/K2

a2, 
10–4 µV/K3

LaSr 369 –7.2 6.7 –1.9

LaSrEu 328 –3.9 7.4 –2.5

LaSrGd 349 –4.0 6.7 –2.1

Single crystal 342 –3.0 9.1 –2.6

La0.75Sr0.25MnO3

(from [12])

LaSr
LaEuSr
LaGdSr

12

8

4

0
100 200 300 400

T, K

χ g
, 1

0–4
 e

m
u 

g–
1  O

e–
1

Fig. 1. Temperature dependence of the susceptibility of
the paraprocess in La0.67Sr0.33MnO3 (LaSr),
La0.60Eu0.07Sr0.33MnO3 (LaEuSr), and
La0.60Gd0.07Sr0.33MnO3 (LaGdSr).
1
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Gd3+ ions in the s state (spin S = 7/2). Because the mag-
netic moment of the Eu3+ ion in the ground state is zero,
the presence of paramagnetic ions in LaEuSr implies
that these are Eu2+. This provides support for the con-
jecture [6, 7, 15] that europium resides in LaEuSr in a
mixed valence state.

The Curie temperature of polycrystalline LaEuSr is
lower than that of LaGdSr, which may be associated
with the additional disorder induced by the presence of
Eu2+ ions with a comparatively large ionic radius. The
difference between the TC values in our samples turned
out to be considerably larger than that quoted in [6, 7].
This suggests a high sensitivity of the Curie tempera-
ture to defects whose presence is likely to be the reason
for the existence of Eu2+ ions.

LaSr
LaEuSr
LaGdSr

20

10

0
100 200 300 400

T, K

ρ,
 m

Ω
 c

m

Fig. 2. Temperature dependence of the electrical resistivity
of LaSr, LaEuSr, and LaGdSr.
P

The temperature dependence of resistivity ρ is
shown graphically in Fig. 2. The ρ(T) curve for LaSr
exhibits two weakly pronounced maxima, one of them
lying near the Curie point, and the other, in the ferro-
magnetic region at T ≈ 280 K. Doping with europium
or gadolinium brings about a considerable decrease in
the resistivity, particularly in the ferromagnetic region,
with the ρ(T) curves having only one maximum located
slightly above TC. It is known [1] that such differences
in temperature behavior and in the value of resistivity
of the manganites are due to the contribution of grain
boundaries to the sample resistivity increasing with
decreasing crystallite size; therefore, one may assume
that the crystallites in LaEuSr and LaGdSr samples are
considerably larger than those in LaSr.

It would be difficult to make a judgment on the con-
duction mechanisms from the shape of the ρ(T) curve,
because even the presence of a region with dρ/dT > 0 is
not proof of transition to the metallic state [9]. Valuable
information can be obtained from analysis of the tem-
perature dependence of the ordinary Hall coefficient R0,
which is shown graphically in Fig. 3. In contrast to the
ρ(T) curves, the temperature dependences R0(T) follow
the same pattern in all samples. In the ferromagnetic
region for T < 200 K, the values of R0 are positive and
lie within the interval (4–6) × 10–12 Ω cm/G. Hence, the
majority carriers are holes in the metallic state. A
straightforward calculation of their concentration using
the expression R0 = (ecnh)–1 yields nh of the order of
0.8 hole/Mn. The noticeable difference in the calcu-
lated value of nh from the one which can be expected
from the doping level is evidence of the existence of an
electronic contribution to R0; analysis of the ther-
mopower data leads one to the same conclusion (see
below). The R0(T) curve for LaSr does not exhibit any
features at T = 280 K, and, therefore, the maximum in
LaSr
LaEuSr
LaGdSr
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5
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Fig. 3. Temperature dependence of the ordinary Hall coefficient of LaSr, LaEuSr, and LaGdSr.
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Fig. 4. Temperature dependence of the anomalous Hall coefficient of LaSr, LaEuSr, and LaGdSr.
ρ(T) observed at this temperature cannot originate from
intragrain processes. At temperatures of the order of
100 K and lower, the value of R0 for the LaEuSr sample
is slightly smaller than that for LaSr and LaGdSr,
which is not in conflict with the conjecture on the pres-
ence of Eu2+ ions playing the part of additional accep-
tors.

As one approaches the Curie point, R0 and the resis-
tivity of the LaEuSr and LaGdSr samples exhibit a
rapid growth. It was shown [15] that in LaEuSr, this
growth is connected with the motion of the mobility
edge and is due to the transition to the insulating state
at TMI = 300 K, with the temperature dependence ρ(T)
in the region of the peak being described by relation (7)

with  ≈ 530 K and  ≈ 2000 K. We did not succeed

in determining  and  for the LaGdSr and LaSr
samples because of the higher values of TC for these
samples. However, because the R0(T) curves in all three
samples are similar, one may assume that TMI in
LaGdSr and LaSr also lies below the Curie temperature
by approximately 30 K.

The temperature dependences of the anomalous
(spontaneous) Hall coefficient Rs follow the same pat-
tern (Fig. 4). For T < 300 K, the dependence of Rs on
magnetization can be fitted well for all three samples by
a second-order polynomial Rs = (–6.9 + 16.8x – 10.2x2) ×
10–9 Ω cm/G, where x = [Ms(T)/Ms(0)]2. In the vicinity
of TC, the anomalous Hall coefficient in LaEuSr and
LaGdSr is proportional to the ordinary Hall coefficient
(see inset to Fig. 4), whence it follows that the temper-
ature behavior of Rs in this region is governed by the
variation of the carrier concentration in delocalized
states, i.e., by the motion of the mobility edge.

The temperature dependences of thermopower pre-
sented in Fig. 5 have the form typical of lanthanum

E0
ρ E1

ρ

E0
ρ E1

ρ
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manganites with a high Mn4+ concentration. The S(T)
curves for LaEuSr and LaGdSr are similar in behavior
while differing noticeably from that for LaSr, which is
shifted toward negative values of S. The peak near TC,
which is characteristic of manganites with a compara-
tively low content of divalent ions, is absent here; the
modulus of the derivative |dS/dT | reaches a maximum
near the Curie temperature.

The measurements of thermopower and of the Hall
effect show the lanthanum manganites to have carriers of
both the hole and electron types. The hole contribution Sh
to the thermopower in the ferromagnetic region far from
TC is small and proportional to temperature, because the
holes are in a metallic state. Analysis of the data
obtained on single-crystal samples of La1 – xSrxMnO3
[12] with x = 0.18, 0.25, and 0.4 suggests that the elec-
trons in these materials have a small activation energy,
substantially less than 100 K. Limiting ourselves to the
region of T ≥ 100 K, we may neglect the dependence of
the electronic conductivity σe and electronic ther-
mopower Se on temperature. Because the electrons are
nonmetallic here, the inequality |Se | @ Sh should hold.
The resistivity of such single crystals for T ≤ 200 K is
well approximated by the relation [16]

ρ(T) = ρ(0) + AT2. (12)

Hence, there are grounds to assume that for 100 < T <
200 K, the thermopower of the manganites of such
compositions can be described by the expression

S = Sh – |Se |σeρ. (13)

In other words, the S(T) curve should be approximated
by a second-order polynomial:

S = a0 + a1T + a2T2, (14)

where a0 = –|Se |σeρ(0), the relation for a1 follows from
Eq. (4), and a2 = –|Se|σeA. Obviously enough, a2/a0 =
1
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Fig. 5. Temperature dependence of the thermopower of LaSr, LaEuSr, and LaGdSr.
A/ρ(0). As shown by our analysis [12] of the temperature
dependence of the thermopower of La0.75Sr0.25MnO3, the
S(T) curve for this single crystal is fitted well by the rela-
tion of the type C1T – C2ρ, with C1 and C2 being fitting
parameters, which is evidence of the validity of the pro-
posed interpretation of the ai coefficients. Because the
strontium content in the above single crystal is close to that
in our samples, we treated the S(T) curves obtained on our
polycrystals and on the La0.75Sr0.25MnO3 single crystal
using Eq. (14). The values of ai thus obtained are
listed in the table. In all our polycrystalline samples,
a1 ≈ 0.07 µV/K2, which attests to their hole concentra-
tions being equal. The value of a1 for La0.75Sr0.25MnO3

is slightly higher, which is in accord with the lower

strontium content. Substituting E2 – EF =  –  =
1500 K into Eq. (11) yields a1 = 0.19. Because the cal-
culated value is nearly threefold the experimental fig-
ure, the mobility edge apparently lies beyond the region
where σE can be considered a linear function of energy.

The values of ρ(0) and A for La1 – xSrxMnO3 with
x > 0.2 are typically 0.1 mΩ cm and 10–5 mΩ cm/K2 [16],
which approximately yields 10–4 K–2 for the A/ρ(0)
ratio. In our polycrystals, the ratio a2/a0 is of the same
order of magnitude: 0.6 × 10–4 for LaEuSr, 0.5 × 10–4 for
LaGdSr, and 0.3 × 10–4 K–2 for LaSr, which supports
the proposed explanation of the temperature depen-
dence of the thermopower. At the same time, it should
be pointed out that the magnitude of the coefficient a0

for the LaSr sample is nearly twofold that for the other
samples, while the coefficients a1 and a2 differ substan-
tially less. It can be conjectured that the intragrain resis-
tivity in the LaSr sample is about twice that for the
other two polycrystals because of increasing imperfec-
tion of the material with decreasing crystallite size.

E1
ρ E0

ρ

P

Recalling that the thermopower due to nonmetallic
electrons should be of the order of 100 µV/K and set-
ting |a0 | = 4 µV/K, we obtain σeρ(0) = 0.04. As the tem-
perature increases, the contribution of electrons to con-
ductivity also increases; however, in the region of
metallic conduction, the σe/σ ratio remains less than
10%. This conclusion is in agreement with the Hall data
and band-structure calculations [17]. Thus, the signifi-
cant part played by electrons in the thermopower in the
ferromagnetic region is associated not with their large
concentration but rather with the small thermopower of
the holes in the metallic state.

Near TC, the ordinary Hall coefficient and the ther-
mopower have opposite signs. As shown above, the
main contribution to the conductivity is due to the holes
activated to the mobility edge. The negative sign of the
thermopower indicates, however, that their contribution
to S is substantially smaller than 100 µV/K; hence, it
does not follow relation (8). The theoretical consider-
ations presented in the preceding section suggest that
the decrease in Sh may be caused by the lower mobility
edge approaching the Fermi level at the transition to the
paramagnetic phase. In these conditions, the hole con-
ductivity does not decrease as strongly as the ther-
mopower and, therefore, the holes continue to be
majority carriers.

Thus, we have shown that codoping La0.67Sr0.33MnO3
with a small amount of Eu or Gd can increase the size
of the crystallites and reduce their imperfection without
increasing the anneal temperature. Europium resides in
La0.60Eu0.07Sr0.33MnO3 in a mixed valence state.

In the vicinity of TC, the temperature behavior of the
ordinary and anomalous Hall coefficients is governed
by the variation of the carrier concentration in delocal-
ized states.

In the ferromagnetic region, the concentration of
electrons is less by an order of magnitude than that of
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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holes, but the ratio of the hole to electron contributions
to the transport coefficients changes as one approaches
the Curie temperature. Near TC, the hole thermopower
decreases considerably, which may be associated with
the region of existence of delocalized hole states being
narrow.
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Abstract—Crystals of PbSc0.5Nb0.5O3 are investigated by x-ray diffraction and optical spectroscopy. It is found
that the phase transformations in PbSc0.5Nb0.5O3 are governed by two mechanisms: displacive ferroelectric
phase transitions and consistent rotations of oxygen octahedra. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 
The considerable interest expressed by researchers

in the structural and physical properties of lead scan-
doniobate PbSc0.5Nb0.5O3 (PSN) [1–7] is associated
with the general problem concerning the microscopic
interpretation of the specific features of the ferroelec-
tric state in oxygen-containing perovskites with the
composition Pb( )O3 (x = 1/2 and 1/3). Until
presently, the particular type of structural ordering in
relaxor ferroelectrics has not been established conclu-
sively [8–10]. It has remained unclear whether there is
an ordering (disordering) of different-type atoms (B'
and B") in the same sublattice of the structure that is
controlled by the high-temperature annealing. By now,
the experiments have provided a large body of informa-
tion on this group of perovskites, including ferroelec-
tric PbSc0.5Nb0.5O3. Considerable difficulties in solving
structures of ferroelectric phases of these compounds
are associated with the problems regarding the correct
determination of the structure parameters of the real
crystals under investigation [5, 10]. 

Earlier, it was revealed that PbSc0.5Nb0.5O3 crystals
either can undergo a normal phase transition (without
indications of relaxation) from the ferroelectric to
paraelectric phase [3] or can exhibit pronounced prop-
erties of relaxor ferroelectrics [2, 6]. The phase transi-
tion temperature of PbSc0.5Nb0.5O3 and its physical
properties depend on the thermal prehistory of the crys-
tal. It was reliably established that the heating of the
PbSc0.5Nb0.5O3 compound from room temperature to
the phase transition point leads to a decrease in the unit
cell volume [3, 6, 11]. Moreover, it was shown that
PbSc0.5Nb0.5O3 undergoes an usual thermal expansion
in the temperature range from 10 to 300 K [11]. The
atomic structure of PbSc0.5Nb0.5O3 was determined at
different temperatures [11, 12]. Although Malibert
et al. [11] analyzed the PbSc0.5Nb0.5O3 structure by dif-
ferent methods (neutron diffraction and x-ray diffrac-
tion analyses, including techniques with the use of syn-
chrotron radiation), they reported only the neutron dif-

B1 x–' Bx"
1063-7834/01/4303- $21.00 © 20508
fraction data at 10 and 523 K. For the ferroelectric
phase of PbSc0.5Nb0.5O3 at 10 K, it was found that the
Sc/Nb atoms are displaced from the center of a perovs-
kite cell along the [111] direction by 0.235 Å, whereas
the oxygen atoms at the same values δx = δy = 0.051 are
displaced by δz = 0.039. For the paraelectric phase of
PbSc0.5Nb0.5O3 at 523 K, the Debye–Waller factors are
as follows: B(Pb) = 4.33 Å2, B(Sc/Nb) = 0.84 Å2,
B11(O) = B22(O) = 0.043 Å2, and B33(O) = 0.014 Å2.
According to [12], the Debye–Waller factors for the
paraelectric phase of PbSc0.5Nb0.5O3 at 400 K are
B(Pb) = 4.15 Å2, B(Sc/Nb) = 0.95 Å2, B11(O) = 0.90 Å,
and B22(O) = B33(O) = 2.66 Å2; and the Sc/Nb atoms in
the ferroelectric phase at 200 K, as in [11], are dis-
placed along the [111] direction by 0.242 Å. In this
case, the oxygen atoms are displaced along the [010] and
[001] directions by 0.189 Å and along the [100] direction
by 0.123 Å. 

It should be noted that a series of extremely weak
superstructure reflections was revealed by Caranoni
et al. [1]. According to [1], these reflections are associ-
ated with the possible short-range order in the arrange-
ment of Sc and Nb atoms only in the xy planes. 

In the present work, we investigated the structure of
PbSc0.5Nb0.5O3 crystals, their optical absorption spectra
in the visible and IR ranges, and the electrical conduc-
tivity in order to elucidate the specific features of the
phase states and to reveal the correlation between the
possible structural models of these states and their
physical properties. 

2. EXPERIMENTAL TECHNIQUE 

2.1. Crystal growth. Crystals of PbSc0.5Nb0.5O3
were grown from a solution which was preliminarily
synthesized by the solid-phase reaction of the
PbSc0.5Nb0.5O3 compound with a PbO melt. Two
branches of the crystallization indicated its eutectic
character. The eutectics corresponded to the 0.9PbO–
0.1PSN composition at 860°C. The high volatility of
001 MAIK “Nauka/Interperiodica”
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PbO and a low quality of the PbSc0.5Nb0.5O3 crystals
obtained under these conditions necessitate the use of a
PbO–B2O3 mixture as a solvent. The best crystals of
PbSc0.5Nb0.5O3 were obtained using the 0.78PbO–
0.17B2O3–0.05PSN composition. Homogenizing of the
resultant solution at a temperature of 1100°C for 4 h
and its cooling to 950°C at a rate of 5 K/h brought about
the formation of high-quality PbSc0.5Nb0.5O3 crystals in
the form of plates 0.3 × 0.3 cm in size and cubes with
edges as large as 0.4 cm. 

2.2. Optical and electrical investigations. Crystals
of PbSc0.5Nb0.5O3 were examined with a polarizing
microscope for the purpose of revealing the morphol-
ogy of their block or domain structures. The optical
absorption spectra in IR (3500–14500 cm–1) and vis-
ible (400–750 nm) ranges and their temperature evolu-
tion were investigated on IKS-14A and SF-14 spectro-
photometers. The electrical conductivity of
PbSc0.5Nb0.5O3 crystals was studied using a V-483
nanovoltmeter. 

2.3. X-ray structure investigations. The crystal
structure of the PbSc0.5Nb0.5O3 compound was investi-
gated by the Laue and rotating crystal methods with an
HZG-4B diffractometer (CuKα radiation) and an
Enraf–Nonius diffractometer CAD-4 (MoKα radiation),
respectively. The structure amplitudes of 246 reflections
were obtained on the Enraf–Nonius diffractometer
CAD-4 for a PbSc0.5Nb0.5O3 crystal of spherical form
(the data were corrected for the Lorentz and polariza-
tion factors and absorption). 

No extinction corrections were applied. The temper-
ature investigations of a PbSc0.5Nb0.5O3 powder were
performed on a DRON-3.0 diffractometer in a special
chamber which ensured the temperature stability in the
range from 20 to 200°C with an accuracy of no worse
than ±1 K. 

3. RESULTS 

3.1. The domain structure of PbSc0.5Nb0.5O3 crystals
at room temperature in the ferroelectric rhombohedral
phase is rather complex and depends on the growth
conditions and crystal sizes. Thin lamellar crystals
0.01 × 0.01 cm in size have sufficiently clear domain
boundaries which can easily be observed with a polar-
izing microscope. It is revealed that, upon etching of
large-sized crystals of PbSc0.5Nb0.5O3 (the thickness h
is of the order of 1 mm), the domain structure has a dif-
ferent configuration (Fig. 1). This can be explained by
the presence of growth defects and residual mechanical
strains arising upon cooling the crystals and during the
ferroelectric phase transition [13]. 

Figure 2 shows the temperature evolution of the
absorption spectra of PbSc0.5Nb0.5O3 lamellar crystals
for which the [100] direction is perpendicular to the
crystal surface. In the visible range, the spectra contain
two absorption bands I and II with maxima at 405 and
PHYSICS OF THE SOLID STATE      Vol. 43      No. 3      200
(a)

(b)

Fig. 1. Fragments of the domain structure at different thick-
nesses of a PbSc0.5Nb0.5O3 single crystal. 
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Fig. 2. (a) Temperature dependences of (1) the energy loca-

tion of absorption edge  at lnk = 5.1 and (2) the parame-

ter σ for a PbSc0.5Nb0.5O3 single crystal 0.051 cm thick.
Circles and crosses correspond to heating and cooling,
respectively. (b) Temperature dependences of the integrated
intensity of the absorption band at λmax = 685 nm for a
PbSc0.5Nb0.5O3 single crystal. 
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685 nm, respectively. Upon heating of the crystal, the
absorption edge (band I) near 70°C shifts toward the
short-wavelength range, and above 100°C, it is dis-
placed toward the long-wavelength range and follows
the Urbach rule. The parameter σ = (∆lnk/∆hω)kT,
which characterizes the slope of the linear dependence
of the logarithm of the absorption coefficient k on the
incident photon energy, has resonance minima at tem-
peratures of 70, 90, and 120°C upon heating of the
PbSc0.5Nb0.5O3 crystal and minima at 130 and 100°C
upon its cooling (Fig. 2a). The temperature dependence

of the energy location of the absorption edge  (at a
constant absorption coefficient) exhibits the following

features: upon heating of the crystal,  jumpwise
increases by 0.047 eV near 70°C (at lnk = 5.1),
decreases by 0.029 eV near 90°C, and decreases by
0.046 eV near 140°C. The electron–phonon coupling
constant g is equal to 3.56 at temperatures below 70°C,
4.36 in the range 70–120°C, and 2.59 above 120°C
[14, 15]. The effective phonon energy hωeff is equal to
542 cm–1 below 70°C, 526 cm–1 above 70°C, and
607 cm–1 above 120°C [14, 15]. The absorption band II
(λmax = 685 nm) is bell-shaped and has a half-width of
0.31 eV at 140°C. This band can be associated with
F-centers in the PbSc0.5Nb0.5O3 crystal [16, 17]. Upon
heating of the PbSc0.5Nb0.5O3 crystal, the absorption
band II exhibits weak maxima at temperatures of 70
and 100°C and a drastic increase in the integrated inten-
sity I∞ above 140°C (Fig. 2b). Upon cooling of the crys-
tal, the temperature dependence of the integrated inten-

Eg
k

Eg
k

Fig. 3. Temperature dependences of (1) the integrated inten-
sity I∞ of the absorption band at ωmax = 8600 cm–1 and
(2) the electrical conductivity Σ for a PbSc0.5Nb0.5O3 single
crystal. 

80

60

40

20

0
50 100 150

0.5

1.0

1.5

2.0

1

2

T, °C

I∞

Σ 
× 

10
8 , Ω

–
l , c

m
–

1

P

sity I∞ has small maxima at 140, 120, and 90°C. Below
80°C, the intensity of band II increases with a decrease
in the temperature. 

In the IR range, the spectrum of the PbSc0.5Nb0.5O3
crystal exhibits a bell-shaped absorption band with the
center at 8600 cm–1 and a half-width of 1.05 eV at
120°C. Upon heating of the crystal, the integrated
intensity I∞ increases with small anomalies at tempera-
tures of 70 and 110°C and a noticeable maximum at
150°C. Upon cooling, I∞ has a more pronounced maxi-
mum at the same temperatures (Fig. 3). The tempera-
ture dependence of the electrical conductivity of the
PbSc0.5Nb0.5O3 crystal (curve 2), its features observed
at 70 and 100°C, and a sharp increase in the electrical
conductivity at temperatures above 150°C allow us to
assign the IR absorption band (ωmax = 8600 cm–1) to a
polaron of small radius with the activation energy Ea =
0.27 eV [16]. 

3.2. At the first stage of x-ray structure analysis of
PbSc0.5Nb0.5O3 crystals with the use of the Laue x-ray
patterns and rotating-crystal x-ray photographs, we
chose the crystal without indications of twining. In a
series of rotating-crystal x-ray photographs obtained at
large exposures, we observed weak diffuse superstruc-
ture reflections that corresponded to twice the perovs-
kite cell periods. The x-ray diffraction patterns were
recorded upon rocking of the crystal about the [111]
direction in a perovskite setting. In addition to the
above reflections, the x-ray diffraction photographs
contained superstructure reflections that corresponded
to a more than twofold multiplication of the perovskite
cell periods. The diffuse character of the superstructure
reflections and their extremely low intensity suggest a
limited size of the ordering regions of either the Sc and
Nb atoms or antiparallel atomic displacements. These
data correlate with the results obtained in [1]. The x-ray
diffraction patterns obtained with a Guinier camera
also show weak superstructure reflections that corre-
spond to an eightfold multiplication of the perovskite
cell parameters for PbSc0.5Nb0.5O3 crystals. A detailed
analysis of the superstructure of PbSc0.5Nb0.5O3 crys-
tals will be described in a separate paper. 

The structure of the PbSc0.5Nb0.5O3 crystal was refined
in the hexagonal setting of a perovskite-type structure
with AH = 5.768(2) Å and CH = 7.062(3) Å, which
corresponds to the rhombohedral perovskite cell with
the parameters aR = 4.079(2) Å and αR = 89.88(3)°. In
the approximation of the complete disordering of Sc
and Nb atoms in the lattice, the atomic parameters were
determined by the local search method with minimiza-
tion of the appropriate functional. The refinement led to
the structural model for PbSc0.5Nb0.5O3 with the dis-
crepancy factor R = 0.045. The least R value was
obtained using the Debye–Waller factors. The refine-
ment of the atomic displacements for oxygen δx0 by
using the hki0-type reflections reduced the discrepancy
factor to R = 0.012 at δxH = 0.033. The final refinement
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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of the atomic structure in the PbSc0.5Nb0.5O3 crystal
revealed that, at room temperature, the Sc/Nb atoms
are displaced from the center of the perovskite cell
along the [111] direction by the distance δzH(Sc/Nb) =
0.017(2) (0.12 Å) at Biso(Sc/Nb) = 2.3(2) Å2. The oxygen
atoms are displaced by the distance δzH(O) = 0.035(2)
along the [111] direction and |δyH(O)| = 0.017(2) in per-
pendicular directions of the [110] type; in this case,
Biso(Sc/Nb) = 2.6(1) Å2. Note that the displacements
obtained for the Sc (Nb) and O atoms in [11, 12] exceed
those determined at room temperature in the present
work by a factor of 2 and 1.5, respectively. In the ferro-
electric phase at room temperature, the “mean” Sc/Nb
atoms in the found structural model are uniquely dis-
placed along the [111] direction in a perovskite cell
(along the [001] direction in a hexagonal setting) and
specify the direction of spontaneous polarization. In

Table 1.  Coordinates of oxygen atoms in a hexagonal setting
of the unit cell of PbSc0.5Nb0.5O3

Atom xH yH zH

OI 1/6 + δx0 5/6 – δx0 2/3 + δz0

OII 1/6 + δx0 1/3 + 2δx0 2/3 + δz0

OIII 2/3 – 2δx0 5/6 – δx0 2/3 + δz0

OIV 1/2 + δx0 1/2 – δx0 0 + δz0

OV 1/2 + δx0 0 + 2δx0 0 + δz0

OVI –2δx0 1/2 – δx0 δz0

OVII 5/6 + δx0 1/6 – δx0 1/3 + δz0

OVIII 5/6 + δx0 2/3 + 2δx0 1/3 + δz0

OIX 4/3 – 2δx0 1/6 – δx0 1/3 + δz0
PHYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
addition to the displacements along the [111] direction
δzH(O), the oxygen atoms undergo additional displace-
ments along the xH and yH axes (in a hexagonal setting)
according to the space group R3m (Table 1). 

Table 2 presents the results of structural investiga-
tions of the PbSc0.5Nb0.5O3 single crystal and the struc-
ture parameters determined by x-ray powder diffraction
[18] at different temperatures. 

4. DISCUSSION 

Since the PbSc0.5Nb0.5O3 structure was refined with-
out regard for the structure amplitudes because of their
smallness, we did not considere the effects of super-
structural ordering of either the Sc and Nb atoms or
antiparallel atomic displacements. However, it should
be noted that the oxygen atoms undergo small displace-
ments along the xH and yH axes. On the one hand, these
displacements can be interpreted as the result of distor-
tions of oxygen octahedra (with respect to their sizes in
an ideal cubic phase) with the formation of oxygen tri-
angles in the closest cubic packing planes. These trian-
gles are perpendicular to the threefold polar axis of the
ferroelectric rhombohedral phase and can be separated
into two types, namely, oxygen triangles with short-
ened oxygen–oxygen distances and oxygen triangles
with lengthened oxygen–oxygen distances. On the
other hand, the observed displacements of oxygen
atoms can correspond to rotations of oxygen octahedra
that are associated with the R25 or M3 modes [19]. An
important point is that the consistent rotations of oxy-
gen octahedra are accompanied by the following
effects: first, a decrease in the lattice parameter and,
second, the formation of the superstructure due to anti-
Table 2.  Structure of PbSc0.5Nb0.5O3

Parameter R3m rhombohedral phase Pm3m cubic phase

T, K 293* 303 343 358 393 473

AH, Å 5.768(2) 5.7680(2) 5.7691(2) 5.7695(2) 5.7727(2) 5.7738(2)

CH, Å 7.082(3) 7.0844(4) 7.0802(4) 7.0772(5) 7.0701(3) 7.0714(3)

aR, Å 4.082(2) 4.0824(1) 4.0821(1) 4.0817(1) 4.0819(1) 4.0827(1)

αR, deg 89.88(3) 89.89(3) 89.92(3) 89.94(3) 90.00 90.00

δzH(Sc/Nb) 0.017(2) 0.017(2) 0.013(2) 0.002(1) 0 0

δzH(O) 0.035(3) 0.032(3) 0.034(2) 0.037(2) 0 0

δxH(O) 0.017(2) 0.016(2) 0.017(2) 0.019(2) 0 0

B(Pb), Å2 1.8(1) 0.79(10) 0.80(10) 2.01(13) 2.82(14) 3.07(16)

B(Sc/Nb), Å2 2.3(1) 0.79(10) 0.80(10) 2.01(13) 2.82(14) 3.07(16)

B(O), Å2 2.6(2) 0.79(10) 0.80(10) 2.01(13) 2.82(14) 3.07(16)

Number of reflections N 170 19 19 19 9 9

Number of refined parameters n 6 4 4 4 1 1

R 0.045 0.059 0.058 0.055 0.057 0.064

* Data for the PbSc0.5Nb0.5O3 single crystal. 
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parallel displacements of oxygen atoms. From this
viewpoint, the decrease in the perovskite cell parameter
with an increase in the temperature, the constancy of
the δxH values for oxygen atoms below the phase tran-
sition point, and the superstructure observed in x-ray
diffraction and electron diffraction experiments allow
us to assume that, in PbSc0.5Nb0.5O3 crystals, an
increase in temperature up to the phase transition point
is accompanied by a gradual stabilization in the phase
of the R3c symmetry with the superstructure unit cell.
Such a structural model of the phase states of certain
ferroelectric perovskites (characterized by the smeared
phase transition, strong effect of the measuring field
frequency on the temperature of the permittivity maxi-
mum, violation of the classical Curie–Weiss law in
paraelectric phases, etc.) is in reasonable agreement
with the features of the second-order phase transition
described above. 

In conclusion, it should be noted that the observed
atomic displacements along the zH (Sc/Nb and O) axis
correspond to the spontaneous polarization Ps. The dis-
placements of oxygen atoms δxH and δyH are unrelated
to the polarization. They are aligned antiparallel, mutu-
ally compensated in the unit cell, and hence, cannot be
transformed as components of the polarization vector.
It is believed that, in real PbSc0.5Nb0.5O3 crystals, the
physical properties are associated with the order
parameters of different nature. Two mechanisms of
phase transformations in PbSc0.5Nb0.5O3 crystals—dis-
placive ferroelectric phase transitions with the emer-
gence of spontaneous polarization with a decrease in
temperature of the paraelectric phase and rotational
vibrations of oxygen atoms (rotations of oxygen octa-
hedra about the [100] directions as undistorted struc-
tural units)—are responsible for the observed features
in the physical properties of real PbSc0.5Nb0.5O3 crys-
tals. This provides the explanation for the fact that the
properties of PbSc0.5Nb0.5O3 crystals are highly sensi-
tive to the types and the concentration of different
defects, which are determined by the prehistory of the
crystals, including the conditions of high-temperature
annealing. 
P
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Abstract—The temperature dependence of the pyroelectric coefficient of the new high-temperature ferroelec-
tric LBGO in a single-domain state is determined. These data are used to reconstruct and describe the temper-
ature dependence of the spontaneous polarization within the 50- to 540°C range. The possible existence of a
second phase transition in this crystal is discussed. © 2001 MAIK “Nauka/Interperiodica”.
The ferroelectric properties of LBGO crystals were
discovered in 1992 [1]. These crystals have the still-
wellite structure and transfer to the ferroelectric state at
Tc = 532°C, and the temperature dependence of the
low-frequency dielectric permittivity in the paraelectric
phase obeys the Curie–Weiss law with a constant C =
3200–3600 K [1, 2]. This value, as well as the magni-
tude of the excess entropy of the phase transition ∆S =
0.1R [2], indicated that the phase transition in LBGO is
intermediate between the displacive- and order–disor-
der-type. Raman scattering data [3] and a high-preci-
sion neutron diffraction analysis [4] confirmed the
complex character of the structure rearrangement the
crystal undergoes when transferring to the polar phase.
In some cases, LBGO exhibits a “splitting” of the phase
transition, so that the permittivity, the loss tangent, and
the heat capacity have two anomalies separated by a
temperature interval of 1–5 K, which may correspond
to an intermediate phase [1, 2].

Remarkably, the comparatively high phase transi-
tion temperature makes spontaneous polarization mea-
surements difficult because of a fairly high tempera-
ture-dependent electrical conductivity and a strong
increase in the coercive field below 300°C [5]. The
available experimental data on the temperature depen-
dence of the spontaneous polarization, which are
derived from measurements of the second-harmonic
generation (SHG) intensity performed on a finely dis-
perse powder [1] and calorimetric studies [2], provide
strongly differing results (Ps = 12 in [1] and 3 µC/cm2

in [2] at room temperature). Symmetric hysteresis
loops distorted by conduction were observed above
400°C, while below 250°C, no switching of spontane-
ous polarization at 60 Hz was observed to occur in
fields of up to 6 kV/cm [5]. The high electrical conduc-
tion also hindered measurements of the pyroelectric
coefficient; the available data obtained at temperatures
up to ~400°C [1] are at odds with the figures expected
from the temperature dependence of the SHG intensity.
1063-7834/01/4303- $21.00 © 20513
This uncertainty in the temperature dependence and
in the spontaneous polarization, an important parame-
ter of the ferroelectric phase transition in LBGO crys-
tals, stimulated our interest in a more comprehensive
investigation of the pyroelectric properties of this crys-
tal over a broad temperature region and around the
phase transition. Application of an improved technique
for measuring small (down to 1 pA) currents at a com-
paratively small (~10 kΩ) input resistance of the mea-
suring system permitted us to carry out an extensive
study of the pyroelectric properties of the LBGO crys-
tals and to determine and describe the temperature
dependence of their spontaneous polarization.

1. EXPERIMENTAL TECHNIQUES

The samples of the LBGO crystal were plates, ~1 cm2

in area and 2 mm thick, cut perpendicular to the polar c
axis of the crystal, which has trigonal symmetry P31 in
the polar phase. The polished samples were transparent
and did not reveal visible inhomogeneities. Gold elec-
trodes ~1 µm thick were deposited by RF cathode sput-
tering on the plate faces. To exclude generation of par-
asitic thermopower, the wire leads into the high-tem-
perature chamber were made of gold. The insulating
components of the high-temperature lead-in and of the
sample holder were made of quartz glass. All measure-
ments were carried out under heating at a rate of
~0.15 K/s, which was maintained by means of a heat-
ing controller within the temperature range of 30 to
600°C. The temperature was measured with a chromel–
alumel thermocouple with an absolute error of ±1.5 K
and a sensitivity of 0.1 K.

Our technique of closed-circuit measurement of the
pyroelectric current, with the sample temperature var-
ied at a constant rate, permitted the distortions due to
the intrinsic conductivity of the crystal to be reduced to
a minimum. To increase the charge sensitivity and the
accuracy of charge integration, as well as to reduce the
input resistance of the setup, we used the modulation
001 MAIK “Nauka/Interperiodica”



 

514

        

MILOV, STRUKOV

                                                                
method, whose essence is explained in Fig. 1. The cur-
rent generated in the heated sample is fed into a photo-
resistor modulator consisting of two fast, alternately
illuminated PbS photoresistors. The modulator con-

ADC

IBM PC

Lock-in
detector

f = 1 kHz
f = 1000 Hz

PbS photo-
resistors

Electrometric
amplifier
Iin < 100 fA

Sample

Light diodes λ = 940 nm

Fig. 1. Block diagram of the setup for pyroelectric current
measurements.
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Fig. 2. Temperature dependence of the pyroelectric current
in LBGO crystals obtained for two values of the field
applied to make the sample single-domain: (a) ±250 and
(b) ±7 V/cm.
P

verts the slowly varying current in the sample circuit to
an ac voltage of 1 kHz, which will be subsequently
amplified by an electrometric amplifier. The signal thus
obtained passes lock-in detection and is sent through a
16-bit ADC to a computer, which performs on-line dig-
ital integration to yield the pyroelectric current and the
total charge passed. It is essential that using the modu-
lation method permitted us to increase the input resis-
tance of the setup to 75 kΩ at the lowest sample resis-
tance of ~5 MΩ in the temperature range covered.
Thus, the error introduced by the intrinsic sample con-
ductivity into the sample pyroelectric current measure-
ments did not exceed 1.5%.

Prior to measurements, the sample was first heated
in a closed circuit at 630°C for 30 min to reduce the cur-
rent presumably associated with the electret effect and
then cooled in a dc electric field Ep to the temperature
at which the measurements were started. We are going
to present the data for two values of Ep, 250 and 7 V/cm
below. As we shall see, a field of 7 V/cm is high enough
to make the samples single-domain.

2. EXPERIMENTAL RESULTS

Figure 2 presents temperature dependences of the
current passing through the sample circuit when heated
at a constant rate of 0.15 K/s. The sample was subjected
preliminarily to dc fields of opposite polarities of the
magnitude specified above; by convention, the top parts
of Figs. 2a and 2b relate to the positive direction of the
electric field, and the lower parts, to the negative one.
The sign of the pyroelectric current in the circuit is seen
to depend on the direction of the field Ep, that is, on the
direction of the spontaneous polarization in the crystal.
The sample that had not been subjected to prepolariza-
tion exhibited pyroelectric currents lower, on average, by
an order of magnitude than those shown in Fig. 2, which
indicated the polydomain state of the crystal. As is evident
from a comparison of Figs. 2a and 2b, cooling a sample
already in a 7-V/cm field results in its becoming com-
pletely single-domain; indeed, the results of pyroelectric
current integration on cooling in the fields of 7 and
250 V/cm are practically identical, provided one neglects
the parasitic current flowing through the sample above the
phase-transition point after the sample is made single-
domain in a field of 250 V/cm. This current, clearly seen
in Fig. 2a, is apparently associated with the spread of the
space charge, which appears in a sample cooled through
the Curie point in a high enough electric field. This effect
is more clearly pronounced for negatively directed Ep

(the lower part of Fig. 2a). For us, it was essential that
after polarization in the 7-V/cm field, there was no par-
asitic current in the positive field, and this provided
grounds for believing that the behavior of the current
flowing through the crystal is governed in this case only
by the variation of the spontaneous polarization.

Two features in the behavior of the pyroelectric
coefficient p (connected with the pyroelectric current
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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through the relation ip = pSdT/dt) are of interest to us
here, namely, its absolute magnitude within the “work-
ing” temperature interval and in the immediate vicinity of
the Curie point. The corresponding data are displayed in
Fig. 3. One readily sees that the magnitude of p lies, over
a broad temperature interval, within 2–3 nC K–1 cm–2;
the inset to Fig. 3 shows a gradual growth of the pyro-
electric coefficient with T  Tc and its sharp drop at
the transition point to the paraelectric phase. Note also
the shoulder in the temperature course of the pyroelec-
tric coefficient at the temperature Tc – 1 K seen for both
directions of Ep .

The temperature dependence of the spontaneous
polarization obtained by integrating the pyroelectric
current within a broad temperature interval is shown in
Fig. 4. The curve is seen to have the “classical” pattern
characteristic of second-order phase transitions. The
magnitude of the spontaneous polarization was found
to be nearly three times lower than that quoted in [1],
but again one-half larger than that given in [2].

3. DISCUSSION OF RESULTS

The temperature dependence of the LBGO sponta-
neous polarization obtained was treated in terms of
Landau’s theory of second-order phase transitions. We
used the expansion of the thermodynamic potential in
even powers of polarization through the sixth order,
which is standard for a uniaxial ferroelectric, and the
attendant relation for the temperature dependence of
spontaneous polarization [6]:

Here, α, β, and γ are constant coefficients of the terms
P2/2, P4/4, and P6/6, respectively, in the thermody-
namic potential. The ratios β/α and γ/α were deter-
mined by the least-squares technique within the tem-
perature interval (Tc – 16 K)–Tc:

β/α = (9.5 ± 0.3) × 10–8 CGSE,

γ/α = (1.13 ± 0.01) × 10–14 CGSE,

with the temperature corresponding to the pyroelectric
current maximum, Tc = 533.6°C, accepted as the phase-
transition point. The coefficient α was preliminarily
derived from permittivity measurements made for T > Tc,
α = 4π/C. In accordance with [2], C = 3600 K and α =
3.49 × 10–3 K–1. We obtain finally β = 3.32 × 10–10 CGSE
and γ = 3.94 × 10–17 CGSE. As can be seen from Fig. 5,
the ratio used provides a good fit to the experimental
curve over a broad enough temperature interval of
about 75 K.

Note that this set of coefficients differs somewhat
from the one obtained from calorimetric measurements
in [2], where β = 2.40 × 10–10 CGSE and γ = 6.05 ×
10–18 CGSE. The reason for such a substantial dis-
agreement in the magnitude of the γ coefficient remains

Ps α /2γ β/α( )2 4 T Tc–( )γ/α–{ } 1/2 β/α–[ ]
1/2

.±=
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unclear; one could suggest that calculations based on
calorimetric data are valid only near the Curie point.

As can be seen from Fig. 5, within the temperature
interval Tc ± 2.5 K, the experimental points deviate
from the temperature course predicted by the Landau
theory. This is associated, to a certain extent, with the
additional shoulder-type anomaly of the pyroelectric
coefficient near Tc; this anomaly becomes manifest in the
temperature behavior of the spontaneous polarization as
a break, which could be related to a second phase transi-
tion in this crystal, which was discussed earlier in the
literature. One can also not rule out the effect of lattice
defects, which make a phase transition diffuse [7, 8]. As
can be seen from Fig. 3, in our case, the broadening is
observed to occur within a temperature interval ~1 K,
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which is comparable to the temperature difference
between Tc and the temperature of the possible second
phase transition.

Thus, the problem of the existence of a second phase
transition can be resolved only by measurements on
high-quality samples; this work is being carried out
presently.

We note in conclusion that we have established the
possibility of creating a stable single-domain state in
crystals of high-temperature ferroelectric LBGO,
obtained the temperature dependence of the pyroelec-
tric coefficient over a broad temperature interval and in
the phase-transition region by a specially developed
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Fig. 5. Comparison of the experimental temperature depen-
dence Ps(T) with Eq. (1) plotted by a solid line. Inset: the
same near the phase-transition temperature.
P

technique of low-current measurement, measured the
temperature dependence of the spontaneous polariza-
tion of LBGO crystals, and proposed its quantitative
description in terms of the phenomenological theory.
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Abstract—It is shown that, under the effect of a point force, ordered deformation states of the Fermi type can
arise in a nanocrystal. These states are characterized by an angular momentum whose magnitude (estimated in
the units of Planck’s constant) depends on the number of atoms in the deformed nanocrystals and can accept
macroscopic values. A qualitative explanation is given to the evolution of the strength, diffusive, and damping
properties of compact nanocrystalline materials based on the assumption that the quantum generation of angu-
lar momenta of crystallites can result in states of rotational motion. © 2001 MAIK “Nauka/Interperiodica”.
The main feature of compact nanocrystalline mate-
rials that differentiates them from the conventional
materials is related to the higher values of their strength
characteristics in combination with better damping
properties and a higher diffusive mobility of atoms in
them [1]. Numerous attempts that were undertaken to
explain this feature are based on the estimation of dif-
ferences in structural and (or) thermodynamic proper-
ties of individual crystallites and intercrystalline
boundaries. In spite of a certain successfulness of these
attempts (especially, in the phenomenological descrip-
tion of some experimental dependences), we can sup-
pose that the existence of these clearly pronounced
“anomalous” dependences follows from a sufficiently
simple mechanism that explains the formation of
“nanocrystalline properties.” Without resorting to a
detailed consideration of this mechanism, it turns out to
be possible to find, in the solution of the problem of the
microscopic deformation of a crystal, such aspects in
the behavior of an ensemble of nanocrystallites that
directly indicate the differences of the properties of
nanocrystalline materials from the macrocrystalline
ones.

In [2], we made an attempt to solve the problem of
the deformation of a finite crystal by point force
sources by quantizing stationary displacements of
atoms from lattice sites. The main result of the solution
consisted in the fact that, in crystals with dimensions of
an order of a few nanometers, there can arise deforma-
tion states which, in their spatial and energy character-
istics, qualitatively differ from the known states. The
field of charge displacements in these states is repre-
sented in the form of a limited set of Fourier harmonics
of zero-point vibrations of the crystal whose quantiza-
tion leads to an energy spectrum of the Fermi type. An
assumption on the possibility of thermal excitation of
negative-energy states suggests the existence, in an
1063-7834/01/4303- $21.00 © 20517
elastically polarized or deformed crystal, of quasiparti-
cle excitations whose characteristics depend on the
properties of the crystal and of the external force
source.

In this work, we show that the specific features of
the energy spectrum of deformation excitations permit
the existence of quantum ordered states corresponding
to a macroscopic value of the angular momentum of a
crystal whose dimensions fall into the nanoscopic
range. From the viewpoint of the properties of nanoc-
rystalline materials, this result agrees well with the
long-known mechanical model in which force interac-
tions (induced by an external factor) between individ-
ual nanocrystallites may generate rotational moments
and, consequently, create new, and suppress some of
the existing, degrees of freedom of crystallites during
arbitrary changes of the shape of these materials.

Quantized deformation states of a crystal have the
following spectrum:

(1)

which includes momentum components of the zero-
point energy of the crystal and of the energy of its
monopole deformation by an extraneous force source
[2]. Formula (1) includes the following quantities: v =
ne(χ/ρ)1/2 is the velocity of propagation of phonon
states, where n is the number of charges e per atomic
volume Ω  and χ is the phenomenological constant of
interatomic bonding; ρ = m/Ω is the crystal density; na

is the number of phonon states that determines the com-
ponent of the wave vector ka = 2πna/La, where La is the
length of the crystal along a preferred direction;

(2)

ε̃a p( )
v
2
---- p 2na p̃0a

3 / p
2

–[ ] ,=

p̃0a pD ma/naN( )1/3=
001 MAIK “Nauka/Interperiodica”



 

518

        

MESHCHERYAKOV

                                                                                                                
is the boundary momentum, where pD = π"/Ω1/3 is the
Debye momentum; N = V/Ω is the total number of
atoms in the crystal with a volume V; and ma =

/π3"vχ is the number of quantized deformation
states of the crystal deformed by an external electro-
static field with a component E1a.

E1a
2

Fig. 1. Spectra of deformation vibration states of a nanoc-
rystal with a total number of ions N = 103. As the number Na
of displaced ions in the region of the force nonuniformity
increases, the character of the spectrum evolution is deter-
mined by an increase in the magnitude of the Fermi momen-
tum  from pL to pD. The transition from (a) Na = 5 to

(b) Na = 10 causes, in accordance with (10), an increase in
the number of levels Na – 1 and in the number of states of
the deformation mode 2Na. Transition from (c) Na = Nac =
11 to (d) Na = 100 causes, in accordance with Eq. (11), a
decrease in the number of levels N – Na and, as before, an
increase in the number of states 2Na.
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The calculations of the energies  of excited states
for the cases of p ≤  and p ≥  yield

(3)

(4)

respectively, where Na is the number of monopole-dis-
placed ions in the region of the force nonuniformity of
the crystal. For the values ma = 2Na = 2 at  = 0 and

ma = 2Na = 2N at  = 0 (which corresponds to either
the absence of the field of ion displacements or the
complete overlap of the crystal by the deformation
field), the values of the number Na vary from 1 to N.

Excited states with energies (3) are determined by
that branch of spectrum (1) that corresponds to the
greatest possible momentum pD, i.e., to the smallest
wavelength of the excited state that can propagate
through the crystal lattice with an interatomic spacing
Ω1/3. These states can correspond to collective vibra-
tions of ions that are permanently displaced from lattice
sites. The excited states with energies (4) are deter-
mined by another branch of spectrum (1), which corre-
sponds to the smallest possible momentum pL = pD/N1/3

(i.e., to the greatest wavelength of the excited state
which can propagate through the crystal with length
L = (ΩN)1/3). The physical meaning of these states is
not completely clear. But since this branch is formed by
excited states of “holes” that appear in the negative-
energy range, we can assume that, in the coordinate
space, the energies  are associated with collective
motions of a discrete set of voids that are formed by dis-
placed states of ions. These voids can be referred to by
the commonly accepted name “vacancies,” but with a
“string” that, in contrast to Frenkel’s vacancies, they
are formed in this model by small displacements of
atoms from the equilibrium positions. In what follows,
the branch of spectrum (1) that determines the energies

 will be named the vacancy branch, and that which

determines the energy , the atomic branch.

In [2], we considered the case of spectrum (1) deter-
mined by the total number N of atoms in the crystal at
a specified value of the number Na of monopole-dis-
placed atoms in the region of force nonuniformity and
established the main features of this spectrum. Now, we
dwell on the features of this spectrum that can conve-
niently be revealed by analyzing the variation of  at
Na, N = const.

Figure 1 shows spectra of deformation-induced
vibrational states for the case where the number Na of
monopole-displaced ions changes in the region of the
force nonuniformity at a constant total number N of
ions in the crystal and na = 1. The transition from the
spectrum (Na – 1) to the spectrum (Na) corre-
sponds to a jumpwise change in the field E1a by a mag-

ε̃a

p̃0a p̃0a

ε̃A εD 1 Na/N–( ),=

ε̃V εD Na 1–( )/N1/3,=

ε̃V

ε̃A
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nitude corresponding to the passage of an ion in the
crystal lattice into the next displaced state. The change
in Na from 5 (Fig. 1a) to 10 (Fig. 1b) demonstrates the
appearance of a spectrum that is formed by excitations
of vacancy character, and the passage from Na = 11 in
Fig. 1c to Na = 100 in Fig. 1d shows the disappearance
of the spectrum that is formed by excitations of atomic
nature. The passage, during the formation of a spec-
trum, from one branch to the other occurs when the
number of displaced atoms becomes equal to

(5)

The velocity of propagation of deformation excita-
tions of atomic character is

(6)

Deformation excitations of vacancy type have a
velocity

(7)

that is ma times that of the velocity of propagation of
acoustic vibrations. The results (6) and (7) suggest that
the difference in the velocities of propagation of atomic
and vacancy excitations is analogous to the difference
in the velocity of the relative displacement of two laths
crossed at a small angle on the velocity of the point of
their intersection.

A distinctive feature of the spectrum of deformation
excitations (1) is the asymmetry of the atomic and
vacancy branches relative to the Fermi momentum (2).
Apart from the difference in the velocities of excited
states, this asymmetry manifests itself in the different
character of the change in the energies of excited
states (3) and (4) when the number of monopole-dis-
placed ions passes through the value Nac determined by
formula (5). In Fig. 2 this difference is illustrated using

(N) and (N) dependences.

Let us estimate the effect of structural features on
the variation of the spectrum. For the values Na < Nac,
the energy interval between nearest-neighbor levels is
written as follows:

(8)

and for Na ≥ Nac, as follows:

(9)

The energy intervals (8) and (9) do not depend on
the number ma of quantized states of the spectrum (or
the number of monopole-displaced ions) but are deter-
mined only by the properties of the deformed crystal.
The difference in these intervals leads to differences in
the number of levels of the spectrum. At Na < Nac, the
number of energy levels that can be occupied by Fermi
pairs is equal to

(10)

Nac N N2/3+( )/ 1 N2/3+( ) N1/3 1.+≈=

v A dε/dp( )p pD= v .=

v V dε/dp( )p pL= vma= =

ε̃V ε̃A

∆ε̃V ε̃V Na 1+( ) ε̃V Na( )– εD/N1/3;= =

∆ε̃A ε̃A Na( ) ε̃A Na 1+( )– εD/N .= =

NV ε̃V /∆ε̃V Na 1,–= =
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and at Na ≥ Nac, to

(11)

Dependences (10) and (11) are shown in Fig. 3; it is
seen that at Nc = (Nac – 1)3, there occurs a sharp change
in the number of energy levels of the spectrum.

The main consequence of the change in the number
of energy levels upon the passage through the point Nc

consists in that the phonon pumping of the spectrum by
deformation pairs in the case of the different structure
of the levels can lead to differences in the character of
their occupation. For example, assuming that all the ma

states became transformed by phonons into excited
states, at Na < Nac, we obtain an energy band with a
complete occupation of the levels by pairs of oppositely
directed deformation spins. At Na ≥ Nac, the number of
energy levels can exceed the number of pairs, since
N ≥ Na. At the point Na = Nac, the number of levels Nc @
mac = Nac/2 and, consequently, there is a partially filled
energy band, which permits generation of spin excesses
from ma admissible states of Fermi deformation pairs in
na phonon states of thermal normal vibrations of the
crystal.

The assumption that the additional external force
action or exchange interaction can cause ordering of
deformation spins permits one to determine the pos-
sible angular momentum of a nanocrystal:

L = "Nana ≈ "N1/3na.

Since all possible phonon states from na = 1 to na ≈
N can take part in the formation of collective deforma-
tion modes, the angular momentum can take on magni-
tudes from a lower value

Ll ≈ "N1/3 (12)
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Fig. 2. The energy of the highest excited state as a function
of the number N of ions in the crystal. At N = Nc = 103, the
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branch.
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to an upper value

Lh ≈ "N4/3. (13)

Formulas (12) and (13) show that for typical values
of the number of atoms in nanocrystals, L can take on
macroscopic (although in the case under consideration,
it would be more correctly to say “nanoscopic”) values
and, consequently, cause the appearance of a rotational
momentum of a nanocrystal.

Thus, in nanocrystals subjected to deformation by
an external force source, ordered states of Fermi defor-
mation modes generated by thermal excitations can
arise. These states, in turn, can bring the nanocrystal
into a state of rotational motion and determine its insta-
bility, e.g., as in the case of instability of small particles
on a substrate [3–5].

In compact materials subjected to an external load,
the angular momentum L should favor sliding or twist-
ing of nanocrystallites along their boundaries, thereby
ensuring the improvement of plastic properties, as is
the case in nanoceramic materials, e.g., in nanoceram-
ics based on hydroxyapatite [1] or in ceramics based on
polycrystalline zirconium oxide ZrO2 [6]. It can easily
be understood that even in the absence of an external
force action, only at the expense of temperature gradi-
ents, the force interaction between nanocrystallites is
retained and, consequently, the thermal generation of
the momenta L is also retained. Therefore, the effect of
sliding or twisting of nanocrystals also should occur. In
both cases, the rotational motions of nanocrystallites
should lead to the acceleration of the diffusion transfer
of atoms through the intercrystalline space.

Let us estimate the possible velocities v of motion
of surface atoms of a rotating nanocrystallite. Assum-
ing that the mechanical momentum of a nanocrystal is

N
1000
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Fig. 3. Variation of the number of energy levels of the spec-
trum of deformation excitations of a crystal as a function of
the number of monopole-displaced ions in the region of the
force nonuniformity. At Na = Nac = 11, we have N – Nac @
mac for the number of levels of the spectrum (the total num-
ber of deformation spins).
P

L = Mvr, where M is its mass and r is the average
radius, and taking, as the basis for calculations, a typi-
cal case of r = 10 nm for typical solid-state values of the
volumes Ω ≈ 10–23 cm3 and densities ρ ≈ 10 g/cm3, we
find the lower order of magnitude for the velocity

from Eq. (12) and the upper order

from Eq. (13).
If we proceed from the case N = 103 considered in

this paper, which, for typical values of parameters, cor-
responds to a nanocrystal with an average radius r ≈
1 nm, we obtain

The tendency observed is evident: the velocity of
rotation of a crystallite increases as its size decreases.
The other aspect, namely, the high values of the veloc-
ities, which can qualitatively substantiate the exclu-
sively high diffusive mobility of atoms in nanomateri-
als, is nontrivial [1]. Experimental data indicate that the
mobility of atoms in nanomaterials is 5–6 orders of
magnitude higher than in conventional polycrystals
and, consequently, indirectly corroborates the above
estimates.

We can also note that the greatest estimate for the
velocities is not very far from the typical value of the
velocity of propagation of long-wavelength elastic
vibrations c ≈ 105 cm/s. The question that arises is
whether or not the phenomenon that is called super-
plasticity is linked with the fact that the velocity of rota-
tion of the surfaces of nanocrystals coincides with the
sound velocity. To answer this question, experiments in
situ are necessary, such experiments that would permit
one to follow the behavior of individual nanocrystal-
lites during deformation.

Now, we consider the higher strength properties of
compact nanocrystalline materials as compared to the
conventional polycrystals. For example, at normal tem-
peratures, the microhardness of nanomaterials is 2–
7 times that of coarse-grained polycrystals [1]. This
property seems to be the best studied, perhaps, for the
reason that the phenomenon of increasing strength of
polycrystals with decreasing grain size has long been
known. Neglecting known deviations from this regular-
ity, we nevertheless can believe that the approach to the
estimates of microhardness from the viewpoint of the
existence of self angular momenta for nanocrystallites

v l
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10 17– 10 6–×
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v h
"N4/3
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can reflect some new aspects of the physics of interac-
tion of two solids.

Investigations of microhardness by the Vickers tech-
nique is performed using a diamond pyramid that is
impressed into the surface of a material and causes an
inhomogeneous stress. The inhomogeneous distribu-
tion of the field of stresses imposed onto a disordered
structure of the vector field of self angular momenta of
nanocrystallites can lead to an ordering of rotations of
crystallites.1 The formation of an ordered structure of
the vector field of momenta should make the collective
response of nanocrystallites more rigid, at least at the
expense of the suppression in such a system of transla-
tional degrees of freedom of individual crystallites.

Finally, let us turn to the question of damping prop-
erties. In [7], we arrived at a conclusion that an
improvement in the damping properties of nanocrystal-
line materials can be a consequence of cutting out of
long-wavelength phonons of the nanocrystal by
extended force nonuniformities. In addition, it follows
from the results of our previous paper [2] and this paper
that the formation of a collective vibrational system of
deformation spins is possible only at the extent of cut-
ting out of the long-wavelength portion of the phonon
spectrum of the crystal. Based on the geometrical
aspect (which is traditional for the investigation of

1 It should perhaps be noted that here we should speak of classical
ordering rather than of quantum ordering of deformation spins
that form the moment L.
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damping properties), we can conclude that the specific
features of the collective behavior of rotating nanocrys-
tals in the ordered and disordered states should mani-
fest itself in experimental data on internal friction.
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Abstract—The impurity absorption of light in a quantum dot with a parabolic potential profile is considered
within the framework of the model of a zero radius potential in the effective mass approximation. The sensitiv-
ity of the effect of position disorder to the size factor at the transition from a quantum well to a quantum dot is
revealed. The spectral dependence of the coefficient of impurity absorption of light is investigated with account
of the spread in size of quantum dots. It is shown that the account of spread in size results in smearing of discrete
absorption lines. The impurity absorption edge depends on the parameters of quantum dots and the depth of the
impurity level. © 2001 MAIK “Nauka/Interperiodica”.
1. Research into the optical properties of semicon-
ductor quantum dots (QD) synthesized in a glass host is
rather urgent for development of new devices of quan-
tum electronics [1]. An important aspect of the research
is the reliable identification of optical transitions,
which is based on calculation of corresponding oscilla-
tor strengths. For example, in the case of interband
absorption of light by a spherically symmetric QD,
such identification [2] allows one to interpret the results
of the experiment [3]. The development of δ-doping
technology (a review is given in [4]) stimulates
research of impurity absorption of light in structures
with QDs. In the present work, the local electron states
induced by defects inside semiconductor QDs, which
are synthesized in a transparent boron silicate host, are
investigated. The QD is described within the frame-
work of the model of a spherical oscillator well. The
model of zero radius potential is used for the potential
of the defect [5–7]. This model, as known [7], well
enough describes D– states and the states of a negative
hydrogen ion. In the effective mass approximation, the
coefficient of impurity absorption of light is calculated
with account of the size spread of QDs. It is supposed
that the spread appears during phase disintegration of
an oversaturated solid solution [8, 9] and is satisfacto-
rily described by the Lifshitz–Slezov formula [10]

(1)

where e is the natural logarithm base and R0 and  are
the radius of a QD and its average value, respectively.

P u = R0/R0( )

=  
3eu2 1/ 1 2u/3–( )–[ ]exp

25/3 3 u+( )7/3 3/2 u–( )11/3
-------------------------------------------------------------, u 3/2<

0, u 3/2,>
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2. The Lippmann–Schwinger equation for a bound
state is written as1 

(2)

where G(r, r1; Eλ) is the one-electron Green’s function
which corresponds to a source at the point Ra = (xa, ya, za)
and to an energy Eλ; Ψλ(r1, Ra) is the wave function of
an electron which is localized by the short-range poten-
tial; Eλ = –"2λ2/(2m*) is the binding energy of the
impurity center; and m* is the effective mass of the
electron. Here, Vδ(r, Ra) is a zero radius potential of
power γ = 2π/α:

Vδ(r, Ra) = γδ(r – Ra)[1 + (r – Ra)—r]. (3)

The parameter α is defined by the binding energy Ei of
the electron localized on the same defect in the bulky
semiconductor. After substitution of Eq. (3) into
Eq. (2), we have

Ψλ(r, Ra) = γG(r, Ra; Eλ)( Ψλ)(Ra , Ra), (4)

where

( Ψλ)(Ra , Ra) ≡ [1 + (r – Ra)—r]Ψλ(r, Ra). (5)

Operating with the operator  on both parts of Eq. (4)
and summing over quantum numbers with the use of
the Möller formula for the generating function [11]

(6)

1 The impurity center is located at the point Ra = (xa, ya, za), and
the energy is reckoned from the bottom of a spherical oscillator
well that approximates a QD.
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gives the following equation, which defines the depen-
dence of the bound state energy Eλ of the impurity center
on the parameters of the QD and on the position of the
defect Ra:

(7)

where η2 = |Eλ |/Ed and  = |Ei |/Ed are parameters
specifying the energies of the bound state of the impu-
rity center in the QD and the bulky semiconductor,
respectively; Ed = m*e4/2"2ε2 is the effective Bohr
energy with account of the effective mass m* and the

dielectric permittivity ε; β = /4 ;  = 2R0/ad;

ad = ε"2/m*e2 is the effective Bohr radius;  = U0/Ed

is the amplitude of the QD potential; and  = Ra/ad .

The results of numerical analysis of Eq. (7) are pre-
sented in Fig. 1, from which it is seen that the effect of
position disorder takes place in a QD with impurity cen-
ters: η2( ) is a decreasing function of Ra (curve 1). Such

behavior of η2( ) is characteristic of quantum-sized
films [5, 6] and quantum wells [7]. This behavior is
caused by a radical change in the local electron states
near the boundary of the system. The growth of the
amplitude of the QD potential  leads to more
restrictive conditions for the existence of the bound
state (cf. curves 1 and 2). For comparison, Fig. 1 pre-
sents the numerically calculated dependence (curve 3)
of the localization energy on the position of the same
defect in a quantum well with a parabolic potential pro-
file, which was obtained in [12]. In our notation, the
corresponding equation has the form

(8)

where a* = za/ad, β = L*/4 , L* = L/ad, and L is the
width of the quantum well.

A comparison of curves 1 and 3 shows that the
2D  0D transition is accompanied by strengthening
of the effect of position disorder.
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3. We consider impurity absorption of light in a QD
with a parabolic potential profile. The wave function of
the electron which is localized by a short-range poten-
tial, as one can easily see from Eq. (4), differs only by
a constant factor from the one-electron Green’s func-
tion:

(9)
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Fig. 1. Position of the localized level η2 = |Eλ|/Ed as a func-

tion of the coordinate of the impurity center  = Ra/ad for
various values of the parameters of a quantum dot:

(1)  = 120,  = 40,  = 1; and (2)  = 200,  = 40,

 = 1. Curve 3 presents a similar function for a quantum

well:  = 120,  = 40, L* = 1.
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where C = (–∂/∂εaG(Ra, Ra; εa)a3)1/2 is a normalizing
factor, εa = |Eλ|/"ω0, E0 = (3/2)"ω0 is the energy of the
QD ground state, and a2 = "/(m*ω0).

We consider the case when an impurity atom is
located at the center of the QD (Ra = 0). Then, using an
integral representation for the Whittaker function [11],
relation (9) can be rewritten as

(10)

where Γ(x) is the gamma function, Wκ, µ(x) is the Whit-
taker function, and

with Ψ(x) being the logarithmic derivative of the
gamma function.

The wave function of the final state is taken as

Ψλ r( ) C
r2
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where Cnl = /Γ(l + 3/2) is the

normalizing factor; (r2/a2) are the generalized

Laguerre polynomials; (cosθ) are the associated
Legendre functions of the first kind; n, l, and m are the
radial, orbital, and magnetic quantum numbers, respec-
tively; and r, ϕ, and θ are the spherical coordinates.
Such a choice of the wave function of the final state is
justified if the inequality λa @ 1 is satisfied (the case of
strong localization of the impurity electron).

By virtue of the spherical symmetry of the problem,
optical transitions fulfill the usual selection rules in the
dipole approximation: only the transitions from the
ground s state of the impurity center to the excited p
states of the QD are allowed. The square of the modulus
of the matrix element that determines the oscillator
strength of a dipole optical transition has the form 
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where a* is the fine structure constant including the
permittivity, ω is the frequency of light, I0 is the inten-
sity of light, and λ0 is the local-field coefficient. 
With account of the size spread of QDs, the
impurity absorption coefficient of light K can be
written as
(13)
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where K0 = π7/2α* N0/24, β* = /4 ,  =
2 /ad, δn = (2n + 5/2)/[(X – η2)β*], X = "ωEd, N = [C] is
the integer part of the number C = [3(X – η2)β*/2 – 5/2]/2,
∆n = η2(2n + 5/2)/[2(X – η2)], the function P(δn) is
defined by formula (1), and N0 is the concentration of
QDs in the dielectric host. 

In Fig. 2, the spectral distribution of the normalized
impurity absorption coefficient K/K0 is presented, for
the optical transition, with a maximal oscillator
strength (n = 0). One can see that the account of the size
spread results in smearing of discrete lines of the impu-
rity absorption of light. The evolution of the spectrum
of impurity absorption with a change in the QD size

 is shown by curves 2 and 3 in Fig. 2. A decrease in
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 shifts the edge of impurity absorption to the short-
wavelength spectrum range, which reflects the shift of
the lower size-quantization level. The sensitivity of the
impurity absorption edge to the parameter η2 = |Eλ |/Ed

is shown by curves 1 and 2. A decrease in η2 (i.e., an
increase in the radius of the localized state) leads to an
appreciable increase in the oscillator strength of the
dipole optical transition (cf. curves 1 and 2), and the
edge of impurity absorption is shifted to the long-wave-
length spectrum range. This shift satisfies the law (N = 0)
Xt = η2 + 5/(3β*). This shift can be used for experimen-
tal determination of the average radius of nanocrystals
(QDs) if the parameters η2 and  are known.

4. Thus, the localized state in a short-range potential
in a QD with a parabolic potential profile was consid-
ered. In this model of the QD, the amplitude of the QD
potential  is an empirical parameter. 

In this approximation, the influence of dimensional-
ity on the location of the impurity level is shown to take
place in the 2D  0D transition. The account of the
size spread of QDs essentially changes the character of
the spectral distribution of the impurity absorption
coefficient of light. The quantum dot which is filled
only by electrons localized by short-range potentials
can have higher thresholds for thermal ionization. The
reason for this is that the electrons localized by short-
range potentials inside the QD are confined to the
region between the barriers of height about  and

 + η2. In this connection, the use of an assemblage
of QDs with impurity states as an active medium for a
laser structure attracts certain interest.
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Abstract—An analytical expression is obtained for the resonant permittivity and linear photoelasticity coeffi-
cients in multiple quantum well structures near interband resonances. It is shown that the resonant photoelas-
ticity in these structures is considerably higher than that in the bulk case and can exceed the photoelasticity near
the resonance of a bulk exciton. It is noted that this result is associated with localization of noninteracting elec-
trons and holes in the layer with a quantum well. Similar to the exciton in a bulk crystal, this system determines
the elastooptic properties of the superlattice in the vicinity of the interband resonance. © 2001 MAIK
“Nauka/Interperiodica”.
As was shown earlier [1], the localization of elec-
trons and holes in a quantum well leads to a significant
increase in the linear photoelasticity coefficients in
multiple quantum well structures (MQWS) in the vicin-
ity of exciton resonances. This localization imparts the
properties of an oscillator to the electron–hole system
and can be assumed to increase the photoelasticity
coefficients near resonances between discrete levels of
free (noninteracting) electrons and holes in the intrinsic
quantum wells, with respect to the interband resonance
in a bulk crystal. Let us estimate this quantity.

By using the density matrix method [2], which was
developed for the case of noninteracting electrons and
holes in a quantum well, and the approximation of an
infinitely deep well, we obtain an expression for the
resonant component of the permittivity in the region of
transitions between discrete levels of free electrons and
holes in the quantum well:
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Here, Vp = SLp and Lp = L + LB denote the volume and
the thickness of an MQWS period, respectively; L is the
quantum well width; LB is the barrier width; S is the
area of the MQWS surface parallel to the layers; ω and
κ stand for the frequency and the wave vector of the
electromagnetic wave exciting the electron; Eg is the
band gap in the layer constituting the quantum well in
the bulk case;  and  are the effective
masses of the electron and the hole, respectively, in the
directions perpendicular and parallel to the MQWS lay-
ers; Ω is the unit cell volume in a three-dimensional
crystal used to form the quantum well; (r) is
the amplitude of the Bloch function for the conduction
(c) or valence (v) band in the state n with the wave vec-
tor k0, || in the layer with a quantum well (it is assumed
that the minimum of the conduction band and the max-
imum of the valence band coincide in the n state and are
situated at the point k0, ||); k|| and κ|| symbolize the com-
ponents of the wave vectors k and κ, respectively, in the
plane parallel to the MQWS layers; n = 1, 2, 3, … are
the numbers of the discrete spatial-quantization levels
of the electron and hole states in the quantum well (this
representation of the Bloch function amplitude reflects
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the situation when the confinement of the well thick-
ness in the direction perpendicular to the MQWS layers
transforms the quasi-continuous spectrum of electronic
states in the bulk crystal [3] and the quantum numbers
kx, ky, and kz, which characterize the Bloch function, are

replaced by kx, ky, and n);  and  represent
the energies of electronic states and the electron energy
distribution functions, respectively, in the conduction
and valence bands which are transformed in the quan-
tum well;  is the momentum operator; e and m desig-
nate the charge and the mass of the electron, respec-
tively; and s is the linewidth of the resonant transition
with the energy difference  – .

A strain applied to the MQWS, which changes the
electronic levels according to the law  =

 + uik and  =  + uik, in
the general case, also changes the resonant permittivity

(  denote the energy levels in the absence of

strain;  symbolize the tensors of deformation
potentials for intraband transitions in the nth subband in
the conduction band and the valence band, respectively;
and uik is the strain tensor). In what follows, we will use
the linear term in the dependence of the permittivity on
uik. This becomes possible at a small strain, i.e., when

(  – )uik ! |"ω +  –  + is|.

We assume that  ≅  1 and  ≅  0. Since summa-
tion over all quantum numbers n and n' in formula (1)
leads to additional difficulties, we neglect the contribu-
tion of the levels with n > 1 to the resonant permittivity.
Analysis showed that the latter assumption is accept-
able when s < "2π2/(2 L2), because, in this case, the
numerator of the first term in the series (i.e., the term
with n = n' = 1) in formula (1) is maximum and its
denominator near the resonance "ω   –

 is considerably smaller than the denominators
of other nonzero terms in the series. The above criterion
can easily be satisfied for standard values of the param-
eters. Then, we change from summation over k|| to inte-
gration, expand the obtained expression into a power

series of ∆a = –(  – )uik, and find the linear
term of the εik expansion in terms of ∆a in the simplest
case k0, || = 0; that is,

(2)

Here,  = 2e2 /πm2ω2(2µ/"2)3/2, a = "ω –  –
"2π2/(2µ⊥ L2) is the deviation from the resonance, µ⊥ ; || =
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1
2
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a is+
-------------.=

Aik
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0

P

/(  + ) is the reduced mass
of the electron and the hole in the directions perpendic-

ular and parallel to the quantum well layers, and  is
the band gap in the absence of strain.

Substituting expression (2) into the formula for the
linear photoelasticity coefficient in a cubic crystal [1],

that is, P111 = –∆ε11/[( )2u11], where  is the com-
ponent of the stationary permittivity of the layer consti-

tuting the quantum well (it is assumed that  =  =

 = ε0, where ε0 is the stationary permittivity of a bulk
crystal), we can estimate the photoelasticity coefficient
of the MQWS in the vicinity of the resonance between
the ground states of the electron and the hole in the
layer with a quantum well

(3)

Analysis of the derived expression indicates the

importance of the factor ("2π2)(2µ|| )1/2, which is
related to the MQWS period or, equivalently, to the
quantum well density NQW in the MQWS (NQW =
N/LMQWS = 1/Lp, where N is the number of quantum
wells in the MQWS and LMQWS = NL is the MQWS
length in the direction perpendicular to the layers). This
is explained by the fact that, upon localization of an
electron and a hole in the layer with a quantum well,
this system can be considered an oscillator and the den-
sity of these oscillators under resonant excitation
affects both the linear permittivity (2) and the linear
photoelasticity.

A comparison of relationship (3) and the photoelas-

ticity coefficient  near interband resonances in a
bulk crystal results in the following relationship (for the
same deviations a from the resonance and the same val-
ues of s) [4]:

(4)

Hence, we have  >  for "2π2/(2µ|| ) >
|a + is |. Relationship (4) is qualitatively similar to the
relationship between the photoelasticity coefficients

 and  for the bulk exciton [5]:

Here, R = µe4/(2 "2) is the energy of the ground exci-
ton state and µ is the reduced mass of the electron and
the hole in the bulk crystal. Thus, the system of nonin-
teracting electrons and holes in the quantum well
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behaves as an exciton in which the spatial confinement
of the motion of the electron and the hole inside the
quantum well plays the role of the Coulomb interaction
localizing the electron and the hole together. As follows

from a comparison of  and ,

,

the magnitude of  can significantly exceed

. According to calculations for the standard
parameters, this is achieved with deviations from the

resonance when  has sufficiently large values.

For instance,  ~ –0.51 for the GaAs/AlxGa1 – xAs
system at a ~ 8 meV, s ~ 4 meV, LP = 309 Å (L = 102 Å),

and  ~ –0.31.

Thus, the system of noninteracting electrons and
holes in a layer constituting the quantum well in the
MQWS can be considered an exciton-like oscillator in
which the localization of an electron and a hole in the
quantum well fulfills the function of a Coulomb inter-
action in the exciton. The enhancement of the fre-
quency dependence of the permittivity in the immedi-
ate vicinity of the resonance in systems of these oscil-
lators in the MQWS leads to an increase in the
photoelasticity coefficients as compared to the bulk
case. This increase is quite essential and, under certain
conditions, can even exceed the resonant photoelastic-
ity near the resonance of a bulk exciton.

The multiple quantum well structures have recently
been applied to designing acoustooptic and electrooptic
devices for electromagnetic radiation modulation (see,
for example, [6]). The efficiency of acoustooptic mod-
ulators is primarily determined by photoelasticity coef-
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ficients. In this respect, the resonant behavior of photo-
elasticity coefficients, which is characterized by a sub-
stantial increase in their values, is of particular interest.
The experimental investigation of the resonant photo-
elasticity coefficients near interband resonances in the
MQWS can be performed according to the standard
scheme for determining the resonant photoelasticity in
bulk anisotropic crystals with the use of Brillouin scat-
tering, as was done in [7, 8].
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Abstract—The intraband absorption of electromagnetic radiation by two types of nanostructures of cylindrical
symmetry—by a quantum cylinder (ring) and a quantum wire—is investigated. Analytical expressions for the
coefficients of absorption of high-frequency electromagnetic radiation by the electron gas of nanostructures are
obtained. It is shown that the absorption curve exhibits resonance peaks and that, in the case of a degenerate
gas, these peaks have breaks. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the basic methods for investigating the spectral
properties of an electron gas and the lateral-confinement
parameters of different low-dimensional structures is
examination of intraband electron transitions caused by
electromagnetic radiation. This type of examination is of
utmost importance for those quantum nanostructures
whose confinement may be modeled by a parabolic
potential, since, in this case, according to the general-
ized Kohn theorem, electron–electron interaction usu-
ally has no influence on the optical properties of the
system. It should be noted that, by means of a parabolic
potential, many low-dimensional structures can be
described. For example, in [1], it was shown that the
parabolic potential is equivalent to the potential pro-
duced by a positive charge uniformly distributed over
an infinite layer. In this case, the optical properties of
the system are independent of both the electron–elec-
tron interaction and the number of electrons in the
layer. At the present time, progress in nanotechnologies
permits one to construct strained GaAs/GaAlAs layers
of various curvatures [2] and, in particular, to create
cylindrical surfaces exhibiting very interesting physical
properties [3, 4].

Another type of structure that can be described by
the model of parabolic potential is quantum wires.
Recently, the technology for production of high-perfect
semiconductor quantum wires with an arbitrary poten-
tial profile, in particular, with a parabolic confinement
potential, was elaborated [5].

Optical electron transitions in various quantum
nanostructures are now widely studied. In particular,
intraband transitions in quantum wells [6–8], quantum
wires [9], quantum layers [10], and arrays of antiwires
[11] have been considered. The hybrid phonon reso-
1063-7834/01/4303- $21.00 © 20530
nance in a quasi-two-dimensional structure was exam-
ined in [12]. Multiphonon resonance was studied in [13,
14]. The optical properties of a quantum point junction
were investigated in [15]. In [16], the influence of electron
correlations on the optical absorption of a quantum
point was considered. The theory of magnetooptical
absorption by a parabolic quantum channel in a two-
dimensional electron gas was expounded in [17].

The aim of this work is to examine the absorption of
electromagnetic radiation by quantum structures of two
types in a longitudinal magnetic field, namely, by the
quantum layer of a finite thickness rolled as a cylinder
and by the quantum wire. Moreover, the absorption of
electromagnetic radiation by a quantum ring of finite
thickness, as the limiting case of the quantum cylinder,
was considered. Note that the applied magnetic field
can couple the motion along the field with that in the
transverse direction and cause hybridization of the
spectrum. This fact, in turn, can result in interesting
physical effects. In particular, as is shown below, reso-
nance absorption occurs at hybrid frequencies rather
than at the cyclotron frequency.

Since only the systems described by parabolic con-
finement potential are considered in this work, the elec-
tron–electron interaction is not taken into account here.
However, we note that the Kohn theorem is not true
for two basic cases: for multicomponent systems
(such as double quantum wells [18]) and for a non-
parabolic well [19]. In such systems, electron–electron
interaction can have a strong effect on the optical prop-
erties of electrons.

In our work, we examine the dependence of the
absorption coefficient Γ on the radiation frequency ω
for the structures mentioned above. In calculating Γ(ω),
we used the approach which was elaborated in [20, 21].
001 MAIK “Nauka/Interperiodica”
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Both the cases of degenerated and nondegenerated gas
are considered.

As is shown below, the frequency dependence of
electromagnetic radiation absorption is of the reso-
nance type. Note that the resonance absorption takes
place only if the broadening of electron energy levels
caused by temperature and scattering is sufficiently
small.

2. A QUANTUM RING OF FINITE WIDTH
AND A QUANTUM CYLINDER

OF FINITE THICKNESS

We will model a thin quantum ring and a quantum cyl-
inder with thin walls by using the following approach. Let
us consider 2D-electron gas in a quantum channel with
parabolic confinement potential. If, in one of the direc-
tions, the periodic boundary conditions are imposed on
the electron wave function,

Ψ(x, y) = Ψ(x + L, y), (1)

where L is the channel length, we will obtain the model
of a quantum ring of finite width. In this case, the effec-
tive ring width coincides with the channel width, leff =

.

By adding a term describing free motion along the z
axis to the Hamiltonian, we can obtain a model of a
quantum cylinder of finite thickness.

It is clear that the resonance character of the absorp-
tion will take place only for the transitions in which dis-
crete spectral quantum numbers are changed (the pho-
ton polarization vector is perpendicular to the z axis).
This conclusion follows from the fact that the motion of
electrons along the z axis has no influence on the reso-
nance optical transitions. When the cylinder height
tends to zero, we have a ring whose absorption coeffi-
cient is the same as that of a cylinder, as will be shown
below.

For the cylinder, the Hamiltonian H0 of one-electron
spinless states is of the form

(2)

where ω0 is the frequency of the confinement potential,
m* is the effective mass, and p is the electron momen-
tum.

The gauge of the vector potential is chosen such that
A = (–By, 0, 0). Then, after imposing periodic boundary
conditions along the x axis, we obtain the energy spec-
trum of the quantum cylinder:

(3)

where Ω = , ωc = |e |B/m*c is the cyclotron

frequency, λ = 2π"2 /m*L2Ω2 is the energy of the

"/m*ω0
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dimensional confinement, p is the electron momentum
along the field direction, m = 0, ±1, ±2, …, and n =
0, 1, 2, … .

The wave functions corresponding to the energies in
Eq. (3) can be written in the form

(4)

Here, l = , L = 2πR is the channel length and
Φn(x) are the oscillator functions.

In the case of a nondegenerated gas, in the first-
order perturbation theory with respect to the constant of
electron–photon interaction, the absorption coefficient
is described by the following expression, which follows
from [20]:

(5)

where ε(ω) is the real part of the permittivity, f is the
wave vector of the photon, f0(εmnp) is the electron distri-
bution function, Nf is the number (per unit volume) of
photons of frequency ω, and the factor (1 – exp(–"ω/T))
allows for stimulated photon emission.

The normalization constant of the distribution func-
tion in Eq. (5) is found from the condition

(6)

Here, N is the number of electrons per unit volume and
Lz is the cylinder length along the z axis.

Hence, the distribution function (εmnp) takes the
form

(7)

where Θ3(x) is the Jacobian theta function.

Let the direction of the photon polarization be coin-
cident with the direction of the y axis. Then, the opera-
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tor of the electron–photon interaction is written in the
form

(8)

In the dipole approximation, the square of the modulus
of the matrix element of HR is easily found to be

(9)

As is evident from Eq. (9), only transitions between the
neighboring levels n' = n ± 1 are possible in the dipole
approximation.

Substituting Eq. (9) into Eq. (5), we obtain the
absorption coefficient:

(10)

From Eq. (10), it is clear that the transitions occur at the
resonance frequency ω = Ω .

To take into account the resonance broadening due
to electron scattering, we replace the delta-function
peaks by the Lorentzian

(11)

Here, τ is the phenomenological relaxation time. After
substitution Eq. (11) into Eq. (10), we obtain

(12)

Taking into account that the probability of the spon-
taneous emission of photons is exponentially small
and the hybrid frequency is sufficiently large ("Ω @ T),
we drop the exponentially small terms of the order of
exp(–"ω/T) and exp(–"Ω/T) in Eq. (12). In this case,
we obtain the estimation

(13)
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where

(14)

As is clear from Eq. (13), there is a unique reso-
nance at the point ω = Ω which corresponds to the tran-
sition between the neighboring hybrid levels.

For a degenerated gas, the expression for Γ(ω) can
be obtained from the initial expression (10) by formal
replacement of f0(εmnp) by f0(εmnp)[1 – f0(εmnp + "ω)].
Here, f0(εmnp) is the Fermi distribution function.

Therefore, for the absorption coefficient of the
degenerated gas, we obtain the estimation

(15)

where

(16)

and the normalizing volume is taken to be equal to
unity.

As is evident from Eq. (15), the response of the elec-
tron gas to the perturbation produced by the electro-
magnetic radiation includes two factors. The first of
them refers to the resonance peak in the curve Γ(ω) at
the point ω = Ω. The second one γ0(ω), as will be shown
below, is responsible for the breaks on the resonance
curve.

The dependence Γcyl(ω) for the nondegenerate gas is
shown in Fig. 1. As follows from the resonance condi-
tions and Fig. 1, the peak location in the curve Γ(ω)
depends on the magnitude of the magnetic field.

In the case when the cylinder height is small
enough, the wave function and the spectrum of the one-
electron states have the form

(17)

(18)

where ϕ(z) is the part of the wave function that
describes the motion along the z axis.

This case corresponds to a thin quantum ring of

effective width . For the case of a nondegen-
erate gas, the expression for Γring is the same as the
expression for Γcyl, as was indicated above.
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Absorption, in units of Γ0 
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Fig. 1. Absorption coefficient of the quantum cylinder as a function of the frequency of the electromagnetic radiation and the mag-
netic field in the case of a nondegenerate gas; ω0 = 1.5 × 1013 s–1 and τ = 10–12 s.
3. ABSORPTION COEFFICIENT
FOR THE QUANTUM WIRE

Now, we consider the quantum wire of a circular
cross section in a longitudinal magnetic field character-
ized by vector potential A = (–yB/2, xB/2, 0). The con-
finement potential is assumed to be the sum of two par-
abolic potentials of the same characteristic frequencies.
The spectrum of the parabolic quantum wire has the
well-known form

(19)

where m = 0, ±1, ±2, …; n = 0, 1, 2, …; p is the momen-

tum along the field direction; and Ω = , ω0

is the frequency of the parabolic potential.
In the cylindrical coordinates, the wave functions

corresponding to the energies in Eq. (19) are of the
form

(20)
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The absorption coefficient of the wire can be found
with formula (5) by replacing εmnp with Emnp .

Let the direction of the electromagnetic wave polariza-
tion be coincident with the y axis. Then, the operator of the
electron–photon interaction can be written in the form

(21)

where  = c"/ |e |B. By passing to the cylindrical coor-
dinates, we obtain from Eq. (21)

(22)

The matrix elements of HR are of the form
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The quantities that are multiplied by δm, m' + 1 and δm, m' – 1 in
Eq. (23) are conveniently calculated separately. Since
the modulus of m is contained in the expression for
Rm, n, it is necessary to consider three cases: m ≥ 1,
m ≤ –1, and m = 0. After long mathematical manipula-
tion, we obtain expressions for the squares of the matrix
elements of HR (see Appendix).

First, let us consider the case of a nondegenerate
electron gas. After calculating the normalizing constant
by using a condition similar to Eq. (6), we obtain

(24)

It is convenient to represent the expression for the
absorption coefficient as a sum of three terms,
Γwire(ω) = Γ(+) + Γ(–) + Γ(0), where Γ(+) corresponds to
the case of m ≥ 1:

(25)

and Γ(–) corresponds to the case of m ≤ –1:

(26)
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Here, s = |m |, Esnp = "Ω(n + 1/2) + "(Ω – ωc)s/2 +
p2/2m*. Finally, Γ(0) corresponds to the case of m = 0:

(27)

In Eqs. (25)–(27), we introduced the notation

As follows from Eqs. (25)–(27), there are four kinds of
resonance points:

(28)

Let us rearrange the terms in Γwire(ω) according to their
behavior at the resonance points. As a result, we obtain
Γwire = Γ(1) + Γ(2) + Γ(3) + Γ(4), where the term containing
the singularities of the first type has the form

(29)

while the term containing the singularities of the sec-
ond type has the form

(30)
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The term having singularities of the third type is of the
form

(31)

and, finally, the term having singularities of the fourth
type is of the form

(32)

Note that, in Γ(3) and Γ(4), the inequality n' > n is ful-
filled, since ωc < Ω .

In the vicinity of a resonance point, where ω is such
that (2ω  ωc – Ω)/2Ω is an integer, the dominant con-
tribution to Γ(3) and Γ(4) comes from only one term in
the sum over n'. We introduce the notation

(33)

where plus corresponds to Γ(3), minus corresponds to
Γ(4), and the integer part of the variable x is denoted by
[x]. Then, n' can be written as n' = N± + n.

In order to take level broadening into account, we
replace the delta-function peaks by the Lorentzian
δτ(∆ωi), where ∆ωi = ω – ωi is the resonance detuning
(i = 1, 2, 3, 4).

After substituting the distribution function (24) into
Eqs. (29)–(32) and dropping the exponentially small
terms of the same order as in Eq. (12), we obtain a final
expression for Γwire. For the term containing the reso-
nance points of the first type, we obtain

(34)
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For the term containing the resonance points of the sec-
ond type, we find

(35)

The term containing the resonance points of the third
type is of the form

(36)

Finally, for Γ(4), we obtain

(37)

Here, gmn = exp[–("(ωc + Ω)m + 2"Ωn)/2T], gsn =
exp[–("(Ω – ωc)s + 2"Ωn)/2T], ω1 = (Ω – ωc)/2, ω2 =
(Ω + ωc)/2, ω3 = ΩN+ – (ωc – Ω)/2, and ω4 = (Ω + ωc)/2 +
ΩN –.

Thus, in the case of a quantum wire, the resonance
points are given by the common formula ω = Ω(k + 1/2) ±
ωc/2, where k = 0, 1, 2, ... .

The Γwire(ω) dependence for the case of a nondegen-
erate gas is shown in Fig. 2.

In the case of a degenerate gas, it is convenient to
write the absorption coefficient in a form similar to that
in the nondegenerate case. To do this, we transform the
integral over the momentum in Γ(ω) into a series by
summing the residues at the simple poles:

(38)
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where

(39)

Note that Eq. (38) is true only at T > 0 because of the
method by which it was obtained. In this case, the absorp-
tion coefficient Γwire = Γ(1) + Γ(2) + Γ(3) + Γ(4) is of the same
form as in the nondegenerate case, if Γ0 in Eqs. (34)–(37)
is formally replaced by  and gmn is replaced by Imn,

where  = πτLze2 /16 m*c ".
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Fig. 2. Absorption coefficient of the quantum wire versus
the frequency of the electromagnetic radiation in the case of
a nondegenerate gas; ω0 = 1.5 × 1013 s–1, τ = 5 × 10–12 s,
B = 1.5 T, and T = 100 K.
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Fig. 3. Absorption coefficient of the quantum cylinder ver-
sus the frequency of the electromagnetic radiation in the
case of a degenerate gas; ω0 = 1013 s–1, τ = 10–12 s, B = 1 T,

T = 0 K, and µ = 10–13 erg.
PH
4. DISCUSSION

In this work, we obtained relations for the absorp-
tion coefficients of high-frequency electromagnetic
radiation for a number of quantum nanostructures with
a parabolic confinement potential, namely, for a quan-
tum ring of finite width, a quantum wire, and a quantum
cylinder of finite thickness. For each of these structures,
the absorption curve has resonance peaks due to transi-
tions between certain electron energy levels. In the
cases of a quantum ring and quantum cylinder, there is
only one resonance point ω = Ω in the Γ(ω) curve asso-
ciated with electron transitions between neighboring
levels n  n + 1. The transitions accompanied by a
change in quantum number m are forbidden. Note that,
in the case of a nondegenerated gas, the absorption
coefficients for the ring and the cylinder are the same,
which is because the motion of electrons along the z
axis has no effect on the relevant electron transitions.

In the case of a quantum wire, the situation is much
more complex: in the dipole approximation, only the
transitions accompanied by a change in both quantum
numbers, m and n, take place. In this case, as follows
from the relations for gmn(ω) and gsn(ω), the peaks of
the largest amplitude are located at the resonance fre-
quencies (Ω + ωc)/2 and (Ω – ωc)/2. The amplitude of
the peaks at the frequencies ω = Ω(k + 1/2) ± ωc/2 (k =
1, 2, …) decreases abruptly with frequency growth
(Fig. 2).

From the above discussion, it follows that a series of
peaks arises in the Γ(ω) curve, which, in the general
case, have a doublet structure, with the spacing
between doublet components being equal to ωc (Fig. 2).
The doublets are located periodically with the period
Ω , and the peak height decreases dramatically with ω
increase. Note that, at the frequency Ω = 2ωc , the dis-
tances between the peaks are the same, and, therefore,
there is no doublet structure. As is clear from Fig. 2, the
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Fig. 4. Absorption coefficient of the quantum wire versus
the frequency of the electromagnetic radiation in the case of
a degenerate gas; ω0 = 1.5 × 1013 s–1, τ = 5 × 10–12 s, B =

1.5 T, T = 0 K, and µ = 10–13 erg.
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doublet components are asymmetric. The existence of
resonance is independent of the type of electron statis-
tics, and, therefore, the expression for the absorption
coefficient in the degenerate case has the same reso-
nance points as in the nondegenerate case. However, in
the case of a nondegenerate gas, there can be singular-
ities resultant from gas degeneracy; in this case, there
are breaks in the Γ(ω) curve. This is because, at a suffi-
ciently low temperature, only electrons of an energy E
higher than the threshold energy (E > Eth = µ – "ω) take
part in the absorption. For this reason, when the photon
energy "ω becomes such that the line µ – "ω crosses an
energy level of the discrete spectrum, there occurs a
sharp jump in the density of states, and, as a result, a
break appears. Note that the breaks are best-marked
only in the resonance region. These breaks can be seen
on the Γ(ω) curves presented in Figs. 3 and 4 for the
cylinder and the wire, respectively.

For the cylinder, it is easy to estimate the peak
height. At the resonance point, we have ω = Ω , and,
therefore, (Γcyl)max = Γ0. Note that the peak height does
not depend on the magnetic field and temperature in
this case. We also note that, for the wire, the spacing
between the doublet components increases with field
growth.

The characteristic feature of the resonance of this
type, in contrast with the usual cyclotron resonance, is
that the resonance peaks can occur at zero magnetic
field. The reason for this lies in the hybridization of the
magnetic and dimensional quantization. As a result, the
formula for the electron energy levels contains the
hybrid frequency Ω in place of ωc . Therefore, the dis-
tance between the levels can be sufficient for the reso-
nance to exist even in the limit of zero magnetic field
under the condition, of course, that the dimensional
quantization is sufficiently strong.

APPENDIX

Here, we present the squares of the perturbation
matrix elements calculated for different values of m.

(1) m ≥ 1
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(2) m ≤ –1 (s = |m |)

(A.2)

(3) m = 0 (s = 0)

(A.3)

Here,
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Abstract—The mechanisms of the occurrence of self-induced and selective transparencies of semiconductor
superlattices in a strong time-dependent electric field are investigated. The association of these mechanisms
with Bloch oscillations, dynamical localization, and collapse of electron quasi-energy minibands is analyzed,
and a comparison with the properties of Josephson junctions is made. It is shown that the self-induced transpar-
ency is due to the fact that the current-contributing component of the electron distribution function is destroyed
by collisions at discrete values of the amplitude of the time-harmonic field, while the selective transparency is
associated with the nonmonotonic dependence of the spectrum of nonlinear electron oscillations in the electric
field on the amplitude of the field. The dynamical localization and collapse of quasi-energy minibands lead
to the field energy dissipation and are favorable to destruction of the transparency states of the superlattice.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

An important property of semiconductor superlat-
tices (SSLs) is the occurrence of electromagnetic trans-
parency of three types, namely, self-induced (SIT) [1,
2], induced [1, 3], and selective transparencies [1]. The
SIT in an SSL was apparently first observed in [4], but
more conclusive experimental evidence for its occur-
rence was provided in [5]. Observations of the induced
and selective transparencies in SSLs have not yet been
reported in the literature. After [1–3], a number of the-
oretical papers were published [6–9] in which attempts
were made to physically interpret the transparency
effects in SSLs. Based on those papers, it is erroneously
believed that the transparency of SSLs is identical to
the dynamical localization (DL) of electrons [6, 9]; i.e.,
it is a macroscopic manifestation of this localization or,
in quantum-mechanical terms, it is a consequence of
the collapse of quasi-energy minibands [8, 10]. Unfor-
tunately, this misinterpretation is sometimes drawn on
when discussing experimental data on the nonlinear
effects in SSLs [5, 11] and considering nonlinear trans-
mission of terahertz radiation through these media [12–
14]. It is not surprising that the authors of the papers
mentioned above arrived at conflicting conclusions, as
was indicated with good reason in [15]. The authors of
[8] also showed that the collapse of minibands cannot
cause the SIT to occur in an SSL, but they made the
erroneous inference from this that the SIT does not
occur at all.
1063-7834/01/4303- $21.00 © 20539
In this paper, we develop a consistent theory (in the
τ approximation) of the transparency effects in SSLs,
elucidate the mechanisms for the occurrence of the
transparency, and make a comparison with Josephson
junctions.

1. GENERAL PROPERTIES 
OF BLOCH OSCILLATIONS

We start from the dispersion relation for an electron
in the SSL derived in the tight-binding approximation:

(1)

where ∆ is the miniband width; d is the SSL period; "k3
and "k⊥  are the longitudinal and transverse (relative to
the SSL axis) components of the electron momentum
"k, respectively; m is the transverse electron mass; and
" is the Planck constant. Let us consider the dynamics
of such an electron moving in a time-harmonic electric
field directed along the SSL axis:

E(t) = E0cos(ωt). (2)

Nonlinear oscillations of the superlattice electron in
this field are characterized by the velocity

(3)

ε k( )
∆
2
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"
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-----------,+=
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where

(4)

Vm = ∆d/2" is the maximum longitudinal velocity of the
electron, k0 is the longitudinal electron momentum at
time t0, g = Ω/ω, Ω = eEd/", Jn(g) is the Bessel function,
and e is the electron charge. It is known that, in a static
field of any strength EC, an electron is localized in space
and performs periodic Bloch oscillations (BO) no mat-
ter what its dispersion relation and initial momentum
k0. These oscillations have a Stark frequency ΩC =
eEC d/" [see Eq. (3) for ω  0] and amplitudes δV =
Vm = const and δx = d∆/"ΩC. The initial momentum k0
determines the initial phase of the BO. Collisions do
not affect the BO energy (time-averaged kinetic elec-
tron energy), but change the position of the center of the
oscillations (and, hence, the average potential energy of
the electron). The time-harmonic field has a phase of its
own and two characteristic times, namely, the period
2π/ω and the electron transit time over the Brillouin
minizone (the latter time is determined by the ampli-
tude of the harmonic field). For this reason, Bloch
oscillations in a harmonic field (BOHF), described by
Eq. (3), possess the following properties, which are dif-
ferent from those of BO in a static field:

(1) The motion of the electron in the momentum
space is independent of its dispersion relation and is
periodic, with its period being equal to that of the elec-
tric field 2π/ω. Bragg reflections from the minizone
boundaries do not lead to an additional period (in con-
trast to the case of a static field); they merely modulate
the electron oscillations within a field period. There-
fore, the BOHF spectrum contains only harmonics with
frequencies which are multiples of the field frequency
and the amplitudes of the harmonics depend nonmono-
tonically upon the field amplitude.

(2) The electron localization in real space occurs
only at discrete values of the field amplitude (see
below).

(3) The initial momentum k0 determines the time-
averaged energy and velocity of the electron, i.e., the
two BOHF amplitudes, cS and ca, of the packets of the
even (ψS) and odd (ψa) velocity harmonics, respectively
(as is the case with a two-level system). The amplitudes
and “eigenfunctions” of the packets ψS and ψa are

ψS t( ) = g ωt( )sin( )cos

=  J0 g( ) 2 J2n g( ) 2nωt( ),cos
n 1=

∞

∑+

ψa t( ) = g ωt( )sin( )sin

=  2 J2n 1– g( ) 2n 1–( )ωt( ),sin
n 1=

∞

∑
cS k0 t0,( ) k0d g ωt0( )sin–[ ] ,sin=

ca k0 t0,( ) k0d g ωt0( )sin–[ ]cos ,=
P

related by the normalization conditions  +  = 1 and

(t) + (t) = 1. The phases of the BOHF harmonics
are determined, to within a multiple of π, by the phase
of the field. Collisions affect the amplitudes cS and ca,
the kinetic energy, and the position of the BOHF center
and destroy its low-frequency harmonics. When ωτ @
1, the BOHF can be thought of as a long-lived quasipar-
ticle (spin) with two vibrational degrees of freedom.

(4) From the last property, it follows that, in a time-
harmonic field with ωτ @ 1, all the even and/or odd har-
monics (rather than some of them) in the macroscopic
current can simultaneously change and even disappear
because of collisions.

If the SSL is placed in a combination of a time-har-
monic and a static bias field

E(t) = EC + Ecos(ωt), (5)

then, instead of Eq. (3), we will have

(6)

From Eq. (6), it is seen that the static field shifts the
BOHF spectrum as a whole by the Stark frequency ΩC,
but the harmonic amplitudes remain unchanged [in
Eq. (6), the positive and negative frequencies are not
considered identical for the sake of convenience]. This
shift can be conveniently thought of as the amplitude
modulation of BOHF in the time-harmonic field (2) by
Bloch oscillations [see Eqs. (3) and (4), with k0d being
replaced by k0d + ΩC(t – t0)]. For an arbitrary EC, the
BOHF are not periodic, because their spectrum con-
tains only harmonics with incommensurate frequencies
ΩC ± nω. However, since EC has no phase of its own, the
Stark frequency shift is destroyed when its phase is ran-
domly changed by collisions (i.e., by amplitude modu-
lation with a random phase). For this reason, only har-
monics with frequencies nω will be in the steady-state
macroscopic current (see below). In this case, as
before, the spectra of oscillations (BOHF) of individual
electrons will contain only combination frequencies
and no field harmonics. In the Stark resonance ΩC = nω,
the BOHF become periodic again. Periodicity of the
trajectories in k space and of the velocity oscillations
also takes place in a more general case where ΩC and ω
are commensurate, n1ΩC = n2ω, where n1, 2 = 1, 2, ….
In this case, the oscillation period is T = 2n1π/ω (n2/n1
is noninteger); that is, it becomes n1 times longer. How-
ever, this new periodicity is destroyed by collisions.

Thus, due to collisions, the static field, even in com-
bination with a time-harmonic field, cannot induce
steady-state current oscillations in the SSL, in contrast
to the case of Josephson junctions. There is also no

cS
2 ca

2

ψS
2 ψa

2

V k0 t,( ) Vm k0d ΩC t t0–( )+{sin=

+ g ωt( )sin ωt0( )sin–[ ] } Vm Jn g( )
n ∞–=

∞

∑=

× k0d ΩC t t0–( ) nωt g ωt0( )sin–+ +{ } .sin
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analogy with the behavior of a magnetized electron
plasma [16], since the magnetic field (in contrast to the
electric field) does no work.

2. THE SPECTRUM OF BLOCH OSCILLATIONS 
AND DYNAMICAL ELECTRON LOCALIZATION

Let us investigate the BOHF spectrum as a function
of the dimensionless amplitude of the harmonic field g.
We consider the zeroth harmonic first. It is easily
shown that, for any dispersion law, the relative time for
which the electron occupies the states with a wave vec-
tor k3 being within a unit interval is

(7)

From Eqs. (3) and (7), we find the following quantities
averaged over a period of oscillations (for t0 = 0): veloc-
ity (zeroth BOHF harmonic), energy, squared velocity,
oscillating velocity, and oscillating displacement:

(8)

(9)

(10)

(11)

(12)

respectively. In the case of t0 ≠ 0, the quantity k0d
should be replaced by k0d – gsin(ωt0). If the field ampli-
tude is such that J0(g) = 0, we will have

(13)

that is, the motion of the electron in such a field is finite,
no matter what the initial electron momentum [6]. In
the case of finite motion, the electron has a discrete
energy spectrum, which is manifested by the collapse
of the one-dimensional quasi-energy miniband of the
electron:

(14)

P k0 k3,( )
d

2π
------ 1 J0 νg( ) ν k3 k0–( )d[ ]cos

ν 1=

∞

∑+ .=

V k0( ) Vm k0d( )sin J0 g( ),=

ε k0( )
∆
2
--- 1 k0d( )J0 g( )cos–[ ] ,=

V
2

k0( )
1
2
---Vm

2 1 2k0d( )cos J0 2g( )–[ ] ,=

V~
2 1

2
---Vm

2=

× 1 J0
2 g( )– 2k0d( ) J0

2 g( ) J0 2g( )–[ ]cos+{ } ,

x~
2 2

Vm

ω
------ 

 
2

k0d( )sin
2

2n( ) 2– J2n
2 g( )

n 1=

∞

∑=

+ k0d( )cos
2

2n 1+( ) 2– J2n 1+
2 g( )

n 0=

∞

∑ ,

V k0( ) 0, ε k0( )
∆
2
---;= =

ε̃ k3( )
∆
2
--- 1 J0 g( ) k3d( )cos–[ ] n"ω,+=

n 0 1± 2± …, , ,=
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at J0(g) = 0 [8]. In terms of classical and quantum the-
ories, this is called dynamical localization (DL). This
effect is purely classical in the one-miniband approxi-
mation. Its quantum-mechanical treatment both in the
Wannier representation [6, 9] and in quasi-energy terms
[8] revealed no new features.

At J0(g) = 0, the ν = 1 harmonic disappears in the
spectrum of the average momentum distribution in
Eq. (7). This is the only harmonic that contributes to the
average electron velocity in the case of the dispersion
law given by Eq. (1). Several (even two) harmonics
with different ν cannot disappear simultaneously.
Therefore, the DL in a time-harmonic field can occur
only in the case of a harmonic dispersion law. It can be
shown that, in this case, the DL can also occur in a mul-
tifrequency (in particular, biharmonic) field. For an
arbitrary dispersion law, the DL can take place only in
a multifrequency field.

Now, we consider the other BOHF harmonics. From
the expressions for the eigenfunctions ψS(t) and ψa(t),
it follows that, as the field amplitude increases, the nth
harmonics (among them the zeroth one) corresponding
to the zeros of Jn(g) disappear in turn in the electron
oscillation spectrum irrespective of k0. In the absence
of collisions, this will lead to the disappearance of the
nth harmonic in the macroscopic current for any initial
electron distribution function, that is, to selective trans-
parency. In contrast to the SIT, the selective transpar-
ency is determined by the electron dynamics alone and
is independent of the momentum distribution of elec-
trons. The DL, which implies the disappearance of the
zeroth harmonic in the electron oscillation spectrum, is
a special case of selective transparency.

As indicated above, in a field containing a static and
a time-harmonic component [Eq. (5)], the BOHF spec-
trum is shifted by the Stark frequency [see Eq. (6)].
Therefore, the DL occurs at any g if ΩC ≠ νω. However,

the periodicity of motion in k space is absent and (k0)
vanishes only after its averaging over an infinitely long
time interval. In the Stark resonance (ΩC = νω), the
BOHF periodicity is restored and the quasi-energy
spectrum and the average quantum-mechanical veloc-
ity of the electron are given by

(15)

(16)

In this case, the DL and the collapse of quasi-energy
minibands occur only if the BOHF spectrum does not
contain the νth harmonic at EC = 0, i.e., if Jn(g) = 0.
Otherwise [at Jν(g) ≠ 0], the electron is delocalized and
jC ≠ 0. This provides further support for the view that
the DL and the collapse of the quasi-energy miniband
are an important, but no more than specific, case of the
selective transparency associated with the nonmono-

V

ε̃ k3( )
∆
2
--- 1 1–( )νJν g( ) k3d( )cos–[ ] n"ω,+=

Ṽ k3( )
1
"
--- ∂ε

∂k3
-------- 1–( )ν k3d( )Jν g( ).sin= =
1
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tonic dependence of the BOHF spectra on the field
amplitude.

The quantities given by Eqs. (8)–(12) depend on the
initial electron momentum, which is not convenient for
their analysis. For this reason, we average Eqs. (10)–
(12) over k0 and obtain, for an “average” electron, the
expressions

(17)

where

(18)

It is seen from Eqs. (8), (10), and (17) that the mean
square velocity of the “average” electron, which con-
tains the oscillating and constant components, is inde-
pendent of the field amplitude (g > 0); the value of this
velocity is merely redistributed between its compo-
nents as g is varied. When J0(g) vanishes, the transla-
tional motion of the electron entirely transforms into an
oscillatory motion. In this case, the oscillating velocity
is maximal, the amplitude of the coordinate oscillations
is large, and the average energy equals ∆/2 for any val-
ues of k0 rather than for an “average” electron only (this
is a consequence of the collapse of the quasi-energy
miniband). The last feature is important, because it
implies that all electrons are on equal terms in colli-
sions and in energy exchange with the field.

Thus, when the DL and the collapse of quasi-energy
minibands take place, the energy exchange between
individual electrons and the field is the most efficient
and the electron oscillation amplitude is the largest.
From this, it was erroneously concluded in [8] that
there is no SIT in the superlattice in this case (this con-
clusion is true for Josephson junctions). Indeed, the
large oscillating velocities of some electrons do not sig-
nify that the macroscopic current is large, since the
electrons move incoherently because of collisions. One
might expect just an increase in the absorption of the
electromagnetic field, because this effect is incoherent
in the given-field approximation.

2. SELF-INDUCED AND SELECTIVE 
TRANSPARENCIES

We start from the Boltzmann equation with the col-
lision integral taken in the τ approximation:

(19)

x~
2 Vm

ω
------ 

 
2

B g( ), V
2 1

2
---Vm

2 J0
2 g( ),= =

V~
2 1

2
---Vm

2 1 J0
2 g( )–[ ] ,=

B g( ) n 2– Jn
2 g( ).

n 1=

∞

∑=

∂ f k t,( )
∂t

------------------
eE t( )

"
------------∂ f k t,( )

∂k
------------------+

f k t,( ) f 0 k( )–
τ

----------------------------------,–=

f k t,( ) f 0 k( ),=
P

where f(k, t) and f0(k) are the nonequilibrium (per-
turbed by the field) and equilibrium electron distribu-
tion functions, respectively, and τ is the relaxation time.
Since the distribution function is periodic in k space, it
can be expanded in a Fourier series:

(20)

where

(21)

From Eqs. (19)–(21), it follows that the multicompo-
nent function Φν(t) satisfies the equation

(22)

with the initial conditions

Φν(0) = 1. (23)

Given Φν(t), one can find all average quantities (energy,
velocities, current, etc.):

(24)

, (25)

where

(26)

and n is the electron concentration. For the dispersion
law given by Eq. (1), we have from Eqs. (24) and (25)

(27)

(28)

where 〈ε3〉0 is the average equilibrium longitudinal
electron energy and f0(k) is assumed to be a symmetric
function. We will refer to the momentum harmonics in
the distribution function that make a nonzero contribu-
tion to the current as current-contributing harmonics.

f k t,( ) Fν k ⊥( ) iνk3d( )Φν t( ),exp
ν ∞–=

∞
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Φν Φ ν–* ,=
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τ
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----------------=

ε t( ) ε ν–( )Φν t( ),
ν ∞–=

∞

∑=

j t( )
i
2
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d3k

2π( )3
-------------∫–

j t( ) j0Im Φ1 t( )( ), j0–
end

"
--------- ∆

2
--- ε3〈 〉 0– 

  ,= =

ε t( ) ∆
2
---– ε3〈 〉 0

∆
2
---– 

  Re Φ1 t( )( ),=
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In the case of an arbitrary time dependence of the
field E(t) and an arbitrary electron dispersion law, we
conveniently separate the BOHF by representing Φν(t)
in the form

(29)

where

(30)

is the BOHF eigenfunction that is a solution to the
kinetic equation (22) without the collision integral and
describes the dynamical (i.e., collisionless) modulation
of the electron distribution function caused by the field.
For a time-harmonic field, we have

(31)

where ψS(t) and ψa(t) are defined in Eq. (4). The dissi-
pative function aν(t) describing the changes in the
amplitude and in the spectrum of the νth momentum
harmonic of the distribution function caused by colli-
sions (i.e., the departures from the BOHF expressions)
satisfies the equation

(32)

A solution to this equation has the form

(33)

In the absence of collisions, we have aν(t) ≡ 1. Passing
over from Φν(t) to aν(t) implies that we go over to a
generalized quasi-momentum representation, i.e., to a
new frame of reference K0 that oscillates synchro-
nously with a collisionless electron in the momentum
space. For each electron (or, more precisely, for each
mode of BOHF), there is a fixed point k0 in frame K0.
The distribution of these points is changed only by col-
lisions. If collisions are of infrequent occurrence, the
changes over a field period are small, but the changes
caused by several collisions can accumulate. At the
same time, the equilibrium distribution function in
frame K0 is modulated by the field (dynamical modula-
tion) and becomes a periodic function of time:

(34)
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This is reflected in Eq. (32), where the second (loss)
term corresponds to usual relaxation, while the gain
term is a dynamically modulated equilibrium distribu-
tion function. This description enables one to go
beyond the τ approximation by introducing matrices
(τ−1)µν that allow for transitions between different
momentum harmonics ν (see below).

If the BOHF are high-frequency, that is, the spec-
trum of these oscillations contains only frequencies ω =
0 and ω @ τ–1, they are weakly affected by collisions
[see property (3) in the preceding section]. Averaging
Eq. (32) over the time interval ω–1 ! ∆t ! τ yields

(35)

From Eqs. (32) and (35), it follows that, when (t) =
0, the electrons do not return to the νth state in the aver-
age (in the τ = const approximation), because collisions
destroy this momentum harmonic of the distribution
function for the time of the order of τ. This signifies that
the BOHF cease to be coherent in such a field. Since the

equalities (t) = 0 cannot be fulfilled for all values of
ν simultaneously, the coherence of the BOHF is not
completely destroyed in the general case (i.e., the dis-
tribution function is not a constant in the momentum
space). The destruction of coherence can be complete
in a multifrequency field with incommensurate fre-
quencies:

(36)

In this field, the functions

(37)

vanish simultaneously when J0(νgν) = 0. It can easily
be shown that under these conditions, the dynamical
electron localization also occurs for any dispersion law,
which can be employed to investigate this law.

Let us consider the behavior of the SSL in a har-
monic field in more detail. In this field, we have

(38)
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By substituting Eqs. (31), (35), and (38) into Eq. (29)
and putting Φν(0) = 1, we obtain, for ωτ @ 1,

(39)

For arbitrary values of ωτ and EC ≠ 0, we have, instead
of Eq. (39),

(40)

By substituting Eq. (39) into Eq. (20) and using
Eq. (25), the distribution function and the current are
found to be

(41)
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where

(43)

and δν1 is the Kronecker symbol. In contrast to Eq. (39),
Eq. (43) contains terms of the order of (ωτ)–1, which
have been calculated using Eq. (40). For the sinusoidal
dispersion law given in Eq. (1), we have

(44)

where 〈V 〉0 is the electron velocity averaged by using
the distribution function f0(k). For the Maxwell statis-
tics, the distribution function averaged over the trans-
verse momentum is found to be

(45)

where T is the lattice temperature and Iν(x) are the mod-
ified Bessel functions. For the Fermi statistics at T = 0
and the Fermi level µ > ∆, we have

(46)

It is seen from Eq. (41) that the νth momentum har-
monics in the electron distribution function disappear
in turn as g increases and the condition J0(νg) = 0 is ful-
filled. Formally, this effect can be thought of as selec-
tive transparency in a momentum space or in the
νth harmonics space (except for dynamical localiza-
tion, because the zeroth harmonic of the distribution
function remains unchanged). However, the mecha-
nism of this transparency is related not only to the
dynamics of an individual electron. The corresponding
modulation of the distribution function in the momen-
tum space is a combined effect of the field and colli-
sions. If the dynamical modulation of the equilibrium
distribution function is such that its νth momentum har-
monic being averaged over one temporal period van-
ishes (the νth momentum harmonic of the BOHF con-
tains no zeroth time harmonic and, therefore, when
averaged over a temporal period, the gain term in the
collision integral becomes zero), then collisions com-
pletely destroy this harmonic within a time of the order
of τ. In the case of a sinusoidal distribution law, only
the harmonic with ν = 1 contributes to the current.
Therefore, if the field amplitude is such that J0(g) = 0,
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then, within a time of the order of τ after the field is
turned on, the SSL becomes transparent [see Eq. (42)];
that is, the SSL behaves as a dielectric with permittivity
equal to that of the basic semiconductor lattice and with
relatively weak nonlinear resonance absorption. This is
the SIT effect. In the case corresponding to Eq. (46) and
J0(g) = 0, the electrons are distributed uniformly over
the miniband. It is obvious that the current equals zero
for this distribution, as is the case with any entirely
filled band. The occurrence of the SIT is the most
descriptive in this case.

In accordance with the general consideration, it also
follows from Eq. (42) that the spectrum of the macro-
scopic current coincides [to within terms of the order
(ωτ)–1] with the spectrum of the first momentum har-
monic of BOHF [see Eq. (3)]. Therefore, in SSLs, in
addition to the SIT, there occurs the selective-transpar-
ency effect, i.e., the alternate disappearance of the time
harmonics in the current, the constant component
included. One can say that the selective transparency in
the current is a macroscopic manifestation of the
BOHF spectrum. In contrast to the SIT, this effect
occurs immediately after the field is turned on. Colli-
sions do nothing but uniformly change the amplitudes
of all time harmonics of the current.

A completely different type of situation occurs
when EC ≠ 0 [see Eq. (40)]. In this case, averaging over
a long time interval yields (t) = 0. Therefore, in the
current, all harmonics with combination frequencies
ΩC ± nω (of which the oscillation spectrum of each
electron alone consists) decay within the time τ after
the field is turned on and only harmonics nω (including
the constant component), which are absent in the
BOHF, remain in the current. As indicated above, this
is due to the chaotic change in the phase of the BOHF
amplitude modulation caused by the static field. The
exception to this is provided by resonance fields with
frequency ΩC = n0ω. In these fields, we have (t) =

(g); therefore, under the static field, the SIT in the

SSL is shifted to the region where (g) = 0. The con-
ditions for selective transparency are also changed.
Thus, due to collisions, the oscillation spectra of the
macroscopic quantities in the SSL become different
from those of individual electrons. In this respect, the
SSL differs essentially from Josephson junctions,
where collisions do not destroy the coherence of Coo-
per pairs and, therefore, the macroscopic current con-
tains harmonics with combination frequencies.

It is significant that, in Eq. (42), the function J0(g)
enters both into the common modulation factor respon-
sible for the SIT and into the separate term responsible
for the DL. The coincidence of the mathematical con-
ditions for the DL and the SIT was, perhaps, the reason
why these physically different effects were erroneously
considered to be the same [5, 9–14]. It is to be noted
that there is no common modulation factor both in the

ψν

ψν

Jn0

Jn0
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current flowing through a Josephson junction and in the
BOHF.

Let us consider the field energy dissipation. Accord-
ing to Eqs. (42) and (43), in the case of the dispersion
law given by Eq. (1), the field energy absorption loss is

(47)

At the initial stage (t ≤ τ), the absorption loss is higher
than its steady-state value, because an extra amount of
energy is required to heat the electron gas. The absorp-
tion loss in Eq. (47) is maximal in the case of DL
[J0(g) = 0] and is equal to that in a static field when
ΩCτ @ 1. It should be noted here that the average elec-
tron energy and the absorption loss reach their maxi-
mum values at the same field amplitudes. This is in
accordance with the above discussion of the resonance
incoherent interaction of individual electrons with the
field when the DL occurs.

We found the quantitative conditions for the occur-
rence of the SSL transparency in the single-relaxation-
time approximation, where the momentum harmonics
of the distribution function are not mixed by collisions.
In actuality, this mixing takes place [e.g., in the case of
τ = τ(k)], which can affect the conditions for the occur-
rence of the SIT effect and even lead to its suppression.
Such is not the case for the selective transparency,
which is determined by the electron dynamics alone. In
order to analyze the mixing effect, we return to Eq. (3)
and the properties of BOHF. From Eq. (3), it follows
that, for an SSL with a sinusoidal dispersion law and
arbitrary scattering mechanisms (the only condition is
that the scattering itself be momentary), the current can
be written in the form

(48)

where εS(t0) and VS(t0) are the average energy and
velocity of electrons scattered at time t0, respectively,
and the angular brackets signify averaging over the last
collision acts preceding the time of observation t. In the
general case, the average is dependent on t. It can easily
be shown that VS(t) contains only odd field harmonics,
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while εS(t) contains only even ones. At ωτ @ 1, the
probability that an electron having experienced a colli-
sion during the time interval dt0 will move ballistically
can be closely approximated by

(49)

where W(t0) is a periodic function equal to the relative
number of collisions of the electron during a field

period, W(t)dt = 1. In this approximation, from

Eq. (48) we obtain the condition for the occurrence of
the SIT:

(50)

where

(51)

and α0 ≈ 〈ε3〉0 < ∆/2. If electron collisions are absolutely
random [W(t) = 1] and the distributions of scattered
electrons are independent of t0 [i.e., εS(t0) = const,
VS(t0) = 0], then, using the time reversal invariance of
the equations of motion, one can write

(52)

where, now, the bar signifies averaging over the time of
observation t. Therefore, strictly speaking, only in this
case does the alternating current vanish under the con-
dition that (k0, t0) = 0 for any k0; that is, in the strict
sense, only in this case does the DL (in combination
with collisions) lead to the occurrence of the SIT. When
εS(t), VS(t), and W(t) depend on t only slightly, Eq. (50)
approximately coincides with the equation J0(g) = 0.
But if the collision probability depends heavily on time
(momentum), Eq. (50) can possess no solution and the
SIT does not occur. This situation can take place when
the main mechanism of electron scattering is the emis-
sion of optical phonons.

If mixing of the different momentum harmonics of
the distribution function is taken into account by adding
the corresponding terms to Eq. (32), the following gen-
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eralized condition for the occurrence of the SIT can be
obtained:

(53)

In [7], the condition for the transparency was found
to be

J0(g) + J2(g) = 0, (54)

which also does not coincide with the condition for the
occurrence of the DL. (Unfortunately, they used a non-
physical collision integral.)

It is appropriate to analyze the condition for the SIT
effect in the frequently used one-dimensional two-
relaxation-time model [2, 16] (which, however, inade-
quately allows for the electron gas heating [17]). In this
model, the collision integral being integrated over k⊥
has the form [16]

(55)

where the second (additional) term allows for those
elastic collisions that reverse the three-dimensional
momentum (the probability of these collisions is infi-
nitely small, but we, following [2, 16] and other incor-
rect papers, assume that τ1 ! τ). This collision integral
does not mix the different νth momentum harmonics,
and, therefore, the SIT occurs under the same condi-
tion, J0(g) = 0, as the DL does [16]. For the purposes of
illustration, we will show how this result is obtained for
a degenerate electron gas with µ > ∆ [see Eq. (46)].
Assume for the moment that the second term in
Eq. (55) is absent. In this case, as was shown above, at
J0(g) = 0 (and ω1τ @ 1), the electron distribution func-
tion f(k3, t) is a constant and, hence, the SIT occurs.
Now, we take into account “elastic” collisions repre-
sented by the second term in Eq. (55). For f(k3, t) =
const, this term is identically equal to zero and, there-
fore, the solution to the kinetic equation remains unaf-
fected. Thus, the introduction of two relaxation times in
the one-dimensional model of an SSL [2] does not lead
to separation of the regions where the SIT and DL
effects occur. It can easily be shown that this statement
is true for any equilibrium distribution function.

4. COMPARISON WITH JOSEPHSON JUNCTIONS

As was repeatedly indicated (see, e.g., [11]), the col-
lisionless dynamics of a superlattice electron is mathe-
matically identical to the behavior of the superconduc-
tion current in a Josephson junction. This suggests the
possible development of the so-called Bloch (continu-
ous-wave) oscillator at the Stark frequency (in accor-
dance with the non-steady-state Josephson effect). The
special properties of the Josephson junctions are asso-
ciated with the fact that the current in them consists of
two components: superconducting and normal (dissipa-
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tive). These components correspond to two different
groups of electrons passing through the junction: con-
densed Cooper pairs (superconducting electrons) and
one-electron excitations, respectively. All supercon-
ducting electrons are described by a common wave
function. Due to the coherence of the Cooper pairs, the
phase of this wave function is a macroscopic quantity
and is not affected by collisions. The dissipative current
can be thought of as a shunt current, being one of the
components of the total current flowing through the
junction. In an SSL, the electrons cannot be separated
into coherent and normal ones, because they have no
common phase and all undergo collisions. Therefore,
the resistance and reactance of the SSL are in series,
rather than in parallel as in a Josephson junction. In
addition, the BO and BOHF in the SSL essentially
manifest themselves in a different manner in dissipative
processes (e.g., in current–voltage characteristics),
because dissipation in Josephson junctions is associ-
ated with electrons whose dispersion law is different
from that of superlattice electrons. For this reason, even
infrequent collisions lead to a dissimilarity of macro-
scopic properties between SSLs and Josephson junc-
tions. Therefore, the Bloch oscillator is impossible (the
SSL conductivity at the Stark frequency is always pos-
itive). However, amplification of signals at shifted res-
onance frequencies can occur. The macroscopic prop-
erties of SSLs and Josephson junctions associated with
Bloch oscillations remain similar only in processes of
duration ∆t ≤ τ. These can be transients caused by the
static field turning on, or by its sharp change, or by
sharp optical excitation of electrons in the presence of
a static field [14, 18]; these can also be short solitons
[16]. Only selective transparency effects, including the
DL, are similar in nature in the Josephson junctions and
SSLs.

Thus, the nonlinear conductivity of an SSL is a non-
monotonic function of the field amplitude, which man-
ifests itself most clearly in the selective transparency
and SIT effects. Selective transparency is determined
solely by the dynamics of collisionless electrons and is
a direct consequence of the absence of the correspond-
ing harmonics in the BOHF. The SIT is a combined
effect of the time-harmonic field and collisions which
produce the special electron distribution modulated in
the momentum space; this distribution does not contain
the harmonic that contributes to the current. In contrast
to selective transparency, the SIT does not occur in the
absence of collisions. The dynamical localization (the
absence of the zeroth harmonic in the BOHF) and the
collapse of quasi-energy minibands, corresponding to a
special case of selective transparency, are accompanied
by complete transformation of the energy of transla-
tional motion of electrons into the energy of their oscil-
lations. As a consequence, the energy exchange
between the field and individual electrons is enhanced,
which causes the dissipative current to increase sharply
and can give rise to dissipative instabilities. In particu-
lar, the DL is favorable for the absolute conductivity
PHYSICS OF THE SOLID STATE      Vol. 43      No. 3      200
becoming negative. In the relaxation time approxima-
tion (τ = const), the DL and SIT occur at the same val-
ues of the field amplitude which are determined from
the equation J0(g) = 0. In all the models proposed, the
DL, as well as the selective transparency effect, occurs
immediately after the field is turned on, while the SIT
occurs after a time of the order of τ. Beyond the τ =
const approximation, the DL and the SIT occur at dif-
ferent values of the field amplitude and the question of
whether these two effects are identical does not arise. In
contrast to the DL, the conditions for the occurrence of
the SIT are sensitive to the relaxation mechanisms and,
hence, depend on the temperature and the electron con-
centration. When investigating the transparency effect
in SSLs experimentally, especially in SSLs with non-
harmonic dispersion low, it is advisable to use multifre-
quency fields.

Since the properties of SSLs are similar to those of
two-level systems [1], the effects considered in this
paper also occur in structures with separate quantum
wells.
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Abstract—Electron tunneling through the GaN/Ga1 – xAlxN(0001) wurtzite strained structures is investigated
by the pseudopotential and scattering matrix methods. It is shown that the results of multiband calculations at
low aluminum concentrations (x < 0.3) are adequately described within the single-valley model in the envelope
wave function method accounting for the dependences of the effective mass on the energy and strain. Upon
electron tunneling through two-barrier structures, sharp resonance peaks are observed at a barrier thickness of
several monolayers and the characteristic collision time in the resonance region is equal to ~1 ps. The internal
electric fields associated with spontaneous and piezoelectric polarizations lead to a “red” or “blue” shift in the
resonance energy according to the thickness and location of barriers with respect to the polar axis. In the
(GaN)n(Ga1 – xAlxN)m superlattices, the internal fields can form the Stark ladder of electronic states at a small
number of ultrathin layers even in the absence of external fields. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The wide-gap wurtzite structures
GaN/Ga1 − xAlxN(0001) are of considerable interest for
ultraviolet opto- and high-frequency nanoelectronics.
These structures have already been used in fabricating
“blue” light-emitting [1] and multiple-well laser [2]
diodes and fast field-effect transistors [3]. Moreover,
they are promising materials for the development of
high-sensitive sensors [4]. The specific feature of these
materials is a record-high value of the spontaneous
polarization and piezoelectric tensor components [5, 6],
which are responsible for the generation of strong inter-
nal electric fields (~107 V/cm). These fields substan-
tially affect the electron transport [7, 8], defect forma-
tion [8], and optical properties [9–11].

A number of parameters determined for nitride
compounds in recent studies [5, 6, 12, 13] make mod-
eling the physical properties of heterostructures with
inclusion of polarization fields and strains possible.
Despite extensive investigations, the effect of these
fields on fundamental electronic processes has not been
adequately explored. Theoretical investigations are
usually performed within the effective mass method in
the flat band approximation or with allowance made
only for piezoelectric fields [4, 8, 9], whereas the spon-
taneous polarization in nitride compounds can induce
fields even with a higher strength [13]. Recently, it was
shown that the spontaneous polarization makes the
main contribution to the “red” Stark shift in the ener-
gies of optical transitions in GaN quantum wells [14].
1063-7834/01/4303- $21.00 © 0549
The strength and orientation of internal fields depend
on the thickness of layers, their chemical composition,
doping, the type of substrate, etc., which considerably
extends the possibilities of controlling instrumental
characteristics [15]. The known effects which are asso-
ciated with external electric fields (Bloch oscillations,
Stark localization of states, and band-to-band tunnel-
ing) are substantially modified in the presence of inter-
nal polarization and can manifest themselves even at a
small number of ultrathin layers in heterostructures.
For example, in the (GaAs)n(Ga1 – xAlxAs)m superlat-
tices with a layer thickness of ~30 Å, the Stark localiza-
tion of charges in GaAs wells is observed in consider-
ably weaker external fields (~105 V/cm) [16]. However,
piezoelectric fields in these crystals are not very high
and the spontaneous polarization is forbidden by the
cubic symmetry.

For the most part, the investigations of nitride struc-
tures are concerned with the optical properties which
determine their use in optoelectronics. At the same
time, the considerable conduction band discontinuity at
GaN/AlN heterointerfaces (~1 eV, as in GaAs/AlAs
structures) [12, 13], fast (at a distance of the order of
one lattice spacing) attenuation of electron waves in
barrier regions, and simple single-valley structure of
the low-lying conduction band, which excludes unde-
sirable intervalley mixing effects (leading to an
increase in the tunneling time in GaAs/AlAs structures
[17]), render these compounds interesting for the
design of fast resonant-tunnel subatomic structures.
2001 MAIK “Nauka/Interperiodica”
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These structures, as their binary components, are stable
to extreme external effects (high temperatures, external
stresses, irradiation, etc.) [18]. It is evident that strong
polarization fields should substantially change all the
characteristics of tunneling processes. Note that the forms
of their manifestation can be diverse due to the depen-
dence of the field strength on heterostructure parameters.

Faithful description and design of simplified models
for electronic states in heterostructures with inclusion
of built-in fields are based on fundamental methods for
calculating electronic energy spectra (methods of
pseudopotential, augmented plane waves, etc.). The
parameters of spontaneous and piezoelectric polariza-
tions and the band discontinuities at the heterointer-
faces of GaN/AlN strained structures were determined
with ab initio pseudopotentials [12, 13]. A more correct
description of the band structure can be achieved
within the quasiparticle approach [19]. However, the
nonlocal character of ab initio pseudopotentials com-
plicates the determination of states with complex val-
ues of the wave vectors which appear in solving the
problem of electron scattering. In this respect, in the
present work, the electron tunneling through the
GaN/Ga1 – xAlxN(0001) strained heterostructures was
investigated by the local pseudopotential method [20],
which made it possible to use an efficient technique for
determining the general solutions of the Schrödinger
equation [21]. The calculated complex band structure
enabled us to devise a simplified model within which
we studied the effects brought about by built-in polar-
ization fields upon electron tunneling through nitride
heterostructures.

2. COMPUTATIONAL TECHNIQUE

Self-consistent calculations of the electronic spec-
trum of (GaN)n(AlN)n(0001) superlattices demonstrate
that the internal electric fields at distances of the order
of one monolayer from boundaries are well described
within the macroscopic approach [13]. Therefore, the
nitride structures with layer thickness of several peri-
ods can be studied in the framework of the model with
a crystal potential discontinuity at the heterointerfaces.
In this case, the interface dipoles are approximately
taken into account through the change in band discon-
tinuities and the monopole shielding with allowance
made for the lattice relaxation is included with the use
of the static permittivity [13].

In order to illustrate the effects associated with the
internal fields, we considered the GaN/Ga0.7Al0.3N
structure with the (0001) natural growth boundary. Bar-
rier layers were taken to be thin (several lattice spac-
ings); hence, their lattice constant in the boundary
plane matched the lattice constant of GaN contact
regions. The experimental structure parameters used for
free crystals were as follows [18]: a(GaN) = 3.189 Å,
c(GaN) = 5.185 Å, a(AlN) = 3.111 Å, and c(AlN) =
4.98 Å. The misfit of the lattice constants for GaN and
P

AlN (~4%) leads to considerable strains of layers in the
heterostructure. The compression of barrier layers
along the axis is defined by the relationship ∆c =
−2(c13/c33)(∆a/a)c [22]. The strains induce the piezo-
electric polarization whose projection onto the hexago-
nal axis is given by the expression Ppiezo = 2e31∆a/a +
e33∆c/c [22]. The elastic moduli in the Ga1 – xAlxN solu-
tion were determined by interpolating the experimental
data taken from [23]: c13 = (10.5 +1.1x) dyn/cm2 and
c33 = 39 dyn/cm2. The piezoelectric tensor components
e31 and e33 and the spontaneous polarization Pspont were
derived from the results of calculations [13]: e31 =
(−0.49 – 0.11x) C/m2, e33 = (0.73 + 0.73x) C/m2, and
Pspont = (–0.029 – 0.052x) C/m2. The piezoelectric polar-
ization in barriers was Ppiezo(Ga0.7Al0.3N) = –0.012 C/m2.
The total polarization (spontaneous and piezoelectric)
along the hexagonal axis Pw, b (where the subscripts w and
b designate the well and the barrier, respectively) in the
barrier region (Pb = –0.057 C/m2) is 80% contributed by
the spontaneous polarization and is almost twice as large
as the polarization in the well (Pw = –0.029 C/m2). The
discontinuity of the macroscopic polarization at the
heterointerfaces gives rise to surface charges. From the
continuity condition for the normal component of the
dielectric induction at the layer boundary follows the rela-
tionship between the electric field strengths Fw, b [24]:
εwFw – εbFb = –(Pw – Pb)/ε0, where ew and eb are the
static permittivities (the value of ε = 9.5 [25] was used
for all compositions) and ε0 is the permittivity of free
space.

The strengths and orientations of fields in layers
depend on the boundary conditions. The internal field
in the heterostructure is inhomogeneous due to the dif-
ference in the polarization of layers. Bernardini and
Fiorentini [13] used the periodic boundary conditions,
which corresponds to the complete compensation for the
homogeneous component of the internal electric field over
the superlattice period. In real structures, the compensa-
tion for the homogeneous component of the internal
field F0 in the active region can be achieved by different
methods, for example, through the screening of doped
contact regions by free charges [15]. In the case when
the external field strength is considerably less than F0,
the external field can be ignored in the boundary condi-
tion. Then, the compensation condition is determined
by the relationship Fi = 0, where li is the thickness
of the ith layer and the summation is performed over
the active region layers. For the active region composed
of a finite superlattice (GaN)n(Ga1 – xAlxN)n + 1 (where n is
the number of periods along the hexagonal axis) with a
spacer layer (of thickness ls) from the same solid solution,
which are arranged between the GaN contact regions, the
compensation condition leads to the relationship for the
potential shift ∆V = lw(lb + ls)(Pb – Pw)/D {where D =
[n(lwεb + lbεw) + (lb + ls)εw]ε0} over the superlattice
period d = lw + lb and the expressions for the internal field

lii∑
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strengths in the layers Fw = –[(n + 1)lb + ls](Pb – Pw)/D
and Fb = Fs = nlw(Pw – Pb)/D. In the limit n  ∞,
these relationships are transformed into the formulas
for an infinite superlattice [13]. As a rule, the thickness
of the contact regions is much more than the thickness
of the active region da = (n + 1)lb + nlw + ls, and, hence,
the fields in them are close to zero [15]. Let us consider
the possibility of compensating for F0 by free charges.
The value of F0 is determined by the ratio between the
potential jump at an “excess” barrier containing the
spacer layer and the active region thickness da. There-
fore, at comparable layer thicknesses ls ~ lw ~ ls, the
field F0 is approximately (n + 1) times weaker than the
field in the barrier whose magnitude for the structures
under consideration is less than 2 × 106 V/cm. Conse-
quently, even for the two-barrier structure (n = 1), we
have F0 < 106 V/cm. As follows from [15, 26], similar
fields are efficiently screened at a practically achievable
donor concentration of ~1019 cm–3. The self-consistent
solution of the Poisson and Schrödinger equations
proved that the redistribution of free charges over the
bulk of the structure with the GaN/Ga0.8Al0.2N quantum
well brings about noticeable bendings of bands in
depleted contact regions and small bendings in the active
region [15]. In our case, the field F0 is substantially weaker
than the unscreened field in the well [15], and, hence, the
compensation for F0 was taken into account by neglect-
ing the bendings of bands near interfaces.

The probabilities of electron tunneling through het-
erostructures were calculated in the framework of the
model with a potential discontinuity at the heterointer-
faces by using the scattering matrix method [27] that
was modified for crystals with a hexagonal symmetry.
In the present work, we considered the normal inci-
dence of electrons on the heterointerface. The wave
functions of the adjacent layers were matched on
planes that contained nitrogen atoms. The general solu-
tions of the Schrödinger equation in layers were sought
by calculating the complex band structure [19] with the
crystal potential matrix renormalized according to the
Löwdin method in the basis set consisting of 73 exactly
included plane waves that were constructed around the
Γ reference point. Nineteen incident and nineteen
reflected Bloch waves were formed in this basis set
[27]. In calculations, we used the model pseudopoten-
tials taken from [20]. In order to improve the accuracy
of describing the spectrum, these pseudopotentials
included additional corrections for nonlocality and
energy dependence by way of renormalizing the free
electron mass m in the kinetic energy operator T =
−"2∆(1 + β/Ω)/2m, where Ω is the unit cell volume. The
pseudopotential parameters were determined by fitting
the calculated energies of band-to-band transitions and
side valleys of the low-lying conduction band in w-GaN
and w-AlN, and also the effective masses and deforma-
tion potentials, to experimental data and results of ab
initio calculations. The found parameters of ion
pseudopotentials are as follows (in au, " = m = e = 1):
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v0(N) = –4.3, Rm(N) = 2.49, and β(N) = 0; v0(Al) =
−0.7, Rm(Al) = 3.34, and β(Al) = –60; and v0(Ga) =
−0.8, Rm(Ga) = 4.1, and β(Ga) = 0. The band structure
parameters for GaN and AlN, which were calculated
with these pseudopotentials in the vicinity of the band
gap, are given in the table in comparison with the
results of other works. Here, the deformation potentials
D1, D3 and D2, D4 characterize the level shifts with a
change in the lattice constants c and a according to [6].

The electronic states in the Ga1 – xAlxN solutions
were calculated within the virtual-crystal approxima-
tion. The cation pseudopotential was represented as the
mean of the Al and Ga potentials taken with weights
proportional to their concentrations. The calculated
energy gap appeared to be almost a linear function of
the solution composition. Figure 1 depicts the frag-

Fig. 1. Fragments of complex band structures for (a) w-GaN
free crystal and (b) w-Ga0.7Al0.3N strained solid solution.
The solutions with purely real values of the wave vector
along the hexagonal axis (heavy lines) and the real parts of
complex solutions (thin lines) are shown to the right of the
Γ point. The purely imaginary solutions (heavy lines) and
the imaginary parts of complex solutions (thin lines) are dis-
played to the left of the Γ point.
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Band structure parameters for GaN and AlN

Level
GaN AlN

1 2 1 2

Γ5v –0.7 –1.2 [19] –0.8 –1.1 [19]

Γ6v 0 0 –0.22 –0.2 [19]

–0.176 [6]

Γ1v –0.08 (–0.022 [28]) –0.02 [19] 0 0

–0.0504 [6]

Γ1c 3.52 (3.44 [29]) 3.5 [19] 6.28 (6.28 [32]) 5.8 [19]

Γ3c 6.5 5.9 [19] 7.7 8.3 [19]

M4v –0.7 –1.1 [19] –0.6 –0.9 [19]

M1c 6.5 6.5 [19] 7.6 7.4 [19]

m*/m(Γ1c) 0.14 (0.22 [30]) 0.19 [31] 0.30 0.35 [31]

D1(Γ1v) –24.3 –20.0 [6] –14.3 –17.1 [6]

D2(Γ1v) –13.6 –14.2 [6] –6.6 –7.9 [6]

D1(Γ1c) –15.0 –8.6

D2(Γ1c) –13.5 –8.8

D3(Γ6v) 10.6 (8.82 [28]) 5.8 [6] 8.9 8.84 [6]

D4(Γ6v) –3.4 (–4.41 [28]) –3.25 [6] –1.5 –3.92 [6]

Note: The results of this work are presented in columns 1 (the experimental data are given in parentheses) and the results of other works
are listed in columns 2. The energies of levels and the deformation potentials are expressed in electron-volts.
ments of calculated complex band structures along the
∆ direction of the hexagonal Brillouin zone at zero
wave vector component parallel to the boundary. The
energies are measured from the bottom of the conduc-
tion band of each compound. The standard designations

are used for irreducible representations of the 
group. As far as we know, the complex band structures
of these materials are presented in this work for the first
time. Their analysis makes it possible to reveal the states
with the least damping decrement, which play a decisive
role in tunneling processes. Since the side point A at the
Brillouin zone edge is not the point of zero slope of the
band spectrum for wurtzite crystals [33], the branches of
complex band structure with these damping decrements
originate only from the central Γ valley of the low-lying
conduction band of the Ga1 – xAlxN solid solutions. The
biaxial tension in the boundary plane and the compres-
sion along the hexagonal axis of the Ga0.7Al0.3N solu-
tion layer lead to the change in the symmetry of the
higher-lying state in the valence band and the crystal-
line splitting from ∆cr(Γ1v – Γ6v) = 0.009 eV to
∆cr(Γ6v – Γ1v) = 0.202 eV and also to a decrease in the
band gap from E(Γ1c – Γ6v) = 4.37 eV to E(Γ1c – Γ1v) =
4.26 eV and the effective electron mass from 0.191 to
0.177 (in terms of m). The gap discontinuity at the heter-
oboundary also depends on layer stresses [12, 13, 34].
This discontinuity in structures with strained solid solu-
tion layers was taken into consideration by using a linear
interpolation (with respect to the composition) of the
valence band discontinuity ∆Ev = 0.2 eV [13], which was

C6v
4

P

found for a GaN/AlN heteropair with strained barriers.
From the obtained value ∆Ev(GaN/Ga0.7Al0.3N) = 0.06 eV
and the calculated energy gaps, the conduction band dis-
continuity was determined as ∆Ec(GaN/Ga0.7Al0.3N) =
0.81 eV.

3. RESULTS AND DISCUSSION

The calculated coefficient P(E) for transmission of
electrons through the symmetric two-barrier structure
GaN/Ga0.7Al0.3N(3c)/GaN(4c)/Ga0.7Al0.3N(3c)/GaN is
displayed in Fig. 2. The results of multiband calcula-
tions were obtained without regard for the internal
fields. The resonance states in the well correspond to
two peaks in P(E). Under the same conditions, we per-
formed the approximate calculations in which the exact
matching matrix accounted for “interactions” between
the states only of the low-lying conduction band. At
electron energies up to ~2 eV from the well bottom, the
results of two calculations turned out to be virtually
identical. This can be explained by the fact that the
states of higher-energy bands with larger damping dec-
rements weakly affect the asymptotics of wave func-
tions of the heterostructure. Therefore, in this energy
range, it is possible to apply the effective mass method
which takes into account the states of one real branch
that connects the states with the Γ1 symmetry at the
band gap edges. In order to simplify our calculations,
the envelope wave function was chosen in the form of a
plane wave (the Bloch function at the Γ extremum of
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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the conduction band) for which the standard conditions
of matching at the boundaries were used with due
regard for the dependence of the effective mass on the
energy and strain. The transmission coefficient calcu-
lated in the framework of this model is in reasonable
agreement with the results of multiband calculations
(Fig. 2). A small difference in the energies of the low-
lying resonance (~0.02 eV) is caused by the influence of
states of the valence band. As the aluminum concentration
in the barrier layers increases, the energy of resonance
approaches the branch point of the complex band structure
of solid solution and the discrepancy with exact calcula-
tions increases. At small Al concentrations, it is possible to
use the single-valley model which was applied for analyz-
ing the effect of internal electric fields on the electron tun-
neling in the GaN/Ga0.7Al0.3N structures. In this case, the
fields in the contact regions were taken equal to zero
and the potential of electric field in the layers of the
active region was represented in the form of thin square
barriers. Figure 2 also shows the transmission coeffi-
cient, the phase transmission time τ = "∂ϕ(E)/∂E
[where ϕ(E) is the phase shift in the amplitude of the
transmitted wave], the profile of effective electron
potential, and the charge density (obtained under the
condition that the amplitude of the incident wave is
equal to unity), which were calculated for the same
two-barrier structure with due regard for the internal
fields. At the chosen boundary conditions, the internal
field is directed from the cation to the nearest anion
along the hexagonal axis in the barrier regions (Fb =
1.31 × 106 V/cm) and in the opposite direction in the
well region (Fw = –1.92 × 106 V/cm). Spontaneous
polarization makes the main contribution to these
fields.

The internal fields lead to a change in the electron
potential in the layers by magnitudes comparable to the
gap discontinuities and render the potential asymmet-
ric. As a consequence, the localization of charge den-
sity in the well depends on the direction of electron
incidence and the probability of tunneling, the energy
of the low-lying resonance, and the phase time
decrease. These effects enhance with an increase in the
Al concentration in the barriers. The occurrence of a
polar direction in wurtzite crystals results in the depen-
dence of the transmission coefficient on the mutual
arrangement of barriers in the asymmetric two-barrier
structures 

GaN/Ga0.7Al0.3N(4c)/GaN(4c)/Ga0.7Al0.3N(3c)/GaN 
(Fig. 3a)

and
GaN/Ga0.7Al0.3N(3c)/GaN(4c)/Ga0.7Al0.3N(4c)/GaN 

(Fig. 3b). 
The internal field strengths in similar layers of these struc-
tures are identical (Fw = −2.04 × 106 V/cm, and Fb = 1.20 ×
106 V/cm), but the potential profiles are different. In the
case when the left barrier is thicker, the internal fields
bring about a “blue” shift in the first and second reso-
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nance peaks (Fig. 3a) due to the effective rise of the
well bottom. In the opposite case (Fig. 3b), the “red”
shift of the first resonance increases and the energy of
the second resonance decreases. Furthermore, since the
“powers” of two barriers level off (the left and right bar-
riers become higher and lower, respectively), the prob-
ability of tunneling at a resonance, as for a symmetric
structure, is close to unity. In all the structures, the
times of electron transmission through the region of the
low-lying resonance are less than 1 ps, i.e., are of the
same order of magnitude as in the GaAs/AlAs struc-
tures [17].

Now, we consider the electron tunneling through the
finite (GaN)4(Ga0.7Al0.3N)5 superlattice with a spacer
layer of the same solid solution which is located to the
left and has a thickness of one lattice constant c (Fig. 4).
In the absence of fields, the interaction between the
states of separate wells leads to the formation of two
minibands which are associated with two levels in the
well and whose energies do not overlap. The states of
these minibands correspond to the resonance peaks in the
transmission coefficient calculated without regard for the
fields (Fig. 4). The locations of peaks allow us to deter-
mine the difference between the energies of extreme
resonance states in the low-lying miniband ∆E = 0.037 eV
and the band gap between the adjacent states in the
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Fig. 2. Coefficients P(E) and phase times τ(E) for trans-
mission of electrons through the two-barrier structure
GaN/Ga0.7Al0.3N(3c)/GaN(4c)/Ga0.7Al0.3N(3c)/GaN. Solid
line 1 and the dashed line indicate the results of multiband
calculations and calculations within the single-valley model
without inclusion of electric fields, respectively. Solid line 2
represents the results of calculations in the framework of the
single-valley model with inclusion of internal electric fields.
The inset shows the effective potential profile and the charge
densities of resonance states. The dashed line corresponds
to the calculation without fields. Solid lines 1 and 2 display
the results of calculations with internal fields upon inci-
dence of electrons from the left and the right, respectively.
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miniband ∆E/n = 0.009 eV (n = 4). With allowance
made for the internal fields, the field strengths in the
layers are as follows: Fw = –1.60 × 106 V/cm and Fb =
1.64 × 106 V/cm. As can be seen from the potential pro-
file in Fig. 4, the superlattice potential to the right of the
spacer layer appears such as if the superlattice were in
a homogeneous external field with the strength Feff =
−2.3 × 105 V/cm. The value of Feff is determined from
the ratio between the potential shift ∆V = 0.084 eV and
the superlattice period d. Since the value of ∆E is close

Fig. 3. Coefficients P(E) and phase times τ(E) for transmission
of electrons through the asymmetric two-barrier structures
(a) GaN/Ga0.7Al0.3N(4c)/GaN(4c)/Ga0.7Al0.3N(3c)/GaN and
(b) GaN/Ga0.7Al0.3N(3c)/GaN(4c)/Ga0.7Al0.3N(4c)/GaN
without (dashed lines) and with (solid lines) inclusion of
internal electric fields. Insets show the effective potential
profiles and the charge densities of resonance states: lines 1
and 2 correspond to the incidence of electrons from the left
and the right, respectively.

(a) 0.6

0.3

0

τ,
 p

s

1

2

(× 0.1)

400

200

0

0

–5

–10

C
ha

rg
e 

de
ns

ity

lo
g

P

1.0

0.5

0

(b)

τ,
 p

s

0

–5

–10

–15
0.1 0.3 0.5 0.7 0.9

E, eV

1
2

400

200

0

C
ha

rg
e 

de
ns

ity

lo
g

P

P

to the limiting value that corresponds to the miniband
width for an infinite superlattice [35], it can be used for
verifying the fulfillment of the criterion for the forma-
tion of the Stark ladder [36]: ∆V @ ∆E/n. A comparison
of the obtained values demonstrates that the states of
the low-lying miniband of the finite superlattice satisfy
the above criterion. The presence of the main indica-
tions of the Stark ladder (the localization of charge den-
sity in separate wells and the equidistant step between
resonance levels, which coincides with the potential
jump ∆V) is illustrated in Fig. 4. The Stark ladder is
formed owing to the disturbance of the superlattice
hybridization of states of separate wells by the electric
field Feff. For the Stark states with the highest and low-
est energies, certain deviations from an “ideal behav-
ior” in the form of density satellites are observed as a
result of edge effects upon incidence of electrons on the
structure from the right and the left, respectively. At
energies E > 0.6 eV, the resonance states of the second
miniband correspond to more smeared peaks in P(E).
These states insufficiently rigorously meet the criterion
from [36] (n∆V/∆E ~ 2), and the localization of charge
density in wells is absent. Therefore, the formation of
the Stark ladder due to the internal fields in finite nitride
superlattices depends on the field strength Feff and the
dispersion of the miniband. The fulfillment of condi-
tions for its observation can be provided by the proper
choice of sizes and compositions of superlattice layers.
The typical field strength Feff required in this case, as
for external fields, is equal to ~105 V/cm.
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Fig. 4. Coefficients for transmission of electrons through the
strained finite superlattice (GaN)4(Ga0.7Al0.3N)5 with the
solid-solution spacer layer. Dashed and solid lines corre-
spond to the calculations without and with inclusion of
internal electric fields, respectively. The inset shows the
effective potential profile and the charge density of reso-
nances upon incidence of electrons on the structure from the
right. The energies of resonances are given in eV.
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Abstract—In the framework of fluctuational electromagnetic theory, analytical expressions are obtained for the
dynamic dissipative damping forces acting on the probe of an atomic-force microscope (AFM), as well as
between two plane surfaces at their contact. The contacts between materials typical of AFM, quartz-microbal-
ance, and surface-force apparatus experiments are considered. The conditions for nondissipative slide are dis-
cussed. A comparison between the calculated oscillator quality factor associated with fluctuational dissipative
forces and its values obtained in AFM experiments with a silicon probe and a mica sample shows that they are
of the same order of magnitude; therefore, an experimental investigation of such forces is feasible. © 2001
MAIK “Nauka/Interperiodica”.
INTRODUCTION
Nanostructural mechanisms of energy dissipation

play a decisive role in the problem of friction as a
whole, and the fluctuational dissipative electromag-
netic interaction is one of the most important factors in
the process of contactless slide of surfaces [1]. This
process is typical of the dynamical mode of operation
of an atomic-force microscope (AFM), and, therefore,
experimental AFM studies of dissipative forces have
considerable promise [2, 3].

In our recent papers [4, 5], the problem of damping
of atomic and molecular particles moving laterally over
the surface of a solid at a nonrelativistic velocity V was
treated in detail in the framework of the general theory
of fluctuational electromagnetic interactions. The
objective of this paper is further development and
application of this theory for calculating dissipative
forces acting on an AFM probe in the cases of different
combinations of the materials of the probe and sample.
We also discuss the role of fluctuational electromag-
netic forces in measurements with a quartz microbal-
ance [6, 7] and treat the problem on the friction of two
plane surfaces, which is the subject of some contro-
versy in the literature [8–10].

1. DAMPING FORCE ON ATOMIC
AND MOLECULAR PARTICLES: THE PRINCIPAL 

THEORETICAL RESULTS
The physical processes resulting in fluctuational

dissipative interactions are similar to those that lead to
conservative van der Waals attractive forces between
solids. The latter forces are due to quantum-mechanical
and thermal fluctuations of microscopic electric fields
associated with motion of charged particles. These fluc-
tuating fields induce analogous fields in other interact-
1063-7834/01/4303- $21.00 © 20556
ing solids, and, when the solids move relative to each
other, the interaction between them is accompanied by
Joule loss, which is considered the result of dynamical
damping.

In order to strictly calculate the fluctuational dissi-
pative interaction force between an arbitrarily shaped
nanoprobe and a plane (or curved) surface in the frame-
work of the theory developed in [4, 5], one should
determine the equilibrium fluctuation spectrum of the
electromagnetic field in the gap between the solids,
which is a complicated mathematical problem in itself.
In this case, some geometrical restrictions arise which
reflect the fundamental properties of forces of this kind,
in particular, of conservative van der Waals forces. In
the latter case, fortunately, the assumption of additive
interactions between individual particles is a close
approximation, which allows one to correctly calculate
the dependence of the resultant forces upon the spacing
between the solids; only the interaction constant is
affected by this approximation [11]. For a convex probe
and a plane surface, this constant, as calculated in the
additive-interaction approximation, is more than 5–
20% in error and can be corrected by its effective renor-
malization [12].

As a working hypothesis, we assume that the fluctu-
ational dissipative forces are also additive and that this
additivity approximation gives the correct distance
dependence of the forces. A comparison with calcula-
tions that do not involve this approximation is further
shown (Section 5) to provide support for this assump-
tion.

Following [4, 5], we consider the case where an
atom (molecule) moves at a nonrelativistic velocity V
parallel to the surface of a medium with a dielectric
function ε(ω) and is at a distance h from the surface. A
001 MAIK “Nauka/Interperiodica”
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neutral spherical particle is characterized by polariz-
ability α(ω), while a dipole molecule is assumed to
have an arbitrarily oriented constant dipole moment d.

In the limit of small velocities (which is of prime
interest for the dynamical mode of the AFM operation,
in which the typical nanoprobe velocities do not exceed
or are much smaller than 1 m/s) and in the range of dis-
tances r0 ! h ! c/ω0 (where r0 is the characteristic size
of atoms and ω0 is the frequency of orbital motion of
electrons), the damping force per atom was found to be
[4, 5]

(1)

where ∆(ω) = (ε(ω) – 1)/(ε(ω) + 1) and the doubly
primed quantities are the imaginary parts of the corre-
sponding functions. At T = 0, after some mathematical
manipulation, Eq. (1) is reduced to a simpler formula:

(2)

We note that the condition r0 ! h ! c/ω0 allows one
to treat the particle as a point dipole and ignore the
retardation effects. In this case, the distance to the sur-
face is limited from above by a value of 10–20 nm,
which is the exact value at which probing is efficiently
performed in the dynamical mode of the AFM opera-
tion. At h ≈ r0, spatial dispersion effects become signif-
icant and the dependence of the dielectric function
upon the wave vector should be taken into account.
Nonetheless, in this case, too, Eqs. (1) and (2) account
for a certain (perhaps, dominant) part of the interaction.
Here, the situation is analogous to that which takes
place when one calculates the interaction energy
between two neutral atoms in the vicinity of the van der
Waals minimum: the dipole–dipole interaction makes a
significant contribution to the interatomic interaction
energy, although, strictly speaking, the atoms cannot be
considered as point dipoles when the separation
between them is so small.

Damping of motion of a dipole molecule with
dipole moment d = (dx, dy, dz) is characterized by the
dissipative force [5]

(3)
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and in the case of a charged particle with charge Z1e,
this force is

(4)

where σ is the static conductivity. In the case where the
particle moves perpendicular to the surface, an extra
factor of 2 occurs in Eqs. (3) and (4). More general for-
mulas describing damping of a dipole molecule and a
charged particle were also derived in [4, 5]. No general
formula has yet been derived for the damping force act-
ing on a neutral atom moving perpendicular to the sur-
face.

2. DAMPING FORCE 
ON THE MOVING NANOPROBE

We assume that the probe has the form of a parabo-
loid of revolution which is described by the canonical
equation z = d + (x2 + y2)/2R, where z is measured from
the surface of the sample, d is the minimum distance
from the surface to the apex of the probe, and R is the
probe’s radius of curvature.

By using the Clausius–Mossotti equation, the
atomic polarizability can be expressed in terms of the
dielectric function ε(ω) of the material of the probe.
Thus, we have

(5)

where N is the volume concentration of atoms. In what
follows, the dielectric functions of the probe and the
surface under investigation are labeled by indices 1 and
2, respectively. By substituting Eq. (5) into Eq. (1) and
integrating over the probe’s volume, the resultant lat-
eral damping force can be found to be

(6)

where J(ε1(w), ε2(ω)) is the overlap integral of the spec-
tra. The structure of this integral is identical to that of
the integrand in Eq. (1), in which the imaginary part of
the polarizability is replaced by the imaginary part of
the quotient in Eq. (5) [4]. When deriving Eq. (6), it was
also taken into account that, in the typical case, the
AFM nanoprobe has a large aspect ratio (of height to
radius of curvature) and, therefore, the upper limit of
integration over the height of the probe can be extended
to infinity. At T = 0, the numerical factor in Eq. (6)
should be replaced by 3/32π and the integral J(ε1(ω),
ε2(ω)) becomes identical to the integral in Eq. (2) with
the substitution for the function α''(ω) indicated above.

The dominating contribution to J(ε1(w), ε2(ω))
comes from the frequency ranges where the absorption
bands of the interacting solids strongly overlap. There-
fore, the contributions from the different mechanisms
operating in different spectral ranges should, in gen-

F
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eral, be taken into account. For uniform contacts, the
functional J(ε1(ω), ε2(ω)) for some model dielectric
functions was calculated numerically in our recent
papers [4, 13]. However, analytical expressions for the
friction forces are of prime interest. It turns out that
closed expressions for these forces can be derived in the
case where absorption in the low-frequency range of
the electromagnetic spectra plays a dominant role.

First, we consider two conducting materials being in
contact and represent the dielectric functions in the
standard form:

(7)

where σ1, 2 are the static conductivities. In order to take
high-frequency spectral ranges into account, one
should draw on formulas for the dynamical conductiv-
ities.

In the case of ω"/2kΒT ! 1, where the temperature
effects are significant, it is appropriate to use Eq. (1).
By substituting Eqs. (5) and (7) into Eq. (1), the func-
tional J(ε1(ω), ε2(ω)) can be represented in the form

(8)

where f1(x) = x/(x2 + a2) and f2(x) = x/(x2 + b2). All inte-
grals in Eq. (8) are reduced to tabulated integrals, and,
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Fig. 1. Characteristic functions f1(x), f2(x), and xf1(x)
(curves 1, 2, 3, respectively). The ranges where these func-
tions are negative correspond to nondissipative lateral
forces.
P

after complicated algebra, the function J1(a, b) is found
to be

(9)

At lower temperatures, where ω"/2kBT @ 1, Eq. (2) is
more convenient to use, because the hyperbolic cotan-
gent in Eq. (1) can be replaced by unity in this case. By
substituting Eqs. (5) and (7) into Eq. (2) and perform-
ing integration, we obtain

(10)

With these results, the damping force is written as

(11a)

(11b)

(11c)

(12)

(13)

Estimations show that T0 = 300 K for maxσ1, 2 =
1400 Ω–1 m–1; therefore, for materials (such as germa-
nium and silicon) showing weak conductivity, smaller
than the value indicated above, the temperature effects
are significant and the damping force is proportional to
the temperature and given by Eq. (11a). For metals, the
parameter T0 is very large and Eq. (11b) is valid in
actual practice. Its singularity at 2σ2 = 3σ1 is a seeming
one; analysis shows that in this limit, we have F = 0,
which is also the case for Eq. (11a) at T = 0. Thus,
damping vanishes when the critical condition 2σ2 = 3σ1
is fulfilled. At 2σ2 < 3σ1, the lateral force on the nano-
probe becomes accelerative, because the probe gains
energy from surface plasmons. The functions f1(x),
f2(x), and xf1(x) [see Eq. (17a)], in terms of which the
damping forces are calculated, are plotted in Fig. 1
(curves 1, 2, 3).

An important feature of Eqs. (11) is their symmetry
relative to interchanging the probe and the surface at
σ1 = σ2. In this case, at T = 0, the damping force is quite
independent of the conductivities and equals F =
−0.002"RV/d3, which has a value of 0.0003 pN for typ-
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ical AFM parameters R = 30 nm, d = 0.3 nm, and V =
1 m/s. At room temperature, for silicon–silicon-like tri-
bometric contacts, more frequently used in AFM exper-
iments, the damping force is much larger. For example,
for d = 0.3 nm, V = 1 m/s, R = 30 nm, T = 300 K, and
σ = 0.001 Ω–1 m–1, Eq. (11b) gives F = 1 nN, which is
comparable to the adhesive friction force in the close-
contact regime. We note that velocities of 0.06–6 m/s
are typical of the dynamical mode of the AFM opera-
tion at an oscillation frequency of 1 MHz with ampli-
tudes 10–1000 nm. It is possible that such (and even
higher) velocities should also take place for the close-
contact mode of the AFM operation in the initial short-
run stage of the probe sliding over the surface.

Investigations of the interaction between two insu-
lating materials and between a metal and an insulator
are also of practical importance. A surface force appa-
ratus [14] is commonly used to investigate insulator–
insulator (e.g., mica–mica) interactions. We will
approximate the dielectric functions of insulators in the
low-frequency range by the Debye model expression:

(14)

where ε is the static permittivity and τ is the relaxation
time (for mica, τ = 10–10–10–9 s). The approximations in
Eq. (14) and Eq. (7) lead to the same functional of the
dielectric functions. With Eqs. (9), (10), and (14), the
damping forces for different combinations of materials
can be written in the following unified form:

(1) For the insulating probe and the insulator sur-
face,

(15a)

(15b)

(15c)

(2) For the conducting probe and the insulator sur-
face,

(16a)

(16b)

(16c)
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(3) For the insulating probe and the conductor sur-
face,

(17a)

(17b)

(17c)

For silicon–mica contacts, we have T0 < 0.1 K and,
therefore, Eqs. (15a), (16a), and (17a) are valid under
any typical experimental conditions. As seen from Fig. 1,
the sign of the lateral force can be different, depending
on the ratio between the conductivities, the ratio
between the relaxation times, or the product στ.

It should be stressed once again that the formulas
derived in this paper determine only that part of the
fluctuational electromagnetic force which is due to
absorption in the low-frequency spectral range. Addi-
tional contributions can arise if the absorption bands
overlap in other spectral ranges.

3. A COMPARISON WITH AFM DATA

It is of considerable interest to compare the theoret-
ically calculated fluctuational dissipative forces with
the available experimental AFM data. In [2], the dissi-
pative forces were measured experimentally in the case
where the AFM silicon probe moved along a normal to
the surface of mica in a vacuum. The cantilever had
stiffness k = 40 N/m and natural frequency f = 300 MHz,
and the radius of curvature of the probe was R = 20 nm.
For an amplitude of A = 20 nm, the energy loss per
cycle was measured to be ∆W = 1–10 eV, depending on
the ratio d/A, where d is the initial spacing between the
probe apex and the surface in the absence of oscilla-
tions. In this case, the quality factor of the oscillating
probe Q = πkA2/∆W equals (0.3–3.0) × 105. It is obvious
that, for lateral oscillations of the probe at the same fre-
quency and the same (fixed) spacing between the probe
apex and the surface, equal to h = d – A, the energy loss
rate is somewhat higher and the quality factor is lower.

By representing Eq. (16a) in the form F = –γRTV/h3,
the theoretical quality factor associated with fluctua-
tional forces is found to be Qt = kh3/4πfγRT. For ε = 6,
τ = 10–9 s, and σ = 0.001 Ω–1 m–1, we obtain from
Eqs. (16a)–(16c) that γ ≈ 0.019kBτ. For the same values
of the probe parameters and h = 0.3 nm, the quality fac-
tor is equal to Qt = 5.3 × 107/T. Therefore, at tempera-
tures 100–300 K, Qt is of the same order of magnitude
as the experimental values [2].

It should be noted that, in the case considered above,
Qt virtually does not depend on the conductivity of the
probe, but decreases in inverse proportion to increasing
relaxation time of the dielectric. On the whole, we have
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Qt ∝  kh3/fτRT in this case; this permits verification of
the predictions of the theory, which enables one to mea-
sure fluctuational electromagnetic forces. As has
already been noted above, a surprising prediction of the
theory is that the lateral damping force acting on the
probe can vanish and even become positive (Fig. 1). In
the case of the silicon–mica contact, the damping force
vanishes at σ = 3(ε + 1)/8πτ; therefore, for a fixed value
of τ, this condition can easily be satisfied by choosing
the appropriate doped material for the probe.

In the experiment under discussion, the energy loss
can be associated not only with fluctuational dissipative
forces, but also with the breaking of adhesion bonds,
although the latter mechanism is more typical of the
close-contact mode of the AFM operation [1]. How-
ever, the damping force due to the breaking of adhesion
bonds is independent of the velocity and electrophysi-
cal properties and is likely to depend on the tempera-
ture only slightly [13]. These specific features can help
in the separation of the corresponding contributions to
the damping force.

4. FLUCTUATIONAL DISSIPATIVE FORCES AND 
QUARTZ-MICROBALANCE MEASUREMENTS

Fluctuational dissipative forces can also be deter-
mined from crystalline-quartz microbalance experi-
ments [6, 7], in which one measures the oscillation
damping of quartz oscillators (metal-coated quartz
plates). The presence of a film of adsorbed inert gases
on the surface of the plate causes a change in the Q fac-
tor of the oscillator and allows one to estimate the char-
acteristic decay time of the translational motion of
adsorbed atoms. In the case of krypton on the surface of
gold, this time is about 1 ns.

Let us estimate the decay time due to fluctuational
electromagnetic forces from Eq. (2). The imaginary
part of the atomic polarizability can be written in the
most general case as (e and m are the charge and mass

ε(0) = 1
y = 50

1

0

–1
34 35 36 37

x

F
(x

)

Fig. 2. Function F(x) given by Eq. (21) (xi ≡ x).
P

of an electron, respectively)

(18)

where the sum is over all electron transitions from the
ground state (0) of the atom to the excited states (i) of
the discrete spectrum and ωi, γi, and fi are the transition
frequency, linewidth, and oscillator strength, respec-
tively. The high-frequency dielectric function of the
metal or semiconductor coating of the plate can be writ-
ten in the standard Drude approximation as (ε = 1 for
the metal coating)

(19)

where ωp is the plasma frequency and τ is the relaxation
time for electrons.

By substituting Eqs. (18) and (19) into Eq. (2) and
going to the limit γi  0, we obtain

(20)

(21)

where a = ε + 1, xi = ωiτ, and y = ωpτ.

Analysis shows that the terms in the sum in Eq. (21)
can have any sign. For metals, we have y @ 1 and the

Fi(a, y, xi) vanish at wi ≈ wp for fixed values of xi.
The contributions from the transition frequencies wi ≥
wp/  correspond to an accelerative force; the other
frequencies contribute to the damping force. In order to
compute the function Φ(a, y), the specific distribution
of oscillator strengths should be given.

Figure 2 shows the dependence of Fi(a, y, xi) on xi

for the parameter values typical of gold: ωp = 8.8 eV,
τ = 3.7 × 10–15 s, a = 2, y = 50.2, and fi ≡ 1. It is seen
from Fig. 2 that Fi(a, y, xi) has no singularities, because
xi > 0; however, this function exhibits a characteristic
nonmonotonic change in the narrow spectral range

around xi ≈ y/ , and, therefore, the dominant contri-

bution to (a, y) comes from these transition frequen-
cies. By putting fi ≈ 0.1 and df/dx ∝  x–3.5 (which ade-
quately describes the optical and UV ranges of the
spectrum) and converting the sum in Eq. (21) to an inte-

gral, we arrive at the function (a, y) plotted in Fig. 3.
It is seen that, where the lateral force is negative,

α'' ω( ) e2

m
----

f iγiω

ωi
2 ω2–( )2 γi

2ω2+
-------------------------------------------,

i

∑=

ε ω( ) ε
ωpτ( )2

1 ωτ( )2+
-----------------------–

i ωpτ( )2

ωτ 1 ωτ( )2+( )
-----------------------------------,+=

F
3"e2τ2V

4mz5
---------------------Φ a y,( ),=

Φ a y,( )
f iy

2 3a2xi
4 2axi

2y2– a2xi
2 y4–+( )

xi a2xi
4 2axi

2y2– a2xi
2 y4+ +( )2

-------------------------------------------------------------------------------
i

∑=

=  Fi a y xi, ,( ) f iy
2,

i

∑

2

2

2

Φ̃

Φ̃

HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001



FLUCTUATIONAL DISSIPATIVE ELECTROMAGNETIC INTERACTION 561

           
(a, y) < 0, which corresponds to the case of usual
damping.

For the surface of gold, we have (2, 50.2) =
−0.093. Using this result and Eq. (20), for the case of a
Kr atom adsorbed at a distance of 0.4 nm from the sur-
face, we obtain the decay time ∆t = MV/F ≈ 0.6 ns (M is
the mass of a Kr atom), which is close to the experi-
mental value. It should be noted, however, that the
value of ∆t is very sensitive to variations in τ, ωp, and z,
as is seen from Eqs. (20) and (21) and Fig. 3.

If adsorbed atoms form a film, an additional contri-
bution to the damping force can arise because of
absorption in the low-frequency spectral range.
Another factor leading to an increase in the damping
force can be the appearance of localized dipole
moments and electric charges on adsorbed atoms. The
corresponding damping forces are given by Eqs. (3)
and (4), and these are fairly small in the case of good
conductors, such as gold. For example, for Z1 = 1, the
dipole moment d = 1D and z = 0.4 nm, the damping
forces are 4–5 orders of magnitude smaller than those
given by Eq. (20) and can be ignored. A completely dif-
ferent type of situation can occur for the surface of
graphite and silicon.

5. THE INTERACTION 
BETWEEN PLANE SURFACES

The fluctuational dissipative forces per unit area of
the interacting surfaces were recently calculated [8–10]
using the Maxwell stress tensor for the case where two
parallel thick plates divided by a gap of width d move
relative to each other. An extended discussion of those
calculations is beyond the scope of this paper. However,
it should be noted that there is a fundamental discrep-
ancy concerning the finite damping force proportional
to the velocity at T = 0; in contrast to our paper, this
force is missing from the results of the papers men-
tioned.

It is our opinion that the electric field in the gap was
calculated incorrectly in [8–10]. For example, Pendry
[8] used a heuristic expression for the field amplitude,
which allows for the inherent fluctuating field of one of
the plates and the field of the wave reflected from the
other plate, with the Fresnel reflection coefficient
including the Doppler shift due to the relative motion of
the surfaces. Volokitin and Persson [9, 10] used a more
general method, but their dynamical generalization of
formulas of the Lifshitz fluctuation theory for the elec-
tromagnetic field amplitude is not evident and, further-
more, a number of additional approximations were
made when passing over from the original relativistic
theory to the nonrelativistic case. The expressions
derived in [9, 10] for the damping force at T = 0 are
identical to those obtained by Pendry; however, at T ≠ 0,
the contribution to the damping force proportional to
the velocity is quadratic in T.

Φ̃

Φ̃
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In order to go to the case of two interacting plates in
our formulas for the damping force exerted on the con-
vex probe by the plane surface, it is sufficient, rather
than to integrate over the probe volume, to integrate
Eq. (1) or Eq. (2) over h (from zero to infinity) and
divide the result by the area S of the surface of the plate.
Then, e.g., instead of Eq. (6), one obtains

(22)

The friction stress F/S for different combinations of
materials is obtained by multiplying the right-hand
sides of Eqs. (11) and (15)–(17) by a factor of 3/2πRd.
Thus, in the case under discussion, the dependence on
the gap width follows a power law with an exponent (in
the denominator) larger by unity than that in the case of
an interaction between the parabolic probe and the
plane surface.

We note that a formula little different from Eq. (22)
is derived from an intermediate result obtained by Pen-
dry (Eq. (18) in [8] in the low-velocity limit). In com-
parison with Eq. (22), this formula has an extra factor
4/9 and, in the spectrum-overlap integral analogous to
the integral in Eq. (2), α''(ω) is replaced by Im[(ε1(ω) –
1)/(ε1(ω) + 1)]. It is clear that the factor 4/9 appears
because the contribution from the other plate is not
taken into account. However, the original expression is
not symmetric under the permutation of indices 1  2
and its formal symmetrization, performed in [8],
resulted in a final symmetric expression in which the
contributions to the damping force linear in velocity
canceled each other out. Furthermore, even without
symmetrization, the damping force also becomes zero
for plates of the same type, in contrast to Eq. (22). This
shows once again that the approximation made in [8]
suffers from shortcomings. For the purposes of this
paper, however, the most important point is that
although the results obtained in [8–10] are based on the
continuum model and do not involve the assumption
that the interactions are additive, these results lead to
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the same dependence of the damping force on the dis-
tance d as that in Eq. (22).

In actual practice, the calculations of the fluctua-
tional forces acting between plane surfaces are of
importance in surface-force apparatus experiments
[14], in which one measures the friction forces between
mica plates covered with surfactants.

6. CONCLUSIONS
Thus, the theoretical model proposed in [4, 5] for

calculating nonrelativistic dynamical fluctuational dis-
sipative forces is developed further. We derived closed
analytical formulas for the damping forces acting
between a parabolic nanoprobe and a plane surface,
between a neutral spherical atom and a conducting sur-
face, and between parallel thick plates divided by a gap.
The metal–metal, insulator–insulator, metal–insulator,
and insulator–metal contacts are considered. The for-
mulas derived allow for absorption of electromagnetic
waves in the low-frequency spectral range and predict
characteristic dependences of the damping forces upon
velocity, temperature, distance, nanoprobe radius, and
electrical characteristics of interacting solids. In partic-
ular, it is predicted that, in all cases considered in this
paper, the damping force proportional to the velocity
does not vanish at zero temperature. The conditions for
nondissipative slide of surfaces are discussed.

The Q factor of oscillators is estimated for the mod-
ulation mode of the AFM operation, and a comparison
with the experimental data is made for the case of a sil-
icon nanoprobe interacting with mica. The calculated
and experimental fluctuational electromagnetic forces
are shown to be of the same order of magnitude (0.001–
1 nN), so that their AFM measurement is feasible.

It is also shown that the damping time for moving
adatoms measured in quartz microbalance experiments
P

can be associated with fluctuational electromagnetic
forces.
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Abstract—The electronic spectrum of a planar triangular lattice is analyzed, and the possible occurrence of
charge (CDWs) and spin density waves (SDWs) in the lattice is discussed. Commensurate CDW and SDW
structures of two types are considered in the weak and strong electron–electron interaction approximations. The
CDW and SDW models are applied to the specific case of chemisorbed metal monolayers on the (111) surface
of diamond structure semiconductors with a coverage close to 1/3. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The ordered structures and phase transitions in
monolayers of metals chemisorbed on the surface of
diamond structure semiconductors (primarily Si and
Ge) have been studied intensively for several decades
(see, e.g., [1]). In this paper, however, we do not pursue
the goal of giving even a brief overview of all aspects
of this field of surface physics.

We discuss only a narrow range of objects which
have recently attracted attention; these are monolayers
of some nontransition metals on (111)-type surfaces of
diamond-like semiconductors (Si, Ge) with a coverage
close to 1/3. Furthermore, we restrict our consideration

to reconstructed monolayers of the  ×  type in
the form of a planar triangular lattice [2]. The question
concerning the genesis of such monolayers and the rea-
son for their stability has been repeatedly discussed in
the literature (see, e.g., [3]), but a decisive answer to
this question has not yet been given. In what follows, a

(  × )-type monolayer is assumed to exist without
specifying the mechanism of the (111)-surface recon-
struction which leads to its formation. Among the
systems of this type are monolayers of group-III
(Al, Ga, In)/Si(111), group-IV (Pb, Sn)/Ge(111), and
group-V metals [Sb/Si(111), Bi/Ge(111)], as well as
more complex K/Si(111) : B monolayers (see numer-
ous references in [1, 2]).

As for the electronic structure, all the systems indi-
cated above have a fairly narrow surface energy band
(of width W ~ 0.2–0.5 eV), which is associated with the
hybridized orbitals of the metal monolayer and the
uppermost atomic layer of the semiconductor.

The surface unit cell consists of a metal atom and
three symmetrically arranged atoms of the semicon-
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ductor [3]. The filling of the narrow energy band (with-
out regard for charge transfer between the bulk of the
semiconductor and its surface) is determined by the
redistribution of the electronic density between the sp3

orbitals of Si or Ge in the uppermost atomic layer and
the p (or s) orbitals of the chemisorbed metal. It is easy
to verify that, in the pure “chemical” approximation,
this redistribution formally results in a half-filled nar-
row surface band in the case of group-IV metals (Pb,
Sn) on the (111) surface of Ge and Si and in the case of
a group-I metal (K) on the Si(111) : B surface. In the
case of metals of groups III and VI, the narrow surface
band is empty and full, respectively. In principle, by
varying the composition of the monolayer with the cov-
erage remaining equal to 1/3, the filling of the narrow
surface band can be varied over a very wide range with-

out disintegration of the  ×  structure and the tri-
angular surface lattice.

The effects of electron correlations in the systems
under discussion were accepted to be important after
publication [4], in which the photoemission spectra of

the K/Si(111) (  × ) : B structure were studied.
Even the simplest estimations show that the effective
electron–electron interaction (on-site Coulomb repul-
sion in the Hubbard model) is of the order of U ≈ 1–2 eV
for the electrons of the surface energy band and, there-
fore, U/W ≥ 1. It has been proposed that, everywhere
over the temperature range studied, the structure con-
sidered in [4] is a Mott insulator and, perhaps, an anti-
ferromagnet, although possible magnetic ordering in it
has not yet been investigated. Only quite recently [5]
have calculations of the surface electron spectrum been
performed for the system treated in [4], and, on the

3 3
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whole, the preliminary estimates of the correlation
effects have been substantiated.

At the same time, the properties of another group of
the structures under discussion, namely, of Pb and Sn

monolayers on Ge(111) (  × ), are quite different

from those exhibited by the K/Si(111) (  × ) : B
isoelectronic structure mentioned above. It is Pb and Sn
monolayers on Ge that undergo a structural transition

from the higher-temperature metallic (  × ) phase
to a lower-temperature reconstructed (3 × 3) phase with
a narrow band gap (Sn/Ge) or a pseudogap (Pb/Ge)
(see, e.g., [6, 7] and the references to earlier papers in
[2]). The mechanism of this structural transition and the
influence of electron correlations on it are debatable at
the present time.

The idea that the effect of the electron–electron
interaction on the surface energy bands plays an impor-
tant role in the charge and magnetic ordering of the sur-
face of diamond-like semiconductors has long been
considered. It is this interaction that is responsible for
the formation of the antiferromagnetic structure in the
Pendy quasi-one-dimensional chains on atomically
clear (111) (2 × 1) surfaces of silicon and diamond [6].
Along with chemical dimerization, this interaction also
determines the width of the insulating band gap in the
spectrum of electronic surface states, as well as the fea-
tures of chemisorption of some gases and metals in the
case of small coverages (see, e.g., [7]) in the systems
indicated above.

In this paper, we propose a simple model which
qualitatively describes, in a unified way, all available
results concerning the charge and spin ordering in

monolayers of the  ×  type on the (111) surface
of silicon and germanium. This model involves the
widely known and well-accepted concepts of charge
(CDWs) and spin density waves (SDWs), which are
successfully used to qualitatively describe electronic
phase transitions in a wide range of systems [8]. We
analyze different cases in the weak- (U ! W) and

3 3

3 3

3 3

3 3
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Fig. 1. Brillouin zone of a triangular surface lattice.
P

strong-interaction (U @ W) limits; only in these limits
can the theoretical methods for calculating the electron
correlation effects be more or less justified. In the
former limit, the model Hamiltonian of interacting fer-
mions in the self-consistent field approximation is
used, while in the latter, the effective Hamiltonian of
pseudofermions is written in this approximation. On
the whole, the results obtained using both approaches
correlate well, so that one might expect our conclusions
to be also qualitatively valid in the actual case of U ≥ W.

1. THE ONE-PARTICLE EXCITATION SPECTRUM 
OF A TRIANGLE LATTICE

Let us consider a system of interacting particles on
a triangle lattice with interatomic spacing a. In the sim-
plest tight-binding approximation with only nearest
neighbor hopping of electrons, the spectrum of one-
particle excitations has the form

(1)

where t > 0 is the hopping integral (this sign of the inte-
gral corresponds to the case of triangular surface lat-
tices of chemisorbed metals on the (111) surface of
semiconductors; see, e.g., recent band spectrum calcu-
lations in [5]). The Brillouin zone (Fig. 1) is character-
ized by two reciprocal lattice vectors:

(2)

where ex and ey are unit vectors. This zone is of the
shape of a regular hexagon, and its area is S0 =

8π2/( a2). At t > 0, the energy ε(k) reaches its maxi-
mum at point Γ (εmax = 6t) and its minimum at point K
(εmin = –3t), such that the full width of the allowed
energy band is W = 9t. The density of states is highly
nonuniform in this band and given by

(3)

where A( ) = K(k) for k < 1 and A( ) = k–1K(k–1) for k > 1;
K(k) is a complete elliptic integral of the first kind, with
its modulus being

(4)

We note that 0 ≤ k < 1 if –1 <  ≤ 3 and k > 1 if –3/2 ≤
 < –1. It is easy to verify that the density of states in

Eq. (3) tends to infinity as ε  –2t (   1, k  1)
and, in the logarithmic approximation, the density of
states has a singularity of the van Hove type

(5)

where ν = 1 for  > –1 and ν = 2 for  < –1. Therefore,
the constant-energy “surface” with ε0 = –2t is of special
interest. Suppose that the Fermi level µ precisely equals
ε0 (µ = –2t). In this case, as can be seen from Eq. (1),
the Fermi “surface” is of the shape of a hexagon, with

ε k( ) 2t kxacos 2 kxa/2( ) 3kya/2( )coscos+[ ] ,=

K1 4π/ 3a( )ey, K2 4π/a( ) ex ey/ 3–( ),= =

3

N ε( ) A ε̃( )/ 2π2t 3 – 2ε̃( )1/4[ ] , ε̃ ε/2t,= =

ε̃ ε̃

k 1/2 2 3 ε̃2–( )/ 3 2ε̃+( )+[ ] .=

ε̃
ε̃

ε̃

N ε( ) 3ν/ 4π2t( )( ) 4/ 1 ε̃+( ),ln≈

ε̃ ε̃
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its area being equal to S = 6π2/( a2), and the occupa-
tion number of electronic states (including the spin fac-
tor) is n0 = 2[(S0 – A)/S0] = 1/2, i.e., one-half electron
per atom. We also note that there are three pairs of seg-
ments of the Fermi “surface” (sides of the hexagon)
that coincide under translations by vectors Qm (m = 1,
2, 3), respectively, where

(6)

When reduced to the first Brillouin zone, the vectors
{Qm} connect points Γ and M in Fig. 1 (in what fol-
lows, we drop the index m and use Q to denote the ΓM
vector in the first Brillouin zone). Note, by the way, that
ε(Q) = –2t and, therefore, the line along which the sin-
gularity occurs in Eq. (5) is the line passing through
saddle points of the M type.

Thus, the dominant contribution to the density of
states in Eq. (5) comes from the regions around the
sides of the hexagon whose vertices are at the M points
and even a small shift of the Fermi level µ from the ε0
level can lead to a noticeable change in the occupation
number n relative to its value n0 = 1/2. Assuming
|δµ/W | ! 1 (recall that W = 9t), where δµ = µ – ε0 is the
chemical potential shift relative to ε0, the n(δµ) depen-
dence is found to be

(7)

where ν = 1 for δµ > 0 and ν = 2 for δµ < 0.
Even at δµ/W ≈ 0.1, the change n(δµ) – n0, accord-

ing to Eq. (7), is equal to δn = n(δµ) – n0 ≈ 0.5; that is,
n is close to half-filling. For this reason, in what fol-
lows, we assume that, even at the filling n ≈ 1, the Fermi
level lies near the peak of the density of states in
Eq. (5). Band calculations show [2, 5] that this conclu-
sion remains valid for a spectrum of a more complex
form than that in Eq. (1), with allowance made for hop-
ping not only between the nearest neighbors, but also
between more distant ones. In fact, the latter hopping
leads solely to a shift in the energy ε0 towards higher
values, i.e., towards the center of the Brillouin zone,
which, in turn, leads to larger values of n0 > 1/2. There-
fore, the conclusion that the Fermi level lies near the
peak of the density of states N(ε) and that the states cor-
responding to the hexagon with its vertices located at
the M points have a dominant role in the formation of
this peak is fairly general for the systems under discus-
sion and is not closely related to the approximation of
ε(k) by Eq. (1).

Now, let us consider another important characteris-
tic, the one-particle response function χ0(q), in terms of
which the criterion for instability of the system with
respect to the transition to an SDW or CDW state is for-
mulated:

(8)

3

Q1 K1 1/2K2, Q2+ 1/2K2 1/2K1,–= =

Q3 1/2K1 K2.–=

n δν( ) n0 27ν/2π2( ) δµ/W( ) 8e/9 δµ/W( ),ln+=

χ0 q( ) kd( )/ 2π2( )[ ] nk nk q+–( )/ εk q+ εk–( )[ ] ,∫=
PHYSICS OF THE SOLID STATE      Vol. 43      No. 3      200
where integration is performed over the first Brillouin
zone. For wave vectors close to q = Q and |δµ/W| ! 1,
an estimation of Eq. (8) with a logarithmic accuracy
gives

(9)

that is, χ0(q) diverges at δµ = 0 and q  Q. It is clear
that this divergence is associated with the van Hove sin-
gularity of N(ε) in Eq. (5) and a nesting of sections of
the Fermi surface in Fig. 1 at δµ = 0. It should be noted
that the sharp peak in χ0(q) near q = Q persists when
hopping between more distant neighbors is also taken
into account and when the filling n is near unity (see [2]).
This is not surprising, since the Fermi level is pinned to
the peak of the density of states N(ε), as indicated
above. Therefore, the anomaly of χ0(q) for q  Q is
not heavily dependent on the details of the spectrum ε(k)
and on the approximations made above.

2. THE FORMATION OF CHARGE 
AND SPIN DENSITY WAVES 

IN THE WEAK-INTERACTION LIMIT

Let us consider a model Hamiltonian for interacting
particles on a triangle lattice:

(10)

where ε(k) is the one-particle excitation spectrum given
by Eq. (1), k is the two-dimensional quasi-momentum,
α is the spin index, (i, j) are indices specifying the near-
est neighbors on the triangular lattice, U is the on-site
(Hubbard) repulsion potential, and V is the Coulomb
interaction potential between the nearest neighbors. It
is well known that, for a system described by Hamilto-
nian (10), the generalized criteria for the instability of
the ground state with respect to the transitions to a
CDW and an SDW state are given by

(11)

respectively. In Eq. (11), summation is performed over
the nearest neighbors. It is very important that Us is
independent of the wave vector q, and, therefore, the
type of the SDW structure is determined by the peak of
χ0(q) alone. At the same time, Uc(q) depends heavily
on q (and can even change its sign), and, therefore, the
type of the CDW structure is not evident in advance.
Indeed, it is easy to verify that Uc(q) reaches its maxi-
mum at q = P (the vector connecting points Γ and K in
Fig. 1), while χ0(q) becomes maximal at q = Q (the ΓM
vector).

χ0 Q( ) 1/W( ) δµ/Wln
2

;∼

H ε k( )akα
+ akα

k α,
∑=

+ U ni↑ ni↓ 1/2V nin j,
i j,
∑+

i

∑

Uc q( )χ0 q( ) 1, Uc q( )≥ V iqn( )exp U ,–
n

∑–=

Us q( )χ0 q( ) 1, Us q( )≥ U ,=
1
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Thus, Uc(P) = 3V – U and Uc(Q) = 2V – U, such that
we always have Uc(Q) < Uc(P). The following cases
can occur depending on the relationship between the
potentials V and U: (i) at 3V – U < 0, the transition to
the CDW state is impossible; (ii) at 3V – U > 0, but
2V − U < 0, only the CDW state with wave vector P can
arise; and (iii) at 3V – U > 0 and 2V – U > 0, the CDW
states with wave vectors P and Q are in competition. In
the last case, the result of competition depends on the
band filling (i.e., on the value of δµ). In the immediate
vicinity of the filling value n = n0 = 1/2, the logarithmic
singularity of χ0(Q) inevitably leads to the formation of
the CDW structure with wave vector Q, but even for a
small departure from n0 (towards half-filling n ≈ 1), the
CDW structure with wave vector P can become more
advantageous. In principle, the occurrence of an incom-
mensurate CDW structure is also not ruled out.

In the case of SDWs, we have a much simpler situ-
ation. With all other factors being the same, the struc-
ture with wave vector Q is more advantageous because
of the logarithmic singularity of χ0(Q) at n = n0 = 1/2.
Since χ0(Q) remains maximal even at half-filling
(n ≈ 1), as indicated above, it is completely unreason-
able to believe that the type of the SDW structure will
change.

The possible CDW and SDW structures discussed
above are depicted in Fig. 2. We note that the CDW with
wave vector P most likely corresponds to the experi-
mentally observed 3 × 3 phase in (Pb, Sn)/Ge(111); the

+∆0

–∆0

–∆0/2

+∆0

(b)

(a)

Fig. 2. CDW and SDW structures with wave vectors (a) Q
and (b) P.
P

type of the SDW in K/Si(111) : B has not yet been iden-
tified.

The self-consistency equation for the order parame-
ter ∆ (which is single-component for the CDW and
three-component for the SDW) can be relatively easily
solved only in the case of ordering with wave vector Q.
This equation has the form (here and henceforth, we
consider only the case of zero temperature, T = 0)

(12)

where D(µ) is the region of integration over occupied
states in the Brillouin zone. At µ = µ0 (the Fermi level
is precisely even with the position of the peak of the
density of states), a solution to Eq. (12) is given (with a
logarithmic accuracy) by the expression

(13)

A detailed calculation of ∆(µ) for µ ≠ µ0 can be per-
formed only numerically; this is a separate problem
which is beyond the purpose of this paper. In any case,
Eq. (13) can be used as an upper estimate of the order
parameter ∆(µ) ≤ ∆0 for all types of ordering considered
above, when qualitatively analyzing the one-particle
spectrum of the rearranged phase.

Now, we discuss the effect of ordering with wave
vector Q on the density of states N(ε). This is affected
significantly in the vicinity of the energy ε = ε0 = –2t.
For |ε + 2t | > ∆, we have

(14)

while for ∆2/t ! |ε + 2t | < ∆, we have

N(ε) ~ [∆2 – (ε + 2t)]–1/2; (15)

therefore, there is a square root singularity near the
point ε = ε0.

In the region |ε + 2t | ~ ∆2/t ! ∆, there is another, log-
arithmic, singularity, 

N(ε) ~ (1/t)ln(t/ |ε + 2t |); (16)

therefore, the spectrum of one-particle excitations is
gapless (more precisely, it has a pseudogap) as before.
In the case of ordering of the CDW type with wave vec-
tor P, the pseudogap 2∆ in the spectrum is even less pro-
nounced than that in Eqs. (14)–(16) and the rearranged
system is more likely to be a semimetal in nature. In
this case, clearly, the order parameter ∆ is described by
an expression different from Eq. (13), but, unfortu-
nately, analytical calculation of ∆(Uc(P)) is impossible.

However, our qualitative conclusion that the energy
spectrum of a (3 × 3)-type CDW phase has a pseudogap
(or no gap) does not require such a calculation.

∆ ∆Uc s, Q( )/π2[ ]=

× x ydd( )/ 4t x ycoscos( )2 ∆2+[ ]1/2{ } ,

D

∫

∆ ∆0 4t 4π t/Uc s, Q( )–[ ] .exp= =

N ε( ) ∆/t( ) t/∆ln( )/ ε 2t+( )2 ∆2–[ ]1/2
,∼
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3. THE FORMATION OF A SPIN DENSITY WAVE 
IN THE STRONG-INTERACTION LIMIT

In the preceding section, we considered the case
where the interaction potentials U and V are not very
large and the self-consistent field approximation as
applied to the original Hamiltonian (10) is justified. It
is also appropriate to analyze the other case where the
Hubbard on-site repulsion U is large in comparison
with the hopping integral t and the intersite repulsion V
(i.e., U @ t, V).

In this case, it is convenient to go from the Hamilto-
nian (10) to the so-called t–J model by introducing the

Hubbard  operators in the ordinary way [9]:

(17)

where J = 4t2/U,  = V – 2t2/U,  is the Hubbard
operator for a particle excitation at a site, and Si is the
spin operator. By going from the Hubbard operators to
the auxiliary pseudofermion (fiα) and pseudoboson

operators (βi) in the simplest representation (  

βi,   fiα) and treating the pseudoboson
operators as c numbers in the saddle-point approxima-
tion, we write the effective Hamiltonian in the form

(18)

where λi is the Lagrange multiplier ensuring the con-
servation of the total number of quasiparticles at a site

(ni + βi = 1), Si = σαβ fiβ, and ni = fiα.
The chemical potential µ is included in the field com-
ponent λ0, which is independent of the site index and
can be thought of as the chemical potential of pseudo-
fermions (λ0 = µ) in the system without CDWs. The

effective hopping integral is  = t ,
where ni and nj are the average pseudofermion occupa-
tion numbers for sites (i, j); in the absence of charge
modulation, we have ni = nj = n and  = t(1 – n).

Let us consider the possible formation of a com-
mensurate antiferromagnetic structure in the system
with Hamiltonian (18) in the case where there is no
charge density redistribution. Earlier, an analogous
phenomenon was considered [10] for a one-dimen-
sional chain, which models, in some approximations,
the Pendy chain on the (2 × 1) (111)Si surface. In the
parameter range where  = t(1 – n) @ J (recall that, for
the model with Hamiltonian (18), by definition, we
have J ! t, because t/U ! 1), the mean field approxi-

Xαβ
i

HtJ tXα0
i X0α

j

α i j≠,
∑ JSiS j Ṽ /2( )nin j+[ ] ,

i j≠
∑+=

Ṽ Xα0
i

Xα0
i

f iα
+ Xαα

i f iα
+

Heff t̃ ij f iα
+ f jα

α i j≠,
∑ JSiS j Ṽ /2( )nin j+[ ]

i j≠
∑+=

– λ i f iα
+ f iα ,

iα
∑

βi
+

αβ∑ f iα
+

α∑ f iα
+

t̃ ij 1 ni–( ) 1 n j–( )

t̃ ij

t̃
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mation with respect to the spin density Si is justified. By
separating the components Sq and introducing the order
parameter ∆q = –Jq〈Sq〉 , we arrive at the standard
Hamiltonian for a system with an SDW and a fixed
chemical potential of pseudofermions µ:

(19)

where ε(k) is the spectrum given by Eq. (1) for a trian-
gle lattice in which the replacement t   is made.

The effective potential (q) = jq = –(J/2) exp(iqn)

is responsible for the formation of SDWs in the system
with Hamiltonian (19); this potential depends on the
quasi-momentum q, which essentially distinguishes it
from the corresponding potential in the system with

Hamiltonian (10) [see Eq. (11)]. The potential (q)

reaches its maximum at q = P, with (P) = (3/2)J,

while (Q) = J.

At the same time, according to the Stoner criterion,
the paramagnetic state is unstable with respect to the
formation of both an SDW with wave vector Q (when
the average filling n is close to 1/2) and an SDW with
wave vector P (when n is not close to 1/2). In both cases
(q = Q, P), however, we have Us(q) > 0, and, therefore,
the two types of SDWs are in competition, as is the case
with the two types of CDWs in the systems with weak
interaction (see the preceding section).

We note that, since the average occupation numbers
of the fermion (in the original Hamiltonian) and pseud-
ofermion states are equal, the quantity n has the same
physical meaning as in the previous sections. However,
the physical meaning of  becomes quite different; it
is the chemical potential of pseudofermions, which is
merely a convenient parameter, quite different from the
real Fermi level of the primary quasiparticles. Nonethe-
less, all formulas in Section 1 that relate  to n remain

valid after the replacement of t   and µ   and
can be immediately used to analyze the spectrum and
density of states of pseudofermions on the triangle lat-

tice. Similarly, after the replacement Us(q)  (q),
one can use the formulas from Section 2 for the order
parameter ∆ that characterizes long-range antiferro-
magnetic ordering in the system with Hamiltonian (18).
For example, when ordering with wave vector q = Q

Heff ε k( ) f kα
+ f kα

α k,
∑=

– ∆qσ( )αβ f kβ
+ f k qα– c.c.+[ ]

α β q, ,
∑

– ∆q
2( )/Jq

q

∑ µ̃ λ i f kα
+ f kα ,

α k,
∑–

t̃

Ũs n∑

Ũs

Ũs

Ũs

µ̃

µ̃
t̃ µ̃

Ũs
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occurs and the energy band of pseudofermions is a
quarter full (n = n0 = 1/2), we have

(20)

so that  !  because of the exponentially small fac-
tor in Eq. (20) for U @ t. It should be stressed that the
criterion  @ J, which is used when deriving the effec-
tive Hamiltonian (19), is not met in the immediate
vicinity of half-filling (n  1) and the general Hamil-
tonian (18) of the t–J model should be used in this case.
In the limiting case of n = 1, Eq. (18) is equivalent to
the Heisenberg Hamiltonian with exchange integral J
for a system of local spins S = 1/2 on a triangle lattice
[11], which cannot be adequately described in terms of
the concept of the SDW.

It should be emphasized that the order parameter ∆
in the model with Hamiltonian (19) does not have the
physical meaning of the maximum amplitude of the
spin density at lattice sites; rather, it is the slowly vary-
ing envelope of the density of the local spins S(r) aver-
aged over fast quantum fluctuations. In the limit U @ t,
the real spin density is strongly localized on sites (S =
1/2), whereas the average static spin density is 〈S 〉  =
∆/  ! 1/2 for J !  and, therefore, the description in
terms of SDWs is valid for the system of band pseudo-
fermions. These, of course, have no immediate physical
meaning and are nothing more than a graphic descrip-
tion of the mathematical treatment of the system with
Hamiltonian (18).

4. CONCLUSION

Thus, we performed qualitative analysis of the elec-
tronic spectrum of a planar triangular lattice and of the
possible formation of charge and spin density waves in
it. By using the tight-binding approximation with only
nearest neighbor hopping of electrons, the density of
states is shown to have a logarithmically divergent peak
(van Hove singularity) at the energy corresponding to
the quarter-filled electron energy band (n = 1/2). Even
when the electron band is half full (n = 1), the criterion
for instability of the system with respect to the forma-
tion of a CDW or an SDW can easily be met, because
the Fermi level is pinned. In this case, two possible
commensurate structures, with wave vectors Q =

(π/a)[ex + (1/ )ey] and P = (4π/3)ex in the first Bril-
louin zone, can be in competition (incommensurate
structures are not considered in this paper). There can
occur both a simple stripe-domain structure (q = Q)
near quarter-filling and a more complex triangular
(hexagonal) structure (q = P) near half-filling. In the
former case, the nesting of some sections of the Fermi

∆ ∆0 4t 4π t̃ /Us Q( )–[ ]exp= =

=  2t π 2U/t–[ ] ,exp

∆̃0 t̃

t̃

Ũs t̃

3

P

surface at wave vector Q is of considerable importance,
while in the latter case, the increase in the effective
interaction potential at wave vector P plays an impor-
tant role.

The available experimental data suggest that (Pb,
Sn)/Ge(111) monolayers with a coverage of 1/3 are
systems in which CDWs arise at wave vector P and
which can adequately be described in the weak interac-
tion approximation [2]. The electronic spectrum of
these systems is gapless, or it has a pseudogap. At the
same time, K/Si(111) : B monolayers with a coverage
of 1/3 most likely belong to systems with SDWs, but
questions concerning their SDW structure are still
unanswered and a model adequately describing them is
lacking. The presence of a gap in the spectrum of elec-
tron states favors the strong-interaction model, but the
value of the band gap width (about 0.1 eV) is inconsis-
tent with the criterion for strong interaction, which
makes one make exotic assumptions about surface
relaxation [4], a discussion of which would serve no
purpose in this paper.
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LOW-DIMENSIONAL SYSTEMS
AND SURFACE PHYSICS
Reactive Epitaxy of Cobalt Disilicide on Si(111)
M. V. Gomoyunova, I. I. Pronin, D. A. Valdaœtsev, and N. S. Faradzhev

Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia
Received July 4, 2000

Abstract—A study of the mechanism governing the initial stages in silicide formation under deposition of 1–
10 monolayers of cobalt on a heated Si(111) 7 × 7 crystal is reported. The structural data were obtained by an
original method of diffraction of inelastically scattered medium-energy electrons, which maps the atomic struc-
ture of surface layers in real space. The elemental composition of the near-surface region to be analyzed was
investigated by Auger electron spectroscopy. Reactive epitaxy is shown to stimulate epitaxial growth of a
B-oriented CoSi2(111) film on Si(111). In the initial stages of cobalt deposition (1–3 monolayers), the growth
proceeds through island formation. The near-surface layer of a CoSi2(111) film about 30 Å thick does not differ
in elemental composition from the bulk cobalt disilicide, and the film terminates in a Si–Co–Si monolayer triad.
© 2001 MAIK “Nauka/Interperiodica”.
Silicon forms the basis of present-day solid-state
microelectronics. The latter makes wide use of a variety
of microstructures consisting of transition-metal sili-
cides grown on silicon [1]. The Co/Si(111) system has
been attracting the interest of many researchers for
about two decades [2–12]. It was shown that CoSi2 epi-
taxial films can be grown on a Si(111) 7 × 7 surface
with an atomically sharp interface [13–16]. This feature
of the CoSi2/Si(111) heterostructure made it a model
system to probe the metal–semiconductor interface and
to study the mechanism of Schottky barrier formation
[17]. It is also essential that CoSi2 films possess a high
conductivity and thermal stability. This combination of
properties of the cobalt silicide films on silicon
accounts for their widespread use for ohmic and barrier
contacts in semiconductor devices.

Three main techniques of growing CoSi2 films in
ultrahigh vacuum are known. One of them is solid-state
epitaxy, which consists in depositing Co on Si(111) 7 × 7
at room temperature, followed by annealing the sample
to 550–600°C. Another method is reactive epitaxy, in
which Co is deposited on a heated silicon crystal, and
the third is molecular-beam epitaxy. The mechanism
itself by which CoSi2 films grow on a heated substrate
received only scant attention. The data available to us
form only an incomplete picture. For instance, [18]
reports the existence of two temperature and coverage
regions within which either continuous uniform or
island CoSi2 films can grow. The first case is character-
istic of lower temperatures and coverages. The above
study [18] relates, however, to temperatures and cover-
ages in excess of 550°C and ~15 Å, respectively. As for
the earliest stages in the CoSi2 growth for T < 550°C,
there are indications that the layer-by-layer growth pre-
vails here [8].

This work studies the initial stages in silicide forma-
tion under the conditions of reactive epitaxy. The study
1063-7834/01/4303- $21.00 © 20569
made use of a new structural method, namely, diffrac-
tion of inelastically reflected medium-energy electrons
[19–22]. Such diffraction patterns form due to the elec-
tron focusing effect consisting essentially in the scat-
tered electrons propagating preferentially along closely
packed atomic rows in a crystal, which permits visual-
ization of the atomic structure of a near-surface crystal
layer 1–1.5 nm thick in real space. This focusing effect
was discovered in studies of the diffraction of photo-
and Auger electrons [23–25], which has already found
application in the investigation of the structure of sili-
cide films grown by solid-state [5] and molecular-beam
epitaxy [26].

1. EXPERIMENTAL

The instrument used in the experiment was
described in detail in [27]. We shall discuss here only
its principal units. The sample to be studied is irradiated
with a 2-keV electron beam. The beam current is 10–7 A,
and its diameter is 1.0 mm. The electrons hit the surface
at grazing incidence, undergo intense scattering in the
near-surface layer, and are partially reflected from the
sample. The electrons reflected with energy losses not
above approximately 10% of the initial energy are
detected by a small retarding-field analyzer with two
spherical grids. On passing through these grids, the
electron flux is amplified by a microchannel plate and
initiates luminophor glow, which is observed through
the optical window of the vacuum chamber. The LEED
optics provide collection of the electrons within a fairly
large cone-apex semiangle of 57°. The possibility is
provided to observe the important region near the nor-
mal to the sample surface, which is inaccessible in stan-
dard LEED instruments. The diffractograms are viewed
by a videocamera interfaced with a computer. This per-
mits one to record them on a hard disk with a rate of up
001 MAIK “Nauka/Interperiodica”
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to 50 frames per second, with their subsequent process-
ing by means of special software. This rate of pattern
recording allows studying many atomic processes in
real time.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

[101]
[111]

[010]

[010]

[111]
[101]

Fig. 1. Diffraction patterns observed in the deposition of
cobalt on the surface of a silicon single crystal heated to
450°C. (a) Original pattern from the Si(111) 7 × 7 face;
(b)−(d) diffractograms after deposition of one, two, and
three Co monolayers, respectively; (e) CoSi2(111) epitaxial
film; (f)–(h) simulations of patterns (e), (c), and (d), respec-
tively.
P

The studies were performed in an ultrahigh vacuum
(10–8 Pa). The silicon samples on which cobalt was
deposited were cut from a KÉF-1 single-crystal plate
and measured as 22 × 14 × 0.25 mm. The crystal sur-
face was matched with the (111) face to not worse than
20′. Before mounting them in the chamber, the crystals
were thoroughly cleaned by the technique of Shiraki
[28]. This was followed by a heat treatment in vacuum,
first at T = 500°C for half an hour and then by short
stepwise anneals at an ever-increasing temperature (up
to 1000°C). Directly before the measurements, the
samples were heated for a short time at T = 1200°C,
which ensured an atomically clean silicon surface with
a Si(111) 7 × 7-type reconstruction. During the sample
heating, the pressure in the chamber did not rise above
2 × 10–7 Pa. Cobalt was deposited on the crystal main-
tained at 450°C. The cobalt source was a 1-mm diame-
ter wire of 99.99% purity. The wire was heated by electron
bombardment. The cobalt was deposited in approximately
one-monolayer steps, at a rate of 0.8 monolayer (ML) per
minute. The investigation was carried out over a Co coat-
ing range of up to 10 ML. The figure 7.8 × 1014 at/cm2,
which corresponds to the number of Si atoms per 1 cm2

of the Si(111) face, was accepted for the cobalt mono-
layer. The cleanness of the original crystal surface and
the deposited amount of cobalt were verified by Auger
electron spectroscopy. The diffraction patterns were
measured at room temperature after the sample had
cooled down.

2. RESULTS OF THE MEASUREMENTS
AND DISCUSSION

2.1. Dynamics of Diffraction Pattern Variation 
under Reactive Epitaxy

The results are illustrated by Fig. 1. It displays sev-
eral diffraction patterns measured on the original
Si(111) 7 × 7 crystal (Fig. 1a) and after deposition on it
of fixed cobalt amounts (Figs. 1b–1e). The data are pre-
sented in the form of stereographically projected, two-
dimensional scattered-electron intensity maps in the
polar and azimuthal takeoff angles, shown in the non-
linear gray-scale contrast code. The bright regions
relate in this case to maxima in the angular distribu-
tions, and the black ones, conversely, to their minima.
The center of a pattern corresponds to electrons escap-
ing along the surface normal, and the circumference, to
their takeoff at a polar angle of 57°. Note that the dif-
fractograms obtained at medium energies and similar to
those presented in the figure are frequently called Kiku-
chi patterns. As can be seen from Fig. 1a, the Kikuchi
pattern of the substrate has a threefold symmetry char-
acteristic of the silicon (111) plane. The brightest max-
ima are observed with electrons escaping along the
most closely packed 〈110〉  silicon crystallographic
directions lying symmetrically with respect to the pat-
tern center at polar angles θ = 35°. There are also pro-
nounced maxima along the 〈111〉  and 〈100〉  directions.
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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In Fig. 1a, they are identified by circles. Note also the
extended high-intensity bands (Kikuchi bands) along
the projections of the closest packed {110} silicon
atomic planes. Thus, this pattern does indeed map, in
real space, the mutual arrangement of atoms in the
near-surface layer of a sample. The thickness of this
layer is equal to the average escape depth of the
detected electrons, which is about 1.5 nm for an energy
of 2.5 keV. A more detailed analysis of the formation of
silicon Kikuchi patterns can be found in [29].

Already the deposition of the first cobalt monolayer
(Fig. 1b) changes the pattern noticeably. This becomes
manifest, first of all, in the weakening of the strongest
〈110〉  substrate peaks discussed above, as well as in the
change of the fine diffraction structure close to these
directions. The maxima in the central part of the image
also become slightly stronger. This transformation of
the pattern gets still more pronounced on deposition of
the second (Fig. 1c) and third (Fig. 1d) cobalt monolay-
ers. Fairly intense maxima at polar angles θ = 35°
appear, which lie azimuthally between the substrate
peaks. At higher cobalt coverages, the changes in the
pattern become less pronounced, to disappear practi-
cally completely after the deposition of five to six
cobalt monolayers. The results obtained for this steady-
state system are shown in Fig. 1e. Note that it is approx-
imately within this coverage interval that the ratio of
the Co(MMV) to Si(LVV) Auger signals ceases to
change, thus implying a constant elemental composi-
tion in the probed near-surface layer.

2.2. CoSi2(111) Epitaxial Film

The pattern displayed in Fig. 1e and showing a dis-
tinct diffraction structure provides unambiguous evi-
dence for the silicide layer formed being ordered. As
follows from its comparison with Fig. 1a, the pattern
itself resembles in many details the one observed for
silicon, but turned azimuthally through 180°. It is
known that deposition of cobalt on a Si(111) crystal
heated to ~450°C results in the growth of a CoSi2(111)
cobalt disilicide film [8]. This similarity between the
diffractograms of Si(111) and CoSi2(111) can be
readily understood if one recalls their crystal structures.
Both substances crystallize in cubic symmetry, with sil-
icon having a diamond-type structure and CoSi2, a flu-
orite-type one. The mismatch between the lattice con-
stants is only 1.2% (a1 = 5.356 Å, a2 = 5.428 Å). Nev-
ertheless, the differences between these structural
types, which are clearly seen in the (110) planes (Fig. 2),
complicate the structure of the CoSi2 atomic chains, in
particular, along the 〈110〉  directions, and change the
atom concentrations in them. However, the orientations
of the closest-packed directions and planes in both
crystals coincide (the 〈110〉  directions and {110}
planes). Hence, the strongest pattern maxima should be
observed at the same takeoff angles of the scattered
electrons. This is illustrated by Fig. 3, which schemati-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 3      200
cally shows the mutual orientations of the principal
focusing maxima produced by electrons moving along
the {110} planes. It is these peaks, as is evident from
Figs. 1a and 1e, that are dominant in the diffraction pat-
terns observed. Therefore, these patterns are very simi-
lar and their differences are determined by the different
relative intensities of the focusing maxima.

As for the Kikuchi pattern of CoSi2(111) being
turned azimuthally through 180° relative to that of sili-
con, this is accounted for by the fact that it is this epi-
taxial orientation of the cobalt disilicide interface that
is energetically favorable for the system under study
[30]. It is customarily called the B orientation, as dis-
tinct from the A orientation, which coincides with that
of the substrate. The orientation of the growing disili-
cide is determined by its nucleation centers within the
unit cell of the reconstructed silicon surface [31]. If
these centers are localized on its strained halves, the
CoSi2(111) forms with the B orientation, otherwise it
will be A oriented. It was shown [32] that when Co

(a) (b)

a2a1

Si Co

Fig. 2. Schematic presentation of the sections of the (a) Si
and (b) CoSi2 unit cells by the (110) plane.

Fig. 3. Schematic illustrating the principal focusing maxima
appearing as electrons move along the (110) atomic planes
of (a) silicon and (b) cobalt disilicide.

(a)

(b)
[010] [131] [111] [101]

[101] [111] [131] [010]

Si

Co
1
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atoms are deposited on a silicon crystal at room temper-
ature, they are adsorbed and penetrate under the top sil-
icon atom layer within the whole 7 × 7 cell. Indeed, in
these conditions, one finds both A- and B-oriented
CoSi2(111) domains. By contrast, if Co atoms are
deposited on a heated crystal in close-to-thermodynam-
ically equilibrium conditions, they migrate over the
surface and remain within the strained parts of the cell,
and this is what accounts for the growth of the B-ori-
ented CoSi2(111) film in this case.

Thus, when more than ~5 cobalt monolayers are
deposited on a Si(111) crystal heated to ~450°C, a con-
tinuous epitaxial film of B-oriented CoSi2(111) will
grow on it. The ratio of the low-energy Co(M2, 3VV)
and Si(LVV) Auger signals measured for this film is
0.18–0.20, which adjoins the 0.2–0.3 interval quoted in
the literature for CoSi2–C [33–35]. It was established that
the elemental composition of the surface layers of this
phase coincides with that for bulk CoSi2(111) and termi-
nates with the monolayer triad Si–Co–Si [33, 36]. Note
that the surface of Co films annealed to higher tempera-
tures (550–600°C) is enriched in silicon, because it
becomes coated by two extra Si monolayers [33–35]. By
contrast, the surface of a film with elemental composition
coinciding with that of the bulk silicide is called cobalt
enriched. The diffraction pattern of CoSi2(111) with such
a surface obtained by computer simulation within the
cluster model of single scattering of plane electron
waves [19] from a B-oriented film is shown in Fig. 1f.
It exhibits good agreement with the experiment, thus
supporting the validity of the above interpretation of
the pattern in Fig. 1e.

2.3. CoSi2(111) Growth Mode in the Initial Stage
of Formation

An analysis of the intermediate diffractograms
obtained during the formation of the above Kikuchi
pattern with increasing amounts of deposited cobalt

a

b

0

0.005

α

R1

0.5 1.0

0.010

0.015

Fig. 4. Dependences of the R1 factor on parameter α, which
characterizes the statistical weight of the substrate in the dif-
fractograms observed after the deposition of (a) two and
(b) three cobalt monolayers.
P

(Figs. 1b–1d) yields information on the mechanism of
the silicide film growth in the earliest stages of the pro-
cess. A detailed comparison of these images with the
patterns produced by clean silicon (Fig. 1a) and cobalt
disilicide (Fig. 1e) shows the intermediate images to
contain elements of patterns due to both crystals. This
suggests that the intermediate images are actually their
superpositions. To check this conjecture, the Kikuchi
patterns under study were simulated using images
obtained on silicon (Fig. 1a) and cobalt disilicide (Fig. 1e).
The intensity It(θ, ϕ) was calculated for each point of
the pattern by the expression

(1)

where IA(θ, ϕ) and IB(θ, ϕ) are the intensities measured
at points in the diffraction patterns (Figs. 1a and 1e)
with the angular coordinates (θ, ϕ) and α is a variable
parameter related to the statistical weight of the sub-
strate surface not covered by CoSi2(111) crystallites.

The optimum value of α can be found by minimiz-
ing the difference between the calculated, It(θ, ϕ), and
measured, Ie(θ, ϕ), patterns. These differences are usu-
ally estimated by means of reliability factors. One cus-
tomarily resorts to the R1 and R2 factors defined by the
relations

(2)

Here, Ie(θ, ϕ) and It(θ, ϕ) are the measured and calcu-
lated intensities, respectively, for the same point in the
diffractogram. The summation is performed over all
takeoff angles of the detected scattered electrons. The
denominators of the fractions are normalization coeffi-
cients.

The calculations using Eqs. (1) and (2) were carried
out for α varied in steps of 0.02 within an interval of 0
to 1. The data obtained in this way for the three states
of the Co/Si system under study (Figs. 1b–1d) were
used to construct R1(α) and R2(α) relations. By way of
illustration, Fig. 4 shows this relation drawn for R1 for
samples with two and three Co monolayers. These rela-
tions are seen to exhibit fairly distinct minima at the
values of α of 0.35 and 0.18, respectively. The optimum
value of α for one Co monolayer is 0.60. The same
results are obtained in estimates made by means of the
R2 factor. The diffractograms calculated for two and
three Co monolayers and corresponding to the α values
thus found are presented in Figs. 1g and 1h. They are

It θ ϕ,( ) α IA θ ϕ,( ) 1 α–( )IB θ ϕ,( ),+=
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θ ϕ,
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Ie θ ϕ,( )
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∑
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θ ϕ,
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∑

----------------------------------------------------------.=
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seen to agree very well with the measurements (Figs. 1c,
1d). In contrast to [7], these data indicate that the film
forming in the course of deposition of the first few
monolayers occupies only a part of the substrate sur-
face, which increases as cobalt is further deposited. For
three Co monolayers, it is already 82% and it is proba-
bly in this stage that the islands start to coalesce. On
deposition of the fourth and fifth monolayers, the CoSi2
film becomes continuous. Estimation of the average
thickness of growing islands, made by comparing the
amounts of deposited cobalt with the corresponding
values of α, shows that, in the earliest stages of the sili-
cide formation, lateral growth of CoSi2(111) prevails.
For instance, an increase in the deposited Co from one
to three monolayers results in an increase in the average
island thickness by 50%, whereas the area occupied by
the islands increases twofold. It is the lateral growth of
the islands over the substrate surface that accounts for
the formation of fairly perfect epitaxial CoSi2 films in
this system.

Thus, the data obtained suggest that the formation of
the cobalt disilicide on the Si(111) 7 × 7 surface at an
elevated temperature starts with the nucleation of
CoSi2(111)-C islands, followed by their lateral growth.
The island coalescence occurs at cobalt amounts of
about three monolayers. Deposition of five Co mono-
layers produces a continuous, B-oriented CoSi2(111)
epitaxial film.
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Abstract—The most general (nonrelativistic) analytical formulas are deduced in the framework of the fluctu-
ation electromagnetic theory for the dynamic conservative and dissipative forces experienced by a neutral atom
moving parallel to the generatrix of a cylindrical surface. As in the case of a flat surface, a finite friction force
proportional to the velocity exists at T = 0. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of the dynamic fluctuation electro-
magnetic interaction (FEI) of atoms and molecules
with flat and curved surfaces is of considerable interest
for nanotribology [1] and in the context of the possible
control of particle beams by means of nanotubes [2, 3].
Furthermore, the information on FEI forces is neces-
sary in studies of the adsorption of particles by surfaces
of nanotubes and fullerenes.

This paper is a continuation of our works [4–7] in
which the most general nonrelativistic formulas were
deduced for the forces of attraction and of viscous fric-
tion of atoms and molecules moving parallel to a flat
surface. Dissipative FEI forces for a cylindrical surface
at temperature T = 0 were first considered in [8]. The
goal of the present work was to derive the more general
formulas for the conservative and dissipative FEI forces
acting on a neutral atom moving parallel to the genera-
trix of a convex (concave) cylindrical surface with a
nonrelativistic velocity V ! c in the case of an arbitrary
temperature.

2. ELECTRIC FIELD INDUCED 
BY A FLUCTUATING ATOMIC DIPOLE

ON A SURFACE

As in the case of a flat surface [4–7], let us consider
a spherically symmetric atomic particle with the polar-
izability α(ω). The medium is specified by the dielec-
tric function ε(ω). Figure 1a illustrates the motion
above a convex cylindrical surface, and Fig. 1b shows
the motion inside a cylindrical channel. For definite-
ness, in Sections 2–4, we will analyze the former case,
and in Section 5, we will consider the latter case.

Our constraints are reduced to the fulfillment of the
conditions of validity of the dipole approximation and
the neglect of the FEI retardation. In the case demon-
strated in Fig. 1a, these requirements constrain the dis-
tances between the particle and the surface h = R – a by
1063-7834/01/4303- $21.00 © 0574
the range r0 ! h ! c/ω0, where r0 is the characteristic
size of the atom and ω0 is the characteristic frequency
of excitation of atomic electrons.

Designating the vector of the spontaneous dipole
moment of the particle by dsp(t), we have the following
expression for the vector of electric polarization which
is induced in the space by the fluctuations of dsp(t)
(hereafter, we will use the Gaussian system of units):

(1)

where (r, φ, z) are the coordinates of the particle in the
cylindrical frame of reference. The Poisson equation
for the potential of the electric field induced by the polar-
ization represented by expression (1) (∆Φ = 4πdivPsp)

Psp r t,( ) δ x R–( )δ y( )δ z Vt–( )dsp t( )=

=  
1
r
---δ r R–( )δ φ( )δ z( )dsp t( ),

Vh

R

2a

(a)

ε(ω)

V

ε(ω)

ε(ω)

h

R

(b)

2a

Fig. 1. Diagram of the motion of a neutral particle: (a) par-
allel to the generatrix of a convex cylindrical surface and
(b) inside a cylindrical channel.
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has the following form in the cylindrical frame of refer-
ence:

(2)

where (t), (t), and (t) are the corresponding
projections of the vector of dipole moment.

Solving Eq. (2) and taking into account the bound-
ary conditions of the continuity of both the potential
and the normal component of electric induction, we
obtain the expressions for the vector of the induced
electric field of the surface and its components:

(3)

(4a)

(4b)

(4c)

(5)

(6)

For simplicity, argument k (and also a) in formula (6)
and, below, in formula (19) is omitted.

The functions Kn(x) and In(x) are the cylinder func-
tions of order n, and primes denote their derivatives.
The physical meaning of the ∆n(ω) function in Eq. (6) is
similar to that of the function ∆(ω) = (ε(ω) – 1)/(ε(ω) + 1)
in the case of a flat surface [4–7].

Replacing the Fourier components of the dipole
moment in Eqs. (4)–(6) by the corresponding quantum
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r∂
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r2
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∂φ2
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∂z2
-------+ + + 

  Φ r φ z t, , ,( )

=  4π 1
r
---

r∂
∂ δ r R–( )δ φ( )δ z( )dr

sp t( )


+
1
r
---

φ∂
∂ δ r R–( )

r
--------------------δ φ( )δ z( )dφ

sp t( )

+
z∂

∂ δ r R–( )
r
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sp t( )

 ,

dr
sp dφ

sp dz
sp

Ein r φ z t, , ,( )
1

2π( )3
-------------=

× Eωk
in r( )einφei kz ωt–( ) ωd k,d∫∫

n ∞–=

∞

∑

Er
in ωk; r( ) –

rd
d

un ωk; r( ),=

Eφ
in ωk; r( )

in
r
-----un ωk; r( ),–=

Ez
in ωk; r( ) ikun ωk; r( ),–=

un ωk; r( ) 4π∆n ω( ) Kn kr( )Kn' kR( )kdr
sp ω kV–( )

–=

– 
in
R
-----Kn kr( )Kn kR( )dφ

sp ω kV–( )

– ikKn kr( )Kn kR( )dz
sp ω kV–( )

 ,

∆n ω( )
ε ω( ) 1–( )In ka( )In' ka( )

ε ω( )In' ka( )Kn ka( ) In ka( )Kn' ka( )–
-------------------------------------------------------------------------------.=
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mechanical components of the operator of the dipole
moment, expression (3) will be treated as a definition of
the operator of the induced electric field of a surface in
the Heisenberg representation. All the other vector
quantities also have operator meaning.

3. CONSERVATIVE POTENTIAL 
OF THE INTERACTION OF A PARTICLE 

WITH A SURFACE
As in the case of a flat surface [4–7], the dynamic

potential of the interaction of an atom with a surface in
the dipole approximation can be represented in the
form of the sum of two independent parts:

(7)

where the first and the second terms are associated with
the spontaneous fluctuations of the dipole moment of
an atom and the electrical field of a surface, respec-
tively.

In order to determine U1, let us expand the dsp(t)
operator in the Fourier integral and substitute it into
expression (7), together with the operator of the electric
field at the point of the particle location Ein(R, 0, Vt),
and then expand the resulting correlators of the dipole
moment in a conventional manner with the use of the
fluctuation-dissipative theorem (cf. with [6, 7]):

(8)

Taking into account the analytical properties of the
functions α(ω) and ε(ω), which are associated with the
evenness of the real parts and the oddness of the imag-
inary parts, after a succession of transformations, we
bring the expression for U1 to the form

(9)

where Φn(z) ≡ d/dz lnKn(z) is the logarithmic derivative
of the Macdonald function. The functions α(ω) and
∆(ω) with one and two primes in expression (9) and
others designate their real and imaginary parts.

In order to find the potential U2, we expand the din(t)
operator in the Fourier frequency integral and Esp in the
Fourier integral with respect to ω and k and then in a
Fourier series in terms of the angular variable φ. Then,
we substitute the results in expression (7). Proceeding
further in a manner identical to the case of the deriva-
tion of a similar expression for a flat surface [6, 7], we
obtain the following expression for a spectral correla-

U int
1
2
--- dE〈 〉–

1
2
--- dspEin〈 〉–

1
2
--- dinEsp〈 〉–= =

=  U1 U2,+

di
sp ω( )dk

sp ω'( )〈 〉 2πδikδ ω ω'+( )=

× hα'' ω( ) ω"/2kBT( ).coth

U1 R V,( )
"

2π2R
2

--------------- ω kKn
2 kR( )dd∫∫

n ∞–=

∞

∑–=

× n2 kR( )2– kR( )2Φn
2 kR( )+[ ] ω"/2kBT( )coth

× α'' ω( ) ∆n' ω kV–( ) ∆n' ω kV+( )+[ ] ,
1
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tion function of the electric field (at the point of the
location of the particle (r = R)) which arises in the pro-
cess of calculation:

(10)

Employing expression (10), integrating the expression
for the potential with respect to variables ω' and k ', and
taking into account the analytical properties of the
polarizability and the dielectric function, we have

(11)

Finally, summing expressions (9) and (11), we obtain
the net result

(12)

A prime over the summation symbol in formulas (11)
and (12) (and also in similar formulas in the following)
implies that the term with n = 0 is taken with half
weight. The integration is carried out with respect to the
frequencies and values of the wave vectors which are
both positive. The deduced result generalizes the
known expression for the static potential of the van der
Waals attraction of a neutral spherically symmetric par-
ticle to a cylindrical surface at zero temperature [9–11].
In fact, assuming that V = 0 and T = 0 in formula (12),
we obtain

(13)

After rotating the integration contour through 90°, the
frequency integral in formula (13) is put in the form

Eωk
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U2 R V,( )
"

2π2R2
--------------- ω kKn

2 kR( )dd∫∫'

n ∞–=

∞

∑–=

× n2 kR( )2 kR( )2Φn
2 kR( )+ +[ ] ω"/2kBT( )coth

× ∆n" ω( ) α' ω kV–( ) α' ω kV+( )+[ ] .

U int R V,( )
"

π2R2
----------- ' ω kKn

2 kR( )dd∫∫
n 0=

∞

∑–=

× n2 kR( )2 kR( )2Φn
2 kR( )+ +[ ] ω"/2kBT( )coth

× ∆n" ω( ) α' ω kV–( ) α' ω kV+( )+[ ](

+ α'' ω( ) ∆n' ω kV–( ) ∆n' ω kV+( )+[ ] ).

U int R( )
2"

π2R2
----------- ' kKn

2 kR( )d

0

∞

∫
n 0=
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× n2 kR( )2 kR( )2Φn
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0
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Im ωα ω( )∆n ω( )d
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∞
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P

Hence, taking into account formula (6), formula (13) is
brought to a form which coincides with the results
obtained in [9–11]:

(14)

4. CALCULATION OF THE FRICTIONAL FORCE

In the case of stationary motion, the lateral force
acting on a particle (frictional force) is associated with
the Joule dissipation of the fluctuation electromagnetic
field energy per unit time:

(15)

Individual terms in formula (15), as well as in for-
mula (7), are determined by the contributions of the
fluctuating dipole moment of an atom and of the fluctu-
ation electromagnetic field of the surface, respectively,
where jsp = ∂Psp/∂t, Psp is determined by formula (1),
and jin is expressed via Esp by a linear integral relation-
ship. Carrying out calculations similar to those that were
performed for the attractive potential and taking into
account the fluctuation-dissipation relationships (8) and
(10), we obtain

(16)

Formula (16) generalizes the result of the work [8] to
the case of finite temperatures and arbitrary nonrelativ-
istic velocities. The structure of the expression in
braces in formula (16) [and in formula (12)] is the same
as in the calculation of the frictional force (and the
attractive potential) in the case of a flat surface [6, 7].

5. AN ATOM MOVING 
IN A CYLINDRICAL CHANNEL

Let us now consider the motion of a particle in a
cylindrical channel (see Fig. 1b). We retain all designa-
tions similar to those employed in the case demon-

U int R( ) 2"

π2R2
-----------–=

× ' kKn
2 kR( ) n2 kR( )2 kR( )2Φn

2 kR( )+ +[ ]d
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∫

dW
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--------– FV jE〈 〉 rd∫= =

=  jspEin〈 〉 rd∫ jinEsp〈 〉 r.d∫+

F R V,( )
2"

π2R2V
---------------- ' ω kKn

2 kR( )dd∫∫
n 0=

∞

∑=

× n2 kR( )2 kR( )2Φn
2 kR( )+ +[ ] ω"/2kBT( )coth

× ω kV+( ) ∆n" ω( )α'' ω kV+( ) ∆n" ω kV+( )α'' ω( )–[ ]{
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strated in Fig. 1a, but since now a > R, the value of h is
determined as h = a – R.

Without copying the details of the calculations sim-
ilar to the case of a convex surface, we note that final
expressions for the attractive potential and the frictional
force are obtained from formulas (12) and (16) by a
simple replacement of the Macdonald functions by the
modified Bessel functions and vice versa. This results
in the expressions

(17)

(18)

where Ψn(z) ≡ d/dzlnIn(z) and (ω) has the form

(19)

Formula (17) also generalizes the results of the works
[9–11] which were obtained for a static attractive
potential in a cylindrical channel at T = 0, and it allows
one to carry out the calculation of the van der Waals
potential for finite velocities and temperatures. Indeed,
assuming that V = 0 and T = 0 in formula (17) and per-
forming transformations similar to those executed dur-
ing the derivation of formula (14), we obtain a formula
identical to those presented in [9–11],

(20)

The passage to the approximation of small veloci-
ties in formulas (12) and (16)–(18) is carried out simi-
larly to the case of a flat surface [4–7]. For example, in
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the linear approximation with respect to the velocity,
formula (18) is rearranged to the form

(21)

(22)

Let us note that the dependence of the coefficient Cn(k)
on the wave vector is determined not only by the factor
before the integral, but also by the corresponding
dependence of the functions (ω) [see formula (19)].
By and large, the expansion of the lateral force in terms
of the velocity contains only odd powers and the expan-
sion of the normal force of the attraction to the surface
involves only even powers (beginning with the zero
power).

In order to carry out practical calculations according
to formulas (21) and (22), it is appropriate to remove
the factors depending on the wave vector in the numer-
ator and denominator in the (ω) function, by com-
bining them with the square of the Bessel function

(x), after which formula (22) takes the form

(23)
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(25)

(26)

It is an easy matter to demonstrate with the asymp-
totics of the cylinder functions that when ka and kR @ 1,
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we have (kR)  1, Bn(k)  1, and An(k) 
exp(–2kh)/2kR. In this case, the dependence of the inte-
grand obtained in formula (21) on h and on ε(ω) is the
same as in the case of a flat surface. Nonetheless, the
passage to the limit of the flat case, when R  ∞, is
not a trivial one, since the terms with large indices n
contribute significantly to the sum of the cylinder func-
tions in the right-hand side of formula (21). The sum-
mation of this series is a separate problem.

If we disregard the possible effect of the tempera-
ture on the ε(ω) function, the linear temperature depen-
dence of integral (23) manifests itself only in the range
of low frequencies when (ω"/2kBT)  2kBT/ω".
In the case when the absorption spectra of the particle
and the surface overlap in the high-frequency range, we
have (ω"/2kBT)  1. Carrying out integration by
parts in formula (23), we obtain

(27)

Hence, there always exists a finite frictional force at
T = 0.

6. CONCLUSION

Thus, employing a minimum of constraints, we
derived the most general nonrelativistic formulas for
the conservative (attracting) and dissipative (retarding)
fluctuation electromagnetic forces exerted on a neutral
atom moving parallel to the generatrix of a cylindrical
surface. The derived formulas allow one to calculate
these forces for arbitrary velocities of the particles, the
temperature of the surface, and the dielectric properties
of the particle and the surface. When both the velocity
and the temperature vanish, the formulas for the con-

Ψn
2

coth

coth

Cn k( ) 2An k( ) ωα'' ω( )
Dn ω k,( )d

ωd
-----------------------.d

0

∞

∫=
P

servative potential (van der Waals potential) coincide
with the known results of other authors.

The expansion of the fluctuation forces into a power
series in terms of the velocity proceeds by even powers
for the attracting (conservative) forces and by odd ones
for the dissipative forces, which is similar to the case of
a flat surface when there exists a nonzero contribution
to both forces at T = 0.

REFERENCES

1. G. V. Dedkov, Usp. Fiz. Nauk 170 (6), 585 (2000).
2. G. V. Dedkov, Nucl. Instrum. Methods Phys. Res., Sect.

B 143 (4), 584 (1998).
3. G. V. Dedkov and B. S. Karamurzov, Surf. Coat. Tech-

nol., No. 128/129, 51 (2000).
4. G. V. Dedkov and A. A. Kyasov, Phys. Lett. A 259 (1), 38

(1999).
5. G. V. Dedkov and A. A. Kyasov, Pis’ma Zh. Tekh. Fiz. 25

(12), 10 (1999) [Tech. Phys. Lett. 25, 466 (1999)].
6. A. A. Kyasov and G. V. Dedkov, Surf. Sci. 453, 11

(2000).
7. G. V. Dedkov and A. A. Kyasov, Fiz. Tverd. Tela

(St. Petersburg) 43 (1), 169 (2001) [Phys. Solid State 43,
176 (2001)].

8. A. A. Kyasov, Available from VINITI, No. 1407-B91
(1991).

9. M. Schmeits and A. A. Lucas, Surf. Sci. 64 (1), 176
(1977).

10. M. Schmeits and A. A. Lucas, Prog. Surf. Sci. 14 (1), 1
(1983).

11. V. M. Nabutovskiœ, V. R. Belosludov, and A. M. Korot-
kikh, Zh. Éksp. Teor. Fiz. 77, 700 (1979) [Sov. Phys.
JETP 50, 352 (1979)]. 

Translated by O. Moskalev
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001



  

Physics of the Solid State, Vol. 43, No. 3, 2001, pp. 579–582. Translated from Fizika Tverdogo Tela, Vol. 43, No. 3, 2001, pp. 559–562.
Original Russian Text Copyright © 2001 by Shul’pina, Ratnikov, Matveev.

                       

LOW-DIMENSIONAL SYSTEMS
AND SURFACE PHYSICS
X-ray Diffraction Study of Changes
in the CdTe Monocrystal Real Structure Induced

by Laser Radiation
I. L. Shul’pina, V. V. Ratnikov, and O. A. Matveev

Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia
e-mail: Irene.Shulpina@shuvpop.ioffe.rssi.ru

Received July 27, 2000

Abstract—The changes in the real structure of CdTe monocrystals caused by the thermal action of a high-
power laser pulse (1.6–1.97 J/cm2) were studied by high-resolution x-ray topography and diffractometry meth-
ods. It was shown that, under our experimental conditions, in a thin surface layer within the crystal region
exposed to the radiation, a dislocation cell structure with an increased dislocation density and with considerable
micromisorientations, in comparison with the crystal region unexposed to the radiation, was formed. The char-
acteristics of this modified crystal region were determined, and the thickness of the layer with the changed
structure was estimated. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Laser-stimulated impurity intrusion into materials is
a modern technological operation, and it is largely used
in optoelectronics for the creation of different device
structures. However, this procedure is accompanied by
heat action which may cause changes in the real struc-
ture of the material and in the corresponding electrophys-
ical properties. Therefore, it is of considerable interest to
study the structure of crystals exposed to radiation. A spe-
cific feature of the laser-stimulated impurity intrusion into
CdTe monocrystals is the heating of only a thin surface
layer [1]. Thus, the structure is changed only within this
surface layer. It was shown in [2, 3] by the x-ray topogra-
phy method that an increase in the laser beam power from
0.3 to 16 J/cm2 leads first to a decrease in the number of
structural imperfections of the crystal surface layer
exposed to radiation, which is due to annealing of the
surface defects. Then, there occurs deterioration of the
structure, which is accompanied by the formation,
development, and degradation of an ordered network of
fine twins. Further on, this network is transformed into
a dislocation cell structure. This cell structure of an
irradiated region cannot be resolved in detail by the sin-
gle-crystal inverse reflection method for low angles of
incidence of the x-ray beam. Only the use of the two-
crystal method allowed one to identify the features of
this structure. To improve the resolution for observation
of the structure details, we used the two-crystal topog-
raphy method with a low dispersion of the incident
beam. This technique was utilized in order to find the
optimal conditions for the crystal filming and then to
use combined high-resolution x-ray diffractometry
methods in order to obtain additional quantitative data
about the structure under study for its full description.
1063-7834/01/4303- $21.00 © 20579
At high beam powers, the changes in the CdTe
structure induced by the heat action of pulsed laser
radiation, in the impurity injection regime, are associ-
ated with recrystallization, that is, instant melting and
further crystallization of the thin surface layer. In calcu-
lations, the thickness of the melted layer is usually
determined from the laser power and thermophysical
properties of CdTe. A wide range of data on this thick-
ness can be found in the literature [1, 4]. There is even
less information on the layer thickness in which the
structure changes, despite the fact that this information
is of undeniable interest, since it is necessary for the
development of different devices. We have not been
able to determine this thickness by topography meth-
ods; however, there is hope that it can be done by using
high-resolution x-ray diffractometry [5].

1. DESCRIPTION OF EXPERIMENTAL SAMPLES

Crystals grown from the melt in the nongradient
heat field of a furnace [6] were investigated. The 8 × 8 ×
1.5 mm-size samples were cut from monocrystal plates
oriented parallel to the (111) plane. The sample surface
was prepared by means of mechanical grinding and
polishing with further long chemical etching, in order
to remove the damaged layer. Samples for investigation
were chosen by means of estimation of their real struc-
ture using the x-ray back reflection method [2]. The
samples chosen did not contain blocks and had the most
homogeneous structure. However, they contained sub-
grains and low-angle grain boundaries. They were
characterized by the presence of microstresses and by a
mean dislocation density of about ≈105 cm–2, which is
typical of the best CdTe crystals grown from the melt.
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Table 1.  Calculated angular dispersion D of a working beam and the half-width ω of the two-crystal reflection curve for deter-
mination of the optimal conditions for CdTe crystal filming

Monochromator CdTe sample, (111)

Crystal, orientation hkl, geometry ωm, arcsec –m, hkl ω0, arcsec D, arcsec ω, arcsec

Ge(111) 111, ac. 3.1 620, ac. 1.8 72 72.1

Ge(111) 333, c. 4.2 620, ac. 1.8 10.8 15.4

Ge(211) 422, c. 10.0 620, ac. 1.8 20.0 22.5

Si(100) 400, c. 3.4 620, ac. 1.8 47.0 47.2

Si(211) 422, c. 2.8 620, ac. 1.8 14.4 15.3

Si(111) 331, ac. 1.25 422, ac. 3.5 5.4 6.7
A pulsed OGM-40 laser with a ruby head (wavelength
λ = 0.694 µm, absorption coefficient K = 6 × 104 cm–1)
was used to irradiate the samples. The pulse duration
was 20 ns. To focus and to homogenize the radiation
over the beam cross section, a quartz focon having the
form of a truncated cone was used. Its input end had a
mat surface, and its output diameter was 0.7 cm. The
sample was placed at a distance of 0.05 mm from the
focon output end. The 1.61–1.97 J/cm2 radiation pow-
ers were used. The irradiated region had the form of a
circle with a diameter of 0.7 cm.

2. METHODS OF INVESTIGATION

High-resolution x-ray topography and diffractome-
try methods in the Bragg geometry were used in our
studies. The two-crystal method with the n, –m scheme
was utilized [5] for topographic studies. The resolution
of defect images is improved in this method with low-
ering of the dispersion of the working beam and with
the decreasing width of the two-crystal reflection curve.
This allowed us to determine the optimal conditions for
crystal filming, first, by means of calculations and, fur-
ther on, by experimental realization.

The working beam dispersion D and the half-width
of the two-crystal reflection curve ω were calculated
according to formulas of the dynamic x-ray diffraction
theory [7]:

(1)

(2)

where

(3)

Here, ∆λ/λ is the wavelength dispersion for the CuKα1
line; θm and θ0 are the Bragg angles for the monochro-
mator and the sample, respectively; ωm and ω0 are the
half-widths of the reflection curves of the monochro-
mator and the sample, respectively; C is the polariza-
tion factor; χh is the Fourier component of polarizabil-
ity; e–M is the heat multiplication factor; and α is the

D ∆λ /λ θm θ0tan–tan( ),=

ω ωm
2 ω0

2 D2+ +( ) 1/2–
,=

ωm 0, 2Cχh θ α+( )sin / θ α–( )sin e M– / 2θ.sin=
P

angle between the reflecting plane and the crystal sur-
face. The calculation data are summarized in Table 1.

The optimal conditions for the improvement of the
resolution of the structure details corresponded to the
last line of Table 1. It was found experimentally that for
the asymmetric reflection 331 from a perfect Si crystal
(for the (111) surface orientation), it was possible to
obtain a working x-ray beam with a low angular diver-
gence and relatively high intensity. When the asymmet-
ric reflection 422 from a CdTe sample was used, it was
not necessary to scan the crystal and the photographic
plate during the exposure.

The two- and three-crystal methods were utilized
for the diffractometric studies. Both the 111 and
333 reflections in the symmetric Bragg geometry and
the 620 reflection in the asymmetric geometry for the
Cu -radiation were used. For the three-crystal
method, the reflection curves were recorded for the θ-
and θ–2θ-scanning modes.

3. EXPERIMENTAL RESULTS

(1) Nonirradiated samples. The initial nonirradi-
ated samples were inhomogeneous over their surface
and were characterized by a mosaic structure. The frag-
ment sizes ranged from 0.4 to 1 mm. The misorienta-
tion of fragments was of the order of 10″–20″. The sam-
ples contained low-angle grain boundaries and isolated
inclusions (probably, of Te), and there were macros-
tresses in them. The inclusions were of the dislocation-
cell type. The cells had an irregular form. The average
linear size of the dislocation cells was 40−50 µm; the
mean dislocation density, according to the topographic
studies, was approximately ≈105 cm–2.

The shape of two-crystal scanning curves of the ini-
tial samples was varied when shifting along the crystal.
It followed from the analysis of the three-crystal θ and
θ–2θ-scanning curves that there were no gradients of
the interplanar spacing along the normal to the surface
and that the shape of the scanning curves was deter-
mined by the misorientation of the crystal fragments
due to the residual macrostresses and to the inhomoge-

Kα1
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Table 2.  Half-widths (ωθ, θ–2θ) of diffraction curves and the density of chaotic (ρ) and small-angle-boundary dislocations (ρc1)

CdTe sample , arcsec , arcsec , arcsec , arcsec ρ, 108 cm–2 ρc1, 106 cm–2

Initial 21 21 38 14

No. 1 141 31 110 46 0.5 3.5

No. 2 250 38 119 55 1.6 6.3

ωθ
111 ωθ–2θ

111 ωθ
333 ωθ–2θ

333
neously distributed dislocations. At the same time,
measurements of the three-crystal curves in the scheme
with the fixed position of a sample and with a rotating
analyzer, which allowed one to distinguish the dynamic
and incoherent components in the diffracted radiation
intensity, showed that the scattering is totally incoher-
ent in the 111 reflection (CuKα radiation, absorption
depth 1.7 µm). An analogous result for chemically and
mechanically polished samples of CdTe was obtained
earlier in [7]. It indicated the presence of a disordered
surface layer formed as a result of insufficient chemical
polishing.

(2) Irradiated samples. The irradiated region with
a diameter of 0.7 cm was characterized by an increased
reflected x-ray intensity in comparison with nonirradi-
ated regions of the sample. The structure of the irradi-
ated region was not revealed when studied by the sin-
gle-crystal back reflection method. When the two-crys-
tal method was used, according to the n, –m scheme,
with the Ge monocrystal as a monochromator in the
111 reflection for CuKα radiation, the structure of the
irradiated region was revealed and it was presumably of
the fine dislocation-cell type. The high-resolution topo-
grams, obtained using the Si crystal in the 331 asym-
metric reflection, provided support for the cell charac-
ter of the dislocation structure in the irradiated zone.
The dislocation cells had an irregular form, and their
mean linear size was 15–20 µm. This is 2.5 times lower
than the dislocation cell size in the bulk of crystals and
outside the irradiated region. The average density of
dislocations inside the irradiated region was estimated
to be approximately ≈106 cm–2. Due to the higher dislo-
cation density and to the smaller dislocation cell sizes,
the structural homogeneity in the irradiated zone was
higher than outside it and than in the original crystals.
For a low angular dispersion of the working beam,
some fragments of the irradiated region ceased to con-
tribute to the reflection.

The data of the diffractometry investigation are
shown in Table 2.

The values of the half-width of the reflection curves
outside the irradiated zone are represented in the first line
of Table 2. The half-widths for the 111 and 333 reflections,
calculated by means of the dynamic theory of x-ray scat-
tering, are equal to 20.7′ and 4.7′, respectively. The val-
ues of the half-width of the reflection curves for two
values of the radiation power of a laser beam are given
in the second and third lines of Table 2.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
Almost all studied samples possess an imperfect
surface layer, which is probably due to insufficient
chemical polishing.

The laser radiation leads to considerable broadening
of the Bragg curves, which suggests that the dispersion
of the reciprocal lattice vector is increased, mainly due
to misorientation. The structure homogeneity, in gen-
eral, is higher inside the irradiated region than outside it.
This is because the coherent-scattering regions become
finer. The initial crystals, as well as the regions outside the
irradiated zone, are characterized by a mosaic structure
with fragment misorientation on the order of 10″–20″.
The fragment size is about 0.4–1.0 mm. The lattice
parameter remains unchanged.

First, we estimated the density of dislocations, accord-
ing to [8], by assuming their chaotic distribution:

(4)

where b = 0.458 nm is the Burgers vector of disloca-
tions.

The corrections, which take into account the intrin-
sic half-width of the diffraction curves and the sample
bend, were added to the experimental values of the
half-widths. For the structures of all samples studied,
the model of the chaotic distribution of dislocations
gives increased dislocation densities up to 0.5 × 108 cm–2

for the laser radiation power of 1.61 J/cm2 and up to
1.6 × 108 cm–2 for the 1.97 J/cm2 power. However, the
topographic studies detect such a dislocation density
neither in the initial nor in the irradiated crystal samples
and indicate the structure for which dislocations are
mainly gathered inside the walls of dislocation cells.
Then, we used a model in which dislocations produce
small-angle boundaries inside the micrograin (or cell)
walls. The dislocation density can be calculated in this
case by using the formula [9]

(5)

where the value of the spacing between boundaries τx

was taken from the data on topographic investigations.
Analysis of a considerable broadening of the reflec-

tion curves for irradiated crystals in comparison with
the initial crystals revealed that the principle reason for
this is the misorientation of the diffraction planes or of
the coherent scattering regions (cells).

When analyzing the diffraction data, we took into
account different x-ray absorption depths, 1.7, 5.0, and
1.5 µm for the 111, 333, and 620 reflections, respec-

ρ ω2/4.35b2,=

ρcl ω2/ 2.1bτ x( ),=
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tively. Similar values of the absorption depth and of the
half-width of the scanning curves for the 111 and
620 reflections, on the one hand, and the abrupt fall of
the anisotropy for the reciprocal lattice site for the
333 reflection, on the other, allow us to consider that
the diffracted intensity of the 111 and 620 reflections is
mainly determined by the surface layer whose structure
is different from that of the crystal bulk. The 333 reflec-
tion intensity is also determined by the sample region
being below this layer. Thus, the thickness of the crystal
layer that has a structure modified by laser radiation can
be evaluated as the x-ray absorption depth for the 111
and 620 reflections, i.e., a value of about 1.5 µm.

4. DISCUSSION OF RESULTS
We note a good correspondence of the data obtained

by the topography and diffractometry methods. A sin-
gle exception is the evaluation of the density of disloca-
tions by supposing their chaotic distribution. For a cor-
rect estimation of this characteristic of the dislocation
structure, the correlation of the diffractometric and
topographic results of our investigation should be
assumed. To our mind, this is due to the fact that in the
5 × 104–1 × 108 cm–2 dislocation density interval, a cha-
otic distribution of dislocations in the bulk crystals is
rarely observed. The dislocation cell structure with the
dislocation arrangement in more or less dense networks
at the boundaries of irregularly shaped cells is more
common. Under certain conditions (in the course of
epitaxy, impurity diffusion, etc.), regularly shaped cells
can arise as elements of a misfit dislocation network.
However, the distribution of dislocations is far from
being chaotic in this case. This should be taken into
consideration when estimating the dislocation density
on the basis of a real crystal structure by indirect (rather
than direct) methods.

Thus, we observed that, due to the action of the 1.6–
2.0 J/cm2-power pulsed laser radiation, a change in the
real structure of an approximately 1.5 µm-thick surface
layer took place. The irradiated crystal can be consid-
ered as some kind of a sandwich. The greater part of its
P

bulk has a typical large-sized dislocation cell structure,
but the thin surface layer has a fine dislocation cell
structure with an increased dislocation density and with
considerable micromisorientations of the cells. The lat-
ter structure occurs quite rarely. That is why it is of
interest to study its role in processes of laser-stimulated
injection of different impurities and in optical and some
other properties of materials [10].
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Abstract—Diffusion of nickel in copper was studied experimentally in a temperature range of 250–375°C in
the “coating (nickel)–metal (copper)” system using a radioactive isotope 63Ni. Anomalously high values of the
diffusion coefficients and an anomalously low value of the activation energy were found. To explain the effect,
a new way of describing the diffusion phenomena in the vicinity of the interface of two metallic media is sug-
gested, which takes into account the presence of high gradients of chemical potentials near the boundary. Based
on the principles of nonlinear thermodynamics of irreversible processes, a system of differential equations of
diffusion in the vicinity of the interface was obtained. Analysis of the kinetics of the diffusion zone formation
revealed that chemical-potential gradients significantly accelerate the diffusion process in the vicinity of the
interface. A comparison of the calculated kinetics of the formation of a diffusion zone with that obtained upon
the experimental investigation of diffusion shows their qualitative agreement. © 2001 MAIK “Nauka/Interpe-
riodica”.
INTRODUCTION

In practice, there are frequently encountered metal-
lic systems containing various interfaces, e.g., coatings
on metallic surfaces, bimetallic compositions, contacts
of details made of unlike materials, etc. In many cases,
such systems are subjected to additional treatments to
improve their physical and mechanical properties, or their
service regime corresponds to enhanced temperatures,
which causes diffusion redistribution of the components
of the contacting metallic materials. On the whole, a well-
developed theoretical apparatus exists at present to
describe processes of this type, which permits one to
make sufficiently reliable predictions [1].

At the same time, when studying diffusion pro-
cesses in metal–coating systems at low temperatures,
experimental data were obtained in some cases that
indicated a deviation from the known laws. Thus, based
on the investigations of diffusion in various irradiated
metal–coating systems, it was, e.g., established [2] that,
upon the irradiation of the Mn-coated Ni–10% Mn
alloy with gamma photons at room temperature, the
diffusion coefficient is close in order of magnitude to the
coefficient of thermal diffusion at 850°C. Similar results
were observed on other metals with coatings. In terms of
radiation-stimulated diffusion, such an increase in diffu-
sion coefficients could not be explained; therefore, an
assumption was made that the nature of the observed
effect is related to the presence of concentration gradi-
ents of the alloy components in the vicinity of the coat-
ing–metal interface.

The aim of this work is to experimentally study dif-
fusion in metal–coating systems at low temperatures
1063-7834/01/4303- $21.00 © 20583
(below 500°C) and to theoretically describe diffusion
processes in regions adjoining the interface with allow-
ance for large gradients of the component concentra-
tions.

1. EXPERIMENTAL INVESTIGATION
OF DIFFUSION

IN THE METAL–COATING SYSTEMS1 

The experimental investigation of diffusion in the pres-
ence of large concentration gradients was performed with
the help of the absorption radiotracer method [3]. The
essence of the method is as follows. A sample is covered
with a coating containing a radiotracer and is subjected to
controlled annealings; then, the kinetics of the activity
decay at the surface is studied (the decay is due to the
absorption of the radiation of the tracer because of its
diffusive penetration into the bulk of the sample during
the diffusion annealing). The diffusion coefficient is
determined from a comparison of the experimental and
theoretical kinetic dependences.

As the samples for the investigation, we used poly-
crystalline copper; as a coating, nickel was employed,
which was labeled with a radioactive isotope 63Ni, hav-
ing a soft β radiation, and was applied electrolytically
onto one of the surfaces of the sample. The coating
thickness was 0.02 µm. Annealings were performed in
a vacuum chamber. The temperature range of diffusion
annealings was between 250 and 375°C. The annealing
duration was 4–4.5 h. Despite the relatively low diffu-
sion temperature and relatively short duration of the

1 This work was performed in cooperation with V.A. Lazarev.
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diffusion annealing, the large sensitivity of the tech-
nique employed [4] permitted us to obtain reliable
kinetic dependences of the variation of activity. The
experimental kinetic curves were compared with
a theoretical dependence of the radiation intensity of
the form

(1)

where I(0) is the intensity of radiation from the sample
at the initial time moment, I(t) is the current intensity of

I t( )
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Fig. 1. Experimental and theoretical (Eq. (1)) dependences
of the intensity of radiation from a sample for various tem-
peratures of diffusion annealing: (1) 250, (2) 300, (3) 350,
and (4) 375°C.
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Fig. 2. Temperature dependence of the diffusion coefficients
of nickel in copper: (1) according to [5] and (2) obtained in
this work.
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radiation from the sample, l is the thickness of the coat-
ing, x is the coordinate, D is the diffusion coefficient,
t is the time, and µ is the absorption coefficient for the
β radiation of 63Ni (µ = 25000 cm–1). The results of the
comparison are shown in Fig. 1. An analysis of the data
shows that the experimental kinetic curves do not cor-
relate with the theoretical linear curves for the entire
time of diffusion annealing in the temperature range of
250–375°C. This difference is especially noticeable at
the first stages of the diffusion annealing. One of the
causes for such a behavior may be the dependence of
the diffusion coefficient on time.

However, from the curves of the comparison of
experimental and theoretical kinetic dependences (Fig. 1),
we can arbitrarily distinguish a certain time moment
beginning at which the indicated dependence can satis-
factorily be considered to be linear with a constant
value of the diffusion coefficient. Such an operation
was performed and is shown in Fig. 1. The temperature
dependence of the diffusion coefficients calculated
without allowance for the initial stages of the diffusion
annealing is displayed in Fig. 2 (curve 2). It is seen that
it can satisfactorily be described by the well-known
exponential Arrhenius law D = D0exp(–Q/RT). For the
above temperature range, we have D0 = (7.57 ± 0.16) ×
10–11 cm2/s and Q = 10.5 ± 2.5 kcal/mol. For compari-
son, Fig. 2 displays (curve 1) data for the diffusion of
nickel in copper in the temperature range of 743–
1076°C [5] (D0 = 2.7 cm2/s, Q = 56.5 kcal/mol). The
extrapolation of the indicated temperature dependence
into the region of low temperatures is given in Fig. 2 by
the dashed line. The comparison of the activation
energy of diffusion for nickel in copper obtained in this
work with literature data shows its significant (by more
than a factor of five) decrease. This level of the activa-
tion energy of diffusion is anomalously low; it is inter-
mediate between the energies of migration of vacancies
(≅ 15 kcal/mol) and interstitials (≅ 5 kcal/mol) [6].
Depending on the temperature, the diffusion coefficients
of nickel obtained by us are lower by 7–13 orders of mag-
nitude than those interpolated from literature data.

The high diffusion mobility of nickel in polycrystal-
line materials at low temperatures can be explained by
the operation of several mechanisms (grain-boundary
diffusion, diffusion via defects, etc.). However, the pre-
dominance of grain-boundary diffusion at low temper-
atures leads to a decrease in the activation energy only
by a factor of 1.4–2.8 [7]. If we take into account that
the transition layer between the coating and the metal is
strongly defective, we may assume that this can facili-
tate diffusion processes. However, the results of [8]
indicate that the activation energy of nickel diffusion
via defects is ≅ 26.6 kcal/mol, which is greater by a
factor of 2.5 than that obtained in our experiments.

One more mechanism of acceleration of diffusion is
the effect of high gradients of chemical potentials in the
vicinity of the interface.
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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2. THEORETICAL DESCRIPTION
OF DIFFUSION PROCESSES

IN THE COATING–METAL SYSTEM
WITH ALLOWANCE FOR HIGH 
CONCENTRATION GRADIENTS 

OF COMPONENTS

A detailed analysis of diffusion processes in the
presence of large gradients of concentrations and chemi-
cal potentials requires a special approach; the usual ways
of description of diffusion processes cannot be used in this
case. We write, proceeding from the principles of thermo-
dynamics of irreversible processes [9], the expression for
the diffusion flux of the component m in the form

(2)

where Lmj are the Onsager coefficients, Lmjkn are the
kinetic coefficients, µ(cj , ck , cm) are the chemical poten-
tials, and cm are the concentrations of the component m.
The indices A, B, and V correspond to the metal of the
coating, the metal of the base, and the vacancies,
respectively.

Going from the gradients of chemical potential to
gradients of concentration,

, (3)

and using the condition of normalization for the con-
centrations,

(4)

we write the expression for the diffusion fluxes in the
form

(5)

In this expression, we have

(6)

where rmn, αmn, and βmn are the combinations of
Onsager coefficients and derivatives of chemical poten-
tials with respect to the concentrations of the compo-
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nents. In addition, the diffusion coefficients  are
related as follows [10]:

(7)

Using Eqs. (4)–(6) and taking into account the con-
ditions of the limiting transition to a quasibinary sys-
tem, we can show that the set of equations of diffusion
of the components in the vicinity of the coating–metal
interface is written as

(8)

Here,

Dm (m = a, B) are the coefficients of the mobility of the
component m and αAA and αBB are the kinetic coeffi-
cients.

The set of equations (8) is nonlinear; therefore, we
used numerical calculations to analyze the kinetics of
the formation of a diffusion zone in the vicinity of the
coating–metal interface. The calculations were per-
formed using the finite-difference scheme for the
approximate solution of systems of nonlinear differen-
tial equations of the parabolic type [11].

The set of equations (8) was solved for two variants
of the model of the interface: (i) the interface between
two homogeneous semibounded media; and (ii) the
interface between a thin coating and a semibounded
medium.

2.1. Diffusion in the Vicinity of the Interface 
between Two Homogeneous Semibounded Media

Diffusion calculations for the model of the interface
between two semibounded media were performed for
the set of equations (8) with the initial conditions
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and boundary conditions

(10)

where  is the initial concentration of the component A

in medium 1,  is the initial concentration of the com-

ponent A in medium 2,  is the initial concentration of

vacancies in medium 1, and  is the initial concentra-
tion of vacancies in medium 2. 

The solution of the set of equations (8) with the ini-
tial and boundary conditions (9), (10) was solved for
various relations between the coefficients of mobility of
the components. The cases DA = DB, DA < DB, and
DA > DB were considered. The initial concentration of

vacancies in both media was the same; i.e.,  = .

The effect of the magnitude of the gradient of con-
centration of the component A on its diffusion redistri-
bution in the vicinity of the interface was studied by
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Fig. 3. Distribution of (a) the component A and (b) vacan-
cies in the diffusion zone in the vicinity of the interface
between two semibounded media as a function of time: t =
(1) 1.25, (2) 12.5, (3) 125, (4) 1250 s, and (5) initial distri-

bution. DA = 1 × 10–11 cm2/s, DB = 1 × 10–10 cm2/s,  =

 = 5 × 10–5, and α = 10–17.
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specifying various values of the kinetic coefficient α =
|αAA – αBB |. The results of the calculations indicate a
substantial effect of the kinetic parameter α and of the
gradient of concentration of the component A on the
diffusion processes in the vicinity of the interface. As
the parameter α increases, the zone of the redistribution
of the components increases for any relationship
between the mobility coefficients. Note also that the
allowance for the gradient of concentration of the com-
ponent A in the set of equations (8) noticeably changes
the form of the kinetic dependences of diffusion in the
vicinity of the interface. For α = 0, the coordinates of
points with a given concentration are proportional to

. If α ≠ 0, the kinetic dependences deviate signifi-
cantly from this law. The most intense development of
diffusion processes near the interface is observed at the
initial time moment, when the effect of the gradient of
concentration of the component is particularly notice-
able. As the diffusion time increases, the effect of the
gradient decreases. This is connected with the magni-
tude of the gradient, which is maximum at t  0.
A mathematical treatment of the kinetic curves showed
that for the initial time moments, the coordinate x is

proportional to .

The calculations showed that, for the cases DA < DB

and DA > DB, there is observed a redistribution of
vacancy concentrations in the vicinities of the interface
of the two semibounded regions considered (Fig. 3b),
which is related to the difference in the mobilities of
atoms in these regions. This difference leads to the
appearance of a flux of vacancies from the region with
a lower mobility to the region with a greater mobility.
The observed distribution of vacancies corresponds to
the idea of Bardeen and Herring that was employed by
them for the explanation of the Kirkendall effect,
according to which a redistribution of vacancies occurs
with time under the effect of diffusion so that the extremal
points are displaced further from the interface and the con-
centration of vacancies tends to fit to the magnitude of the
coefficients of mobility of the components. The zone of
the redistribution of vacancies exceeds the zone of the
redistribution of component A (Fig. 3a).

2.2. Diffusion in the Vicinities of the Interface
between a Thin Coating and a Semibounded Medium

Simulation of diffusion processes in the vicinity of
the interface between a coating and a metal was per-
formed with the use of the set of equations (8) with the
initial conditions

(11)

t

t4

cA x 0,( ) cA
1 , cV x 0,( ) cV

1 , l x 0≤<–( ),= =

cA x 0,( ) cA
2 , cV x 0,( ) cV

2 , 0 x +∞<≤( )= =
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and boundary conditions

(12)

where l is the thickness of the coating, JA is the flux of

component A, JV is the flux of vacancies,  is the ini-

tial concentration of component A in the coating,  is
the initial concentration of component A in the metal,

 is the initial concentration of vacancies in the coat-

ing, and  is the initial concentration of vacancies in
the metal.

The solution to the set of equations (8) with the ini-
tial and boundary conditions (11)–(12) was performed
for various values of the coating thicknesses and vari-
ous relationships between the coefficients of mobility
of the components. Like in the case of two semi-
bounded homogeneous media, we considered the vari-
ants DA = DB, DA < DB, and DA > DB. The initial concen-
tration of vacancies in the coating and in the metal was

assumed to be the same; i.e.,  = .

Figure 4a displays the redistribution of component
A in the diffusion zone for a 0.05-µm coating at a fixed
time moment without allowance for the gradient of the
concentration (curve 2) and with allowance for this
gradient (curve 3). The mobility of component A is
higher by an order of magnitude than that of compo-
nent B; i.e., the condition DA > DB is fulfilled. The
allowance for the concentration gradient leads to a
more significant redistribution of the components in
the diffusion zone, which is analogous to an increase
in the diffusion coefficient. The distribution of vacan-
cies in this zone (Fig. 4b) correlates with the distribu-
tion of component A.

The allowance for the concentration gradient for the
case where the mobility of the component of the coat-
ing is less than that of the base, i.e., DA < DB, just as in
the case of DA > DB, leads to a faster diffusion redistri-
bution of the components in the vicinity of the inter-
face. The distribution of vacancies in the diffusion zone
in this case correlates with the distribution of compo-
nent B.

At equal mobilities of the components (DA = DB),
there also occurs an acceleration of the diffusion redis-
tribution in the vicinities of the interface with allow-
ance for the gradient of concentrations of the compo-
nents.

Based on the investigated regularities of the forma-
tion of the diffusion zone in the vicinity of the interface
between the coating and the base metal, we simulated
the kinetics changes in the intensity of radiation from
the surface of the sample in the diffusion experiment.
We assumed that a coating 0.02 µm thick of component A
(containing the nickel isotope 63Ni) was applied to the
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metallic base representing component B. The initial inten-
sity of radiation I(t) was determined in accordance with

the expression I(t) = cA(x, t)exp(–µx)dx, where t is the

time, x is the coordinate, µ is the absorption coefficient
of the β radiation of 63Ni, and cA(x, t) is the current con-
centration of nickel in the diffusion zone, which was
determined from the solution of the set of equations (8)
with the initial and boundary conditions (11), (12). The
calculated values of I(t) were normalized to the inten-
sity of radiation at the initial time moment I(0). The cal-
culated kinetic curve of the intensity of radiation was
compared, as in the case of the experiment, with the
theoretical curve described by Eq. (1). The results of
the comparison are given in Fig. 5. Note that in the case
where the gradient of concentrations of the components
has not been taken into account, a linear dependence is
observed (curve 1) between the calculated kinetic curve
and the theoretical one. When the gradient of concentra-
tion was allowed for, a significant deviation of the compar-
ison curve (curve 2) from the linear dependence was
observed. Such a course of curve 2 (Fig. 5) correlates
sufficiently well with experimental data presented in
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Fig. 4. Distribution of (a) the component A and (b) of vacan-
cies in the diffusion zone in the vicinity of the interface
between the coating and the metal (DA = 1 × 10–10 cm2/s,
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Fig. 1 and, to a certain extent, corroborates the assump-
tion on the effect of gradients of concentrations of the
components on the kinetics of diffusion processes in
the vicinities of the interface between two media. This
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Fig. 5. Comparison of the calculated dependences of the
change in the intensity of radiation at the surface of the sam-
ple with the theoretical curve (Eq. (1)): (1) without allow-
ance for the gradient of concentration of the components
(α = 0) and (2) with allowance for the gradient of concen-
tration (α = 10–20). The coating thickness is 0.02 µm, DA =

DB = 1 × 10–10 cm2/s.
P

effect should be especially pronounced at the initial
time moments, when the gradients are large.
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Abstract—The absorption (T = 295 K) and luminescence (T = 5 and 295 K) spectra of films of alkyl and aryl
substituted polysilanes, namely, poly(dihexylsilane) (PDHS) and poly(methylphenylsilane) (PMPS), are inves-
tigated as functions of the time and the wavelength of light irradiation at Tirr = 5 and 295 K. It is shown that the
photodegradation in polysilane films depends on the temperature, irradiation wavelength, and the structure of
side substituents. The absorption of light by short chain segments in polysilanes at room temperature leads to
competitive processes such as the transfer of excitation energy to longer segments, the scission of σ bonds
between Si atoms, and the radiationless dissipation of excitation. It is revealed that, at Tirr = 295 K, the photo-
degradation of PDHS films is accompanied by the transformation of certain chain segments from a low-tem-
perature trans conformation with an ordered arrangement of side hexyl groups to a high-temperature helical
conformation with a disordered arrangement of side groups. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Polysilanes of the general formula [–Si(R1R2)–] are
the organosilicon polymers in which the main chains
consist of Si atoms linked by σ bonds and R1 and R2 are
the side organic groups. These compounds are charac-
terized by a strong absorption in the near UV range,
large quantum yields of luminescence and charge car-
rier photogeneration, high drift mobilities of holes [1–
3], and nonlinear properties [2–4]; moreover, they also
are known as highly sensitive self-developing photore-
sists [2, 5].

According to modern concepts [1–3], a polymer
chain in polysilanes, like in π-conjugated polymers,
contains different-sized segments which are separated
by conformational defects. As follows from the esti-
mates, a segment involves, on average, 20–25 mono-
mer units. The lowest-lying excited state in the chain
corresponds to the 1(σσ*) transition of an electron delo-
calized along the segment axis. The absorption spec-
trum of polysilanes in the range of the 1(σσ*) transition
exhibits a structureless inhomogeneously broadened
band whose shape is determined by the size distribution
of chain segments. The spectrum of excited states in
polysilanes was described within the models of Fren-
kel, Wannier–Mott, and mixed-type one-dimensional
excitons [1, 3, 4, 6–10]. It seems likely that the proper-
ties of the lowest-lying excited state in polysilanes are
most adequately described by the model of Frenkel
one-dimensional excitons with a weak exciton–phonon
bond [1, 3, 7, 8, 10].

Investigations into the dynamics of excited states in
polysilanes revealed that the short-wavelength excita-
tion leads to a fast (for τ = 0.7 ps) energy relaxation
from high-lying excited states to the lowest-lying
1063-7834/01/4303- $21.00 © 20589
excited state [7, 10]. It was assumed that this process is
attended with the scattering of electrons by phonons.
Then, the energy is slowly (τ > 1 ps) transferred from
short segments to the longer segments which are char-
acterized by a lower excitation energy. This process
occurs through the tunneling (jumps) of excitons over a
system of disordered energy levels. The luminescence
spectrum of polysilanes is associated with radiative
transitions in long chain segments; in this case, the
Stokes shift between absorption and emission in long
chain segments is insignificant [1, 7].

It is known that exposure of polysilanes to light
results in their degradation, which is accompanied by a
decrease in the molecular weight of polymers and a
decline in the absorption in the range of the 1(σσ*) tran-
sition [2, 5, 11]. According to [2, 11], the photodegra-
dation of a polymer starts with the scission of one or
two σ bonds between Si atoms in a segment and with
the formation of silyl and silylene radicals, respec-
tively. Then, these radicals in polymers are involved in
different chemical reactions, in particular, the attach-
ment of oxygen and the formation of cyclic structures.
Moreover, the cross-linking of polymer chains occurs
in polysilanes which contain aryl side groups directly
attached to Si atoms of the main chain. The induced
absorption spectra of the alkyl and aryl substituted
polysilane solutions and films irradiated with light
pulses of lengths from 0.7 ps to 10 µs were studied by
the flash photolysis technique in [7, 12–15]. It was
found that the spectra depend on the structure of side
groups in polymer chains, the pulse length, the wave-
length of the incident light (λirr = 266–355 nm), and the
delay time between light pulses and the onset of record-
ing. Introduction of special quenchers into the solutions
made it possible to reveal and identify absorption bands
001 MAIK “Nauka/Interperiodica”
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which are associated with the formation of silyl and
silylene radicals.

The absorption spectra of frozen solutions and films
of poly(dihexylsilane) (PDHS) were examined by the
spectral hole burning method [8, 16, 17]. It was shown
that, after the selective excitation of short segments, the
energy is transferred to longer chain segments followed
by their photodegradation. In our earlier work [18], we
revealed that the degradation processes in poly(meth-
ylphenylsilane) (PMPS) films considerably differ upon
light irradiation in the ranges which correspond to the
absorption of the main chain segments and side phenyl
groups. In the present work, we investigated how the
transfer of excitation energy between segments and
also from the side substituents to the polymer chain
segments affects the photodegradation processes in
alkyl and aryl substituted polysilane films. For this pur-
pose, the absorption (at T = 295 K) and luminescence
(at T = 5 and 295 K) spectra of PDHS and PMPS films
were studied as functions of the time tirr of light irradi-
ation at wavelengths λirr = 405, 365, 313, and 265 nm at
Tirr = 295 K. The choice of the aforementioned poly-
mers was motivated by the fact that their electronic
properties were investigated in greater detail [1–3].

2. EXPERIMENTAL TECHNIQUE

The PDHS and PMPS films with thickness d = 0.5–
10 µm were prepared by pouring toluene solutions of
polymers onto fused silica substrates. The absorption
spectra (T = 295 K) were recorded on a KSVU-23 spec-
trometric computer complex, and the luminescence
spectra (T = 5–295 K) were measured on an SDL-1
spectrometer. The low-temperature investigations were
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Fig. 1. Absorption spectra of PDHS films (T = 295 K) irra-
diated at Tirr = 295 K with light at wavelengths λirr =
(a) 405, (b) 365, (c) 313, and (d) 265 nm. Irradiation time
tirr: (a) (1) 0, (2) 3, and (3) 15 min; (b) (1) 0, (2) 5, and
(3) 70 s; (c) (1) 0, (2) 1, and (3) 3 min; and (d) (1) 0, (2) 3, and
(3) 6 min.
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performed using an optical temperature-controlled
helium cryostate with quarts windows and an automatic
system of control and stabilization of the temperature
which was measured with a copper–constantan differ-
ential thermocouple. For excitation of luminescence or
photodegradation, the polysilane films in air or a
helium atmosphere in the cryostate were irradiated with
a DRSh-250-2 ultrahigh-pressure mercury lamp
through the absorption light filters. The relative photon
distribution with account for the filtration at λ = 405,
365, 313, and 265 nm was equal to 4 : 8 : 1.5 : 1. The
power densities Φ of lamp radiation at λ = 365 nm upon
irradiation of films in air and in the cryostate were equal
to 60 and 20 mW cm–2, respectively.

3. EXPERIMENTAL RESULTS

At T = 295 K, the absorption spectrum of the PDHS
film in the range λ = 200–500 nm consists of two broad
bands with λmax = 317 and 375 nm (Figs. 1a–1d). These
bands are associated with the 1(σσ*) electronic transi-
tions in the polymer chain segments which adopt heli-
cal and trans conformations, respectively [1, 19].
Exposure of films to light (λirr ≤ 405 nm) at Tirr = 295 K
leads to irreversible changes in the absorption spectra
of these films; the character of the observed changes
depends on λirr and tirr. The irradiation with light at λirr =
405 and 365 nm results in a hypsochromic shift of two
absorption bands. In this case, the absorption decreases
for the long-wavelength band and increases for the
short-wavelength band. These spectral changes become
more pronounced with an increase in tirr . Specifically,
after the irradiation at λirr = 405 nm for tirr = 15 min or
at λirr = 365 nm for tirr = 70 s, the shift is equal to 25–
30 nm (Figs. 1a, 1b). The irradiation of films with light
at λirr = 313 nm for tirr = 1 min or at λirr = 265 nm for
tirr = 3 min brings about a noticeable decrease in both
absorption bands, which is attended by an insignificant
hypsochromic shift of the long-wavelength band
(curves 1, 2 in Figs. 1c, 1d). An increase in the time of
film exposure to the light at λirr = 313 nm up to tirr ≥ 3
min leads to a drastic decrease in the long-wavelength
absorption band, a weaker decrease in the short-wave-
length band, and a hypsochromic shift of its maximum
(Fig. 1c, curve 3). At the same time, an increase in the
time of film exposure to the light at λirr = 265 nm up to
tirr = 6 min brings about virtually the complete disap-
pearance of the short-wavelength band and only the
long-wavelength band at λmax = 360 nm remains in the
absorption spectrum (Fig. 1d, curve 3).

At T = 5 K and λexc = 313 nm, the luminescence
spectrum of the PDHS film exhibits a narrow exciton
luminescence band (half-width ∆ = 300–400 cm–1) at
λmax = 371 nm and a very weak structureless back-
ground in the range λ = 400–600 nm whose intensity is
50–100 times less than the intensity of the exciton band
at a maximum (Figs. 2a–2d, curves 1). This back-
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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ground is attributed to the impurity luminescence [1].
An increase in the temperature results in a decrease in
the intensity of the exciton luminescence band, an
increase in its half-width, and a bathochromic shift of
its maximum. At T = 295 K, the maximum of the exci-
ton band is located at λmax = 381 nm and its half-width
∆ is equal to 1000 cm–1.

It is found that, after the irradiation of the PDHS
films with light at λirr ≤ 405 nm at Tirr = 295 K in air or
a helium atmosphere, the luminescence spectra mea-
sured at T = 5 and 295 K are characterized by the same
irreversible changes irrespective of the presence of
oxygen. Particularly, exposure of the films to light at
λirr = 405 or 365 nm (tirr = 30 min) brings about a
decrease in the intensity of the exciton band, an
increase in its half-width by a factor of 1.5–3, and a
hypsochromic shift of its maximum by 5–10 nm
(Figs. 2a, 2b). Similar changes are observed in the
luminescence spectra of films irradiated with light at
λirr = 313 nm and Tirr = 295 K. However, the hypsoch-
romic shift in the maximum of the exciton lumines-
cence band in this case is small and equal only to 0.5–
1.0 nm (Fig. 2c). Unlike the illumination of PDHS films
at λirr = 405, 365, and 313 nm, the irradiation with light
at λirr = 265 nm leads only to a decrease in the intensity
of the exciton luminescence band without change in the
location of its maximum (Fig. 2d).

At Tirr = 5 K, the irradiation of the PDHS films with
light at λirr = 313 nm and Φ = 2 mW cm–2 for tirr = 2 h
does not lead to substantial changes in the lumines-
cence spectra at T = 5 K. However, the irradiation with
light at λirr = 365 nm and Φ = 20 mW cm–2 for
tirr ≥ 3 min at Tirr = 5 K results in the appearance of a
new very weak band at λmax = 377 nm in the lumines-
cence spectrum. The intensity of this band is approxi-
mately 50 times less than that of the exciton band at a
maximum. After the irradiation with light at λirr = 265–
365 nm, Φ = 100 mW cm–2, tirr ≥ 15 min, and Tirr = 5 K,
the intensity of the band at λmax = 377 nm increases by
a factor of approximately 10. Simultaneously, the hyp-
sochromic shift by approximately 1 nm is observed for
the exciton band, and its intensity decreases by 5–10%.
These changes in the exciton band after the irradiation
of the PDHS film by light at Tirr = 5 K are irreversible.
However, the band at λmax = 377 nm disappears after the
photodegradation of the film exposed to light at λirr =
313 nm for tirr ≥ 60 min and Tirr = 295 K and does not
appear after repeated irradiation with light at Tirr = 5 K.
It seems likely that this band corresponds to the lumi-
nescence of polymer chain defects, which are formed
upon irradiation of the polymer within its absorption
band at Tirr = 5 K and annihilate after the irradiation at
Tirr = 295 K.

At T = 295 K, the absorption spectrum of the PMPS
films involves two bands at λmax = 337 and 275 nm,
which are attributed to the 1(σσ*) and 1(ππ*) transitions
PHYSICS OF THE SOLID STATE      Vol. 43      No. 3      200
in the main chain segments and side phenyl groups,
respectively [20] (Figs. 3a–3c, curves 1). Exposure of
the films to light at λirr ≤ 365 nm and Tirr = 295 K leads
to irreversible changes in the absorption spectra. These
changes, as for the PDHS films, depend on λirr and
become more pronounced with an increase in tirr. The
irradiation with light at λirr = 365 nm brings about a
decrease in the absorption in the long-wavelength band,
which is attended by its hypsochromic shift. In particu-
lar, the shift at tirr = 50 min is equal to approximately
25 nm (Fig. 3a). The irradiation of films at λirr = 313
and 265 nm, unlike the irradiation at λirr = 365 nm,
results in a considerable decrease in the absorption in
the 1(σσ*) band; however, the location of its maximum
changes insignificantly (Figs. 3b, 3c).

At T = 5 K and λexc = 313 nm, the luminescence
spectrum of the PMPS films of thickness d ≤ 5 µm con-
tains two bands (Figs. 4a–4c, curves 1). The narrow
band (∆ = 700–800 cm–1) is associated with the exciton
luminescence of long chain segments. It is found that
the location of its maximum depends on the film thick-
ness and varies in the range λmax = 350–354 nm with an
increase in the thickness d from 0.5 to 5.0 µm. The
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Fig. 2. Luminescence spectra of PDHS films (T = 5 K,
λexc = 313 nm) irradiated at Tirr = 295 K with light at wave-
lengths λirr = (a) 405, (b) 365, (c) 313, and (d) 265 nm for
time tirr = (1) 0 and (2) 60 min.
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broad band is observed in the range λ = 380–600 nm,
and its maximum is located at λmax = 415 nm. This band
is assigned to the radiative transition from the 1(π*σ)
state, which is formed as a result of the transition of the
σ electron (delocalized over a segment of the main
polymer chain) to the π* orbital of the phenyl ring [20,
21]. As the temperature T increases, the intensity of this
band rapidly decreases and the spectrum at T ≥ 77 K
involves a weak band at λmax = 500 nm whose intensity
varies only slightly upon heating to T = 295 K. Accord-
ing to [1, 20, 22], this band is attributed to the lumines-
cence of defects in the PMPS polymer chain.

As follows from our results, the luminescence spec-
tra of the PMPS films preliminarily irradiated with light
at λirr ≤ 365 nm in air or a helium atmosphere at Tirr =
295 K coincide at T = 5 K. Since the films rapidly
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Fig. 3. Absorption spectra of PMPS films (T = 295 K) irra-
diated at Tirr = 295 K with light at wavelengths λirr =
(a) 365, (b) 313, and (c) 265 nm. Irradiation time tirr, min:
(a) (1) 0, (2) 3, and (3) 50; (b) (1) 0, (2) 1, and (3) 4; and
(c) (1) 0, (2) 10, and (3) 30.
PH
degrade during the recording of the luminescence spec-
tra at T = 295 K, the spectra prior to and after the irra-
diation of samples were measured only at T = 5 K. The
irradiation of the PMPS films with light at λirr ≤ 365 nm
and Tirr = 295 K leads to a decrease in the intensity of
the exciton band. Moreover, upon irradiation at λirr =
365 nm, an increase in the luminescence in the range
λ > 500 nm is observed in the spectra of thin films
(d < 5 µm). In the spectra of thick films, the lumines-
cence in this range increases upon irradiation at λirr =
313 and 265 nm. In [18, 23], it was demonstrated that
an increase in the luminescence in the range λ > 500 nm
is explained by the cross-linking between polymer
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Fig. 4. Luminescence spectra of PMPS films (T = 5 K,
λexc = 313 nm) irradiated at Tirr = 295 K with light at wave-
lengths λirr = (a) 365, (b) 313, and (c) 265 nm for the time
tirr = (1) 0, (2) 5, and (3) 60 min.
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chains. According to our data, the irradiation of films
with light at λirr = 365 nm for tirr = 60 min leads to the
hypsochromic shift in the maximum of the exciton
band by approximately 10 nm (Fig. 4a). Exposure to
light at λirr = 313 nm for tirr = 5 min brings about a
decrease in the intensity of the exciton band by a factor
of approximately 5 and the hypsochromic shift in its
maximum by approximately 1.5 nm. A further increase
in tirr results in complete disappearance of the exciton
band (Fig. 4b). Unlike the irradiation at λirr = 365 and
313 nm, the irradiation of the films at λirr = 265 nm does
not lead to a shift in the maximum of the exciton lumi-
nescence band (Fig. 4c).

The PMPS films, as the PDHS films, also degrade
upon light irradiation at Tirr = 5 K. For example, the
irradiation of the PMPS films with light at λirr = 265–
365 nm, Φ = 100 mW cm–2, tirr = 15 min, and Tirr = 5 K
results in an irreversible decrease in the intensity of the
exciton band and an increase in the intensity of lumi-
nescence in the range λ > 500 nm by 5–10%. As tirr
increases, these changes in the luminescence spectrum
become more pronounced.

4. DISCUSSION

The results obtained demonstrate that changes in the
absorption and luminescence spectra of polysilane
films irradiated by light with different wavelengths dif-
fer substantially. Note that changes in the shape and
location of the maxima associated with the exciton
transitions in the absorption and luminescence spectra
of a photodegraded film clearly correlated with the
position of λirr with respect to its absorption spectrum.

As is known, the shape of the lowest-lying absorp-
tion band 1(σσ*) for polysilanes is governed by the size
distribution of segments and the location of the exciton
luminescence band at a maximum is determined by the
radiative transitions in long chain segments and
depends on their length [1, 2]. Therefore, it can be
assumed that the change in shape of the lowest-lying
absorption band after the photodegradation of a poly-
mer is caused by the change in the size distribution of
segments, and the hypsochromic shift of the lumines-
cence maximum is associated with the prevailing scis-
sion of σ bonds between Si atoms in the longest seg-
ments. The latter segments depending on λirr can be
excited either under direct light absorption or through
energy transfer after the light absorption by short seg-
ments.

Let us consider how the irradiation of films with
light at wavelengths λirr = 405 and 365 nm affects the
shape and location of the long-wavelength absorption
bands which are attributed to the 1(σσ*) transitions
either in PDHS chain segments characterized by the
trans conformation or in segments of the main PMPS
chain (Figs. 1a, 1b, 3a). It is seen from these figures that
an increase in the time tirr of irradiation with light at a
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wavelength which corresponds to the long-wavelength
edge or a maximum of the band associated with the
1(σσ*) transition leads to a decrease in the absorption
predominantly in the long-wavelength edge of this
band and its hypsochromic shift. A similar hypsochro-
mic shift is observed for the exciton luminescence band
(Figs. 2a, 2b, 4a). Therefore, the changes observed in
the spectra can be uniquely attributed to the photodeg-
radation of the longest chain segments. Note that the
concentration of short segments, which are formed
after the scission of σ bonds in long segments and
absorb in the spectral range under consideration, can
increase at certain tirr . This results in an increase in the
absorption in the short-wavelength edge of the band
assigned to the 1(σσ*) transition (Fig. 1a, curves 1–3;
Fig. 1b, curves 1, 2).

It should be noted that changes determined by spe-
cific properties of polymers are also observed in the
absorption spectra of the PDHS and PMPS films after
their photodegradation. These changes can be assigned
to the occurrence of two conformations of a polymer
chain at T = 295 K in the case of PDHS and to the cross-
linking between polymer chains in PMPS. It is known
that PDHS polymer chains at T = 295 K can exhibit two
conformations: a low-temperature trans conformation
with an ordered arrangement of side hexyl groups and
a high-temperature helical conformation, which are
responsible for the absorption bands at λmax = 375 and
317 nm, respectively [1, 19, 24]. The transition from
the trans conformation to the helical conformation
takes place at T = 315 K and is attended by heat absorp-
tion due to the disordering (“fusion”) of side hexyl
groups. As is seen from Figs. 1a and 1b, the irradiation
of films with light at λirr = 405 and 365 nm leads to a
decrease in the absorption in the long-wavelength band
and also to an increase in the absorption in the short-
wavelength band and its hypsochromic shift. Conse-
quently, the short segments which are formed upon
scission of σ bonds in long segments with the ordered
trans conformation partly transform into segments with
a disordered helical conformation. Most likely, the
excitation of long segments characterized by the trans
conformation results in the scission of σ bonds and also
in the local heating of segments, which stimulates the
conformation transition observed.

As follows from Fig. 3a, the radiation at λirr = 365 nm
corresponds to the range of a very weak absorption of
the PMPS film for which the concentration of absorb-
ing long segments is small. At the same time, prolonged
irradiation of the polymer brings about a large hypso-
chromic shift in the maximum of the absorption band
(approximately by 25 nm at the band half-width ∆ =
30 nm for tirr = 50 min). So large a shift can be
explained by photochemical reactions that proceed
upon photodegradation of a polymer chain. It can be
seen from Fig. 4a that the luminescence intensity in the
range λ > 500 nm increases in the luminescence spec-
trum after the irradiation of the film with light at λirr =
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365 nm. This luminescence is caused by structural
defects formed as a result of the cross-linking between
polymer chains [18, 23]. Therefore, it can be assumed
that the cross-linking changes the morphology of a
polymer chain and leads to the formation of additional
conformational defects. As a consequence, the segment
length decreases, which is responsible for the change
observed in the shape and the location of maxima of the
absorption band.

Now, we dwell on the changes in the spectra of films
after the irradiation with light at λirr = 313 nm [near the
maximum of the short-wavelength absorption band of
PDHS and at the short-wavelength edge of the band
associated with the 1(σσ*) transition in PMPS]. An
increase in the time tirr for the PDHS films results in a
decrease in the intensity of both absorption bands in the
spectrum and is accompanied by the hypsochromic
shift of the short-wavelength band (Fig. 1c). For the
PMPS films, an increase in tirr brings about a decrease
in the intensity of the absorption band attributed to the
1(σσ*) transition (Fig. 3b). The exciton luminescence
intensity decreases in the luminescence spectra of the
PDHS and PMPS films. Note that the hypsochromic
shift in the maximum of the exciton band is very insig-
nificant (Figs. 2c, 4b). The changes in the absorption
spectra of the PMPS films irradiated with light at the
wavelength λirr = 265 nm [the range of the 1(ππ*) tran-
sition in side phenyl groups] are similar to those
observed upon irradiation at λirr = 313 nm (Fig. 3c). For
the PDHS films, at λirr = 265 nm (at the short-wave-
length edge of the absorption band corresponding to
segments in the helical conformation), an increase in tirr
is attended by a fast decrease in the intensity of this
band and a slower drop in the intensity of the absorp-
tion band assigned to segments in the trans conforma-
tion (Fig. 1c). At the same time, only a decrease in the
intensity of the exciton luminescence without change in
the location of its maximum is observed in the lumines-
cence spectra of the PDHS (T = 5 and 295 K) and PMPS
(T = 5 K) films (Figs. 2d, 4c). Consequently, the irradi-
ation of films with light at λirr = 313 and 265 nm results
in the scission of σ bonds and the degradation of both
long and short chain segments.

It is evident that the photodegradation of polymers
considerably depends not only on λirr but also on the
temperature Tirr , which determines the conformation of
chain segments and the mobility of segments them-
selves and their particular fragments. Therefore, the
photodegradation of the polysilanes studied in this
work is retarded with a decrease in the temperature Tirr .
However, the above results demonstrate that an insig-
nificant degradation of the PDHS and PMPS films also
occurs at Tirr = 5 K. This finding is in agreement with
observations of hole burning in the spectra of frozen
solutions and films of polysilanes [8, 16, 17].

The results obtained in the present work allow us to
draw the inferences about the dynamics of excited
P

states in polysilanes. Holzer et al. [25] observed the
dependences of the absorption spectra for π-conjugated
polymers on λirr, which are similar to those shown in
Figs. 1 and 3. However, these authors interpreted their
results under the assumption that the photodegradation
of π-conjugated polymers proceeds after the energy
transfer from short segments to long segments whose
excitation is responsible for the luminescence spec-
trum. Our results suggest that the radiationless dissipa-
tion of the excitation energy of short segments due to
the scission of σ bonds or thermal relaxation in polysi-
lanes competes with the energy transfer to long seg-
ments whose excitation determines the location of the
exciton luminescence maximum.

The above assumption is confirmed by the data
available in the literature. In [3, 10], the dependences of
the quantum yield of luminescence for the PHDS and
PMPS films on λexc were measured within the band
attributed to the 1(σσ*) transition. It was revealed that
the quantum yield of luminescence upon excitation
within the range of the short-wavelength edge of the
aforementioned band (which correspond to the absorp-
tion of short segments) is less than that upon direct
excitation of long chain segments. Consequently, after
the excitation of short segments, the transfer of energy
to long segments is accompanied by processes of its
radiative dissipation. In [7, 12], the flash photolysis
technique was applied to measure the rise times for the
induced absorption bands of the products formed upon
irradiation of PDHS and PMPS solutions with light
pulses at wavelengths λexc = 312 and 355 nm, respec-
tively. It was found that the rise time for the band at
λmax = 375 nm in the spectra of PDHS solutions is equal
to 100 ps and coincides with the rise time for the exci-
ton luminescence which decays with a time constant of
150 ps. According to [7], this band is attributed to the
transitions from the lowest-lying excited state to the
biexciton state. At the same time, this band was
assigned to the absorption of silyl radicals in [13] and
to the absorption of silyl radical cations in [14]. In [12],
it was proved that the rise time for the band at λmax =
450 nm (associated with the absorption of silylene rad-
icals) in the spectra of PMPS solutions is equal to 40 ps
and coincides with the rise time for the exciton lumi-
nescence for which the decay time is 70 ps. Therefore,
the scission of σ bonds between Si atoms and the for-
mation of radicals occur simultaneously with the for-
mation of excited states in long chain segments.

5. CONCLUSION

Thus, in the present work, we demonstrated that the
photodegradation processes in polysilane films depend
on the temperature, irradiation wavelength, and the
structure of side substituents. It was established that the
absorption of light by short chain segments in polysi-
lanes leads to the transfer of excitation energy and its
radiationless dissipation due to the scission of σ bonds
HYSICS OF THE SOLID STATE      Vol. 43      No. 3      2001
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between Si atoms or thermal relaxation. These pro-
cesses compete with each other and determine the
dynamics of excited states in polysilanes. It was found
that the photodegradation of the PHDS films at Tirr =
295 K is attended by the transformation of certain chain
segments from the low-temperature trans conformation
with an ordered arrangement of side hexyl groups to the
high-temperature helical conformation with a disor-
dered arrangement of side groups.
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Dear Yuriœ Andreevich!

The Editorial Board of Physics of the Solid State
heartily congratulates you on your birthday and hopes
that you live to be a hundred and continue to show the
same creative enthusiasm that you have always used to
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tackle the most interesting problems in our shared sci-
ence, modern solid state physics.

We cannot but mention your scientific style and
favorite trends in physics: the quantum-mechanical
approach to problems in the physics of strength, studies
on photoplasticity and spin-dependent carrier recombi-
nation on dislocations, investigations of metallic
glasses and the problems of formation of ice and its
strength, and finally, comprehensive research in high-
temperature superconductors and fullerenes.

You are also a great scientific manager, knowing
many ways to approach scientists, who can sometimes
be as obstinate and capricious as prima donnas. It is
your innate talent, along with your enormous vital
energy, that allowed you to organize a pearl of Russian
physics, the RAS Institute of Solid State Physics in
Chernogolovka, where you harmoniously developed
different trends of our science with tact and the sense of
proportion so characteristic of you. What excellent sci-
entists you have trained!

You are not only a gifted scientist and organizer and
even a talented statesman, but also an excellent orator.
Who else can relate sophisticated scientific studies in
such an absorbing and spirited manner? Nobody can.
You are a maestro in delivering a scientific lecture!

You know very well that not only do we consider
you our brother scientist, we also regard you as our
“Phystech” brother, for we remember that you are a sci-
entific grandson of “father” Ioffe, and one may always
depend on you.

We wish you health, good spirits, every success in
science, and an even larger number of prizes and titles
than you have now!
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