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Abstract—The crystallization of a eutectic Pb–Sn melt is investigated under nonuniform conditions in vacuum,
in air, and in water. It is found that the structure of the solid-state systems formed depends on the cooling con-
ditions. A structural inhomogeneity in volume and a correlation between the microstructure and the coordinate
in a thermal field are revealed. Results of technological, electron-microscopic, and statistical investigations are
reported. It is shown that the experiment is consistent with the crystallization theory of eutectic melts. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The crystallization of eutectic melts has long been
investigated. Interest in these melts is constantly stimu-
lated by practical needs (metallurgy, microelectronics,
and superconductor engineering). However, the spe-
cific features of the crystallization mechanisms in these
systems have not yet been fully elucidated because of
the complexity of the problem. In particular, this con-
cerns processes of crystallization of eutectic melts in
thermal fields of the temperature gradient, which were
studied in the present work.

In recent years, a series of works devoted to the
development of a general crystallization theory has
appeared in the literature [1–4]. It is reasonable to
attempt to apply the results of theoretical studies to the
description of real systems. In this connection, the orig-
inal data of an investigation into mechanisms of crys-
tallization in the Pb–Sn system will be presented below
and compared with the predictions of the current
theory.

2. EXPERIMENTAL TECHNIQUE

The Pb–Sn system was investigated. The content of
components in the system was chosen so that its com-
position was as close to eutectic as possible. For this
purpose, a mechanical mixture was prepared from
chemically pure lead and tin components. The compo-
sition of the mechanical mixture was determined
according to the available data [5] (38.1 wt % Pb and
61.9 wt % Sn). The mixture was then heated under vac-
uum in a special quartz reactor. A thermocouple was
placed inside the melt, and the kinetic crystallization
curve was measured. A typical curve is shown in Fig. 1.
The length of the plateau in the kinetic curve (the bc
1063-7834/01/4304- $21.00 © 20597
section) served as a parameter for determining the ulti-
mate composition of samples. The composition was
chosen so that the plateau length was maximum.

The melt obtained by the above technique was used
to prepare samples in silica cells. Kinetic curves for
each sample were recorded upon cooling in vacuum, in
air, and in water.

After cooling, the cells were broken and the samples
were cut from ingots. Then, the samples were polished
and etched according to the standard preparation tech-
nique for investigations with a scanning microscope.

All the electron-microscopic investigations were
conducted with a JSM-35 scanning electron micro-
scope.
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Fig. 1. Crystallization curve of the eutectic Pb–Sn melt.
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3. MAIN RESULTS

The main experimental results are presented in
Figs. 2–4.

Figure 2 demonstrates an electron microscope
image of the surface of a sample section cut out parallel
to the direction of the vector of the temperature gradi-
ent of the thermal field. The image was obtained in

(‡)

(b)

(c)

Fig. 2. Images of different surface regions of a specimen cut
from the bulk of a sample prepared by crystallization of a
close-to-eutectic Pb–Sn melt upon cooling under vacuum
(×1000): (a) the peripheral region, (b) the region between
the periphery and the center, and (c) the region correspond-
ing to the center of the sample.
P

reflected electrons and positioned in the figure in such
a way that its upper and lower parts correspond to the
periphery (Fig. 2a) and the center (Fig. 2c) of the stud-
ied sample, respectively. Figure 2 displays the pattern
observed upon vacuum cooling of a Pb–Sn melt with a
close-to-eutectic composition.

Figures 3 and 4 show the same image for the central
region of the samples obtained upon cooling in air and
in water, respectively. The black color corresponds to
the Sn phase, and the white color designates the Pb
phase in all the figures.

As is seen from these figures, the samples prepared
by any one of the methods studied were structurally
inhomogeneous in volume. The character and the
degree of inhomogeneity of a particular region corre-
lated with its distance from the sample periphery. Near
the periphery, the samples predominantly contained the
Sn phase with Pb inclusions of a complex shape in the
matrix. The ratio between the phases changed with dis-
tance from the periphery.

The macrostructure of regions away from the
periphery depended on the sample preparation tech-
nique. A pronounced lamellar structure with almost
periodic alteration of the Pb and Sn phases was
observed when the melt was cooled under vacuum
(Fig. 2c). Cooling in air or in water disturbed the order.
The structure of the regions became less ordered and
more fine-grained (Figs. 3, 4).

4. DISCUSSION

The experiments discussed in the present work
almost exactly correspond to the boundary conditions
used in theoretical investigations into the mechanisms
of the crystallization processes in multicomponent
melts [2]. There are only two essential differences.
First, the authors considered noneutectic melts. Sec-
ond, the authors ignored the effect of the periphery tem-
perature on crystallization. In order to interpret the
experimental results, let us take these differences into
account with the aid of theoretical studies of eutectic
melts under uniform conditions [3, 4].

According to these works, we can consider Fig. 2 as
a film on which the crystallization of a close-to-eutectic
melt was recorded. Indeed, the upper part of this figure
(Fig. 2a) corresponds to the sample periphery. There-
fore, it is in this region of the sample that crystallization
started. While a continuous crust of the new phase was
formed here, crystallization did not necessarily start in
the regions close to the sample center, because propa-
gation of supercooling from the periphery to the center
required a certain time.

As was shown in [2], the supercooling wave moves
more quickly toward the center than the crust boundary.
Hence, the formation time for each region in the solid
sample depends on the distance between this region and
the periphery. The larger the distance, the greater the
time interval between the instant of supercooling and
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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the instant of the formation of a continuous crust. Thus,
when viewing the figure from bottom to top, we can fol-
low the course of the transformation in the macrostruc-
ture of a sample crystallizing from the eutectic melt at
different crystallization times.

Let us return to the discussion of the structure of the
sample periphery shown in Fig. 2a. It can be seen that
this region predominantly contains one phase, namely,
the Sn phase. This fully agrees with theoretical con-
cepts. Upon crystallization of a close-to-eutectic melt,
the supercooling wave primarily causes crystallization
of the component that is excessive with respect to the
eutectic composition. It follows from the figure that tin
was such a component in the samples studied. The Sn
crust, when moving to the center, pushed the liquid lead
phase deeper, thus enriching the melt with lead and
bringing the melt closer to a eutectic composition.

Crystallization of a eutectic melt is a self-consistent
process. The same supercooling for both phases is
established at the later stages of this process. Its value
can be found from the kinetic crystallization curve. For
the sample presented in Fig. 2, supercooling was ∆T =
2.3 K. Since the supercooling was the same for both
phases, the critical radii of nuclei with different compo-
sitions met the similarity condition [3]

(1)

which can be verified with the help of microphoto-
graphs. Here,

(2)

Li is the latent crystallization heat per atom, ωi is the
volume per atom, and σi is the interfacial energy per
unit area.

Statistical treatment of the images (Fig. 2) revealed
that the experimental results are in close agreement
with theoretical calculations. For example, the values
γ = 0.9 and 1.1 were obtained for the images in Figs. 2b
and 2c, respectively. The theoretical value γ = 0.9 was
calculated from the following quantities [6]: σSn =
673 erg/cm2, ωSn = 3.37 × 10–23 cm3, LSn = 1.20 ×
10−13 erg/atom, σPb = 560 erg/cm2, ωPb = 3.04 ×
10−23 cm3, and LPb = 7.92 × 10–14 erg/atom.

Before statistically processing the electron micro-
scope image, we verified the correspondence between
the linear cluster dimensions  in microphotographs
and the critical radius calculated by the formula [3]

(3)

Here, Te is the eutectic temperature and ∆T is the super-
cooling.

The check revealed that these quantities are of the
same order of magnitude (1 and 0.9 µm). One could
hardly expect closer values in this case, at least,

RSn γRPb,=

γ
σSnωSnLPb

LSnσPbωPb
------------------------,=

Ri

RPb' 2σPbTeωPb

LPb∆T
-------------------------.=
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because of the technique used to determine the super-
saturation. However, even if a larger difference existed

between the cluster sizes  and  in the microphoto-
graphs, in our opinion, this would not make the check

of condition (1) useless. A large difference between 

and  would indicate that the phase clusters observed
in the microphotographs were formed as a result of the
coalescence of smaller clusters. Coalescence is a non-
linear process. The coalescence theory is still far from
accurate. Hence, up to this point, it has been impossible
to predict convincingly and unambiguously the rela-
tionship between the dimensions of the coalescing clus-
ters and those already merged. However, the sizes of
the clusters merged will most likely be proportional to

Ri Ri'

Ri

Ri'

10 µm

10 µm

Fig. 3. Image of the surface of a specimen cut from the bulk
of a sample prepared by crystallization of a close-to-eutectic
Pb–Sn melt upon cooling in air.

Fig. 4. Image of the surface of a specimen cut from the bulk
of a sample prepared by crystallization of a close-to-eutectic
Pb–Sn melt upon cooling in water.
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the sizes of the coalescing clusters. Therefore, coales-
cence must not radically violate condition (1).

The close values of  and  in the experiment on
Pb–Sn indicate that the coalescence stage was almost
by-passed in the formation of the samples under inves-
tigation and the merging of clusters into a solid crust
took place immediately after the Ostwald ripening,
which, as a rule, is the longest stage of the crystalliza-
tion process. It is during this stage that a universal size
distribution of nuclei of new phases is formed. The
longer this stage, the more coarse-grained and homoge-
neous the structure formed. This correlates with the
results under discussion. Figure 2 allows one to follow
the increase in the cluster size when viewed from top to
bottom, since the image of the sample is presented in
such a way that the regions corresponding to the pro-
longed Ostwald ripening stage are at the bottom.

Let us now discuss the structure of the region of the
sample in which the Pb phase starts to precipitate (the
transition region). It is seen from Fig. 2 that Pb clusters
have a more complex shape. It is reasonable to attribute
such a behavior to the system composition, because,
according to [4], noneutectic melts, unlike the eutectic
melts, show a tendency to excitation of “dendrite”-type
modes. The formation of complex-shaped clusters in
the transition region, where the melt composition is far
from eutectic, experimentally confirms the theoretical
results obtained in [4].

In closing, let us consider how the cooling condi-
tions affect the structure formed. First of all, we will
formulate the important features of each of the cooling
methods used.

The specific feature of cooling in air and under vac-
uum is that the temperature at the sample boundary is
not constant during cooling, as is usually assumed in
theoretical studies. By contrast, cooling in water is
characterized by isothermal boundary conditions.

All the methods considered differ from one another
by the power of heat removal from the system.

The influence of the heat removal rate on the forma-
tion of the ultimate structure of the material was theo-
retically treated in many works [1, 5], and a certain cor-
relation between these parameters was noticed every-
where.

The experiments we performed with the Pb–Sn sys-
tem also indicate a correlation between the cooling
conditions and the structure. As is evident from a com-
parison of Figs. 2–4, the lower the power of the sources
of heat removal, the more ordered the structures
formed. The formation time certainly played an essen-
tial role. This is evidenced, above all, by the similarity
of the electron microscope images of samples prepared
under different conditions, which appears as if one pat-
tern stipulated the other one but for a later crystalliza-
tion stage. This agrees with the theory predicting that
an increase in the duration of the Ostwald ripening
favors the formation of a more homogeneous structure

Ri Ri'
PH
[1, 2]. According to the same theory, structural ordering
is also favored by decaying heat outflows, whose occur-
rence, in turn, stipulates nonisothermal boundary con-
ditions. The nonisothermal boundary conditions, as
well as the large formation times, were characteristic of
samples prepared upon vacuum cooling of the melt. In
our opinion, this was the reason for the maximum order
in the structure of these samples.

Let us now discuss the other extreme case of the
most disordered systems. It is seen from Fig. 4 that
apart from small sizes of grains of individual phases,
the structure of samples formed upon cooling in water
is characterized by a considerable disorder.

As was shown in [1], the Ostwald ripening is not
realized and the supercooling remains practically
unchanged when heat is removed from the eutectic melt
with a time-independent constant rate, as was the case
in water cooling of the Pb–Sn melt. In this situation,
nucleation of two phases continuously proceeds in the
melt (Pb and Sn crystals in this case). The crystal sizes
were very small because the crystal growth rate was
determined by diffusion and the rate of the supercool-
ing withdrawal was controlled by thermal conduction.
Since crystals of different sorts were formed simulta-
neously, crystals of a particular sort could serve as
nucleation centers for crystals of another sort. The
emergence of these centers substantially reduced the
work of crystal formation and, thus, caused a drastic
increase in the nucleation rate of small crystals. As a
result, the structure of the sample formed acquired the
form of a foam of interspersed nuclei of different com-
positions, as is shown in Fig. 4.

5. CONCLUSION

Thus, the following principal results have been
obtained in the present work.

(1) The local microstructure of a particular region of
the solid Pb–Sn sample prepared in a thermal field of
the temperature gradient by crystallization of a close-
to-eutectic melt depends on the temperature gradient
and the coordinate of the region in the thermal field.

(2) The structure parameters of the Pb–Sn eutectic
grown in the thermal field of the temperature gradient
under nonisothermal boundary conditions, these latter
providing decaying heat outflows, are adequately
described by the current theory which accounts for gen-
eralized supercooling, the correlation between precipi-
tates of different compositions, and their morphologi-
cal stability.

(3) The distinctly nonuniform conditions of crystal-
lization of eutectic melts favor the system disordering,
the origin of which is satisfactorily explained by the
kinetics of heat removal from the melt.
YSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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Abstract—The electrical properties of junctions at symmetrical bicrystal boundaries in high-Tc superconduct-
ing films are studied as functions of the misorientation angle in the range 8°–45°. The junctions are prepared
by growing YBa2Cu3O7 (YBCO) epitaxial films on Y–ZrO2 (YSZ) bicrystal substrates. The proportional rela-
tionship between the characteristic voltages and the normal conductivities of junctions is derived from the
dependences of the critical current and the normal resistance on the misorientation angle. The results are inter-
preted within the model of a superconductor–dielectric with defect levels in the band gap of the superconductor.
The deviations from the proportional relationship are explained by the junction inhomogeneity. The thickness
of the effective dielectric layer in the bicrystal junction and the Bohr radius of electrons on the defects are esti-
mated. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Josephson junctions with critical currents Ic and
normal resistances Rn which are as large as possible are
necessary for high-Tc superconducting electronics. The
grain boundaries in YBa2Cu3O7 (YBCO) films on
bicrystals with small misorientation angles θ possess a
high characteristic voltage (Vc = IcRn), but these junc-
tions are inhomogeneous [1]. At angles θ of about 30°,
the boundaries are homogeneous [2], but the voltages
Vc are small. The relation between the electrical prop-
erties and the structure of junctions has been studied by
a number of research groups. The thickness of a dielec-
tric d ≈ 2 nm on Y–ZrO2 (YSZ) at θ = 32° was calcu-
lated by Winkler et al. [2] from the junction capaci-
tance.

The proportionality between Vc and the surface con-
ductivity gn follows from the model of direct pair tun-

neling through a dielectric [3]. The relationship Vc ~ 
(q = 1–1.5) was experimentally confirmed by Gross and
Mayer [4]. However, Hilgenkamp and Manhart [5]
found deviations from this relationship. The reasons for
these deviations were studied in this work. Aslamazov
and Fistul’ [6] proposed a theory of Cooper pair tunnel-
ing through channels formed by periodically arranged
defects in a semiconductor. This theory also leads to the
relationship Vc ~ gn [7]. The tunneling of normal elec-
trons through these channels was described by
Glazman and Matveev [8]. In the present work, we esti-
mated the parameters of electron tunneling through the

gn
q

1063-7834/01/4304- $21.00 © 20602
YBCO grain boundary: the Bohr radius αb of electrons
on defects and the thickness d.

2. EXPERIMENTAL TECHNIQUE

YBCO films were grown by the pulsed laser depo-
sition method on YSZ bicrystal substrates. The film
thickness t was equal to about 250 nm. The films were
grown in such a way that their principal axes C were
perpendicular to the substrate surface and
YBCO(110) || YSZ(100), as was described in our previ-
ous work [9]. The YBCO grain boundary was formed
during the film growth above the substrate boundary.
Photolithography with subsequent ion milling were
used for preparing Josephson junctions in the form of
YBCO microbridges which cross the boundary in the
same manner as was proposed in [10]. The junction
width w was 1–8 µm. Contact pads were obtained by
thermal evaporation of gold and ion milling. The
bicrystal junctions thus produced had the following mis-
orientation angles (deg): 8, 18, 26, 28, 34, 36, and 45.
These angles were equal to twice the angle which was
formed by the (100) and (010) directions with the grain
boundary in the YBCO film.

The current–voltage characteristics were measured
by the four-probe method. The accuracy of the mea-
surement of Ic was about 20% because of the influence
of magnetic fields. The values of Rn were determined
from the tangents to current–voltage characteristics
with an error of about 2%. The surface resistance ρn and
001 MAIK “Nauka/Interperiodica”
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the surface conductivity gn were calculated by the
expression ρn = 1/gn = Rnwt.

3. EXPERIMENTAL RESULTS

The current–voltage characteristics for the junctions
are consistent with the resistively shunted junction
(RSJ) model. As a rule, the current–voltage character-
istics for junctions are described by the formula

(1)

The parameters obtained by the least-squares method
for the current–voltage characteristic of a junction with
θ = 18° and w = 8 µm at 77 K are as follows: Rn =
1.85 Ω , Ic = 79 µA, and the excess current Iex = 17 µA
(Fig. 1). The current–voltage characteristic for the
boundary with θ = 34° and w = 8 µm at 77 K exhibits a
small current Ic ≈ 8 µA and, therefore, is rounded by the
thermal noise. The characteristic of a junction with θ =
8° and w = 6 µm at 4 K is described by formula (1) in
the range v ≥ Vc (inset in Fig. 1). The calculations with
this formula give Rn = 0.52 Ω , Ic = 4.30 mA, and Iex =
2.30 mA. The critical current measured with a 1 µV cri-
terion is equal to 4.05 mA. The characteristic deviates
from the RSJ model at v < Vc. The junction is “wide,”
because the ratio between the Josephson penetration
depth λj and the width w is large (w/λj ≈ 7). The mag-
netic field of the supply current induces the motion of
current vortices along the boundary, which leads to a
distortion of the current–voltage characteristic shape.

This current–voltage characteristic of a junction
with θ = 8° changes under microwave radiation in
accordance with the RSJ model. Figure 2 shows the
dependences of the positions of edges of the first three
Shapiro steps on the relative microwave current
through the junction: iw = Irf /Ic(0), where Irf is the
amplitude of the external microwave current and Ic(0)
is the critical current in the absence of microwave radi-
ation. The dependence of the current that corresponds
to the upper edge of the nth step on the current iw is des-

ignated as (iw)/Ic(0) = , the dependence of the cur-

rent of the lower edge is denoted as (iw)/Ic(0) = ,
and the critical currents at different microwave currents
are symbolized as Ic(iw)/Ic(0) = i0. Let us introduce the
relative frequency ω ≈ V1/Vc ≈ 10–2, where V1 = 24.3 µV
is the voltage of the first Shapiro step and Vc = 2.25 mV.
The RSJ characteristics at ω ! 1 and iw ! 1/ω are
described by the formulas [11]

(2)

(3)

The parameter ω = 0.037 was determined numerically.
At iw ≤ 1, the currents corresponding to the step edges

i v( ) Rn
1– v 2 IcRn( )2+ Iex.+=

In
+ in

+

In
– in

–

in
+ 1 iw– 2n 1+( )ω iw,+=

in
– 1 iw– 2n 1–( )ω iw.+=
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decrease with an increase in the microwave amplitude
according to relationships (2) and (3) (Fig. 2a).

The parameters involved in formula (1) can be used
to compare junctions with different angles θ (Table 1).
A designation of the type 6 + 6 in the column w means
a SQUID that consists of two bridges each 6 µm thick.
An increase in θ results in a decrease in the Ic currents
by two orders of magnitude and an increase in the Rn

resistances by one order of magnitude. The excess cur-
rent fraction Iex/Ic decreases with an increase in the
angle θ.

For junctions with θ ≤ 36°, Rn is temperature inde-
pendent. At θ = 45°, the normal conductivity G at T >
40 K increases with temperature (Fig. 3). The relative
change in the conductivity G(T)/G1 can be represented
in the following form [8]:

(4)

Here, G1 is the mean conductivity at T ≤ 30 K. Two
parameters m = 1.1 ± 0.5 and G2/G1 ≈ 2 × 10–3 were cal-
culated by the least-squares method. The root-mean-
square deviation σG1 for G1 is equal to 2%, which is
considerably less than variations in the conductivity
with temperature (Fig. 3).

The temperature dependences of Vc and the excess
voltage Vex = IexRn for a junction with angle θ = 18° are
depicted in Fig. 4. At T ≥ 40 K, Vc is given by the for-
mula

Vc = V0(1 – T/Tc)M, (5)

where Tc is the critical temperature of a given YBCO
film. The parameters M and V0 were found numerically
from the experimental data. For junctions with θ = 8°,
18°, 34°, and 45°, M = 1.8, 1.9, 1.8, and 2.0 and V0 =
7.0, 3.8, 0.72, and 0.64 mV, respectively. At T & Tc, the

G T( )
G1

----------- 1
G2

G1
------ T 35–( )m.+=

θ = 18°

θ = 34°

0.3

0.2

0.1

0 0.2 0.4 0.6
V, mV

I,
 m

A

Fig. 1. Current–voltage characteristics for junctions with
w = 8 µm at 77 K. The inset shows the current–voltage char-
acteristic for a junction with θ = 8° and w = 6 µm at 4 K.
Dashed lines are the current–voltage characteristics calcu-
lated by formula (1).

0
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temperature dependence of Vc is similar to (1 – T/Tc)2.
At T & Tc/2 and θ < 30°, the characteristic voltage lin-
early decreases with a rise in temperature.

A decrease in the critical current density jc and an
increase in the resistance ρn with an increase in the mis-
orientation angle can be described by the exponents
(Fig. 5)

jc(θ, T) = jc(0, T)exp(–βθ), (6)

ρn(θ, T) = ρn(0, T)exp(γθ). (7)

The coefficients β and γ were determined by the least-
squares method. The ratio β/γ ≈ 2 holds true over a wide

1.0
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I c
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(b)0.2

0.1

0
0.9 1.0 1.1 1.2 1.3

Fig. 2. Dependences of the current at edges of the Shapiro
steps on the microwave current iw = Irf /Ic(0) at iw (a) ≤1 and
(b) ≥1 for the junction with θ = 8° at T = 4 K. Critical cur-
rents are designated by squares. The edges of the first, sec-
ond, and third steps are denoted by triangles, circles, and
rhombuses, respectively. Closed and open symbols corre-
spond to the upper and lower edges. Solid lines show the
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Fig. 3. Temperature dependence of the normal conductivity
for junctions with θ = 45° at w = 8 (open symbols) and 4 µm
(closed symbols). The solid line shows the results of calcu-
lation by formula (4). Dashed lines indicate the boundaries
of the range G1 ± σG1.

Fig. 4. Temperature dependences of the characteristic Vc
(circles) and excess Vex (rhombuses) voltages for a junction
with θ = 18° and w = 8 µm. The results of calculations by
formula (5) are depicted by the solid line. The dashed line
corresponds to the linear dependence. The arrow indicates
Tc for the YBCO film. The inset shows the dependence of
Vc – Vex on the θ angle at 4 K. The straight line is the
exp(−δθ) function.

Fig. 5. Current densities jc (circles) and resistivities ρn (tri-
angles) for different misorientation angles θ at T = 50 K.
Solid and dashed lines correspond to the exponential func-
tions for ρn(θ) and jc(θ), respectively.
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Table 1.  Electrical parameters of symmetrical Josephson junctions

θ, deg w, µm
T = 77 K T = 4 K

Rn , Ω Ic, mA Iex/Ic Rn , Ω Ic, mA Iex/Ic

8 6 0.55 440 0.8 0.52 4.3 0.54

8 3 1.94 57 0.7 1.66 1.66 0.7

18 8 1.85 79 0.22 1.95 1.4 0.40

18 4 4.96 20 0.45 5.03 0.35 0.59

26 6 + 6 0.83 163 0.60 0.76 3.42 0.7

26 4 3.26 53 0.55 – – –

28 6 + 6 0.83 392 0.42 0.75 4.43 0.12

28 4 2.92 121 0.34 2.63 1.08 0.41

34 6 + 6 – – – 2.05 0.36 0.26

34 8 3.66 8 1 3.95 0.24 0.26

36 6 + 6 1.29 9 0.5 1.46 0.50 0.30

36 8 1.74 23 0.4 1.89 0.34 0.27

45 4 – – – 17.3 0.026 0.12

45 4 + 4 – – – 8.69 0.043 0.11
range of temperatures. As can be seen from Table 2, the
differences between the values of 2γ and β do not
exceed the sums of their root-mean-square deviations at
temperatures from 4 to 60 K.

The voltage difference Vc – Vex decreases with an
increase in the θ angle (see the inset in Fig. 4). This
decrease at T = 4 K was approximated by the exponent:
Vc – Vex = exp(–δθ). The coefficient δ = 0.074 ± 0.014
is close to the coefficient γ in the relationship describ-
ing an increase in ρn.

4. DISCUSSION

At present, techniques for producing Josephson
junctions for low-temperature superconductors have
been well developed. These junctions are based on
three-layer structures that consist of thin-film low-tem-
perature superconductor (S) elements separated by an
insulator (I) layer serving as a barrier to the tunneling
of electron pairs. The electrical characteristics of these
junctions were studied in detail, which made it possible
to develop physical models accounting for the mecha-
nism of their operation. In the high-temperature super-
conductivity range, bicrystal Josephson junctions are
produced on the basis of other principles and possess a
different structure (in particular, they do not contain a
barrier layer), but their electrical parameters are similar
to those inherent, for example, in SIS low-temperature
junctions. On this basis, as a first approximation, it is
reasonable to consider the bicrystal junction as a SIS
structure which involves a dielectric barrier layer with
a certain effective thickness d.

The results of microwave measurements for junc-
tions with a misorientation angle of 8° at large external
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
microwave currents can be explained within the RSJ
model. At iw * 1, the step amplitudes oscillate: the
amplitudes of even steps are minimum at the same iw

currents at which the critical current exhibits minima,
and the minima of odd step amplitudes coincide with
the maxima of i0 (Fig. 2b). At the same microwave cur-
rent iw(r), the critical current has a minimum for the

rth time (r ≥ 0) and the function  for a step with the
number n = r becomes zero. From relationship (2), we
can obtain these iw currents,

iw, 0(r) = 1 + (2r + 1)ω (8)

under the assumption that ω(r + 1) ! 1. In Section 3,
formula (8) was used for the approximate calculation of
the frequency ω from the experimental data on i0(iw).
Now, we introduce parameters kn = iw, n(1)/iw, n(0) – 1,

in
+

Table 2.  Coefficients β and γ and their root-mean-square
deviations σβ and σγ at different temperatures

T, K β, deg–1 σβ γ, deg–1 σγ

4 0.120 0.013 0.061 0.008

10 0.118 0.020 0.061 0.012

20 0.118 0.025 0.062 0.014

30 0.125 0.022 0.060 0.012

40 0.129 0.018 0.062 0.011

50 0.139 0.013 0.060 0.007

60 0.137 0.019 0.058 0.011
1
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where iw, n(r) is the relative microwave current at which
the amplitude of the nth step becomes zero for the
rth time [11]. It was found from the experimental data
that k0 ≈ 0.0866 and k1 ≈ k2 ≈ k3 ≈ 0.0715. From expres-
sion (8), it follows that

(9)

This relationship was derived using a qualitative pat-
tern of oscillations, which is shown in Fig. 2b (see also
[11]). Formula (9) is valid at ω(n + 1) ! 1. The frequen-
cies calculated from the oscillations of the critical cur-
rent and the first three Shapiro steps turned out to be
close in magnitude: ω(k0) ≈ 0.045, ω(k1) ≈ 0.038,
ω(k2) ≈ 0.040, and ω(k3) ≈ 0.042.

The step amplitudes and the critical current at min-
ima are virtually zero. This means that the relation
between the current and the phase is close to I = Icsinϕ
[12]. If the boundaries with θ = 8° would have SS 'S
superconducting short-circuits, the thickness of the S '
layer should be of the order of 1 nm and the tempera-
ture of measurements (4 K) should be considerably
lower than the critical temperature of S '. For example,
YBa2Cu3O6.5 single crystals are characterized by Tc ≈
30–40 K. In this case, the relation between the current
and the phase strongly differs from sinusoidal [13]. No
indications of SS 'S short-circuits were found for other
misorientation angles. Junctions with different θ angles
possess common properties: the step amplitudes and
the critical currents oscillate at iw > 1, the dependences
Vc(T) in the vicinity of Tc are similar to quadratic, and
the normal resistances do not vary with temperature at
θ ≤ 36°. We assume that the band diagrams of insulator
layers in junctions with different θ angles are qualita-
tively identical and the layer thickness increases with
an increase in θ.

ω
kn

2 kn n 1+( )–
-------------------------------.=

θ > 8° θ = 8°

3

2

1

0 0.5 1.0

V
c,

 m
V

10–8/ρn, 1/(Ω cm2)

Fig. 6. Dependence of Vc on the resistivity ρn for junctions
with angles θ > 8° (circles) and θ = 8° (squares). The
straight line corresponds to the dependence Vc = c/ρn for
junctions with θ > 8°.
P

According to the SIS model [3], the Cooper pairs
tunnel through a dielectric layer of thickness d. The
critical current decreases with an increase in d as the
exponent

(10)

where nS is the density of states in the superconductor,
Eb ≈ 1 eV is the barrier height, and k is the constant
describing a decrease in the wave function of pairs in
the dielectric. The typical defect concentrations nL in
the dielectric are equal to ≈1020–1021 cm–3. Defects
form the levels in the band gap. The tunneling conduc-
tivity for single electrons through defects which are d/2
distant from both superconductors is maximum. The
normal current varies as jn ∝  nSnLexp(–kd), and the
resistance is determined as ρn ~ 1/jn. Then,

(11)

In a dielectric, the pairs are broken under Coulomb
repulsion. Hence, the barrier width for pairs is twice as
large as that for electrons and the ratio β/γ ≈ 2.

The proportionality between the voltage Vc and the

quantity  follows from this ratio. By multiplying
relationship (10) into expression (11) and assuming
that nL varies only slightly with angle θ, we have

(12)

The results of measurements at 4 K are shown in Fig. 6.
The dependence of Vc on ρn was sought in the form of

Vc = c/ . The exponent q = 1.0 ± 0.2 and the coeffi-
cient c = 7.7 ± 1.5 for the dependence of Vc (mV) on ρn

(10–8 Ω cm2) were determined by the least-squares
method.

The characteristic voltages of the junctions with θ =
8° are substantially less than those predicted by the
dependence Vc = c/ρn (Fig. 6). In our case, these devia-
tions are associated with an inhomogeneous distribu-
tion of jc over the junction width.

The dependences of Ic on the magnetic field H were
measured for junctions with a misorientation angle of
8° and the widths w = 1, 3, and 6 µm at 77 K (Fig. 7).
No minima in the plots Ic(H) are found up to fields of
46 mT. The Fraunhofer-like dependences Ic(H) are
observed for the sample A which involves asymmetric
junctions with a misorientation angle of 32° (of the
0.32 type) and widths w = 2, 4, and 8 µm at 4 K. The
half-widths of the main maximum are equal to 5.1, 1.0,
and 0.21 mT, respectively (inset in Fig. 7). The maxi-
mum with double the width is not observed for the sam-
ple B with junctions on the substrate with the same mis-
orientation but in YBCO films of a different quality. At
an identical bridge width, the mean distance between
the minima in the dependence Ic(H) for junctions of the

jc nS 2kd–( ), kexp∝ 2mEb"
2– ,=

ρn nS
1– nL

1– kd( ).exp∝

ρn
1–

Vc jcρn
kd–( )exp

nL

----------------------- 1
nSnLρn

----------------.∝ ∝=

ρn
q
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B sample is close to H0 for junctions of the A sample
(inset in Fig. 7). A field period of larger than 46 mT
indicates that the boundaries with θ = 8° have narrow
regions with an increased current density jc—filaments.
The filament width wf can be estimated from above.
According to Rosenthal et al. [14], this period depends
on the bridge width as H0 = c0Φ0/w2, where Φ0 = 2.07 ×
10−15 Wb is the magnetic flux quantum and w is mea-
sured in m. The constant c0 = 8.7 was numerically
determined from the data on H0(w) for the A sample.
Then, we have

(13)

Let us compare the parameters of five homogeneous
junctions on the A sample and five inhomogeneous
junctions on the B sample. At 4 K, the mean parameters
are as follows: jcA = (3.0 ± 0.8) × 103 A/cm2, ρnA =
(34.7 ± 5.6) × 10–8 Ω cm2, jcB = (3.5 ± 1.9) × 103 A/cm2,
and ρnB = (17.5 ± 4.7) × 10–8 Ω cm2. The error equal to
±σ is given for all the quantities. Compared to homoge-
neous junctions, the inhomogeneous junctions on the
substrates with the same misorientation are character-
ized by identical critical currents and halved normal
resistances. The same deviations toward the smaller
voltages jcρn and the larger conductivities 1/ρn are
observed at a misorientation angle of 8°. The Vc(ρn)
dependences should be checked using samples with a
Fraunhofer-like behavior of Ic(H), which should be
observed for junctions with a submicron width.

The resistance Rn does not depend on the tempera-
ture when normal electrons tunnel through one defect
[8]. This process makes the contribution G1 to the con-
ductivity of the junctions with a misorientation angle
θ = 45°. The tunneling through a channel formed by
several defects requires thermal activation, because the
levels of defects have different energies. The conduc-
tivity through two levels is proportional to T3/4, and the
conductivity through three levels is proportional to T5/2

[15]. The experimental dependence G(T) = G1 + G2T1.1

indicates the presence of the conduction channels
through both one and two levels.

On this basis, we can estimate the Bohr radius αb of
an electron on a defect. This quantity serves as a scale
of an exponential decrease in G with the thickness of
the dielectric: G1 ∝  exp(–d/αb). According to Glazman
and Matveev [8], the presence of conduction channels
through two levels and the absence of the channels
through three levels implies that the thickness d ≈
n3αb = 8αb, where n = 2. The barrier width for the
boundary with θ = 45° (d45) and ρn ≈ 1.7 × 10–7 Ω cm2

can be estimated from the thickness of a dielectric in
junctions of the A sample (d32). These junctions are
characterized by ρn ≈ 3 × 10–7 Ω cm2 and a considerable
hysteresis: the ratio Ic/Icutoff ≈ 0.9, where Ic and Icutoff are

w f

c0Φ0

H0
-----------≤ 0.63 µm.=
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the maximum and cut off critical currents, respectively.
Then, we have the McCamber parameter βc ≈ 1.3 [16].
From the definition of this parameter, we obtain the
junction capacitance C = βc"/(2eIc ). The junctions

on the YSZ substrate are parallel-plate capacitors,
because w and t @ d. Consequently,

(14)

where ε ≈ 4–5 is the permittivity of YBCO with a deficit
of oxygen [17]. For junctions with an angle θ = 32°, the
specific capacitance is equal to 15 fF/µm2, the ratio d/ε
is 0.58 nm, and the thickness d32 is 2.3–2.9 nm. Since
ln(ρ32/ρ45) ≈ 0.6, d32 ≈ d45 + 0.6αb ≈ 8.6αb and αb ≈
0.27–0.34 nm.

The description of the transport of normal electrons
in the framework of the Glazman–Matveev [8] and Hal-
britter [3] models leads to the same results. The depen-
dences of ρn on the thickness d in these models go over

into each other by setting k = . Our estimate  ≈
3 nm–1 coincides in the order of magnitude with the
constant k = 7 nm–1 calculated in [3].

5. CONCLUSION

Thus, the characteristic voltage at T & Tc quadrati-
cally depends on the temperature. The normal resis-
tance of boundaries with angles 8° ≤ θ ≤ 36° is indepen-
dent of temperature. The normal conductivity of
boundaries with θ = 45° increases with temperature
by 10%.

The resistance Rn increases as exp(γθ) with an
increase in the angle θ. The critical current decreases as
exp(–2γθ) with an increase in the misorientation angle.

Rn
2

d ε
ε0wt

C
-----------,=

αb
1– αb

1–
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Fig. 7. Dependence Ic(H)/max(Ic) for junctions with θ = 8°
and w = 6 µm at 77 K (closed circles). The inset shows the
dependences Ic(H)/max(Ic) for junctions with θ = 32° and
w = 4 µm in samples A (open circles) and B (solid line) at 4 K.
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The characteristic voltage of homogeneous junctions is
inversely proportional to the normal surface resistance.
Compared to this dependence, the dependence Vc(1/ρn)
for junctions with an inhomogeneous distribution of jc

over the width deviates toward smaller Vc and larger
normal conductivities. The Bohr radii of electrons on
defects inside the grain boundaries are approximately
equal to 0.3 nm.

The YBCO junctions on symmetrical bicrystals
have characteristic voltages up to 0.3 mV at 77 K and
3 mV at 4 K. The resistivities ρn are as high as 1.7 ×
10−7 Ω cm2.
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Abstract—A Mössbauer emission spectroscopy study on the 67Cu(67Zn) isotope showed that the superconduct-
ing transition in the Nd1.85Ce0.15CuO4, La1.85Sr0.15CuO4, and Tl2Ba2CaCu2O8 compounds is accompanied by
an electron density redistribution in the crystal, which is considered evidence of Cooper-pair Bose condensa-
tion. © 2001 MAIK “Nauka/Interperiodica”.
The phenomenon of superconductivity stems from
Cooper pair generation and the formation of a Bose
condensate described by a common coherent wave
function [1]. This implies that the electron density dis-
tribution over the superconductor lattice sites should be
different at temperatures above and below the transition
to the superconducting state Tc.

Because the isomer shift IS of Mössbauer spectra is
determined by the electron density at the nuclei under
study, there is, in principle, a possibility of detecting the
process of Cooper pair formation by measuring the
temperature dependence of the centroid S of the Möss-
bauer spectra of a superconductor. The temperature
dependence of S at a constant pressure P is given by
three terms [2]:

(1)

The first term in Eq. (1) is the dependence of the iso-
mer shift IS on volume V. The second term in Eq. (1)
describes the effect of the second-order Doppler shift D
and can be written in the Debye approximation in the
form [2]

(δD/δT)P = –(3kBE0/2Mc2)F(T/θ), (2)

where kB is the Boltzmann constant, E0 is the isomer
transition energy, M is the probe nucleus mass, c is the
velocity of light in vacuum, θ is the Debye temperature,
and F(T/θ) is the Debye function. Finally, the third term
in Eq. (1) approximates the temperature dependence of
the isomer shift IS at constant volume. The presence of
this term is accounted for by the variation in the elec-
tron density at the Mössbauer nuclei, and this effect is
expected to occur when the matrix transfers to the
superconducting state. In other words, Mössbauer
spectroscopy permits one to measure the electron den-
sity at lattice sites and its variation in the transition
through Tc. A comparison of the experimental with the-
oretical values of the electron density may help in

δS/δT( )P δIS/δ Vln( )T δ Vln /δT( )P=

+ δD/δT( )P δIS/δT( )V .+
1063-7834/01/4304- $21.00 © 20609
selecting the model which adequately describes the
phenomenon of superconductivity. It is this consider-
ation that accounts for the publication of numerous
studies on the effect of superconducting transition on
the parameters of Mössbauer spectra.

Attempts at detecting the formation of Cooper pairs
and of the Bose condensate by measuring the tempera-
ture dependence of the centroid S of 119Sn Mössbauer
spectra for the Nb3Sn classical superconductor failed;
however [3], the observed dependence of S on temper-
ature could be satisfactorily fitted by a second-order
Doppler shift, and the behavior of S(T) did not exhibit
any features near Tc that could be assigned to a change
in the isomer shift.

Later, after the discovery of high-temperature super-
conductivity, a theoretical model was proposed to
account for the effect of Cooper pairs and Bose conden-
sation on the isomer shift of 57Fe Mössbauer spectra [4]
and attempts were made to detect experimentally this
effect for the 57Fe impurity atoms in YBa2Cu3O7 [5],
(BiPb)2Sr2Ca2Cu3O10 [6], and (Tl, Pb)(Sr, Ba)2Cu2O10
[7]. However, no convincing evidence for the effect of
the superconducting transition on the isomer shift of
Mössbauer spectra was obtained in these cases either.

This can be accounted for by the small magnitude of
∆/2G (here, ∆ is the maximum possible difference in the
isomer shift of Mössbauer spectra between the normal
and superconducting phases, G = "/τ0 is the natural
nuclear level width, and τ0 is the mean nuclear level life-
time), which, for the case of Mössbauer spectroscopy on
the 57Fe and 119Sn isotopes, does not exceed six.

The conditions for observation of Cooper pairs by
Mössbauer spectroscopy should be more favorable for
high-temperature superconductors (having a minimum
Cooper correlation length) if one uses a probe for
which ∆/2G @ 10. In choosing an object for the study,
one should also take into account the necessity of plac-
ing the Mössbauer nucleus at lattice sites.
001 MAIK “Nauka/Interperiodica”
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All these conditions can be met if one uses the 67Zn
Mössbauer probe in cuprate lattices in the emission ver-
sion of 67Cu(67Zn) Mössbauer spectroscopy; indeed, for
67Zn, we have ∆/2G ~ 200 and one can introduce the
67Cu parent isotope into the lattice sites in the course of
preparation so that the daughter isotope 67Zn will like-
wise occupy the copper lattice site [8].

This paper reports on such a study made on the 67Zn
probe incorporated in the lattices of Nd1.85Ce0.15CuO4,
La1.85Sr0.15CuO4, and Tl2Ba2CaCu2O8. Cu2O, which
does not undergo the superconducting transition, was
chosen as a reference.

EXPERIMENTAL RESULTS 
AND THEIR DISCUSSION

The Mössbauer sources were prepared by diffusing
carrier-free radioactive 67Cu into polycrystalline sam-
ples of Nd1.85Ce0.15CuO4 (Tc = 22 K), La1.85Sr0.15CuO4
(Tc = 37 K), Tl2Ba2CaCu2O8 (Tc = 60 K), and Cu2O in
evacuated quartz ampoules at 550°C for two hours in an
oxygen flow. No noticeable change of Tc was observed
in the reference samples.

The 67Cu(67Zn) Mössbauer spectra were obtained
with a 67ZnS absorber. The temperature of the absorber
was 10(2) K for all spectra, whereas that of the source
could be varied from 10(1) to 80(1) K.

The Mössbauer spectra of all the ceramics repre-
sented in the temperature interval chosen are well-
resolved quadrupole triplets, with isomer shifts corre-

1
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–4

–6

0 20 40 60 80

S,
 µ

m
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Fig. 1. Temperature dependence of the centroid S of the
67Zn Mössbauer spectrum measured with respect to its
value at 37 K for (1) La1.85Sr0.15CuO4 and (2) Cu2O. The
solid line plots the theoretical temperature dependence of S
for the case of the second-order Doppler shift for θ = 400 K.
P

sponding to the 67Zn2+ ions at copper sites. It was found
that the quadrupole coupling constants C of all the
ceramics are practically temperature independent.
Because the electric field gradient at the 67Zn nuclei
acting on the Zn2+ probe is produced by the lattice ions
only and the lattice constants change only by a negligi-
ble amount within the temperature interval of 4.2–80 K
[9, 10], the independence of C from temperature does
not come as a surprise.

The temperature dependences of the centroid S mea-
sured relative to its position at Tc differ substantially for
the reference and superconducting samples (this is
illustrated in Fig. 1 through the relation between
La1.85Sr0.15CuO4 and Cu2O), although no sharp jumps
are observed in the magnitude of S at the transition
through Tc.

The temperature dependence of S is given by Eq. (1)
and, as shown by calculations [11], the first term in
Eq. (1) may be neglected in the case of 67Zn, because
for the temperature interval chosen, it does not exceed
0.03 µm/s and no structural phase transitions are
observed within the 10- to 80-K region in any of the
compounds studied [9, 10].

The second term in Eq. (1) relates to the effect of the
second-order Doppler shift. As is seen from Fig. 1, the
experimental data obtained on reference samples in the
temperature interval chosen are fitted satisfactorily by
Eq. (2) plotted for θ ≈ 400 K (Cu2O). For the supercon-
ducting samples, the experimental data obtained for
T > Tc are also approximated by a relation of the type of
Eq. (2) drawn for θ ≈ 360 K (Nd1.85Ce0.15CuO4), 400 K
(La1.85Sr0.15CuO4), and 260 K (Tl2Ba2CaCu2O8) (for the
Debye temperatures of Nd2CuO4, La2 – xSrxCuO4, and
Tl2Ba2CaCu2O8, heat capacity measurements yield 300
[12], 420 [13], and 270 K [13], respectively).

Finally, the third term in Eq. (1) describes the tem-
perature dependence of the isomer shift. The value of
the IS at a given temperature T can be found as the dif-
ference [IS]T = ST – DT (here, ST and DT are the centroid
of the spectrum and the Doppler shift at the temperature
T, respectively). The increase in the IS with decreasing
temperature for T < Tc indicates an increase in the elec-
tron density at the 67Zn nuclei and, hence, localization
of electron pairs at the Mössbauer probe. The limiting
values of the IS for T  0 K, [IS]0 = S0 – D0, should
depend on the size of the Cooper pairs, i.e., on the mag-
nitude of Tc. The validity of this statement is illustrated
by Fig. 2, which plots the dependence of [IS]0 on Tc;
one readily sees that [IS]0 increases with increasing Tc

(i.e., with decreasing Cooper correlation length), which
signals an increase in the electron density at the 67Zn
nuclei.

We have thus established that the temperature
dependence of S for the Nd1.85Ce0.15CuO4,
La1.85Sr0.15CuO4, and Tl2Ba2CaCu2O8 superconductors
at temperatures T > Tc is governed by the second-order
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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Doppler shift, whereas for T < Tc, S is also affected by
the process of Cooper pair localization at the Möss-
bauer probe nucleus. A decrease in the temperature
amplifies the effect of this process on S, because the
fraction of the Bose condensate grows with decreasing
temperature. BCS theory yields the following relation
for the temperature dependence of the effective density
of superfluid electrons ρ(T) [1]:

where EF = /2m is the Fermi energy, m is the particle
mass, k is the wave vector, kF is the value of the wave
vector at the Fermi surface, Ek is the energy of the
k state, and β has the meaning of the binding energy of
the superfluid component.

On the other hand, one could expect that ρ(T) ~
[IS]T/[IS]0. Figure 3 presents the theoretical depen-
dence of ρ on the parameter x = 1.76(kBT/∆) (here, kB is
the Boltzmann constant and ∆ = 3.06kB[Tc(Tc – T)]1/2 is
the energy gap in the spectrum of elementary supercon-
ductor excitations) taken from [1], together with our
data on the dependence of [IS]T/[IS]0 on the x parame-
ter. The experimental data are seen to be in satisfactory
agreement with the calculations. In other words, Möss-
bauer spectroscopy using the 67Zn isotope is an efficient
tool to probe the formation of Cooper pairs and their
Bose condensation in high-temperature superconduc-
tors.

Unfortunately, the problem of choosing a model
which would adequately describe the increase in the
electron density at the nuclei of the 67Zn impurity cen-
ter in a superconductor at temperatures below Tc

remains to be solved. For instance, the increase in the
electron density can be considered to result from the
change in the charge state of the Zn probe. However,
two problems arise here. First, the experimentally mea-
sured values of [IS]0 (~2–5 µm/s) are substantially
smaller than the magnitude of the isomer shift
(~165 µm/s) expected for the charge exchange of the
zinc center, Zn2+  Zn0 [11]. This difficulty can be
overcome by assuming that the effective radius of elec-
tron-pair localization at the impurity center is consider-
ably in excess of the Zn2+ ionic radius (for instance, one
could accept, for the localization radius, a Cooper cor-
relation length which is ~10–7 cm for the HTSCs). Sec-
ond, the charge state of zinc is governed by the position
of the zinc-impurity electronic energy level with
respect to the Fermi level. Hence, one has to assume
that for T > Tc, the zinc level lies considerably higher
than the Fermi level and that the impurity charge state
is temperature independent. By contrast, the observed

ρ T( ) = 1 2βEF/kF
5( )–

× k4 βEk( )/ βEk( ) 1+exp[ ]2exp{ } k,d

0

∞

∫

kF
2
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temperature dependence of S implies that, for T < Tc,
the zinc level lies close to the Fermi level to within kBT.

Another explanation can be based on the assump-
tion that the observed increase in the electron density at
the 67Zn nuclei is connected with the spatial redistribu-
tion of electrons produced by the Bose condensation.
The problem arising with this model stems from the
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Fig. 2. Dependence of [IS]0 on Tc for (1) Nd1.85Ce0.15CuO4,
(2) La1.85Sr0.15CuO4, and (3) Tl2Ba2CaCu2O8.

Fig. 3. Dependence of [IS]T/[IS]0 on the parameter x =
1.76(kBT/∆). The solid line is a plot of the theoretical depen-
dence of the effective superfluid-electron density on the x
parameter. The symbols identify (1) the Nd1.85Ce0.15CuO4,
(2) La1.85Sr0.15CuO4, and (3) Tl2Ba2CaCu2O8 compounds.
1
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real possibility of detecting such a redistribution of the
electron density by means of an impurity probe. The
67Zn probe is a two-electron center with a negative cor-
relation energy [14]. For the s-electron pair localized at
the zinc center, the total angular momentum, orbital
angular momentum, and spin are zero. On the other
hand, the BCS model assumes that the electrons pairing
at T < Tc have oppositely directed momenta, such that
the total momentum, the orbital angular momentum,
and the spin of a Cooper pair are likewise zero. It is the
combination of these factors that is favorable for the
observation of Bose condensation with the 67Zn probe.
It should, however, be borne in mind that the BCS the-
ory assumes s pairing, whereas the pairing in HTSCs
has the d symmetry [4]. Therefore, one should
approach with caution the agreement found by us
between the theoretical and experimental dependences
of the effective superfluid-electron density on the x
parameter (Fig. 3).

Thus, we have shown by 67Cu(67Zn) Mössbauer
emission spectroscopy that the superconducting transi-
tion in the Nd1.85Ce0.15CuO4, La1.85Sr0.15CuO4, and
Tl2Ba2CaCu2O8 compounds is accompanied by a redis-
tribution of the electron density in the crystal and that
67Cu(67Zn) Mössbauer emission spectroscopy is an effi-
cient tool for probing Cooper-pair Bose condensation.
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Abstract—An analysis of the relationship between the local crystal and electronic structure of the
Ba1 − xKxBiO3 and BaPb1 – xBixO3 perovskite systems, which was made in terms of an empirical model based
on EXAFS spectroscopy studies of the above compounds, led to the conclusion that superconductivity is pos-
sible in the Ba1 – xLaxPbO3 system. The Ba1 – xLaxPbO3 multiphase compound synthesized at a pressure of
6.7 GPa was found to contain a superconducting phase with a critical temperature Tc . 11 K. © 2001 MAIK
“Nauka/Interperiodica”.
The BaBiO3 compound belongs to the class of cubic
perovskites with a common formula ABO3, which are
based on the BO6 octahedral complexes. BaBiO3 is an
insulator, and the substitution of lead for a part of the
bismuth ions in the B position or of potassium or rubid-
ium for the barium ions in the A position forms the sub-
stitutional solid solutions Ba1 – xKxBiO3 (BKBO) and
BaPb1 – xBixO3 (BPBO), which undergo a metal–insula-
tor phase transition with increasing dopant concentra-
tions. After the phase transition, these compounds
become metallic superconductors with Tc . 13 K for
BaPb0.75Bi0.25O3 [1] and Tc . 30 K for Ba0.6K0.4BiO3
[2]. To reveal the mechanisms by which doping in the
A and B positions affects the properties of the bismuth-
ates in the normal and superconducting states, attempts
were made to prepare new BaBiO3-based superconduc-
tors in a search for compounds with higher critical tem-
peratures [3]. It was found that some chemical modifi-
cations not forming under normal conditions can be
synthesized at a high pressure. Finally, a new supercon-
ducting phase, (K1 – xBix)BiO3 with Tc . 10.2 K at x =
0.1, was synthesized [3].

Unlike layered high-temperature superconductors,
BaBiO3-based solid solutions have a weakly distorted
cubic structure. They exhibit isotropic physical proper-
ties and zero magnetic coupling. The simpler structure
of the 6s–2p valence band of the bismuthates compared
with the 3d–2p band of the high-temperature supercon-
ductors, as well as the absence of charge reservoirs out-
side the BO6 octahedral complexes, facilitates consider-
ably an analysis of the electronic structure of the bis-
muthates. This analysis has led to an empirical model
relating the specific features of the local crystalline to
the local electronic structure of the bismuthates and an
explanation for the appearance of the insulator–metal
1063-7834/01/4304- $21.00 © 0613
transition and the onset of superconductivity [4–6].
Based on this model, the conclusion is drawn below
that superconductivity is possible in the Ba1 − xLaxPbO3
compound, which does not contain bismuth ions.

BaBiO3, the basic compound for the above systems,
has a monoclinically distorted cubic lattice. This distor-
tion is actually a combination of a static rotation of the
BiO6 octahedra about the [110]-type axes (rotational
distortion) and alternation of the larger and smaller
octahedra (breathing-mode distortion). The inequiva-
lence of the octahedra was initially assigned to dispro-
portionation of the bismuth valence, 2Bi4+  Bi3+ +
Bi5+, which gives rise to a charge density wave resulting
in the unit-cell content doubling and the formation of
an insulating band gap [7]. Doping with potassium or
lead reduces both types of distortions and destroys the
charge density wave. For instance, the metallic super-
conducting phase Ba1 – xKxBiO3 has an undistorted
cubic structure for x > 0.37 [8]. It is believed on the
basis of x-ray diffraction and neutron elastic scattering
data [8, 9] that the inequivalence of the bismuth valence
states typical of BaBiO3 is destroyed by doping and
that, in the superconducting phase of BKBO or BPBO,
all bismuth ions are in the same state. As a result, it was
maintained that the inequivalence of the bismuth states
is responsible for the insulating properties of BaBiO3
and is in no way connected with superconductivity
[10].

Note that the above methods provide a pattern of the
structure averaged over the sample volume. Structural
studies of the BKBO–BPBO systems by the locally
sensitive EXAFS method and high precision measure-
ments of photoemission spectra revealed that the
inequivalence of the bismuth states also persists in the
superconducting BKBO compositions. This manifests
2001 MAIK “Nauka/Interperiodica”
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itself experimentally in the form of strongly anhar-
monic vibrations of the oxygen ion in the double-well
potential along the Bi–O–Bi bonds [5, 11] and of a
splitting of the Bi 4f lines of the photoemission spectra
[12]. Therefore, a new model of the electronic structure
and transport properties of the bismuthates was pro-
posed based on experimental EXAFS data [4–6].

It was shown that the crystal structure of BaBiO3 is
described by an ordered alternation of the BiO6 and
BiL2O6 octahedral complexes, where L2 signifies the
presence of a hole pair in the hybridized antibonding
6sBiO2pσ* orbital of the complex. The electronic struc-
ture of BaBiO3 derives from a system of local electron
and hole pairs separated by an insulating energy gap
2Ea = 0.48 eV. The pairs are also separated spatially,
because they belong to different complexes, namely,
the electron pairs belong to BiO6, and the hole pairs are
in BiL2O6. The system does not have free charge carri-
ers, and the conduction is effected by two-particle
charge transport in the BiL2O6  BiO6 dynamic
exchange.

Substitution of K+ ions for a part of the Ba2+ ions
reduces the number of electrons and transfers part of the
BiO6 complexes to the BiL2O6 state. As the number of
the BiL2O6 complexes increases, they overlap spatially
to produce a continuous BiL2O6 cluster, with its free L2

levels forming the conduction band, which initiates the
insulator–metal transition. The insulating gap now dis-
appears, and the local electron pairs of the BiO6 com-
plexes move freely through the BiL2O6 clusters, thus
making possible the superconducting transition at T < Tc.

Total substitution of the K for Ba ions produces
KBiO3, a compound consisting of only the BiL2O6
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Fig. 1. Temperature dependence of the magnetization. The
inset shows, in an expanded scale, the critical temperature
interval. The arrow specifies the critical temperature of lead.
P

complexes, which should be a nonsuperconducting
metal, because it does not contain the BiO6 complexes
with electron pairs. To make superconductivity possi-
ble, one should produce pairs by transforming part of
the BiL2O6 complexes to BiO6. This has recently been
achieved by doping KBiO3 in the A position with the
trivalent Bi3+ ions [3].

The BaPbO3 compound is an electron analog of
KBiO3. It consists of equivalent PbL2O6 complexes [4–
6] and exhibits metallic properties. While in BaPbO3
there is no superconductivity, it appears when this com-
pound is doped by bismuth to BaPb1 – xBixO3 and is
observed within a fairly narrow doping interval of
0.05 < x < 0.35 [1]. The onset of superconductivity is
associated with the formation of local electron pairs at
the BiO6 complexes. The electronic structure of the
PbL2

 

O

 

6

 

 octahedra with lead ions at the center is identi-
cal to that of BiL

 

2

 

O

 

6

 

. Therefore, the metallic properties of
BaPb

 1 –  x Bi
 x O

 3  originate from the conduction band
derived from free L

 
2

 
 levels in a continuous cluster con-

sisting of both PbL

 

2

 

O

 

6

 

 and BiL

 

2

 

O

 

6

 

 complexes and the
superconductivity is accounted for by coherent pair trans-
port in the BiL

 

2

 

O

 

6

 

  BiO

 

6

 

 and PbL

 

2

 

O

 

6

 

  BiO

 

6

 

dynamic exchange.
It thus follows that BaPbO

 

3

 

 can be made supercon-
ducting by replacing a part of the PbL

 

2

 

O

 

6

 

 octahedra by
PbO

 

6

 

, which can be attained by electronic doping
through substituting trivalent ions for a part of the Ba

 

2+

 

ions, because such doping should favor the formation
of local electron pairs in the PbO

 

6

 

 complexes. We have
made an attempt at checking this conjecture experi-
mentally.

Among the trivalent ions, the ionic radius of La

 

3+

 

,
1.17 Å, is the closest to that of Ba

 

2+

 

 (1.49 Å). Such a
large difference between the ionic radii hampers the
formation of Ba

 

1 – 

 

x

 

La

 

x

 

PbO

 

3

 

 at normal pressure. Our
numerous attempts at obtaining this compound by
solid-phase synthesis in an oxygen atmosphere or in air
failed, thus leaving us the alternative of performing it at
a high pressure.

Samples of a nominal composition Ba

 

0.9

 

La

 

0.1

 

PbO

 

3

 

were prepared of 99.9%-pure BaO

 

2

 

, La

 

2

 

O

 

3

 

, PbO, and
PbO

 

2

 

 oxides. A stoichiometric sample of well-mixed
oxides was pressed in an argon environment and placed
into a cylindrical platinum ampoule 90 mm

 

3

 

 in volume,
which was mounted in a toroidal high-pressure cham-
ber [13]. The ampoule was heated to 1000

 

°

 

C over
12 min at a pressure of 6.7 GPa, maintained at this tem-
perature for 20 min, and then cooled in a few seconds
to room temperature. The ceramic thus prepared was
black, with a metallic luster seen at a fresh fracture.
X-ray analysis showed that the compound obtained was
multiphase. One of the phases had a perovskite struc-
ture with lattice parameters close to those of BaPbO

 

3

 

.
No attempts at identifying the other phases were made.
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The magnetization of this compound was measured
with a SQUID magnetometer [14]. The temperature
dependence of the magnetization presented in Fig. 1
indicates the existence of two superconducting phases
in the sample. The phase with a larger volume, which
does not exceed 28% at T = 4.2 K, has a critical temper-
ature Tc . 7.2 K; however, within a small, ~1%, fraction
of the sample volume, superconductivity persists up to
Tc . 11 K.

The existence of two superconducting phases with
different parameters is supported by the field depen-
dence of the magnetization measured at T = 4.2 K
(Fig. 2). In weak fields, H & 520 Oe, one observes a
noticeable field hysteresis associated with flux pinning
in the sample. In high fields, both the magnetization
itself and its hysteresis are small. For H * 5000 Oe, the
superconductivity breaks down; the magnetization
becomes reversible and grows linearly with the field.
The slope of the reversible magnetization curve corre-
sponds to the paramagnetic susceptibility χ = 1.14 ×
10–3 cm3/mol.

The presence, in the sample, of a superconducting
phase with a critical temperature close to Tc of metallic
lead may be associated with the possible reduction of a
part of the lead in the chemical reaction under high
pressure. This conjecture is supported by the fact that
the magnetization curve exhibits hysteresis in fields
below the critical field of lead.

The very small volume fraction of the supercon-
ducting phase with Tc . 11 K can be attributed to the
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Fig. 2. Field dependence of the magnetization at the liquid
helium temperature. The insets show, in an expanded scale,
this dependence in weak and strong fields. The arrow iden-
tifies the critical field of lead.
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fact that apparently, it forms only at grain boundaries of
the ceramic, where the stressed state of the lattice pro-
duces more favorable conditions for the stabilization of
phases with a large difference in the radii of the ions
forming the lattice. It may be expected that, by optimiz-
ing the pressure and temperature of the synthesis, the
cooling regime, and the batch composition, one would
succeed in increasing the volume of the superconduct-
ing phase Ba1 – xLaxPbO3 to the level permitting identi-
fication of its stoichiometry and crystal structure. In
conclusion, it should be stressed that superconductivity
has not been observed heretofore in the Ba–La–O and
Ba–Pb–O systems.
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Abstract—An epitaxial layer of the Ga0.82In0.18As solid solution is investigated. The coordination of arsenic
atoms in the structure of this compound is determined by x-ray diffractometry. The ratio of arsenic atoms in the
coordination 4Ga, 3Ga + In, and 2Ga + 2In corresponds to the superstructure in which an In atomic chain along
the [110] direction alternates with four Ga chains. An ideal composition for this superstructure is Ga4InAs5.
New specific features of the domain structure formed as a result of temperature-induced changes in the config-
uration of tetrahedral bonds are revealed. © 2001 MAIK “Nauka/Interperiodica”.
Despite the fact that A3B5 solid solutions have been
investigated extensively and thoroughly, no reliable
method exists for elucidating their atomic structure.
Standard parameters determined by x-ray diffraction
(unit cell parameters and root-mean-square displace-
ments of atoms) do not provide an exhaustive charac-
terization of the structure. Electron microscopy and
electron diffraction are appropriate only in the case of
microscopic volumes. For this reason, the possible
inhomogeneity of the structure and the dependence of
its properties on the growth conditions of a particular
sample render generalization of the data obtained by
these methods incorrect. This necessitates investigation
of macroscopic samples of crystals and the epitaxial
layers. For these samples, x-ray diffractometric mea-
surements in the region of reflections with large indices
are highly efficient [1–4]. In this respect, we performed
x-ray measurements by the back-reflection technique in
an asymmetric geometry with a double-crystal spec-
trometer (Mo  radiation).

We studied a sample of the Ga0.82In0.18As epitaxial
layer (5.3 µm thick) grown by metalloorganic hydride
deposition on a GaAs(001) substrate with a 5′ devia-
tion. The required epitaxy was achieved with a vertical-
type epitaxial reactor operating at atmospheric pressure
and using high-frequency heating of a substrate holder.
The deposition temperature was equal to 650°C, and
the growth rate was 1 µm/h. The initial materials were
gallium trimethyl, indium ethylenedimethyl, and ars-
ine. No special doping of the layer was performed. The
atomic composition of the layer was determined using
an x-ray microanalyser.

X-ray diffraction determination of the unit cell
parameters of the layer revealed a lattice distortion—
the well-known phenomenon attributed to a transla-
tional mismatch between crystal lattices of the sub-
strate and the layer. The substrate lattice was also char-
acterized by an insignificant distortion. The unit cell

Kα1
1063-7834/01/4304- $21.00 © 20616
parameters of the layer were as follows: a|| = 5.7127 ±
0.0002 Å and a⊥  = 5.7278 ± 0.0002 Å.

Intensities of x-ray reflections of the layer were
measured in the range H2 = h2 + k2 + l2 = 200–248
(2ϑ  = 122°–155°). As a result, we obtained an array of
105 unique absolute values of the experimental struc-
ture amplitudes |F |m.

In the model of a sphalerite structure, the calculation
with inclusion of atomic displacements in the harmonic
approximation gives the following standard thermal
parameters: BA = 0.870 ± 0.007 Å2 for the “mean” atom
0.82Ga + 0.18In (the A-type atoms) and BB = 0.679 ±
0.005 Å2 for As (the B-type atom). The correspondence
between the structural model and the experimental data
is characterized by the discrepancy factor R = Σ||Fm | –
|Fc ||/Σ|Fm |, where |Fc | is the absolute structure ampli-
tude calculated according to the accepted model and
parameters. The found value of |Fc | is equal to 5.48%;
i.e., it is rather large. Therefore, the root-mean-square
displacements of atoms from an ideal position roughly
describe the structure.

The next step consists in calculating the displace-
ments of atomic positions. In this step, it is expedient to
ignore the lattice distortion and the lattice is assumed to
be cubic with the lattice parameter a = (2a|| + a⊥ )/3 =
5.7171 Å.

The atomic positions for the A atoms (Ga, In) are
displaced as the result of temperature-induced changes
in the configuration of bonds [5] from the intersection

point of elements of the 3m symmetry to the position
of the lower symmetry 3m, 16 : (e)xxx. The positional
parameter x can be estimated, as in [3, 4], from the
structure parameters of the compounds, which gives
xt = −0.0058. Arsenic atoms (B) in a mixed environ-
ment are displaced because of the difference in lengths
of the Ga–As and In–As bonds (in the initial com-
pounds, these bond lengths are 2.448 and 2.623 Å,
respectively). It is reasonable to assume that indium
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atoms are uniformly distributed. In this case, the
nearest environment of the arsenic atoms contains
3Ga + 1In and 4Ga. Each indium atom is bonded to
four arsenic atoms. Therefore, the share of arsenic
atoms in the coordination 3Ga + 1In accounts for 72%,
which corresponds to a fourfold indium content, and
twenty-eight percent is due to the 4Ga coordination. In
the 3Ga + 1In environment, the As position is dis-
placed along the threefold axis; i.e., these atoms
occupy the 16 : (e) position. For the given unit-cell
dimensions and positional parameter xg = 0.2635, the
bond lengths have a minimum deviation from the
aforementioned values: 2.434 and 2.609 Å, respec-
tively. In the 4Ga coordination, the Ga−As bond length

is equal to 2.476 Å( a/4).

Although the above displacements are not very
large, it is necessary to evaluate their influence on the
structure factors of x-ray reflections by adding the
third-order term to the temperature factor. This term is
determined by the difference in the mean products of
the components of displacements from an ideal posi-

tion  of the A and B atoms. In our case, we have
ux/a = uy/a = uz/a = x. Then, the corresponding dimen-

sionless quantity should be equal to  =  –
0.72(xg – 1/4)3 = –1.97 × 10–6. Experience has shown
that a better estimate of this parameter from experimen-
tal data can be obtained using the relationship with
structure factors of a pair of reflections h1k1l1 and h2k2l2

with odd indices for which  = , that is,

Here,  and  are the atomic factors of A and B
atoms with the real part of the dispersion correction that
corresponds to the radiation used, f + ∆f '; ∆  and
∆  are the imaginary parts of the dispersion correc-
tion; TA and TB are the temperature factors in the har-
monic approximation; and S = sin2π(h/4 + k/4 + l/4)

The data of measurements yield the value  =
−(1.107 ± 0.043) × 10–6, which differs significantly
from the value obtained above.

Now, we estimate the fraction of arsenic atoms in

the 3Ga + 1In environment from the  value, which

was obtained using the experimental data, as –(  –

)/(xg – 1/4)3. The calculation gives a value of 0.37.
The remaining arsenic atoms should reside partly in the
4Ga coordination and partly in the 2Ga + 2In coordina-
tion. It can easily be shown that the former and latter
atoms account for 45.5 and 17.5%, respectively. In the
2Ga + 2In coordination, the atoms should be displaced
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along one of the superlattice axes. The best suited posi-
tional parameter has the value zg = 0.2765 when the
bond lengths are equal to 2.566 and 2.391 Å, respec-
tively. In the new statistical model of the structure at
BA = 0.651 ± 0.004 Å2 and BB = 0.551 ± 0.005 Å2, the
calculated R factor decreases to 3.78%.

The existence of the 2Ga + 2In coordination indi-
cates an irregularity in the arrangement of indium
atoms. It is reasonable first of all to consider a variant
with atomic chains. Let us assume that a layer consist-
ing of atoms A lies in the (111) plane with a chain of In
atoms and adjacent chains of Ga atoms (Fig. 1). As can
be seen from Fig. 1, the arsenic atoms nearest to the Ga
atoms are bonded either to the 2Ga and In atoms or to
the Ga and 2In atoms. These arsenic atoms should form
the fourth bond with Ga atoms of the adjacent layer.

Let us now consider a chain of In atoms in the (001)
plan that is extended along the [110] direction. Since
the ratio between Ga and In atoms is close to 1 : 4, it is
assumed that a chain of In atoms in the plane under
consideration alternates with four Ga chains. Hence, a
variant of chain arrangement in the adjacent (parallel)
atomic layer suggests itself. Then, the third layer can
repeat the first layer, i.e., can be related to it through
translation (Fig. 2). In order to complete the model, it is
necessary to arrange arsenic atoms in a known way.
Thus, we obtain a variant of the superstructure with the
smallest primitive cell (Fig. 3). It is seen from Fig. 3
that the ratio of arsenic atoms in the 2Ga + 2In, 3Ga +
In, and 4Ga coordinations is equal to 1 : 2 : 2. This ratio
corresponds to the above value with allowance made
for the final accuracy of the estimate from the experi-
mental data, “the deviation from the stoichiometric
composition” of the solid solution, and the possible
partial disordering of the superstructure.

The relationship for the experimental structure fac-
tors has another feature. The differences between

(hkl) and ( kl) obviously exceed the effect of
anomalous dispersion, which implies a violation of the
structural symmetry. These factors are well described
by introducing the anisotropic thermal parameter
exp(−βH2 – 2βxyhk). (In this form, its constants β and
βxy are dimensionless quantities; however, for conve-

Fm
2 Fm

2 h

Ga

(‡) (b)

In As

Fig. 1. Atomic packing in a layer parallel to the (111) planes
in two projections (a) and (b).
1
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nience of comparison in the subsequent discussion, the
particular values of these parameters will be given in
conventional units, Å2). The calculation with parame-
ters 2βxy, which were separately refined for A and B
atoms, leads to a decrease in the R factor to 3.54%.
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Fig. 3. A primitive cell of the Ga4InAs5 superstructure.

Fig. 4. Raman spectrum of the Ga0.82In0.18As sample.

Ga
In

Fig. 2. Alternation of Ga and In atoms in the Ga4InAs5
superstructure. Boundaries of the substructure cells are
shown.
P

Before elucidating the nature of the anisotropy, we
consider the anomaly in the behavior of structure
amplitudes, which is similar to that observed earlier in
[4]. This behavior can be described more exactly either
by introducing a normalizing factor of 0.63 for the
experimental structure amplitudes (as if their values
had been overestimated) or by using the thermal param-
eter expressed as exp(–βH2 – 2βxyhk)/0.63 when calcu-
lating the structure amplitudes.

The calculation according to the above distribution
of As atoms over the positions, the found values of xt,
xg, and zg, as well as the refined parameters B and 2Bxy

(their values for A and B atoms are 0.923 ± 0.002,
−0.042 ± 0.012 and 0.829 ± 0.003, –0.055 ± 0.017 Å2,
respectively) leads to a decrease in the R factor to
2.10%.

In attempting to elucidate the anomaly in the behav-
ior of the structure amplitudes, we should note the fol-
lowing circumstances. As in our earlier work [4], where
a similar situation took place, the experimental data
suggest the formation of the superstructure with a
rather large primitive cell. However, the superstructure
reflections which would indicate the total ordering of
the structure are not observed. In this case, we can see
a partial ordering, which is typical of solid solutions
prone to structural ordering. An inexact correspon-
dence between the composition and the formula
Ga4InAs5 leads to a certain disordering. In similar
cases, there occurs a phenomenon such as the separa-
tion of the structure within the same substructure net-
work into domains that are distinguished by the orien-
tation of superlattice axes. A partial disordering in
domains and the possible translational mismatch even-
tually transform the superstructure reflections into dif-
fuse scattering.

For large periods of the superlattice, the most
intense superstructure satellite reflections are observed
near the main reflection. Let us now answer the ques-
tion as to whether these satellites or the corresponding
diffuse scattering can be captured in measurements of
the intensity of the main reflections, thus increasing the
experimental values of the structure amplitudes. In the
superstructure described above, the period along one of
the 〈110〉  directions of the substructure is increased by
a factor of five. For convenience, we will use the
nomenclature related to the substructure cubic cell,
even though the fractional indices in this case should be
assigned to the superstructure reflections. The satellites
h ± 1/5 h ± 1/5 0 should appear near the main reflections
hh0. In the range of measurements, we observe the
reflection 10 10 0, 2ϑ  = 122.78°. For the satellite reflec-
tion 10.2 10.2 0, the scattering angle is 127.14°. With
this difference, the satellite reflection cannot be
recorded on a counter when measuring the intensity of
the reflection 10 10 0.

However, thermal diffuse scattering is adjacent to
the reflection. The formation of the superstructure
changes the phonon spectrum. In particular, one should
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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Scheme for the formation of domain chains in the structure of atoms responsible for the anisotropy of room-mean-square dis-
placements

Structural regions Domain Subdomain Third link

Atom sort A B A

Displacements r1( ) r1 – r2( ) r1 – r2 + r1( )

r2( ) r2 –r1( ) r2 – r1 + r2( )

xtxtxt 2xt2xt0 3xt3xtxt

xtxtxt 2xt2xt0 3xt3xtxt
expect an increase in the weight of the longest wave-
length vibrations of the acoustic branch. On the one
hand, the temperature factor is sensitive to these vibra-
tions (these modes correspond to the smallest frequen-
cies and, consequently, the largest amplitude at a given
temperature). On the other hand, the longest wave-
length vibrations lead to thermal diffuse scattering
which is most closely adjacent to reflections. In mea-
surements, this part of thermal diffuse scattering is
added to the integrated intensity of x-ray reflections,
and thus, the structure factor turns out to be overesti-
mated.

As could be expected from the results obtained in [3,
4], the anisotropy of root-mean-square displacements
of the A atoms should be caused by the preferred orien-
tation of domains formed upon displacements of
atomic positions due to a temperature-induced change
in the configuration of bonds. In this case, the super-
structure domains with displacements xt  and

xt  predominate. Similarly, the anisotropy in the dis-
placements of the B atoms could be attributed to a pre-
dominance of superstructure domains in which chains
of In atoms are aligned along the [110] direction, and
the arsenic atoms in the 3Ga + 1In coordination are
characterized by the displacements xg  and

xg . However, calculations with a variation in the
fraction of the A and B atoms thus displaced do not give
the best fit of the calculated structure amplitudes to the
experimental data. The R factor obtained in this case is
tenths of a percent larger than the above value.

The specific feature of the structure of solid solu-
tions is the capability of forming subdomains inside the
domains or domain chains (see [1–4]). Therefore, the
anisotropy in displacements of the B atoms can be due
to the preferred orientation of subdomains. As regards
the A atoms, they in turn should form the third link of a
chain of temperature displacements of atomic positions
inside subdomains. The table presents a scheme of
combinations of the temperature displacement vectors
rj for atomic positions, which provide the required dis-
placements.

In the case when 7% As atoms in subdomains and
3% A-type atoms in the third link of the chain are
arranged in the aforementioned manner, BA = 0.920 ±
0.002 Å2, BB = 0.821 ± 0.003 Å2, and the normalizing
factor is 0.625, the R factor is equal to 2.09%.

xt xt

xt xt

xg xg

xg xg
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Earlier [6, 7], the epitaxial layers of similar compo-
sitions were investigated by the optical method. The
features revealed in Raman and infrared spectra of the
studied sample were attributed by these authors to the
presence of the GaInAs2 ordered phase (domains)
which contained virtually all the indium. These infer-
ences are in rather poor agreement with the results
obtained in the present work. For this reason, we also
investigated the Raman spectra of our sample at room
temperature. The Raman spectra were excited with the
488-nm line of an argon laser, measured in a backscat-
tering geometry (90, 40), and analyzed in a cross polar-
ization z(xy) , where x || [001] and y || [010]. Accord-
ing to the selection rules, the contribution to Raman
scattering in this configuration is made only by longitu-
dinal optical vibrations.

Figure 4 displays the Raman spectrum of our sam-
ple. The spectrum exhibits the LO1 mode of GaAs
(284 cm–1) and the LO2 mode of InAs (235 cm–1). In
addition, the spectrum contains the LOc mode
(260 cm−1). A comparison of the spectra for the given
sample and those studied in [6] shows their total iden-
tity.

In the sample studied in our work, the dimension of
the unit cell in a layer corresponds to the given compo-
sition rather than to Ga0.5In0.5As. X-ray reflections of
gallium arsenide are also observed: they are recorded
from the substrate. As follows from measurements,
these reflections are weakened by the shielding effect
of the layer in complete agreement with the geometry
of the x-ray path and the composition and thickness of
the layer. Therefore, the epitaxial layer has neither a
GaInAs2 phase and nor ordering associated with this
phase. In attempting to find any structural similarity
between the GaInAs2 and Ga4InAs5 superstructures, we
can point only to the alternation of In and Ga atomic
layers aligned parallel to the (110) plane of the sub-
structure lattice, which was noted in [6] (in this respect,
these authors introduced the term “monolayer superlat-
tice (InAs)1(GaAs)1.” In the proposed superstructure
GaInAs2, the Ga and In layers alternate with each other.
In our superstructure, one In layer alternates with four
Ga layers (Fig. 2). However, a similar alternation in the

layers parallel to the (1 0) and (001) planes does not
occur. Furthermore, the As atoms in layers which are
aligned parallel to the (110) plane and located between

z

1

1
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the Ga and In layers adopt different coordinations in
two substructures. Therefore, we can conclude that the
observed feature of the phonon spectrum is associated
with the Ga4InAs5 superstructure.

In conclusion, it should be noted that, as far as we
know, the Ga4InAs5 superstructure, which was identi-
fied from analysis of the x-ray measurements, has never
been observed in A3B5 solid solutions.
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Abstract—The electronic band structure of a 3C BN boron nitride crystal with pores (r ~ 0.3 nm) statistically
distributed over the crystal is calculated by the local coherent potential method within the multiple scattering
approximation. The valence band tops of crystalline (stoichiometric) and porous boron nitride are compared
to the x-ray photoelectron spectrum (XPS) of BN and the soft x-ray emission spectra (SXES) of nitrogen.
The origin of a short-wavelength shoulder in XPS, NK XES, and NK SXES of binary nitrides is discussed.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Progress in fine technologies of growing wide-gap

semiconductor crystals, for example, chemical vapor
deposition (CVD) or the sublimation sandwich method,
has offered a variety of nanomaterials with unique
properties for micro- and optoelectronics [1–3]. These
materials exist in both amorphous and crystalline
states. Porous crystalline materials whose electronic
structure has been almost unexplored are of special
interest. The traditional technique of investigating local
densities of states (LDOS) in porous crystals is ultra-
soft x-ray emission spectroscopy (USXES) [3]. How-
ever, this method does not provide comprehensive
information on the specific features in the structure of
valence band tops in a crystal. The application of band
structure calculation methods to porous objects
involves considerable difficulties. In this respect, it was
of interest to demonstrate the possibilities of the cluster
approximation of the local coherent potential by the
example of a model object—a cluster of 235 atoms
with a nanopore (r ~ 0.3 nm). Earlier [4, 5], this
approach was developed for the class of nonstoichio-
metric compounds. The present work is a continuation
of earlier works and is aimed at studying the fine struc-
ture of the valence band top in cubic boron nitride with
a nanopore.

2. MODEL OBJECT
A single pore 0.6 nm in size in a 3C BN crystal was

modeled according to the scheme presented in Fig. 1.
This figure displays the part of the cluster centered at
the pore in the projection onto the (000) plane. The val-
ues of fractions denote the height of the atoms above
the basal plane (the edge of the cubic unit cell of boron
nitride is taken to be a unit length). The sites unoccu-
pied by boron and nitrogen atoms (distinguished by dif-
1063-7834/01/4304- $21.00 © 20621
ferent sizes in the scheme) are hatched. The atomic
sites which belong to the first, second, and third coordi-
nation spheres turn out to be free of atoms (29 vacan-
cies). The next twelve coordination spheres are filled
with boron and nitrogen atoms occupying standard
positions: 6 nitrogen atoms reside in the fourth coordi-
nation sphere, 12 boron atoms are situated at the fifth
sphere, and 24 nitrogen atoms are located in the sixth
sphere. Thus, the space bounded by the fourth coordi-
nation sphere specifies the pore volume. The cluster
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Fig. 1. Arrangement of atoms and vacancies (forming a nan-
opore) in the central part of a cluster centered at the pore
(projection onto the cube base).
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considered contains 206 atoms and 29 vacancies. It is
assumed that these pores are uniformly distributed
throughout the crystal. The pores occupy 20% of the
entire volume of the crystal, and its density comprises
0.8 of the density of an ideal crystal.

3. METHOD AND DETAILS OF CALCULATION

The electronic band structure of the model object
under consideration was calculated by the local coher-
ent potential method within the framework of the mul-
tiple scattering theory. A remarkable feature of the
method presented in [4] is its applicability to systems
with crystal symmetry violation. The crystal potential
was constructed in the muffin-tin (MT) approximation.
The contributions of neighboring atoms to the electron
density and the Coulomb potential of fifteen coordina-
tion spheres were taken into account. The exchange
potential was constructed in the Slater Xα approxima-
tion with the exchange correction α = 2/3. The effective
crystal potential was determined as the sum of contri-
butions of the Coulomb, exchange, and Madelung
potentials. The Madelung potential was taken to be
equal to the lattice potential of an ideal boron nitride
3C BN [6]. As was shown in [5, 7], the deficit of atoms
in B and N sublattices can be accompanied by lattice
“softening” because of the dangling bonds and can lead
to relaxation of the crystal lattice and a decrease in the
lattice parameter. In this work, the crystal potential was
calculated for the equilibrium state with a lattice
parameter of 5.69940 au in much the same way as in
[5]. A decrease in the potential of boron and nitrogen
atoms is observed in the presence of nanopores in
3C BN. The potential due to the nanopore remains con-
stant inside the MT-sphere; the potentials of B and N
atoms appear to be three orders of magnitude higher at
the center, whereas in the vicinity of the MT sphere,
they are close to the values of the potential at the pore.
Multiple electron scattering was considered, including
the eighth coordination sphere for each of the three
clusters used in the calculations. The number of atoms
in each of these clusters was equal to 99. Since scatter-
ers in the fourth, fifth, and subsequent coordination
spheres differed, the center of the calculated cluster was
placed in each of them. The total number of atoms in
each cluster was 235. The local partial densities of
states (PDOS) at the pore and of B and N atoms can be
calculated using the relationship [6]

(1)

where A determines the sort of the atom in the cluster, l
is the orbital quantum number, R(E, r) are the radial
wave functions, and T is the matrix element of the scat-
tering operator. Since coordinations of B (N) atoms at
the fourth and next coordination spheres differed, the
clusters centered at the B (N) atom were considered for
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each coordination sphere. The local densities of states
of B and N atoms were calculated with inclusion of the
concentration of the A-type atoms at each coordination
sphere. The total density of states (TDOS) of atoms in
3C BN was calculated by the formula

(2)

where cjk is the concentration of the A-type atoms at the
coordination sphere (k) and in the cluster (j). The pore
concentration is taken equal to the concentration of the
pore-forming atomic vacancies in the cluster.

4. RESULTS AND DISCUSSION

Figure 2 shows (a) the x-ray photoelectron spectrum
(XPS) [8] and TDOS, (b) PDOS at the nanopore, and
PDOS at the top of the valence band for (c) boron and
(d) nitrogen atoms in the 3C BN crystal with a nanop-
ore. A comparison of TDOS of the stoichiometric BN
with the present calculation allows one to assert that the
energy band structure of the boron nitride c-BN with a
nanopore is determined equally by the p electron states
of boron and nitrogen atoms. In earlier works [4, 6]
dealing with a small number of atoms in the calculated
cluster (up to four coordination spheres, which was
specified by the low operation speed of PCs), it was
found that the features of the valence band top in cubic
boron nitride are governed primarily by the local partial
2p states of nitrogen. The valence band top of the
3C BN crystal with a nanopore is characterized by
additional maxima E2 and F2, apart from all features of
the TDOS curve, which are typical of the stoichiomet-
ric BN. The origin of the E2 peak is explained by the
occurrence of localized states at an energy of 0.96 Ry
at the nanopore, and the F2 peak results from boron p
states (1.20 Ry). The singularity of the E3 PDOS peak
(0.96 Ry) suggests Mott localization of the s states at
the nanopore; however, its impossibility of being in the
energy band calculations was reported in [9]. Alyushin
et al. [10] explained the D peak in the x-ray photoelec-
tron spectrum by the presence of a BxONx-type oxide
on the surface of the cubic boron nitride samples. The
present calculation proved that the D peak can also be
determined by contributions of the boron (D4 peak) and
nitrogen (D5 peak) p states and the s states at the nan-
opore (E3 peak). The state at an energy of 0.46 Ry
(C2 peak) proved to be the most stable and, in our opin-
ion, correspond to the sp3 configuration, which is char-
acterized by a directed covalent bond between the
boron and nitrogen atoms. The transformation of the
energy spectrum of the valence band top in the BN–
pore system leads to charge transfer in boron (0.65 e)
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and nitrogen (0.11 e) toward the low-energy region
(below the MT zero). This results in a decrease in the
intensity of the maxima (except for B1) in the TDOS
curve. The decrease in the density of states at an energy
of 0.70 Ry (D1 peak) can be due to transformation of
the sp3 configuration of boron and nitrogen into the sp2
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Fig. 2. (a) X-ray photo electron spectrum of the valence
band [8] and the calculated total densities of states for
porous and crystalline c-BN compounds. The local densities
of s and p electron states at (b) the pore and the (c) boron and
(d) nitrogen atoms. Dashed lines correspond to 2p electron
states.
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configuration. A similar transformation of electronic
configurations occurred in porous silicon carbide
3C SixC [3]. A comparison of N 2p states of porous
BxNx with N SXES (Fig. 2d) allows certain assump-
tions to be made on the nature of specific features of the
valence band top in cubic boron nitride. The E2 peak
can result from the occurrence of an “outer” collective
band formed by electrons of the metal and nonmetal, as
is the case in ultrasoft Kα emission bands of nitrogen
[11]. However, the short-wavelength shoulder in the
spectra of transition metal nitrides appears, according
to [11], in the case when the concentration of valence
electrons per MeN “quasi-molecule” exceeds eight.
The authors of [11] suggested that the increase in the
metal concentration can be responsible for the increase
in the intensity of the aforementioned shoulder when
the composition of zirconium nitride deviates from the
stoichiometry with respect to nitrogen. The valence
electron concentration in the BN quasi-molecule can-
not exceed eight. Therefore, the short-wavelength
shoulder in the curve of the density of nitrogen 2p states
at an energy of 0.96 Ry (E2 peak) can have a different
nature. Since the present calculation treats a nanopore
consisting of 29 vacancies of B and N atoms, it is rea-
sonable to assume that the E2 peak clearly appears and
stems from a general regularity (characteristic of binary
nitrides) which is associated with a decrease in the
symmetry of nonstoichiometric and porous materials.
The short-wavelength shoulder is also observed in the
experimental x-ray photoelectron spectra XPS
(E shoulder) [8, 10] and Kα emission bands of nitrogen
(E2 peak) [11, 12], which was probably given insuffi-
cient attention.

It follows from the above results that the model con-
sidered for a nanopore in cubic boron nitride does not
contradict the published experimental data on the fea-
tures of the electronic spectrum of real 3C BN crystals
and provides a better insight into the nature of the short-
wavelength shoulder in XPS, NK XES, and NK SXES
of binary nitrides.
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Abstract—The effective excitation cross section of erbium embedded in an amorphous silicon matrix and the
total lifetime of erbium ions in the excited state are determined by measuring the photoluminescence rise time
of erbium ions under pulsed excitation of erbium-doped amorphous hydrogenated silicon. An analysis of the
rate equations describing the excitation and deexcitation of erbium ions in a semiconducting matrix sheds light
on the physical meaning of the effective excitation cross section. It is shown that measurement of the effective
excitation cross section permits evaluation of the concentration of optically active erbium ions in the amorphous
silicon matrix. © 2001 MAIK “Nauka/Interperiodica”.
Semiconducting matrices doped by rare-earth ele-
ments have a considerable application potential in
optoelectronics. Particular interest has been recently
focused on erbium embedded in crystalline and amor-
phous silicon, because light with the wavelength of
1.54 µm corresponding to the transition from the first
excited state, 4I13/2, to the ground state, 4I15/2, of the
inner 4f shell of the erbium ion Er3+ suffers minimum
losses in quartz optical-fiber communication lines. In
contrast to dielectric matrices, where the erbium ions
are excited through direct absorption of photons, in a
semiconducting host lattice erbium is excited primarily
by free carriers via the Auger process [1], or by hot car-
riers, as is the case with erbium electroluminescence in
a reverse-biased p–n junction [2]. The efficiency of
erbium excitation in a semiconducting matrix can be
characterized by the excitation cross section of the
erbium ion in this matrix. The erbium excitation cross
section was measured in crystalline silicon for various
excitation mechanisms, and it was shown that it
exceeds the erbium excitation cross section due to
direct photon absorption in a dielectric matrix by sev-
eral orders of magnitude [3, 4].

This paper reports on the first determination of the
effective excitation cross section of erbium embedded
in an amorphous silicon matrix under optical pumping.
A comprehensive analysis of the excitation mechanism
revealed the physical sense of the excitation cross sec-
tion. The concept of the effective excitation cross sec-
tion of optically pumped erbium is shown to extend to
other semiconducting matrices as well. The concentra-
tion of optically active erbium in amorphous hydroge-
nated silicon and the excited-state lifetime of erbium
ions are determined.
1063-7834/01/4304- $21.00 © 20625
1. EXPERIMENTAL RESULTS

The samples of erbium-doped amorphous hydroge-
nated silicon, a-Si : H〈Er〉 , studied in this work were
grown by magnetron sputtering of erbium metal on a
crystalline silicon substrate in an atmosphere of silane
and argon. The erbium concentration in the film, as
derived from SIMS data, was 1019 cm–3, and the oxygen
concentration was 1020 cm–3 (the residual oxygen in the
magnetron chamber).

The erbium excitation source was an LED emitting
at 0.64 µm, with the pulse length of 5 ms and the rise
and decay times of 1 µs. The photoluminescence (PL)
radiation was analyzed by a grating monochromator
with a focal length of 820 mm and detected by a cooled
germanium photoreceiver in a standard lock-in detec-
tion arrangement. The erbium PL kinetics was studied
by a digital oscillograph and a cooled germanium pho-
todetector. The time resolution of the measuring circuit,
limited by the photodetector response, was 5 µs.

Figure 1 presents the PL spectrum of a Si : H〈Er〉
sample obtained in the 1- to 1.8-µm region. The line
peaking at 1.54 µm is due to the transition from the first
excited state 4I13/2 to the ground state 4I15/2 in the inner
4f shell of the erbium ion. The dependence of the
erbium luminescence intensity at 1.54 µm on the pump
power measured at 90 K is shown in Fig. 2.

An analysis of the oscillograms of the erbium PL
signal at the wavelength of 1.54 µm permits one to
derive the dependence of the erbium PL signal rise
time, τon, on the pump power. Figure 3 displays the
reciprocal rise time 1/τon of the erbium PL intensity at
1.54 µm (circles) on the pump power.
001 MAIK “Nauka/Interperiodica”



 

626

        

BRESLER 

 

et al

 

.

                                                                                
2. DISCUSSION OF RESULTS

Similar to the case of erbium-doped crystalline sili-
con [2], the experimental data presented in Fig. 3 are
well fitted by a solution to the rate equation taking into
account the processes of excitation and deexcitation of
erbium ions

(1)

where σ is the erbium excitation cross section, Φ is the
pumping photon flux, τ is the total erbium-ion excited-
state lifetime, and NEr and N* are the total and excited
erbium-ion concentrations, respectively.
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Fig. 1. Si : H〈Er〉  photoluminescence spectrum measured at
T = 90 K.
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Fig. 2. Experimental (circles) and calculated (solid line)
dependences of the erbium PL intensity on the pumping
power for erbium embedded in an amorphous hydrogenated
silicon matrix. T = 90 K.
P

The solution to Eq. (1) describing the rise of the
erbium PL intensity after the arrival of a square pump
pulse can be written as

(2)

where τrad is the radiative lifetime of the erbium ion in
the excited state. As follows from Eq. (2), on applica-
tion of an LED pump pulse, the erbium luminescence
intensity approaches the steady-state level with the
characteristic time τon defined as

(3)

Figure 3 plots a calculated 1/τon relation fitted to exper-
imental data with the parameters σ = 1.4 × 10–14 cm2

and τ = 420 µs.
The values of σ and τ thus obtained can be checked

by describing the erbium PL intensity as a function of
the pumping power in the steady state. Indeed, the sta-
tionary solution to Eq. (1) has the form

(4)

The dependence of the erbium PL intensity on the
pumping level is determined by the same parameters σ
and τ that enter Eq. (3). The relation calculated using
these parameters fits the experimental curve well
(Fig. 2).

The excitation cross section σ was introduced into
Eq. (1) as a phenomenological parameter. To find the
physical meaning of the excitation cross section σ, one
has to analyze comprehensively the processes of exci-
tation and deexcitation of erbium ions in an amorphous
matrix.

It is known that introducing erbium into the amor-
phous silicon matrix initiates the formation of ruptured
silicon bonds (defects), with either one electron (defect
in the D0 state) or two electrons (defect in the D– state).
These states create levels approximately at the midgap
of the matrix and are separated by a correlation energy
of ~0.1–0.2 eV. The 4f term of the erbium ion lies
below the valence-band edge by about 10 eV. There-
fore, the erbium-ion 4f shell can be excited only
through the Coulomb interaction with the matrix carri-
ers (the Auger process).

It is well known [5, 6] that doping crystalline silicon
with erbium and oxygen leads to the formation of donor
levels created by erbium–oxygen complexes, their
binding energy lying in the 0.1- to 0.25-eV interval.
One may therefore expect that similar doping of amor-
phous silicon is likewise accompanied by the formation
of donor states. This suggestion is confirmed by the
amorphous silicon doped by erbium and oxygen having
n-type conduction. Measurements of the temperature
behavior of electrical conductivity carried out on a
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number of samples yield for the Fermi energy a value
0.5 eV below the mobility edge in the conduction band.
Because the erbium concentration in amorphous silicon
can reach 1020 cm–3 and the D defect concentration does
not exceed 1018–1019 cm–3 [7, 8], all the D defects in
erbium-doped amorphous silicon are found in equilib-
rium to be in the D– state.

The geminate radiative recombination of electron–
hole pairs observed under interband excitation is effi-
cient only at low enough temperatures, and, therefore,
it appears natural to assume that, in our samples con-
taining a large number of D defects [8], recombination
occurs primarily nonradiatively via the D defects. This
is supported by the absence of band-to-band radiative
transitions in our samples at the temperature of the
experiment T = 90 K (Fig. 1). Because the concentra-
tions of electrons, holes, and D0 centers are negligible
at equilibrium while that of the D– centers is practically

equal to the total concentration of the D centers,  ≈
ND, the holes are captured in the first recombination
stage by the D– centers to convert them to the D0

defects. This process is described by the rate equation

(5)

where Φ is the photon flux, α is the pump-radiation
absorption coefficient, p is the free-hole concentration,
and cp is the hole capture coefficient by the D– centers.

In the second stage of the recombination, the elec-
trons transfer from the conduction-band tails to the D0

centers and convert them to the D– centers. The free-
electron concentration is given by the equation

(6)

Here, n is the free electron concentration and cn is the
total trapping coefficient of electrons by the D0 centers,
which is actually the sum of the contributions due to
two competing processes, more specifically, those of
the electron capture with erbium excitation through the
Auger process and those of the multiphonon nonradia-
tive capture, cn = cA + cmp [8, 9].

Note that in our case the D0 centers form only under
excitation as a result of the hole capture by the D– cen-
ters. Their concentration can be found from the relation

(7)

The above coupled rate equations should be supple-
mented by the charge neutrality condition

(8)

The processes of pumping, excitation, and radiation
of erbium ions are displayed schematically in Fig. 4.
Erbium ions in an amorphous silicon matrix are excited

ND
–

dp
dt
------ αΦ cp pND

– ,–=
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---------- cp pND

– cnnND
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by the Auger process, whose probability is proportional
to the product of the free-electron concentration by the
concentration of the D0 centers. The concentration of
excited erbium ions is given by the rate equation

(9)

When analyzing the rate equations (5)–(9), one can
make use of the fact that the system of the matrix and
of the erbium ions is actually divided into two sub-
systems, namely, a “fast” one (matrix), in which the
relaxation times of all electronic processes (recombina-
tion, free carrier capture by D centers) are not in excess
of a few tens of microseconds, and a “slow” one (the
erbium ions), where the characteristic time (excited-
state lifetime of the erbium ions) is equal, in order of
magnitude, to one millisecond. Therefore, the evolution
of a system of ions acted upon by a pulsed pumping
mechanism may be considered under the assumption
that the subsystem of free carriers and defects is already

in a steady state. In this case, Eq. (6) yields n  =
αΦ/cn.
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Fig. 3. Reciprocal characteristic erbium PL rise time vs.
excitation level for erbium embedded in amorphous hydro-
genated silicon. T = 90 K.

Fig. 4. Diagram of erbium excitation in amorphous hydro-
genated silicon under interband optical pumping.
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A comparison of Eq. (9) with Eq. (1) shows that the
excitation of erbium ions in an amorphous silicon
matrix can indeed be described by means of a phenom-
enological parameter σ, the erbium-ion excitation cross
section, which has the meaning

(10)

Note that by NEr in Eqs. (1), (9), and (10) one should
understand not the total concentration of the erbium
ions, but rather the concentration of optically active
ions, which, for instance, in crystalline silicon consti-
tutes only a few percent of the total concentration.

Thus, as follows from Eq. (10), if pumping is
effected via free carriers in an amorphous host matrix,
the excitation cross section σ is inversely proportional
to the concentration of optically active erbium. This is
because in these conditions the absorption coefficient
of the pumping radiation does not depend on the
erbium concentration (as is the case with direct optical
excitation of erbium in dielectric matrices) and is deter-
mined only by the joint density of states for the inter-
band transition. In these conditions, the excitation
probability of one ion is naturally higher, the smaller
the number of ions acted upon by the given flux of
exciting particles.

Obviously enough, the inverse proportionality of the
excitation cross section to the erbium-ion concentration
observed under optical pumping will be retained in all
cases of pumping via free carriers; in other words, it
will hold for all semiconducting matrices and for any
excitation mechanism.

The probability of the Auger excitation of erbium
ions when the electron is captured by a D0 center (the
DRAE process), as well as the probability of the com-
peting process of multiphonon nonradiative capture,
was calculated in [9], where it was shown that over a
broad temperature region ranging from the liquid
helium temperature to 200 K the DRAE probability is
dominant and, hence, the cA/cn ratio is close to unity. As
the temperature increases, the intensity of multiphonon
transitions increases substantially and the cA/cn ratio
drops noticeably.

Because at 90 K the ratio cA/(cA + cmp) ≈ 1 [9], one
can use Eq. (10) to determine the concentration of opti-
cally active erbium ions in the amorphous matrix.
Accepting 104 cm–1 for a typical absorption coefficient
of amorphous silicon at the wavelength of 0.64 µm and
the experimentally determined excitation cross section

σ α
NEr
--------

cA

cA cmp+
-------------------.=
P

σ = 1.4 × 10–14 cm2, we obtain 7 × 1017 cm–3 for the con-
centration of optically active erbium ions, i.e., a few
percent of the total erbium-ion concentration, which in
our samples reached about 1019 cm–3.

Thus, we have measured for the first time the effec-
tive excitation cross section of erbium embedded in the
amorphous silicon matrix. Its physical meaning is dis-
closed as applied to the excitation of erbium in this
matrix under optical pumping. The good agreement
between the experimental and calculated relations for
the erbium PL intensity and the intensity rise time on
the pump power supports the validity of the measured
effective erbium excitation cross section and total
erbium-ion excited-state lifetime. It is shown that by
measuring the effective excitation cross section one can
estimate the concentration of optically active erbium
ions in amorphous silicon.
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Abstract—The phase diagram of an AgxTiTe2 intercalation compound near the temperature of polaron band
collapse is studied by x-ray structure analysis. The results obtained confirm the assumption made earlier that,
at temperatures close to the polaron band collapse point, a homogeneous state cannot exist in the charge carrier
concentration range in which the Fermi level lies between the bottom and the center of an impurity band. The
reversible transition accompanied by ordering of intercalated silver is revealed upon heating to a temperature
close to the polaron band collapse point. This transition is explained by the enhancement of Coulomb repulsion
between impurity atoms due to the localization of charge carriers. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Intercalation of transition metals and silver into tita-
nium diselenide and titanium ditelluride leads to local-
ization of charge carriers in the form of polarons of a
small radius [1]. This circumstance, as applied to the
phase diagram, imposes certain limitations on the pos-
sibility of forming a single-phase state in the carrier
concentration range in which the following condition is
met: EL < EF < Ed, where EL is the energy at the bottom
of the polaron band, EF is the Fermi energy, and Ed is
the energy at the center of the polaron band [2]. This
condition is important in the case when the polaron
band lies above the Fermi level of the initial material
and is fulfilled when silver serves as an intercalant [3].
The possibility of forming a single-phase state is
restricted by the dominant contribution of the elec-
tronic subsystem to the thermodynamic functions of a
material. However, the deviation from the temperature
of polaron band collapse, for example, upon cooling,
leads to a nearly exponential decrease in the density of
states in the polaron band [4] and, hence, an equally
rapid decrease in the contribution of the electronic sub-
system to the total thermodynamic functions of a mate-
rial. This suggests that, below the temperature of
polaron band collapse, there is a certain temperature
below which the criterion restricting the possibility of
forming the single-phase state becomes invalid. There-
fore, these materials should undergo a transition from a
homogeneous (single-phase) state of the solid solution
type (whose boundaries are determined by the interac-
tion of intercalant ions) to an inhomogeneous (non-sin-
gle-phase) state as the temperature of a maximum
localization is approached. Moreover, it can be
expected that the localization of electrons should pro-
vide an increase in the Coulomb repulsion between the
1063-7834/01/4304- $21.00 © 20629
centers of charge localization and, as a consequence, an
ordering of these centers in approximately the same
temperature range. It is clear that the above phenomena
can be observed only in materials in which the mobility
of the ionic subsystem is high enough for relaxation
processes in the intercalant lattice to take a reasonable
time.

In order to verify these assumptions, we undertook
an x-ray structure investigation of the AgxTiTe2 system
(which satisfies the above criteria) in the range from
room temperature to a temperature well above the
polaron band collapse point.

According to the phase diagram, which was
obtained using an electrochemical method in our earlier
work [5] (Fig. 1), the AgxTiTe2 system has no single-
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phase region at temperatures above 150°C at any silver
concentrations as small as one likes. Upon intercala-
tion, the conductivity decreases by almost a factor of
1000 and exhibits an activation character [5]. The host
lattice layers approach each other due to intercalation
[3], and a relative decrease in the conductivity as a
function of the relative deformation is described by a
relationship typical of other intercalation materials
based on titanium dichalcogenides with a polar type of
charge carrier localization [1]. The concentration
dependence of the conductivity is well represented in
the framework of the percolation theory by assuming
the presence of Ti–Ag–Ti localized centers that form
the sublattice in which polarons of a small radius can
occur [6]. Taken together, these observations allow us
to conclude that the intercalation of silver into titanium
ditelluride brings about the formation of polarons. In
this case, the polaron band lies somewhat higher than
the Fermi level of the initial material and an increase in
the intercalant concentration makes it possible to raise
the Fermi level to energies above the top of the polaron
band [3].

At the same time, as follows from the x-ray diffrac-
tion investigation of AgxTiTe2 samples (0 < x < 0.5)
which were slowly cooled and stored for a long time at
room temperature and, according to [5], corresponded
to a mixture of TiTe2 and Ag1/2TiTe2 phases, their x-ray
diffraction patterns at this temperature coincide with
those of TiTe2. Moreover, the unit cell parameters are
found to be monotonic functions of the silver content at
x < 0.65 (Fig. 2). These findings indicate that the mate-
rial thus prepared involves only one phase and rule out
the assumption made earlier that the second phase can
exist in the form of inclusions undetectable by x-ray
diffraction. Upon rapid cooling, the phases with
ordered silver, which were found in [5] (see Fig. 1), are
retained for a few days. Thus, it can be inferred that the
polaron band collapse temperature near which the cri-
terion restricting the possibility of forming a single-
phase state becomes true [2] lies between room temper-
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Fig. 2. Concentration dependences of the unit cell parame-
ters of AgxTiTe2 samples after slow cooling and prolonged
storage at room temperature.
P

ature and a temperature of 150°C above which the
phase diagram was studied.

The aim of the present work was to elucidate the
influence of the polaron band collapse on the possible
ordering of polarons associated with impurity centers
and on the phase diagram of AgxTiTe2 at different posi-
tions of the Fermi level with respect to the polaron
band. For this purpose, we investigated the structure of
Ag0.3TiTe2, Ag0.55TiTe2, Ag0.57TiTe2, Ag0.65TiTe2, and
Ag0.75TiTe2 samples in the temperature range 20–
400°C. The location of the Fermi level with respect to
the polaron band was evaluated from the following con-
siderations. The Ag0.3TiTe2 composition at tempera-
tures above 150°C falls in the two-phase region and,
hence, should meet the condition EL < EF < Ed [2].
Among single-phase compositions at temperatures
above 150°C, the Ag0.55TiTe2 and Ag0.57TiTe2 samples
are least enriched with silver and, as a consequence,
should satisfy the condition EF ≈ Ed [2]. For the
Ag0.75TiTe2 sample at temperatures above the transition
at 130–150°C, the conductivity remains metallic and
the Seebeck coefficient retains the negative sign (n-type
conductivity). In [3], these findings were interpreted by
the filling of the impurity band and the shift of the
Fermi level to the range of nonlocalized states. There-
fore, the condition EF > Eh is satisfied for this sample.
The Ag0.65TiTe2 composition is intermediate between
Ag0.57TiTe2 and Ag0.75TiTe2, and, hence, should meet
the condition Ed < EF < Eh. Here, EF is the Fermi level
and EL, Eh, and Ed are the energies at the bottom, top,
and center of the polaron band, respectively.

2. EXPERIMENTAL TECHNIQUE

Samples used in this work were prepared by the
standard pulse synthesis. The techniques of preparation
and characterization were described in detail in [5]. The
sample compositions lying in the single-phase region at
temperatures above 150°C were electrochemically
checked using the calibration curves obtained earlier in
[3, 5]. X-ray powder diffraction analysis of the
Ag0.57TiTe2 sample was performed on a STOE diffrac-
tometer (CuKα1 radiation, Ge monochromator, trans-
mission mode, 5°-linear-response position-sensitive
detector, 2θ = 2°–80°). The sample was placed in an
evacuated capillary 1 mm in diameter, and the measure-
ments were carried out in a high-temperature chamber.
The Ag0.30TiTe2 and Ag0.55TiTe2 samples were investi-
gated with a DRON-3.0 x-ray instrument (CuKα radia-
tion, Ni filter, 2θ = 22°–60°) in a GPVT-1500 high-tem-
perature chamber under vacuum (10–4 Torr). The high-
temperature x-ray diffraction study of the Ag0.65TiTe2
and Ag0.75TiTe2 samples was performed using synchro-
tron radiation (position-sensitive detector, monochro-
mator selecting a synchrotron radiation wavelength
λ = 1.9373 Å, interplanar distances d = 1.6–3.6 Å) in a
GPVT-1500 high-temperature chamber (VÉPP-3, Bud-
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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ker Institute of Nuclear Physics, Siberian Division,
Russian Academy of Sciences). Prior to measurements,
samples were allowed to stand at a specified tempera-
ture for 30 min. The data obtained for all the samples
with the use of different instruments and radiation
wavelengths demonstrate similar characteristic features
in the temperature evolution, which suggests the com-
parability of these results.

3. RESULTS AND DISCUSSION

The x-ray diffraction patterns of the aforementioned
samples at different temperatures and the temperature
dependences of the unit cell volume are shown in
Figs. 3 and 4, respectively.

For the Ag0.3TiTe2 sample, it is seen that heating
leads to the appearance of additional lines which corre-
spond to the superstructure 2a0 × 2a0 × c0 (the phase
with a structure of the Ag3/4TiTe2 type [5]), are
observed in the temperature range 50–130°C, and dis-
appear upon further heating. The repetition of heating–
cooling cycles demonstrated that the order–disorder
transition is reversible but requires a prolonged holding
(about a week) of the sample at room temperature. The
temperature dependence of the unit cell parameters
shows a wide scatter in the data in the range of ordering
due to a drastic increase in the linewidths in this tem-
perature range. As a consequence, because of the low
accuracy of x-ray diffraction data, we could not answer
the question as to whether the additional reflections
correspond to the precipitation of another phase and the
ordering of silver throughout the sample. However, the
last assumption seems more probable, because the for-
mation of the 2a0 × 2a0 superstructure in the case when
intercalant atoms occupy an octahedral set of sites in
the van der Walls gap becomes possible at a silver con-
tent x = 0.25, which is close to the silver content in the
given sample. On the other hand, according to the elec-
trochemical data, the material under investigation is
two-phase when heated above 150°C. The localization
of conduction electrons upon heating leads not only to
an increase in the contribution of the electronic sub-
system to the total thermodynamic functions but also to
the enhancement of the Coulomb repulsion between the
localization centers associated with intercalated silver.
Therefore, it can be assumed that there is a temperature
range in which the localization has already been suffi-
cient for the ordering of these centers but insufficient
for the phase decomposition through the mechanism
proposed in [2].

In the case of Ag0.55TiTe2, the superstructure lines
that correspond to the ordering of the a0 × a0  × c0

superstructure are observed even at room temperature.
On the other hand, the data on the unit cell parameters
of this sample fit well in the concentration dependence.
This implies that the ordering stems most likely from
an insufficient treatment of the sample at room temper-
ature rather than from the stability of this superstruc-

3
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ture. For this sample, as for Ag0.3TiTe2, the heating to
temperatures in the range 100–110°C leads to a sudden
appearance of the lines which are indexed in the 2a0 ×
2a0 × c0 superstructure and disappear with further heat-
ing. Upon heating above 120°C, we can see only the
lines of the a0 × a0  × c0 superstructure (the
Ag1/2TiTe2 phase in Fig. 1) in complete agreement with
the high-temperature part of the phase diagram.

For the Ag0.57TiTe2 sample, no lines differing from
the lines of TiTe2 are observed at room temperature.
This agrees well with the data for Ag0.3TiTe2 and sug-
gests that the presence of the superstructure in
Ag0.57TiTe2 is, most likely, an artifact and that the
ordering of silver at room temperature can be achieved
only through the ion–ion interaction.

The superstructure lines attributed to Ag0.57TiTe2
appear upon heating to approximately the same temper-
ature as for the other samples; however, the further
structural evolution is much more complex. Upon heat-
ing to 150°C, we observe the lines of the a0 × a0  ×
c0 superstructure (the Ag1/2TiTe2 phase in Fig. 1) in
complete agreement with the high-temperature part of
the phase diagram. With further heating to temperatures
above 300°C, apart from these lines, we can see the
lines corresponding to the 2a0 × 2a0 × c0 superstructure
(the Ag3/4TiTe2 phase in Fig. 1). In the phase diagram,
this corresponds to the region of a mixture of the
Ag1/2TiTe2 and Ag3/4TiTe2 phases. Then, upon heating
to 400°C, the lines of the Ag1/2TiTe2 phase disappear,
which is associated with the transition to the Ag3/4TiTe2
phase in the single-phase region. The lines of this phase
remain stable up to the highest temperatures and exhibit
only a gradual thermal broadening.

For the Ag0.65TiTe2 sample, the superstructure lines
indexed under the assumption of the 2a0 × 2a0 × c0
superstructure are observed even at room temperature.
However, the heating to 130°C leads to a structural
transformation responsible for a weakening of the
(002) reflection, which completely disappears at
200°C. This can indicate that the 2a0 × 2a0 × c0 ordering
gives way to the 2a0 × 2a0 × 2c0 ordering with the same

initial space group P m1. Apparently, this transition is
associated with the orientational ordering of 2a0 ×
2a0 × c0 planar networks in the sequence ABABAB,
where A and B are one of the four possible sets of
vacant octahedral sites ordered according to the 2a0 ×
2a0 motif. The same tendency is observed for
Ag0.57TiTe2 samples above 400°C and for the
Ag0.75TiTe2 sample in a limited temperature range near
100°C (Fig. 3).

The temperature dependence of the unit cell volume
for samples with silver contents x = 0.65 and 0.75
exhibits a small minimum at a temperature of ~120°C,
which corresponds to the ordering with twice the c
period. The unit cell volume of the sample with x = 0.57

3

3

3

1
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Fig. 3. Fragments of experimental x-ray diffraction patterns obtained at characteristic temperatures for (a) Ag0.3TiTe2,
(b) Ag0.55TiTe2, (c) Ag0.57TiTe2, (d) Ag0.65TiTe2, and (e) Ag0.75TiTe2 samples. Arrows indicate the positions of additional reflec-
tions associated with the ordering of silver near the polaron band collapse temperature. Conditions: (a, b) Cu Kα radiation,

(c) Cu  radiation, and (d, e) synchrotron radiation at the wavelength λ = 1.9373 Å.Kα1
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to silver ordering: (a) Ag0.3TiTe2, (b) Ag0.55TiTe2, (c) Ag0.57TiTe2, and (d) (1) Ag0.65TiTe2 and (2) Ag0.755TiTe2.

150
decreases with an increase in temperature above the
ordering temperature. The temperature dependence of
the unit cell volume for the sample with x = 0.55 has a
minimum at T ~ 170°C. Since the formation of
polarons in intercalation materials based on titanium
dichalcogenides is usually accompanied by the lattice
contraction, the coincidence of temperatures that corre-
spond to the minimum volume and the onset of the
ordering confirms the assumption made earlier about
the polaron nature of the ordering. The absence of these
anomalies in similar dependences for samples with a
smaller silver content (x = 0.33) can be explained by the
separation into phases with different silver contents,
which results in a large width of x-ray lines and consid-
erably decreases the accuracy in the determination of
lattice parameters.

Therefore, the experimental data on the temperature
evolution of the AgxTiTe2 structure are in good agree-
ment with the results of electrochemical investigations
into the high-temperature part of the phase diagram for
this material [5].

Note that the ordering temperature and the tempera-
ture of a minimum in the temperature dependence of
the unit cell volume are close to the temperature of the
metal–semiconductor transition found in [3] at which
the material acquires semiconductor properties upon
heating. This allows us to assume that these transitions
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
have the same origin. The coincidence of the high-tem-
perature parts of the phase diagrams obtained by elec-
trochemical and x-ray diffraction methods with sub-
stantial differences in the low-temperature parts makes
it possible to attribute this transition to the polaron band
collapse. Then, the ordering can be ascribed to the
localization of electrons on Ti–Ag–Ti centers and its
attendant increase in the Coulomb repulsion between
these centers. This assumption is in good agreement
with the occurrence of an ordered state in a relatively
narrow temperature range at low silver concentrations
(Ag0.3TiTe2), because the deviation from the polaron
band collapse point toward both the high-temperature
and low-temperature ranges leads to a broadening of
the polaron band and a decrease in the degree of local-
ization of charge carriers. It should be noted that, for
materials with Ed < EF, the electronic contribution to
the total entropy of the material upon polaron band col-
lapse becomes positive and stabilizes the ordered state
[2]. Thus, an increase in the stability of the ordered
state with an increase in the silver concentration can be
explained by the change in the contribution of the elec-
tronic subsystem to the total thermodynamic functions
of the material and an increase in the strength of the
conventional ion–ion interaction. For Ag0.55TiTe2 and
Ag0.57TiTe2 (EF ≈ Ed), the contribution of the electronic
subsystem to the total thermodynamic functions is
1
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close to zero [2]. Therefore, the onset of the ordering
upon heating can be explained only by the enhance-
ment of Coulomb repulsion between Ti–Ag–Ti centers
due to the localization of electrons, whereas the other
structural transitions occur in accordance with the high-
temperature phase diagram and can be interpreted in
the framework of the purely ionic model. For samples
with compositions lying in the homogeneity region of
the Ag3/4TiTe2 phase, the ordering at room temperature
can be associated with the usual interaction between
intercalated silver ions. This explains its stability over
the entire temperature range covered. However, an
anomaly of the unit cell volume in the form of a mini-
mum in its temperature dependence and an additional
ordering toward the normal to the basal plane are
observed in the range of the metal–semiconductor tran-
sition which is attributed to the polaron band collapse.
It seems likely that this effect should be caused by the
enhancement of the Coulomb repulsion between the
Ti–Ag–Ti centers (polarons) of electron localization.

It is worth noting that the lattice contraction toward
the normal to the basal plane, which is observed already
at room temperature (Fig. 2), suggests that the phase
diagram of AgxTiTe2 even in its lowest-temperature part
is determined not only by pure ionic interactions but is
also due to a weak localization of conduction electrons.

4. CONCLUSION
Thus, the enhancement of the Coulomb repulsion at

temperatures near the polaron band collapse point can
impose certain limitations on the possibility of forming
a single-phase state through the condition Ed < EF and
leads to the ordering of polarons formed in this case
and, hence, to the appearance of an additional gap in the
density of states. In the case of AgxTiTe2, the crossover
to the activation conductivity is observed at the order-
ing temperature with a simultaneous increase in the
magnitude of the Seebeck coefficient and the change in
its sign [3], which can indicate the gap formation at the
Fermi level. On the other hand, the difference between
the relaxation time of the electronic properties and the
decay time of the ordered state upon cooling to room
P

temperature is very large: the conductivity and the ther-
mopower reach their equilibrium values after holding at
room temperature for several hours, whereas the time it
takes for the ordering to break down completely is as
much as several days. Thus, the problem of the band
nature remains unresolved and calls for further investi-
gation.
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Abstract—Spin relaxation of deep charged centers Cr+ and of donor–acceptor pairs (Cr+–B–)0 in silicon is
studied by nonstationary EPR spectroscopy at liquid-helium temperatures. We observed the effect of an
increase in the spin–lattice relaxation rate under band-to-band sample illumination; the magnitude of the effect
is proportional to the photoelectron concentration. The spin-dependent carrier trapping is shown to play a dom-
inant role in spin relaxation under illumination for centers of both types. Coupled rate equations describing the
interaction of various subsystems with one another and with the bath are solved. A comparison of experimental
data with theory yielded the electron trapping cross sections σr(Cr+) ≅  4.9 × 10–12 cm2 and σr(Cr+–B–) ≅  1.6 ×
10–12 cm2 at T = 4.2 K. The results obtained are discussed in terms of the theory of trapping by attractive centers.
© 2001 MAIK “Nauka/Interperiodica”.
Studies of spin system dynamics and spin-depen-
dent carrier–impurity interactions in semiconductors
reveal an intimate relation between the processes of
relaxation in a system of local centers and those of elec-
tron–hole recombination and thermal ionization of
donor (acceptor) centers (see, e.g., reviews [1–4]). The
carrier–impurity interactions govern to a considerable
extent the efficiency of the present-day optical [2] and
electrical [1, 5, 6] detection of magnetic resonance. In
particular, they give rise to new mechanisms (spin–lat-
tice relaxation, SLR) involving exchange scattering
(ES) of carriers by neutral paramagnetic centers (PC)
[7, 8], as well as to the spin orientation of charged PCs
through carrier trapping [3, 9].

This paper presents the first study of the effect of
photoexcited current carriers on the SLR of charged
centers in an elemental semiconductor in the specific
example of Cr+ interstitial centers and (Cr+–B–) pairs
in Si.

1. EXPERIMENTAL TECHNIQUE AND SAMPLES

The EPR and SLR measurements were conducted
on a 3-cm-range superheterodyne spectrometer–relax-
ometer at liquid-helium temperatures. The Cr+ PCs
were introduced by chromium thermodiffusion at T ≅
1520 K to a concentration N0 ~ 3 × 1015 cm–3 into Si
samples containing a boron acceptor impurity in a con-
centration ~7 × 1015 cm–3, which were subsequently
quenched. Additional annealing of some of the samples
at T ≅  380 K for 10–30 min produced Si : (Cr–B) pairs
with a concentration N0 ~ 1015 cm–3, high enough to
allow SLR experiments. The conduction electrons (CE)
were generated by illuminating the samples with an
1063-7834/01/4304- $21.00 © 20635
incandescent lamp. The light was supplied into the cry-
ostat through a light guide. The free-carrier concentra-
tion in a sample was derived from Hall data under illu-
mination.

The pulsed saturation method used here to study the
effect of carriers on the SLR of local PCs was
employed in two modifications: (i) burning a hole in an
inhomogeneously broadened EPR line by a narrow
microwave pulse, followed by observation of its subse-
quent disappearance, and (ii) saturation of the whole
EPR line profile by sweeping it with a modulating
H field (fmod = 100 Hz) simultaneously with the appli-
cation of a broad microwave pulse.

2. EXPERIMENTAL RESULTS

EPR spectra of single Cr+ centers and (Cr+–B–)0

pairs (S = 5/2) in Si were first studied in [10]. Their line
intensities in the dark correspond to the equilibrium
Boltzmann-distribution values.

When measured under band-to-band illumination,
the EPR spectra of these centers change dramatically in
shape, which is connected with their spin orientation
[3, 9]. Figure 1 displays a simplified diagram of the
spin-relaxation experiments and the shape of an EPR
spectrum of a spin-oriented (Cr+–B–)0 PC system mea-
sured in one of the samples studied in this work.

The SLR times τ1 of single Cr+ and (Cr+–B–)0 pairs
measured at T = 4.2 K in the dark were found to be sim-
ilar, τ1 ≅  0.9 s. Band-to-band excitation was found to
reduce the relaxation times of both types of centers
strongly (by one to two orders of magnitude). It was
established that the magnitude of the effect grows lin-
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic of spin-relaxation experiments. Shown on
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Fig. 2. Magnetization recovery after hole burning in the
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[(1, 3) and (5, 7), respectively] and after the saturation of the
whole line [(2, 4) and (6, 8), respectively]. (1, 2, 7, 8, and
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tions, respectively. T = 4.2 K and n ≅  8 × 107 cm–3; contin-
uous band-to-band illumination.

          
early with increasing n in the CE concentration range
studied, n ~ 107–108 cm–3.

Figure 2 shows the magnetization recovery in time
following hole burning in the Cr+ and (Cr+–B–)0 EPR
lines, as well as after saturation of the whole EPR line
in the presence of the illumination. To achieve a good
signal/noise ratio, the measurements were conducted at
the strongest transitions, 1/2  3/2 and –3/2 
−1/2, in the EPR spectra observed under illumination
(Fig. 1). One readily sees that the magnetization recov-
ery rate of a given center does not depend on the transi-
tion within the experimental accuracy (±20%). Apart
from this, the hole disappearance time  coincides

with the time  characterizing the relaxation follow-
ing the saturation of the whole line. One also sees from
Fig. 2 that the shortening of  and  under illumi-
nation is three times larger for the Cr+ PC than that for
the (Cr+–B–)0 donor–acceptor pair (DAP). For T =
4.2 K and n ≅  8 × 107 cm–3, the data in Fig. 2 yield the
following values:  ≅   ≅  10 ms for the Cr+ centers

and  ≅   ≅  30 ms for the (Cr+–B–)0 pairs.

At T ≅  1.8 K, the above relations between the quan-
tities are retained, although the absolute shortening of
τ1 decreases by ~30%.

The data displayed in Fig. 2 were obtained for the

H || [001] and H || [1 1] orientations for the Cr+ and
(Cr+–B–)0 PCs, respectively, which correspond to the
maximum spin orientation effect of these centers [3,
11]. Measurements of the SLR rate in other H direc-
tions made under illumination did not reveal, within
experimental error, an angular dependence of the

 and  quantities. It was also established that
steady-state saturation of either transition in the
allowed EPR spectrum of Cr+ or (Cr+–B–)0 under illu-
mination does not produce even a partial saturation of
other transitions, unlike the case of the neutral shallow
phosphorus centers in Si, where the ES processes are
dominant [3, 7].

3. THEORY

Unpolarized band-to-band light creates carriers in a
semiconductor with a concentration n. When illumi-
nated, the PCs present in a dark sample in a concentra-
tion N0 become efficient centers of carrier trapping and
exchange scattering. The number of CEs with a given
spin orientation, n↑ or n↓, varies as a result of the fol-
lowing processes: (i) CEs are generated by light with an
infinite spin temperature βe = (n↓ – n↑)/(n↓ + n↑) at a
constant given generation rate G; (ii) they disappear
with the recombination rate over the channels not asso-
ciated with the given PCs; (iii) the CEs are trapped by
PCs at a rate W+ with formation of states with j+ = S +
1/2, and at a rate W– to form states with j– = S – 1/2;

          

τ1h*

τ1*

τ1h* τ1*

τ1h* τ1*

τ1h* τ1*

1

τ lh* τ1*
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(iv) they undergo exchange scattering from PCs with a
spin 
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; and (v) they are created in the decay
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undergo charge exchange via electron trapping and
transform to new PCs with a total angular momentum
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 1/2 and a trapping probability 

 

W±. These new
PCs with the concentration Nt, j either thermally disso-
ciate afterwards at a rate b(T) or capture a hole, with
subsequent electron–hole recombination and formation
of PCs with spin S.

The coupled rate equations describing the above
processes were derived by one of the present authors in
[12]. The dynamics of the system is characterized by
the following thermodynamic variables: the CEs are
described by n and βe and the PCs are characterized by
macroscopic mean quantities

(1)

which describe the spin orientation and polarization
states:

(2)

The five variables in Eq. (2) are enough for PCs with
a spin S = 5/2, and β6 can be expressed through the
above quantities: β6 = 3.516–16.1875β2 + 8.75β4.

If the PC concentration does not change signifi-
cantly in the course of the charge exchange, one may
assume β0 ≅  1. The equilibrium values are unambigu-
ously defined by Eq. (1), and in the high-temperature
approximation (ε = "ω/kT ! 1), we have

β0 = 1, β20 = S(S + 1)/3 = 2.917,

β40 = (–S(S + 1) + 3S2(S + 1)2)/15,

β10 = εβ2, β30 = εβ4, β50 = εβ0.

Equation (1) permits one to express the population
difference Pij for any pair of levels through β. For
instance, for the P13 = N1/2 – N3/2 transition undergoing
saturation we obtain

(3)

As we established earlier from an analysis of sta-
tionary experiments on Cr+ spin orientation in Si [3],
the ratio of the probability of CE trapping, W = W+ +
W–, to that of CE exchange scattering, Wu, is consider-
ably in excess of unity and W greatly exceeds the PC
SLR rate in the dark (at liquid-helium temperatures).
For this reason, in the rate equations, we shall retain
only the terms containing the spin-dependent CE trap-
ping by the PCs.

βi N0
1– 1–( )iMiNM,

M

∑=

β1 Sz〈 〉 , β2 Sz
2〈 〉 , β3 Sz

3〈 〉 ,= = =

β4 Sz
4〈 〉 , β5 Sz

5〈 〉 .= =

P13 t( ) 175/256 73β2 t( )/96– 5β4 t( )/48+=

– 475β1 t( )/384 47β3 t( )/48 β5 t( )/8.+ +
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In accordance with [11], we define the “weighted”
probabilities of electron trapping by a PC with the for-
mation of a new complex center in states with j± = S ±
1/2 as

(4)

where R± = σr N, σr is the trapping cross section and
 is the thermal velocity.
In the final equations, one can conveniently use the

total trapping probability W and the spin-dependent
trapping coefficient α [1]

(5)

If the spin-dependent trapping is considered a dominant
process and if S = 5/2 is assumed, the coupled equations
derived in [12] lead one to a system of rate equations
for the thermodynamic variables βe and βi

(6)

Equations (6) make use of the notation ∆g = g – ge,
where g and ge are the PC and CE g factors, respec-
tively; x5 = N–5/2 – N5/2 = 3β1/320 – β3/24 + β5/60; and
y5 = N–5/2 + N5/2 = 3/128 – 5β2/48 + β4/24.

W+ R+ S 1+( )/ 2S 1+( ), W– R–S/ 2S 1+( ),= =

v
v

αW 0.5 R– R+–( )/ 2S 1+( ).=

β̇e W βe 2αβ1–
1
2
--- 1 2Sα–( ) x5 βey5+( )– ,–=

β̇1 W
n

2N
------- β– e 2αβ1

1
2
--- 1 2Sα–( ) x5 βey5+( )+ +–=

– Wu
n
N
---- β1 S S 1+( ) β2–( )βe–

35
6
------ε∆g

g
-------–

β1 β10–
T1

------------------,–

β̇3 W
n
N
---- 3αβ3 0.5 3 2α–( )β1–[–=

– 0.5βe 1 3 1 2α–( )β2+( )

+
109
16
--------- 1 2Sα–( ) x5 βey5+( ) ,

β̇5 W
n
N
---- 5αβ5

5
4
--- 1 2α–( )β3– 5

2
--- α– 

  β1––=

+ βe
225
16
---------α– 5

219
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+
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2
--- 1 11α–( )β4 2αβ6– 
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+
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Let us follow the evolution of the PC spin system for
the experimentally realized case of cw excitation of the
sample and total saturation of the 1/2  3/2 transition
by a microwave pulse. These initial conditions corre-
spond to the following population differences Pij [Pij

are determined by the amplitude ratio of the observed
transition to the transition corresponding to an equilib-
rium difference of the populations of the neighboring
pair of levels, which is equal to (1/6)ε]:

(7)

By definition in Eq. (1), the following initial values of
βi correspond to these conditions:

(8)

Equations (6), subject to the initial conditions (8),
can be solved to yield

(9)

P3 5, t = 0( ) 1/6( )ε, P1 3, t = 0( )– 0,= =

P 1– 1, t = 0( ) 1/6( )ε,=

P 3– 1–, t = 0( ) 8/6( )ε, P 5– 3–, t = 0( )– 1/6( )ε.= =

β1 t = 0( ) 0.0172= , β2 t = 0( ) 2.43,=

β3 t = 0( ) 0.1062, β4 t = 0( ) 11.9,= =

β5 t = 0( ) 1.3.=

β2 2.294 0.18 0.272wt–( )exp+=

– 0.05 0.746wt–( ),exp

β4 11.5091 1.18 0.272wt–( )exp+=

– 0.79 0.746wt–( ),exp

101

0

P
13

P
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103
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Fig. 3. Recovery of the 1/2  3/2 transition after its sat-
uration by a microwave pulse under illumination. The solid
line is theory (see text) and the symbols are experiment. T =
4.2 K.

     
P

(10)

Here, u = Wu/W and w = Wn/N.
Substitution of Eqs. (9) and (10) into Eq. (3) yields

the recovery function of the spectral transition P13(t)
after saturation of this transition in the presence of
unpolarized band-to-band illumination; this function is
shown graphically in Fig. 3. The symbols in the plot are
the data derived from the experiment.

4. DISCUSSION OF RESULTS

The results of our experiments, including the equal-
ity of  and , indicate that carrier trapping plays a
dominant role in the spin relaxation of the Cr+ and
(Cr+–B–)0 centers under band-to-band excitation.
Indeed, if there is trapping, the burnt hole cannot relax
through double exchange scattering [7, 8], where a car-
rier takes the spin energy from a PC in one ES event
only to impart it in the next event to another PC, a pro-
cess in which the energy is transferred from the “hot”
(microwave pulse-saturated) part of the EPR line to its
“cold” part, without it being absorbed by the lattice. In
the absence of such CE-stimulated spectral diffusion,
one may expect both the equality of  and  and no
saturation dissipation throughout the EPR spectrum
under a stationary saturation of one of its components,
which is exactly what is observed in our experiments.
This conclusion is also in agreement with the results
obtained in stationary experiments on the spin orienta-
tion of the Cr+ centers in Si, whose analysis [3] sug-
gests that Wu/W ! 1.

The data obtained allow determination of the cross
sections σr for low-temperature CE trapping by the Cr+

and (Cr+–B–)0 paramagnetic centers. As follows from
definition (4), Eq. (6), and Fig. 3, ( )–1 = 0.1W(n/N) =
0.1nσr . Accepting  = 2.55 × 106 cm/s (for T =

4.2 K) and the measured values of ( )–1 and n, we
come to σr(Cr+) ≅  4.9 × 10–12 cm2 and σr(Cr+–B–) ≅
1.6 × 10–12 cm2. These figures are quite large, exactly
what should be expected in the case of trapping by
attractive centers (see, e.g., review [13]); however, the
value of σr(Cr+) is still less by an order of magnitude
than that expected from theory for trapping by a single
Coulomb center (see Eq. (5) in [13]). The reason for
this lies in that the donor and acceptor concentrations in

β1 t( ) 0.078 0.061 0.327uwt–( ),exp–=

β3 t( ) 0.331 1 0.0674 0.272wt–( )exp+(=

– 0.0031 0.746wt–( ) ) 0.225 0.256wt( )cos(–exp

+ 0.03 0.256wt( ) ) 0.156wt–( ),expsin

β5 t( ) 1.82 1 0.024 0.272wt–( )exp+(=

– 0.006 0.746wt–( ) ) 0.52 0.256wt( )cos(–exp

+ 0.86 0.256wt( ) ) 0.156wt–( ).expsin

τ1h* τ1*

τ1h* τ1*

τ1*

v v

τ1*
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our samples are high and the fluctuations of the trap-
ping center potential 

 

E

 

0

 

 play a substantial part. The
conditions of our experiment correspond to the situa-
tion of 

 

E

 

0

 

 > 

 

kT

 

 > 

 

ms

 

2

 

 considered in [13]. In this case,
the comparison should be performed in terms of the
theory of trapping by a dipole potential [14]. Indeed, a
quantitative estimation of 

 

σ

 

r

 

(Cr

 

+

 

–B

 

–

 

), made using
Eqs. (A4) and (A5) in [14] with a (Cr

 

+

 

–B

 

–

 

) DAP dipole
length 
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 = 3 

 

×

 

 10

 

–8

 

 cm, yields 
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r
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+

 

–B

 

–

 

) = 0.5 

 

×

 

10

 

−

 

12

 

 cm

 

2

 

, a figure close to our result. Because 

 

σr(Cr+)
is of the same order of magnitude, this suggests that, in
the case of Cr+ centers, because of the donors and
acceptors being present in high concentrations in our
samples, the carriers are also trapped by a dipole poten-
tial with randomly distributed dipole lengths, while the
real concentration of centers with a pure Coulomb
potential is an order of magnitude lower. The decrease
of the effect of illumination on the SLR observed to
occur for both centers as the temperature is lowered to
1.8 K is due to the decrease of .

The absence of an angular dependence of  within
the experimental accuracy can be readily accounted for
by the fact that this quantity is determined by the prac-
tically isotropic total trapping probability W = W+ + W–.
At the same time, the spin orientation efficiency is
dominated by the spin-dependent trapping coefficient
α ∝  W+ – W–, which, because of its being governed by
the local crystal field for the spin systems under study
here [3, 9], depends substantially on the direction of H.

We note in conclusion that the magnitude of σr can
be found by measuring the rate with which spin orien-
tation sets in. However, the kinetics of these processes
is complicated by the PC charge exchange occurring
when the light is turned on or off, as well as by the pres-
ence of the corresponding long exponentials in the pho-
tocurrent rise. By contrast, our approach neglects only
the change in the CE concentration when the micro-
wave pulse is turned on or off, which is due to the spin-
dependent recombination [1]. Indeed, this recombina-
tion channel may be created by the capture of carriers
of the opposite sign, for instance, of holes on the {Cr+

+ e} centers [15]. However, the relative change in the
free carrier concentration observed to occur at the EPR

v

τ1*
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transition saturation does not practically exceed 10

 

–4

 

–
10

 

–3

 

 [1, 5].
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Abstract—The acoustic emission of donor silicon is studied. It is shown that the sound emission is due to the
electric-current-stimulated motion of edge dislocations. When varying the current density flowing through a
dislocated crystal, a correlation between the maximum of the acoustic-emission spectrum of the silicon and
the velocity of the line-defect motion is revealed. By matching the theory with the experimental data, we esti-
mate the diffusion constants of the atoms in the dislocation impurity atmosphere and the effective charge per
atom in a dislocation line at different times (0.3–3 h) of the isothermal annealing (1273 K) of silicon samples.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Acoustic emission, i.e., the emission of elastic
waves which accompanies a rearrangement of the inter-
nal structure of condensed media, has been known
beginning from the mid 1950s [1–3]. The physical
mechanism explaining a number of specific features of
the acoustic emission in dislocated crystals is the
motion of dislocations and their clusters. The acoustic
emission is of interest, because the dislocations them-
selves are the sources of sound waves and, therefore, it
is easier to reveal and localize the defects in this case.
Moreover, the acoustic emission signals contain infor-
mation on the kinetics and mechanisms of the defect
motion in this case [1, 3].

In spite of this, the number of works considering
acoustic emission in semiconductors is extremely
small. In addition, there has been almost no compara-
tive analysis of the dislocation motion and spectral dis-
tribution of acoustic noise in semiconductors. The
acoustic emission of a doped semiconductor subjected
to thermal treatment has also not been considered. In
this paper, we analyze acoustic emission in silicon and
compare it with the electric-current-stimulated dynam-
ics of line defects in dislocated silicon samples sub-
jected to different thermal treatments.

1. EXPERIMENTAL

Dislocation-free single-crystal silicon laminas of
the n type (phosphorus) and p type (boron) with a resis-
tivity of 0.01–0.05 Ω cm were studied. The laminas
were oriented along the [111] axis; their sizes were

15 × 5 × 0.4 mm along the [11 ], [1 0], and [111]
axes, respectively. As in [4], the dislocations were
introduced by applying a load to the laminas along the
[111] axis. The defect density did not exceed Nd ≤ 1 ×
107 cm–2. The dislocated samples were isothermally
annealed in a resistance furnace at 1273 K for 0.3–3 h.

2 1
1063-7834/01/4304- $21.00 © 0640
The acoustic emission was induced by the electric-
current-stimulated motion of edge dislocations without
applying an additional mechanical load. For this pur-
pose, an electric current (j < 5 × 105 A/m2) was passed

through the sample along the [11 ] axis. The tempera-
ture was varied by the use of an external resistance
heater (T ≤ 430 K). Following the method developed in
[4], the acoustic emission signals U(t) were detected by
a piezoelectric sensor situated on the surface of the
lamina investigated. The spectral distribution of the
acoustic-emission signals U(ω) was determined by
Fourier analysis of the initial oscillogram U(t) [4, 5].

2. RESULTS AND DISCUSSION

The results of the investigation indicated a signifi-
cant difference in the acoustic-emission signals
between dislocation-free (curve 1 in Fig. 1) and dislo-
cated silicon samples (curve 2 in Fig. 1). At the same
electric-current parameters, an increase in the average
density of dislocations in the sample, Nd, activates the
processes of the acoustic emission (cf. curves 2–4 in
Fig. 1), which obviously reveals the dislocation nature
of the response observed.

To describe the motion of the defects, let us consider
the radiation field Vi produced by a system of moving
dislocations [6]

(1)

Here, the vector fi characterizes the bulk forces due to
the motion of the crystal elements, σik is the stress ten-
sor produced by the system of the moving dislocations,
and ρ is the crystal density. In the presence of moving

2

ρ
∂Vi r t,( )

∂t
-------------------

∂σik r t,( )
∂xk

---------------------– f i r t,( ).=
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dislocations, the radiation field is defined by the equa-
tion [6]

(2)

Here, the index m stands for l and t which correspond
to the longitudinal and transverse waves, respectively;
cm is the velocity of the corresponding acoustic waves;

the quantities  are functions of the wave normals
ni, nk, and ns; and jks is the dislocation flux density ten-
sor. It is seen from Eq. (2) that the radiation emitted by
the dislocation system (the acoustic field) Vi(r, τ) would
be expected to occur only for their nonstationary
motion, when the second derivative of the dislocation-
flux density tensor jks is nonzero. This means that, in the
process of the current-stimulated placticization of the
dislocated silicon, the acoustic emission signal appears
only when dislocations move at varying velocities. In
this case, the average velocity v of the ordered migra-
tion of the defects will be connected with the character-
istic transition frequency of dislocations between two
stable states, fmax, by the formula

v = afmax, (3)

where a is the magnitude of a jump.

In order to test relationship (3), the acoustic-emis-
sion spectra were measured simultaneously with the
monitoring of the dislocation migration rate in an elec-
tric field by the method of iterated selective etching [5].
Analysis of the paths of line defects performed over
~100 individual dislocations indicated that the edge
dislocations move mainly to the positive electrode in
n-Si and to the negative one in p-Si. The results of these
investigations at a fixed current density are presented in
Fig. 2. An increase in j gives rise to a regular growth in
the velocity of motion of the edge dislocations in the
silicon and a shift of the maximum of the acoustic-
emission spectrum to the high-frequency region. The
results of these studies are shown in Fig. 3. From this
figure, the value a = 0.13 nm is found as the slope of the
v versus fmax plot. This value corresponds to the inter-
planar spacing for the series of the (111) planes in sili-
con (0.134 nm).

Thus, the electric current passing through the sam-
ple expels the dislocations even at room temperature,
which affects the acoustic-emission spectra. The cur-
rent-stimulated influence on the ordered dislocation
transport consists of the ion-drag and electron-(hole-)
wind forces. Taking this into account, one can obtain a
relation between j and fmax [5]:

(4)

Vi r τ,( )
ct

2πr
---------

Φiks
m( )

cm
3

---------- ∂2

∂t2
------- jks r.d∫

m l t,=

∑–=

Φiks
m( )

j
1

Φ1
------

Ep2

kT
-------- Φ2 f max( )ln Φ3 f max

f max

Φ4
----------ln 

 + + 
  ,=
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Fig. 1. Acoustic emission spectra of dislocated n-type sili-
con samples at a density current 4.5 × 105A/m2 flowing
through them: (1) the dislocation-free sample and the dislo-
cated sample with different dislocation density (cm–2):
(2) 8 × 105; (3) 2 × 106; and (4) 5 × 106.
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Fig. 2. The distribution of the dislocation free paths x in the
n-type silicon (ρ = 0.015 Ω cm) at the electric current den-
sity j = 3 × 105 A/m2. The average density of dislocations in
the sample is 5 × 108 cm–2.
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Fig. 3. Dependence of the dislocation expelling rate v by the
electric current upon the acoustic emission maximum fmax
at the same parameters of the electric current for the n-type
silicon samples (0.015 Ω cm).
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Characteristic parameters of the electron transfer in the dislocated (1 × 106 cm–2) n-type silicon doped by phosphorus
(ρ = 1.5 × 10–4 Ω m, c0 = 7 × 1024 m–3)

Annealing 
time t, min r0, nm Φ1 × 107, 

m2/A Φ2 × 105, s Φ3, s Φ4, s–1 Zeff, 1/atom V0 × 105,
m/s

Dd × 1018, 
m2/s

20 5.8 3.5 0.723 4.23 1.75 0.012 1.8 1.3

70 7.2 3.3 1.070 6.53 1.11 0.011 1.2 1.0

115 8.9 3.1 1.357 8.35 0.86 0.011 0.96 1.0

175 9.9 1.7 1.305 8.32 0.85 0.006 0.96 1.0
where

are dimensional constants.

Here, Nat and Zeff are the number of atoms and effec-
tive charge, respectively, per unit length of a dislocation
in the presence of an impurity atmosphere; n, p, ln, and
lp are the equilibrium concentrations and free paths of
the electrons and holes; e is the elementary charge; L is
the dislocation length; Dd is the diffusion constant of
atoms within the defect region of the impurity atmo-
sphere; c0 is the equilibrium impurity concentration in
a defect-free region of the crystal; γ is a dimensional
constant; b is the Burgers vector; and V0 is a constant
having the dimension of the velocity [5].

It is seen that an increase in the current load should
result in a shift of the maximum of the acoustic-emis-
sion spectrum along the frequency axis. Figure 4
(curve 1) graphically illustrates this by the example of
the n-type silicon. With the calculated values of Φi (see
table) and the kind II Peierls barrier (Ep2 ≈ 0.5 eV) [4],
there is a good agreement between the experiment and

Φ1

eZeffNatbρ
kT

-------------------------, Φ2
a

V0
------,= =

Φ3

πc0γLba

2Dd kT( )2
----------------------, Φ4

Dd

ar0
-------,= =

+

+

+

+

+
+

12344.4

3.4

2.4

1.4

0.4
0.05 0.15 0.25 0.35 0.45

fmax, Hz

j, 
10

6  A
/m

2

Fig. 4. Electric-current dependence of the maximum of the
acoustic-emission spectra at different times of the isother-
mal annealing of the samples (Tan = 1273 K), t (min): (1) 20;
(2) 70; (3) 115; and (4) 175.
P

Eq. (2). This permits one to determine the effective
charge Zeff and diffusion constant Dd.

As follows from Eq. (2), the acoustic emission in a
semiconductor contains information about the trans-
port processes involving the line defects. Therefore, a
change in the state of the object “dislocation core–
impurity cloud” should lead to a change in the dynam-
ics of the emission spectra. To verify this prediction, we
measured the current dependences of fmax after isother-
mal annealing.

According to these measurements, an increase in the
duration of the thermal “load” leads to a change in the
current dependence of fmax and, therefore, to a change
in v. Indeed, according to the equation [7]

(5)

isothermal annealing of dislocated samples increases
the size of the impurity atmosphere ra around a disloca-
tion. In Eq. (5), D is the bulk diffusion constant of the
impurity atoms, W is the binding energy, kT is the ther-
mal energy, and t is the duration of the thermal treat-
ment. The change in the annealing time from 20 to
175 min leads to an increase in r0 by 50% (see table).
This certainly affects the defect mobility because of a
“weighting” of the impurity atmosphere, which is
revealed in the effective charge per unit dislocation
length becoming twice as small in the presence of the
impurity atmosphere (see table). Figure 4 illustrates
these processes; it can be seen from Fig. 4 that the
changes in the dislocation kinetics after the isothermal
annealing affect the acoustic emission spectra. For exam-

ple, the largest changes  = 10–6 (Hz m2)/A

and  = 4 × 10–7 (Hz m2)/A for different

annealing times differ more than two times.

3. CONCLUSIONS
Thus, the acoustic emission caused by the electric-

current-stimulated motion of edge dislocations in sili-
con is investigated in this paper. The influence of the
isothermal annealing on the emission is also studied.
When varying the current density flowing through the

r0
4 8

DWb2t
kT

-----------------,=

∂ f max

∂j
-------------

t 0.5 h=

∂ f max

∂j
-------------

t 3 h=
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sample, a distinct correlation between the maximum in
the acoustic-emission spectra of the silicon and the
velocity of the line defects is revealed. It is supposed
that the mechanism of the dislocation motion is associ-
ated with the transition of the dislocation (or its frag-
ment) into a neighboring quasi-equilibrium position,
which is accompanied by the diffusive drag of the
impurity atoms. It is shown that an increase in the
annealing time of dislocated samples of the semicon-
ductor leads to a decrease in the mobility of the line
defects.
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Abstract—Dispersive properties of natural diamonds were studied for the first time in a range of x-ray wave-
lengths of 0.03–0.2 nm. The dispersion element represented an analog of a rectangular prism. A collimated
beam of polychromatic radiation was directed onto the refracting face from inside under a small glancing angle
(!π/2). The radiation was introduced into the prism through a side face oriented perpendicularly to the axis of
the incident beam. In the range of energies near 8 keV, a resolution of 106 eV was achieved, which is about
twice as good as the corresponding parameter for semiconductor detectors. Calculations show that under ideal
conditions the limiting resolution for a diamond prism with a single refracting face can be reduced to 36–40 eV.
This makes it possible to create a new type of analytical devices—dispersion x-ray spectrometers for the inves-
tigation of rapid processes involving generation and absorption of x-ray radiation. © 2001 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

For a detailed analysis of spectra of x-ray radiation
propagating in a given direction in the range of λ <
0.3 nm, monochromators made of perfect single crys-
tals are used as a rule [1, 2]. For a fixed orientation of
the unit vector S0 that characterizes the specified direc-
tion, reflection can occur only in narrow spectral inter-
vals in accordance with the Bragg condition for diffrac-
tion. Therefore, in order to investigate the total spec-
trum in a wide spectral range, it is necessary to
mechanically rotate the monochromator and multiply
repeat measurements. It is obvious that such a method
is inapplicable for the investigation of nonstationary
fast processes, e.g., those occurring upon irradiation of
a target with a power laser pulse [3]. Note that in prac-
tice the spectrum of the radiation that is reflected from
a crystal monochromator is frequently detected using a
photographic plate or other types of two-dimensional
position detectors [4]. However, the condition of the
constancy of S0 is violated in this case.

Pulsed radiation spectra also cannot be studied
using cooled semiconductor detectors [5], since a fun-
damental condition for them to operate is a successive
registration of isolated quanta in time intervals of
≥10 µs [6]. Diffraction gratings, which are widely used
in the optical and soft x-ray spectral ranges, possess a
low efficiency (~1%) at wavelengths less than 0.3 nm
[7, 8]. In addition, uncontrolled distortions caused by
the strong anisotropy of scattering are superimposed
onto the spectrogram, since in the case of artificial peri-
odic structures the radiation wavelength λ is much
smaller than the grating period p.
1063-7834/01/4304- $21.00 © 20644
Thus, at present, there is likely to be no suitable
experimental means for the spectrometry of directional
polychromatic beams of hard x-ray radiation generated
during fast nonstationary processes.

In this work, we show for the first time that the dis-
persive properties of diamonds make it possible to
decompose spectra of hard x-ray radiation with wave-
lengths down to 0.03 nm (E = 40 keV) and, owing to
angular dispersion, to analyze the spectra of both sta-
tionary and pulsed sources without any limitations on
the pulse duration.

1. EXPERIMENTAL

Figure 1 displays a schematic of an experimental
setup we designed to perform dispersion measure-

Fig. 1. Schematic of the experimental setup for measuring
dispersion: (1) x-ray tube; (2, 3, 9, 12) vertical collimating
slits; (4) movable horizontal slit; (5, 11) goniometers; (6)
sample; (7) protecting absorbing shield; (8) monochroma-
tor; and (10, 13) radiation detectors.
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ments. The source of radiation is a sharp-focus x-ray
tube with a copper anode. The visible dimension of its
focus in the measurement plane is 40 µm. Along the
x-ray beam, two x-ray goniometers are mounted. The
distances from the focus of the x-ray tube to the main
axes O1 and O2 of goniometers 5 and 11 are 330 and
1161 mm, respectively, and those from the axes O1 and
O2 to the entrance slits 9 and 12 are 225 and 192 mm,
respectively. With an entrance slit of 30 µm wide, this
scheme ensures an angular resolution of 0.0076° for the
first (along the beam) goniometer 5 and 0.0017° for
goniometer 11.

As the samples, we used crystals of natural diamond
(type Ia) with a density of 3.515 g/cm3. The base
(refracting) face was parallel to the (110) plane; per-
pendicularly to this base, two parallel side faces were
prepared by lapping and polishing. The polishing of the
surfaces was performed using an ASM28/20 diamond
powder. The refracting face was additionally polished
using a finer powder with an average grain size of
~1 µm. Three samples were prepared. The dimension
of the refracting face (which has a minimum area of
12 mm2) in the incidence plane of the beam was
2.2 mm. For comparison, we also used a single-crystal
silicon plate cut from a standard optically polished
wafer. In this case, the side surfaces perpendicular to
the base face were obtained by cleaving on silicon
cleavage planes.

The samples were mounted in such a manner that
the edge formed by the base and the side surface facing
the focus of the x-ray tube be coincident with the rota-
tion axis O1 of goniometer 5 (Figs. 1, 2). The typical
angular divergence of the beam incident on the refract-
ing face of the dispersive element was 24″. A graphite
monochromator 8 and detector 10 mounted on a rotary
arm were used to preliminarily adjust the x-ray scheme.
All the results that are given below were obtained by
angular scanning using detector 13 with an NaI(Tl)
scintillator crystal with rotation about the O2 axis. The
program of controlling the data acquisition at a con-
stant velocity of the detector made it possible to use an
arbitrary time of data acquisition at each angular posi-
tion. A typical angular interval between the readings
was 0.0005°.

2. ANGULAR DISPERSION UPON 
REFRACTION OF X-RAYS

Let us consider (in terms of geometric optics) the
passage of a parallel x-ray beam through a rectangular
prism of a uniform material. We designate the refractive
indices of the prism and the ambient medium n1(λ) =
1 – δ1(λ) – iβ1(λ) and n2(λ) = 1 – δ2(λ) – iβ2(λ), respec-
tively. Let the z axis be perpendicular to and the x axis
be parallel to the first interface and let them lie in the
incidence plane (Fig. 2). Let the radiation be mono-
chromatic (λ ~ 0.1 nm) and the angle ϕ of incidence
onto the first interface be close to zero. Under the above
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
conditions, the following simplifications are possible.
First, we can consider only refraction at the second
interface, since the magnitudes of the coefficient of
reflection and the changes in the refraction angle upon
the intersection of the first interface are negligibly
small. Second, we can ignore the state of polarization
of the incident radiation, since, according to the Fresnel
formulas, the coefficients of transmission for the s and
p polarizations are virtually coincident at ϕ  π/2.
Going from incidence angles ϕ to glancing angles θ =
π/2 – ϕ, we can transform the sine law [9] for the sec-
ond interface to the form

(1)

where θ1 and θ2 are the glancing angles for the incident
and refracted radiations in the first and second media,
respectively. The absolute magnitude of the decrement
of the refractive index |δ + iβ| for the wavelength used
is less than 10–4 [10] (β/δ ! 1). This circumstance per-
mits us to use, in the range of small glancing angles
(θ1 ! π/2), the expansion into a series and obtain the
following expression for the glancing angle θ2 of the
refracted radiation in the second medium:

(2)

Let us differentiate Eq. (2) with respect to θ1. Then,
for a beam with an angular divergence ∆θ, we obtain
the following dependence of the coefficient of angular
contraction Ca on θ1 (here, θ1 is the glancing angle of
the central beam):

(3)

The decrement of the refraction index of air δ2 can be
neglected. As follows from Eq. (3), in the geometry that
was chosen (Fig. 2), there occurs an angular contraction
of the refracted beam (Ca > 1). Note that upon the rever-
sion of the beam direction, i.e., upon the passage of the

1 δ1– iβ1–
1 δ2– iβ2–
---------------------------

1 θ2
2sin–

1 θ2
1sin–

----------------------------,=

θ2 θ1
2 2 δ2 δ1–( )– .≅

Ca
∆θ1

∆θ2
---------

θ1
2 2 δ2 δ1–( )–

θ1
---------------------------------------.= =

b z

x

O1

ψ
θ2

θ1

Fig. 2. Geometry of the x-ray radiation path for the case
where a beam to be analyzed strikes from inside the refract-
ing surface of a diamond crystal.
1
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radiation from air into the sample, the angular cone of
the refracted beam will increase, since in this case Ca < 1.
Consequently, in our case, a maximum angular resolu-
tion of the spectrum is observed. 

Now, we take into account the spectral dependence
of the refractive index. In the spectral range under con-

sideration, the condition  @  for all electron shells
of the C atom is fulfilled (here, ν0 is the frequency of
vibrations corresponding to an arbitrary line in the
x-ray range under study and νi is the natural frequency
of vibrations of an electron of the ith shell). Under the
above condition, in accordance with the electron theory
of dispersion [10], we have for any line λ of the x-ray
spectrum

(4)

where g is a dimensional coefficient (which can be
expressed through fundamental physical constants) and
ρ is the physical density of the sample. Substituting
Eq. (4) into Eq. (2) and differentiating with respect to
λ, we obtain the following expression for the angular
dispersion:

(5)

It is obvious that at grazing angles (θ1  0) the angu-
lar dispersion is maximum. In this case, D ∝  ρ1/2 and is

independent of λ. At  @ 2gρλ2, the magnitude of

ν0
2 ν i

2

δλ gρλ2,=

D ρ λ,( ) dθ2/dλ 2λgρ

θ1
2 2gρλ2–

-------------------------------.= =

θ1
2
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Fig. 3. Angular profiles of the refracted beam for the CuKα
line for three diamond samples (a–c). The beam strikes the
refracting surface from inside the sample; the fixed glancing
angle is θ1 = 0.09°.
P

D(ρ, λ) changes approximately proportionally to ρ and
λ. As is known from the theory of prism spectrometers
[11], the spectral resolution A = λ/∆λ is related to the
diffraction limit. In the case under consideration, the
effective cross section of the refracted beam in the
plane of incidence can be restricted by two factors: first,
the finite size of the elemental refracting area b and,
second, the finite mean free path of photons in the sam-
ple, which is equal to the inverse linear coefficient of
absorption µ(λ). More strictly, we can write the follow-
ing expression for the diffraction angular width ∆θ(λ)
of the refracted beam:

(6)

The introduction of the factor 2 is caused by the fact
that, when estimating the diffraction broadening, we
should take into account a decrease in the wave ampli-
tude. For the regions of the x-ray spectrum near the
CuKα (0.154 nm) and CuKβ (0.139 nm) characteristic
lines, the condition b ≥ 2/µ(λ) is fulfilled. Substituting
into Eq. (6) the value of µ(λ) for diamonds for the
above-indicated wavelengths and the typical value of
the angle θ2 = 0.2° (3.5 mrad), we obtain ∆θd(CuKα ) ≈
0.0019° (32 mrad) and ∆θd(CuKα ) ≈ 0.0012° (2.1 mrad).
This permits us to estimate the spectral resolution A(λ)
of the dispersive element. Multiplying the left-hand and
right-hand parts of Eq. (5) by ∆λ and substituting the
values of the constants corresponding to the indicated
parameters, we find Aα = 200 and Aβ = 251. By going
from ∆λ to the energy resolution, we obtain ∆E = 40
and 36 eV for the lines with the wavelengths 0.154 and
0.139 nm, respectively.

3. MEASUREMENT RESULTS

Figure 3 displays the angular profiles of the
refracted beam for three diamond samples (a, b, and c)
measured under identical irradiation conditions. Here-
after, the abscissa axis corresponds to the deviation
angle ϕ = θ2 – θ1 measured from the direction of the pri-
mary beam. The beam analyzed passed, in accordance
with the geometry of the scheme shown in Fig. 2,
through the side face and fell from inside on the base
surface of the sample. The maintenance of a constant
magnitude of the glancing angle θ1 is a fundamental
condition for obtaining maximum resolution. As can be
seen from the comparison, the width at the half-height
of the refraction peak is minimum for sample a. This
indicates that the major part of its refracting surface
meets the condition of maximum planeness. Therefore,
we used just this sample for further measurements.

With decreasing glancing angle θ1, the angular dis-
persion should increase according to Eq. (5). As was
shown in [12], the effective width of the entrance aper-
ture of a dispersion element for the spectral line with a
wavelength λ in the geometry of Fig. 2 is equal to

∆θdλ
λ /bθ2, b 2/µ λ( )≤
λµ λ( )/2θ2, b 2/µ λ( ).≥




≅
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Fig. 4. Refraction patterns of diamonds at various glancing angles θ1: (1) 0.60°, (2) 0.25°, (3) 0.09°, and (4) 0.01°.
θ1/µ(λ), and as θ1 decreases, the intensity of the
refracted beam decreases monotonically. The depen-
dence is nonlinear, since the coefficient of reflection at
the diamond–air interface tends to unity R(θ1)  1 at
θ1  0. The above regularities are confirmed by a
series of refractograms obtained by angular scanning
with detector 13 at several fixed grazing angles θ1
(Fig. 4).

With going from the diamond to single-crystal sili-
con (Z = 14), the effective free path of x-ray photons
le = 1/µ in the dispersive element decreases sharply for
any wavelength in the spectral range considered. In par-
ICS OF THE SOLID STATE      Vol. 43      No. 4      200
ticular, at λ = 0.154 nm (CuKα line), we have µ(Si) =
145 cm–1 and µ(C) = 14.7 cm–1 [13–16]. According to
Eq. (6), a decrease in D(ρ, λ) should be observed for sil-
icon in this case. As can be seen from Fig. 5, which dis-
plays the refractograms of Si (curve 1) and C (curve 2)
for a grazing angle θ1 = 0.08°, the dispersive element
made of silicon does not allow a complete resolution of
the CuKα and CuKβ spectral lines. At an acceleration
voltage of 25 kV at the tube, the hardest part of the radi-
ation spectrum in this case is not separated from the
side wing of the primary beam that passes through the
gap between the sample and shield 7 (Fig. 1).
1
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Fig. 5. Refraction patterns of (1) single-crystal silicon and (2) diamonds for a glancing angle θ1 = 0.08° and a voltage at the x-ray
tube V = 25 kV.
Figure 6 displays a series of refractograms of dia-
monds that were obtained at a fixed grazing angle θ1 =
0.06° and various voltages at the x-ray tube in a range
of 12 to 35 kV.

The spectral resolution of the diamond prism was
determined using the refractogram (Fig. 7) that was
obtained at Um = 40 kV and θ1 = 0.06°. Measurements
of the peak width at the half-height of the lines with the
wavelengths of 0.154 and 0.139 nm with corrections
for the instrumental function yield ∆λ = 19.7 and
17.1 pm, respectively, or, on the energy scale, ∆E = 103
and 110 eV, respectively. At smaller angles, as follows
from Eq. (5), the spectral resolution should increase.
No such an increase is observed in reality, since the
radiation propagates along the surface through a dis-
torted layer damaged by mechanical treatment, which
increases the intensity of scattering by nonuniformities
of the surface relief and leads to a smearing of the angu-
lar spectrum.
P

Thus, the investigations performed show the possi-
bility of using a single-crystal diamond for practical
measurements of hard x-ray radiation with wavelengths
from 0.03 to 0.25 nm. This range includes the charac-
teristic lines of the K and L series of virtually all ele-
ments with atomic numbers Z > 25. The range can be
slightly extended to the long-wavelength region (to
0.3–0.5 nm) by fully or partially evacuating the work-
ing chamber in which the x-ray optical circuit is placed.
With a further increase in λ, the absorption coefficient
increases rapidly and the magnitude of b drops, which
leads to a decrease in resolution due to diffraction
effects related to the finite size of the effective refrac-
tive surface.

From the practical viewpoint, the most important
result is that, owing to the angular dispersion of radia-
tion, the full spectrum can be recorded using a single-
or two-dimensional position detector, e.g., based on a
linear or matrix CCD detector. This ensures the possi-
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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Fig. 6. Refraction patterns of a diamond at a glancing angle θ1 = 0.06° and voltages at the x-ray tube equal to (1) 12, (2) 15, (3) 20,
(4) 25, and (5) 35 kV.
bility of analyzing the spectrum without any restric-
tions on the magnitude of the time interval to be mea-
sured. Since the angular distribution is described well
by Eq. (5) derived from the sine law and since the
absorption properties of carbon have repeatedly been
tabulated, we can calculate the spectral density of radi-
ation Iλ (λ) from the experimental dependence of I(ϕ).

An alternative to diamonds as a material for disper-
sive elements is beryllium. In comparison with poly-
crystalline beryllium, the density of a natural diamond
is greater by a factor of 1.9, which, according to Eq. (5),
provides a higher angular dispersion. In addition,
owing to the single-crystal structure, the scattering near
the zero point of the reciprocal lattice is minimum. It is
natural that, when using a polychromatic spectrum,
some reciprocal-lattice points of single-crystal C (dia-
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ond) inevitably fall onto the Ewald sphere and part of
nergy flow will be dissipated into larger angles, in
ccordance with diffraction conditions. The diffraction
cattering angles ϑ  should be equal to or greater than
λ/d, where d is the maximum interplanar distance in

he sample. In the spectral range under study, we have
 @ ϕ ; i.e., the diffraction peaks cannot fall into the
haracteristic range of angles measured in refraction
xperiments. In addition, as was indicated above, the
iffraction conditions are fulfilled only in narrow spec-
ral bands for a finite set of reflections and, therefore,
heir presence virtually does not distort the monotonic
istribution in the continuous part of the spectrum
Fig. 7). As to the characteristic lines, for a known crys-
allographic orientation of the diamond single crystal,
e can always calculate in advance the angles between

he refracting surface and atomic planes for which the
1
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Fig. 7. Refraction pattern of a diamond at a glancing angle θ1 = 0.06° and a voltage at the x-ray tube V = 40 kV.
diffraction conditions are not fulfilled for a given set of
characteristic lines. Note that the samples of natural
diamonds with an effective area of the refracting face of
~10 mm2 that were used in our experiments are signifi-
cantly cheaper than analogous synthetic crystals. In
addition, in view of the mosaic structure of the latter,
the spectral bands in which the intensity distribution in
the angular spectrum can be distorted at the expense of
Bragg reflections are wider in them than in natural
crystals.
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Abstract—This paper reports an EPR study of the effect of hydrostatic pressure (up to 10 kbar) and tempera-
ture (300, 77, and 4.2 K) on the spin Hamiltonian parameters of the Eu2+ ion in a SrCl2 cubic crystal. It is found
that the b4 parameter is related by a power law to the distance from the Cl–1 ligand (b4 ~ R–13.5). The pressure
and temperature are shown not to be equivalent thermodynamic parameters. Lattice vibrations contribute
noticeably to the initial S-ion splitting. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since the resultant orbital momentum of electrons in
ions in the S state, i.e., ions with the 3d5 configuration
in the iron group (Mn2+, Fe3+) and 4f 7 configuration in
the rare-earth group (Eu2+, Gd3+), is zero, the crystal
field should not split the ground levels of these ions. In
actual fact, however, small splittings do exist, as evi-
denced by EPR measurements and adiabatic demagne-
tization experiments.

The phenomenon of S-state ions has attracted con-
siderable attention of both experimenters and theorists
[1–3]. Nevertheless, the main reasons for these split-
tings remain unclear, and, therefore, further steps in the
theoretical justification and choice of the splitting
mechanisms require correct determination of the
dependence of the parameters characterizing the initial
splitting of an S ion on the distance to the ligand.

The choice of Eu2+ in SrCl2 as the subject of this
study was based on the following considerations:
(i) The cubic symmetry of the crystal corresponds to
the simplest crystal field in which all distances from the
paramagnetic ion to the eight ligands are equal, (ii) the
isovalent substitution (Eu2+–Sr2+) and equal ionic radii
of the divalent europium and strontium (1.12 Å) sug-
gest the absence of any perturbations in the lattice
under study, and (iii) the crystal is readily compressible
and its elastic constants are known.

It is the choice of the crystal that determined the
purpose of this work, which consists in studying EPR
spectra of Eu2+ in SrCl2 over a wide temperature range
(4.2–300 K) and at a high hydrostatic pressure (up to
10 kbar) and establishing the dependence of the initial
splitting on the distance to the ligand.

It should be pointed out that experimental studies of
spectra of cubic crystals under hydrostatic pressure are
1063-7834/01/4304- $21.00 © 0652
extremely rare and we have been able to locate only two
relevant publications [4, 5].

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

The SrCl2 crystal is the only chloride crystallizing in

fluorite symmetry. The space group is –Fm3m, and
the lattice constant is a = 6.977 Å [6]. The crystal was
grown at Franko Lviv State University. The data on the
elastic constants, density [7, 8], and volume compress-
ibility are listed in Table 1. The linear thermal expan-
sion coefficient at 300 K is 17.7 × 10–6 K–1. Faced with
the lack of direct data on the thermal expansion coeffi-
cient below room temperature, we used the appropriate
relations of this parameter available for other fluorites,
which are given in [6, 9].

The EPR spectra were measured on a 3-cm-range
radiospectrometer representing a classical superhetero-
dyne arrangement with special leucosapphire resona-
tors [10] allowing studies at high hydrostatic pressures
over a wide temperature range. The pressures were pro-
duced in a self-contained double-layer high-pressure
chamber [11], whose inner cylinder was made of the
40KhNYu-VI nonmagnetic alloy and outer cylinder, of
beryllium bronze. The sample to be studied was
mounted in the leucosapphire resonator, and the latter

Oh
1

Table 1.  Mechanical properties of the SrCl2 crystal [7, 8]:
density ρ (g/cm3); elastic constants c11, c12, and c44

(1011 dyn/cm2); and volume compressibility σv (10–6 bar–1)

T, K ρ c11 c12 c44 σv
300 3.052 6.8 1.6 0.945 3.0
195 3.065 7.02 1.64 0.972 2.91
2001 MAIK “Nauka/Interperiodica”
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was placed in the high-pressure chamber. The pressure
transmitting medium was a dehydrated mixture of
equal parts of transformer oil and kerosene. The reso-
nator was coupled to the spectrometer waveguide
through a thin coaxial cable. The pressure could be
measured by the standard method (manganin resistance
sensor) and a contactless technique. In the latter
method, the pressure was deduced from the variation of
the initial splitting parameter D of the Cr3+ ion in AlCl3

(P = ∆D/k, k = 0.622 × 10–2 cm–1/kbar). This method
has the following advantages: (a) the pressure is mea-
sured in the immediate vicinity of the sample and
(b) the linewidth permits one to estimate the extent to
which the medium is indeed hydrostatic. The tempera-
ture was measured with a copper resistance pickup.

3. RESULTS AND DISCUSSION

The electronic configuration of Eu2+ is 4f 7, L = 0,
S = 7/2. The spectrum containing contributions of the
151Eu (47.77%) and 153Eu (52.23%) isotopes has
84 lines. Line superposition causes difficulties in the
treatment of spectra. The observed spectrum can be
well fitted by the spin Hamiltonian

(1)

Here, g is the factor of spectroscopic splitting, β is the

Bohr magneton, B is the magnetic induction vector, 

and  are the electron and nuclear spin operators,  are
the Stevens operators, b4 and b6 are the fine structure
parameters related to the notation accepted in [12] by the
expressions c = 4b4 and s = 4b6, and A is the hyperfine
structure (hfs) parameter. The spin Hamiltonian parame-
ters derived from the EPR spectra of Eu2+ in SrCl2 at
temperatures of 300, 77, and 4.2 K and pressures of up to
10 kbar are listed in Table 2, and the figure shows the b4
parameter as a function of the relative distance to the
ligand. The variation in the b4 parameter with tempera-
ture can be fitted by a linear relation with the coefficient
∆b4/∆T = 7.23 × 10–3 cm–1 K–1. Note that the linear rela-
tion includes the point corresponding to the liquid-
helium temperature. A similar linear relation in the range
4.2–300 K was observed for KZnF3 : Gd3+ [13].

The spin Hamiltonian parameters obtained at room
temperature (300 K) are close in magnitude to those
quoted in [12]. The sign of the parameter can be deter-
mined directly by comparing the intensities of the low-
and high-field absorption lines at different temperatures
[14]. A comparison of the intensities at 300 and 4.2 K
shows that the b4 parameter is negative. As is seen from
the presented experimental data, the decrease in vol-
ume due to uniform compression or to a decrease in
temperature affects the Hamiltonian parameters b4 and

Ĥ gβBŜ 1/60b4 O4
0 5O4

4+( )+=

+ 1/1260b6 O6
0 21O6

4–( ) AŜÎ.+

Ŝ

Î On
m
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A, whereas the g factor and the b6 parameter do not
change within experimental error.

Assuming the pressure-induced variation in the b4

parameter to be inversely proportional to Rn, where R is
the distance between the Eu2+ ion and the ligand, we
obtain

where R(0), b4(0) and R(P), b4(P) are the lattice con-
stants and the spin Hamiltonian parameters at atmo-
spheric and external pressures, respectively.

Mn2+ EPR measurements made in MgO at high
pressures yield n = 21.34 [5]. A comparison of the
above values allows us to assume that the exponent in
the case of SrCl2 is more in line with the point-charge
model, according to which the b4 parameter is inversely
proportional to R10 [15].

There were many attempts to estimate the depen-
dence of the spin Hamiltonian parameters on the dis-
tance to the ligand. Among them are the aforemen-
tioned investigation [5] of the Mn2+ ion in MgO and
studies where this relation was looked for with crystals
of isomorphic series. For instance, Low and Rosenberg
[12] estimated the b4(CaF2)/b4(SrCl2) ratio for Gd3+-
doped CaF2 and SrCl2 crystals. The point-charge model
yields 11.8 for this ratio. The experimental value is 4.7,
which corresponds to the exponent n = 4.5.

Analysis of Eu2+ EPR spectra available for a number
of fluorites, namely, CaF2 (b4 = 57.9 × 10–4 cm–1), SrF2

(b4 = 44.9 × 10–4 cm–1), and BaF2 (b4 = 36.0 × 10–4 cm–1)
[16], yields n = 3.9, if the distance from the paramag-
netic ion to the ligand is assumed to be that of the impu-
rity-free lattice.

This approach is apparently not fully justified,
because the ion incorporated into the lattice has a
valence and an ionic radius other than the replaced ion,
which can change the distance to the ligand. It is known
that introducing Gd3+ (with the ionic radius smaller
than that of Sr2+) into the SrCl2 lattice reduces the b4
parameter by a factor of 1.3 [12] compared to the case
of Eu2+ in SrCl2, whose valence state and ionic radius
coincide with those of Sr2+. Taking into account the
dependence on R obtained by us, this corresponds to a
change in the distance of 0.059 Å.

n b4 P( )/b4 0( )[ ] / R 0( )/R P( )[ ]loglog 13.5,= =

Table 2.  Experimental parameters of spin Hamiltonian (1):
spectroscopic splitting factor g, fine structure parameters b4 and
b6 (10–4 cm–1), hyperfine structure parameter A (10–4 cm–1),
and pressure P (kbar)

T, K g b4 b6 A

300 1.991(1) –[14.7(3) + 0.218P] 0.4(2) 34.4(3)–0.145P

77 1.991(1) –16.3 0.4(2) 33.5(3)

4.2 1.991(1) –16.8 0.4(2) 33.8(3)
1
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As is evident from the character of variation in the
b4 parameter with an increase in the pressure or
decrease in temperature (see figure), each new value of
b4 obtained by increasing the pressure can also be
reproduced by lowering the temperature at atmospheric
pressure. For instance, at a pressure of 6.5 kbar and a
temperature T = 106 K, we have b4 = 16.1 × 10–4 cm–1.
Using the data on compressibility and the variation in
the SrCl2 density with decreasing temperature listed in
Table 1, we can readily show that V(6.5 kbar) = 0.981 V0
and V(106 K) = 0.996V0, where V0 is the crystal volume
at room temperature and atmospheric temperature.
Similarly, the experimental data [11] for Mn2+ in MgO
yield V(7.7 kbar) = 0.995V0 and V(158 K) = 0.9955V0.

Hence, it follows that the temperature and pressure
are not equivalent thermodynamic parameters and that
the effect of temperature cannot be reduced to a change
of the volume only. There is an additional contribution
to the parameter originating from lattice vibrations, the
so-called phonon contribution. The figure demonstrates
this inference in a most revealing way. Straight line 1
plots the dependence of b4 on the ratio R/R0 varied by
the pressure, and curve 2 represents the same depen-
dence but with the R/R0 ratio changed by varying the
temperature. Straight line 1' is line 1 shifted along the
ordinate axis by the magnitude of the phonon contribu-
tion. The difference between the ordinates of depen-
dences 1' and 2 is the phonon contribution increasing
with temperature, which is opposite in sign to the static
contribution to the b4 parameter. The maximum phonon
contribution at 300 K is +0.92 × 10–4 cm–1, which is
~6% of the static value. A similar effect of lattice vibra-
tions was observed in the case of Mn3+ in MgO [5, 17].

The pressure dependence of the hfs splitting con-
stant permits one to obtain information on the contribu-

300 K

195 K

77 K

4.2 K
1'

1

2

17

16

15

0.990 0.995 1.000
R/R0

|b
4|

, 1
0–

4  c
m

–
1

Dependence of the spin Hamiltonian parameter b4 on the

relative distance to the Cl1– ligand. (1) Pressure dependence
at 300 K, (1') the same dependence shifted vertically by the
magnitude of the phonon contribution, and (2) temperature
dependence. R0 is the Sr–Cl distance at standard conditions
(T = 300 K, P = 0).
PH
tion of the ion separation to the given spectral parame-
ter. For the Eu2+ ion in SrCl2, this relation has the form

A(P) = 34.4 × 10–4[R(P)/R(0)]0.047 cm–1.

A comparison of this value with the magnitude of
the hfs splitting constants of Mn2+ in MgO, A(P) ~
[R(P)/R(0)]0.02, and in the covalent ZnS, A(P) ~
[R(P)/R(0)]0.117, suggests that SrCl2 is more likely an
ionic than a covalent crystal.

In summary, we have found experimentally the
dependence of the spin Hamiltonian parameters b4 and
A on the distance to the nearest ligand (Eu2+–Cl1–) in
the undistorted lattice, demonstrated that the tempera-
ture dependence of the spin Hamiltonian parameter b4
contains a substantial contribution of the lattice vibra-
tions in addition to the contribution of the conventional
thermal expansion, and shown the hfs constant to be
only weakly dependent on pressure, which indicates
the ionic character of bonding in SrCl2.
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Abstract—A method for visualizing conduction channels is proposed. This method is based on graphical anal-
ysis of conduction channel fragments which belong to a Voronoi–Dirichlet elementary polyhedron and lie out-
side the rigid sphere centered at a fixed-sublattice ion that is located at the geometric center of the elementary
polyhedron under consideration. Taking into account the weak nonrigidity of spheres and root-mean-square dis-
placements of ions in the fixed sublattice makes it possible to construct a channel as the surface of the mobile
ion density. The most probable regions of mobile ion motion are quantum-mechanically interpreted as channel
walls, which is confirmed by constructing the equipotential surfaces of interionic potential for α-AgI. It is found
that the Andersson mathematical dynamics and the dynamics of ion transport in AgI lead to the same pattern of
the motion. The symmetry rules are used for predicting the directions of motion along the allowed vibrational
coordinates of tetrahedral and octahedral α-CuI fragments. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The superionic state of solid electrolytes is a partic-
ular crystalline state of a material that exists in a certain
temperature range and whose structure is characterized
by a fixed sublattice built up of atoms of one sort inside
which a set of mobile ions occupy a number of crystal-
lographic positions or even appear as a “lattice liquid.”
The conduction channels are defined as crystal regions
which involve positions of the highest stability of
mobile ions and the most probable motion paths con-
necting these positions.

2. VISUALIZATION OF CONDUCTION 
CHANNELS

The method proposed for constructing the conduc-
tion channels is based on the excluded-volume model
and the Voronoi–Dirichlet partition of a fixed sublat-
tice. Within the excluded-volume model, the cation–
anion interaction is approximated by the hard-sphere
potential [1]

where ri and rj are the effective radii of hard spheres of
the ith and jth atoms, respectively, and the parameter
rexc = ri + rj, to a rough approximation, is the sum of the
effective ionic radii. The space appears to be parti-
tioned into an allowed volume in which the motion is
free and an excluded volume in which the motion is for-
bidden.

As was shown in [2], the Voronoi partition of a fixed
sublattice is characterized by extreme points (minima,

Vij r( )
0, r ri r j+>
∞, r ri r j,+≤




=

1063-7834/01/4304- $21.00 © 20655
maxima, and saddles) of the potential energy in the path
of moving a mobile ion. The most stable positions of
mobile ions are located near vertices of a Voronoi–
Dirichlet polyhedron. For a β-AgI electrolyte (with a
wurtzite structure) that possesses a typical ionic con-
ductivity with a hopping diffusion of silver ions, the
most stable positions of mobile ions correspond to the
centers of tetrahedral and octahedral holes in a hexago-
nal closest packing of anions (Fig. 1, drawing 1.1). In
the case of AgI, Ag3SI, Ag2S, and Ag2Se silver-contain-
ing electrolytes with a body-centered cubic (bcc) struc-
ture, the Voronoi–Dirichlet polyhedron is a Fedorov
cubooctahedron (Fig. 1, drawing 2.1) whose vertices
determine the equilibrium positions of Ag+ ions. For a
number of conductors with a face-centered cubic (fcc)
lattice [an α-CuI electrolyte with the conductivity
through Cu+ ions and fluorides MF2 (M = Ca, Sr, Ba,
and Pb) with a fluorite structure and anionic conductiv-
ity], the Voronoi–Dirichlet polyhedron is a rhom-
bododecahedron (Fig. 1, drawing 3.1). However, the
most stable positions of mobile ions correspond only to
the rhombododecahedron vertices at the centers of tet-
rahedral holes. The transition states for bcc conductors
do not coincide with the midpoints of edges, but are
located in their vicinity. In the case of fcc conductors,
as will be shown below, the transition states are realized
in octahedral holes of a cubic closest packing.

The walls of conduction channels are formed by the
boundary between the allowed and excluded volumes.
The Voronoi–Dirichlet polyhedron part that lies outside
the rigid sphere (with the radius rexc) circumscribed
about its center represents a conduction channel frag-
ment corresponding to this polyhedron (Fig. 1, draw-
ings 1.2–3.2, 1.3–3.3). It is self-evident that the polyhe-
001 MAIK “Nauka/Interperiodica”



 

656

        

PO
L

Y
A

K
O

V

 

0.5

 

1.3 1.4

2.42.3

3.43.3
PH
Y

SIC
S O

F T
H

E
 SO

L
ID

 STA
T

E      V
ol. 43      N

o. 4      2001

0

–0.5

0.5

0

–0.5

–1.0
–0.5

0
0.50

–0.5
–1.0
1.0

0.5

0

–0.5

–1.0

0.5

0

–0.5
0.5

0

–0.5

1.1 1.2

2.22.1

3.1 3.2



        

VISUALIZATION OF CONDUCTION CHANNELS AND THE DYNAMICS 657

                                                                                                                            
dron of this center is also intersected by other rigid
spheres circumscribed about adjacent centers but just
as much as its “own” sphere projects outside the poly-
hedron and the adjacent spheres penetrate into it. To put
it differently, this makes it possible to visualize the
entire allowed volume corresponding to the Voronoi–
Dirichlet polyhedron. The form of the conduction chan-
nels provides a way of refining the rexc and rface param-
eters obtained by optimizing the EXAFS data with the
use of the excluded-volume model. Here, rface is the dis-
tance between the center of the tetrahedron face (trigo-
nal position) (Fig. 1, drawings 1.1–3.1) and the vertices
of this face. In actual fact, at rexc ≤ rface, the allowed vol-
ume is connected. The optimization of the EXAFS data
[1] for β-AgI at 20°C gives rexc = 2.723 Å and rface =
2.676 Å, and the allowed volume form isolated regions
[these are the polyhedron corners projecting outside the
sphere (Fig. 1, drawing 1.2)]. In this case, the ionic con-
ductivity is usual (at rexc = rface, the conduction channels
should have the form shown in drawing 1.3 in Fig. 1).
For α-AgI at 198°C, rexc = 2.682 Å and rface = 2.736 Å,
and the conduction channels penetrate throughout the
electrolyte bulk [the corners projecting outside the
sphere are joined by the polyhedron edges (Fig. 1,
drawing 2.3)], which results in the superionic conduc-
tivity (at rexc = rface, the situation shown in drawing 2.2
in Fig. 1 should be realized).

The method proposed provides an explanation for
the ionic conductivity in the low-temperature γ phase of
AgI with a sphalerite structure, which is similar to the
conductivity in β-AgI. In all three phases, the environ-
ment of silver ions is tetrahedral and the silver–iodine
distances differ by no more than 0.02 Å. By using the
same value of rexc for the γ and β phases (stable at lower
temperatures), we obtain the isolated regions—the
polyhedron corners projecting outside the sphere
(Fig. 1, drawings 1.2, 3.2). For anionic sublattice of the
same fcc type in the case of the superionic α phase of
CuI, the optimization of the EXAFS data [3] leads to a
connected network of conduction channels (Fig. 1,
drawing 3.3): rexc = 2.44 Å and rface = 2.53 Å at 470°C.

Making allowance for the weak nonrigidity of
spheres and root-mean-square displacements of ions in
the rigid sublattice renders the excluded-volume model
more realistic. The density of mobile ions is repre-
sented as the approximation of a step function by the
error function [3].

Drawings 1.4–3.4 in Fig. 1 show the surfaces of the
mobile ion density at such potentials V (1.0, 0.1, and
0.17 eV for β-AgI, α-AgI, and α-CuI, respectively) at
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
which the connectivity arises throughout the electrolyte
bulk; i.e., these surfaces are the conduction channel
walls.

3. CONDUCTION CHANNEL WALLS
AS REGIONS OF MOTION

In the framework of the excluded-volume model,
ions as a gas move in allowed regions centered at tetra-
hedral sites in the anionic bcc sublattice of α-AgI.
Mobile ions undergo a multiple scattering by walls of
anionic rigid spheres until the direction of their motion
coincides with the channel in the tetrahedron face near
the trigonal position, which leads to the penetration of
a cation into the adjacent tetrahedron and so on.
According to [2], silver ions pass through a narrow part
of conduction channels near the trigonal position with
a higher probability when sliding over the channel wall
as compared to the multiple scattering by walls in
motion through the bulk of the allowed region.

Now, we apply the two-dimensional Schrödinger
equation to quantum-mechanical consideration of the
Ag+ behavior within the excluded-volume model. The
regions of the Ag+ motion in the plane of the cubic unit
cell face are bounded by the excluded volumes of
I− ions occupying vertices and center of a square
(Fig. 1, drawing 2.4). The silver ion resides in the
potential well between the impenetrable inside circular
wall of radius b ' and the impenetrable outside wall
formed by the arcs of four circumferences with the cen-
ters at the corners of the square. By replacing the com-
posite outside wall by the circumference (concentric
with the inside wall) of radius a, we change over to
analysis of the two-dimensional Schrödinger equation
in which the potential energy V(x, y) is equal to zero at
b' < r < a (x = rcosϕ, y = rsinϕ) and infinity outside this
interval (a ring infinite potential well). In the polar
coordinates r and ϕ, substitution of the wave function
Ψ(r, ϕ) = R(r)Φ(ϕ) into the Schrödinger equation leads
to the separation of the variables to give the angular
equation ∂2Φ(ϕ)/∂ϕ2 = –m2Φ(ϕ) [where Φ(ϕ) =
Nexp(imϕ) and m is integer] and the dimensionless
radial equation 

whose solutions are the Bessel functions. Here, we
introduced the system of units in which the outside cir-
cumference radius a is the unit length and "/(2µa2) is

the unit energy (µ is the mass of a silver ion, ρ = r =

–
∂2

∂ρ2
-------- 1

ρ
---

ρ∂
∂

– m2

ρ2
------ 1–+ 

  R ρ( ) 0,=

E

Fig. 1. Visualization of conduction channels in solid electrolytes with (1.1–1.4) hexagonal closest, (2.1–2.4) bcc, and (3.1–3.4) fcc
closest packings of fixed ions in rigid subsystems. The unit length is taken equal to the cubic unit-cell parameter for cubic systems

and the unit-cell parameter a for the hexagonal system (a = b = 1, c = 2 ). (1.1–3.1) Coordination polyhedra (a hexagonal ana-
logue of a cubooctahedron, a cube, and a cubooctahedron), Voronoi–Dirichlet polyhedra, and their intersection with simplectic tet-
rahedra for the corresponding packings. The centers of tetrahedral and octahedral holes are designated by T and O.

2/3
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kr, and E is the energy of the silver ion). The wave func-
tion is sought as the general solution in the form of a
linear combination R(ρ) = AJm(ρ) + BYm(ρ) [where
Jm(ρ) and Ym(ρ) are the m-integral-order Bessel cylin-
drical functions of the first and second kinds, respec-
tively], which satisfies the boundary conditions R(ρ) = 0
at r = b'/a = b and r = 1. As a result, we obtain a set of the
homogeneous linear equations AJm(bk) + BYm(bk) = 0
and AJm(k) + BYm(k) = 0, which has a nontrivial solution
at the condition Hm(k) = Ym(k)Jm(bk) – Jm(k)Ym(bk) = 0,
i.e., at a discrete spectrum of the kmn values (the second
subscript refers to the nth root at the specified m) that
are determined, for example, graphically at m = 0
(Fig. 2a). The ratio A/B obtained by solving the system
at a given kmn simultaneously with the normalizing con-
dition determines the wave function Rmn(ρ) whose
square at m = 0 and n = 1 and 16 is depicted in Fig. 2b
(curves I and II).

Instead of the consideration of a more realistic ion
behavior in the well of variable width, we will treat the
ion behavior as a function of the well width within the
used simple model. The state of an ion in a narrow or
wide part of the channel is approximately identical to
that in a narrow or wide well of a constant width. As can
be seen from Fig. 2b, the narrower the well, the larger

–0.3 1
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k

Fig. 2. The quantum-mechanical behavior of an Ag+ ion in
a ring infinite potential well. (a) Graphs of the Hm(k) func-
tions at m = 0 and b = (1) 0.1, (2) 0.5, and (3) 0.9. (b) Graphs

of the (ρ) functions at m = 0, b = 0.5, and (I) k0, 1 = 6.24

(n = 1) and (II) k0, 16 = 100.53 (n = 16).

Rmn
2

P

the value of kmn. If the ion moves from a wide part of
the conduction channel to its narrow part with the acti-
vation energy Ea, the ion in the wide potential well
should be in high-energy states with kmn ~ 100 [the
energy in the Schrödinger equation is converted to the

usual system of units E = "2/(2µa2) and is equated
to the activation energy Ea = 0.1 eV [1] at the a value
taken equal to half the unit cell parameter]. However, it
is seen from Fig. 2b that the larger the energy of state,
the higher the probability of finding the ion near the
channel wall (the “sliding” of the ion over the channel
wall).

If the channel walls are actually the regions of
mobile ion motion, the discrepancies between the
aforementioned excluded-volume model (used for opti-
mizing the EXAFS data) and the structural model with
shifted equilibrium positions [4, 5] become clear.
According to the latter model [4], each tetrahedral posi-
tion in α-AgI is split into two positions in the directions
〈100〉 . This corresponds to the motion region that
closely encompasses tetrahedral positions and extends
along the direction of the shift in equilibrium positions
(Fig. 1, drawing 2.4).

4. CONDUCTION CHANNELS 
AS EQUIPOTENTIAL SURFACES

The construction of conduction channels as equipo-
tential surfaces is corroborated by calculations of the
interionic potential for α-AgI [6]. Figure 3 shows the
equipotential surfaces (drawings 1.1–1.4 at V = 0.14,
0.2, 0.4, and 1.15 eV, respectively) of the interionic
potential for AgI in the field of which silver ions move.
The interionic potential is constructed as a superposi-
tion (containing parameters) of the lattice sum of the
iodine ion–silver ion pair Lennard-Jones potentials and
the potential that describes the action of a uniform
charge distribution of silver ions on an Ag+ ion moving
inside a unit cell. The parameters of the three-dimen-
sional interionic potential are determined by the least-
squares optimization in such a way as to approach the
one-dimensional effective pair potential of the iodine
ion–silver ion interaction in the EXAFS variant [7],
which is independent of any structural models, includ-
ing the excluded-volume model. The calculations of the
interionic potential are described in detail in [6].

At energies less than the activation energy Ea, the
regions of Ag+ motion are anisotropic and are localized
[1]. The motion regions at low energies are prolate
ellipsoids centered at vertices of the Fedorov cuboocta-
hedron [6]. At energies close to Ea, the ellipsoids first
transform into isolated regions (Fig. 3, drawing 1.1)
and, with a further increase in the energy, they merge
together (Fig. 3, drawing 1.2) to form a connected net-
work of conduction channels. The neckings in surface
1.2 coincide with trigonal positions. The centers of tet-
ragonal faces of the cubooctahedron (octahedral posi-
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tions) are not occupied at first and then (with an
increase in the energy) become accessible (Fig. 3,
drawing 1.3). At high energies, there are no particular
positions of motion: surface 1.4 in Fig. 3 is composed
of external parts of the bcc system of intersecting
spheres. Since the density of mobile ions is related to
the potential by the Boltzmann expression ρ(r) =
ρ0exp[–V(r)/kBT], drawings 1.1–1.4 in Fig. 3 also char-
acterize the potential surfaces in order of decreasing
density of the distribution of silver ions.

According to Andersson et al. [8], the rearrange-
ment of the interionic potential surface can be
described through the change in the parameter C
defined by the following functional dependence:

(1)

(Fig. 3, drawings 2.1–2.4). This rearrangement and the
merging of isolated surface regions into a single surface
depending on C are called mathematical dynamics [8].
Andersson et al. [8] derived simple mathematical func-
tions that describe such important structures as primi-
tive, bcc, and fcc packings and structures of the dia-
mond, cristobalite, sphalerite, CsCl, CaF2, ReO3, and
sodalite types. At smaller parameters C, the surface
appears as isolated “bubbles” located at vertices of the
Fedorov cubooctahedron (Fig. 3, drawing 2.1). As the
C parameter increases, isolated regions become larger,
come close together, and their boundaries are merged
with the formation of a periodic surface structure
throughout the bulk (Fig. 3, drawings 2.2, 2.3). At large
parameters C, the surface resembles the bcc system of
touching spheres (Fig. 3, drawing 2.4).

We assume that the interionic potential V(x, y, z) is
proportional to the function F(x, y, z); i.e., V(x, y, z) =
V, F(x, y, z), and the activation energy Ea corresponds to
the parameter C = 6, at which the connected surface is
formed (Fig. 3, drawing 2.2). Then, the V constant in
the v(x, y, z) function approximating the interionic
potential is V = Ea/C = 0.0167 eV. The found potential
V(x, y, z) can be used in the solution of the quantum-
mechanical problem on the behavior of silver ions at
small energies.

5. SYMMETRY RULES AND REGIONS
OF MOBILE ION MOTION FOR α-CUI

In the fcc phase of CuI, the tetrahedron and octahe-
dron that involve atoms of the fixed lattice and form the
corresponding holes in the structure share a common
face. Even in the early diffraction investigations,
Azaroff [9] revealed large thermal vibrations along the
〈111〉  direction and assumed that the diffusion occurs in
this direction. This is quite natural, because an octahe-

F x y z, ,( ) 2π x y–( )[ ]cos{ }exp≡
+ 2π x y+( )[ ]cos{ } 2π y z–( )[ ]cos{ }exp+exp

+ 2π z x–( )[ ]cos{ }exp 2π x z+( )[ ]cos{ }exp+

+ 2π y z+( )[ ]cos{ }exp C=
P

dral position is most crystallographically open and
accessible.

Within the model of shifted equilibrium positions
[5], it is supposed that positions of Cu+ ions are shifted
from tetrahedral centers (1/4, 1/4, 1/4) in four direc-
tions 〈111〉  toward tetrahedron faces. It was found by
the fitting of diffraction data for the α phase at 445°C
that copper ions are shifted to the (0.3, 0.3, 0.3) posi-
tion.

By interpreting the EXAFS data in the framework of
the excluded-volume model, Boyce et al. [3] obtained
the best agreement (T = 470°C) when the occupancy of
the octahedral position is approximately half as much
as that of the tetrahedral position. The conductivity path
in the 〈100〉  direction that directly connects the tetrahe-
dral positions through the midpoint of the common
edge of two tetrahedra is highly improbable due to the
high energy barrier (~0.7 eV). The path in the direction
〈111〉  with a barrier of 0.16 eV through the face that, as
follows from the contour map of ion density [3], can
pass not exactly through the octahedral position
(1/2, 1/2, 1/2) is more probable.

The recent structural study performed by Keen and
Hull [10] proved that Cu+ ions do not occupy the
(1/2, 1/2, 1/2) positions at all and cast some doubt on
the 〈111〉  direction as a diffusion direction, but did not
give any alternative. The molecular-dynamics calcula-
tions carried out at approximately the same time by
Zheng-Johansson et al. [11–13] showed that the 〈100〉
direction is the preferential conductivity path, even
though thermal vibrations in the 〈111〉  direction are
very large. According to Chahid and McGreevy [14],
the interionic potential chosen so that the diffusion
coefficients are best reproduced can, however, lead to
local structural distortions that are actually absent,
which calls into question the main conclusion made in
[11–13]. That is partly why the distribution of mobile
Cu+ ions in the γ, β, and α phases of CuI was thor-
oughly investigated in [14]. The total structure factor
(of Bragg and diffuse scatterings) measured by neutron
diffraction was simulated by the reverse Monte Carlo
method. This recent work confirmed that the conductiv-
ity path in the 〈100〉  direction immediately between the
tetrahedral positions is preferential (Fig. 4a). The
(1/2, 1/2, 1/2) positions are very insignificantly occu-
pied at the highest temperatures when the diffusion pro-
ceeds through octahedral positions along the 〈111〉
direction.

Thus, it is seen that experimental and theoretical
investigations into the conductivity paths of Cu+ ions in
α-CuI do not give a completely consistent and univer-
sally accepted pattern and do not provide conclusive
answers to the question as to the direction (〈111〉  or
〈100〉) of the Cu+ diffusion. However, it seems to be
clear that the ion diffusion predominantly occurs in the
periphery of octahedral holes. As is seen from Fig. 4b,
this inference can be extended to superionic conductors
of the fcc type not only with the cationic conductivity
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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but with the anionic conductivity as well: mobile F–

ions in PbF2 migrate in the vicinity of the octahedral
position and do not occupy it [15]. Our constructions
(Fig. 1, drawing 3.4) show that the mobile ion from the
tetrahedral position moves first in the 〈111〉  direction,
then along the periphery of the octahedral hole in the
〈100〉  direction, thereafter toward the empty tetrahedral
position again in the 〈111〉  direction, etc.

Now we explain why the (1/2, 1/2, 1/2) position is
not occupied. For this purpose, we invoke the second-

(a)

(b)

(c)

Fig. 4. (a) Density of distribution of Cu+ ions at the 20%
level. The maximum density of distribution in the unit cell
is taken as 100% [14]. (b) Experimental paths of the F– ion
diffusion in PbF2. (c) Symmetry rules for the allowed path

of motion of a mobile Cu+ ion in α-CuI.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      20
order Jahn–Teller effect theory [16], which was suc-
cessfully used in a similar case of α-AgI [2].

Let us consider tetrahedral and octahedral frag-
ments with the common face in the fcc unit cell
(Fig. 4c). In the motion of ion, the local clusters
[CuI4]3– and [CuI6]5– are treated as Cu+ fragments.
From the ligand field theory for tetrahedral and octahe-
dral complexes with π ligands [17], it is known that the
highest filled (hf) and the lowest empty (le) levels
exhibit the symmetry types Γhf = t2 and Γle = a1 for
[CuI4]3– and Γhf = eg and Γle = t1u for [CuI6]5–. The sym-
metry rules Γhf ^ Γle ⊃ Γ Q [16] determine the symmetry
types of the vibrational coordinate ΓQ, along which the
distortion of a tetrahedron (t2 ^ a1 = T2) and an octahe-
dron (eg ̂  t1u ⊃ T1u) is a spontaneous process. Figure 4c
depicts the possible tetrahedron and octahedron distor-
tions for the vibrational coordinates T2 and T1u, respec-
tively. It is seen that the ion copper motion and iodine
ion displacements are correlated and the common point
symmetry group C3v is retained upon distortion of local
clusters.

By assuming that the transition state is realized
exactly at the center of the octahedral hole, we immedi-
ately come to the following discrepancy. The degener-
ate vibration T1u corresponds to several allowed motion
paths from the initial tetrahedral position to empty
positions, which is most pictorially seen in drawing 3.4
in Fig. 1. However, each transition state can correspond
to only one path: “the saddle can connect only two val-
leys” [16]. Therefore, the transition state must neces-
sarily conform to the octahedron distortion down to the
C3v symmetry. This state is realized in the periphery of
the octahedral hole, and the (1/2, 1/2, 1/2) position
remains unoccupied. The C3v symmetry is exhibited by
the local configuration of ions at nonextreme points
along the motion path (Fig. 4c) and, according to the
symmetry rules [16], this coordinate is totally symmet-
rical. As follows from the tables of correlations
between the group representations, the T1u representa-
tion in the C3v point group transforms into totally sym-
metrical. This conclusion completes the consistent pat-
tern of the allowed motion path.
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Abstract—It is demonstrated that in an isotropic infinite solid body with a high concentration of point defects,
the deformation produced by a test defect decreases with the distance from it according to a law similar to that
of the decrease in the potential of a point charge with Debye screening. © 2001 MAIK “Nauka/Interperiodica”.
1. External effects (laser irradiation, irradiation with
particle beams, action of shock waves, etc.) generate
high concentrations of point defects (vacancies and
interstices) in solids. The interaction of defects with a
self-consistent deformation field brings about the for-
mation of ordered defect-deformation (DD) structures,
namely, clusters and periodic structures. The theory of
the stationary DD nanostructures was elaborated in [1],
and the nonlinear multimode dynamics of the forma-
tion of DD nanostructures was considered in [2].

This work deals with a new aspect of the theory of a
self-organizing DD system. It is demonstrated that if
the concentration of point defects is sufficiently high,
the nature of the deformation field which is induced in
an isotropic solid body by a point defect changes.
Instead of a local deformation, which is typical of a
point defect in an ideal isotropic solid body, a deforma-
tion emerges which decreases with distance r from the
defect according to the law exp(–r/rs)/r (similarly to the
electrostatic potential of a point charge with Debye
screening). The screening length rs of the elastic inter-
action of defects is determined, which falls in the
nanometer range.

The considered effect of the screening of the defor-
mation field by point defects can be of interest in the
theory of self-organization of defects, including the
problem of the formation of ordered DD nanostruc-
tures, surface defect-induced melting, etc.

2. We assume that point defects are distributed with
a mean concentration nd0 in an infinite isotropic solid
body. Let a defect (dilatation center), which will be
considered a test defect, be located at the origin of coor-
dinates r = 0. The defects interact with the deformation
field ξ(r, t) = divu(r, t), where u is the displacement
vector of the medium and the energy of a single defect
is equal to [3]

(1)

Here, θd = KΩd, K is the elastic modulus, and Ωd is the
change in the crystal volume due to the generation of a
single defect.

Hd θdξ .–=
1063-7834/01/4304- $21.00 © 20663
Let us determine the deformation field induced by a
test defect located at the origin of coordinates under the
assumption that there is a field of mobile point defects
with a concentration nd. Taking into account expres-
sion (1), the equation of this deformation can be written as

(2)

where cl is the longitudinal sound velocity, ρ is the
medium density, ∆ is the three-dimensional Laplace oper-
ator, and δ(r) is the three-dimensional Dirac function.
We disregarded the sound dispersion in expression (1).

Taking into account expression (1), the equation for
the defect concentration can be written as [1]

(3)

where Dd is the diffusion coefficient of the defect and ld

is the length of the defect–atom interaction. The first
term on the right-hand side of Eq. (3) represents the dif-
fusion, and the second term describes the deformation
induced drift of the defects. The second term in the
parentheses accounts for the nonlocality of the interac-
tion of the defect with an atom in the lattice (ld is the
length of defect–atom interaction in the lattice [1]).
Equations (2) and (3) constitute a closed system of
equations which describes a self-consistent DD system.

3. Let us consider the stationary state of a self-con-
sistent DD system. The stationary distribution of the
defect concentration in the field of the self-consistent
deformation can be deduced from Eq. (3), where

 = 0,

(4)

1

cl
2

----∂2ξ
∂t2
-------- ∆ξ

θd

ρcl
2

--------∆ δ r( ) nd nd0–( )+( ),–=

∂nd

∂t
-------- Dd∆nd

Ddθd

kBT
------------div ndgrad ξ ld

2∆ξ+( )( ),–=

∂nD

∂t
---------

nd nd0

θd

kBT
--------- ξ ld

2∆ξ+( ) 
 exp=

≈ nd0 nd0

θd

kBT
--------- ξ ld

2δξ+( ) 
  .+
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Here, an approximate equality holds with the proviso

that θd(ξ + ∆ξ)/kBT ! 1. According to expression (4),
when r  ∞ and ξ  0, the concentration of defects
tends to its spatially homogeneous value, nd  nd0.

Let us substitute expression (4) into Eq. (2), where

we set  = 0. After rearrangement, we obtain the fol-

lowing equation for the deformation produced by the
test defect:

(5)

where the screening length of the elastic interaction is
given by

(6)

and the critical concentration of defects is

(7)

The solution to Eq. (5) with the constraint

(8)

has the form

(9)

When constraint (8) holds, in conformity with expres-
sion (9), the point defect located at the point r = 0 gen-
erates a deformation field which decreases with dis-
tance similarly to the potential of a point charge
screened by a self-consistent distribution of other
charges (Debye screening). In this case, the analog of
the Debye radius is the screening length of the elastic
interaction which is defined by Eq. (6).

The change over to the case of a defect-free medium
with a single test defect at the origin of coordinates r =
0 is elaborated by a passage to the limit in formula (9),
nd0  0. With due regard for the representation of
δ-function

and expression (6), from formula (9), we obtain

(10)

Formula (10) coincides with the standard expression
for the deformation field of a point defect in an infinite
isotropic solid body without defects [3].

4. If we take into account the sound dispersion in
Eq. (2), condition (8), which determines the concentra-

ld
2

∂2ξ
∂t2
--------

∆ξ 1
rs

----ξ–
θd

ρcl
2ld

2
nd0/ndc( )

-----------------------------------δ r( ),–=

rs ld

nd0

ndc

------- 
 

1/2

/ 1
nd0

ndc

-------– 
  1/2

=

ndc ρcl
2kBT /θd

2.=

nd0 ndc<

ξ r( )
θd

ρcl
24πld

2 nd0/ndc( )
-----------------------------------------

r/rs–( )exp
r

--------------------------.=

δ r( )
r/rs–( )exp

4πrs
2r

-------------------------- 
 

rs 0→
lim=

ξ r( )
nd0 0→
lim

θd

ρcl
2

--------δ r( ).=
P

tion of defects that corresponds to the screening of the
deformation, is replaced by the condition

(11)

where l0 is the parameter of the sound dispersion (the
length of the atom–atom interaction in the lattice). For
metals, we have ld @ l0 [4].

As can be seen from expression (11), the screening
of the elastic interaction of point defects is observed
when the concentration of the defects exceeds the first

critical value ndc1 = ndc/ , where ndc ~ 1019 cm–3

(ρcl ~ K ~ 1012 erg cm–3, T ~ 300 K, θd ~ 10 eV).

In [1, 2], it was shown that when condition (11)
holds, the system of defects interacting through the
elastic field exhibits an instability. This results in the
formation of clusters of defects autolocalized in the
deformation potential wells. The dimension of the DD
cluster which was obtained in [1] with the proviso that
ld @ l0 coincides with the screening length of the elastic
interaction rs defined by formula (6).

Thus, assuming that nd0 > ndc1, the solid body is par-
titioned into independent regions with dimensions of
the order of the screening length rs within which the
elastic interaction between the defects causes the for-
mation of DD nanoclusters.

If the second threshold related to the concentration
of the defects is exceeded (nd0 > ndc), periodic DD
nanostructures are formed in the medium [1, 2]. In [1],
it was demonstrated that their formation is described by
the Landau–Ginzburg equation and occurs as a second-
order phase transition. In this case, the screening length
(6) fulfills the role of a correlation length in the region
prior to the phase transition (nd0 < ndc). As can be seen
from expression (6), when the phase transition point is
approached (nd0  ndc), the correlation length tends
to infinity, rs  ∞ in accordance with its usual behav-
ior in second-order phase transitions [5].
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Abstract—Elastic properties and thermal-phonon scattering are investigated in Al2O3 + 0.3% MgO ceramics
and cermets of different porosities based on them. The cermets, reinforced with a metallic frame of the steel
12X18H9T, are obtained by dry compaction followed by sintering. It is shown that the elastic moduli of cermets
are determined by their porosity and that the grain boundaries can be investigated in detail by a nonequilibrium-
phonon propagation method. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

New composites based on ceramics and metals (cer-
mets) have been being developed since the 1960s, and
unique materials have been produced which combine
the virtues of both components, such as heat resistance,
temperature stability, wear resistance, service reliabil-
ity, and chemical stability [1]. At the present time, cer-
mets are already in service in the machine-building
industry (high-temperature elements of gas turbines,
rolling bearings, high-precision temperature-stable
tools), the medical and food industries (parts of pumps
and devices for pumping over corrosive liquids), and
other fields [2]. However, the development of cermets
of new types and the prediction and investigation of
their properties involve difficulties. Among these are
the sophisticated high-temperature synthesis technol-
ogy (often requiring a vacuum and high pressures), not
entirely known mechanisms for the grain formation and
for the grain-boundary influence on the strength and
other properties of cermets, and the lack of methods
providing reliable information about grain boundaries.

In this work, we investigate cermets based on Al2O3
and on the stainless steel 12X18H9T with the aim of
(1) developing a comparatively simple and cheap tech-
nology for the fabrication of the cermets and (2) obtain-
ing samples which have a high strength in combination
with a low density. We synthesized a material which is
characterized by large elastic moduli and high wear
resistance and thermal stability and, therefore, has an
application potential in machine building and other
fields of engineering.

It is known that the mechanical properties of cer-
mets depend heavily on their porosity and the quality of
grain boundaries [3], which are determined by the syn-
1063-7834/01/4304- $21.00 © 20665
thesis technique of the original material, as well as by
the fabrication technology of the samples and their fin-
ishing thermal treatment. To investigate the influence of
these factors, we apply two different dynamic elastic-
wave methods in this work. At room temperature, low-
frequency ultrasound waves are used, while in the liq-
uid-helium temperature range, we apply a nonequilib-
rium acoustic-phonon propagation method. The former
method gives information about the elastic and, hence,
strength properties of the materials. The data obtained
by the latter method allowed us to construct a model for
grain boundaries in the ceramic Al2O3 and cermets
based on it.

1. EXPERIMENTAL TECHNIQUE

We investigated samples of the original (“basic”)
ceramic Al2O3, which contained a stabilizing addition
MgO (0.3%), and cermets based on this ceramic in
combination with 20% of the commercial-quality stain-
less steel 12X18H9T (18% Cr, 9% Ni, 1% Ti, 72% Fe).

The basic ceramic samples were prepared by dry
compaction of the mixture under a pressure of 80–
100 MPa followed by sintering in a vacuum at 1940°C.
These samples and their characteristics will be called
basic in what follows, because their preparation tech-
nology with adding small amounts of MgO is typical of
the synthesis of Al2O3 ceramics. The samples thus
obtained had a volume porosity lower than 1%, with the
average grain diameter being 10–3 cm.

To fabricate a cermet, the initial fine-grained mix-
ture was prepared by milling Al2O3 powder in a ball
mill in the presence of balls 1–2 cm in diameter made
from the stainless steel 12X18H9T. The milling was
001 MAIK “Nauka/Interperiodica”
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Measured parameters of the Al2O3 ceramic and cermets based on it

Sample Composition
Sintering
tempe-

rature, K
Porosity, %

Elastic moduli, GPa Strength
σ, MPa

Poisson’s
ratio, ν

Deff, cm2/s
(T = 3.8 K)G E K

Basic Al2O3 + 0.3% MgO 1920 ≤1.0 144.0 358.0 234.5 900–1000 0.24 1.2 × 102

1 Al2O3 + 20% stainless steel 1920 9.1 71.4 170.3 238.7 560 0.35 1.2

2 Al2O3 + 0.5% Cr2O3 + 1% TiO2 
+ 0.5% MnO2 + 20% stainless steel

1640 19.0 58.5 153.1 151.1 425 0.33 0.82

3 Al2O3 + 20% stainless steel 1690 36.8 35.1 83.0 48.9 140 0.21 0.74
terminated when the steel content in the Al2O3 powder
became equal to 20%. Then, the mixture obtained was
doped with a plasticizer and subjected to dry compac-
tion under a pressure of 80–100 MPa and then sintered
in a vacuum at 1640–1920°C. Finally, the samples were
cooled in the furnace at an average rate of 100°C/h and
no further treatment was made. The cermets thus pre-
pared (samples 1–3 in table) ranged in volume porosity
from 9 to 37%, but had the same steel content (the com-
position of the basic ceramic in sample 2 differed insig-
nificantly from that in the other samples). The cermet
samples were then cut into smaller parts of the required
dimensions, which were further ground and polished,
depending on the measuring method.

To investigate the elastic properties of the cermets,
we measured their density by the hydrostatic method
and the velocities of longitudinal and transverse ultra-
sound waves of a frequency of 1.7 MHz. With the data
obtained, we calculated Young’s modulus E, the shear
modulus G, the bulk modulus K, and Poisson’s ratio
from the well-known formulas of the elasticity theory
for an isotropic medium [4]. We used the pulsed phase-
interferometry method, which made it possible to
determine the velocity of ultrasound within an accuracy
of 1–2%, the elastic moduli within 5%, and Poisson’s
ratio within 10–20%.

The strength of samples was measured with an
IP6011-500-1 hydraulic press. The ultimate compres-
sion strength was evaluated from the formula σ =
4P/πd2, where P is the breaking load and d is the diam-
eter of the sample; for each type of composite, the com-
pression test was performed at a loading rate of 0.04–
0.05 kg/s for ten samples and the results were averaged.

Examination of the surface structure (cleaved facet)
of the Al2O3 ceramic samples was made with a JSM-
840 scanning electron microscope (the Jeol company)
and a P4-SPM-MTD scanning probe microscope
(atomic-force microscopy regime) operating in the con-
tact mode.

The kinetics of phonons at liquid-helium tempera-
tures was investigated by the “heat pulse” method [5].
For this purpose, a gold film was sputtered on one face
of a plate of the material under study; this film was
heated by a short current pulse (≅ 10–7 s) and served as
an injector of nonequilibrium phonons into the sample.
P

A meander-shaped bolometer with the dimensions
0.3 × 0.25 mm2 was deposited on the opposite plate
face. A weak bias magnetic field (~2 × 102 Oe) was
applied to the bolometer in order to measure the tem-
perature dependence of the scattered intensity of non-
equilibrium phonons in the sample over the tempera-
ture range 1.7–3.8 K. The power dissipated in the
heater was so low that the injected phonons could be
characterized by a temperature equal to that of the ther-
mostat (bath), and their frequency distribution was
close to the Planck distribution.

2. EXPERIMENTAL RESULTS AND DISCUSSION

Micrographs of the surfaces of the Al2O3 ceramic
and cermet samples obtained by scanning electron
microscopy are presented in Fig. 1. It is seen that, for
the most part, grains in the basic ceramic have isomeric
hexagonal faces (Fig. 1a) and the grain faces meet at an
angle close to 120° at interface junctions (see also [6]);
the average grain diameter is about 10–3 cm. In the cer-
met samples (Fig. 1b), metal grains having a near-
spherical shape are clearly visible against the back-
ground of faceted grains of the polycrystalline Al2O3.
Examination of a fairly large area of cleaved facets of
cermet samples revealed that the metal grains are dis-
tributed uniformly and do not form clusters or filament-
like structures. This is supported by resistance mea-
surements, according to which the cermets remained
insulators and had no “junctions.” A more detailed
structure of the metal grains as obtained by atomic-
force microscopy is presented in Fig. 1c; this allows
one to estimate their minimum size with a reasonable
accuracy. The dimensions of metal grains are strongly
scattered and lie in a range of Rm ≈ 200–1000 nm
(Figs. 1b and 1c).

The practically important room-temperature
strength characteristics of the Al2O3 composites, their
initial compositions, and the sintering temperatures are
listed in the table. Note that the mechanical character-
istics (elastic moduli and strength) of the cermets differ
from their respective values for the basic ceramic and
vary rather smoothly with increasing overall volume
porosity. The measured elastic moduli correlate well
with the data presented in [7], and their dynamics is
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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controlled only by the porosity of the material; that is,
low-frequency measurements and strength data carry
no information about the properties of grain boundaries
in the Al2O3 and metal–α-Al2O3 interfaces.

The last column of the table lists the values of the
effective phonon diffusion coefficient Deff at a liquid-
helium temperature. These values of Deff are first
invoked to characterize the ceramic materials; they
allow one to infer the character of phonon scattering at
grain boundaries in ceramics and to predict the
mechanical characteristics of the material at room tem-
perature.

Let us discuss the data on the propagation of weakly
nonequilibrium phonons in the basic Al2O3 ceramic and
cermet samples. The curves in Fig. 2 describe the prop-
agation of a heat pulse in the basic Al2O3 sample at dif-
ferent temperatures. These bell-shaped bolometer sig-
nal curves are typical of diffusive pulse propagation
and have a well-defined maximum. For phonons travel-
ing the thickness L of the ceramic sample, the signal
maximum will be observed at a time tmax, which char-
acterizes the properties of grain boundaries and is given
by the expression [8]

(1)

Here, vs is the velocity of sound in a ceramic grain, R is
the average dimension of grains, S is the area of the
grain surface, Σ is the total contacting area per grain,
and fω is the probability that a phonon passes through
the contact area.

The temperature dependence of tmax is determined
by the temperature dependence of fω, which, in the
model used [8], is a function of the wavelength (energy)
of the phonon (i.e., of the temperature of the sample in
our experiments) and determined by the mechanism of
phonon scattering at the grain boundaries, which
depends on the ceramic sintering process, the composi-
tion of the initial powder, and the other specific features
of the ceramic fabrication. For the basic Al2O3 samples,
the temperature dependence of tmax is closely approxi-
mated by the expression tmax = A + BT4 (see inset in
Fig. 2), where the first term is determined by the acous-
tic matching of the contacting ceramic grains for non-
equilibrium phonons and the second is due to phonon
scattering at the interface of the grains. In the range of
the plateau, one can estimate the coefficient fω by put-
ting S/Σ ≅  1, vs ≅  7 × 105 cm/s, and the grain diameter
to be ≅ 10–3 cm for the dense basic ceramic with the
result that fω is equal to 0.5–0.8, which is evidence that
the grains matched fairly well in this material. In the
most likely case of phonon scattering at grain bound-
aries, the temperature dependence tmax ~ T4 will take
place if the condition qlb ! 1 is met [9], where q is the
phonon wave vector and lb is the grain boundary thick-
ness. In our experiments, q = (1–2) × 106 cm–1; there-

tmax
L2

Deff
-------- L2S

v sRΣ f ω
--------------------.≅ ≅
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fore, lb is estimated to be lb ≅  0.5–1.0 nm, which sup-
ports the conclusion that grain boundaries are perfect in
the dense α-Al2O3 ceramic.

In cermet samples, we have a completely different
situation (Fig. 3). The time tmax is fully two orders of
magnitude longer; that is, the effective phonon diffu-
sion coefficient is smaller (see table). However, the
most important result is that the temperature depen-
dence of tmax is radically altered; namely, we have
∂tmax/∂T < 0 in cermet samples. The slower phonon dif-
fusion and negative ∂tmax/∂T in cermets cannot be due
to metal grains, whose acoustic characteristics are dif-
ferent from those of α-Al2O3. Estimations of the possi-

1 µm

1 µm

500 10000

500

1000

nm

nm

(‡)

(b)

(c)

Al2O3

Steel

Fig. 1. Electron micrographs of cleaved facets of
(a) ceramic Al2O3–0.3 wt % MgO (basic sample in table)
and (b, c) cermet Al2O3 + 20 wt % stainless steel (sample 1
in table) differing in image scale.

Steel
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Fig. 2. Time dependence of the signal amplitude S of nonequilibrium phonons in the basic ceramic Al2O3 for L = 0.5 mm and dif-
ferent temperatures T (K): (1) 3.83, (2) 3.44, (3) 2.18, (4) 2.57, and (5) 2.28. The inset shows the temperature dependence of tmax,
with the solid line being tmax = A + BT4.
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Fig. 3. Time dependence of the signal amplitude S of nonequilibrium phonons in a cermet sample with a porosity of 19% and L =
0.3 mm for different temperatures T (K): (1) 3.8, (2) 3.48, (3) 3.27, (4) 3.01, (5) 2.79, and (6) 2.61.
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ble contribution from electron–phonon interaction to
phonon scattering in the framework of classical papers
[10] show that phonon scattering in the grains of a
diameter less than 10–4 cm is insignificant and the
direct contribution to the damping from the phonon–
phonon interaction is also very small; therefore, it is
most likely that phonon diffusion becomes slower
because of phonon scattering by the metal–α-Al2O3
interfaces. According to [9], this can be true if there are
many fine voids in these interfaces (for instance,
because the metal–insulator wetting is poor [11, 12]
and their contacts do not become close in the process of
sintering). In this case, we have open interfaces with a
noticeably lower density and elasticity. At lb ≥ 1 nm,
such interfaces are significantly less transparent for
phonons and can be the reason for the temperature
dependence with ∂tmax/∂T < 0. Estimations give reason-
able values lb ≥ 5.0–10.0 nm for this case. For the cer-
met samples under study, the variation in Deff correlates
with the dynamics of the overall porosity P, which
suggests that the porosity in the interfaces is propor-
tional to P.

In closing, we note that the data obtained by the
method of nonequilibrium phonon propagation (heat
pulse method), proposed in this paper for investigating
ceramic samples, allow one to construct a model of
grain boundaries in the ceramic Al2O3 and cermets
based on it. Analysis of the influence of grain bound-
aries on the mechanical properties of cermets at room
temperature will be the objective of further investiga-
tion.
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Abstract—Methods for computer simulation of strength testing of crystals are proposed. The methods
employed are similar to usual static methods, and they are used to investigate deformation and fracture of per-
fect fcc crystals having different orientations with respect to the tensile force. A strain-induced phase transition
from the fcc to the hcp structure is detected, and the formation and displacement of crystal twins are observed.
Plastoelastic deformation and fracture of crystals are investigated. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION
In [1, 2], we considered models of equilibrium crys-

tals of a spherical shape and of a diameter of ten inter-
atomic distances; the interaction of atoms in the model
crystals was described by the Lennard–Jones potential.
Such crystals have different structure, which can be the
reason for their different behavior under a load. In this
paper, we evaluate the strength of these crystals. For
this purpose, a method for determining the strength of
model crystals is developed, which is similar to the
methods usually used under static conditions. By this
method, we estimate the strength of perfect single crys-
tals with fcc and hcp lattices, which form spontane-
ously in computer experiments. The bcc lattice, which
was investigated in [3], does not form in the case of the
Lennard–Jones interaction potential [1].

1. FORMULATION OF THE PROBLEM
Model crystals are represented in a computer by the

coordinates of their atoms in tabulated form. We desig-
nate them as xi, yi, and zi, with i running from 1 through
n, where n is the number of atoms in the crystal. Cylin-
drical “samples” for tensile tests are “prepared” from
crystals of spherical shape. They have the same cross
section over the length of the cylinder; that is, the coor-
dinates of atoms satisfy the condition

(1)

where R is the radius of the cylinder and y0 and z0 are
the coordinates of its axis. In computer experiments,
the radius R is equal to a quarter of the diameter of the
original spherical crystal. The cylindrical samples pre-
pared are “cooled” using the same technique as in the
case of the crystal for which relaxation of the surface
layer was made [1].

The surface layers of the end faces of the cylinder
are used as the “grips” for applying the external load.

yi y0–( )2 zi z0–( )2+ R2,<
1063-7834/01/4304- $21.00 © 20670
Therefore, all atoms are separated into three groups:
internal atoms and atoms of the left-hand and right-
hand grips.

In order to calculate the strength of the samples, one
has to find the time dependence of a solution to the set
of n differential equations (n is the number of atoms):

(2a)

(2b)

(2c)

where m is the atomic mass; ui, vi, and wi are the dis-
placements of the ith atom along the coordinate axes x,
y, and z, respectively; and f(rij) is the modified Len-
nard–Jones interaction force between the ith and jth
atoms [1]. Equations (2a)–(2c) are valid for the internal
atoms.

In addition to the set (2), one should consider equa-
tions for the surface atoms in the grips to which exter-
nal forces are applied. The forces are directed along the
x axis and vary in time, e.g., according to a linear law.
For the atoms of the left-hand grip, the tensile force is
directed to the left and the following equations must be
satisfied:

(3a)

where F(t) is the time-dependent tensile force and n1 is
the number of atoms in the left-hand grip. For the atoms

m∂2ui/∂t2 f x rij( ),
j 1=

n

∑=

m∂2v i/∂t2 f y rij( ),
j 1=

n

∑=

m∂2wi/∂t2 f z rij( ),
j 1=

n

∑=

m∂2ui/∂t2 f x rij( ) F t( )/n1,–
j 1=

n

∑=
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Stress–strain curves in the initial range for the crystal identical to that in [1] as calculated in different computer-simulated
tensile tests.
of the right-hand grip, the equations are similar and
have the form

. (3b)

In order to simplify the problem, we assume that the
atoms of each grip are displaced as a unit. From
Eqs. (2b), (2c), (3a), and (3b), we calculate the atomic
displacements averaged over the grips to be the same
for all atoms of each grip. The partition of the atoms of
the sample into three groups, namely, the internal atoms
subject to Eqs. (2) and the atoms of the left-hand and
right-hand grips for which Eqs. (3) are satisfied, is
made only once, at the beginning of the computer
experiment. The surface atoms to which the external
stresses are applied are chosen according to the calcu-
lated coordination number of atoms in the grips; an
atom is considered to belong to the surface if its coor-
dination number is less than ten.

Equations (2) and (3) are solved by the second-order
finite difference method [4], which gives the stress–
strain curve of the sample and a series of “snapshots”
illustrating the process of stretching. The stress is mea-
sured in units of the Young’s modulus, and the strain is
averaged over the length of the cylinder.

2. CALCULATIONS

Equations (2) and (3) allow one to model the frac-
ture of a sample at a constant loading rate, as well as at

m∂2ui/∂t2 f x rij( ) F t( )/n2+
j 1=

n

∑=
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a constant load under creep conditions. The simulation
program also made it possible to model the fracture at
a constant strain rate. We used these three methods to
investigate the fracture of a sample prepared from the
crystal dealt with in [1]. The results are presented in
Fig. 1.

From Fig. 1, it is seen that the different methods give
the same result in the elastic-strain range. A fundamen-
tal difference is observed only when a critical strain is
reached, which is equal to about 8% for the sample at
hand. At this strain, the strength of the model single
crystal is 5.5% of the Young’s modulus, which is some-
what lower than the crystal strength predicted from the
Orowan theory [5]. At a constant loading rate, after the
critical strain is reached, the sample increases rapidly in
length and ultimately tears, while at a constant strain
rate, the stress drops because of structural changes and
lattice vibrations occur.

It is seen from Fig. 1 that, without prior heating,
creep tests can be conducted only at stresses close to
their maximum value. For this reason, we chose the
minimum stress at which the sample was torn after a
reasonably long time.

First of all, we calculated the strength of samples
prepared from perfect fcc crystals in an equilibrium
state. Figure 2a shows the results of tensile tests for two
differently oriented fcc crystals. The stresses were
applied along the [100] or [110] axis of the crystal. Cal-
culations show that, for the crystal tilted through 45°
with respect to the direction of the applied force, the
modulus of longitudinal elasticity is 3.4 times larger,
1
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Fig. 2. (a) Stress–strain curve and (b) average kinetic energy of atoms of fcc crystals as calculated for adiabatic stretching at a con-
stant strain rate dε/dt.
while its strength is 20% lower and the elastic limit
strain is smaller by more than half.

Figure 2b shows variations in the calculated average
kinetic energy of atoms with increasing strain of fcc
crystals. To find this energy, we calculated the kinetic
energy of all atoms of the crystal. It is seen from Fig. 2b
that the average thermal energy of atoms increases vir-
tually instantaneously (within a time of the order of the
period of lattice vibrations) at the instants the strength
falls off steeply; the increase is 0.015D for a strain of
6.7%, while at a strain of 11.5%, it is 0.027D and
0.045D for the stresses applied along the [110] and
[100] axes, respectively, where D is the dissociation
energy of a pair of atoms.

The data presented in Fig. 2 correspond to computer
simulation of adiabatic stretching (AS), where the
P

atomic energy of the crystal is kept fixed. This is the
reason why lattice vibrations occur when the crystal
structure is rearranged suddenly and the strength of the
crystal sharply decreases. In order to eliminate this
effect, we consider quasi-isothermal stretching (QIS),
where oscillations of atoms are significantly sup-
pressed, as is the case with artificial damping intro-
duced into the system [6].

A comparison of the stress–strain curves in the
cases of SA (Fig. 3a) and QIS (Fig. 3b) in the whole
range from the starting point to the instant the sample is
torn shows that they are essentially different. In the
former case, stretching is accompanied by stronger and
more frequently occurring distortions of the sample
structure and, furthermore, the fracture occurs at a
larger strain.
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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Fig. 3. Stress–strain curves for (a) adiabatic and (b) quasi-isothermal stretching of an fcc crystal along the [110] axis at a constant
strain rate dε/dt.
Figure 4 shows a sequence of snapshots of the
arrangement of atoms in the initial stage of quasi-iso-
thermal stretching along the [110] axis at a constant
strain rate for the case where a plastic transformation
occurs from one elastic state to another.1 The shots cor-
respond to the axial section of the sample at the instants
the resistance to sample stretching reaches its first local
minimum (Fig. 3b). According to Fig. 4, at a strain of
6.7% (shots 1 and 2), over a period of time comparable
to the period of lattice vibrations, sample narrowing
ends with phase transformation of some fcc unit cells
into hcp ones and with strain redistribution; there
appear two atomic hcp sheets tilted at an angle of 45°
to the direction of the external force.

In shot 3, corresponding to ε = 11.9%, the hcp dou-
ble sheet of atoms is split into two single sheets and
there appear two boundaries of a twin, each of which
possesses mirror symmetry of fcc unit cells. One-half
the unit cells undergo the reverse hcp  fcc phase
transformation, while in the adjacent sheet, the forward
fcc  hcp transformation occurs, with the result that
one of the boundaries of the twin is displaced parallel

1 Time is measured in units of the period T of lattice vibrations, t =
τ/T, where τ is the running time.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
to itself by one interatomic distance, thereby produc-
ing local elastic strain. On further stretching of the
sample, a twin is nucleated with another orientation
that is favorable to the formation of a kink band
(Fig. 4, shots 4 and 5).

The occurrence of the sudden phase transformation
can easily be seen in Fig. 5, where the temporal varia-
tions in the angles that the two straight lines passing
through the third and fifth central pairs of atoms in the
excited zone, respectively, make with the external
stress axis (during adiabatic stretching) are shown with
a high temporal resolution, starting from the moment of
time t0 = 80. The atoms of these pairs are indicated by
filled circles in panel 1 of Fig. 4. In the elastic-strain
range, there was no reorientation of the lattice relative
to the external-stress axis. According to Fig. 5, the vari-
ations in the orientation of the atomic pairs indicated
above are described by the same curve to a high accu-
racy, especially over the initial portion of the strain
range.

It is evident from Figs. 4 and 5 that the phase trans-
formation of the lattice proceeds at a high rate and
atoms in the excited zone are displaced synchronously;
the duration of this transformation is comparable to the
1
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period of fundamental lattice vibrations. The variations
in the angle presented in Fig. 5 were calculated with the
aim of revealing the formation of a dislocation. Instead
of this, however, we observed the structural phase
transformation of the fcc to an hcp lattice and, in addi-
tion, the formation and displacement of a twin. Note
that the fcc and hcp lattices with the same number of
atoms per unit cell differ only in symmetry; the hcp lat-
tice possesses mirror symmetry, while the fcc lattice
has inversion symmetry.
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Fig. 4. Sequence of snapshots for the case of quasi-isother-
mal stretching of an fcc crystal along the [110] axis at a con-
stant strain rate dε/dt: ( ) atoms in the grips, (×) hcp unit-
cell atoms, and ( ) fcc unit-cell and surface atoms.
PH
One can also see from Fig. 5 that there are high-fre-
quency oscillations with a period of approximately 5,
which are likely to be due to the flexural vibrations of
the sample that accompany the formation of kink
bands. These oscillations correlate with oscillations of
the kinetic energy of atoms, which are observed in
Fig. 2b and have a period that is twice as short.

Further information on the transformation of fcc to
hcp unit cells which occurs during stretching of fcc
crystals at a constant strain rate dε/dt is presented in
Fig. 6. This figure also provides support for the occur-
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Fig. 5. Temporal variations in the orientation of pairs of
atoms with respect to the externally applied force in the
vicinity of a kink band as calculated with a high temporal
resolution for adiabatic stretching: (1) central atoms of the
third sheet and (2) atoms of the fifth sheet.

Fig. 6. Temporal variations in the numbers of (1, 3) fcc and
(2, 4) hcp unit-cell atoms of fcc crystals being stretched at a
constant strain rate dε/dt along (1, 2) the [100] and
(3, 4) [110] axes.
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rence of the sudden strain-induced fcc  hcp phase
transformation. It is notable that fcc unit cells are trans-
formed not only into hcp cells, but also most likely into
surface atoms, as indicated by the different amounts of
discontinuous change in the numbers of fcc and hcp
unit cells occurring upon this transformation.

Figures 7a and 7b illustrate the fracture of an fcc
crystal during adiabatic and quasi-isothermal stretch-
ing, respectively. It is seen that, when stretched at a
constant strain rate dε/dt, the sample is divided into two
parts at a strain of ε = 82.3% in the former case and at
a strain of 66.2% in the latter. Therefore, the plasticity
is higher in the former case, as judged from the higher
limit deformation and the external appearance of the
fractured sample. The forming twins are seen more
clearly in Fig. 7b, which corresponds to the case of
stretching with almost complete suppression of the
kinetic energy of atoms. This figure shows the same
section of the sample as that in Fig. 4. The onset of frac-
ture is detected automatically in the computer experi-
ments.

Figure 8 shows the data on the fracture of fcc and
hcp crystals in tensile tests performed at a constant rate
dσ/dt, with the increase in the applied force ∆F being
equal to 0.01 at each time step of the integration proce-
dure, which corresponds to approximately the same
duration of elastic loading as that in the case of a con-
stant rate dε/dt. It is seen that the strength of the hcp
crystals is significantly lower in absolute value (by
about 25%) than that of the fcc crystals and that their
homogeneous deformation ceases sooner. Perhaps this
is due to the different initial orientation of the fcc and
hcp crystals and their different deformability. Figure 8
also shows the variation in the average thermal energy
of atoms in units of the dissociation energy D; the
former energy is calculated with allowance for the
kinetic energy of the fragments flying apart as the sam-
ple is disintegrated.

The peak in the energy variation curve in Fig. 8 is
associated with the sample fracture, which occurs at a
nearly doubled sample length. Figures 7c and 7d show
the sections of the sample just before its fracture in AS
and QIS tests, respectively, at a constant loading rate
dσ/dt. In this case, as is seen from the figures, two
necks are formed near the grips and the limit deforma-
tion is higher than that in the case of stretching at a con-
stant strain rate dε/dt; furthermore, the fcc  hcp
phase transformation does not occur in quasi-isother-
mal stretching. In both cases, the fcc and hcp crystals
behave as elastoplastic solids.

3. CONCLUSION

Thus, using the methods developed, we conducted
computer experiments to determine the strength of per-
fect fcc and hcp crystals. The strength of a sample was
found to depend heavily on its orientation with respect
to the externally applied force. It was shown that,
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before fracture, the crystal deformation becomes plas-
tic because of the occurrence of the fcc  hcp phase
transformation and, in addition, the crystal is deformed
via the nucleation of twins and their motion.
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Abstract—The dependences of magnetic, electric, and magnetotransport properties on oxygen non stoichiom-
etry were investigated in compounds of Ca2(FeMo)Ox and Sr2(FeMo)Ox (5.90 ≤ x ≤ 6.05). The regular trends
in behavior of the magnetization, resistance, and magnetoresistance of samples of these series are determined.
It is established that the magnetoresistance is composed of two parts that appear as a result of magnetic ordering
in grain-boundary layers and of the intergrain transport of spin-polarized charge carriers. The electronic trans-
port in the samples is assumed to be governed by percolation processes between grains which have a metallic
type of conductivity and are separated by insulating spacers. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The effect of “giant magnetoresistance” discovered
in perovskites Sr2(FeMo)O6 and Ba2(FeMo)O6 has
attracted considerable attention due to its possible
applications [1–4]. Materials revealing a large magne-
toresistance effect are necessarily involved in the oper-
ation of devices of information storage and processing
and magnetic field sensors. It should be noted that the
origin of the giant magnetoresistance effect in these
compounds is poorly understood [5–8]. The magne-
toresistance effect is assumed to be due to grain bound-
aries in these compounds and to strong spin polariza-
tion of charge carriers. This assumption is supported by
the results obtained on thin epitaxial films [9]. The
magnetoresistance effect was found to be positive in
epitaxial films, whereas polycrystals exhibit the nega-
tive effect; that is, the electrical resistance of the sam-
ples reduces in a magnetic field. For manganites, a large
magnetoresistance effect is observed, as a rule, in com-
paratively strong fields (higher than 1 T) [10, 11]. The
grain-boundary magnetoresistance effect monotoni-
cally increases in manganites with reducing tempera-
ture, whereas in grains, this effect is the most pro-
nounced near the phase transition temperatures. 

At present, there are no data available on the magne-
toresistance properties of Ca2(FeMo)O6 and
Sr2(FeMo)O6 compounds in relation to oxygen con-
tent. It is well known that deviation from the stoichiom-
etry strongly affects both magnetic and electric proper-
ties of LaMnO3-type manganites. 

The aim of the present work is to establish the
dependences between the magnetic, electrical, and
magnetic-transport properties and oxygen nonstoichi-
1063-7834/01/4304- $21.00 © 20677
ometry in compounds A2(FeMo)Ox (A = Ca, Sr; 5.90 ≤
x ≤ 6.05). 

1. EXPERIMENTAL METHOD 

Samples of A2(FeMo)Ox (A = Ca, Sr) were prepared
from oxides and carbonates of corresponding elements
by the standard ceramic technique in the atmosphere of
a noble gas. Compounds of CaCO3, SrCO3, MoO3,
Fe2O3, and MoO2 taken in stoichiometric proportions
were ground in an agate mortar. Then, the powders
were pressed into pellets under a pressure of 6 kBar;
these pellets were synthesized in an argon flow at a
temperature of 1200°C for three hours. After synthesis,
the samples were cooled at a rate of 100°C/h. X-ray dif-
fraction analysis data, which were obtained using CoKα
radiation, confirmed the single-phase perovskite struc-
ture of the samples. The oxygen content in the com-
pound prepared by this method was determined from
the mass deficiency after reduction to calcium and
strontium oxides, as well as to metallic iron and molyb-
denum, in a hydrogen flow. 

The reduction of the samples was done in evacuated
quartz ampules at a temperature of 900°C in the pres-
ence of ground metallic tantalum, which served as a
getter of oxygen. For oxidation of the samples, ground
LaMnO3.1 was placed into the ampule. The oxygen con-
tent was determined from the mass deficiency of the
sample after reduction or from the mass excess of the
sample after oxidation. To determine the unit cell
parameters and to control the single-phase conditions
of the samples, x-ray analysis was performed after each
treatment. 
001 MAIK “Nauka/Interperiodica”
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The magnetic susceptibility was measured by the
bridge technique, the resistance was measured by the
standard four-probe method, and the magnetization
was determined using a vibrating-sample magneto-
meter. 

2. RESULTS AND DISCUSSION 

The chemical formula of the samples synthesized
was determined to be Sr2(FeMo)O6.02 and
Ca2(FeMo)O5.99. According to x-ray analysis, the
Sr2(FeMo)O6.02 sample had a cubic unit cell, with its
parameter being equal to 7.873 Å, which corresponds
to a unit-cell volume of 61.984 Å3. The Ca2(FeMo)O5.99
compound was of O-orthorhombic symmetry with the
parameters a = 5.384 Å, b = 5.522 Å, and c = 7.709 Å
and a reduced unit cell volume of 57.225 Å3. X-ray dif-
fraction analysis of all compounds revealed weak super
structure peaks due to ordering of the iron and molyb-
denum ions in a NaCl-type structure. With increasing
oxidation, the unit cell volume of all compounds
decreased. The oxidized sample of Sr2(FeMo)O6.05 had
a volume of 61.973 Å3. The reduced volume of the oxi-
dized Ca2(FeMo)O6.03 sample was 57.211 Å3. With
reduction, the unit cell volume of the compounds
increased. The Sr2(FeMo)O5.90 compound had a unit
cell volume of 62.247 Å3. For the Ca2(FeMo)O5.94 com-
position, the reduced volume was 57.258 Å3. 

Earlier, Nakagawa measured the magnetization of
Sr2(FeMo)O6 and Ca2(FeMo)O6 samples [12]. The
magnetic moment value varied from 3.2 to 3.6 Bohr
magnetons per formula unit (µB/f.u.) in these com-
pounds. 

Our measurements of magnetization performed at
8 K (Fig. 1a) showed that the Ca2(FeMo)O5.99 sample
had a magnetic moment of 3.17 µB/f.u. and the mag-
netic moment of Sr2(FeMo)O6.02 was 2.9 µB/f.u. From
the temperature dependences of the dynamic suscepti-
bility (Fig. 2), the Curie temperatures TC were deter-
mined for each composition. As can be seen from
Fig. 2, the Curie temperatures of the as-synthesized
Ca2(FeMo)O5.99 and Sr2(FeMo)O6.02 compounds are
equal to 375 and 418 K, respectively. With reduction of
the Ca2(FeMo)O5.99 and Sr2(FeMo)O6.02 samples, the
magnetic moments (Fig. 1b) and the Curie tempera-
tures (Fig. 2) were decreased. For the Ca2(FeMo)O5.94
composition, the magnetic moment was 3.07 µB/f.u. at
8 K and TC decreased to 367 K. The magnetization of
the Sr2(FeMo)O5.90 compound was 2.63 µB/f.u., and the
Curie temperature was 399 K. 

The resistivity (ρ) of the Ca2(FeMo)O5.99 sample
was of the order of 10–4 Ω cm at the temperature of liq-
uid nitrogen (Fig. 3b). For the Sr2(FeMo)O6.02 compo-
sition, ρ ~ 1 Ω cm at 77 K (Fig. 4b). With reduction, the
resistivity ρ of the samples of both series decreased.
The ρ temperature dependences of the as-synthesized
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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samples and those of the oxidized and reduced samples
of each series are presented in Figs. 3b and 4b. One can
see that the resistivity ρ of the reduced samples
increased insignificantly with increasing temperature in
the overall temperature interval measured, which is
typical for metals. The compositions of the calcium
series displayed a kink on the ρ(T) dependence near the
Curie temperature. 

With oxidation, the samples of all series exhibited
an increase in the ρ. For the Sr2(FeMo)O6.05 composi-
tion with an oxygen content slightly changed from 6.02
to 6.05, the resistance increased by four orders of mag-
nitude at the temperature of liquid nitrogen. The ρ tem-
perature dependence of this sample also changed. The
resistance of the Sr2(FeMo)O6.05 compound revealed
the Arrhenius (activated) behavior in the overall tem-
perature interval measured. For the oxidized sample of
Ca2(FeMo)O6.03, a decrease in the ρ was observed with
increasing temperature in the interval from 77 to 325 K.
When further heated, the sample exhibited an increase
in resistivity. 

The magnetoresistance was calculated as MR =
{[ρ(H = 0) – ρ(H = 5 kOe)]/ρ(H = 0)} × 100%. The
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temperature dependences of the magnetoresistance for
the series of Ca2(FeMo)Ox (5.94 ≤ x ≤ 6.03) and
Sr2(FeMo)Ox (5.90 ≤ x ≤ 6.05) are shown in Figs. 3a
and 4a, respectively. The maximum value of the mag-
netoresistance effect was exhibited by the samples of
the strontium series in a field of 5 kOe. The MR values
ranged from 13 to 18% for all samples at the tempera-
ture of liquid nitrogen and decreased to ~1% with
increasing temperature (Fig. 4). 

At 77 K, the magnetoresistance of the Ca2(FeMo)Ox

series (5.94 ≤ x ≤ 6.03) holds in the limits from 7 to
10%. As the temperature increases, the magnetoresis-
tance effect decreases to ~0.5%. Then, at the Curie tem-
perature, the magnetoresistance exhibits a peak not
exceeding a value of 1.5%. The similar behavior of the
magnetoresistance of a Ba2(FeMo)O6 composition
near the Curie temperature was observed in [4]. At TC,
the MR of the samples of the Ca2(FeMo)Ox (5.94 ≤ x ≤
6.03) series is weakly dependent on the oxygen non-
stoichiometry of the composition. 

Analyzing the temperature dependence of the mag-
netoresistance, one can see an interesting peculiarity in
its behavior. As the oxygen content is reduced, the low-
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temperature magnetoresistance effect decreases more
rapidly with increasing temperature; that is, the smaller
the oxygen index, the steeper the magnetoresistance
curve slope for the compositions of each series. This
tendency is the most pronounced for the samples of the
strontium series. 

According to the results of investigations of
Ba2(FeMo)O6, Sr2(FeMo)O6, and Ca2(FeMo)O6 by the
NMR method, the iron ions are in the trivalent state and
the molybdenum ions are in the pentavalent state [13]. 

We suggest that, during the reduction process in
the compounds, two contrary factors affect the unit
cell volume, namely removal of the oxygen atoms and
transition of the iron ions from the trivalent state to the
divalent state. To conserve the electrical neutrality in
the sample, as one oxygen atom is removed, two iron
ions should pass to the divalent state. The former pro-
cess results in a decrease in the unit cell parameter,
whereas the latter process causes the parameter to
increase, because the ionic radius of the Fe2+ is signif-
icantly greater than the ionic radius of the Fe3+. As can
be seen from the experimental data, the unit cell vol-
ume increases in the reduction process. This suggests
that the unit cell parameter is more strongly affected
by the decrease in the average oxidizing state of the
iron ions. 

It can be supposed that the oxidation process in the
A2(FeMo)O6 (A = Ca, Sr) compounds is similar to the
oxidation of LaMnO3-type perovskites. In this case,
with oxidation of the samples, the valence state of the
molybdenum ions changes (Mo5+  Mo6) and cation
vacancies appear. Both processes result in a decrease in
the unit-cell volume. As was mentioned above, the unit
cell parameter of our samples decreased with oxi-
dation. 

The spontaneous magnetic moment of the stoichio-
metric compounds of A2(FeMo)O6 (A = Ca, Sr) is
determined by the antiparallel ordering of the magnetic
moments of the iron Fe3+ (3d5) and molybdenum Mo5+

(4d1) ions. In this case, for the stoichiometric com-
pound, the spontaneous magnetic moment should be
expected to be of 4 µB/f.u. at 0 K. It seems likely that
strong hybridization of the orbitals of the Fe and Mo
ions with the 2p orbitals of the oxygen ions decreases
the effective magnetic moment of these ions. In our
case, the maximum value of magnetization was exhib-
ited by the Ca2(FeMo)O5.99 composition; as mentioned
above, its magnetic moment was 3.17 µB/f.u. at 8 K. 

Reduction of the Ca2(FeMo)O5.99 and
Sr2(FeMo)O6.02 samples results in a decrease in the
spontaneous magnetic moment per formula unit in
these compounds because of the change in the elec-
tronic configuration of a part of the iron ions from Fe3+

(3d5) to Fe2+ (3d6). The Fe2+ (3d6) ions have a smaller
magnetic moment than the Fe3+ (3d5) ions. The hexava-
lent molybdenum ions are diamagnetic. Therefore, as a
P

result of the oxidation of A2(FeMo)O6 (A = Ca, Sr), an
increase in the spontaneous magnetic moment should
be expected. The decrease in the Curie temperature in
the reduction process of the samples seems to be due to
the exchange interaction Fe2+–O–Mo5+ being slightly
weaker than the exchange interaction Fe3+–O–Mo5+. 

As a result of the reduction of the samples, the elec-
trical conductivity increased (Figs. 3b, 4b) in spite of
the appearance of oxygen vacancies, which are struc-
tural defects and should restrict the mobility of charge
carriers. It is possible that this tendency is associated
with partial disordering of the Fe3+ and Mo5+ ions. In
the strongly reduced samples, we observed a signifi-
cant decrease in the intensity of the super structure
peaks associated with the ordering of the iron and
molybdenum ions. It is well known that the perovskites
containing only Fe3+ ions are good insulators. When
the oxygen content is greater than the stoichiometric
value, a drastic increase in the resistance is observed.
The resistivity temperature dependence (Figs. 3b, 4b)
could be interpreted assuming that the conductivity of
the strongly oxidized samples is due to percolation
processes. It seems likely that the samples are com-
posed of the bulk metallic phase and insulating inter-
layers. The insulating interlayers are weakened at
some places, which results in percolation conductivity
over the metallic phase. When the samples are oxi-
dized, it is likely that the content of the grain-boundary
layers radically changes first. This suggestion is indi-
rectly supported by the strongly oxidized samples
becoming brittle. 

The magnetoresistance effect and magnetic proper-
ties correlate with each other. The weaker the exchange
interaction in A2(FeMo)Ox (A = Sr, Ca), the faster the
magnetoresistance decreases with increasing tempera-
ture. The maximum of the magnetoresistance effect in
the vicinity of the Curie temperature seems to be due to
the same processes as in the metallic Tl2Mn2O7 with a
pyrochlore structure [14]. In Tl2Mn2O7 at the TC tem-
perature, the conductivity character also does not
change, but the magnetoresistance effect is several
times greater [14]. Possibly, it is in part due to the fact
that the compounds of A2(FeMo)O6 (A = Sr, Ca) are fer-
rimagnetics, whereas Tl2Mn2O7 is characterized by
parallel ordering of the magnetic moments of all man-
ganese ions. It is well known that the ferrimagnetic
spinels of the MnFe2O4 type also exhibit a magnetore-
sistance peak near the Curie temperature, although its
value is quite small. 
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Abstract—A theoretical explanation is given for the frequency independence of the nonreciprocal birefrin-
gence of light, which was recently observed in the semiconductors Cd1 – xMnxTe, Zn1 – xMnxTe, and GaAs in
the frequency range below the frequency corresponding to the interband absorption edge. It is shown that the
symmetry of the effect becomes higher at such frequencies if the light-induced excitation energy "ωn(k) only
slightly depends on the photon momentum k. In this case, the nonreciprocal birefringence is completely deter-
mined by the second-rank magnetoelectric tensor. It is shown that the nonreciprocal birefringence of light can
be observed in magnetic media with a tensor order parameter. © 2001 MAIK “Nauka/Interperiodica”.
In recently published works [1, 2], a number of
unusual properties of light birefringence ∆n(ω) induced
by an external magnetic field in cubic semiconductors
Cd1 – xMnxTe, Zn1 – xMnxTe, and GaAs were found
experimentally. One of them is frequency-independent
birefringence which is observed when the light quan-
tum energy "ω is less than the band gap Eg (except a
small frequency range, ~0.2 eV near Eg). At first glance,
there is nothing surprising in such a frequency indepen-
dence of the birefringence, because the usual birefrin-
gence (in optically anisotropic crystals) also virtually
does not depend on frequency in the transmission
range. However, these two phenomena are essentially
different, since magnetically induced birefringence is a
linear spatial-dispersion effect; i.e., it is associated with
the contribution to the optical permittivity tensor of the
crystal, which depends on the wave vector of light k

through the equation ∆εik(ω, k, η) = (ω, η)kl, where

 is a T-odd tensor symmetric in indices i and k; and
the symbol η denotes a T-odd quantity characterizing
the medium (or the external magnetic field) and, gener-
ally, being a tensor with respect to spatial transforma-

tions. The odd parity of the tensor  with respect to
the time reversal follows from the Onsager symmetry
principle ∆εik(ω, k, η) = ∆εki(ω, –k, –η). Similar to
optical activity, which is described by a T-even tensor

 antisymmetric in i and k, nonreciprocal birefrin-
gence can be observed only in noncentrosymmetric
crystals. The distinction between the usual and the non-
reciprocal birefringence at the phenomenological level
reflects the essential differences in the microscopic
nature of these two phenomena.

In addition to the frequency independence of ∆n(ω)
for "ω < Eg, another feature of nonreciprocal birefrin-
gence was revealed in [1, 2]. At these frequencies, the

γikl
s( )

γikl
s( )

γikl
s( )

γikl
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tensor  was found to have a higher symmetry in
comparison with the symmetry admitted by the point
group of the crystal. In other words, relations between

some components of the tensor  arise for "ω < Eg,
which lead to higher symmetry of the tensor and do not
depend on the crystal under investigation.

In this paper, we give an explanation for the features
of the nonreciprocal birefringence listed above. For this
purpose, we consider the frequency dependence of the
optical permittivity tensor of a crystal in the frequency
range below the electron transition frequencies. The
wave-vector-dependent contribution ∆εik(ω, k) to the
real part of the permittivity tensor at zero temperature
has the form [3]

(1)

where J(k) is the Fourier component of the current
operator; rα and vα are the coordinate and velocity
operators of αth particle, respectively; and "ωnk is the
transition energy from the ground state |0〉 to the exited
state |nk〉 .

For small wave vectors k, the matrix element

(k) can be expanded in a power series in k. In the
approximation linear in k, we have

(2)

where ωn = ωn0 and |n〉  = |nk = 0〉 . This expansion is
general; however, explicit calculation of the expansion

parameters , , and  depends on the
accepted model of electron states of the crystal.
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Substituting Eq. (2) into Eq. (1) and retaining the

terms linear in k, we obtain the tensors  and ,
which determine the natural optical activity and the
nonreciprocal birefringence, respectively. Since we are
interested in ∆εik(ω, k) at frequencies which are low in
comparison with the electron transition frequencies ωn,
we expand expression (1) in a power series in the
parameter ω/ωn and retain the first two terms of the
expansion. It is a matter of direct calculation to prove
that the first term of the expansion (containing the
zeroth power of the parameter ω/ωn) is antisymmetric
in indices i and k. Since we consider the terms linear in
k, this term could give rise to optical activity. However,
this term is exactly equal to zero by virtue of the sum
rules, which are well known in the theory of optical
activity [4]. A nonzero contribution to the optical activ-
ity arises only when the terms quadratic in the parame-
ter ω/ωn in expansion (1) are taken into account. The
corresponding expressions are well known, and we do
not present them here. We note only that the rotation of
the polarization plane is proportional to ω2 in the fre-
quency range under investigation.

Let us now proceed to consideration of the nonre-
ciprocal birefringence, which is described by the
terms linear in the parameter ω/ωn in expansion (1).
Indeed, these terms are symmetric in indices i and k
and, as a consequence of the Onsager relation, they
have T-odd parity. Thus, we obtain the following

expression for :

(3)

where

(4)

(5)

As one can see from these formulas, the matrix ele-
ments of the electrical quadrupole moment operator

 are not involved in expressions (3)–(5), which

determine  at low frequencies. The last term in
Eq. (3), i.e., the tensor σikl, is responsible for the depen-
dence of the excitation (electron–hole pair) energy
upon k in a translation-invariant medium. This term is
not equal to zero only if ωnk ≠ ωn – k. The general

expression for the tensor , which is correct for any
frequency of light, was obtained in [5]. However, the
consideration in [5] was applied to the antiferromag-
netic–magnetoelectric Cr2O3, the symmetry properties
of which dictate the equality ωnk = ωn – k. For this rea-

son, the expression for the tensor  obtained in [5]
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does not include the contribution which contains the
derivative ∂ωn/∂k. In semiconductors with the sphaler-
ite structure, the dependence of ωn on k in a magnetic
field was investigated for the exciton spectrum range in
[6,7].

In optical experiments on the propagation of light, k
and ω are connected by the relation ck(ω)/ω = n(ω),
where n(ω) is the refraction index; in the frequency
range ω < ωn we have n(ω) . const. Since the nonrecip-

rocal birefringence ∆n ∝  kl, it follows from
Eqs. (3)–(5) that ∆n(ω) . const in the frequency range
under investigation. Exactly the same behavior of ∆n(ω)
was revealed experimentally [1, 2] in the semiconductors
Cd1 – xMnxTe, Zn1 – xMnxTe, and GaAs for "ω < Eg.

Let us now consider the symmetric properties of the

tensor  given by Eq. (3). The first two terms in the
right-hand side of Eq. (3) are defined by the second-
rank tensor αis. In the case of a homogeneous field, the
contribution of these terms to the electromagnetic
response of the medium is responsible for the magneto-
electric effect [8]. Therefore, the tensor αis determined
by Eq. (4) can be interpreted as a part of the complete
magnetoelectric tensor, which is due to electron transi-

tions, and the corresponding contribution to  will be
designated as the magnetoelectric. The last term in
Eq. (3), i.e., the tensor σikl, cannot be reduced to a sec-
ond-rank tensor in the general case; in other words, it
contains a nonreducible third rank tensor, which we
will refer to, following [5], as quadrupole. It is impor-
tant that the quadrupole and the magnetoelectric contri-
butions to the nonreciprocal birefringence can be sepa-
rated experimentally [1, 2]. This separation is based on
the various angular dependences of the nonreciprocal
birefringence caused by the magnetoelectric and the

quadrupole contributions to  upon orientation of the
crystal. The analysis of this dependence for cubic semi-
conductors Cd1 – xMnxTe and Zn1 – xMnxTe (x . 0.4)
performed in [1, 2] has shown that the quadrupole con-
tribution to ∆n(ω) is much less than the magnetoelec-
tric one in the transmission range for "ω < Eg, where
∆n(ω) . const. A similar behavior was revealed in the
dielectrics Cr2O3 [9] and Co3B7O13I [10]. The first of
them is a magnetoelectric antiferromagnet; therefore,
its nonreciprocal birefringence is a spontaneous effect.
The birefringence in the paramagnetic Co3B7O13I was
induced by an external magnetic field.

It is easy to explain the absence of an appreciable
quadrupole contribution in the dielectrics Cr2O3 and
Co3B7O13I by taking into account that this contribution
is proportional to ∂ωn/∂k, as can be seen from Eq. (5);
i.e., it depends on the dispersion of electron excitations.
However, in the wide-band-gap dielectrics to which
these crystals belong, the dispersion is small (in Cr2O3,

γikl
s( )

γikl
s( )

γikl
s( )

γikl
s( )
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by symmetry, ∂ωn/∂k = 0 at k = 0); consequently, the

quadrupole contribution to  is small.

It is more difficult to understand the reason why the
quadrupole contribution is relatively small in the mag-
netic semiconductors Cd1 – xMnxTe and Zn1 – xMnxTe,
where the dispersion of electron excitations is substan-
tial. Taking into account that the experiments were car-
ried out on samples with a significant concentration of
Mn2+ ions (x . 0.4), one can assume that the essential
contribution to the effect is due to the d–d transitions in
the Mn2+ ion. Usually, the contribution of these transi-
tions to the optical constants of solids is small, since the
matrix elements of the electric dipole moment operator
D0n are nonzero in this case only owing to the relatively
weak noncentrosymmetric part of the crystal field.
However, this small contribution has an influence only
for optical effects existing in the electric dipole approx-
imation (in particular, without account of magnetic
dipole transitions) and is insignificant in this case, since

the product  of the matrix elements is always
different from zero only because the crystal is noncen-
trosymmetric. Therefore, the contribution of d–d tran-
sitions in the Mn2+ to ion magnetoelectric tensor (4) can
be comparable with the contribution of interband tran-
sitions to this tensor. At the same time, d–d transitions
are well localized and, consequently, do not make any
substantial contribution to the quadrupole tensor σikl.
The validity of this assumption can be tested by deter-
mining the relative value of the quadrupole contribu-
tion to the nonreciprocal birefringence in semiconduc-
tors which do not contain Mn2+ ions. Measurement of
the frequency-independent nonreciprocal birefringence
in CdTe, ZnTe, and GaAs was performed in [11]; how-
ever, reliable separation of the magnetoelectric and
quadrupole contributions to ∆n turned out to be impos-
sible because of the smallness of ∆n, which is due,
among other factors, to the absence of exchange
enhancement of interband transitions by Mn2+ ions.
Nevertheless, the above consideration allows one to
conclude that there is a substantial influence of the dis-
persion of electron excitations on the nonreciprocal
birefringence despite the remaining uncertainty in the
interpretation of these experiments. Such an influence
is the characteristic feature of optical spatial-dispersion
effects, and this influence manifests itself especially
clearly in a given special case by defining not only the
magnitude of the effect but also its symmetry.

In closing, we will point out the possible observa-
tion of nonreciprocal birefringence in a medium with
a magnetic structure which is characterized by a ten-
sor order parameter, namely, the three-point correlator
of the microscopic magnetic moment density
〈mi(r1)mk(r2)ml(r3)〉 , provided that this correlator is
odd with respect to spatial inversion; the average 〈m(r)〉
can be equal to zero. Indeed the tensor σikl in Eq. (3) has
the same symmetry properties and can be different

γikl
s( )

D0 n,
i Mn 0,

s

P

from zero in this case. Such a magnetic structure is dif-
ficult to reveal with the help of traditional resonant and
x-ray diffraction methods. If the three-point correlator
of the magnetic moment density is even with respect to
spatial inversion, then the Faraday rotation which is
quadratic in the wave vector of light k should be
observed in the medium with such a magnetic structure
[12]. Expanding Eq. (1) in a power series in k and ω/ωn,
it is easy to show the rotation of the polarization plane
of light φ ∝  ω2 at low frequencies; i.e., it behaves like
the usual Faraday rotation. At the same time, for the
Faraday rotation which is quadratic in k, we have
φ(ω) . const at high frequencies [12].
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Abstract—Microscopic models of real ferromagnetic gadolinium are proposed, and their critical properties are
studied by the Monte Carlo method. The critical exponents α (heat capacity), γ (susceptibility), and β (magne-
tization) are calculated. The α, β, and γ exponents are determined by the approximation of the data on the basis
of traditional power functions and in the framework of the finite-size scaling theory. It is revealed that the crit-
ical behavior of gadolinium is affected by the dipole–dipole interactions. It is shown that the Monte Carlo
method is a powerful tool for investigations into the critical properties of complex models in which two types
of weak relativistic interactions are jointly taken into account against the background of each of these interac-
tions. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The ideas underlying the scaling and universality
hypotheses and the renormalization-group theory
appeared most fruitful in constructing a unified theory
of phase transitions and critical phenomena [1, 2]. The
most exact and reliable numerical values of critical
exponents were obtained on the basis of the renormal-
ization-group theory and the ε-expansion [3, 4]. Up to
now, the renormalization-group theory remains one of
the most efficient tools for quantitative investigations
into the critical phenomena. However, this theory also
involves serious problems in the study of complex
models which require inclusion of numerous factors
that are inherent in real systems but are ignored in first-
approximation models (classical Ising, Heisenberg, and
other models). Among these are anisotropy, impurities,
multispin exchange, dipole–dipole interaction, lattice
vibrations, and a number of other factors [2]. At the
same time, the current state of the art in the investiga-
tion of phase transitions and critical phenomena is
characterized by the study of more complex and realis-
tic models [5, 6]. Moreover, the approach underlying
the renormalization-group theory is not strictly micro-
scopic [7].

For these reasons and others, phase transitions and
critical phenomena have been extensively studied by
Monte Carlo methods [5, 6, 8–10].

Quantitative analysis of the immediate critical
region with the use of Monte Carlo methods became
possible only in recent years. Nonetheless, the results
obtained by these methods to date have been on a par in
terms of accuracy with the most reliable data of other
techniques and, sometimes, even surpass them [5–10].
The computational power of modern computers and the
application of special algorithms in some cases make it
possible to calculate critical parameters directly from
1063-7834/01/4304- $21.00 © 20685
the results of Monte Carlo calculations without invok-
ing various tricks and technical procedures [5, 11].

Laboratory experiments thus far performed in the
immediate vicinity of the critical point are too compli-
cated, do not ensure the required accuracy for the the-
ory, and do not provide answers to a number of impor-
tant questions. Furthermore, the investigation into the
critical behavior of some magnetic materials presents
considerable difficulties. One of these materials is a
rare-earth metal, viz., gadolinium. Despite a large num-
ber of experimental studies carried out with the aim of
elucidating the character and specific features of the
critical behavior of gadolinium, many important prob-
lems still remain to be solved.

In this work, we proposed microscopic models of
real ferromagnetic gadolinium and studied their critical
properties by the Monte Carlo method. The distinctive
feature of the present study is that the models proposed
account for weak relativistic interactions of different
types against the background of each of these interac-
tions, and their influence on the critical behavior has
been the subject of investigation. This statement of the
problem is of interest from the standpoint of the poten-
tials of both the technique for analyzing critical phe-
nomena and the Monte Carlo method in revealing the
effect of weak factors on these phenomena.

2. CRITICAL PROPERTIES OF GADOLINIUM

Gadolinium is a rare-earth metal with a close-
packed hexagonal structure. In the temperature range
232 K < T < Tc ≅  293 K, gadolinium undergoes a simple
ferromagnetic ordering. Magnetic and neutron diffrac-
tion investigations demonstrate that the one-ion and
two-ion mechanisms are responsible for the anisotropy
in gadolinium, whereas the anisotropy in the paramag-
001 MAIK “Nauka/Interperiodica”



 

686

        

MURTAZAEV 

 

et al

 

.

                                                                    
netic phase is governed by the uniaxial anisotropy of a
short-range magnetic order [12–14]. On the one hand,
gadolinium is a uniaxial weakly anisotropic ferromag-
net, and, hence, its critical behavior at temperatures
sufficiently close to Tc can have an Ising character. On
the other hand, a spherically symmetric distribution of
the electron density and the absence of an orbital
momentum lead to the isotropic exchange interaction,
which suggests a Heisenberg character of the critical
behavior.

The statistical critical behavior of gadolinium has
been experimentally studied in a large number of works
[14–24]. Investigations into thermal expansion [14,
15], heat capacity [16–18], and magnetic properties
[19–23], as well as Mössbauer studies [24], which were
performed with different single-crystal and polycrys-
talline samples, made it possible to determine a set of
static critical exponents α, β, γ, and δ. The numeral val-
ues of these exponents are summarized in the tables
given in [23–25]. A comparison of the experimental
data with theoretical predictions within the Ising and
Heisenberg three-dimensional models shows their dis-
crepancy. As follows from the critical exponents α of
the heat capacity and thermal expansion, gadolinium is
either Heisenberg-type or isotropic dipole magnet. As
regards the exponent β, which characterizes the tem-
perature dependence of the spontaneous magnetization
Ms, this dependence in all the studies also corresponds
to either Heisenberg or isotropic dipole magnet. At the
same time, the critical exponent γ of the susceptibility
is closer to the characteristic values of the Ising model.
Moreover, the exponent δ is consistent neither with
microscopic theories nor with the molecular-field the-
ory. This brings up the question of how the critical
behavior of gadolinium can be explained when certain
critical exponents correspond to one model and the
other exponents follow another model.

According to analysis of the experimental data, the
main reasons for these discrepancies are as follows.

(1) The reasons associated with the technique for
determining particular critical exponents [23]. In the
majority of works, the β, γ, and δ critical exponents
were determined by the fitting of M–H–T experimental
data to the scaling equation of state for the magnetiza-
tion, which implies the fulfillment of the scaling law
γ = β(δ – 1). In this definition, the critical exponents
should obey the scaling laws which include the same
exponents β, γ, and δ. However, their individual values
can be inconsistent with the true asymptotic critical
behavior.

(2) In real crystals, there occur additional interac-
tions perturbing the initial critical behavior. For exam-
ple, isotropic dipole interactions in Heisenberg mag-
nets lead to the dependence of the γ exponent on the
reduced temperature [23].

(3) As follows from recent experiments performed
with different gadolinium samples, defects produce a
P

considerable effect, which can change the character of
the critical behavior [18].

(4) The critical properties of gadolinium, specifi-
cally the width and height of the heat capacity peak,
depend on the conditions and the procedure of sample
preparation [18].

(5) Theoretical estimates have been obtained for
static models with fixed values of the geometric param-
eters of the lattice, angles, atomic positions, etc. At the
same time, in the case when real samples are studied in
laboratory experiments, these parameters can vary,
which can lead to a change in the interaction parame-
ters. In some cases, this can result in a disagreement
between theoretical and experimental data.

Note that careful experimental investigations into
the static critical properties of gadolinium were carried
out by Aliev et al. [23], who determined the values of
the β, γ, and δ exponents. The specific features in the
behavior of the heat capacity were studied by Bednarz
et al. [18]. The results of the latter work indicate that
the critical behavior of the heat capacity is very sensi-
tive to the procedure for preparing a sample, its purity,
and chemical composition.

However, it should be noted that not all the above
factors can be eliminated or taken into account in the
course of laboratory experiments. For this purpose, it is
necessary to carry out an experiment in which all the
parameters involved are specified and rigidly con-
trolled. These conditions can be provided only by a
numerical experiment (the Monte Carlo method).

3. MICROSCOPIC MODELS OF GADOLINIUM

The following features of gadolinium should be
taken into consideration when constructing the models
of this material: (i) the electron density is distributed in
a spherically symmetric way, and the orbital momen-
tum is absent; (ii) the energy of the magnetic crystallo-
graphic anisotropy for gadolinium is substantially less
than that for other rare-earth elements; and (iii) the iso-
tropic dipole–dipole interactions in gadolinium can
play a significant role in the critical region.

With due regard for these features, the Hamiltonian
of a system can be represented in the form

(1)

where the first term accounts for the exchange interac-
tion of each Gd3+ ion with all the nearest neighbors (J >
0), the second term describes the uniaxial anisotropy
(DA), and the third term represents the isotropic dipole–
dipole interaction (Dd). According to the data obtained
in terms of the molecular-field theory [12, 23, 26, 27],
the parameters of the anisotropy DA and the isotropic

H
1
2
--- J mim j( )

ij

∑ DA µi( )2

i

∑ Dd M〈 〉 mi⋅( ),
i

∑–––=

mi 1,=
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dipole forces Dd are as follows: DA = 1.41 × 10–4 and
Dd = 1.35 × 10–3.

The calculations were performed by the Monte
Carlo method for cubic samples of size L × L × L (L =
8, 10, 12, 14, 16, 18, and 20) with periodic boundary
conditions. The systems were simulated with allowance
made for all magnetic and crystallographic features of
real gadolinium. In order to bring the system to the
equilibrium state, Markovian chain segments of a
length up to 2.5 × 104 MCS/spin were cut off. Averag-
ing was carried out over a Markovian chain of a length
up to 1.2 × 105 MCS/spin.

In order to reveal the effect of dipole forces on the
character of the critical behavior, we considered two
gadolinium models. The model G1 takes into account
the exchange interaction with the nearest neighbors and
the uniaxial anisotropy. The model G2 additionally
allows for the isotropic dipole–dipole interactions. It
should be noted that, as far as we know, the influence of
different-type weak interactions against the back-
ground of each of these interactions on the critical
behavior has never been investigated by the Monte
Carlo method, and, hence, the potentials and the “sen-
sitivity” of the Monte Carlo method in this case remain
unknown.
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Fig. 1. Temperature dependence of the heat capacity for the
G1 model.
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4. STATIC CRITICAL PROPERTIES
OF GADOLINIUM MODELS

The temperature dependences of the heat capacity
and the susceptibility were examined using the fluctua-
tion relationships

(2)

(3)

where K = |J |/kBT, U is the internal energy, and m is the
magnetization. The temperature dependences of the
heat capacity C and the susceptibility χ for the G1
model are shown in Figs. 1 and 2. Note that all the
dependences exhibit clear maxima, which, within the
limits of experimental error, correspond to the same
temperature. Figure 3 depicts the temperature depen-
dence of the magnetization m for the G1 model. The
magnetization m monotonically decreases with an
increase in temperature, and the high-temperature
“tails” decrease with an increase in the number of spins
N. The critical temperature was determined by the
Binder cumulant method [5]. According to the finite-
size scaling theory (see [5] and references therein), the
cumulants UL = 1 – 〈M4〉/3〈M2〉2 for systems with dif-
ferent sizes L intersect at the critical point Tc. The tem-
perature thus determined kBTc/|J | = 3.22(2) was taken

C NK2( ) U2〈 〉 U〈 〉 2–( ),=

χ NK( ) m2〈 〉 m〈 〉 2–( ),=
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Fig. 2. Temperature dependence of the susceptibility for the
G1 model.
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as the critical temperature. The temperature depen-
dence of the Binder cumulant UL for the G1 model at
different N is displayed in Fig. 4.

Similar calculations were performed for the G2
model. Qualitatively, all the features characteristic of
the G1 model (see Figs. 1–4) are also observed for the
G2 model. The difference between the temperature
dependences of C and χ for the models G1 and G2 lies
in the fact that the height of the maxima for the G2
model is slightly less than that for the G1 model. The
critical temperatures Tc for both models coincide within
the limits of error.

The critical behavior of the heat capacity was
approximated by the following relationships [18]:

(4)C
A
α
--- t α– 1 ac t x+( ) R t E,+ +=

N = 512
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Fig. 3. Temperature dependence of the magnetization for
the G1 model.

Fig. 4. Temperature dependence of the Binder cumulant UL
for the G1 model.
P

(5)

where t = |T – Tc |/Tc; α is the critical exponent of the
heat capacity; and A, ac, R, and E are the fitting param-
eters. The value of x was taken equal to 0.55 [3]. The
data were processed using the nonlinear least-squares
technique. For both gadolinium models, the critical
parameters obtained from relationships (4) and (5) are
equal to each other within the limits of error; however,
expression (5) leads to a smaller error in their calcula-
tions.

Table 1 presents the critical exponents α, which
were obtained by the approximation of the heat capac-
ity in different temperature ranges with the use of rela-
tionship (5). As can be seen from Table 1, all the critical
exponents in the temperature range 3 × 10–3 ≤ t ≤ 5 ×
10–1 are negative (which is characteristic of the Heisen-
berg model) and fall in the range from –0.14 to –0.18.
It is worth noting that, as the value of tmax decreases, the
exponent α increases, approaches zero, and then
becomes positive. This indicates the crossover from the
Heisenberg to the Ising critical behavior.

The theoretical value of the crossover temperature
tcr can be calculated by the formula tcr = (DA/|J |)1/f [23],
where f = 1.25 for the crossover from n = 3 to n = 1 (n is
the number of order parameter components). In our
case, tcr = 8.31 × 10–4. As follows from the data pre-
sented in Table 1, the crossover range for the systems
under consideration is sufficiently wide. Similar fea-
tures are observed in the behavior of the heat capacity
for the G2 model. The exponents α determined in a
similar manner for the models G1 and G2 coincide
within the limits of error.

For comparison, the theoretical values of the α, β,
and γ exponents for three-dimensional systems are as
follows: α = 0.108, β = 0.326, and γ = 1.24 for the Ising
model (n = 1) [3, 4]; α = –0.126, β = 0.368, and γ = 1.39
for the Heisenberg model (n = 3) [3, 4]; and α = –0.135,
β = 0.381, and γ = 1.37 for the model with isotropic
dipole–dipole interactions (see [23, 25] and references
therein).

The effect of dipole forces, to some extent, mani-
fests itself in the critical exponents γ of the susceptibil-
ity. The critical exponents γ and γ' were calculated
using a simple power relationship

(6)

The exponents γ and γ' obtained for the models G1
and G2 are listed in Table 2. The susceptibility is a
strongly fluctuating quantity, and the character of the
critical behavior cannot be uniquely determined by tra-
ditional procedures of processing the Monte Carlo data.
However, the data presented in Table 2 rather conclu-
sively indicate a tendency for the exponents of the sus-
ceptibility to change when going from the G1 model to
the G2 model. Note that there is a clear tendency for a

C
A
α
--- t α– 1–( ) ac t x R t E,+ + +=

χ Γ t γ– .=
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Table 1.  Effective critical exponents α of the heat capacity for gadolinium (model G1, tmin = 3.0 × 10–3)

N
tmax

5 × 10–1 4 × 10–1 3 × 10–1 2 × 10–1 1 × 10–1 0.9 × 10–1 0.8 × 10–1 0.7 × 10–1

512 –0.18(2) –0.16 –0.13 –0.08 –0.02 0.02 0.06 0.08

1000 –0.18 –0.15 –0.12 –0.09 –0.03 0.01 0.05 0.07

1728 –0.16 –0.14 –0.10 –0.06 –0.01 0.02 0.06 0.08

2744 –0.17 –0.15 –0.09 –0.07 –0.02 0.00 0.04 0.07

4096 –0.15 –0.13 –0.10 –0.04 –0.02 0.01 0.04 0.07

5832 –0.14 –0.12 –0.09 –0.04 –0.01 0.03 0.05 0.08
decrease in the magnitudes of the γ exponent in the G2
model as compared to those in the G1 model. At the
same time, these features for the γ' exponent are consid-
erably less pronounced.

The critical behavior of the magnetization was
approximated by the expression

(7)

where B and am are the critical amplitude and the ampli-
tude of the correction for scaling, respectively. The data
of the Monte Carlo experiments were processed with
correction for scaling (am ≠ 0) and without regard for
this correction (am = 0). The critical exponents β calcu-
lated for the models G1 and G2 are presented in
Table 3.

The calculations were performed in the same tem-
perature range as for the susceptibility. For the G1
model, the β exponents obtained from the data pro-
cessed without correction for the scaling (am = 0) and
those with this correction (am ≠ 0) lie in the range 0.31–
0.34. It is difficult to reveal the influence of the correc-
tion for the scaling from these data, because they coin-
cide, to within the error, at am ≠ 0 and am = 0. Making
allowance for the dipole interactions in the G2 model
leads to a small increase in the β exponents.

Note that the character of the critical behavior of the
models under consideration cannot be uniquely deter-
mined using the critical exponents γ and β. In our opin-
ion, this is explained by the fact that the susceptibility
is a strongly fluctuating quantity and the magnetization
exhibits high-temperature tails. Hence, the traditional
procedures of processing these quantities lead to seri-
ous problems. As will be shown below, analysis of the
same data in the framework of another approach gives
a more clear pattern of the critical behavior.

5. A FINITE-SIZE SCALING

The basic principles of the finite-size scaling theory,
which has been used extensively in recent years, are
reduced to the inclusion of finite (L ! ∞) sizes of the
systems analyzed by the Monte Carlo method [5, 9, 28,
29]. According to this theory, the free energy of a suffi-

m B t β 1 am t x+( ),=
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ciently large system with periodic boundary conditions
at a temperature close to the critical point Tc is scaled as
follows:

(8)

where d is the space dimension, Tc = Tc(L = ∞), and ν is
the statical critical exponent of the correlation length
for an infinitely large system (L = ∞). Relationship (8)
leads to similar dependences of the heat capacity, the

F T L,( ) L d– F tL1/ν( ),=

Table 2.  Effective critical exponents γ (γ') of the susceptibil-
ity for gadolinium models G1 (Dd = 0) and G2 (Dd ≠ 0) at
0.95 × 10–3 ≤ t ≤ 7 × 10–1

N
Dd = 0 Dd ≠ 0

γ' γ γ' γ

512 1.13(3) 1.29 1.11(2) 1.17

1000 1.14 1.24 1.11 1.18

1728 1.15 1.28 1.12 1.13

2744 1.14 1.23 1.13 1.14

4096 1.18 1.28 1.15 1.14

5832 1.19 1.27 1.14 1.13

Table 3.  Effective critical exponents β of the magnetization
for gadolinium models G1 (Dd = 0) and G2 (Dd ≠ 0) at
0.95 × 10–3 ≤ t ≤ 6 × 10–1

N
Dd = 0 Dd ≠ 0

am = 0 am ≠ 0 am = 0 am ≠ 0

512 0.30(2) 0.32 0.32 0.32

1000 0.31 0.33 0.33 0.34

1728 0.32 0.33 0.33 0.34

2744 0.32 0.34 0.34 0.36

4096 0.33 0.34 0.34 0.35

5832 0.33 0.34 0.34 0.36
1
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magnetization, and the susceptibility per spin, that is,

(9)

(10)

(11)

Relationships (9)–(11) describe well the critical
behavior of infinitely large systems at t ! 1 and L  ∞.

From this theory, it follows that the magnetization
and susceptibility in the system of size L × L × L at T =
Tc and sufficiently large L satisfy the following relation-
ships:

(12)

(13)

Analysis of our data with the use of relationships (12)
and (13) made it possible to determine the β and γ expo-
nents. To accomplish this, the dependences of m and χ
on the linear size L of the lattice were plotted on the
log–log scale. For the G1 model, we obtained the ratios
β/ν = 0.501 and γ/ν = 1.987. By assuming that the ini-
tial Hamiltonian is the Heisenberg one and setting
ν = 0.706 [3, 4], we have β = 0.35(2) and γ = 1.40(2).
Note that these values are in good agreement with the
exponents theoretically calculated within the Heisen-
berg model (β = 0.368 and γ = 1.39 [3, 4]). For the G2
model, β/ν = 0.569 and γ/ν = 1.917. Since this model
allows for the dipole–dipole interactions in addition to
the exchange interactions, let us determine the expo-
nents at ν = 0.706 (the Heisenberg model) and ν = 0.69
(the dipole model [25]). As a result, we obtain β =
0.40(2) and γ = 1.35(2) at ν = 0.706 and β = 0.39(2) and
γ = 1.33(2) at ν = 0.69. It is worth noting that the β and
γ exponents for this model are shifted toward the values
characteristic of three-dimensional dipole models (β =
0.38 and γ = 1.37 [25]). The exponent magnitudes
obtained at ν = 0.706 coincide with these theoretical
values, to within the limits of error. It should be noted
that the replacement of ν = 0.706 by ν = 0.692 leads to
a decrease in the γ exponent, which is characteristic of
the crossover from the critical behavior within the
three-dimensional Heisenberg model with isotropic
short-range forces to the behavior described by the
three-dimensional dipole model.

In practice, the scaling of the heat capacity, as a rule,
is performed with maximum values Cmax and the
expression [5, 28, 30],

(14)

where a is a coefficient. The approximation of the data
with the use of relationship (14) gives the critical expo-
nents α = –0.15(2) for the G1 model and α = –0.17(2)
for the G2 model at ν = 0.706. The α value recalculated
for the G2 model at ν = 0.69 (the dipole model), to
within the limits of error, coincides with the α exponent
at ν = 0.706. These data also agree well with theoretical

C T , L( ) Lα /νC0 tL1/ν( ),≈

m T , L( ) L β/ν– m0 tL1/ν( ),≈

χ T , L( ) Lγ/νχ tL1/ν( ).≈

m L β/ν– ,∝

χ Lγ/ν.∝

Cmax L( ) Cmax L ∞=( ) aLα /ν,–=
P

predictions within the Heisenberg model and the results
obtained in analysis of the Monte Carlo calculations on
the basis of traditional power functions.

Our results obtained by the Monte Carlo method in
the study of the models for real ferromagnetic gadolin-
ium demonstrate that the G1 model exhibits a Heisen-
berg critical behavior. The critical exponents α of the
heat capacity, which were determined by the approxi-
mation of the data with power functions and from the
relationships of the finite-size scaling theory, agree
well with each other and the theoretical values, as well
as with the majority of the data obtained in laboratory
experiments for gadolinium [18, 23–25].

The β and γ exponents determined by the traditional
technique from relationships (6) and (7) have a specific
feature typical of the Monte Carlo data: the character of
the critical behavior is difficult to judge from these
exponents. At the same time, the results obtained for β
and γ by the processing of the same data in terms of the
finite-size scaling theory unambiguously assign the G1
model to the Heisenberg universality class with expo-
nents α = –0.15(2), β = 0.35(2), and γ = 1.40(2). A com-
parison of the critical parameters calculated for the G1
and G2 models shows that the inclusion of the isotropic
dipole–dipole interactions in the G2 model leads to a
certain shift in the critical parameters which is charac-
teristic of the crossover from the Heisenberg model to
the dipole model. Note also that the isotropic dipole–
dipole interactions considered in the G2 model are only
a weak perturbing factor on the background of strong
exchange interactions. Since analysis of the effect of
these forces on the critical behavior with the joint inclu-
sion of another weak perturbing factor, namely, the
uniaxial anisotropy, was not performed earlier, the res-
olution of the Monte Carlo method in this case
remained unknown. For this reason, all the experiments
and the data processing were carried out rigorously fol-
lowing the same procedure. The features that have
manifested themselves in the G2 model indicate a high
resolution of the Monte Carlo method.

It should be noted that, although the results of the
data processing in the framework of the finite-size scal-
ing theory are in better agreement with theoretical and
experimental results, analysis of the same data by their
approximation with power functions makes it possible
to extract additional important information. In our
opinion, in order to obtain a more comprehensive pat-
tern of the critical behavior in these systems, the results
of the Monte Carlo calculations should be analyzed
within both approaches.
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Abstract—Diffraction of light by dynamic deformations of a domain wall moving at the velocity of sound is
observed in plates of rare-earth orthoferrites TmFeO3 and DyFeO3. In this case, the domain wall is shown to
become bent across the thickness of the plate. The lifetime of the dynamic deformations is determined to be
20 ns, and their dimension is 2 × 10–4 cm. It is found that the polarization of light is altered and its change is
comparable in magnitude to the Faraday rotation angle in the orthoferrites investigated. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In orthoferrites (weak ferromagnets) RFeO3 (R3+ is
a rare-earth or an yttrium ion), the crystalline and mag-
netic structure is such that the motion of domain walls
(DWs) under a magnetic field is the dominant mecha-
nism of magnetization reversal [1–6]. The mutual ori-
entation of the easy magnetization axis and the optical
axis in orthoferrites, as well as their high magnetoopti-
cal quality factor in the visible spectral region, is favor-
able for study of the DW dynamics in these materials.
The maximum DW velocity in YFeO3 is higher than
that in all other magnets studied to date. The experi-
mental value of this velocity is the same as the mini-
mum phase velocity of spin waves corresponding to the
linear portion of the spin-wave dispersion curve and
equals 19.74 × 103 m/s [1], which is significantly higher
than the velocities of transverse (vt) and longitudinal
sound (vl) in this material. The dependence of the DW
velocity on the amplitude of the driving magnetic field
v(H) is nonlinear in YFeO3 and earlier investigated
rare-earth orthoferrites. It has been shown [1] that the
DW ceases to be one-dimensional in YFeO3 when its
velocity exceeds the velocity of sound. The v(H) curve
has a number of “shelves,” i.e., magnetic-field ranges
∆H over which the DW velocity varies only insignifi-
cantly. The ranges ∆H over which the DW velocity is
equal to vt or vl were theoretically shown [1, 4] to be
due to magnetoelastic coupling. Some shelves corre-
sponding to DW motion at a supersonic velocity are
due to DW interaction with magnons, which are created
near a DW under parametric-resonance conditions [1,
2]. The number of shelves on the v(H) curve and their
width ∆H increase as the DW velocity approaches the
limiting velocity C. These features were observed in
plates of YFeO3, no matter what the synthesis method,
1063-7834/01/4304- $21.00 © 0692
the DW type (Bloch, Néel, or intermediate one), the
plate thickness, the boundary conditions at the plate
surfaces, or the temperature in the range of 4.2–460 K
[1, 2].

The DW motion at a supersonic velocity, which is
characteristic of orthoferrites, was investigated theoret-
ically in a model which allows for strong dissipation [1,
4] and magnetoelastic interaction of the DW with bulk
acoustic waves. By simultaneously solving the magne-
todynamics and elasticity equations, the effect of the
external magnetic field on the time dependence of the
DW magnetization was calculated with allowance for
the magnetoelastic coupling and energy dissipation in
the elastic subsystem. The v(H) dependence found cor-
relates well with the experimental dependence. The
dynamic elastic deformations  and  associated
with the moving DW were calculated [1, 4] to be

(1)

where δt and δl are the magnetoelastic coupling con-
stants and ϑ  is the angle between the easy axis and the
direction of the DW motion. It follows from Eq. (1) that
the magnitude of the dynamic elastic deformation tends
to infinity as the DW velocity approaches vt or vl.
Because of this, the magnetic anisotropy constants are
significantly renormalized and can even change their
sign, which, in turn, leads to a change in the DW struc-
ture and dimensions and affects the DW dynamics, as
was observed in [1, 5].

In [3], the parameters of the dynamic deformations
produced by a moving DW were found from the spectra
of inelastic light scattering by the DW; the Brillouin
scattering spectra, which were formed during the DW

Ut' Ul'

Ut' δt ϑ ϑ /C 1 v 2/v t
2–( ),cossin–=

Ul' δl ϑsin
2

/C 1 v 2/v l
2–( ),–=
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passing 106 times across the beam spot of a He–Ne
laser, were used to determine the frequency and wave
vector of excited phonons; they were found to be
10 GHz and 3 × 105 cm–1, respectively (at liquid-helium
and room temperatures). It was also confirmed in [3]
that the magnitude of the dynamic deformation
depends on the direction of the DW motion; when this
direction does not coincide with the crystallographic a,
b, and c axes of the crystal, the DW interacts with all
three phonon modes. The dynamic deformations of a
moving DW increase significantly when it breaks
through the sound barrier, as was found experimentally
and substantiated theoretically in [1, 4].

Chetkin et al. [5] showed that, when the DW veloc-
ity equals the transverse sound velocity, the DW width
becomes almost an order of magnitude smaller and
then, at supersonic velocities, again increases sharply
almost to its initial value. It was proposed that the DW
tilts through an angle as large as approximately 50°
when it breaks through the sound barrier.

Fraunhofer diffraction from a single fixed DW in
orthoferrites was investigated in [7]. The sample was a
100 µm thick plate of orthoferrite YFeO3, and diffrac-
tion from a DW between two domains magnetized in
opposite directions was observed; in passing through
them, the polarization of light was changed.

In contrast to YFeO3, rare-earth orthoferrites
(REOs) are characterized by an additional magnetic
ordering in the sublattice formed by rare-earth ions.
Because of this, the magnetoelastic coupling constants
in RFeO3 are larger than those in YFeO3 and the cou-
pling of the magnon and phonon subsystems is
strengthened when DWs move at a near-sonic velocity.

The objective of this paper is to investigate the
behavior of a DW breaking through the sound barrier
during pulsed magnetization reversal in plates of
REOs, such as TmFeO3 and DyFeO3. Earlier investiga-
tions of the DW dynamics in REOs [1, 2] were con-
ducted using a magnetooptical analog of the Sixtus–
Tonks induction method, which does not allow one to
measure high velocities with satisfactory accuracy and
investigate the shape of the DW. The DW dynamics at
supersonic velocities in the yttrium orthoferrite was
investigated in [1, 2] by a method that yielded a high
spatial (less than 1 µm) and temporal resolution (less
than 1 ns), but this method has not yet been applied to
investigate the DW dynamics in REOs.

1. EXPERIMENTAL RESULTS

We investigated TmFeO3 and DyFeO3 samples
which had been grown by the crucibleless melting
method with optical heating at the Moscow Power
Institute. The samples had the shape of plates and were
cut out perpendicular to the optical axis. The thickness
of the plates was about 60 µm, which ensured the high-
est magnetooptical contrast and allowed one to visual-
ize dynamic DWs without using an image interferome-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
ter. The plate surfaces were preliminarily treated by
immersing the plates in overheated orthophosphoric
acid, which relieved internal stresses and increased the
mobility of the DWs.

The investigation was made by a double-exposure
high-speed photography method [6]. A dynamic DW
was illuminated synchronously with the pulsed mag-
netic field by two subnanosecond pulses of an oxazine
17 dye laser pumped by a nitrogen transverse discharge
laser. The emission wavelength 630 nm fell within the
optical transparency window of the samples investi-
gated. The method allows one to conduct an investiga-
tion in real time. Improvements in the method reduced
the error to 2% for a velocity of 20 × 103 m/s; this error
was fundamentally determined by the light pulse length
alone [2]. The time separation between the two illumi-
nating pulses was 15 ns. The distance traveled by the
DW over this time interval was used to calculate the
DW velocity, which allowed the v(H) dependence to be
determined very accurately in the TmFeO3 and DyFeO3
samples.

The temperature dependence of the DW mobility in
orthoferrites is known to follow the 1/T2 law [1]. At
room temperature, the DW mobility in REOs is an
order of magnitude lower than that in YFeO3; therefore,
in order to investigate the DW dynamics in these mate-
rials, strong magnetic fields must be applied. For this
reason, we measured the temperature dependence of
the DW mobility in TmFeO3. It was found that the max-
imum DW mobility in the TmFeO3 samples studied
was reached at 168 K and equaled 860 cm/(s Oe). In the
temperature range 94–98 K, weakly ferromagnetic thu-
lium orthoferrite exhibits reorientation of its magneti-
zation from the [001] to [100] direction, which is likely
the reason for the decrease in the DW mobility at tem-
peratures below 168 K. Our investigations of the DW
dynamics in TmFeO3 were all conducted at 168 K in an
optical liquid-nitrogen cryostat. The sample was fixed
to a cooling copper lead, which allowed the tempera-
ture to be kept constant.

We also investigated the temperature dependence of
the DW mobility in DyFeO3 plates of different thick-
nesses. The maximum mobility was found to be equal
to 340 cm/(s Oe), and it was reached at room tempera-
ture. Because of the low DW mobility, the velocity of
the DW motion in this orthoferrite can only slightly
exceed the longitudinal sound velocity 7.2 × 103 m/s. In
DyFeO3, as well as in TmFeO3, the v(H) dependence
exhibited shelves ∆H at velocities equal to vt and vl.

Figure 1a shows a photomicrograph of two superim-
posed dynamic domain structures with alternate light
and dark stripes. As in YFeO3 [1], the moving DW in
the TmFeO3 samples investigated ceases to be planar
when it breaks through the sound barrier. A leading
portion occurs on the DW, as is seen from the photomi-
crograph in Fig. 1a. On the left and on the right of this
portion, the DW velocity remains equal to the trans-
1
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(‡)

(b)

Fig. 1. Photomicrographs of two superimposed dynamic domain structures in TmFeO 3 at 168 K (the time separation between the
two illuminating pulses is equal to 15 ns). (a) Diffraction pattern from a portion of the DW at the instant it breaks away from a
dynamically deformed region and (b) a non-one-dimensional DW moving at a supersonic velocity equal to 8 × 103 m/s.
verse sound velocity in TmFeO3, 3.6 × 103 m/s, while
the velocity of the leading portion exceeds this value
and is as high as 5 × 103 m/s. (All measurements of the
dynamic DW parameters were made by processing the
original photomicrographs with a computer.) As is seen
from Fig. 1a, the brightness of the light stripes
decreases with their distance from the leading portion
of the DW. This variation in brightness is more pro-
nounced in the dark region, where the DW has already
broken through the sound barrier. Microphotometric
measurements showed that stripes are also observed in
the light region, but they are feebly marked. The overall
width of the part of the dark region in which light
stripes are observed is 67.5 µm. It should be noted that,
during a time of 15 ns, the DW travels a distance of
54 µm when moving at a velocity of vt = 3.6 × 103 m/s,
while in the region where the DW moves at a super-
sonic velocity 5 × 103 m/s, the distance traveled by the
DW is 75 µm. Therefore, the width of the just men-
tioned region, containing four light stripes, is smaller
than the distance traveled by the DW with supersonic
velocity during the time elapsed between two laser
pulses. The distances of the centers of the four light
stripes from the leading portion of the DW are 35, 50,
60, and 67.5 µm, respectively. According to micropho-
tometric measurements, the relative brightnesses of
these light stripes with respect to that of the first light
stripe of the leading DW portion are 76, 64, 50, and
35%, respectively.

Similar modulation of the brightness was also
observed in a DyFeO3 plate when the DW velocity
became equal to the velocity of sound. It should be
stressed that this modulation takes place only at the
instant the DW breaks through the sound barrier, as can
be seen from the photomicrographs for TmFeO3 pre-
P

sented in Fig. 1. Indeed, Fig. 1b shows the dynamic
domain structure in the case where the DW velocity is
8 × 103 m/s and there are three leading DW portions
with the radius of curvature approximately 180 µm, but
no modulation of brightness is observed.

2. DISCUSSION

It has been shown both theoretically [1, 4] and
experimentally [3] that, when the DW velocity is near
the velocity of sound, a region of localized dynamic
deformation (elastic soliton) as large as several DW
widths can break away from the DW. In order to inter-
pret the observed modulation of the light intensity
transmitted through TmFeO3 and DyFeO3 plates, let us
analyze the diffraction of light by the phase inhomoge-
neities [8] associated with dynamic deformations of the
DW breaking through the sound barrier.

The characteristic size of a dynamically deformed
region breaking away from a moving DW must be com-
parable to the DW width and can be as large as several
micrometers. We will assume that the shape of the
dynamically deformed region separating from the DW
is identical to the shape of the DW before it breaks
through the sound barrier. Under these conditions, the
observed amplitude modulation of light can be due to
diffraction by phase inhomogeneities associated with
variations in the refractive index in the deformed
region.

The double-exposure pulsed photomicrography
method allowed us to immediately record the diffrac-
tion pattern (Fig. 1a) that occurs when the moving DW
breaks through the sound barrier. A diffraction pattern
similar to that in Fig. 1a was also observed for the DW
moving at the velocity of sound in rare-earth orthofer-
rite DyFeO3 at room temperature. It should be noted
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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that this phenomenon does not occur in YFeO3 [1, 2],
which suggests that the effect of the magnetic ordering
of rare-earth ions on moving DWs becomes more sig-
nificant at transonic velocities.

Let us analyze the conditions under which diffrac-
tion of light is observed in this situation. Our investiga-
tion of the v(H) dependence in TmFeO3 revealed that
the magnetic field range ∆Ht over which damping of
DW motion occurs at v = vt is several times larger than
that observed earlier in YFeO3 plates of the same thick-
ness. These ranges are 350 and 75 Oe, respectively. In
fact, ∆Ht in TmFeO3 is closer to its value in a thin
(10 µm thick) YFeO3 plate, where ∆Ht = 500 Oe [1, 2].
In this case, one might expect a noticeably larger
dynamic DW deformation if one assumes that the
power that is expected for producing this deformation
is increased with increasing ∆Ht. This power can be cal-
culated from ∆Ht, velocity vt, the duration of the DW
motion, and the saturation magnetization M0 which is
equal to 140 G for TmFeO3 and, according to our esti-
mates, is as large as several microwatts. Under these
conditions, the shape and dynamic behavior of the DW
can be significantly changed, as indicated in [1, 3–5]. In
addition, the higher coercitivity of the surface layers of
the samples investigated can be favorable to bending of
the initially planar DW not only over the plane of the
plate, as in Fig. 1, but also across the plate thickness.
Furthermore, according to [1, 3], when the moving DW
breaks through the sound barrier, a dynamically
deformed region can separate from the DW and, at v >
vt, it will lag behind the DW and retain a shape similar
to that of the DW for some time. This conclusion is sup-
ported by the data obtained in [3, 4], according to which
the leading edge of a dynamically deformed region is
sharp, while its trailing edge is diffuse.

In the case of light incident normal to the surface of
the plate, the formation of the diffraction pattern is
determined by the phase modulation of the light wave
passing through different portions of the DW bent over
the plate thickness. The different spacing between the
light stripes observed does not correspond to the usual
diffracted intensity distribution, where the spacing
between principal maxima is approximately the same
[8]. To account for this fact, we assume that each of the
light stripes observed is the resultant distribution of the
diffracted intensity from different portions of the
dynamically deformed region breaking away from the
non-one-dimensional DW. The usual diffracted inten-
sity distribution over the maxima of different orders
does not take place because, perhaps, there is no regu-
larity in the structure of the dynamic DW deformations
[4]. The fact that several maxima of the diffracted
intensity are observed will be interpreted below in
terms of the specific features of DW dynamics.

In our experiments, the light incident on an ortho-
ferrite plate is linearly polarized and the diffraction pat-
tern observed is formed by the light transmitted through
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
the analyzer. When there are no dynamic deformations,
a dark region is observed through which the DW passes
during the time separation between the two laser pulses
(this region is seen in Fig. 1b and at the left of Fig. 1a,
where the DW is not curved). The appearance of
dynamic deformations leads to a change in the polar-
ization of light in this region, and light stripes corre-
sponding to diffraction maxima of the type indicated
above are observed against a dark background. The
change in the polarization is due, perhaps, to a change
in the elastooptical coefficients and/or in the Verdet
magnetooptical constant of the orthoferrite plate, and it
is comparable to the effect produced by the Faraday
rotation, judging from the change in the contrast
observed. The Faraday rotation angle is approximately
20° for a TmFeO3 plate 60 µm thick.

Let us discuss the features of the dynamic DW
behavior when it breaks through the sound barrier. As
is seen from Fig. 2, the v(H) dependence is strongly
nonlinear in a TmFeO3 sample. Note that it is analo-
gous to the v(H) dependence for orthoferrite DyFeO3.
As in the case of YFeO3, there is a range ∆Ht over
which the DW velocity v is virtually constant and equal
to vt. Discussion of other features of the v(H) depen-
dence is beyond the purpose of this paper. Figure 2 also
shows a predicted v(H) dependence calculated by
simultaneously solving magnetodynamics and elastic-
ity equations [1, 4]; the curve in Fig. 2 has portions on
which the differential DW mobility is negative at DW
velocities close to the velocity of sound. According to a
model based on a probabilistic approach to describing
DW dynamics, the DW motion becomes unstable at
v = vt. In this case, the DW behavior is significantly
affected by fluctuations, such as inhomogeneities of the
crystalline and magnetic structure, the magnetic field,
and elastic strains, leading to phase transformations of
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Fig. 2. Experimental and calculated magnetic-field depen-
dences of the DW velocity in a thulium orthoferrite plate
60 µm thick at 168 K.
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the first order. As follows from theory and experimental
data [1–4] and as is seen from Fig. 2, the critical behav-
ior of the DW moving at a transonic velocity manifests
itself in the fact that there are three values of the veloc-
ity at which the DW can move at the same value of the
magnetic field, which is typical of the first-order phase
transformations. According to the Maxwell rule, which
applies to this dynamic system [1, 4], the DW moves at
the transverse sound velocity over a longer period of
time, which is due to an increase in the amplitude of
dynamic deformations caused by its motion.

In order to produce a stable two-domain structure in
REO, one should apply gradient fields several times
higher than those applied to YFeO3. In the specific case
of TmFeO3 and DyFeO3, the field gradient is as large as
2500 Oe/cm. In the beginning, the DW is situated in the
region where this field is zero. As the DW is displaced
from its equilibrium position under the action of the
magnetic pulse field, the resultant magnetic field
decreases uniformly at the expense of the gradient field.
When the DW velocity is not close to the velocities of
sound, the field gradient has only a marginal effect on
the resultant field if the pulse field has a large ampli-
tude. However, near the sound velocities, the dynamic
DW is in an unstable state and any fluctuation can have
a dramatic effect on it.

The appearance of several light stripes in the dif-
fraction pattern from dynamic DW deformations can be
understood if one takes into account that the driving
field decreases because of the gradient field. The first
diffraction stripe appears at a distance of about 250 µm
from the starting position of the DW. At this point, the
resultant field is decreased by 62.5 Oe. Note that, under
the conditions indicated above, the field magnitude at
which the DW velocity becomes equal to the velocity
of sound is of the order of 500 Oe in TmFeO3. Because
of the decrease in the amplitude of the driving magnetic
field, when accelerated to a velocity v ≥ vt, the DW is
brought into the field of a magnitude which is not large
enough for the DW to move at a supersonic velocity.
Nevertheless, the DW has already broken away from
the dynamically deformed region, which resulted in the
formation of the first (in time) of the diffraction stripes
observed. The appearance of the other light diffraction
stripes can be interpreted in the same way. Since the
gradient component of the resultant field increases with
the increasing DW distance from its starting position
(64.5, 66.5, and 70.25 Oe), the time it takes for the DW
to accelerate to a velocity higher than vt also increases,
which is the reason why the diffraction stripes are not
equidistant.

Analysis of the photomicrograph in Fig. 1a revealed
that the brightness of the diffraction stripes decreased
linearly with time. At the instant the DW breaks away
from the deformed region, the maximum DW velocity
is 5 × 103 m/s. Using this value, we found that the four
diffraction stripes appeared at 9, 10, 12, and 15 ns,
P

respectively, after the DW velocity became higher than
the velocity of sound vt. By extrapolating our data on
the decrease in the brightness of the diffraction stripes
with time, we evaluated the lifetime of the dynamic
deformations produced by the moving DW in TmFeO3
to be 20 ns.

The widths of the diffraction stripes were measured
to be 14, 8.5, and 3.25 µm. The brightness of the stripe
that was the fourth to appear is likely to be determined
by unrelaxed deformation; therefore, we can evaluate
the characteristic size of this deformation from the
width of the fourth stripe L. The image was formed in
the specimen surface closer to the observation point.
We assume that the dominant contribution to this dif-
fraction maximum comes from the central region of the
DW curved across the plate thickness. Therefore, the
distance S of the observed diffraction pattern from this
region is equal to half the plate thickness, i.e., 30 µm.
The diffraction angle can be taken to be roughly equal
to L/S. On the other hand, this angle can be expressed
in terms of the ratio λ/d, where λ is the wavelength of
light and d is the characteristic size of the dynamic
deformation. With the numerical data indicated above,
the value of d is thus found to be about 2 µm, which is
close to the apparent DW thickness in orthoferrites. At
the same time, diffraction of light by static DWs of
much smaller widths (about 40 nm [7]) was observed in
these materials. Thus, analysis of our experimental data
and that obtained in [7] revealed that DWs are curved
across the thickness of the samples.

The widths of the diffraction stripes indicated above
allow one to conclude that the dynamic deformations
are not changed in shape, but only decrease in magni-
tude. According to [4], the dynamic deformations of the
transverse and longitudinal types evolve in radically
different ways. Transverse deformations decay rapidly
and become diffuse in shape, while longitudinal defor-
mations have a longer lifetime and hold their shape.
The evolution of dynamic deformations of DWs mov-
ing at a velocity close to vt as described above suggests
that, in the case considered, transverse and longitudinal
deformations occur simultaneously. It can also be con-
cluded that, when the moving DW breaks through the
sound barrier, its profile across the plate thickness is
changed.

ACKNOWLEDGMENTS

The authors are grateful to M.V. Chetkin for his con-
tinued interest in this work; to A.K. Zvezdin, A.F. Pop-
kov, and A.A. Mukhin for useful discussions of the
results obtained; and to A.M. Balbashov for the single
crystals of rare-earth orthoferrites.

This work was supported by the Ministry of Higher
Education of the Russian Federation (Fundamental
Natural Science Program, grant no. 97-0-7.0-29).
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001



DIFFRACTION OF LIGHT BY DYNAMIC ELASTIC DEFORMATIONS 697
REFERENCES
1. V. G. Bar’yakhtar, M. V. Chetkin, B. A. Ivanov, and

S. N. Gadetskiœ, Dynamics of Topological Magnetic
Solitons. Experiment and Theory (Springer-Verlag, Ber-
lin, 1994); Springer Tracts Mod. Phys. 129 (1994).

2. M. V. Chetkin, A. P. Kuz’menko, A. V. Kaminskiœ, and
V. N. Filatov, Fiz. Tverd. Tela (St. Petersburg) 40 (9),
1656 (1998) [Phys. Solid State 40, 1506 (1998)].

3. S. D. Demokritov, A. I. Kirilyuk, N. M. Kreines, et al.,
J. Magn. Magn. Mater. 104 (1), 663 (1992).

4. M. V. Zvezdin and A. M. Mukhin, Zh. Éksp. Teor. Fiz.
102 (8), 577 (1992) [Sov. Phys. JETP 75, 306 (1992)].
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
5. M. V. Chetkin, Yu. N. Kurbatova, and A. I. Akhutkina,
Phys. Lett. A 215, 211 (1996).

6. M. V. Chetkin, A. P. Kuz’menko, S. N. Gadetskiœ, and
V. N. Filatov, Prib. Tekh. Éksp. 3, 196 (1984).

7. Y. S. Didosyan, H. Hauser, J. Nicolics, and I. R. Yavor-
sky, J. Magn. Magn. Mater. 203 (1–3), 247 (1999).

8. M. Born and E. Wolf, Principles of Optics (Pergamon,
Oxford, 1969; Nauka, Moscow 1970). 

Translated by Yu. Epifanov



  

Physics of the Solid State, Vol. 43, No. 4, 2001, pp. 698–704. Translated from Fizika Tverdogo Tela, Vol. 43, No. 4, 2001, pp. 672–677.
Original Russian Text Copyright © 2001 by Vas’kovski

 

œ

 

, Svalov, Gorbunov, Shchegoleva, Zadvorkin.

                                                       

MAGNETISM 
AND FERROELECTRICITY
Structural and Magnetic Phase Transformations 
in Multilayer Gadolinium Films

V. O. Vas’kovskiœ*, A. V. Svalov*, A. V. Gorbunov*, 
N. N. Shchegoleva**, and S. M. Zadvorkin***

*Ural State University, pr. Lenina 51, Yekaterinburg, 620083 Russia
**Institute of Metal Physics, Ural Division, Russian Academy of Sciences, 

ul. S. Kovalevskoœ 18, Yekaterinburg, 620219 Russia
***Institute of Mechanical Engineering, Ural Division, Russian Academy of Sciences, Yekaterinburg, 620219 Russia

Received July 18, 2000

Abstract—A study was made of the effect of thickness and thermal treatment on the microstructure and mag-
netic properties of Gd/Cu and Gd/Si multilayer films obtained by rf ion sputtering. It was found that the mag-
netic layers have an amorphous–crystalline structure, with the component ratio depending on the thickness of
the magnetic layers and nonmagnetic spacers and on the annealing temperature. An analysis of the temperature
dependences of the torque, which was made within the molecular field approximation, yielded a quantitative
description of the changes in the film phase composition. The correlation between the exchange coupling
parameter and the structural state of gadolinium was established. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The properties of thin films of rare-earth elements,
as well as of other magnetically ordered substances, are
subject to a strong size effect [1]. The specific features
of this influence were studied primarily on single layers
and multilayer films of Gd. In particular, one found a
direct connection between the Gd layer thickness and
such characteristics as the magnetic moment [2], the
Curie temperature [3, 4], and magnetic anisotropy [5].
Thickness was also found to indirectly affect the mag-
netic properties through the variation in the structural
imperfection of films [6]. Although the above studies
dealt with single-crystal Gd films, the latter variation
may underlie a certain quantitative disagreement
between the results quoted by various authors.

The structural state may reveal still more noticeable
variations in nonepitaxially grown thin films. Among
such objects are multilayer films containing, in addition
to the rare-earth metals, intervening 3d metal layers. In
such conditions, rare-earth metals (Tb, Dy, Gd) exhibit
a tendency to amorphization [7, 8]. In magnets with
indirect exchange interaction, a group to which rare-
earth metals belong, such a phase transition should
strongly affect the magnetic ordering parameters. The
present study deals with this effect in the specific exam-
ple of Gd/Cu and Gd/Si multilayer films.

1. EXPERIMENTAL

The film samples were prepared on silicon sub-
strates by rf ion sputtering. The base and the argon gas
pressures were 2 × 10–6 and 2 × 10–4 mm Hg, respec-
tively. Each film deposition was preceded by one-hour
1063-7834/01/4304- $21.00 © 0698
sputtering of Gd, which served as a getter. All materials
were deposited at a rate of ~1 Å/s. The samples differed
in the thickness of the Gd layers (75–400 Å) or of the
nonmagnetic Cu or Si spacers (2–20 Å). The total
thickness of the magnetic component in the multilayer
samples was practically constant (≈4000 Å). In addi-
tion, we used several thicker Gd single-layer films in
the experiment. Each sample had a buffer underlayer
and an insulating cap layer of a nonmagnetic material
not less than 100 Å thick. After preparation, some films
were subjected to thermal treatment in a vacuum at
temperatures of up to 450°C.

The magnetic properties of the films were measured
on a torque magnetometer. The structure was character-
ized with an x-ray diffractometer and an electron
microscope. In the latter case, we studied thinner sam-
ples (down to 500 Å) deposited on cleaved surfaces of
NaCl crystals.

2. RESULTS AND DISCUSSION

Figure 1 shows (with symbols) the experimental
dependences of the torque P on temperature T obtained
on a one-layer Gd film 7200 Å thick (curve 2) and on
multilayer Gd/Cu films (curves 3, 4) with magnetic lay-
ers differing in thickness (LGd) and spacers of a fixed
thickness (LCu = 10 Å). The measurements were carried
out in a magnetic field of 1 kOe applied at 45° to the
sample plane. Also shown for comparison is the P(T)
relation (curve 1), which was obtained in a weak mag-
netic field on a bulk Gd sample prepared directly from
the target material. A comparison of curves 1 and 2
reveals that even a thick film is characterized by a con-
2001 MAIK “Nauka/Interperiodica”
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siderably lower Curie temperature (~250 K) and a
smoother course of the P(T) relation than those of the
bulk material. This is probably associated with the spe-
cific features of the rf ion sputtering. The Gd films
deposited by this technology exhibit substantial
microstrains, which may account for the observed
decrease in the exchange coupling. Reducing the Gd
layer thickness by introducing nonmagnetic spacers
also gives rise to a variation of the magnetic properties,
and it is this variation that was the main subject of this
investigation.

As can be seen from Fig. 1 (curves 3, 4), the transi-
tion to the thin-film state is accompanied by a further
decrease in the Curie temperature and the appearance
of a more or less pronounced break in the P(T) curves
at temperatures of ~160 K. This behavior of the torque,
which actually reflects the variation of spontaneous
magnetization with temperature, indicates that the Gd
layers are magnetically not single-phase. Moreover,
these data suggest that the parameters characterizing
the deviation from the single-phase state are dependent
on the value of LGd. The Gd/Si films, close in thickness
to the ones discussed, yielded very similar results, both
qualitatively and quantitatively. This reflects the pas-
sive role of the nonmagnetic spacer and, thus, argues
for the existence of a relation between the phase com-
position and the thickness of the magnetic layers.

The x-ray diffraction measurements made with
CrKα radiation lend a certain support to this conjecture.
This is seen from a comparison of the diffractograms
presented in Fig. 2 for the substrate coated by a Si
buffer layer (curve 1) and the Gd(LGd)/Si(10 Å) films
with LGd = 75 (curve 2) and 150 Å (curve 3). These dif-
fraction patterns indicate that the insulating Si layers
and the thin Gd layers are amorphous for the x-rays,
while the thicker Gd layers contain a crystalline phase.
Viewed in the given angular interval, this phase pro-
duces only one strongly broadened line. It can be iden-
tified with the (002) Gd reflection, which, nevertheless,
is shifted relative to its position for bulk Gd (46.68°).
These features support the conclusion that the crystal-
line Gd phase is textured and that its lattice is strongly
distorted. The hexagonal axis of the crystallites is pre-
dominantly perpendicular to the film plane, and the cor-
responding interplanar spacing is, on average, substan-
tially larger compared with its equilibrium value.

The structural state of the films was analyzed in
more detail with an electron microscope. Figure 3 dis-
plays electron diffraction patterns and photomicro-
graphs of Gd/Si(10 Å) samples with Gd layers of dif-
ferent thicknesses. The absence of distinct lines in the
pattern and the presence of the characteristic ripple in
the electron microscope image in Fig. 3a, when com-
bined with the x-ray diffractograms, indicate that the
thin Gd layers are amorphous. At the same time, the
electron diffraction patterns exhibit two rather than one
halo, thus evidencing the existence of two systematic
interatomic distances. Their estimation based on the
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
average halo diameter yields 2.8 and 1.8 Å. The fact
that these figures are incommensurate suggests that the
second halo is not associated in any way with second-
order diffraction. This second halo is probably a precur-
sor of crystallization, because there are intense diffrac-
tion lines of crystalline Gd at the corresponding angles.

The phase state of the samples with LGd = 150 Å
(Fig. 3b) may be characterized as amorphous–crystal-
line; indeed, one clearly sees both diffuse diffraction
lines and a halo in the electron diffractogram, and the
photomicrograph includes elements of an amorphous
ripple and crystallites with an average diameter not
above 50 Å. An analysis of the diffraction lines present
assigns them to the crystalline α-Gd. The c axis of the
corresponding crystallites tends to align normal to the
film. In some places, one also observes a texture in the
sample plane. On the whole, these films exhibit strong
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phase nonuniformity over their area. There are regions
where either the crystalline or the amorphous phase
dominates. Nevertheless, visual estimates show the
content of the latter phase to be higher. Samples with
the thickest (LGd = 400 Å) Gd layers (Fig. 3c) are also
in the amorphous–crystalline state. However, the crys-
talline α phase is more clearly pronounced in them and
is quantitatively dominant. The average crystallite size
is as high as 100 Å.

The above results show convincingly that, as the
layer thickness decreases, Gd is observed to transfer
from the crystalline to the amorphous state. This transi-
tion comes practically to a close at LGd = 100 Å. It
appears natural to assume that it is the phase transfor-
mations that underlie the above-mentioned changes in
the magnetic properties of the films. We employed the
molecular field approximation for a phenomenological
description of this relationship. It was assumed that the
magnetic moment of the atoms and the Gd density in
the amorphous and crystalline states are the same,
while the molecular-field parameters (λa and λc, respec-
tively) are different and correspond to different Curie

temperatures of the amorphous, , and the crystalline,

, phases, whose concentrations are na and nc.

A subsequent analysis revealed that the two-phase
model does not provide an adequate description of the
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Fig. 3. Electron diffraction patterns and photomicrographs
of Gd(LGd)/Si(10 Å) films with different magnetic-layer
thicknesses (Å): (a) 75, (b) 150, and (c) 400. The figures
specify the interplanar distances d corresponding to the dif-
fraction lines under study.
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experimental data. To attain it, we had to introduce into
the model a third component, which we call conven-
tionally the transition phase. It is nonuniform and con-
sists of elements whose Curie temperatures range from

 to . For the sake of simplicity, we assume that the
Curie temperature distribution law is such that the
molecular field parameter is characterized by a distri-
bution function constant over the range from λa to λc.
Then, the magnetization of the transition phase will be
given by the expression

(1)

where B(x) is the Brillouin function, µ is the magnetic
moment of the Gd atom, and M(0) is the bulk Gd mag-
netization at T = 0. The last assumption implies that the
film and bulk densities are equal. Thus, the film magne-
tization contains three components:

M(T) = naMa(T) + ncMc(T) + nacMac(T), (2)

where Ma, Mc, and Mac are the magnetizations and na,
nc, and nac are the concentrations of the amorphous,
crystalline, and transition phases, respectively. The
magnetizations of the amorphous and crystalline
phases were calculated in terms of the molecular field
theory, as in the case of the transition phase, but with
constant molecular field parameters λa and λc.

Equation (2) was used in calculating the torque
component necessary for comparison with the expe-
riment:

P = Pz = HxMy – HyMx. (3)

In Eq. (3), the components of the external magnetic
field Hx and Hy were set by the actual experimental con-
ditions, while the magnetization components Mx and
My were derived by minimizing the free energy. This
was done under the assumption that the magnetization
in the film bulk is uniform and the magnetic anisotropy
of the films is due only to the shape anisotropy.

Figure 1 shows the theoretical P(T) relations (solid
lines) fitted to the corresponding experimental plots by
varying the concentration of the three phases properly.

The values of  and  were estimated preliminarily
in every case from the experiment by linearly extrapo-
lating the low- and high-temperature parts of the P(T)
graphs to zero. These temperatures were used subse-
quently to determine the molecular field parameters λa

and λc. The fairly good agreement between the theoret-
ical and experimental P(T) curves testifies to the valid-
ity of the model used and offers the possibility of quan-
titatively characterizing the multiphase state of the
films.

It was found that the  temperature depends only

weakly on the thickness and is close to 160 K. The 
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temperature shows a tendency to increase from 240 to
260 K with increasing layer thickness. However, for all
film samples, its magnitude remains smaller than the
Curie temperature of bulk Gd. This probably reflects
the strong lattice distortions observed by us. Figure 4
plots the concentrations of the various magnetic phases
vs. the Gd layer thickness. The symbols relate to the
multilayer films, the Gd(LGd)/Cu(10 Å) film, and the
thick (3800 and 7200 Å) single Gd layers. It should be
pointed out that the absolute error in the determination
of na, nc, and nac by fitting reaches 5%. Nevertheless,
the course of the relationships is fully in accord with the
above qualitative reasoning. As LGd increases, the con-
tent of the crystalline phase grows and that of the amor-
phous phase decreases. The transition phase exhibits an
indistinct maximum in the thickness region where na

and nc approach each other.

The above results relate to Gd layers in multilayer
films with nonmagnetic spacers 10 Å thick. This figure
was found to be the lowest thickness ensuring a practi-
cally complete break of any structural coupling
between the magnetic layers. The corresponding inves-
tigation was performed on a number of samples with a
fixed total thickness of the magnetic layers (3800 Å)
and nonmagnetic Si and Cu spacers of different thick-
nesses. The latter thicknesses were chosen such that
LGd = 75 Å.

The P(T) curves measured on samples with different
LSi and LCu showed that their magnetic properties vary
with the spacer thickness. Note that this variation is
qualitatively similar to that observed when varying LGd.
This is indicated, in particular, by the dependence of the
concentrations na, nc, and nac on the Si spacer thickness
LSi (Fig. 5). As can be seen from the figure, introducing
even the thinnest spacer layer used (2 Å) changes the
magnetic phase composition of the samples dramati-
cally. The crystalline phase transforms practically com-
pletely to the transition phase, which, in turn, transfers
to the amorphous phase for LSi > 5 Å. Thus, the nac(LSi)
relation follows a nonmonotonic pattern. Note that the
maximum in this curve is more clearly pronounced than
that in the nac(LGd) dependence. Figure 5 also shows
that for LSi > 10 Å, the phase composition varies very
little. Similar results were obtained for samples with
copper spacers.

Thermal treatment is known to affect the phase
composition of nonequilibrium structural systems. We
performed accumulating vacuum annealing of the
Gd/Cu and Gd/Si samples. It was found that the effect
of annealing on the film properties depends primarily
on the material of the spacers, as well as on the thick-
nesses of the spacer and magnetic layers. The films
containing copper spacers revealed sharp degradation
of their magnetic properties (a decrease in the Curie
temperature and a transition to the paramagnetic state)
already under low–temperature annealing (Tan ≤
200°C). This degradation was higher in films with a
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
smaller LGd and larger LCu. This suggests that in this
case, the annealing not so much affects the structural
state of Gd, as stimulates the formation of the Gd–Cu
intermetallic compounds, which possess substantially
lower magnetic ordering temperatures than Gd [9].

The situation observed in the thermal treatment of
the Gd/Si samples was totally different. The annealing
regime used (Tan ≤ 450°C, the anneal time equaled one
hour in each stage) did not bring about a noticeable
degradation of the magnetic properties of films, thus
permitting a fairly comprehensive phase analysis. The
torque curves revealed that the Gd(75 Å)/Si(10 Å) films
are not very sensitive to annealing in the Tan interval
indicated above. This is also supported by the electron
microscope images. Figure 6a presents an electron dif-
fraction pattern and a photomicrograph of the sample
structure after annealing at 380°C. A comparison of
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Fig. 4. Dependences of the calculated concentrations of the
amorphous (na), crystalline (nc), and transition (nac) mag-
netic phases on the layer thickness in Gd(LGd)/Cu(10 Å)
films.
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Fig. 5. Dependences of the calculated concentrations of the
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these data with the corresponding initial-state measure-
ments (Fig. 3a) does not reveal any noticeable differ-
ences; the clearly defined amorphous phase and indica-

25 mm

(‡)

(Ò)

(b)

Fig. 6. Electron diffraction patterns and photomicrographs
of (a) Gd(75 Å)/Si(10 Å) and (b, c) Gd(150 Å)/Si(10 Å)
samples after annealing at different temperatures (°C):
(a) 380, (b) 250, and (c) 380.
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Fig. 7. Dependences of the Curie temperatures of various

magnetic phases on the annealing temperature: (1, stars) 

of the Gd(75 Å)/Si(10 Å) sample; (1, circles)  of the

Gd(150 Å)/Si(10 Å) sample; (2)  of the Gd(150 Å)/Si(10 Å)
sample; and (3) TC of the Gd5Si4 phase.

TC
a

TC
a

TC
c

P

tions of the onset of crystallization are observed as
before.

Phase composition calculations likewise revealed
the presence of only an amorphous and a transition
phase in the sample in all stages of the annealing. The
concentrations of these phases remain practically con-
stant, na = 0.7 and nac = 0.3. By contrast, the Curie tem-

peratures undergo some changes. In particular, 
drops sharply (from 240 to 200 K) in the initial anneal
stage. However, because of the transition phase being
in a low concentration, this affects the overall pattern of
the P(T) relations only weakly. The variation of the
Curie temperature of the amorphous phase is more

clearly pronounced in the experiment. The (Ta) rela-
tion is shown graphically in Fig. 7 (curve 1). As Tan

increases, a slight growth followed by a decrease in 
down to ~130 K is observed. It can be conjectured that
annealing brings about some short-range changes in the
amorphous structure. However, their direct detection
would require more detailed structural studies.

Annealing affects the properties of films with
thicker Gd layers much more dramatically. This is seen,
in particular, from Fig. 8, in which the circles relate to
the P(T) dependences for the Gd(150 Å)/Si(10 Å) sam-
ple measured in different stages of the annealing. These
data permit dividing the annealing into two stages, with
the boundary passing within the 300–350°C region.
Low-temperature thermal treatment influences the
shape of the P(T) curves only weakly. The quantitative
characteristics of the phase composition practically do
not change as well. As in the preceding cases, they were
derived from the fitting P(T) curves shown by lines in
Fig. 8 and found to be na = 0.6, nc = 0.15, and nac = 0.25.

Thus, magnetometric measurements performed at
Tan < 350°C suggest that the amorphous phase remains
dominant. Similar information is provided by electron
microscopy. Figure 6b shows an electron diffraction pat-
tern and a photomicrograph of a Gd(150 Å)/Si(10 Å)
sample annealed at Tan = 250°C. They are seen to differ
very little from the corresponding patterns characteriz-
ing the initial state of such films (Fig. 6b). The changes
observed relate only to the Curie temperatures of the
amorphous and crystalline phases. The dependences of
these characteristics on the annealing temperature are

shown in Fig. 7 (curves 1, 2). Both  and  are seen
to exhibit a trend to growth within the Tan region under
study.

Annealing at Tan = 350°C (curve 3 in Fig. 8) trans-
forms the P(T) relation markedly. It results in a change
in the curve from a concave to a convex shape, an
increased Curie temperature  close to the magnetic
ordering temperature of bulk Gd, and a decrease in the
torque at low temperatures. The last effect is apparently
a result of the decrease in the Curie temperature of the
amorphous phase, as is the case with the
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Gd(75 Å)/Si(10 Å) films. The fitting P(T) curve drawn
for  = 130°C and  = 290°C yields the following
calculated concentrations of the magnetic phases: na =
0.4, nc = 0.4, and nac = 0.2. It follows that this annealing
brings about a substantial growth in the volume of the
crystalline phase, which occurs at the expense of both
the amorphous and the transition phase. It should be
noted that, if the crystalline phase is textured, it can
give rise to a systematic error in the quantitative analy-
sis of the phase composition proposed here. This error
arises from the disregarded crystalline magnetic anisot-
ropy.

As can be seen from Fig. 8, the thermal treatment
carried out at higher temperatures also affects the prop-
erties of multilayer films. The most essential point here
is that magnetic ordering persists to temperatures sub-
stantially in excess of the Curie point of bulk Gd. This
could possibly be due to the thermally induced forma-
tion of new chemical compounds in the film. There is
only one compound in the system of elements under
study here, Gd5Si4 [9], whose Curie point (345 K) is
above room temperature. The slight bend in the P(T)
relation at room temperature (curve 4 in Fig. 8) may
indicate the formation of a new magnetic phase in the
films. Taking into account this factor yields the Curie
temperatures of the crystalline Gd and of the Gd5Si4
phase shown by curves 2 and 3 in Fig. 7.

Figure 2 presents the x-ray diffraction pattern (dif-
fractogram 4) of the Gd(150 Å)/Si(10 Å) sample
annealed at Tan = 400°C. It contains a distinct line of
crystalline Gd. This line is narrower than the corre-
sponding line of the original sample (diffractogram 3).
Additionally, it lies close to the tabulated position. Both
these observations evidence an annealing-induced
reduction of Gd lattice distortions, which, in turn, can
account for the observed changes in the Curie tempera-
ture of the crystalline phase. The other lines probably
belong to Gd silicides, in particular, to the Gd5Si4 com-
pound. The latter has a very rich structure of diffraction
lines, some of which fit well into the diffraction pattern
obtained (Fig. 2).

Figure 6c also presents electron microscopy data
obtained on the Gd(150 Å)/Si(10 Å) sample after
annealing at Tan = 380°C. The high-temperature anneal-
ing is seen to extremely complicate the electron diffrac-
tion pattern. It exhibits a large number of diffraction
lines and traces of the original halos. Unambiguous
interpretation of this pattern would be difficult. Never-
theless, there are grounds to assume that the films con-
tain an amorphous and a crystalline Gd phase, as well
as silicides, the most probable of them being Gd5Si4
and GdSi2. It should also be stressed that the electron
diffractograms did not reveal any traces of contaminat-
ing phases like oxides or carbides. Moreover, the non-
uniformity of the diffraction ring intensity suggests the
presence of a crystalline texture both in the Gd itself
and in the derivative crystalline phases.
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a TC

c
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A visual analysis of the microstructure shows it to
be strongly nonuniform in the samples subjected to
high-temperature treatment. Figure 6c displays the
most typical fragments of these patterns. The films
exhibit regions of an amorphous and of a crystalline
phase with a large dispersion of the grains in size and
shape. A more detailed analysis revealed that grains of
the new crystalline phases occur only in close proxim-
ity to Gd grains. At the same time, one observes a large
number of islands of crystalline Gd with no other crys-
talline phases present nearby. This suggests that the
above phase transformations take place in a certain
sequence.

3. CONCLUSION

On the whole, our study permits the following con-
clusion. Gd films obtained by rf ion sputtering are mul-
tiphase. The main phase components are crystalline and
amorphous gadolinium modifications, which possess
substantially different magnetic-ordering temperatures.
However, there are apparently a number of intermedi-
ate states inbetween, which account for a continuous
variation in the magnetic properties. One can also con-
ceive of a variation of the exchange coupling parame-
ters within the main structural states, which would give
rise to changes in the Curie temperatures of the amor-
phous and crystalline phases within 130–160 K and
250–290 K, respectively. The film phase composition
depends on the thickness of the magnetic layers, the
thermal treatment temperature, and the properties of
the intervening nonmagnetic materials. Being highly
neutral, silicon provides a good protection of Gd films
against the deleterious effects of external factors.
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Abstract—The transport properties of lanthanum manganites over a wide range of temperatures below the
magnetic phase transition point are discussed within the model of a two-phase composite whose phases differ
in the magnetic order and charge carrier concentration. The volume ratio of the phases depends on the temper-
ature and the magnetic field. The magnetoelastic polarons are charge carriers in both phases, and the metal–
dielectric transition occurs as a percolation transition accompanied by the crossover of the polaron conductivity.
The results obtained by numerical simulation of the resistivity, magnetoresistance, and thermopower are com-
pared with the experimental data for La0.7Mn1.3O3 – δ thin films. The theoretical and experimental data are in
good agreement. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
A superposition of ferromagnetic and antiferromag-

netic peaks of neutron scattering for a number of sam-
ples doped with lanthanum manganites was already
observed many years ago by Wollan and Koehler [1]
and lent impetus to a considerable discussion (see, for
example, review [2] and references therein). However,
it seems likely that only recent experimental investiga-
tions [3–6] uniquely confirmed the magnetic and elec-
tric inhomogeneities of lanthanum manganites in the
magnetic phase transition region. The results obtained
conclusively demonstrated that ferromagnetic and anti-
ferromagnetic regions are spatially separated and form
charge-carrier–enriched (metallic) and charge-carrier–
depleted (semiconducting) domains. Magnetization
vectors of different ferromagnetic regions are disor-
dered. The application of an external magnetic field
leads to the percolation transition to a metallic phase,
which is accompanied by the giant magnetoresistance
effect. It is interesting that a sample does not undergo
complete transformation into the ferromagnetic state
even in a strong magnetic field [4].

Although the results obtained in [3–6] revealed the
phase separation, a number of questions essential to the
understanding of the physics of the giant magnetoresis-
tance effect in manganites remain unclear. In particular,
it remains to be seen whether the conductivity mecha-
nism in charge-enriched (metallic) domains radically
differs from that in charge-depleted domains. To put it
differently, whether these regions should be considered
to be separated by a true metal–dielectric phase transi-
tion or the conductivity in domains changes according
to a scenario of the conductivity-crossover type. A vari-
ant of the answer to this problem determines the type of
1063-7834/01/4304- $21.00 © 0705
Ginzburg–Landau functional and, hence, the results of
the application of the phenomenological theory of
phase transitions to lanthanum manganites.

In the present work, the transport properties of lan-
thanum manganites over a wide range of temperatures
below the magnetic phase transition point TC were dis-
cussed within the model of a composite (efficient
medium) formed by long ferromagnetic domains with
a metallic conductivity which were embedded in a
semiconducting paramagnetic matrix (Fig. 1). It was
assumed that the magnetization m(T, H) is an order
parameter, and the fraction C(T, H) of charge carriers

Fig. 1. A composite with phases differing only in the charge
carrier concentration and the magnetic order. The volume
ratio of phases depends on the temperature and the magnetic
field. Near TC, the composite consists of strongly oblong
ferromagnetic ellipsoids with a metallic conductivity
(FMm) (solid lines) which are embedded in a paramagnetic
semiconducting matrix (PMs) (bright field of the drawing).
2001 MAIK “Nauka/Interperiodica”
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contained in metallic domains is a secondary order
parameter. The metal–dielectric transition occurs as a
percolation transition. Note that this transition in the
case of strongly oblong ferromagnetic domains is very
sharp and exhibits a low percolation threshold [7]. The
obtained theoretical dependences of the electrical resis-
tivity and the thermopower of a composite on the tem-
perature and magnetic field were compared with the
experimental data taken from [8, 9] for La0.7Mn1.3O3 – δ
thin films grown by magnetron sputtering. An excellent
agreement between the experimental and theoretical
results shows that the effective medium model ade-
quately reflects the physics of the phenomenon under
consideration.

It should be noted that a model similar to that dis-
cussed in the present work was considered recently by
Jiame et al. [10]. The obtained theoretical dependences
well represented the experimental data for Ca systems.
It was reasonable to analyze a generalization of the
model proposed in [10]. In particular, by assuming the
internal inhomogeneity and the percolation transition
to the metallic phase, we introduced two essential
changes as compared to [10]. First, we supposed that
magnetoelastic polarons are charge carriers in the
metallic and semiconducting phases, so that the metal–
dielectric transition occurs as a percolation transition
attended by the crossover of the polaron conductivity.
Second, the relation between the order parameters was
taken into account through an interaction of the m2C
type rather than m2C2, as was proposed in [10] (see dis-
cussion below).

2. THE GINZBURG–LANDAU FUNCTIONAL

In the magnetic phase transition region, we assume
that the magnetization m(T, H) is the primary order
parameter and the fraction of charge carriers C(T, H)
contained in metallic domains is the secondary order
parameter. The interaction between the order parame-
ters is considered within the lowest symmetry-allowed
approximation (see, for example, [10, 11]), viz., ~m2C.
Note that a similar term in the expansion of the free
energy for cubic crystals appears, for example, when
the interaction of macroscopic strains with the primary
order parameter is taken into account (see [12]). It is
this situation that occurs in lanthanum manganites
under the assumption of their phase separation: the for-
mation of charge-inhomogeneous regions leads to the
aggregation of Jahn–Teller Mn3+ ions into clusters and
the collectivization of the corresponding lattice strains.

The free energy functional has the form

(1)

Here, τ = (T – Tcm)/Tcm, Tcm is a bare temperature of the
magnetic phase transition. All the coefficients in expan-
sion (1) are assumed to be positive. We do not seek to
develop the phenomenological theory of phase transi-
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tions in lanthanum manganites. Hence, we will restrict
our consideration to the situation when the paramag-
net–ferromagnet phase transition is a second-order
transition. This implies introduction of an additional
condition ab > 2d2 for the parameters of expansion (1).
From the set of equations of state

∂F/∂m = –(αmτ + 2dC)m + bm3 = 0,

∂F/∂C = aC + βC3 – dm2 = 0,

it follows that C(T, H) ~ m2(T, H) and the phase transi-
tion temperature is determined as TC = (1 + 2d )/Tcm.
Therefore, the phase separation process and a nonzero
concentration  below the Tcm temperature bring about
an increase in the “effective” critical temperature of the
phase transition.

3. TRANSPORT PROPERTIES OF A COMPOSITE

Let us consider a composite whose phases are crys-
tallographically (chemically) homogeneous but differ
in the concentration of charge carriers. The volume
ratio of the phases depends on the temperature and the
magnetic field. Our aim is to reconstruct the transport
properties of the composite from the known character-
istics of its components. These characteristics can be
found from the experimental data for La-deficient thin
films of La0.7Mn1.3O3 – δ in the range of low (metallic
phase) and high (semiconducting phase) temperatures.

Details of the film preparation and the data on their
magnetic, magnetoresistive, thermoelectric, and mag-
netoresonant properties were described in [8, 9, 13].
Note that the La0.7Mn1.3O3 – δ films ~3500 Å thick
were  grown by reactive magnetron sputtering on the
(001)-oriented SrLaAlO4 substrates. According to
x-ray structure analysis, the films are homogeneous and
have a perovskite structure.

3.1. Magnetoresistance. The properties of a com-
posite made up of long metallic wires embedded in a
semiconducting matrix (Fig. 1) were studied earlier by
Lágarkov and Sarychev [7]. Specifically, the effective
resistivity ρ ≡ ρ(H, T) of a sample whose components
are characterized by the resistivities ρm ≡ ρm(H, T) and
ρs ≡ ρs(H, T) is represented by the relationship (see
expression (9) in [7])

(2)

Here, the depolarization factor G|| = (b2ρs/a2ρ)ln[1 +
(aρ/bρs)] is introduced according to the composite
model [7] and C ≡ C(H, T) is the mixing factor (the
fraction of charge carriers in the metallic region).

C

C

1
3
---C ρ ρm–( ) 1/ ρm G|| ρ ρm–( )+[ ] 4/ ρm ρ–( )+{ }

+ 3 1 C–( ) ρ ρs–( )/ 2ρs ρ+( ) 0.=
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As follows from the preceding section, C(H, T) ~
m2(T, H). In numerical calculations, we will use the
relationship

(3)

where T0 is the temperature of a transition to the homo-
geneous ferromagnetic state (T0 ! TC); Tm is the tem-
perature of metallic domain nucleation; in the absence
of a magnetic field, Tm = TC; and Θ(x) is a theta func-
tion.

The experimental temperature dependence of the
electrical resistivity of La0.7Mn1.3O3 – δ films in a zero
magnetic field is shown by points in Fig. 2. The behav-
ior of the reduced resistivity of the sample ρ(H, T) ≡
R(T, H)/R(77 K, 0) in the metallic region (T < 200 K) is
approximated by the phenomenological dependence

(4)

Here, the first term corresponds to band carriers and
describes the asymptotic behavior of ρm(T) at low tem-
peratures T < 70 K. The second term—the basic term in
the temperature range under consideration—reflects
the fact that a carrier in the crystal becomes a charged
magnetoelastic polaron which is covered with a
“phonon and magnon coat” (see, for example, [14, 15]
and references therein). By generalizing in this way the
physical meaning of the second term as compared to
[16], we assume that N(ε + gµBSCH) = {exp((ε +
gµBSCH)/T) – 1}–1 is the mean number of magnetoelas-
tic polarons with an energy ε ≈ 950 K, SC is the effective
number of spins participating in the formation of a
“magnon coat” of the polaron, and α ≈ 550 is the struc-
ture factor [16]. The numerical values of the parameters
involved in relationship (4) and formulas (5)–(7) given
below were obtained from analysis of the experimental
data and were taken from [8, 9].

The resistivity of films in the semiconducting phase
(T > 220 K) is approximated by a dependence of the
type

(5)

which corresponds to inelastic processes of charge car-
rier hoppings with an activation energy Eρ ≈ 1220 K,
which differs from that in a ferromagnetic domain. It is
assumed that, in the paramagnetic phase, the “mag-
netic” component of a polaron is small so that its
energy is virtually independent of the magnetic field.

The calculated temperature dependences of the
resistivity of a composite at different axial ratios a/b for
a ferromagnetic ellipse are depicted by solids lines in
Fig. 2. The calculations were performed using formula (2)
in the case when ρm(H, T) and ρs(H, T) were defined by
relationships (4) and (5), respectively. As can be seen

C H T,( ) 1
T T0–
Tm T0–
------------------ 

 
2

Θ T T0–( ),–=

ρm T H,( ) 10 2.8– K 3/2– T3/2=

+ 10 2– αN ε gµBSCH+( ){ } .exp

ρs T H,( ) 10 2.3– K 1– T Eρ/T( ),exp=
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from this figure, the theory satisfactorily describes the
experimental dependences only for very oblong ferro-
magnetic ellipsoids (a/b > 10). In other words, metallic
regions in La0.7Mn1.3O3 – δ films are formed as strip
domains rather than as compact clusters.

The temperature dependences of the resistivity,
which were numerically simulated using expressions (2),
(4), and (5) at a/b = 10 and the magnetic fields H = 0
and 10 kOe, are displayed by solid lines in Fig. 3. The
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Fig. 2. Temperature dependences of the resistivity of the
composite at different axial ratios for metallic ellipses a/b =
(1) 1, (2) 10, and (3) 50. Points are the experimental data for
La0.7Mn1.3O3 – δ films in the absence of a magnetic field.
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Fig. 3. Temperature dependences of the resistivity of the
composite at different temperatures of the formation of
metallic domains. a/b = 10. Conditions: (1) T0 = 120 K,
Tm = 220 K = TC, and H = 0 kOe; (2) T0 = 120 K, Tm =
220 K = TC, and gµBSCH = 50 K; and (3) T0 = 130 K, Tm =
235 K, and gµBSCH = 0. Points are the experimental data for
La0.7Mn1.3O3 – δ films without magnetic field and at H =
10 kOe.
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relevant experimental data for La0.7Mn1.3O3 – δ films are
also shown by points in this figure. Allowance should
be made for the fact that the magnetic field leads to (i)
a change in the energy of a magnetoelastic polaron, (ii)
a shift in the temperature of metallic domain nucleation
and, correspondingly, the temperature of percolation
transition, and (iii) the orientation of magnetic
moments of ferromagnetic domains. Let us evaluate the
relative contribution of each effect.

The last term in formula (4) accounts for the first
factor. Curve 2 in Fig. 3 corresponds to the situation
when the energy of a magnetoelastic polaron is
changed by 50 K in a field of 10 kOe, i.e., when the
number of spins per charge carrier is of the order of
20SMn. In this case, the temperature of metallic domain
nucleation remains unchanged, i.e., Tm = TC. It is seen
from this figure that the effect of magnetic field on the
resistivity through this mechanism is extremely weak
even at a large number of spins of manganese ions SMn,
which form the magnon component of the polaron coat.

Relationship (3) makes it possible to elucidate the
role of the second factor. Curve 3 in Fig. 3 illustrates
how the change in the temperature of metallic domain
nucleation Tm in a magnetic field affects the composite
resistivity. A shift in Tm and T0 by approximately 10 K
toward the high-temperature range allows us to
describe adequately the experimental dependence for
La0.7Mn1.3O3 – δ films.

The change in the composite resistivity at a given
temperature due to a change in the orientation of mag-
netic moments of ferromagnetic domains in a magnetic
field can be accounted for with the use of the models
proposed earlier for granular systems (see, for example,
[17]). This mechanism of the magnetoresistivity for
lanthanum manganites was discussed in my earlier
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Fig. 4. Temperature dependences of the Seebeck coefficient
for a thin composite film on a bulk substrate. a/b = 10, T0 =
120 K, and Tm = 220 K = TC. Points are the experimental
data for La0.7Mn1.3O3 – δ films (1) without magnetic field
and (2) at H = 5 kOe.
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work [18]. Consideration was given to the situation in
which metallic ferromagnetic domains in the semicon-
ducting matrix are spherical in shape and their relative
fraction (the filling factor f) is small (f ! 1). In this case,
the magnetoresistivity effect associated with the reori-
entation of magnetic moments is proportional to the
factor f. The case of strongly oblong ferromagnetic
ellipsoids calls for separate analysis. At the same time,
there are grounds to believe that this mechanism of the
magnetoresistivity in lanthanum manganites at the tem-
peratures of interest is insignificant [2, 15].

3.2. Seebeck coefficient. The temperature and field
dependences of the thermopower for the composite can
be determined from the results of the preceding section
and from the relationships for the thermopower of com-
posite components.

The experimental temperature dependence of the
Seebeck coefficient for La0.7Mn1.3O3 – δ films in a zero
magnetic field and a field of 5 kOe [9] are shown by
points in Fig. 4. The behavior of the thermopower in the
metallic phase (T < 180 K) is represented as

Sm(T) = (10–2K–1T – 3 × 10–4K–2T2) µV/K. (6)

In the paramagnetic phase (T > 220 K), we have

Ss(T) = (7000 K/T – 22) µV/K. (7)

Now, we take into account that the thermal conductivity
of a thin-film sample is predominantly determined by
the thermal conductivity of the substrate. Then, the
Seebeck coefficient for the film on the substrate is
defined as [10, 19]

(8)

It should be emphasized that the dependence S(T, H) in
the entire field range is determined only by the experi-
mental dependence of the resistivity ρexp(T, H), because
the asymptotics for the low-temperature and high-tem-
perature thermopower components are independent of
the magnetic field.

The simulated temperature dependences of the See-
beck coefficient are shown by solid lines in Fig. 4. The
Seebeck coefficients were calculated by formula (8) at
the ratio a/b = 10 and magnetic fields H = 0 and 5 kOe.
The experimental data for La0.7Mn1.3O3 – δ films are
depicted by points in this figure. The coincidence of the
theoretical and experimental data indicates that the
effective medium model correctly reflects the physics
of the phenomenon under investigation.

4. DISCUSSION

In our earlier works [8, 9], we attempted to describe
the properties of La-deficient systems in the framework
of a two-liquid model. According to this model, above
and below the magnetic transition temperature, the sys-
tem involves two types of charge carriers that differ in
their character of interaction with a magnetic sub-

S T H,( )
ρsSm ρmSs– ρexp T H,( ) Ss Sm–( )+

ρs ρm–( )
--------------------------------------------------------------------------------.=
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system (two conduction channels). Band charge carri-
ers elastically interact with the magnetic subsystem,
and charge carriers of the other group are characterized
by the activation motion attended by the emission and
absorption of magnons. The temperature dependences
of the resistivity for carriers of these two groups are
quite different: in the former case, the resistivity
increases with an increase in the temperature, whereas
the resistivity for inelastic processes decreases with an
increase in the temperature. It turns out that, in the case
when the properties of the system meet certain condi-
tions, the crossover from one conductivity mechanism
to another mechanism occurs rather abruptly and is suf-
ficiently sensitive to the magnetic field for providing
the giant magnetoresistance effect. (A description of
the properties of lanthanum manganites in terms of the
two-liquid model is also available in [16, 20, 21].)

The two-liquid model satisfactorily reproduced the
magnetoresistive properties of La0.7Mn1.3O3 – δ thin
films but was inapplicable to the description of the ther-
moelectric characteristics, which was also noted by
other researchers (see, for example, [20]). The results
obtained allowed us to argue for the magnetic and elec-
tric internal inhomogeneity of the system [9]. With due
regard for recent experimental data [3–6], it is quite
reasonable to use the aforementioned effective medium
model for the phenomenological description of the
magnetotransport properties of La-deficient mangan-
ites in the temperature range below the TC temperature.

In this work, we studied the transport properties of a
two-phase composite whose phases are crystallograph-
ically homogeneous but differ in the charge carrier con-
centration and the magnetic order. The volume ratio of
the phases depends on the temperature and the mag-
netic field strength. It was assumed that it is this electri-
cal and magnetic structure which is characteristic of
lanthanum manganites over a wide range of tempera-
tures below the magnetic phase transition point TC.

The results obtained were discussed within the
model in which the concentration of the metallic ferro-
magnetic phase in the semiconducting paramagnetic
matrix is the secondary order parameter and the magne-
tization is the primary order parameter. The basic
assumption of the theory lies in the fact that magne-
toelastic polarons are charge carriers in both metallic
and semiconducting phases, so that the metal–dielectric
transition occurs as a percolation transition attended by
the crossover of the polaron conductivity.

It was demonstrated that the phenomenological
description of electrical and magnetic internal inhomo-
geneities of La0.7Mn1.3O3 – δ films leads to a qualita-
tively correct representation of the field and tempera-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
ture dependences of their transport properties over a
wide range of temperatures below TC. As in [10], we
revealed that metallic domains are formed in the form
of very oblong ellipsoids rather than “drops” compact
in shape. This form of domains ensures a sufficiently
sharp metal–dielectric transition, which is characteris-
tic of high-quality samples.
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Abstract—This paper reports an experimental study of the magnetization processes and structure of the Gd–
Ti–Ge compound in the initial coarse-grained state and a nanostructured state obtained under torsion at a high
quasihydrostatic pressure. It is established that in a nanocrystalline sample, the magnetic ordering temperature
is 30 K lower, the coercive force is eight times higher, and the magnetization is 3.7 times lower than their respec-
tive values in a coarse-grained sample. The observed changes in the magnetic properties are shown to be related
primarily with the conversion of a part of the initial phase with the CeScSi-type lattice to a CeFeSi-type weakly
magnetic phase. The effect of structural defects and of partial disorder on the magnetic characteristics of the
compound are also discussed. © 2001 MAIK “Nauka/Interperiodica”.
The ternary silicides and germanides of rare-earth
and transition metals make up a new class of magneti-
cally ordered substances. Investigation of magnetism in
these compositions revealed a number of new com-
pounds of the types RScX [1] [here, R stands for a rare-
earth (RE) metal, and X, for Si or Ge] and RTiGe [2]
possessing high magnetic-ordering temperatures. For
instance, the magnetic ordering temperature of the
RTiGe compounds considerably exceeds those of pure
RE metals, although only the RE ions have a magnetic
moment in this series.

GdTiGe was found to undergo a polymorphic trans-
formation [3]; more specifically, this composition can
crystallize, depending on the actual preparation condi-
tions, in a number of lattice types: CeFeSi (space group
P4/nmm) and CeScSi (space group I4/mmm). Note that
a change in the structural type affects the magnetic
properties of a given composition considerably.

The available data relate to single-crystal samples.
At the same time, it is known that the magnetic charac-
teristics of RE ferromagnets are determined to a con-
siderable extent by their structural state. This becomes
particularly noticeable in samples with a nanocrystal-
line structure. In particular, in a nanocrystalline state,
the coercive force of pure Dy and Tb increases by thou-
sands of times [4, 5]; the magnetization of Dy [4, 6], Tb
[5], and Gd [7] decreases by a few times; the magnetic
transformation points change [5, 6]; and the magnetic
ordering changes its character [4, 6].

In this connection, we carried out an experimental
study of the magnetization processes and structure of a
GdTiGe alloy in the nanocrystalline and coarse-grained
states, the results of which are presented here. The
1063-7834/01/4304- $21.00 © 0710
choice of the method of severe plastic deformation to
produce a nanocrystalline structure was motivated by
the fact that this method precludes contamination and
permits obtaining bulk nonporous samples which do
not need subsequent compacting before performing
structural and magnetic measurements.

1. MATERIAL AND EXPERIMENTAL 
TECHNIQUE

For this study, we used the ternary compound
GdTiGe (35 at. % Gd–33 at. % Ti–32 at. % Ge) with the
initial structure of the CeScSi type (see table) prepared
by rf melting.

The nanocrystalline structure was attained by
intense plastic deformation, more specifically, by
room-temperature torsion on Bridgman anvils through
an angle of 10π at a pressure of 8 GPa.

The magnetization curves were measured on a
vibrating sample magnetometer in a field of 1.6 ×
103 kA/m. The temperature dependence of the magne-
tization was studied with a magnetic balance [6] in a
vacuum of 1.3 × 10–2 Pa and a field of 250 kA/m within
the temperature range from 290 to 1070 K.

The microstructure of the samples was investigated
with a JEM 2000EX transmission electron microscope.
The sample chemical composition was measured on a
JSM-840 scanning electron microscope equipped with
a Link attachment. The phase composition was deter-
mined by the standard technique on a DRON 3M x-ray
diffractometer.
2001 MAIK “Nauka/Interperiodica”
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Structural and magnetic data for GdTiGe samples with different lattice types

Structure Space group a, nm c, nm Type of ordering TC, N, K θp, K µeff, µB

CeFeSi P4/mmm 0.4065(1) 0.7716(2) Weak FM 412 317 8.3

CeScSi I4/mmm 0.4065(1) 1.5454(1) FM 377 413 8.6
2. RESULTS OF THE STUDY

2.1. Magnetic Properties

The measurements of the coercive force showed that
Hc does not exceed 0.64 kA/m in the initial nonde-
formed, coarse-grained (CG) sample with the CeScSi
structure and it increases to 5.2 kA/m in the nanocrys-
talline (NC) sample.

Figure 1 displays the magnetization curves σ(H).
One readily sees that the magnetization curves for the
CG (curve 1) and NC (curve 2) structures follow prac-
tically the same pattern; namely, in fields of up to
160 kA/m, the magnetization grows rapidly to subse-
quently reach a linear portion. However, the magnetiza-
tion of the NC sample remains substantially lower than
that of the CG sample throughout the range of the fields
applied. For instance, at H = 103 kA/m, the magnetiza-
tion of the CG sample is 3.7 times that of the NC sam-
ple. The magnetization curve of a sample having the
CeFeSi structure, which is a weak ferromagnet (curve 3),
is also shown for comparison.

Figure 2 presents the temperature dependences of
the magnetization, σ(T), for the structural states stud-
ied. The room-temperature magnetization of the initial
CG sample (1) with the CeScSi structure is substan-
tially higher than that of the NC sample (2). These
curves also differ slightly in character; indeed, in the
CG sample, the σ(T) dependence follows a pattern typ-
ical of ferromagnets, while in the NC sample, the mag-
netization decreases more slowly. The ferromagnetic
Curie point determined by extrapolation of the steepest
part of the σ(T) curve to the temperature axis was found
to be 375 K for the NC state, which is lower by 30 K
than that for the CG state.

The direct and reverse runs of the temperature
dependence of the magnetization measured on the CG
sample coincide completely. Heating the NC sample to
1070 K and maintaining it at this temperature for
30 min increases the magnetization slightly, as is evi-
dent from the reverse course of the σ(T) curve; how-
ever, this does not affect the ferromagnetic Curie point.
Note that the magnetization of the NC sample remains
higher than that of the sample with the CeFeSi structure
throughout the temperature range studied (curve 3).

2.2. Structural Studies

Figure 3 displays an electron microscope image of
the microstructure of the NC sample. The crystallite
size estimated from bright-field electron micrographs is
10–20 nm. Inside the crystallites, one observes a high
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
dislocation density. The crystallite boundaries are
broad and diffuse.

The x-ray diffractograms of the samples are shown
in Fig. 4. A comparison of the diffraction patterns of the
initial CG sample with the CeScSi structure (1) with the
NC sample (2) reveals that the deformation resulted in
the disappearance of most of the lines present in the ini-
tial phase. The figure also shows a diffractogram of the
sample with the CeFeSi structure (3). The intense
reflections in the diffractogram of the NC sample are
seen to be due to the CeFeSi phase. However, these
lines are broadened to the extent where one cannot
make a quantitative analysis of the phase composition
of the NC sample. The line broadening is apparently
associated with the small size of the crystallites and the
high level of internal stresses. Taking into account the
complex character of the Gd–Ti–Ge lattice, the quanti-
tative separation of the contributions due to these fac-
tors to the broadening cannot be done because the line
intensity is too weak.

3. DISCUSSION

The above results show that the NC and CG struc-
tural states of the Gd–Ti–Ge compound differ consider-
ably in magnetic properties. In the NC sample, the
coercive force increases eight times, while the magne-
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Fig. 1. Magnetization curves of (1) Gd–Ti–Ge samples in
the initial state (CeScSi-type structure) and (2) in the nanoc-
rystalline state and (3) a sample with a CeFeSi-type struc-
ture.
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Fig. 2. Temperature dependence of the magnetization of
(1) Gd–Ti–Ge samples in the initial state (CeScSi-type
structure) and (2) in the nanocrystalline state under heating
and cooling and (3) a sample with a CeFeSi-type structure.
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Fig. 3. Fine structure and electron microscope image of a
nanocrystalline Gd–Ti–Ge sample.

50 nm
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tization decreases by a few times. The ferromagnetic
Curie temperature deduced from the temperature
dependence of the magnetization is lower by 30 K than
that of the CG sample. Because all magnetic measure-
ments on the NC and CG samples were conducted in
identical conditions, the observed differences may be
attributed obviously both to the different phase compo-
sitions of the samples and to specific features of the NC
structure which formed in the course of intense plastic
deformation.

As was already pointed out, annealing at 1070 K
does not result in a substantial change in the character
of the temperature dependence of the magnetization,
although annealing at such a high temperature is known
to reduce the density of structural defects by several
orders of magnitude. This point argues for the sugges-
tion that the difference between the magnetic properties
of the NC and CG samples is primarily due to a part of
the initial phase with the CeScSi structure transforming
to a weakly magnetic phase with a CeFeSi-type lattice.
The substantial decrease in the magnetization of a sam-
ple as it converts to the NC state is also obviously asso-
ciated with the phase transformation, with the magneti-
zation of the NC sample following practically a linear
course (curve 2 in Fig. 1). Because the magnetization of
the NC sample exceeds that of the sample consisting
only of the CeFeSi-type phase, this suggests that severe
plastic deformation produces a mixture of the two
phases.

The phase transformation stimulated by deforma-
tion was also observed to occur in pure Gd with a
nanocrystalline structure, which was likewise produced
on Bridgman anvils [6].

The noticeable decrease in the Curie point in the NC
sample cannot be associated with the presence of a
weakly magnetic phase, because its magnetic ordering
temperature is higher than that of the initial strongly
magnetic phase. At the same time, it is known that a
decrease in the crystallite size and the presence of
defects break up the long-range order, which in turn
entails a decrease in both the magnetization and the
magnetic ordering temperature via exchange inter-
action.

As was already mentioned, pure RE ferromagnets
subjected to severe plastic deformation exhibit similar
changes in magnetic properties. These changes, as
illustrated by Tb [8], are connected primarily with a
certain change in the lattice parameters, large lattice
microdistortions, and a small crystallite size, which
destroy the periodicity and weaken the exchange inter-
action, particularly, close to the crystallite boundaries
[6, 7, 9, 10]. Unlike pure RE metals, the Gd–Ti–Ge
compound has a very complex ordered lattice consist-
ing of layers alternately containing and free of RE ele-
ments. Interlayer coupling is responsible for the high
magnetic transition temperature [1–3]. At the same
time, as is shown by recent studies of the ordered inter-
metallic compounds Ni3Al [11] and TiAl [12], severe
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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Fig. 4. X-ray diffraction patterns of (1) Gd–Ti–Ge samples in the initial state (CeScSi-type structure) and (2) in the nanocrystalline
state and (3) a sample with a CeFeSi-type structure.
plastic deformation by torsion may bring about both a
partial and complete structural disorder and the forma-
tion of a solid solution. Note that the structure under-
goes a substantial disordering even with the anvils
turned through an angle ~π/2. One may therefore sug-
gest that deformation of the Gd–Ti–Ge samples on the
Bridgman anvils also resulted in a partial structural dis-
order. Because the lattice distortions are maximum near
the boundaries of crystallites and at defect pileups, the
disordering associated with deformation starts to
develop apparently near the crystallite boundaries and
dislocation pileups. It is in these regions that the phase
with a CeFeSi-type lattice, which exhibits the proper-
ties of a weak ferromagnet, is formed.

On the other hand, such a composite NC sample
structure, consisting of an ordered, weakly distorted
lattice in the bulk of the crystallites and a disordered
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
lattice with large microdistortions near the boundaries,
interferes with the domain wall displacement and gives
rise to an increase in Hc. Moreover, the structural disor-
der reduces, on the whole, the magnetization and low-
ers the magnetic transformation temperature slightly.
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Abstract—A method is proposed for the calculation of the magnetocaloric effect from simultaneous measure-
ments of thermal expansion and magnetostriction made in different regimes (adiabatic and isothermal). The
magnitude of the magnetocaloric effect for Sm0.6Sr0.4MnO3 is estimated. It is found that near the Curie temper-
ature TC it passes through a maximum to reach a giant value ∆T = 4.6 K for ∆B = 0.84 T. In addition, in the
neighborhood of TC, we observed colossal magnetoresistance ∆ρ/ρ = [ρ(H) – ρ(0)]/ρ(0) = 72% in a weak mag-
netic field of 0.84 T, a giant negative volume magnetostriction ω = –5 × 10–4 in a field of the same strength, and
a large change in the sample volume ∆V/V ≈ 0.1%. © 2001 MAIK “Nauka/Interperiodica”.
Rare-earth manganites with perovskite structure
exhibit typically strong coupling of the electron and
spin subsystems with the lattice, which gives rise to
anomalies in their magnetic, electrical, optical, and
elastic properties. Theoretically and from the practical
standpoint, the most interesting effects are undoubtedly
the colossal magnetoresistance (CMR) and giant mag-
netostriction, which are observed in some of these com-
pounds near the Curie temperature TC. While the CMR
has been dealt with in a large number of publications
(see reviews [1–3] and references therein), the magne-
tostriction of rare-earth manganites remains much less
studied [4–6]. Materials possessing a large magneto-
striction can be employed in a variety of devices con-
verting electrical to mechanical energy. As for the mag-
netocaloric effect (MCE) in manganites, it has practi-
cally not been investigated at all [7–9]. It was pointed
out in [10] that the MCE in manganites is comparable
in magnitude with that in Gd, which makes these mate-
rials promising for application in magnetic coolers. For
instance, calculation of the MCE from heat capacity
measurements in La0.6Ca0.4MnO3 yields ∆T = 2 K for
∆B = 3 T near TC = 260 K [11]. This illustrates the need
to search for materials exhibiting a high magnitude of
the above effects at room temperature and in weak
magnetic fields. This paper reports a study of thermal
expansion, magnetostriction, MCE, electrical resistiv-
ity, magnetoresistance, and ac initial magnetic and
paramagnetic susceptibility of Sm0.6Sr0.4MnO3.

The initial magnetic susceptibility in an ac magnetic
field of 0.8 to 8 kHz was measured with an F-5063 fer-
rometer, and the paramagnetic susceptibility was found
by weighing with electromagnetic compensation. The
electrical resistivity was determined by the four-probe
technique. The longitudinal and transverse magneto-
striction and thermal expansion were measured by
1063-7834/01/4304- $21.00 © 0715
means of strain gauges with a resistance of 92.30 ±
0.01 Ω and a strain sensitivity coefficient of 2.26. One
gauge was pasted onto the sample; the other, on the
quartz plate. When taking a measurement, the gauges
on the sample and the quartz plate were oriented in the
same way relative to the magnetic field.

Sm0.6Sr0.4MnO3 was prepared using standard
ceramic technology. The phase composition and lattice
parameters were checked with a Siemens D5000 dif-
fractometer. The ceramic prepared was established to
be a single-phase perovskite with orthorhombic struc-
ture (Pnma group). The single-phase state of the
ceramic was also confirmed by Raman spectroscopy
using a Jobin–Yvon T64000 triple-grating spectrome-
ter; indeed, we detected only those phonon modes char-
acteristic of orthorhombic manganites with Pnma sym-
metry.

Figure 1 plots the temperature dependence of the
initial magnetic (left-hand scale) and the paramagnetic
(right-hand scale) susceptibility of the compound under
study. The χ(T) temperature dependence exhibits a
sharp maximum at TN = 32 K and an abrupt decay at
TC = 110 K (TC was determined as the position of the
minimum in the {dχ/dT}(T) curve). Within the 230- to
300-K interval, the paramagnetic susceptibility obeys
the Curie–Weiss law with a paramagnetic Curie tem-
perature Θ = 124 K. At T ≤ 230 K and a deviation from
the Curie–Weiss law is observed, which indicates that
the magnetic state in this temperature region is not
homogeneous. The electrical resistivity ρ is seen to
increase sharply (by several orders of magnitude) near
TC (Fig. 2). Application of an external magnetic field
brings about a decrease in ρ in the region of TC and,
hence, a negative MR (Fig. 2). Note the very large mag-
nitude of MR, ∆ρ/ρ = [ρ(H) – ρ(0)]/ρ(0) = 72%, in a
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependence of the ac initial magnetic susceptibility in a field of 10–4 T and a frequency of 8 kHz (left-hand
scale) and of the paramagnetic susceptibility (right-hand scale).
weak magnetic field of 0.84 T. Figure 3 presents the
temperature dependence of the thermal expansion
∆l/l(T) measured under heating and cooling of the sam-
ple. As the temperature drops below TC, one observes a
strong decrease in ∆l/l corresponding to a volume com-
pression ∆V/V = 3∆l/ l = 0.1%. As seen from Figs. 2 and
3, the electrical resistivity and thermal expansion
undergo a temperature hysteresis below TC, which indi-
cates a first-order phase transition at TC. It is known that
first-order phase transitions occur at a constant temper-
ature T and, hence, |(dM/dT)H | should, theoretically, be
infinite. In this case, one should observe a large MCE,
because

where CP, H is the heat capacity at a constant pressure in
a constant magnetic field and M is the magnetization.

∆T T /CP H,( ) dM/dT( )H∆H ,–=
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Fig. 2. Temperature dependence of the electrical resistivity
(left-hand upper scale) and of magnetoresistance in a field
of 0.84 T (right-hand lower scale).
The MCE is usually either measured directly or esti-
mated from the experimental heat capacity or magneti-
zation data. We propose a method for estimating the
magnitude of the MCE which is based on simultaneous
measurement of thermal expansion and magnetostric-
tion in different regimes, namely, adiabatic and isother-
mal. The fact is that when studying magnetostriction,
one usually measures the adiabatic change in the vol-
ume or length, i.e., immediately after the application of
a magnetic field, where all the heat generated by the
MCE has not yet dissipated and remains inside the sam-
ple. In this case, the total change in the length or vol-
ume is the sum of the magnetostriction and thermal
expansion due to the MCE. Assuming the relative
elongation λ = ∆l/l to be a function of H and T, we can
write [12]

dλ dλ /dH( )TdH dλ /dT( )HdT .+=

12

10

8

6

4

2

0

50 100 150 200 250 300

TC

T, K

∆l
/l 

× 
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4

Fig. 3. Temperature dependence of the thermal expansion
measured in a heating and a cooling run.
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Whence for the magnetostriction measured in the adia-
batic regime, one obtains

where α = (dλ/dT)H is the coefficient of thermal linear
expansion and (dT/dH)ad is the MCE. In accordance
with the above expression, we measured the tempera-
ture dependence of the magnetostriction in the adia-
batic regime (dλ/dH)ad and of that in the isothermal
regime (dλ/dH)T (Fig. 4) and derived the coefficient of
linear thermal expansion from the ∆l/l(T) relation
(Fig. 3). (Note that we measured the longitudinal λ|| and
transverse λ⊥  magnetostriction components, while the
volume ω and the anisotropic λt magnetostriction were

dλ /dH( )ad dλ /dH( )T α dT /dH( )ad,+=

B = 0.84 T
ω (isothermal regime)
ω (adiabatic regime)
λ t

1

0

–1

–2

–3

–4

–5

80 90 100 110 120 130

TC

T, K

M
ag

ne
to

st
ri

ct
io

n 
× 

10
4

TC

∆B = 0.84 T

5

4

3

2

1

0

80 90 100 110 120 130
T, K

∆T
, K

Fig. 4. Temperature dependence of the volume magneto-
striction measured in the adiabatic and isothermal regimes,
and of the anisotropic magnetostriction in a magnetic field
of 0.84 T.

Fig. 5. Temperature dependence of the magnetocaloric
effect.
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calculated from the expressions ω = λ|| + 2λ⊥  and λt =
λ|| – λ⊥ .) The temperature dependence of the MCE
∆T(T), obtained for ∆B = 0.84 T, is shown in Fig. 5. One
readily sees a sharp MCE maximum near TC with a
giant amplitude ∆T = 4.6 K, which yields an extremely
high field dependence of the MCE of 5.5 K/T. We also
note the giant volume magnetostriction of –5 × 10–4 in
a weak magnetic field of 0.84 T. The anisotropic com-
ponent of the magnetostriction is very small throughout
the temperature range studied (Fig. 4).

Thus, we report on the first observation, in the
Sm0.6Sr0.4MnO3 manganite near the Curie temperature,
of a giant magnetocaloric effect, a giant negative vol-
ume magnetostriction, and a large volume change,
which are accompanied by a colossal magnetoresis-
tance.
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Abstract—Taking into account the nonlinear interaction between plain domain walls (DWs) in a chain of DWs,
one- and two-parameter solitons are obtained. These solitons are solitary shear waves propagating along the
DW chain. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In a stripe domain structure, along with volume spin
waves, there are excitations localized in a domain wall
(DW) associated with coupled oscillations of DWs [1].
A chain of plane-parallel DWs can exhibit wave prop-
erties similar to those of an atomic crystal lattice [2–5].
The long-range magnetostatic interaction forces
between the DWs play the role of elastic forces. The
waves of deformation of both the flexture and shear
types can propagate in the chain of a DW. The disper-
sion characteristics of the DW shear waves in a plane-
parallel domain structure are similar to the wave char-
acteristics in the one-dimensional chain of masses [6].
In this case, the linear waves of both acoustic and opti-
cal modes of the DW oscillations can exist [4]. The
forced nonlinear oscillations in the chain of plane-par-
allel DWs have many special features [7]. In such a
chain, nonlinear DW-shear waves of the acoustic and
optical modes of excitations can also occur.

BASIC EQUATIONS AND DISCUSSION
OF RESULTS

In this work, the nonlinear DW shear waves of the
acoustic mode are considered in a ferromagnet plate
with uniaxial anisotropy (its axis is perpendicular to the
plate plane) and with a plane-parallel domain structure
(PDS). If the domain width D is considerably larger
than the DW width, one can obtain the following
expression for the DW interaction energy [7] by using
the procedure of calculation of the magnetostatic
energy for a plate with PDS [8]:

W wn,
n

∑=
1063-7834/01/4304- $21.00 © 20718
(1)

where h is the plate thickness, M0 is the component of
the magnetization vector along the normal to the plate
plane, and jn is the displacement of the nth DW from its
equilibrium position. In deriving Eq. (1), we ignored
the DW interaction with distant neighbors, which is
justified for the waves corresponding to acoustic modes
with small wave vectors. The kinetic energy of the sys-
tem is defined by the expression

where

is the DW mass per unit area [9], γ is the gyromagnetic

ratio, ∆0 = , A is the nonhomogeneous-exchange
constant, and Ku is the uniaxial anisotropy constant.
Introducing a new variable q = πj/D, we write the equa-
tion of motion in the form
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(4)

Using the relation

and representing the integral in the form of a power
series in q, we obtain the following expression correct
to the fifth order:

(5)

where

The dependence of α and β/α on the ratio πh/D is pre-
sented in the figure. Since β/δ ~ 10–40, we limit our-
selves to the first two terms in Eq. (5). At δ = 0, Eq. (2)
is known as the Fermi–Pasta–Ulam equation [10].
Introducing a continuous space variable x = nD and
denoting u = qx, we obtain

(6)

(7)

Equation (6) is the modified Boussinesq equation. The
corresponding linearized equation (β = 0) has a wave
solution u = u0cos(kx – ωt) with the dispersion law

where k ! 2π/D and s is the velocity of the linear DW
shear waves.

Using the reductive perturbation theory [10] with

(8)

we obtain the modified Korteweg–de Vries (MKdV)
equation
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By passing from the slow variables ϑ  and τ to the usual
variables ζ = x ± st and t in accordance with (8) and
introducing U ≡ εu(1), we obtain

(9)

In Eq. (8), the small parameter ε is the quantity (Vg –
s)/s ! 1, where Vg is the velocity of the nonlinear wave
of deformation. This means that Eqs. (8) and (9) are
applicable if the velocity of nonlinear waves is close to
that of a linear wave.

Equation (6) is of the second order in time. It
describes the waves which propagate in either of the
two directions along the coordinate axis. The sign alter-
native appears in the scale transformation and, hence,
in Eq. (9), because Eq. (9) is of the first order in time
and describes a wave that propagates only in one direc-
tion. Therefore, the choice of sign determines the direc-
tion of the wave propagation (forward or backward)
along the coordinate axis.

A one-soliton solution to the MKdV equation has
the form [11]

(10)

(11)

where η = x ± (s + v)t and v > 0. Note that Eq. (9), with
each sign, has solutions of both signs in Eq. (10).

The velocity of nonlinear longitudinal DW shear
waves Vg is higher than the velocity of linear waves s;
i.e., Vg = s + v, s @ v (because v > 0). Let us compare
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the velocity of the nonlinear wave with Walker’s DW
limit velocity Vw [9]

One can obtain the following expression for the veloc-
ity ratio:

At usual bubble-domain film thicknesses h ~ 8Q∆0

(Q = Ku/2π  is the quality factor), the domain width

is D ~ 8Q∆0 [9]. Then, we have Vg/Vw ~ 4  and at
Q = 10–103, we have Vg/Vw ~ 10–102.

One can go from the discrete model to the continu-
ous one if the soliton width exceeds the domain width
considerably; i.e., if 

This condition is fulfilled at least at ∆1/D > 10, which
imposes additional limits on the soliton velocity: v/s <
4 × 10–4. The maximal value of the relative domain
deformation in the region of the soliton localization can
be found to be

At α/β ~ 102 and v/s ~ 10–4, we have σ < 0.1. At v =
100 cm/s, D ≈ h = 0.01 cm, mw = 3 × 10–10 g/cm3, and
M0 = 100 G, the value of the relative deformation is
σ ≈ 0.03.

A two-parametrical solution of Eq. (9) has the
form [12]

(12)

(13)

where ξ = x ± (s – v1)t. We can choose the soliton veloc-
ity v1 (which is measured from the velocity of the of
linear wave s) and the characteristic size of the local-
ized excitation ∆2 to be independent parameters. It is
clear from Eq. (13) that the range of the parameters v1
and ∆2 where the soliton exists is defined by the ine-
quality

(14)

In the case where condition (14) is fulfilled, k0 in
Eq. (13) is a real quantity. Let us analyze two limiting
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cases of Eq. (12) [12]. In the first case, the amplitude is
small; i.e., ∆2k0 @ 1. The solution in Eq. (12) is a
weakly localized small-amplitude wave. In the second,
extremely nonlinear case, we have k0∆2 ! 1 and solu-
tion (12) represents a breather, that is, a system of two
solitons with opposite signs, oscillating with the fre-
quency Ω around the common center of gravity, which
moves with the velocity s – v1. The maximum distance
that can separate two solitons is equal to

(15)

In contrast to Eq. (11), where v is strictly positive, the
quantity v1 in the breather solution (12) can be negative
[see Eq. (14)]. Let the velocity v1 be close to its critical
value [which corresponds to the equality in Eq. (14)],

v1 = –r(1 – µ)/(2 ), 0 < µ ! 1. Then, we have

k0∆2 =  ! 1 and Ω ≈ 2|v1 |k0 and Eq. (15) can be
rewritten in the form ∆ = ∆2ln(12/µ). At µ ≈ 0.05, we
have ∆ ≈ 5∆2.

If the relation between v1 and ∆2 is similar to that
between v1 and ∆1 for the soliton solution in Eq. (11),

viz., ∆2 = , we have

(16)

and the two-parametrical solution in Eq. (12) takes the
simplest form

It is seen from Eq. (16) that the wave number k0 is
inversely proportional to the width ∆2, while the fre-
quency Ω is directly proportional to the velocity v1 and
the wave number k0.

As was indicated above, all the calculations were
carried out ignoring the interaction with far-spaced
neighbors. For this reason, as is evident from a compar-
ison of Eq. (2) with the equations of the linear wave the-
ory as applied to the chain of plane-parallel DWs [4, 5],
the results obtained at b ≥ 1 are qualitative in character,
while, at b ! 1 (when the domain width D far exceeds
the plate thickness h), they are of a quantitative charac-
ter. A domain structure with the domain width D being
considerably larger than the plate thickness h can exist
in both ferromagnets (see, e.g., [13]) and rare-earth
orthoferrites.

CONCLUSIONS

Thus, under certain conditions, the nonlinear waves
of DW deformation, which are similar to solitons in an
anharmonic chain of atoms, can exist in the chain of
plane-parallel DWs. Physically, such waves are local-
ized waves of compression and dilatation, i.e., of the
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longitudinal deformation of the DW chain with possi-
ble additional internal degrees of freedom. The velocity
of DW shear solitons exceeds Walker’s limit velocity
by an order of magnitude and more, which can be of
certain practical importance. Such nonlinear waves of
deformation can be excited with a pulsed or a high-fre-
quency magnetic field inhomogeneous over the plate
plane, as is the case with linear deformation waves of
the acoustic type [14].
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Abstract—It is found that the ferroelectric phase transition in the ammonium sulphate crystal (NH4)2SO4 at
TC = 223 K is accompanied by spontaneous twisting of samples around the a, b, and c crystallographic axes in
the ferroelectric phase. This twisting, observed with a torsion pendulum, cannot be explained solely by the
change in symmetry mmm  mm2 at the Curie point. It is supposed that the twisting is connected with a com-
plex rearrangement of the structural elements of the crystalline lattice below the Curie temperature. © 2001
MAIK “Nauka/Interperiodica”.
INTRODUCTION

The effect of spontaneous twisting of a sample in a
torsion pendulum at temperatures lower than the Curie
point (TC) was first observed in pure proper ferroelas-
tics KH3(SeO3)2 and KD3(SeO3)2 [1]. Later, this twist-
ing was observed in other ferroelastics, for example, in
K2ZnCl4 [2], in crystals of the KH2PO4 family [3], in
KLiSO4 [4], and in some other materials. In all these
cases, crystals undergo displacive phase transitions
(PTs) which are accompanied by the appearance of new
components of the shear deformation in the ferroelec-
tric phase. Such components are absent in the high-
symmetry phase. If no new components of the shear
deformation appear at TC, as, for instance, in a
Ba2NaNb5O15 crystal at the ferroelectric phase transi-
tion (TC = 858 K) from the tetragonal phase (4mm point
symmetry group) to another tetragonal phase (4/mmm),
then the twisting effect is not observed [5].

In this connection, it is of interest to clarify if a fer-
roelectric ammonium sulfate (NH4)2SO4 sample will be
twisted as a result of a rhombic–rhombic PT when the
temperature is changed. It is known [6] that this crystal
has three components of shear deformation in the ferro-
electric and paraelectric phases. In addition, none of
these components is a new shear component, but all of
them undergo an abrupt change at TC [7, 8]. Moreover,
an anomalous behavior of the elastic and nonelastic
properties of the crystal subjected to twist deformations
was detected in the vicinity of TC. This behavior is
likely to be due to jumplike changes in the shear com-
ponents of the elastic rigidity at TC [9].

Ammonium sulfate crystals undergo the ferroelec-
tric PT from the high-temperature rhombic phase with
1063-7834/01/4304- $21.00 © 0722
(Pnam) symmetry into the low-temperature rhom-

bic phase with (Pna2) symmetry at the Curie tem-
perature TC = 223 K [10, 11]. This transition is accom-
panied by the appearance of a spontaneous polarization
Ps along the c axis. The Ps changes its sign at a temper-
ature of about 85 K [12]. Some characteristic features
(such as a small value of the Curie–Weiss constant
(CCW = 33.8 K), an anomalous behavior of the sponta-
neous polarization in the vicinity of the 85-K tempera-
ture, etc.) allow one to classify (NH4)2SO4 as a weak
ferroelectric [13]. The mechanism of the ferroelectric
PT in this crystal is quite complex and is still not com-
pletely understood in detail. The (NH4)2SO4 crystal unit
cell contains 60 atoms or four formula units. It is fairly
difficult to describe the structural rearrangement of this
crystal at TC. According to the idea formulated in [14],
one can suppose that two ferroelectric sublattices are
formed in (NH4)2SO4, as well as in some other weak
ferroelectrics, at the temperature of the ferroelectric PT.
These sublattices have oppositely directed spontaneous
polarizations Ps1 and Ps2 (subscripts 1 and 2 indicate the
corresponding ferroelectric sublattices) with different
temperature dependences. The spontaneous polariza-
tions Ps1 and Ps2 are due to displacements of the tetra-
hedrons (NH4)1 and (NH4)2 along the c axis. Twisting of
these tetrahedrons is caused by a rearrangement inside
the (SO4)1 and (SO4)2 groups. It is assumed that the dis-
tortion of the (SO4)1 and (SO4)2 groups and their rota-
tion at some angle take place at the Curie temperature.
Their rotation angle depends on the temperature of the
sample (below the Curie point).

It is obvious that the rearrangement of different
structural elements of a crystal at T = TC can lead to a
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complex deformation of ammonium sulfate samples in
the ferroelectric phase. The main purpose of this work
was to measure the spontaneous twist of ammonium
sulfate crystal samples under a change in temperature
in the vicinity of TC and in the range corresponding to
the ferroelectric phase. We also investigated the mech-
anism of this phenomenon by analyzing the macro-
scopic deformation of a sample in a torsion pendulum.

1. EXPERIMENTAL

The (NH4)2SO4 crystals were grown by the isother-
mal evaporation method at T = 303 K from a saturated
water solution with pH = 4. To prepare the ammonium
sulfate solution, a twice-recrystallized substance was
used. Samples for measurements were cut out in the
form of bars with the rectangular cross section having a
size of 2 × 2 × 18 mm. The length of these bars was ori-
ented along the a, b, or c crystallographic axes. We will
refer to these samples as x-, y-, and z-oriented samples,
respectively.

The amount of the twist deformation was measured
by means of a setup, based on an inverse torsion pendu-
lum [15], with the relative error not exceeding ±5 × 10–5.
The twist deformation created in the sample led to the
rotation of the disk of the pendulum torsion system at
some angle. The rotation angle ϕ was measured by
capacitive sensors in the case of considerable twist
deformations and by photoelectric sensors in the case
of small deformations. The experimental curves ϕ(T)
were automatically recorded by an XY-coordinate
recorder. The sample temperature was measured with
an error of ±0.5 K.

2. RESULTS AND DISCUSSION

The results of measurements of twist deformations X
obtained in the cooling regime with a cooling rate of
about 0.2 K/min for samples with x, y, and z orienta-
tions are shown in Fig. 1. It is clear that the twist defor-
mations are absent in the paraelectric phase at T > TC =
223 K. However, the samples of all three orientations
are spontaneously twisted in the ferroelectric phase.
The Xx, Xy, and Xz deformations are initially changed in
a jump at TC, and then a gradually increasing twist
deformation is observed in the Xx(T), Xy(T), and Xz(T)
dependences in the course of cooling in the ferroelec-
tric phase. The maximal value of the X deformation is
observed for samples of the z orientation, while the
minimal one is observed for samples of the x orienta-
tion. For samples of the z and y orientations, the jumps
in deformation ∆X at TC were found to be ∆Xz = 3 × 10–3

and ∆Xy = 1.2 × 10–3, respectively. The temperature
dependence of the spontaneous twist of the (NH4)2SO4
samples, recorded in the heating and cooling regimes,
demonstrates a qualitatively similar behavior (Fig. 2).
Since the dependences of ln(X – ∆X) upon ln(TC – T)
shown in Fig. 3 are linear over the interval ∆T = TC –
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
T ≈ 20 K, the experimental X(T) curves were approxi-
mated over this interval by a power-law function:

(X – ∆X) = A(TC – T)n, (1)

where A is a temperature-independent factor and n is
the exponent.

The slope of the linear parts of the ln(X – ∆X) =
f{ln(TC – T)} plots is the same for samples of the y and
z orientations. From this slope, the exponent n in
Eq. (1) was found to be ≈0.5.

To understand the reason for the sample twisting in
the torsion pendulum, let us first find the relation
between the twisting angle and the characteristics of
the crystal in the case where a torque M is applied to the
sample. Since one of the sample ends is fixed in the
pendulum and the torque M is applied to the other end,
a nonuniform deformation will be produced in the sam-
ple in torsion oscillations. It is obvious that this defor-
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Fig. 1. Temperature dependences of the X twist deforma-
tions for samples of (1) x, (2) y, and (3) z orientations.
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Fig. 2. Temperature dependences of the twist deformation X
for the z-oriented sample in the heating and cooling runs.
Arrows indicate the directions of the temperature change.
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mation is varied both along the sample length and over
any of its cross sections as one moves away from the
torsion axis. In any cross section of the sample, the
shear deformation is maximal at the periphery, i.e., in
the exterior layers, while the deformation of the central
part of the sample along the torsion axis is absent.

Note that, in the torsion pendulum, the elastic tor-
sional rigidities Cx, Cy, and Cz are functions of different
components of the shear rigidity for samples of the x, y,
and z orientations, namely, Cx = f(C55; C66), Cy = f(C44;
C66), and Cz = f(C44; C55).

For an anisotropic sample (for instance, of the z ori-
entation) of a rectangular cross section, in the case of a
linear relation between the stress σ and the deformation
X, the twisting angle is

ϕz = Ml/Cz, (2)

where l is the sample length and Cz is the torsional
rigidity.

Suppose, for simplicity, that we deal with a pure fer-
roelastic crystal having a novel shear deformation com-
ponent X5, which appears spontaneously at TC. In this
case, the shear component σ5 of the external stress is
related to the deformation X5 as

σ5 = C55X5. (3)

Then, one can write down the torque causing the sam-
ple to twist around the z axis in the form

(4)

where a is the transverse dimension of the sample.

M 2 σz Sd∫ 2a C55X5z zd

0

a/2

∫ C55X5
a3

4
-----,= = =

2

1

–5.5

–6.0

–7.0

–8.0

–1 0 2 4
ln(TC – T)

ln
(X

 –
 ∆

X
)

Fig. 3. Dependences of ln(X – ∆X) upon ln(TC – T) for sam-
ples of (1) y and (2) z orientations.
P

The torsional rigidity Cz for samples of the z orien-
tation can be written, according to [16], as

(5)

where the coefficients n and k take the values n = 1, 3,
5, …; and k = 1, 3, 5, … in the temperature interval near
TC. If, for example, the C55 component becomes “soft”
(C55 ! C44) when the temperature approaches TC, then
Eq. (5) will have the form

(6)

where

(7)

Thus, we have

Cz = C55a4/3. (8)

Substituting Eqs. (4) and (8) into Eq. (2), we get

(9)

It is seen that, in the vicinity of the Curie point, the
twisting angle ϕ of the sample in the torsion pendulum
is proportional to the shear deformation X of the proper
ferroelectric crystal. The coefficient of proportionality
in Eq. (9) depends only on the sample geometry and
does not depend on the elastic properties of the crystal.
One can assume that this relation is also valid for the
case of spontaneous deformation of the samples in the
absence of external forces. Then, according to Eq. (9),
the sample will twist if some component of the shear
deformation X appears as a result of the PT, as is the
case with the ferroelectric PT. However, (NH4)2SO4 is
not a proper ferroelastic, and a spontaneous twisting of
(NH4)2SO4 crystals in a torsion pendulum at T ≤ TC is
quite an unexpected phenomenon. It cannot be solely
due to the change in symmetry mmm  mm2 at
the PT.

However, we should take into account that, in spite
of the fact that no softening of the elastic rigidity com-
ponents of the crystal takes place at the Curie point, an
abrupt change in both the longitudinal and the shear
components of the elastic compliance matrix was
detected [8]. The latter can serve as the reason for the
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sample twisting in the torsion pendulum with changing
temperature.

The complex stressed state of a sample realized
under the experimental conditions is characterized by
the torsional shear modulus G. This modulus is deter-
mined by both the corresponding shear components of
the elastic compliance tensor and the longitudinal com-
pliance component along the twisting axis [17], which
are mutually related. This can be verified by comparing
the temperature dependences of the twist deformation
of a z-oriented sample in the vicinity of TC in two cases,
namely, in the presence and in the absence of an exter-
nal tensile stress σt applied to the sample along the c
axis (Fig. 4). It is clearly visible that, in the presence of
the tensile stress σt = 3 × 105 Pa, the deformation Xz is
changed more sharply in the vicinity of TC; that is, the
twist and stretching deformations of the (NH4)2SO4
monocrystal are tightly connected with each other.

Since the rotation of the SO4 tetrahedrons takes
place in the (NH4)2SO4 structure when it is cooled from
the paraelectric phase through TC and their rotation
angle has a pronounced temperature dependence in the
ferroelectric phase, one can assume that the SO4 tetra-
hedron rotation is connected with the twist deformation
and the spontaneous twisting of the sample. At the
same time, the displacement of the SO4 groups in the
course of the PT contributes to the tensile and compres-
sive deformation (longitudinal deformations). In other
words, the twist deformations of (NH4)2SO4 are con-
nected with the microscopic mechanism of the ferro-
electric PT, while the spontaneous twisting of samples
is due to the spontaneous polarization of the crystal.

It is obvious that, in the case of torsional oscilla-
tions, a nonuniform deformation appears in the sample
along its radius. This deformation is characterized by
the gradient terms ∂X12/∂y and ∂X13/∂z for x-oriented
samples, ∂X21/∂x and ∂X23/∂z for y-oriented samples,
and ∂X31/∂x and ∂X32/∂y for z-oriented samples.

It is known that the nth-rank tensor is transformed
according to the same irreducible representation as the
product of its n coordinates does. In particular, the P3
polarization, which is the first-rank tensor, is trans-
formed as its z coordinate. The X31 deformation (the
second-rank tensor) is transformed according to the
same irreducible representation as the product of its
coordinates zx. Therefore, in the case of samples of the
z orientation, the nonuniform deformations ∂X5/∂x and
∂X4/∂y are transformed as the polarization P3. For this
reason, if in samples of the z orientation the spontane-
ous polarization P3 appears in a jump at TC, then the
nonuniform deformations ∂X5/∂x and ∂X4/∂y, which
initiate the rotation, also appear in a jump simulta-
neously with this polarization. Due to the inverse piezo-
effect, the jump of the polarization P3 at TC should lead
to an abrupt change in the X1, X2, and X3 deformations,
which are related to P3 by the piezoelectric moduli d31,
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
d32, and d33 [6]. Note that the abrupt change in the lon-
gitudinal and shear components of the elastic compli-
ance was experimentally observed in (NH4)2SO4 at the
first-order ferroelectric PT [8].
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Abstract—The temperature dependences of Grüneisen parameters for layered crystals of the hexagonal crystal
system are constructed. It is demonstrated that the Grüneisen parameters calculated in the framework of the
model proposed by I.M. Lifshits for a strongly anisotropic crystal agree satisfactorily with those obtained from
the experimental data for graphite, the most typical layered crystal. It is found that the effect of bending vibra-
tions on the Grüneisen parameters decreases with a decrease in the anisotropy of the elastic properties. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Grüneisen parameters γ belong to the most impor-

tant characteristics of crystal lattice dynamics. They
enter into the equation of state, represent a measure of
the anharmonicity of the forces acting in a crystal, and
reflect the features and character of the distribution of
the frequencies of the phonon spectrum and their vari-
ations under pressure. Using the Grüneisen parameters,
it is possible to relate various thermodynamic quanti-
ties. The magnitudes of these parameters determine
physical processes such as thermal expansion, heat
conduction, sound absorption, etc. This high informa-
tion content stimulates interest in the investigation of
the Grüneisen parameters.

2. THEORY
Two methods of theoretical treatment of thermal

expansion of crystals exist, namely, the microscopic
and phenomenological (thermodynamic) approaches.
According to the thermodynamic method, the tensor of
thermal expansion coefficients is related to the free
energy F by the thermodynamic relationship

(1)

Since the calculation of the thermal expansion coeffi-
cients is rather complicated in the framework of the
anharmonic model, the quasi-harmonic model is
widely used [1]. In the quasi-harmonic model, atomic
vibrations are considered harmonic. However, it is
assumed that the frequencies ωj for each mode depend
on the pressure applied. Because the amplitudes of
atomic vibrations in solid-state lattice sites are actually
always small, the supposition that the vibrations are of
an “almost harmonic” character is substantiated well.
The free energy of the crystal in the framework of the
quasi-harmonic model can be treated as the sum of free
energies of independent oscillators, each of which cor-
responds to a single normal mode. In this case, the free

α ik
1
V
---–

∂2F
∂pik∂T
-----------------.=
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energy (without regard for the energy of zero-point
vibrations) can be written as [2]

(2)

Then, according to Eq. (1), we have

(3)

In terms of Eq. (3) for layered crystals with the axial
symmetry (specifically in the hexagonal crystal sys-
tem), the linear thermal expansion coefficients take the
form

(4)

Here, α|| and α⊥  are the linear thermal expansion coef-
ficients in the layer planes and normal to layers, respec-
tively; Cik are the elastic constants; and γ|| and γ⊥  are the
weighted mean Grüneisen parameters in the layer
planes and normal to layers, respectively,

where
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Here, a and c are the lattice parameters in the layer
planes and normal to layers, respectively; γ||, ⊥ , j are the
Grüneisen parameters for the jth mode; and Cj is the
contribution of the jth mode to the heat capacity.

The Cik, γ, and V parameters, as a rule, are weak
functions of temperature. Hence, it follows from rela-
tionship (4) that the temperature dependence of the
thermal expansion coefficients should be determined
by the temperature behavior of the heat capacity. In
fact, numerous experimental data indicate that α(T) ~
T3 at low temperatures, while α ~ const at high temper-
atures (above the Debye temperature θ). On the other
hand, the features in the temperature behavior of the
thermal expansion coefficients can be governed by the
specific features of the temperature dependence of the
Grüneisen parameters γ(T), because Cik and V, as a rule,
vary monotonically with the temperature.

It also follows from relationship (4) that, for exam-
ple, the linear thermal expansion coefficient in the layer
planes α|| can be negative for two reasons. First, the sec-
ond term has a dominant role: a strong expansion nor-
mal to the layers causes the lateral compression (the so-
called Poisson’s compression). Second, the Grüneisen
parameter γ|| itself is negative.

As a rule, the mode Grüneisen parameters γ||, j =
−∂Lnωj/∂Lna are positive [2]. As the pressure
increases, atoms in a solid approach each other, the
amplitudes of their vibrations at the same energy
decrease, and the frequency increases. However, it was
pointed out for the first time in [3] that, under specific
conditions, γ|| can be negative in the layered crystals.
The matter is that the layer subjected to the uniaxial
tension should be considered a membrane. The mem-
brane tension leads to an increase in the frequency of
transverse vibrations; i.e., ∂Lnωj/∂Lna > 0. The so-
called membrane effect results in the negative mode
parameters γ||, j. For layered crystals, the density of
states of the acoustic vibrations that are transverse with
respect to the layer plane (the so-called bending vibra-
tions) is rather large at low temperatures, which corre-
sponds to a large statistical weight of Cj/C. Since this
vibrational mode corresponds to the negative values of
the mode Grüneisen parameter γ||, j, we can expect that
the weighted mean parameter γ|| will be negative.

Relationship (4) can be rewritten as [4]

(5)

We take into account the quasi-continuity of the
spectrum and change over from summation in relation-
ships (2) and (3) to integration with allowance made for
the dispersion laws of the spectrum of acoustic vibra-
tions in the layered crystal and their variations under
pressure, which are given in [3]. In the limiting cases,

γ||
V
Cp

------ C11 C12+( )α|| C13σ⊥+[ ] ,=

γ⊥
V
Cp

------ C33σ⊥ 2C13α||+[ ] .=
P

we can obtain the analytical form of the temperature
dependences of the heat capacity C(T) and the thermal
expansion coefficients α||(Τ) and α⊥ (Τ). Specifically,
for an intermediate temperature range η2Θ ! T ! ξΘ
(designations are the same as in [3, 5]), by retaining
only the largest terms with respect to ξ and T/Θ, we can
derive the following temperature dependences:

(6)

where N and N0 are the numbers of unit cells in the
crystal and unit volume, respectively;

η2 = C44/ρv2; ζ2 = C33/ρv2;

2/ρv2 = 1/C11 + 1/C66; Θ = "vπ/ka;

ν is the dimensionless parameter characterizing the
flexural rigidity of the layer (ν < 1); and ϕ1 = dC33/dp.

The inclusion of dependences (6) in expressions (5)
allows one to determine the form of the temperature
dependences of the Grüneisen parameters

(7)

where A and B are the positive numbers. Using the
numerical values of the parameters taken from [5]
(dC33/dp = 16, ν = 0.47), the quantitative estimations
from relationship (7) can be made for graphite, one of
the typical layered crystals. In the case of graphite in
the temperature range 0.7 ! T ! 390 K [5], the follow-
ing relationships are valid:

γ||(T) = –400 K/T + 1.5, γ⊥ (T) = 3.5 – 10 K/T.

3. RESULTS AND DISCUSSION

Let us consider the thermal behavior of the Grü-
neisen parameters γ⊥ (T) and γ||(T), which were calcu-
lated from relationships (5) for layered crystals of the
hexagonal crystal system.

The temperature dependences of the Grüneisen
parameters γ⊥ (T) and γ||(T) for graphite single crystals
with due regard for the temperature dependence of the
elastic constants Cik(T) and without regard for it are
shown in Fig. 1. In order to calculate the required
dependences, we used the experimental data on the heat
capacity [6], thermal expansion [7], and elastic con-
stants [8].

It is seen from Fig. 1a that the temperature depen-
dences γ⊥ (T) and γ||(T) differ substantially. The γ⊥ (T)
quantity is positive over the entire temperature range
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under consideration, whereas γ||(T) is negative. The
common feature is a monotonic decrease in the abso-
lute values of γ⊥ (T) and γ||(T) with an increase in tem-
perature. This indicates that the anharmonicity of inter-
atomic bonding forces for graphite in the layer planes
and normal to them decreases with an increase in tem-
perature. It is evident from comparison of the curves
that the inclusion of Cik(T) has little or no effect on the
character of the γ||, ⊥ (T) dependence. The γ||(T) quantity
decreases by 30%.

The theoretical dependences of the Grüneisen
parameter calculated from relationship (7) are shown in
Fig. 1b. A good agreement is observed with the data
obtained for γ||(T).

Figure 2 shows the temperature dependences of the
Grüneisen parameters for the GaS, GaSe, and InSe lay-
ered crystals, which were calculated from the data on
the heat capacity [9], thermal expansion [5], and elastic
constants [10]. It is easy to see that, for all these crys-
tals, there is a temperature range near 30–50 K in which
the Grüneisen parameter γ|| is negative. As for graphite,
this can be explained by the dominant contribution of
transverse acoustic vibrations, which are caused by
atomic displacements normal to layers and propagate in
the layer planes. In other words, the membrane effect,
which is specific to layered crystals, manifests itself. At
temperatures above 50 K, the γ|| parameter increases
rapidly due to an increase in the contribution of the
modes with positive values of the mode Grüneisen
parameter γ||, j and flattens out at temperatures close to
the Debye temperature. The quantitative estimations
with relationship (7) cannot be applied to these crys-
tals because of the lower anisotropy of the elastic
properties [5] and the invalidity of the assumptions
made when deriving relationship (7). However, the
quantitative reasoning holds.

For comparison, let us consider the known experi-
mental data for zinc and cadmium [11]. Elemental zinc
and cadmium, as well as the crystals investigated
above, crystallize in the hexagonal crystal system. The
interaction of the atoms located in planes normal to the
sixfold axis is stronger than the interaction between the
planes. The strong anisotropy of the forces acting in the
crystal is also evidenced by a considerable anisotropy
of the thermal expansion (α⊥ /α|| ~ 6 at T ~ θ) and by the
temperature range in which α|| is negative.

The temperature dependences of the Grüneisen
parameters γ⊥ (T) and γ||(T) for zinc and cadmium [11]
are shown in Fig. 3. It is evident that the contribution of
the modes with the negative parameter γ||, j manifests
itself in these crystals as a small decrease in the values
in the temperature range where α|| is negative. The
parameter γ|| itself remains positive over the entire tem-
perature range. The nature of the negative thermal
expansion for zinc and cadmium crystals is apparently
determined by the dominant part of the second term in
relationship (4), i.e., by Poisson’s compression, all the
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
more that the functions f1(T) = 6α||/T3 and f2(T) = α⊥ /T3

constructed for these elements represent a mutual mir-
ror image.

Thus, the transverse acoustic vibrations in layered
crystals, which propagate in the layer planes and at
which the atomic displacements are normal to the layer
planes, play the dominant role in the temperature
behavior of the Grüneisen parameters. These vibrations
(modes) correspond to negative values of the mode
Grüneisen parameters γ||, j because of the manifestation
of the specific membrane effect. For a strongly aniso-
tropic layered crystal, this can lead to negative values of
the weighted mean Grüneisen parameter γ||. It follows
from the above figures that if all of the modes are
involved in motion (at temperatures close to the Debye
temperature), γ|| > γ⊥  for layered crystals. In other
words, the anharmonicity of interatomic bonding
forces is stronger toward the stronger bond (in the layer
planes). This trend is clearly observed for graphite,
because the Debye temperature is approximately equal
to 1600 K.
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Fig. 1. Temperature dependences of the Grüneisen parame-
ter for graphite: (a) with due regard for Cik(T) (solid lines)
and without regard for Cik(T) (dashed lines) and (b) theoret-
ical calculations from relationship (7).
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Another mechanism, which is known from the liter-
ature, leads to negative Grüneisen parameters [12]. It is
known that Group IV elements of the periodic table
crystallize in the cubic crystal system of the diamond
type (for example, germanium, silicon, and α-tin),
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Fig. 3. Temperature dependences of the Grüneisen parame-
ters for (a) cadmium (θ = 210 K) and (b) zinc (θ = 320 K).
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Fig. 2. Temperature dependences of the Grüneisen parame-
ters for layered crystals: (a) GaS, (b) GaSe, and (c) InSe.
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whereas compounds of the germanium isoelectronic
series crystallize in the cubic crystal system of the
sphalerite type (for example, InSb, InAs, GaAs, GaSb,
and AlSb). All these semiconductors are characterized
by the negative values of the low-temperature thermal
expansion coefficients due to negative Grüneisen
parameters [11]. As was shown in [12], the specific fea-
tures of the phonon spectrum of germanium, which was
constructed using the neutron diffraction data, can lead
to a negative thermal expansion. The reason is that the
branch of the transverse acoustic vibrations for germa-
nium has a horizontal portion in the vicinity of the Bril-
louin zone boundary (a similar phenomenon was also
observed for silicon and α-tin). Therefore, this branch
in calculations can be considered as consisting of two
parts, namely, a Debye’s part at the beginning of the
spectrum and an Einstein’s part at the end. According to
[12], the Einstein’s part of transverse acoustic vibra-
tions is responsible for negative values of the Grüneisen
parameter.

The phonon spectra of layered crystals also exhibit
specific features. However, in these spectra, unlike the
phonon spectra of the aforementioned materials, the
acoustic branch of transverse vibrations with the dis-
placement vector directed normally to the layer is char-
acterized by the dispersion dependence ω2 ~ Aq2 + Bq4

[3], where q is the wave vector projection onto the layer
plane, A is the quantity determined by the elastic con-
stant of the interlayer shear C44, and B is the quantity
characterizing the flexural rigidity of the layers. A sim-
ilar quadratic dispersion dependence was experimen-
tally found for graphite [13], GaS [14], and other lay-
ered crystals.

In conclusion, it should be emphasized that the
direct measurements of the mode Grüneisen parame-
ters γ(T), which usually involve considerable experi-
mental difficulties, could provide important informa-
tion on the character of phonon spectra in these crystals
and their variations under deformation.
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Abstract—The paper reports on an acoustic study of the temperature dependences of the ultrasonic-wave
velocity and attenuation in a LiCsSO4 crystal within the 190–295 K temperature region, which includes the
interval of the pseudoproper second-order ferroelastic phase transition (202 K). The velocity of the transverse
xy acoustic mode is found to decrease by more than six times at the phase transition. The possibility of perform-
ing ultrasonic studies both in the region of the ferroelastic phase transition temperature and below it is demon-
strated. The results are treated in terms of Landau’s theory. Waves not associated with the soft mode are shown
to exhibit anomalies which are supposedly due to an intermediate phase, whose existence was suggested in a
number of publications. © 2001 MAIK “Nauka/Interperiodica”.
The lithium–cesium sulfate LiCsSO4 is of interest as
a material undergoing a phase transformation and hav-
ing a ferroelastic domain structure at low temperatures
(see, e.g., [1] and references therein). There are also
reports of its good optical characteristics [1] and
unusual thermal properties [2], which makes LiCsSO4

a promising crystal for device applications. This
accounts for its having become the subject of numerous
studies performed by various methods.

LiCsSO4 belongs to a family of ACBX4-type com-
pounds (the potassium sulfate family), where A and C
stand for alkali metals or the NH4 ion and BX4 is SO4,
SeO4, or some other tetrahedral ion [3]. According to
[4–8], LiCsSO4 undergoes a structural phase transition
at a temperature of about 202 K from the paraelastic
phase with an mmm rhombic point group to the fer-
roelastic monoclinic structure of the class 2/m, without
a change of the unit cell content. A polarizing micro-
scope study suggests that the transition to the 2/m group
occurs through an intermediate phase with an unidenti-
fied, supposedly monoclinic symmetry within a tem-
perature interval from 206 to 199 K [7]. Subsequent
x-ray diffraction and calorimetric studies [4, 8, 9] did
not confirm the existence of such an intermediate
phase, and the transformation itself was considered to
be a typical second-order phase transition. However,
later EPR studies of the phase transition in LiCsSO4

again reported observation of an intermediate structure
in the above-mentioned temperature region [2, 10].
Thus, the problem of the mechanism of the transition in
LiCsSO4 from the para- to the ferroelastic phase
remains unclear.
1063-7834/01/4304- $21.00 © 20732
The properties of LiCsSO4 were also investigated by
Raman scattering [11], NMR [1, 12], and other meth-
ods. It was established that the transition to the fer-
roelastic phase involves a strong softening of the acous-
tic phonon mode associated with the shear component
εxy of the strain tensor. At the same time, the primary
(microscopic) order parameter characterizes the order-
ing of the sulfate tetrahedra [7], and, by the terminol-
ogy of [13], this phase transition is a pseudoproper fer-
roelastic transformation in which the primary parame-
ter η and the strain shear component εxy are linearly
related. In connection with the ferroelastic nature of the
phase transition in LiCsSO4, the elastic properties of
the crystal were studied. The temperature dependences
of the dynamic elastic moduli cαβ (α and β are the Voigt
indices) were investigated primarily by Brillouin light
scattering [5] and ultrasonic [14–16] methods. A strong
decrease in the c66 elastic constant and weak anomalies
of other elasticity tensor components in the region of
the phase transition were observed. The most complete
information on all independent moduli cαβ of the mmm
group can be found in [5] for a broad temperature
region including the Curie point TC. Attempts to mea-
sure the sound velocity directly in the region of the
phase transition and below it were unsuccessful in all of
the chosen directions [14, 15] because of the strong
attenuation of the ultrasonic wave caused by the fer-
roelastic domain structure [17]. Note that the measure-
ments reported in [15] were made only for the wave
associated with the c66 elastic constant, while in [14],
seven independent cαβ components were studied. The
first measurements of the velocity of the transverse
ultrasonic wave corresponding to the soft acoustic
001 MAIK “Nauka/Interperiodica”
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mode were made in the ferroelastic phase in [16]. No
anomalies in the elastic moduli which would indicate
the existence of an intermediate phase were observed in
[5, 14–16].

Here, we report a comprehensive ultrasonic study of
crystalline LiCsSO4 within the 190–295 K range
including the Curie point. We measured the tempera-
ture dependences of the relative variations in the veloc-
ity and attenuation of a y-polarized transverse sonic
wave propagating along the rhombic crystallographic
axis x and of longitudinal waves launched along the
[100], [101], and [011] directions of the rhombic phase.
There are no reports of earlier studies of the tempera-
ture dependence of sound absorption in LiCsSO4.

1. EXPERIMENT

Colorless transparent LiCsSO4 crystals were grown
from water solutions at a constant temperature of 315 K.
The crystals thus grown had a pseudohexagonal sym-
metry with twins, which could be observed in polarized
light. The crystals were characterized by chemical and
x-ray diffraction analysis. The samples for the study,
cut of twin-free parts, were parallelepiped-shaped and
measured 5 × 5 × 5 mm, with sides parallel to the rhom-
bic axes and at 45° to them. The samples for measure-
ments of the velocity and attenuation of the xy mode
associated with the c66 elastic constant measured 1 ×
5 × 5 mm. The error of aligning with the crystallo-
graphic axes was not above 1°, and the faces were
plane-parallel to within 5 µm.

The measurements were conducted by several ver-
sions of the echo-pulse method [18] at a frequency of
5.5 MHz. Because of the strong sound attenuation in
the ferroelastic phase, the xy acoustic mode was studied
by a technique specially developed for strongly absorb-
ing media, by which one observed the interference of a
pulse transmitted through the sample with that reflected
from its front face [19]. In the region of the strongest
attenuation, the sound velocity was determined by mea-
suring the pulse transit time through the sample.

All the measurements were conducted under slow
cooling and heating of the sample at a rate lower than
0.1 K min–1. Prior to each measurement, the sample
was thermally stabilized for 5 min, and below 260 K,
for 15 min. This time was long enough for the acoustic
parameters to reach a stable level. The temperature was
stabilized to within 0.05 K, and the temperature gradi-
ent in the sample did not exceed 0.02 K cm–1. The rela-
tive measurement error in the paraelastic phase was
10−2% for the velocity and 10% for the attenuation. In
the region of the ferroelastic transition and below it, the
measurement errors of acoustic parameters for the xy
mode could increase up to 1% and 50%, respectively.

The results obtained for the xy mode under cooling
from room temperature are shown in Fig. 1. The veloc-
ity of the xy wave is seen to decrease strongly near the
Curie point. Such a temperature behavior is character-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
istic of the inverse susceptibility associated with the
order parameter or with a macroscopic quantity related
linearly with the primary order parameter in the vicin-
ity of proper (pseudoproper) ferroelastic transitions
(see, e.g., [20]). Note that the minimum velocity of the
xy wave was found to be 380 m s–1, which coincides,
within experimental error, with the minimum value of
340 m s–1 obtained [5] by the Brillouin scattering
method. The minimum velocity corresponds to a soft-
ening of the elastic modulus c66 to 5.0 × 108 N m–2 at
room temperature (the elastic modulus was calculated
assuming the crystal density to be 3.442 g cm–3 [5]).
Figure 1 also shows the temperature dependence of the
sound wave attenuation coefficient. The attenuation
increases strongly as one approaches the Curie point
from the high-temperature side and continues to grow
as the temperature decreases below TC. At T = 190 K,
the sound attenuation became so strong that the signal
was completely corrupted by noise and further mea-
surements were impossible. When heated subsequently
from low temperatures up, the measurements could be
resumed only for T > 210 K because of the attendant
difficulties of detecting and identifying the signals. The
data obtained in heating runs are also shown in Fig. 1.
The velocity of the xy mode measured under heating is
seen to coincide, within experimental error, with that in
the cooling run. The attenuation of the sound under
heating was slightly higher than that measured under
cooling, which is apparently associated with acoustic
contact degradation at low temperatures.
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Fig. 1. Temperature dependences of the velocity v and rela-
tive attenuation coefficient ∆α for a y-polarized transverse
ultrasonic wave propagating along the x axis in the LiCsSO4
crystal for (1, 2) cooling and (3, 4) heating. The solid line
plots the theoretical relation for the velocity derived from
Eqs. (4) and (5). The dashed line is drawn to aid the eye.
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Figures 2–4 display the temperature dependences of
the sound velocity and attenuation obtained for the
other acoustic modes studied by us. The longitudinal
ultrasonic waves propagating along the [011], [100],
and [101] directions of the rhombic phase exhibit sub-
stantially smaller velocity changes near the phase tran-
sition than is the case with the xy mode, and a relatively
weak increase in their attenuation near TC and below it
is observed, which implies weak coupling of the pri-
mary order parameter with deformations produced by
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Fig. 2. Temperature dependences of the relative velocity
variation ∆v/v0 and of the relative attenuation coefficient
∆α for a longitudinal ultrasonic wave propagating along the
[011] direction in the LiCsSO4 crystal for (1, 2) cooling and
(3, 4) heating. The solid line is drawn to aid the eye.
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Fig. 3. Temperature dependences of the relative velocity
variation ∆v/v0 and of the relative attenuation coefficient
∆α for a longitudinal ultrasonic wave propagating along the
[100] direction in the LiCsSO4 crystal. Cooling run.
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these waves. Using the ultrasonic technique (which
offers a higher accuracy than the Brillouin scattering
method does) has permitted us to reveal a number of
anomalies undetected heretofore. In particular, the
wave propagating along [011] exhibited a nonmono-
tonic variation of the velocity with temperature near the
phase transition; this variation was not accompanied by
noticeable changes in the attenuation coefficient
(Fig. 2). For the xx mode, we observed small maxima in
the velocity and attenuation when approaching the
Curie temperature (Fig. 3). As in [5], the ultrasonic
wave propagating along the [101] direction (Fig. 4) was
found to suffer a slight decrease in velocity near TC,
which was accompanied by an increase in the attenua-
tion. The results presented in Figs. 2–4 were repeatedly
reproduced, within experimental error, in subsequent
cooling–heating runs.

2. DISCUSSION OF RESULTS

The anomalies observed in the xy mode velocity at
the phase transition can be described by Landau’s ther-
modynamic theory. Taking into account that the phase
transition in LiCsSO4 is pseudoproper in character, the
principal terms in Landau’s expansion in powers of the
order parameter and strain can be written, following the
general approach outlined in [13], as

(1)

where Φ0 is the value of the thermodynamic potential
of the paraelastic phase in the absence of strains; T0 is

Φ Φ0 α0 T T0–( )η2 βη4 γηεxy+ + +=
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Fig. 4. Temperature dependences of the relative velocity
variation ∆v/v0 and of the relative attenuation coefficient
∆α for a longitudinal ultrasonic wave propagating along the
[101] direction in the LiCsSO4 crystal. Cooling run.
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the phase-transition temperature for a clamped crystal

(T0 = TC – γ2/(α0 )); η is the order parameter; εij are

the strain tensor components;  are the elastic mod-
uli in the paraelastic phase; and i, j, k, l = x, y, z. The
prime on the sum indicates that it does not contain a

term with . Combining Eq. (1) with the order-
parameter relaxation equation [21]

(Γ is a rate coefficient) and generalized Hooke’s law, 

one can derive general expressions for the velocity v
and additional attenuation ∆α of an elastic wave cou-
pled with the soft mode above and below the phase-
transition temperature:

(2)

(3)

where

for T > TC and

for T < TC. In Eqs. (2) and (3), ω is the sound velocity,
τ = Γ/[α0(T – T0)] is the order-parameter relaxation
time in the paraelastic phase, c66 is the effective elastic
modulus, and  is the real part of this modulus.
Within model (1), the velocities of the other acoustic
modes do not change at the phase transition and the
additional sound attenuation for them is zero.

A comparison of our experimental results with the
data obtained near TC in [5] does not show any velocity
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dispersion within the frequency interval from a
few megahertz to about ten gigahertz. Thus, a theoreti-
cal analysis of the temperature dependences of the xy
wave velocity can be done using the low-frequency
relations derived from Eqs. (2) and (3), which coincide
with the corresponding expressions presented in [20]:

(4)

for T > TC and

(5)

for T < TC. The best fit of the theoretical v(T) relation
obtained from Eqs. (4) and (5) to the experiment is

reached for TC – T0 = 15 K and  = 2.2 × 1010 N m–2,
which corresponds to a room-temperature velocity of

the xy mode of  = 2530 m s–1 (Fig. 1). The value of

 accepted to reconcile the theory with the experi-
ment differs somewhat from that measured at room
temperature (Fig. 1), which is possibly due to our hav-
ing neglected higher order terms in εxy and η in Lan-
dau’s expansion (1). The difference TC – T0 = 15 K
determined by us indicates a fairly strong coupling
between the order parameter η and strain εxy .

Consider the variation of the elastic constants near
TC for the other modes studied. For a longitudinal wave
propagating along the [101] crystallographic direction
(Fig. 4), one observed a certain decrease in the sound
velocity near TC in a cooling run. Note the peak near the
velocity minimum, which is weakly pronounced
against the general sound attenuation background
apparently caused primarily by scattering. The most
probable explanation of this behavior of the acoustic
parameters lies in a weak “admixing” of the soft mode
to the effective elastic modulus corresponding to the
given longitudinal wave because of a slight misorienta-
tion of the samples under study.

The longitudinal acoustic wave propagating along
[100] revealed a maximum in the velocity slightly
above TC, which was accompanied by a attenuation
peak (Fig. 3). As can be seen from Fig. 2, the velocity
of the [011] longitudinal wave undergoes nonmono-
tonic variations above TC. These variations are, on the
whole, reproduced in the cooling–heating runs. The
observed velocity changes do not exceed 1% in magni-
tude and could not be seen in [5], because the sensitiv-
ity of the Brillouin scattering method is not high
enough for that. As can also be seen from Fig. 2, the
anomalies observed for this mode in the temperature
behavior of the sound velocity are not accompanied,
within experimental accuracy, by any anomalies in the
attenuation coefficient.
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The nonmonotonic velocity variation of the ultra-
sound propagating along the [011] crystallographic
direction, as well as the behavior of the elastic charac-
teristics of the [100] wave, does not find explanation
within Landau’s theory for a pseudoproper second-
order ferroelastic transition. The anomalies revealed
can supposedly be associated with the presence of an
intermediate phase in the LiCsSO4 crystal, whose exist-
ence was suggested in [2, 7, 10].

3. CONCLUSIONS
Thus, we have performed measurements of the

sound velocity and attenuation in LiCsSO4 for the
transverse xy mode and longitudinal waves propagating
along [011], [100], and [101] within the temperature
interval of 190–295 K, which includes the region of the
ferroelastic phase transition. A softening of the elastic
modulus c66 and an increase in the xy wave attenuation
were found to occur near TC. The temperature behavior
of the velocities and attenuation coefficients of the lon-
gitudinal ultrasonic waves were observed to have
anomalies, which provide supportive evidence for the
assumption of the presence of an intermediate phase at
the transition to the ferroelastic state. The possibility of
performing acoustic measurements in the region of
proper (pseudoproper) second-order ferroelastic phase
transitions has been demonstrated.
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Abstract—The self-consistent band structure of a TiNi intermetallic compound in two phases is calculated by
the full-potential linearized augmented-plane-wave (FLAPW) method. The features of changes in the density
of states upon B2–B19' martensitic transformation are discussed. The influence of atomic positions on the elec-
tronic structure of the martensitic monoclinic phase is examined. The frequency dependence of the optical con-
ductivity and the emission, absorption, and the characteristic electron-energy-loss spectra are calculated with
due regard for the transition probability matrix element. The results of calculations are in reasonable agreement
with the available experimental data. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Considerable interest in the TiNi intermetallic com-
pound is motivated by its unique properties and, prima-
rily, the so-called “shape-memory effect,” which
accompanies martensitic transformations [1]. Tita-
nium–nickel materials have widespread technological
application and, in the last decade, have been exten-
sively used as biomaterials. The crystal structure and
properties of TiNi have been studied in detail in numer-
ous experimental and theoretical works (see, for exam-
ple, [1–16]). It is known that the mechanical behavior
of an alloy strongly depends on the doping with a third
element and on precipitates formed in a TiNi matrix.
The phase transformations in TiNi are attributed to the
features of its electronic structure. Upon cooling, the
high-temperature phase becomes unstable to the forma-
tion of charge density waves, which is explained by
geometric features of the Fermi surface [10, 13, 17].
The electronic structure of the austenitic phase of TiNi
was first calculated by Papaconstantopoulos and Nagel
[9] and was then investigated repeatedly (see, for exam-
ple, [10–17]). Despite discrepancies between the
results of the first calculations performed in the frame-
work of non-self-consistent methods, at present, the
electronic structure of this phase is beyond question.
The electronic structure of the B19' martensitic mono-
clinic phase is not clearly understood by researchers.
The crystallographic structure of this phase was inves-
tigated in a number of works [2–5]. Note that the
obtained lattice parameters differ from each other, but
even a larger scatter was observed in atomic positions
in a unit cell. According to [12, 13, 16], the differences
in the electronic structures are most pronounced in the
range of the Fermi energy EF. The rhombohedral “pre-
1063-7834/01/4304- $21.00 © 20737
martensitic” R phase was not explored for the lack of
crystallographic data, which were published only
recently by Hara et al. [18]. Experimental data on the
electronic properties of different phases, which can be
used for a comparison with calculations of the elec-
tronic energy spectrum, are very limited. In particular,
Shabolovskaya et al. [7, 8] measured the dispersion of
the optical conductivity σ(ω). A considerable change in
the spectral curve σ(ω) in the low-frequency range was
observed upon B2–B19' transition. An intense asym-
metric absorption peak appeared at 0.52–0.80 eV. At
the same time, upon B2–R transformation, Sasovskaya
and Pushin [19] did not find similar features in the opti-
cal conductivity curve, which only slightly differed
from that obtained for the B2 phase. The calculations
performed by Fukuda et al. [20] for the rhombohedral
phase confirmed the assumption made in [19] that its
electronic structure only insignificantly changes upon
B2–R transformation. According to calculations carried
out in [12, 13], the optical conductivity in the energy
range 0.5–1.0 eV exhibits only a very low-intensity
peak. Bihlmayer et al. [13] drew the conclusion that the
use of the constant transition probability matrix ele-
ment approximation led to underestimating the inten-
sity of this peak.

The aim of the present work was to investigate thor-
oughly the electronic structure of the B19' martensitic
phase as a function of lattice parameters and atomic
positions, to calculate a number of electronic properties
(the emission, absorption, and characteristic electron-
energy-loss spectra and the optical conductivity) in two
phases, and to analyze changes in the electronic struc-
ture upon structural transformation.
001 MAIK “Nauka/Interperiodica”
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2. COMPUTATIONAL TECHNIQUE

The band structure was investigated by the full-
potential linearized augmented-plane-wave (FLAPW)
method [21]. The approximation proposed by Perdew
et al. [22] was used for the exchange–correlation poten-
tial. The scalar–relativistic calculations included not
only the valence bands (3d, 4s, and 4p) but also the 3s
and 3p states. These states should be taken into
account, because they are located sufficiently close to
the valence bands. The expansion of the wave function
for valence electrons in terms of spherical functions
involved more than 120 augmented plane waves for the
RKM parameters (the product of the largest reciprocal
lattice vector into the mean muffin-tin radius), which
are equal to 8 and 9 in the case of the B2 phase, and
more than 250 plane waves for the B19' phase. The
potential in the intersphere region for the B2 phase was
described using 80–100 Fourier coefficients. The
expansion in l was limited by lmax = 10. The self-consis-
tency was performed for 165 k vectors in the irreduc-
ible part of the Brillouin zone for a cubic lattice and
128 k vectors for a monoclinic lattice and was consid-
ered achieved when the change in the total energy did
not exceed 10–5 Ry. The radii of muffin-tin spheres for
titanium and nickel were taken equal to 2.3 au and kept
constant in the calculations of two phases for correct
analysis of the electronic characteristics. The test calcu-
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Fig. 1. Total densities of states (electrons/cell Ry) for
(a) B2-TiNi and (b–e) B19'-TiNi at lattice parameters and
atomic positions taken from [2–5], respectively.
P

lations at different ratios between the muffin-tin radii
demonstrated that the density of states is virtually
unchanged, even though the charge inside spheres
depends on the chosen radius. The x-ray and electron-
energy-loss spectra were calculated with due regard for
the transition probability matrix element. The theoreti-
cally calculated spectra were smeared taking into con-
sideration instrumental resolution and widths of the
core and valence levels.

3. RESULTS AND DISCUSSION

Figure 1 shows the calculated total density of states
for the austenitic and martensitic phases of TiNi. As a
whole, the results obtained are in reasonable agreement
with our data calculated by the linear muffin-tin orbital
(LMTO) method within the atomic-sphere approxima-
tion [12]. Let us dwell in more detail on analysis of the
density of states for the monoclinic lattice. Four calcu-
lations with parameters taken from [2–5] (variants 1–4)
were carried out for the B19' phase. Note that the data
of different authors on the lattice parameters for the
TiNi martensitic phase differ insignificantly, whereas
the scatter in the positions of titanium and nickel atoms
in the unit cell is considerably larger. The unit cell
parameters obtained in [4, 5] most adequately describe
the experimental diffraction data. Therefore, for the
most part, these parameters were used in previous cal-
culations [12, 13, 16, 20]. Actually, the densities of
states N(EF) at the Fermi level that were calculated with
the use of the parameters taken from [2, 3] (Figs. 1b,
1c) are larger than or virtually identical to those for the
B2 phase (see table). The total energies are also larger
than the total energy of the B2 phase, which does not
count in favor of this structural transformation. It seems
likely that the lattice parameters of the B19' monoclinic
phase in these works were determined insufficiently
correctly and, moreover, the measurements were car-
ried out with polycrystalline samples. The total and
partial densities of states for the B2 phase and all the
variants (1–4) of calculations for the B19' phase are
given in the table. The density of states for variant 3
(Fig. 1d) virtually coincides with that obtained by Bihl-
mayer et al. [13], who used the LAPW method. The
LMTO method applied in [12, 16] at the same lattice
parameters taken from [4] gave a more distorted den-
sity of states with a dip to the right of the Fermi level.
Note that the fine structure of the density of states for
the monoclinic phase stems from the lowering in the
lattice symmetry, which leads to the splitting of degen-
erate energy terms. In spite of small differences near
the Fermi level in calculations performed by different
band theory methods, there is a general tendency to
smearing of the valley (characteristic of the B2 struc-
ture) between the two groups of bands that are related
to the alloy components. The effect of the anisotropy of
the crystal potential in the intersphere region, which
was ignored in earlier calculations, is most pronounced
in the EF range. The fact that this dip in the density of
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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states near the Fermi level is primarily associated with
atomic displacements upon structural transformation is
evident from the calculation according to variant 4
(the maximum displacements of atoms from the posi-
tions that correspond to those in the B2 phase) (Fig. 1e).
The same effect is observed in calculations by using the
lattice parameters taken from [4] or [5] and varying
only the atomic displacements. The dispersion curves
along the symmetric direction in the Brillouin zone are
shown in Fig. 2a (variant 4). The coordinates of the
Brillouin zone points are as follows: Γ, π/a(0, 0, 0); XC,
π/a(1, 0, 0); Mc, π/a(1, 0, a/c); and Z, π/a(0, 0, a/c).

Thus, analysis of the calculated density of states for
the monoclinic martensitic phase shows that there is the
characteristic redistribution of the density of states in
the range of the Fermi level: the splitting of the high-
energy peak, the shift in a number of unoccupied tita-
nium states away from EF, and the appearance of states
between two main peaks of the density of states, which
brings about a decrease in N(EF) and the total energy
Etot. The change in Etot is 0.005 Ry for variant 4 and
even smaller for variant 3. All these facts demonstrate
that the stability of the martensitic phase at low temper-
atures is higher than that of the cubic phase.

Examination of changes in the partial charges in
titanium and nickel spheres upon structural transition
indicates the tendency for the localization of a metal
charge inside its sphere; i.e., the “antibonding” states of
the metal upon martensitic transformation become
occupied, whereas the titanium states are, as if, dis-
placed beyond the Fermi level. It is of interest that the
nickel and titanium states with the des symmetry pre-
dominantly appear between the main peaks. Upon
phase transformation, the value of N(EF) decreases by
35%. As a whole, the N(EF) value for nickel changes
insignificantly, while the N(EF) value for titanium is
virtually halved as compared to that in the B2 phase.

Note that data obtained by different authors for the
contributions of the components to the density of states
at the Fermi level in the B2 phase differ substantially;
however, a small predominance of N(EF) for titanium
was noted in recent works. Why does this question
attract so much attention of researchers? If we consider
B2 titanium compounds with Group VIII 3d–5d metals,
the stability of TiFe, TiRu, and TiOs compounds can be
explained in the framework of the Yamashita criterion
[23]. In terms of bonding and antibonding states, the
stability depends on the position of the Fermi level in
the valley separating these states. An increase in the
mean number of valence electrons per atom (from 6 to
7) results in the occupation of the metal and titanium
antibonding states. According to Shabolovskaya [8],
the Ti d states that dominate at the Fermi level are
responsible for the instability of the B2 lattice. On the
other hand, the portion in the slope of the second high-
energy peak in the density of states (at which the Fermi
level arrives when passing along the series) is predom-
inantly formed by the metal d states, which are present
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
as an admixture to the dominant titanium states in this
spectral range. Therefore, the situation near the Fermi
level turns out to be much more complex than that pro-
posed in [8], and the metal can play an important role

Densities of states at the Fermi level (electrons/cell Ry) for Ti
and Ni in B2-TiNi (2 atoms per cell) and B19'-TiNi (4 atoms
per cell)

Alloy N(EF)-total N(EF) Ti N(EF) Ni

B2-TiNi 35.38 16.76 12.40

B2-TiNi [12] 39.61 22.46 17.15

B2-TiNi [13] 38.34 19.48 14.60

B2-TiPd 43.56 24.62 10.74

B19'-TiNi (1) 101.05 54.17 30.02

B19'-TiNi (2) 75.24 37.61 24.00

B19'-TiNi (3) 57.30 25.42 21.21

B19'-TiNi (4) 42.78 16.52 16.12

B19'-TiNi [12] 40.82 19.86 20.96

B19'-TiNi [13] 60.64 30.52 10.46

B19-TiNi 51.98 29.12 15.88

B19-TiPd 74.84 49.88 17.00

B19-TiPd [13] 77.50 50.26 17.02
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Fig. 2. Calculated electronic energy spectra of (a) B19'-TiNi
(variant 4) and (b) hypothetical B19 structure.
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Fig. 3. Total densities of states for (a) TiNi and (b) TiPd in two phases.
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in the explanation of structural transformations in tita-
nium alloys. At the same time, the Shabolovskaya state-
ments [8] hold some validity. Furthermore, our calcula-
tions and those performed by Zhang and Guo [16] for
TiCu in a hypothetical B2 phase showed that N(EF) for
titanium is substantially larger than N(EF) for copper. In
this case, the Fermi level coincides with a sharp peak in
the density of states, which explains the instability of
the given lattice.

According to the calculations of the present work
and the results obtained in [12, 13], the B2–B19' trans-
formation is accompanied only by an insignificant low-
ering in the Fermi level (the distance between EF and
the bottom of conduction band changes by 0.2 eV).
This results agrees with the conclusion regarding a
small shift in the Fermi level, which was made in [7, 8]
reasoning from the absence of noticeable changes in
the location of the absorption edge and absorption band
maxima at 1–5 eV. The experimental data on the tem-
perature dependence of the magnetic susceptibility for
an alloy with an almost equiatomic composition sug-
gest a qualitative change in the position of the Fermi
level upon martensitic transformation, which is also in
agreement with the calculated density of states
(Fig. 1e).

By using the band calculations, it was interesting to
consider why TiNi undergoes a transformation into the
B19' phase rather than into the B19 phase as in TiPd.
For this purpose, we carried out the calculations for the
hypothetical B19 orthorhombic phase in TiNi. The lat-
tice parameters were taken from [24] (these parameters
were actually obtained by the extrapolation of the crys-
tallographic data for the Ti–Ni–Cu alloys in which this
phase is observed). The total density of states for B19-
P

TiNi is displayed in Fig. 3. In this case, the Fermi level
coincides with a peak in the density of states and the
value of N(EF) = 25.98 electrons/(cell Ry spin) is larger
than the values of N(EF) for both the B19' and B2 phases
of TiNi. Moreover, the structure of the density of states
itself indicates the presence of flat portions near the
Fermi level, which is corroborated by the correspond-
ing calculations (Fig. 2b, direction Γ–Y). Therefore, we
deal with the structural instability, and any distortion
(in our case, a monoclinic distortion of the lattice) leads
to a more stable structure. This feature is absent in the
spectrum of TiPd. As can be seen from Fig. 3b, the
Fermi level in the B2 phase of TiPd, as in the B2 phase
of TiNi, is located in a small local minimum at the slope
of the high-energy peak; however, EF upon structural
transformation remains in the range of the local mini-
mum of the high-energy peak in the density of states.
Unlike B2-TiNi, in which the titanium contribution at
the Fermi level somewhat exceeds the nickel contribu-
tion (see table), the titanium contribution in B2-TiPd is
virtually twice as large as the palladium contribution
(12.31 and 5.37 electrons/(atom Ry)). In B19-TiPd, the
palladium contribution decreases, whereas the titanium
contribution remains almost unchanged. Note that the
localization of palladium in its sphere is stronger than
that of nickel in both B2 and B19 phases (8.04–8.60 and
7.97–8.20 electrons in TiPd and TiNi, respectively).

The electronic structure obtained for two TiNi
phases was used for the calculation and analysis of
x-ray spectra. It should be noted that, although the elec-
tronic properties of the B19' phase were calculated
using the electronic structure determined for variants 3
and 4, we present the results only for variant 4, because
the observed differences in the structure of the density
of states in this case are more pronounced. A large
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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Fig. 4. K x-ray emission and absorption spectra of TiNi and TiPd in two phases. Solid lines correspond to the theoretical spectra,
and points are the experimental spectra taken from [25].
number of works have been devoted to the x-ray spec-
trum investigation of TiNi whose K and L emission and
absorption spectra and x-ray photoelectron spectra are
of particular interest. Figure 4 shows the calculated K
x-ray emission and absorption spectra and the experi-
mental spectra (points) taken from [25]. A comparison
between the calculated and experimental spectra dem-
onstrates that the positions and intensities of the main
peaks are in satisfactory agreement. There are several
possible mechanisms responsible for the formation of
the Kβ2, 5 line for transition metals and alloys [25, 26].
It is believed that the line shape as a whole reflects the
distribution of the d states in the valence band, and the
main features coincide with the centers of gravity of the
deg and dt2g bands. An increase in the valence charge of
components in the series TiFe–TiCo–TiNi leads to the
atomization and lowering not of the d band as a whole
but only its triplet dt2g component, because a further
filling of the d shell occurs at the expense of this band.
The main features in the Kβ2, 5 lines of the compounds
begin to come close together, which is consistent with
the behavior of the partial densities of states. At the
same time, the shift in the Fermi level toward the tita-
nium peak in the density of states and the filling of the
deg antibonding states bring about the appearance of a
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
shoulder near the Fermi level in the titanium and nickel
Kβ2, 5 lines. (In order to save space, we do not present
the results for TiFe and TiCo.) This shoulder becomes
more pronounced in the titanium spectra when passing
to TiPd and TiPt, in which N(EF) for titanium increases
as compared to that in TiNi. Moreover, the low-energy
shoulder for TiPd virtually disappears (Fig. 4). The lin-
ewidth also increases when going along the isoelec-
tronic TiNi series. Upon structural transformation, the
Ni and Pd Kβ2, 5 lines change more strongly than the
corresponding titanium lines of the two compounds. In
this case, the intensity is maximum directly near the
Fermi level. It is interesting to note that this maximum
is already observed for B2-TiPd and its intensity virtu-
ally does not decrease up to 3 eV.

Analysis of the absorption edge of titanium alloys
revealed the following features. The selective absorp-
tion line is isolated, which manifests itself more clearly
in the spectra of nickel or palladium as compared to the
spectra of titanium. A small disagreement with the
experimental data can be associated with the smearing
parameters used in the calculations. However, a
decrease in these parameters results not only in the for-
mation of the more pronounced so-called m substruc-
ture but in a disagreement with the experimental data at
1
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energies higher than 5 eV (the well-defined second
dip). Upon B2–B19' transformation in TiNi, the selec-
tive line also becomes more pronounced in the titanium
spectrum. By contrast, upon B2–B19 transformation in
TiPd, the m substructure becomes less pronounced in
the spectra of both titanium and palladium. Since the
absorption spectra reflect the states that lie above the
Fermi level and the crystal field has a stronger effect on
outer orbitals, the difference in the splitting of the d
band into two subbands with different symmetries pri-
marily manifests itself in the width of the selective
absorption lines. This width increases in the series
TiFe–TiCo–TiNi and decreases in the series of titanium
compounds with nickel, palladium, and platinum.

It is known that the shape of the L3 emission line
also well reflects the state with the d symmetry. For
transition metal alloys, the L3 line exhibits a rather sim-
ple shape (virtually without fine structure). Further-
more, this line is shifted toward the high-energy range
and is somewhat narrower than the Kβ2, 5 line. As a rule,
the change in the intensity of lines and their shift with
respect to the K spectra are discussed in the literature.
P

The calculated L3 spectra of TiNi and TiPd in two
phases and the experimental x-ray photoelectron spec-
tra are depicted in Fig. 5. The locations of the main
peak are in good agreement, and the appearance of a
shoulder near the Fermi level reflects the shift in EF
toward the range of the second peak in the density of
states for TiNi and TiPd. The shoulder in the low-
energy part of the spectrum is associated with the deg

bounding states of the metal. Upon structural transfor-
mation, the change in the valence band of TiNi is less
than that of TiPd whose valence band exhibits a dou-
blet. Reasonable agreement is observed between the
results of calculations and the experimental data for B2-
TiNi and B19-TiPd. A small difference in the location
of the theoretical maxima for the B19' and B2 phases
(0.2 eV) confirms the conclusion that the low-energy
part of the density of states for TiNi weakly changes
upon martensitic transformation. It should be noted that
the intensity of the Pd L3 line for the B19 phase consid-
erably decreases as compared to that of the correspond-
ing line for the B2 phase, whereas the intensity of the
Ni L3 spectra of both phases remains virtually constant
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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and the intensity of the Pt L3 spectrum of B19-TiPt
decreases only slightly.

In recent years, the characteristic electron-energy-
loss spectra of intermetallic compounds have been
studied in a large number of experimental works [27–
29]. This spectroscopic technique is sufficiently pre-
cise, and its results can serve as an excellent test for the-
oretical calculations of electronic structure. The results
of our calculations are displayed in Fig. 6. The
L absorption spectra of transition metals and their
alloys in the range of the main edge exhibit a character-
istic feature known as the “white line”—a sharp maxi-
mum of the absorption coefficient. The martensitic
transformation in TiNi is attended by a small increase
in the white-line intensity for both components (Ni and
Ti), which reflects an insignificant change in the width
of the unoccupied part of the d band. Note that this
change is one order of magnitude less than that
observed, for example, in the series TiFe–TiCo–TiNi.
The intensity of the Co white line increases almost by a
factor of two as compared to the intensity of the Ni line,
and the intensity of the Fe line for the TiFe alloy
increases even greater. A similar tendency to a change
in the intensity of the L spectra of metals is also
observed in a series of their compounds with Al [27],
even though the structure of the line differs from that
found for transition metal alloys. The lines obtained for
the 3d titanium alloys are virtually identical in shape to
the corresponding experimental spectra of metals. For
the early elements of the first long period, the wave
functions of d electrons considerably differ from the
corresponding atomic functions, which are character-
ized by a substantial localization near their atoms. The
screening conditions becomes less rigid, which, in par-
ticular, leads to a broadening of the line with a decrease
in the charge of the element. At the same time, the the-
oretical calculations of the titanium line do not repro-
duce the experimental ratio of peaks. In the framework
of the one-electron model, the ratio L3 : L2 should be
equal to 2 : 1, whereas the inverse ratio is found from
the experimental spectrum of titanium. This is
explained by many-electron effects, which cannot be
taken into account in the calculations at present.

The optical absorption spectra were also calculated
with due regard for the transition probability matrix
element. However, as expected, the experimental
intense absorption peak at 0.52–0.80 eV [7] manifests
itself in the calculations of the B19' phase only as a
peak with a very low relative intensity, which agrees
well with our earlier LMTO calculations [12]. The
presence of this intense peak in the optical conductivity
curve σ(ω) in the aforementioned energy range cannot
be considered reliably revealed reasoning from the sole
experimental work [7]. At the same time, it would be of
interest to establish its possible origin on the basis of
theoretical calculations. The probability of the Ti3Ni4
precipitation in the TiNi alloy is sufficiently high.
Therefore, it was instructive to calculate the optical
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
conductivity of this compound. The crystallographic
data for Ti3Ni4 were taken from [24]. Figure 7 shows
the calculated density of states for Ti3Ni4, which is in
reasonable agreement with the results of the LMTO
calculations carried out by Fukuda et al. [20]. The opti-
cal conductivities σ(ω), which were calculated for
B19'-TiNi and Ti3Ni4, and the experimental dependence
taken from [7] are displayed in Fig. 8a. The interband
and intraband contributions are shown. The orientation
dependence of the optical conductivity was included in
the calculations. Note that the calculation of the optical
conductivity in the IR range requires a high computa-
tional accuracy and integration over a large number of
k vectors in the Brillouin zone. The shift in the theoret-
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ical curves toward the high-energy range is associated
with the use of the local-electron-density approxima-
tion. As can be seen from Fig. 8a, the σ(ω) curve for
Ti3Ni4 well represents all the features of the experimen-
tal dependence for the martensitic phase and also the
structure of the sharp peak in the range 0.52–0.80 eV.
Unfortunately, as far as we know, the chemical compo-
sition of the samples was not controlled at all experi-
mental stages. It would be tempting to attribute the
peak at 0.52–0.80 eV to the Ti3Ni4 rhombohedral pre-
cipitate in the TiNi matrix and to argue that the experi-
mental data in [7] were obtained for the sample that was
not a pure B19' phase. Another possible explanation can
be connected with the surface effect. The calculation of
the electronic structure for the surface of the B19' mar-
tensitic phase is a sufficiently complex problem, which
requires a large computational power. It is much easier
to perform similar calculations for the B2 structure and
to estimate the possible surface effect in this case. The
results of calculations of the electronic structures of the
(001) and (110) seven-layer surfaces will be reported in
a separate work. The (001) surface can be terminated
either with titanium atoms or with nickel atoms. Figure
8b shows the optical conductivity curves for these two
variants (curves 1 and 2 correspond to the titanium- and
nickel-terminated surfaces, respectively). It turns out
that the first variant well reproduces the structure of the
experimental dependence in the visible and IR ranges,
namely, the experimental peaks at 0.085, 0.113, 0.17,
0.24, and 0.35 eV, which are not reproduced by the bulk
calculations. Furthermore, an increase in the intensity
in the IR range is determined only by the intraband con-
tributions. The theoretical curve σ(ω) (interband con-
tributions) in the IR range for the titanium-terminated
surface (001) is depicted in the inset. The sharp peak at
0.17 eV is noteworthy. As follows from the calculated
density of states, an increase in the number of titanium
states near the Fermi surface is observed when passing
from the bulk to the surface. It is possible that an even
larger transformation of titanium states at the surface
can occur in the martensitic phase, which can result in
the formation of a sharp peak near 0.5 eV. On the other
hand, according to Shabolovskaya [30], the surface
composition very strongly depends on the procedure of
treating a sample. The composition of surface layers
can be changed and shifted toward the region enriched
with nickel. Our calculations demonstrate that the tita-
nium-terminated surface (001) in TiNi possesses a high
chemical activity and reconstruction ability. It should
be noted that a better insight into the electronic struc-
ture of the monoclinic martensitic phase calls for reli-
able experiments and new experimental data on the
optical and x-ray spectra. At the same time, the results
obtained make it possible to conclude that the general
features in the electronic structure of the B19' marten-
sitic phase are revealed. The rearrangement observed in
the structure of the density of states in the range of the
Fermi level and the changes in the electronic character-
istics of the alloy are governed by the transformation of
P

titanium states at the Fermi level. It is clear that the
transition to the structure, which is described by the lat-
tice parameters and the atomic positions determined in
[4, 5], turns out to be reasonable from the standpoint of
the band theory.
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Abstract—A simple model variational function is proposed for an adequate unified description of X+ and X–

two-dimensional trions over the entire range of electron-to-hole mass ratios with the use of a minimum number
of variable parameters. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The bound electron–hole complexes which involve
either two electrons and a hole (trion X–) or two holes
and one electron (trion X+) are referred to as trions. X–

and X+ trions represent formations composed of two
identical Fermi particles bound by Coulomb forces on
a third particle that possesses a charge equal in magni-
tude but opposite in sign. The mass of the third particle
does not necessarily coincide with masses of the two
other particles. The dependence of the energy of a trion
complex on the mass ratio of its constituent particles is
the subject of our investigation. An adequate model of
a trion should describe the complex at any mass ratio of
its constituent particles and, in the limit, lead to the
known objects, such as a hydrogen ion H–, a hydrogen

molecule , a D– center in a semiconductor (two elec-
trons bound on a positively charged center), a positron-
ium ion (two electron + positron), etc.

The practical necessity of investigating similar
objects first arose in chemistry in the late 1920s for the
description of lithium hydride, in particular, the interac-
tion between Li– and H– ions (Hylleraas [1]). In 1929,
Bethe [2] performed the first theoretical calculation of
an H– ion by using a variational method with three vari-
able parameters.

In the forties, the properties of a negative hydrogen
ion were invoked for explaining the solar and solar-type
atmospheric opacities. This required an essential
refinement of the results obtained earlier by Bethe. For
the most part, attempts were reduced to a simple
increase in the number of variational parameters [3–5].
However, more exact variational functions were also
sought by researchers. In 1944, a certain success in this
field was achieved by Chandrasekhar [6].

Three-particle electron–hole complexes (trions) in
semiconductors were predicted in 1958 by Lampert [7].
The experimental investigation of trions involved con-
siderable difficulties due to the low characteristic bind-

H2
+
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ing energy of this complex (tenths of meV), which
imposed rigid restrictions on the temperature of their
possible observation (~1 K).

More recently, interest in trions was rekindled with
advances in the field of heterostructures and the advent
of molecular engineering—the creation of artificial
objects or the control over parameters of the existing
objects by using quantum-well structures (wells, wires,
and dots). In particular, theoretical calculations per-
formed in the 1980s demonstrated that the binding
energy of a trion in a semiconductor structure with a
quantum well can increase substantially (by the order of
magnitude) [8–10]. This opened up fresh opportunities
for experimental observations of trions in these struc-
tures, which was realized in 1992 by Kheng et al. [11].

Since that time, trions of both types have been
repeatedly observed in different heterostructures at low
temperatures. The possibility of investigating these
objects in practice has stimulated theoretical interest in
them.

The difference between a trion and an H– ion (or 
molecule) resides in the fact that the ratio of the effec-
tive masses of the electron and the hole constituting the
complex is not a small quantity and the wave functions
of electrons and holes cannot be separated. It is inter-
esting that different electron-to-hole mass ratios can be
realized in different semiconductors. As a result, the X–

and X+ complexes can qualitatively change in their
structures and properties from the positronium ion in
one limit (at equal masses of the electron and the hole)
to the H– ion or the  molecule in the other limit (at
electron mass ! hole mass). Trions are in fact natural
intermediate objects between H– and . When study-
ing the X– and X+ complexes at different electron-to-
hole mass ratios, we can gradually change over from
the negative ion to the positively charged molecule,
which, taking into account the large difference between

H2
+

H2
+

H2
+
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these two objects, is of great theoretical and experimen-
tal interest.

A considerable number of works concerned with
calculations of the energy and wave functions of trions
at different mass ratios have been published in recent
years [12–15]. The parameters of these complexes have
also been investigated as functions of the well width
[16, 17] and the magnetic field strength [18–21].

The present paper is devoted to the study of the X–

and X+ trions in an infinitely deep quantum well (within
the two-dimensional approximation) at all mass ratios
in the absence of an external magnetic field. One of the
problems in present-day calculations of trions is a poor
behavior of trial variational functions of the X+ trion in
the case when the electron-to-hole mass ratio tends to
zero, i.e., in the limit of the  molecule. The problem
lies in the fact that the complex in this limit involves
two infinitely heavy particles, and, hence, the wave
function of this system should take the form of a δ func-
tion of the distance between these particles. Therefore,
it is at a small mass ratio that the wave function and the
energy of the X+ trion begin to change drastically. It is
known that the formation energy for an  molecule
(H + p) is almost four times higher than that for the H–

ion (H + e). As follows from calculations [8, 10, 12], the
characteristic binding energy ratio for a trion and the
corresponding exciton is virtually independent of the
electron-to-hole mass ratio µ for the X– complex and
slowly increases for the X+ complex with a change in
the mass ratio µ from the positronium ion (µ = 1) to the

 molecule (µ = 0). In this case, the binding energy
of the X+ trion predominantly changes at small mass
ratios (µ < 0.1). In this range of mass ratios, the binding
energy of the trion changes by almost a factor of two.
In actual fact, at the mass ratio in the range µ ∈  0.1 –
0.3, the structure of a wave function similar to that of
the H– ion qualitatively transforms into the structure of
a wave function similar to that of the  molecule.

All the previous calculations were performed using
trial functions which were based on the structure of an
H– ion and gave no way of describing two infinitely
heavy particles in the  molecule. In the limit of an

 molecule, these trial functions either led to inade-
quate results or required the use of a large number of
variable parameters in order to ensure the aforemen-
tioned δ-functional dependence. For this reason, the
use of these trial functions became, at least, inefficient.

In this work, we proposed a relatively simple varia-
tional function which depends on a small number of
parameters and adequately describes both X– and X+

complexes at any electron-to-hole effective mass ratios
in the rigorously two-dimensional case.

H2
+

H2
+

H2
+

H2
+

H2
+

H2
+
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2. MODELS AND THE WAVE FUNCTION
Two models of a trion can be considered qualita-

tively.
(1) In the limit H–, there is the model of a heavy

nucleus with two light electrons which are localized in
its vicinity and strongly screen each other. Within this
model, the trion is well described by a two-dimensional
analog of the variational function proposed by Chan-
drasekhar [6]:

(1)

This function consists of the symmetrized exciton-like
part with different electron orbit radii and the polariza-
tion factor. The quantities r1 and r2 are the two-dimen-
sional vectors from the nucleus to electrons. The varia-
tional parameters a and b have the meaning of orbit
radii of two electrons, and the parameter c ensures an
increase in the wave function with an increase in the
distance between electrons; i.e., it accounts for the
polarization effects. This wave function adequately
represents the singlet state of trions over the entire
range of mass ratios, except for trions similar in struc-
ture to the  molecule, i.e., the X+ complexes with the
mass ratio µ < 0.1. Despite a small number of varia-
tional parameters (only three), it is known that this
function for three measurements reproduces the energy
of the H– ion with an accuracy of 10% [22].

(2) In the limit , there is the model of a molecule,
i.e., the model of two heavy nuclei and an electron
residing on a bonding orbital. In the ground state, this
system is well described by the following function:

(2)

This function is composed of the sum of two hydrogen-
like wave functions [23], which is multiplied by the
wave function of the relative motion of nuclei R(R),
where R = |r1 – r2 |. 

In the limit of an infinite nucleus mass, the R(R)
function should transform into a δ-like function of R –
R0 (where R0 is the minimum of the binding potential).
In the case when the nucleus masses are large but not
infinite, the R(R) function at large R should decrease as

exp(–sR), where s = , E is the binding
energy of the given trion with respect to the decay into
a free exciton and a hole, and mh is the hole mass. In the
vicinity of R0, the R(R) function should follow the rela-
tionship R(R) ~ exp(–d(R – R0)2); in this case, if the
electron-to-nucleus mass ratio tends to zero, the param-
eter d should tend to infinity.

3. THE GROUND STATE OF X+ AND X– TRIONS
In the absence of a magnetic field, the ground state

of the X+ and X– complexes is their singlet state, i.e.,

ψ r1 r2,( ) ar1– br2–( )exp(=

+ br1– ar2–( ) ) 1 c r1 r2–+( ).exp

H2
+

H2
+

ψ r1 r2,( ) = ar1–( )exp ar2–( )exp+( )R r1 r2–( ).

2mhE/"2–
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the state with the antiparallel spin orientation of two
identical Fermi particles (electrons for X– and holes for
X+). At present, it is believed that this ground state of
the X– trion is the sole state. In any case, there is no the-
oretical or experimental evidence for excited states of
this complex. A different situation occurs in the X+

complex, because the  molecule obtained in the
limit µ  0 at an infinite mass of nuclei possesses an
infinite discrete spectrum of vibrational and rotational
levels.

A “good” function for describing the ground state of
both trions at any masses of their constituent particles
will be constructed as follows.

(i) The entire range of mass ratios is divided into
two ranges, in each of which the trion can be described
by the aforementioned, relatively simple models. To
put it differently, we assume that the trion at any elec-
tron-to-hole mass ratio is described by a wave function
similar in structure to the wave function either for the
H– ion (two particles “rotate” about one particle) or for
the  molecule (one particle binds the two other par-
ticles). The conventional division into these two ranges
does not correspond to the division of trions into the X–

and X+ trions. As was noted above, the conventional
boundary corresponds to the mass ratio µ ~ 0.1–0.3 for
the X+ complex.

(ii) In the framework of each model, we choose the
simplest (with a minimum number of variable parame-
ters) wave function which adequately describes the
trion in this approximation. In this case, the trion wave
functions that correspond to different models should be
as closely similar in structure as possible, and the max-
imum number of variational parameters of one wave
function should be used in the other function. Func-
tions (1) and (2) considered above meet these require-
ments. It is easy to see that the polarization-free term
(exp(−ar1 – br2) + exp(–br1 – ar2)) in the wave func-
tion (1) structurally corresponds to the electronic term

H2
+

H2
+

1
2
3

R

V(R)

ψ(R)

R0

U0

~exp(–sR)w

~exp(–dR – R0)2)

Fig. 1. Structure of an  molecule: (1) the qualitative form

of the potential binding nuclei in , (2) the parabolic
approximation of the binding potential near the potential
well bottom, and (3) the qualitative dependence of the wave
function for  on the internuclear separation.

H2
+

H2
+

H2
+

P

(exp(−ar1) + exp(−ar2)) in function (2). Moreover, the
term (R(|r1 – r2 |)), which is responsible for the relative
motion of nuclei in function (2), corresponds to the
polarization term (1 + c|r1 – r2 |) in function (1).

(iii) The sought trial function is constructed as a
combination of the two wave functions chosen in the
preceding item. The structural similarity of the chosen
wave functions allows us to reduce the total number of
variable parameters in the final function.

The sought trial variational function obtained by
combining the above functions (1) and (2) is repre-
sented as

(3)

where R = |r1 – r2 | and a, b, c, d, R0, and s are the vari-
ational parameters.

These parameters have the following physical
meaning: a and b are the reciprocals of the radii of two
identical particles localized on the third particle with
allowance made for their mutual screening, the param-
eter c accounts for the polarization effects, the parame-
ter d describes the longitudinal vibrations of two iden-
tical particles with respect to each other, R0 is the mean
interparticle distance, and the parameter s optimizes the
wave function at infinity.

It is obvious that the above wave function involves
the wave function (1) of the negative ion H– (at d, s = 0)
and the wave function (2) of the positive molecule 
(at b, c = 0), and the additional parameters only lead to
a better result in both limiting cases. It is also easy to
justify the choice of the factor (1 + d(R – R0)2)–1 in func-
tion (3), which is responsible for longitudinal vibra-
tions of the complex.

It should be noted that, in the case when the binding
between two identical particles of the trion can be
described by a parabolic potential (Fig. 1), the wave
function (3) should exhibit a Gaussian dependence on
R (the distance between these two particles), ψ(R) ~
exp(–d(R – R0)2). However, a strictly parabolic poten-
tial can describe only very small vibrations of the X+

complex and only in the limit of the  molecule. In
reality, the potential binding two identical particles in a
trion at large distances is considerably weaker than the
parabolic one and the Gaussian approximation of the
trion wave function leads to its substantially faster
decrease with distance as compared to the actual
dependence. Hence, we used a weaker dependence
ψ(R) ~ 1/(1 + d(R – R0)2), which, to a first approxima-
tion, adequately describes the trion vibrations near R =
R0, and the behavior of the ψ(R) function at infinity was
specified by a weaker factor exp(–sR) as compared to
the Gaussian function.

ψ r1 r2,( ) = –ar1 br2–( )exp –br1 ar2–( )exp+( )

× 1 cR+

1 d R R0–( )2+
----------------------------------- sR–( ),exp

H2
+

H2
+
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As a consequence, we derive the wave function (3),
which, in both limits, should lead to the results not
worse than those obtained with functions (1) and (2)
and shows promise of obtaining a good approximation
for the trion energy over the entire range of electron-to-
hole mass ratios with a minimum number of variational
parameters.

4. RESULTS AND DISCUSSION

Figure 2 shows the dependence of the trion binding
energy normalized to the energy of the corresponding
two-dimensional exciton (hereafter, this energy will be
considered to mean the trion binding energy) on the
electron-to-hole mass ratio, which was calculated with
our variational function (3). For comparison, the
dependence (converted in terms of the same variables)
obtained by Stebe and Ainane [10] with the use of the
variational method including 22 parameters is also
depicted in Fig. 2.

Despite the considerable difference in the numbers
of fitting parameters (6 and 22), these dependences are
in good agreement. Our results reproduce the data
obtained in [10] with an accuracy of better than 5% over
the entire range of mass ratios, except for the limit 
(at µ < 0.1). Note that the error obtained turned out to be
even smaller than the error (~10%) of the calculation
with the use of the Chandrasekhar wave function (1)
in the limit of the H– ion. This illustrates the fact that
functions (1) and (2) combined above into function (3)
noticeably improve and complement each other. It is
worth noting that the error (<5%) in the determination
of the trion energy is approximately the same for all the
mass ratios. This gives grounds to conclude that our
variational function (3), which is constructed from the
wave functions of the H– ion and the  molecule,
makes it possible to describe equally well the entire
range of mass ratios rather than only these limiting
cases.

Of special interest is the limit  (µ < 0.1). As was
already mentioned, the problem lies in the fact that the
X+ trion at these masses acquires a pronounced molec-
ular structure. Therefore, the wave functions based only
on the structure of the H– ion (among them was the
function used in [10]) cease to give good results even
with a large number of variational parameters. For this
reason, the dependence calculated in [10] terminates at
the mass ratio µ = 0.1 in Fig. 2. In our opinion, even in
this case, the accuracy of the results obtained with our
function (3) is no less than before. For comparison, we
note that the trion energy (0.41) calculated in the
present work at µ = 0 completely coincides with that
obtained by Varga [24].

The results of our calculations and the theoretical
dependence obtained by Thilagam [12] with the use of
the averaged binding potential of a trion are also com-
pared in Fig. 2. It should be noted that, unlike the

H2
+

H2
+

H2
+
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results obtained by variational methods, the trion bind-
ing energy reported in [12] is not of necessity less than
the exact energy of the complex. However, a qualitative
comparison between our dependence and that obtained
in [12] enables us to draw the same inference: the
dependences qualitatively agree over the entire range of
mass ratios, except for the aforementioned  limit
(µ < 0.1). In this limit, the trion energy calculated
within the model proposed in [12] is almost a quarter
less than that in our case. This is explained by the fact
that the trion model used in [12] for calculating the
dependence under consideration is well applied to the
complexes with a structure similar to that of the H– ion
but leads to failures when changing over to the 
structure (see also [24, 25]). This is another example of
how models and approximations well describing the X–

and X+ trions over a wide range of masses are inappli-
cable in the limit of the  molecule. This is the reason
why the inclusion of the  model is so important in
the construction of the general trion model.

It should be emphasized that the trion energy (nor-
malized to the exciton energy) for X– is virtually con-
stant (≈0.12) and does not depend on the electron-to-
hole mass ratio, whereas the trion energy for X+

increases as the limit  is approached and the main
increase is observed in the least studied range µ ≤ 0.1.
In this range, the trion energy increases from 0.22 (at
µ = 0.1) to 0.41 (at µ = 0.0) by almost a factor of two.

Let us now interpret this fact in the framework of
our models. Note that the mass ratio range µ ≤ 0.1 cor-
responds to the case of two heavy holes and a nucleus
that are bound through an electron into a molecule. It
can be assumed that the electron wave function has had
time to adapt adiabatically to the slow motion of holes
for which the binding interatomic potential approxima-
tion [23] becomes applicable. In this case, the problem
is reduced to the motion of a hole with the reduced
mass mh/2 in the two-dimensional potential V(R),

H2
+

H2
+

H2
+

H2
+

H2
+

0 0.2 0.4 0.6 0.8 1.0

–0.1

–0.2

–0.3

–0.4

Trion energy/exciton energy

1
2
3

me/mh

X+

X–

Fig. 2. Dependences of the trion binding energy on the elec-
tron-to-hole mass ratio: (1) this work, (2) variational calcu-
lations with 22 variable parameters [10], and (3) the approx-
imation of model trion potential [12].
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which is the sum of the electron binding potential and
the Coulomb repulsion potential of holes. A qualitative
form of the V(R) potential is depicted in Fig. 1. At large
hole masses, it is believed that the hole wave function
is localized in the vicinity of R0, i.e., the minimum of
the V(R) potential. Then, within the parabolic-potential
approximation, we have

(4)

In this approximation, the trion binding energy is
given by

(5)

and the quantity "ω is written as

(6)

The quantity ∂2V(R)/(∂R)2  can be evaluated from
the depth U0 and the half-width w of the potential well
formed by the potential V(R), that is,

(7)

It is clear that the well depth can be estimated as U0 =
V(R0) = Etr0 (the trion binding energy at µ = 0). In order
to evaluate the well half-width, we note that w < 2R0
since the potential V(R)  +∞ at R  0 due to the
Coulomb repulsion of holes. On the other hand, we can
assume that w > R0/2, because both the hole Coulomb
repulsion potential and the electron binding potential
substantially decrease only at distances R > 2R0. Hence,
it follows that

(8)

As an estimate, we set

(9)

The optimum interatomic distance R0 in a two-dimen-

sional molecule  is as follows:

(10)

where a0 is the three-dimensional Bohr radius. Then,
taking into account the dependence of the exciton bind-
ing energy on the mass ratio, that is,

(11)

V R( ) V R0( ) κ
2
--- R R0–( )2.+≈

Etr µ( ) V R0( ) "ω
2

-------+≈

"ω "
κ

mh

------
"

2

mh

------
∂2V R( )

∂R( )2
------------------

R R0=

.= =

|R R0=

∂2V R( )
∂R( )2

------------------
R R0=

2
U0

w2
------.∼

1
2
---

Etr0

R0
2

-------- ∂2V R( )
∂R( )2

------------------
R R0=

8Etr0

R0
2

-----------.< <

∂2V R( )
∂R( )2

------------------
R R0=

2Etr0

R0
2

-----------.≈

H2
+

R0 0.5a0,≈

Eex µ( ) 2
1 µ+
------------ "

2

mea0
2

------------,–=
P

from formulas (5)–(11), we obtain

(12)

As can be seen, the trion energy in the limit of the

 molecule (at small µ) depends on the mass ratio as
a square root. For the electron-to-hole mass ratio µ = 0,
the trion-to-exciton energy ratio is represented as

whereas relationship (12) even at the mass ratio µ = 0.1
leads to an almost twofold decrease in the trion-to-exci-
ton binding energy ratio, that is,

With due regard for the approximate character of the
estimates performed, this result is in excellent agree-
ment with the calculated ratio of 0.22.

In conclusion, it can be noted that simple qualitative
considerations on the basis of the wave functions for
the H– ion and the  molecule allowed us to construct
the trial function which makes it possible to describe
adequately both trions over the entire range of mass
ratios with the use of a not very large number of vari-
able parameters. Recall that the results reported in [10]
were obtained with 22 variable parameters, whereas we
used only six parameters. This provides a means of
applying the proposed models to the construction of
trial functions for variational calculations in more com-
plex cases, specifically for the trion in a well of a finite
width or in the presence of a magnetic field.
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Abstract—The paper analyzes the rate of energy relaxation involving acoustic phonon emission between exci-
ton states in a double quantum well. A theoretical study is made of the part played by two mechanisms, one of
which is a one-step transition with emission of an acoustic phonon and the other is a two-step transition, which
includes elastic exciton scattering from interface nonuniformities followed by energy relaxation within an exci-
ton subband. The rate of the two-step transition in real double quantum wells is shown to be higher than that of
the one-step transition. As follows from calculations, the fast energy relaxation between exciton states is deter-
mined by the elastic scattering of phonons from the interface.
INTRODUCTION

The double quantum well (DQW) is one of the sim-
plest model objects to study tunneling through a poten-
tial barrier [1]. The interest in this object stems prima-
rily from the fact that present-day technologies are
capable of creating structures with predetermined
parameters (layer thickness, barrier height) whose scat-
ter introduced in the course of manufacture is
extremely small. This substantially reduces the interac-
tion of carriers and excitons with nonuniformities (het-
erojunction defects, composition nonuniformities,
impurities).

The DQW consists of two quantum wells separated
by a thin barrier transparent to tunneling. At low tem-
peratures, the carriers become bound rapidly to form
excitons [2]; therefore, exciton effects play an essential
role in the optical properties of DQWs [3]. A DQW
may have excitons of two types, direct and indirect
(Fig. 1). The indirect exciton (IX) is formed by an elec-
tron and a hole which reside in different quantum wells
and are bound by Coulomb interaction; the direct exci-
ton (DX) is made up by an electron and a hole located
in the same quantum well. The indirect exciton has a
very large radiative lifetime (>10–6 s [4, 5]), which
exceeds that of the direct exciton by several orders of
magnitude (~10–9 s [6]). Since the electron and the hole
in an indirect exciton state are spatially separated, the
binding energy of the IX is less than that of the DX (for
instance, the IX binding energy in a DQW with quan-
tum well widths of 10 nm and a barrier a few nm thick
is ~3–4 meV [3, 7, 8], whereas the binding energy of a
DX is 8 meV [3]).

The energy position of an IX with respect to a DX
can be varied by properly varying the electric field
applied to the DQW. Because the IX is a dipole, its
recombination energy depends linearly on the electric
1063-7834/01/4304- $21.00 © 20752
field [3, 9], whereas in weak fields (<10 kV/cm), it is
practically electric-field independent. Figure 1b shows
schematically the exciton-state recombination energy
as a function of the electric field perpendicular to the
DQW plane. At certain values of the electric field, the
energies of some exciton states become equal and
energy resonance sets in. Two of such resonances pre-
sented in Fig. 1b involve pairs of exciton states whose
electronic parts of the wave functions are localized in
different quantum wells (they are identified in the
scheme by dashed circles). The other two (shown by
dotted triangles) involve the pairs of the exciton states
whose electronic wave-function parts coincide, but the
hole parts are localized in different quantum wells. One
more resonance, specified by a dashed square, corre-
sponds to a pair of the exciton states in which both hole
and electronic parts of the wave functions are different.
Tunneling interaction between these pairs of states near
the resonance gives rise to the repulsion of exciton lev-
els, a phenomenon well known in quantum mechanics.
In this case, the wave functions of exciton states repre-
sent linear combinations of the unperturbed DX and IX
wave functions. The repulsion of exciton energy states
near resonance is experimentally observed only for the
pair of exciton states which differ in the electronic part
of the wave function [3, 7–10]. The exciton splitting
between exciton states at resonance for the other pairs
turns out to be too small to be detected experimentally
because the hole component of the exciton wave func-
tion penetrates only weakly into the barrier.

Investigation of the rate of exciton energy relaxation
in a DQW is an essential problem, which is currently
attracting the attention of researchers. If the energy sep-
aration ∆ between the first-size-quantized exciton
states in two quantum wells exceeds the optical phonon
energy [2, 11–14], the corresponding transition time,
determined by the interaction of excitons with optical
001 MAIK “Nauka/Interperiodica”



        

EXCITON ENERGY RELAXATION ON ACOUSTIC PHONONS 753

                                                                                                       
phonons, is ~10–100 ps, depending on the actual DQW
parameters.

In the case where the difference between the energy
levels in two quantum wells is less than the optical
phonon energy, the transition time between exciton
states differing in the electronic component of the wave
function is determined by the coupling with acoustic
phonons and, accordingly, should increase substan-
tially compared with the exciton–phonon transitions
involving an optical phonon.

Data on the rate of energy relaxation between exci-
ton states, which is determined by interaction with
acoustic phonons, have been recently obtained from an
experimental study of stationary photoluminescence
(PL) in a slightly asymmetric DQW [7, 8]. The struc-
ture under study was a CaAs/Al0.33Ca0.67As DQW with
quantum wells 9.6 and 10.2 nm thick separated by a
3.8-nm thick barrier. The PL spectrum of this DQW
measured at T = 10 K is shown in Fig. 2a. One readily
sees two narrow, well-resolved exciton lines. The
energy splitting between the exciton levels at the
DX−IX resonance (which is governed by the electron
coherent tunneling) is δ = 1.3 meV. The inset to Fig. 2a

Ehw

IX

Wide
well

Narrow
well

Ehn

EenEew

DX
IX
DX

(a)

DX

DX

DX

DX

IX

IX

E(b)

Fig. 1. (a) DQW band diagram and exciton states; (b) sche-
matic relating the exciton-state recombination energy to the
electric field applied perpendicular to the DQW plane. The
circles identify the region of resonance between exciton
states differing in the wave-function electron component;
the triangles show the resonance of the IX and DX differing
in the wave-function hole component; and the square speci-
fies the region where the two states differing in electronic
and hole components of the wave function are at resonance.
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shows schematically the wave functions of the exciton
states (1 and 2) and the radiative transitions corre-
sponding to these states. The solid line in Fig. 2b plots
the PL intensity ratio I2/I1 for T = 10 K, which was cal-
culated under the assumption of the exciton states 1 and 2
being in thermodynamic equilibrium by means of the
relation [7]

(1)

where δ is the energy splitting between the exciton lev-
els at resonance (δ = 1.3 meV) and ∆ is the energy spac-
ing between exciton states 1 and 2. The squares are
experimental data [7]. The good agreement between the
experimental data and the I2/I1 ratio calculated from
Eq. (1) permits the conclusion that the exciton states
coupled by the transition of the “exciton” electron are
in thermodynamic equilibrium. This means that the
rates  and  of the exciton–phonon transi-
tions involving the emission and absorption of
phonons, respectively, far exceed the DX radiative
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Fig. 2. (a) DQW photoluminescence spectrum measured at
T = 10 K with an electric field U = 0.2 V applied perpendic-
ular to the DQW plane. The inset shows the diagram of exci-
ton transitions 1 and 2; (b) experimental (symbols) and the-
oretical (solid line) ratios I2/I1 of the photoluminescence
line intensities of exciton states 2 and 1 plotted vs. the
energy spacing between exciton levels ∆ for T = 10 K.
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recombination rate wR ~ 109 s–1 for T ≥ 10 K and
∆ ~ kBT.

This work is aimed primarily at theoretical calcula-
tion of the transition rate between exciton states in the
case where acoustic phonons are involved in the pro-
cess. For the sake of definiteness, we are going to con-
sider only the 2  1 transitions involving phonon
emission at T = 0 (Fig. 3). In a real DQW, this energy
relaxation can proceed in two ways.

(I) One-step transition I (Fig. 3a). This transition
transfers an exciton from one exciton subband to the
other while changing the exciton energy and wave vec-
tor. The acoustic phonon emitted in this transition pro-
vides preservation of the energy and momentum con-
servation laws.

(II) Two-step transition II (Fig. 3b). This transition
can take place in a real DQW with quantum-well thick-
ness fluctuations, which act as exciton scattering cen-
ters. The transition proceeds in two stages. In the first
stage, the exciton is scattered elastically from an impu-
rity or interface nonuniformity to transfer to the other
subband, a process in which the momentum of the exci-
ton is changed, but its total energy is preserved. In the
second stage, the interaction with a phonon changes the
exciton energy within the exciton subband.

The question of which, the one- or two-step, transi-
tion mechanism is responsible for the energy relaxation

Mechanism I

Mechanism II

Acoustic
phonon

Acoustic
phonon

(a)

kBT

kBT

kBT

kBT

(b)

∆

τe

∆ τi

τ2→1

Fig. 3. Two mechanisms of transition between exciton
states: (a) one-step transition with emission of an acoustic
phonon and (b) two-step transition involving elastic exciton
scattering from an impurity with subsequent relaxation
within an exciton subband.
P

between the exciton states presently remains open.
Experiments with nonequilibrium phonons also did not
provide a definite answer to this question [15]. The
interest in this problem is also connected with the pos-
sibility of using tunnel structures as a frequency-tun-
able acoustic-phonon detector (phonon spectroscopy)
[16–19].

In this work, we shall calculate the probability
 of an electron transition from a higher- to a

lower-energy exciton state in a symmetric DQW, pro-
ceeding at T = 0 and involving the emission of an
acoustic phonon, for different ∆. We assume that, at low
temperatures, kBT ≤ ∆, the  is affected primarily
by spontaneous acoustic-phonon emission. In these
conditions, one can also neglect the exciton distribution
in k in the high-energy state. Thus, the T = 0 approxi-
mation will adequately describe the experimental situ-
ation considered above. The calculation of  will
be carried out separately for the inelastic (one-step)
transition mechanism I (Fig. 3a) and mechanism II (the
two-step one), in which the exciton electron scatters
elastically from interface nonuniformities, following
which exciton energy relaxation occurs (Fig. 3b). We
shall show the differences in the dependence of 
on ∆ between the transitions proceeding in mechanisms I
and II. We shall also construct angular dependences of
the emitted acoustic phonons in the case where DX and
IX are in resonance (∆ = δ = 1.3 meV), as well as far
from resonance for the one-step transition mechanism I.
Section 1 will present analytical expressions for the
transition probability between the exciton states 
for mechanisms I and II. In Section II, we shall give the
results of a numerical calculation of the one-step-tran-
sition probability  and estimate the probabilities
of the two-step transition by mechanism II. We are also
going to construct the angular dependences of the flux
of acoustic phonons generated in the transition by
mechanism I between the exciton states. In Section 3,
we shall use the results of the calculation to compare
the parts played by mechanisms I and II in the fast
energy relaxation between the DQW exciton states,
which accounts for the experimentally observed ther-
modynamic equilibrium, and draw the corresponding
conclusions.

1. EXCITON–PHONON COUPLING

We are going to present here the main relations gov-
erning the rate of energy relaxation between the exciton
states, which involves acoustic phonons. We shall
assume the DQW to consist of two identical quantum
wells separated by a barrier transparent to tunneling.
Our problem consists in determining the transition
probability between exciton states 1 and 2 with differ-
ent electronic components of the wave functions (see
inset to Fig. 2a). We shall also assume for definiteness
that the high-energy state 2 corresponds to a direct exci-

w2 1→

w2 1→

w2 1→

w2 1→

w2 1→

w2 1→
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ton and the low-energy state 1 is an indirect-exciton-
type state. Our calculation of the energy relaxation will
take into account only the transitions from the high- to
the low-energy exciton state at T = 0 which are accom-
panied by phonon emission.

1.1. Energy Relaxation between Exciton States
in an Ideal DQW

In an ideal DQW, a transition between exciton states
is possible only through exciton–phonon coupling,
which makes possible the one-step transition (inset to
Fig. 2a) from high-energy state 2 (with wave vector
k2 ~ 0) to low-energy exciton state 1.

For definiteness, we assume the hole to be localized
in the right-hand quantum well (see inset in Fig. 2a).
We shall also assume subsequently that the energy
spacing ∆ between the exciton states does not exceed
the binding energy of the indirect exciton. Otherwise,
transitions involving ionization of the indirect exciton,
i.e., transitions in which a “free” electron and a “free”
hole arise in the final state in different quantum wells,
would be possible. The transition probability per unit
time from state 2 with wave vector k2 = 0 to state 1 with
an arbitrary wave vector k1 can be written as

(2)

where q is the three-dimensional wave vector of an
acoustic phonon with dispersion ων(q) = sq, where sν is
the sound velocity; k1 is the two-dimensional exciton

wave vector in the final state;  is the transition
matrix element from state 2 with the exciton wave vec-
tor k2 = 0 to state 1 with the exciton wave vector k1,
involving the emission of an acoustic phonon with
polarization ν = LA, TA; and m = me + mh is the exciton
mass, with me and mh being the electron and hole
masses, respectively.

The matrix element  is determined by the
overlap integral of the exciton wave functions Ψi with
the phonon:

(3)

where H is the Hamiltonian describing the exciton cou-
pling with acoustic phonons,  is the Kronecker
symbol accounting for momentum conservation in the
DQW plane, and qxy is the projection of q on the DQW
plane.

In the case where the exciton level spacing is small
(∆ ! E, where E is the size quantization energy reck-
oned from the quantum-well bottom), the exciton wave
functions in the DQW, Ψ1 and Ψ2, can be presented as

w2 1→
2π
"

------ M2 1→
q ν, 2δ

"
2k1

2

2m
---------- ∆– "ων q( )+ 

  ,
k1 q,
∑=

M2 1→
q ν,

M2 1→
q ν,

M2 1→
q ν, Ψ2 H Ψ1〈 〉 δ0 k1, qxy+ ,=

δ0 k1, qxy+
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a linear combination of the direct and indirect exciton
wave functions ΨDX(ki) and ΨIX(ki)[20]:

(4a)

(4b)

In the simplest approximation, the wave functions
of the direct and the indirect exciton with a wave vector
ki can be written as

(5)

where ϕe1(ze) and ϕe2(ze) are the electron wave func-
tions of the size-quantized ground level in the isolated
left- and right-hand quantum wells, respectively; ϕh(zh)
is the hole wave function of the size-quantized ground
level in the isolated left-hand and right-hand quantum
wells; R is the position of the exciton center of mass in
the quantum well plane; ρ is the distance between the
electron and the hole in the quantum well plane; λDX
and λIX are the diameters of the direct and indirect exci-
tons, respectively; and ze and zh are the electron and
hole coordinates in the direction perpendicular to the
quantum well plane.

Denoting the widths of the quantum well and of the
barrier by a and b, respectively, we can write the elec-
tron wave functions in a single quantum well (SQW) in
the form

(6)

Here, the following notation has been introduced:

ηB = /" and η = /", with U being
the barrier height and E, the electron size-quantized
energy; N is the normalization factor; and z1 and z2 are
the positions of the left- and right-hand quantum wells,
respectively.

For high enough barriers, U @ E, the electron wave
functions penetrate only weakly into the barrier, so that
ηa ≈ π.

Two kinds of the interaction governing the exciton–
phonon transitions in GaAs/AlGaAs quantum wells are
possible: (i) the interaction determined by the deforma-
tion potential (DP) and (ii) the piezoacoustic (PA) inter-
action. The interaction of an exciton with an acoustic
phonon is actually a sum of the phonon interactions

Ψ1 αΨDX k1( ) βΨIX k1( ),+=

Ψ2 β– ΨDX k2( ) αΨIX k2( ),+=

α2 β2+ 1, α δ

∆2 δ2– ∆+( )
2

δ2+

-----------------------------------------------------.= =

ΨIX(DX) ki( ) 2

πλ IX(DX)
2

------------------- ikiR( ) ρ
λ IX(DX)
---------------–expexp=

× ϕe1 2( ) ze( )ϕh zh( ),

ϕe1 2( ) z( )

N ηa/2( ) ηB z z1 2( )– a/2( )+( )[ ]expcos

z z1 2( ) a/2( )–<
N ηz ηz1 2( )–( ), z z1 2( )– a/2<cos

N ηa/2( ) ηB z z1 2( )– a/2( )–( )–[ ]expcos

z z1 2( ) a/2( ).+>

=

2me U E–( ) 2meE
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with the electron and the hole, H = He + Hh. However,
because the electronic components of the exciton-state
wave functions are orthogonal, the matrix element of
the electron interaction with the hole is zero,
〈Ψ2|Hh|Ψ1〉  = 0. Viewed from the physical standpoint,
this means that transitions between exciton states are
possible only because they are mediated by the phonon
coupling with the exciton electron.

The Hamiltonian of the exciton interaction with an
acoustic phonon having a wave vector q and polariza-
tion ν can be presented in the form

(7)

where Ξe is the deformation potential constant, ρ0 is the
density of the medium, re is the electron position vec-
tor, and V is the total volume. For a GaAs(100) quan-

tum well,  = 1 for the LA and  = 0 for the TA
phonons [21].

The Hamiltonian of the PA interaction has the form

(8)

where h14 is the piezoacoustic constant and e is the elec-

tronic charge. The squared coefficient , which

determines the angular dependence of , can be
written for a GaAs(100) layer as [22]

(9)

The transition probabilities between exciton states
can be found by calculating the matrix element in Eq. (3)
and substituting the expression thus obtained into Eq. (2).
For the DP interaction with an LA phonon, we have

(10)

where θ is the angle between the phonon propagation
vector and the z direction.

There is no DP interaction with the TA phonon. The
transition probability for the PA interaction with a
phonon of polarization ν is

(11)

He
DP "

2ρ0Vsνq
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DP ,exp=
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DP Aq
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2
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2

+
---------------------------------sind

0

π/2
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× Y q( ) 2 Aq ν,
PA( )2

.

P

In the last two expressions, we introduced the nota-
tion

where γ = ∆/2m  is the ratio of the energy spacing
between the exciton levels to the characteristic exciton–
phonon coupling energy.

The overlap integral Y(q) of the exciton wave func-
tions with the phonon can be presented in the form

(12)

where

ξ = αβ = δ/2∆ (13)

is the exciton-state wave-function mixing coefficient;
qz = qcosθ is the perpendicular component of vector q;
Pe(λ) is the overlap integral of the phonon wave func-
tions with the exciton electron in the DQW plane,

(14)

and Ze(qz) = dz (z)exp(iqzz) is the overlap integral

(in the z direction) of the phonon wave function with
the electron wave-function component of the exciton in
an isolated quantum well.

For infinitely high barriers, we have

(15)

1.2. Energy Relaxation between Exciton States 
in Real DQWs

The relaxation between exciton states in a real
DQW can proceed in two stages (Fig. 3b). First, the
exciton electron is scattered with a probability we from
interface nonuniformities and transfers to the other
exciton subband (an intermediate state). This transition
conserves the total energy of the exciton while chang-
ing its momentum. Next, with the probability wi, the
exciton transfers to the final state by emitting an acous-
tic phonon, and the exciton energy is changed. The rate
of relaxation between the exciton states will be deter-

q
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Table 1.  Time of the 2  1 two-step transition from a high- to a low-energy exciton state with emission of an acoustic
phonon, calculated for different ∆ and phonon polarizations

∆, (meV)

Time of phonon emission by an exciton with energy ∆
Elastic-transition

time τe (ns)
Total transition
time τ2 → 1 (ns)DP interaction with

a LA phonon τ (ns)
PA interaction with
a TA phonon τ (ns)

PA interaction with
a LA phonon τ (ns)

Total time
τi (ns)

1.3 0.065 0.12 0.52 0.039 0.012–0.060 0.051–0.099

2.0 0.14 0.59 2.3 0.11 0.028–0.14 0.14–0.25

3.5 0.18 1.1 4.6 0.15 0.086–0.44 0.24–0.59
mined by the rate equations

(16)

where we is the probability of a direct elastic transition

from state 2 to state 1;  is the probability of the
reverse elastic transition from state 1 to state 2; n2 and
ni are the exciton concentrations in the initial (at level 2)
and intermediate states, respectively; G is the exciton
generation rate; and wi is the probability of an inelastic
transition from the intermediate to the final state.

The probabilities  and we are determined by the
matrix element of the elastic transition connecting the
exciton states and by the density of the initial and inter-
mediate states, respectively. In a two-dimensional sys-
tem, the density of exciton states does not depend on
exciton energy, and, therefore, the densities of the ini-
tial and intermediate exciton states are equal. Thus, one
can assume the probabilities of the direct and reverse

elastic transitions to be equal:  = we.

In a steady state, the total transition probability
between exciton states determines the exciton transi-
tion rate from the initial state: n2 = G. For a
steady state, Eq. (16) yields 

(17)

1.2.1. Scattering from impurities or interface
defects. We shall assume that excitons interact with
interface nonuniformities and impurities at the inter-
face. Then, the matrix element of an elastic transition
between exciton states will be proportional to the over-
lap of the wave functions of exciton states at the inter-
faces, Ψ1(zi)Ψ2(zi), where zi is the coordinate of the ith
interface. Neglecting the tunneling penetration of the
wave function through the barrier and summing over all
interfaces yields

(18)
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dt
-------- G we
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------- wen2 we

bni wini,––=
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b

we
b

we
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w2 1→
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∑ δ2N
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--------- ΨDX

2 zi( )
2
,≈∼
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where N = 4 is the number of interfaces in the DQW.

At the same time, the probability of elastic exciton

scattering in SQW is wSQW ~ N , where N = 2.
When the exciton states are at resonance, the ampli-
tudes of the wave functions Ψ1(zi) and Ψ2(zi) are equal.
Hence, in this case, the transition probability we is one
half that of the elastic exciton scattering in a SQW:

(19)

The probability of elastic exciton scattering in a
SQW was studied both theoretically [23–25] and
experimentally [26, 27]. This probability depends on
the exciton gas temperature, the quantum-well thick-
ness, and the quality of the quantum-well interfaces:

wSQW = R /a2, where R is a constant depending on
the interface properties. We assume that the structures
on which our experiments were performed (see Intro-
duction) have a high interface quality [7, 8], which is
evidenced by the small inhomogeneous broadening of
the exciton PL line (less than 1 meV). As an upper esti-
mate of the probability of exciton scattering in our quan-
tum wells we shall use the value R = 4.79 m2/(K1/2 s)
obtained from the experimentally measured diffusion
coefficient [26]. On the other hand, we believe that the
interface quality in our samples is certainly poorer than
that in samples with quantum wells grown by the
growth interruption method. The probability of elastic
scattering from interface nonuniformities in the latter
samples is substantially lower and comparable with
that of inelastic scattering from acoustic phonons [28].
We believe that (wSQW)–1 lies in our structure from 6 to
30 ps. Thus, at exciton level resonance, we have 12 <

 < 60 ps. As the spacing between the exciton energy
levels increases, the wave-function overlap decreases,
as does the transition probability, we ~ ∆–2 (Table 1).

1.2.2. Energy relaxation. Probability wi can be
readily found by straightforward calculation. Let the
exciton have a kinetic energy ∆ and wave vector k2 =

/". The probability for such an exciton to
change its energy when transferring, with emission of

ΨDX
2 zi( )

2

we
δ2

2∆2
---------wSQW.=

T

we
1–

2m∆
1
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an acoustic phonon, to a state with a wave vector k1 is
determined by the interaction matrix element:

(20)

where the exciton wave function Ψ1(k1(2)) is given by
Eq. (4.1); the Kronecker symbol  accounts for
momentum conservation in the DQW plane; that is,
|k1 – k2| = qsinθ.

The total transition probability to all lower lying
states is obtained by summing over all acoustic-phonon
wave vectors q:

(21)

Note that in this case, where the exciton–phonon
coupling, rather than causing a transition to the other
exciton state, changes only the energy and momentum
of the exciton, the acoustic phonon interacts with both
the electron and the hole: 〈Ψ1(k2)|Hh|Ψ1(k1)〉  ≠ 0.

The deformation potential of the interaction of an
acoustic phonon with a hole can be written as [29]

(22)

where

(23)

and A and B are the deformation potential constants.

For the PA interaction, we have

(24)

By calculating the matrix element in Eq. (20) and
substituting the result into Eq. (21), we find the proba-
bility wi:

(25.1)

(25.2)
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where ϕ is the angle between the k1 and k2 vectors, q =

(2msν/")(  – ), qxy = |k1 – k2 |, qz = , Θ(x)
is the Heaviside step function

and XDP and XPA are integrals which characterize the DP
and PA interactions of the acoustic phonon with the
exciton and are defined as

(26)

For high enough barriers, one can assume that the
wave functions of the electron and the hole in a SQW
coincide, Ze(qz) = Zh(qz).

2. RESULTS OF NUMERICAL CALCULATION

2.1. Energy Relaxation Rates

In our calculation of the transition probability
 between exciton states involving the emission of

an acoustic phonon due to the PA or DP potential, we
used the following parameters of the exciton in a
GaAs/AlGaAs quantum well: me = 0.067m0, mh =
0.15m0 (where m0 is the free electron mass), a = 10 nm,
b = 3.8 nm, λDX = 14 nm, λIX = 26 nm (the data are
taken from a theoretical calculation in [3]), Ξe = 7.3 eV,
h14 = 1.45 × 107 V/cm, sLA = 5 × 105 cm/s, sTA = 3 ×
105 cm/s, δ = 1.3 meV, ρ0 = 5.3 g/cm3, A = –6.7 eV, and
B = –2 eV. The results of the calculation of the time

 for the one-step mechanism of energy relaxation
(Fig. 3a) are given in Table 2 for various values of ∆. At
resonance (∆ = δ), the transition time between the exci-
ton states involving emission of an acoustic LA phonon
in the case of DP interaction is  = 0.29 ns. The
transition time increases strongly with increasing ∆ and
is as long as  = 2.4 ns for ∆ = 3.5 meV.

For small ∆ (∆ ~ δ), the PA interaction plays a sub-
stantial role in exciton–phonon transitions. Indeed, the
transition time under the PA interaction of excitons

k2
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2 q2 qxy
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Table 2.  Time of the elastic one-step transition 2  1 from a high- to a low-energy exciton state with emission of an acous-
tic phonon, calculated for different ∆ and phonon polarizations 

∆, (meV) DP interaction with a LA 
phonon τ (ns)

PA interaction with a TA 
phonon τ (ns)

PA interaction with a LA 
phonon τ (ns)

Total time
τ2 → 1 (ns)

1.3 0.29 0.30 2.7 0.14

2.0 0.71 0.80 6.0 0.35

3.5 2.38 4.0 29 1.4
with TA phonons was found to be  = 0.30 ns at

resonance and  = 4 ns for ∆ = 3.5 meV. However,
the PA interaction with LA phonons is considerably
less efficient. This is connected with the specific selec-
tion rules for the PA interaction in Eq. (9), as well as
with the TA and LA phonons having different sound
velocities. Note that the dependences of the phonon-
assisted exciton transition probabilities on ∆ for the DP
and PA interactions are different. Indeed, the deforma-
tion potential is directly proportional to q1/2, whereas
the PA interaction potential is inversely proportional to
q1/2. Therefore, in contrast to the DP interaction, the
transition probability due to the PA interaction is
affected more strongly by phonons with a small q. As ∆
increases, phonons with large q, which play a more
important part in the DP interaction, become involved
in the phonon-assisted exciton transitions. Therefore,
as ∆ increases, the PA interaction grows progressively
less efficient and the transition time due to the PA inter-
action grows faster than that due to the DP interaction.

The results of calculation of the time  for the
two-step mechanism of energy relaxation between
exciton states is presented in Table 1 for different val-
ues of ∆. The time of the exciton DP interaction with a
TA phonon was found to be negligible compared with
the total relaxation time, and, therefore, it is not given
in Table 1. At resonance (∆ = δ), the relaxation time
within an exciton subband is τi = 0.04 ns and is close to
the exciton energy-relaxation time in a SQW, τSQW =
0.022 ns at T = 10 K, given by the relation (1/τac) =
AacT/a (where a is the quantum-well width and Aac =
45 m/(K s) [26]). The time τi increases with increasing
∆ to reach 0.14 ns.

2.2. Angular Dependences 
of the Generated Phonon Flux

The probability of exciton interaction with phonons
propagating at an angle θ to the z direction is deter-
mined by the integrand in Eqs. (10) and (11). Figures 4a
and 4b display the angular dependences of the flux den-
sity of acoustic phonons emitted in the DP and PA
interactions, respectively, into a unit solid angle in the
one-step transition. The dashed lines correspond to the
region near the resonance (∆ = 1.3 meV), and the solid
lines are far from the resonance (∆ = 3.5 meV). In con-

τ2 1→

τ2 1→

τ2 1→
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trast to the case of a SQW, the transitions between exci-
ton states in the DQW are due primarily to the interac-
tion of excitons with acoustic phonons emitted mainly
perpendicular to the DQW plane. The distribution is
characterized by several phonon propagation directions
(shown by lobes in the figures) in which the interaction
of phonons with the excitons is particularly strong. As
∆ increases, the lobes displace toward larger angles and
a new lobe forms in the θ = 0 direction. Thus, as ∆
increases, phonons with progressively larger θ angles
begin to participate in the transitions.

Interestingly, the probability of DP interaction with
a phonon propagating exactly perpendicular to the
DQW plane oscillates with increasing ∆. Thus, the
interaction with phonons moving along the z axis is
maximum at a certain value of ∆ different from δ.

A distinctive feature of the PA interaction is the
existence of additional selection rules, which forbid
exciton interaction with phonons propagating in the z
direction. Therefore, the angular dependences of the
acoustic phonon energy in a PA interaction, which are
presented in Fig. 4b, always have at least one full lobe.
A comparison of this distribution with the angular dis-
tribution in the DP interaction reveals that the lobes
corresponding to the PA interaction are turned through
a larger angle θ. The reason for this lies in that the PA
interaction potential decreases with increasing q, i.e.,
with decreasing angle θ (unlike the DP interaction,
which grows with decreasing angle θ).

Because the PA interaction is more efficient for
excitons with small q, the maximum of the phonon flux
density due to the PA interaction falls always on the
first lobe. In contrast to the PA potential, the deforma-
tion potential increases with increasing q, but the wave-
function overlap of the exciton and phonon decreases
with growing q. Therefore, the maximum in the flux
density due to the DP interaction occurs at some
medium values of q; for the parameters chosen above,
these values correspond to the second lobe.

3. DISCUSSION OF RESULTS
In the case of the inelastic (one-step) mechanism,

the probability of one-step transitions between exciton
states with emission of acoustic phonons exhibits a
strong dependence on ∆. The value of  decreases
rapidly with increasing ∆, primarily as a result of the
decreasing exciton wave-function overlap between the

w2 1→
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Fig. 4. Angular dependence of the flux density of acoustic phonons emitted in the transition between exciton states (mechanism I)
for: (a) DP interaction (LA phonons) and (b) PA interaction (TA phonons). The dashed and solid lines show the relations calculated
for ∆ = 1.3 and 3.5 meV, respectively. The horizontal axis is along the direction perpendicular to the DQW plane.

z

z

quantum wells. The increase in the wave-vector range
qmax–qmin of phonons involved in the exciton–phonon
coupling with increasing ∆ is compensated by the
decrease of the exciton and phonon wave-function
overlap in the DQW plane because of the increasing
longitudinal component of the exciton wave vector qxy

(see below). Thus, in a first approximation, we have
 ~ ξ2, where ξ is the exciton-state mixing coeffi-

cient defined by Eq. (13), or, in view of Eq. (13),
 ~ ∆–2. For ∆ = 3.5 meV, the transition probability

becomes less than one reciprocal nanosecond, which is
less than the DX emission probability at T = 10 K, wR ~
4 ns–1 [6]. However, the thermodynamic equilibrium,
experimentally observed to exist between the exciton
states at ∆ = 3.5 meV and T = 10 K, indicates that the
transition probability between exciton states should

w2 1→

w2 1→
P

actually be higher. Hence, the transition probability is
governed by another mechanism.

We believe the two-step transition to be such a
mechanism. While the rate of transitions between exci-
ton states in this mechanism also decreases with
increasing ∆, the probability of these transitions lies
between 1.7 and 4.2 ns–1 even for ∆ = 3.5 meV. We thus
come to the conclusion that the energy relaxation in
transitions between exciton states occurs primarily by
the two-step mechanism.

Consider now with what phonons excitons predom-
inantly interact in the one-step transition. We note first
of all that the interaction is possible only with phonons
whose energy is less than "qmaxsν = ∆, while being at
the same time above a certain value "qminsν ~ γ–1/2∆.
The contribution of each phonon satisfying this selec-
tion rule to the total exciton–phonon coupling respon-
sible for the transition between exciton states is deter-
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mined by its wave vector q. As follows from Eq. (12),
phonons whose half-wavelength in the z direction, per-
pendicular to the DQW plane, fits an even number of
times into the separation a + b between the quantum
wells should weakly interact with the excitons. By con-
trast, the exciton–phonon transition probability
between exciton states should be affected most of all by
phonons whose half-wavelength along the z direction
fits an odd number of times into the DQW width. Note
also that the overlap integral of the exciton and phonon
wave functions drops sharply with increasing qz if sev-
eral phonon half-wavelengths fit into the quantum well
width in the z direction. Thus, the interaction will have
the highest efficiency if the following two conditions
are satisfied:

(27)

where n is an integer.
There is also a condition for efficient interaction of

excitons with phonons which imposes a constraint on
the magnitude of the longitudinal (along the DQW
plane) component of the phonon wave vector. It con-
sists in that the phonon wavelength in the DQW plane
is not substantially smaller than the exciton diameter.
Therefore, the longitudinal component of the phonon
wave vector q more strongly affects the indirect exci-
ton, which has larger linear dimensions.

The exciton–phonon coupling in the case of the two-
step relaxation mechanism exhibits essential differ-
ences from the interaction involved in the one-step
mechanism (Fig. 3b). First, in the two-step relaxation,
the phonon can interact not only with the electronic
component of the exciton wave function but also with
the hole component. This factor substantially increases
the transition probability . Second, the overlap
between the exciton and phonon wave functions does
not depend on ∆. For this reason, wi no longer depends
strongly on ∆. Third, in this relaxation, the interaction
with phonons propagating primarily along the DQW
layer is not weak. As the energy spacing ∆ increases,
the lower exciton state becomes progressively more
indirect. Phonons with a large qxy couple more weakly
to the indirect exciton, because the latter has a larger
diameter. This is what primarily determines the depen-
dence of  on ∆.

The calculations made in Section 2 show that the
interaction of excitons with acoustic phonons in the
inelastic (one-step) transition between exciton states is
frequency-dependent. This implies the possibility, in
principle, of using DQWs and other tunnel structures as
narrow-band subterahertz and terahertz generators and
detectors of phonons [15–19, 30]. Several groups of
experimenters are presently working on the realization
of this idea to develop a new instrument which would
permit one to probe the phonon spectrum and to study
phonon dynamics in semiconducting nanostructures.

qz
π
a
--- and qz

π
a b+
------------ 2n 1+( ),≈<

w2 1→

w2 1→
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The results of our calculations can be used in analyzing
some experimental data obtained in experiments with
nonequilibrium phonons. In such an analysis, one
should take into account the two-step transitions by
mechanism II (Fig. 3b). The angular dependences
(Fig. 4) demonstrate the need of using a narrow enough
phonon beam in order to exclude the effect of two-step
relaxation processes, which considerably reduce the
spectral resolution of a DQW as a phonon spectrome-
ter. In this case, phonon generation will be determined
by the one-step exciton relaxation mechanism and the
energy of the generated phonons will be "ω ≈ ∆.

Phonon absorption also follows an anisotropic pat-
tern and can be analyzed in a similar manner. For
instance, at temperature T < 5 K and ∆ = 3.5 meV, the
one-step transition between exciton states will be
accompanied by absorption of only the phonons inci-
dent at angles θ < 8°. At the same time, such phonons
will not, in any way, influence the transitions involving
elastic processes (two-step transitions). Indeed, absorp-
tion of phonons propagating at small angles θ in single
quantum wells is forbidden by the selection rules. Thus,
by creating a beam of nonequilibrium phonons propa-
gating perpendicular to the DQW plane and by study-
ing the changes in the exciton PL spectra induced by
such a beam, one can exclude the effect of the two-step
transition mechanism. In these conditions, the effect of
nonequilibrium phonons on the PL spectrum will
reflect the spectrum of nonequilibrium phonons.

4. CONCLUSIONS
Thus, we have calculated the times of exciton

energy relaxation due to acoustic phonons in a DQW as
functions of ∆. The energy relaxation between exciton
states in a DQW is governed by two mechanisms,
namely, the inelastic one-step transition involving an
acoustic phonon (mechanism I) and elastic scattering
from interface defects, followed by energy relaxation
within an exciton subband (mechanism II). We have
studied the influence of both mechanisms on the transi-
tion probabilities between the exciton states and drawn
the conclusion that the energy relaxation between the
exciton states is dominated by two-step transitions with
participation of elastic processes.

The exciton–phonon coupling has different angular
dependences in the one- and two-step mechanisms.
Therefore, the phonons propagating in a direction close
to z interact with exciton states by the one-step mecha-
nism only.
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Abstract—Thallium halide microcrystals were grown from water solutions in a porous matrix obtained from
alkali borosilicate glass by etching, and their absorption and luminescence spectra were studied. Constraining
the crystal size was found to affect the stability of some crystal modifications. The exciton radii were deter-
mined, and the dimensions of microcrystals in which size quantization effects become observable were esti-
mated from the absorption spectra of bulk TlBr and TlCl crystals. © 2001 MAIK “Nauka/Interperiodica”.
A remarkable property of thallium halide crystals is
their high dielectric permittivity. The static values are
30 and 32 for the cubic TlBr and TlCl and 15 for the
cubic and 21 for the orthorhombic TlI. In standard con-
ditions, TlBr and TlCl have a CsCl-type cubic structure,
while TlI crystallizes in an orthorhombic structure with

the Cmcm ( ) space group and transforms to a CsCl-
type structure (the red TlI modification) at room tem-
perature and at a pressure of 5 kbar, or at atmospheric
pressure when heated to 170°C. Thin films of the
TlBr1 – xIx solid solutions retain the CsCl-type structure
throughout the x range from 0 to 1; however for x > 0.3,
bulk crystals of these solid solutions are orthorhombic.
At x = 0.3, bulk TlBr1 – xIx crystals transfer from the
cubic to orthorhombic phase when cooled to the liquid
nitrogen temperature. Cubic TlBr1 – xClx (KRS-5) and
TlBr1 – xIx (KRS-6) crystals find application in acoustics
and electronics.

Cubic thallium halides are indirect-gap crystals. The
extremum of their valence band lies at the X point of the
Brillouin zone ( ), while the extremum of the con-
duction band lies at the R point ( ); the direct transi-

tions    are higher in energy [1, 2]. At low

temperatures, the energies of the indirect ( ) and

direct ( ) transitions are 3.22 and 3.42 eV (TlCl),
2.66 and 3.02 eV (TlBr), and 2.75 and 2.86 eV (TlI),

respectively. The values of [ /(  – )]
2
, which

govern the relative magnitude of the oscillator strengths
of the indirect and direct transitions, are approximately
300 (TlCl), 80 (TlBr), and 550 (orthorhombic TlI). As
a result, the absorption coefficient for the indirect tran-
sitions in thallium halides is comparatively high. The
absorption and luminescence spectra of thallium
halides reveal, at the fundamental edges, clearly pro-
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nounced exciton effects, namely, series of narrow exci-
ton lines, which imply the existence of bound exciton–
phonon states [1]. Under strong optical excitation,
bands appear at the indirect edges, which are assigned
to the electron–hole liquid [3].

Investigation of the microcrystals of the halides of
many metals, in particular, of the copper, mercury, bis-
muth, and lead iodates, revealed structural features and
size quantization effects [4–10]. The properties of the
thallium halides (structural transformations, two easily
observable types of band-to-band transitions, a strong
excitonic effect) make the preparation and study of the
characteristics of the microcrystals of these compounds
a problem of considerable interest. This relates to both
small microcrystals, in which quantum confinement
effects become manifest, and comparatively large ones.
We report here on the first experiments on the growth
of thallium-halide microcrystals in a host matrix and on
a study of their properties.

1. EXPERIMENTAL

The porous matrix was prepared of alkali borosili-
cate glass (ABSG) etched at 50–100°C in a 3 M solu-
tion of hydrochloric acid. Etching produces pores with
an average diameter of about 7 nm, which have a fairly
narrow size distribution, in the ABSG. Porous glass
matrices were immersed into a saturated aqueous solu-
tion of TlI at 100°C, after which the samples were dried
at various temperatures. To obtain matrices with differ-
ent TlI densities, the samples were subjected to such
cycles from one to seven times. The solubility of TlCl
in water at 100°C exceeds 20 times that of TlI, and
therefore, in the case of TlCl, the matrix was dipped
only once into a saturated or unsaturated solution. The
number of crystallization cycles for TlBr, whose solu-
bility in water at 100°C is twice that of TlI, varied from
one to a few times. Water solutions of TlBr and TlI were
001 MAIK “Nauka/Interperiodica”
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used to grow mixed TlBrxI1 – x microcrystals with a high
bromine content (x > 0.7) in the ABSG pores.

We studied the absorption and luminescence spectra
of the matrices containing thallium halide microcrys-
tals, which were pumped by a nitrogen laser with a pho-
ton energy of 3.68 eV, a pulse length of 5 ns, and pulse
repetition frequency of 100 Hz. The luminescence
spectra were measured at 80 and 300 K in the cw mode
and with time resolution.

2. RESULTS AND THEIR DISCUSSION

2.1. Thallium Iodate

The time-resolved, zero-delay emission spectrum of
a TlI sample subjected to three crystallization cycles
does not differ much from that of the empty matrix;
however, when studied in the cw mode, the lumines-
cence spectrum exhibits a band peaking at 2.74 eV,
which belongs to the TlI microcrystals. The reason for
the difference between the spectra obtained in the two
modes consists in that the TlI luminescence band builds
up more slowly than the matrix radiation and has a
longer decay time. In an optically denser sample (seven
crystallization cycles), this band becomes noticeable
against the matrix radiation background already at
room temperature and it is dominant at 80 K (Fig. 1).
This emission band of TlI microcrystals overlaps the
direct and indirect band-to-band transition regions in a
bulk crystal. The absorption spectrum of the matrix
with embedded TlI microcrystals exhibits a structure
coinciding in energy with the direct transition in bulk
TlI crystals [1] (Fig. 1). As follows from this absorption
spectrum, the TlI microcrystals grown in a porous
ABSG matrix from a saturated aqueous solution are not
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Fig. 1. Normalized integral luminescence spectra and the
absorption spectrum of a porous matrix with embedded TlI
microcrystals (six cycles of growth from saturated solution).
T = (1) 80 K, (2) 300 K, and (3) empty matrix at 80 K. The
dashed line is the absorption spectrum.
P

small enough to allow reliable observation of the quan-
tum-confined level shift in them. The position of the
fundamental transition edge indicates that the TlI phase
growing in the matrix pores is orthorhombic. We estab-
lished that, in contrast to bulk crystals which transfer to
the cubic phase at 170°C, TlI microcrystals remain
orthorhombic at substantially higher temperatures,
close to the melting point of bulk crystals (440°C). This
stability of microcrystals in the low-symmetry phase is
in agreement with the structural properties of the
“large” microcrystals of CuI [4] and HgI2 [5, 6]
observed earlier.

2.2. Thallium Chloride

The luminescence spectrum of the matrix with TlCl
microcrystals obtained by slow dehydration exhibits a
band peaking at 2.59 eV at 80 K and a weaker band at
a lower energy. As in the case of TlI, these bands grow
in intensity more slowly than the matrix radiation does
and decay with a characteristic time of a few µs
(Fig. 2). If the sample was dehydrated rapidly at 100°C,
the emission band maximum measured with the same
delay lies at a lower energy of 2.54 eV. This may be due
to large Stokes losses, because rapidly formed microc-
rystals are usually of a poorer quality (and smaller in
size). We did not observe any sharp features in the
absorption spectrum of TlCl microcrystals within the
energy region from 3.0 to 3.6 eV. The diffuse character
of the fundamental absorption edges may be caused by
a strong size dispersion of the microcrystals. The
dynamics of TlI and TlCl growth in a porous matrix are
different because of the much higher solubility of TlCl
in water and of the larger temperature gradient of the
solubility. Moreover, when grown in spatially confined
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Fig. 2. Normalized luminescence spectra of a porous matrix
with embedded TlCl microcrystals (saturated solution, one
growth cycle), measured with the following time delays rel-
ative to the exciting pulse (µs): (1) 0, (2) 5, and (3) 8. The
high energy band corresponds to the glass matrix emission.
T = 80 K.
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conditions, TlCl may form in the orthorhombic phase
rather than in the cubic one, which is likely to be stable
only for bulk crystals; this point requires further study.

2.3. Thallium Bromide and Mixed TlBr1 – xIx Crystals

No luminescence corresponding to the spectral
regions of the direct and indirect transitions in cubic
TlBr is observed in a matrix filled by TlBr. At high TlBr
concentrations, the diffuse absorption edge of the
matrix lies in the 3.4-eV region. In a matrix containing
mixed TlBr1 – xIx crystals with a high bromine concen-
tration, we observed luminescence excited below the
fundamental transitions in cubic TlBr1 – xIx.

Matrices with embedded TlBr1 – xIx and TlCl exhib-
ited sharp emission peaks near 3.360 and 3.315 eV at
80 K; the peaks weakened strongly on heating to room
temperature (Fig. 3). While it would be difficult to iden-
tify the origin of this structure, it is most likely associ-
ated with the luminescence of the thallium ions.

2.4. Exciton Parameters of Thallium Halides

The energy separations between the narrow lines of
the n = 1 and n = 2 excitonic series observed for direct
transitions in TlBr and TlCl show that their Rydberg
energies are approximately the same and equal to
0.011 eV. Accepting the well-known low-temperature
values of 30 and 35 for the low-frequency permittivity
of TlBr and TlCl, respectively, we estimate the reduced
effective masses µd for direct transitions at the X point
as 0.72m0 (TlBr) and 0.95m0 (TlCl), where m0 is the
free electron mass. It thus follows that the radius of the
direct exciton is not much larger than 2 nm for these
compounds. Article [3] gives the following values of
the effective masses of the electron at the R point and

the hole at the X point:  = 0.525m0 and mh = 0.66m0

(TlBr) and  = 0.56m0 and mh = 0.797m0 (TlCl). Our
estimates of µd are seen to be at odds with these data (µd

should be less than mh). The reasons for this disagree-
ment may lie either in the inaccuracy of the data pre-
sented in [3] or in the fact that the low-frequency value
of the permittivity is inapplicable to the lower states of
the direct excitons. Our estimates place the radii of the
indirect exciton states in TlBr and TlCl in the 4- to
6-nm interval. These values are the upper bounds on the
size of the TlBr and TlCl microcrystals in which exci-
ton quantum confinement should be observable. Simi-
lar values of the exciton radii are apparently typical of
the orthorhombic TlI as well (we did not succeed in
finding information on the carrier masses for this crys-
tal), because TlI microcrystals embedded in matrix
pores of sizes up to 7 nm do not exhibit size quantiza-
tion effects.
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Thus, we have grown thallium halide microcrystals
from aqueous solutions in pores of a glass matrix and
investigated their structural and optical properties. The
most reliable results were obtained for the thallium
iodate; the interpretation of some experimental data
requires further studies: improvements in the technol-
ogy of thallium halide microcrystal growth, and exten-
sion of this technology to other matrices, in particular,
to polymer matrices.
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Abstract—The depth profiles of Cu+, Ag+, and Au+ ions implanted into amorphous dielectric SiO2, Al2O3, and
soda–lime silicate glass (SLSG) are simulated by the DYNA program. The algorithm follows projectile-ion–
substrate-atom pair collisions giving rise to a dynamic variation in the phase composition in the surface layer
of the irradiated material and takes into account surface sputtering. Ion implantation up to doses of
≤1016 ion/cm2 at low ion energies of 30, 60, and 100 keV is considered. The measured dynamic variation of the
depth profiles of implanted ions as a function of the dose is compared with the standard statistical distribution
calculated by the TRIM algorithm. © 2001 MAIK “Nauka/Interperiodica”.
Ion implantation (II) as a method of producing
metallic nanoparticles embedded in a dielectric matrix
has recently been gaining ever increasing recognition in
the preparation of composite materials with nonlinear
optical [1, 2] or magnetic [3–5] properties. Of particu-
lar interest in this respect is the implantation of low-
energy (10–100 keV) noble-metal ions into silicate
glasses with the aim of forming optical composites,
which allows easy integration into a silicon substrate in
order to produce combined optoelectronic devices [6].
The specific features of the optical properties of glasses
with metallic nanoparticles originate from inhomoge-
neities in the depth profiles of the implanted metal ions
[1, 7]. This is illustrated in Fig. 1 by a depth profile of
silver ions implanted at an energy of 60 keV into the
near-surface region of a silicate glass, which was
obtained from Rutherford backscattering measure-
ments [8]. This profile differs noticeably from the
Gaussian statistical distribution of implanted ions over
the sample depth, which was obtained by Monte Carlo
simulation, for instance, by means of the TRIM (Trans-
port of Ions in Matter) or SRIS (Stopping and Range of
Ions in Solids) codes [9]. It was suggested earlier [10]
that one of the reasons for the asymmetric distributions
of implanted metal ions may lie in the efficient sputter-
ing of the glass substrate in the course of ion implanta-
tion [11]. In order to take this effect into account, it was
proposed [10] to determine the depth profile of impuri-
ties by standard TRIM calculations of the spectra, with
subsequent exclusion of a certain region determined by
the thickness of the sputtered substrate layer. To illus-
trate this approach, Fig. 2 presents calculated silver
depth profiles obtained after implanting silver ions of
energies 30, 60, 100, and 150 keV into a soda–lime sil-
icate glass (SLSG) substrate. The sputtered glass layer
thickness parameters calculated for ion implantation
1063-7834/01/4304- $21.00 © 20766
with doses of 4 × 1016 ion/cm2 at different ion energies
can be found in [10]. The data presented provide qual-
itative evidence for the conclusion that as the energy of
ion implantation decreases, the sputtering factor
becomes dominant in the final distribution of implanted
ions over the sample depth, which no longer follows a
symmetric Gaussian profile. However, TRIM calcula-
tions within this approach disregard the change in the
phase composition in the surface layer of the irradiated
substrate due to the penetrating metal ions and, conse-
quently, the corresponding change in the depth of the
implanted ions in various stages of ion implantation.

This paper reports the results of a new simulation
using the DYNA program [12] following pair collisions
of implanted ions with substrate atoms, which give rise
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Fig. 1. Depth profile of silver ions implanted into silicate
glass, obtained from Rutherford backscattering measure-
ments. Conditions: implantation energy, 60 keV; dose, 7 ×
1016 ion/cm2 [8].
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to dynamic variation in the phase composition in the
surface layer of an irradiated amorphous substrate, and
taking into account surface sputtering. In the DYNA
program, the elastic scattering of a projectile ion from
the target atoms is described using the results obtained
in [13]. The DYNA program has already demonstrated
a good agreement between calculated and experimental
depth profiles of impurities in the cases of ion implan-
tation with energies > 200 keV into monatomic metal
and semiconductor substrates [11, 14]. We present the
results of a profile simulation for heavier ions Cu+, Ag+,
and Au+ implanted at energies of 30, 60, and 100 keV
into amorphous polyatomic dielectric SiO2, Al2O3, and
SLSG.

To simulate the dynamic variation of the phase com-
position in a surface layer of an irradiated material
upon cascade pair collisions and mixing of atoms, one
has to preset the volumes and/or size of the atoms par-
ticipating in the events under consideration [13]. These
values were found by us from known densities of the
corresponding solid materials and, for the oxygen
atoms, from the interatomic distances in the dielectrics
under study. The sputtering coefficients of the dielectric
substrates, which are required for the DYNA program,
were calculated by the SRIM-2000 code [9] for the case
of normal incidence of the projectile ions as a function
of their energy, with due regard for the surface energy
parameters and atomic bonding energies in the SiO2,
Al2O3, and SLSG amorphous structures. The densities
used for these materials were 2.25, 4.0, and 2.47 g/cm2,
respectively. The sputtering coefficients thus obtained
are shown in Fig. 3.

DYNA simulation treats the near-surface region of
an irradiated sample as a set of thin (in our case, ~2 nm
thick) plane-parallel layers containing a preset number
of atoms of specific elements. The total thickness of the
multilayer model structure exceeds the maximum pen-
etration depth of ions into the material for the corre-
sponding energies of ion implantation. In each stage of
the depth profile calculations, the atom concentration in
every layer was recalculated after the entrapment of the
chosen ion dose fraction, so that the target used in the
subsequent steps of ion implantation had a new atomic
composition. The variation in the composition and con-
centration of atoms in each layer was calculated for
approximately 25 cascade collisions of each incident
ion with the substrate atoms. The step in the dose
dependence after which the target composition was
recalculated was approximately 5 × 1014 ion/cm2 for all
the situations considered.

The results of the depth profile simulation for the
Cu+, Ag+, and Au+ ions incident on various dielectric
matrices upon ion implantation are displayed graphi-
cally in Figs. 4–6. For comparison, the profiles calcu-
lated with the TRIM code are also shown. One readily
sees that the concentration maximum in the DYNA pro-
files is always closer to the irradiated sample surface
than that in the TRIM distributions, and the DYNA
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
profile becomes asymmetric for doses in excess of a
certain critical value. For instance, at an implantation
energy of 30 keV, this critical level lies between
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0.1 × 1016 ion/cm2 for the heavy Ag+ and Au+ ions and
0.3 × 1016 ion/cm2 for the lighter Cu+ ions.

Figures 4–6 show the dynamic variation in the depth
profiles, which is particularly clearly pronounced at
higher energies (60 and 100 keV), with time, i.e., with
the buildup of implanted ions in the irradiated materials
(curves 1–4). In the early stages of ion implantation
(i.e., for small doses), the DYNA distribution of the
implanted ions coincides with the TRIM profile. As the
exposure is increased, i.e., the dose grows, the ion
implantation gives rise to sputtering both of the target
atoms and of a fraction of the embedded impurity
atoms from the surface layer of the sample. Moreover,
it is known [15] that the competing processes of surface
sputtering and variation in the atomic composition of
the matrix and its density, which affect the projective
range and the character of the incident ion collisions
with the target atoms, begin to play a substantial role at
high doses of ion implantation. These processes are
particularly important for the implantation of heavy
ions into matrices consisting of lighter atoms, which is
exactly our case. As a result, the maximum in the impu-
rity concentration distribution shifts toward the surface
as compared to the TRIM profiles. While it is presently
difficult to say which of the two processes responsible
for the variation in the depth profile shape is dominant,
both of them should be included in the profile simula-
tion. On the other hand, one can readily conceive a sit-
uation where in certain “equilibrium” conditions of ion
P

implantation, the fraction of the implanted ions sput-
tered out of the near-surface region would be replen-
ished with newly implanted ions. Eventually, the profile
would stabilize at a certain depth. In this case, the com-
peting processes are governed by the rate of ion supply
and the magnitude of the sputtering coefficient. In this
simulation, we were not interested in determining the
dependence of the distribution profiles on the rate of
ion supply, although the DYNA code permits variation
of this parameter.

The data presented in Figs. 4–6 reveal another inter-
esting feature, namely, that despite the noticeable dif-
ference between the densities of SiO2 and Al2O3, the
profile depths of the implanted ions are virtually the
same for the two materials. There is, naturally, a differ-
ence in the absolute atomic concentration between
these profiles. Nevertheless, their similarity clearly
indicates that the competing processes and the scatter
of their parameters (sputtering coefficients, atomic
masses, etc.) may bring about unexpected impurity dis-
tributions and, in particular, coincidence of profiles for
totally different materials.

An additional example of how the depth profiles
vary depending on the dose of the implantation of
40-keV Cu+ ions into an amorphous Al2O3 matrix is
illustrated by Fig. 7. The three-dimensional plot cover-
ing the dose range 1015–1016 ion/cm2 clearly reveals the
depth profile evolution from a Gaussian at low doses to
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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an asymmetric one, with the concentration maximum
shifting toward the surface. On reaching a dose of
≈0.3 × 1016 ion/cm2, the depth profile stabilizes and no
longer changes with further increase in the dose.

The DYNA calculations performed for all the simu-
lations discussed in this work were made for doses not
in excess of 1016 ion/cm2, because, at higher doses and
low energies of ion implantation, the impurity ion con-
centration accumulated in the near-surface region
exceeds the metal solubility limit in dielectrics [1, 2].
This gives rise to the nucleation and growth of nanopar-
ticles, which immediately changes the phase composi-
tion of the irradiated material and affects the ion range
and the atomic collision mechanisms. In this case, the
approach which is based on pair collisions of atoms in
a homogeneous amorphous medium and realized in the
DYNA program becomes no longer applicable. Never-
theless, the depth distribution of metallic nanoparticles
in the case of high doses can also be predicted from the
calculated data shown in Figs. 4–7. Because the
increase in the absolute concentration of implanted
metal ions in the depth profiles and the sputtering coef-
ficient depend on the implantation time (or on the built-
up dose), the nucleation and growth of metallic nano-
particles will also be functions of time. Obviously
enough, the size of forming metallic particles at differ-
ent depths will be “proportional” to the metal filling
factor in the dielectric at the same depth, because both
these quantities are governed by the concentration pro-
P

file of the implanted ions. Therefore, the asymmetric
depth profiles of the metal ions, which are calculated
for ion doses of ~1016 ion/cm2 (Figs. 4–7), permit the
conclusion that, in the cases of ion implantation with
doses in excess of this value and resulting in a similar
profile, the larger synthesized metallic nanoparticles
(and/or higher filling factors) should lie closer to the
irradiated surface, whereas smaller particles should tail
off into the bulk of the sample. This suggestion of the
size distribution of metallic nanoparticles over the sam-
ple depth is supported by electron microscope observa-
tions of sample sections [1, 16] and optical reflectance
studies of silicate glasses irradiated by 60-keV Ag+ ions
to a dose of 2 × 1016 ion/cm2 [7].

The model examples considered above represent a
simplification as compared with real implantation con-
ditions. In particular, in addition to the difficulties
encountered in calculations for high doses, there are
additional competing processes which considerably
affect the redistribution of impurities. Among them are
effects originating from radiation and thermally stimu-
lated diffusion in materials subjected to implantation,
segregation, the effect of crystallinity of real dielec-
trics, associated ion channeling, etc. Nevertheless, the
above approach and the use of the DYNA program per-
mit one to simulate the depth profiles of the implanted
impurity, which are closer to the experimental distribu-
tions than those obtained by the standard TRIM pro-
gram. Thus, we have demonstrated the possibility of
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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efficiently taking into account the modification of the
atomic composition of an irradiated target and the sur-
face sputtering, which is particularly important at low
implantation energies and when incorporating heavy
ions into a matrix made up of lighter chemical ele-
ments, as well as of obtaining a correct account of the
changes in the composition of the bombarded layer.
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Abstract—The kinetics of europium adsorption on a W(100) face with various degrees of oxidation were studied
by thermal desorption and Auger electron spectroscopy. The spectrum of Eu atoms desorbed thermally from the
W(100) face consists of three successively filling desorption phases whose desorption activation energy
decreases from 3 to 2.1 eV with an increase in the surface coverage. The thermodesorption spectrum of Eu atoms
from the W(100) face coated with a monatomic oxygen film contains five successively forming desorption
phases, with the desorption activation energy increasing to 4 eV for the high-temperature phase. The oxidized W
is reduced by europium, and the desorption of the W oxides is replaced by that of EuO. After a monolayer film
has formed, the Eu film adsorbed on tungsten starts to grow in the form of three-dimensional crystallites. As the
degree of W oxidation increases, the Eu film becomes less nonuniform, until a solid Eu film starts to grow on
bulk W oxides and completely screens the tungsten Auger signal. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Rare-earth metals are widely used in electronics,
electrical engineering, oil refining, and the car indus-
try, as well as in space technology, for manufacture of
electron emitters, permanent magnets, and construc-
tion and HTSC ceramics [1]. However, information on
the characteristics of their adsorption on the surface of
refractory metals is scarce [2–7] and on the surface of
their oxides, it is completely lacking. In this work, we
studied europium adsorption on the surface of oxi-
dized tungsten by thermodesorption spectroscopy
(TDS) and Auger electron spectroscopy (AES). Our
earlier study dealt with electron-stimulated desorption
(ESD) of Eu atoms from an Eu layer adsorbed on oxi-
dized tungsten [8].

2. EXPERIMENTAL TECHNIQUE

The measurements were conducted by TDS and
AES methods, which were described in detail in [9,
10]. The thermodesorption products were identified by
a pulsed time-of-flight mass spectrometer. The Eu atom
flux was derived from the Eu+ ion current which corre-
sponded to the 152 line in the mass spectrum, and the
flux of the EuO molecules was deduced from the EuO+

ion current (the 168 mass line in the mass spectrum).
The Auger spectra were recorded with a 120° quasi-

spherical retarding field energy analyzer. Quantitative
determination of Eu was based on the intensity of the
N45O23N67 Auger line at an energy of 109 eV, and the
intensity of the 4d–4f direct recombination peak at
139 eV was used to determine the extent of Eu oxida-
tion [11]. The screening of tungsten by europium was
1063-7834/01/4304- $21.00 © 20772
found from the change of the N5N6V tungsten Auger
line at 169 eV. The primary electron energy was
1.3 keV, and the current density did not exceed 1.3 ×
10–3 A/cm2. Textured tungsten ribbons 0.01 × 1.0 ×
30 mm in size with a predominantly (100)-oriented sur-
face served as substrates. The ribbons were freed of
carbon by the standard technique, namely, by annealing
in oxygen at a pressure of 10–6 Torr and a ribbon tem-
perature of ~1600 K for several hours.

The W ribbons were oxidized in two regimes: (i) the
ribbons were exposed to oxygen at a pressure of ~3 ×
10–7 Torr and T = 1600 K for 10 min (the conditions in
which a monatomic oxygen film forms on the W sur-
face [12] together with a small amount of surface W
oxides) and (ii) the oxidation was conducted at an oxy-
gen pressure of ~3 × 10–7 Torr and T = 1000 K for dif-
ferent times (the conditions favoring growth of bulk W
oxides [12]).

The source of europium atoms was made of a
30-mm-long tantalum tube 3 mm in diameter with a
wall thickness of 0.05 mm, which was sealed on both
ends and into which europium was placed directly
before instrument evacuation. Seven holes 0.3 mm in
diameter were drilled along the tube length to ensure a
uniform flux of Eu atoms onto the surface of the W rib-
bon. The source was heated by passing a direct current.
The source heating time to the establishment of a
steady-state Eu atom flux was about 10 min.
Two regimes of Eu deposition were employed: (i) the
source was heated for 10 min, after which the W ribbon
was cleaned by heating to T = 2400 K and its tempera-
ture was lowered to the temperature of Eu adsorption;
after the adsorption, the ribbon temperature was
001 MAIK “Nauka/Interperiodica”
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increased and the desorption products were identified;
(ii) the tungsten ribbon was cleaned by high-tempera-
ture heating, after which the Eu source was turned on,
the deposition was carried out, the source of europium
atoms was turned off, and one either recorded the
Auger spectrum or produced a high-temperature flash
with measurement of the flux of the desorbing particles.
In the first regime, the amount of deposited Eu was a
linear function of deposition time and, in the second, it
was nonlinear, with the deposition rate increasing with
the Eu source temperature.

The W ribbon and the Eu source were mounted on a
manipulator, which permitted positional adjustment of
the sample between the entrance to the mass-spectrom-
eter source and the energy analyzer. The ribbon heating
rate could be varied from 20 to 2000 K/s, with a close-
to-linear dependence of the temperature on time. The
deviation from linearity within the temperature range
600–2000 K did not exceed 50 K. In the high-tempera-
ture range, the ribbon temperature was measured with an
optical micropyrometer and at low temperatures, by lin-
ear extrapolation of the dependence of the ribbon tem-
perature on the heater current to room temperature. The
base pressure in the instrument was about 10−10 Torr.

3. RESULTS

(a) Thermodesorption of Eu from W(100). Figure 1
shows thermodesorption spectra of Eu atoms from
W(100) for various coverages. The coverage is
expressed in units of θs = Nads/Ns, where Nads is the num-
ber of Eu adatoms and Ns is the surface concentration
of W atoms on the (100) face (~1015 atoms/cm2). It is
seen that, as the coverage increases, three maxima
appear in the desorption curves, which indicate the
presence of three phases of Eu desorption from the
W(100) face. The two high-temperature desorption
phases reach saturation with an increase in the cover-
age, whereas the low-temperature phase shows no sat-
uration. A similar behavior of the spectra of the Eu ther-
modesorption from the W(100) face was earlier
reported in [3], where the Eu atom flux was derived
from measurements of the surface ionization current.
The Eu concentration which corresponded to the satu-
ration of the first high-temperature phase was found to
be 5 × 1014 atoms/cm2 and was due to monolayer for-
mation. The filling of the low-temperature phase starts,
accordingly, at coverages θs > 0.75. Because the slope
of the desorption curve of this phase does not depend
on the coverage and the europium content in it
increases without limit with increasing exposure, it can
be assumed to have zero-order desorption kinetics [13,
14] and to be due to europium desorption from three-
dimensional formations. Figure 2 shows the depen-
dence of ln(dN/dt) on T–1 for this phase of desorption.
The plot is well fitted by a straight line whose slope
yields the Eu desorption activation energy in this phase,
E = 2.1 ± 0.2 eV, which is slightly higher than the heat
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
of europium sublimation, 1.84 eV [15]. As follows
from Fig. 1, the first high-temperature phase contains
twice the number of Eu atoms in the second phase,
which is at variance with the data obtained in [3]. This
is possibly due to the europium adsorption in [3] having
been performed at temperatures above 700 K.

Figure 3 plots ln((dN/dt)/N) as a function of T–1 for
thermodesorption of Eu atoms from W(100) for various
surface europium coverages θs. For θs ≤ 0.03, the plot
can be approximated by a straight line whose slope
yields the desorption activation energy E = 3.0 ± 0.2 eV.
This value coincides with that found by the temperature
modulation technique [2] and the activation energy
calculated under the assumption of trivalent Eu on W
[16], as well as with the TDS result for the W(110) face
[17]. On the other hand, it lies substantially below the
value E = 4.42 eV obtained by the adsorption isobar
method [3].
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Fig. 1. Thermodesorption spectra of Eu atoms from W for
different initial coverages θs: (1) 0.03, (2) 0.1, (3) 0.15,
(4) 0.25, (5) 0.4, (6) 0.5, (7) 0.7, (8) 0.82, (9) 1.0, and
(10) 1.1. The adsorption temperature T is 300 K, and the
heating rate is 200 K s–1.
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age of W by europium, θs = 1.3.
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For θs > 0.03, the plots exhibit a bend, indicating the
presence of lateral interactions in the adlayer. For θs >
0.5, a linear section parallel to the horizontal axis
appears in the graphs, beyond which a maximum is
observed for θs > 1. The appearance of the maximum is
apparently due to the formation of the low-temperature
phase.

(b) Thermodesorption of Eu from oxidized tung-
sten. Figure 4 displays thermodesorption spectra of Eu
atoms from the oxygen monolayer–coated W(100)
face, which were measured for various initial Eu sur-
face coverages deposited at T = 300 K. As the coverage
increases, five thermodesorption phases are seen to fill
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Fig. 3. Dependence of ln((dN/dt)/N) on T –1 for different ini-
tial coverages θs: (1) 0.03, (2) 0.1, (3) 0.15, (4) 0.25, (5) 0.4,
(6) 0.5, (7) 0.7, (8) 0.82, (9) 1.0, and (10) 1.1.

Fig. 4. Thermodesorption spectra of Eu atoms from W
coated with a monoatomic oxygen film for different initial
coverages θs: (1) 0.1, (2) 0.2, (3) 0.4, (4) 0.45, (5) 0.75,
(6) 1.05, (7) 1.5, (8) 1.9, and (9) 3.5. T = 300 K. Dashed
lines show the thermodesorption spectra of EuO after oxida-
tion (at T = 700 K for 5 min) of an Eu film deposited prelim-
inarily on W to a concentration θs: (1') 0.4 and (2') 1.05. The
heating rate is 200 K s–1.
P

successively, with the high-temperature phase dis-
placed by about 400 K toward higher temperatures
compared to the first high-temperature phase of Eu des-
orption from tungsten, which indicates an increase in
the europium binding energy at the monolayer oxygen
film on tungsten, W–O. For θs ≤ 0.1, the activation
energy of the Eu desorption from W–O was found to be
E = 4.0 ± 0.2 eV, i.e., higher by 1 eV than that from
tungsten. The lowest temperature europium desorption
phase is actually desorption from the condensed state.

Note that the desorption of europium oxides could
be detected only in the case when the sensitivity of the
method was increased by raising the heating rate in the
flash fivefold. In these conditions, the amount of des-
orbing EuO was a few percent of that of Eu desorbing
in the high-temperature phase from W–O. Note that
while before the Eu deposition the heating of a mona-
tomic oxygen film on W resulted in desorption, not just
of oxygen, but also of an insignificant amount of tung-
sten oxides, after Eu was deposited, one observed des-
orption not of the tungsten oxides, but rather of an
approximately equal amount of EuO. The desorption
activation energy of EuO, which was derived from the
dependence of ln((dN/dt)/N) on T–1, was found to be
E = 4.1 ± 0.2 eV.

Europium deposited on the W ribbon at 300 K
undergoes oxidation in an oxygen atmosphere at a pres-
sure of 3 × 10–7 Torr and a temperature of 700 K for a
few minutes. This is indicated by the manifestation of
EuO molecules in the thermodesorption spectrum, with
the EuO peak displaced relative to the high-temperature
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Fig. 5. Thermodesorption spectra of Eu atoms from oxi-
dized W for different europium deposition times (min):
(1) 6, (2) 8, and (3) 10. (4) Simultaneous desorption of EuO
from the film prepared by depositing Eu for 8 min. The
dashed line shows the thermodesorption spectrum of Eu
atoms from W coated with an oxygen monolayer (europium
deposition time t = 8 min). The heating rate is 200 K s–1.
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desorption peak of Eu atoms from W–O toward lower
temperatures by a few tens of degrees Kelvin (Fig. 4).

Figure 5 shows thermodesorption spectra of Eu
deposited on a film of bulk tungsten oxides. The spectra
are seen to retain the five-phase structure. One observes
a slight displacement of the maxima of some phases
and a change in their sorption capacity. One also detects
a sizable amount of desorbing EuO molecules.

The amount of flash-desorbed Eu atoms decreases
with increasing tungsten preoxidation time for the same
Eu deposition doses (Fig. 6). This decrease cannot be
assigned solely to the simultaneous desorption of EuO,
and it does not depend on the substrate temperature
within the range 300 < T < 600 K. This effect is appar-
ently associated with the decrease in the Eu sticking
coefficient, which arises after tungsten oxidation. A
similar effect of a decreasing adsorption activity of Ir
with respect to Yb was observed in [2] after the oxida-
tion of Ir.

(c) Europium adsorption on tungsten and oxi-
dized tungsten. Figure 7 plots the Auger signal inten-
sities of Eu (109 eV) and W (169 eV) as a function of
deposited Eu dose expressed in units of θs. The deposi-
tion was made on clean W (curves 1, 4), W–O (curves
2, 5), and oxidized tungsten (curves 3, 6). The Eu Auger
signal increases linearly in all cases up to θs = 0.75,
which apparently corresponds to the filling of the first
layer. Curves 1–3 tend to saturation (or to the region of
a slow Auger-signal variation) for different signal
amplitudes, depending on the actual substrate oxidation
degree. Note that curves 1 and 2 practically coincide up
to θs = 1.5, whereas curve 3 starts to deviate already at
the minimum values of θs, with the Auger signal of Eu
deposited on clean W first exceeding that of the Eu
adsorbed on the oxidized W. Then, one observes the
reverse behavior. This disagreement cannot be con-
nected unambiguously with a change in the Eu film
growth mechanism, because one has to also take into
account such factors as the variation in the Auger line
shape of Eu on oxidized tungsten and the decrease in
the Eu sticking coefficient with an increase in the
degree of W oxidation.

The variation of the W Auger signal intensity with
the deposited dose of Eu also argues for the fact that the
final state of the Eu film depends on the degree of W
oxidation. Total screening of tungsten by a deposited
Eu film is attained only when Eu is deposited on oxi-
dized tungsten (curve 6). When Eu is adsorbed on W or
on W coated with an oxygen monolayer, the depen-
dences of the W Auger signal intensity reach saturation,
with the saturated amplitude being higher in the case of
deposition on clean W. It can be conjectured that, at
T = 300 K, after a monolayer film with θs = 0.75 has
formed, three-dimensional Eu crystallites start to grow
above this monolayer. When Eu is deposited on clean
W, the nonuniformity of the growing film is larger than
that in the case of Eu deposited on W–O and the W
Auger signal is screened less in this case. Only when
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
deposited on oxidized W, the growing film is close to
being uniform and the tungsten is completely screened.

Figure 8 shows the variation of the Auger signal
intensities of Eu and W upon Eu deposition on clean W
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Fig. 6. The amount of Eu desorbing from oxidized W as a
function of the preliminary oxidation time for the same ini-
tial europium coverage θs = 1.38. The oxidation was per-

formed at an oxygen pressure P = 3 × 10–6 Torr and T =
1000 K.

Fig. 7. Auger peak intensity of (1–3) Eu and (4–6) W as a
function of the Eu deposition dose at substrate temperature
T = 300 K. (1, 4) Deposition on W, (2, 5) deposition on W
coated with an oxygen monolayer, and (3, 6) deposition on
oxidized W.
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at different temperatures (300 and 500 K). One readily
sees that up to θs = 0.5, the curves measured at different
temperatures coincide, after which they deviate from
one another and the Auger signals of both Eu and W
reach saturation in the final state. The saturated Auger
signal intensity of Eu decreases with increasing tem-
perature, while that for W grows with increasing tem-
perature. Because Eu desorption at T = 500 K is very
low, it can be conjectured that the area occupied by the
crystallites diminishes with an increase in T.

The shape of the Auger signal of Eu depends on its
chemical state [11]. For Eu2O3, one observes an
increase in the Auger line intensity due to the direct 4d–
4f recombination compared with that of the N45O23N67
Auger line [11]. The intensity ratio of the N45O23N67
and 4d–4f lines reaches a minimum when a monolayer
of Eu is deposited on W. However, only when Eu is
deposited on oxidized tungsten, this intensity ratio
approaches that for the oxide.

4. DISCUSSION

The Auger signal of Eu on tungsten grows linearly
with an increase in the coverage up to θs = 0.75 (Fig. 7),
which corresponds to a europium concentration N =
7.5 × 1014 atoms/cm2. It can be assumed that up to θs =
0.75, the first layer is filling. At θs = 0.75, the thermode-
sorption spectra of Eu atoms from W show the comple-
tion of filling of two high-temperature desorption
phases. The value N = 7.5 × 1014 atoms/cm2 is close to
the Eu concentration (6.94 × 1014 atoms/cm2) in the
hexagonal close-packed structure with the metallic Eu
atomic radius r = 2.02 Å. A similar hexagonal structure
was observed in the Eu–W(110) system [17]. Hexago-
nal and pseudohexagonal close-packed structures in a
monolayer were detected at T = 300 K for a number of
rare-earth elements on the faces of differently oriented
high-melting transition metals: Gd–W(110), Tb–
W(110) [17], Yb–Mo(110), Sm–Mo(110) [18], Sm–
W(100) [6], and Yb–Mo(112) [19]. The formation of
close-packed structures is usually accompanied by a
strong decrease in the heat of adsorption.

It can be assumed that up to the coverages θs = 0.5
(which, in the thermodesorption spectra, corresponds
to the filling of the high-temperature desorption phase),
Eu adsorbs on W(100) by forming simple, substrate-
matched structures. (In the case of Sm adsorption on
W(100), one observed the c(2 × 2) structure for θs ≤ 0.5
[6]). The activation energy of desorption of Eu atoms
from W(100) at small coverages (θs ≤ 0.03) is E = 3.0 ±
0.2 eV. As θs increases, the maxima in the thermodes-
orption spectra shift within the high-temperature phase
toward lower temperatures and the dependences of
ln((dN/dt)/N) on T–1 cannot be fitted by straight lines.
This is a consequence of lateral adatom interactions,
specifically of the indirect interaction through the sub-
strate conduction electrons and the dipole–dipole inter-
P

action between the electropositive Eu atoms. The for-
mation of the second high-temperature desorption
phase is apparently associated with the onset of the for-
mation of a close-packed hexagonal structure in the
adlayer. In this stage, compression of the adatom lattice
results in a transition from dipole–dipole and indirect
interactions between the Eu adatoms to direct exchange
coupling. The decrease in the heat of adsorption was
assigned in [20] to the electron transition from the
localized 4f states to the s band.

After a monolayer has been filled, three-dimen-
sional Eu crystallites start to grow already at T = 300 K.
The area occupied by the crystallites decreases with an
increase in the adsorption temperature from 300 to
500 K. The activation energy of desorption from crys-
tallites, E = 2.1 ± 0.2 eV, is close to the heat of Eu sub-
limation.

The thermodesorption spectrum of Eu atoms from
W coated with an oxygen monolayer contains five suc-
cessively forming desorption phases. The Eu Auger
signal varies linearly with coverage up to θs = 0.75.
This coverage corresponds to the filling of two high-
temperature phases of Eu desorption from W–O. As in
the case of Eu deposition on W, the deposition of Eu on
W–O brings about the formation of a close-packed lat-
tice of Eu atoms in the monolayer, which desorb in two
phases. Both desorption phases are displaced toward
higher temperatures compared to the Eu–W system.
For small coverages, the desorption activation energy is
E = 4.0 ± 0.2 eV, which is 1 eV higher than that for Eu
adsorbed on clean W. The film growing at T = 300 K
with Eu concentrations in excess of the monolayer cov-
erage is made up of three-dimensional crystallites, and
it is less nonuniform in thickness than the film obtained
by Eu deposition on clean W. The Eu deposited on W
coated with an oxygen monolayer desorbs in the form
of atoms. EuO molecules desorb in the case where W
oxides are present on the surface. In thermodesorption
of an oxygen monolayer from W (in the absence of Eu),
desorption of oxygen is accompanied by that of a small
amount of W oxides. After the deposition of Eu, the W
oxides no longer desorb and one observes, instead, des-
orption of a comparable amount of EuO. As the degree
of W oxidation increases, the number of desorbing EuO
molecules also increases (Fig. 5). EuO oxides desorb
by first-order kinetics with an activation energy E =
4.1 ± 0.2 eV. The first order of desorption kinetics
implies that the reduction of surface W oxides and the
formation of EuO occur before the onset of desorption.

5. CONCLUSION

Thus, the adsorption of Eu on W(100) oxidized to
various degrees was studied by AES and TDS methods.
It was shown that Eu desorbs from clean W and W
coated with an oxygen monolayer in the form of atoms.
Desorption from oxidized W takes place in the form of
Eu and EuO. The Eu concentration in a monolayer on
clean W and on W coated with a monatomic oxygen
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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film is N = 7.5 × 1014 atoms/cm2. The monolayer des-
orbs in two phases. For coverages θs ≤ 0.03, the activa-
tion energy of desorption from clean tungsten is E =
3.0 ± 0.2 eV and that from tungsten coated with an oxy-
gen monolayer is E = 4.0 ± 0.2 eV. The Eu concentra-
tion in the monolayer is close to that in a hexagonal
close-packed lattice. At coverages in excess of a mono-
layer, three-dimensional crystallites grow at T = 300 K
on both clean W and W–O. The film growing on W–O
is more uniform in thickness (the crystallites are
smaller in size). The film growing on oxidized W at
T = 300 K is continuous, and it completely screens the
W Auger signal. The sticking coefficient of Eu atoms
decreases with an increase in the degree of W oxi-
dation.
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Abstract—The processes of forming cadmium telluride films upon vapor-phase deposition onto a substrate in
a thermal field of the temperature gradient along the substrate plane are studied. The results of technological,
geometric, electron diffraction, and electron microscopic investigations are reported. It is found that the thermal
field of temperature gradient leads to a change in the duration of the Ostwald ripening stage and, under certain
conditions, enhances the perfection of the formed structure. The mechanism of the influence of a thermal field
on the Ostwald ripening is established. The results obtained are in agreement with the current theory of film
formation. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, film material science is one of the most
important directions of technological progress. This
has stimulated theoretical and experimental investiga-
tions in this field and motivated the necessity of study-
ing the formation of film systems under nontrivial con-
ditions (at low temperatures, high supersaturations, etc.
[1–3]).

The present work is devoted to the features of the
CdTe vapor-phase deposition in a thermal field of the
temperature gradient.

2. SAMPLE PREPARATION AND 
EXPERIMENTAL TECHNIQUE

Film formation processes in a thermal field of the
temperature gradient were studied using cadmium tel-
luride films synthesized on mica (muscovite) sub-
strates. The film thickness for different samples was no
more than 0.7 µm.

The films were synthesized by the quasi-closed
(hot-wall epitaxy) method [4], according to which a
CdTe powder was placed in a special quartz reactor
30 mm in diameter and heated under a vacuum of
≈10−3 Pa to the sublimation temperature (Te = 773 K).
Then, the reactor was brought into contact with a sub-
strate by a manipulator for a time of synthesis which
did not exceed 1 min.

The temperature gradient of a thermal field along
substrate 1 was produced by a special metallic ring 4,
which was mounted on the substrate around its periph-
ery, and a metallic substrate holder 5 equipped with a
flat heater 7 in the central part (Fig. 1). The relatively
high heat capacity of the unheated ring provided the
heat outflow from the center to the periphery and, thus,
formed the thermal field gradient in the substrate along
1063-7834/01/4304- $21.00 © 0778
the x coordinate. The substrate temperature was speci-
fied and maintained by a temperature controller in the
center of the substrate holder. The temperature was
controlled by chromel–alumel thermocouples. The
geometric measurements (thickness and thickness
homogeneity) were carried out on an MII-4 microinter-
ferometer providing measurements with an accuracy of
0.03 µm. Structural investigations were performed with
an ÉMR-100 electron diffractometer and a PÉM-100
electron microscope.

3. RESULTS

The study of film formation processes in a thermal
field of the temperature gradient involved technologi-
cal, structural, and geometric investigations. The main
experimental results are shown in Figs. 2–4.

1

q

2

7 6

5

43

Fig. 1. A scheme of synthesizing cadmium telluride films in
a thermal field of the temperature gradient: (1) substrate,
(2) disperse particles of new phase, (3) incident flux,
(4) special metallic ring, (5) substrate holder, (6) heat flux q,
and (7) heater.
2001 MAIK “Nauka/Interperiodica”
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(‡) (b)

(c) (d)

Fig. 2. Electron diffraction patterns of cadmium telluride films synthesized (a, b) under uniform conditions and (c, d) in a thermal
field of the temperature gradient at different substrate temperatures Ts (K): (a) 523 and (b–d) 473. (c) Central and (d) peripheral film
regions.
The structures of the films grown under different
conditions are characterized by the electron diffraction
patterns shown in Fig. 2. The electron diffraction pat-
terns that correspond to the typical structures of the
films grown in the absence of a thermal field of the tem-
perature gradient at substrate temperatures Ts = 523 and
473 K are displaced in Figs. 2a and 2b, respectively. A
comparison of these diffraction patterns demonstrates
that a decrease in the substrate temperature to 473 K in
the absence of thermal field leads to a substantial dete-
rioration of the perfection of the structure (from epitax-
ial to polycrystalline).

The electron diffraction patterns of the films synthe-
sized in a thermal field of the temperature gradient at Ts

= 473 K are shown in Figs. 2c (the central region of the
film) and 2d (the peripheral region of the same film).

A comparison of Figs. 2b–2d demonstrates that the
thermal field leads to enhancement of the perfection of
the structure formed at the substrate center (from
whence the heat outflow comes) and, vice versa, the
deterioration of the structure formed at the substrate
periphery (the region of the heat inflow).

The degree of uniformity of the film growth rate
along the radial coordinate x is illustrated in Fig. 3.
Curves 1 and 2 were obtained for the films synthesized
under the same conditions (Ts = 473 K) in the presence
and in the absence of a thermal field, respectively.

This figure pictorially shows the change in the
growth rate in a thermal field of the temperature gradi-
ent. The thermal field brings about a decrease in the
growth rate at the central region of the substrate and its
increase at the substrate periphery.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
The influence of the thermal field on the surface
morphology of films can be seen in Fig. 4, which dis-
plays the electron microscope images of the surface of
the films synthesized on the substrates at a temperature
Ts = 473 K in the absence (Fig. 4a) and in the presence
(Figs. 4b, 4c) of a thermal field. The images that corre-
spond to the central and peripheral regions of the sub-
strate are presented in Figs. 4b and 4c, respectively.

The electron microscopic investigations demon-
strate that the thermal field results in an appreciable
change in the surface morphology of films. In the pres-
ence of the thermal field, the perfection of the surface
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Fig. 3. Dependences of the growth rate on the radial sub-
strate coordinate x for cadmium telluride films synthesized
(1) in a thermal field of the temperature gradient and
(2) under uniform conditions.
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formed in the central region of films is enhanced and
the structure becomes more homogeneous and coarse-
grained (Figs. 4a, 4b). By contrast, the structure in the

(‡)

(b)

(c)

Fig. 4. Surface morphology of cadmium telluride films
grown (a) under uniform conditions and (b, c) in a thermal
field of the temperature gradient: (b) the central and
(c) peripheral film regions (magnification ×40000).
P

peripheral regions deteriorates and becomes fine-
grained and heterogeneous (Figs. 4a, 4c).

No electron diffraction patterns and micrographs
are presented for the central and peripheral regions of
the films synthesized without a thermal field, because
the structural properties of these films are independent
of their position on the substrate.

4. DISCUSSION

It is known that the heteroepitaxial growth of cad-
mium telluride films upon vapor-phase deposition
under quasi-equilibrium conditions is observed only at
substrate temperatures Ts ≥ 500 K [5]. At lower temper-
atures, the structural perfection is disturbed. This is
confirmed by typical electron diffraction patterns of
CdTe films synthesized at Ts = 523 (Fig. 2a) and 473 K
(Fig. 2b).

However, as follows from our experiments, in the
case when the thermal field of the temperature gradient
is produced along the substrate, the heteroepitaxial
growth can be observed at considerably lower temper-
atures. This is evidenced by the electron diffraction pat-
tern of the central region of the film synthesized in a
nonuniform thermal field at temperature Ts = 473 K
(Fig. 2c).

In order to elucidate the mechanism of the effect of
the thermal field on the structural perfection, we ana-
lyze the rate of film formation. From curves 1 and 2 in
Fig. 3 (which correspond to the films with structures
shown in Figs. 2b–2d), it can be seen that the film for-
mation process is considerably retarded upon hete-
roepitaxial growth. Let us consider the possible reasons
for this observation. Recall that films of A2B6 com-
pounds upon vapor-phase deposition onto a heated sub-
strate are formed through the layer-by-layer normal
growth [5]. The formation of each layer involves sev-
eral stages: a three-dimensional nucleation—the for-
mation of disperse particles, the Ostwald ripening, the
coalescence, and the merging into a continuous layer.
The growth rate of films is predominantly determined
by the first two stages: the nucleation and the Ostwald
ripening [6]. The nucleation affects the film growth
only at high supersaturations and strong stationary
sources of the material. The technological parameters
(Te = 773 K and Ts = 473 K) used in the experiments
cannot be treated as providing such nonequilibrium con-
ditions [4]. Consequently, the Ostwald ripening, rather
than the nucleation, is most probably responsible for the
retardation of the film formation process. This is all the
more probable, because the structural perfection of a
layer is usually associated with the Ostwald ripening
stage [7]. In the case under consideration, the change in
the growth rate of films is attended by the change in their
structure [compare the electron diffraction patterns in
Figs. 2b and 2c which correspond to the films grown at
different growth rates (Fig. 3, curves 1, 2)].
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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An ensemble of disperse particles is formed through
the generalized diffusion field at the Ostwald ripening
stage. Disperse particles whose sizes are less than the
critical size Rc are dissolved, disperse particles with
sizes larger than Rc grow, and the disperse particles ori-
ented on a substrate in a nonoptimum manner are
arranged in such a way as to provide the minimum
energy of the system. New disperse particles virtually
are not formed at this stage.

The evolution of disperse particles at the Ostwald
ripening stage can be quantitatively evaluated using the
distribution function f(R, t) in the size space. In the gen-
eral case, this function is bell-shaped with a maximum
for disperse particles of the critical size Rc. The specific
form of f(R, t) is determined by the character of mass
transfer upon Ostwald ripening and the source of atoms
onto the substrate. However, in any case, the function
f(R, t) varies with time so that the ensemble of disperse
particles becomes more uniform. For example, in the
case of the mass transfer along the substrate surface and
in the presence of only nonstationary (dying) sources,
the distribution function has the form

(1)

where

(2)

N(t) is the two-dimensional density of disperse parti-
cles at the substrate surface, n is the exponent of the
source dying, and U = R/Rc.

As was shown in [8], the distribution function (1)
asymptotically tends with time to a form similar to the
δ function.

By generalizing all the foregoing about the Ostwald
ripening stage, it can be stated that, as its duration
increases, the layer homogeneity increases, the film
structure becomes coarser-grained and more perfect,
and the growth rate of films decreases.

It is easy to see (Fig. 3, curves 1, 2; Figs. 2b, 2c, 4a,
4b) that all these features in the experiment under dis-
cussion are observed in the central film region in the
presence of a thermal field of the temperature gradient.
In the peripheral regions of the films, the thermal field
produces the opposite effect. The growth rate increases
(Fig. 3, curves 1, 2), the structural perfection deterio-
rates (see the electron diffraction patterns in Figs. 2b
and 2d), and the structural homogeneity decreases
(Figs. 4a, 4c).
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Therefore, we can draw the following tentative con-
clusion: the thermal field of temperature gradient favors
a change in the duration of the Ostwald ripening stage
in the direction determined by the gradient direction.

In order to elucidate the mechanism of the effect of
the thermal field on the Ostwald ripening, we now con-
sider in more detail the initial processes of forming sep-
arate layers. According to the classical concepts, the
growth of each layer starts with the formation of a
“two-dimensional gas” of adatoms upon condensation
of atoms and molecules onto a substrate. Three-dimen-
sional nuclei can arise from adatoms when their mini-
mum critical density is reached. A decrease in the den-
sity below the critical value results in the completion of
the nucleation process and the onset of the Ostwald rip-
ening stage. The density of adatoms on the substrate
can be reduced either at the expense of a decrease in the
power of the source supplying a material to the sub-
strate or due to the material outflow from the substrate.
Evidently, it is unlikely that the thermal field of temper-
ature gradient can substantially change the material
source power. However, this field can easily induce a
directed outflow of adatoms along the substrate, for
example, owing to the different kinetic energies of ada-
toms in regions with different temperatures. This effect
of the thermal field completely correlates with the
experimental data. In the central substrate regions with
an increased temperature (i.e. the regions of the mate-
rial outflow), the growth rate decreased, and the Ost-
wald ripening stage was initiated earlier and was more
prolonged. By contrast, at the substrate periphery with
a decreased temperature (i.e., the region of the material
inflow), the growth rate was higher and the Ostwald rip-
ening stage, most likely, did not occur at all. Therefore,
a slowly growing, perfect, and homogeneous structure
is formed in the central regions, whereas a rapidly
growing and strongly disordered structure is observed
in the peripheral region.

The evolution of an ensemble of disperse particles
in the presence of different sources was theoretically
studied in [8]. The evolution conditions at nonstation-
ary and stationary sources are the closest to those in the
case under consideration. The former conditions are
similar to those observed at the substrate center, and the
latter conditions are similar to the conditions in the
peripheral regions, because the thermal field encour-
ages the outflow of atoms from the center and their
inflow to the periphery.

In [8], the analytical expression obtained for the dis-
tribution function f(R, t), which characterizes the evolu-
tion of the system, takes the form of formula (1) for
nonstationary sources and is given by the following
relationship for stationary sources:

(3)

Here,  is the mean size of disperse particles and N(0)
is their initial density.

f R t,( ) N 0( )δ R R–( ).≈

R

1
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Both functions (1) and (3) were derived under the
assumption of the mass transfer along the substrate sur-
face, which is characteristic of the low temperatures
used in the present work.

As is seen from these relationships, the theory
agrees well with the experiment. The processes of film
formation at the center and the periphery of the sub-
strate are qualitatively described by formulas (1) and
(3), respectively. The growth patterns are actually
coarse at the center of the substrate and fine at its
periphery. The scatter in the sizes of film growth pat-
terns at the periphery additionally confirms the pres-
ence of a strong source in the system, which, according
to the same theory, leads to the secondary nucleation
and, as a consequence, the deviation of f(R, t) from the
δ function.

5. CONCLUSION
The above results allow us to draw the following

inferences.
(1) The thermal field of the temperature gradient

along the substrate plane induces the directed flow of a
deposited material and, thus, changes the duration of
the Ostwald ripening stage in the direction specified by
the temperature gradient.

(2) The thermal field of the temperature gradient
along the substrate plane favors the perfection of the
structure formed upon vapor-phase deposition on the
substrate.
P
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Abstract—New comblike copolymers of methacrylic acid esters with an optically nonlinear chromophore—a
derivative of the 4'-(4-nitrobenzylideneamino)phenol—in a side chain were obtained. Processes of forced ori-
entation of nonlinear optical chromophores covalently bonded with the main chains in an electric field and the
effects of the conditions of orientation on the nonlinear second-order optical activity of the polymer films were
studied in some detail. The existence of a correlation between the chemical structure and the composition of the
copolymers with the magnitude and the stability of the surface electron potential of the corresponding films was
shown. It was established that a maximum extent of orientation of chromophores in the bulk of the polymer
and, as a consequence, a high intensity of the second-harmonic signal were achieved when the thickness of the
region of the uniform electric field maximally approached the thickness of the sample. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The investigation of nonlinear optical properties of
polymer materials have attracted considerable attention
in recent years. The polymers that contain nonlinear
optical fragments (chromophores) can exhibit large non-
linear optical coefficients if the organic molecules
responsible for the optical nonlinearity are arranged in a
certain order. Thin films of polymer materials can easily
be obtained by the methods of conventional microelec-
tronics technology, which is especially valuable for
applications in optoelectronic devices. In this connec-
tion, synthesis of new polymers with nonlinear optical
properties and the investigation of conditions under
which polymers are capable of revealing maximum non-
linear optical activity (OA) becomes a topical problem.

It is known [1] that for a polymer with noncen-
trosymmetric optically active groups to be capable of
generating second harmonics, oriented molecular struc-
tures need to be formed in it. Beginning from the 1980s,
processes of poling (polarization under the effect of an
applied electric field) at a temperature close to the soft-
ening point Tg of the polymer have been widely and suc-
cessfully applied for orienting dipole molecules of the
chromophores in macromolecules. A whole number of
1063-7834/01/4304- $21.00 © 20783
works (see, e.g., [2–4]) were devoted to studying the
kinetics of decay of the second-harmonic signal inten-
sity after electrization and to revealing relations
between the kinetic parameters of the decay of the sur-
face potential and the nonlinear optical susceptibility.
The variety of the results obtained and of the models
suggested for their explanation is caused by the com-
plexity of relaxation processes that occur in the polymer
sample and differently manifest themselves depending
on the chemical nature of the polymer studied.

In this work, we performed a complex investigation
of the processes of chromophore orientation and sec-
ond-harmonic generation (SHG) in several new poly-
mers. As the objects of investigation, we chose comb-
shaped copolymers of some methacrylic acid esters
whose side chains contained alkyl and/or fluoroalkyl
radicals along with an optically nonlinear chromophore
(the azomethine fragment) that was introduced through
a spacer (–CH2– or –CF2–). The possibility of changing
the composition of the copolymers (the number of
monomer units with chromophore groups), of the
amphiphilic properties (introducing hydrophobic fluo-
roalkyl and hydrophilic carboxyl groups), and of the
free volume of the polymers, as well as the relatively
001 MAIK “Nauka/Interperiodica”
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low values of Tg [5], makes these polymers a suitable
material for simulating processes of orientation—of
both free orientation (as in Langmuir–Blodgett films)
and that which arises under the action of an applied
electric field.

1. EXPERIMENTAL

Polymer I and a series of new (not described earlier)
polymers II–IV of the general formula shown in Fig. 1
were synthesized by copolymerization of the corre-
sponding comonomers through a free-radical mecha-
nism. Note that the polymers synthesized were capable
of forming Langmuir–Blodgett films [6] characterized
by a highly ordered structure and optical uniformity,
with a thickness that could be controlled to within a
bimolecular layer.

The azomethine fragment 4'-(4-nitrobenzylidene-
amino)phenol, its alkyl (fluoroalkyl) derivatives 6-[4'-
(4-nitrobenzylideneamino)phenoxy]hexanol and 6-[4'-
(4-nitrobenzylideneamino)phenoxy]decafluorohex-
anol, and their methacrylic esters 6-[4'-(4-nitroben-
zylideneamino)-phenoxy]hexyl methacrylate and 6[4'-
(4-nitrobenzylideneamino)-phenoxy]decafluorohexyl
methacrylate were synthesized by techniques analo-
gous to [7] and refined by column chromatography

CH2 C

CH3

C

O

O

CH2

(Y)4

CH2

O

N

CH

NO2

p

CH2 C

CH3

C

O

O

CH2

(X)4

H

mn

CH2 C

CH3

C

OH

O

Fig. 1. General formula of copolymers I–IV (the brace
bracket indicates the nonlinear optical fragment). Copoly-
mer I: n : m : p = 60 : 40 : 0, X = CF2; copolymer II: n : m :
p = 35 : 55 : 10, X = CF2, Y = CH2; copolymer III: n : m :
p = 0 : 80 : 20, X = Y = CH2; and homopolymer IV: n : m :
p = 0 : 0 : 100, Y = CF2; n, m, and p specify the relationship
between the initial components (in mol %).
P

using silica gel as the packing material and a mixture of
diethyl ether and hexane (1 : 1) as the eluent.

Copolymers I–III were obtained by the free-radical
copolymerization of corresponding monomers in solu-
tion in N,N-dimethyl acetamide (30 wt %) with benzoyl
peroxide (1 wt %) as the initiation agent at a tempera-
ture of 60°C. Homopolymer IV was obtained by bulk
thermopolymerization.

The polymers synthesized were refined by reprecip-
itation from solutions in cyclohexanone to benzene (I,
II, and IV) or to methanol (copolymer III) with subse-
quent drying in a vacuum (10–2 Torr) at 50°C. The
intrinsic viscosities [η] of copolymers I–III in cyclo-
hexanone were 0.15 × 102 cm3/g; that of homopolymer
IV in acetone was 0.54 × 102 cm3/g.

The structure and composition of polymers I–IV
were confirmed by 1H NMR spectra and UV spectros-
copy. The 1H NMR spectra were recorded on a Bruker
AC-200 (200.1 MHz) device relative to the signals of
the solvent. In this work, we used deuterated chloro-
form ((CD3)2CO) and dimethyl sulfoxide (DMSO-d6)
as the solvents. The absorption electron spectra were
obtained with a Specord M-40 spectrophotometer.

(1) Polymer I. 1H NMR [(CD3)2CO], δ = 0.8–1.2
(CH3), 1.5–2.0 (CH2), 3.2–3.8 (OCH2), 4.5–4.9 (CH2–
CF2), and 6.8 ppm (HCF2). From the relationships
between the signals of protons of specific groups (indi-
cated in parentheses after the magnitude of the signals)
in the 1H NMR spectra, we estimated the ratio of
repeated units in the copolymer (80 : 20). Hereafter, δ
is the chemical shift for protons.

The UV spectrum of the film (λmax): spectrally
transparent from 280 nm.

(2) Polymer II. 1H NMR [(CD3)2CO], δ = 0.88–2.05
(Haliph, i.e., proton contained in the linear chain –CH2–
CH2–), 3.2–3.8 (CH2O–benzene ring (Ar.)), 4.00
(CH2O), 4.5–4.9 (CH2–CF2), 6.8 (HCF2), 7.2–7.8
(Harom, i.e., proton located in the benzene ring), and
8.6 ppm (H located in the N=CH group).

The UV spectrum of the film (λmax) is 265, 300
(low-intensity absorption band with a weak maximum
(shoulder)), and 344 nm (shoulder).

(3) Polymer III. 1H NMR [DMSO-d6], δ = 0.8
(−CH3), 1.2–1.7 (–CH2), 3.1–4.0 (CH2O–Ar.–CH2O),
7.05–8.4 (Harom), and 8.6 ppm (H in N=CH).

The UV spectrum of the film (λmax) is 265, 300
(shoulder), and 344 nm (shoulder).

(4) Polymer IV. 1H NMR [DMSO-d6], δ = 1.05–2.2
(Haliph), 3.75–4.5 (CH2O–Ar., –CH2O–), 4.9 (CH2–CF2),
6.9–7.45 (Harom), 8.2 ppm (H in –N=CH–).

The UV spectrum of the film (λmax) is 328 nm
(shoulder).

Using differential scanning calorimetry (DSC), we
studied the phase and aggregation state of homopoly-
HYSICS OF THE SOLID STATE      Vol. 43      No. 4      2001
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mer IV (with a maximum content of chromophore
groups) in a temperature range of 20–350°C and deter-
mined the softening temperature to be Tg = 80°C. The
DSC thermogram of homopolymer IV indicates the
existence of two transitions: a low-temperature one (at
80°C, with an endothermic effect), caused by the tran-
sition of the sample to a softened state; and a high-tem-
perature transition (at 220°C, with an exothermic
effect), related to irreversible chemical transforma-
tions, since it disappears after repeated scanning. A
microscopic investigation in an optical microscope
confirmed the DSC results; namely, it showed that at
75–80°C, the polymer begins to spread and at 220°C,
the spreading stops.

The calorimetric investigations were performed on a
DSM-2M scanning calorimeter at a scanning rate of
16 K/min (samples 20 mg in weight were used; the
threshold sensitivity was 10–4 W). The optomicroscopic
investigations were performed using a Boetius stage in
polarized light.

For studying processes of orientation of chro-
mophore groups and the second-harmonic generation,
we used polymer films obtained by centrifugation on
two types of substrates: silicon substrates for the inves-
tigation of the relaxation of charges in the regime of
isothermal discharging and a glass slide 180 µm thick
for optical measurements. The thickness of the polymer
films varied within 0.3–20 µm. The samples were sub-
jected to a heat treatment at 100°C for 3 h and addition-
ally for 1 h immediately before the process of electriza-
tion in order to ensure the identical thermal history for
all of them. To provide an electric contact during the
polarization of polymer films on glass substrates, an
electrode in the form of a thin metallic foil was applied
onto the back side of the substrate; this electrode was
removed before the start of optical measurements. The
electrization of the samples was performed in a dc
corona discharge (with a current of no more than 3 µA)
using a three-electrode scheme. The level of the initial

surface potential  was specified by a negative poten-
tial of the grid electrode and changed from –100 to
−600 V. The electrization time te varied from 1 to
30 min, and the electrization temperature changed from
14 to 75°C. Upon electrization at enhanced tempera-
tures, the sample was preliminarily heated to a speci-
fied temperature; after the termination of the corona
discharge, the heating was switched off and the sample
was cooled to room temperature under an electric field.

To measure the surface potential of the samples, we
used the vibrating-electrode method with an applica-
tion of a compensating voltage [8]. The use of a grid
electrode in the charging device permitted us to control
the process of electrization. The efficiency of the pro-
cess was determined by the ratio of the surface poten-

tial to the potential of the control grid ( /Ug). The
falloff of this ratio in time at room temperature was

Ue
0

Ue
0
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chosen as the characteristic of the process of relaxation
in the sample.

Second-harmonic generation in the samples studied
was effected using a pulse laser (YAG–Nd3+) operating
in the Q-switch mode; the radiation wavelength was
1.06 µm, and the pulse duration was 15 ns. The emis-
sion energy per pulse was changed in wide limits (up to
30 mJ). The Gaussian shape of the laser-beam profile
was ensured by the selection of transverse modes using
a diaphragm inside the resonator. Part of the radiation
(4%) was split by a beam divider and directed to an
FD-24K photodiode to control the energy of the excit-
ing radiation. The major part of the p polarized radia-
tion was focused on the sample using a lens with a
focus F = 100 mm. The second-harmonic radiation was
directed onto an MDR-2 grating monochromator and
further onto an FÉU-106 photomultiplier. The electri-
cal signals from both photodetectors were applied to an
integrating voltage-to-digital converter and, through a
KAMAK interface, to a personal computer to be further
processed.

2. DISCUSSION OF RESULTS

First, we studied the electret properties of films of
the synthesized polymers I–IV. The results obtained are
shown in Figs. 2 and 3. A comparison of the kinetics of
the surface-potential falloff for the films of copolymers
I–III upon room-temperature electrization (Fig. 2a and
curves 1 in Figs. 2b, 2c) suggests that the introduction
into the structure of polymer I of units with polar non-
liner-optical groups (polymers II and III) leads to a sig-
nificant decrease in the efficiency of the process of elec-

trization /Ug (at te = 0) and a decrease in the stability

of Ue. Note that the magnitudes of /Ug and Ue are
smaller for copolymer III, in which the content of chro-
mophore units is greater. However, homopolymer IV is
close in the efficiency of electrization and stability of
the surface potential to polymer I (Fig. 2a and curve 1
in Fig. 2d).

An increase in the electrization temperature from
14°C to a temperature close to Tg in all polymers con-
taining nonlinear optical groups (II–IV) leads to an
increase in the rate of the surface-potential falloff
(Figs. 2b–2d); the strongest change is observed for
samples of polymer II (curves 1, 3 in Fig. 2b), which
has the smallest content of units with side substituents;
i.e., it is characterized by the greatest free volume.

An increase in the initial value of the strength of the

internal electric field  in the samples immediately
after the termination of the polarization procedure vir-
tually does not affect the kinetics of the falloff of the
surface potential for polymer II (curves 1, 2 in Fig. 2b)
and strongly affects the kinetics of the process for
homopolymer IV (curves 1–3 in Fig. 3). The results
obtained indicate that, in the process of Ue relaxation, it

Ue
0

Ue
0

Ei
0

1
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Fig. 2. Kinetics of the falloff of the surface potential Ue/Ug
for polymers I–IV at various electrization temperatures Te
and initial values of the strength of the internal electric field

, respectively: (a) polymer I, 14°C and 0.25 × 107 V/m;

(b) polymer II, (1) 14°C and 0.25 × 107 V/m, (2) 14°C and
1.0 × 107 V/m, and (3) 55°C and 0.23 × 107 V/m; (c) poly-
mer III, (1) 14°C and 0.25 × 107 V/m and (2) 70°C and
0.25 × 107 V/m; and (d) polymer IV, (1) 14°C and 0.3 ×
107 V/m and (2) 60°C and 0.3 × 107 V/m.
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Fig. 3. Kinetics of the falloff of the surface potential
depending on the initial value of the strength of the internal

electric field  in samples of homopolymer IV:  =

(1) 5.7 × 107, (2) 12.5 × 107, and (3) 66.7 × 107 V/m.
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Fig. 4. Kinetics of the falloff of the second-harmonic signal
intensity Us in a film of homopolymer IV 1.6 µm thick at a
temperature of 20°C after electrization of the film at Te =

70°C, Ug = –600 V, and  = 3.3 × 106 V/m for 10 min.Ei
0

Fig. 5. Kinetics of the falloff of the second-harmonic signal
intensity Us in films of homopolymer IV at 20°C depending
on the film thickness d: d = (1) 3.5, (2) 1.6, and (3) 0.3 µm.
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is the mechanism of intrinsic conduction that is deci-
sive for polymer II and the drift mechanism of relax-
ation of the injected discharge for homopolymer IV [9].

Consequently, if we consider polymers I–IV as elec-
trets, then they can be arranged in order of decreasing
the electret properties as follows: I–IV–II–III. It is rea-
sonable to assume that an analysis of electret parame-
ters can permit us to preliminarily estimate the effi-
ciency of electrization of the polymers, from the view-
point of obtaining a maximum extent of orientation of
nonlinear optical chromophore groups ensuring the
achievement of maximum SHG.

Optical measurements of the intensity of SHG sig-
nals from thin films of polymers II–IV confirmed our
assumptions. The greatest SHG signal was revealed for
films of polymer IV; the intensity of the signal
increased by 1.5 orders of magnitude as the electriza-
tion temperature increased from 14 to 70°C. Therefore,
further investigations of the processes of orientation of
nonlinear optical fragments and of second-harmonic
generation were performed using homopolymer IV.
The time dependence of the intensity of the SHG signal
Us shown in Fig. 4 has two clearly pronounced seg-
ments corresponding to fast and slow falloffs, which
indicates the existence of fast and slow components of
the process of relaxation of the nonlinear optical chro-
mophores. Figure 5 illustrates the effect of the thick-
ness d of a polymer sample on the rate of the falloff of
the SHG signal intensity in time for a virtually constant

value of . The intensity of the signal nonlinearly
increases with increasing film thickness. Because of
technological difficulties, the measurements of optical
characteristics were started 2 h after the termination of
the electrization process; therefore, it was difficult to
perform an absolute comparison of the time depen-
dences of Ue and Us, as was done in [10]. However, we
were able to reveal the following features: the transition
to the region of the slow falloff in the time dependence
of Us occurs later than the analogous transition in the
time dependence of Ue/Ug, and in both cases, it occurs
later, the greater the thickness of the samples. The com-
bination of the above factors suggests that in the sam-
ples of polymer IV that were studied here, a drift of the
injected charge to a certain depth inside the sample
occurs; this decreases the thickness of the region in
which efficient orientation of the chromophore groups
can occur in a uniform field. As the sample thickness
increases, the effect of this region on the extent of ori-
entation of the chromophores becomes weaker and the
intensity of the second-harmonic signal increases. The
cause for the falloff of the second-harmonic signal in
time is very likely the relaxation of the injected charge
due to the drift of the injected charge carriers through
the volume of the sample, which leads to a decrease in
the field strength operating in the sample and, corre-
spondingly, to a partial misorientation of the chro-
mophore groups. The falloff of the second-harmonic

Ei
0
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signal intensity occurs with a slight delay with respect
to the falloff of Ue, which is caused by the relaxation
character of the orientation-related polarization.

3. CONCLUSION

Thus, we established that the maximum extent of
orientation of nonlinear optical chromophore units
resulting from poling can be obtained in high-resistiv-
ity polymers with a high stability of the surface poten-
tial in time. The dependence of the stability of the sur-
face potential on the structure and composition of the
copolymers studied was established. For comblike
copolymers, in which the nonlinear optical fragment is
bound with the main chain through an alkyl spacer, the
stability of Ue decreases with an increase in the concen-
tration of the chromophores and an increase in the free
volume of the polymer upon an increase in the electri-
zation temperature. In the case of a fluorine-containing
spacer, even the 100% “loading” with chromophore
groups does not lead to degradation of the stability of
the electron potential, which is in agreement with the
fact of an improvement of dielectric properties of the
polymers observed upon substitution of a fluorine-con-
taining spacer for a hydrogen-containing one. The
choice of the optimal regime of electrization from the
viewpoint of obtaining a maximum magnitude and
maximum stability of the second-harmonic signal
includes not only the condition that Te be close to Tg,
but also the choice of an optimum thickness of the sam-
ple and an optimum electrization potential ensuring the
achievement of uniformity of the electric field in a max-
imally possible volume of the sample.
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Abstract—The electron-spin resonance (ESR) spectra of cluster polyoxometalate systems—a finely dispersed
powder of the (NH4)6[Mo7O24]–citrie acid complex, molybdic acid, and molybdenum(VI) oxide—are investi-
gated. The initial samples are colored under exposure to ultraviolet (UV) irradiation (photochromic effect) and
thermal annealing. The ESR signal (g⊥  = 1.94, g|| = 1.92) which is observed for the (NH4)6[Mo7O24]–citric acid
photocolored samples corresponds to an electron of the molybdenum atom. This is in agreement with the data
derived from the electronic spectrum. In addition, the (NH4)6[Mo7O24]–citric acid colored system exhibits an
ESR signal (g = 2.02) which corresponds to a hole at the organic ligand. This confirms the previously advanced
model of intramolecular electron transfer under UV irradiation. The thermally colored molybdic acid has a sim-
ilar ESR spectrum (g = 1.88, 1.92, 1.93, and 1.98). For the other samples, the ESR signal is not observed. It is
demonstrated that an unpaired electron of molybdenum atoms is substantially delocalized over all metal atoms
in the cluster. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that the photochromic effect is observed
for solutions and films which contain polyoxomolyb-
date clusters [1–6]. This effect consists in changing the
color under ultraviolet (UV) radiation. In order to
explain this effect, a model of coloring polyoxomolyb-
date cluster systems under UV radiation was advanced
in [1–6]. According to the model, the polyoxomolyb-
date clusters form the complexes through interaction
with water, protons, and organic ligands. In this com-
plex, the reaction of intramolecular electron transfer
can occur under UV excitation. This reaction results in
a change in the oxidation level of the metal in the clus-
ter due to an irreversible change in the organic compo-
nent. The occurrence of the electron on d orbitals of the
metal atom leads to the appearance of absorption
bands, which are attributed to the d–d transitions, in the
visible and infrared (IR) ranges.

Investigation of the photochromic effect for a sys-
tem consisting of a water solution of citric acid C6H8O7
and ammonium heptamolybdate (NH4)6[Mo7O24] was
carried out in our earlier studies [7, 8]. We revealed the
reversibility of the photochromic effect, an absence of
the products of oxidation of organic acid, and a
decrease in pH. These experimental findings disagree
with the theoretical scheme proposed earlier [1–6]. For
this reason, we suggested [7, 8] a modified model of
coloring cluster systems of molybdenum oxides. A sub-
1063-7834/01/4304- $21.00 © 0788
stantial feature of our model is the appearance of
unpaired electrons in the course of photocoloring.

In this work, we carried out the ESR investigation of
the unpaired electrons generated in polyoxomolybdate
clusters under the photochromic effect.

2. EXPERIMENTAL TECHNIQUES

2.1. Sample preparation. The major objects of
investigation were finely dispersed powders obtained
from solutions of photochromic cluster compounds.
This choice of powder sample is explained by the fact
that water solutions drastically decrease the potentiali-
ties of the experiment. It is our opinion that the pro-
cesses of interaction of photochromic polyoxomolyb-
dates with UV radiation are similar in solution and
finely dispersed powder.

In order to obtain finely dispersed powders, we pro-
posed the following procedure. We prepared two types
of water solutions which contained ammonium hepta-
molybdate (NH4)6[Mo7O24] and citric acid C6H8O7.
Citric acid (high-purity grade) and ammonium hepta-
molybdate (Aldrich Chem. Company, USA) were used
for preparation of the solutions. Concentrations for the
type 1 solution were 0.027 M (NH4)6[Mo7O24] +
0.071 M C6H8O7, and concentrations for the type 2
solution were 0.018 M (NH4)6[Mo7O24] + 0.071 M
C6H8O7. Both solutions were colored under UV irradi-
2001 MAIK “Nauka/Interperiodica”



        

INVESTIGATION OF PHOTOCHROMIC CLUSTER SYSTEMS 789

                                                                                                                               
ation for 85 min. These two solutions had different pho-
tochromic properties, i.e., different responses to UV
irradiation. The absorption bands of the first solution
are observed near 750 nm, while the absorption edge is
broadened for the second solution [7, 8]. The irradiated
solutions of both types were then dried in an exsiccator
in the presence of concentrated sulfuric acid. The pow-
ders from unirradiated solutions were also prepared in
a similar way. We believe that the ligand environment
of the cluster, which plays a dominant role in the pho-
tochromic process, was retained in powders obtained
through this drying procedure. This approach makes it
possible to investigate the properties of the cluster sys-
tems for both the ground and excited states.

In addition, we prepared a series of samples of
related compounds which included powders of molyb-
denum oxide (MoO3) and molybdic acid (H2MoO4). It
is impossible to color these materials under exposure to
UV radiation. However, they can be colored through
thermal annealing under vacuum (10–5 Torr) or in a
hydrogen atmosphere at 773 K. Once annealed, these
materials also become blue-colored, which is related to
the appearance of an absorption band at approximately
750 nm [9, 10]. The powders obtained were also inves-
tigated using the ESR method.

2.2. ESR spectrum. The measurements were car-
ried out on an ER220D (Bruker) ESR spectrometer at
room temperature and liquid-nitrogen temperature in
the 3-cm range. The microwave power was varied from
75 to 30 mW in the course of measurements. In order to
increase the signal, a 100-kHz modulation with an
amplitude of 32 G was used. Since cooling to 77 K gave
no new results, we analyzed only the spectra measured
at room temperature (no annealed samples were inves-
tigated at low temperatures).
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
3. RESULTS AND DISCUSSION 

3.1. Experimental results. We compared the ESR
spectra of the colored and colorless photochromic poly-
oxomolybdate compounds. The results of measure-
ments of the ESR signals for various polyoxomolyb-
date cluster systems are given in the table and in Fig. 1.

The ESR spectrum obtained for colored powders of
the ammonium heptamolybdate–citric acid system,
which has an absorption band near 750 nm, contains
two signals with close g factors (g = 1.92 and 1.94) and
a signal with g = 2.02. No hyperfine structure was
observed for any of the three signals. The first two sig-
nals correspond to an unpaired electron of molybde-
num atoms whose g tensor has a weak anisotropy. The
g-factor of 2.02 corresponds to an unpaired electron
(hole) at the atoms of the organic radical. This interpre-
tation of ESR results is in accordance with conclusions
made earlier [5, 11, 12].

The ESR signal was also observed for the samples
of molybdic acid annealed under vacuum and in hydro-
gen. For annealing under vacuum, four signals are
observed. Three signals are attributed to the electron of
molybdenum atoms (g = 1.88, 1.92, and 1.93), and one
signal is caused by the electron of an oxygen atom (g =
1.98) (O–). Upon annealing in hydrogen, no signal with
g = 1.98 is observed, which corresponds to electron
detachment from the hydrogen atom.

It is seen from the table that other samples of mate-
rials which contained clusters of molybdenum oxide
gave no ESR signals.

3.2. Analysis of g tensors. The analysis of g tensors
was carried out according to the Bleaney–O’Brien
model [13, 14] for the d5(d1) configuration of the metal
Values of g factors for cluster systems based on molybdenum oxide

Sample Effect Variation g factors

(NH4)6[Mo7O24]–C6H8O7(1) UV 1* 1.92, 1.94, 2.02

(NH4)6[Mo7O24]–C6H8O7(1) Not Not Not

(NH4)6[Mo7O24]–C6H8O7(2) UV 2* Not

(NH4)6[Mo7O24]–C6H8O7(2) Not Not Not

H2MoO4 Annealing in vacuum 1* 1.88, 1.92, 1.93, 1.98

H2MoO4 Annealing in H2 1* 1.88, 1.93, 1.95

H2MoO4 Not Not Not

MoO3 Annealing in vacuum 1* Not

MoO3 Annealing in H2 1* Not

MoO3 Not Not Not

Note: (1*) Absorption band at 750 nm.
          (2*) Absorption edge shift.
1
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Fig. 1. ESR spectra: (1) photocolored ammonium heptamo-
lybdate–citric acid system, (2) molybdic acid annealed
under vacuum, and (3) molybdic acid annealed in air.
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Fig. 2. Scheme of d orbital splitting in the ligand field. δ, ∆,
and V are the energy splitting parameters for d orbitals; Oh
is the octahedral splitting, C4v is the tetrahedral splitting,
and C2v is the orthorhombic splitting.
P

atom in an octahedral environment:

where ζ is the spin–orbit coupling constant, k is the fac-
tor of orbital contraction, and V and ∆ are the energy
splitting parameters for d orbitals in the ligand field
(Fig. 2).

For the g-tensor of the ammonium heptamolybdate–
citric acid complex (g = 1.92, 1.94), a virtually degen-
erated solution exists within the error of determination:
a = 0.57, b = 0.57, c = 0.58, k = 0.95, V/ζ = 0.00, and
∆/ζ = 0.037. For molybdic acid, the solution has a sim-
ilar form: a = 0.57, b = 0.58, c = 0.59, k = 0.95, V/ζ =
0.01, and ∆/ζ = 0.037. This solution corresponds to the
electron being completely distributed over seven metal
atoms and adequately explains the absence of hyperfine
structure lines. The presence of three g factors for
molybdic acid suggests an orthorhombic distortion of
the molybdenum atom environment. However, small
splitting in the crystal field (V and ∆) allowed us to
assume that its magnitude is small. The absence of the
third signal for the ammonium heptamolybdate–citric
acid complex is indicative of a higher symmetry of the
oxygen octahedron (tetrahedral distortion only).

3.3. Photocoloring model. The experiments carried
out are in accordance with the model proposed for the
photocoloring of a cluster system consisting of ammo-
nium heptamolybdate and citric acid. Assuming that
the electronic structures of colored and colorless clus-
ters in the powders obtained according to our procedure
are close to those in solutions, we generalized the
results of investigations to a unified model of the pho-
tochromic effect.

The (NH4)6[Mo7O24]–C6H8O7 molecular system
obtained from type 1 solutions undergoes a transition
from ground state I to excited state II (Fig. 3) due to
absorption of UV radiation. Then, the system relaxes to
state III (blue coloring), in which one electron occurs at
the Mo d orbitals. This electron is responsible for the
appearance of absorption bands near 750 nm. As a
result, two unpaired electrons far removed from each

Ψ+ a idyzα–( ) b dxzα–( ) c idxyβ( )+ +=

Ψ– a idyzβ–( ) b dxzβ( ) c idxyα–( )+ +=

a2 b2 c2+ + 1= 





    basis,

Eyz E–( )a ζ /2( )b ζ /2( )c+ + 0=

ζ /2( )a Exz E–( )b ζ /2( )c+ + 0=

ζ /2( )a ζ /2( )b Exy E–( )c+ + 0= 





 secular equation,

Exz ∆/3– V /2, Eyz ∆/3– V /2, Exy 2∆/3;=+=–=

gxx 2 –a2 b2 c2+ +( ) 4kbc+=

gyy 2 +a2 b2– c2+( ) 4kac+=

gzz 2 +a2 b2 c2–+( ) 4kab+= 





g-tensor,
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other (triplet state) occur in the system: one electron of
the molybdenum atoms (with an anisotropic g tensor)
and another one at the organic radical (g = 2.02). The
radiative transition to the ground state (from the triplet
to singlet state) is forbidden by the symmetry. The com-
plex can be frozen in this state for an infinite period of
time. However, the reverse transfer of the electron from
molybdenum to the organic ligand occurs at room tem-
perature and the powder (solution) gradually trans-
forms into the initial state, i.e., becomes decolorized.

For the samples obtained from type 2 solutions, the
geometric variations in the complex which are due to
the change in the component concentrations suffice to
prevent the transition to state III. As a result, the system
turns out to be frozen in state II. It is evident that state II
is the singlet state (no ESR signal is observed) and that
the slow transition to the ground state is determined by
kinetic parameters alone.

It is noteworthy that coloring processes in annealed
samples of molybdenum oxides and molybdic acid dif-
fer from those observed in photochromic cluster sys-
tems. The major reason for this difference is the
absence of “pliability” of the ligand environment in
molybdenum oxide crystals. In other words, the elec-
tron transfer proceeds simultaneously with the transfor-
mation of the crystal lattice and the electron defect is
fixed. These systems do not relax until the “decolorized”
state is observed. For this reason, the results of investi-
gations of annealed molybdenum oxides and molybdic
acid by the ESR method (for example, [9, 10]) leave the
mechanism of the photochromic effect unexplained.

The specific features of the ESR spectrum of molyb-
dic acid can be explained as follows. Upon annealing
under vacuum, the electron is detached from the oxy-
gen ion (O2–) and transfers to the molybdenum atom
(Mo6+). As a result, two paramagnetic centers are
formed: oxygen (O–) and molybdenum (Mo+) ions. The
oxygen octahedron in the Mo environment undergoes a
weak orthorhombic distortion, and, as a consequence,
three ESR signals from the central atom are observed
(gxx , gyy , and gzz). Upon annealing in hydrogen, oxida-
tion of free hydrogen and reduction of molybdenum
occur. As a result, paramagnetic centers are generated

UV

I

II

III

Fig. 3. A model of electron transfer.
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only at molybdenum atoms and no g factor related to
the oxygen ion is observed.

The processes occurring during thermal annealing
of molybdenum oxide are similar to those described
above for molybdic acid. However, after annealing,
molybdenum oxide forms rather large clusters in which
the interaction of unpaired electrons becomes possible.
It seems likely that all electrons in the cluster (at both
oxygen and molybdenum) become paired at a high
temperature, and the ESR signal is not observed. Here,
one more feature of photochromic cluster systems man-
ifests itself, namely, the specificity and individuality of
each cluster.

Thus, the experiments performed are in agreement
with the model proposed for photocoloring of the
ammonium heptamolybdate–citric acid system.
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Abstract—The static polarizability of the excited and positively charged (from 1 to 5) sodium, lithium, and
potassium clusters containing the “magic” number of valence electrons (from 8 to 198) is calculated by the den-
sity-functional method within the “jellium” model. The dependences of the polarizability on the state, size,
charge, and composition of clusters are analyzed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The static polarizability α0 is an important parame-
ter that determines the interaction of clusters with each
other, external fields, charged particles, and surfaces of
solids. In particular, the polarization capture is treated
as the main mechanism which is responsible for giant
cross sections of inelastic scattering of low-energy
electrons by molecular clusters [1–3], fullerenes [4–7],
and metallic clusters [8]. The static polarizability of
metallic clusters in the ground state has been theoreti-
cally studied in sufficient detail (see, for example,
reviews [9, 10]). However, experimental data are avail-
able only for small-sized sodium [11], potassium [11],
and lithium [12] clusters. According to experimental
data, the static polarizability of small-sized metallic
clusters is several tens of percent higher than that
obtained in terms of classical electrostatics for a con-
ducting sphere of the corresponding radius (αcl = R3,
where R is the sphere radius). Quantum-mechanical
density-functional calculations in the framework of the
“jellium” model and different pseudopotential models
[13–19] agree much better with experimental data. The
main reason for an increase in the polarizability of
metallic clusters as compared to its classical value is
the penetration of a valence electron cloud outside the
positive background boundary of atomic cores (the
electron density of a classical conducting sphere has
the form of a square step).

In the case when a cluster transforms into an excited
or charged state, the charge density distribution and
interparticle interaction forces change, and, hence, its
response to an external electric field also changes. A
number of attendant effects (the Stark effect, a shift in
the surface plasma mode, etc.) are directly associated
with the cluster polarizability. In the present work, the
static polarizability of neutral excited and positively
1063-7834/01/4304- $21.00 © 20792
charged (from 1 to 5) lithium, sodium, and potassium
clusters was calculated within the nonstationary den-
sity-functional theory and the spherical jellium model.
In this model, valence electrons are considered in the
field of fixed atomic cores whose positive charge is uni-
formly distributed over the cluster volume. The radius
of the positive background R = N1/3rs is taken as the clus-
ter radius, where N is the number of atoms in the cluster
(for alkali atoms, N coincides with the number of
valence electrons) and rs is the Wigner–Seitz atomic
radius of the corresponding bulk metal. Since the one-
electron potential of a spherical jellium cluster is close
to a spherically symmetrical square potential well of a
finite depth, stationary electronic states in these systems
alternate in a similar way (as roots of a Bessel spherical
function with an increase in their magnitude) [20]:

As follows from experiments [21, 22], jellium
spheres with filled electron shells (clusters with
“magic” numbers of atoms) correspond to the most sta-
ble structures of clusters of simple metals. The results
of calculations of the electronic structure and properties
(ionization potentials, electron affinity, polarizability,
photoabsorption spectra, etc.) for clusters of simple
metals in the framework of the jellium model [9, 10,
13–19, 23] are in good agreement with ab initio[italic]
calculations and experimental data. This paper reports
the results of calculations performed for the jellium
clusters of lithium (rs = 3.25a0, where a0 is the Bohr
radius), sodium (rs = 3.98a0), and potassium (rs =
4.86a0) with the magic numbers N = 8, 18, 20, 34,
40, …, 198.

1s21 p61d102s21 f 142 p61g182d101h223s22 f 14
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2. FORMALISM
The effect of an external electric field Vext(r) =

rlPl(cosϑ) [where Pl(cosϑ) is the Legendre polyno-
mial] on an electronic system leads to a change in the
electron density δρ(r) = δρ(r)Pl(cosϑ). The static
polarizability of a spherically symmetrical system is
related to δρ(r) by the expression

(1)

In the framework of the linear-response and nonsta-
tionary density-functional theories, the induced elec-
tron density δρ(r) is the self-consistent solution of the
set of equations [24, 25]

, (2)

(3)

where  is the derivative of the exchange–corre-

lation potential with respect to the electron density of
the system in the absence of an external field and
χ0(r, r') is the polarization operator in the independent
particle approximation, that is,

(4)

Here, Ei and ψi are the eigenvalues and the eigenfunc-
tions of the Kohn–Sham equation

(5)

which determines the stationary state of the system (in
this work, we use the atomic system of units e = " =
m = 1). For the spherical jellium cluster, the potential
V(r) has the form

(6)

where

is the electron density of the cluster (the summation is
performed over all filled states),

α0
4π
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is the density of the positive jellium background (it
coincides in magnitude with the mean density of
valence electrons in the corresponding bulk metal),
Θ(R – r) is the Heaviside step function, and Vxc(r) is the
local exchange–correlation potential (in this work, we
used the parameterization proposed by Vosko et al.
[26]).

Relationship (4) for the polarization operator also
involves the Green’s function G(r, r', E), which, for
spherically symmetrical systems, is expanded in terms
of spherical harmonics:

(7)

where the radial part can be obtained as a combination
of the regular 5l and the singular 1l (at zero) solutions
of the radial part of the Kohn–Sham equation (5):

Here, r< and r> are the smaller and larger values of r and
r ', respectively, and Wl(E) is the Wronskian constructed
using the 5l and 1l functions.

The scheme of calculations is as follows. The self-
consistent solution of the Kohn–Sham equation (5)
with potential (6) gives the energy spectrum and the
wave functions for a specified electronic configuration
of the cluster. (The occupation numbers of electron
shells are the input parameters, and, hence, this method
can be used for both the ground state and excited or
charged clusters.) For filled energy states, the radial
part of Eq. (5) is integrated from zero and infinity, and
the regular and singular solutions obtained are applied
to construct the Green’s function. The Green’s and
wave functions for filled states are used for deriving the
polarization operator χ0, which is substituted into
Eq. (2). Then, the set of Eqs. (2) and (3) is self-consis-
tently solved by the iteration method (in this case, the
convergence is achieved by applying the Aitken δ2

scheme [27]). The resulting distribution of the induced
electron density determines the static polarizability of
the cluster.

3. RESULTS
3.1. Excited clusters. Table 1 presents the dipole

(l = 1) static polarizabilities of excited lithium, sodium,
and potassium clusters and the polarizabilities for the
ground (nonexcited) state, which were calculated
according to the procedure described in the preceding
section. The polarizability is normalized to the classical
value αcl = R3. We considered the excited states formed
as a result of the dipole transition of an electron from
the last filled shell of the cluster to higher-lying levels.
The available experimental data on the static polariz-
ability of clusters in the ground state [11, 12] are also
listed in the table. As was repeatedly discussed earlier

G r r ' E, ,( ) Ylm r( )Gl r r ' E, ,( )Ylm* r '( ),
lm

∑=

Gl r r ' E, ,( )
5l r< E,( )1l r> E,( )

r2Wl E( )
----------------------------------------------.=
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Table 1.  Static polarizabilities of alkali metal clusters in the ground and excited states (the experimental polarizabilities taken
from [12] for lithium and from [11] for sodium and potassium are given in parentheses)

N Electronic configurations
of jellium clusters

α0/R3

Li Na K

8 1s21p6 (ground) 1.56 (2.05) 1.44 (1.77) 1.34 (1.75)
1s21p52s1 2.75 2.20 1.83
1s21p53s1 21.60 17.73 14.86
1s21p54s1 76.66 63.28 47.37
1s21p51d1 1.77 1.55 1.40
1s21p52d1 43.88 27.64 17.71

18 1s21p61d10 (ground) 1.43 (1.89) 1.33 (1.67) 1.26
1s21p61d92p1 1.91 1.58 1.39
1s21p61d93p1 18.90 15.13 11.76
1s21p61d94p1 52.03 36.34 18.69
1s21p61d91f1 1.48 1.36 1.27
1s21p61d92f1 178.98 54.58 17.99

20 1s21p61d102s2 (ground) 1.47 (1.75) 1.37 (1.68) 1.28 (1.63)
1s21p61d102s12p1 1.76 1.52 1.36
1s21p61d102s13p1 18.53 14.40 10.75
1s21p61d102s14p1 47.94 29.85 13.86

34 1s21p61d102s21f14 (ground) 1.34 1.26 (1.63) 1.21
1s21p61d102s21f132d1 1.54 1.36 1.26
1s21p61d102s21f133d1 24.02 17.13 10.47
1s21p61d102s21f131g1 1.35 1.27 1.21

40 1s21p61d102s21f142p6 (ground) 1.42 1.32 (1.62) 1.25
…2p53s1 1.67 1.45 1.31
…2p54s1 13.71 10.81 7.61
…2p55s1 30.9 16.56
…2p52d1 1.50 1.36 1.27
…2p53d1 18.47 11.17 5.49

58 1s21p61d102s21f142p61g18 (ground) 1.28 1.22 1.18
…1g172f1 1.36 1.26 1.20
…1g173f1 45.90 21.92 5.80
…1g171h1 1.28 1.22 1.18

68 1s21p61d102s21f142p61g182d10 (ground) 1.36 1.27 1.21
…2d93p1 1.46 1.32 1.23
…2d94p1 12.37 8.06 3.82
…2d92f1 1.38 1.28 1.22
…2d93f1 23.00 7.02 2.29

92 1s21p61d10…1g182d101h223s2 (ground) 1.25 1.20 1.16
…3s13p1 1.27 1.20 1.16
…3s14p1 4.83 2.15 1.37

106 1s21p61d10…2d101h223s22f14 (ground) 1.30 1.23 1.18
…2f133d1 1.36 1.26 1.19
…2f132g1 1.31 1.24 1.18

132 1s21p61d10…1h223s22f141i26 (ground) 1.21 1.17 1.14
…1i252h1 1.23 1.18 1.14
…1i251j1 1.22 1.17 1.14
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Table 1.  (Contd.)

N Electronic configurations
of jellium clusters

α0/R3

Li Na K

138 1s21p61d10…3s22f 141i263p6 (ground) 1.23 1.18 1.14

…3p54s1 1.26 1.19 1.15

…3p53d1 1.24 1.19 1.14

168 1s21p61d10…2f141i263p61j30 (ground) 1.19 1.15 1.12

…1j292i1 1.20 1.16 1.12

…1j291k1 1.19 1.15 1.12

186 1s21p61d10…1i263p61j302g18 (ground) 1.19 1.15 1.12

…2g173f1 1.20 1.16 1.12

…2g172h1 1.20 1.15 1.12

…2g173h1 1.59 1.21 1.14

196 1s21p61d10…3p61j302g183d10 (ground) 1.22 1.17 1.13

…3d94p1 1.23 1.18 1.13

…3d94f 1 1.22 1.17 1.13

198 1s21p61d10…1j302g183d104s2 (ground) 1.23 1.17 1.13

…4s14p1 1.24 1.18 1.14
[9, 10], the jellium model in combination with the local
density-functional method more adequately describes
the polarizability of clusters of simple metals as com-
pared to the classical theory. However, the theoretical
values still remain less than the experimental polarizabil-
ities (in part because of the local approximation for the
exchange–correlation potential and owing to ignoring
the real geometry of the cluster). Note that the best agree-
ment is achieved for sodium. It is evident that a similar
ratio between the calculated and experimental data can
also be expected for excited and charged clusters.

As could be expected, the transition of an electron to
a higher-lying level leads to an increase in the cluster
polarizability. For low-lying excited electronic states,
the increase in the static polarizability is relatively
small, whereas the polarizability of small-sized clusters
in highly excited states increases by a factor of tens and
even hundreds. An increase in the polarizability is asso-
ciated with a decrease in the force of binding the outer
shell electron with the cluster upon excitation. The
electron cloud of a weakly bound electron is readily
deformed in response to an external field, which results
in large induced dipole moments. As an illustration,
Fig. 1 shows the radial distribution of the electron den-
sity ρ(r) in the Na58 cluster in the ground
(1s21p61d102s21f142p61g18) and one of the excited
(1s21p61d102s21f142p61g173f1) states in the absence of
an external field and also the electron density δρ(r)
induced by the action of the external potential Vext(r) =
rP1(cosϑ) on the cluster in the same states. As can be
seen from this figure, the electron density induced by
the external field in the highly excited cluster extends
for distances several times larger than the cluster
PHYSICS OF THE SOLID STATE      Vol. 43      No. 4      200
radius, which, according to formula (1), results in large
values of α0 (in the case depicted in Fig. 1, the static
polarizability increases from 1.22 to 21.92).

Table 2 presents the data on the net electron charge
outside the boundary of the positive jellium back-

ground Zclust = 4π (r)r2dr and the contributions ofρ
R

∞∫

1

2 Na58

3

1, 2

R

0.2

0.1

0

–0.1

–0.2

–0.3

0.004

0.002

0 10 20 30 40

δρ

ρ

Fig. 1. Electron densities ρ(r) in the absence of an external
field and the electron densities δρ(r) induced by the external
electrostatic field in the Na58 jellium cluster in (1) the

ground (1s21p61d102s21f142p61g18) and (2) excited
(1s21p61d102s21f142p61g173f1) states. (3) Radial distribu-
tion of the positive jellium background. Curves 1 and 2 for
ρ(r) coincide on the given scale.

r, a0
1
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Table 2.  Electron charges outside the positive background boundary of jellium clusters (Zclust is the net charge and Zel is the
contribution of the outer shell electron)

N Electronic configurations
of jellium clusters

Li Na K

Zclust Zel Zclust Zel Zclust Zel

18 1s21p61d10 2.843 0.210 2.575 0.187 1.999 0.144

1s21p61d92p1 3.135 0.563 2.842 0.476 2.231 0.370

1s21p61d93p1 3.212 0.918 2.967 0.892 2.456 0.855

1s21p61d94p1 3.228 0.957 2.989 0.944 2.487 0.928

1s21p61d91f1 2.921 0.355 2.637 0.302 2.045 0.229

1s21p61d92f1 3.237 0.960 2.999 0.925 2.487 0.862

58 1s21p61d10…1g18 6.513 0.165 4.703 0.118 4.170 0.103

…1g172f1 6.736 0.418 4.886 0.303 4.317 0.232

…1g173f1 6.869 0.933 5.148 0.871 4.616 0.750

…1g171h1 6.542 0.237 4.723 0.168 4.185 0.141

196 1s21p61d10…3d10 13.844 0.162 11.560 0.124 11.425 0.105

…3d94p1 13.932 0.294 11.630 0.218 11.479 0.171

…3d93f1 13.892 0.245 11.598 0.183 11.453 0.148
the excited electron to this charge for some clusters (the
contribution from one electron of the outer filled shell
is given for nonexcited clusters) Zel =

4π r2dr, where ψho(r) is the wave function

of the excited electron or the wave function of the outer
filled shell electron in the case of the ground state. The
cluster excitation leads to an increase in Zclust and Zel. In
this case, there exist highly excited states for which Zel

exceeds 0.9 (at Zel = 1, the electron becomes free).
These weakly bound states provide a high polarizabil-
ity of clusters. It should be noted that an increase in the
net electron charge outside the jellium background

boundary upon cluster excitation ∆Zclust =  – 
(hereafter, the superscripts e and g refer to the excited
and ground states, respectively) is less than an increase

in the contribution of the excited electron ∆Zel =  –

. Therefore, the higher the electronic excitation, the
stronger the other electrons are “drawn in” the cluster,
which suggests a weakening of the screening of elec-
trons and an increase in their binding in the cluster.

The magnitude of the static polarizability of alkali
metal clusters containing the same number of atoms
increases with an increase in the atomic number of the
substance (note that free atoms Li and Na have close

values of polarizabilities α0 = 162 , whereas the

polarizability for K atoms is α0 = 286.8  [28]). The
normalization of α0 to R3 leads to the opposite ten-
dency. This is quite evident, because the larger the
atomic number, the lower the density of valence elec-
trons in an alkali metal, the less the electron charge out-

ψho r( ) 2

R

∞∫

Zclust
e Zclust

g

Zel
e

Zel
g

a0
3

a0
3

P

side the boundary of the positive cluster background,
and the closer the electron density distribution at the
boundary to the square distribution (i.e., to the classical
model). This inference is true for both ground and

excited states. The ratio /  for similar excited
states of clusters with identical numbers N decreases
when passing from lithium to potassium (a similar ten-
dency is also observed for free atoms [29]). The calcu-
lations of the effective orbit radii rho =

4π r3dr for outer shell electrons in clusters

demonstrate that the relative increase in the electron

orbit radius /  upon excitation to the same level
decreases from lithium to potassium, which results in
the above effect (for example, for clusters consisting of
58 atoms, the transition of an electron from the 1g level
to the 3f level is accompanied by an increase in the
effective radius of its orbit by a factor of 2.17 for lith-
ium, 1.8 for sodium, and 1.45 for potassium).

An increase in the cluster size brings about a weak-
ening of the effect of the increase in the static polariz-
ability upon electronic excitation, because the number
of free discrete levels in the potential well of the jellium
cluster decreases (which results in a decrease in the
number of excited states) and the difference between
the energies of the ground and excited states is also
reduced.

3.2. Charged clusters. From experiments [30, 31],

it is known that charged clusters of the  type
(where Me is a metal; N ± n is the number of atoms in
the cluster; and N is the number of valence electrons,
which corresponds to the completely filled shells of the
jellium sphere), i.e., the clusters that contain the magic

α0
e α0

g

ψho r( ) 2

0

∞∫
rho

e rho
g

MeN n±
n±
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number of valence electrons, often appear to be most
stable. In the present work, we calculated the static
polarizabilities of the positively charged clusters

, , and  (n = 1–5) with the magic
values of N. For these clusters, Fig. 2 depicts the size

dependences of α0/R3, where R3 = (N + n) . The static
polarizability decreases with an increase in the size of

LiN n+
n+ NaN n+

n+ KN n+
n+

rs
3

Lin+
N + n

5
7
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1
3

2
4
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Fig. 2. Dependences of the static polarizability α0 (normal-

ized to R3 = (N + n) ) on the number of valence electrons

N for , , and  clusters with different

charges n = (1) 0, (2) 1, (3) 2, (4) 3, (5) 4, and (6) 5. (7) Static
polarizability of the classical conducting sphere.

rs
3

LiN n+
n+

NaN n+
n+

KN n+
n+
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the neutral cluster. The size dependence of the polariz-
ability for singly charged clusters exhibits a clear max-
imum near N = 40. This maximum is also observed in
the dependences for clusters with larger values of n.
However, an increase in n brings about a flattening of
the maximum and α0/R3 for quintuply charged clusters
increases over the entire range. Beginning with N = 58,
all the dependences almost monotonically tend to val-
ues that exceed αcl by 9–19% for lithium, 7–15% for
sodium, and 5–12% for potassium. In order to elucidate
the origin of the maximum near N = 40, the depen-
dences of the static polarizability on the cluster charge
for lithium clusters of different sizes are plotted in
Fig. 3. It can be seen from this figure that an increase in
the charge of clusters leads to a decrease in their static
polarizability. Moreover, the larger the cluster size, the
more flattened the dependence. This results in the inter-
section of the dependences in the range between n = 0
and n = 4. As a consequence, the dependence of α0/R3

on N at fixed n in the range 0 < n < 4 (Fig. 2) becomes
nonmonotonic. Furthermore, it is worth noting that, as
the cluster charge increases, the static polarizabilities of
clusters which consist of different metals and have the
same size approach each other. For example, the values
of α0/R3 for the Li8, Na8, and K8 neutral clusters are
equal to 1.56, 1.44, and 1.34, respectively, whereas the

calculated polarizabilities of the , , and 
clusters are 0.65, 0.64, and 0.63, respectively. Thus, it
can be concluded that the polarizability (reduced to R3)
of multiply charged clusters of alkali metals only
slightly depends on their particular composition.
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Fig. 3. Dependences of the static polarizability α0 (normal-

ized to R3 = (N + n) ) on the cluster charge n for 

clusters with different sizes N = (1) 8, (2) 20, (3) 40, (4) 58,
(5) 92, (6) 132, and (7) 168.
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Figure 2 also illustrates how the interparticle inter-
action in clusters changes with an increase in their size.
As is known [28], the static polarizability of positive
alkali metal ions in the 1S state is one or three orders of
magnitude smaller than the polarizability of neutral
atoms. Therefore, in the absence of interatomic interac-

tion, the polarizability of the  clusters should be
virtually independent of n and the dependences shown
in Fig. 2 should lie close to each other. As is seen from
this figure, a similar tendency is realized only for large-
sized clusters, and the polarizability at small N notice-
ably decreases with an increase in n. This is indirect
evidence that interparticle interaction forces in metallic
clusters increase with a decrease in their size.

4. CONCLUSION

Thus, in the present work, it was demonstrated that
the electronic excitation of metallic clusters leads to an
increase in their static polarizability, which is most pro-
nounced for small-sized clusters. As the cluster size
increases, the static polarizability nonmonotonically
increases for charged clusters and decreases for neutral
clusters. An increase in the cluster size is accompanied
by a weakening of the dependence of the cluster polar-
izability on the cluster charge. The polarizability
(reduced to R3) of multiply charged clusters of alkali
metals only slightly depends on their specific composi-
tion.
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The paper of A.G. Groshev and S.G. Novokshonov
[1] was dedicated to the theoretical investigation of the
localization corrections to the longitudinal ρ and Hall
ρH resistivities of a two-dimensional disordered system
in a wide range of magnetic fields up to the quantizing
fields. In particular, they demonstrated that in the entire
range of classically strong magnetic fields in which the
mean free path l = VFτ < Rc (Rc is the cyclotron radius),
the cooperon retains the form of the diffusion propaga-
tor and the transition to the ballistic regime in a strong

magnetic field when l > lB (lB =  is the magnetic
length) manifests itself in the spatial dispersion (nonlo-
cality) of the diffusion process in the Cooper channel.

Employing the definition of the electrical conductiv-
ity tensor in the circularly polarized coordinates, the
authors of [1] obtained, in a unified form, the expres-
sions for the quantum corrections to the longitudinal
and Hall resistivities measured in units of 2π2/e2:

(1)
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(2)
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Here,

(3)

where (x) is the associated Laguerre polynomial

(Ln(x) = (x)),

(4)

is the probability density of finding an electron at the
distance ρ from the point of its last collision, and

(5)

where G+(ρ) is the translation invariant part of the
retarded one-electron Green function in the coordinate
representation.

The first term in δρ(δρH) in formula (1) is due to
coherent backscattering (θ ≈ π), and the second and
third terms are associated with coherent scattering
through an arbitrary angle (0 < θ < π) [2, 3]. These
expressions are valid in a wide range of magnetic fields,
including quantizing ones. However, their analysis in
[1] contains an error which had a profound effect on the
final results. Namely, one term is omitted in the quasi-

classical (n  ∞) asymptotics of the coefficients 
in formula (2), which determined the contributions of
the coherent scattering through an arbitrary angle. As a
consequence, the localization corrections that were
obtained in [1] to the Hall resistivity are δρH ∝  ln(lB/l)
for B  0.
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It is well known [2–4] that the processes of coherent
scattering through arbitrary angles in classical mag-
netic fields lead to small corrections to the negative
magnetoresistance. However, their consideration in the
Hall resistance is of fundamental importance [5, 6],
since they guarantee the fulfillment of the Ward identity
(the particle conservation law) to the first order in 1/kFl.

The correct quasi-classical asymptotics of the inte-

grand in the coefficient  has the form

(6)

where the last term was omitted in [1]. At first sight,
these terms cancel out in δρH in formula (1) in the limit
B  0 (n @ 1). However, already to the first order in
1/n, they make a nonzero contribution to δρH , which, in
the limit B  0, eliminates the logarithmic singular
first term in formula (1). The other terms give the
expression for the quantum corrections to the Hall
resistivity, which, according to [5, 6], tends to zero
when B  0. It should be emphasized that the conclu-
sion concerning the absence of the localization correc-
tions in the Hall resistivity [5, 6] corresponds to the
case B  0. Therefore, the question about their
behavior in a finite magnetic field remains open. If their
absence is due to the particle conservation law, the

Bn
±( )

WG± ρ( )K ρ( ) 1 i
ρ

2Rc

--------- i
1

2kF

-------- ∂
∂ρ
------±+ P ρ( ),≈
P

equality δρH ≡ 0 (at least in the first order with respect
to 1/kFl) should hold in the whole range l < Rc, where
the Landau quantization can be disregarded. The
authors of this comment are currently preparing a paper
in which the behavior of the localization corrections to
the Hall resistivity in both classical and quantizing
magnetic fields is analyzed in detail.
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