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Abstract—An experimental method is proposed for the determination of an arbitrary three-dimensional distri-
bution function for initial energies of electrons emitted by a point source with resolution for two exit direction
angles. In a computer experiment, two model distribution functions have been reconstructed using the proposed
method. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The distribution function for initial energies and exit
directions of electrons emitted by some source is of
interest in various fields of modern science. The distri-
bution function for the initial energies and exit direc-
tions of electrons from a point source (briefly called
below the distribution function) will be understood as
the probability density of electrons found at particular
points in the initial velocity space. In the general case,
the distribution function depends on three independent
variables.

Information on the distribution function is of partic-
ular value in studies of some physical phenomena, for
example, of the photoeffect and ionization of gases.
Besides, a beam of electrons can be used as an investi-
gative tool in electron spectroscopy, diffraction, and in
electron microscope studies. Comparison of the distri-
bution functions of an electron beam before and after
its interaction with an object under study provides
information on the object’s structure. However, in most
contemporary scientific investigations, either one-
dimensional [1–4] or two-dimensional [4–6] distribu-
tion functions are obtained. One-dimensional functions
usually describe distributions of the initial electron
energy or one of the two exit angles. Two-dimensional
functions mostly provide distributions over energy and
either of the two exit angles. A three-dimensional dis-
tribution function over energy and two exit angles in a
limited spatial angle has been measured in [7]. In this
experiment, the electron detector incorporating an
energy analyzer was moved over a spherical surface.

METHODS

In the present paper, a method for the experimental
determination of the three-dimensional distribution
function is proposed. This method has many advan-
1063-7842/01/4601- $21.00 © 0001
tages over existing approaches to the distribution func-
tion measurement. The distribution function is deter-
mined for all directions of the exit of electrons from a
point source. All electrons exiting the source are regis-
tered. No perturbations are introduced in this method
because there are no grids, slits, or orifices between the
electron source and the detector. The method is not
intended to register variations of the distribution func-
tion with time. An essential feature of the method is the
necessity of carrying out several experimental runs to
register several images of the electrons exiting the
source.

Tomographic Method for Reconstruction 
of the Three-Dimensional Distribution Function

1. The essence of the method. Suppose a distribu-
tion of electrons instantaneously emitted by a point
source over their initial energies and directions of exit
(called below the distribution function) is being stud-
ied. Let us position at some distance from the source a
flat registration unit (screen) for registering the spatial
distribution of the emitted electrons. Between the
source and the registration unit, electromagnetic fields
of various configurations can be applied. The basic
problem in reconstructing the distribution function in
such an experimental setup is as follows. In the general
case, the distribution function contains three indepen-
dent variables. These could be, for example, Cartesian
coordinates in the space of initial velocities. On the
screen, we have information on the distribution of the
electron image intensity, which is a function of only
two independent spatial variables. Each point of the
image on the screen corresponds to a curve in the space
of initial velocities, namely, all electrons corresponding
to the velocity space points on this curve hit a certain
screen point. Two different screen points correspond to
two noncrossing curves in the velocity space. Let us
2001 MAIK “Nauka/Interperiodica”
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call the curve in the space of velocities corresponding
to a point on the registration screen an isoline.

The knowledge of the electron image intensity at a
screen point is not sufficient for the unambiguous
reconstruction of the probability density distribution
over the isoline corresponding to this point. Therefore,
on the basis of one image on the registration screen it is
generally impossible to unambiguously reconstruct a
three-dimensional distribution function. To obtain an
unambiguous solution of the inverse problem of the
distribution function reconstruction, a third indepen-
dent variable parameter is needed to characterize each
distribution of electron intensity obtained on the flat
screen. These independent variable parameters include
the electromagnetic field in the space between the elec-
tron source and the screen, the distance between the
source and the screen, the angle between the normal to
the screen and the vector characterizing the emission
pattern of the source, or the instant and the time of
exposure of the screen.

The reconstruction problem is simplified if the dis-
tribution function has symmetry properties. In many
cases, for physical reasons or due to the experimental
symmetry, the distribution function possesses axial
symmetry and, with a proper choice of the coordinate
system, can be considered two-dimensional. Then for
certain relative positions of the source and the screen,
one image will be enough for the reconstruction of a
two-dimensional distribution function.

In the present paper, the general case of the recon-
struction of a three-dimensional distribution function is
considered. Computational experiments on the recon-
struction of two model distribution functions are car-
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ried out. As the initial data for the reconstruction, we
used the electron distributions on the screen calculated
analytically for various relative positions of the emis-
sion pattern of the source and the electromagnetic
field–registration screen system.

2. The experiment schematic. Let there be a point
electron source O placed in a uniform electric field E
(Fig. 1). At a distance b from the source, a flat registra-
tion screen P is arranged perpendicular to the electric
field E. Electrons emitted by the source O are acceler-
ated by the field and hit the screen. Let us set up a Car-
tesian coordinate system whose origin coincides with
the source O and axis OX is directed from the source to
the screen opposite to the electric field direction. Plane
OYZ is parallel to the screen plane. The distribution
function is considered to be a bounded body of variable
density in the space of velocities. The body density cor-
responds to the probability density of the distribution
function. Let us introduce orthogonal coordinates in the
space of velocities with the axes directed in such a way
that the projections of the electron velocities Vx, Vy, and
Vz coincide with their projections on axes OVx, OVy, and
OVz (Fig. 2).

Consider a plane section of the distribution function
which is at a normal to the OVz axis. If the maximum
initial energy of the electrons is assumed to be much
less than that acquired by the electrons in the accelerat-
ing field, then such a section through the velocity space
is mapped with a sufficient accuracy as a segment par-
allel to the OY axis on the screen P.

A layer of the distribution function enclosed
between two close plane sections at a normal to the OVz

axis and having a thickness dVz will be registered on the
screen as a slit bounded by two segments parallel to the
OY axis and corresponding to sections

. (1)

The slit center is at a distance zl from the origin of the
coordinates along the OZ axis:

(2)

where m and e are the electron mass and charge; this slit
will be called the registration slit below.

Let us divide the whole distribution function in the
space of velocities into a set of plane layers normal to
the OVz axis. Reconstruction of the distribution func-
tion within every layer will be equivalent to recon-
structing the distribution function as a whole. Each
layer of the distribution function is imaged on the
screen P as a corresponding slit. Thus, under this
assumption, the problem of distribution function recon-
struction can be reduced to reconstructing two-dimen-
sional distribution functions within thin layers normal
to the OVz axis using one-dimensional images at the
corresponding registration slits.
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3. The isoline equation. Consider the problem of
the reconstruction of the electron distribution in a thin
layer normal to the OVz axis. Let us introduce polar
coordinates (V, ϕ) in the OVxVy plane. Here, V is the
radius vector of a point and ϕ is the angle measured
from the positive direction of the OVx axis. The equa-
tion of motion of an electron with parameters (V, ϕ) in
a uniform electric field E directed along the OX axis has
the form

(3)

(4)

where τ is the time of electron flight from the source to
the screen and a = eE/m is the electron acceleration in
a uniform electric field.

Let us introduce a nondimensional parameter

(5)

where V0 is the maximum velocity in a chosen section.
From definition (5), it follows that the distribution

function of electrons in the space of velocities may be
nonzero only within a circle of r = 1. Let us eliminate
time from Eqs. (3) and (4). Elementary transformations
give

(6)

It follows from Eq. (6) that if the points in the space
of velocities specifying the velocity vectors of emitted
electrons are in the plane of the considered section on
curve (6), then the corresponding electrons hit one and
the same point of the registration screen with coordi-
nate y (Fig. 3). This point lies within a slit parallel to the
OY axis and corresponds to the section considered.
Thus, the isoline equation corresponding to the regis-
tration slit point with coordinate y has been derived.

In the considered case of a one-dimensional electric
field, we have succeeded in obtaining an explicit form
of the isoline equation. In cases of more complicated
electromagnetic fields, elimination of time from the
electron motion equations may turn out to be hard to
implement. However, obtaining an explicit form of the
isoline equation is not necessary. In this method, it is
important to be able to solve the direct problem of
mapping the electrons with given initial parameters
onto the screen. The corresponding numerical methods
have been developed and are successfully applied in
practice [8].

4. Mathematical formulation of the problem. The
isoline concept helps to illustrate the reconstruction
method proposed. Let us choose two points with coor-
dinates y1 and y2 in the registration slit (Fig. 3). These
points belong to two isolines r1 = r(ϕ, y1) and r2 =
r(ϕ, y2) lying in the considered section through the
space of velocities. The segment of the registration slit
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bounded by points y1 and y2 registers only those elec-
trons which are found between isolines r1 = r(ϕ, y1) and
r2 = r(ϕ, y2). The number of such electrons is

(7)

where ρ(r, ϕ) is the distribution function in question
and ds = r*dr*dϕ is the area element in polar coordi-
nates. The integration range S denotes the region in the
considered section of the distribution function between
isolines r1 and r2.

Quantity ∆N, which is the number of electrons reg-
istered by a screen cell bounded by y1 and y2, can be
experimentally measured. For this purpose, the regis-
tration slit has to be a system capable of registering the
electrons with spatial resolution. Such systems are, for
example, CCD matrices or conventional systems for
recording electron images in electron-optical cameras.

Relation (7) can be written for all spatial cells within
the registration slit. As a result, a set of integral equa-
tions with the sought for function under the integral
signs will be obtained.

In the case considered, when the isoline equation (6)
is known, it is convenient to use the intensity of the
electron number at a screen point instead of the number
of electrons in a screen cell. Let us bring points y1 and
y2 of the screen closer. Ultimately, we will obtain a limit
of the number ∆N of electrons in a small vicinity ∆y of
screen point y. The ratio ∆N/∆y in the vicinity of screen
point y can be treated as the intensity of the number of
incident electrons at screen point y. An intensity curve
along the registration slit can be obtained by processing
the experimental data on the number of electrons in the
slit cells.

By dividing both sides of equation (7) by length dy
of the cell and proceeding to the limit dy = y2 – y1  0,
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we obtain

(8)

where r = r(ϕ, y) is the isoline equation in the explicit
form; and Φ is an interval between angles correspond-
ing to intersection points of the isoline with the bound-
aries of the section being reconstructed.

Thus, the problem of reconstructing the distribution
function in a plane section through the space of veloci-
ties is reduced to the problem of reconstructing the
function ρ(r, ϕ) using the known values of integral (8)
for different isolines.

In the computational experiment I(y), we use the
results of analytical or numerical calculations of the
intensity distribution of the number of electrons on the
screen for a given model distribution function of elec-
trons over initial energies and exit directions as the
experimental data. Equation (8) is the Fredholm equa-
tion of the first kind. It has been shown [9] that its solu-
tion with respect to the function under the integral sign
may be unstable relative to small variations of initial
data I(y). Therefore, the reconstruction of the distribu-
tion function density is an ill-posed problem and calls
for special methods of solving.

The formulation of the reconstruction problem of
the electron distribution function in the space of initial
velocities and its subsequent reduction to a set of inte-
gral equations are very similar to the problem statement
and mathematics in computational reconstructive
tomography [10, 11]. To reconstruct the distribution
function, let us proceed from analogy with the compu-
tational reconstructive tomography method. Let us
measure the electron number intensity distribution over
the registration slit corresponding to the section under
consideration. Then, let us rotate the section by some
angle about the OVz axis. This can be achieved by turn-

I y( ) dN
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ing the source around the OZ axis. The field–screen
system will remain in the same place in the chosen spa-
tial coordinates and so will the velocity isolines for the
registration slit corresponding to the section.

Therefore, in the space of velocities or, more pre-
cisely, in the VxVy plane, a turn of the section considered
and of the set of isolines for the registration slit corre-
sponding to this section will occur. In this way, a new
projection of the considered section onto the registra-
tion slit will be obtained. Having recorded the profiles
of the electron number intensity over the registering slit
at various turn angles, we obtain values of integral (8)
along isolines of different directions passing through
the section under reconstruction. The turn directions of
the source and its distribution function are shown by
arrows in Figs. 1 and 3, respectively. In the present
study, modeling of the turn of the source and corre-
sponding distribution function was performed with a
fixed electric field and screen. Inasmuch as only the rel-
ative turn of the isolines and the distribution function is
of importance, another way of carrying out the experi-
ment is possible with a fixed electron source and a
rotating field–screen system around the OZ axis.

5. The reconstruction algorithm. For reconstruc-
tion of the distribution function, an algebraic recon-
struction algorithm was used [10, 11]. The image to be
reconstructed has to be discretized prior to reconstruc-
tion. The distribution function in the section considered
may be nonzero only within a circle of radius r = 1 with
its center on the OVz axis. Let us superimpose an ele-
mentary grid in polar coordinates on the circle of radius
r = 1 by dividing the circle into N1 concentric rings and
N2 sectors (Fig. 4). The resulting elementary cells will
be called discretization elements.

The sought-for distribution function is assumed to
be continuous and will be reconstructed in the form of
a piecewise-constant function, assuming that within a
discretization element the distribution function is con-
stant. The smaller the discretization elements, the
closer the piecewise-constant function is to the real dis-
tribution function.

The contribution of a discretization element to the
total intensity at a point of the registration slit is equal
to integral (8) taken over the corresponding isoline
within the considered discretization element. The total
intensity at point y of the registration slit is also
described by integral (8). In a discrete model, this inte-
gral transforms into a finite sum. The intensity at a
point y of the registration slit is equal to the sum of con-
tributions from discretization elements of the distribu-
tion function through which the corresponding isoline
passes.

Let us choose M points on the registration slit at
which the electron image intensity is to be measured.
For each of these points, Eq. (8) can be written in the
form of a finite sum. Thus, the considered model leads
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
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to an inhomogeneous system of linear algebraic equa-
tions

(9)

Here, I(yi) is the intensity at point yi of the registration
slit obtained in a physical or computational experiment;
ρj are the sought for unknown quantities forming a set
ρ = {ρj}, j = 1, 2, …, N1*N2 representing the distribu-
tion function being reconstructed in the section; and

ρj is the contribution of the jth discretization ele-
ment to the total intensity at an ith point of the screen.
The expression for Aij is derived from (8) by removing
from the integrand the density term ρ(r, ϕ) = ρj, which
is constant inside the jth ring,

(10)

where Φj is an interval between the angular coordinates
ϕ of the end points of the portion of the isoline within
the jth discretization element.

The set of Eq. (9) can be written for each of the turn
angles αk, k = 1, 2, …, K of the source relative to the
field–screen system. As a result, we obtain the com-
bined set for all projections of the distribution function

(11)

All coefficients of the matrix A = {Aij} are nonnega-
tive, because they are the contributions to the intensity
of the number of electrons incident on the screen. The
solution to (11) must be a set of nonnegative numbers
due to the physical sense of the probability density of
the distribution of electrons. Some other constraints
may be imposed on the solution according to the phys-
ical sense of the problem. The set of Eqs. (11) includes
the rectangular matrix A. This set may have no solution
in the classical sense; that is, the vector ρ satisfying
equation Aρ = I(y) may be nonexistent. The way to
solve such a set is to seek the vector ρ that would best
satisfy set (11) according to the appropriate criteria of
optimality.

In the present study, we used a reconstruction algo-
rithm based on quadratic optimization for solving set
(11). In solving the set we sought a singular expansion
of matrix A and a least squares problem was solved by
minimizing the differences between the left and right
sides of the equations in the sense of the 2-norm. Anal-
ysis of the singular numbers and singular vectors of
matrix A provided estimates of the independence and
fullness of the information obtained from the modeling.

Aij*ρ j

j 1=

N

∑ I yi( ), i 1 2 … M., , ,= =
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Aij r dr/ yd( ) ϕ ,d
Φ j

∫∫

Apj* ρ j
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N

∑ I yp( ),=

p 1 2 … M M 1 … M*K ., ,+, , , ,=
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Computational Simulation 
and Discussion

The computational simulation of the experiment
and subsequent reconstruction of the distribution func-
tion were carried out for two distributions: ρ = 1 in a
circle of radius r = 1 and ρ = r2(1 – r2)sin2ϕ in the same
circle. The distribution ρ = r2(1 – r2)sin2ϕ is shown in
Fig. 5. Outside the unit circle the distribution function
was assumed to be zero in both cases. It was also
assumed that the region of the nonzero function values
was exactly known.

In the course of the computational simulations, the
parameters of the numerical experiments were varied in
the following ranges: (a) the number of screen points
for registering the intensity of the number of electrons
ranged from 50 to 800; (b) the coordinates of the regis-
tration slit boundaries were usually symmetric relative
to the origin of coordinates, and the registration slit
length varied from 5 to 10 mm; (c) the distance between
the source and the screen plane varied from 1 to 15 cm;
(d) the voltage between the screen and the source was
from 200 to 3000 V; (e) and the maximum initial energy
of the electrons in the section being reconstructed was
from 1.0 to 3.0 eV, and the number of equations in
set (11) always exceeded the number of discretization
rings (that is, the number of unknowns). To obtain dif-
ferent projections, the distribution function was turned
in both directions by angles in a range (–α, α), and the
angle α was varied from 50 to 90°. The reconstructed
distribution functions were in good agreement with the
given ones if the turn angle exceeded (–70, +70). For
the ρ = 1 distribution, in those experiments where all
the electrons emitted in the section considered hit the
screen within the registration slit length, the reconstruc-
tion of the distribution function was accurate to within
the computational error. The relative error of the recon-
struction of function ρ = 1 was not worse than 10–7. The
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distribution ρ = r2(1 – r2)sin2ϕ is not piecewise-con-
stant. The vector in the right side of the set of equations
was obtained by the exact calculation of the intensity of
the number of electrons at the screen for function ρ =
r2(1 – r2)sin2ϕ. At the same time, this intensity was
approximated using a piecewise-constant function.
Therefore, an approximation error and discrepancy
between the left and right sides of the equations of the
set was inevitable.

In those experiments where the entire section fitted
within the registration slit length and with the turn
angles of the distribution function, the number of dif-
ferent turn positions and the number of points on the
screen as specified above, a good reconstruction was
obtained. The relative error of the reconstruction in
comparison with the true solution vector depended on
the size of the distribution function discretization ele-
ments and did not exceed 5%, with the exception of the
discretization elements of the innermost and outermost
rings, where the given distribution function is close to
zero and has an appreciable gradient. The true solution
vector was calculated using formula

(12)

where ρ is the model density function specified, with
the integration over the entire area σ of the jth discreti-

zation element considered S = s is the area of the

jth division element.
An example of the reconstruction results for the dis-

tribution function ρ = r2(1 – r2)sin2ϕ in section ϕ = π/2
is shown in Fig. 6. The smooth curve in this figure is a
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section of the true distribution function and the piece-
wise-constant function is the section of the recon-
structed distribution function.

CONCLUSION

In this work, a method is proposed for the recon-
struction of the three-dimensional distribution function
from known initial energies and exit directions of elec-
trons emitted by a point source. The method is based on
registering the spatial distribution of the intensity of the
electron numbers on a registration screen at different
turn angles of the source relative to the screen. The
reconstruction is implemented on the basis of a confor-
mity between the screen points and the corresponding
curves in the space of the initial velocities of the emit-
ted electrons. The proposed method is similar to the
reconstructive computational tomography. The inverse
problem arising is solved with the use of the algebraic
reconstruction algorithm. In the conducted computa-
tional experiments, successful reconstruction of two
model distribution functions for electrons has been ful-
filled.
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Abstract—We present a scheme for the evaluation of the conductivity and other effective properties of a model
composite with a regular anisotropic structure, namely, a 2D system with circular inclusions forming a rectan-
gular array. Exact expressions for the electric potential and the effective conductivity tensor  were obtained
in the form of infinite series. For small inclusion densities, a virial expansion for  was derived from the gen-
eral formulas and its applicability conditions were found. The first terms of this expansion yield the well-known
Rayleigh result for the isotropic model (square array). © 2001 MAIK “Nauka/Interperiodica”.

σ̂e
σ̂e
(1) The study of electrophysical properties of inho-
mogeneous disordered media (in particular, composite
materials) runs into certain mathematical problems.
Composites with a regular structure (especially 2D sys-
tems) are much easier to examine. The problem is
essentially simplified, since it is sufficient to find the
potential within one unit cell in this case. The conduc-
tivity and other properties of such systems are of con-
siderable interest from the standpoints of both general
physics (e.g., the problem on phase transitions) and
applications (microelectronics).

The conductivity of two-component 2D systems
with a periodic arrangement of inclusions (dielectric or
perfectly conducting) was considered in [1–3]. In the
case of prime interest, when both components have a
finite (nonzero) conductivity, a closed solution was
obtained only for the stagger model [1]. A more realis-
tic model, i.e., a 2D system with a regular arrangement
of circular inclusions, was considered even by Rayleigh
[4]. However, despite the relative simplicity of this
model, only the first several terms of the virial expan-
sion for the effective conductivity of the system were
found because of the cumbersome computational
scheme used in [4].

In this paper, we propose a sequential method for
solving the conductivity problem as applied to a doubly
periodic arrangement of circular inclusions of radius R
that form a 2D rectangular array. The complex potential
outside the inclusions is expressed in terms of the
Weierstrass zeta function [5, 6] and its derivatives. An
infinite set of equations was obtained for unknown
coefficients involved in the general expression for the
potential. For small R’s, this system is solved by itera-
tion. This makes it possible to find virial expansions for
conductivity and other effective parameters in an ana-
lytic form. For large R’s, the set of equations can be
1063-7842/01/4601- $21.00 © 0101
solved numerically, so that it becomes possible to study
various effective properties of the model throughout the
whole range of parameters involved in the problem.

(2) The model under consideration is a 2D isotropic
matrix of conductivity σ1 with circular inclusions of
radius R and conductivity σ2. The inclusions form a
regular structure, i.e., a rectangular array with spacings
2a along the x axis and 2b along the y axis. We consider
the case when the potential difference is applied in the
x direction. In this case, the electric field strength E =
E(x, y), along with the evident periodicity E(x + 2a, y) =
E(x, y + 2b) = E(x, y), has the symmetry

(1)

In particular, the vertical boundaries of a unit cell
and the straight line x = 0 are equipotential lines where
Ey = 0, whereas the horizontal boundaries and the line
y = 0 are lines of current where Ey = 0 as well.

In view of symmetry (1) of the electric field, the
complex potential Φ(z) inside an inclusion has the form
(the origin is at the center of the circle) 

(2)

where the coefficients A2n + 1 are real. The derivative of
the function Φ(z) is related to the components of the
electric field strength E as Φ'(z) = –Ex + iEy. The elec-
tric potential ϕ(r) is given by the real part of Φ(z):
ϕ(r) = ReΦ(z).

Outside the circle, solutions with both positive and
negative powers of z are possible. The complex poten-
tial that explicitly allows for the array structure of the

Ex x– y,( ) Ex x y–,( ) Ex x y,( ),= =

Ey x– y,( ) Ey x y–,( ) Ey x y,( ).–= =

z R: Φ i( ) z( )≤ A2n 1+ z2n 1+ z x iy+=( ),
n 0=

∑=
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model and symmetry (1) of the electric field may be
represented in the form

(3)

(4)

Here, ζ(z) is the Weierstrass zeta function [5, 6] and
ζ(2n)(z) is the 2nth derivative of ζ(z). The prime in (4)
means that summation is over integer l’s and m’s except
l = m = 0. In (3), the term linear in z is due to the exter-
nal uniform field; the term with n = 0 corresponds to the
field of induced dipole moments; and the terms with
n ≥ 1, of higher multipoles. The coefficients β and B2n

in (3) are real. Using well-known properties of Weier-
strass elliptic functions [5, 6], one can easily check that
potential (3) satisfies the aforementioned conditions at
the boundaries and the axes of symmetry of the unit
cell.

(3) We cite some information about the function ζ(z)
that will be used later. According to [5, 6], the zeta
function is quasi-periodic:

(5)

where ω = a and ω' = ib.

The quantities η and η' are related by the Legendre
relation [5, 6], which, in this case, has the form

(6)

The function ζ(z) can be expanded in the following
power series in z [6]:

(7)

where

(8)

In (8), g2 and g3 are the invariants of the Weierstrass
function [5, 6]:

(9)

with zlm from (4). The quantities ck satisfy the recur-

z R: Φ e( ) z( )> βz B2nζ
2n( ) z( ),

n 0=

∞

∑+=

ζ z( ) 1
z
--- 1

z zlm–
-------------- 1

zlm

------ z

zlm( )2
-------------+ + ;

l m,

'∑+=

zlm 2al i2bm.+=

ζ z 2ω+( ) ζ z( ) 2η , η+ ζ ω( ),= =

ζ z 2ω'+( ) ζ z( ) 2η', η'+ ζ ω'( ),= =

ibη aη'– i
π
2
---.=

ζ z( ) 1
z
---

ck

2k 1–
---------------z2k 1– ,

k 2=

∞

∑–=

c2

g2

20
------, c3

g3

28
------, c4

1
3
---c2

2,= = =

c5
3
11
------c2c3, c6

1
39
------ 2c2

3 3c3
2+( ) ….,= =

g2 60 1

zlm( )4
-------------

l m,

'∑ , g3 140 1

zlm( )6
-------------

l m,

'∑= =
rence relation [6]

(10)

which makes it possible to find the coefficients ck

sequentially in increasing order of subscript k.
The definitions for η, η', g2, and g3 imply the fol-

lowing symmetry relations:

(11)

Correspondingly, for the coefficients ck, we have

(12)

so that all ck’s with odd subscripts are equal to zero in
the case of a square array (a = b) [6]. In this case, we
can find the explicit expressions for η, η', g2, and g3
[5, 6]:

(13)

where K(1 ) = 1.85407… is the complete elliptic

integral of the first kind with the modulus k = 1 .
For a ≠ b, the quantities η, η', g2, and g3 are deter-

mined by numerical procedures; associated tables are
presented, e.g., in [6]. Explicitly, they can be found in
the limiting cases

(14)

(15)

The limiting values of η' follow from relations (6)
and (11). The coefficients ck are given by the expres-
sions

(16)

which are related by (12).

ck
3

2k 1+( ) k 3–( )
------------------------------------- cmck m– k 4≥( ),

m 2=

k 2–

∑=

η b a,( ) iη' a b,( ), g2 b a,( ) g2 a b,( ),= =

g3 b a,( ) g3 a b,( ).–=

ck b a,( ) 1–( )kck a b,( ),=

a b: η π
4a
------, η' i

π
4a
------,–= = =

g2
1

a4
----- K

1

2
------- 

  4

, g3 0,= =

2

2

b
a
---  ! 1: η a b,( ) . 

a

b2
----- π2

12
------,–

g2 a b,( ) . 
1

b4
----- π4

12
------, g3 a b,( ) . 

1

b6
----- π6

216
---------;–

b
a
---  @ 1: η a b,( ) . 

1
a
--- π2

12
------,

g2 a b,( ) . 
1

b4
----- π4

12
------, g3 a b,( ) . 

1

a6
----- π6

216
---------.

b
a
---  ! 1: ck  . 1–( )k2

2k 1–

2b( )2k
--------------- 1

m2k
--------,

m 1=

∞

∑

b
a
---  @ 1: ck  . 2

2k 1–

2a( )2k
--------------- 1

m2k
--------,

m 1=

∞

∑

TECHNICAL PHYSICS      Vol. 46      No. 1      2001



THE CONDUCTIVITY OF A 2D SYSTEM 103
(4) The electrical potentials ϕ(e)(r) = ReΦ(e)(z) and
ϕ(i)(r) = ReΦ(i)(z) at the inclusion edge (r = R) must sat-
isfy the conventional conditions

(17)

Differentiating expansion (7) 2n times yields

(18)

Substituting (18) into (3), setting z = r exp{iΘ}, and
separating out the real part, we come to

(19)

In a similar way, we find from (2)

(20)

Substituting (19) and (20) into (17) results in the set
of equations

(21)

Here, δn0 is Kronecker’s symbol. Subtracting the sec-
ond equation in (21) from the first one, we obtain

(22)

Having eliminated the coefficient A2n + 1 in (21),
we get

(23)

r R: 
ϕ e( ) ϕ i( ),=

∂ϕ e( )

∂r
----------- h

∂ϕ i( )

∂r
-----------, h

σ2

σ1
-----.= =







=

ζ 2n( ) z( ) 2n( )!
z2n 1+
-------------

2n 2m+( )!
2m 1+( )!

---------------------------cn m 1+ + z2m 1+ .
m 0=

∞

∑–=

ϕ e( ) r( ) βr Θ B2n
2n( )!

r2n 1+
-------------





n 0=

∞

∑+cos=

– B2m
2n 2m+( )!
2n 1+( )!

---------------------------cn m 1+ + r2n 1+

m 0=

∞

∑




2n 1+( )Θ.cos

ϕ i( ) r( ) A2n 1+ r2n 1+ 2n 1+( )Θ.cos
n 0=

∞

∑=

βδn0 B2n
2n( )!

R4n 2+
--------------+

– B2m
2n 2m+( )!
2n 1+( )!

---------------------------cn m 1+ +

m 0=

∞

∑ A2n 1+ ,=

βδn0 B2n
2n( )!

R4n 2+
--------------–

– B2m
2n 2m+( )!
2n 1+( )!

---------------------------cn m 1+ +

m 0=

∞

∑ hA2n 1+ .=

A2n 1+
2

1 h–
----------- 2n( )!

R4n 2+
--------------B2n.=

B2n
1 h–
1 h+
------------ B2m

2n 2m+( )!
2n( )! 2n 1+( )!

------------------------------------R4n 2+ cn m 1+ +

m 0=

∞

∑+

=  
1 h–
1 h+
------------βR2δn0.
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Having introduced the variables xn instead of B2n,

(24)

we recast (23) as

(25)

where

(26)

Here, the coefficients cn + m + 1 are defined in (7)–(10)

and δ, in (24). The matrix  is symmetric; the quantity
S00 = 0, since c1 ≡ 0.

Basically, Eqs. (23), (25), and (26) and relations (22)
and (24) make it possible to express all the coefficients
B2n and A2n + 1 in terms of β. In its turn, β is related to
the potential difference Ux [see (28)], which is assumed
to be fixed. Thus, expressions (22)–(26) represent a for-
mal exact solution of the basic problem, i.e., finding the
potential ϕ(r).

(5) The voltage drop Ux across a unit cell and the
total current Ix through it along the x axis are expressed
in terms of the complex potential Φ(z) as follows:

(27)

Substituting Φ(z) from (3) into (27), in view of (5),
yields

(28)

In the expression for Ix, the quantity Imη' is
expressed in terms of η by relation (6). From (28), the
conductivity in the x-axis direction (the principal value
of the effective conductivity tensor ) σxe =
(aIx)/(bUx) is given by (B0 = x0R2δ)

(29)

Thus, knowing x0 (i.e., B0) suffices to determine σxe.
For small R’s, the set of Eqs. (25) may be solved by

iteration, i.e., by expanding it in terms of powers of the

matrix . The corresponding expansion for α is found

B2n
R2n 2+ δ

2n( )! 2n 1+( )!
----------------------------------------xn, δ 1 h–

1 h+
------------,= =

xn Snmxn

m 0=

∞

∑+ βδn0,=

Snm

2n 2m+( )!R2 n m 1+ +( )cn m 1+ +

2n( )! 2n 1+( )! 2m( )! 2m 1+( )!
-------------------------------------------------------------------------------δ.=

Ŝ

Ux Re Φ a iy+( ) Φ a– iy+( )–[ ] ,–=

Ix σ1Im Φ x ib+( ) Φ x ib–( )–[ ] .–=

Ux 2a β 1
a
---B0η+ 

  ,–=

Ix 2bσ1 β
B0

ab
------ π

2
--- bη– 

 – .–=

σ̂e

σxe σ1 α R2

ab
------ π

2
--- bη– 

  δ– α R2

a
-----ηδ+ 

 
1–

,=

α β
x0
-----.=

Ŝ
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from (29). According to (25), for n = 0, we have (taking
into account that S00 = 0)

(30)

whereas, for n ≠ 0, (25) gives

(31)

Solving equation (31) by iteration, we find

(32)

Inserting (32) into (30) yields

(33)

In (32) and (33), the prime at the summation symbol
means that the summation is carried out from 1 to ∞.

Note that, with the matrix  defined as

(34)

expressions (32) and (33) may be represented in the
compact form

(35)

(36)

With the explicit expression for the matrix  [see
(26)], the expansion of α in terms of powers of R can be
found from (33). Up to terms ~R24 inclusive, we get

(37)

β x0 S0mxm,
m o≠
∑+=

n 0: xn≠ x0Sn0– Snmxm.
m 0≠
∑–=

n 0: xn≠ x0 Sn0– SnmSm0

m

'∑+




=

– SnlSlmSm0 …+
m

'∑
l

'∑




.

α 1 S0mSm0

m

'∑ S0eSlmSm0

m

'∑
l

'∑+–=

– S0kSklSlmSm0 ….+
m

'∑
l

'∑
k

'∑

T̂

Tnm

0, m 0,=

Snm, m 0,≠



=

n 0: xn≠ x0 1 T̂+( ) 1–
Ŝ( )n0,–=

α 1 Ŝ 1 T̂+( ) 1–
Ŝ( )00.–=

Ŝ

α 1
1
3
---R8c2

2δ2–
1
5
---R12c3

2δ2–
2
3
---R14c2

2c3δ
3+=

–
1
7
---R16c4

2δ2 2R18c2c3c4δ
3 1

3
---R20 1

3
---c5

2 4c2
2c3

2δ2+ 
  δ2–+

+ 2R22 4
3
---c2c4c5

7
5
---c3

2c5+ 
  δ3

– R24 1
11
------c6

2 4c2c3
2c4δ

2 5c2
2c4

2δ2+ + 
  δ2 ….+
Here, c2, c3, c4, δ are defined in (8) and δ, in (24). In the
case of a square array (a = b), when all the odd-sub-
script coefficients ck are equal to zero, the expression
for α is simplified. In this case, we have, up to terms
~R40 inclusive,

(38)

For a square array, the effective conductivity σe of
the system is isotropic and is given by

(39)

with α from (38) and c = πR2/(2a)2. The Rayleigh
expression for σe [4] follows from (39) if one retains
the first three terms (up to terms ~R16 inclusive) in
expansion (38).

Expressions (37) and (38) are virial expansions in
which the inclusion concentration c = πR2/(4ab) is a
formal small parameter. For a ~ b, the condition c ~
(R/a)2 ! 1 (or R ! a) provides rapid convergence of
series (37). For a = b, the applicability domain of the
virial expansion is even wider, since, in this case, the
concentration to the fourth power is an expansion
parameter [see (38)]. Indeed, the correction ~R8 in (38)
does not exceed 1% in the range 0 ≤ R ≤ 0.7a at |δ| = 1
(i.e., at h = 0 and h = ∞). At the same time, the condition
c ! 1 is insufficient in the case of strong anisotropy
(a @ b or a ! b). For example, from the expression for
g2 in (14), we find, for b/a ! 1, that the correction ~R8

in (37) is small for c ! b/a or R ! b. Correspondingly,
for b/a @ 1, this correction is small for c ! a/b or R ! a
(in both estimations, we assumed that |δ| ~ 1). Thus,
R ! min{a, b} is the condition for fast convergence of
expansion (37).

According to (12), the odd-subscript coefficients ck

change the sign on the permutation a  b. This per-
mutation also changes the sign of some terms in expan-
sion (33) for α. Equation (37) shows that these terms
contain δ to odd powers; therefore, the double replace-
ment a  b and δ  –δ does not change α = α(a,
b; δ):

(40)

α  = 1
1
3
---R8c2

2δ2–
1
7
---R16c4

2δ2– R24 1
11
------c6

2 5c2
2c4

2δ2+ 
  δ2–

– R32 1
15
------c8

2 5 12c2c4
2c6 5c2

2c6
2+( )δ2+ δ2

– R40 1
19
------c10

2 13 124c2c4c6c8
49
9
------c2

2c8
2+ 

  δ2+

--+ 180c4
2c6

2δ2 75c2
2c4

4δ4+ δ2 ….–

σe

σ1
----- α cδ–

α cδ+
---------------- 1 2cδ

α cδ+
----------------–= =

α b a; δ–,( ) α a b; δ,( ).=
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The same conclusion follows from the general
expression (33) for α. Similarly, for ξn = xn/β, we obtain

(41)

thus, equality (40) for α = 1/ξ0 is a special case of (41).

(6) The case when the potential difference is applied
along the y axis is considered by the same method as
above. In particular, the complex potentials inside and
outside an inclusion have the form

(42)

(43)

with the real coefficients γ, C2n + 1, and D2n. Further cal-
culations almost completely repeat the foregoing ones.
As a result, we find

(44)

where the values of yn satisfy the set of equations

(45)

with the matrix  from (26).

The voltage drop Uy and the total current Iy are
expressed through the complex potential Φ(z) as

       (46)

Substituting (43) into (46), in view of (5) and (6),
yields

(47)

The conductivity in the direction of the y axis, i.e.,
σye = (bIy)/(aUy), is (D0 = y0R2δ)

(48)

ξn b a; δ–,( ) 1–( )nξn a b; δ,( );=

Φ i( ) z( ) i C2n 1+ z2n 1+ ,
n 0=

∞

∑–=

Φ e( ) z( ) i γz D2nξ
2n( ) z( )

n 0=

∞

∑–
 
 
 

–=

D2n
R2n 2+ δ

2n( )! 2n 1+( )!
----------------------------------------yn,=

C2n 1+
2

1 h+
------------ 1

R2n
-------- 1

2n 1+
-------------------yn,=

yn Snmym

m 0=

∞

∑– γδn0=

Ŝ

Uy Re Φ x ib+( ) Φ x ib–( )–[ ] ,–=

Iy σ1Im Φ a iy+( ) Φ a– iy+( )–[ ] .=

Uy 2b γ
D0

ab
------ π

2
--- bη– 

 + ,–=

Iy 2aσ1 γ 1
a
---D0η– 

  .–=

σye σ1 α R2

a
-----ηδ– 

  α R2

ab
------ π

2
--- bη– 

  δ+
1–

,=

α γ
y0
----= .
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The expression for  is derived from those for α
[see (33) and (36)–(38)] after the substitution δ  –δ
or, according to (40), a  b. It is clear that, in the lat-
ter case, σxe is expected to change to σye: σxe(b, a) =
σye(a, b). Indeed, it is easy to check [in view of rela-
tions (11) and (6)] that the permutation a  b yields
(48) from (29).

With the permutation σ1  σ2 (i.e., h  1/h and
δ  –δ), the initial system turns into a so-called
reciprocal system (the corresponding quantities will be
denoted by a tilde). Going to the reciprocal system in

(48) (    = α) and comparing the result with
(29), we infer that the reciprocity relation for structur-
ally anisotropic 2D systems [7] (see, also, [8])

(49)

is automatically satisfied in this case.

(7) A knowledge of the potentials when the mean
electric field strength 〈E〉  is directed along the x and
y axes makes it possible to find (in a linear approxima-
tion with respect to a magnetic field H) the Hall com-
ponent σae of the effective conductivity tensor .
According to [9], it is given by

(50)

where σai is the Hall component of the conductivity
tensor for the ith component (i = 1, 2).

The function ϕ can be expressed in terms of the
electric field strength E(ν)(r) at H = 0 [9]:

(51)

Here, 〈…〉 (2) is the integral over the inclusion surface
area divided by the unit cell area; the superscript ν
means that E(ν) is directed along the 〈E(ν)〉  axis. By
determining E(x) and E(y) from (2) and (42), respec-
tively, and evaluating the integral appearing in (51), we
obtain

(52)

Then, we multiply equations (25) and (45) by yn and
xn, respectively; add them together; and carry out the
sum over all n. Eventually, taking into account the sym-

metry of the matrix  and the definitions of α and ,
we get

(53)

α

α α̃

σxe σ̃ye σ1σ2= =

σ̂e

σae σa2 σa1 σa2–( )ϕ p h,( ),+=

ϕ 1
Ex

x( )Ey
y( ) Ey

x( )Ex
y( )

–〈 〉
2( )

Ex
x( )〈 〉 Ey

y( )〈 〉
-----------------------------------------------------.–=

Ex
x( )Ey

y( ) Ey
x( )Ex

y( )–〈 〉 2( ) 1

1 h+( )2
-------------------πR2

ab
--------- xnyy.

n 0=

∞

∑=

Ŝ α

1
x0y0
---------- xnyn

n 0=

∞

∑ 1
2
--- α α+( ).=
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Finally, by inserting (52), (53), 〈 〉  = Ux/(2a) with

Ux from (28), and 〈 〉  = Uy/(2b) with Uy from (46)
into (51), we obtain

(54)

with σxe from (29) and σye from (48). Note that the
expression for ϕ in the form of (54) is valid for any
structurally anisotropic 2D system and may be derived,
in the general case, by the method proposed in [9].

(8) Partial square-law characteristics of the electric
field strength are closely related to the effective con-
ductivity of a composite. Just as in the isotropic case [9],
we have

(55)

Here, σαe are the principal values of the effective con-
ductivity tensor (α = x, y, z), 〈…〉 (i) is the integral over
the volume (or area in a 2D case) of the ith component
divided by the sample volume V, and Eα(r) is the same
as in the previous section.

For our model, 〈 〉  = Ux/(2a) with Ux from (28)
and E2 = |Φ'(z)|2. By using, for example, (2), we find for

the quantity 

(56)

(57)

The differentiation of σxe from (29) with respect to
σ2 yields

(58)

By evaluating (57) [using expansion (32) for xn] and
the last factor in (58) [with α from (37)] up to terms
~R24 inclusive, it is easy to check that the relation

 = ∂σxe/∂σ2 is satisfied in this approximation. How-
ever, the satisfiability of this relation for our model can
be proved by straightforward calculation for an arbi-
trary R.

Ex
x( )

Ey
y( )

ϕ
σxeσye σ2

2–

σ1
2 σ2

2–
---------------------------=

ψi
α( ) p h,( ) e α( )( )2〈 〉

i( )
≡

∂σαe

∂σi

-----------;=

e α( ) r( ) E α( ) r( ) E α( )〈 〉( ) 1–
.=

Ex
x( )

ψ2
x( )

ψ2
x( ) 1

1 h+( )2
-------------------πR2

ab
--------- α R2

a
-----ηδ+ 

 
2–

J ,=

J 1
xn

x0
----- 

 
2

.
n 1=

∞

∑+=

∂σxe

∂σ2
----------

1

1 h+( )2
-------------------πR2

ab
--------- α R2

a
-----ηδ+ 

 
2–

α ∂α
∂δ
-------δ– 

  .=

ψ2
x( )
Taking into account the linear dependence of the

matrices  and  on δ and using general expression
(36) for α, we arrive at

(59)

On the other hand, substituting (35) into (57) yields

(60)

where we used the equality

which is easy to check.

From the definition (34) of the matrix , it follows
that

Therefore, summation in (60) can be extended to all
n ≥ 0, so that J eventually takes the form

(61)

A comparison of (58) and (59) with (56) and (61)
leads us to relation (55) with α = x and i = 2. The other
equalities of (55) are proved in a similar way.
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Ion Formation and the Conductivity of an Active Film MIM 
Structure during Through Penetration of Cosmic Particles
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Abstract—The formation of a multicomponent plasma and the conductivity of a film MIM structure area short-
circuited by a particle due to a high-velocity impact are considered. A model for calculating the conductivity of
a shock-compressed metal–insulator–metal (MIM) structure is suggested. The model was constructed by solv-
ing the problem on inertial expansion of an impact-produced plasma and is based on the volume ionization
model. With this model, the effect of an external electric field on the parameters of a plasma produced by par-
ticle–MIM structure interaction was clarified. The model can be used in designing particle detectors, measuring
physicochemical properties of micrometeoroid and technogenic particles, and processing ion spectra. © 2001
MAIK “Nauka/Interperiodica”.
Interaction between an energetic particle and an
active thin MIM structure (UMDM > 0) is associated with
the problem of detecting micrometeoroids and cosmic
waste particles [1–4]. The use of active MIM structures
in particle parameter transducers is dictated by the need
for improving the sensitivity in the lower ranges of par-
ticle velocities and weights (W < 10 km/s, m < 10–8 kg).
This is of special importance for determining the ele-
mental composition of micrometeoroids. Space-borne
data processing equipment runs into obstacles when
tackling this problem [2, 5, 6]. The conductivity of a
shock-compressed film MIM structure was studied
in [6].

In this work, we consider, on a qualitative basis, ion
formation in a multicomponent plasma and the conduc-
tivity of an active film MIM structure area short-cir-
cuited by a particle upon a high-velocity shock. Our
model is valid for particle velocities between 10 and
15 km/s [7]. The model for calculating the conductivity
of a shock-compressed MIM structure is based on solu-
tion of the problem on inertial expansion of an impact-
produced plasma and also on the volume ionization
model [7, 8]. Within the model elaborated in this work,
the effect of an external electric field on the parameters
of a plasma produced by interaction between an ener-
getic particle and a thin obstacle (an MIM structure)
was elucidated.

Using relationships well known from the theory of
shock waves [8], for particle (striker) velocities in the
range W = 15–50 km/s, one can obtain the following
expressions.

(1) The temperature at the shock front is given by

(1)T1 G
W

1 ρ2/ρ3+
--------------------------,=
1063-7842/01/4601- $21.00 © 20107
where W is the striker velocity; ρ2 and ρ3 are the densi-
ties of the striker and target, respectively; G = 1/β1/2x1/4

is a proportionality coefficient; β is the electronic spe-
cific heat; and x is the dimensionless specific volume.

As the target density, we take the density of the
MIM insulator, since its thickness (10–20 µm) far
exceeds that of the metal coating (0.1 µm).

(2) The initial temperature of a resulting plasmoid is

(2)

where n0 ≤ 1020 cm–3 is the concentration of heavy par-
ticles in the plasma, n1 ≤ 1023 cm–3 is the concentration
of atoms of the shock-compressed matter, γ = 4/3 is the
effective adiabatic exponent, and

(3)

(3) The plasmoid formation time is t0 = R0/u, where

u =  is the expansion rate of the plasmoid

boundary and R0 = 10R2 (R2 is the characteristic size of
the striker).

Consider the process of expansion of a plasma
cloud. In the x and y directions, it expands much more
slowly than in the z direction (Fig. 1). This is because
one part of the plasmoid remains inside the capacitor,
while the other is displaced outside and is free to
expand under the action of gas-dynamic forces. Inside
the capacitor, expansion conditions differ: the plasma
cloud has an obstacle on its way, i.e., the capacitor
plates. This part of the cloud can expand if the capacitor
plates and the insulator evaporate when subjected to
high temperatures.

Ti T0

n0

n1
----- 

 
γ 1–

,=

T0 0.1
W

1 ρ2/ρ3+
--------------------------.=

W

1 ρ2/ρ3+
--------------------------
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The expansion rate of the plasma cloud depends on
the velocity of a particle interacting with the cloud, the
work of the external electric field, and the effect of high
temperatures (random motion of particles). The ionic
composition of the plasma is determined from the Saha
equations. For dust particles of size R2 = 10–5–10–3 cm
and W = 20–50 km/s, the parameters of plasmoids lie in
the ranges 10–4 ≤ R0 ≤ 10–2 cm, n0 ≤ 1020 cm–3, and 1 ≤
T ≤ 3 eV. If the plasma temperature is low, we can take
into consideration only single ionization. Then, resid-
ual charges can be calculated without applying numeric
techniques.

In our case, the problem is stated as follows. At a
time instant t = t0 let us have an equilibrium multicom-

ponent (in general) plasma of density n0 = ,
radius R0, and temperature T0. Let also expansion and
cooling obey the laws adopted in [8]. A set of equations
that describes the ionization kinetics in an expanding
plasmoid has the form [8]

(4)

(5)–(7)

where t is dimensionless time normalized by t0; xe and
xk are the ionizations of electrons and ions of the kth
element, respectively; and Ck is the content of heavy
particles of the kth sort:

n0kk 1=
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Fig. 1. Expansion of plasma cloud (1, capacitor plates).
The initial conditions are defined by the Saha equa-
tions. If, initially, xk ! 1, the solution to the Saha equa-
tions is given by [1]

(8)

where

(9)

If ionization equilibrium breaks down at a time
instant t1 (t1 > t0), set (8)–(9) can be solved as follows.
At t0 ≤ t ≤ t1, approximate values of the ionizations are
determined from the Saha equations for n = n(t) and
T = T(t). At t > t1, the ionization rate is much smaller
than the recombination rate (because of the strong
exponential dependence) and can be neglected; hence,
Eq. (4) can be written as

(10)

Multiplying the right and the left of (10) by Ck and
taking the sum over subscript k in view of (7), we come
to

(11)

Integrating (11) yields the solution to the set of
Eqs. (4)–(8) in the form

(12)

(13)

where

The parameters xe1 and xk1 are the respective ioniza-
tions at t = t1, which are determined from the Saha
equations for n1 = n(t1) and T1 = T(t1).

To estimate t1, we will take advantage of the expres-
sion

(14)

which is valid for a single-component plasma.
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As follows from the Saha equation, for a single-
component plasma, we have

(15)

If the form of Eq. (14) is retained for a multicompo-
nent plasma, the potential J will be determined from the
equality of the electron ionizations for both plasmas:

(16)

Substituting (8) and (14) into (16) yields the equa-
tion for the effective potential J:

(17)

The dependences t1 = t1(n0, T0, t0, Ck, Jk) and J =
J(n0, T0, t0, Ck, Jk) are found by jointly solving (14),
(15), and (17). The asymptotic values of the ionizations
can be determined from (12) and (13) at t  ∞:

(18)

(19)

Here, we put xe∞ ≈ r, since (r/xel)2 ! 1. With regard for
(18) and (19), the formulas for residual charges are
written as

(20)

(21)

These expressions describe the approximate model
for inertial expansion of a plasmoid subjected to gas-
dynamic forces.

In terms of this model, one can also solve the prob-
lem of plasma heating by current. An increase in the
plasma temperature due to current (Joule) heating must
be taken into account in tackling the problem of kinetic
expansion of a plasma cloud.

The plasma conductivity is known to be the sum of
the electronic and ionic components [9]:

(22)

where σe and σi are the electronic and ionic conductiv-
ities, respectively, and µe and µi are the mobilities of
electrons and ions, respectively.

The electronic component of the conductivity is
responsible for current heating of a plasma. The electric
field raises the kinetic energy of charged particles (elec-
trons and ions); in this case, ions of weight mi > me can
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be considered immobile. A plasma can be considered as
a mixture of electronic and ionic liquids. The friction
force between these liquids increases the plasma tem-
perature. The rate of heating of electrons due to the fric-
tion force is determined from the expression [9]

(23)

The temperature of the ionic liquid increases

 times more slowly because of the difference
between the heat conductivities of the electronic and
ionic liquids.

The total plasma temperature is the sum of the two
components:

(24)

where T is the temperature of an expanding plasmoid

[expression (6)] and  is the temperature increment
due to Joule heating [this increment is found from
Eq. (23)].

Since the plasma conductivity is initially relatively
high, the external electric field penetrates into the
plasma to a small depth. The penetration depth can be
estimated from the formula [10]

(25)

where E0 is the external electric field strength; E(y) is
the field strength inside the plasma at a depth y;

is the Debye screening radius; Te and Ti are the temper-
atures of the electronic and ionic liquids, respectively;
and n is the equilibrium concentration of particles.

The model can be simplified if we assume that the
electric field does not affect ionization and recombina-
tion processes at the initial time instant. Only after a
lapse of time, when the plasma conductivity drops,
does the external field penetrate into the plasma to a
noticeable depth, accelerate charged particles, and heat
up the plasma.

To derive an expression for charge variation in time,
it is first necessary to find the current passing through
the broken-down capacitor. According to [6], the equa-
tion for current variation in MIM structures has the
form

(26)

where U(t) is the external field voltage, d is the insula-
tor thickness, σ is the MIM conductivity, and V is the
volume of the conductive channel in the broken-down
capacitor.
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Now we will find the variation of the voltage across
the MIM structure when the capacitor discharges
through the resulting high-conductivity channel
(plasma). The differential equation for capacitor

R

0 t1 t2 t3 t4 t

Fig. 2. Approximation of MIM channel resistance variation.
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Fig. 3. Conductivity vs. time at particle velocities of (1) 10,
(2) 15, (3) 20, and (4) 30 km/s. U0 = 200 V.
discharge has the form

(27)

where UC is the voltage across the capacitor, Rp is the
plasma resistance, and C is the capacitance of the
capacitor (we put C ≈ 1).

The plasma resistance is given by

(28)

where σ = en(t)µ(t) is the plasma conductivity; n(t) and
µ(t) are the concentration and mobility of charged par-
ticles, respectively (these parameters vary according to
the above kinetic laws for plasma expansion); d is the
insulator thickness; and S is the cross-section area of

the conductive channel (S ≈ 4π , where R0 is the
radius of the channel produced by a particle).

To simplify the calculations, we approximate the
variation of the plasma conductivity by a step function
(Fig. 2). The solution to differential equation (27) is
then straightforward. The voltage drop across the
capacitor short-circuited by the plasma is given by

(29)

where U0 is the dc voltage applied to the capacitor, U0 =
50–100 V; C is the MIM capacitance; Ri are the plasma
resistances after the approximation; t1 is the time
instant thermal equilibrium breaks down; t4 is the time
of plasma “quenching;” and t3–t2 is the mean step width
(Fig. 2).

Thus, in calculating the temperature increment (due
to Joule heating), current, and charge of the plasma, one
should take into account the process of capacitor (MIM
structure) discharge. In view of (29), the discharge volt-
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Fig. 4. Charge spectra of various elements for particle velocities of (1) 10, (2) 15, (3) 20, (4) 25, and (5) 30 km/s. U0 = 200 V.
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age of the capacitor during plasma expansion is
expressed as

(30)

It is evident from (29) that the process of capacitor
discharge is controlled by the parameters of a plasma
produced by the interaction of an energetic particle
with the target. For voltages between 10 and 50 V, the
capacitor field affects the parameters of an impact-pro-
duced plasma only slightly. The MIM structure may
even break down near the conductive channel.

As the capacitance decreases, the discharge duration
becomes comparable to that of plasma expansion
between the capacitor plates and the effect of the dis-
charge on the plasma characteristics grows.

The charge accumulated in the capacitor is found
from the well-known formula [9]

(31)

where I(t) is determined from (26).
The charge of either component of the plasma is

determined in a similar way. The integral charge of the
plasma differs from that given by (31) by 50–70% for
particle velocities between 10 and 15 km/s and 20–30%
for velocities between 20 and 30 km/s, because the ion-
ization potentials of the elements Jk are replaced by the
effective potential J.

Qualitatively, the obtained results agree with avail-
able experimental data [6, 11, 12]. For practical pur-
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poses, we developed a simple model that describes pro-
cesses initiated in an MIM structure by a high-velocity
impact. The model data are shown in Figs. 3–5.
Figure 3 depicts the time dependence of the MIM con-
ductivity, Fig. 4 represents the charge spectra for parti-
cle velocities in the range of 10–30 km/s, and Fig. 5
shows the integral charge vs. velocity throughout the
process (from the beginning to quenching).

Thus, we showed that detection of the MIM integral
charge from the beginning of the interaction up to
plasma quenching may improve the sensitivity of the
ionization method by more than one order of magni-
tude and thereby find the physical parameters and ele-
mental composition of low-energy micrometeoroids.

This model is useful in designing particle detectors,
measuring physicochemical parameters of micromete-
oroid and technogenic particles, and processing ion
spectra.
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Abstract—A model of a ferroelectric planar capacitor containing a thin linear insulator under the electrodes is
developed. This structure is shown to reduce microwave losses in the capacitor without significantly decreasing
the controllability of its properties. In the framework of the model, the size of the charge spreading region on
the electrodes is estimated. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Strong interest has recently arisen in ferroelectrics
as promising materials for controllable microwave
devices [1–4]. The use of ferroelectrics in this field
relies on planar technology, the basic design compo-
nents being a planar capacitor and a coplanar or a slot
transmission line [5]. A planar capacitor, whose capac-
itance varies with an external electric field, is of partic-
ular interest. The use of these components necessitates
the development of mathematical models that can be
employed as the basis for computer-aided design
(CAD) of ferroelectric microwave devices.

A conventional planar capacitor consists of an insu-
lating substrate, a ferroelectric layer, and planar elec-
trodes (metallic or superconducting). Its capacitance
can be calculated by the well-established methods of
conformal mapping and partial capacitances [6–11].
This paper addresses a planar capacitor containing an
additional insulating layer under the electrodes.

The advantages of the planar structure with the addi-
tional underelectrode layer are the following.

(1) This layer provides better protection of the fer-
roelectric film from electric breakdown.

(2) This layer separates the ferroelectric film from
the conducting electrodes, which prevents the injection
of charge carriers from the electrodes to the ferroelec-
tric and provides a more uniform electric field distribu-
tion in the ferroelectric film. The uniform electric field
minimizes microwave losses due to electrostriction
conversion of the microwave field into acoustic vibra-
tion, which occurs in the presence of a nonuniform field
[12, 13].

(3) In the presence of the underelectrode layer, the
evaporation of the conducting electrodes and their sub-
sequent etching in order to form the capacitor gap do
not proceed directly on the ferroelectric surface.

(4) An underelectrode layer made from a linear
insulator similar to the substrate material lowers the
mechanical stress in the ferroelectric film and, as a con-
sequence, reduces microwave losses in the multilayer
planar capacitor.
1063-7842/01/4601- $21.00 © 20112
On the other hand, the presence of this layer makes
calculation of the capacitance of such a capacitor more
difficult. It becomes necessary to invoke cumbersome
numerical methods, which can hardly be used in CAD.
The goal of this paper is to derive an analytical expres-
sion for the capacitance of a planar structure containing
an underelectrode insulator. It will be shown that the
low-permittivity underelectrode layer does not signifi-
cantly decrease the capacitance of the planar capacitor.

APPLICATION OF THE CONFORMAL MAPPING 
METHOD TO THE STANDARD PLANAR 

CAPACITOR

The electric field distribution in a planar capacitor is
nonuniform. The capacitance is usually calculated by
the conformal mapping method, which transforms the
field in a planar structure into the field in a usual plane
capacitor.

Consider the planar capacitor illustrated in Fig. 1.
Let hd = 0 (i.e., there is no underelectrode insulator) and

Cd

Cd'

Cd

εd

εf

l

L

ω
l s

Cf

hd

hf

1

2

Fig. 1. Planar ferroelectric capacitor with a thin linear
dielectric underelectrode layer and its equivalent circuit:
(1) magnetic wall and (2) substrate.
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the ferroelectric–substrate and ferroelectric–air inter-
faces act as “magnetic walls.” The capacitance of such
a capacitor (a ferroelectric film with the electrodes on
its surface) can be represented as [8–11]

(1)

A MODEL OF A CAPACITOR 
WITH AN ANISOTROPIC INSULATOR

We will use the formula for capacitance of a planar
capacitor with an anisotropic dielectric layer [9, 11].
Then, expression (1) is recast as

(2)

Refer to Fig. 1 (at hd = 0). Let εs and εh be the effec-
tive permittivities of a film composed of two layers
with the parameters hd, εd and hf, εf for the field compo-
nents parallel and perpendicular to the interfaces,
respectively. We assume that

(3)

Then, for the field components parallel to the inter-
faces (film), the layers can be considered as capacitors
connected in parallel:

(4)

In view of inequalities (3), one can write

(5)

For the field components perpendicular to the inter-
faces (across the film), the layers can be considered as
capacitors connected in series:

(6)

From (4) and (5), we obtain

(7)

With (3), we come to the simplified formula
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MODEL DESCRIPTION OF THE MULTILAYER 
PLANAR CAPACITOR

Refer to Fig. 1 again. Assume that the ferroelectric–
substrate and air–insulator interfaces act as magnetic
walls; i.e., the normal electric field components vanish
at these interfaces. Then, we can consider our capacitor
as consisting of the underelectrode dielectric layer and
the ferroelectric layer. The equivalent circuit of the
capacitor represents series-connected capacitances due
to the dielectric layer, Cd, and the capacitance due to the
ferroelectric layer, Cf (Fig. 1). The interelectrode
capacitance 

(Fig. 1) can be neglected, because it is much smaller
than Cf (no more than 2% of the total capacitance of the
capacitor). The relationship between Cd and Cf in Fig. 1
becomes clear from the Christoffel–Schwartz trans-
form (Fig. 2). The substrate shown in Fig. 1 is but an
element of the structure.

If εd ! εf, the capacitance of a two-layer capacitor
cannot be found by the partial capacitance method. It
can be calculated by the numerical method developed
in [14]; however, this method requires much machine
time.

Now the above relationships will be used to derive
an approximate formula for the capacitance of the two-
layer capacitor. In this case, the adjustment coefficient
can be found by contrasting this approximate formula

Cd

ε0εdwhd

s
-------------------≈

Cd/2

Cd'

Cf

0

I

II

III

εf

εd

Fig. 2. Representation of the two-layer planar capacitor in
the form of a plane capacitor through the Christoffel–
Schwartz transform: region I is represented by capacitor

; region II, by Cf; and region III, by Cd/2. In Fig. 1, the
last region is shown as series-connected capacitors Cd
formed by the ferroelectric layer and the electrodes.

Cd'
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with exact calculations [14]. Substituting (5) and (8)
into (2) yields the expression for the total capacitance
of the ferroelectric and dielectric layers:

(9)

where K is the adjustment coefficient, which accounts
for the fact that the film anisotropy is due to only one
pair (and not many pairs) of layers.

In other words, the field does not penetrate the layer
throughout its thickness hf; therefore, in this case, the
effective thickness of the layer hf eff < hf and K > 1.

C fd ε0ε f w
s

h f

-----
4
π
--- 2 1 K

ε f

εd

-----
hd

h f

-----+ln+ 
 

1–

,=

K(εf)

εf
1000800600400200

20

15

10

5

0

Fig. 3. Fitting coefficient K versus the permittivity of the
ferroelectric layer. Squares, formula (10); solid line, for-
mula (14) for a capacitor with s = 4 µm, hd = 0.05 µm, hf =
0.7 µm, w = 0.29 mm, L = 1150 µm, and Hs = 500 µm.
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1000800600400200

Fig. 4. C(εf) curves showing agreement between the numer-
ical simulation [formula (10)] and analytical expression
(14) for the capacitor geometries listed in Table 2.
DETERMINING THE ADJUSTMENT 
COEFFICIENT K

From (9), the coefficient K can be expressed as

(10)

Thus, the adjustment coefficient of the model
depends on the dimensions of the planar capacitor and
the permittivities of the ferroelectric and underelec-
trode dielectric layers. In expression (10), C(εf) is the
total capacitance of the ferroelectric and underelec-
trode dielectric layers that was calculated by the numer-
ical method [14]. Introduce the notation

(11)

An analytical expression that relates the adjustment
coefficient K to the dimensions of the capacitor and the
permittivities of the ferroelectric and underelectrode
dielectric layers can be written as follows:

(12)

Write the coefficient A in (12) in the form

(13)

Using similar representations for B(εf), C(εf), and
D(εf), we obtain

(14)

The coefficients Ai, Bi, Ci, and Di (Table 1) in
expression (14) were calculated by minimizing the dis-
crepancy between the values of K obtained from (10)
and from (14) for various geometries of the planar
capacitor and various permittivities of the ferroelectric.
Figure 3 shows K calculated from formulas (10) and
(14) for a capacitor with a specified geometry. The val-
ues of K obtained numerically and analytically are in
good agreement. The analytical expression can be used
when 0 < H < 0.1, 1 < S < 10, and εf/εd < 100, as follows
from in-depth examination.

Figure 4 shows the capacitance of the two-layer
capacitor versus the ferroelectric permittivity depen-
dences obtained numerically (symbols) and analyti-
cally (curves). The rms deviation between the analyti-
cal and numerical data is 2 to 4.5% for various geome-
tries of the planar capacitor (Table 2).
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EFFECTIVE CAPACITANCE 
OF THE UNDERELECTRODE DIELECTRIC 

LAYER. DIMENSION OF THE CHARGE 
SPREADING REGION

Estimates given below may help to illuminate the
performance of the planar capacitor and its controlla-
bility. Let Cf (Fig. 1, equivalent circuit) be determined
by formula (1). Then, (9) can be used to obtain an
expression for the capacitance Cd. From the geometry
in Fig. 1, 

(15)

where l is the dimension of the charge spreading region.

From the equivalent circuit in Fig. 1, we have

(16)

where Cfd is defined by expression (9) and Cf, by (1).

Then, Cd can be found from the formula

(17)

As can be seen from Fig. 5, Cd > Cf and grows with
increasing permittivity of the ferroelectric layer. Hence,
the additional underelectrode linear insulator cannot
significantly deteriorate the controllability of the planar

Cd

ε0εdwl
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----------------,=

1
C fd

-------- 1
C f
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------,+=
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π

2 2ln
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ε0ε f w
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hdε f

h f εd
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-------------------------------------------------------------.=

εf
1000800600400200
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0.8
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0.4

0.2

0

Cd(εf), pF; Cf (εf), pF

Fig. 5. Capacitances of the underelectrode dielectric layer
Cd (17) and ferroelectric layer Cf (1) versus ferroelectric
permittivity at s = 4 µm, hd = 0.05 µm, hf = 0.7 µm, w =
0.29 mm, L = 1150 µm, and Hs = 500 µm.
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capacitor. From (15) and (17), the size of the charge
spreading region l is given by

(18)

As follows from Fig. 6, the charge spreading region
l of the two-layer capacitor (Fig. 1) can not only exceed
the thickness of the ferroelectric layer, but can also,
under certain conditions, be comparable to the gap of
the capacitor. Hence, the length of the capacitor must
satisfy the condition L > s + 2l.

l S H ε f, ,( ) = h f

π
2 2ln
-----------

εdh f

ε f hd

---------- 1 K S H ε f, ,( )
hdε f

h f εd

----------+ 1–

------------------------------------------------------------------------------.

εf
1000800600400200

3.0

2.5

2.0

1.5

1.0

0.5

0

l(εf)/hf 

Fig. 6. Relative extension of the charge spreading region l
(Fig. 1) on the capacitor electrodes [formula (18)] versus
ferroelectric permittivity at s = 4 µm, hd = 0.05 µm, hf =
0.7 µm, w = 0.29 mm, L = 1150 µm, and Hs = 500 µm. 

Table 1.  Coefficients of analytical expression (14)

i Ai Bi Ci Di

1 –6.679 –2.193 0.024 0.143

2 6.64 2.216 –0.02 –0.144

3 0.039 –0.023 –3.645 × 10–3 1.548 × 10–3

Table 2

Curve no. 
in Fig. 4 εd s, µm hd, µm hf, µm

1 10 2 0.02 1.1

2 10 11 0.11 1.1

3 10 2 0.02 0.5

4 10 5 0.05 0.5

5 10 4 0.06 0.9

6 10 6 0.04 0.7
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CONCLUSION

Analytical expressions for the capacitance of a pla-
nar structure containing a layer of underelectrode insu-
lator are obtained. These formulas can be used in CAD
of a two-layer planar capacitor. The analytical method
suggested can be used not only for estimating the con-
tribution of the additional underelectrode layer to the
capacitance of the planar capacitor, but also for numer-
ically determining the size of the charge spreading
region on its electrodes.
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Abstract—Six motion integrals for a relativistic charge in the field of a transverse linearly polarized electro-
magnetic wave propagating with an arbitrary phase velocity u > c were obtained by solving the canonical equa-
tions of motion. On the basis of these integrals, the charge trajectory as a function of the wave phase is analyzed
in a fixed coordinate system. The coordinates, time, and phase are related by elliptic functions. © 2001 MAIK
“Nauka/Interperiodica”.
The charge motion in the field of a linearly polarized
wave propagating with the phase velocity u = c is well
studied for a reference frame where the charge is, on
average, at rest [1, 2]. This motion can be described by
the motion invariants, which are known for this case [3].
In a collisionless plasma, u > c and the generalization of
the invariants to this case is of considerable interest. We
assume that a linearly polarized wave is described by a
vector potential directed along the X axis:

(1)

The Hamiltonian for a relativistic charge in an elec-
tromagnetic field has the form [4]

(2)

hence, the following system of canonical equations:

(3)

(4)
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(1) Integrating the first and second equations in (4),
we get

(5)

We multiply the first equation in (4) by the velocity
Vx = dx/dt from (3) and, after invoking the other equa-
tions in (4) and integrating, obtain

(6)

These integrals are well known [5, 6].

(2) We express the longitudinal momentum from the
integral Ψ3:

(7)

The plus sign before the root is chosen to provide
the correct value for u  c. Substitute the derivative

dpz/dt, with (ξ) expressed in terms of the integrals
Ψ1 and Ψ2, into the third equation of (4). After integra-
tion, 
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The integral Ψ3 and the energy ε are related as ε =
Ψ3/(1 – uVz/c2). From the second equation in (3), it fol-
lows that ε = pyc2/Vy. Equating the energies and
integrating, we come to

(9)yΨ3 Ψ2c2 t u
z

c2
----– 

  Ψ5.+=
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From the definition of phase, dξ/ωdt = 1 – pzc2/uε or
dξ/ω(1 – pzc2/uε) = dt. Insert the energy ε = Ψ3 = upz
into the left-hand side and express, as before, pz through

the transverse momentum p⊥ (ξ); then,
(10)
u

ω u2 c2–( )
----------------------- u

c2Ψ2

c2Ψ3
2 u2 c2–( ) m2c4 c2Ψ2

2 c2 Ψ1 eE/ω( ) ξsin+( )2+ +[ ]+
-------------------------------------------------------------------------------------------------------------------------------------------–

 
 
 

dξ t Ψ6.+=

0

ξ

∫

(3) The invariants Ψ4 and Ψ6 involve elliptic inte-
grals. With certain substitutions [7], the left-hand side
of (8) can be expressed in terms of arcsines and elliptic
integrals of the first and third kinds. The form of the
integral Ψ4 implies that the X component of the charge
momentum is the sum of the constant component due
to the invariant Ψ1 and oscillations induced by the vari-
able field. Note that an increase in the oscillation ampli-
tude slows down with increasing wave field strength.
The more the phase velocity differs from the velocity of
light in a vacuum, the less the change in both the oscil-
lation amplitude and the X coordinate.

In the limit u = c, Ψ5 involves the quantity ξ/ω,
which is proportional to the wave phase [3]. In this
expression, the term with the longitudinal coordinate z
specifies the delay. For u ≠ c, this term cannot be con-
sidered as delay, since this parameter should be
inversely proportional to the phase velocity u of the
wave. The invariant Ψ6 involves the elliptic integral of

pz, 10–17g cm/s

4

3

2

1

0
kx + Ψ4, rad
10
8
6
4
2
0
t + Ψ6, 10–8s
3

2

1

0 4 8 12 18
ξ, rad

1
2

3

1 2 3

1 2

3

Phase dependences of the longitudinal momentum, coordi-
nate, and time: 1–3, Ψ1 = Ψ2 = mc.
the first kind and makes it possible to relate the phase
and time. Expression (7) shows that the longitudinal
momentum has, in general, a constant component and
oscillations with the frequencies ω and 2ω. Which of
them prevails depends on the ratio between the initial
momentum Ψ1 and the quantity eE/ω. For large
momenta Ψ1, the influence of the electric component of
the field on the velocity Vx is small, the variable mag-
netic field alone contributes to the variable component
of pz, and the frequency ω prevails. For small momenta
Ψ1, an additional effect is exerted by the electric com-
ponent, changing the velocity involved in the Lorentz
force, and the amplitude of the component with the fre-
quency 2ω increases in the spectrum.

In the figure, the dependences of pz, kx + Ψ4, and t +
Ψ6 on the phase ξ are presented for Ψ3 = mc2, eE/ω =
mc/2, k ≈ 0.02 rad/cm, and ω = 109 rad/s. The phase
velocity for curves 1 and 4 is u = 1.05 s; for curve 2, u =
1.2 s; and for curves 3 and 5, u = 1.5 s; m and e are the
mass and charge of an electron, respectively. These
curves may be applied in analyzing Langmuir waves
excited by pulsed transverse electromagnetic waves.
Until now, such analysis has been carried out in terms
of relativistic hydrodynamics, mainly in the one-
dimensional case [8].
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Abstract—Temperature and concentration dependences of the electron work function in cesium–potassium
alloys were studied by the Fowler photoelectric method for the first time. Our results indicate that the limiting
electron activity of cesium in potassium–cesium alloys is six times larger than that obtained by extrapolating
the work function isotherm to pure potassium. © 2001 MAIK “Nauka/Interperiodica”.
The study of the electron work function and its tem-
perature coefficient in alkaline metals and their alloys is
of considerable importance in developing the theory of
photoemission, effective sources of charged particles,
new high-power chemical sources of electrical energy,
etc. [1, 2]. Temperature and concentration dependences
of the electron work function for these materials have
not been adequately studied [3–6]. In particular, the
emission properties of the K–Cs system were investi-
gated only in [7], where the work function isotherm
was first constructed using photoemission current mea-
surements for 11 alloys at +25 and –90°C (Fig. 1).

Figure 1 shows the work function isotherm con-
structed from data in [7] (open circles). It is seen that
the emission properties in the most interesting compo-
sition ranges (close to the pure components in the K–Cs
system) remained virtually unstudied. In particular,
from 0% Cs (pure K) to 26 at. % Cs, only a single alloy
was examined. Thus, the isotherm in this composition
range was obtained by extrapolation. However, it is in
this composition range that the most significant varia-
tion in the run of the isotherm might be expected, as fol-
lows from available data for the surface activity of com-
ponents in alloys [8]. In this paper, we performed a
detailed study of temperature and concentration depen-
dences of the work function for potassium–cesium
alloys. As in [7], we used the photoelectric method of
Fowler isotherms, whereby the work function is mea-
sured with an accuracy of no worse than 1% [4]. The
alloys under investigation were prepared from pure
metals in which the content of the base element was no
less than 99.99% (for K, the main impurity was Na,
0.008%; for Cs, the main impurities were Na, 0.002%;
K, 0.003%; and Rb, 0.002%).

Experiments were performed under an ultrahigh
vacuum (10–7 Pa) in a soldered measuring cell [9]
designed to study the work function in liquid solutions
of alkaline metals. The preparation of the alloys and
work function measurements were described in [10].
1063-7842/01/4601- $21.00 © 20119
Unlike [7], where measurements were made at two
fixed temperatures, we measured the work function in
2–3 degree intervals between 20 and 100°C. Moreover,
in the temperature range where the alloys are two-
phase, the work function was determined in one-degree
intervals and the time of keeping the alloys at a given
temperature was increased severalfold to make sure
that possible structure transformations were completed
and thermodynamic equilibrium was established.

The temperature dependences of the work function
for pure potassium and its nine alloys with cesium dem-
onstrate that the work function polytherms are linear
throughout the temperature interval studied (Fig. 2).
For pure potassium, the temperature coefficient of the
work function is negative, dϕ/dT < 0, whereas for the
alloys, it is positive. The dϕ/dT vs. cesium content
curve (Fig. 3) first sharply rises by nearly one order of
magnitude and then gradually decreases almost to zero.
Note that the negative value of the temperature coeffi-
cient for pure potassium, dϕ/dT = –3.50 × 10–4 eV/K,
obtained in this work is in agreement with theoretical
values [11, 12] and is close to that obtained in [13].

K 20 40 60 80 100

1.9

2.0

2.1

2.2

2.3

ϕ, eV

Cs, at.%

Fig. 1. Work function isotherm for alloys in the potassium–
cesium system at 25°C. s, data from [7]; d, our data.
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Theoretically, the temperature coefficient of the
work function in pure metals is governed by various
factors, such as thermal expansion, accompanied by
loosening interatomic bonds; a change in the dipole
electrical moment of the double layer at the surface;
etc. Calculated and estimated contributions from each
of these factors to dϕ/dT differ by one order of magni-
tude and even have opposite signs. We can merely con-
clude that the absolute values of the temperature coef-
ficients of the work function for pure metals are rela-
tively small: dϕ/dT ≈ 10–4–10–5 eV/K [11, 12, 14].

The positive values of the temperature coefficients
for the alloys with small cesium concentrations seem to
be associated mainly with vigorous surface adsorption
and can be explained as follows. As the temperature
rises, two basic tendencies govern the behavior of the
electron work function in the potassium–cesium alloys.
On the one hand, the work function decreases because
of loosening interatomic bonds, as in the pure compo-
nents. On the other hand, it gradually increases owing
to the desorption of the surface-active component
(cesium) from the alloy surface (the work function of
cesium is smaller than that for potassium). Cesium seg-
regation in the surface layers of K–Cs alloys has been
clearly demonstrated in [15] (Fig. 4). Depending on the
temperature and the concentration of the alloy compo-
nents, either of the two tendencies prevails and speci-

20 40 60 80 100

2.0

2.4

2.2

2.4

1

2

20 40 60 80 100

2.1

2.0

2.1

2.0

T, °C

ϕ, eV

3

4

Fig. 2. Temperature dependence of the wave function for
several alloys from the potassium–cesium system: (1) 0.66,
(2) 2.37, (3) 9.77, and (4) 17.56 at. % of cesium. Open and
filled circles correspond to increase and decrease in temper-
ature, respectively.
fies the values of the temperature coefficients observed
experimentally. Note that such effects are also typical
of temperature dependences of the surface energy and
surface tension in metal alloys containing surface-
active components in small amounts [16].

Using the temperature dependences of the work
function, we constructed work function isotherms for
the K–Cs alloys. Data points obtained at 25°C are
shown in Fig. 1. Even for small amounts of cesium
(1.5–2 at. %), the work function of the solvent rapidly
decreases and then (at least to 20 at. % of Cs) remains
practically unchanged. Therein lies the difference
between our results and those obtained in [7], where the
concentration interval in which the work function drops
extends to 20–25 at. % Cs.

It is worth noting that the concentration dependence
of the work function calculated for the K–Cs system by
the method of electron density functional also indicates
the high surface activity of cesium in K–Cs alloys,
especially at small Cs concentrations [15].

The limiting electron activity χ0 of cesium is esti-
mated as

χ0 ∂ϕ
∂x
------– 

 
x 0→
lim=

0 4 8 12 16 20

–4

–2

0

2

4

6

8

10
dϕ/dT, 104eV/K

Cs, at.%

Fig. 3. Concentration dependence of the temperature coeffi-
cient of the work function for the potassium–cesium alloys.
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(χ0 characterizes the variation of the work function ϕ of
an alloy with the concentration x of a surface-active
component as x tends to zero). The value of χ0 obtained
from our data for ϕ(x) exceeds that calculated from the
work function isotherm obtained in [7] by a factor of 6.

Thus, the existing opinion that cesium decreases the
work function of the alloys to the value of pure cesium
only at concentrations of 20–25 at. % seems to be
incorrect. Our detailed measurements in the concentra-
tion range close to pure potassium showed that the con-
centration interval where ϕ drops is actually one order
of magnitude narrower. Moreover, the surface activity
of cesium was found to be nearly six times that
obtained in [7].

0 20 40 60 80 100
x(v)Cs, at.%

20

40

60

80

x(s)Cs, at.%

Fig. 4. Cesium segregation in the potassium–cesium binary
solution: the cesium concentration in the surface layer of the
solution (solid curve) as a function of the cesium content in
the bulk (dashed curve).
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Abstract—A linear problem of convective instability near the surface of a two-component liquid medium is
considered. The specificity of the problem is in the necessity of the simultaneous allowance for the background
stratification and the difference in the exchange coefficients for each component, as well for the thermocapil-
lary effect. The allowance for the latter is shown to suggest the existence of a previously unknown region of
monotonic instability. The corresponding dimensionless criterion was found, and neutral curves were calcu-
lated. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Convective instability related to the thermocapillary
effect (Marangoni convection) is usually considered
only in sufficiently thin liquid layers (in water, in layers
a few millimeters thick). It is usually assumed that in
thicker layers this instability is unobservable against
the background of the Rayleigh–Taylor convective
instability [1]. However, in a two-component medium
(e.g., in salt water) situations are possible when, in the
presence of an unstable temperature-induced stratifica-
tion (heating from below), the density-related stratifica-
tion turns out to be stable owing to the stable stratifica-
tion related to the saltiness. The Rayleigh–Taylor insta-
bility in this case turns out to be suppressed, and the
thermocapillary instability is possible and is “free from
competition.” In this case, it is expedient to study such
a mechanism of instability in arbitrarily thick layers of
liquids.

RESULTS AND DISCUSSION

As an example, we investigate the stability, in the
quiescent state, of a semibounded water layer stratified
in temperature and salinity with allowance for the ther-
mocapillary effect. We will use the Boussinesq approx-
imation (also known as the free-convection approxima-
tion), whose applicability to liquids has been well
investigated and substantiated [1–3]. According to this
approximation, the liquid is considered to be incom-
pressible, except for the allowance for its thermal
expansion. The linearized set of equations in this case
is written as follows [1, 3]:

(1)
∂t ν∇ 2–( )v

1
ρ0
----- ∇ p– g αT βs–( )ez, ∇ v+ 0,= =

∂t κ∇ 2–( )T γTvez+ 0, ∂t χ∇ 2–( )s γsvez+ 0.= =
1063-7842/01/4601- $21.00 © 20122
Here, the z axis is directed vertically upward; T, and s
are the disturbances of the temperature and salinity,
respectively; γT and γs are the background vertical gra-
dients of these quantities; v is the three-dimensional
vector of the velocity-field disturbance; α is the thermal
expansion coefficient of the liquid; β is the coefficient
of solutal (salinity-related) compression that character-
izes the density dependence on the solution concentra-
tion; ρ0 is the average unperturbed density of water; ν,
κ, and χ are the exchange coefficients; and g is the
acceleration of gravity.

The problem of the stability of an infinite layer of
salt water has already been studied (see, e.g., [3, 4]).
Assuming the values of the parameters γT and γs corre-
sponding to the stable state of an infinite layer [4], we
will investigate the possibility of the development of
instability due to surface effects. Consequently, we
consider disturbances that are damped far from the sur-
face, at z  –∞. The deformations of the liquid sur-
face are neglected. This corresponds to the condition
w|z = 0 = 0, where w is the vertical component of the
velocity. For simplicity, we restrict ourselves to homo-
geneous boundary conditions of second order (the
absence of disturbances of fluxes) for heat and salt at
z = 0. The thermocapillary effect is taken into account,
as usual, by the boundary condition [1]

(2)

Here, u is the vector of the horizontal velocity, ∇ h is the
horizontal Hamilton operator, and σT is the absolute
magnitude of the temperature derivative of the coeffi-
cient of surface tension σ. The thus-formulated prob-
lem of stability was investigated with respect to mono-
tonic disturbances using the standard method of normal

ρ0ν∂zu σT ∇ hT at z– 0.= =
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modes. We seek for a solution of the form

(3)

(analogous solutions are sought for other unknowns).
Eliminating all unknowns except for w from the initial
set of equations, we obtain the following equation at
w = 0 (implying the calculation of neutral curves):

(4)

Here,

(5)

k2 =  + , and NT = (αgγT)1/2 and Ns = (–βgγs)1/2 are
the “thermal” and “salinity” frequencies of the (Brunt–
Väisälä) buoyancy. The parameter S is an analog and a
generalization of the Rayleigh number [1–3] to the case
of a two-component medium. However, instead of the
thickness of the liquid layer (which is infinite in the
problem under consideration), the horizontal distur-
bance length k–1 enters into it. As was mentioned above,
situations are considered in which, in the absence of
surface effects, the system is stable (due to the stability
of the solutal stratification) but the temperature-related
stratification is unstable:

(6)

The last inequality in (6) represents one of the con-
ditions of stability against the so-called effects of dou-
ble (differential) diffusion that are capable of destabi-
lizing the system even in the case of a stable density
stratification [3, 4]. In accordance with condition (6),
we consider only positive values of the parameter S.
Note that since the transfer coefficient for salt in water
is smaller by two orders of magnitude than the coeffi-
cient of thermal diffusivity κ [3], the parameter S, with
other conditions being equal, depends much more
strongly on the salinity-related stratification than on the
temperature-related one. In particular, stable stratifica-
tion of the salinity stabilizes the medium much more
strongly than a similar stratification of thermal origin.

We seek a solution to Eq. (4) in the form of a sum of
exponential terms. With allowance for damping, the
solution for the vertical velocity at z  –∞ represents
a sum of three exponential terms:

(7)

(Reqi > 0). In the expressions for the temperature and
the salinity, there is a fourth exponent ekz. From the

w x y z t, , ,( ) W z( ) i kxx kyy+( ) ωt+[ ]exp=

d2

dz2
------- k2– 

 
3

W k6SW .=

S
1

νk4
--------

NT
2

κ
------

Ns
2

χ
------+ 

  ,=

kx
2 ky

2

γT 0, γs 0, NT
2 0, Ns

2 0, Ns
2 NT

2+ 0;>><<<

NT
2 /κ Ns

2/χ+ 0.>

W z( ) Cie
qikz

, q1

i 1=

3

∑ 1 S1/3+( )1/2
,= =

q2 3, 1 S1/3 2
3
---πi± 

 exp+
1/2

=
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boundary conditions, we obtain a set of equations for
the coefficients Ci:

(8)

where M is the analog of the Marangoni number:

(9)

The determinant D of the set of equations (8) can be
reduced to the form

(10)

Here, q and ϕ are the modulus and the phase of the
quantity q2:

Ci

i 1=

3

∑ 0,
qi

qi
2 1–

--------------Ci

i 1=

3

∑ 0,= =

qi
2 M

qi
2 1–

--------------– Ci

i 1=

3

∑ 0,=

M
σTγT

ρ0κνk2
-----------------.–=

D
3i

S1/3
--------- M

S1/3
-------- 2q φ π

3
---– 

 cos q1–– S1/3q1+




=

---+ q q1
2 q2–( ) φcos q1

2 q2+( ) φ/ 3sin+[ ]




.

q2 3, qe iϕ± ; q 1 S1/3– S2/3+( )1/4
,= =

ϕ 1
2
---

3/2( )S1/3[ ] / 1 1/2( )S1/3–[ ]{ }arctan

at 0 S 8,<≤

π 3/2( )S1/3[ ] / 1 1/2( )S1/3–[ ]{ }arctan+

at S 8.>

=

S

I

10 20 30 40 50

6.2

6.1

6.0

5.9

5.8

Fig. 1. Neutral curve on the plane (S, I).
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The neutral stability curve M(S) corresponds to a
zero right-hand side of Eq. (10). An analysis of the
obtained characteristic equation shows that, as a dimen-
sionless criterion of instability, we can consider the
parameter

(11)

The condition of instability has the form

(12)

The neutral curve on the plane (S, l) is shown in
Fig. 1; the region of instability lies above this curve. To

I χ/ν( )1/2σTγT /ρ0κ Ns.–=

I S1/6 2q/q1( )[>

× ϕ 1+cos ] / 2q/q1( ) ϕ π
3
---– 

  1–cos .

3

2

1

–0.4

–0.3

–0.2
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0.1 0.2 0.3 0.4 0.5
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Fig. 2. Neutral curves on the “frequency” plane ( , ):

(1) neutral density-related stratification and (2) the lower
boundary of the region of vibrational instability [3, 4]. The
hatched region represents a region of instability (found in
this work), whose lower boundary (3) is determined by cri-
terion (12). 

Ns
2

NT
2

2

the most “dangerous” mode, there correspond parame-
ters S = S∗  ≈ 34, I = I∗  ≈ 5.828, and k = k∗  ≈

( /S∗ νχ  ≈ 0.41( /S∗ νχ . Figure 2 shows the

neutral curves on the plane ( , ) that refer to the
following values of the parameters: ρ0 = 103 kg m–3,
σT = 1.4 × 10–4 N m–1 K–1, ν = 10–6 m2 s–1, κ = 1.4 ×
10−7 m2 s–1, and χ = 1.5 × 10–9 m2 s–1. It is seen that
allowance for the thermocapillary effect leads to the
appearance (for stable density-related stratification) of
a region of instability above curve 3. If γs = 0.33‰ cm–1

and β = 0.76 × 10–3(‰)–1, then Ns ≈ 0.5 s–1, k∗  = 1.5 ×
103 m–1; at α = 2 × 10–4 K–1, an unstable background
vertical temperature gradient on the order of 102 K m–1

is required for the instability to appear. The effective
depth of penetration of neutral disturbances into the
medium for the most dangerous mode is somewhat
smaller than its wavelength.

CONCLUSION

Thus, the main results of the work are as follows.
We showed that, with allowance for surface effects, a
significant part of the region of physical parameters of
the upper layer of a two-component medium that is tra-
ditionally considered stable is, strictly speaking, a
region of instability. We found the corresponding
dimensionless criterion and calculated neutral curves.
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Abstract—It is shown that the fracture toughness of prestressed ZrO2–(3, 4) mol % Y2O3 ceramics monotoni-
cally increases, the growth being as high as ~50% of the initial value. It is believed that prestressing causes slow
isothermal martensite transformation of some grains in the material. During mechanical tests, the degree of
transformation rises, which shows up as increased fracture roughness. © 2001 MAIK “Nauka/Interperiodica”.
Ceramic materials based on ZrO2 or its solid solu-
tions are known to offer high fracture roughness KIc [1].
High mechanical properties of these materials are the
result of tetragonal-to-monoclinic phase martensite
transformation initiated by the elastic field of an incip-
ient and/or propagating crack. Therefore, part of the
elastic energy is spent on the phase transformation, not
on fracture. In addition, the tetragonal-to-monoclinic
transformation is accompanied by an increase in the
volume; the resulting field of compressive strains also
plagues crack propagation. Such a transformation-
induced increase in the mechanical properties has been
called transformation hardening.

Several equations for the fracture toughness of
ceramics have been derived where the effect of trans-
formation hardening is involved. One is given in [2]:

(1)

where KIc is the actual fracture roughness,  is the
fracture roughness of the matrix in the absence of trans-
formation hardening (~1.1 MPa m1/2 for ZrO2–Y2O3
ceramics [3]), η is a constant, Vf is the volumetric frac-
tion of the tetragonal phase that underwent the transfor-
mation, ∆V is a transformation-induced increase in the
volume, E is Young’s modulus, h is the half-width of the
transformation zone, and ν is Poisson’s ratio.

Lange [4] gives another relationship between the
fracture roughness and transformation hardening
parameters:

(2)

where K0 is the fracture roughness in the absence of
transformation hardening, R is the size of the transfor-

KIc KIc
m ηV f ∆VEh1/2

1 ν–
------------------------------,+=

KIc
m

KIc K0
2 2REcVi ∆Gc ∆Use f–( )

1 νc
2–( )

-----------------------------------------------------------+

1/2

,=
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mation zone, Ec is the modulus of elasticity, Vi is the
volumetric fraction of the tetragonal phase that under-
went the transformation, ∆Gc is the change in the free
chemical energy during the ZrO2(tetr.)-to-ZrO2(mon-
ocl.) transformation, ∆Use is the transformation-
induced change in the elastic energy, (1 – f) is the elas-
tic energy loss due to crack propagation, and νc is Pois-
son’s ratio. The factor (|∆Gc| – ∆Use f) has the meaning
of the work spent by the strain field to initiate the trans-
formation per unit volume.

In Eqs. (1) and (2), the variable, i.e., KIc-controlling,
parameters are the size of the transformation zone and
the degree of transformation inside this zone (the volu-
metric fraction of the transformed material). Hence,
within the formalism used to derive both equations, a
change in KIc should be treated as the result of a change
in the transformation zone size and/or degree of trans-
formation.

Tetragonal-to monoclinic transformation is initiated
by the stress field; this field need not be that of a crack.
Then, a mechanical stress that does not cause fracture
may result in the phase transformation, showing up as
a change in KIc. In this work, we studied the effect of
prestressing on the fracture roughness.

Starting materials were ceramic samples measuring
3 × 4 × 20 mm of composition ZrO2–3 mol % Y2O3
(series I) and ZrO2–4 mol % Y2O3 (series II). The den-
sity of the samples measured by hydrostatic weighing
was 5.90 g/cm3 (for series I) and 5.99 g/cm3 (series II).
The fracture roughness was determined with notched
3-point bend tests. The gage length was 14.5 mm. The
tests were carried out in a UME-10TM testing machine.
It was calibrated by loading a DOSM 3-0.2 reference
dynamometer. The samples were notched by a circular
diamond saw with a cutting edge thickness of 0.4 mm.
Prestressing was accomplished as follows. The test
sample was loaded to the value of KI not exceeding KIc
001 MAIK “Nauka/Interperiodica”
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with a rate of 0.005 mm/min (the speed of the traverse
of the testing machine), kept in the stressed state for a
certain time, unloaded, and tested to determine KIc

under standard conditions (at a traverse velocity of
0.5 mm/min). Two types of experiments were
employed: the samples were kept for a certain (con-
stant) time at different KI’s (series I) and for different
times at the same KI (series II). For series-I samples, the
prestressing time was 6 h and KI was varied from zero
(KIc was measured without prestressing) to 8 MPa m1/2

(the value of KIc attained in the sample that was not pre-
stressed). In series-II samples, KI was within the range
5.5–6.2 MPa m1/2 and the prestressing time was varied
from 6 to 1461 h, increasing four times in each subse-
quent run.

Figures 1 and 2 plot the fracture roughness against
the prestressing parameters for series I and II, respec-
tively. In both cases, prestressing raises KIc. The
increase in KIc may attain 50% of its initial value. On
further increasing KI or prestressing time, KIc changes
insignificantly.

Earlier [5], the term martensite transformation was
used in reference to transformations having athermic
kinetics. Later, this term was applied to transformations
where the crystal structure is modified by shear. It was
assumed [5] and then experimentally demonstrated
(with ZrO2 crystals) [6] that martensite transformation
may have isothermal kinetics under certain conditions.
Therefore, there is reason to think that tetragonal-to-

13
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8
0 2 4 6 8

KI, MPa m1/2

KIc, MPa m1/2

Fig. 1. KIc vs. prestressing parameter KI (series I).
monoclinic transformation in ZrO2–(3, 4) mol % Y2O3
ceramics may have both athermic and isothermal kinet-
ics. Under conventional test conditions, only grains
where the phase transition proceeds athermically expe-
rience transformation hardening. Prestressing may
favor the slow stage of the phase transition in those
grains transformed isothermally. By the slow stage, we
mean the nucleation of the monoclinic phase or cross-
ing crystal defects. Eventually, the degree of transfor-
mation and, hence, the value of KIc, will rise in subse-
quent mechanical tests.
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Abstract—It is shown that pressure caused by the law of momentum conservation and a nonuniform distribu-
tion of energy sources over a drop volume should be taken into account when describing the evaporation of large
water drops subjected to high-intensity optical radiation. © 2001 MAIK “Nauka/Interperiodica”.
Systems composed of liquid drops dispersed in gas
are widely used to produce media with specific proper-
ties. The problems of effective heating and evaporation
of drops dispersed in gas are of primary importance for
many technological processes. The use of a laser as a
source of high-intensity electromagnetic radiation for
the heating and evaporation of drops is more effective
than the use of other sources of optical radiation [1].

It has been shown theoretically and experimentally
[1] that a change in the radius of a water drop R as a
function of time t during laser heating can be approxi-
mately represented as

(1)

where k(ω) = λωq/4ρ2cLa; a is the thermal diffusivity
of water; λ, c, and p are its thermal conductivity, heat
capacity, and density; L is the specific heat of vaporiza-
tion; q = exp[–0.2(|m| – 1)]; m is the complex refractive
index; ω is the flux density of electromagnetic radia-
tion; R0 is the initial drop radius; and t is time.

Equation (1) can be easily rewritten as 

(2)

where m = (4/3)πρR3 is the drop mass.
Integrating Eq. (2), we obtain

(3)

where m0 is the drop mass before irradiation.

Since a change in the drop mass is caused by its
evaporation (drop fission is not taken into account in
this approximation), the law of momentum conserva-
tion should be taken into account [2]. Then, (3) may be
written as

(4)

where U is the velocity of water molecules leaving the
drop surface, and V is the rate of drop compression.

R t( ) R0 k ω( )t,–=

dm
dt
------- 3

mk ω( )
R

----------------,–=

m0

m
------ln 3k ω( ) td

R
----,∫–=

V
U
---- 3k ω( ) td

R
----,∫=
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Relationship (4) allows one to estimate the pressure
compressing a drop on its evaporation. For U ≅  103 m/s,
t ≅  0.55 s, ω ≅  105 W/m2 and R0 ≅  5 × 10–4 m, we have
p ≅  106 Pa. If the results obtained are compared with the
surface density of the forces of normal atmospheric
pressure equal to 1.013 × 105 Pa [3], one can see that
the pressure compressing a drop during its evaporation
is an order of magnitude higher than atmospheric pres-
sure. Drop compression results in a decrease in its sur-
face area according to the Laplace law [4] and, conse-
quently, in an increase in the volume density of energy
stored in the drop. The latter, in turn, is conducive to an
extra increase in the drop temperature and enhance-
ment of the evaporation effect [4], which were disre-
garded in [1]. In fact, the law of energy conservation
during evaporation of a water drop can be expressed as

where σ is the surface tension of water, ρ is the concen-
tration of water molecules in the drop, Θ is the bonding
energy of a water molecule in the drop, S is the drop
surface area, and is l is the mean distance between
water molecules in the drop.

If the energy of a water molecule is higher than its
bonding energy in a water drop, the molecule over-
comes the surface tension forces and leaves the drop.
When l ≤ 2 mm, Van der Waals repulsion forces act
between the molecules and this distance is the mini-
mum. Then, for σ = 7.2 × 10–2 J/m2 and ρ = 3 × 1028 m–3,
we obtain Θ = σ/(lp) ≅ 1.2 × 10–21 J. A pressure value
conducive to evaporation can be estimated at p = Θρ =
106 Pa, which coincides with the estimate of the pres-
sure compressing a drop during its evaporation (see
above). It is therefore concluded that, as water mole-
cules evaporate, they exert pressure on the drop surface
and thus initiate its evaporation.

When deriving a theoretical dependence like (1), it
was assumed initially in [1] that the energy absorbed by
a drop from the electromagnetic field is spent com-
pletely on an increase in its temperature and on evapo-
ration. To clarify the validity of this assumption, let us
use the following model. A water drop of diameter of

σS ΘρlS,=
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10–3 m can be regarded as a spherical optical resonator.
Based on geometrical optics, it follows that some part
of light always experiences a total internal reflection
and remains confined inside the sphere. This part of
radiation is spent on heating a drop. If the wave proper-
ties of electromagnetic radiation are considered, the
following relationships are valid for the electromag-
netic oscillation modes with the largest Q factor [5]:

(5)

Here, the Q factors for the magnetic and electric oscil-
lation modes are designated by subscripts 1 and 2,
respectively; n is the ratio between refractive indices of
a sphere n1 and the environment n2; R is the radius of a
spherical drop; δ is the radiation wavelength in free
space; and τ = 2πR{  – [(n2 – 1)/n]1/2}δ–1.
For n1 = 1.33, n2 = 1, R = 10–3 m and δ = 10.6 µm, τ ≅
4.2 × 102. Hence, for oscillations with the highest Q
factor, the probability of degenerating whispering
modes is high. We note that ring oscillation modes are
conducive to the more efficient conversion of optical
energy stored in the resonator to thermal energy [6].
Since the field of ring oscillation modes is concentrated
inside a drop (near its surface) [5, 6], the energy of
these oscillations is spent on heating the surface region.
Thus, the assumption that energy sources are uniformly
distributed throughout the drop volume as suggested in
[1] is incorrect. On the other hand, it is well known that
light propagating inside a sphere along a polygonal
path roughly close to a circle will penetrate outside the
sphere [5, 7]. Let us introduce a coefficient that
accounts for such losses. To introduce it, we use the
known analogy between optics and mechanics [8].
Then, based on concepts of quantum mechanics, a
plane light wave propagating along a polygonal path
must tunnel through a drop surface according to the fol-
lowing law [7] for some minimum value of a polygon
leg:

(6)

Here, S3 is the amplitude of the electromagnetic wave
passing through a drop surface, S1 is the amplitude of
the electromagnetic wave incident on the inner drop
surface, d is the geometric dimension of a polygon leg,
and λ is the light wavelength inside a drop.

Taking into account (6), we can determine the value
of a minimum polygon leg for which tunneling is

Q1 n2 1–( )1/2
2πR/δ( ) 2τ( ),exp=

Q2 n 2– n2 1–( )1/2
2πR/δ( ) 2τ( ).exp=

n( )arcsinh

S3
2

S1
2

---------- 2
d
λ
---– 

  .exp≅
possible:

(7)

where α is the angle of wave incidence on the inner sur-
face of a sphere relative to a line tangent to its surface.

For α = 45°, d ≅ λ /4 and λ = 10.6 µm, γ ≅  4.37 µm.
In formula (7), it was taken into account that radiation
goes out tangentially to the drop surface in two
mutually opposite directions [9]. Thus, the amplitude
of a plane wave propagating along a circular path
decreases by a factor of exp(–4πR/γ) per cycle. For R =
5 × 10–4 m and γ ≅  4.37 µm, (4πR)/γ ≅  1.2 × 103. The
coefficient accounting for a part of wave energy left
inside a drop in one cycle can be written as

(8)

Hence, the electromagnetic energy stored in a drop
can be estimated if the total flux of electromagnetic
energy penetrating into a water drop ω is multiplied by
coefficient (8). The presence of exponential factors in
(7) and (8) and the consideration of the aforementioned
drop sizes and wavelengths suggest that Φ ≅  1. Thus,
only a negligible fraction of energy is lost due to the
escape of light, and the majority of light accumulates
inside a water drop.
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Abstract—Products of plasmochemical reactions proceeding in gas mixtures containing toxic CS2 impurity
were studied. The mixtures were excited by 180- and 300-keV electron pulses of duration 3 ns and 48 µs,
respectively. © 2001 MAIK “Nauka/Interperiodica”.
Toxic CS2 impurity is present in waste gases, specif-
ically, from viscose production, in large amounts. Its
content in exhaust industrial gases can be decreased by
electron pulse irradiation. It has been shown [1] that
irradiation by microsecond pulsed electron beams is an
efficient way to remove CS2 from air. Moreover, the
required energy may be lower than the bond energy in
this molecule in this case. A chain mechanism for CS2
removal due to dissociative attachment of secondary
beam electrons to O2 and CS2 molecules has been sug-
gested. In this work, we studied products of plasmo-
chemical reactions proceeding in CS2-containing gas
mixtures excited by pulsed electron beams.

Experiments were performed on two setups pro-
vided with electron accelerators generating nanosecond
and microsecond pulses. In the former case, a small-
sized Radan accelerator that generates pulses of energy
180 keV, current density to 80 A/cm2, half-width 3 ns,
and repetition rate to 10 s–1 was used [2]. The irradiated
volume was 10 cm3. The energy delivered to the gas
was 3 × 10–4 J/cm3 per pulse. In the other setup, the
plasma-cathode electron accelerator [3] was applied. It
generated a radially divergent beam of cross section
1.44 m2, electron energy 300 keV, current density
behind the output foil 10 A, and pulse half-width 48 µs.
The irradiated volume was 170 l. The energy delivered
to the gas was ~10–4 J/cm3 per microsecond pulse.

The percentage of the gas components in model
mixtures was varied as follows: N2 from 89 to 99%, O2
from 0.1 to 10%, and CS2 to 1%. The mixtures were
prepared in a special forced mixer. The composition of
the mixtures and reaction (CS2 removal) products were
determined from heat conductivity data with a gas
chromatograph using a detector and a three-meter col-
umn filled with Silokhrom-120 sorbent.

Figure 1 shows a typical dependence of the CS2
molecule concentration in the model system on the
number of nanosecond pulses. The impurity concentra-
1063-7842/01/4601- $21.00 © 20129
tion drops linearly with the number of pulses, i.e., with
increasing energy delivered to the process. The initial
concentration of the impurity has an insignificant effect
on the process of CS2 removal. It is noteworthy that dif-
ferent energies are needed to decrease the CS2 concen-
tration by the same amount for the nanosecond and
microsecond pulses. For the CS2 concentration to
decline from 2.8 × 1017 to 2.4 × 1017 cm–3 in the micro-
second regime, about 100 pulses (or delivered energy
of ~10–2 J/cm3) are required. For the nanosecond
pulses, the number of pulses grows to 6 × 103 (9 J/cm3).

In the experiments, emphasis was on the determina-
tion of CS2 decomposition products. In both regimes
(Fig. 1), the CS2 concentration drops linearly with
increasing number of pulses. It was found that, after the
mixture had been irradiated by the microsecond beam,

0 20 40 60 80 100 120
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1.1

1.7
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N, pulses

[CS2] × 1017, mol/cm3

Fig. 1. CS2 concentration vs. number of microsecond pulses
N at different initial CS2 concentrations.
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Fig. 2. SO2 concentration vs. (a) number of nanosecond pulses and (b) concentration of removed CS 2 molecules ∆[CS2] for the
mixture N2 : O2 : CS2 = 89 : 10 : 1.
the side surfaces and the bottom of the reactor were
covered by a yellow solid phase and the top horizontal
surface of the reactor, by a dark brown viscous liquid.
Elemental analysis revealed that this compound has the
general formula (-CS-)n and its aggregative state is pos-
sibly dependent on its molecular weight: the low-
molecular compound sublimates and condenses in the
upper part of the reactor as a liquid, while the high-
molecular phase precipitates as a powder. However, the
molecular weights of the condensed phases were not
determined. Note that SO2 traces (along with the con-
densed phases) were found among CS2 decomposition
products in the microsecond pulse regime.

In the nanosecond regime, sulfur dioxide SO2 was
detected as the main product. Also, the yellow powder
was present in small amounts on the walls of the reac-
tor. A comparison with the microsecond pulse regime
indicates that the variation of the beam parameters (cur-
rent density and pulse width) does not affect the basic
plasmochemical processes. Depending on these param-
eters, the effect of CS2 oxidation to form SO2 may be
weak or strong. From Fig. 2a, it follows that, as the con-
tent of CS2 drops in the nanosecond regime, that of SO2
rises; this dependence, however, is not a linear function
of the number of pulses.

With oxygen present in sufficient amounts, the reac-
tion of complete CS2 oxidation is given by

(1)

Oxygen-deficient atmospheres lead to incomplete oxi-
dation with the formation of a CS radical:

(2)

CS2 3O2+ CO2 2SO2.+

CS2 O2 CS SO2++
The CS2-to-SO2 stoichiometric ratio implies that
reaction (1) forms twice as much of the oxidation prod-
uct SO2 as reaction (2).

Curve 1 in Fig. 2b is the experimental dependence
of the SO2 concentration on the number of CS2 mole-
cules ∆[CS2] removed from the mixture under nanosec-
ond irradiation. As ∆[CS2] grows, the concentration of
SO2 molecules first increases and then saturates. This
dependence does not obey reactions (1) and (2) (curves 3
and 2, respectively).

A possible energy-saving mechanism of CS2
removal in ionized air was suggested in [1]. This mech-
anism resembles the chain reaction of CS2 combustion
in oxygen [4, 5]. Its stages are the following:

(3)

(4)

(5)

(6)

(7)

(8)

This process proceeds vigorously at an excess of
atomic oxygen [4]. The oxidation of CS2 and the pro-
duction of atomic oxygen, as well as O– and S– ions, are
initiated by dissociative attachment of electrons to oxy-
gen and carbon disulfide [6, 7]:

(9)

(10)

CS2 S–+ CS S2
–,+

CS2 O+ CS SO,+

SO O2+ SO2 O,+

CS O2+ COS O,+

O S2+ SO S,+

S O2+ SO2 O.+

O2 e O O–,++

CS2 e CS S–.++
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In ionized air, these two processes proceed with a high
rate.

The atomic oxygen concentration can also be
increased by O2 dissociation due to direct electron
impact. One more source of atomic oxygen may be col-
lisions of molecular oxygen with metastable nitrogen
molecules N2(A).

Thus, reactions (3)–(10) produce sulfur dioxide and
CS radicals. Their amounts depend on the irradiation
conditions. For nanosecond irradiation with high cur-
rent density, the reactions that form SO2 proceed with a
higher rate, while under microsecond irradiation with
small current density, radicals are largely produced.
Their polymerization leads to the appearance of the
solid and liquid condensed phases.
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
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Abstract—The Hamiltonian of a charged particle in a weakly inhomogeneous magnetic field is calculated up
to terms on the order of a small parameter. Fast phase–averaged equations of motion are derived. It is shown
that these equations are intergrable in quadratures. Thus, the problem of particle motion in a weakly inhomo-
geneous field is solved in the first-order approximation. To calculate the Hamiltonian, the coordinates related
to the field are used. Then, the canonical change of variables is done with the help of the generating function;
in the case of a homogeneous field, this results in the action–angle variables. Such a procedure has been already
used in [1]. However, the small parameter was not explicitly introduced and final expressions for small and
large parts of the Hamiltonian were not calculated in that paper. It is shown that the small part of the Hamil-
tonian is a trigonometric polynomial of the fast phase (this can be important when analyzing the influence of
additional perturbations). Besides, the averaged equations appear to be treatable and can be integrated in
quadratures. © 2001 MAIK “Nauka/Interperiodica”.
1. MOTION IN A HOMOGENEOUS 
MAGNETIC FIELD, OBLIQUE COORDINATES, 

AND ACTION–ANGLE VARIABLES

Let us first consider the motion of a nonrelativistic
particle with mass m and charge e in a homogeneous
magnetic field B = const. We introduce the oblique
coordinates x1, x2, and x3 such that the coordinate x3 is
the distance along the magnetic field line starting from
a certain plane inclined to the field lines, while the vec-
tors rα = ∂r/∂xα (where α = 1, 2 and r(x1, x2, x3) is the
radius vector of the point) are parallel to this plane.
Then, the vector r3 = ∂r/∂x3 = B/B is directed along the
field line. Let the vectors r1, r2, and r3 be the basis
mutual to the basis r1, r2, and r3. The coordinates x1

and x2 are introduced in such a way that |r1 × r2| = B and
the vector potential can be taken as

(1.1)

We take the coordinates x1, x2, and x3 with the asso-
ciated generalized momenta p1, p2, and p3 as the canon-
ical variables for particle motion in the field B. We also
introduce the Cartesian coordinates x, y, and z in such a
way that the z-axis is directed along the field; the y-axis
is parallel to r1; and x, y, and z equal zero when x1, x2,
and x3 equal zero. The coordinates x, y, and z are related

A
1
2
--- x2r2 x2r1–( ).=
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to x1, x2, and x3 as follows:

(1.2)

We will need the generating function W(x1, x2, x3, J,
xL, p||) of the canonical transformation from the vari-
ables x1, x2, x3, p1, p2, and p3 to the variables ϕ, yL, z, J,
xL, and p||. Here, J and ϕ are the action–angle variables,
xL and yL are coordinates of the Larmor circle center,
and p|| is the projection of the mechanical momentum
on the field direction. Such a function is found in [1],
but it corresponds to another choice of the vector poten-
tial and is given as the function of other arguments. We
will find the necessary generating function in the fol-
lowing way. Let us consider the known generating
function W1(x, y, z, J, xL, p||) of the transformation from
the x, y, z, px, py, and pz variables to the ϕ, yL, z, J, xL,
and p|| variables of the form

(1.3)

x
g12

B g11
---------------x1 g11

B
-----------x2, y–

1

g11
-----------x1,= =

z g13x1 g23x2 x3, gαβ+ + rαrβ, gαβ rαrβ.= = =

W1 x y z J xL p||, , , , ,( ) 1
2
--- mωxy 2 mωxLy–

–=

– mωx xL–( ) 2J mωx xL–( )2
– 



+ J
mωx xL–

2J mωx xL–( )2
–

--------------------------------------------------- z p||,+arctan
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where ω = eB/mc is the Larmor frequency. The function
W can be obtained from W1 if we change x, y, and z to
x1, x2, and x3 according to relationships (1.2). As a
result, we arrive at

(1.4)

Here, it is taken into account that g33 = r3r3 = 1.

2. COORDINATES ASSOCIATED 
WITH THE FIELD

We now consider a particle in an inhomogeneous
magnetic field B. We introduce the coordinates associ-
ated with the field in the same way as in [2], but with
some additions that will be used when introducing
dimensionless variables and analyzing the smallness of
the parameters. Let [L] be the characteristic distance at
which the field variations are essential and [B] be the
characteristic value of |B| in the region under consider-
ation. Then, the characteristic value of the Larmor
frequency equals [ωL] = e[B]/mc. The dimensionless
radius vector, magnetic induction, and time are
introduced as the ratios of the corresponding dimen-
sional quantities [L], [B], and 1/[ωL], respectively. The
dimensionless vectors of the generalized momentum
and vector potential are equal to the ratios of the dimen-
sional vectors and the values of m[ωL][L] and [B][L],
respectively. In what follows, we use the same letters to
denote the dimensionless and dimensional quantities.
In terms of dimensionless variables, the Hamiltonian of
a particle has the form

(2.1)

Let [v] be the characteristic value of the particle
velocity and [RL] = [v]/[ωL] be the characteristic Lar-
mor radius. We will assume now that the magnetic field
is weakly inhomogeneous, i.e., [L] @ [RL]. We intro-
duce the main small parameter of the problem as ε =
[RL]/[L]. As usual, we consider such motions and time
periods that the particle stays in a magnetic field tube

W g13x1 g23x2 x2+ +( ) p||
e

2c
------x1 g12

g11
-------x1 x2– 

 –=

+
xL mω

g11
------------------x1 1

2
--- g11

mω
--------

e
c
-- g12

g11
-------x1 x2– 

  xL–+

× 2J
e
c
-- g11

mω
--------

g12

g11
-------x1 x2– 

  xL–

2

–

+ J

g11

mω
--------

e
c
-- g12

g11
-------x1 x2– 

  xL–

2J
g11

mω
--------

e
c
-- g12

g11
-------x1 x2– 

  xL–

2

–

---------------------------------------------------------------------------------

 
 
 
 
 
 
 

.arctan

H
1
2
--- p A r( )–( )2.=
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with a diameter and length of about [RL] and [L],
respectively.1 In the dimensionless space, the diameter
and the length of this tube are O(ε) and a length of O(1),
respectively. We assume that the curvilinear coordi-
nates Q1, Q2, and Q3 with the following three properties
can be introduced in the vicinity of the tube: (i) each
point in the region at hand is uniquely determined by
these coordinates; (ii) the coordinates Q1 and Q2

describe the field line in the tube, and Q3 is the length
of a line starting from a certain base surface; and (iii)
the vector potential can be written in the form

where ri are the vectors of the basis mutual to ri =
∂r/∂Qi with i = 1, 2, and 3 (such coordinates were
described, e.g., in [2]).

Then, for the Hamiltonian, we obtain 

(2.2)

where gik(Q1, Q2, Q3) = rirk.
We introduce Q1 and Q2 in such a way that Q1,

Q2 = 0 at a certain field line in the tube and Q1, Q2 =
O(ε) everywhere in the tube. The components of the
vector potential are also on the order of ε. Moreover, for
the motion under study, we have the following estimate
for the generalized momenta:

Therefore, we can introduce the new coordinates q1,
q2, and q3 and generalized momenta p1, p2, and p3,
which satisfy the relations Qi = εqi and Pi = εpi. The
valency of this defines the canonical transformation is
1/ε2. The new Hamiltonian takes the form

(2.3)

Here, A1 = –1/2q2 and A2 = 1/2q1 are the vector potential
components, which differ from the quantities in
Eq. (2.2) denoted in the same way by the factor ε, and
gik = gik(εq1, εq2, εq3) are the former components of the
metric tensor, but with Qi = εqi.

In the motion under study, all the canonical vari-
ables (except for q3) and the components of both the
vector potential and of the metric tensor are on the
order of unity. The variable q3 may have large values,
on the order of 1/ε.

3. HAMILTONIAN OF AN UNPERTURBED 
PROBLEM IN THE ACTION–ANGLE VARIABLES

We change from the variables q1, q2, q3, p1, p2, and
p3 to the variables ϕ, yL, z, J, xL, and p|| using the gener-

1 This corresponds to a time interval on the order of ~1/ε (see
below).

A 1/2 Q1r2 Q2r1=( ),=

H
1
2
---gik Pi Ai–( ) Pk Ak–( ),=

RL[ ] v[ ] / ωL[ ] L[ ]∼ RL[ ] / L[ ] ε.= =

H pq( ) 1
2
---gik pi Ai–( ) pk Ak–( ).=
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ating function (1.4) and taking into account that the
coordinates q1, q2, and q3 are dimensionless. The met-
ric tensor components are now the functions of the
coordinates. Then, we obtain

(3.1)

In the dimensionless coordinates, we have ω = B.
It follows from the definition of Q3 that B = Br3. On the
other hand, due to the properties of the coordinates
used, the equality B = r1 × r2 is valid. Since r1 × r2 =

(1/ )r3, where gik is the determinant of the matrix

{gik}, we have ω = 1/ .

The old and the new variables are related to each
other according to the following formulas: 

(3.2)

After differentiation, we obtain the second group of
relationships in terms of ϕ and yL from Eqs. (3.2):

W g13q1 g23q2 q3+ +( ) p||=
1
2
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  xL–

2

–

----------------------------------------------------------------------------

 
 
 
 
 
 
 

.arctan

g

g

ϕ ∂W
∂J
--------

g11

ω
-------

g12

g11
-------q1 q2– 

  xL–

2J
g11

ω
-------

g12

g11
-------q1 q2– 

  xL–

2

–

----------------------------------------------------------------------------,arctan≡=

yL
∂W
∂xL

-------- ω
g11
-------q1≡=

– 2J
g11

ω
-------

g12

g11
-------q1 q2– 

  xL–– ,

z
∂W
∂p||
-------- g13q1 g23q2 q3.+ +≡=

pk
∂W

∂qk
-------- pk0 pk1+≡ pk0

∂g13

∂qk
---------- p||q1

1 ∂g23

∂qk
---------- p||q

2+ += =
(3.3)

Here, expressions for pk0 are the result of the differenti-
ation of W without taking into account the dependence
of the metric coefficients on εq1, εq2, and εq3:

(3.4)

To get the Hamiltonian in the new variables, it is
necessary to represent the old variables in terms of the
new variables. In the following, we obtain the Hamilto-
nian correct to terms on the order of ε. Therefore, the
expressions for the old variables are derived with the
same accuracy. From Eqs. (3.2), we have 

(3.5)

It follows from this formula that both the z coordi-
nate and q3 are large. Hence, ω can be written with the
prescribed accuracy as follows:

(3.6)

Here, the zero subscript means the substitutions q1 =
q2 = 0 and εq3 = εz. In addition, the following notation
is used:

(3.7)

We will show below that it is sufficient to solve
Eqs. (3.2) only partially with respect to q1 and q2, rep-
resenting q1 and q2 by the formulas

–
q1

2
----- ∂

∂qk
--------g12

g11
------- 

  g11

ω
------- 2J ϕ yL+cos–( )

– ω
g11
-------

∂
∂qk
-------- g11

ω
-------

 
 
 

xLyL 2J ϕ ϕsincos–[ ] .

p10
1
2
--- ω

g11
------- 2J ϕ xL+sin–( )=

+
1
2
--- g12

g11ω
--------------- 2J ϕ yL–cos( ) g13 p||,+

p20
1
2
--- g11

ω
------- 2J ϕcos yL–( )– g23 p||,+=

p30 p||.=

q3 z g13q1– g23q2.–=

ω εq1 εq2 εq3,,( ) ω 0 0 εq3, ,( )=

+ ε ∂ω
∂ εq1( )
---------------- 

 
0

q1 ε ∂ω
∂ εq2( )
---------------- 

 
0

q2+ ω 0 0 εz, ,( )=

+ ε ∂ω
∂ εq1( )
--------------- g13

∂ω
∂ εq2( )
---------------– 

 
0

q1 ∂ω
∂ εq2( )
--------------- g23

∂ω
∂ εq3( )
---------------– 

  q2+

=  ω0 ε ω( )1q1 ω( )2q2+( ).+

ω( )i
∂ω

∂ εqi( )
--------------- gi3

∂ω
∂ εq3( )
----------------– 

 
0

; i 1 2.,= =

q1 g11

ω
------- 2J ϕ yL+cos( ),=
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(3.8)

For the same reason, we do not need to exclude q1,
q2, and q3 from the formulas for pi0. The quantities pi1
in Eqs. (3.2) are on the order of ε, because they contain
the derivatives of the metric tensor components with
respect to qi. Therefore, to calculate pi1, we can substi-
tute the equalities q1 = q2 = 0 and εq3 = εz into gik, gik,
and their derivatives with respect to the coordinates and
take q1 and q2 from Eqs. (3.8) to calculate g11 and other
quantities with the same accuracy.

Now, we will derive the Hamiltonian in the first-
order approximation. Let us substitute the above for-
mulas into expression (2.3). We get

(3.9)

Using A1 = –1/2q2 and A2 = 1/2q1, we insert relation-
ships (3.8) into the first term on the right hand side of
Eq. (3.9). Then, the resulting expression is transformed
in the same way as for the motion in a homogeneous
field. The coordinate dependence of the metric tensor
components does not change the procedure. As a result,
we obtain

(3.10)

It is sufficient to use formulas (3.6) to extract the
large term and the term on the order of ε in expression
(3.10). When calculating the second (small) term on the
right hand side of Eq. (3.9), only the large terms must
be taken into account in the expressions for q1, q2, qik,
pk0, and Ak. Finally, we have

(3.11)

q2 g12

g11ω
--------------- 2J ϕ yL+cos( )=

– ω
g11
------- 2J ϕsin xL+( ).

H
1
2
---gik pi0 pi1 Ai–+( ) pk0 pk1 Ak–+( )=

=  
1
2
---gik pi0 Ai–( ) pk0 Ak–( ) gik pi1 pk0 Ak–( ).+

1
2
---gik pi0 Ai–( ) pk0 Ak–( ) ωJ

p||
2

2
-----.+=

H H0 εH1+ ω0J
p||

2

2
-----+= =

+ ε p||
2 xLF1 yLF2+( ) p||F3 p|| yL

2 J–( )F4+ +[

+ p||xLyLF5 yLJF6 xLJF7+ +

+ p||
2F1 p||xLF9 p||yLF8 yL

2 F10+ + +(

+ xLyLF11 JF12 ) 2J ϕ p||
2F2 p||yLF13+(+sin+

+ p||xLF14 yL
2 F15 xLyLF16 JF17 ) 2J ϕcos+ + +

+ p||JF18 2ϕ p||JF19 2ϕcos+sin

+ J 2JF20 3ϕ J 2JF21 3ϕ ] .cos+sin
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Here, the following notation is used for the functions
of εz:

F1
ω
g11
-------

∂g23

∂ εq3( )
---------------- 

 
0

,–=

F2
g11

ω
------- 

 
0

∂g13

∂ εq3( )
----------------

g12∂g23

g11∂ εq3( )
-----------------------+

 
 
 

0

,=

F3 ω0
∂g23

∂ εq1( )
----------------

∂g23

∂ εq2( )
----------------– g23 g13–( )

∂g13

∂ εq3( )
----------------+ 

 
0

,=

F4
1
2
--- g11

ω
------- 

 
0

∂
∂ εq3( )
----------------g12

g11
------- 

 
0

,–=

F5
ω
g11
------- 

 
0

∂
∂ εq3( )
---------------- g11

ω
-------

 
 
 

0

,–=

F6 ω( )1
g11

ω
------- 

 
0

ω( )2
g12

g11ω
---------------

 
 
 

0

,+=

F7 ω( )2
ω
g11
------- 

 
0

,–=

F8 g11 ∂g13

∂ εq1( )
----------------

g12

g11
-------

∂g23

∂ εq1( )
----------------+ 

 –=

+ g12 ∂g13

∂ εq2( )
----------------

g12

g11
-------

∂g23

∂ εq2( )
----------------+ 

 

+ g13 ∂g13

∂ εq3( )
----------------

g12

g11
-------

∂g23

∂ εq3( )
----------------+ 

 
0

,

F9 ω0
∂g23

∂ εq1( )
----------------

g12

g11
-------

∂g23

∂ εq3( )
---------------- g13

g11
-------

∂g23

∂ εq3( )
----------------+ + 

 
0

,=

F10
1
2
--- g11

ω
------- 

 
0

g11 ∂
∂ εq1( )
---------------- g12

g11
-------+ 

 

=

+ g12 ∂
∂ εq3( )
----------------g12

g11
------- 

  g13 ∂
∂ εq3( )
----------------g12

g11
------- 

 



0

,+

F11 ω0
∂

∂ εq1( )
---------------- g11

ω
-------

 
 
 



 g12

g11
-------+=

× ∂
∂ εq2( )
---------------- g11

ω
-------

 
 
  g13

g11
------- ∂

∂ εq3( )
---------------- g11

ω
-------

 
 
 





0

,+



18 TARASOV et al.
4. APPLICATION OF THE AVERAGING METHOD 
AND THE INTEGRATION OF THE AVERAGED 

EQUATIONS

Let us consider the Hamiltonian equations corre-
sponding to the Hamiltonian (3.11). The small part of
this Hamiltonian is the following trigonometric polyno-
mial of ϕ:

(4.1)

Up to terms on the order of ε, the Hamiltonian equa-
tions take the form

(4.2)

F13 ω0
∂g13

∂ εq2( )
----------------

g12

g11
-------

∂g23

∂ εq2( )
----------------+

–=

– g23

∂g13

∂ εq3( )
----------------

g23g12

g11
--------------

∂g23

∂ εq3( )
----------------


0

,–

F14
ω
g11
------- 

 
0

∂g23

∂ εq2( )
----------------– g23

∂g23

∂ εq3( )
----------------+ 

 
0

,=

F15
1
2
--- g11

ω
------- 

 
0

∂
∂ εq2( )
----------------g12

g11
------- 

 – g23
∂

∂ εq3( )
----------------g12

g11
------- 

 + 
 

0

,=

F16
ω
g11
------- 

 
0

∂
∂ εq2( )
---------------- g11

ω
-------

 
 
 

g23
∂

∂ εq3( )
---------------- g11

ω
-------

 
 
 

+–
 
 
 

0

,=

F12 F7 F20, F17+
1
2
--- F11 3F15+( )– F6,+= =

F18 F8 F14 F5, F19–+ F13 F9– F4,–= =

F20
1
2
--- F10 F16+( ), F21–

1
2
--- F11 F15–( ).= =

H1 H10=

+ H1k kϕcos H1k* kϕsin+( )
k 1=

3

∑ H10 H11.+=

ϕ̇ ∂H
∂J
------- ω0 ε

∂ H10 H11+( )
∂J

-------------------------------,+= =

J̇
∂H
∂ϕ
-------– ε

∂H11

∂ϕ
-----------,–= =

ż
∂H
∂p||
-------- p|| ε

∂ H10 H11+( )
∂p||

-------------------------------,+= =

ṗ||
∂H
∂z
-------– εJ

∂ω0

∂ εz( )
-------------,–= =

ẏL
∂H
∂xL

-------- ε
∂ H10 H11+( )

∂xL

-------------------------------,= =

ẋL
∂H
∂yL

--------– ε
∂ H10 H11+( )

∂yL

-------------------------------.–= =
It is important that the z variable that enters the
Hamiltonian only through the product εz. Therefore, in
the expression for ∂H/∂z, it is sufficient to keep only the
term ∂H0/∂z. Moreover, one may introduce the new

variable ζ = εz, which satisfies the equation  = εp||
with the prescribed accuracy. Taking this equation
instead of the third equation in set (4.2), we obtain the
set of equations with one fast phase ϕ and thus, we can
apply the averaging method. We will use the same nota-
tion for the slow variables and their evolutionary com-
ponents, which is acceptable in the first-order approxi-
mation. The averaged equations are obtained by

neglecting the terms depending on  in the last four
equations in set (4.2). Then, these equations take the
form

(4.3)

The averaged equation for the variable J is  = 0.
Hence, the equality J = J(0) is valid up to terms on the
order of ε at times on the order of 1/ε. This means that
J is an adiabatic invariant (this fact must be proven in
the case of non-Hamiltonian equations; see, for exam-
ple, [3]). Thus, J = J(0) = const in Eqs. (4.3).

Now, we will show that Eqs. (4.3) are integrable in
quadratures. The first two equations have an integral
describing the conservation law for the energy of the
particle correct to the large terms

(4.4)

where h0 = const. Using this formula, we can express p||
in terms of ζ:

(4.5)

Substituting expression (4.5) into the first equation
in set (4.3), we obtain the quadrature

(4.6)

Inverting expression (4.6), we can find ζ(τ) and
then, p||(τ). As a result, we arrive at a first-order linear
equation with known coefficients, which is obviously
integrable in quadratures. After yL(τ) is found, we can
obtain xL(τ) by solving another first-order linear equa-
tion with known coefficients. Thus, the problem of par-
ticle motion in a weakly inhomogeneous magnetic field
is solved in the first-order approximation. It turns out
that solving the problem does not require additional

ζ̇

J̇

ζ̇ εp||,=

ṗ|| εJ
∂ω0

∂ζ
---------,–=

ẏL ε p||F5yL p||
2F1 JF7+ +( ),=

ẋL ε p||F5xL 2 p||F4yL p||
2F2 JF6+ + +( ).–=

J̇

1
2
--- p||

2 Jω0+ h0,=

p|| 2 h0 Jω0–( ).=

dξ
2 h Jω0–( )

------------------------------

ζ0

ζ

∫ τ τ0, τ– εt.= =
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assumptions on the existence of the longitudinal and
transverse adiabatic invariants.

However, the solution of a particular problem may
encounter difficulties related to introducing the use of
the coordinates Q1, Q2, and Q3 and calculating the
above quadratures. The first difficulty is overcome if we
know two integrals of the field line equations [2]. In any
case, the calculation of geometric characteristics is
highly simplified by considering a thin field line tube.
The solution of the linear equations and the calculation
of the quadratures can be simplified if we take ζ as a
new variable in set (4.3), find p||(ζ) from expression
(4.5), and solve the linear equations for yL(ζ) and xL(ζ).
Then, the quadratures determining the time dependence
then must be calculated only at the end of the solution
procedure.

It is also of interest (see, e.g., [2, 3]) to consider the
case in which, in addition to the Lorentz force, an order
of magnitude weaker the Coulomb force caused by a
weakly inhomogeneous electric field acts on a particle.
In this case, Hamiltonian (2.3) takes the form

(4.7)

where U is proportional to the scalar potential.

After the variables are changed in (3.11), the follow-
ing additional term will appear in expression (3.11)

(4.8)

Here,

(4.9)

H
1
2
---gik pi Ai–( ) pk Ak–( )= U εq1 εq2 εq3, ,( ),–

U0– ε U( )1
g11

ω0
------- 2J ϕcos yL+( )– ε U( )2

g12

g11ω0

-----------------+

× 2J ϕ yL+cos( )
ω0

g11
------- 2J ϕ xL+sin( )– .

U0 U 0 0 εz, ,( ),=

U( )i
∂U

∂ εqi( )
--------------- gi3

∂U

∂ εq3( )
----------------– 

 
0

,=
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and the other designation is the same as in Eqs. (3.6)
and (3.7).

After averaging the Hamiltonian equations, in the
first-order approximation, instead of set (4.3), we
obtain:

(4.10)

where

(4.11)

The first two equations in set (4.10) have the integral

(4.12)

With the help of this integral, the relation between ζ
and τ can be derived in a quadratures form. The last two
equations in set (4.10) differ from the corresponding
equations in set (4.3) only by the terms G1(ζ) and G2(ζ),
and can be integrated as described above.
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∂ω0
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Abstract—On the assumption that condensed matter at high pressures and temperatures behaves as an ideal
gas, a functional dependence of the adiabatic exponent on the Grüneisen constant was obtained, as well as an
equation of state that relates the velocity of the shock front and the mass velocity in the shock wave. The cal-
culated estimates of the rate of unloading for cadmium, tin, aluminum, and iron are given as functions of the
mass velocities. A comparison with experimental data shows that such an equation of state sufficiently well
describes the behavior of the substance and can be used instead of the conventional semiempirical dependences.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In studies of high-velocity shock effects and in the
related investigations of the equation of state of sub-
stances at high-intensity loading (shock loading, explo-
sion on a surface, effect of high-power radiation
fluxes), as well as in studies of extremal states, it is
important to know the exponent of the adiabat of the
vapors upon subsequent expansion. The dynamical
methods of the investigation of properties permit one to
determine only the pressure p, density ρ, and internal
energy as functions of the pressure and volume of the
system. But this information is insufficient to obtain the
equation of state, since it does not contain information
on thermodynamic quantities such as the temperature
and entropy of the shock-compressed substance. In
some cases, the measurement of these quantities by
optical methods is impossible. However, the entropy
and the temperature can be determined from the param-
eters of the final state of the substance upon its isen-
tropic expansion [1], if the adiabatic exponent is
known. In this connection, the success of theoretical
studies of expansion of the vapors of solids is deter-
mined to a great extent by knowledge of the adiabatic
exponent γ.

In addition, there exist theoretical dependences [2, 3]
that in limiting cases link the shock-front velocity D
and the mass velocity u if the adiabatic exponent is
known. In the model where the pressures and densities
are determined from the corresponding equations of
conservation, they are used as equations of state. How-
ever, theoretical dependences by no means always sat-
isfactorily describe the real behavior of a substance;
therefore, as a rule, the numerically calculated or exper-
imentally obtained curves are approximated by this or
that technique [2, 4]. In this connection, it is of interest
to find and substantiate an adequate theoretical depen-
dence for D(u, γ). In this work, we solved the problem
of determining the adiabatic exponent as a function of
1063-7842/01/4601- $21.00 © 0020
the Grüneisen constant and the D(u, γ) dependence that
agrees with experimental results.

FORMULATION OF PRINCIPAL 
DEPENDENCES

Slater, Landau, and Stanyukovich used the relation-
ship between the Grüneisen constant and the function
of cold compression [3]. Since the Grüneisen constant
is known for many substances, the dependences given
in [3] are constructive and can be used in numerous
applications. In [2–4], when considering two-dimen-
sional self-similar model problems of lumped and fila-
mentary shocks, the adiabatic and self-similarity expo-
nents were determined in combination from the results
of a computational experiment. But in order to deter-
mine the adiabatic exponent of a gas cloud, unlike the
problem of investigating equation of state under high-
intensity dynamical loads considered in [3], one should
study not only the shock adiabat, but also the expansion
isentrope. Since, because of the isentropic character of
the process, the entropy in the unloading waves is equal
to that of the shocked (compressed) state, we are able
to obtain, assuming that the adiabatic exponent remains
unaltered and based on the study of the equation of
motion of the polytropic gas, a functional dependence
between the adiabatic exponent and the degree of com-
pression.

The results of experiments carried out in [4–8] con-
firm that at terapascal pressures (greater than 100–
200 Mbar) the individuality of a substance can be char-
acterized by an electron analog of the Grüneisen con-
stant. In the range of extreme pressures (extremal states
of the substance), the pressure dependence exhibits an
asymptotic behavior and the relationship between the
adiabatic exponent and the Grüneisen constant has the
form β = γ – 1 [3]. However, in the range of pressures
of about several megabars, one should also know the
physical quantities that primarily characterize the indi-
2001 MAIK “Nauka/Interperiodica”
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vidual properties of the substance. The adiabatic expan-
sion after the passage of strong shock waves drives the
substance into a state that is characterized by a wide
spectrum of its own (intrinsic only in it) properties. The
near-critical states of normal metals (the high-tempera-
ture portion of their boiling curves) have been intensely
studied both experimentally and theoretically. In such
investigations, the specific features of the processes of
boiling and condensation upon adiabatic expansion are
very informative and are of great importance.

Sometimes, the use of a certain “effective” value
of the adiabatic exponent γ ≈ 2 up to pressures of 2–
4 Mbar upon the investigation of problems of spalling
strength of structural materials under the effect of high-
power radiation fluxes and dynamical factors leads to
useful conclusions. However, in the region of high tem-
peratures and pressures, in which the condensed sub-
stance behaves as an ideal gas, such an approach may
be unjustified. This is related to the fact that the value
of the slope of the shock adiabat, λ = 3/2, usually
assumed in calculations is measured in experiments at
relatively small amplitudes, i.e., under conditions
where the mass velocity u is significantly smaller than
the sound velocity c0(u ! c0). Therefore, if the initial
slope is λ = 3/2, this does not mean that at large degrees
of compression and heating the adiabatic exponent will
also be equal to γ = 2.

The problem of finding the dependence for a pres-
sure range of several megabars is solved on the basis of
studying the equation of motion of a polytropic gas

(1)

where x and t are the coordinates and time and u is the
velocity of the substance.

Its solution can easily be found in the form

(2)

where H ≠ k are the Heaviside functions as they are
understood in the new theory of generalized functions
[9] and p0, ρ0, u0, p1, ρ1, and u1 are the values of the
unperturbed (subscript “0”) pressure, density, and
velocity of the substance and those observed behind the
shock-wave front (subscript “1”), respectively.

Let the pressure p change in the vicinity of the point
of intersection of the wave ray, shock adiabat, and
expansion isentrope in the p–u diagram in such a man-
ner that the coefficient in front of ux in (1) satisfies the
equality

(3)

where δ = ρ1/ρ0.

pt u px γpux+ + 0,=

u u1 u0–( )H x Dt–( ) u0,+=

p p1 p0–( )k x Dt–( ) p0,+=

γp γ1 p1 γδ 1– p1 const,= = =
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
Then, after the substitution of (2) into (1), we obtain

However, it is known that

(4)

Therefore, we have

(5)

After integration of the left-hand and right-hand
sides of equality (5), we obtain

(6)

Here, the integration constant c is calculated from the
definition of the Heaviside function. If its representa-
tive is denoted R(x, ε), where ε is an infinitely small
positive quantity, then we have

and it follows from (6) that

(7)

Here, A(ε) is a certain interval. Similarly, if ∀ε  > 0, and
∃ A(ε) and R(ε, x) = 1 at x > A(ε), then expression (6)
transforms into

(8)

or

(9)

It is known that the degree of compression is related
to the Grüneisen constant as follows [5]:

Since p1 @ p0, then at p1 @ 1, with allowance for this

D u0–( ) u1 u0–( )H–[ ]k'

=  
u1 u0–
p1 p0–
-----------------γδ 1– p1H', p1 p.≠

D u0–( ) u1 u0– ρ0

u1 u0–
ρ1 ρ0–
----------------+=

=  1
ρ0

ρ1 ρ0–
----------------+ 

  u1 u0–( ), ρ1 ρ0.≠

k'
γδ 1– p1–

p1 p0–
------------------- H'

H 1
ρ0

ρ1 ρ0–
----------------+ 

 –

------------------------------------------.=

k
γδ 1– p1–

p1 p0–
-------------------

ρ1

ρ1 ρ0–
---------------- H– c.+ln=

ε∀ 0, A ε( ) R ε x,( )∃> 0 at x A ε( ),–<=

c
γδ 1– p1

p1 p0–
----------------- ρ1

ρ1 ρ0–
---------------- .ln=

γδ 1– p1–
p1 p0–

-------------------
ρ1

ρ1 ρ0–
---------------- 1–ln

+
γp1

p1 p0–
----------------- ρ1

ρ1 ρ0–
----------------ln 1=

p1 p0–
γp1

-----------------δ ρ1

ρ0
----- .ln=

δ 1
2
β
---.+=



22 KOKHANENKO, LEVCHENKO
relation and for (9), we obtain

(10)

If we replace restriction (3) by more rigid conditions
γp = γp1 = const and perform transformations analo-
gous to those considered above, we obtain a new
expression for the adiabatic exponent:

(11)

The corresponding expression (9) will now differ
from the written one in that in its left-hand side the
degree of compression is equal to unity.

From (11), with allowance for this modified expres-
sion (9), we now can easily obtain, using the continuity
equation, a functional dependence of the shock-front
velocity on the mass velocity in the form

(12)

It is known that the shock-front parameters are
expressed through the shock-front velocity with the
help of the limiting formulas for a strong shock wave
[2]. In particular, the velocity behind the shock front is
related to D by the relationship [2, 3]

(13)

We can show that the dependence (12) with adia-
batic exponent (11) is equivalent to the well-known
expression (12) with γ calculated for an ideal gas with
a constant heat capacity; i.e., γ = β + 1.

The problem of deriving the dependence of the front
velocity on the mass velocity corresponding to (3) and

γ
1 2

β
---+

1 2
β
---+ln

---------------------.=

γ 1

1 2
β
---+ln

---------------------.=
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D
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------------u.=
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Figure.
(10) is more complex. Designating u/D = α, we obtain
from (10)

Now, approximating this dependence by a parabola
in the range 0.4 < α < 0.5 of practical interest, we obtain

(14)

The functional dependences (10)–(12) and (14) rep-
resent a solution to the problem stated above.

COMPARISON WITH EXPERIMENT

In order to confirm the adequacy of these depen-
dences, we performed a comparison with the experi-
mental results given in [1]. From the relations obtained,
we calculated the velocities upon unloading for Cd, Sn,
Al, and Fe; similar calculations were also carried out
for the limiting relation (13) and for the dependence

which is characteristic of the adiabatic expansion of a
gas sphere into vacuum.

The experimental results were approximated by
parabolas. Since the latter may be of independent inter-
est, they are given below:

 for Cd,

 for Sn, and

 for Al.
The parabola for Fe was taken from [10]. In the fig-

ure, the D(u) dependences for aluminum are given. The
subscripts 1–4 at D mean the dependences for the adia-
batic expansion of a gas sphere given by relations (12),
(13), and (14) and by the experimental curve for the
velocity of expansion [1], respectively. Analogous
graphs were also constructed for the other metals that
were studied (Cd, Sn, Fe); they are analogous and
therefore are not given here.

It is seen from the graphs that the experimental
curve D4(u) obtained in the unloading waves is close to
D3(u) plotted from the theoretical relation (14) with an
adiabatic exponent calculated by (10).

Numerical estimates also showed that the value γ =
1.33, which is assumed in calculations [2] with allow-
ance for ionization, yields for Cd, Sn, Al, and Fe a sig-
nificant (by a factor of about 2, see figure) difference in
the velocities of isentropic expansion D2(u) as com-
pared to the results of calculations (individually for
each metal) by formulas (10) and (14). The discrepan-
cies between the velocity of isentropic expansion in the

γ 1

1 α–( ) 1
1 α–
------------ln

------------------------------------.=

D
u

0.6 0.5 0.32γ 0.90–( )0.5–
-------------------------------------------------------------.=

D u
2γ

γ 1–
-----------,=

D 1.73 0.12u 0.57u2+ +=

D 0.81 1.83u 0.24u2+ +=

D 0.06 1.75u 0.11u2+ +=
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limiting case of γ = 1.67 [2, 7, 8] and the experiment [1]
are less significant and are different for different met-
als. Note that these discrepancies correlate with the
binding energies. The straight line D1(u) for the adiabatic
expansion of the gas sphere upon the limiting value of
γ = 1.67 is close to the curve obtained from (14).

Taking into account the model character of relations
(10)–(12) and (14), the obtained degree of coincidence
of the velocities in the unloading waves can be consid-
ered satisfactory. Therefore, the model of the poly-
tropic gas on the assumption that the change in the
product of the adiabatic exponent and pressure is pro-
portional to the degree of compression describes the
equation of state of structural materials sufficiently
well in the range of pressures of up to several megabars.
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Abstract—The phase diagram of the (Na,Li,Cd0.5)NbO3 ternary system is refined. The electrical properties of
solid solutions over a broad range of the component concentrations were studied. The compositions promising
for high-temperature transducers were obtained. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In this paper, we refine information on the phase
transitions and physical properties of the
(Na,Li,Cd0.5)NbO3 system studied in [1]. The refined
phase diagram of this ternary system enabled a more
detailed interpretation of its properties. Similar to [1],
we considered six cross sections with a content of the z
component, Cd0.5NbO3, from 5 to 20 mol %. In each of
the sections, we synthesized compounds corresponding
to the y sections with 1–15 mol % of LiNbO3. Synthesis
and sintering conditions were presented in [1].

RESULTS AND DISCUSSION

We studied the phase diagram region adjacent to the
NaNbO3 vertex (Fig. 1). Thin lines depict the y and z
sections, and thick lines represent interfaces between
regions of different symmetry (single-, two-, and three-
phase).

The phase diagram of the ternary system is consis-
tent with those of the associated binary systems. In
(100 – z)NaNbO3

 – zCd0.5NbO3 [2], solid solutions (SS)
form up to z = 25. In the range of 0 < z < 15, SS have
rhombic symmetry. The unit cell parameters are related
to the parameters of the perovskite monoclinic cell a, b,
and β through the following expressions: A = 2acosβ/2,
B = 4b, and C = 2asinβ/2 (the M4 phase). At z ≅ 15, the
multiplicity factor for B changes: B = 2b (the M2

phase). In the range of 19 < z ≤ 25, SS have tetragonal
symmetry (the T phase); we failed to reveal superstruc-
tures here because of the very weak reflections from
impurity phases in the X-ray diffraction patterns. The
1063-7842/01/4601- $21.00 © 20024
M2 and T phases are separated by the broad region of
their coexistence.

In the (100 – y)NaNbO3 – yLiNbO3 system [3], as y
grows, SS of different symmetry arise in the following
sequence: rhombic M4 (0 < y < 3.5)  rhombic M2
(4 ≤ y ≤ 10.5)  rhombohedral Rh (12 ≤ y ≤ 12.5) 
rhombic M2 (12.5 < y < 14). The monophase regions are
separated by regions of phase coexistence. With a
further increase in y, a broad heterogeneous region is
observed where, along with the NaNbO3-based SS,
LiNbO3 is present. Accordingly, the area adjacent to the
NaNbO3 vertex of the ternary phase diagram is divided
into several regions of SS crystallization: broad single-
phase M2, M4, and T regions; narrow single-phase Rh
and M2 regions; broad two-phase M2 + Rh, M2 + T, and
T + Rh regions; narrow two-phase M2 + M4 and Rh + M2
regions; and a three-phase M2 + T + Rh region.

We considered the uniform deformation parameter δ
[4] and the electrical parameters of the SS in the y and
z sections. The electrical parameters of different ferro-
electric SS containing morphotropic regions (MRs) are
known [5–7] to exhibit extrema that are located in the
vicinity of MRs and correlate with the structure param-
eters, in particular, with δ.

In this system, sections crossing the greatest number
of phases and MRs have been studied most extensively.
Among the z sections, such is the cross section z = 5. It
goes through three phases: M4, M2, and Rh; and three
MRs: the narrow two-phase MR1 (M2 + M4), broad
three-phase MR2 (M2 + T + Rh), and very narrow two-
phase MR3 (Rh + M2) (Figs. 2a, 2b).

Figure 2a presents the concentration dependences of

δ, the relative permittivities ε/ε0 and /ε0, the electro-ε33
T
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Fig. 1. Phase diagram of the ternary (Na,Li,Cd0.5)NbO3 system (1, heterogeneous region).
mechanical coupling coefficient Kp, and the piezoelec-
tric parameters d31 and g31. Figure 2b shows these
dependences for the dielectric loss tangent , the
mechanical Q factor QM, the sound velocity VR, and

Young’s modulus . It is evident from Fig. 2a that the
permittivities, as well as Kp and d31, exhibit two max-
ima: the higher maxima approach the center of the
three-phase MR2, and the lower ones are located at the
right edge of the narrow MR1. The positions of the lat-
ter maxima with respect to the MR1 cannot be consid-
ered accurate, since the measurement step was rather
large, 2 mol %, whereas the MR1 width is about 1 mol %.
Note also that all of the above-mentioned parameters
have minima within the M2 phase.

The maxima of the piezoelectric parameter g31,
which is known to be proportional to the residual polar-
ization Pr, are shifted to the left of both MRs toward the
M2 and M4 phases (in the M4 phase, this maximum is
incomplete due to a lack of appropriate samples). Such
positions of the g31 maxima are typical of ferroelectric
systems [5, 6].

The above dependences of the electrical parameters
correlate with the run of δ, which has a minimum in
both MRs and peaks in the M2 phase.1

It is worth noting that the higher maximum of /ε0

in Fig. 2a is not beyond the right edge of the broad

1 The effect of the MR3 on the concentration dependences of the
parameters is hard to include, because this region is extremely
narrow.

δtan

Y11
E

ε33
T

YSICS      Vol. 46      No. 1      2001
MR2, which is common [5, 6], but lies within it. The
same situation was observed for several cross sections
of the (Na,Li,Pb0.5)NbO3 system [7]. This fact was
attributed [7], in particular, to the coexistence of the M
and Rh phases, resulting in a considerable increase in
the number N of possible directions of the spontaneous
polarization (N = 8(Rh) + 12(M) = 20) compared with
that in the monophase regions. (In PZT-based systems
[5, 6], this number is considerably smaller, N = 8(Rh) +
6(T) = 14, and virtually does not affect the position of

the /ε0 maximum.) In the three-phase MR2, N is still
greater, N = 8(Rh) + 12(M) + 6(T) = 26, which mark-
edly increases the orientation part of the permittivity

inside the MR and affects the position of ε/ε0 and /ε0

peaks. This in turn influences the maxima of Kp and d31,
which are much less affected by g31 (in addition, the g31

values are small in this system). The same is also
observed in the narrow MR1, where N = 12(M2) +

12(M4) = 24 and the maximum of /ε0 has a greater
effect on Kp and d31 than that of g31.

The concentration dependences of , QM, VR,

and  (Fig. 2b) can be explained in terms of SS fer-
roelectric elasticity, which characterizes the domain
stability to external actions [5]. According to [5], with
a growth of the ferroelectric elasticity, δ, QM, VR, and

 increase, while /ε0 and tanδ decrease. That is

the reason why the maxima and minima of /ε0 and
tanδ are close to each other (Fig. 2b), whereas the max-

ε33
T

ε33
T

ε33
T
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Fig. 2. Structure and electrical parameters of (Na,Li,Cd0.5)NbO3 solid solutions versus LiNbO3 content in the cross section z = 5 mol %
Cd0.5NbO3 (1, heterogeneous region).
ima of QM, VR, and  lie near the minimum of /ε0

(and vice versa).
Among the y sections, the most distinct variations of

the parameters occur for y = 4 (Figs. 3a, 3b). This sec-

Y11
E ε33

T

Parameters of (Na,Li,Cd0.5)NbO3 compounds

Compound 
no.

Tk, 
°C /ε0 Kp

g31, 
mV m/N QM

VR, 
km/s

1 365 195 0.13 5.1 670 5.8
2 395 1070 0.28 6.2 225 5.8
3 400 295 0.14 4.4 560 5.6
4 420 520 0.22 5.4 340 5.2
5 430 415 0.18 5.1 560 5.3

ε33
T

tion crosses two phases, M2 and T, and two MRs, the
broad MR1 (T + M2) and narrow MR2 (M4 + M2)
(Fig. 1). In Fig. 3a, the run of the curves near and inside
the broad MR1 is typical of ferroelectric systems [5, 6]:

the incomplete peak of /ε0 is shifted to the MR1 right
edge and the maximum of g31 is shifted to its left edge
(beyond the MR1); Kp and d31 peak at the center of the
MR. As the edge of the narrow MR2 is approached, the

parameters ε/ε0, /ε0, Kp, and d31 increase. Such
behavior correlates with the run of the δ curve.

The parameters QM, VR, and  (Fig. 3b) vary in

the direction opposite to ε/ε0 and /ε0 , whereas

ε33
T

ε33
T

Y11
E

ε33
T
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Fig. 3. Structure and electrical parameters of (Na,Li,Cd0.5)NbO3 solid solutions versus Cd0.5NbO3 content in the cross section
y = 4 mol % LiNbO3.
tanδ varies similarly to the permittivities. This is
consistent with the variations of the SS ferroelectric
elasticity.

Our system, like most niobate systems, is of low
density and offers high sound velocity, which makes
them promising for some applications [6]. Of practical
interest also are the high Curie temperature TC

(≥400°C) and the broad range of the permittivity (from
160 to 1000–1200) coupled with good piezoelectric
properties. Such a combination is favorable for their
application in high-temperature transducers operating
at high and medium frequencies. The properties of sev-
eral compounds are listed in the table.
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
CONCLUSION

Precise X-ray diffraction studies of solid solutions
in the (Na,Li,Cd0.5)NbO3 system allowed us to accu-
rately determine the crystallizing phase symmetry,
structural phase transitions, and morphotropic region
morphology.

The electrical properties of the solid solutions were
studied in a wide range of the component concentra-
tions, and their relation to the structure parameters, in
particular, uniform deformation parameter, was set.
Compounds combining a high Curie temperature, a
broad range of the permittivity, and good piezoelectric
parameters were obtained. They are candidates for
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high-temperature transducers operating at high and
medium frequencies.
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Abstract—Evolution of hydrogen from samples of grade 12Kh18N10T austenitic steel that had been electro-
lytically saturated with hydrogen using the interaction with a deuterium plasma with an energy content of
40−60 kJ/pulse is examined. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

When studying samples of austenitic steel
12Kh18N10T after treatment with a deuterium plasma,
anomalously large blisters (with caps to ~1 µm thick)
[1, 2], containing hydrocarbons, including methane,
were observed. Since methane is insoluble in steel, it
behaves as an inert gas until its dissociation tempera-
ture Tdis is reached. Blisters were shown to be destroyed
if the methane pressure at temperatures below Tdis
exceeds the pressure necessary to break blisters. If at
the dissociation temperature the methane pressure in
blisters is insufficient for them to be broken, the blisters
are retained upon further heating.

We suggest a mechanism of the formation of anom-
alously large blisters that were observed experimen-
tally.

When choosing and designing materials that can
serve as candidates for the first wall of fusion reactors,
great attention is given to the problem of the interaction
of hydrogen isotopes with these materials. This is
explained first of all by the ecology requirements
(release of tritium into the environmental atmosphere),
as well as by the danger of losing expensive fuel, which
in turn is determined by the accumulation of tritium in
the materials of the first wall. Therefore, the investiga-
tion of the retention of hydrogen isotopes by structural
materials is a topical problem.

EXPERIMENTAL

The investigation of the kinetics of hydrogen evolu-
tion was performed using a high-vacuum mass-spectro-
scopic device [3] and uniformly heating the samples.
The measurement of hydrogen release was carried out
using continuous pumping of gases with a NORD-100
pump connected to the working volume of the device
through a vacuum pipeline with a throughput of 1.3 l/s
for air and 5.0 l/s for hydrogen. The total pressure in the
working volume was measured by a VIT-1A vacuum
1063-7842/01/4601- $21.00 © 20029
gauge; the partial pressures of gases were measured
using an IPDO-2A mass spectrometer.

The electrolytic saturation of samples with hydro-
gen was performed in boiled distilled water (with an
addition of sulfuric acid to increase the water conduc-
tivity) at a current density of 50 A/m2 for 1 h. With this
regime, no noticeable damage of the surface layer was
observed [4]. Some samples were also saturated with
hydrogen by irradiation with four pulses of deuterium
plasma (40–60 kJ/pulse) [1].

EXPERIMENTAL RESULTS

When structural materials of the first wall of a
fusion reactor are irradiated with fluxes of hydrogen or
deuterium plasma, their surface undergoes strong ero-
sion [5]. At large energy contents in the plasma fluxes,
mainly surface remelting occurs with no blisters
formed. At smaller energy contents, the austenitic steel
samples reveal unbroken anomalously large blisters
with caps ~1 µm thick, which exceeds by an order of
magnitude the range of hydrogen ions of the given
energy [1]. Heating to 870 K, i.e., to a temperature
close to the critical temperature of the destruction of
helium blisters [6], leads only to the development of
new, smaller bubbles without destruction and changing
dimensions of the previously formed ones [7]. It is only
after heating to 1020 K that partial opening of the
domes of the largest blisters occurs, but even at 1300 K,
many blisters remain unbroken [7].

Upon uniform heating of austenitic steel samples
that were electrolytically saturated with hydrogen, the
hydrogen-evolution curves exhibit a single peak corre-
sponding to hydrogen releasing from solid solution, as
was shown in [8, 9]. Figure 1 displays the curves of
thermal desorption of deuterium from steel
12Kh18N10T samples 0.3-mm thick irradiated with
four pulses of deuterium plasma with an energy content
of 40–60 kJ/pulse. The investigation was performed
001 MAIK “Nauka/Interperiodica”
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3−5 days after irradiation. Curve 2 was obtained for a
sample taken from the center of a fuel assembly, where
no blisters were present because of the remelting of the
sample surface. The kinetic curve of hydrogen evolu-
tion obtained for this case completely corresponds to
the kinetics of hydrogen release from a sample that was
uniformly saturated with hydrogen electrolytically
[8, 9]. In curve 1 (obtained using samples from the
periphery of the assembly, where blisters were
observed), two additional peaks are present apart from
the peak related to the diffusional release of deuterium
from solid solution, namely a low-temperature peak at
~500 K and a high-temperature one at ~900 K. These
peaks can be due to the release of hydrogen from blis-
ters, where it can be present in the molecular form or in
the form of chemical compounds, e.g., hydrocarbons.

In order to confirm the above assumptions, we con-
sider the kinetics of the evolution of molecular hydro-
gen from blisters. It was shown in [10, 11] that, for
objects such as blisters, upon their degassing, the
hydrogen concentration in the blister caps decreases
linearly when approaching the surface; i.e., a hydrogen
distribution characteristic of the experiments on hydro-
gen permeability in the regime of a steady-state flow is
established. Therefore, for a hydrogen flux from blis-
ters per unit area of the sample surface, we can write

(1)

where  is the fraction of the surface that is occupied
by blisters, P is the permeability coefficient, E is the
activation energy for the permeability, h is the blister-
cap thickness, and p is the molecular-hydrogen pres-
sure in blisters.

Neglecting the escape of hydrogen from blisters into
the bulk of the sample and knowing the rate of pumping
of the system, we can compute a thermodesorption
curve. The computations of the thermodesorption
curves for the case of linear heating at a rate of 0.3 K/s

I S P/h( ) p S/h( )P0 E/RT–( ) p,exp= =

S

500 700 900
0
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Fig. 1. Variation of the rate of deuterium thermodesorption
in the process of uniform heating of the samples of steel
12Kh18N10T as a function of the heating temperature after
treating with four plasma pulses.
for blisters with caps 0.1 µm thick and the pressure of
gaseous hydrogen of 50 MPa (the maximum possible
gas pressure in blisters [12]) gave the following results.
When the calculations were performed by using the
permeability parameters characteristic of austenitic
steels [13], a curve with a maximum at 320 K was
obtained. In this case, the redissolution of hydrogen
from blisters should occur at room temperature.

Let us write Eq. (1) for the maximum temperature
Tm and for any temperature Tn at the descending or
ascending branches of the peak, where the gas release
is lower than that in the maximum point by a factor
of n:

Here, pm and pn are the pressures of gas in blisters at the
temperatures Tm and Tn, respectively. Dividing one
equation by the other, we obtain the following expres-
sion for the activation energy for the permeability:

Given the blister dimensions and the rate of pump-
ing, the values of pm and pn can be determined from the
area under the corresponding experimental desorption
curves. An estimation of the activation energy made on
the basis of the first peak of the desorption curve
(Fig. 1) yields 0.7 eV, which is close to the values of the
activation energy for the permeability of hydrogen in
austenitic steels [13].

Thus, the first peak in the curve of hydrogen evolu-
tion from austenitic steel samples with blisters can be
explained by the redissolution of molecular hydrogen
evolved from blisters (Fig. 1). This conclusion is cor-
roborated by the results of [14], where it was shown
that in austenitic steels at a temperature of 800 K the
radiation-produced pores do not retain molecular
hydrogen. Therefore, the molecular hydrogen cannot
cause the observed breaking of blisters upon heating [6]
and the appearance of blisters of a new generation.

The high-temperature peak in the curve of hydrogen
evolution from the samples of austenitic steel (Fig. 1) is
possibly related to hydrogen release due to the dissoci-
ation of hydrocarbon compounds that were contained
in blisters. Estimates that were performed in [15] show
that the concentration of hydrogen in the solid solutions
of the steels studied is sufficient for hydrocarbon com-
pounds (of methane, in particular) to be formed in the
blisters. When determining the parameters of the disso-
ciation reaction from the parameters of the high-tem-
perature peak by the technique that was described in
[7], the energy of activation was found to be 2.5 eV,
which is close to the values of the parameters of disso-
ciation of ethylene [16].

The assumption [15, 17] on the formation of hydro-
carbons, of methane in particular, upon the irradiation

Im S/h( )P0 E/RTm–( ) pm,exp=

In Im/n S/h( )P0 E/RTn–( ) pn.exp= =

E R TmTn/Tm Tn–( ) n pn/ pm.ln=
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of metals with hydrogen ions satisfactorily explains the
destruction of blisters and the formation of new (sec-
ondary) blisters in the process of postirradiation heat-
ing. Since methane prior to its dissociation is insoluble
in the metal, it should behave as an inert gas (e.g.,
helium) upon heating. If the methane pressure in blis-
ters at the dissociation temperature is insufficient for
them to be broken, the blisters will be retained upon
further heating up to 1300 K [6].

To check this supposition, we studied the thermal
desorption of gases from samples of austenitic steel
0Kh16N15M3B heated at a rate of 0.3 K/s. The surface
topography was studied before and after heating [1].

To directly determine the composition of the gas,
the effect of breaking of some of the blisters upon heat-
ing was used [6]. Since the occurrence of breaks
depends on the plasma-flux power and, consequently,
on the distance at which the sample is taken from the
fuel assembly studied, it is impossible to predict in
advance samples in which this effect will be maximum;
therefore, a group of blister-containing samples irradi-
ated with three pulses of hydrogen plasma was studied
[6]. The choice of hydrogen plasma in this case is
explained by the fact that, in general, the separation of
CD4 peaks is a more complex problem as compared to
CH4 peaks. The main interference in these experiments
is the presence of water vapor on the surface of the sam-
ples [18], which give a series of peaks hindering the
registration of methane peaks [19].

The corresponding curves of gas evolution are
shown in Fig. 2. The first peak was observed for all
samples. It is likely to be related to the degassing of the
sample surface. The second peak was observed only for
samples in which the blisters broke after heating. An
analysis of the spectra obtained suggests that, at a tem-
perature of ~750 K, methane and a higher temperature
compound of a C2Hx type (to which a peak with a mass
equal to 26 corresponds) evolve associated with blister
destruction.

From the known pumping rate and assuming the
curves of gas evolution corresponding to samples with
undestroyed blisters as representing a background, we
estimated the amount of hydrocarbons that release from
the sample when the blisters are destroyed. The volume
of the blisters destroyed is known from the electron-
microscopic data; based on these data, we determined
the gas pressure in blisters at the instant of blister
destruction and obtained a value of ~100 MPa, which,
according to available estimates [20], is quite sufficient
for the blisters to be broken.

MECHANISM OF ANOMALOUS 
BLISTERING

As was already noted, when irradiating samples of
steel 12Kh18N10T with deuterium plasma, Zholnin
et al. [1] observed the formation of anomalously large
blisters with caps about 1 µm thick, which exceeds the
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
range of hydrogen ions of given energy by more than an
order of magnitude. It was shown in [1] that blister for-
mation occurred at a certain distance from the center of
a target (beam) and the size of the anomalous blisters
decreased away from the center. It was determined that
for a given pulse of hydrogen plasma (with an energy
content of 40–60 kJ/pulse), the center of the sample
was heated to temperatures close to the melting point of
the sample.

It was shown above that the blisters contained
hydrocarbons, in particular methane. We can assume
that the cause of the formation of anomalous blisters is
the appearance at a certain distance from the sample
surface corresponding to the thickness of the blister cap
of conditions favorable for the formation of hydrocar-
bons, i.e., the presence of reactive components (carbon,
hydrogen), temperatures necessary for hydrocarbons to
form (700–1000 K [21–23]), and the presence of poros-
ity. The estimates show that the amount of carbon that
is incorporated into the material from plasma [7] is neg-
ligible compared to the amount of carbon present in
solid solution. Therefore, we can assume that the for-
mation of hydrocarbons occurs due to uniformly dis-
tributed carbon present in solid solution, whose content
in this steel is sufficient for the formation of hydrocar-
bons [15]. Plastic deformation that occurs in a surface
layer of the sample due to thermal stresses that arise
under given actions on the sample, which, possibly, is
the cause of the formation of primary microcracks
(microvoids) at a distance of several microns from the
surface of the sample, should proceed at almost the
same rate [6]. The temperature within this layer of the
sample virtually does not change. Therefore, the only
cause of the formation of hydrocarbons in the region
located at a certain distance from the sample surface is
the nonuniform distribution of hydrogen over the bulk
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Fig. 2. Variation of the rate of deuterium thermodesorption
in the process of uniform heating of the samples of steel
12Kh18N10T as a function of the heating temperature after
treating by three plasma pulses. Dashed lines correspond to
samples with undestroyed blisters; solid lines, to samples
with destroyed blisters; lines 1–3 correspond to masses 16,
15, and 26, respectively.
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of the material. With the given action of plasma pulses
on the sample, the surface of the sample may reach
temperatures above the melting point of the material
studied. In the process of cooling of the sample surface
to temperatures necessary for hydrocarbons to form, a
smearing of the initial profile of the hydrogen distribu-
tion can occur, which will lead to a shift of the zone
with the maximum hydrogen concentration from the
surface deeper into the sample and to the creation of
conditions favorable for the formation of hydrocarbons
at a certain depth exceeding the range of hydrogen ions
of given energies. It is in this region that the most
intense nucleation of hydrocarbons will occur and sub-
sequent blistering will take place.

In order to confirm these assumptions, we per-
formed corresponding estimations. Figure 3 represents
dependences of temperature distribution on the surface
and over the depth of the sample that were calculated
using the technique suggested in [24] for the case of a
semi-infinite body with a thermally isolated boundary.
To simplify the calculations, we assumed that the pulse
(6 µs long) has a rectangular shape and that the heat
emission from the surface can be neglected. With such
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Fig. 3. Temperature distribution over the depth of the sam-
ple. Time after the pulse termination: 1, 0; 2, 2; 3, 10; and 4,
50 µs.

Fig. 4. Hydrogen distribution over the depth of the sample
by the instant at which the surface temperature becomes
favorable for the formation of hydrocarbons.
heat transfer, the increase in the temperature on the
back side of the target is 10 K, which is much smaller
than was observed experimentally. Therefore, it was
supposed that some additional mechanisms are opera-
tive that ensure the absorption of half the heat energy of
plasma without melting of the sample surface [25, 26].
For this case, the calculations of the profile of hydrogen
distribution using the technique described in [7]
showed that, by the instant at which the surface was
cooled to temperatures favorable for the formation of
hydrocarbons, the zone of maximum hydrogen concen-
tration would be located at a depth of about 1 µm
(Fig. 4), which corresponds to the thickness of the caps
of anomalous blisters.

It is natural to expect that, with decreasing energy
content in the plasma flux, which occurs with moving
away from the target center, the zone with the maxi-
mum concentration of hydrogen will shift to a smaller
depth. This will lead to the formation of smaller blis-
ters, which indeed was observed in experiment.

CONCLUSION

Upon the investigation of hydrogen evolution from
samples of austenitic steel 12Kh18N10T treated with a
hydrogen plasma, anomalously large blisters with caps
~1 µm thick that contained hydrocarbons (methane, in
particular) were found to be formed.

In the curve of thermal desorption of hydrogen from
the samples containing blisters, three peaks were
observed. The low-temperature peak (~500 K) was
shown to correspond to the evolution of hydrogen re-
dissolved from blisters, where it was present in the
molecular form. The hydrogen-evolution peak located
at ~700 K corresponds to the release of hydrogen from
solid solution. The high-temperature peak corresponds
to hydrogen release from blisters containing hydrocar-
bons which dissociate under certain conditions.

A mechanism of the formation of anomalous blis-
ters is suggested that consists of the following. Upon
the action of hydrogen plasma, thermal stresses arise in
the surface layer of the sample, which may cause the
initiation of microcracks. During cooling of the sample
surface, at a certain depth under the surface signifi-
cantly exceeding the range of hydrogen ions of a given
energy, conditions arise (microvoids, temperature,
presence of hydrogen and carbon) that are favorable for
the formation of hydrocarbons (methane).

Since methane at temperatures below the tempera-
ture of its dissociation is insoluble in the metal, it will
behave as an inert gas until the temperature of its disso-
ciation Tdis is reached. It was shown that the blisters
become broken if at temperatures below Tdis the pres-
sure in the blisters exceeds the value necessary for their
destruction. If at the dissociation temperature the pres-
sure of methane in blisters is insufficient for them to be
broken, the blisters will be retained upon further heat-
ing.
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
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Abstract—Molecular-dynamic characterization of high-temperature superconductors is discussed. Results
obtained show strong anharmonicity of self-localized high-frequency oscillations of individual atoms. The
localization of these oscillations near certain defects results in the spatial redistribution of the kinetic energy in
the system. By the example of the La–Sr–Cu–O system, it was shown that the presence of the oscillations cor-
relates with the superconductor transition temperature in this compound and causes fluctuations in the phonon
and soliton subsystems. This may be a reason for the occurrence of high-temperature (high-Tc) superconductiv-
ity (HTSC). Calculations are compared with experimental data. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The properties of crystal lattices with nonlinear
atomic interaction have been extensively studied in the
past decade. It has been shown that self-localized
modes with frequencies above the maximum frequency
of a harmonic crystal may appear in these lattices [1, 2].
It has also been demonstrated [2] that, in a one-dimen-
sional nonlinear system, the oscillations are localized
near three atoms. The authors of [3] found that localiza-
tion may occur at two atoms. In addition, they argue
that, in a homogeneous system, localization may
appear at any site of the lattice. The oscillations become
spatially localized when an inhomogeneity is intro-
duced [4]. All the results (both analytical and numeri-
cal) have been obtained largely for one-dimensional
systems. In essence, the dimensionality of the systems
does not have a noticeable effect on oscillation initia-
tion; it only influences the initiation conditions. In
three-dimensional (3D) systems, the conditions are
much more severe and depend on the degree of nonlin-
earity (in LiF, for example, the oscillations are hardly
possible even near the melting point) [5]. According to
[2], such oscillations seem to exist in quantum crystals
and alkaline halogenides.

In nonlinear 3D systems, the lattice dynamics is
difficult to treat analytically. Appropriate analysis,
however, can be performed with a computer experi-
ment using the molecular dynamics method (MDM).
Here, materials of practical value, first of all complex
multicomponent systems, are most interesting.
Among them are HTSCs. The HTSC mechanism is
not yet understood. In particular, the formation of a
superconductor current carrier, i.e., a Cooper pair,
remains unclear. In conventional (low-temperature)
1063-7842/01/4601- $21.00 © 20034
superconductors, these pairs are produced by
electron–lattice (electron–phonon) interaction. Their
appearance shows up in the form of the isotope effect.
Including anharmonicity in HTSC systems makes it
possible to account for the anomalous isotope effect in
them. Such an approach seems to be a promising way
of tackling the problem of high-temperature super-
conductivity.

It has been shown [6–11] that nonlinearity in HTSC
systems may initiate localized oscillations, which inter-
act with lattice imperfections, redistributing the kinetic
energy in the system. As a result, in the stationary state,
the system becomes split into “hot” and “cold” sub-
systems. We assume that, at relatively high average
temperatures, the superconductor current passes
through the cold part.

COMPUTER EXPERIMENT

In this work, we used the MDM based on the numer-
ical solution of the Newton equation for atom motion.
In this case, we must specify a model crystalline grain
and interatomic interaction potentials. The La–Sr–Cu–O
[6–11] and Y–Ba–Cu–O [12] systems have been stud-
ied. Emphasis has been on the former because of its
simpler structure. Therefore, we will consider this sys-
tem in greater detail.

Once the crystallite and the potentials have been
specified, the system is given a chance (within a time
period of 10–12 s) to pass into the stationary state at a
given temperature. If the lattice remains unchanged,
calculations begin. The density of oscillatory states
(OS) G(ω) was computed with the autocorrelation
001 MAIK “Nauka/Interperiodica”
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function [13]:

where γ(τ) = 〈ν i(τ)νi(0)〉/ (0) is the autocorrela-
tion function, νi(τ) is the velocity vector of the ith atom
at a time instant τ, and 〈…〉  means averaging over dif-
ferent time intervals.

The model crystallite consisted of three layers:
La(Sr)–O, Cu–O2, and La(Sr)–O and contained about
2000 atoms. The atoms in the La(Sr)–O layer were rig-
idly fixed, imitating strong cross bonds, and the Cu–O2
layer (responsible for HTSC) contained about
700 mobile atoms. Cyclic boundary conditions were
set along the a and b axes. The interaction potentials
were calculated with the combined technique that uses
the theories of pseudopotential and density functional
under the assumption that all current carriers are con-
centrated within the Cu–O2 layer [14]. They confer
metallic properties on it (the potential depth is
≈0.1 eV). In the transverse direction, the properties are
close to ionic (≈1–10 eV). The Sr–O interaction poten-
tials are especially deep, ≈25 eV, which is 30 times
greater than the La–O potentials and ≈100 times greater
than the Cu–O ones. Therefore, high nonuniformity
appears in the system when Sr is substituted for La.

In the La–Sr–Cu–O systems, the basic peaks (their
positions) of the phonon spectrum in the calculated OS
densities agree well with those found experimentally.
This shows the validity of the potentials and elastic
constants used. The inequality of the kinetic, Ek, and
potential, Ep, energies, i.e., Ek = 2.3Ep both at 70 and
300 K, indicates that the interaction potentials are
anharmonic.

The substitution of Sr impurity atoms for La atoms
in the La2CuO4 lattice excites high-frequency oscilla-
tions (with the energy ≈0.4 eV) of four oxygen atoms in
the Cu–O2 layer near Sr atoms [6]. At Sr concentrations
up to x = 0.25, the oscillations redistribute the kinetic
energy of atoms in the system to produce “hot” centers
(of size 10 Å) and a “cold” matrix. In the model system
Sr2CoO4 (the La(Sr)–O plane is uniform), the oscilla-
tions are not localized and the space redistribution of
the kinetic energy does not occur. Excitations appear
equiprobably at any site on the Cu–O2 plane. The local-
ized high-frequency (LHF) oscillations originate from
the specific Sr–O potential. In the model, a decrease in
the depth of this potential shifts the peak toward lower
energies and its increase causes the peak to move to
higher energies.

The autocorrelation functions for La2CuO4 and
La2 − xSrxCuO4 decay incompletely, indicating the non-
ergodicity of the system [15] (Figs. 1, 2).

With Sr atoms introduced, the OS density (Fig. 3),
together with its usual phonon part at low frequencies

G ω( ) γ τ( ) iωτ–( )exp τ ,d

0

∞

∫=

i∑ ν i
2
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between 0 and 0.1 eV, exhibits high-frequency peaks
(LHF oscillations) with an energy of ≈0.4 eV. The ratio
SP/SHF of the areas under the phonon and LHF oscillation
peaks was taken as the model parameter. At x < 0.17, this
parameter is known to correlate with the superconduc-
tor transition temperature Tc, strontium concentration,
and applied pressure [7]. Also, a decrease in SP/SHF
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Fig. 1. Autocorrelation function of the La2CuO4 system
(T = 70 K).
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Fig. 2. Autocorrelation function of the La1.88Sr0.12CuO4
system (T = 70 K).
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when vacancies and/or interstitials (possible radiation-
induced defects) are introduced into the Cu–O2 layer
correlates with a loss of the HTSC property upon irra-
diating HTSC systems [8]. The value of SP/SHF depends
on the concentration of different vacancies. In the pres-
ence of copper vacancies with a concentration up to
≈1%, SP/SHF drops two- or threefold, while oxygen
vacancies practically do not alter this parameter. Sr, La,
Cu, and O interstitials in the Cu–O2 layer affect the
structure much more strongly. Quasi-morphic regions
10–15 Å in size appear. When the interstitial concentra-
tion rises to ≈0.15%, SP/SHF drops 30 times for Sr,
≈20 times for La, ≈20 times for Cu, and ≈15 times
for O. When their concentration reaches ≈1%, the LHF
oscillations are almost completely suppressed. It was
found experimentally that the same irradiation dose has
a stronger effect on higher Tc HTSCs. This fact corre-
lates with a substantial decrease in SP/SHF at x = 0.17 (in
experiments with La2 − xSrxCuO4, to this concentration,
there corresponds the highest Tc) compared with x = 0.03.

The calculation of the OS density at regular inter-
vals (τ ≈ 3 × 10–13 s) without averaging the correlation
function showed that, in all cases but x = 0, this param-
eter varies in time in the energy transfer regime; that is,
SP/SHF varies periodically. This means that the number
of eigenmodes of certain energies fluctuates with a
characteristic transfer time of no more than 10–12 s
(Fig. 3). Note that the transfer is observed only in the
presence of the LHF oscillations.

The oxygen distributions over atom velocities at dif-
ferent concentrations of Sr deviate from the Max-
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Fig. 3. OS density for the Cu–O2 layer in the
La1.88Sr0.12CuO4 system at time instants t1 and t2 = t1 + 2τ.
wellian functions, with the greatest deviation at x =
0.17, which corresponds to the highest Tc in experi-
ments [9, 11]. This fact reflects the emergence of hot
centers in the cold matrix. For example, at x = 0.17 and
T = 70 K, the “effective” temperature of the hot centers
is 400–900 K (≈10%) and that of the matrix, ≈10 K
(≈90%). The estimates were made by approximating
the distribution functions by several Maxwellian distri-
butions. For copper atoms, the deviation from the Max-
wellian distribution is insignificant [11].

It has been shown [12] that local hot centers appear
in the Y–Ba–Cu–O and La–Sr–Cu–O systems near
Ba4+ charged defects in the Cu–O2 and Cu–O planes,
where the mean kinetic energy of oxygen atoms
involved in the LHF oscillations reaches ≈0.5 eV. Qual-
itatively, the potentials of Ba4+ interaction with oxygen
atoms and with copper atoms from the Cu–O2 layer
behave similarly to the Sr2+ interaction potentials in the
lanthanum system. Here, the Sr–O potential had a deep
minimum (≈25 eV), and oxygen atoms were involved
in the LHF oscillation. In the yttrium system, the Ba4+

charged defect plays the same role. The potential of its
interaction with oxygen is also very deep (≈36 eV).
The effect of hot centers is observed when the velocity
distribution function deviates from the Maxwellian dis-
tribution; in other words, the dynamics of the Cu–O2

and Cu–O conductive layers in the yttrium system is
akin to that of the Cu–O2 layer in the lanthanum sys-
tem. The appearance of Ba4+ correlates with an
increase in the oxygen content in the chains, which, in
turn, results in the superconducting composition and
mid-IR absorption.

DISCUSSION

Our results suggest that, together with the usual
phonon oscillations, high-frequency oscillations local-
ized at four oxygen atoms in the Cu–O2 layer are
excited in the system being simulated. Essentially, they
are similar to self-localized oscillations in nonlinear
one-dimensional systems [1–4]. It should be empha-
sized that these oscillations are not phonon oscillations
and are beyond the energy restrictions associated with
the phonon wavelength in the crystal lattice. The
energy scale is typical of intramolecular oscillations in
molecular compounds. In two extreme cases, La2CuO4

and Sr2CuO4, the high-frequency oscillations do not
appear and appear, respectively, although both systems
are nonlinear. In the latter case, the oscillations behave
similarly to self-localized oscillations in homogeneous
one-dimensional nonlinear systems [2]. The latter case
was analyzed solely for comparison with the former.
Such an object is not found in nature. In the systems
with intermediate Sr concentrations, x = 0.03–0.25,
which introduce inhomogeneity in the La–O and
Cu−O2 planes, the oscillations were spatially localized
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at the Sr impurity and caused kinetic energy redistribu-
tion in the system.

The validity of the potentials used is supported by
the fact that they adequately describe the type of bonds
in the La–Sr–Cu–O system: metallic along the layers
and ionic in the cross direction. To date, as far as we
know from the literature, the MDM investigations have
used only ionic potentials calculated for the constituent
HTSC oxides, which is incorrect in our opinion. When
the potentials were calculated under the assumption
that free carriers are uniformly distributed over the
model crystallite, the potential wells for La–O and
Sr−O were comparable to each other and the LHF
oscillations were not excited. If, however, the carriers
are concentrated in the Cu–O2 plane (layer), these
potentials differ considerably and the oscillations
appear. The main validity test for the interaction poten-
tials is obtaining proper values of the lattice constants,
as well as of the upper phonon frequency limit and
basic phonon peaks of the OS density. Those used in
this work satisfy these conditions. The Sr–O potential
wells are much deeper than for La–O, which may be a
reason for a drastic decrease in the diffusion coefficient
of oxygen atoms when Sr is substituted for La [16]. In
addition to this, from a correlation between the onset of
HTSC and the crystallochemical properties of HTSC
materials, it was inferred that these materials must have
a variable-valency atomic sublattice, an “oscillatory
center” or a migrating point defect, and layers of differ-
ent conductivity [17]. Our model fits these require-
ments.

Energy localization in a set of anharmonic oscilla-
tors is well known in theoretical mechanics [18]. Of
interest is the practical application of this phenomenon
and its consequences in real objects, specifically in
HTSCs on the atomic level.

Our results reflect a situation that is quite possible in
strongly anharmonic systems from the standpoint of
statistical thermodynamics. In this case, the Gibbs
canonic distribution may turn out to be inadequate,
since this distribution, as well as the Maxwell–Boltz-
mann one, was deduced under the assumption that sets
or particles are statistically independent to the maxi-
mum possible extent [19, 20]. For independent sets of
particles, the equilibrium state, which is defined as the
most probable or mean state, corresponds to the Max-
well–Boltzmann distribution. This statement is true for
ergodic systems alone. However, the ergodicity of a
specific dynamic system is difficult to prove. Ergodic
systems coming to equilibrium are described by the
Boltzmann kinetic equation, whose equilibrium solu-
tion is the Maxwellian distribution. However, the Boltz-
mann equation applies only to the case of “short-time”
interaction forces (when atoms interact as absolutely
rigid spheres or repulse as ≈A/rn, where n > 4) [21] and
also when space and time intervals are infinitesimal so
as to loosen the correlations [22]. Boltzmann himself
completely ignored correlations (the hypothesis of the
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number of collisions). In condensed matter, the prob-
lem comes down to considering a gas of quasi-parti-
cles, which meets the above conditions only in har-
monic or quasi-harmonic approximations. In nonlinear
systems, the ergodicity of a system is not obvious in
general, since the assumptions underlying Gibbs statis-
tical mechanics should be substantiated for each spe-
cific problem. In practice, the Gibbs canonical distribu-
tion is merely postulated, while being valid in the
majority of cases [23]. Previously [9], we noted that
anharmonicity due to the violation of statistical inde-
pendence may disturb the Maxwellian distribution over
velocities and the Gibbs canonical distribution. Corre-
lation effects may yield the same result, since loosened
correlations are necessary to deduce the Boltzmann
kinetic equation [22].

Note that the MDM is the direct solution of a multi-
particle problem and eventually takes into account cor-
relations of all orders, unlike analytical calculations.
Gibbs classical statistical mechanics is applicable only
to ergodic systems for which the correlation coefficient
equals zero. It covers systems having a single integral
of motion, energy, which also is an approximation.
When numerically solving dynamic systems, we may
come to other integrals of motion (including nonana-
lytic), which violate the ergodicity. The general sign of
system nonergodicity, irrespective of the reasons for its
occurrence, is the nonzero autocorrelation function.
Hence, HTSC materials are not ergodic, as follows
from our results.

Unlike [9], we should say that correlation effects
may disturb the Maxwellian distribution if the nonlin-
earity is weak. When a certain excitation threshold is
exceeded (strong nonlinearity), stationary localized
states arise [18], which is an additional reason for the
non-Maxwellian distribution.

Of interest is the correlation of the model parameter
indicating the presence of the LHF oscillations with Tc
in the La–Sr–Cu–O systems. This correlation varies
with applied pressure and concentration of point
defects [7, 8]. This means that Tc(SP/SHF) is a function
of the lattice parameter. Unlike the classical theory of
superconductivity, here the Debye temperature is not
the lattice parameter. It was found experimentally that
the Hall constant RH virtually does not depend on
applied pressure, indicating that the carrier concentra-
tion remains the same. RH also remains unchanged
when the Sr content rises to x ≈ 0.17, when local lattice
distortions appear. This constant is also unchanged on
neutron irradiation of YBa2Cu3O7, especially at low
temperatures, while Tc drops [24]. The exponential
growth of the conductivity upon irradiation cannot be
explained by a change in the hole concentration either
[25]. Both irradiated and nonirradiated YBa2Cu3O7
samples are single-phase [26]. According to [26], a
drop of Tc is accompanied by changes in the crystal lat-
tice, namely, by an increase in the lattice constant. As
follows from neuron diffractometry data, irradiation
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generates simple (similar to point) defects randomly
distributed over the sample. Hence, Tc is affected
largely by strains in the lattice subsystem. Our results
imply that this is associated with the presence of the
LHF oscillations in HTSCs; the oscillations depend on
the character of atomic interaction. The basic reason for
the occurrence of these oscillations is the drastic differ-
ence in the interaction potentials for La–O and Sr–O
because of different ion sizes, which are well corre-
lated with the adjusting parameters Rm (the model ion
radius) in the pseudopotential system used [27]. Ba
and Ca also have the same large Rm’s, and, when they
are replaced by La, HTSC is observed. The effect of
the ion radius on the HTSC property was studied in
[28, 29]. The larger the ion radius of the element R, the
higher the Tc temperature in RBa2Cu3O9 compounds
(R = Yb, Er, Dy, Gd, Eu, or Nd) [28]. It was shown for
RE−Ba2(Cu1 − xMex)3O7 – y systems (RE = Y, Gd, or Eu;
Me = Ni or Fe) [29] that the superconducting properties
of the system are controlled largely by the RE ion
radius rather than by the presence or absence of the
magnetic moment of this element.

Noteworthy also is the fact that the distance between
Sr atoms in our model coincides with the superconduct-
ing coherence length in the Cu–O2 plane. This length is
known to be limited by the presence of defects and is
close to the distance between holes introduced by Sr
doping and also to the correlation length in antiferro-
magnetics [30].

That the obtained computer model is realistic fol-
lows also from low-frequency acoustic experiments
[31], where low-frequency resonances appearing with
the addition of Sr were related to solitons pinned by the
lattice potential [31]. Similar resonances were discov-
ered in the Y–Ba–Cu–O system [32]. These solitons are
thought of as tunnel states that are also responsible for
the linear term in the expression for heat capacity and
the quadratic temperature dependence of heat conduc-
tivity (at T < 10 K) in HTSCs. The LHF oscillations
may serve as these lattice-potential-pinned solitons.

It appears that the LHF oscillations may show up in
experiments on IR absorption. HTSC systems have an
intense absorption band in the mid-IR range (the peak
at 0.5 eV), and their optical properties cannot unambig-
uously be described in terms of the simple Drude model
of metallic conductivity [33]. Absorption bands in this
part of the spectrum are typical only of superconduc-
tors, and the band intensities correlate with Tc. It is
believed that low-frequency electron excitations or
absorptions by polarons are responsible for these peaks
(bands); however, this issue remains elusive. It was
noted [34] that the reflection and absorption spectra
cannot be calculated in terms of the band theory in the
one-electron approximation, and the transition at
0.5 eV was assigned to the state in the Cu–O2 cuprate
planes. In YBa2Cu3O7, the broad IR absorption peak
centered at 0.7 eV is likely to be due to localized states
(presumably polarons) in the Cu–O2 plane [35]. Direct
observation of self-localized states in the mid-IR range
for La2 – xSrxCuO4 was reported in [36]. These states are
associated with the broad absorption peak centered at
≈0.5 eV at x = 0.17. The situation is the same for the
reflection and absorption spectra of other HTSCs [37].
Note that broad IR absorption bands peaked near
0.4 eV, which are typical of vibratory spectra, have
been found in molecular compounds (for example, the
OH band in alcohols) [38].

The reciprocal of the optical relaxation time was
found to linearly increase with energy to 0.4 eV in the
lanthanum- and even up to 0.8 eV in bismuth-based
compounds [37, 39]. It is generally accepted that the
relaxation time is invariable at frequencies above the
maximum phonon frequency. The upper phonon fre-
quency limit in HTSCs corresponds to ≈0.1 eV, which
is consistent with our calculations. Therefore, if elec-
tron relaxation is due to interaction with the lattice sub-
system, the relaxation time behavior becomes unclear
without considering the fact that oscillations with ener-
gies of 0.4–0.8 eV may be present in the lattice. As fol-
lows from our results, the LHF oscillations are the sim-
plest explanation of these experiments. The situation
could have been further clarified if neutron scattering
studies had been carried out in this energy range. How-
ever, such investigations present a great technical chal-
lenge.

The presence of high-frequency atomic oscillations
can also be judged from other experiments. The Debye
temperature θD in the lanthanum-based compounds
was estimated at ≈400 K [40]. In [41], the partial
kinetic energies of the atoms in La2CuO4 and
YBa2Cu3O7 were measured by neutron scattering. It
was shown that, in these compounds, oxygen atoms
may have a kinetic energy of 1400 K (120 meV) and
copper atoms, 1500 and 2000 K (130 and 170 meV). It
was therefore suggested that latent (undetected) high-
frequency oscillations of a nonphoton nature exist in
these systems and that these oscillations are of consid-
erable importance in the HTSC mechanism. The room-
temperature heat capacity of La1.85Sr0.15CuO4 and
YBa2Cu3O7 reaches only 85% of its maximum (the
classical limit is 3Nk), which also may be an indication
of high-frequency oscillations in the lattice subsystem
that do not contribute to the heat capacity at room tem-
perature [42]. Raman scattering in La1.85Sr0.15CuO4 and
YBa2Cu3O7 has revealed bands in the 100–150 meV
range which are absent in La2CuO4 [43]. They were
associated with the crystal structure and phonon spectra
of these compounds. The investigation into the electri-
cal performance of point tunnel contacts has found
phonon singularities in tunnel spectra at energies up to
≈180 meV [44].

The instability of the OS density is presumably a
consequence of the system nonlinearity and is related
to strong soliton interaction. It has been established that
soliton interaction may significantly change the density
of excited states in the system, specifically, the density
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
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of phonon states [18]. On the one hand, the LHF oscil-
lations tend to transform into delocalized low-fre-
quency oscillations (phonons) [45]; on the other hand,
the LHF oscillations, which are energetically favorable
in a nonlinear system [2], tend to arise, since the result-
ing additional entropy reduces the free energy. Due to
these discrepant tendencies, the number of elementary
excitations, both coupled in solitons and delocalized,
periodically varies; that is, a dynamic process of the
decay and generation of localized states is set.

It was suggested [46] that nonlinear resonance in
anharmonic systems (when the oscillator frequencies
are multiples), which triggers energy transfer from an
oscillator of one frequency to that of another frequency,
the characteristic transfer time being other than the
phonon time (≈10–11 s), is responsible for the “central
peak”—quasi-elastic neutron scattering near phase
transitions in the structure. In systems exhibiting the
central peak, one can distinguish fast (or phonon) and
slow processes. The time scale of the latter corresponds
to the central peak. Its origin still remains vague. A pos-
sible reason is phonon density fluctuations [47]. The
central peak was also observed in La2 – xSrxCuO4 [48].
Our results look as if nonlinear resonance is present in
the system: a change in the area ratio for the peaks in
the OS density means a change in the number of oscil-
lators with one energy due to resonance interaction
with oscillators of another energy. In the given case,
one should consider resonant interactions not only
between phonons but also between phonons and soli-
tons (if any). The time-periodic variation of the OS den-
sity can explain the occurrence of the central peak
through the above hypothesis of phonon density
fluctuations and be a consequence of the presence of
so-called “fluctuators” (time-fluctuating structure
defects). In [49], from changes in the sound velocity
and tempering experiments, it was concluded that fluc-
tuators in HTSC systems are defects with inner degrees
of freedom, i.e., quasi-molecules. A defect complex
near the Sr atoms that causes the OS density to fluctuate
in our work is nothing but a fluctuator. According to
[49], the presence of these defects may result in local
fluctuations of Tc, penetration depth of the magnetic
field, and the density of superconducting current carri-
ers. Some long-term relaxations and the memory
effects in HTSCs are possibly related to these weakly
relaxing fluctuators. That the autocorrelation decays
incompletely in our work indicates that the system has
“memory,” i.e., is nonergodic. The possible relation
between nonergodicity and high-temperature super-
conductivity was noted in [50]. The idea that the
superconducting properties of HTSCs, particularly
YBa2Cu3O7, may be specified by coupled (i.e., corre-
lated) oscillation of lattice atoms (as a result of ordered
oscillations of oxygen atoms near oscillatory centers)
has been put forward in [51]. In our opinion, hot cen-
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
ters, fluctuators, and oscillatory centers (which is
essentially the same) just represent self-localized oscil-
lations due to nonlinearity that are “captured” by vari-
ous defects.

CONCLUSION

Thus, the MDM calculations indicate that self-
localized oscillation of individual oxygen atoms appear
in the superconducting Cu–O2 layers of HTSCs that
exhibit strong anharmonicity with respect to correla-
tion effects. The strength of this phenomenon depends
on the atomic interaction potentials. The situation may
arise when part of the thermal oscillation energy is
localized within small areas because of trapping of self-
localized oscillations of oxygen atoms by defects of
various types. Eventually, hot centers are produced:
near the Sr impurity atoms (in the La–Sr–Cu–O sys-
tem) or Ba4+ charge defects (in Y–Ba–Cu–O). The
remaining part of the system is effectively “cooled,”
and the superconducting current can pass through it.

In thallium-based systems, Tl may have two valence
states: Tl1+ and Tl3+. In the bismuth-based HTSCs, Bi
may be in the Bi3+ and Bi5+ charged states. Possibly, the
difference in the Tl and Bi charges excites the self-
localized oscillations in both the lanthanum- and
yttrium-based systems. With regard for our results, the
potentials of interaction of these defects with the oxy-
gen atoms must differ drastically. These defects are
similar to quasi-molecules, and the absorption behavior
of the HTSCs in the mid-IR range resembles that of
molecular compounds.

The degree of localization depends on the concen-
tration of the defects. This can be best demonstrated
with La–Sr–Cu–O. The greater the number of the Sr
atoms, the stronger the matrix cools down and the
higher the superconducting transition temperatures
found experimentally. However, when the concentra-
tion of the Sr atoms exceeds some threshold, the hot
areas begin to overlap, decreasing the experimentally
found Tc.

The OS density in the crystal lattice exhibits nonlin-
ear resonant effects, namely, periodic energy transfer
between the phonon and soliton vibratory degrees of
freedom with a characteristic time of no more than
10−12 s. The discovered oscillatory process can be
related to a quasiparticle with an appropriate energy
(several meV). Since the effective temperature of the
superconducting transition for the matrix is much lower
than that found experimentally, these quasiparticles
may be involved in electron Cooper pairing. In other
words, a possible mechanism underlying the HTSC
phenomenon may include, together with charge and
spin fluctuations, soliton and phonon fluctuations (or,
in more exact terms, fluctuations of the OS density). A
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comparison of our results with other theoretical and
experimental investigations suggests that such a situa-
tion is a possibility in nonlinear systems with correla-
tion effects.
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Abstract—Qualitative analysis of the products of plasmochemical synthesis of fullerenes with metallic nickel
and cobalt has been carried out using electron paramagnetic resonance (EPR) and electron microscopy. These
studies show that the synthesis products are mainly fullerenes, metallic nanoparticles coated with an insulating
layer, and isolated atomic clusters. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In studies of fullerenes, great attention is now paid
to their derivatives (heterofullerenes, endohedral com-
plexes, metallofullerenes) [1, 2], because distortions of
the symmetry of fullerenes produce new physical and
chemical properties [1, 3, 4]. However, obtaining these
unique materials in quantities sufficient for analysis is
still a complicated task. We have undertaken an attempt
to synthesize metallofullerenes containing nickel and
cobalt.

MATERIALS AND METHODS

Earlier we described a plasmochemical reactor for
the synthesis of fullerenes in a carbon plasma jet pro-
duced by an arc discharge between graphite electrodes
at frequencies in the kilohertz range [5, 6].

In [7], a technique of synthesizing iron-containing
fullerene complexes was described. The central elec-
trode has an axial hole that was filled with carbonyl
iron. In the present study, a similar technique was used,
except that the hole in the central electrode was filled
with nickel or cobalt. Carbon condensate was deposited
on the chamber walls during synthesis, and the
fullerenes extracted from this with benzol and the
growth on the outer electrode (thermolysis residue [6])
were investigated by electron paramagnetic resonance
using Se/X-2544 and RE1308 spectrometers in the
temperature range 77 to 500 K and by electron micros-
copy in a JEM-100C electron microscope with an EM-
ASID-4 scanning attachment and image processing
equipment.

RESULTS AND DISCUSSION

1. In electron microscopic studies of the carbon con-
densate, particles of nickel coated with a non-conduct-
ing material (both groups of particles and isolated par-
ticles of sizes 103 to 104 nm) have been detected
1063-7842/01/4601- $21.00 © 20042
(Fig. 1). The fact that the particles were nonconducting
has been established by an indirect method. The parti-
cles were placed under a microscope on a conducting
(metallic) surface and irradiated with an electron beam.
As a charge accumulated on the particles, a discharge
via the substrate occurred. The discharge of the parti-
cles was accompanied by visually-detected radiation.

2. EPR spectroscopy detected a magnetic resonance
of the metallic particles in the soot and the thermolysis
residue (Fig. 2): ∆HNi = 80 mT, gNi = 2.20 and ∆HCo =
150 mT, gCo = 2.23. Similar results (∆HNi = 100 mT,
gNi = 2.22 and ∆HCo = 90 mT, gCo = 2.23) were obtained
earlier by Bagguley [8] in experiments on the ferro-
magnetic resonance of metallic particles synthesized
by the aerosol method in an RF arc discharge in a
hydrogen atmosphere at 1 atm pressure with subse-
quent spinning in paraffin. The diameter of the particles
was assumed to be 5–10 nm. It is known for single-
domain particles of a monocrystalline metal in the
absence of the skin effect that ∆HCo = 11 mT and
∆HNi = 12 mT [9]. The large width of the electron para-
magnetic resonance line in our experiments (Figs. 2a,
2b) is explained by the fact that the particles of nickel
and cobalt in the soot have sizes amounting to a few
millimeters. The g-factor values coincide with the data
in [8].
 
Lines of EPR spectrum of the fullerene extract (Fig. 3)
grouped by the types of their variation with temperature

Line No. g ∆H, mT

1 2.001 0.1

2 2.15 40

3' 2.6 15

3'' 3.6 15

3''' 3.98 13

4 7.7 13
001 MAIK “Nauka/Interperiodica”
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103 nm

104 nm 104 nm

104 nm

103 nm104 nm

Fig. 1. Nickel particles in a fullerene-containing soot.
Line 1 for g = 2.001, as well as a narrower line 2 for
g ~ 2.15 (Fig. 2), are observed not only in the spectrum
of the nickel-containing soot but also in the thermolysis
residue and in the fullerene extract, and are discussed
below.

3. In the fullerene extract, the content of nickel
according to the analysis of the X-ray luminescence
data was 0.02%. Lines in the EPR spectra of the extract
fall into four groups according to their temperature
behavior (see table).

A narrow line 1 (Fig. 3a) for g = 2.001 usually
observed in the spectra of solid fullerene mixtures [10]
ICS      Vol. 46      No. 1      2001
is due to a C60(70) radical. Its shift with temperature, typ-
ical of a paramagnetic center, can be seen in Fig. 4 (1).

At T = 293 K, parameters of line 2 are g = 2.15 and
∆H = 40 mT (Fig. 3 (2)). Raising the temperature to
510 K causes gradual narrowing of this line down to
10 mT, an increase in its intensity and a shift to higher
fields (g = 2.08). At temperatures below 293 K, the line
first broadens to 70 mT (at T = 250 K) and then splits
into two narrower components (at T = 230 K). At still
lower temperatures, three lines are seen in the spec-
trum, having effective g-factor values of 2.06, 2.12, and
2.27, and the line width ~ 20 mT. At 77 K, the spectrum
consists of a single asymmetric line 4 (Fig. 3b).
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ature.
The observed spectrum is possibly associated with
fine (~10 nm in diameter) crystalline particles of nickel
that have anisotropic magnetic properties. Taking this
into account, the temperature variation of the line width

200 300 400 ∆H, mT

(a)

(b)
2 1

1

I, arb. units

Fig. 3. Magnetic resonance spectra of Ni-containing
fullerene extract at frequencies (a) 9 and (b) 35 GHz at
293 K; (a): g = 2.001 (1), 2.15 (2), 2.6 (3'), 3.6 (3''), and
7.7 (4).
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Fig. 2. Ferromagnetic resonance of Ni-containing soot
(a) and Co-containing soot (b).

Fig. 4. Temperature variation of the EPR lines with
g = 2.001 (1), 2.6 (3'), 3.6 (3''), and 3.98 (3'''). Solid line—
calculation.
(which decreases with increasing temperature) can be
explained by movement of the particles, which causes
averaging of the anisotropy produced by internal fields.
This mechanism was proposed by Kittel [11]. In this
case, the width of the resonant line is calculated by the
random walk method using the formula

(1)

where τ(T) is a temperature-dependent mean time
between two consecutive changes of the field direction
and ∆H(0) is the line width at T = 0 K.

Substituting in (1) the values of ∆H(T) obtained in
our experiment and ∆H(0) for the fine nickel particles
[9, 12], we get τ(510 K) = 0.9 × 10–11 s, which is much
less than the Larmor precession period of the magneti-
zation vector in the field 0.3 T (1.05 × 10–10 s). Despite
the approximate nature of the estimation, this mecha-
nism can explain the narrowing of the line with increas-
ing temperature by averaging of the magnetic anisot-
ropy due to movement of the particles.

As the temperature is lowered from 286 to 77 K, the
intensities of the EPR lines corresponding to g = 2.6
(curve 3'), 3.6 (curve 3"), and 3.98 (curve 3"') vary as
shown in Fig. 4. The line for g = 3.98 (3"') becomes
noticeable at 230 K and reaches a maximum at 140 K,
at which temperature the intensities of the other two
lines decrease appreciably. This behavior is possible in
dimer or tetramer clusters with antiferromagnetic
exchange interaction between the atoms [13]. In Fig. 4,
a temperature dependence is shown that has been
obtained from a calculation in terms of a dimer cluster
model in the Heisenberg–Dirac–van Vleck approxima-
tion for homonuclear systems. In this model, the energy
levels of a system of two multielectron atoms are repre-
sented by a Heisenberg Hamiltonian for the exchange

interaction ( )

(2)

where S1 and S2 are total spins of the atoms.
Energy eigenvalues are determined by a semiempir-

ical parameter of the exchange coupling of atoms (J)
and the total spin of the system (S = S1 + S2), which is
obtained from the usual rule for the summation of
moments. For a pair of Ni+1 ions (s = 1), the total spin
can take values of S = 0, 1, 2. The energy corresponding
to each state is

(3)

The rate of the resonant intralevel transitions for a
level with spin S is given by the formula

(4)

where K is the Boltzmann constant and T is the temper-

∆H γ2 ∆H 0( )2τ T( )[ ] ,=

Ĥ

Ĥ 2JŜ1Ŝ2,–=

ES J S S 1+( ) S1 S1 1+( ) S2 S2 1+( )––[ ] .=

IS

ES/ KT( )–[ ]exp

2S 1+( ) ES/ KT( )–[ ]exp
S
∑
-------------------------------------------------------------------,=
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Proceeding from this, curves have been calculated
for dimer clusters with spin s1, 2 = 1. Coincidence of the
calculated and experimental results suggests that the
lines with the effective g-factor values 2.6, 3.6, and
3.98 correspond to dimer formations of nickel with
exchange coupling constants on the order of 147 cm–1.
Positions of the lines are indicative of a splitting of the
energy levels within the multiplets. The observed tran-
sitions with g = 2.6 and g = 3.6 take place within the
total spin state with S = 2, which is the upper energy
level of the cluster. The line g = 3.98 is due to transi-
tions within state S = 1, which is lower in energy by
∆E = 2|J|. In the low-temperature range, all transitions
follow the same relationship. The decrease of the line
intensity with increasing temperature for the lower
transition cannot be described in terms of the Heisen-
berg–Dirac–van Vleck approximation; the complex
couplings formed are outside the scope of this model.

Models of a dimer cluster containing a fullerene can
be constructed using the data given in [14], where sys-

tems of C60 and C70 molecules and  cations have
been considered. Two Ni2+ ions attach to the fullerene
molecule due to a donor-acceptor bond between elec-
trons of the 4S-shell and the π system of the fullerene.
This bond is activated by the electrostatic interaction

between the charge of a  anion and the total charge
of the nickel pair 2Ni2+. Magnetic coupling between
nickel ions arises as a result of polarization of the
fullerene shell. Another possible candidate for the
intermediate atom in this cluster model might be
carbon.

The low-field resonant transition (g ~ 7.7) is repre-
sented by a line characteristic of spectra from anisotro-
pic powders. At 35 GHz, the line position shifts to
higher fields (g = 4) and the line width increases to
∆H = 60 mT. The intensity and width of the line does
not change at temperatures down to 77 K. These obser-
vations indicate that this line can be related to atomic
clusters of asymmetric type as well. A change taking
place with an increase in the energy of ultrahigh fre-
quency quanta [13] suggests that the exchange interac-
tion in this cluster has both isotropic and anisotropic
components. The isotropic exchange in this cluster is
probably much less strong than in a dimer and the tem-
perature dependence should be observable at tempera-
tures below 77 K.

4. Spectra of the fullerenes extracted from soot and
containing cobalt are an asymmetric line (Fig. 5a) with
the following effective parameters: g ~ 2.4 and ∆H =
56 mT. With decreasing temperature, the line width
increases, but at 104 K, it shrinks to 36 mT and the
effective g-factor drops to g ~ 2.1. At 77 K, the spec-
trum is a symmetric line (Fig. 5b). We attribute this
spectrum to fine-grained cobalt particles isolated from
one another by fullerene molecules. The spectrum at
77 K can be interpreted as due to modifications of the

C70
4–

C70
4–
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cobalt crystals with face-centered cubic and hexagonal
close-packed lattices [12].

5. An interesting feature of the obtained materials is
their behavior in a magnetic field at 77 K. Spectra of the
samples containing cobalt, as well as of those with
nickel cooled in a magnetic field of 500 mT differ by
the shift of the resonant line to lower fields. The results
for nickel are shown in Fig. 6b. Similar effects are
observed in spin glasses [15]. In our case, this might be
an indication of a coupling between separate magnetic
particles.

CONCLUSION

As demonstrated by electron microscopy, in the
synthesis of fullerenes with nickel, the latter is found in
the form of particles coated with a layer of nonconduct-
ing substance. EPR analysis of the fullerene-containing
soot with cobalt and nickel indicates the presence (apart
from fullerenes) of large-sized particles (103 to
104 nm), which exhibit skin effect and a domain struc-
ture without magnetic anisotropy, and some finer parti-
cles (~10 nm). In the fullerene extract, the ratio of
coarse and fine particles changes in favor of the latter.
Clusters of several (from two to four) atoms can also be

(a)

(b)

150 250 350 450 550

I, arb. units

∆H, mT

I, arb. units
(a)

(b)

200 250 300 350 ∆H, mT

Fig. 6. Magnetic resonance spectra of the Ni-containing
fullerene extract cooled in a magnetic field H = (a) 0 and
(b) 0.5 T.

Fig. 5. Magnetic resonance spectra of the Co-containing
fullerene extract from soot at (a) room temperature and
(b) T = 77 K.
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observed via an intermediate nonmagnetic atom or
molecule, possibly that of fullerene. The behavior of
the fullerene extracts with cobalt and nickel in a mag-
netic field at 77 K bears resemblance to that of spin
glasses.

This work has been performed in the framework of
the State Scientific-Technical Program “Priority Direc-
tions in the Physics of Condensed Matter” (project
no. 20004—Study of the Phase Transition Carbon
Plasma—Condensed Phase of Carbon).
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Abstract—Space-charge effects in PZT thin films obtained by rf cathode sputtering were studied. There is evi-
dence that space charge forms in the ferroelectric phase during dielectric aging. Charge accumulation and dis-
appearance were investigated by the method of thermally stimulated depolarization currents. Current peaks due
to preliminary poling by a dc electric field and dielectric aging were determined. Effects that can be attributed
to the rearrangement of point defects with the production of defect complexes, such as dimers, were observed
for the first time. The activation energies for trap depletion (0.98 eV) and defect complex breakdown (1.20 eV)
were found. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The internal bias fields of space charges consider-
ably affect the performance of both bulk and film ferro-
electrics [1–3]. In dielectrics, space charge is usually
associated with the presence of defect-related traps. In
thin ferroelectric films, the traps may be due to impu-
rity ions, grain boundaries, vacancies, domain walls,
and electrode–film and film–substrate interfaces.

In this work, we studied the occurrence and disap-
pearance of space charge in thin PZT films. Space
charge effects were revealed during the examination of
polarization switching processes and temperature
dependence of the permittivity. The presence of the
space charge was directly detected by the method of
thermally stimulated depolarization (TSD) currents
[4, 5]. These methods provide information on traps
responsible for space charge formation. Until recently,
the method of TSD currents, as applied to studying thin
ferroelectric films, has not been employed. In [6], TSD
currents were determined only for temperatures
between room temperature and 573 K in (PbLa)TiO3
films.

SUBJECT OF INVESTIGATION 
AND EXPERIMENTAL TECHNIQUES

Thin PZT films of composition
Pb(Ti0.45Zr0.53W0.01Cd0.01)O3 were obtained by rf sput-
tering on stainless steel and Pt substrates [7]. Pt elec-
trodes of area 1.8 and 3.8 mm2 were applied on the free
surface of the film to produce sandwich structures. The
thickness of the films was 1.5–2.0 µm. X-ray diffrac-
tion data indicate that the films were polycrystalline
and had the perovskite structure. Charge loops P(E)
and current loops i(E) were studied for the frequencies
of polarization switching voltages between 0.001 and
100 Hz. The permittivity was measured with a bridge
1063-7842/01/4601- $21.00 © 20047
method (measuring voltage of 0.3 V with a frequency
of 1 kHz). The TSD currents were determined in the
short-circuited mode and were recorded by a potenti-
ometer upon heating the film from room temperature to
870 K with a constant rate of 6 K/min.

RESULTS AND DISCUSSION

At a measuring voltage frequency of 50 Hz, as-pre-
pared films on the platinum substrates had a coercive
field Ec = (3.0–3.5) × 106 V/cm, an orientational polar-
ization of 0.25–0.28 C/m2, and a remanent polarization
of 0.19–0.24 C/m2. As the films age (in the absence of
electric fields and elevated temperatures), double,
instead of single, peaks (Fig. 1) appear in the current
loops i(E), indicating the formation of the internal
space-charge field. After aging for 100 days, the inter-
nal field of an unpolarized film was found to be (0.3–
0.5) × 107 V/m and highly insensitive to external
effects. Neither 105 polarization switching cycles in an
external field of 3 × 107 V/m at 50 Hz nor short-term

(a) (b)
p

E

1 2

3

p

E

Fig. 1. Current loops i(E) for PZT films on the platinum sub-
strate: (a) (1) immediately after preparation, (2) after aging
for 30 days, and (3) after aging for 100 days; polarization-
reversing field 12 × 106 V/m; (b) after aging for 100 days at
f = 50 Hz and polarization-reversing field amplitudes of 9 ×
106, 12 × 106, and 17 × 106 V/m.
001 MAIK “Nauka/Interperiodica”
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heating up to 700 K break down the field. As the fre-
quency of the switching field declined and the field
amplitude grew, the internal field decreased but
regained its value once the sample had been kept in an
ac field with a frequency of 50 Hz. Aging effects were
also observed in polarized films. Aged samples featured
increased immunity to external effects. Aging pro-
ceeded faster at elevated temperatures: within 16–20 h
at 350–390 K.

i, 10–9A
12

8

4

0
600 700 800500 T, K

1 2

Fig. 2. TSD currents for (1) unpolarized aged film and
(2) the same film after repeat heating. Substrate, stainless steel.

i, 10–9A
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T, K500 700

1

2

600

–12

Fig. 3. TSD currents for the polarized film 1 day after
poling.

Energies of activation Et and temperatures Tm for TSD cur-
rent peaks (maxima)

Parameter As-polarized 
film, peak χ

Aged film

lower tempe-
rature peak α

higher tempe-
rature peak β

Energy of activa-
tion Et, eV

0.98 1.20 1.07

Peak tempera-
ture Tm, K

675 564 673
The internal field was also observed in the films
deposited on the stainless steel substrates. However, we
failed to determine its value because of the much wider
spread in the coercive field over the film. In addition,
the polarization did not saturate. The formation of the
internal field was complete within 30–40 days at room
temperature and within 7–9 h at 350 K. Double peaks
in the current loops were also observed in [8], where
polarization switching in thin solution-grown PZT
films was studied.

The temperature curve of the permittivity showed,
together with the well-known peak at the ferroelectric
phase transition (the Curie temperature TC = 660 K), a
small additional peak between 520 and 570 K. This
peak appeared upon heating, was absent upon cooling
and repeat heating, and appeared again after dielectric
aging for several days. Earlier, such an anomaly was
observed in lead titanate crystals and lead titanate–
based ceramics, as well as in PZT ceramics [9], and was
associated with point defects, namely, lead vacancies.

The subsequent study of the formation and break-
down of the space charge was performed by the method
of TSD currents in thin films on stainless steel sub-
strates. Both unpolarized aged films and those aged and
polarized by a direct current were investigated. Poling
was carried out upon cooling the samples from 720 to
670 K, i.e., at temperatures above TC for the bulk mate-
rial. Further cooling to room temperature was carried
out in the short-circuited mode. By choosing such pol-
ing conditions, we tried to preclude ferroelectric polar-
ization from electret polarization and thereby to sepa-
rate purely space-charge effects.

In the unpolarized aged films, two TSD current
peaks were found (Fig. 2). For these films, the current
in the outer circuit always passed from the platinum
electrode to the substrate. After repeat heating, the
peaks disappeared.

Figure 3 shows the TSD currents for the polarized
samples. Curve 1 represents the case when the plus sign
of the polarizing voltage is on the platinum electrode,
and curve 2 is for the reverse polarity. As a rule, the
temperature of the negative peak is several tens of
degrees higher than that of the positive one. For the
polarized film, the effect of aging time on the TSD cur-
rent curve was discovered. Immediately after poling, a
single peak was observed. As the time of room-temper-
ature aging grows, an additional current peak at a lower
temperature arises (Fig. 4). In the latter case, the main
peak gradually shifts to lower temperatures and part of
the charge responsible for the high-temperature peak
“overflows” to the lower temperature one, with the total
amount of the charge being conserved. The time of
charge overflow was sample-dependent and varied
from several days to several tens of days.

It seems likely that the difference in the TSD current
peak heights, as well as the definiteness of the sign and
shape of the initial current in the aged unpolarized film,
stems from intrinsic asymmetry of the film and shows
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
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up as natural self-polarization [10]. The TSD current
peaks were considered under the assumption that the
peaks come from the thermal depletion of the traps. The
traps may be occupied either by injected carriers during
poling or (in the absence of the external field) by free
carriers redistributed in the internal field. Strong injec-
tion in the films considered was observed in [10]; this,
in general, agrees with the literature data for thin films
[3]. Cooling “freezes” trapped carriers, thus producing
the space charge.

The table lists estimated activation energies of trap
depletion Et for one of the samples (current peaks from
which the energies were calculated are shown in
Fig. 4b). They were determined by the initial-rise and
half-width methods [5, 12]. The activation energy Etα
corresponding to the low-temperature TSD current
peak, appearing upon aging, is greater than those for
the peaks resulting immediately after poling (Etχ). This
is in conflict with the conventional idea that a higher
temperature peak correlates with a higher energy of
activation. With regard for the high spread in Et (both
from sample to sample and depending on the estima-
tion technique), the estimates should be used with some
caution and call for closer inspection. Yet, the obtained
values of Etα were always larger than or close to Etχ,
with the temperature positions of the peaks differing by
100 or more degrees (Tmχ @ Tmα). For all of the sam-
ples, dc prepoling was found to cause several specific
TSD current peaks. Their number and temperature
position, as well as the shape and direction of the cur-
rent, depend on the polarizing field polarity and the
duration of subsequent aging.

The density of the charge being released upon heat-
ing was estimated from the area under the TSD current
peak. It was anomalously large (compared with the
screening charge of ferroelectric polarization): as high
as 5000 µC/cm2 in several samples. Hence, assuming
that the traps are uniformly distributed over the film
volume, we obtain Nt ≅  1020 cm–3. This value is one or
two orders of magnitude higher than that calculated
from the space-charge-limited currents in perfect
films [3].

The additional, lower temperature peak of the TSD
currents (the specific feature of aging), accompanied by
charge overflow, seems to have been observed for the
first time. Usually, during aging of dielectrics, the TSD
current peaks decreased and shifted toward higher tem-
peratures, which was explained by charge capture by
deeper traps.

Our results suggest that, upon dc poling, injected
carriers are captured by vacancy-related traps, which,
in the course of aging, take part in the formation of
defect complexes, such as dimers, similar to those
found in CdS [12]. In our case, these may be impurity
ion–vacancy and lead vacancy–oxygen vacancy pairs.
Then, the lower temperature peak in the aged film may
be associated with the decomposition of the complex;
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
and the higher temperature one, with the depletion of
resulting elementary traps. The activation energies of
these processes are mutually independent; therefore, a
peak with a higher Et at a lower temperature may arise.
Closer identification of defects responsible for the
polarization and aging effects seems to be impossible at
present, since the object considered is very complex
(multicomponent) and calls for further investigation.

CONCLUSION

The ferroelectric phase of thin ferroelectric PZT
films exhibits effects suggesting the presence of
trapped space charge. They show up as the internal field
upon polarization reversal and as an additional peak in
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Fig. 4. TSD currents for two polarized films. (a) In (1) 3 and
(2) 18 days after poling (the minus sign of the polarizing
voltage on the Pt electrode, the same sample as in Fig. 2),
(3) curve 1 in Fig. 2; (b) in (1) 2 h and (2) 6 days after poling
(the plus sign of the polarizing voltage on the Pt electrode).
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the temperature curve of the permittivity. The accumu-
lation and disappearance of the space charge were stud-
ied by the method of TSD currents. The TSD current
shape and direction, as well as the number of peaks and
their temperature positions, were determined for polar-
ized and unpolarized films, depending on dc prepoling
conditions and aging time. The appearance of a lower
temperature (additional) peak, the shift of the main
peak toward lower temperatures, and charge overflow
from the main peak to the additional one during aging
were observed for the first time.

Our results can be explained under the assumption
that, when applied, the dc electric field induces carrier
injection and, subsequently, carrier trapping by defect
(vacancy) centers. During aging, defect complexes,
such as dimers, form owing to the presence of lead and
oxygen vacancies, as well as impurity ions, in the PZT
films.

The activation energies of trap depletion Etχ and
complex decomposition Etα and also the concentration
of occupied traps Nt were determined. For one of the
films, they were estimated at Etχ = 0.98 eV, Etα =
1.20 eV, and Nt = 1020 cm–3.
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Abstract—The multiplication of edge dislocations in impurity atmospheres was studied. Impurities pin a dis-
location line, so that additional stress must be applied to “drive” a multiplication mechanism. An expression for
diffusion redistribution of impurity atoms along a dislocation segment due to the nonuniform chemical potential
was derived. The early stage of moderate-temperature creep is qualitatively explained in terms of theoretical
analysis. © 2001 MAIK “Nauka/Interperiodica”.
During plastic deformation of metals, the density of
edge dislocations increases, as a rule, by several orders.
This phenomenon is explained in terms of the Frank–
Read or Bardeen–Herring models of dislocation multi-
plication [1]. The former mechanism is fairly illustra-
tive. When exposed to shear stress, a linear segment of
a dislocation line bends between the pinning points.
Once the critical bend radius has been attained, the seg-
ment breaks down to form a closed dislocation loop.
The same process is repeated for the remaining part of
the dislocation. The latter mechanism, being essentially
identical, differs in that here the multiplication mecha-
nism is dislocation climb because of the nonuniform
concentration of vacancies or interstitials.

The multiplication process is usually considered
without taking into account the effect of impurity
atoms. However, an impurity atmosphere around edge
dislocations raises the critical shear stress necessary to
form the loop. In this case, a multiplication source
comes into effect at a higher applied stress. After the
segment, together with the impurity atmosphere, has
bent, the impurity atoms are redistributed along the
segment by diffusion because of the chemical potential
gradient. As a result, the segments become free of the
impurity atoms and the shear multiplication stress
decreases. The atoms migrate along the dislocation seg-
ment by the mechanism of pipe diffusion, for which the
energy of activation is smaller than for volume diffu-
sion, and sink to grain boundaries or pass to a solid
solution.

In this work, we tried to give an in-depth analysis of
how impurities influence the multiplication of edge dis-
locations. In the model adopted, we consider only the
dimensional effect as applied to the dislocation–impu-
rity binding energy. Theoretical findings are invoked to
explain the early stage of moderate-temperature creep.
1063-7842/01/4601- $21.00 © 20051
Let a linear segment of a dislocation line of length l
be pinned at points A and B where dislocation lines
intersect (Fig. 1a). The segment is surrounded by a
homogeneous impurity atmosphere. The initial bend of
the segment due to shear stress is limited by the volume
diffusion of the impurity atoms. In an impurity-free
material, the shear stress needed to trigger a multiplica-
tion mechanism is smaller. Impurity atmospheres pin a
dislocation line, so that an additional shear stress must
be applied to bend the segment to the critical value.

A B

(a)

(b)

R

h

l0

y

x

s

τ

Fig. 1. (a) Linear and (b) bent dislocation segments sur-
rounded by impurity atmosphere.
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Edge dislocation pinning by impurity atoms in the
dilute and concentrated solid solution approximations
has been studied extensively in [2]. Within these
approximations, expressions for the force needed to
break the dislocation–impurity bond were derived. As
follows from estimates, the impurity hardening is com-
parable to the applied shear stress in order of magni-
tude. In fact, for the Fe–C system (δv = 3 × 10–30 m3,
ν = 0.28, and c0 = 1026 m–3), F/L . βc0 = 0.6 × 10–4 µb.
Here, β = µb(1 + ν)[3π(1 – ν)]–1δv, µ is the shear mod-
ulus, b is the Burgers vector of a dislocation, δv is the
impurity-induced change in the crystal volume, c0 is the
mean impurity concentration, and F/L is the force per
unit length needed to detach a dislocation from the
impurity atmosphere. If an edge dislocation is under a
shear stress τ0, the force acting on a unit length is
F0/L = τ0b and equals 10–4 µb at τ0 = 10–4µ. With the
effect of impurities taken into account,

It follows from the above that, in an impurity mate-
rial, a multiplication source generates dislocation loops
at much higher applied stresses.

If the applied stress is insufficient to make the seg-
ment free of impurity atoms, it bends together with the
impurity atmosphere. The activation energy of this pro-
cess is close to that of volume diffusion. As soon as a
bend appears, the impurity atoms are redistributed by
diffusion along the already convex segment of the dis-
location (Fig. 1b), with decreased activation energy.
The driving force of this process is the gradient of the
chemical potential of an impurity atom along an arc s
of the dislocation segment. The curvature K of the seg-
ment changes only its direction, remaining constant in
magnitude. This favors diffusion migration of impurity
atoms along the segment (arrows in the figure).

Under stress, a dislocation segment bends, and its
curvature K is K = 1/R . τ0/(µb). For τ0/µ = 10–4, b =
2.48 × 10–10 m, and l = 10–6 m, we obtain R = 2.48 ×
10−6 m and h = 0.05 × 10–6 m (where h is the height of
the segment).

The curvature of the segment causes diffusion redis-
tribution of the impurity atoms along the dislocation
line. They “slide down” from the top of the segment by
pipe diffusion. This (enhanced) diffusion takes place in
the narrow region (with a characteristic size of several
Burgers vectors) around the dislocation core. In this
region, the impurity concentration near the dislocation
is the highest. To quantitatively characterize the pro-
cess, we adopted the following model. Let an impurity
atmosphere occupy a cylindrical region of radius r1 > r0

(r0 is the dislocation core radius) where impurity atoms

Ftot

L
--------

F0

L
----- F

L
---+ 1.6 10 4– µb.×= =
pin a dislocation most rigidly. The value of r1 is deter-
mined from the condition

where k is the Boltzmann constant, T is temperature,
and θ is an angle in polar coordinates.

For kT = 10–20 J, sinθ = 1, and β = 10–29 J m, we have
r1 = 10–9 m. Physically, this means that, at r > r1, the
impurity atoms practically do not “sense” the disloca-
tion because of the prevailing effect of thermal motion.
In more rigorous terms, the potential field of the dislo-
cation should be represented by a rectangular potential
such that the total number of impurity atoms in the real
and model potential wells are the same. Mathemati-
cally, this condition is written in terms of the number of
excess impurity atoms per unit dislocation length:

Here, we made use of the fact that  = 0.5 and

 @ . To find the potential U1 of the model rectan-
gular well, we will take only the first even term in the
expansion of the exponential (the even terms of the
expansion are responsible for the accumulation of the
impurity atoms around the dislocation line) and obtain

where 2R is the mean distance between the dislocation
lines.

From the condition U1/(kT)] = ln(R/r0), we
find U1. For R = 104b, r0 = 2b, and ln(R/r0) = 8.5, we
obtain U1 . 2.84kT.

Now, the impurity atmosphere is concentrated
within a cylinder of characteristic size r1 and constant
potential U1; that is, the binding energy between an
impurity atom and the dislocation is constant within the
region r0 ≤ r < r1. This gives us a chance to simulate the
migration of impurity atoms by diffusion along the seg-
ment and, thus, determine the decrease in the force of
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dislocation pinning due to the impurity environment.
As soon as the number of impurity atoms leaving the
dislocation segment becomes sufficiently large, the
applied stress will force the dislocation out of the impu-
rity environment. The time during which the segment
breaks free of the impurity environment can be consid-
ered as the preparatory (incubation) period of the mul-
tiplication source (mechanism) to generation of dislo-
cation loops.

Pipe diffusion of impurities is associated with a non-
uniform distribution of the chemical potential of the
impurity along a dislocation line. Following [3], the
chemical potential of an impurity atom on the disloca-
tion pipe surface is written in the form

where µ0 is the chemical potential on the plane surface;
ω is the volume of the atom; γ is the surface tension at
the boundary between the impurity environment and
the dislocation; and K is the curvature of the dislocation
segment (Fig. 1b),

The diffusion flux of impurity atoms along a dislo-
cation is proportional to the chemical potential gradi-
ent:

where Ds is the pipe diffusion coefficient; s is the length
of an arc of the bent segment; n is the number of impu-
rity atoms per unit area of the impurity environment;
and

since

The last relationship is evident from the fact that
0 ≤ x ≤ 1/2 and l ! R; hence K = y''. Then, the rate of
impurity migration by pipe diffusion is found by solv-
ing the equation

The dislocation segment is surrounded by an impu-
rity atmosphere of radius r1, and the impurity concen-
tration in this region is constant. The impurity atoms
leave the bent surface of the segment, and, as this takes
place, the radius of the atmosphere decreases. Mathe-
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matically, this is described as the rate of change of the
coordinate y in time. It is assumed that the atom distri-
bution inside the “impurity” pipe does not change,
since the model potential U1 is constant.

The mathematical statement of the problem can be
simplified if the segment profile is approximated by the
function y = (h + r1)cos(πx/l), where h is the height of
the segment. In this case, the solution of the equation
changes but the general picture of impurity migration
along the segment will remain qualitatively the same.
In addition, one should take into account the evaluating
character of the problem parameters, as well as the sim-
plicity and physical clearness of the solution given
below. Let us consider a periodic solution of the equa-
tion for |x/l| ≤ 0.5. If the profile of the segment is written
as y = h1cos(πx/l), h1(t) is found from the equation

Now, it is easy to obtain the time dependence of the
impurity atmosphere profile:

where τ = kTl4/(π4Dsγω2n).
The relaxation time τ characterizes the departure of

the impurity atoms from the environment of the seg-
ment; in other words, it is the preparatory time of the
multiplication source to generation of the loops. Note
that the characteristic size of the source base l can be
expressed through the scalar dislocation density; then,
we have

It is seen that the preparatory (incubation) time of
the multiplication source in an impurity material is
inversely proportional to the dislocation density
squared. As the dislocation density grows, the source
base shrinks and the segments break free of the impu-
rity atmosphere faster. In the Fe–C system (kT = 10–20 J,
γ = 1 N/m, ω = 10–29 m3, n = 1020 m–2, Ds = 10–12 m2/s,
and ρ = 1012 m–2), τ = 104 s. Now let us determine the
time it takes for the segment to break free of the impu-
rity atmosphere. It is assumed that all the impurity
atoms leave the segment for the grain boundaries with
the same rate. If h = 0.05 × 10–6 m and r1 = 10–9 m, we
find t . 400 s from the condition h – 2r1 = hexp(–t/τ).
This means that, at τ = 104 s, the height of the segment
at its center (cos(πx/l) . 1) will decrease by 2r1, i.e., by
the characteristic size of the impurity environment, for
the time t = 400 s.

Let us discuss possible manifestations of the effect.
It follows from the aforesaid that impurity atoms have
a significant effect on the multiplication of edge dislo-
cations. This shows up largely through the incubation
time of the multiplication source. During this period,
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the impurity atoms are redistributed along a dislocation
segment by diffusion. The activation energy of this pro-
cess is lower than that of volume diffusion. The exper-
imentally found activation energy for pipe diffusion in
fcc metals was found to be 0.4–0.7 of that for volume
diffusion [4]. Therefore, the early stage of moderate-
temperature creep or plastic deformation must be con-
trolled by impurity atom redistribution along disloca-
tion segments [5]. Only after the lapse of the incubation
period, will the dislocation leave the remaining impu-
rity environment and the multiplication source come
into play.
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Abstract—The electromagnetic response to impact acoustic excitation in concrete is studied theoretically and
experimentally. It is revealed that the amplitude–frequency characteristic of the response depends on the dimen-
sions and location of inclusions in the material. A physical model of acousto-electromagnetic conversion in con-
crete is suggested. The amplitude–frequency characteristic is computed on the basis of an equivalent circuit. It
is found that the computed and measured data agree, which supports the physical model. © 2001 MAIK
“Nauka/Interperiodica”.
It has been demonstrated that the electromagnetic
(EM) response to impact acoustic excitation can be use-
ful for the nondestructive strength testing of concrete,
the response being evaluated from its amplitude–fre-
quency characteristic (AFC) [1]. Furthermore, it has
been found that the acousto-electromagnetic (AEM)
conversion occurs in areas of adhesive contact between
the aggregate and the binder [2]. However, this tech-
nique provides very inaccurate data in some cases. Pre-
sumably, this can be explained by the fact that the
strength is evaluated from the frequency of the princi-
pal AFC maximum, although the response has a fairly
wide spectrum. This study aims to assess the relation-
ship between the AFC of the response and the parame-
ters of internal EM sources.

Previous investigation has shown that the EM
response is produced mainly by internal sources [3].
Nevertheless, it is yet to be understood what mecha-
nism underlies AEM conversion in aggregate–binder
materials. If the acoustic wave excited in the concrete
changes the state of the double electric layer on an
aggregate/binder interface, then the displacement cur-
rent must be generating an electric signal in an external
circuit. The AFC of the signal must depend on the loca-
tion of the EM source in relation to the points of impact
and detection, as well as on its size. In practice, we face
the problem of interpreting the total response from
many EM sources randomly distributed throughout the
object. To simplify matters, we tested models made of
sand–cement concrete with a few inclusions.

The measurements were carried out with an emis-
sion apparatus [4]. It produces impact excitation of
acoustic waves in a tested object and digitizes the EM
response.

Figure 1a shows a typical AFC for a model with a
gravel grain serving as a single inclusion. Numerous
peaks may be produced by inclusion faces, which differ
in both their location relative to the faces of the model
1063-7842/01/4601- $21.00 © 20055
and the conditions under which acoustic waves are
excited and pass through the inclusion faces. With a
plate inclusion, the AFC has only a few clear-cut reso-
nant peaks (Fig. 1b). The number of peaks rises with
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Fig. 1. Typical AFCs of concrete with a single inclusion in
the form of (a) a grain of gravel or (b) a metallic plate.
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the number of inclusions. The case of two metallic
plates is exemplified in Fig. 2.

Thus, even with a single inclusion, the response at
the detection site is the superposition of the electric
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Fig. 2. AFCs measured for different rotation angles of the
SEs: (a) 0° (vertical position), (b) 18°, (c) 36°, (d) 54°,
(e) 72°, and (f) 90° (horizontal position).
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Fig. 3. Testing setup: (1) an impact exciter, (2) a differential
electric transducer, (3) a model under test, (4) inclusions,
and (5) SEs.
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Fig. 4. Lumped-parameter equivalent circuit.
fields produced by elements of double electric layers on
the surface of the inclusion, the elements differing in
their orientation relative to both the direction of the
acoustic wave and the sensing plane.

The EM response was detected with a differential
capacitive transducer, which uses two metallic sensing
elements (SEs) lying in a common plane to counter
external interfering signals. The transducer has a fig-
ure-of-eight radiation pattern. If the dipole moment of
a source is directed as the principal axis of the trans-
ducer pattern, the signal is maximum. If the dipole
moment is perpendicular to the principal axis, the sig-
nal is insignificant. It is therefore conceivable that
sources with differently oriented dipole moments can
be distinguished by rotating the transducer about its
axis, which passes through the center of the radiation
pattern. To test this conjecture, we carried out an exper-
iment on a cement model of dimensions 100 × 100 ×
100 mm with two parallel metallic inclusions (40 ×
40 × 1 mm) situated around its center, as shown in
Fig. 3. The transducer was rotated by steps of 18° from
the vertical (0°) to the horizontal (90°) position of the
SEs as indicated by the arrow, and the AFC was mea-
sured after each step. The results are shown in Fig. 2. It
is seen that some of the spectral components progres-
sively decrease, whereas others progressively increase.
As a result, the spectrum of the response changes con-
siderably. These findings support the view that AEM
conversion in composite materials is connected with
changes in the dipole moments of elements of double
electric layers on the surface of an EM source, the ele-
ments differing in their orientation relative to both the
direction of the acoustic wave and the sensing plane.

Being induced by changes in the dipole moment of
the EM source, the voltage across the SEs corresponds
to the distribution of electric current. Consequently, the
relationship between the voltage and the EM response
can be modeled with a distributed-parameter electric
circuit, which in turn can be replaced with a lumped-
parameter circuit. This approach enables us to qualita-
tively understand how the signal from the SEs depends
on the size of the source and its location relative to the
SEs. Figure 4 shows a lumped-parameter circuit repre-
senting the source and the SEs. Capacitors C2 and C4
model the capacitive coupling between an SE and a sur-
face of the double electric layer (C4 refers to the gap),
whereas capacitors C3 and C5 model that between the
other SE and the same surface. Capacitor C6 represents
the capacitive coupling between the latter SE and the
layer surface of opposite charge. Resistors R1 and R2
(R1 = R2 = R) refer to input transducer resistances;
capacitor C0, to the capacitance of the double electric
layer; capacitors C1 and C7, to the capacitive coupling
between the respective surfaces of the double electric
layer and ground; and voltage source E, to the EM
source. According to our views, the acoustic wave
changes the thickness of the double electric layer, thus
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
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producing an electric signal. Consequently,

(1)

where ω is the angular frequency of the oscillation, η is
the normal strain of the double electric layer, σ is the
surface charge density of the layer, d is the layer thick-
ness, ε is the relative permittivity of the layer, ε0 is the
electric constant, and Ik is the misalignment between
the dipole moment and the transducer principal axis.

The circuit in Fig. 4 suggests a simplified mathemat-
ical formalism of AEM conversion. Let us write equa-
tions for the mesh currents Ik:

(2)

In matrix form,

(3)

where

(4)

For the sake of simplicity, we neglect to indicate that
the matrix entries, the currents, and the voltage are
functions of ω. The matrix entries are expressed as fol-
lows:

Here, zN is the impedance of CN:

(5), (6)

where ε is the relative permittivity of the concrete or air
(the latter value being used with the capacitors repre-
senting the gap), SN is the effective area of the Nth
capacitance, and dN is the separation between the sur-
faces that produce the Nth capacitance.

Although formula (5) ignores the fact that the elec-
tric field between the surfaces is nonuniform, it is ade-
quate to roughly estimate the dependence of the dis-
placement currents in the equivalent circuit on the dis-
tance of the double electric layer from the sensing face
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of the tested model and on the layer area. The solution
of equation (3) is

(7)

The output voltage of the circuit (Fig. 4) is
expressed as

(8)

The above approach enables us to estimate the area
of the double electric layer and its distance from the
sensing face of the tested model. We measured the AFC
of the electric signal for different values of the distance
from the SEs to the model. The experiment was per-
formed on concrete models containing a single plate.
The models differed in the dimensions and the location
of the plate. It follows from the above calculation that
each model must offer a distinctive dependence of the
AFC on the SE distance, which makes it possible to
ascertain the relationship between the AFC and the
parameters of the source (the distance from the surface,
the dimensions, and the orientation relative to the direc-
tion of impact and to the SEs). This opens up new pos-
sibilities for more accurate algorithms to evaluate the
strength and for novel techniques of flaw detection
based on EM emission.

The testing was performed as follows. A model was
placed on a metallic plate connected to a ground, and an
acoustic wave was excited in it with the above-men-
tioned apparatus. The EM response was detected with a
capacitive transducer situated in close proximity to the
model. The transducer was fixed to a specially designed
movable table, which was furnished with a micrometer
screw to adjust the distance from the SEs to the model.

The AFC was measured at a given frequency. It has
been found that a change in the area of the inclusion, its
distance to the surface being the same, shifts the ampli-
tude–SE distance characteristic, whereas a change in
the distance from the inclusion to the surface alters the
slope. It is possible to obtain intersecting characteris-
tics by varying the two parameters of the inclusion. Fig-
ure 5a shows a measured characteristic for the fre-
quency corresponding to the principal peak of the AFC
(12 kHz). The data were obtained for two models of
dimensions 100 × 100 × 100 mm. In model 1, the inclu-
sion has an area of 60 mm2 and is situated at a distance
of 96 mm (curve 1). In model 2, the respective inclusion
parameters are 120 mm2 and 80 mm (curve 2). With
each point representing three amplitude measurements,
the confidence intervals in Fig. 5a indicate that the
changes in the behavior of the characteristic are statis-
tically significant. Also notice that the change in the inclu-
sion parameters both shifts the characteristic and affects
its slope so that curves 1 and 2 intersect. Figure 5b pre-
sents a computed characteristic. The computation was
based on formulas (5), (7), and (8). Formula (5) was
used with values of the distances from the inclusion to
the sensing face of the model and to the ground plate
(allowing for SE spacing), the separation between the

I M 1– b.=

U ω( ) R 2I2 ω( ) I3 ω( )+[ ] .=
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SEs and the model, and the area of the double electric
layer. The matrix entries were computed as well. It is
seen that the computed characteristics agree with the
measured ones in qualitative terms. This supports our
approach to AEM conversion.

Yet another experiment was carried out with a
metallic inclusion connected to a ground so that C1 and
C7 are eliminated from the circuit. It provided further
evidence for the AEM mechanism suggested here and
for the above formalism to ascertain the dependence of
the EM response on the inclusion parameters. It has
been found that the amplitude–SE distance characteris-
tic changes its height and slope (Fig. 6).

2 4 6 8 10 12

(b)

12

1.0

0.5

0
Distance, mm

Amplitude, arb. units
1.0

0.5

0

1
2

(a)

Fig. 5. Amplitude–SE-distance characteristics: (a) mea-
sured and (b) computed data. The frequency corresponds to
the principal peak of the AFC.
In summary, the results of the experiments on mod-
els made of sand–cement concrete with an inclusion
suggest that the AFC of the EM response to an impact
depends on the location and dimensions of the inclu-
sion. This supports the view that the AEM conversion
results from the oscillation excited in the double elec-
tric layer on the interface between dissimilar materials.

In conclusion, it seems worthwhile to investigate the
structure of different types of concrete that contain a
large number of randomly distributed EM sources
(grains of the aggregate). Such investigation should
employ statistical methods. This line of research could
yield more reliable techniques for the nondestructive
strength testing of composite materials on the basis of
AEM conversion.
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by Combined Laser Radiation
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Abstract—We performed a numerical simulation of phase transitions in gallium arsenide that are induced by
the combined action of nanosecond laser pulses initiating melting and an additional neodymium-glass laser
irradiation enabling the control of the interface velocity. In the case of counterpropagating laser beams, a strong
temperature dependence of the absorption factor at 1.06 µm occurs. It causes a thermal wave, which separates
from the melting front and, propagating towards the neodymium-glass laser beam, screens the melt. For coprop-
agating laser beams, regimes with a nonmonotonic time dependence of the melt depth may exist. © 2001 MAIK
“Nauka/Interperiodica”.
One of the basic parameters that characterize the
structure modification of thin semiconductor layers
during heating and melting due to nanosecond laser
pulses is the solid–liquid interface velocity V at the
stage of epitaxial growth. For example, V specifies the
nonequilibrium impurity distribution coefficient at the
interface, ultimate concentration of electroactive impu-
rity in the crystallized region [1], and concentration of
point defects. Therefore, by varying the crystallization
rate, one can control the properties of laser-modified
semiconductors. Originally, V was controlled by vary-
ing the initial substrate temperature [2]. It was calcu-
lated [3] that the crystallization rate of Si melted by
nanosecond laser pulses could be decreased more than
ten times by preheating the substrate to 1000°C. How-
ever, high-temperature exposure of semiconductors is
undesirable, specifically because of possible degrada-
tion of their electrical properties.

Another way to control the velocity V is combined
laser heating [4–8]. In this case, a nanosecond laser
pulse is used to melt a submicron layer, whereas its
crystallization rate is defined by the intensity of addi-
tional radiation propagating either in the same direction
as the melting pulse [4, 5] or opposite to it [6–8]. As
applied to this situation, the Stefan problem was solved
analytically for GaAs [7]. However, an analytical solu-
tion can hardly include temperature dependences of
GaAs physical parameters, such as the absorption α(T)
of additional radiation with a wavelength λ = 1.06 µm.

The aim of this work is numerical simulation of
phase transitions induced in GaAs by the combined
laser action. We studied the feasibility of controlling
the interface velocity in gallium arsenide subjected to
ruby laser pulses (τ = 70 ns and hν > Eg, where Eg is the
GaAs band gap), which are responsible for surface
layer melting, and neodymium-glass laser radiation
(hν < Eg), which has an effect on the velocity V through
1063-7842/01/4601- $21.00 © 0059
a change in the temperature distribution over the
crystal.

The melting and crystallization processes were sim-
ulated by the finite difference method. In a one-dimen-
sional approximation, the GaAs temperature is
described by the heat conduction equation

(1)

with the boundary and initial conditions

Here, ρ is the density, c is the specific heat, k is the heat
conductivity coefficient, Lm is the heat of fusion, Tm is
the fusion point, T0 is the initial temperature, h is the
layer thickness, and δ(x) is the delta function.

A heat source S(x, t) = SR(x, t) + SN(x, t) takes into
account heat release due to laser radiation. We have

(2)

for the ruby laser pulses and

(3')

for neodymium-glass laser radiation in the case of

ρ T( ) c T( ) Lmδ T Tm–( )+[ ] ∂T
∂t
------

=  
∂
∂x
------ k x( )∂T

∂x
------ S x t,( )+

∂T
∂x
------

x 0=

0,
∂T
∂x
------

x h=

0, T x t = 0,( ) T0.= = =

SR x t,( ) 1 R–( )α x t,( )W
τ i

----- α z t,( ) zd

0

x

∫–
 
 
 

exp=

SN x t,( ) 1 R–( )α x t,( )I0 α z t,( ) zd
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 
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copropagating laser beams or
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Fig. 1. Melt lifetime in gallium arsenide for counterpropa-
gating (solid curves) and copropagating (dashed curves)
laser beams versus the energy density of the ruby laser. The
intensities I0 of the Nd-glass laser radiation are (1) 0,
(2) 300, (3) 500, and (4) 700 kW/cm2; (5, 6) experimental
curves for I0 = 0 and (100) and (111) orientations, respectively.
(3'')

in the case of counterpropagating beams. The first two
terms on the right side of (3'') describe the absorption of
the neodymium-glass laser pulses in the crystal, and the
third term stands for absorption in the melt. Here, R and
α are the reflection and absorption factors, respectively;
Rsl is the reflection factor at the solid–liquid interface;
d = d(x, t) is the melting front position at a time t; W and
τi are the energy density and the pulse duration of the
ruby laser; I0 is the intensity of neodymium-glass laser
radiation; and subscript l denotes the melted (liquid)
phase.

The set of Eqs. (1)–(3) was solved by the succession
sweep method using iterations. The ruby laser pulse
shape was defined by the function sin2(πt/2τi), where
τi = 70 ns. We assumed that the GaAs wafer thickness
considerably exceeded the thermal diffusion length
within the pulse duration (30 µm). Thermal and optical
parameters used to solve the problem are listed in the
table.

The dependences of the melt lifetime τ on the
energy density of the ruby laser at different intensities
of the Nd-glass laser radiation are presented in Fig. 1.
The plot also shows the experimental curves τ(W) for

+ α x t,( )Rsl α z t,( ) zd

d

h

∫– α l z t,( ) zd
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d
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 
 
 

exp

+ 1 Rsl–( )α l x t,( ) α z t,( ) zd
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∫–
 
 
 
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






exp
GaAs parameters used in solving the problem [9]

Parameter Crystalline GaAs Melted GaAs

ρ, g/cm3 5.317 5.317
c, J/g K 0.303 + 5.0 × 10–5T 0.379
Lm, J/g 730 [10]

k, W/cm K 0.178 [10]

Eg(T), eV 1.575–5.0 × 10–4T
λ = 1.06 µm
R 0.30 0.64

10exp[149(–0.36 + 0.5 × 10–3T)],
α, cm–1 T < 812 K 106

2.91 × 104exp[3.22(–0.77 + 0.5 × 10–3T)],
T < 812 K

λ = 0.69 µm
R 0.33 0.64

2.91 × 104exp[3.22(–0.16 + 0.5 × 10–3T)],
α, cm–1 T < 400 K 106

3.48 × 104exp[1.71(–0.2 + 0.5 × 10–3T)],
T < 400 K

2271

T1.463
-------------
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the (100) and (111) crystallographic orientations of
GaAs wafers. The curves were obtained without the
additional irradiation (I0 = 0). Obviously, the results of
numerical simulation are in good agreement with
experimental data [11]. It is also seen that additional
heating by the neodymium-glass laser leads to a con-
siderable increase in the melt lifetime. Note that, for
copropagating beams, ∆τ is considerably larger than in
the case of counterpropagation. For example, at W =
1 J/cm2 and I0 = 300 kW/cm2, ∆τ is about 400 and
190 ns, respectively. Still more pronounced quantita-
tive and qualitative differences between these two con-
ditions of laser action are observed in the time depen-
dences d = d(t) (Fig. 2). Unlike [7], our calculations do
not predict the “stretch-out” of the melting front in
GaAs for beam counterpropagation. Due to the strong
temperature dependence of the absorption factor at λ =
1.06 µm (at T > 600 K, α drastically increases and
approaches ~104 cm–1 at T ≥ 800 K), the heated layer in
front of the crystal–melt interface begins to absorb the
radiation. A thermal wave forms (Fig. 3a, curves 1, 2),
which then separates from the melting front and, prop-
agating towards the Nd-glass laser beam, screens the
melt (curves 3–5). Thus, the interface velocity drops,
because additional heat release due to the absorption of
the Nd-glass laser radiation smoothes out the tempera-
ture gradient.

In the case of copropagating laser beams, the inter-
face movement can be nonmonotonic at a sufficiently
high I0 (Fig. 2; curves 2, 3). In the falling branch of the
d(t) curve (recrystallization), a temperature field with a
quasi-stationary profile is produced (Fig. 3b, curves 1–3).
If the intensity of the additional radiation is sufficient to
compensate for heat removal from the interface into the
crystal volume, crystallization stops after a time and

1
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3
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0 200 400 600 800 1000

0.2
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0.6

0.8

t, ns

d, µm

Fig. 2. Time dependences of the melt thickness at W =
1 J/cm2 and I0 = (1) 500, (2) 1000, and (3) 1500 kW/cm2.
Dotted line, I0 = 0; counterpropagation and copropagation
are indicated by solid and dashed curves, respectively.
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melting proceeds (Fig. 2, curves 2, 3). Under such con-
ditions of laser heating, the melting front advances into
the wafer and the surface temperature sharply grows
(Fig. 3b, curves 4, 5).

In conclusion, in the case of counterpropagating
laser beams, a strong temperature dependence of α at
the fundamental absorption edge can give rise to a ther-
mal wave that screens the phase transition region. For
copropagating beams, the time dependence of the melt
thickness may be nonmonotonic.
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Abstract—The influence of UV irradiation on temperature dependence of the integral intensity of lumines-
cence Ilum(T) in porous silicon was studied. It was found that, if luminescence decays with temperature non-
monotonically, the peak of Ilum(T) shifts toward higher temperatures as the exciting radiation density increases.
Under UV irradiation, the function Ilum(T) becomes monotonically decreasing. If the function Ilum(T) is initially
monotonically decreasing, UV preirradiation changes the emission spectrum and accelerates temperature
quenching of the red-orange emission band. The variation of the amplitude of the pulsed photoacoustic
response with UV irradiation dose was studied. The dependence found is explained by the removal of foreign
inclusions from the developed surface of porous silicon. An energy level diagram that makes it possible to
explain the behavior of Ilum(T) is suggested. It is noted that the shape of the function Ilum(T) can be used as
a test whereby the contributions from dissimilar oscillators to the red-orange emission band are estimated.
© 2001 MAIK “Nauka/Interperiodica”.
 INTRODUCTION

Luminescence from porous silicon features a num-
ber of anomalies. The room-temperature red-orange
emission band with a high quantum yield [1] is the most
dramatic example. There are also some other features
related to changes in the basic parameters of emission
bands in response to external factors. Out of them, the
nonmonotonic variation of the integral intensity of the
red-orange band with temperature is the subject of
investigation in this paper.

As follows from [2–5], when the temperature rises
from the helium to the room value, the function Ilum(T)
first increases and then flattens out; at T > 100 K, tem-
perature quenching of the band by a law other than the
Arrhenius law is observed. There is no consensus of
opinion among authors, for the most part, on the posi-
tion of the Ilum(T) peak. However, usual (exponential)
temperature quenching of the band throughout the tem-
perature range between 4 and 300 K was found in [6]
and a continuous rise of the band intensity, in [7]. Anal-
ysis of works [2–7] and others suggests that there is a
correlation between a porous silicon process and the
shape of the Ilum(T) curve.

In this paper, we studied the effect of pulsed UV
irradiation on the shape of the Ilum(T) function in porous
silicon. The central idea was to elucidate the effect of a
substance deposited on silicon fibers on the shape of the
Ilum(T) curve and gain new information on the nature of
the basic emission band. The surface cleaning effi-
1063-7842/01/4601- $21.00 © 20063
ciency of the porous silicon films was judged from the
pulsed photoacoustic (PA) response.

EXPERIMENTAL

Samples were irradiated by high-power UV pulses
from a Xe–Cl excimer laser built around an oscillator
and a three-pass amplifier [8]. The radiation wave-
length was 308 nm; the pulse width, 25 ns; and the
pulse energy, 20 mJ. Irradiation was carried out in a
chamber where the gas composition can be varied.

The photoluminescence (PL) spectra were excited
by a mercury-discharge lamp or a 337-nm pulsed nitro-
gen laser. The PL emission was detected by a grating
spectrometer with a CCD chain (resolution 0.2 nm).
The temperature was varied and kept accurate to 1 K.

During irradiation by nanosecond pulses of the
Xe−Cl excimer laser, the pulsed PA response was
detected by a wide-band oscilloscope provided with a
high-sensitivity piezoelectric ceramic PA cell. (For
more details, see [8].)

The porous silicon samples under study were pre-
pared by the conventional technology [2] with anodiz-
ing current densities ranging from 5 to 80 mA/cm2 and
electrolytic etching times between 15 and 90 min. The
aging time of the samples was between 1 h and
2 months. Ultimate cleaning techniques also differed.
Initial p-type silicon wafers with a resistivity of
10 Ω/cm had the (111) orientation. In taking tempera-
ture dependences of the PL intensity and PA response,
001 MAIK “Nauka/Interperiodica”
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emphasis was on two types of samples differing in
preparation conditions and in visual appearance. The
samples of the first type had high mechanical strength
and the metallic luster typical of single-crystal silicon.
The technology of their preparation was described
in [2]. For these samples, the emission band peaked at
720 nm. The samples of the second type were chestnut
brown and had low mechanical strength, which implies
that a thin weak porous silicon film can be separated
from the single-crystal silicon substrate. The free
porous silicon films were obtained as described in [9].
For them, the emission band peaked at a wavelength of
610 nm for T = 4.2 K.

THE INFLUENCE OF UV IRRADIATION 
ON THE PL PROPERTIES OF POROUS SILICON

Let us examine temperature dependences of Ilum(T)
for the red-orange emission band in samples of both
types. Note that the exciting radiation density affects
the shape of the Ilum(T) curve [4]. This may be a reason
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Fig. 1. Luminescence spectra from porous silicon samples
of the first type: (a) initial sample, (b) after preirradiation by
50 pulses of the excimer laser, and (c) after preirradiation by
150 pulses of the excimer laser. T = (1) 5, (2) 70, (3) 150,
(4) 200, (5) 250, and (6) 300 K.
for the discrepancy in the peak positions of the Ilum(T)
curve that were reported in [2–7]. Therefore, when con-
sidering the shape of the Ilum(T) dependence, one
should indicate the exciting radiation density at which
the PL spectra have been obtained. The spectra excited
by the mercury-discharge lamp with an excitation den-
sity of 1019 photon/(cm2 s) are shown in Figs. 1 and 2
for the samples of the first and second types, respec-
tively. The temperature dependences of the PL spectra
(curves 1–6) were obtained both for the as-prepared
samples (Figs. 1a, 2a) and for those preirradiated by the
excimer laser at various UV doses (Figs. 1b, 1c, 2b, 2c).
In what follows, emphasis will be on (1) the nonmono-
tonic run of the Ilum(T) curve for the samples of the first
type, while the samples of the second type exhibit the
usual (Arrhenius) temperature decay of the red-orange
band; (2) the influence of UV irradiation, which
changes the nonmonotonic Ilum(T) curve to a monoton-
ically decreasing one as the temperature of the type-2
samples grows and accelerates temperature quenching
of luminescence in these samples; and (3) the tempera-
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Fig. 2. The same as in Fig. 1 for the samples of the second
type.
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ture-related distortion of the emission band for the
type-2 samples due to faster decay of its short-wave
branch. The greater the irradiation dose, the more dis-
tinct the last feature. The difference in the rates of PL
temperature quenching allows separation of the net
band into two (L and M) bands. Note also that, because
of faster decay of the L band, the shapes of the PL spec-
tra at room temperature become nearly identical for
samples of both types (Figs. 1, 2; curves 6).

The PL integral intensity I vs. the excitation power
density P (or lux–intensity characteristic) for the type-
1 samples is shown in Fig. 3. For the type-2 samples,
the I–P characteristics are the same. As is seen, the
curves tend to saturation, which is typical of radiative
recombination through impurity centers. Point A in the
initial linear region of the characteristic corresponds to
low excitation levels, at which the temperature depen-
dences of the emission bands for the samples of both
types (Figs. 1, 2) were taken. The same temperature
dependences were also taken at greater excitation den-
sities (point B). For the type-1 samples, the temperature
dependences of the PL integral intensity at the excita-
tion densities corresponding to points A and B are
shown in Fig. 4. At the elevated excitation density, the
peak of the Ilum(T) curve tends to higher temperatures.

THE INFLUENCE OF UV IRRADIATION ON THE 
PULSED PA RESPONSE IN POROUS SILICON

The PA properties of the porous silicon samples of
both types are similar in many respects. A typical oscil-
logram depicting the PA response of porous silicon
irradiated by nanosecond pulses from the Xe–Cl laser
is shown in the insert at the top of Fig. 5. Let us look
more closely at the parameters of the PA response. It is
bipolar and shows oscillation due to a photoexcited
compression–dilatation wave. The PA response (pulse)
amplitude varies as the electromagnetic–acoustic con-
version efficiency; and the duration of a PA pulse, as the
time of acoustic wave propagation through the region
of photoexcitation. The response structure is of the
“acoustic ringing” type. Such a train of pulses arises
from multiple reflections of the acoustic wave when it
propagates through the acoustic line between a photo-
excitation region and the piezoelectric sensor [8, 10].

Consider mechanisms of sound generation in
porous silicon. In discussing the nature of the experi-
mentally observed phenomenon—photogeneration of
sound with giant volume [10, 11]—we have already
mentioned some with them: thermoelastic, pseudostric-
tion, and pulsation (when individual fragments of the
porous silicon framework are thermally isolated). How-
ever, at the exciting irradiation densities used in this
work, other mechanisms may appear. The dependences
of the PA response amplitude on the number of laser
pulses npulse at various energy densities per pulse (Fig. 5)
strengthen this supposition. A common property of the
uPA r(npulse) curves for the samples of both types is an
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first type at T = 300 K.

I, arb. units

1.0

0.9

0.8

0.7

0.6

0.5

0.4
0 50 100 150 300250200

T, K

B

A

Fig. 4. PL integral intensity vs. temperature for the samples
of the first type. The exciting radiation density per pulse of
the nitrogen laser is (A) 1 and (B) 20 kW/cm2.

*

*

*
* * * ** * * * * * * * *

uPA r, mV
14

12

10

8

6

4

2

0

40

20

0

–20

–40
0 4 8 12

τ, µs

A, arb. units

5 15 25 35 45 55 65 75
npulse

Fig. 5. PA response amplitude vs. the number of excimer
laser pulses for the samples of the second type. The energy
density per pulse is r 156, j 210, n 280, × 410, and

* 1950 mJ/cm2. The insert shows a typical PA response
from porous silicon irradiated by Xe–Cl laser pulses.



66 BASHCHENKO et al.
abrupt decrease in the PA response intensity, followed
by a plateau at npulse > 10. However, for the type-2 sam-
ples, an increase in the power density (starting with
1950 mJ/cm2) at npulse > 40 causes the value of uPA r to
rise again.

The data in Fig. 5 can consistently be explained if
we suppose that, when the samples are irradiated by
high-power pulses of the Xe–Cl excimer laser, the abla-
tion of foreign inclusions out of the surface of the sili-
con fibers forming the porous silicon framework makes
the major contribution to sound generation. In this case,
the decrease in uPA r(npulse) reflects the degree of surface
cleaning, which increases with the number of irradia-
tion pulses. At power densities >1950 mJ/cm2 and
npulse > 40, a sound generation mechanism associated
with the destruction of the porous silicon framework
dominates. This explanation is independently sup-
ported by visual observations: the samples of the sec-
ond type (chestnut brown) change in color and then
show signs of destruction of their structure as npulse
grows. With regard for such an explanation of the
dependence uPA r(npulse), it appears logical to assume
that the L component of the red-orange band for these
samples is closely related to foreign inclusions sur-
rounding the silicon fibers. This is attested to by a cor-
relation between a decrease in the L band intensity and
a decrease in the PA response amplitude as the UV irra-
diation dose grows.

RESULTS AND DISCUSSION

The experimental results on the effect of UV irradi-
ation on the shape of the Ilum(T) curves for the type-1
and type-2 samples can consistently be explained
within the following model. Let an element of the
porous silicon structure have the form shown in the
insert in Fig. 6; that is, nanometer silicon fiber 1 of vari-
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Fig. 6. Energy diagrams accounting for the luminescence
spectra in porous silicon samples of (a) the first and (b) the
second type. 0–1, absorbing transition; 1–2, nonradiative
transition; 2–4, transition giving rise to the M band; and
5−6, transition giving rise to the L band.
able thickness is covered first by SiO2 layer 2 and then
by composite layer 3 containing, among others, etching
products. Assume that the difference in structure
between the samples is that the thickness of layer 3 in
the samples of the first type (with metallic luster) is sig-
nificantly smaller than in the chestnut brown samples of
the second type. We will proceed from the sensitized
model of luminescence in porous silicon, which
implies that light absorption and light emission occur in
different substances; that is, the underlying mechanism
of luminescence is spatial transfer of the excitation
energy from one substance to another [12]. Assume that
light is largely absorbed in layer 3, covering silicon
fiber 1 (Fig. 6, transition 0–1). Then, the electrons pass
into the conduction band of silicon nanostructures
through nonradiative quantum transition 1–2 (the
energy position of this band is renormalized with
respect to the bulk silicon due to the quantum size
effect). Bearing in mind that porous silicon has a devel-
oped surface, we must allow for the presence of a set of
traps 3. At helium temperature, the electrons are partly
captured by these centers from the porous silicon con-
duction band (transition 2–3). The rest of the conduc-
tion-band electrons radiatively recombine at positively
charged defects (most likely at those localized near the
porous silicon–silicon oxide interface), bringing about
the M band of certain intensity (transition 2–4). It is obvi-
ous that the electrons leave trap states 3 with an
increase in the temperature. As a result, the population
of the conduction band 2 and, hence, the M-band inte-
gral intensity grows. The peak integral intensity [the
point where Ilum(T) changes sign] corresponds to com-
plete thermal delocalization of traps. Now, the fact that
the position of the point where Ilum(T) changes sign
depends on the excitation intensity can easily be
explained in terms of the proposed model: as the con-
centration of photoexcited electrons increases, so does
the probability of deeper trap states being occupied.
Subsequent temperature quenching of the M band at
higher temperatures (above the sign reversal point)
should be associated with thermal destruction of
state 4. Previous UF irradiation breaks down the cen-
ters responsible for the trap states. This is the reason
why UV preirradiation changes the shape of the Ilum(T)
curve for the samples of the first type.

Thus, we have outlined a model explaining the non-
monotonicity of the Ilum(T) curve for the samples of the
first type.

The same explanation is also valid when applied to
the shape of the Ilum(T) curve in the type-2 samples, but
for the M component of the red-orange emission line
alone. The more intense L component of the spectrum
would be appropriately related to charge carrier recom-
bination in outer envelope 3 covering the silicon fiber
(transition 5–6). This follows from the changes in the
PL spectrum, the shape of the dependence Ilum(T), and
the PA response with the UV irradiation dose. A higher
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
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rate of temperature decay of the L band as compared
with the M band also supports this assumption.

Clearly, such an explanation for the shape of the
Ilum(T) curve is simplified. To gain a better understand-
ing of processes responsible for the shape of Ilum(T), we
must have refined data for charge transfer through a
partly disordered medium (in our case, through outer
layer 3 covering silicon fiber 1) and for the effect of UV
irradiation on the composition of layers passivating
porous silicon (by hydrogen transfer between oscilla-
tors, final oxidation of silicon, etc.).

The above issues are of importance, because the
shape of Ilum(T) may serve as a test that would make it
possible to separate the emission of siloxens and other
etching products from that closely associated with sili-
con fibers (see the energy diagrams in Fig. 6).

CONCLUSION
The effect of previous UV irradiation on the shape

of the Ilum(T) curve was studied for porous silicon irra-
diated under various conditions. In the case of samples
with nonmonotonic temperature decay, the effect of the
exciting irradiation intensity on the position of the point
of sign reversal in the Ilum(T) curve was also investi-
gated. It was confirmed that, with a rise in the excitation
density, the point of reversal is shifted to higher temper-
atures. UV preirradiation of the samples with a non-
monotonic function Ilum(T) makes it monotonically
decreasing. For type-2 samples, which initially show a
monotonically decreasing Ilum(T) curve, UV preirradia-
tion changes the spectrum and accelerates temperature
quenching of the red-orange band. The variation of the
pulsed PA-response amplitude with the UV-irradiation
dose was investigated. The analytical dependence
deduced is explained in terms of cleaning the devel-
oped porous silicon surface from foreign inclusions
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
covering the silicon fibers. The energy diagram that
helps in explaining the behavior of Ilum(T) for porous
silicon samples obtained under different conditions is
suggested. The shape of the Ilum(T) curve can serve as a
test whereby the contributions from dissimilar oscilla-
tors to the red-orange emission band can be separated.
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Abstract—A general method of calculating the energy deposition by fission fragments in nuclear-pumped
lasers is presented. A specific case of a cylindrical cell is considered. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Direct conversion of nuclear energy into coherent
light has been studied extensively in Russia and the
United States [1–3]. The basic principle of nuclear
pumping lies in producing the recombinating nonequi-
librium plasma under bombardment of the gas by ions
(fission fragments or light ions). These ions are the
products of neutron-induced nuclear reactions either in
the gas (internal pumping) or in a thin layer of the mate-
rial (active layer) deposited onto a substrate inside a
laser cell (external pumping). In practice, the use of fis-
sion fragments as bombarding ions is of particular
interest.

The energy deposition by bombarding ions has a
crucial role in forming optical and energy characteris-
tics of the laser light. The methods for calculating the
energy deposition were first devised within the frame-
work of radiation chemistry [4–9] and then for nuclear-
laser problems [10–14]. A complete solution to the
problem was obtained for active layers of infinite plane
geometry [8, 14]. For practical purposes [15], it is of
interest to consider active layers of finite plane (rectan-
gular) or cylindrical geometry. The Monte Carlo [9]
and quadrature [12] methods were applied to cylindri-
cal layers. However, reasonable results were obtained
only for the integrated energy deposition, whereas the
calculation of optical inhomogeneities requires knowl-
edge of the spatial energy deposition distribution. For
rectangular layers, the energy deposition was not calcu-
lated.

In this work, we proposed a general quadrature
method for calculating the energy deposition [16, 17] in
layers of arbitrary geometry for a nonuniform density
of the media.

PHYSICAL PRINCIPLES OF THE PROPOSED 
METHOD

As a rule, the energy deposition is calculated under
the following assumptions [4–14]: (i) isotropic separa-
tion of ions forming in an active layer, (ii) rectilinear
1063-7842/01/4601- $21.00 © 20068
ion trajectories, and (iii) instantaneous slowing down of
ions. Let us suppose that the ion spectrum exhibits
energy homogeneity. For fission fragments, this
assumption ensures a sufficient calculation accuracy
[5, 9]. The “moderation law”—the dependence of the
ion energy E on the distance l—plays the key role in
calculations of the energy deposition. This dependence
is usually described by the empirical formula [4–14]

(1)

where E0 is the initial ion energy, li are the ion path
lengths in the sequentially crossed media, Ri is the ion
path in the ith medium, and n is the parameter of the
moderation law.

Formula (1) can be generalized to the case of media
exhibiting nonuniform densities. To determine its
applicability limits, let us consider the stopping power
S(E) = –dE/(Ndl), where N is the concentration of
atoms in the medium. According to the experimental
data [18, 19], the stopping power for a wide variety of
media can be represented in multiplicative form with
fair accuracy; that is,

(2)

where the function s(E) and the parameter ζ depend on
the ion and the medium, respectively.

For a homogeneous medium, we can write

If an ion crosses several media of variable density
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Ni = Ni(l), then

(3)

where  is the mean concentration of atoms in the ith
medium and ρi(l) and  are the local and mean densi-
ties of the ith medium, respectively. The total ion
energy loss (E = 0) corresponds to L = 1. Thus, the
moderation law for the case of several inhomogeneous
media can be represented as follows:

(4)

where η# is the inverse function with respect to η, so
that η#[η(E)] = E.

For the dependence S(E) = ζ iE p and a uniform den-
sity, we obtain formula (1), so that n = 1/(1 – p) and

R = [(1 – p)ζiN]–1. The linear moderation law
(n = 1, p = 0, and S = const) can be applied to the light
ions in the vicinity of the maximum stopping power.
The exponents n < 1 (p < 0) have meaning only in the
Bethe–Bloch velocity range. There are two traditions in
characterizing fission fragments. One of them (“the law
of 3/2” at n = 3/2, p = 1/3) [7, 12, 20] is based on the
experimental energy dependence of the fission-frag-
ment path [21]. The other tradition (“quadratic law” at
n = 2, p = 1/2) [4, 9] is confirmed by measurements of
the energy spectrum of the fragments radiated by ura-
nium layers [5]. Note that the “path” in formula (1) is
the parameter responsible for the exactness of the mod-
eration law. The measurable fission-fragment path is
primarily determined by the final stage of moderation
at which the stopping power is minimum. Hence, the
“law of 3/2” can be used to calculate the concentration
of the moderated fragments. However, the energy dep-
osition is predominantly determined by the initial stage
of moderation at which the stopping power is maxi-
mum. Therefore, it is expedient to calculate the energy
deposition according to the quadratic law, because it is
more appropriate for “the initial part of the track” [4].
The parameters p = 1/2 (n = 2) agree well with both the
moderation theory and the experiments with different
ions [18, 19, 22].
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MATHEMATICAL FORMULATION 
OF THE METHOD

Let us consider a cell (Fig. 1) in which the active
layer occupies the volume VA spatially bounded by the
surfaces s1 and s2. The active layer is covered with a
protective coating (a region between the surfaces s0 and
s2). The irradiated volume of the gas V0 is bounded by
the surfaces s0 and s3 (s3 contains the opposite wall and
the cross sections of the side slots). We assume that a
neutron flux is uniform in the active layer (or at least
within the ion path). The number of nuclear reactions
N*(rA) per unit volume of the active layer per unit time
is proportional to the layer density ρ1(rA); that is,

(5)

where  and  are the N*(rA) and ρ1(rA) values
averaged over the layer (within the ion path).

Within the initial approximations, we now consider
isotropic monoenergetic ion sources with the initial ion
energy E0. Assume that the distribution of these sources
over the active layer is given by Eq. (5). Then, the
energy flux density produced by these sources at an
arbitrary point C (Fig. 1) can be represented as

(6)

Subscripts 0, 1, and 2 refer to the gas, the active
layer, and the coating, respectively. The integration is
performed within the path. Let dSA be an element of the
area of the surface sA passing through the active layer
and ϑA be an angle between the normal nA to this sur-
face and the vector l. Then, dVA = (nA · dl1)dSA =
cosϑAdl1dSA. Let dSC be an element of the area of the
surface sC passing through the point C and ϑC be an
angle between the normal nC to this surface and the
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Fig. 1. A nuclear-pumped laser cell of arbitrary geometry.
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vector l. The energy flux transferred by ions through the
surface sC is given by

(7)

where dΩA = cosϑC dSC/l2 and dΩC = cosϑAdSA/l2 are
the elements of the solid angle in the coordinate frames
with the origins at points A and C, respectively. Both
variants of formula (7) are equivalent.

The specific energy deposition (power absorbed by
a unit volume) can be written as

(8)

Formulas (7) and (8) (reported earlier in [16]) are
applicable for any layer geometry and any moderation
law. The stopping power defined by Eq. (2) suggests the
moderation law (4) and allows integration over the
layer thickness. With allowance made for Eqs. (3) and
(5), we obtain

(9)

Substituting this expression into Eq. (8) gives

(10)

(11)

Here, we introduced the extended function to take into
account the ion path length (L ≤ 1); that is,

A similar formula for a uniform active layer and the
moderation law (1) was given in [14] without deriva-
tion. The function j(rC) contains all information regard-
ing the active layer and the moderation law. This func-
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tion reaches a maximum value (unity) in a hollow cav-
ity surrounded by a thick (the thickness is greater than
the ion path) active layer.

By substituting Eq. (9) into Eq. (7), we obtain the
following expressions for the integrated energy deposi-
tion:

(12)

(13)

The variable LAC changes in such a way that the
point A (C) is fixed when integrating over dΩA (dΩC)
and the point C (A) runs over the surface sC (sA). The
function U(L) represents a portion of the energy trans-
ferred from a thick (the thickness is greater than the
path) active layer by the distance L. For the moderation
law (1), we have U(L) = (1 – L)n + 1/(n + 1). In order to
characterize the layer as a whole, we can use the coef-
ficient ε [9] equal to the ratio of the total power
absorbed in the gas Q0 to the power released in the bulk

of the layer Q1 = E0VA. The active layer can be con-
sidered thin if its thickness d1 is less than the longitudi-
nal dimensions by several orders of magnitude. In this
case, S0 = S1 = S2 and VA = S1d1. Then,

(14)

(15)

Let us now assume that the surface of the energy
inflow s0 coincides with the surface of the energy out-
flow s3 (as is the case in cylindrical active layers). Then,
the separation of the inner surface of the laser cell into
s0 and s3 means that Ψ(s0) and Ψ(s3) take into account
the inflowing and outflowing energies, respectively. In
a similar way, we calculate the energy deposition upon
internal pumping when the gas contains a source of
ions: He3 [10] or UF6 [11] (in the former case, the
attenuation of the neutron flux should be taken into
account). We also write expressions analogous to
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Eqs. (5) and (9); that is, N*(r) = ρ0(r)/  and

N*(r)dl1 = dL0. The specific energy deposition (8)
is given by

instead of Eqs. (10) and (11).
The function wC(s0) is defined by Eq. (11), where

LAC = L0 and the integration is performed over a closed
surface s0 bounding the gas volume. The absorbed

power is given by Q0 = Q1 – Ψ(s0), where Q1 = E0V0
is the power released in the gas volume V0 and Ψ(s0) is
the energy carried away from the cell. From Eq. (7), we
obtain expressions similar to Eqs. (12)–(15); that is,

For both internal and external pumping, the energy
deposition is expressed via the same auxiliary functions
wC(sA) and W(sA, sC), which are of crucial importance.

A CELL OF INFINITE PLANE GEOMETRY
For a cell of infinite plane geometry when all the

media exhibit plane-laminated density distributions
depending only on the transverse coordinate y, dΩC =
dΩA = 2πsinϑdϑ , LAC = DAC /cosϑ , and ϑ  = ϑA = ϑC

(angle between the vector l and the y axis). Then, func-
tions (11) and (13) for the specific and integrated
energy depositions have the form
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For details of the infinite plane geometry of homo-
geneous media, see [4–9, 13] and especially [8], in
which the integrated and specific energy depositions
are represented in the quadratures consistent with
Eqs. (16) and (17). The integral ψk(a, b) taken from [8]
is related to Eq. (16) by the expressions w(D) =
(1/2)Dψk(1, D), k = 1/n – 1, where n is the parameter of
the moderation law (1). The extension to the case of an
inhomogeneous gas was performed in [14].

A CELL OF LONGITUDINALLY UNIFORM 
GEOMETRY

Let us consider a cell of longitudinally uniform
geometry (Fig. 2). The active layer is applied on the
surface of the plates with a length much larger than R0.
The plates are either plane or bent around the optical
z axis so that the cross section of the cell is uniform
along the z axis. Such a configuration of the cell allows
free passage of the laser beam and is generally accepted
[16]. The density distribution of media is assumed to be
longitudinally uniform.

Now, we consider a coordinate frame (λ, ϕ, θ)C with
the origin at point C (Fig. 2). The λ axis is directed
along the projection of vector l onto the cross section of
the cell, ϕ is the angle between the λ axis and the nor-
mal nC to the surface sC (the normal belongs to the same
cross section), and θ is the angle between the λ axis and
vector l. A similar coordinate frame is constructed at
point A, so that θA = θC, cosϑC = cosθcosϕC, cosϑA =
cosθcosϕA, dΩC = cosθdθdϕC, and dΩA = cosθdθdϕA.

W DAC 0=( ) U 0( )
4

------------.=

S0S1 S2 SC

ϕ C

θ

nC

λ

A
ϕ A

θ nA

l

z

C

Fig. 2. A nuclear-pumped laser cell of longitudinally uni-
form geometry.
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Then,

(18)

and the energy deposition functions (11) and (13) have
the form [16]

(19)

(20)

Here, for the near (s2) and far (s1) surfaces of the active
layer, we have ΛAC = Λ0 + Λ2 and (s1) – ΛAC = Λ0 + Λ1 +
Λ2, respectively. The integration over dSC (dSA) implies
the change in the variable σ along the cross section of
the surface sC (sA). The quantity σA represents the
length of the active layer in the cross section of the sur-
face sA (measured along the arc σ). The functions v(Λ)
and V(Λ) are independent of the cross section and the
density profile. In particular, for the linear moderation
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Fig. 3. A nuclear-pumped laser cell of cylindrical geometry.
law u(L) = 1 – L, we obtain

For the quadratic moderation law u(L) = (1 – L)2, we
have

(21)

(22)

A CYLINDRICAL CELL

Let us consider a cylindrical layer bounded by the
coaxial cylindrical surfaces of radii r1 and r2 (Fig. 3).
The thickness of the layer is d1 = r1 – r2 ! r2. The gas
is bounded by the cylindrical surface of radius r0. Such
a configuration represents a particular case of the lon-
gitudinally uniform geometry. To calculate specific
energy deposition, we can use formulas (10), (19), and
(21) and the quantities Λi determined by expressions
(18). For homogeneous media, we can write

Here, ϕ ≡ ϕC. For π/2 < |ϕ| ≤ π, it is more convenient to
use the angle ψ = π – ϕ, cosψ = –cosϕ. We restrict our
consideration to uncoated layers, so that r2 = r0 and
Λ2 = 0. In this case,

The function j(∆C) is determined by three parame-
ters D0, D1, and c ! 1. In practice, c ~ 10–4, and, there-

v Λ( ) 1 Λ2– Λ Λ ,arccos–=

V Λ( ) 1
4
--- 1 2Λ2+( ) Λ 3Λ 1 Λ2––arccos[ ] .=

v L( ) 1 Λ2–=

– 2Λ Λ Λ2Arth 1 Λ2–( ),+arccos

V Λ( ) 1
6
--- 1 6Λ2+( ) Λ 5Λ 1 Λ2––arccos[=

– 2Λ3Arth 1 Λ2–( ) ] .

Λ1

r1
2 rC

2 ϕsin
2

– r2
2 rC

2 ϕsin
2

––
R1

------------------------------------------------------------------------,=

Λ2

r2
2 rC

2 ϕsin
2

– r0
2 rC

2 ϕsin
2

––
R2

------------------------------------------------------------------------,=

Λ0

D0

2
------ 1 ∆C

2 ϕsin
2

– ∆C ϕcos–( ),=

D0

2r0

R0
-------, ∆C

rC

r0
-----.= =

Λ1 2D1
1 c/2+

Z
-----------------,=

Z 1 c+( )2 ∆C
2 ϕsin

2
– 1 ∆C

2 ϕsin
2

– ,+=

D1

d1

R1
-----, c

d1

r0
-----.= =
TECHNICAL PHYSICS      Vol. 46      No. 1      2001



ENERGY DEPOSITION BY FISSION FRAGMENTS 73
fore, we can neglect the dependence on this parameter
because of its smallness. Then,

(23)

Specifically, at the axis (∆C = 0), Λ1 = D1 and Λ0 =
D0/2; at the wall (∆C = 1), Λ1 ≈ D1/|cosϕ| (as in the case
of the infinite plane geometry); and Λ0 = 0 at |ϕ| ≤ π/2
and Λ0 = D0cosψ at π/2 < |ϕ| ≤ π. For the quadratic
moderation law and D0 = 1, the energy deposition at the
wall is j(∆C = 1) = (2.5 + G)/π – 1/2 ≈ 0.587, where
G = 0.916… is the Catalan constant.

The integrated energy deposition is determined
from formulas (12), (20), and (22). Similarly to
Eq. (14), the power absorbed in the bulk of the gas
bounded by the cylindrical surface sC of radius rC

(coaxial to the active layer) is given by

(24)

Here, we used a coordinate frame centered at point A,
for which we can write (Fig. 3)

Here, rA = r1 (r2) at the surface s1 (s2); the minus and
plus signs in the expression for Λ0 correspond to the

functions W(si, sC) and W(si, ) that characterize the
inward and outward energy flows, respectively. To
determine the efficiency ε, we assume that rC = r0.
Then, similarly to Eqs. (15), we obtain

(25)

Here, for uncoated layers (r2 = r0), we have Λ0 =
D0cosϕA and Λ1 ≈ D1/cosϕA similarly to relationship (23).
For the quadratic moderation law, W(r0, r0) = 1/12. If
D1 ≥ 1 and D0 = 1, we obtain J(r0) = (77 + 18G)/(72π) –
1/3 ≈ 0.07997, where G is the Catalan constant.
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Let us compare the proposed method with the cur-
rently available techniques. Kazazyan et al. [9] were
the first to calculate the efficiency of the cylindrical
active layers by the Monte Carlo method. These authors
used the quadratic moderation law in the calculations.
Their data (taken from the plots in [9]) and the results
of our calculations by formulas (24) and (25) are pre-
sented in the table. The insignificant discrepancies
between our results and the data obtained in [9] are
within the accuracy of digitizing the graphical data
from [9].

In [9], the authors made the first attempt to calculate
the distribution of the energy deposition from a cylin-
drical layer with respect to the radius by dividing the
gas volume into cylindrical layers and calculating the
integrated energy deposition for each layer by the same
method. However, one can hardly obtain a continuous
profile of the energy deposition (which is necessary for
calculating the optical inhomogeneities) from these
histograms.

Chung and Prelas [12] applied the quadrature
method to calculate the energy deposition for cylindri-
cal layers. They calculated the energy flux density and
then approximated it by a polynomial of the sixth order.
The specific energy deposition was determined by dif-
ferentiating this polynomial. However, the high accu-
racy of the approximation does not ensure acceptable
accuracy of the derivative of the approximated func-
tion. Note that the energy flux density was calculated
in [12] by using the triple quadrature, even though the
problem can be reduced to the double quadrature [see
the transformation of Eqs. (7) and (8) into Eqs. (10)–
(13) with the use of Eq. (9)].

Figure 4 compares the results obtained in [12] for a
cell with CO2 irradiated by an UO2 layer and the results
of calculations by the proposed method using the
parameters taken from [12]. Unfortunately, the numer-
ical value of the uranium enrichment factor is not given
in [12] (although this factor enters into formulas used
in [12]). In our calculations, its value is taken equal to

F(∆C), keV/(cm3 s)

250

200

150

100

50

0 0.2 0.4 0.6 0.8 1.0
∆C

Fig. 4. Specific energy deposition in a cylindrical cell at a
unit neutron flux density: (solid lines) calculations by
Eqs. (10), (19), and (21); (dashed lines) the data taken from
[12]; (squares) heavy fragments (D1 = 0.35, D0 = 1.3); and
(rhombs) light fragments (D1 = 0.25, D0 = 1.0).
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Efficiency ε (in %) for uncoated cylindrical layers

D0

D1 = 0.3 D1 = 0.5 D1 = 1.0

Data taken 
from [9]

Calculation by 
Eqs. (24) and (25)

Data taken 
from [9]

Calculation by 
Eqs. (24) and (25)

Data taken 
from [9]

Calculation by 
Eqs. (24) and (25)

0.1 5.36 5.34 4.14 4.03 2.14 2.20

0.2 10.0 9.64 7.29 7.20 3.61 3.88

0.3 13.4 13.06 10.0 9.66 5.00 5.15

0.4 15.7 15.75 11.4 11.51 6.21 6.09

0.5 17.5 17.80 12.9 12.87 6.60 6.76

0.6 19.3 19.30 13.9 13.81 7.14 7.24

0.7 20.0 20.36 14.3 14.46 7.60 7.56

0.8 21.0 21.07 14.8 14.88 7.86 7.77

0.9 21.5 21.52 15.1 15.15 7.93 7.91

1.0 22.0 21.82 15.5 15.33 8.00 8.00

1.2 22.5 22.18 15.7 15.55 8.07 8.11

1.4 22.8 22.39 15.8 15.68 8.14 8.17

1.6 22.9 22.52 16.0 15.75 8.14 8.21

1.8 22.9 22.61 16.1 15.81 8.21 8.24

2.0 22.9 22.68 16.1 15.85 8.21 8.25
90%. The calculations in [12] were performed with the
moderation law (1) at n = 1.45. However, this is not the
main reason for the discrepancies in the results of the
calculations. The use of the method proposed in [12]
involves difficulties in calculating the energy deposi-
tion in the vicinity of the wall (the authors of [12] did
not take into account sharp bending of the energy dep-
osition profile) and near the axis (where the energy flux
is small and differentiating with respect to radius can
present problems). Note also that the derivative of the
profile given in [12] is not equal to zero at the axis.

CONCLUSION

We proposed a general quadrature method for calcu-
lating the energy deposition in nuclear-pumped lasers.
This method can be used (in contrast with the existing
techniques) for both external and internal pumping for
any moderation law in inhomogeneous media. For a
cell of longitudinally uniform geometry (the univer-
sally accepted laser configuration) and a uniform den-
sity of the media, the method makes it possible to
express the specific and integrated energy depositions
in the double and triple quadratures, respectively. In the
case of the quadratic moderation law, these quadratures
are reduced to the single and double ones, respectively.
For a cylindrical cell, both integrated and specific
energy depositions are reduced to the double quadra-
tures (and to single quadratures for the quadratic mod-
eration law). Earlier, the specific energy deposition for
cylindrical geometry of the layer was calculated by
numerical differentiation of the energy flux density
expressed in triple quadratures.
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Abstract—Consequences derived from the results of the theory of systems of parabolic equations were used
in the analysis of the behavior of thermal switching waves and their propagation velocity in a cooled composite
superconductor at different coverages by a nonconductive coating. The value of the minimum normal zone
propagation current was also studied, taking into account the local nonlinearity of the specific resistance of the
composite. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Evaluation of the velocity v of a switching wave
(NS-boundary) which breaks the superconducting
properties of a current-carrying unit is the central prob-
lem of applied superconductivity [1]. This problem is
of particular significance for composite superconduc-
tors (superconductors with a normal matrix) with a
nonconducting coating. As shown in [2], the presence
of even minor coverages can result in an essential
change of the character of the thermal processes in a
composite superconductor. When evaluating v in [2],
the electrical and physical parameters of the matrix
were assumed to be temperature-independent and,
therefore, the one-dimensional non-steady-state heat
conductivity equation with a heat source Q(T) and heat
sink W(T) could be made dimensionless and the prob-
lem was reduced to the known problem [3]. However,
the general nonlinear heat transfer equation allows no
global dimensionless complexes.

The present study is devoted to the evaluation of the
range of propagation velocities of the thermal switch-
ing waves, taking into account local nonlinearity of the
specific resistance ρ0(T) of the normal conductive
matrix in the vicinity of the temperature of the transi-
tion of the superconducting core. In evaluating the
velocities of the switching waves, the consequences
deduced from fundamental results of the theory of
wave propagation for the systems of parabolic equa-
tions were utilized [4]. According to [4], the character
of the thermal waves (or the systems of waves) and of
their propagation velocities can be qualitatively and
quantitatively analyzed if a source-sink function F =
Q – W is specified. The qualitative agreement of the
results with those obtained for the case ρ0(T) ≡ const [2]
clearly demonstrates the validity of the approach used.

Consider an infinite cooled superconductor in a nor-
mally conducting matrix, whose surface is covered
with a nonconductive coat. Suppose that the boundary
1063-7842/01/4601- $21.00 © 20007
surfaces of the sample are planar and the contact heat
resistance between the coating and the composite is
zero [2, 3]. Then, the temperature variation in the lon-
gitudinal direction can be described by an equation in
dimensionless variables [2]:

(1)

where c = ci/ck, λ = λi/λk, ∆i, k = di, k/Lk, α =

ρ0/hpS(Tcb – T0), β = ∆i∆k/λ, and Ic and Tcb are the
critical parameters of the superconductor [2]; ρ0 is the
specific resistance of the normally conducting matrix;
h is the heat dissipation coefficient; p is the perimeter
cooled; S is the cross-sectional area; i = I/Ic (I is the
transport current); ck, ci are the heat capacities of the
composite and the coating; λk, λi are the heat conduc-
tivity coefficients; and dk, di are transversal dimensions
of the composite and the coating.

Further,

where T0 is the reservoir temperature, τ = λkt/(ck ),

t is time, x = s/Lk, and Lk = [λkS2(Tcb – T0)/ ρ0]1/2.

For the function r(Θ), we adopt the conventional
model of stepwise heat release [1–3]
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DETERMINATION OF N-ZONE PROPAGATION 
VELOCITIES AT CONSTANT SPECIFIC 

RESISTANCE OF THE MATRIX 
USING THE STEPWISE HEAT RELEASE MODEL

Let us denote

(3)

and determine zeros of this function, since it is known
[4] that, according to the character of the considered
wave systems and the behavior of the solutions at infi-
nite time, all sources F(Θ, ·) can be grouped into three
types depending on the behavior of the function F(Θ)
in the vicinity of zeros F(Θ) = 0. The roots of this equa-
tion represent steady states (stable and unstable) of the
dynamic system. Thus, a new feature here is the depen-
dence of steady states (points) not only on the current
density i (in the fixed current regime), but also on addi-
tional parameters α and β (see definition). This cer-
tainly makes the dynamics of the system more diverse.
Using Eq. (2) and the definition for F(Θ), it is not diffi-
cult to identify the following steady states: the point
Θ1 = 0 is a steady state at 0 < Θ < 1 – i; at 1 – i < Θ ≤ 1,
we have 

In particular, at α @ 1 and/or i @ 1, Θ2 = (1 – i)–1.
So, at i  +0 due to inequality Θ < 1 – i, the compos-
ite switches to the superconducting state r(Θ) ≡ 0 [1];
at Θ > 1, we obtain 

particularly, Θ3 = αi2 at α @ β, which agrees with the
known result [1] for the uncoated superconductors.

Consider the case when the function F(Θ) at some
values of the parameters α, β, and i takes the form
shown in Fig. 1. It is obvious that F(Θ) < 0 at Θ ∈  (0, a)
and F(Θ) > 0 at Θ ∈  (0, 1), where

and hence, in the presence of the parameters, the tran-

F Θ α β i, , ,( ) Θ
α β+
-------------– i2r Θ( )+=

Θ2 α i 1–( )/ α i 1 i–( )( ).=

θ3 α β+( )i2,=

a
1 i–

1 i α β+( )[ ]–
---------------------------------,=

Θ* 1 Θ

F(Θ)

Fig. 1. Kolmogorov’s graphical solution (1937), in which
evolution of the temperature profile (in the normal phase)
tends to a simple wave at infinite time.
sition point of the superconductor to the N-state is for-
mally shifted towards higher temperatures.

For the sources in Fig. 1, the considered problem
has a unique solution, which is a wave propagating with
a velocity v > 0, if the inequality

holds [3] for all Θ ∈  (0, 1). Simple calculation shows
that this is possible if

i.e., at i > 1, a traveling wave characterizing the N-zone
propagation appears, which is an obvious occurrence.

In the range (Θ*, 1), the function F has the form
shown in Fig. 2 and meets the following conditions:

where u  (Θ – Θ*)(1 – Θ*); i.e., we normalized the
temperature range (by substituting Θ  Θ – Θ* to
shift the left boundary to zero and stretch the range by
a factor 1 – Θ*).

In such a temperature range, a unique normal zone
propagation velocity exists [3]:

where C denotes the general coefficient in Eq. (1).
To simplify the mathematics, we suppose that the

following inequalities are satisfied:

i.e., the influence of the coating on the temperature field
is assumed to be negligible. In particular, at a minimum
current of the normal zone propagation ip, the velocity
is equal to zero [1, 3] and the inequality [1, 4]

at currents far in excess of ip can be interpreted as a nec-
essary, but not a sufficient, condition for the supercon-
ductivity break-up. Let us write this inequality in the
form

and, assuming the right side to be equal to zero, deter-
mine the minimum current density for normal zone
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propagation

This formula can be used for approximate calcula-
tions of the current densities i > ip at sufficiently large
(and fixed) values of β > 0. The general necessary con-
dition has the form

In specific calculations, we can use a curve of
allowed parameters for the superconductivity break-up

which in the most trivial case is reduced to the determi-
nation of the emergence of the normal phase due to heat
release (see definition of r(Θ)).

Returning to the general case, for F(u), the point
Θ = Θ* is stable, while the point Θ = 1 is unstable.
Then, there should be a constant v∗  such that the (0,1)-
wave exists only if v > v∗ , where the quantity v∗  (min-
imum velocity) satisfies inequalities [3]

where sup denotes an exact upper limit of the maxi-
mum value of the function in the specified range, whose
maximum is in general not necessarily attained.

In particular, if the condition F '(u) < κ, 0 < u < 1 is
satisfied, we obtain κ = γ, which is a unique traveling

wave propagating at a velocity of 2  (see
the substitution above of the unknown functions). Note
that this scenario occurs in the range (Θ*, 1).

For the range (0, 1), following [3], we assume that
F(u) ≤ 0 at a sufficiently small u, which is in the vicinity
of the point i = 1 and F(u) ≥ 0 at u close enough to unity.
If waves (0, Θ*) and [Θ*, 1] (S and N waves, respec-
tively) are propagating at velocities vs < vn, then a
[switching] wave (0, 1) exists that propagates with a

velocity vs < v < .

In particular, for bistable superconductors (for
which there is typically no S wave, although it could be
induced under a special heat removal regime), a unique
velocity exists (at t  ∞) that coincides with the min-
imum velocity, while it is known that a multistable
superconductor (for example, because of the coolant
boiling crisis) can be found in one of three stable states
with different temperatures T1 < T3 < T5 (see, for exam-
ple, [4]). Then, from the formal results of [3, 5], it
immediately follows that in the temperature range
T2 < T < T4, the end points of which are unstable
steady-state points while the point T3 is stable, three
switching waves exist: one in the range T2 < T < T3,

ip

Ic
2ρ0

hpS Tcb T0–( )
---------------------------------

∆i∆k

λ
----------.+=

F ' 0 α β 1, , ,( ) ! 1.

F ' 0 α β i, , ,( ) 0,=

2 κ v* 2 γ,≤ ≤

γ sup
F u( )

u
-----------, 0 u 1,< <=

F ' 0 α β i, , ,( )

v n
2
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which at t  ∞ transforms into a wave of constant
amplitude [4]; and a wave in the range T3 < T < T4,
which (after some time has elapsed) acquires the tem-
perature T3, and the steady-state solution T = T3 is sta-
ble (therefore, these waves collapse). A similar case has
been considered in [1, 4], except that there is no
filmlike boiling of the coolant at point T = T5 [4] in our
case. Thus, using the terminology of [4], there are two
hot (normal) phases and, since the superconductor
cools at T = T3 in the bubble boiling regime [3], these
phases naturally assume this temperature value at t  ∞.

Each of the hot phases moves with its own velocity
 < , where vN is the velocity of the normal wave

in the multistable state [3]. In this case, according to the
theorem in [3, theorem 3, p. 338], there exists a wave
that propagates with a velocity of  < vN <  and
is, in fact, a (T2, T4)-wave. Such a wave can exist only
if v > v∗ , where the quantity v∗  (minimum velocity of
the (T2, T3)-wave) satisfies inequalities

and the maximum value of the function γ(T) (see above)
is chosen in the range T2 < T < T4. It will be shown
below (in a rather rough approximation) that this max-
imum is attained at a point Θ = Θ3. Hereafter, it will be
assumed that the upper bound of the velocity is reached
only in multistable conductors. All this, including the
terminology, follows from the results obtained in
[3, p. 338].

To simplify the mathematics we consider the partic-
ular case of ∆i ! 1. Then, the minimum wave propaga-
tion velocity is

In particular, with dimensional variables it will be

By way of comparison, for ∆k = 1and ∆i ~ 5 × 10–2,
and λ = 10–3, simple calculations show that v . 0.5 (this
is in exact correspondence with the plot presented in

v N1
v N2

v N1
v N2

2 F ' T2( ) v* γ T( ),≤ ≤

vmin 2 1
α β+
-------------– i+ .=

v dim 2
λ k

clLk

--------- 1
α β+
-------------– i+ .=

1 Θα
S+

S–0

F(Θ)

Fig. 2. The steady-state points of the bistable system of a
composite superconductor occurring as a result of thermal
isolation of the normal matrix with strong temperature
dependence ρn(T). (S – is the region of enhanced heat
removal.)



10 KRASNYK, MEDVEDEV
[2, Fig. 2] for i = 0.85); for other parameters the com-
parison results are similar (here, calculations have been
made for the dimensionless velocity). Also, at α  ∞
an expected coincidence with the results of [2] is
obtained, as well at the velocity values 0 < v < 1 and
in the range 10–1 < ∆i < 10–3. Finally,

with the maximum at a point  = αi(i – 1), which can
be easily calculated:

So, a rough calculation shows that at i @ 1 (actually,
i > 1 is sufficient), the maximum is reached at a point
Θ = αi2 – αi = αi2 = Θ3. Then,

It is easily seen that α + β > 1; so at β = 0, we have
vmax = 0 and the resistive state, in which the heat release
does not break superconductivity, does not exist, which
agrees with the result of [2, p. 13]:

So, at α  ∞, the maximum and minimum veloc-
ities coincide. Using the notations of [1], this formula
can be written in the form

(4)

It is to be recalled that in [2], the following relation-
ship has been obtained:

(5)

where αe = α + β, is = (  – 1)/2αe.

So, at αe  ∞, the first terms of formulas (4) and
(5) are close by an order of magnitude, the second term
is of the same order as (i), and the third is on the order
of (i – 1). Therefore, a qualitative agreement of repre-
sentations (4) and (5), respectively, can be assumed in
an asymptotic limit; that is, for the parameters α and/or
β @ 1.

F Θ( )
Θ

------------- 1
α β+
-------------– i

i i 1–( )
Θ

----------------- ,+ +=

Θ*
2

vmax
2 2 1

α β+
------------- i

i i 1–( )
Θ

-----------------
Θ Θ*=

–+–=

=  2 1
α β+
------------- i

1

α
------- i i 1–( ).–+–

vmax 2 1
α β+
-------------– i

i 1–
α β+
-------------–+=

=  2 i 1 α β+( ) 1––[ ] .

vmax 2 1
α β+
-------------– i

i 1–
α i

---------- at Θ+ + Θ*.= =

vmax 2 1
α e

-----– i
i 1–
α i

----------–+ .=

V
1 Λ∆i/∆k+

1 C∆i/∆k+
------------------------------

αei
2 i 2–+

α e α ei
2 1–( )

-----------------------------=

+
αe 1–

α e

-------------- 2 2 1 i–
1 is–
------------

i is–
1 is–
--------------––

 
 
 

,

1 8α e+
N-ZONE PROPAGATION VELOCITY 
DETERMINATION 

It should be noted that the above mentioned results
are valid under an assumption that the specific resis-
tance ρ0(·) is constant. If this is not the case, then it is
necessary to use the relationship

and, correspondingly, consider the equation

the coefficients in which we determine below after [2].
Unfortunately, the general nonlinear equation does not
allow the use of global dimensionless complexes. How-
ever, it can be made dimensionless in the same manner
as the previous equation, in the vicinity of the each
fixed point of the image

so that in the vicinity, fixed points in a system of dimen-
sionless spatial-temporal variables will exist, which in
the vicinity of the set is invariant with respect to the
(Tfix)-zeros of the function f(T).

Since the averaged Ce values are constant [1], then
without restricting the generality, we can assume Ce = 1
without qualitatively affecting the results stated below,

and make the substitution   T + T0 (the upper
angle will be omitted in what follows).

Let us begin with the case hep/S ! 1, where it will

suffice to have only the source f(T) = ρ(T). It is con-

venient to assume formally that ρ0(Tcb) = 0, so as not to
introduce a new function ρ(T) = ρ(T) – ρ0(Tcb). This
will make the result obtained accurate to within a con-
stant. It is also evident (not formally) that ρ(Tc) = 0.
Then, the source f(T) will obviously satisfy the follow-
ing conditions:

Finally, assume that f '(T) < α for all Tc ≤ T ≤ Tcb and
introduce the notation T = Tc + Θ(Tcb – Tc). Then, the

ρ T( ) ρ0 T( )=

×
1, T Tcb,>

T Tc–( )/ Tcb Tc–( ), Tc T Tcb,≤ ≤
0, T Tc Tcb Tcb T0–( )I/Ic,–=< 

 
 
 
 

Ce
∂T
∂t
------ λe

∂2T

∂x2
---------

he p
S

-------- T T0–( )–
I2

S2
-----ρ T( ),+=

f T( )
he p
S

-------- T T0–( )–
I2

S2
-----ρ T( ),+=

T̂

I
2

S2
-----

f Tc( ) f Tcb( ) 0;= =

f T( ) 0 at Tc T  ! Tcb;<>

f ' Tc( ) I2

S2
-----ρ' Tc( ) α 0.>= =
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SIMPLE ESTIMATION OF THE SWITCHING WAVE VELOCITIES 11
last constraint can be written in more detail in the form
of the inequality

,

which up to a constant (this constant can be easily
determined as the solution of the differential equation,
i.e., as the largest of the possible constants evaluating
the solution of the differential inequality) can be repre-
sented as

Denoting ρ(T(Θ)) =  and integrating the dif-
ferential inequality

in a range from Θc to Θ, where Θc is a dimensionless
critical temperature, we obtain that the above require-
ment f '(T) < α is merely a restriction on the growth rate
of the function

i.e., the rate of growth with temperature of the nonlin-
ear specific resistance of the matrix should be not
higher than the linear.

Note that since (formally) Θc = 0 at T = Tc (see
above) and the function considered, ρ0(T), is not the
same as the function ρ(T) (see above representation for
ρ(T)) possessing the property ρ(Tc) = 0, in contrast to
the quantity ρ0(Tc), which in general is not necessarily
equal to zero, then the obtained inequality in the vicin-
ity of the critical temperature appears to be fine. To
evaluate the growth rate of the function ρ0(Tc), we need
to calculate the limit

which can exist only if ρ0(Tc)  0 at T  Tc. Then,
if the conditions of applicability of the L’Hospital the-

orem are satisfied, this limit is equal to (Tc) and the
estimation obtained above acquires a clear qualitative
sense. Then, according to [3], the unique limiting
velocity of the normal zone propagation is

Taking into account that λe = λkdk/d + λidi/d, where
d = dk + di, and the quantities Ce and ρe are defined as
in [1], we obtain a qualitative agreement with the plot

ρ0' T( )
T Tc–

Tcb Tc–
-------------------

ρ0 T( )
Tcb Tc–
------------------- α<+

I2

S2
-----ρ0' Tc( )=

dρ T Θ( )( )
dΘ

-------------------------
dρ
dT
------ dT

dΘ
------- dT

dΘ
------- ρ T( )

T Tc–
---------------≤=

=  
Tcb Tc–
T Tc–

-------------------ρ T( ) 1
Θ
----ρ T Θ( )( ).=

ρ̃ Θ( )

dρ̃
ρ̃

------ dΘ
Θ

-------<

ρ̃0 Θ( )
ρ̃0 Θc( )

Θc

----------------Θ< constΘ,=

ρ0 Tc( )
Tc

----------------,
T Tc→
lim

ρ0'

v p 2 λ e I2/S2( )ρ0' Tc( ) 2
I
S
--- λ eρ0' Tc( ).= =
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in [2] of the normal zone propagation velocity versus
the coating thickness ∆i. However, the slope of the plots
should be corrected by the factor ρ0(Tc) (compare with
the results of [2]).

Thus, the N-zone propagation velocity decreases
with the increase of the composite cross-sectional area
S and is the smaller variation of the resistance of the
superconducting composite.

HEAT RELEASE IN A COMPOSITE 
WITH A LOCALLY NONLINEAR SPECIFIC 

RESISTANCE NEAR THE CRITICAL 
TEMPERATURE

Finally, to account for the influence of the heat dis-
sipation coefficient, it is necessary to carry out the pro-
cedure considered in the beginning. It is obvious that at
T < Tc, because of T > T0, the inequality f(Θ) ! 0 is sat-
isfied at fairly small T > 0. The function f(T) for the cho-
sen ρ(T) by definition (see above) has three fixed
points, which can be determined from the equations

,

these being the basic points. Lastly,

This point determines the position of the normal
zone front. Then, the minimum propagation velocity of
the N-zone is 

and the maximum velocity is

provided that the upper limit sup is attained. A simple
analysis shows that the derivative

is equal to zero if the function ρe(T) represents a solu-
tion of the differential equation

(6)

he p
S

-------- T T0–( )–
I2

S2
-----ρ t( )+ 0 at T Tcb,>=

he p
S

-------- T T0–( ) 0 at T Tcb<=

he p
S

-------- T( )–
I2

S2
-----ρ0 T( )

T Tc–
Tcb Tc–
-------------------+ 0 at Tc T Tcb.≤ ≤=

vmin 2
he p
S

--------– 2
I2

S2
-----ρe' Tc( )+ ,=

vmax 2
f T( )

T
------------

0 T T3< <
sup=

=  2
he p
S

--------–
I2

S2
-----

ρe T( )
T

--------------+
 
 
 

0 T T3< <
sup ,

f T( )
T

------------ 
  ' I2

S2
-----

ρe T( )
T

-------------- 
  ' he p

S
-------- 1

T0

T
-----– 

  '
–=

I2

S2
-----ρ' T( ) I2

S2
-----ρ T( )–

hpT0

S
------------– 0,=
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which it is convenient to write in the form

where by definition

Then, it is readily seen that this equation takes the
form

Note that at ρ0(T) = const, the quantity α is a dimen-
sionless Stakly parameter [2]; however, in such a gen-
eral form, we do not even have a representation of ρ(T)
through the function ρ0(T). Therefore, we will proceed
in the same way as above and introduce the formally
dimensionless temperature using the a priori parame-
ters Tc and Tcb, so that it is not necessary to single out
the quantity ρ0(T) as was done in [2] (see above). As a
result, we obtain a chain of inequalities

(to be solved to within unity) and, therefore,

In distinction from the previous estimation obtained
by solving the differential inequality under the condi-
tion that hcp(T – T0)/S ! 1, here this restriction is
removed. Therefore, the rate of growth of the function
ρ(T) can be exponential instead of linear.

If the function (Θ) is specified (and, hence, the
function ρ(T) as well), the points at which the quantity
f(Θ)/Θ is extremal are determined in a given range as
solutions of the functional equation

where (Θ) = (Θc), Θc = (Tc – T0)/(Tcb – T0). In the
general case, there can be several such points Θ = Θ∗ ,
and if Θ is one of them, then a maximum of f(Θ)/Θ will
be attained if the inequality α''(Θ) < 0 is satisfied. It is
evident that a minimum of three terms is required in a
series expansion of the function eΘ. Then

Hence, α'' = 1 + Θ and the maximum is attained if the
inequality 1 + Θ < 0 is satisfied. Taking into account
(see the introduction) that 1 – i ≤ Θ ≤ 1 (that is, 2 – i ≤
1 + Θ ≤ 2 and, therefore, 2 – i ≤ 1 + Θ < 0), we find that
i ≥ 2 or (using notation of [2]) I > 2Ic.

I2ρ' T( )
hpST0
----------------- α T( )– 1– 0,=

α T( ) I2ρ T( )
hpST0
----------------.=

α' T( ) α T( )– 1– 0.=

dα T Θ( )( )
dΘ

-------------------------
dα
dT
------- dT

dΘ
------- dT

dΘ
------- α T( )

T Tc–
---------------≤ 1

Θ
----α T Θ( )( )= =

α̃
α̃c

----- eΘ e
Θc–< eΘ 1.–=

α̃

α̃ Θ( ) α̃ c Θ( ) eΘ 1–( ),=

α̃ c α̃

α Θ( ) Θ Θ2

2
------

Θ3

3
------.+ +=
Thus, the allowed range of the normal zone propa-
gation velocities is determined by the inequalities

The approximation ρ0(T) = const leads to a value of
Θ∗  that is given (to within unity) by the equation eΘ –
1 = Θ. It is also easy to see that the following inequality
should be true (see above):

that is, the N-zone propagation in the composite begins
starting from current densities

,

or at i2 > λe/α, where

where it is assumed that Tc = Tcb; at α ≤ 1, we obtain i =
ip = 1/α. At the same time, the last formula takes into
account a finer mechanism of the superconductivity
break-up.

This formula gives approximately the same [quali-
tative] dependence of the N-zone velocity on current
density as in [2, Fig. 1], except that in this case, the term
hepS characterizing heat removal through the cross-sec-
tional area S takes into account (and determines) varia-
tion with the transport current of the slope of curve V =
V(I). Note that the maximal velocity no longer depends
on the heat conductivity coefficient λe. Finally, since
the model problem is primordial, these simple esti-
mates are adequate in a qualitative study.

Note that formally, the estimation of the normal
zone propagation velocity is a trivial consequence of
the fundamental results obtained in [4], which provide
the lower bound, and of the well-known results of the
theory of wave propagation for systems of parabolic
equations (Wolpert et al.), which give the upper bound
of the velocity.

The outlined results have been motivated by study
[2], in which the influence of a nonconductive coating
on the velocity of irreversible propagation of the nor-
mal zone along a cooled composite superconductor has
been established. In comparison with the known
results, the results obtained in this study take into
account heat transfer in the classic model of stepwise
heat release. It has been shown that the heat transfer
coefficient depends on the transversal dimensions of
the composite and the coating and an estimate has been
made of the allowed range of the normal zone propaga-
tion velocities.

Obviously, at Θ < 1 – i (see formula (2)), the func-
tion F(Θ) = –Θ/(α + β) + i2r(Θ) is negative and since

vmin v
f Θ*( )

Θ*
----------------.< <

ρ0 T( ) = 
he

λ e

----- pS

I2
------,>

i2 1
ρ0' Tc( )
---------------- pS

Ic
2

------
he

λ e

----->

α 1/ α ρ0' Tc( )+[ ]Tc
2/he pS Tc T0–( ),=
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the equation F(Θ) = 0 has three roots Θ1 = 0, Θ2, and
Θ3, it can be readily seen that the continuity of this
function should have the form as in Fig. 1 and, there-
fore, can be approximated by f(e) = e(1 – e)(e – a),
where 0 < a < 1 and e = Θ/Θ3 (this is simply normaliza-
tion for the range (0, 1)). Here, e = Θ2/Θ3.

It is known (see, for example, [6, 7]) that in his study
of wave solutions of the heat conductivity equation,
Hauksley constructed a solution of the type

which is shown in Fig. 3. In particular, at a = 1/2 and
v = 0 (that is, at Θ2 = Θ3/2), a reflected solution of the
form (1 – e) appears simultaneously with the family of
periodic solutions, which can be presented as elliptic

e x( ) 1 x/ 2–( )exp+[ ] 1–
,=

a ~ 0

a ~ 1/2

a = 1/2Θ

0 x

Fig. 3. Initial excitation of the heat domain at a ~ 0; evolu-
tion of the heat domain in the vicinity of the resistive transi-
tion temperature at a ~1/2; the shape of the heat domain at
a = Θ2/Θ3 ~ 0, where Θ2 = (λi – 1)/(λi(a – i)) and Θ3 =

(λ ∈ β)i2.
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functions [6, 7]. Hauksley’s solution propagates with a

velocity of v = (1/2 – a). McKean [7, p. 146] gave
a detailed picture of the behavior of the solutions at
0 < a < 1/2. Hauksley’s solution exits point (0, 0) and
approaches point (1,0) in the phase plane e = T and
e' = T ', and, in essence, represents a classical heat
domain, whose dynamics in superconductors was
investigated in detail in a number of studies [1, 4, 8].
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Abstract—Optical nonuniformities in the nuclear-pumped gas lasers are calculated. The nonuniformities are
formed due to inhomogeneous energy deposition by the fission fragments from thin plane uranium layers that
irradiate the laser active gas. The results of calculations agree with experimental data. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Direct conversion of nuclear energy into coherent
light is being actively studied in Russia and the United
States [1–3]. The basic principle of the nuclear pump-
ing is based on creating a nonuniform recombination
plasma by irradiating the working gas by ions produced
in nuclear reactions. The nonuniform energy deposition
by ions lead to gas nonuniformities, which worsen the
optical quality of laser light, transverse (with respect to
the optical axis) nonuniformities being the most dan-
gerous. Experimental studies of the optical nonunifor-
mities in laser cells irradiated by fission fragments from
thin uranium layers (plane or cylindrical) were reported
in [4]. The transverse profile of the gas density in cylin-
drical cells was numerically calculated in [5, 6]. A
series of one-dimensional analytical models [7–11] of
the gas dynamics in nuclear-pumped lasers have been
developed either neglecting [7–10] or incorporating
[11] the heat flux onto the wall. However, the calcula-
tion of optical nonuniformities in experiments using
cells with plane layers [4] is rather difficult because of
the gas leakage from the laser active region to a large
buffer volume. The results of the phenomenological
calculations of the gas density in such cells [12] have
not been compared yet with the experimental data [4].
This study is aimed at calculating (based on the model
1063-7842/01/4601- $21.00 © 20076
of [11] generalized to the case of a cell with a buffer
volume) optical nonuniformities in the experiments
using cells with plane layers [4].

EXPERIMENTAL

In experiment [4], a laser cell (Fig. 1) was a tube
with a length of l1 = 230 cm and a diameter of φ1 =
8 cm. Uranium layers were deposited on two plane
plates (with the length l0 = 200 cm and width b = 6 cm)
placed inside the tube at a distance of d0 = 2 cm from
each other. The laser active volume (the gas volume
between the plates) was V0 = bl0d0 = 2.4 × 103 cm3. The
ratio of the active volume to the total gas volume VG

was β = V0/VG = 0.24. The cell was filled with inert gas
(He or Ar) at various initial pressures P0 (see table).

The average (over the plate area) thickness of the
uranium layer (90%-enriched oxide–protoxide mix-
ture) was d1 ≈ 4.1 µm (or 3.2 mg/cm2). The reduced
thickness of the layer was D1 = d1/R1 ≈ 0.43, where
R1 ≈ 9.6 µm was the range of fission fragments inside
the layer. The mean fluence of thermal neutrons in the
layer attained 0.7 × 1013 cm–2 per pulse. The table
shows the mean number N* of fissions in a unit volume
of the layer per pulse.
l0

y

z
d0φ

l1

y

b

x

Fig. 1. Schematic of a plane cell of a nuclear-pumped laser.
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Calculation parameters (D1 = 0.43, d0 = 2 cm, β = 0.24)

Gas P0, atm N*, 1014 cm–3 R0, cm D0 f(0, 0, 0) f1 Θ × 0.9 χ, cm2/s C, 10–5

He 2.0(||) 0.66 5.5 0.36 0.34 0.94 1.50 0.31 0.86 6.37

He 2.0(⊥ ) 0.70 5.5 0.36 0.34 0.94 1.50 0.33 0.86 6.37

He 5.0 0.69 2.2 0.91 0.164 0.47 2.79 0.157 0.34 15.9

Ar 0.25 0.66 10.4 0.192 0.45 1.04 1.26 1.75 0.8 6.5

Ar 0.5 0.67 5.2 0.38 0.33 0.93 1.53 1.29 0.4 12.9

Note: For He at 2 atm, the measurements were carried out for two cases. In the first case ( ||), the longitudinal density profile (density distri-
bution along the plate) was measured. In the second case (⊥ ), the transverse (with respect to the plates) density profile and the parabolic
coefficient of the refractive index were measured.

f 0
The time profile of the neutron pulse was approxi-
mated by the function [13]

(1)

where t1 = 7.6 ms corresponds to the pulse maximum,

τ0 = 3.30 ms, τ1 = 2.45 ms, and a = 2Arch  = 1.763.

In this case, we have

(2)

Formally, we can assume that the pulse starts at
t = −∞ (Ψ(0) ≈ 3 × 10–4 ! Ψ(∞) = 1). Figure 2 com-
pares the ψ0(t) function with the exact profile.

Optical nonuniformities were measured with a
Mach–Zehnder interferometer at the He–Ne laser
wavelength (633 nm) with a resolution of 50 µs. In the
measurements, the optical nonuniformities were aver-
aged over the cell length. Therefore, below, all the
quantities in the active region are assumed to be aver-
aged over the cell length. Special consideration will be
given to the nonirradiated end regions.

ENERGY DEPOSITION 
BY FISSION FRAGMENTS

A method for calculating energy deposition by the
fission fragments in nuclear-pumped lasers with rectan-
gular uranium layers was proposed in [14, 15]. The
method is based on the following commonly accepted
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approximations [16, 17]: the neutron flux is uniform,
separation of fission fragments is isotropic, the frag-
ment trajectories are straight, and the spectrum of frag-
ments is monoenergetic. The calculations employ the
quadratic stopping law [16, 17]: the fragment energy E
depends on the path length l as E = E0(1 – l/R)2, where
E0 is the initial energy of the fragment and R is the
range of fission fragments. According to [14], the
energy δE* absorbed in a unit volume δV per unit time
δt is equal to

(3)

(4)

where ρ(r, t) is the gas density; ρ0 is the initial gas den-
sity; P0 is the initial pressure; cp and cv are the heat
capacities at constant pressure and constant volume,
respectively; R1 and R0 are the fragment ranges in the
layer and in the unperturbed gas, respectively; j(r, t) is
the energy deposition function, which depends on the
configuration of the layers and the gas density; and 
is the energy deposition function averaged over the vol-
ume V0 for the unperturbed gas.

The parameter Θ is the ratio of the energy absorbed
in the volume V0 per pulse (calculated for the unper-
turbed gas) to the gas internal energy. In [11], this
parameter was introduced to characterize the thermo-
dynamics of energy deposition. This parameter is
approximately equal to the relative increase in the mean
temperature of the gas. Since the range of fission frag-
ments and the pressure contribute to Θ as the product
P0R0 and R0 ∝  1/P0, we can use the ratio R1/R0 taken at
a pressure of 1 atm. In this case, the value of the expres-
sion (γ – 1)E0/P0 (also taken at a pressure of 1 atm) is
equal to 1.77 × 10–10 cm3 at E0 = 168 MeV.
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For a long plane plate (l0 @ R0) and uniform gas den-
sity, we have

(5)

(6)

Here, h0 is the distance from the bottom plate and the
origin of the x and y coordinates are counted from the
cell axis (Fig. 1). The energy deposition function for the
upper plate can be obtained by substituting h0 with d0 –
h0 in expression (5). Then, both functions must be
summed up. For a wide plate with b @ R0, which
corresponds to infinite plane geometry, we have
ω(D, ) = ω∞(D) ≡ (1 – D2 + 2DlnD)/4 [15].

The parabolic approximation of the energy deposi-
tion in the vicinity of the medial plane (y = 0) is of spe-
cial interest for optical applications

(7)

For infinite plane geometry, we have 2 (D) =
1/D – 1.

FORMATION OF OPTICAL 
NONUNIFORMITIES

It is typical of the gas dynamics in nuclear-pumped
lasers that the gas pressure is almost uniform across the
cell [4–11] and heat conduction plays a significant role
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only in a narrow wall region where the beam refraction
is large [4, 5]. Indeed, for the cell width d0 ~ 2 cm, the
relaxation time of the transverse pressure gradients τP ~
d0/us ~ 0.01 ms (where us ~ 105 cm/s is the speed of
sound) is much less than the pulse duration τ* ~ 1 ms.
The characteristic length of heat diffusion can be esti-
mated as

(8)

where χ ~ 1 cm2/s is the thermal diffusivity [18]. For
the time equal to the pulse duration τ*, this length is
λ ~ 0.03 cm ! d0.

The heat conduction manifests itself only in the
vicinity of the cell wall (which is cooler than the gas)
where a thermal boundary layer develops [5]. The
transverse Reynolds number is Re = d0u/η ~ 103 @ 1
(where u ~ d0/τ* is the transverse gas velocity and η ~
1 cm2/s is the kinematic viscosity). In the vicinity of the
wall, the transverse velocity vanishes regardless of the
viscosity force. Therefore, the effect of viscosity on the
transverse motion is negligible.

Thus, for the main part of the cell, the gas is
assumed to be ideal, non-heat-conducting, and nonvis-
cous, and the pressure is assumed to be uniform (P =
P(t)). Then the problem is reduced to thermodynamics
[11]: the energy ∆E* absorbed by a small gas volume v
is spent on the increase in its internal energy ET =
Pv(γ – 1) and the expansion work P∆v. Therefore, we
have

With allowance for mass conservation (ρv = ρ0v0),
we arrive at the basic equation [11]

(9)

This equation can also be derived in the zero-order
approximation by expanding the gas dynamics equa-
tions for an ideal, non-heat-conducting, and nonviscous
gas in powers in the Mach number [7]. At the energy
deposition given by expression (3) (nonadiabat equa-
tion) and for arbitrary motion, a formal solution to
Eq. (9) has the form [11]

(10)

The gas pressure is determined by the energy depo-
sition averaged over the cell volume (minus the heat
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flux onto the cell wall) [8, 19]

(11)

where q = –k∇ T is the heat flux onto the wall, k is the
thermal conductivity, and T is the gas temperature. As
the heat removal region is small, we can assume that
p ! P*.

The changes in the gas density are determined by
the energy deposition, which, in turn, depends on the
density profile. For the case of infinite plane geometry
and transverse gas motion, the energy deposition func-
tion at a given Lagrangian coordinate does not depend
on the density redistribution [7, 15]. In the general case
(especially, in the presence of gas leakage into the
buffer volume), the change in the density implies the
recalculation of the energy deposition. In this study, the
gas dynamics is calculated in two stages. In the first
approximation, the gas inside the laser active volume
V0 (including the effluent gas elements) is characterized
by the energy deposition function for the unperturbed
gas f(x(t), y(t), t) = f0(x0, y0), x0 = x(0), y0 = y(0). The
energy deposition outside the volume V0 is negligibly
small. With neglect of the heat flux onto the wall (p =
0), from Eqs. (3), (10), and (11), we obtain

(12)

(13)

(14)

where T(x, y, t) is the gas temperature and T0 = T(x, y, 0).

At low energy depositions (Θ ! 1), we have

(15)

Since the gas mass is conserved within a two-
dimensional problem, we can write
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where dv0 and dv are the initial and current values of
the gas element volume.

According to Eqs. (13) and (16), the total volume of
the irradiated gas VA(t) is given by

(17)

where VA(0) ≡ V0. In the nonirradiated region, where
f(x, y) = 0, the gas volume changes adiabatically
(VB(t) = VB(0)(P0/P*(t))1γ), whereas the total gas vol-
ume remains constant (VA(t) + VB(t) = VG). Therefore,
the mean gas density in the bulk of the active volume is
given by

(18)

Figure 3 demonstrates the time evolution of Σ(t).
The calculation parameters are shown in the table.
A correction factor of 0.9 for the quantity Θ is related
to the nonuniformity of the layers [19].

In the second-order approximation, the energy
deposition function is still related to the initial coordi-
nates (f(x(t), y(t)) = f(x0, y0, t); however, the gas den-
sity is taken from Eq. (18). This means that in rela-
tionships (6), the range R0 is divided (and the quanti-
ties Y, D0 , and H0 are multiplied) by Σ(t). Thus, the
redistribution of the gas density is taken into account
only on the average.

Let us estimate the heat flux on to the wall consid-
ering it as a perturbation. According to estimate (8),
the increase in the gas temperature near the wall by
δT(t') leads to an increase in the heat flux onto the wall
(the temperature of the wall is assumed to be constant
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Fig. 2. Calculated (solid line) and measured (dashed line)
time profiles of the neutron pulse.



80 MAT’EV et al.
and equal to T0)

Integration over the pulse yields the intensity of the
heat flux onto the wall

(19)

where T1(t) is the gas temperature near the wall neglect-
ing the heat flux [see Eq. (14)]. Since the thickness of
the boundary layer is small, the energy deposition func-
tion in the layer f0(x0, y0) can be replaced by its value on
the wall f1 = 〈 f0(x0, d0/2)〉  averaged over the surface of
the active layer (in the buffer volume, we have f1 = 0).
The quantities k and χ are assumed to be constant.

Then, we have

in the active and buffer volumes, respectively. With
neglect of the heat flux onto the cell ends and mounting
rings, the total heat flux onto the wall is equal to

(20)
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Fig. 3. Mean gas density in the active volume versus time.
Numerals indicate the gas pressure (in atm).
where SA = 2bl0 is the area of the active layer surface
(and the outer substrate surface) and SB ≈ πφl1 is the
area of the buffer volume surface.

From Eqs. (11), (19), and (20) we have

(21)

Substituting the varying energy deposition f(x0, y0, t)
and pressure into Eq. (10), we arrive at

in the active and buffer volumes, respectively. Note that
the dependences x = x(x0, y0, t) and y = y(x0, y0, t) need
to be additionally specified. The density averaged over
the entire cell length is given by

(22)

Figure 4 compares the results of calculations of the
relative density determined by Eq. (22) at the cell axis
(x = x0 = 0, y = y0 = 0) with the experimental data. The
calculations were performed both with allowance for
the heat flux onto the wall and neglecting the heat flux
(P(t) = P*(t) – p(t) or P(t) = P*(t), respectively). It is
seen that there is reasonable agreement between the
results of calculations and the experimental data. Since
the buffer volume is relatively large, the pressure varia-
tions are rather small (the maximum variation is one-
third for the case of argon at a pressure of 0.25 atm) and
the correction related to the heat flux onto the wall
appears to be insignificant. Figure 5 shows the longitu-
dinal profiles of the relative density at the medial plane
(y = 0) at different instants for helium at a pressure of
2 atm. In the calculations, two models of the longitudi-
nal gas motion were employed: the model of the gas at
rest (x = x0) and the model of the uniform longitudinal
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expansion x(x0, t) = x0/Σ(t). The second model describes
the shape of the density profile well. The disagreement
in the absolute values is rather large, although the
results of the other experiment (Fig. 4) with helium at a
pressure of 2 atm correlate well with the results of the
calculations.

Let us briefly consider alternative gas-dynamic
models. One-dimensional models [7–11] can not be
used to analyze the experimental data [4]. In these mod-
els, the gas density is maximum at the axis (where the
energy deposition is minimum) and monotonously
increases with time, whereas the experimental data [4]
show a decrease in the gas density at the axis (Fig. 4).
This can be easily explained using Eq. (15). If f(0, 0, 0) <
β < 1, the gas density at the axis increases, whereas if
β < f(0, 0, 0) (large buffer volumes), the gas density at
the axis decreases. If β = 1, Eqs. (12)–(15) can be
reduced to the models presented in [7, 11].

To overcome the limitations of the models [7, 8]
Torczynski and Neal [20] introduced rapidly cooled
regions (narrow slits) in the bulk of the cell volume.
These regions were described phenomenologically and
the equations of the gas dynamics were solved numeri-
cally. However, one can hardly assume that the large
buffer volumes exhibit large heat fluxes onto the wall.
Prikhod’ko and Sizov [12] proposed a calculation
scheme in which (in our notations)

the coefficient Ξ(t) was determined by the condition of
gas mass conservation in the cell, and the heat flux onto
the wall was not taken into account.

At small energy depositions and with allowance for
Eq. (12), we obtain

Being similar to Eq. (15), this expression overesti-
mates the relative increase in the gas density by the fac-
tor γ ≈ 1.7.

PARABOLIC COEFFICIENT 
OF THE REFRACTIVE INDEX

Experiments [4] show that in the major part of the
cell (except for the wall region), the refractive index is
given by

(23)

The parabolic coefficient α(t) is important for
practical calculations of the beam trajectories and the
stability of the laser cavity. The density dependence of
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the gas refractive index is given by n = 1 + C(ρ/ρ0)
(the values of the constant C are given in the table).
Taking into account Eqs. (22) and (23) and the expan-
sion of the energy deposition function (7), we can rep-
resent the length-averaged parabolic coefficient at the
cell axis as

(24)
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It is necessary to define the relationship between the
coordinates y = y(x0, y0, t). Let us consider three ver-
sions of this relationship. If the gas is at rest, we have
y = y0 and g(x, y, t) = g0 = 1. In the case of only trans-
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the gas at rest with the energy deposition for infinite plane
geometry neglecting the heat flux onto the wall (dashed
line). Numerals indicate the gas pressure (in atm).
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for the gas at rest (light line), with allowance for the heat
flux for the gas at rest (heavy line), and with allowance for
the heat flux in the model of a uniform longitudinal expan-
sion (dashed line). Numerals indicate time in milliseconds.
verse motion, we have ρ0dy0 = ρA(x, y, t)dy and g(x, y, t) =
g1(x, y, t) = ρA(x, y, t)/ρ0. Neglecting changes in the
energy deposition and the heat flux onto the wall and
based on Eqs. (13) and (25), we obtain

For infinite plane geometry and β = 1, this result
reduces to the known result of [8].

In the approximation of the uniform longitudinal
expansion, we substitute dv = dxdy, dv0 = dx0dy0, and
dx = dx0/Σ(t) in Eq. (16) to obtain g(x, y, t) = g2(x, y, t) =
ρA(x, y, t)/(ρ0Σ(t)).

For low energy depositions and neglecting the heat
flux onto the wall, we have

(27)

Figure 6 compares the results of calculations of the
parabolic coefficient with the experimental data [4].
The calculations for the gas at rest and uniform longi-
tudinal expansion yield close results (almost coinciding
for He at 2 atm), which means that the longitudinal
expansion and transverse compression balance each
other. The calculations carried out in the approximation
of the transverse gas motion and the calculations by
formula (27) yield only qualitative agreement with the
experimental data for He, for which (Θ ! 1), but not
for Ar, for which Θ > 1 (the results of calculations for
argon are not shown). The results of calculations with
neglect of the heat flux onto the wall differ from the
presented curves to the same extent as in Fig. 4. Figure
6 also shows the results of calculations employing the
energy deposition function for infinite plane geometry
(with neglect of the heat flux). The effect of the finite
width of the plates with uranium layers is rather small
for He (almost undetectable for He at 5 atm), whereas
for Ar it is more important than the heat flux onto the
wall and two-dimensional gas motion.

The agreement with the experimental data is good in
the most important cases (He at 2 atm and Ar at
0.5 atm), bad in the case of Ar at 0.25 atm, and very bad
for He at 5 atm. Note that we did not take into account
the gas motion along the optical axis; this may play a
specific role in the latter case, which differs from the
others only by the small range. It is also possible that
the quadratic stopping law (a good model for calculat-
ing the energy deposition [16, 17]) employed in the cal-
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culations of the energy deposition at large D0 does not
allow for accurate calculations of the parabolic coeffi-
cient. The latter is determined by the second derivative
of the energy deposition distribution, which makes it
very sensitive to the character of the stopping law.
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Abstract—The reflection frequency response and bistability characteristic of a ferromagnetic resonator are
studied experimentally and theoretically. The resonator is a 25-µm-thick rectangular yttrium-iron-garnet film
with perpendicular magnetization. A technique to construct the bistability characteristic of the resonator from
its measured response to a pulsed signal is suggested. It is demonstrated that the microwave bistability results
from the intrinsic nonlinearity of ferromagnetic resonance. It is found that the bistability characteristic can ade-
quately be described on the basis of a dispersive-bistability model. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Intense electromagnetic radiation applied to a pas-
sive resonant system produces a variety of nonlinear
phenomena. Among them is bistability [1]. A bistable
system has two stable states differing in the level of
absorption (reflection). As a rule, bistability stems from
the fact that the resonant frequency or absorption coef-
ficient depends on radiation power.

At microwave frequencies, bistability may attend
nonlinear ferromagnetic resonance (FMR) in ferrites
experiencing an external magnetic field. It was first
detected in the form of a foldover in ferrite resonators;
with a high radiation power, the line shape of FMR
absorption becomes distorted so that the resonator
offers two different levels of absorption for the same
field [2]. Ferrite resonators also exhibit conventional
bistability, i.e., a double-valued characteristic of
reflected versus incident power for a given radiation
frequency in the presence of a magnetostatic field [3].
Careful investigations into the nonlinear characteristics
of ferrite-film resonators [4] confirmed that both effects
have the same nature and may result from either the
intrinsic nonlinearity of FMR [5, 6] or the heating of
the sample by absorbed radiation [7, 8].

The bistability of ferrite resonators has been
explored under quasistationary conditions only: in all
measurements, the magnetic field or radiation power
was varied slowly compared with the typical values of
magnetic relaxation time with a continuous or pulsed
microwave signal being applied to the sample. It seems
interesting to examine the response of a bistable reso-
nator to a short microwave pulse. This line of research
would enable one to directly measure typical values of
the switching time and to ascertain the mechanism of
the nonlinearity underlying the bistable behavior. Such
1063-7842/01/4601- $21.00 © 20084
an investigation seems to be important to possible
applications as well.

Accordingly, this study addresses the nonlinear
response of a bistable ferrite resonator to a short, high-
power microwave pulse.

RESONATOR CONFIGURATION 
AND EXPERIMENTAL SETUP

The ferromagnetic resonator was a 25-µm-thick
yttrium-iron-garnet (YIG) film covering an area of 1 ×
4 mm2, with a saturation magnetization of 4πM0 =
1750 Gs and a uniform FMR linewidth of ∆H ≈ 0.6 Oe.
The film was grown on a 0.6-mm gadolinium-gallium-
garnet substrate by liquid-phase epitaxy. The signal
was coupled into the resonator via a microstrip line
100 µm wide and 4 mm long on a polycor substrate.
The microstrip was placed near the center of the reso-
nator and was parallel to the longer resonator side. An
80-µm teflon interlayer was inserted between the
microstrip and the YIG film so as to limit the coupling
coefficient. The structure was situated in a uniform
magnetostatic field of strength H0 = 3200 Oe perpen-
dicular to the film. The field was produced by a perma-
nent magnet. The microwave signal was transmitted to
the microstrip via a ferrite circulator, and the signal
reflected from the resonator was measured. Under con-
tinuous-wave conditions, the reflection frequency
response was recorded in the range of 4–5 GHz for dif-
ferent fixed levels of incident power by an R2-78 net-
work analyzer, and the sweep time was 60 s. Under
pulsed conditions, the resonator received microwave
pulses with smooth envelopes, a fixed center frequency
in the range of 4–5 GHz, a maximum peak power of
300 mW, a half-height width of about 27 µs, and a pulse
spacing of 50 ms. Reflected microwave pulses were
001 MAIK “Nauka/Interperiodica”
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detected with a calibrated diode. Their envelopes were
recorded with a Wiltron digital oscilloscope and were
stored in 512-point data files.

REFLECTION FREQUENCY RESPONSE

Figure 1a shows the reflection frequency response
of the resonator as the reflection loss L = 10 log(Pref/P)
versus the signal frequency f, where P is the incident
power and Pref is the reflected power. Obtained at a low
incident power, the curve has a single dip indicating
strong absorption. Centered at f0 = 4400 MHz, the dip
has a depth of about 12 dB and a width of 2∆f =
4.4 MHz for a 3-dB level of reflected power. The fre-
quency response retains its shape if the incident power
is varied from –60 to –10 dBm. This indicates that the
system is linear at low powers. Note that all of the fig-
ures are drawn with regard for nonresonant loss in the
connectors and the circulator and that the values of P
and Pref refer to the resonator input. In Fig. 1a, the cir-
cles depict a computed resonator line (see below).

As P is increased from –10 to +20 dBm, the
response first develops asymmetric distortion and then
becomes hysteretic (Fig. 1b). Concurrently, the reso-
nant frequency fr goes up and the absorption coefficient
at fr goes down. The resonant frequency corresponds to
the maximum absorption when the input frequency is
raised.

Based on measured data similar to those presented
in Fig. 1b, we computed the resonant-frequency shift
fr – f0 and the absorption coefficient A = Pa/P at this fre-
quency versus the absorbed power Pa. Figure 2 demon-
strates that, if Pa is raised from 0 to 13 mW, the depen-
dence is virtually linear and the proportionality coeffi-
cient is B = 1.18 MHz/mW. The maximum shift in fr

was 30 MHz measured at Pa = 40 mW. With Pa raised
from 0 to 40 mW, the absorption coefficient monotoni-
cally decreases from A0 = 0.95 to 0.72.

PULSED CONDITIONS

Quasi-monochromatic microwave pulses were
applied to the resonator under pulsed conditions. Their
peak power was high enough to produce appreciable
nonlinear effects. The pulse shape is shown by the
dashed line curve in Fig. 3. If the pulse carrier fre-
quency f is less than the low-power resonator frequency
f0, reflected pulses have the same shape as incident
ones. Otherwise, reflected pulses are distorted with dis-
tinctive dips, which affect both edges and occur at dif-
ferent levels. This is shown by the solid curve in Fig. 3.
If the frequency detuning δf = f – f0 is small, the dips
arise at low powers. Their positions go toward the top
of the pulse with increasing δf.

The bistability characteristic (the Pref –P relation-
ship) can easily be constructed from the recorded enve-
lopes of incident and reflected pulses. Figure 4 shows
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
the instantaneous reflected power Pref against the
instantaneous incident power P for different input car-
rier frequencies. The curves are plotted from data sim-
ilar to those in Fig. 3.

With P increased from zero (which corresponds to
the leading edge of the incident pulse), the reflected
power first grows linearly, then falls abruptly at P = P1,
and finally grows again. With P decreased from the
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Fig. 1. Reflection frequency response of the resonator for an
incident power of (a) –20 or (b) +10 dBm. The solid curves
refer to the experiment and the circles refer to the computa-
tion. The arrows indicate the directions in which the signal
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maximum value to zero (which corresponds to the trail-
ing edge of the incident pulse), the reflected power first
decreases smoothly, then rises abruptly at P = P2, and
finally decreases again in a linear fashion following the
curve of growing input power. With P2 < P < P1, bista-
bility occurs and two values of reflected power are pos-
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Fig. 3. Envelopes of incident (broken curve) and reflected
(solid curve) pulses for δf = 18 MHz. The insets show mag-
nified dips, which indicate switching.
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sible with the same input power, with the actual one
determined by the previous conditions. With increasing
initial detuning of the signal frequency, the bistability
loop widens and moves toward higher input powers
(Fig. 4). The maximum loop width is 10 P1/P2)max =
12 dB, and the maximum loop height is 10 dB. These
values correspond to the depth of the dip in the reflec-
tion frequency response at low powers.

The time to switch between stable states can be
directly measured from the response of the bistable res-
onator to a driving pulse. The insets in Fig. 3 demon-
strate that the switch-on time (at P1) is almost the same
as the switch-off time (at P2), which is equal to τ ≈ 3 µs.
The switching times monotonically decrease by a fac-
tor of about 2 with increasing the absolute value of fre-
quency detuning and the incident power for the
moment of switching. The measured switching times
are the same order of magnitude as the YIG magnetic-
relaxation time τ = 1/(γ∆H) ≈ 0.5 µs (γ = 2.8 MHz/Oe).
On the other hand, they are much less than typical val-
ues of thermal-relaxation time for ferrite-film struc-
tures, which may be tens or hundreds of milliseconds
[9]. These findings indicate that the bistability of the
resonator results from the intrinsic nonlinearity of
FMR, not from the heating of the YIG film by absorbed
microwave power.

DISCUSSION

To describe the bistable behavior of the resonator,
we adapted a model of dispersive optical bistability
[10]. Its FMR version is based on the resonator charac-
teristics for linear conditions (low incident powers) and
on the f0–Pa relationship.

The frequency response of the resonator is deter-
mined by nonuniform magnetostatic oscillations
excited in the ferrite. For a rectangular ferrite film of
width a, length b, and thickness d, the frequency of the
fundamental mode is approximately expressed as

(1)

Here, the first term equals the frequency of uniform
FMR in an infinite ferrite film and the magnetization is
perpendicular to the film. Also, H0 is the strength of an
external magnetostatic field; Mz is the time-indepen-
dent magnetization component, which is parallel to the
field and perpendicular to the film; and γ is the absolute
value of the gyromagnetic ratio. If the power is so low
that the magnetization precesses at a small angle with
the z-axis, then Mz equals the saturation magnetization
M0 of the ferrite. The second term in (1) is a first-order
correction due to demagnetization. The third term
allows for the sinusoidal amplitude distribution of the
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high-frequency magnetization along the sides of the
film. With measured parameter values, formula (1)
yields f0 = 4312 MHz, which differs from the measured
value by as little as 2%. The difference results from the
crystalline anisotropy of the ferrite and the nonunifor-
mity of its magnetic field. We ignored these factors,
because they are unimportant in the context of this
study.

With low powers, the absorption line shape of an
FMR resonator is described by the well-known Lorent-
zian expression

(2)

Accordingly, reflection loss as a function of fre-
quency is L(f) = 10 Pref(f)/P), where Pref(f) = P –
Pa( f), with Pa(f) given by (2). In Fig. 1a, the circles
refer to the absorption line computed for f0 =
4400 MHz, the resonance linewidth ∆f = 2.2 MHz, and
the absorption coefficient A0 = 0.95. In what follows,
we use the parameter values that provide the best agree-
ment between the computed and measured data for low
powers.

Now, let us take a close look at Fig. 2. As already
mentioned, the shift in fr with increasing signal power
results from the intrinsic nonlinearity of FMR. We will
show that this also follows from formula (1). Since the
first term dominates in (1), we infer that the resonant
frequency must be rising if Mz decreases. The conserva-
tion of the magnetization magnitude M0 implies Mz =
M0 – 2m2/M0 to a first approximation. With the squared
magnitude m2 of the high-frequency magnetization pro-
portional to Pa, we see that formula (1) implies the lin-
ear growth of fr with Pa. Let us express the dependence
of fr on Pa as

(3)

where B = 1.18 MHz/mW, according to the experiment.
Inserting (3) into (2), we obtain a cubic equation

that relates the incident power P to the absorbed
power Pa:

(4)

where δf = f – f0 is the initial detuning of the signal fre-
quency.

Using (4), we can draw Pa–P curves for a given sig-
nal frequency f. Figure 5 presents typical examples of
such curves, which are computed by the above
approach with measured parameter values. Broken
line 1 represents the linear relationship Pa = A0P for lin-
ear resonator conditions (B = 0) and δf = 0 (f = f0).
Curve 2 refers to nonlinear resonator conditions and
δf = 10 MHz. Notice the unstable segment between
points b and c, where Pa decreases with increasing P. As
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P is raised from zero, Pa first rises smoothly until point
b is reached (at P = P1), then jumps to point d, and
finally continues to rise in a smooth manner. As P is
lowered from its maximum value, Pa first smoothly
decreases until point c is reached (at P = P2), then drops
to point a, and finally continues to decrease in a smooth
manner. Thus, the resonator behaves in a bistable fash-
ion if P is varied between P2 and P1. With the same P,
it may offer higher or lower absorption depending on
the previous conditions.

Curve 3 in Fig. 5 depicts the dependence of Pref on
P. It is seen that Pref drops at P = P1 and jumps at P =
P2, which totally agrees with the experiment in qualita-
tive terms (Fig. 4).

The model enables one to compute the powers at
which the resonator switches from one stable state to
the other. It follows from Fig. 5 that ∂P/∂Pa = 0 at
switching points b and c. Differentiating the right-hand
side of (4) and setting the result equal to zero, we obtain
two values of absorbed power at the switching points:

(5)

Inserting them into (4), we find P1 and P2.
Expression (5), the zero-loop condition Pa1 = Pa2,

and equation (4) suggest the following analytic condi-
tions for bistability

(6)

Thus, we arrive at two conclusions: (1) an FMR res-
onator with the Lorentzian line shape becomes bistable
only if the signal-frequency detuning exceeds a certain
threshold. (2) For the threshold power Pth to be low, the
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resonator must have a small linewidth, an absorption coef-
ficient approaching unity, and considerable nonlinearity.

In our experiment, the minimum values of δf and P,
at which bistability arises, were about 7 MHz and
5 mW, respectively. They are fairly close to the com-
puted values δfth = 3.8 MHz and Pth = 3.02 mW, which
are obtained from (6) with parameter values corre-
sponding to the experimental data.

Figure 6 depicts the dependences of P1 and P2 on the
initial frequency detuning δf. The solid lines refer to the
measurements, whereas the dashed ones refer to the
computation by the above approach. It is seen that the
latter agree with the former in qualitative terms. Specif-
ically, the observed bistability loop is between the com-
puted values of P2 and P1 for any δf, although its width
is smaller than the predicted one.

Presumably, the discrepancies between the com-
puted and the measured data stem from the parametric
excitation of spin waves in the ferrite. As is known, if
the amplitude of magnetization precession exceeds a
certain threshold, transfer from uniform precession to
exchange spin waves results [11]. This causes the satu-
ration of FMR absorption and resonance line broaden-
ing. In our experiment, FMR saturation manifested
itself in a considerable decrease in the absorption coef-
ficient with increasing power (Fig. 2). Furthermore, the
maximum frequency shift observed, by 30 MHz,
implies θ = arccos(Mz/M) ≈ 5.5°. The latter value is
well above the limit angle at which the parametric exci-
tation of spin waves arises in the ferrite, θc ≈ 1°.

CONCLUSIONS

We conducted an experimental investigation into the
microwave bistability of a ferromagnetic resonator. The
resonator was a 25-µm-thick rectangular YIG film with
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Fig. 6. The upper (P1) and the lower (P2) bistability limit
vs. δf. The marks refer to the experiment and the broken
curve refers to the computation.
a perpendicular magnetic field. Measuring the response
to a pulsed signal, we obtained resonator bistability
characteristics for low powers and different detunings
of the driving frequency from the resonant one. The
time of switching between the stable states was a few
microseconds. It has been found that the bistability
results from the intrinsic nonlinearity of FMR, the latter
being caused by an increase in the angle at which the
magnetization precesses. A comparative review of the
measured and the computed characteristics has demon-
strated that the performance of the resonator at high
signal powers can be described in general terms by a
phenomenological model of dispersive bistability. To
provide a detailed description, the theory should allow
for the parametric excitation of spin waves in the ferrite
at high signal powers.

In practical terms, bistable resonators constructed in
FMR films could find application in microwave solid-
state devices for signal forming and processing, such as
limiters or amplitude modulators. They could also be
part of microwave logic with microwave control.
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Abstract—A chain of closely spaced oscillators is studied theoretically. The oscillators are interrelated electric
dipoles whose moments may vary within a wide range. An expression for the oscillator interaction potential is
suggested. On the basis of this potential, a one-dimensional nonlinear equation of motion is derived with allow-
ance made for dissipation and external driving. A numerical investigation is carried out and various nonlinear
phenomena are revealed in the chain. Among them are the size effect and ultrasensitivity, i.e., a giant response
of the chain to extremely weak periodic perturbations. The findings are compared with previously obtained
experimental results on naturally occurring objects with similar structure. It is inferred that the model is realis-
tic. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

This paper deals with a system of closely spaced
oscillating electric dipoles with variable and interre-
lated dipole moments in the presence of dissipation and
perturbation. It is a challenging problem to ascertain
the behavior of the system even in a one-dimensional
case. In practical terms, this model may provide valu-
able insight into remarkable phenomena in some types
of heterogeneous condensed media that has been
exposed to an electromagnetic field of an ultralow fre-
quency (ULF) below 103 Hz. The medium consists of a
nonconducting or semiconducting continuous phase
and inclusions with liquid or quasi-liquid conducting
sheaths. Such structures are usually formed in almost
any insulator during a phase transition. They perma-
nently exist in powders and water-saturated rock. They
are also basically similar to certain systems of cells in
organisms. A realistic model of such media should take
into account the close spacing of the oscillators and the
variation in their dipole moments. Otherwise, many
interesting phenomena may be overlooked.

Among these phenomena is the ultrasensitivity of
crystalline hydrates to ULF under strong compression.
This recently detected effect manifests itself in the
giant mechanical response to an extremely weak elec-
tric field in a very narrow ULF range where the field
strength is lower than the electric breakdown threshold
by a factor of about 103 [1]. Furthermore, the frequency
range shifts if the medium is heated [2]. The effect is
preceded by giant bursts of dielectric susceptibility at
ULFs, which apparently result from the formation of
short-lived heterogeneous structures, including non-
conducting microinclusions with thin liquid sheaths
containing mobile ions. Susceptibility bursts in such
media experiencing ULF fields have been reported by
1063-7842/01/4601- $21.00 © 0089
many researchers (see the references in [3]). The phe-
nomenon stems mainly from the accumulation of
extremely large amounts of polarization charges (free
anions or cations) at the poles of the microinclusions so
that the dipole moments of the oscillators change con-
siderably. However, in contrast to dielectric-loss spec-
tra, the reported shapes of ULF permittivity have no
narrow or wide peaks at any moment of growth. They
are smooth curves obeying the Debye-spectrum disper-
sion relation. The point is that the dipole–dipole inter-
action in the chain has been neglected when dealing
with inhomogeneous media in ULF fields because of
computational difficulties. Accordingly, attempts to
relate the giant susceptibility bursts at ULFs to the giant
mechanical response resulted in rather academic mod-
els of gas breakdown in microcracks of crystalline-
hydrate plates under compression. The models imply
that a ULF peak may arise in the input-power spectral
density, which leads to a singularity in the ultrasensitiv-
ity spectrum [3]. The peak would be noticeable if the
charge relaxation time τ of the sheaths was about 10–2 s
and the particle size was in the micrometer range. In
reality, τ = 1/Ω ~ 10–5 s, where Ω ~5 × 104 Hz is the fre-
quency corresponding to the maximum in dielectric
loss. Furthermore, the models state that a ULF peak
arises only if each physical property of the gas in
microcracks is within a very narrow range. The above
considerations have led us to the conclusion that a chain
of closely spaced oscillating dipoles with variable
moments should be used as a physical model of ultra-
sensitivity. In particular, this approach could help one
understand why the phenomenon is confined to a nar-
row ULF range, at least at the onset of excitation.

It is interesting to note that the model examined here
can also be applied to the recently detected excitation
2001 MAIK “Nauka/Interperiodica”
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Fig. 1. Configuration of the dipole-oscillator chain with spacing a. Each oscillator represents a particle of diameter 2r with a sheath
containing oscillating charges. The sheath thickness may be ~30–300 Å.

–

and synchronization of short-term ULF electric oscilla-
tions, predominantly at 25–45 Hz, in many macro-
scopic biological systems when two similar objects
approach each other very closely [4–6]. These unusual
effects were interpreted in terms of olfactory phenom-
ena [4–6]. By contrast, we associate them with the exci-
tation of electric oscillators in cells. The level of exci-
tation must depend on the effective oscillator sizes,
which increase as the objects approach each other.

To explain the above phenomena, a one-dimen-
sional chain of closely spaced oscillating electric
dipoles is considered, with a and 2r standing for the
average dipole spacing and the charge spacing of a
dipole, respectively (Fig. 1). Based on this model, the
total potential of the interaction between the oscillators
should be determined and the system behavior under
the action of an ULF electric field should be investi-
gated. Recall that well-known models based on oscilla-
tor chains with nonlinear coupling typically imply that
the dipole moments are constant and a @ 2r [7, 8].
Although this approach works well with certain quasi-
one-dimensional chains, it fails when applied to various
systems where dipole charges vary by one to four
orders of magnitude, depending on the oscillator spac-
ing, oscillator natural frequencies, etc. Accordingly,
this study follows the course outlined in this section.
Also, we compare the computed behavior of the chain
with experimental data.

MODEL DESCRIPTION

The model is illustrated in Fig. 1. The potential
energy will be calculated for the case of a @ 2r, where
a is the average oscillator spacing and r is the oscillator
radius with variable dipole moments. Thus, neighbor-
ing oscillators may be in contact. Furthermore, we
assume that the polarization level may be very sensitive
to both the frequencies and the strengths of local and
external fields. Dipole–dipole interaction will be
treated in the Coulomb approximation. For the respec-
tive oscillators, let ϕn – 1, ϕn, and ϕn + 1 denote the deflec-
tion angles of the dipole axes from the unstable-equilib-
rium positions (Fig. 1). Then, the potential energy of
the oscillator system has the general form

(1)

Here, the distances between the charges of the (n – 1)th
dipole and those of the nth dipole are expressed as
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(4)

(5)

In (1), ; ; ; ; ;

; ; and  denote the radius vectors
between the respective charges in the chain. The

respective distances ; ; ; and

 between the charges , , , and 
in dipoles n + 1 and n obey formulas that can be derived
from (2)–(5) by replacing n with n + 1 and n – 1 with n.
Finally, ε is the relative permittivity of the medium and
ε0 is the permittivity of free space. It is convenient to
recast (1) as

(6)
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any of the charges , , , and  is
assumed to obey the superposition principle, allowing
for the frequency dependence. For any oscillator, the
frequencies of the positive and the negative charges are
considered to be the same. For each oscillator, let the
dependence of the polarization on the frequencies of
the local and the external field, ωn and Ω , respectively,

obey the Debye dispersion law [9, 10]. Since | | =

| |, the respective dipole charges of the (n – 1)th, nth,
and (n + 1)th oscillators are expressed as

(7)
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where τ is the relaxation time of bound charges in
sheaths and εs and ε∞ are the maximum SLF (static) and
the minimum high-frequency (optical) values of the
permittivity, respectively.

The coefficient c0 is the number of elementary
dipole charges e that change the permittivity of the sys-
tem by unity during polarization. Let the chain be sub-
jected to a uniform harmonic external field directed
along the chain axis. In the vicinity of an nth oscillator,
the field is expressed as

(10)

Similar expressions describe the field near oscilla-
tors n – 1 and n + 1. To evaluate En, En – 1, and En + 1 we
assume that the charge of dipole n or n – 1 tends to Q∞ =
c0eε∞ for ωn  ∞ and to Q0 = c0e(εs – ε∞) for
ωn  0. Also, we assume that c0 = const for each
oscillator in the chain. The coefficient β corresponds to
the dipole charge that is induced in a field of unit
strength. In other words, β specifies the polarization
susceptibility of an oscillator. It is similar to the dielec-
tric susceptibility, which represents the relationship
between the polarization and the field strength in a
macroscopic dielectric body. To a first approximation,
we regard β as a constant here. In reality, it may depend
on many other parameters.

Let us assume that the variables ϕn are nearly iden-
tical for neighboring dipoles at the same point in time.
Accordingly, if we perform the change na  x and
ϕn(t)  ϕ(x, t) in the continuum approximation ϕn –
ϕn – 1 ~ δ, then Uint can be expanded in terms of a small
parameter as

(11)

In view of (1)–(11) and the accompanying com-
ments, we obtain an expression for Uint by passing to
the limit for a  2r + ∆ in the expansion to second-
order terms. In the continuum approximation, it can be
written as
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When deriving (12), formula (6) was used, because
in the limit of a  2r + ∆, the first two summands in
parentheses become negligible compared to the
remainder. For the same reason, each of the formulas
(7)–(9) was used without the first two summands that
account for the interaction between like charges of
neighboring dipoles. Obviously, this simplification is
justified by the existence of potential wells at ϕn = π/2 +
nπ, which become deeper as opposite charges of neigh-
boring dipoles grow owing to polarization.

Let cn denote the number of uncompensated charged
particles (such as cations or anions) in the sheath of an
nth oscillator so that the total mass of the charged par-
ticles at the ends of the nth dipole is Mn = cnm, each par-
ticle having mass m. Then the kinetic energy of the
chain is given by

(24)
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second-order terms yields

(26)

with

(27)

(28)

Now, we assume that the dissipative forces are lin-
ear functions of charge angular velocities. Then, with ξn

denoting the dissipation parameter, the dissipation
function has the form
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The above reasoning for the kinetic energy, includ-
ing formulas (25) and (7), can be also applied to the dis-
sipation function. In the continuum approximation,
expansion to the second-order terms yields
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chain can be expressed as
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dissipation (30) and pertubation

(33)

Here, the Lagrangian

(34)

involves formulas (26) and (12) for the potential and
kinetic energies, respectively. In the continuum approx-
imation, Eq. (33) can be transformed into the following
nonlinear motion equation written in natural units:

(35)

When deriving equation (35), for each differentia-
tion, we neglected the terms with 1/a raised to the min-
imum power. This simplification is based on the
assumption that a ! 1 in natural units. Introducing the
notation

we write expressions for the functions appearing in (35)
as
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Also, we have 

(41)

where

(42)

(43)

In addition,

(44)

(45)

Finally,
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and

(48)

It is convenient to recast equation (35) in a form
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similar to the sine-Gordon (SG) equation:

(49)

Here,

(50)

is an analog of the maximum velocity at which a pertur-
bation propagates into the chain. Also,

(51)

is an analog of the plasma frequency. In Eq. (49), the
level of dissipation is represented by

(52)

and the perturbation, by

(53)

With l denoting the length of the chain, we introduce
the boundary condition

(54)

Physically, condition (54) may correspond to an
interphase boundary which is impermeable to the per-
turbations under consideration.

ESTIMATIONS FOR THE COEFFICIENTS 
IN EQUATION (49)

Let us find the values for the coefficients in Eq. (49)
so that the chain can most closely simulate the behavior
of naturally occurring objects, such as disperse systems
or long chains of living cells. To this end, let us estimate
the number of uncompensated elementary charges in
the thin liquid sheaths which determine the spherical
shape of each oscillator (Fig. 1). We assume that a
particle of the majority carrier has a charge e ~ 1.6 ×
10−19 C and a mass m ~ 1.6 × 10–27 kg (its effective mass
may be much larger). For example, such a carrier may
be an H+ ion, since its mobility is much higher than that
of OH– or other anions and cations. Let r ~ 10–6–10–3 m
and a ~ 3 × 10–6–3 × 10–3 m. The sheath thickness d
may be set at about 10–9–10–8 m [11]. We assume that
at least χ1 ~ 1% of water in the sheaths is dissociated
and that χ2 ~ 1% of the anions and cations constitute the
uncompensated charges. Then, the density of elemen-
tary charges that may be involved in polarization is esti-
mated at

(55)

where ρ ~ 103 kg/m3 is the water density and  ≈
3 × 10–27 kg is the mass of a water molecule.
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Thus, we see that the above estimate of c1 agrees
with the well-known value of ~1011 charge/mm3 [11].
Correspondingly, Q+ = c1e is ~10–12–10–9 C (Q+ = c1e).
Strictly speaking, the parameters should depend on the
thermodynamic and local properties of the medium.

We select the value of c1 such that the uncompen-
sated charge Q is no larger than 10–12–10–9 C when the
polarization is at its maximum. The relaxation time is
defined as τ1 = r2/2D, where D is the volume diffusion
coefficient of charges in the sheaths. The relaxation
time is evaluated from the frequency ω = 1/τ1, which cor-
responds to the highest dielectric loss. In the context of
this study, ω ≈ 6.29 × 104 rad/s, so that τ1 ≈ 1.6 × 10–5 s.

Finally, consider the case of a disperse system. For
the nth dipole, the fraction of its kinetic energy (apart
from thermal fluctuations) that is converted into heat is
proportional to the dielectric-loss tangent  ≈ ωnτ,
where ωn is the natural frequency of the dipole [11].
Accordingly, all other things being the same, formulas
(26) and (30) imply that

(56)

Hence, we obtain the estimate
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RESULTS

As is known, the disturbed SG equation has been
solved analytically only in certain special cases [7, 12].
Nevertheless, we will demonstrate that the motion
equation (49), which describes the transmission of sig-
nals in disperse systems with double electrical layers,
allows resonance-like excitation at ULFs despite very
stringent restrictions that were imposed on the equa-
tion. This section deals with the numerical analysis of
Eq. (49) with a constraint on the length of the chain (the
computational scheme is outlined in the appendix). The
analysis aims at ascertaining the nature of the excitation
and to explore the possibilities for other effects.

As one would expect, the chain exhibits ULF ultra-
sensitivity in a wide range of relaxation times: τ1 ~
10−5–10–0 s. Figure 2 depicts the evolution of the polar-
ization-level spectrum when the chain is subjected to an
extremely weak harmonic electric field with a chain
length l of 1 m and a field strength E of 10–8 V/m.
Numerical analysis was performed with the following
realistic values of the parameters: r = 10–6 m, a = 2.1 ×
10–6 m, τ1 = 1.6 × 10–5 s, c0 = 105, ε∞ = 8, εs = 650, β = 1,
ξ = 10–33, and m = 1.6 × 10–27 kg. Moreover, the values
of ε∞, εs, and τ1 are typical of disperse systems where
manifestations of ULF ultrasensitivity were first
observed [1–6] according to our interpretation. The val-
ues of r and a are selected on the basis of [1–6]. In this
study, unless otherwise stated, the term polarization
level means the number of elementary charges involved
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Fig. 2. Evolution of polarization-level spectrum under the action of an extremely weak harmonic ULF electric field.
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in polarization. This number is determined from a con-
tinuum version of formula (7), namely,

(57)

after the spectrum ϕt(Ω , t) has been computed.

Let us examine the behavior of the chain under the
action of a ULF field. It can be seen that the polariza-
tion-level spectrum has a resonance–excitation portion
if t < 1 s. For t > 1s, this portion gradually changes into
that of the dispersion law Debye characteristic. In the
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Fig. 3. Polarization level vs. drive frequency and relaxation
time.
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Fig. 4. Polarization level vs. time and chain length for an
extremely small drive amplitude.
first stage, we observe main-resonance peaks and satel-
lite resonances for t > 10–3 s. With r  1 s, they all
shift to the region of Ω < 10 Hz. Such frequencies are
called ultralow frequencies (ULFs). The dispersion
properties of the chain at ULFs become apparent if the
Z-axis is transformed to a logarithmic scale. In the final
stage, the characteristic does not follow the Debye law
in the strict sense. Instead, we can see a plateau dis-
turbed at certain harmonics and occasionally disrupted
by subharmonic bursts. Indeed, the evolution of the
polarization-level spectrum depends on the parameters
related to the driving, the oscillators, etc. Nevertheless,
the pattern retains the distinctive features of Fig. 2 even
when computed for other values of l and τ1. Figure 3
shows this phenomenon in relation to the polarization
level as a function of Ω and τ1. We note that a decrease
in τ1 corresponds to an increase in the temperature of
the chain. It can be seen that the frequencies of both the
main and the satellite resonances are virtually fixed
when τ1 is varied within a wide range: τ1 ≈ 10–5–10–2 s.
A slight frequency shift occurs only when the chain is
cooled in the region of τ > 10–2 s. On the other hand, the
region occupied by the satellite resonances extends to
higher frequencies as the temperature is raised.

Remarkably, in the realistic model under consider-
ation, the chain exhibits the dependence of the polariza-
tion level on the chain length. Figure 4 illustrates how
this size effect changes with time for Ω ~ 31 Hz and E
as low as 10–8 V/cm. In particular, the effect indicates
that the chain may possess an ultrasensitivity to ULF.
On the other hand, ultrasensitivity arises only if the
chain length exceeds a certain threshold. Specifically,
ultrasensitivity is impossible if l is smaller than 1 cm
but is appreciable for l ~ 5–10 cm, with r ~ 10–6 m and
a ~ 2.1 × 10–6 m (Fig. 4). In the latter case, the polariza-
tion level increases by a factor of 109. Furthermore, it
was found that the polarization level of a long chain
exposed to an extremely weak field may be as large as
that of a short chain (l < 10–3 m) subjected to a strong
field (Fig. 5). However, it takes a certain time for the
response to develop after a harmonic field is applied
with the delay increasing with η. The above behavior
can be detected in spite of the considerable changes in
the pattern when any of the parameters are varied.

The nonlinear nature of the above effects is demon-
strated in Figs. 6a and 7a. They show the polarization
level (Fig. 6a) and phase velocity (Fig. 7a) as functions
of the coordinate and time. Figure 6b clearly shows that
soliton-like excitations develop at both ends of the
chain, with l = 1 m and t > 0.2 s. If t < 0.1 s when the
chain responds resonantly, then the polarization level
oscillates fairly regularly throughout the chain exposed
to an external field with Ω ~ 31 Hz (Fig. 6a). Afterward,
these oscillations become more and more chaotic, start-
ing from the chain ends. If t > 0.2 s, the chaos gives way
to distinct periodic positive bursts. This obviously sug-
gests that soliton-like standing waves develop synchro-
nously in the chain. Arising at the ends, they gradually
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
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extend to the entire chain. Clearly, any two neighboring
dipoles occupied by any of the solitons oscillate in
antiphase (since opposite charges of the dipoles prefer
a positive-to-negative oscillation pattern). This growing
oscillation seems to end in the rotation of the dipoles in
opposite directions. The chain thus acquires a special
type of dynamics whereby the charges of a dipole move
throughout the sheath. Specifically, the rate of polariza-
tion bursts is lower than the pump frequency by a factor
of about 6 (Fig. 6a). This is also confirmed by the power
spectra in Figs. 6b and 7b, which correspond to the spa-
tial–temporal distributions in Figs. 6a and 7a, respec-
tively. For example, if the chain is subjected to an
extremely weak harmonic field with Ω = 31 Hz, it
exhibits polarization bursts at the fundamental fre-
quency f ~ 5 Hz and its subharmonics 2f and 3f. It was
found that subharmonics at other frequencies may also
appear and disappear as a result of bifurcations with
respect to certain parameters. Figure 7a demonstrates
that with c0 > 101 and Ω = 31 Hz, the power spectrum
corresponding to the phase velocity as a function of
time is continuous if averaged over the entire chain. It
can be seen that the spectral curve has an oscillatory
shape only if c0 < 100 (Fig. 7c).
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Fig. 5. Polarization level vs. (a) time and (b) length for Ω ~
31 Hz. The solid and the dashed lines refer to E = 10–6 and
105 V/m, respectively.
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DISCUSSION

It follows from the above results that a resonance
response to a harmonic perturbation at any ULF devel-
ops during three to five periods. Afterward, the chain is
in a chaotic state for three to seven periods (depending
on parameters). Finally, its behavior changes to corre-
spond to the Debye dispersion law. By this moment, the
chain develops soliton-like wave packets, which are
confined to its ends or occupy the entire chain. These
features testify to the nonlinearity of the system
dynamics, which obeys an SG-like equation. In simu-
lating the oscillator coupling, the complicated and evi-
dently nonlinear fashion in which the polarization level
of any oscillator depends on those of its neighbors was
taken into account, as well as the frequencies with
which concentrated charges oscillate in them. The
interaction between the oscillators was treated in the
Coulomb approximation, allowing for the fact that the
intercharge spacings vary with time. Indeed, if the
parameters of the basic equations were varied, we
could find many more trajectories, main and satellite
resonances, and chaotic-region widths. Furthermore,
we could observe domains in the distributions of the
polarization level and sign throughout the chain. A
deeper insight into the phenomena described by the
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Fig. 6. (a) Polarization level vs. time and the coordinate, and
(b) the corresponding power spectrum after averaging over
the chain. The data were obtained for an extremely small
drive amplitude and Ω ~ 31 Hz.
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model could be gained from its two- or three-dimen-
sional versions. Also, quite a different pattern may be
obtained if we allowed for the magnetic field of the
oscillating dipoles. At higher driving frequencies, the
magnetic field must scatter a fraction of the concen-
trated charges in the region where solitons are formed.
This factor may reduce the polarization level at
medium frequencies.
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Fig. 7. (a) Phase velocity vs. time and the coordinate and
(b, c) the corresponding power spectra after averaging over
the chain. The curves in panels (b) and (c) were computed
for c0 > 101 or c0 < 100, respectively. The chain is driven at
an extremely small field amplitude and Ω ~ 31 Hz. The other
parameter values are specified in the text.
The size effect and ultrasensitivity in the chain are
direct consequences of the strongly nonlinear coupling
between the dipoles. Their moments change consider-
ably, primarily due to the fact that c1 varies from 0 to
about c1 ≈ c0(εs – ε∞). In the context of this study, the
maximum value of c1 may be on the order of 1011. It is
worth noting that if a storm wave on a sea had the same
number of water molecules in its crest, then the height
of the wave, h ≈ c1 × dmol (with dmol ≈ 3 × 10–10 m),
would be as large as 30 m. Since the depth and size of
a basin govern the amplitude of waves in it [13], it is
tempting to view the problem from the standpoint of
the theory of deep-water waves [14]. Accordingly, the
number of elementary polarization charges concen-
trated at the dipole ends corresponds to the height of the
water column involved in wave motion and the standing
solitons resulting from ultrasensitivity correspond to
storm waves. However, there is an important difference
between the two patterns. It consists of the condition of
specular reflection imposed on the chain boundaries.
Consequently, there is no dissipation at the boundaries,
so storm electromagnetic waves may arise even at a
chain length of about 1 cm. With increasing oscillator
spacing and diameter, the threshold length may reach
1 m. Nevertheless, it is likely to equal several tens of
centimeters at most for actual objects.

As indirect experimental evidence for our theoreti-
cal results, we cite the giant response of strongly com-
pressed crystalline hydrates to an extremely weak elec-
tric field in the frequency range of 20–40 Hz [1–3]. This
effect seems to cause the pronounced loss of mechani-
cal strength (by a factor of 1.5–2) observed in some
compressed crystal hydrates. Clearly, the ultrasensitiv-
ity spectrum of a substance can be determined from the
dip in the ULF spectrum of the threshold of mechanical
strength. The beauty of using this approach to design
high-sensitivity ULF transducers consists of the fol-
lowing. We believe that ultrasensitivity is possible
when crystalline hydrates experience short-term phase
transitions involving partial dehydration produced by
considerably nonuniform compression at a high pres-
sure (over 5 kbar) or temperature [1−3]. Under such
conditions, crystalline hydrates are basically heteroge-
neous media that can be regarded as one-dimensional
seas of nonlinear electromagnetic oscillators (ideally,
the oscillators can be regarded as grains with double
electric layers.) On the one hand, the short duration of
the phase transitions allows one to ascertain the ultra-
sensitivity spectrum in the initial stage of excitation. On
the other hand, we believe that the model furnished
with realistic parameter values, such as those used
above, can provide an estimate of the average dehydra-
tion time under highly nonuniform compression. The
phase transition is sufficiently long for resonance
electromagnetic excitation to develop with threshold
parameter values allowing efficient detection of ULF
ultrasensitivity from the mechanical response
(impaired mechanical stability). If the threshold condi-
TECHNICAL PHYSICS      Vol. 46      No. 1      2001
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tions of a pronounced response are aroused only by the
moment when the state of the excited system entered
the dispersion portion of the polarization characteristic,
then supersensitivity would occur in the entire ULF
region. Since the latter was never observed, we can
infer that the oscillation ceased growing as early as the
resonance stage. For systems with a narrow resonance-
like peak, ULF ultrasensitivity is most likely to occur at
20 < Ω < 40 Hz, according to experiments [1–3]. Fig-
ure 2 demonstrates that this frequency range corre-
sponds to an excitation time of about 0.1–0.2 s. Thus,
we see that the attempts to attribute the ULF ultrasensi-
tivity of the heterogeneous media (in the above-men-
tioned frequency range) to the Debye frequency disper-
sion only [1–3] were based on the highly overstated
relaxation times for disperse systems (τ ~ 10–2–10–1 s).
The reason is that the early models relying on these val-
ues predict that ultrasensitivity peaks will lie fairly
close to the ULFs at which the excitation threshold of
the Bridgman effect decreases. In reality, experiments
with certain model objects yield τ ~ 10–5 s at normal
temperature [3]. Furthermore, the early models seem to
be unable to adequately explain the shift of the ultra-
sensitivity spectral peak in the ULF region for crystal-
line hydrates under strong nonuniform compression,
the effect of which was first reported in [2]. By contrast,
the model suggested in this study attributes the slight
shift of the peaks to higher frequencies as the tempera-
ture of crystalline hydrates is raised to the fact that the
delay is decreased below the threshold of electromag-
netic storm as early as in the resonance stage. The
numerical analysis showed that the decrease results
neither from an increase in the number of elementary
charges in the oscillators under heating nor from
changes in the dissipation of oscillation energy, oscilla-
tor diameter or spacing, etc. We believe that a shorter
time of phase transitions in the crystalline hydrates
under strong compression and heating leads to a shorter
resonance-excitation time, which in turn produces the
shift to higher frequencies.

It is worth noting that ultrasensitivity was also theo-
retically discovered in an overdamped Kramers oscilla-
tor subjected to a weak time-dependent signals with
parametric noise [15]. Furthermore, high sensitivity to
weak constant perturbation and noise was studied in the
context of a chiral selective chemical reaction [16]. By
contrast, the ultrasensitivity examined here is induced
by a weak alternating signal and the response level
depends on chain length, excitation time, and other
parameters. However, the effect does not result from a
radical change in the asymptotic behavior of the system
(the crossover) in response to a noise-induced perturba-
tion of a parameter appearing in the model equations.
Instead, it is caused by nonlinear effects producing
giant narrow peaks of charge density in the chain. Con-
sequently, no crossover boundary conditions are
required to test our model in experiments.
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Perhaps the ULF ultrasensitivity due to the size
effect can explain, to some extent, the synchronous
electromagnetic oscillations at frequencies from 25 to
35 Hz that were recently discovered in biological sys-
tems ranging from neurons to macroscopic organisms
[4–6]. For example, ULF oscillations were observed in
such objects as apples or mushrooms when they are sit-
uated very closely apart or are in contact [4–6]. In my
opinion, this increases the effective size of cellular-
oscillator chains. Admittedly, this is arguable, since the
ultrasensitivity may well be triggered by chemical reac-
tions involved in sensory or reflex olfactory processes
[4–6]. Nevertheless, it should be pointed out that the
resonance during the excitation in living objects occurs
in the range of 25–35 Hz and lasts only a few millisec-
onds, after which the system passes to a state that has
some features of a dispersion plateau. Such behavior is
in accord with our numerical results for the model pre-
sented here.

Finally, let us estimate the local electric field Eint
between the sheaths of two neighboring oscillators.
Existing for a limited period, the field arises when the
dipoles intensely oscillate under local focusing during
an electromagnetic storm. The formula E =
Q2(4εε0πr2q0)–1 yields Eint ~ 107–1011 V/cm, with the
dipole charge Q set to its maximum value for the stated
conditions, Q ~ 10–12–10–9 C. Such charge storms can
cause microscopic breakdown at numerous sites
together with shock waves and explosion-like phenom-
ena. This effect is possible in various materials sub-
jected to relatively weak ULF electric fields [1–3].

CONCLUSION

We examined the behavior of a chain of closely
spaced dipole oscillators (a ≥ 2r + ∆) with interrelated
and variable dipole moments. To this end, a potential
was determined for the dipoles. On the basis of this
potential, the Euler–Lagrange equation was solved and
a corresponding one-dimensional nonlinear-motion
equation was derived. The latter was then transformed
to a modified SG equation with dissipation.

The numerical analysis of the above equations sug-
gests that the chain may feature strongly nonlinear
dynamics. It was demonstrated that if an SLF harmonic
field is applied to the chain, the latter first experiences
a resonance type of excitation, then passes to chaos,
and finally enters a state with the Debye dispersion.
During the first stage, the resonance frequency shifts to
still lower frequencies and may reach a fraction of a
hertz. We also found some other interesting features
typical of many systems with nonlinear coupling, such
as the emergence of resonance frequencies by heating
in the first stage and the formation of soliton-like
objects in the third one.

Remarkably, the computation has revealed the size
effect in the chain. This implies that the model may
possess ultrasensitivity to extremely weak periodic sig-
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nals. We believe that such phenomena were observed in
experiments with disperse substances exposed to a
ULF electric field [1–6]. Apparently, the first experi-
mental evidence for the size effect was the ultrasensi-
tivity of crystalline hydrates in an appropriate disperse
phase, with the particle size lying in the millimeter
range [1–3]. With those media, ultrasensitivity arises if
the amplitude of the perturbing signal is smaller than
the electric-breakdown value by a factor of 1000.

Admittedly, we had to neglect many features of nat-
urally occurring oscillator systems with variable dipole
moments. Nevertheless, the model has demonstrated
some effects that were previously observed in physical
experiments. We therefore believe that our approach
can be used to predict some new phenomena.
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APPENDIX

To numerically solve Eq. (49), we use an appropri-
ate finite-difference method (see, e.g., [17, 18]). Using
the mesh function ϕn, i = ϕ(ih, nk) for ϕ(x, t), we obtain
the following approximate formulas:

(A1)

(A2)

(A3)

Inserting (A1)–(A3) into Eq. (49) and neglecting the
O(k2) and O(h2) terms, we arrive at

(A4)

where

(A5)

Here, the parameters v0, Θ0, η, and γ are determined
from (50)–(53), respectively, with x = ih and t = nk. The

ϕ t ϕn 1+ i, ϕn 1– i,–( )/2k O k2( ),+=

ϕ tt ϕn 1+ i, 2ϕn i, ϕn 1– i,+–( )/k2 O k2( ),+=

ϕ xx ϕn 1+ i 1+, 2ϕn 1+ i, ϕn 1+ i 1–, ϕn 1– i 1+,+ +–(=

– 2ϕn 1– i, ϕn 1– i 1–, )/2h2 O h2 k2+( ).+ +

a1 ϕn 1+ i 1+, ϕn 1+ i 1–, ϕn 1– i 1+, ϕn 1– i 1–,+ + +( )

+ a3ϕn 1+ i, a2ϕn 1– i, a4ϕn i,+ + Θ0
2 ϕn i,( ) γ;–sin=

i 1 2 … I; n, , , 0 1 … N ,, , ,= =

a1 v 0
2/2h2; a3 v 0

2/h2 1/k2 η /2k+ +( );= =

a2 η /2k v 0
2/h2– 1/k2+( ); a4 2/k2.–= =
computational procedure for Eq. (A4) with k = h is
robust only if the step h is less than 0.1 [12]. If, e.g.,
I ~ 1000 and N ~ 1000 with h ~ 0.001 m and k = 0.001 s,
then l = Ih = 1 m and t = Nk = 1 s, where l is the chain
length and t is the observation time.
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