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Abstract—Current transport in micron-sized normal-metal–high-temperature superconductor heterojunctions
(Au/YBa2Cu3O6 + x) was studied for two crystallographic orientations of YBCO films. It is shown that depend-
ing on the transport-current flow direction relative to the crystallographic axes of the YBCO film, the electronic
transport properties of Au/YBCO heterojunctions with highly transparent boundaries change from quasi-tun-
neling (along the YBCO c axis) to close-to-Ohmic (in the directions lying in the YBCO basal plane). © 2001
MAIK “Nauka/Interperiodica”.
INTRODUCTION

The electronic parameters of high-temperature
superconducting (HTSC) metal–oxide materials are
very sensitive to oxygen content. YBa2Cu3O6 + x
(YBCO), a typical representative of the HTSCs, is an
insulator for oxygen contents of 0 < x < 0.4 and a super-
conductor exhibiting metallic conduction along the
basal planes at oxygen doping levels of 0.4 < x < 1 (see,
e.g., [1]). An HTSC layer close to an interface with a
vacuum or other material can change its parameters
from those of a metal to those of an insulator, depend-
ing on the extent of external influence on the oxygen
content (heating, precipitation of carbon dioxide from
the atmosphere, etc.). Another essential feature of the
HTSCs is the high anisotropy of their electron transport
characteristics [2]. The conductivities for currents flow-
ing along the c axis of YBCO and the directions lying
in the (a–b) YBCO basal plane differ greatly. As a
result, when the transport current changes its orienta-
tion with respect to the crystallographic axes of a super-
conductor, the ratios of the characteristic resistances of
the normal-metal–HTSC (N–Sd) interface, r = RNS (RN

is the resistance of a junction of area S), which charac-
terize the boundary transparency, can change a hun-
dredfold [3, 4]. Depending on the actual YBCO film
orientation and the technology of preparation, N–Sd

heterojunctions experimentally exhibit a large variety
of properties, from quasi-tunneling [5, 6] to Ohmic
characteristics [7]. Heterojunctions with a low bound-
ary transparency (r > 10–4 Ω cm2) usually have quasi-
tunneling characteristics, namely, tunneling at low volt-
ages and an increase in resistance with decreasing tem-
perature [6]. This experimental observation suggests
that the surface HTSC layer was depleted in oxygen to
the extent that it became an insulator. The quasi-tunnel-
ing characteristics of the heterojunctions were not
1063-7834/01/4305- $21.00 © 20801
questioned in these conditions. However, in order for
the surface layer to be an insulator while the remaining
part of the HTSC film is doped by oxygen to the extent
corresponding to the superconducting state, one has to
admit substantial oxygen content gradients across the
film thickness. This condition can hardly be realized in
an experiment even when oxygen diffusion along the c
axis is weak. The I–V characteristics of N–Sd junctions
with a low-transparency boundary in both c and a–b
oriented HTSC films frequently exhibited conductivity
anomalies even at low voltages, namely, a conductivity
peak at zero bias. The reasons for this anomaly were
attributed either to the presence of ferromagnetic impu-
rities in the HTSC surface layer [8, 9] or to the forma-
tion of bound states as a result of the Andreev reflection
at the interface between a d-type superconductor and an
insulator [10–12].1

In this work, the experimental data obtained on the
temperature dependence of the resistance of N–Sd het-
erostructures and the shape of the I–V curves suggest a
conclusion on the mechanism of conduction in normal-
metal–HTSC heterojunctions for current flow both
along the c axis and along the directions lying in the
basal plane of a YBCO.

1. YBCO FILMS AND EXPERIMENTAL SAMPLES

The sequence of the technological operations used
to fabricate Au/YBCO heterojunctions is presented in
Fig. 1 [13, 14]. Epitaxial YBCO films 150 nm thick
were grown by laser ablation at temperatures of 780–
800°C and at an oxygen pressure of 0.8 mbar. Epitaxial
c-oriented YBCO films were grown on (001)LaAlO3

1 The anomalies in the I–V curves appearing at low bias across our
junctions will be discussed in a forthcoming paper.
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and (110)NdGaO3 (NGO) substrates. Heterostructures
fabricated on these substrates provide information on
the transport current flowing along the [001]YBCO
direction; we shall subsequently call such structures
direct heterojunctions (DH). In the work, we also used
tilted heterojunctions (TH) in which the [001]YBCO
crystallographic axis deviates from the normal to the
substrate plane. These films were grown epitaxially on
(120)NGO substrates. After YBCO film deposition, a
thin layer of normal metal (Au) 20 nm thick was depos-
ited on it without impairing the vacuum (Fig. 1a). The
Au layer thickness was increased to 100 nm by addi-
tional ex situ electron beam deposition (entailing vac-
uum deterioration). A heterojunction of area S = 10 ×
10 µm was produced by photolithography and ion
beam milling in an Ar atmosphere (Fig. 1b). To avoid
undesirable contact with the YBCO face end, the het-
erojunction regions were isolated by an amorphous
CeO2 film deposited by laser ablation at 60°C in an
oxygen environment at a pressure of 0.2 mbar (Fig. 1d).
The isolating layer in the region of the heterojunctions
and of the contact pads was removed by explosive pho-
tolithography (Fig. 1e). The spatially separated supply
of the current and voltage provided in the Au/YBCO
heterojunction geometry (Fig. 1c) permits one to mea-
sure the heterojunction characteristics by the four-
probe technique for T < Tc of the YBCO.

We measured curves I–V and the dependences of the
resistance R on temperature T (4.2–300 K) with bias
currents in the range 1–5 µA for Au/YBCO heterojunc-
tions and test bridges 4 µm wide located on the same
substrate. The critical temperature and width of the

Fig. 1. Sequence of Au/YBCO junction fabrication steps:
(a) Deposition of the Au(20 nm)/YBCO(150 nm) double-
layer structure; (b) formation of the junction region by pho-
tolithography and ion milling; (c) junction geometry (top
view); (d) deposition of the 150-nm thick CeO2 insulating
layer; and (e) formation of Au contact pads. (1) Photoresis-
tor and (2) contact region.
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superconducting transition in the YBCO films (Tc and
∆Tc, respectively) were found from the temperature
dependence of the magnetic susceptibility for the
Au/YBCO heterostructure before junction topology
formation. For the c-oriented YBCO films, we have
Tc > 88 K and ∆Tc = 0.5 K. The YBCO films grown on
(120)NGO had slightly worse superconducting param-
eters (Tc > 85 K and ∆Tc ≤ 2 K) because of a lower oxy-
gen content. A decrease in Tc and ∆Tc is typical of films
with the c axis off the surface normal [14, 15].

X-ray diffraction measurements (θ–2θ scanning)
showed that the epitaxial relation
(001)YBCO//{110}NGO is retained for both the
(110)NGO and (120)NGO substrates; in other words,
the [001] direction of the YBCO film is always parallel
to the 〈110〉NGO directions (if there are more than one
of them). The (120)NGO substrates have two direc-

tions, [110] and [1 0]NGO; therefore, two domains,
(101) and (109)YBCO, form in the growth, whose c
axes make angles ψ = 71.6° and 18.4° with the surface
normal, respectively. Our estimates showed that both
domains are present in the YBCO films on the
[120]NGO substrates in equal amounts. For both
domains, the condition (001)YBCO//{110}NGO holds
and one of the basal plane axes (either [100]YBCO or
[010]YBCO) lies in the substrate plane. The current in
a TH flows primarily along the basal YBCO planes. The
contribution of the c-axis current in this case is small
because of the high YBCO resistivity in this direction.
By contrast, in a DH, the transport current flows along
the YBCO c axis because of the small area of the junc-
tion along the a–b planes. The parameters of the exper-
imental samples studied are given in the table. Note that
at the values r = 10–5–10–7 Ω cm2 observed in the exper-
iment, the characteristic current spreadout length L⊥  =

 (dAu = 100 nm and ρAu = 10–6 Ω cm are the
thickness and electrical resistivity of the gold film,
respectively) [16] significantly exceeds the heterojunc-
tion dimensions. Hence, the current spreadout process
should not affect the electrophysical parameters of the
heterojunctions.

2. EXPERIMENTAL RESULTS
Figure 2 displays R(T) plots measured by the three-

point technique (with the current and voltage applied to
one point on the YBCO electrode) for two types of
Au/YBCO heterojunctions. For T > Tc, the R(T) rela-
tions of DHs exhibit metallic conduction, i.e., a
decrease in the resistance with temperature, which is
characteristic of a transport current flowing in the basal
plane of an YBCO film. This is due to the predominant
contribution to the measured R(T) relation of the con-
ducting HTSC electrode films, which carry current in
the YBCO a–b planes. At the same time, when the mas-

ter transport current propagates along the [ 10]NGO
direction in a TH, one observes an increase of R typical

1

dAur/ρAu

2
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Low–temperature heterojunction parameters

Sample Tc, K RN (T = Tc, V = 0), Ω Rd(0), Ω Rd(0)/RN RNS, µΩ cm2

DH

P32J2 89.3 33.2 103.0 3.1 33.2

P32J3 89.5 19.5 52.0 2.7 19.5

P32J4 89.9 22.9 55.3 2.4 22.9

P34J3 89.2 56.1 102.0 2.1 56.1

TH

H2J2 18.7 1.6 0.7 0.4 1.6

H2J3 48.2 1.6 1.0 0.6 1.6

H2J4 40.1 1.8 1.3 0.7 1.8

H5J2 42.3 0.4 0.2 0.5 0.4

H5J3 60.3 0.3 0.2 0.7 0.3

H5J4 61.1 0.5 0.3 0.6 0.5
of transport along the c axis of the YBCO. The temper-
atures Tc of the microbridges in the THs studied turn out
to be lower than those of the YBCO films immediately
after Au/YBCO heterostructure deposition, which is
apparently due to oxygen escaping from the surface
layer of the YBCO films in the course of ion milling. In
the THs, oxygen diffuses out of the basal planes of the
YBCO films on the surface much more intensively than
in the DHs. As a result, the Tc of the bridges on the
(120)NGO substrates is lower than that of the original
Au/YBCO heterostructures by 5–10 K.

The R(T) relations change dramatically for T < Tc;
more specifically, in the DHs, one observes a growth
characteristic of the superconductor–insulator–normal-
metal tunneling junctions (SIN, with I standing for the
insulator), while in the THs, the resistance falls off
monotonically with decreasing temperature.
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Fig. 2. R(T) dependences for (1) TH H2J3 and (2) DH P32J3.
Inset shows the low-temperature part of the R(T) plot for the
TH H2J3.
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Figure 3 presents the dependences of the differential
resistance of the Au/YBCO heterojunctions on the bias
Rd(V). One likewise observes substantial differences
both in the characteristic interface resistance r and in the
field dependence. For the THs, rab = 10–7–10–6 Ω cm2,
whereas rc for the DHs is larger by one to two orders of
magnitude (see the table).

To estimate the interface surface, we studied the
YBCO film surface morphology with atomic force
microscopy. As shown by YBCO film profile measure-
ments, the maximum surface roughness of the
(001)YBCO films over an area of 1 × 1 µm is δc ≈ 4 nm
(in Fig. 4a, rms = 2 nm). The roughness of tilted YBCO
films on (120)NGO is substantially larger: δab ≈ 45 nm
(Fig. 4b), with rms = 50 nm.
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3. DISCUSSION OF EXPERIMENTAL RESULTS

It is well known that the resistance of metals con-
nected in series, even if they are in direct contact, is not
the sum of their resistances if the Fermi momenta of the
contacting materials are different [4, 17, 18]. As a result
of the mismatch between the electronic parameters of
two contacting materials, in particular, of the Fermi
momenta pfi (i = 1, 2), the characteristic contact resis-
tance becomes [17]

(1)

where pf = min{pf 1, pf 2}, D(x) is the boundary transpar-
ency, and the angular brackets denote averaging over
the directions of the quasiparticle momenta. In the case
of a sharp and plane interface between two metals with
pf 1 � pf 2 and of spherical Fermi surfaces, the transpar-
ency is given by [17]

(2)

where vfi (i = 1, 2) are the Fermi velocities in the con-
tacting materials. One readily sees that in the case of a
large enough Fermi velocity mismatch between the

rc
1– e2 p f

2 /2π2
�

3( )2 xD x( )〈 〉 ,=

D x( ) 4x p f 1/ p f 2, 2 xD x( )〈 〉 8v f 1/3v f 2= = ,
P

contacting metals, the transparency D � 1 even in the
absence of an insulating spacer. If, however, the inter-
face is smooth on a scale of �/pf, then D ≈ 1, irrespec-
tive of the Fermi momentum difference between the
materials in contact [17].

Using for the estimation of pf  the relation [19]

(3)

and the resistivities of the YBCO film of sample H5
(ρc = 2 × 10–1 Ω cm along the c axis and ρab = 4 ×
10−3 Ω cm in the basal plane, as determined from
bridge measurements), as well as the mean free path
lengths lc = 1 nm [20] and lab = 10 nm [21] (ρclc = 2 ×
10–8 and ρablab = 4 × 10–9 Ω cm2), we obtain pfab/pfc ≈
2.2 for the Fermi momentum anisotropy. As shown by
our estimates, this value of the ratio pfab/pfc still permits
one to use relations (1)–(3) to calculate the transport
along the c axis. Using the experimental values for r
and ρl from Eqs. (1) and (3), we obtain 2〈xD(x)〉  ≈ 7 ×
10–4 for the interface transparency of sample P32J3,
which is close to the value 2〈xD(x)〉  ≈ 8 × 10–4 calcu-

p f
2 3π2

�
3/ e2ρl( )=
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lated from Eq. (2) under the assumption of the carrier
effective mass along the c axis being m = 100 me [22].
The difference between the transparencies obtained by
different techniques is most likely associated with the
fact that the ρc of YBCO films derived from bridge
resistance measurements is smaller by an order of mag-
nitude than those for the thin layer at the N–Sd interface,
which were determined from four-point measurements
of the junction resistance at T = Tc.

When determining the experimental value of the
transparency along the a–b plane in THs, one should
take into account the layered HTSC structure. As a
result, in averaging over the momentum directions, the
main contribution should be due to electrons within the
angular range α < (d/λN) ≈ 84° (λN ≈ 0.12 nm is
the de Broglie wavelength for electrons in Au, and d ≈
1.2 nm is the distance between the CuO planes in
YBCO). One should also take into account the sharp-
ness of the interface, which radically changes its trans-
parency. A comparison of δab and δc (Fig. 4) with λab

and λc (the de Broglie wavelength for electrons in
YBCO), respectively, shows that in the THs (δab �
λab ≈ 2 nm), the interface is smooth, whereas in the
DHs with δc ~ λc ≈ 4 nm, we most likely have a sharp
interface. As a result, relation (2) is applicable to the
DHs, while the interface transparency in the THs is
substantially larger (Dab ≈ 1); however, when averaged
over the momentum directions, we obtain for the THs

(4)

Note that the value 2〈xD(x)〉  = 9 × 10–3, found from
Eqs. (1) and (3), is close to the estimate in Eq. (4) made
for the H5J3 sample. Hence, while the transparency of
a smooth interface for electrons with momenta oriented
close to the normal is of order unity, the transparency
averaged over the momentum directions is small
because of the layered structure of the YBCO and does
not contribute noticeably to the characteristic resistance
of the interface. Relation (4) also shows that for abrupt
N–Sd interfaces, rab is nearly equal to rc, despite the
large anisotropy of the Fermi momenta.

As shown by calculations [4, 17], for vf 1/vf 2 � 1,
the N–Sd and NIS junctions have similar electrophysi-
cal properties. Figure 3 shows that the I–V curves
obtained in our experiment for T � Tc are, on the whole,
close to those measured on NIS junctions; namely, one
observes an increase of Rd at low bias. However, in our
experiment, in contrast to the theory of [17], Rd does
not exhibit any features associated with the YBCO
superconducting gap. One could conceive of two rea-
sons for the diffuse character of the gap feature in the
I–V curves. The first of them is the existence of a direct
contact between the superconductor and the normal
metal. By [17], for T = 0, we have Rd (∆/e)/RN =
〈xD(x)〉; i.e., the I–V characteristics of NcS junctions
(“c” stands for constriction) do not have a divergence of

arctan

2 xD x( )〈 〉 λ N/d( )2 10 2– .= =
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the ((eV)2 – ∆2)–1/2 type characteristic of NIS junctions
for T � Tc. Second, the absence of a gap feature in the
I–V curves agrees with the model of a superconductor
with gapless superconductivity, including a d-type
superconducting order parameter [11, 12]. By calcula-
tions [11], the feature in the I–V characteristics at eV ≈
∆ caused by growth of the density of states of a d super-
conductor at energies ε ≈ ∆ yields a logarithmic depen-
dence Rd ~ ln(T) and ln(||eV | – ∆|), which is subject to
a temperature-induced spread, as in the case of gapless
superconductivity. Note that the Nb–Au–YBCO het-
erojunctions, as well as the Pb–Au–YBCO structures
produced on c-oriented YBCO films, exhibit a gap fea-
ture of a low-temperature superconductor, but the
YBCO I–V curves do not have a gap feature at V ≈ ∆/e
[23, 24]. This is an additional indication of the YBCO
order parameter exerting a fairly strong effect on gap
feature formation in the I–V curves at V ≈ ∆/e. While
both these effects cause a smoothing of the gap feature
at V ≈ ∆/e, the tunnel feature at V � ∆/e observed exper-
imentally persists up to fairly high interface transparen-
cies (D ~ 10–1).

The number of quasiparticles excited at low temper-
atures (kT � ∆) in a superconductor with s-type order
parameter symmetry decreases exponentially with tem-
perature; hence, the magnitude of Rd (0) ~ exp(–∆/T) in
SIN junctions increases proportionally. The presence of
zero order parameter sites in a superconductor with
d-type pairing makes it possible to excite quasiparticles
even at a very low temperature, T � ∆. As a result,
Rd (0) should grow more slowly with decreasing T than
occurs in s superconductor junctions [11]. The exist-
ence of direct conduction in a junction acts in the same
sense. In addition to the scattering mechanism originat-
ing from a pfi mismatch, one observes Andreev reflec-

tion for electrons with energies ε < /2m. The elec-
trons carrying the current in the normal metal are
reflected from the interface with a superconductor in
the form of a hole with about the same |pf |, and the cur-
rent in the superconductor is transported by supercon-
ducting pairs [17]. As a result of the combined action of
the two above mechanisms, the temperature depen-
dence of Rd (0) differs from the exponential
exp(−∆/kT). As seen from Fig. 5, the conductivity σ =
1/Rd (0) for a DH does decrease in our experiment by a
power law with temperature.

An additional experiment indicating the Fermi
momentum mismatch as a factor governing the electro-
physical parameters of the heterostructures studied is
annealing in an oxygen atmosphere. It was experimen-
tally established earlier that the main process taking
place in heterostructures made of HTSCs with noble
metals (silver, gold, platinum, etc.) and subjected to
annealing is an increase in the oxygen content in the
surface layer of the (001)YBCO film [25, 26]. When
heated in an oxygen environment, an increase in oxy-
gen content in the YBCO surface layer is accompanied

p f
2
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by a change in its ρclc and, as a consequence, the Fermi
momentum of YBCO increases and rc decreases.
Unlike other noble metals, gold is not observed to dif-
fuse in YBCO. Figure 6 displays Rd(V) relations for a
DH obtained after the anneal of a sample for 0, 1, 5, and
15 h in an oxygen environment at T = 600°C. The value
of rc decreases rapidly with increasing anneal time to
reach rc = 4 × 10–6 Ω cm2 after 5-h of annealing in place
of the original r = 5.6 × 10–5 Ω cm2. Further annealing
for 15 h did not noticeably affect the value of r. Because
the I–V curve in our experiment does not undergo a
qualitative change in shape, the surface layer Sd is
located, most probably, on the metallic (superconduct-
ing) side of the transition and saturation with oxygen
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600°C. Inset shows the Rd(0)/RN dependence on rc, which
characterizes the variation of DH conductivity in the course
of the anneal.
P

changes its conduction parameters, in particular, the
Fermi momentum. As a result, as the oxygen content
increases, the resistance of the interface r, which is
determined by its transparency D and the value of pf,
should change; this is exactly what was observed in the
experiment. The quasi-tunneling component, which
can be characterized by the ratio Rd(0)/RN, decreases
with annealing, which causes a decrease in rc (see inset
to Fig. 6). One readily sees that by the end of the
anneal, the Rd (0)/RN ratio decreased from 2 to 1.5,
while rc changed by an order of magnitude. This behav-
ior of the I–V curves of heterojunctions is in qualitative
agreement with the calculations of [17]; namely, as the
Fermi momentum mismatch decreases, the quasi-tun-
neling I–V characteristic transfers to the I–V curve of
junctions with an ScN-type direct conduction. For D ≈ 1,
the properties of the junctions are described by the model
of the ScN junction, for which Rd (0)/RN = 0.5 [17].

In a TH, as seen from Figs. 2–4, Rd (V) ≈ const
within the bias range considered and R(T) falls off lin-
early with temperature. All this is typical of an N–Sd

junction with direct (not tunneling) conduction. Note
that r is changed in a TH by an order of magnitude com-
pared with that of a DH and that the transparencies dif-
fer by three orders of magnitude because of the addi-
tional effect of the roughness of the interface separating
the two materials.

Thus, we have observed in c-oriented and tilted
Au/YBCO heterostructures a strong anisotropy in the
temperature dependence of the resistance and the I–V
curves, which are caused by a change in the direction of
the transport current flowing through the normal-
metal–YBCO interface. It has been shown that the
experimental results obtained can be described within
the model of direct contact between the normal metal
and the HTSC, if the substantial mismatch in the Fermi
momenta pfi between the materials in contact is taken
into account. For a large pfi mismatch, a situation met
usually in heterostructures grown on c-oriented YBCO
films, one observes quasi-tunneling characteristics and
the heterostructures on YBCO films with a tilted c axis
are close in properties to Ohmic contacts because of the
smaller pfi mismatch and the interface roughness,
which reduces electron reflection from the interface.
The oxygen-depleted layer existing on the (001)YBCO
surface increases the characteristic heterostructure
resistance; however, in our experiments, the doping
level of this layer is such that it is always on the metallic
side of the metal–insulator transition.
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Bound-Exciton Emission Bands in ZnSe Single Crystals 
and Mixed Plasmon–Phonon Modes
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Abstract—The paper reports a cathodoluminescence study of ZnSe single crystals annealed in a Bi melt at
1200 K for 120 h. It is found that the distance between the phonon structure satellites in the bound-exciton series

–nLO and –nLO and the relative satellite intensity are different in samples with different conduction elec-
tron concentrations. It is shown that this difference is due to the mixing of the plasmon and phonon modes. The
shape of the bound-exciton emission spectrum in ZnSe crystals in the 450–470 nm region is calculated, and a
satisfactory agreement with the experiment calculations is obtained. © 2001 MAIK “Nauka/Interperiodica”.
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It was conjectured [1] that the region of the –2LO
emission line (λ = 456 nm) of ZnSe crystals annealed
in a Bi melt contains a new bound-exciton line  with
a rich LO-phonon and plasmon structure. A distinctive
feature of the  line (compared to ) is the large mag-
nitude of its coupling constants with LO phonons and
plasmons, which determine the emission line intensity.
This paper reports on further study of the spectral
shape, relative intensities, and distances between the

satellites in the bound-exciton line series –nLO.

The luminescence was excited by a 40-keV electron
beam with the sample maintained at 4.2 K. The pulse
duration was 0.4 µs, and the repetition frequency was
200 Hz. The radiation was analyzed by a DFS-12
monochromator in the visible region of the spectrum.
Figure 1 presents experimental data on the cathodolu-
minescence of two ZnSe samples annealed in a Bi melt
and having different conduction electron concentra-

tions. Curve 1 exhibits the lines –LO (λ = 451.0 nm)

and –2LO (λ = 456.2 nm). The latter is superposed on
a broad  line peaking near λ = 456 nm. The two long-
wavelength satellites of the  line are its LO-phonon
replicas, –LO (λ = 461 nm) and –2LO (λ = 467 nm).
The multiplasmon structure of the −nLO lines is not
resolved, because the plasmon lifetime τ in crystals
with a low electron concentration (ωp � ωLO) is not suf-
ficiently long and plasmons are not elementary excita-
tions of crystals. Nevertheless, interaction of the
recombining electron and hole with the plasma brings
about a broadening of the –nLO series lines. Curve 1
in Fig. 1 convincingly suggests that in the wavelength
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interval λ ≈ 456 nm, there is a superposition of the 

and –2LO lines. This can be considered as direct evi-
dence of the conjecture on the existence of a new line

 and its satellites. Similar spectra were also obtained
on other ZnSe samples with a low conduction-electron
plasma concentration. Depending on the relative con-
centrations of the centers accounting for the  and 
lines, superposition of the spectra can be observed to
occur in regions of both the  and –2LO lines (λ =
456 nm) and the –LO and –3LO lines (λ = 461 nm).
Despite the weak coupling of the bound exciton respon-

sible for the  line with the free-electron plasma, the
interaction also manifests itself in a broadening of the

 line at plasma concentrations ne ≤ 1016 cm–3. For
comparison, consider the cathodoluminescence spectra
taken from [1] (Fig. 1); they exhibit a narrowing of the

plasmon-free –2LO lines for ne ≤ 1017 cm–3, where
the plasmon satellite splits off from the plasmon-free
line.

In crystals with a relatively high plasma concentra-
tion (ne ≈ 1017 cm–3, �ωp ≈ 10 meV), the multiplasmon
structure in the –nLO series is resolved (curve 2 in
Fig. 1) and the plasmon-free lines –LO (λ = 461.3 nm)
and –2LO (λ = 466.8 nm) are more narrow and
intense than the plasmon satellites as a result of strong
plasmon dispersion and decay.

Thus, if one considers a broad conduction-electron
plasma concentration range, ne ≈ 1014–1018 cm–3, one
can say that in the initial stage, at low concentrations [in
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the sense that the inequality ωp � ωLO) still holds], as
one crosses over from ne ≈ 1014 to 1016 cm–3, the Cou-
lomb interaction of bound excitons with the plasma

manifests itself in a broadening of the –nLO lines.
For the –nLO series, this effect is more significant

than that for –nLO (curve 1 in Fig. 1). However, as
the concentration grows to ne ≈ 1017–1018 cm–3, the

broadening is replaced by a narrowing of the –nLO
lines. This takes place when the plasmon energy
becomes high enough for the plasmon satellite to split
off from the plasmon-free line.

As seen from an analysis of the –nLO series, the
relative intensity and spacing between the satellites are
different in different samples. The spacing varies from
31 to 32 meV, and the relative intensity of the –LO
and –2LO lines is 1.2 : 1 (curve 2 in Fig. 1), 1 : 1
(curve 1 in Fig. 1 from [1]), and 0.9 : 1 (curve 2 in
Fig. 1 [1]). We believe all these results to be due to the
mixing of the plasmons with the LO phonons, which
gives rise to frequency renormalization of the elemen-
tary crystal excitations and, depending on the actual
plasma concentration, to variation of the average num-
ber (per photon) of emitted longitudinal mixed plas-
mon–phonon excitations with frequencies ω+ and ω–
[2–4]. The critical quantity is the conduction electron
concentration ne ≈ 1016–1017 cm–3. The frequencies of
the mixed plasmon–phonon elementary excitations are
given by the relation [2]

(1)

In the limit of low plasma concentrations satisfying
the inequality ωp � ωLO (ne ≤ 1016 cm–3), the frequency
ω+  ΩLO and ω–  ωp, whereas in the case of the
inequality ωp � ωLO, i.e., for high concentrations ne ≥
1018 cm–3, the frequency ω–  ωTO = ωLO(ε∞/ε0)1/2

and ω+  ωp∞. Here, ωp = (4πnee2/ε0 )1/2 =
ωp∞(ε∞/ε0)1/2.

For ne ≈ 1016 cm–3, the plasmon energy is �ωp =
2.9 meV, so that, by Eq. (1), the mixing of the plasmon
and LO-phonon modes can be neglected. However, for
ne ≈ 1017 cm–3, the mixing should be taken into account.
Indeed, using Eq. (1) and the values of the parameters
of the ZnSe crystal, we find, for the concentration ne ≈
1.7 × 1017 cm–3 and �ωLO = 31 meV, the following plas-
mon–phonon mode energies: �ω+ = 32 meV and �ω– =
11.6 meV (�ωp = 12 meV). Both frequencies ω+ and ω–
grow with increasing plasma concentration. Thus, we
may conclude that the observed change in the �ω+
energy from �ωLO = 31 meV at low concentrations to
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�ω+ = 32 meV at high concentrations is due to the mix-
ing of the plasmons with the phonons. Note that an
energy spread of the longitudinal optical phonons of the
same order of magnitude is also quoted in other studies
(see, e.g., [5]). The increase in the concentration from
ne ≈ 1016 to 1017 cm–3 more strongly affects the relative
satellite intensity, which is determined by the average
numbers N+ and N– (per photon) of emitted mixed plas-
mon–phonon excitations with frequencies ω+ and ω–. It
was pointed out [1] that a strong coupling with plas-
mons and phonons is characteristic of centers of the
acceptor or donor type, where the radii of the electron
and hole states differ considerably. Here, N+ ~ 1/a+,
where a+ is the smallest radius (of the electron or the
hole). In accordance with relation (2) from [1], we find

(2)

For ne ≤ 1016 cm–3, no mixing occurs, N+ = NLO, and the
ratio aLO/a+ = 1, whereas for ne = 1.7 × 1017 cm–3, we
obtain N+ = 1.3NLOaLO/a+. Because the concentrations
considered here are far from the threshold of the Mott
transition, we have aLO/a+ ≈ 1 and N+ = 1.3NLO. This
effect accounts for both the position and the relative

intensity of the –nLO lines in spectrum 1 of Fig. 1.
Taking into account the superposition of the two series,

–nLO and –nLO, in the wavelength region λ =
450–470 nm, the spontaneous emission spectrum of
ZnSe crystals can be presented in the form

(3)
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Fig. 1. Cathodoluminescence spectra of ZnSe crystals
obtained at T = 4.2 K: (1) high-resistivity sample, (2) low-
resistivity sample.
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Here, x = (ω – ω0)/ωLO and �ω0 is the energy position

of the –LO line (450.9 nm). All the frequencies are in
units of ωLO: b = ωp/ωLO, β = �ωp/k0T, z =
Np/ , NLO is the average number of phonons
(Np plasmons) emitted per photon, and Im(z) is the
Bessel function of an imaginary argument. Relation (3)
includes both Stokes and anti-Stokes satellites. For
Np � 1, the envelope of the multiplasmon satellites is a
Gaussian whose half-width is dominated by the Cou-
lomb interaction with the free-electron plasma.

In accordance with Eq. (3), in order to construct a
theoretical emission spectrum, one should know the
widths γ and γ1 of the LO phonon and plasmon satel-
lites, as well as the position of the  line, which is
determined by the δ parameter. As follows from our
results, the  line is shifted by 0.3 nm toward shorter

wavelengths relative to the –2LO line and  for
the –nLO series is about two for plasma concentra-
tions ne ≥ 1017 cm–3. Using these data, we find that the
theoretical calculations are at odds with experimental
calculations for low plasma concentrations. The theo-
retical series –nLO for  = 2 and δ = 0.06 is found
to be shifted toward longer wavelengths relative to the
experimental one, and the intensity of the –2LO line

is overestimated with respect to that of the –LO line.
The problem consists in that the δ parameter cannot be
directly determined experimentally. However, when
one takes into account the plasmon and phonon mixing,
it becomes clear how this parameter and the  con-
stant should be changed when going over to lower con-
centrations. Indeed, with the mixing properly included,
the contribution of the interaction with longitudinal
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Fig. 2. Bound-exciton emission spectrum in ZnSe. The solid
line is the spectrum calculated from Eq. (3). Circles are
experimental points.

0

P

plasmon–phonon modes to the exciton binding energy
is given by

(4)

By our estimates, as the concentration increases, the
∆EB energy in Eq. (4) increases and the  line shifts
toward longer wavelengths. Thus, at low concentra-
tions, the δ parameter is larger than that at high ones.
The δ parameter was varied to obtain the best fit of the
theoretical to the experimental spectrum (curve 1 in
Fig. 1). For plasma concentrations ne ≤ 1016 cm–3, the 
line was found to be shifted relative to the –2LO line
toward shorter wavelengths by δ = 0.15 (δ�ω =
4.6 meV). Note that taking into account the optical
phonon dispersion and plasma heating is not sufficient
for explaining the purpose of this shift. The half-widths

of the –nLO lines can be derived directly from exper-
imental data. For the multiplasmon satellites, the half-
width 2γ1 is constrained by the condition that, as shown
by the experiment, the multiplasmon structure is not

resolved (a/γ1 < 1). The relative intensity of the −nLO

and –nLO series is determined by the constants A and
B in Eq. (3). Thus, as seen from Fig. 2, for the parame-
ters A = 16, B = 0.25, b = 0.05 (�ωp = 1.55 meV),

 = 0.25,  = 1.4, Np = 3, γ1 = 0.07 (for a lower
value of γ1, the multiplasmon structure is not
smoothed), γ = 0.04, and T = 4.2 K, the agreement with
the experiment turns out to be satisfactory. The sensi-
tivity of the emission and absorption spectra of bound
excitons to plasma concentration (the nonlinearity of
the spectral functions depending on excitation inten-
sity) can be used to advantage in optical information
processing devices.
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Abstract—Stationary temperature fields due to the interaction of an electron probe with a GaN sample are
examined. In order to calculate the density of generated heat, the process of electron energy loss is modeled by
the Monte Carlo method. The heat generation region is assumed to have the shape of a half-ellipsoid. In the case
of uniform heat generation in the ellipsoid, an analytical solution to the heat conduction problem is found and
expressed in terms of elementary functions. It is shown that the maximum heating temperature and the temper-
ature field distribution depend only slightly on the shape of the heat generation region. An approximation of the
density of heat sources by a uniform distribution over a hemisphere of radius equal to the ultimate range of elec-
trons leads to a considerably underestimated maximum heating temperature. An expression is derived for deter-
mining the characteristic size of the heat generation region in GaN; this expression allows one to calculate the
maximum heat temperature with an accuracy of 3% in a wide range of electron beam energies. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

An analysis of the temperature fields caused by the
interaction of an electron probe with a sample is of
importance in interpreting experimental data on
cathodoluminescence and Auger-electron and x-ray
spectrum microanalysis [1–3]. Taking the temperature
effect into account can also be essential in the electron-
beam processing of samples. Problems of this kind
arise, in particular, when p-type conductivity is acti-
vated in samples of GaN [4, 5], which is one of the most
promising materials for optoelectronic devices in the
visible spectral region.

The thermal effect of an electron probe on a sample
was treated in a number of investigations both experi-
mentally [6, 7] and theoretically [1–3, 8, 9]. It should be
noted that an experimental measurement of the heating
temperature [6, 7] is complicated by the fact that the
heat generation region is small; therefore, the results
have a considerable margin of error and should be con-
sidered qualitative. For this reason, theoretical estima-
tions of the spatial distribution of heat sources and the
sample heating temperature caused by the electron
probe are of particular value. In [1], the stationary heat
conduction problem was solved and a much used for-
mula for the maximum heating temperature was
obtained. It should be noted that in deriving this for-
mula, the heat generation region was assumed to be a
hemisphere of radius equal to that of the probe. In [2],
the heat conduction problem was considered for the
case of a sample covered with a film of a material hav-
ing a high heat conductivity and the same approxima-
tion to the heat generation region was used. An expres-
sion derived for the temperature at the sample surface
1063-7834/01/4305- $21.00 © 20811
includes an improper integral of a combination of the
Bessel function of order zero and an exponential. The
heat problem for the case of a cylindrical region of heat
sources was treated in [8]; the height of the cylinder
was taken to be equal to the penetration depth of the
probing electrons, and the base diameter equaled the
sum of the electron-beam diameter and was twice the
penetration depth. The final expression involved an
integral of special functions. In [9], the heat generation
region was approximated by a hemisphere of radius
equal to the sum of the radius of the electron beam and
the electron penetration depth; simple analytical
expressions were obtained for the maximum heating
temperature, the size of the heat source, and the tran-
sient time of the temperature field.

It should be noted that the actual shape of the heat
generation region differs from the approximations indi-
cated above. The main reason for their use in the papers
cited above is that these approximations make it possi-
ble to derive analytical expressions for estimating the
basic parameters of the temperature field. In order to
determine the actual shape of the region of heat gener-
ation, one should analyze the process of electron-beam
energy loss in detail.

The objective of this paper is to investigate the tem-
perature distribution in a sample with allowance for the
actual density of heat sources. The problem is
approached in two steps. We first determine the density
of heat sources by solving the kinetic equation for prob-
ing electrons and then solve the heat problem on the
basis of the generated-heat distribution found before.
001 MAIK “Nauka/Interperiodica”
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1. CALCULATION OF THE DISTRIBUTION 
OF THE HEAT SOURCE DENSITY

Heat generation is a result of relaxation of probing
electrons, the energy of which is transferred to the tar-
get. If one assumes that the entire energy of electrons is
converted into heat, then the distribution of heat
sources will be identical to that of electron energy
losses. The one-dimensional depth distribution of elec-
tron energy losses dE/dz has been calculated in many
papers. In particular, a much used universal empirical
expression for dE/dz is presented in [10]. However, the
information on the depth distribution does not suffice
for the spatial distribution of the energy loss density to
be determined. One of the methods for calculating the
spatial distribution is to solve the kinetic equation that
describes probing-electron transport in the target. For
this purpose, we performed computer simulation by the
Monte Carlo method. In the calculation procedure for
the computer program, we used the single-collision
approximation. Elastic scattering of electrons by atoms
was described by the Mott differential cross section,
which we calculated using the Hartree–Fock–Slater
atomic potential [11]. Inelastic electron scattering in
the material was described by a model differential cross
section. The distinctive features of this cross section are
as follows. At high energy losses, it approaches the
cross section for free electrons, whereas moderate
energy losses per unit length are described by the Bethe
or Rao-Sahib–Wittry formula [12].

In order to verify the adequacy of the computer sim-
ulation, we compared the calculated depth dependences
of the energy loss density with the universal depen-
dences for low [13] and high [10] electron-beam ener-

Fig. 1. Isolines of the heat source density distribution
qf (ρ, z) (ρ is the radius, z is the depth) in a semi-infinite GaN
sample irradiated by an electron beam focused at a point for
electron energies E0 equal to (a) 15, (b) 10, and (c) 5 keV.
The depth and radius are reckoned from the point of inci-
dence of the probing electrons. The values of lnqf (ρ, z) are
indicated on the isolines.
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gies. The two-dimensional energy loss distribution was
compared with the corresponding distribution proposed
in [14] for GaAs. The comparison showed that our
results are in reasonable agreement with the data from
the papers cited above.

By using the simulation program, we calculated the
distribution of the energy loss density and, therefore,
the distribution of heat sources qf(ρ, z) in GaN for ener-
gies E0 = 5, 10, and 15 keV, where the depth z and
radius ρ were reckoned from the point at which the
electron beam was focused on the sample. The electron
beam current was taken to be 100 nA. Isolines of the
calculated distribution are shown in Fig. 1. The distri-
bution of the heat source density produced in the sam-
ple by an electron beam of finite diameter d is related to
the distribution qf produced by a beam focused at a
point by the equation

(1)

where Id(x0, y0) is the intensity distribution over the
cross section of the beam.

2. CALCULATION OF THE TEMPERATURE 
FIELD

Now, we are coming to the second part of the prob-
lem, namely, to the calculation of the temperature field
in the sample for a given density of generated heat.

From the calculated distribution qf produced by the
electron beam focused at a point (Fig. 1) it is seen that
the distribution of the generated heat density in the bulk
of the sample differs noticeably from a spherically
symmetric one. A similar situation takes place in the
more general case of beams of finite diameter. This
raises the question of whether the heat generation
region can be approximated by a hemisphere [9]. The
solution to the heat conduction problem found in [8] for
a source uniformly distributed over a cylinder allows
one, in principle, to estimate the effect of the shape of
the heat generation region on the temperature distribu-
tion. However, this solution is represented in the form
of an integral of special functions, which makes its use
difficult. Furthermore, the boundary of the heat gener-
ation region is not smooth in this case, which is in con-
tradiction with the results presented in Fig. 1.

In this paper, we take into account the difference in
the characteristic dimensions of the heat generation
region in the transverse and longitudinal directions by
considering the region in the form of a half-ellipsoid
with semiaxes a and b. The distribution of generated
heat over this region is assumed to be uniform. The
temperature field is described by the equation

q x y z, ,( )

=  q f x x0– y y0– z, ,( )Id x0 y0,( ) x0d y0,d∫∫

∆T q/k,–=
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where k is the heat conductivity coefficient and the heat
source density q as a function of the cylindrical coordi-
nates ρ and z has the form

Since there is no heat flux through the boundary, and
the temperature field decays far away from the heat
source, the boundary conditions have the form

The axial symmetry of the problem allows one to use
the degenerate ellipsoidal coordinates α and β [15], in
terms of which the problem can be solved analytically.
In the case of a prolate ellipsoid of revolution (a ≥ b),
the relation between the cylindrical and ellipsoidal
coordinates has the form

where c is a scale factor. In the case of an oblate ellipsoid
of revolution (a < b), these relations are replaced by

In the former case, one of the families of coordinate
surfaces is the family of prolate ellipsoids of revolution
α = const with foci at points (0, 0, ±c).

If the scale factor c and the coordinate α = α0 are
taken such that

then the ellipsoid within which heat is generated coin-
cides with the coordinate surface α = α0. The families
of coordinate lines of the degenerate ellipsoidal coordi-
nate system are shown in Fig. 2.

In the (α, β) coordinates, the Laplacian has the form

By solving the problem by the method of separation of
variables, we arrive at the formulas

q

q0,
ρ2

b2
----- z2

a2
----- 1<+

0,
ρ2

b2
----- z2

a2
----- 1.>+

=

T∂
z∂

------
z 0=

0, T z ∞→ 0, T ρ ∞→ 0.=

ρ c α β , zsinsinh c α β ,coscosh= =

ρ c α β , zsincosh c α β .cossinh= =

c2 α0sinh
2

b2, c2 α0cosh
2

a2,==

∆T
1

c2 αsinh
2 βsin

2
+( )

----------------------------------------------=

× 1
αsinh

-------------- ∂
α∂

------ α T∂
α∂

------sinh
1

βsin
----------- ∂

β∂
------ β T∂

β∂
------sin+ .

T int α β,( )
q0

k
-----c2 1

4
--- α βsin

2
sinh

2 1
6
--- α0sinh

2
–





–=

× 1 2 α0 α0/2( )cothlncosh+
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Here, Tint and Text are the temperatures inside and out-
side the ellipsoid, respectively. In the limit case b  a,
these formulas are reduced to the solution for a source
distributed uniformly over a hemisphere of radius a:

(3)

Putting ρ = z = 0 in Eqs. (2) and (3), we obtain the
maximum heating temperatures for the cases of a half-
ellipsoid,

,

and a hemisphere,

(4)

For an oblate ellipsoid of revolution (a < b), the
scale factor c and the coordinate α = α0 are taken such
that

+ 2 1 α0 α0/2( )cothlncosh–( )

× 3 αcosh
2

1–( )
2

---------------------------------- 3 βcos
2

1–( )
2

-------------------------------




,

Text α β,( )
q0

4k
------ab α0( ) 3 βcos

2
1–( ) αcosh{sinh=

+ 2 βsin
2 αsinh

2
–( ) 3 α βsin

2
sinh

2
+[ ] α /2( )cothln } .

T int ρ z,( )
q0

6k
------ 3a2 ρ2– z2–( ),=

Text ρ z,( )
q0

3k
------ 3a2

ρ2 z2+
--------------------.=

Tmax
ell q0

4k
------ ab2

a2 b2–
-------------------- a a2 b2–+

a a2 b2––
-----------------------------ln=

Tmax
sph q0

2k
------a2.=

c2 α0cosh
2

b2, c2 α0sinh
2

a2.==

β = 0.7π
α = α0 β = 0.3π

ρ

z

Fig. 2. Families of coordinate lines α = const and β = const
for the degenerate coordinate system in the case of a prolate
ellipsoid of revolution for a = 10 and b = 5. The scale factor
c and coordinate α0 are 8.66 and 0.55, respectively. The
curves correspond to the following values of the coordi-
nates: α = 0.1, 0.3, and α0; β = 0.1π, 0.3π, 0.4π, 0.6π, 0.7π,
and 0.9π.
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In this case, the solution can be written as

T int α β,( )
q0

k
-----c2 1

4
--- α βsin

2
cosh

2 1
6
--- α0cosh

2
–





–=

× 1 2 α0 α0sinh( )arccotsinh+

– 2 1 α0 α0sinh( )arccotsinh–( )

× 3 αsinh
2

1+( )
2

---------------------------------- 3 β 1–cos
2( )
2

-------------------------------




,

Text α β,( )
q0

4k
------ab α0 3 β 1–cos

2( ) αsinh–{cosh=

+ 2 βsin
2 αcosh

2
+( ) 3 α βsin

2
cosh

2
–[ ] αsinh( )} .arccot
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peratures calculated for heat sources having the shape of a
half-ellipsoid and a hemisphere of the same volume and
power as a function of the ratio of the semiaxes of the ellip-
soid.

Tmax
ell

Tmax
sph
PH
From these formulas, the maximum heating tempera-
ture is found to be

Figure 3 shows the ratio τ = /  as a function
of the ratio of the semiaxes of the ellipsoid η for a fixed
volume of the heat generation region. It is seen that the

difference between  and  becomes significant
at η < 0.15 and η > 5.

We note that the method applied in this paper, in
contrast to that used in [8], leads to simple expressions
for the maximum heating temperature Tmax and allows
one to calculate (using only elementary functions) the
temperature field produced by heat sources whose char-
acteristic dimensions in the longitudinal and transverse
directions are different.

Let us estimate the effect of the shape of the heat
generation region on the Tmax for the case of an electron
beam focused at a point. We approximate the heat
source distribution qf(ρ, z) by the Gaussian

Aexp(−z2/  – ρ2/ ) and find the half-widths σz and
σρ. We note that the isolines of the Gaussian distribu-
tion are ellipses with the ratio of their semiaxes η =
σz/σρ. Estimations show that 0.2 < η < 0.24 for energies
E0 equal to 5, 10, and 15 keV. As can be seen from
Fig. 3, the ratio τ varies within the interval 0.8 < τ <
0.85 in this case; therefore, for heat generation regions
differing from a hemisphere, the difference in Tmax cal-
culated from Eq. (4) does not exceed 20%.

The influence of the shape of the heat source on the
temperature field is illustrated in Fig. 4, where isother-

Tmax
ell q0

2k
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b2 a2–
-------------------- a
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Fig. 4. Comparison of the isothermal lines of the temperature field for heat sources having the shape of a hemisphere (dashed lines)
and a half-ellipsoid (solid lines). The heating temperatures indicated on the isothermal lines correspond to both the hemisphere and
the half-ellipsoid. The isolines show the temperature field structure (a) near the source and (b) far from the source. In the latter case,
it is evident that the temperature field distribution for the half-ellipsoid-shaped source approaches that for the hemispherical source.
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mal lines are shown for the cases where the source has
the shape of a semicircle and a semiellipse. The semi-
axes of the ellipsoid a and b are taken to be twice the
half-widths σz and σρ, respectively, of the Gaussian dis-
tribution that approximates qf(ρ, z) for E0 = 5 keV; the
radius rs of the sphere is calculated from the condition
that the heat generation regions have the same volume.
Thus, we have

The temperature field is calculated for the electron
beam current I = 100 nA, which corresponds to the total
generated heat power in the sample P = IE0 = 0.5 mW.
From Fig. 4, it is seen that the difference in the temper-
ature distribution is noticeable only at distances of the
order of a and becomes negligibly small at distances
larger than 3a.

Thus, the departure of the shape of the heat genera-
tion region from that of a hemisphere leads to relatively
small changes in the maximum heating temperature
and in the temperature field.

In order to estimate the error that results from the
assumption of the heat generation being uniform over
the hemisphere (which allows one to find an analytical
solution to the problem), we also solved the problem
numerically, with the heat source distribution found in
the first stage for the case of an electron beam focused
at a point.

The heat problem was solved by the finite-element
method. The numerically calculated values of the max-

imum heating temperature  are listed in the table.
Usually, for the case of a beam focused at a point, the
temperature Tmax is estimated from Eq. (4) for a hemi-
spherical heat source whose radius R is equal to the ulti-
mate range of electrons R0. The density of generated
heat q0 is calculated as the ratio of the total heat power
P generated in the sample to the volume of the hemi-
sphere. As a result, one obtains

(5)

According to [16], the ultimate range R0 of an elec-
tron with energy E0 in a substance of density  is

(6)

Here, E0 is measured in keV, A in g/mol,  in g/cm3,
and R0 in µm; Z is the atomic number of the target. As
indicated in [17], the range of electrons thus calculated
agrees well with the data obtained from the experimen-
tal dependence of the transmission coefficient on the
thickness of the film.

We calculated the range of electrons in GaN by put-
ting  = 6.0 g/cm3, A = 41.864 g/mol, and Z = 27. From

a 2σz 0.072 µm, b 2σρ 0.018 µm,=== =

rs aη2/3 0.026 µm.= =

Tmax
cal

Tmax
1 R2q0

2k
-----------

3
2π
------ P

2Rk
----------, R R0.== =

ρ̃

R0 0.0276AE0
1.67/Z0.889ρ̃.=

ρ̃

ρ̃
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Eq. (6), the values of a are found to be 0.15, 0.48, and
0.95 µm for E0 = 5, 10, and 15 keV, respectively. The

estimated temperature  for these energies is pre-

sented in the table. A comparison of  and 
shows that this estimation method gives a maximum
heating temperature which is about twice as small. This
discrepancy is due to the peaked heat source distribu-
tion, for which the ultimate range of electrons cannot be
taken as the characteristic dimension of the heat gener-
ation region. We will assume that heat generation
occurs predominantly in a hemisphere of a smaller
radius and find this radius by equating the estimated

temperature from Eq. (5) to . Since the ratio

/  depends on the energy only slightly, we take
the radius of the hemisphere to be

(7)

The value of  calculated using Eq. (7) is desig-

nated as  and also presented in the table. It is seen
that this choice of the size of the heat generation region
allows one to estimate the maximum heating tempera-
ture with an accuracy of about 3%.

It is of interest to compare the calculated tempera-
ture field and the distribution in Eq. (3) produced by a
hemispherical source. Isothermal lines for this case are
depicted in Fig. 5a. A comparison of the temperature
fields for E0 = 5 keV shows that the maximum devia-
tions of the distribution in Eq. (3) from the calculated
values do not exceed 60%. The values of the tempera-
ture at large distances from the origin for the distribu-
tion in Eq. (3) exceed the calculated values by about
15%. This is because the total heat power generated in
the sample is taken to be P = IE0 = 0.5 mW and the
decrease in this quantity due to backward scattering of
the electrons is not taken into account. The isothermal
lines in Fig. 5b are calculated equating the power of the
hemispherical source to the generated heat power
found by integrating the calculated distribution of the
energy loss density. It is seen that in this case, the tem-
perature fields coincide at large distances from the

Tmax
1

Tmax
1 Tmax

cal

Tmax
cal

Tmax
cal Tmax

1

R 0.571R0.=

Tmax
1

Tmax
2

Maximum heating temperatures calculated for GaN by solving

the heat problem numerically ( ), or from Eqs. (5) and

(6) ( ), or from Eqs. (5) and (7) ( )

Tmax

E0

5 keV 10 keV 15 keV

10.95 6.52 5.09

6.08 3.82 2.90

10.67 6.68 5.07

Tmax
cal

Tmax
1 Tmax

2

Tmax
cal

Tmax
1

Tmax
2
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source. From Fig. 5 it follows that the departure of the
distribution of the generated heat density from a uni-
form distribution over a hemisphere is manifested only
at distances of the order of the heat source dimensions
and, at the same time, allows one to estimate the maxi-
mum temperature and size of the heated region.

The results obtained for the case of an electron beam
focused at a point are also of interest and can be used to
estimate the temperature distribution produced by a
beam of finite diameter. Indeed, since the problem is
linear, the temperature can be found from a formula
similar to Eq. (1):

where Tf is the temperature distribution produced in the
sample by the beam focused at a point. We also note
that the maximum value of Tf can be considered an
upper estimate for the heating temperature in the case
of a sample irradiated by a beam of finite diameter.

For beams of finite diameter, the heat generation
region can be approximated by a half-ellipsoid whose
characteristic cross-sectional dimension 2bd is

where 2b is the characteristic dimension of the heat
source produced by the beam focused at a point. In this
case, the ratio of the semiaxes of the ellipsoid ηd is
given by

The maximum heating temperature can be estimated
from Eq. (4) for a hemispherical source with radius R =

Rd = a  and the τ(ηd) = /  dependence pre-
sented in Fig. 3. When the beam diameter far exceeds
the dimensions of the heat generation region, one can

T x y z, ,( ) = T f x x0– y y0– z, ,( )Id x0 y0,( ) x0d y0,d∫∫

2bd d2 2b( )2+ ,=

ηd d/2a( )2 η2+ .=

ηd
2/3 Tmax

ell Tmax
sph
P

assume that b ≈ a ≈ R and, therefore, ηd =

 and Rd = R1/3(d/2)2/3. This, in turn, leads
to the following expression for the maximum heating
temperature:

3. CONCLUSIONS

Thus, we investigated the temperature distribution
in a GaN sample irradiated with an electron probe.
Account was taken of the actual heat source density,
whose distribution was determined by performing
numerical simulation of the probing-electron kinetics
by the Monte Carlo method. The heat problem was
solved numerically by using the distribution of gener-
ated heat found before. To examine the influence of the
shape of the heat generation region on the temperature
field, we analytically solved the problem in the case of
uniform heat distribution generated in a half-ellipsoid.
The results allow the following conclusions to be
drawn.

The shape of the heat generation region arising in
GaN samples under the action of an electron beam
focused at a point is different from a hemisphere, but
this fact affects the maximum heating temperatures and
the temperature field only slightly. The influence can be
significant only if the characteristic dimensions of the
heat source in the transverse and longitudinal directions
differ markedly, which is the case, for example, when
the sample is irradiated with a broad beam of low-
energy electrons.

The spatial distribution of the stationary tempera-
ture field produced in a GaN sample by an electron
beam focused at a point and the maximum heating tem-
perature can be estimated by approximating the heat

d/2R( )2 1+

Tmax τ η d( ) 3P

4πR1/3 d/2( )2/3k
--------------------------------------.=
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source density by a uniform distribution over a hemi-
sphere. Taking the ultimate range of electrons as the
characteristic dimension of the heat generation region
leads to a considerably underestimated maximum heat-
ing temperature. By decreasing the characteristic
dimension of the heat generation region in accordance
with Eq. (7), one can determine the maximum heating
temperature with an accuracy of 3% over a wide range
of probing-electron energies. The temperature field dis-
tribution calculated for a hemispherical source differs
by no more than 60% from the more exact calculated
distribution for E0 = 5 keV. The temperatures calculated
in the hemispherical source approximation are about
15% higher than their more exact calculated values at
large distances from the origin, because backward scat-
tering of electrons is ignored. This discrepancy is
decreased to 3% if the actual power of the source is
taken into account.
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Abstract—The constitutive relation describing the optical response of dielectric crystals in incommensurately
modulated phases is derived for the plane-wave range of modulation. The symmetry properties of modulation
corrections to the permittivity tensor of such crystals are analyzed with allowance for spatial dispersion. These
properties are dictated by the Onsager principle for a nonabsorbing medium and by the mesoscopic periodicity
of the medium. It is shown that the basic results are consistent with the general conventional approach in crystal
optics of spatially inhomogeneous media. © 2001 MAIK “Nauka/Interperiodica”.
The optical properties of crystal dielectrics having
intermediate phases with an incommensurately modu-
lated superstructure, in particular, crystals of the A2BX4
family, attract the considerable interest of researchers
(see review [1]). A striking example is the problem of
optical activity in incommensurate (IC) phases of the
crystals mentioned above. This problem is still far from
being completely understood and has been widely dis-
cussed in recent literature [2–5]. The existence of this
phenomenon is inconsistent with the inversion point
symmetry of the IC phase structure, which is obtained
by “averaging” the influence of modulation; therefore,
further theoretical and experimental research is
required.

In terms of macroscopic electrodynamics, the opti-
cal response of an IC crystal depends on the permittiv-
ity tensor at optical frequencies. A number of authors
discussed some of its properties determined by the
symmetry of the IC phase, as well as the specific fea-
tures of the transition from a microscopic to a macro-
scopic description [2, 6–10]. An analysis of electro-
magnetic-wave propagation in IC crystals with allow-
ance for spatial-dispersion effects was carried out in [9,
11]. The purpose of the present work is to consider the
features of the optical response of an incommensu-
rately modulated medium with spatial dispersion and,
in particular, to analyze the symmetry of the part of the
dielectric tensor that depends on the wave vector of
light and to refine the constitutive relation for the
dielectrics with IC phases.

For the frequency range far from resonance, it is
possible to neglect the frequency dispersion effects and
to write the initial constitutive relation for a linear
anisotropic nonmagnetic medium (taking into account
its nonlocal spatial response) in the form [12]

(1)Di r( ) ε̂ij r r ',( )E j r '( ) r 'd ,∫=
1063-7834/01/4305- $21.00 © 20818
where D and E are the electric displacement and the
electric field strength of a light wave, respectively, and
the response function (r, r') defines the permittivity
tensor. The subscripts in Eq. (1) denote Cartesian coor-
dinates, and repeated indices are understood to be
summed over.

Basically, Eq. (1) can be used for analysis of the
crystal optics of IC phases. However, the wave vector
of IC modulation qIC is incommensurate with the basic
vectors of the base lattice. Strictly speaking, this leads
to a loss of translational periodicity in the crystal
medium in the direction of the modulation axis (we are
further interested in the case of one-dimensional mod-
ulation) and to the corresponding difficulties of analy-
sis of the properties of IC crystals by using well-devel-
oped methods of the solid state theory. The transla-
tional invariance can be restored within the framework
of the approach based on superspatial symmetry in
four-dimensional space (r, ϕ), where ϕ is the phase of
the modulation wave (see, e.g., [13]). This technique
was concretized for crystal optics of IC phases in [9],
where the initial integral coupling equation (1) was
written in a modified form:

(2)

Using Eq. (2), we introduce the Fourier transform of
the microscopic permittivity tensor and analyze some
of its properties (see also [9]). The kernel (r, r', ϕ)
must be invariant with respect to the transformations of
the superspatial group describing the symmetry of the
IC phase. In particular, for the subgroup of translations,
we have

(3)

where a = liai are translation vectors of the base lattice
of the initial higher-temperature phase (ai are the basic

ε̂ij

Di r ϕ,( ) ε̂ij r r ' ϕ, ,( )E j r ' ϕ,( ) r '.d∫=

ε̂ij

ε̂ij r r ' ϕ, ,( ) ε̂ij= r a+ r ' a ϕ qICa+,+,( ),
001 MAIK “Nauka/Interperiodica”
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vectors of the lattice and li are integers). It is possible to
write the dielectric function satisfying Eq. (3) as
(cf. [12])

(4)

where R = r – r' and summation is actually carried out
over all reciprocal-lattice vectors h that are involved in
the crystal structure with IC modulation (h = ni  +

mqIC, where  are the basic vectors of the reciprocal
lattice, ni and m are integers (see, e.g., [2])). In the nota-
tion of [2], modulation in crystals A2BX4 takes place
along the a3 direction, i.e., qIC = γ , where γ = r/s + δ;
the integers r and s characterize the crystal structure of
the commensurate lock-in phase [with wave vector
qC = (r/s) ]; and δ � 1 is a small incommensurateness
parameter dependent on temperature [1].

After standard Fourier transformation of Eq. (2), we
obtain

(5)

where

(6)

Substituting Eq. (4) into Eq. (6) yields

(7)

where δ(k) is the Dirac delta function and

(8)

is the microscopic Fourier transform of the dielectric
tensor corresponding to the spatial period λh = 2π/ |h |.
In the limiting case qIC = qC (δ = 0), Eq. (7) describes
the well-known structure of the tensor for usual (com-
mensurate) crystals [12].

Generally speaking, only the symmetry of macro-
scopic quantities describing a crystal has a physical
sense. Nevertheless, we consider, as in [9], the sym-

metry properties of the Fourier transform (k) for
the purpose of making further comparison with the
symmetry of the macroscopic dielectric tensor. Using
the Onsager principle of symmetry of kinetic coeffi-
cients [12, 14] and Eqs. (4) and (8), one can arrive at
the relation

(9)

The trivial requirement of reality of the kernel of the
integral operator in Eq. (2) for an optical medium with-

ε̂ij r r ' ϕ, ,( ) f ij
ni m,

ni m,
∑ R( ) imϕ( ) ihr '–( ),expexp=

ai*

ai*

a3*

a3*

Di k ϕ,( ) ε̂ij k k ' ϕ, ,( )E j k ' ϕ,( ) k ',d∫=

ε̂ij k k ' ϕ, ,( ) 2π( ) 6– ε̂ij r r ' ϕ, ,( )∫∫=

× i k 'r ' kr–( )[ ] drdr '.exp

ε̂ij k k ' ϕ, ,( ) εij
ni m,

k( ) imϕ( )δ k ' k h––( ),exp
ni m,
∑=

εij
ni m,

k( ) 2π( ) 3–= f ij
ni m,

R( ) ikR–( )exp Rd∫

εij
ni m,

εij
ni m,

k( ) ε ji
ni m,

k h––( ).=
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out dissipation leads to the condition

(10)

From Eqs. (9) and (10), we obtain

(11)

From Eq. (11), it is seen that the microscopic compo-

nents (k) are non-Hermitian in contrast to the
well-known result for the macroscopic dielectric tensor
[14]. We note that Eq. (11) has escaped the attention of
the authors of [9]. It is obvious that this result is valid
for both nonmodulated and incommensurately modu-
lated crystals; therefore, the source of this relation has
to do with the inhomogeneity of the crystal structure at
the microscopic level. It is known [12] that the proce-
dure of macroscopic averaging for crystals with lattice
periodicity alone enables one to express the micro-
scopic Fourier components of the field E(k + h) in
terms of the macroscopic field E(k) and, as a conse-
quence, to reduce the dielectric tensor to a single com-

ponent (k) corresponding to h = 0. According to
Eq. (11), this leads to a Hermitian macroscopic permit-
tivity tensor for a transparent optical medium.

Let us now discuss the basic points of the macro-
scopic averaging for IC crystals (see [12]). It follows
from Eqs. (5) and (7) that

(12)

Keeping only one term of this sum with (k), which
describes a homogeneous medium, would correspond
to a rough approximation frequently called the aver-
aged IC structure approximation [6]. The approxima-
tion that takes into account the additional longest wave-

length Fourier components (k) with nonzero vec-
tors h [2, 9–11, 15] is more adequate. In the plane-wave
IC modulation range, which is of further interest, the
most important is the “difference” vector q = s(qIC –
qC) = sδ , which makes an essential contribution to
various properties of IC phases (see [15–18]). The indi-
ces of this vector are n1 = n2 = 0, n3 = , and m = ;
therefore, the corresponding wavelength of the modu-
lation wave (λq = a3/sδ) is much larger than the typical
values of the lattice parameters, but is less than the
wavelength of light λ in the visible range (λq/λ ~ 0.1,
see also estimations in [2, 10, 11]). Taking the above
analysis into account, we present Eq. (12) in the form

(13)

εij
ni m,

k( ) εij
ni m–,–

k–( )[ ] *.=

εij
ni m,

k( ) ε ji
ni m–,–

k h+( )[ ] *.=

εij
ni m,

εij
0

Di k ϕ,( ) εij
ni m,

k( )E j k h ϕ,+( ) imϕ( ).exp
ni m,
∑=

εij
0 0,

εij
ni m,

a3
*

r+− s±

Di k ϕ,( ) εij
0 0, k( )E j k( ) εij

s± k ϕ,( )E j k q ϕ,±( )+=

+ εij
ni m,

k( )E j k h+ ϕ,( ) imϕ( ),exp
n1 n2;,

n3 r m s;±≠,+−≠
ni m 0≠,

∑

1
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where

(14)

We notice that the components (k, ϕ) corresponding
to the reciprocal lattice vector q virtually do not depend
on the microscopic indices ni that are associated with
the periodicity of the base lattice (see definition of q).

Following a procedure similar to that described in
[12], one will arrive at the macroscopic constitutive
relation. Namely, neglecting the transverse components
E⊥ (k + h, ϕ) of the short-wavelength microscopic Fou-
rier transform E(k + h, ϕ) of the field (the correspond-
ing accuracy is of the order (ai/λ)2, since k + h ≈ h for
the vectors of the reciprocal lattice with indices ni ≠ 0;
n3 ≠ ; m ≠ 0, ±s) and expressing the longitudinal
components E||(k + h, ϕ) in terms of E(k) and E(k ± q,
ϕ), we obtain

(15)

where the quantities (k) and (k, k ± q, ϕ) contain
contributions from the last sum in Eq. (13) in addition

to the initial contributions (k) and ε±s(k, ϕ).

Equation (15) corresponds to a “semimacroscopic”
(or “mesoscopic” in terms of [10]) approximation
describing the optical properties of IC phases. As men-
tioned above, this approximation is more accurate than
the usual macroscopic approximation, which corre-
sponds to keeping only the first term in Eq. (15). This
term is characterized by the symmetry of the IC phase
structure in which the modulation effect is spatially
averaged [10] (see also [6, 7]). It is clear that the com-

ponents (k, k ± q, ϕ) are defined by the amplitude
of the IC modulation wave and, consequently, are small

in comparison with (k). We also note that the use of
the permittivity in the classical sense is limited for
inhomogeneous media (among which are the IC
phases, as follows from the discussion above; for more
details, see [19]). This is seen even from the fact that the
constitutive tensor ε, which connects the field vectors D
and E, cannot be written in an explicit form. This is
especially important for the soliton modulation range,
for which it is necessary to take into account an infinite
spectrum of the Fourier components of the dielectric
tensor.

The symmetry properties of the modulated compo-
nents of the constitutive tensor in Eq. (15) can be easily
obtained from Eqs. (9), (11), and (14):

(16)

(17)

εij
s± k ϕ,( ) εij

s± k( ) isϕ±( ).exp=

εij
s±

r+−

Di k ϕ,( ) εij
0 k( )E j k( )=

+ εij
q± k k q ϕ,±,( )E j k q ϕ,±( ),

εij
0 εij

q±

εij
0 0,

εij
q±

εij
0

εij
q± k k q ϕ,±,( ) ε ji

q± k q k ϕ,–,+−–( ),=

εij
q± k k q ϕ,±,( ) ε ji

q+− k q k ϕ, ,±( )[ ] *.=
P

Expression (17) shows that the modulated contribu-

tions (k, k ± q, ϕ) associated with spatial dispersion
are non-Hermitian. It is obvious that the reason for this
behavior is the inhomogeneity of the crystal on a meso-
scopic scale, which, in turn, is due to the IC structural
modulation. In connection with the questions dis-
cussed, it is also pertinent to note that, as is well known,
one of the consequences of the Hermitian property of
the dielectric tensor, namely, the orthogonality of nor-
mal electromagnetic waves in a crystal, is not valid if
one takes into account spatial dispersion [12]. How-
ever, the reason for this phenomenon is different; it is

explained by the actual dependence of (k) on the
refraction indices for these waves.

Let us now expand the tensor (k, k ± q, ϕ) in
Eq. (15), as is usually done, in a power series in k and
retain only the linear term. Taking into account the
inversion symmetry of the averaged structure of IC

phases in crystals of compounds A2BX4 [ (k ≠ 0) = 0],
we arrive at the relation

(18)

where  corresponds to k = 0. It follows from Eq. (16)

that the gyrotropy tensor  defined by Eq. (18) is
antisymmetric with respect to the indices i and j.
According to Eq. (17), this tensor is not necessarily real
and can have an imaginary part, which contradicts the
classical understanding of transparent media [14]. The
reason for this discrepancy is actually connected with

the fact that the definition of the tensor , accord-
ing to Eq. (18), does not take into account the terms that
are proportional to the mesoscopic modulation vector
q; the results obtained in the present work for incom-
mensurately modulated crystals are reduced to results
that are already known in the literature for spatially
inhomogeneous media.

In order to refine the features of the optical response
of the IC phases, we perform the inverse Fourier trans-
formation of Eq. (18) and take into account that the

originals of the Fourier transforms  and 
are spatially dependent. Therefore, the structure of
Eq. (18) corresponds to the product of two transforms.
For any originals f(t) and g(t) and their Fourier trans-
forms F(x) and G(y), one can write

(19)

Using Eqs. (18) and (19) and the formal correspon-
dence t  r, x  , and y  k, as well as F 

εij
q±

εij
0

εij
q±

εij
0

Di k ϕ,( ) εij
0 E j k( )=

+ εij
q± ϕ( ) iγijl

q± ϕ( )kl+[ ] E j k q ϕ,±( ),

εij
0

γijl
q± ϕ( )

γijl
q± ϕ( )

εij
q± ϕ( ) γijl

q± ϕ( )

F x( )G y x–( ) iyt( )exp xd yd∫∫ f t( )g t( ),=

F x( )iyG y x–( ) iyt( )exp xd yd∫∫ d
dt
----- f t( )g t( )[ ]= .

q+−
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ε, γ, and G  E, D, we arrive at the constitutive rela-
tion in the coordinate space:

(20)

where

(21)

and the originals of the other quantities are defined in a
similar way. Equation (20) can be concretized by speci-
fying the spatial dependence εij(ϕ + qr) and γijl(ϕ + qr).
For example, when solving the problem of light propa-
gation in the plane-wave modulation range in crystals
of compounds A2BX4 in actual practice, the parameter
γijl(ϕ + qr) can be taken equal to γ0, ijl sin(ϕ0 + qr),
where γ0, ijl and ϕ0 are constants [2, 9–11]. Then, the
last term in Eq. (20) includes a term which is propor-
tional to the modulation vector q.

Thus, analysis of the symmetry of the permittivity
tensor of crystals in the IC phase reveals that it is nec-
essary to take into account the spatial variation of the
constitutive parameters of the medium by including the
gradient term ∇ jγijl (ϕ + qr) in Eq. (20). This result was
missed in the analysis of optical properties of crystals
with IC phases in all previous investigations (see [2, 3,
9–11]). At the same time, coupling equation (20) is a
particular case of the equation that was earlier offered
for the description of crystal optics of inhomogeneous
anisotropic media [20, 21]. Using the Onsager principle
leads to a modified equation in the final form

(22)

and the tensors  and εij(ϕ + qr) defined according to
Eq. (22) are symmetric; the tensor γijl(ϕ + qr) is anti-
symmetric with respect to the first two indices; all ten-
sors are real in the absence of absorption (see [20, 21]
and also [22, 23]).

Despite the already mentioned difficulties associ-
ated with the introduction of the dielectric tensor which
connects the electric displacement and the electric field
strength in spatially dispersive inhomogeneous media,
it is interesting to compare the symmetry properties of
the contributions to the permittivity of IC crystals from
various terms in Eq. (22). For electromagnetic waves of
the form E(r, ϕ) = E(ϕ)exp[i(k ± q)r] in the plane-wave
modulation range (see, for example, [11, 15]), the con-
tribution from the third term in Eq. (22) behaves

according to  = i(kl ± ql)γijl = ( )*, which can
be qualified as the Hermitian property. This is also the

Di r ϕ,( ) εij
0 εij+ ϕ qr+( )[ ] E j r ϕ,( )=

+ ∇ l γijl ϕ qr+( )E j r ϕ,( )[ ] ,

Ei r ϕ,( ) Ei k q ϕ,±( ) i k q±( )r[ ]exp k q±( ),d∫=

εij ϕ qr+( ) εij
q± ϕ( ) iqr+−( )exp q±( ),d∫=

Di r ϕ,( ) εij
0 εij ϕ qr+( )+[ ] E j r ϕ,( )=

+ γijl ϕ qr+( )∇ lE j r ϕ,( ) 1
2
---E j r ϕ,( )∇ lγijl ϕ qr+( ),+

εij
0

∆εij
III ∆ε ji

III
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case with the first and the second terms  and εij.
However, the last term in Eq. (22) represents a real and
antisymmetric, i.e., non-Hermitian, contribution to the

permittivity [  = ∇ lγijl = – *]. This addition-
ally makes clear the sense of Eq. (17) following from
symmetry analysis. Finally, it follows from the discus-
sion above that the statement in [9] about the possible
appearance of a symmetric (in indices i and j) part of
the gyration tensor γijl in a transparent medium with IC
modulation is groundless.

It is necessary to note that in [20–23] the introduc-
tion of a coupling equation which includes spatial
derivatives of material parameters was substantiated
first of all by the requirement of the consistent descrip-
tion of gyrotropic media with due regard for the bound-
ary conditions (see also discussions in [12, 24]). The
key moment here was the sharply inhomogeneous
boundary between a medium and vacuum. In our case,
spatial inhomogeneities are of essentially the conse-
quence volume effects and are due to the long-wave-
length mesoscopic periodic structure of an incommen-
surately modulated crystal.

The dielectric crystal in the IC phase is probably the
first example of a material for which the coupling equa-
tion in the form offered in [20, 21] is necessary for cor-
rect analysis of its optical properties. Indeed, for the
plane-wave modulation range, the last term in the right-
hand part of Eq. (22) includes the factor qlγijl, the mod-
ulus of which is at least an order of magnitude greater
than the term iklγijl which is usually taken into account
in the theory of optical activity and is connected with
spatial derivatives of the field of a light wave. Thus, the
neglect of the contribution ∇ lγijl for the IC phases is
inadmissible even as a rough approximation. This con-
tribution causes, as a matter of fact, an additional phys-
ical mechanism of spatial dispersion in a periodic mod-
ulated medium, which is characterized not by the
parameter ai/λ (see, for example, [12, 14]), but by the
parameter ai/λq. It was assumed in one of the first
papers on the crystal optics of IC phases [7] that spatial
dispersion can be very strong and described by the
parameter λq/λ. However, it is doubtful that the size of
the spatial region in which the kernel (r, r') in Eq. (1)
is significant is increased from the lattice-parameter ai

scale to the period of an IC superstructure λq, because
the potential of IC modulation is extremely weak.

Summarizing, we emphasize once again that the
features of the nonlocal optical response of dielectric
crystals with IC phases and the specific symmetry
properties of their permittivity that we discussed in this
paper are manifestations of the general behavior inher-
ent to spatially inhomogeneous optical media. The
results obtained indicate that it is necessary to recon-
sider a number of groundless, from our point of view,
conclusions [25] concerning the crystal optics of IC
phases. In particular, the coupling equation of a mesos-

εij
0

∆εij
IV ∆ε ji

IV( )

ε̂ij
1
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copically inhomogeneous medium should be properly
taken into account when interpreting experimental data
on the optical activity of crystals of compounds A2BX4.
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Abstract—Microscopic model calculations of the matrix element of a dipole moment are carried out in terms
of the cluster model. This matrix element determines the transition probability of electron photoemission from
a one-electron orbital with symmetry γ µ to a free state. The effect of the matrix element on the angular and
polarization dependences in the angle-resolved photoemission spectra of insulating cuprates, such as
Sr2CuO2Cl2 and Ca2CuO2Cl2, is analyzed under the assumption of a well-isolated ground state of the two-hole

 cluster, namely, the Zhang–Rice singlet. The angular k dependence of the matrix element gives rise to
effects, such as the residual Fermi surface, which are typical of metallic systems. An analysis of the experimen-
tal data reveals the presence of another electronic state (with different symmetry) in the vicinity of the Zhang–
Rice singlet. © 2001 MAIK “Nauka/Interperiodica”.

CuO4
5–
INTRODUCTION

In recent years, angle-resolved photoemission spec-
troscopy (ARPES) has been used extensively to inves-
tigate the electronic structure of both undoped and
doped copper oxides. Of special interest is investiga-
tion of the lower states of an additional isolated hole in
an undoped CuO2 plane of cuprates. The copper oxy-
chlorides Sr2CuO2Cl2 and Ca2CuO2Cl2 are ideally
suited, in a certain sense, to such an investigation. They
are isostructural to the famous La2CuO4, the base com-
pound of the family of high-temperature superconduc-
tors. The Sr2CuO2Cl2 compound is a tetragonal antifer-
romagnet with nearly perfect CuO2 planes, in which the
apical oxygen anions are replaced by chlorine, with the
Cu–Clapex spacing (2.86 Å) being significantly larger
than the Cu–Oapex distance in La2CuO4 (2.42 Å). There-
fore, in Sr2CuO2Cl2, one has a good opportunity to
investigate the states of both copper and oxygen atoms
in the CuO2 planes without any influence of apical oxy-
gen on them. Numerous ARPES measurements have
recently been made on these compounds with the aim
of investigating the dispersion of the states near the
Fermi level. ARPES spectra of Sr2CuO2Cl2 were first
measured by Wells et al. [1] at room temperature (and
later at T = 150 K [2]). The dispersion of the lowest
electronic state was investigated in [1] in three symme-
try directions of the two-dimensional Brillouin zone,
and the experimentally determined dispersion law was
compared with that predicted from the t–J model [3].
The comparison showed reasonable agreement for the
Γ–(π, π) direction, but there was no agreement for the
1063-7834/01/4305- $21.00 © 20823
(0, π)–(π, 0) and (0, 0)–(π, 0) directions. Subsequently,
many attempts have been made to interpret the experi-
ments in [1]. A satisfactory explanation was given in
terms of the extended t–t '–t ''–J model, which takes into
account transitions of the hole to both the nearest and
more distant neighbors [4]. However, more comprehen-
sive measurements of the photoemission spectra of
insulating cuprates [5–9] show that there are specific
features in the spectral, angular, polarization, and
energy dependences of the photocurrent intensity that
cannot be explained in the framework of the conven-
tional interpretation of ARPES spectra on the basis of
the photocurrent being determined only by the spectral
function of quasiparticles.

In this paper, we show that the angular and polariza-
tion dependences of the matrix element of a dipole
moment that describes electron transitions from a one-
electron orbital of symmetry γµ to a free state in the
process of photoemission are also of importance.

Our consideration is based on the conventional
approximation in which the ARPES spectra of insulat-
ing cuprates, such as Sr2CuO2Cl2 and Ca2CuO2Cl2, are
associated in the low-energy range (up to the energy
that is 1.0 eV lower than the Fermi level) only with the

isolated Zhang–Rice singlet 1A1g. In other words,
in this approximation, a hole is created in the one-par-
ticle state b1g of the same symmetry  as the orig-

inal hole in the CuO4 cluster.

b1g
2( )

d
x

2
y

2–
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1. GENERAL EXPRESSION 
FOR THE PHOTOEMISSION INTENSITY

We consider the general expression for the intensity
of photoemission which is accompanied by the creation
of a photohole in a state of symmetry γµ; that is, we
assume that the electron is removed from a one-elec-

tron molecular orbital γµ of the Cu  cluster. The
effective interaction Hamiltonian of an electromagnetic
wave of frequency ω and polarization e with the crystal
can be written in the form

(1)

where (–k) is the wave vector of the final state in which

the photoelectron is detected and  and  are
the creation operators of a photoelectron and a photo-
hole, respectively. The matrix element is given by

(2)

where

is the interaction Hamiltonian of electrons having a
total momentum p in the crystal with the photon field

characterized by the vector potential A,  is the

wave function of the ground state,  is the wave
function of the crystal state γµk with one electron
removed (one extra hole), and ψk(r) is the wave func-
tion of a photoelectron. It should be noted that Eq. (2)
is derived under some essential simplifying assump-
tions (see, e.g., [10]).

Approximating the wave function of the photoelec-
tron by a plane wave, the matrix element in Eq. (2) can
be written in the dipole approximation as

(3)

The final expression for the intensity of photoemis-
sion has the form

(4)

The emission spectral function is written in the stan-
dard form

(5)

O4
6–

Ĥ int Mγµ k e,( )ĉ kσ–
† ĥγµkσ

†
H.c.,+

k

∑
γµ
∑=

ĉ kσ–
† ĥγµkσ

†

Mγµ k e,( ) ψk r( )Ψγµk
N 1–( ) ĤeR Ψg

N( ) ,=

ĤeR
e�

2mc
---------- p A A p⋅+⋅( )=

Ψg
N( )

Ψγµk
N 1–( )

Mγµ k e,( ) ψγµ r( ) e r⋅ eikr〈 〉 .=

I k ω e, ,( )

∝ Mγ1µ2
* k e,( )Mγ2µ2

k e,( )Aγ1µ1; γ2µ2
k ω,( ).

γ1µ1; γ2µ2

∑

Aγ1µ1; γ2µ2
k ω,( ) 1

2
--- e

βEg–
e ĥγ1µ1σ

†
g g ĥγ2µ2σ e

σ e g, ,
∑=

× δ ω Ee Eg–+( ) 1
2
--- teiωt ĥγ1µ1σ

†
t( )ĥγ2µ2σ 0( )〈 〉 ,d∫

σ
∑=
P

where |g〉  and |e〉  are the ground and excited states of the
cluster, respectively. The spectral functions carry com-
plete information on the complex structure of the pho-
tohole and describe both the partial γ contributions and
interference contributions (from repeated irreducible
representations γ1 = γ2). They fulfill the sum rule

(6)

In spite of the very rough approximations, the inten-
sity of photoemission in Eq. (4) exhibits an extremely
complicated multilevel structure with nontrivial polar-
ization and k, ω dependences.

The calculation of the spectral function A(k, ω) for
the photohole is a very complicated problem even in the
simplest models [4]. In this paper, we will not discuss
this problem, but consider the matrix element Mγµ(k, e)
in the formula for the photoemission intensity. The
necessity of calculating the matrix elements and taking
the dispersion of the intensity into account when ana-
lyzing the experimental data for various cuprates was
also indicated in [8, 11–13]. The effect of the interac-
tion between different photohole states on the ARPES
spectra of Sr2CuO2Cl2 was partly demonstrated in [14].

2. ONE-ELECTRON MATRIX ELEMENTS

2.1. Copper Contribution

The copper atomic orbital with symmetry γµ can be
written as

where α2m(γµ) are coefficients which are determined by
symmetry and R3d(r) is the radial wave function, which
will be taken in the simplest Slater form:

By substituting these expressions into Eq. (3) and
using the standard expansion of the plane wave [15], we
represent Eq. (3) in the form

(7)

where we have introduced the notation

(8)

ωd
2π
-------Aγ1µ1; γ2µ2

k ω,( )∫ nγ1µ1
δγ1µ1; γ2µ2

= .

dγµ r( ) R3d r( ) α2m γµ( )Y2m r( ),
m

∑=

R3d r( ) 2
81
------ 2

15
------

r2

ad
3 ad

-------------- r
3ad

--------–
 
 
 

.exp=

eikr 4π iL jL kr( )YLM
* k( )YLM r( ),

M L–=

L

∑
L 0=

∞

∑=

Mγµ
Cu( ) k e,( ) dγµ r( ) e r⋅( ) eikr〈 〉=

=  
4π

5
------- 2D1 k( )K1

γµ( ) e k,( ) 3D3 k( )K3
γµ( ) e k,( )+{ } ,
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Here,  are the Clebsch–Gordan coefficients.
The dependence of D1(k) and D3(k) on the energy of the
photoelectron is shown in Fig. 1 for the Cu 3d radial
parameter ad = 0.35 Å.

2.2. Oxygen Contribution

The oxygen molecular orbital can be written as a
linear combination of atomic O 2p functions centered
at the corresponding oxygen sites:

(9)

where Cm(t) are the coefficients determined by symme-
try and R2p(r) is the radial wave function. By substitut-
ing Eq. (9) into Eq. (3) and introducing the variable r' =
r – t, we represent Eq. (3) in the form

(10)

It is convenient to introduce the following two vectors
which meet the periodicity condition:

(11)

Then Eq. (10) can be written in a more compact form:

(12)

D1 k( ) R3d r( ) r j1 kr( )〈 〉=

=  864 6
5
---

ad
3 adk 5 27ad

2k2–( )

1 9ad
2k2+( )5

------------------------------------------------,

D3 k( ) R3d r( ) r j3 kr( )〈 〉=

=  62 208 6
5
---

ad
5 adk3

1 9ad
2k2+( )5

------------------------------,

KL
γµ( ) e k,( ) 1–( )qe q– CLM1q

2m YLM
* k( )α2m

* γµ( ).
M q m, ,
∑=

CLM1 q–
2m

p r( ) Cm t( )R2 p r t–( )Y1m r t–( ),
tm

∑=

M k e,( ) Cm*
tm

∑ t( ) e t⋅( )eikt R2 p r '( )Y1m r '( ) eikr '〈 | 〉=

+ Cm* t( )eikt R2 p r '( )Y1m r '( )〈 | e r'⋅( ) eikr '| 〉 .
tm

∑

Gm k e,( ) Cm* t( ) e t⋅( )eikt,
t

∑=

Zm k( ) Cm
*

t( )eikt.
t

∑=

M k e,( ) Gm k e,( ) R2 p r( )Y1m r( ) eikr〈 | 〉
m

∑=

+ Zm k( ) R2 p r( )Y1m r( )〈 | e r⋅( ) eikr| 〉 .
m

∑
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Using the expansion of the plane wave in Eq. (7), we
represent Eq. (12) in the form

(13)

where we restored the indices γµ of the molecular
orbitals. The simplest analytical expressions for the
integrals over the radius in Eq. (13) are obtained if one
uses the simplest Slater O 2p radial wave function:

(14)

In this case, we have

The dependence of the parameters B(k), A0(k), and
A2(k) on the photoelectron kinetic energy is shown in
Fig. 2 for the O 2p radial parameter ap = 0.52 Å.

2.3. Expression for (k, e)

Now, we analyze the matrix element that determines
the process in which an electron is removed from the

Mγµ
O( ) k e,( ) 2 3πiB k( ) Gγµ k⋅( )/k=

+ 4π
3

------ A0 k( ) Zγµ e⋅( )---




– A2 k( )
3 e k⋅( ) Zγµ k⋅( ) k2 Zγµ e⋅( )–

k2
-----------------------------------------------------------------------





,

R2 p r( ) 1

2 6
---------- 1

ap
3

--------- r
ap

----- r
2ap

--------–
 
 
 

.exp=

B k( ) R2 p r( ) j1 kr( )〈 | 〉
64 6ap

2 apk

3 1 4ap
2 k2+( )3

---------------------------------,= =

A0 k( ) R2 p r( ) r j0 kr( )〈 〉
64 6ap

2 ap 1 4ap
2 k2–( )

1 4ap
2 k2+( )4

---------------------------------------------------------= = ,

A2 k( ) R2 p r( )〈 |r j2 kp( )| 〉
512 6ap

4 apk2

1 4ap
2 k2+( )4

-------------------------------------.= =

Mb1g

–1.0

D3(E)

D1(E)

–0.5

0.5

1.0

1.5

30 40 5020 E, eV

×10–9

Fig. 1. Dependence of the Cu 3d atomic radial parameters
D1(E) and D3(E) on the photoelectron energy (ad = 0.35 Å).
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b1g orbital and the hole remaining in the crystal forms
the Zhang–Rice singlet.

For γµ = b1g (when the photon energy is Eph > 20 eV
and the binding energy is E < 1–2 eV), Eq. (8) gives

(15)

With the numerical values of the coefficients

(t) listed in the table, we obtain

(16)

Mb1g

Cu( ) k e,( )

=  2i
3π
5

------ D1 k( ) 7
2
---D3 k( )+

 
 
  exkx eyky–

k
-------------------------.

Cm
b1g( )

Mb1g

O( ) k e,( ) i
π
3
--- 3aB k( ) kxex

akx

2
-------- 

 cos–




=

– kyey

aky

2
-------- 

  2 A0 k( ) A2 k( )+[ ]–cos

× ex

akx

2
-------- 

  ey

aky

2
-------- 

 sin–sin 6A2 k( )+

aB(E)

A2(E)

A0(E)

30 40 5020 E, eV
–0.25

0.25

0.50

0.75

1.00

1.25

Fig. 2. Dependence of the O 2p atomic radial parameters
aB(E), A0(E), and A2(E) on the photoelectron energy (ap =
0.52 Å); a = 4.0 Å is the lattice parameter.

Cu O ZRS

(‡) (b) (c)

Fig. 3. Contour lines for the k dependence of the polariza-

tion-averaged quantity : (a) the copper contribution,

(b) oxygen contribution, and (c) the contribution from the
Zhang–Rice singlet (  = 0.4π).

Mb1g

2

θb1g

0

P

where α = kα /k, with α = x, y, z.

The one-electron bonding molecular b1g orbital can
be written as

where  is the covalent mixing parameter of the cop-
per and oxygen orbitals. Therefore, the photocurrent
intensity is proportional to the quantity

(17)

Figure 3 shows the k dependence of the photocurrent

intensity  averaged over the pho-

ton polarization e = (ex , ey , 0) for  = –0.3π. The
contour lines are also shown separately for the copper
and oxygen contributions. The photoemission cross
section for copper is assumed to be smaller than that for
oxygen [16]. It is to be noted that the k dependence of
the matrix element for the Zhang–Rice singlet is
strongly anisotropic. (This dependence is determined
fundamentally by the distribution of the oxygen hole
density in the CuO4 cluster.)

Figure 4 shows the polarization dependences of the
photoemission intensity calculated from Eqs. (15) and
(16) for the parallel (e || k) and perpendicular (e ⊥  k)
polarizations. Figure 4a corresponds to the partial
Cu 3d contribution to the photoemission intensity (with
the photohole created in the Zhang–Rice singlet state)
for the parallel (∝ cos22φ) and perpendicular (∝ sin22φ)
polarizations, respectively. Figure 4b shows the partial
O 2p contribution. It should be noted that although the
oxygen contribution has a more complicated k depen-
dence than the copper contribution does, their polariza-
tion dependences are qualitatively similar.

3. DISCUSSION OF RESULTS

3.1. Angular k Dependence of the Matrix Element
and the “Residual Fermi Surface” Effect

Model calculations of the transition matrix element
show that the photocurrent intensity has a strong
k dependence not associated with photohole disper-
sion. This result calls into question many conclusions
based on the simplest single-band interpretation of the
ARPES spectra [17], in which the k dependence of the

× exkx eyky+[ ] kx

akx

2
-------- 

  ky

aky

2
-------- 

 sin–sin




,

k̂

Ψb1g
r( ) db1g

r( ) θb1g
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Ψb1g
k( )〈 | e r⋅( ) eikr| 〉 2
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Cu( ) 2 θsin
2

b1g=

+ Mb1g

O( ) 2 θb1g
cos

2 θb1g
θb1g

cossin+

× Mb1g

Cu( )( )*Mb1g

O( ) Mb1g

Cu( ) Mb1g
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matrix element is ignored and the photocurrent inten-
sity is assumed to be

Therefore, the positions of the spectral peaks are
assumed to correspond to the peak positions in the
spectral function. This simple model is used to deter-
mine the two-dimensional profile of the Fermi surface
from the experimental ARPES spectra of metals and to
detect the “residual Fermi surface” effects in insulators
[6]. In both these “experimental methods for determin-
ing the Fermi surface,” one proceeds as follows. From
the experimental data, one calculates the quantity

where EF is the Fermi energy and Ec is the energy (usually,
about 1.0 eV) that is the presumable limit of the interval
covering all low-energy excitations. Then, one finds the
set of points corresponding to max{∇ knexp(k, e)}, which
determines the contour of the “Fermi surface.” Theoret-
ically, the contour of the Fermi surface is found in the
same way, but, instead of nexp(k, e), one makes use of
the expression

which, in general, differs essentially from nexp.
Naturally, the topology of the “Fermi surface” must

not depend on the polarization and energy of photons
and the geometry of the experiment.

Since the matrix element in Eq. (2) depends heavily
on k, a comparison between nexp and nth, as well as this
method of determining the Fermi surface, becomes
controversial or even makes no sense at all.

The “residual Fermi surface” effects in
Ca2CuO2Cl2, reported in [6], can be explained even in
terms of the completely localized photohole state
approximation, where the spectral function in the
expression for the photocurrent is independent of the
wave vector. In this limiting case, the supposed “Fermi
surface” is determined only by the matrix element
effects and does not characterize any real band struc-
ture or, for example, strong antiferromagnetic correla-
tions [18]. By the way, the contour lines, such as those
presented in Fig. 3, graphically illustrate the topology
of this supposed “Fermi surface.”

3.2. The Polarization Dependence of the Matrix 
Element

The strong and nontrivial polarization dependence
of the matrix element is one of the most important prop-
erties of angle-resolved photoemission. An experimen-
tal study of the ARPES polarization characteristics can

I kω e,( ) A k ω,( ).∝

nexp k e,( ) I k E e, ,( ) E,d

EF Ec–

EF

∫=

nth k( ) A k E,( ) E,d

EF Ec–

EF

∫=
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      200
provide important information not only on the effects
of the matrix element but also on the symmetry and
electronic structure of the photohole. On the whole, the
polarization dependences of the matrix element calcu-
lated in this paper for the b1g state of a photohole
(Fig. 3) agree with the experimental data [9] for the
main directions in the Brillouin zone, such as (π, π) and
(0, π), in Sr2CuO2Cl2; however, this fact should not be
taken as an argument in favor of the model of the iso-
lated Zhang–Rice singlet. The point is that a similar
polarization dependence can also take place in the case
of complex hole states, such as a large nonadiabatic
polaron [19]. In this regard, it is instructive to investi-
gate the polarization dependence of the photocurrent in
a larger region of the Brillouin zone.

(a)1

e || k e ⊥ k

(b)
3.0

2.0
0.9

Fig. 4. Effects of the photon polarization (the angular
dependence of the contribution from the Zhang–Rice singlet
to the photoemission intensity for the parallel e || k and per-
pendicular e ⊥  k polarizations): (a) the Cu 3d and (b) O 2p
partial contributions. The figures near the curves indicate
the value of the wave vector.
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3.3. Nonzero Photocurrent Intensity at the Center 
of the Brillouin Zone and Other Evidence 

of the Complicated, Non-Zhang–Rice Structure
of the Valence State of a Photohole

As follows from our model calculations, the photo-
current intensity vanishes at the center of the Brillouin
zone if the photohole is localized on the even b1g orbital
or on any other even in-plane γ orbital. This result is a
fairly general consequence of symmetry and is not
associated with the model description of the γµ states.
At the center of the Brillouin zone, the photocurrent
intensity is nonzero only if the photohole is in an odd eu

or a1u symmetry state. When light is polarized in the
CuO2 plane, such photohole states can be only the eu

orbitals of the Cu  center, which belong predomi-
nantly to copper (Cu 4p) or to oxygen alone (O 2p).

Thus, the contribution from the isolated Zhang–
Rice singlet to the photoemission intensity vanishes at
the center of the Brillouin zone. However, the experi-
ments with both nonpolarized and polarized photons
provide strong evidence that the photoemission inten-
sity does not possess this property. The ARPES signal
intensity at the Γ point of the Brillouin zone is finite in
both Sr2CuO2Cl2 [20] and Ca2CuO2Cl2 [6], which sug-
gests that, in addition to the Zhang–Rice singlet, there
is a photohole valence state of the eu symmetry type
which presumably belongs to oxygen. Furthermore, it
is this state that can give rise to an extra maximum in
the ARPES spectrum of Sr2CuO2Cl2; this maximum is
separated by about 0.4–0.5 eV from the maximum
attributed to the Zhang–Rice singlet. Many authors
believe that the finite intensity in the spectral range
between the low-energy peak and the strong emission
band situated 2.7 eV below the Fermi level is associated
with the noncoherent contributions [11] from the inter-
action of the photohole with phonons. However, a
detailed analysis of the experimental data for
Sr2CuO2Cl2 carried out in [9] revealed that the addi-
tional spectral weight in the ARPES spectra is associ-
ated with the low-energy photohole state (located near
the Zhang–Rice singlet) rather than with the noncoher-
ent contributions.

The assumption of two states, b1g and eu, closely
spaced in energy, for a photohole or a “doping” hole in
the CuO4 cluster agrees with many experimentally
observed independent properties of undoped and
lightly doped insulating cuprates. Among these proper-
ties, in the first place, is the appearance of midinfrared
bands in the optical absorption spectra, which are asso-
ciated with the allowed electric dipole (charge-transfer)
transitions b1g  eu in the CuO4 clusters [21]. The
energy of these bands in insulating cuprates
Sr2CuO2Cl2 and La2CuO4 (≈0.4 eV) [22] correlates
well with the relative positions of the corresponding
peaks (determined from the ARPES spectra).

O4
6–
P

The eu hole belonging to oxygen alone can be cou-
pled to the b1g hole both antiferromagnetically and fer-
romagnetically. Therefore, the valence multiplet should
contain both the spin singlet (b1geu)1Eu and the spin
triplet (b1geu)3Eu; the energy of the latter can be even
lower, because the b1g–eu exchange is ferromagnetic in
character. Actually, the lower (∆ST = 0.13 eV) spin-

triplet state of the two-hole Cu  center in
La2Cu0.5Li0.5O4 was detected by NQR measurements
for 63, 65Cu nuclei [23]. An analysis of the data on the
Knight shift in NSR spectra of the 123-YBaCuO sys-
tem provided indirect evidence of the O 2p π and eu

valence states [24]. As for the model of the 1A1g–1, 3Eu

valence multiplet for copper oxides, it should be noted
that Tjeng et al. [25] reported that they succeeded in
separating different spin states in the one-particle spec-
trum of antiferromagnetic CuO and in showing that the
top of the valence band is a pure spin singlet, which, in
their opinion, is strong evidence of the existence of the
stable (isolated) Zhang–Rice singlet in cuprates.
However, their conclusions are based on experimental
photoemission spectra measured in the vicinity of the
Cu 2p3/2 (L3) resonance, which permit one to unambig-
uously detect only the copper photohole states; in other
words, this technique is insensitive to the presence of
the pure oxygen eu states.

The assumption of the activation mechanism for the
hole conductivity of insulating cuprates with carriers
being in the eu states allowed one to explain the unusual
anisotropy of the magnetoresistance discovered
recently in systems such as YBa2Cu3O6 + x (x ~ 0.3)
[26].

In spite of this and some other evidence of the exist-
ence of at least two competing valence states of an extra
localized hole in the CuO4 center, most current theoret-
ical models of the electronic structure of cuprates are
based on the assumption that the ground state of an
extra hole in the CuO2 plane is a well-isolated Zhang–
Rice singlet. It is suggested that the first excited state of

the extra hole in the Cu  cluster (i.e., of the Cu
cluster) is 2 to 3 eV higher than the Zhang–Rice singlet
and has little or no effect on the low-energy dynamics
of charge carriers.

Some authors follow another point of view. Quan-
tum-chemical calculations of multicenter copper–oxy-
gen clusters [27] strongly suggest that the formation of
valence states of a doping hole involves two competing
orbitals, one of which is the basically copper b1g and the
other is the pure oxygen O 2p orbital. Analogous calcu-
lations [21, 28] taking into account all states (of both

copper and oxygen) in the Cu  cluster show the
presence of the two-hole 1Eu state in the vicinity
(�0.5 eV) of the Zhang–Rice singlet. Calculations
based on the exactly diagonalized Hamiltonian of the

O4
5–

O4
6– O4

5–

O4
5–
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p–d model for the CuO6 cluster with a single hole or
two holes [14] suggest that the triplet state 3B1g is fairly
close (<1 eV) to the Zhang–Rice singlet for reasonable
values of the model parameters.

4. CONCLUSIONS

In this paper, we performed microscopic model
cluster calculations of the matrix element that deter-
mines the intensity of the photoemission current with
creating a hole in the Zhang–Rice singlet state. A direct
model calculation showed that the angular and polar-
ization dependence of the matrix element is strong and
leads in many cases to such effects as a residual or sup-
posed Fermi surface, which are observed in the ARPES
spectra of insulating cuprates. The photocurrent inten-
sity vanishes at the center of the two-dimensional Bril-
louin zone for any photon polarization. This behavior
does not agree with the finite spectral weight at the
Γ point in the ARPES spectra observed in Sr2CuO2Cl2
and Ca2CuO2Cl2 and is indicative of the existence of an

additional Eu electronic state in the two-hole Cu
center in the vicinity of the Zhang–Rice singlet. This
conclusion is also supported by the experimentally
observed dependence of the low-energy spectral weight
of photoemission on the photon energy. A number of
independent experimental measurements of the optical,
resonance, and kinetic properties of insulating cuprates
also suggest that the model of the isolated Zhang–Rice
singlet in cuprates should be generalized.

On the whole, analysis and theoretical interpretation
of the ARPES spectra of the insulating cuprates
Sr2CuO2Cl2 and Ca2CuO2Cl2 remain a very compli-
cated problem at the present time. It should be noted
that the recently discovered oscillatory dependence of
the photocurrent on the energy of incident photons and,
hence, on kz [9] remains to be explained. In our opinion,
such photocurrent behavior is due to the photohole hav-
ing a three-dimensional, rather than two-dimensional,
structure with a partial delocalization on the nearest
CuO2 planes [19].
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SEMICONDUCTORS 
AND DIELECTRICS
Color Center Formation by Synchrotron Radiation
in the Na6Al6Si6O24(Nal)1.6 Optical Ceramic
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Abstract—The spectrum of F-center excitation by 5- to 27-eV photons in the Na6Al6Si6O24(NaI)2x sodalite
optical ceramic (x = 0.8) was measured at 80 K by high-sensitivity photoexcited luminescence techniques. The
F centers are created by photons with an energy of 5.6- to 8.5 eV through the excitation and ionization of iodine
centers of two types; in the 8.2- to 27-eV region, through the generation of electronic excitations in the alumi-
nosilicate framework of alternating Al3+ and Si4+ ions, each coordinated tetrahedrally by oxygen ions. At the
low irradiation doses used, the F centers are created primarily through photoelectron capture by the iodine
vacancies which exist before irradiation. In the 23- to 25-eV region, the efficiency of F-center formation dou-
bles as a result of the multiplication of electron–hole pairs. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The investigation of the spectra of F-center and anion
vacancy formation by VUV radiation carried out in
recent years has permitted one to detect and study the
exciton and electron–hole mechanisms of creation of
elementary radiation-induced defects in alkali halide
crystals [1, 2]. The use of synchrotron radiation extended
the region of measurement of F-center creation spectra to
30 eV, where radiation-induced defects form in KBr,
KCl, and RbCl crystals under the conditions for multipli-
cation of electronic excitations; these conditions were
found to favor F-center stabilization at 300–450 K [3, 4].
The high-sensitivity luminescence technique was
applied earlier to measure the spectra of F-center cre-
ation by 5- to 10-eV photons in the halide-containing
aluminosilicates Na6Al6Si6O24(NaBr)2x [5] and
Na6Al6Si6O24(NaI)2x [6, 7].

We present here, for the first time, the spectra of
color-center formation by synchrotron radiation (SR)
for Na6Al6Si6O24(NaI)2x sodalite (x = 0.8) obtained in
the 5- to 27-eV region. The processes involved in the
excitation of various kinds of luminescence in this
ceramic in the spectral region indicated above were
studied by us earlier [8].

It is known that the halide-containing aluminosili-
cates (sodalites) were developed for use as high-effi-
ciency cathodochromic materials for black-line record-
ing and long-term information storage in skiatrons (see,
e.g., [9, 10]). The mechanisms involved in the creation
in sodalites of high F-center concentrations (of more
than 1020 centers in 1 cm3), which are practically not
destroyed in the visible region at 300 K, were studied
optically and by EPR [11] (see reviews [10, 12]). We
studied the initial stages in the formation of small
amounts of color centers by photons with energies from
1063-7834/01/4305- $21.00 © 20830
5 to 27 eV at 80–300 K. The color centers formed at
80 K were rapidly destroyed under irradiation by
2.05-eV photons (at the maximum of the F absorption
band); this made it possible to measure the spectrum of
F-center creation by synchrotron radiation within a
broad spectral region by a technique which did not
require heating of the sodalite to 500 K after measuring
each point in the spectrum. An investigation of small
amounts of photoerasable color centers by high-sensi-
tivity luminescence techniques provided a means of
studying one of the mechanisms of F-center formation
under optical generation of electronic excitations on
iodine centers and the aluminosilicate framework. Par-
ticular attention was focused on the spectral interval
from 19 to 27 eV, where one photon absorbed in
sodalite creates two electron–hole pairs.

1. SUBJECTS AND TECHNIQUES
OF INVESTIGATION

The structure of the halide-containing aluminosili-
cates (sodalites) is described in [13, 14]. The alumino-
silicate sodalite framework made up of alternating
AlO4 and SiO4 tetrahedra forms a three-dimensional
system of cubooctahedral voids (β cells). In
Na6Al6Si6O24(NaI)2x (the so-called I-sodalite) at x = 1,
an iodine ion I–, coordinated tetrahedrally by four Na+

ions, rests at the center of each cell. At x = 0.8, parts of
the β cells contain only three Na+ ions each. One might
conventionally consider this to be equivalent to the
existence in such a void of a divacancy (an anion
vacancy va and a cation vacancy vc). About 1017 cells
in 1 cm3 contain one vacancy each (va or vc). Following
the creation in sodalite of a conduction electron and a
hole in the valence band, the electron becomes local-
001 MAIK “Nauka/Interperiodica”
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ized in a cell with a single va to form an F center with
a characteristic absorption band. The EPR spectrum of
such a center contains 13 lines characterizing the inter-
action of a localized electron with four Na+ ions, the
nuclear angular momentum of each being 3/2 [11]. We
also detected color centers whose EPR signal contains
10 lines, which are due to the interaction of a localized
electron with three Na+ ions [15]. The holes generated
by the irradiation are trapped by iodine ions I– coordi-
nated by four or only three Na+ ions [5].

Sodalites were studied for a long time in the form of
powders or thin layers used as coatings on screens in
skiatrons. Optical ceramics of halide-containing alumi-
nosilicates, transparent within a broad spectral range,
were first described in [16], and their color centers pro-
duced by x-rays were studied in [12, 17]. The optical
ceramics were obtained by high-temperature recrystal-
lization of sodalite powder at a high pressure in vac-
uum. Na6Al6Si6O24(NaI)1.6 plates 10 × 10 × 0.8 mm in
size were cut from a ceramic block and polished. Such
plates were studied earlier in our laboratory by high-
sensitivity luminescence techniques [7, 8, 18].

The main SR experiments dealing with the lumines-
cence and color centers were performed on the BL52
beam of the MAX-I storage ring in Lund (Sweden).
The SR with the desired photon energy hνe, which was
cut out by a primary vacuum monochromator,
impinged on the ceramic under study in a vacuum cry-
ostat (8–300 K, 10–8–10–9 mbar). The luminescence
was detected in the photon counting mode through a
secondary monochromator. After termination of the
irradiation, visible radiation with the desired photon
energy hνs, which stimulated a luminescence flash, was
directed from an incandescent lamp through another
optical window and one more monochromator on the
sodalite. This flash is produced by photoionization of
the F centers and subsequent recombination of the con-
duction electrons with the holes localized at the iodine
centers and other sodalite defects. After irradiation to a
constant SR quantum dose at each hνe, we detected (at
80 K for 15 s) a light sum of the 3.5-eV luminescence
(SF) photoexcited by photons with hνs = 2.1 eV, and it
was this light sum that characterized the number of F
centers created by the irradiation. Having measured SF,
we performed additional illumination with hνs, which
completely destroyed the radiation-induced F centers.
A similar technique of investigating F center spectra in
alkali halide crystals is described in more detail in [3,
19]. Figure 1 presents dose dependences of SF mea-
sured at 80 K for hνe = 16 and 24 eV. In our subsequent
measurements of the total F-center creation spectrum,
we employed the same dose of 5 × 105 arbitrary units
within the region of the linear dependence of the light
sum SF on the quantum irradiation dose.

In addition to the SR measurements, we studied the
same Na6Al6Si6O24(NaI)1.6 ceramics using the equip-
ment in the Institute of Physics laboratory at the Tartu
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
University. Following irradiation of a ceramic by an
electron beam (6 keV) or x-rays (50 keV), the absorp-
tion spectra of the ceramic were measured with a
SPECORD 40M spectrophotometer. The cathodolumi-
nescence spectra were obtained in the photon counting
mode through a double-grating vacuum monochroma-
tor (4–10 eV) or a DMR-4 (2–6 eV) double-grating
monochromator at temperatures from 8 to 300 K. The
optical burst excitation spectra, as well as the thermal
activation characteristics, were measured on a ceramic
sodalite irradiated at 80–300 K by 5- to 10-eV mono-
chromatic radiation through a VMR-2 monochromator.
The equipment permitted one to excite a luminescence
pulse through the DMR-4 double-grating monochro-
mator and to measure the thermally and photostimu-
lated luminescence under heating from 80 to 550 K
through a large-aperture MZD-2 monochromator or an
UFS-6 color filter. A similar technique used to study
alkali halide crystals is described in [19].

2. LUMINESCENCE AND OPTICAL-BURST 
EXCITATION SPECTRA

Figure 2 presents cathodoluminescence spectra of
I-sodalite measured at 9 K through a DMR-4 mono-
chromator (curve 1) and through a double-grating vac-
uum monochromator (curve 2). Three main lumines-
cence bands peaking at 4.2, 3.6, and ~2.9 eV were
detected in the long-wavelength region (as under x-ray
irradiation [18]). In the short-wavelength region, we
were the first to succeed in detecting a weaker lumines-
cence band in the 5- to 6-eV interval. The 3.6-eV band
was shown earlier to be due to the luminescence of the
I– centers in the cubooctahedral β cells containing three
Na+ ions. In this case, the presence of the cation
vacancy favors efficient hole trapping by such I– centers
[5]. The 4.2-eV peak originates from the excimer lumi-
nescence of the iodine centers created under the excita-
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Fig. 1. Number of F centers, SF, vs. irradiation dose of pho-
tons with hνe equal to (1) 16 and (2) 24 eV, measured at
80 K in the Na6Al6Si6O24(NaI)1.6 ceramic.
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Fig. 2. Cathodoluminescence spectra at 9 K (1, 2) and a
luminescence spectrum obtained at 80 K under excitation
with hνe = 24 eV (3) of the Na6Al6Si6O24(NaI)1.6 ceramic.
Spectrum 2 measured with a solar-blind PM tube through a
double-grating vacuum monochromator.
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Fig. 3. Absorption spectrum of the Na6Al6Si6O24(NaI)1.6
ceramic measured after irradiation by 6-keV electrons at
80 K and subsequent heating to 300 K (1) and spectra
obtained by excitation by equal numbers of 3.5-eV lumines-
cence photons directly after irradiation by 7.7-eV photons at
80 K (2) and after heating of the irradiated sample to 195 K
and cooling to 80 K (3).
P

tion of the I– centers in a regular β cell, which is located
close to the β cell containing vc [18]. We made numer-
ous attempts to detect, in halide-containing aluminosil-
icates, the luminescence of single I– ions in β voids sur-
rounded by the same regular voids, which had to pre-
clude the excimer luminescence of the iodine centers.
We believe to have succeeded in detecting the lumines-
cence of such centers in the 5- to 6-eV interval under
irradiation by a 6-keV electron beam. A similar weak
luminescence of metastable one-halide excitons at low
temperatures was also observed in some alkali halide
crystals [20, 21]. As follows from studies of halide-free
aluminosilicates (e.g., the G zeolite), the luminescence
seen at 2–3 eV may be due to radiative decay of elec-
tronic excitations of the aluminosilicate framework
[10]. As can be seen from Fig. 2 (curve 3), excitation by
24-eV photons in the region of absorption of the alumi-
nosilicate framework at 80 K creates, in the emission
spectrum of sodalite, the same luminescence bands
peaking at 2.9 (for the most well-developed structure),
3.6, and 4.2 eV, as in the case of electron beam excita-
tion.

Curve 1 in Fig. 3 is the absorption spectrum of the
Na6Al6Si6O24(NaI)1.6 ceramic obtained after irradiation
by a 6-keV electron beam at 80 K and subsequent heat-
ing to 300 K. Similar to other authors who studied the
absorption spectra of the x- or electron-irradiated
I-sodalite ceramics [12], we obtained, at 300 K, a
slightly asymmetric F band with a maximum at 2.05 eV
and a half-width of 0.39 eV, which tails out toward
shorter wavelengths. When cooled down to 80 K, this
band becomes more narrow (to ~0.3 eV) and shifts
slightly toward higher energies (with the maximum
now at 2.08 eV). This band can be identified, on the
whole, with an F center, i.e., an electron which is
trapped by a halide vacancy coordinated by four Na+

ions.

Figure 3 also presents excitation spectra (generated
by equal numbers of photons of different frequencies)
of 3.5-eV luminescence isolated by a MZD-2 mono-
chromator (equipped with an additional UFS-6 filter).
Curve 2 was obtained directly after irradiation by pho-
tons of 7.7 ± 0.1 eV at 80 K; curve 3, after additional
heating of the irradiated sample to 195 K and cooling to
80 K. This heating results in a weakening of the flash
intensity at the maximum by nearly seven times. The
weakening occurs nonuniformly over the profile;
namely, the long-wavelength part of the excitation
spectrum weakens substantially more than does the
short-wavelength one. This and other experiments
showed that 7.7-eV photons produce, in the ceramic at
80 K, not only main F centers but also color centers
characterized by longer-wavelength absorption. The
excitation spectra of the I-sodalite ceramics irradiated
at 80 K are evidence of the existence of at least two
types of color centers. Photoionization of the I– centers
by 7.7-eV photons produces, in addition to main F cen-
ters, centers with an absorption maximum at ~1.7 eV,
HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
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which, as follows from EPR studies, are due to an elec-
tron which is captured in a β cell and surrounded by
three rather than four Na+ ions [15]. We measured burst
excitation spectra (in the 1.8- to 2.4-eV region) of 2.8-
to 3.6-eV luminescence, isolated by a UFS-6 filter,
from a ceramic irradiated by equal quantum doses of
5.7-, 6.7-, 7.6-, and 10.2-eV photons. Immediately after
irradiation at 80 K, the excitation spectrum profiles
were found to be nearly identical. Additional selective
illumination of this sample at 80 K by photons of
1.7 eV brought about a stronger weakening of the long-
wavelength part of the excitation spectrum obtained
after this procedure. When performed with different
hνe, irradiation creates not only main F centers but also
color centers with longer-wavelength absorption.

3. SPECTRA OF F-CENTER CREATION 
BY SYNCHROTRON RADIATION

Our subsequent work was focused on obtaining the
spectra of creation of the main F centers in
Na6Al6Si6O24(NaI)1.6 by measuring the light sum of the
3.5-eV luminescence burst stimulated by photons with
hνs = 2.1 ± 0.03 eV in a ceramic irradiated at 80 K. Fig-
ure 4 presents a ceramic reflectance spectrum obtained
at 8 K and a spectrum of F center creation by photons
with 5.0–10.5 eV. In the long-wavelength part of the
F-center creation spectrum, one can see two narrow
maxima at 5.75 and 6.7 eV, which are shifted relative to
the reflectance maxima (6.1 and 6.97 eV) by approxi-
mately 0.3 eV toward longer wavelengths. The data
presented in [8] permitted us to identify the reflectance
maxima with a spin–orbit doublet in the electronic tran-
sitions in the I– ions located in regular β cells. The
F-center creation spectrum also exhibits a spin–orbit
doublet (displaced by 0.3 eV), which can be interpreted
as a manifestation of electronic transitions in I– centers
surrounded by three Na+ ions only. Such centers carry
an effective negative charge, which substantially
increases the effective cross section with which they
capture the holes created by the aluminosilicate frame-
work absorbing the radiation (hνe ≥ 8.5 eV). Because of
the superposition of second-order SR, we have not been
able, thus far, to measure the F-center creation spec-
trum in the 10.5- to 12.5-eV region.

Figure 5 presents an 8-K reflectance spectrum and
an 80-K F-center creation spectrum, which were mea-
sured on I-sodalite in the 13- to 27-eV region. The parts
of the F-center creation spectrum displayed in Figs. 4
and 5 were measured at equal irradiation doses, and the
light sums SF are plotted along the ordinate axes in the
same scale. The 8.5- to 27-eV region of the F-center
creation spectrum corresponds to a practically unstud-
ied region of fundamental absorption of the aluminosil-
icate framework [6, 8] and requires special analysis. We
can presently discuss this problem only in a first
approximation based on the quantitative data available
on the optical characteristics of α-Al2O3 single crystals
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
(see [22, 23] and references therein), the theoretical
band-structure calculations made for the α-Al2O3 and
MgAl2O4 crystals (see, e.g., [24, 25]), and on a general
analysis of the electronic excitation spectra in crystal-
line quartz (see, e.g., [26]).

The long-wavelength exciton absorption band in
single-crystal α-Al2O3 peaks near 8.97 eV at 8 K. The
self-trapped exciton luminescence (7.6 eV) is excited
by 8.9- to 9.3-eV photons in the direct optical genera-
tion of excitons [22]. Na6Al6Si6O24(NaI)2x exhibits a
distinct reflectance peak at 8 K in the 8.5- to 9.3-eV
region (Fig. 4). As follows from calculations made for
the AlO6 octahedron in α-Al2O3, the transitions involv-
ing charge transfer from the oxygen to the Al3+ ions lie
at shorter wavelengths than those for the AlO4 tetrahe-
dron in crystalline MgAl2O4 [24]. In quartz single crys-
tals built of SiO4 tetrahedra, the excitons generated in
direct optical transitions are created by 10.6-eV pho-
tons and indirect band-to-band transitions occur for hν
> 8 eV [26].
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Fig. 4. (1) Reflectance spectrum at 8 K and (2) spectrum of
F-center creation by 5- to 10.5-eV photons at 80 K obtained
on the Na6Al6Si6O24(NaI)1.6 ceramic.
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Photo-induced exciton creation in the sodalite alu-
minosilicate framework at 8 K can be expected to occur
at 8.5–11 eV. In the same energy region, part of the
absorbed photons can apparently also produce sepa-
rated electrons and holes. In the 12- to 30-eV region,
the spectrum should be dominated by electronic transi-
tions producing holes in the broad, structurally com-
plex oxygen valence band and electrons in the complex
conduction band.

4. MULTIPLICATION OF ELECTRONIC 
EXCITATIONS

As can be seen from Fig. 5, the efficiency of creation
of F centers, whose ionization gives rise to 3.5-eV
recombination luminescence, increases strongly as one
goes over from 18 to ~25 eV. As follows from Fig. 1,
the efficiency of the F center creation doubles as one
transfers from 16 to 24 eV throughout the SR quantum
dose region studied by us. We associate this effect with
the multiplication of electronic excitations (EEM), a
process studied in considerable detail on many alkali
metal halides [2–4], as well as on metal oxides (see,
e.g., [22]), in which absorption of one photon produces
a hole and a hot conduction electron whose energy is
high enough to create a secondary electron–hole pair.

The electron–hole mechanism of EEM manifests
itself in Na6Al6Si6O24(NaI)1.6 both in the 3.5-eV lumi-
nescence excitation spectrum at 80 K (Fig. 5) and in the
excitation of this luminescence at 8 K, in which case
the spectrum is dominated by the 4.2-eV luminescence
[8]. We were the first to detect a similar EEM effect for
sodalites in the F-center creation spectrum (Fig. 5).
Note that within the spectral region extending from 18
to 23 eV, the coefficients of reflection (and absorption)
are of approximately the same magnitude and, there-
fore, in this region, there should not be any sharp vari-
ation of the luminescence efficiency caused by the dif-
ferent penetration depths of the exciting radiation into
the ceramic. Our measurements showed that surface
nonradiative electron–hole recombination manifests
itself considerably more weakly in sodalites than in sin-
gle crystals of metal oxides with a simple structure
(e.g., in MgO), where the conduction electron and hot-
hole ranges are markedly larger.

The electron–hole EEM mechanisms in wide-band-
gap dielectrics are usually characterized by the lowest
threshold energy, which is twice the bandgap (Eg).
However, in real practice, a reliably discriminated EEM
effect is observed, as a rule, only at energies noticeably
in excess of 2Eg. The point is that the absorbed photon
imparts its energy in excess of Eg not only to the elec-
tron but also to the hole. However, because of the
valence bands being narrow (compared to Eg), the
energy received by the hole is not high enough to create
a secondary electron–hole pair.

In α-Al2O3 crystals, Eg = 9.4 eV and the EEM pro-
cesses are clearly pronounced only for hνe > 23 eV >
P

2Eg [22]. In α-SiO2 crystals, strong enhancement of the
intrinsic luminescence at 2.26 eV starts at 8 K for hνe =
21.5 eV > 2Eg [8]. We reliably detected the EEM pro-
cesses in Na6Al6Si6O24(NaI)1.6 for hνe > 19 eV. In
sodalite, the luminescence efficiency starts to grow in
the EEM region less sharply than it does in Al2O3 or
SiO2 and SF doubles only at 25 eV. We believe that the
doubled Eg in sodalite is larger than 19 eV, which is in
accord with the suggestion of a predominantly exci-
tonic nature of the electronic excitation corresponding
to the 9-eV peak in the reflectance spectrum (Fig. 4).
The onset of the growth in the efficiency of the elec-
tron–hole mechanism of F-center creation is distant
from the region of efficiency doubling by more than
6 eV, which indicates a large width (>6 eV) of the com-
plex aluminosilicate valence band derived primarily
from the oxygen 2p states.

The falloff in the efficiency of F-center creation for
hνe > 26 eV (Fig. 5) can be due to a change of the SR
absorption mechanism in this region. In α-Al2O3 crys-
tals, photons with hνe > 25 eV ionize the 2s2 rather than
2p6 oxygen shells, which markedly complicates the
EEM processes [22, 24]. Similar transitions apparently
also occur for hνe > 25 eV in the sodalite aluminosili-
cate framework.

Thus, our experiments showed that the F centers
created at 80 K, whose photoionization gives rise to the
excitation of the iodine center recombination lumines-
cence, are completely annealed when heated up to
320 K. This anneal, accompanied by thermally stimu-
lated luminescence, acts particularly strongly in the
200–260 K region. Irradiation of Na6Al6Si6O24(NaI)1.6

by high doses of x-rays or electrons produces, in the
ceramic at 295 K, photostable F centers whose anneal-
ing requires heating of the sodalite to 450–550 K. The
mechanism of this phenomenon differs naturally from
the electron–hole process involving I– centers and pre-
irradiation anion vacancies, which was considered
here. The creation of thermally and photostable F cen-
ters in sodalites by synchrotron radiation in the region
of direct excitation and ionization of I– centers and,
particularly, in the formation of excitons and electron–
hole pairs at the fundamental absorption edge of the
aluminosilicate framework is a problem that is still
awaiting solution.
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Abstract—Low-frequency Raman spectroscopy is used to study the sensitivity of the dynamic (vibrational)
properties of the fractal structure of nanocracks in vitreous SiO2 to the mechanical and thermal previous history
of the sample. The material is obtained by vacuum-compression fritting of the sol–gel synthesis products. After
fritting, continuity defects having a nanostructural scale and possessing fractal geometry are left at the site of
microcracks in the course of preliminary mechanical processing of the sample. The features of such defects are
an absence of the boson peak in the Raman spectrum and a monotonic decrease of the intensity according to
the law of light scattering from acoustic vibrations of fractals. The conditions for the emergence of the fractal
structure and its dependence on the rigidity of the walls of nanocracks are determined from the scattering mode.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In our earlier publication [1], we reported the dis-
covery of acoustic vibrations of fractals localized on
submicrocracks in vitreous SiO2 in the Raman scatter-
ing spectrum. It was proved later [2] that the data on the
intensity of light scattering from this type of vibrations
can be used to compare the density (compactness) of
materials and to estimate the size of continuity defects.
While interpreting the experimental data, we proceeded
from the fracton model [3–8] developed for coupled
percolation clusters and used for describing high-
porosity objects such as aerogels and some products of
the chemical deposition of silicon chloride [8–13].
These materials consist of coagulated globules having
a size of the order of a nanometer and forming fractal
clusters. The vibrational properties of such systems
were described for the first time by Alexander and
Orbach [3], who introduced the concept of a fracton,
i.e., localized vibrational excitation of a fractal unit,
and defined the density-of-states function g(ω) as

(1)

where ω is the frequency and  is the so-called fracton
dimension [1]. Being a parameter of the vibrational

system,  depends not only on the fractal geometry, but
also on the rigidity of fractal structural bonds [14].

In high-density amorphous SiO2 saturated with tiny
fractal cracks, the Raman scattering of light takes place
not at the vibrations of the self-similar skeleton in the
“empty” space as in the case of aerogels, but at vibra-
tions of hollow inclusions of the nanostructural scale.
Here, the fractal dimesion is dictated by the geometry

g ω( ) ωd̃ 1– ,∝

d̃

d̃
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of the crack walls, while the vibrational properties of
the fractal are determined by the rigidity of the sur-
rounding matrix, which corresponds to the principles of
the fracton model [3–8]. Indeed, we verified the appli-
cability of definition (1) to describing the vibrations of
fractal cracks on the basis of our earlier experiments [1,
2]. The fracton dimension for SiO2 of the gel origin cal-
culated from the spectra was found to be in reasonable
agreement with the available experimental data on
aerogels (related materials). As expected, the most sig-
nificant discrepancy with the theory of vibrations of
rarefied percolation clusters was observed in [1] for
cracks in the material with the highest density (fused
quartz).

In the present paper, the conditions for the emer-
gence of fractal cracks and the dependence of their
vibrational properties on the connectivity of a vitreous
medium are determined by varying the conditions of
sample preparation.

1. RAMAN SCATTERING FROM FRACTAL 
VIBRATIONS

The polarizability tensor determining the Raman
scattering from a fractal is defined by the local elastic
strains emerging during its vibrations. On the basis of
the definition of the density-of-states function (1) and
under the assumption of the scalar elasticity of a fractal
cluster, the following relation has been derived for the
Raman scattering intensity I(ω) [5, 8]:

, (2)I ω( )ω n ω( ) 1+[ ]ω3 d̃–∝
001 MAIK “Nauka/Interperiodica”



        

FRACTON VIBRATIONS IN VITREOUS SiO

 

2

 

 837

                                                                                   
or, in terms of the reduced intensity Ired(ω) =
I(ω)ω/[n(ω) + 1],

(3)

where n(ω) is the Bose factor.
On the log–log scale, dependence (3) is depicted by

a segment of a straight line whose slope is given by

ν = 3 – . (4)

The real size of fractal units is bounded from above
either by the structural correlation length beyond which
the material is actually homogeneous or by the physical
size of the region of the existence of a fractal cell (crack
size in our case). For a crack of length L, the minimal
frequency of fracton vibrations ωout–off amounts approx-
imately to

(5)

where v is the transverse velocity of sound and c is the
velocity of light (if the Raman shift is measured in cm–1).

2. EXPERIMENT

The measurements were made on amorphous SiO2
samples obtained by vacuum-compression fritting of
pairs of flat plates synthesized according to the sol–gel
technique.

The fractal structure may be formed in a dense
material only at continuity defects whose role under
definite conditions can be played by residual cracks [1].
In order to create a layer of microcracks, the surfaces of
the plates being fritted were subjected either to
mechanical polishing or to dry grinding by an abrasive
with a grain size of ≈10 µm; this allowed us to obtain
samples with, presumably, various microscopic profiles
of the surface. The thickness of the layer damaged by
the grinding/polishing is, as a rule, considerably larger
than the abrasive grain size; in our case, it was of the
order of ten micrometers. It was proved by us earlier [1,
2] that microscopic mechanical defects are healed dur-
ing fritting, but continuity defects having a length of a
few nanometers are left in place of the cracked layer. In
view of such a small size of the residual defects, the
fritting layer in the bulk is not manifested visually and
can be observed in the samples only in the regions
where it emerges on the lateral surface. Quartz glass
obtained by fritting the products of the sol–gel synthe-
sis is a highly transparent optical material.

The samples were fritted in a vacuum of 5 ×
10−3 Torr; the temperature and pressure are given below
for specific experiments.

The Raman spectra were recorded in the 90° geom-
etry during the passage of a beam, emitted by a pump-
ing argon-ion laser (488 nm), along the fritting inter-
face (in the case of fritting along planes) or through the
bulk of the block (in the case of fritting of powders).
The light beam at the caustic had a diameter of

Ired ω( ) ω3 d̃– ,∝

d̃

ωout–off 2πv /cL,≈
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
≈100 µm. The source of scattering was confined to the
caustic region with the help of an aperture. The spectra
were recorded on the Spex 1401 spectrometer.

3. RESULTS

Figure 1 shows the low-frequency Raman spectra
excited from the bulk of the plates fritted from the gel-
synthesized SiO2, as well as from the interface (contact
layer) between the plates. Polished plates were fritted at
the temperature T = 1150°C under a pressure of 7 MPa,
while for fritting ground planes, the pressure was dou-
bled (at the same temperature) in order to compensate
for the looseness of the surface layer.

The bulk spectrum (Fig. 1a) has a boson peak typi-
cal of the vitreous state of amorphous materials, while
the interface spectra (Fig. 1b) display a monotonic
decrease in the intensity of scattering with frequency.
The  vs.  dependences in the reduced
coordinates (Fig. 2) have linear segments typical of the
scattering from fractals. The linear region on the graph
for the interface of a polished sample begins from
26 cm–1, while the linearity region for fritted ground
samples is small and begins only from ≈70 cm–1. Since
the lowest frequency of vibrations of fractals corre-
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50

5

ω, cm–1

I,
 1

03 
ph

ot
on

/s

100 150

10

15

5

10

15
(a)

(b)

1

2

Fig. 1. Low-frequency Raman spectra (a) for the bulk of a
sample and (b) for the fritting region of polished (curve 1)
and ground (curve 2) planes. Pairs of plates were fritted into
a monolith at 1150°C under a pressure of 7 (curve 1) and
14 MPa (curve 2).
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sponds to the largest cracks, such a significant increase
in the value of ωout–off for samples with a rougher finish
can hardly be explained by a decrease in the size of the
continuity defects. We should rather assume that the
fritting of a rough relief under the conditions of water
deficiency leads to the emergence of microscopic inho-
mogeneities and, consequently, to an increase in Ray-
leigh scattering. As a result, the low-frequency regions
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Fig. 2. Spectra presented in Fig. 1b, but plotted in reduced
coordinates. Fractional numbers on the curves indicate the
slopes of the linear segments shown by straight lines.
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Fig. 3. Low-frequency Raman spectra excited in the zone of
fritting of polished surfaces in (a) linear and (b) reduced
coordinates. The plates were fritted into a monolith at
1200°C under a pressure of 14 MPa.
P

on the  vs.  curve in the spectrum of the
ground sample are distorted by the superposition of
elastically scattered light and the data on the fracton
dimension can be obtained only from the slopes of
short segments of straight lines on the high-frequency
side (in our case, above ≈70 cm–1). Such a possibility
was indicated by Hassan et al. [15], who considered the
methods of measurement of light scattering from vibra-
tions of fractals in aerogels.

The fracton dimension calculated using relation (4)
amounted to 2.4 for the ground sample and 1.7 for the
polished one. The latter value is close to the experimen-

tal data reported for aerogels (  = 1.5 [8, 15]) but is

higher than the theoretically predicted value of  = 4/3
[3]. The discrepancy between the experimental value
and the result of an analytic description was indicated
for the first time by Freltoft et al. [13], who obtained the

value  = 2.1 for the fractal structure of aggregates of
amorphous SiO2 deposited chemically from SiCl4.
Later, the experiments [11, 12] on neutron scattering

from aerogels confirmed that the value  = 4/3 is not

universal. The dependence of  on the density of the
material was established, and it was found that the frac-
ton dimension increases with the short-range order, i.e.,
with the connectivity of the silicon–oxygen skeleton of
SiO2.

In order to verify that the absence of a boson peak in
the Raman spectra of amorphous SiO2 is indeed associ-
ated with the presence of hollow inclusions with the
fractal geometry in the material, we have selected the
fritting mode ensuring complete “healing” of residual
defects in the sample. The fritting temperature T for the
polished plates was increased to 1200°C, which is
higher than the glass-formation temperature for SiO2

(Tg = 1160°C). It could be expected that continuity
defects will disappear under the conditions of intensi-
fied viscous flow and that the continuous network of
glass will be restored.

The spectrum for the interface formed at T > Tg

under a pressure of 14 MPa is shown in Fig. 3 together
with the  vs.  dependence. It can be seen
that the boson peak in the original spectrum (Fig. 3a)

does not appear as before, but the law  in Eq. (4),
typical of fractal structures, is not observed either: a lin-
ear segment in the double logarithmic coordinates is
absent (Fig. 3b). The connected structure of glasslike
SiO2 in the interface was restored only after the fritting
pressure was increased to 180 MPa at T = 1200°C,
which is indicated by the emergence of the boson peak
in the Raman spectrum (Fig. 4).

Iredlog ωlog

d̃

d̃

d̃

d̃

d̃

Iredlog ωlog

ω3 d̃–
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4. DISCUSSION

It is well known [16, 17] that the height of the boson
peak in the Raman spectrum for quartz glass saturated
with water is very small or the peak is absent altogether
in view of the percolation effect of the OH end groups,
i.e., in view of the dynamic isolation of the structural
units of glass. Heating such samples to above 900°C
removes water from SiO2, and the low- frequency peak
is manifested clearly in the region of 60 cm–1 [17, 18].

In our case, dehydration during dry grinding, when
cracks are formed under abrasive grains at a high tem-
perature, and subsequent fritting at T = 1150°C did not
lead to the emergence of the boson peak but only
caused a decrease in the slope of the linear segment on
the frequency dependence of the intensity Ired, indicat-
ing an increase in the fracton dimension.

The maximum possible value of  corresponds to a
continuous, homogeneous, three-dimensional medium
for which the fracton dimension coincides with the
fractal and euclidean dimensions; i.e., it is equal to
three. In the presence of a free surface, the value of

 = 3 is attainable only at absolute zero. Above abso-
lute zero, stable states of a nanocrack (or of the end of
a macrocrack) are formed under the action of thermal
fluctuations, which necessarily leads to the variability
of the crack surface even in a perfectly homogeneous
material [19]. Ultimately, the fractal nature of a crack is
the result of the thermal motion of nanostructural ele-
ments. The values of the fractal and fracton dimensions
reflect the lack of smoothness in the crack profile.

In this work, we obtained  = 2.4 for the interface
between the surfaces subjected to dry grinding. Such a
high value of the dimension reflects the high connectiv-
ity of the glass-forming network and its low molecular
mobility for a low water content, i.e., the OH end
groups. Since the variations of the surface relief in a
more rigid material are poorer, the fractal geometry of
cracks is found to be less pronounced; cracks are
“smoothed” in real space.

The role of bound water is manifested due to the
nanoscopic size of the continuity defects. Indeed, linear
segments of the graph of function (ω)] in a pol-
ished sample of gel origin appear starting from 26 cm–1,
which gives, in accordance with Eq. (5), a maximum
size of fractals of approximately 5 nm. This value is
two orders of magnitude smaller than the size of the
original (microscopic) cracks existing on a mechani-
cally polished surface before fritting but is comparable
with the structural parameter for glasses (1 to 2 nm
[19]), which determines the elementary step in the
motion/collapse of a crack.

The frequency range for vibrations of fractal units
has an obvious structural limitation. The linear increase
observed in the graph describing the dependence of

 on  for the samples under investigation

d̃

d̃

d̃

Ired[log

Iredlog ωlog
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extends to frequencies below 170 cm–1, which deter-
mines the minimum size of fractals (and, accordingly,
the minimum size of discontinuities, which is equal to
0.8 nm). This value is close to the diameter of the six-
membered ring of the SiO4 tetrahedra, which is the
basic unit cell of the silicon–oxygen skeleton of vitre-
ous SiO2. The breakage of the single Si–O bond is
equivalent to the dissociation of such a ring and to the
formation of an elementary continuity defect having a
size of 0.8 nm. Its geometry depends only on the con-
nectivity of the matrix.

The experiments on the fritting of polished surfaces
at T > Tg revealed that the collapse of a crack and the
corresponding disappearance of the fractal surface do
not necessarily lead to the reconstruction of the mate-
rial continuity on the molecular level. An intermediate
state is possible, in which there is no free surface, but
the connectivity of the glass-forming network in the
region of closed cracks is insufficient for dynamic
interaction between the structural units of glass. In this
case, the vibrational spectrum displays neither scatter-
ing from fractals nor the boson peak. The complete
reconstruction of the vitreous state (which is character-
ized by the emergence of the boson peak) can also be
accomplished when the conditions of highly viscous
flow are combined with a large compressive force.

It was reported by us earlier [2] that the dynamic
properties of fractal cracks in a continuous medium
depend on the density of the material, as in the case of
the vibrations of a fractal cluster in “empty” space.
Here, we have demonstrated the increase in the fracton
dimension (i.e., the improvement of the material homo-
geneity) as a result of the reconstruction of the struc-
tural bonds of amorphous SiO2 after the removal of
chemically bound water from it. In real space, this cor-
responds to the smoothing of the profile of nanocracks
upon an increase in the matrix connectivity.
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Fig. 4. Low-frequency Raman spectra excited in the fritting
zone of polished surfaces. The plates were fritted into a
monolith at 1200°C under a pressure of 180 MPa.
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Abstract—The paper reports on an ESR study of Cr- and Ca-codoped SrTiO3 films, 1700 and 350 nm thick,
before and after UV irradiation (λ = 365 nm). The spectrum of the thick film (1700 nm) exhibits two ESR lines
with g factors of 1.977 and 1.974, which belong to the Cr3+ centers. In the spectrum of the thin film (350 nm),
one observes only one line, which is due to the chromium center with a g factor of 1.974. Calculations showed
that the line with the smaller g factor belongs to the Cr3+ center located close to the film surface. The weak line
observed in the spectrum after UV irradiation (g factor = 2.012) is most likely due to the O– center. The regions
of thermal stability of the observed centers were studied. A comparative analysis of the characteristics of impu-
rities in bulk samples and films was carried out. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The intense investigation of ferroelectric films wit-
nessed in the past few years was stimulated by their
device potential for nondestructive readout of informa-
tion from main memory units [1, 2]. There was pro-
posed, in particular, a new mechanism of information
readout from ferroelectric memory devices, which is
free of problems associated with the aging of thin films
[3]. This mechanism is based on the dependence of the
photoemf or photocurrent on electric polarization [4,
5]. The electric and photoelectric phenomena observed
in thin ferroelectric films, or heterostructures of the fer-
roelectric–semiconductor type, are known to depend
strongly on traps, i.e., defects and impurities, which can
play a substantial role in charge transport processes [6].
Only a few papers, however, deal with the investigation
of the effect of traps on the electric and photoelectric
properties of ferroelectric films [7, 8].

There are also no publications on the investigation
of ferroelectric films by the ESR method, which was
employed successfully for detecting impurities [9, 10],
as well as other lattice imperfections, in films of a num-
ber of semiconductor materials and diamonds [11, 12].

We report here on an ESR investigation of a thick
(1700 nm) and a thin (350 nm) SrTiO3 film grown on a
single-crystal Al2O3 substrate and codoped by Cr
(0.1 at. %) and Ca (0.2 at.%). We identified ESR spec-
tra belonging to Cr3+ centers in the bulk and near the
film surface. An O– center in UV irradiated films was
detected.

1. EXPERIMENTAL TECHNIQUES

SrTiO3 films codoped by 0.1 at. % Cr and 0.2 at. %
Ca, 1700 and 350 nm thick, were prepared by laser
1063-7834/01/4305- $21.00 © 20841
ablation. The substrates were (1102)-oriented, optically
polished sapphire plates. Films of optimum quality and
properties were obtained by 30-min deposition on a
substrate heated to 680°C in a nitrogen atmosphere at a
pressure of 200 mTorr. The ESR spectra were measured
in the X range with the use of an ESR-9 Oxford temper-
ature-control attachment within the 18–300 K range.
The dc magnetic field coincided in direction with the
film surface. The samples were illuminated directly in
the spectrometer resonator for 2 min by a 200-W mer-
cury lamp equipped with an optical filter with λ =
365 nm. The region of thermal stability of the paramag-
netic centers was determined by heating the samples to
a fixed temperature, with their subsequent cooling
down to T = 18 K to record the ESR spectra.

2. ESR SPECTRA

2.1. Thick Film (h = 1700 nm)

The ESR spectra of the thick film (h = 1700 nm)
observed before and after irradiation by UV light (λ =
365 nm) are shown by solid lines in Figs. 1a and 1b,
respectively.

The strongest line with g = 1.977 is known [11] to
belong to the Cr3+ ion substituting for the Ti4+ ion. The
weak line appearing in the spectrum after UV irradia-
tion (g factor = 2.012) is most probably due to the O–

center. A similar O– spectrum associated with an alumi-
num impurity was observed earlier in bulk SrTiO3 after
UV irradiation [12].

One readily sees that the spectra of the thick film are
slightly asymmetrical, with a weak anomaly, identified
by an arrow in Fig. 1, presented on the right-hand wing
of the spectral line. To understand the nature of the
observed anomaly, the spectral lines were deconvolved
001 MAIK “Nauka/Interperiodica”
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by means of the Peak Fit computer code. The results of
this deconvolution are presented in Fig. 1 by dashed
lines.

As can be seen from the results, the observed spec-
trum actually represents a superposition of two lines
with g = 1.977 and 1.974, which belong to the Cr3+ cen-
ters. The line with the g factor of 1.974 is observed for
the first time, and its nature will be discussed later.
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Fig. 1. ESR spectra of a SrTiO3: Ca, Cr film h = 1700 nm
thick measured (a) before and (b) after UV irradiation.
Dashed lines are resolved spectral lines.
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2.2. Effect of Heating Temperature on ESR Spectra
of the Thick Film

To determine the region of thermal stability of the
centers, the UV-irradiated sample was heated to a fixed
temperature, held for 2 min, and cooled down to 18 K
to record the ESR spectrum. The results of the measure-
ments are displayed in Fig. 2. The intensity of the Cr3+

line is seen to depend only weakly on temperature. An
increase in temperature to 300 K brings about a
decrease in the ESR line intensity of this center by only
two times. One may thus conclude that the chromium
center is the most stable and long-lived, and that the
line intensity depends on the measurement tem-
perature.

The intensity of the second center (g factor = 2.012)
also decreased with increasing temperature, to vanish
altogether above 130 K. It should be pointed out that
increasing the heating time at T = 90 K even to 5 min
resulted in a complete disappearance of this line. It thus
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Fig. 2. Temperature dependence of the intensity of an ESR
spectrum of a thick SrTiO3: Ca, Cr film measured after UV
irradiation at T = 18 K.
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becomes clear that the O– center creates a shallow
impurity level in the band gap of the SrTiO3 film.

2.3. Thin Film (h = 350 nm)

Figure 3 displays the ESR spectrum of the thin film.
For comparison, the spectrum of the thick film is also
shown. The Cr3+ line in the thin film is seen to be shifted
toward higher magnetic fields. The g factor of this line
is 1.974. This observation suggests that this line
belongs to the Cr3+ center located near the film surface.
The O– center spectrum was not observed in the thin
film.

The temperature dependence of the thin-film ESR
spectra was not studied because of their low intensity
even at low temperatures (T = 18 K).

3. THEORY OF THE ESR OF ELECTRONIC 
CENTERS NEAR THE SURFACE

The theory of electronic centers near the surface in
bulk samples and in films was developed in [13] and
[14], respectively. The solution of the Schrödinger
equation taking into account the interaction of a center
with its image shows that the energy of the center grows
as it approaches the surface. Therefore, centers at the
surface become shallower and can be ionized much
more easily than those in bulk samples. The local elec-
tronic levels of centers more than 100–150 nm distant
from the surface were shown to be the same as in the
bulk. This suggests the conclusion that in thin films
(h < 500 nm) most of the centers “feel” the surface, as
it were, whereas in a thick film (h > 1000 nm), the
major part of the electronic centers should behave as
they do in bulk samples. The ESR spectrum of such
centers should coincide with that of bulk samples,
while surface centers should produce a different spec-
trum. First of all, the number of lines should increase,
because the symmetry in this case is lower. One could
also expect a specific dependence of the resonant-line
position on magnetic-field orientation with respect to
the surface normal. A change in the line position is
associated, as usual, with the crystal-field parameters
and a change in the g factor. It was shown, in particular,
that the shift of the g factor of an electronic center at the
surface relative to its value in the bulk material can be
written as

(1)

(2)

where ∆E is the difference between the ground- and
excited-state energies; L, U, and p are the angular
momentum, potential, and momentum of a paramag-
netic electron, respectively; and θ is the angle between
the direction of the dc magnetic field and the surface
normal.

∆g
e�

2m2c2
-------------- 1

∆E
-------M θ2sin–= A θ,2sin–≡

M ψ*Lx —U p×[ ] xψ r,3d∫=
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The coefficient A is estimated to be of the order of
(2–5) × 10–3. Hence, the ESR line of a surface center
could be shifted toward higher magnetic fields. The
g factor shift will be zero for the magnetic fields H
aligned with the surface normal and maximum for the
in-plane H direction.

4. DISCUSSION OF RESULTS

4.1. ESR Line with g = 1.974: The Cr3+ Center
at the Surface

The shift of the ESR line of the Cr3+ surface center
relative to the line corresponding to the bulk center
toward higher magnetic fields and the change in the g
factor ∆g = 3 × 10–3 (the angle θ = 90° for an in-plane
magnetic field) agree well with theoretical calculations.
Hence, the ESR line with g = 1.974, observed in the
films, belongs to the Cr3+ surface center. Because the
spectrum of the thin film did not exhibit the line with
g = 1.977 produced by the Cr3+ bulk center, this means
that the Cr3+ centers in thin films (h = 350 nm) feel the
presence of the surface. Thus, the ratio of the number of
Cr3+ centers in the bulk to the number of those feeling
the surface can be estimated from the thickness ratio of
the films studied; it was found to be 4.8. As follows
from experimental data, the intensity of the ESR line
with g = 1.977 (Cr3+ bulk center) is five times that of the
surface center with g = 1.974, which is in good agree-
ment with the value derived from the film thickness
ratio.
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Fig. 3. ESR spectra of a thin (h = 350 nm) and a thick (h =
1700 nm) SrTiO3: Ca, Cr film measured after UV irradiation
at T = 18 K. The thin-film spectrum is fourfold expanded.
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4.2. ESR Line with g = 2.012: The O– Center

As was already mentioned, the ESR spectrum of the
O– center could be observed only at low temperatures
(T ≤ 130 K) and only under UV irradiation. The O– hole
center in bulk SrTiO3 is known to retain its charge state
after UV irradiation [12]. This observation confirms the
short lifetime of a hole trapped at the oxygen level in
the film. It may be conjectured that ultraviolet light cre-
ates shallower levels in the film, which do not produce
an ESR signal. After irradiation, the whole system of
local-levels relaxes rapidly to the equilibrium state
which existed in the film before irradiation. The fast
local-center relaxation could also be initiated by the
growth of conductivity associated with the large num-
ber of defects and the high density of local surface cen-
ters in the film.

Obviously, the available experimental data are not
enough to allow exact identification of the local struc-
ture of the observed hole centers. The polycrystallinity
of the films complicates analysis of the ESR spectra
and determination of the principal axes and of the mag-
nitude of the g tensor, which are needed to identify the
model of the center. We are planning to perform the
corresponding calculations and measurements on films
with different thicknesses in the immediate future. We
note in conclusion that the dielectric permittivity and
photoluminescence of the films studied in detail in [15]
reveal certain features that can be associated with the
electronic centers detected in this work.
P
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Abstract—Explanation of the stick–slip dislocation motion, which is experimentally observed in situ, goes
beyond the scope of the simplest models. The inclusion of extra degrees of freedom which govern the change-
over between the glide and sessile dislocation states makes possible a general description of the dislocation
dynamics. The solution to the appropriate statistical model is obtained in the present work. This solution
describes the mechanisms of the stick–slip dislocation motion and the associated features of plasticity of the
materials. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Electron-microscopic observations of the behavior
of dislocations under load revealed a discontinuous
character of their motion in a number of materials. An
interesting example of this sort is provided by the
stick–slip motion of dislocations in prismatic planes in
Be and Ti [1]. In this case, a dislocation moves through
a few lattice spacings and is spontaneously stopped
(locked) for a while; this process further recurs many
times. In the case of macroplastic deformation, this
manifests itself in a plateau on the temperature depen-
dence of the strain stress and in an anomalous peak of
the activation volume. The qualitative interpretation of
this phenomenon is based on the assumption that the
dislocation core can be in different (mobile or immo-
bile) states and can undergo transitions between them
(locking–unlocking transitions) [1]. The mechanism of
the transition to the immobile sessile state can be
treated as a transformation into an energy-favorable
configuration of the core split in the cross-sectional
plane; the transition to the mobile glide state suppos-
edly occurs through cross sliding. Anomalies in the
plasticity characteristics were explained in terms of a
transition from the dislocation motion controlled by the
cross sliding to the motion within the Peierls–Nabarro
mechanism [1] (for the description of these elementary
dislocation mechanisms, see, for example, [2]). 

In the present work, we investigated a more general
situation, because the specific mechanisms of disloca-
tion motion were not included in the model and, in gen-
eral, could be of a different nature. Moreover, and this
is principal, the change in the mechanism by itself was
studied within a generalized unified description using
the distribution functions, rather than within a qualita-
tive approach which postulates a different behavior on
opposite sides of the transition. This allowed us to pro-
pose a more correct pattern of the transient behavior. In
addition to the calculation of the modified mobility of
1063-7834/01/4305- $21.00 © 20845
individual dislocations, we described a number of spe-
cific features of the macroplastic deformation of mate-
rials, which are associated with the spontaneous transi-
tions of dislocations into locked states and the libera-
tion from them. 

2. KINETICS OF THE GLIDE AND SESSILE 
DISLOCATION STATES 

First, we will analyze the influence of extra degrees
of freedom. The contribution of the usual glide states of
the dislocation core will be described in the simplest
fashion. Let us consider the dislocation displacement
between different stable states in the slip plane, which
are numbered with the index i: i = 1, 2, 3, … . The prob-
ability of the transition between the neighboring glide
states in a unit time is J0. The direction of the transitions
(toward the increase in i) is specified by the external
load; the reverse transitions will be ignored. The extra
degrees of freedom are taken into account by assuming
that an additional sessile state exists in each dislocation
position i, so that mutual transitions become possible:
from the glide to the sessile state, with a frequency J–;
and from the sessile to the glide state, with a frequency
J+. It is assumed that, unlike the glide states, transitions
between different sessile states do not occur (Fig. 1). 

We introduce the filling numbers fi and ϕi for the
glide and sessile states, respectively. The kinetics of
changes in the filling numbers of the states can be
described by the following equations:

(1)

(2)

For a continual description, we use the continuous
coordinate x = ia (a is the lattice constant) and the dis-

d f i

dt
-------- J0 f i 1– f i–( ) J– f 1– J+ϕ i,+=

dϕ i

dt
-------- J– f i J+ϕ i.–=
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tribution functions f(x, t) and ϕ(x, t) which describe the
density of the probability of finding the dislocation in
the interval between x and x + dx. By substituting the
derivative adf /dx for the finite difference fi + 1 – fi in
Eq. (1), we obtain the following equations instead of
Eqs. (1) and (2):

(3)

(4)

Here, v = aJ0. Note that, in the absence of extra states,

Eq. (3) has the form  = –v  with the solution

f(x, t) = δ(x – vt) at the initial condition f(x, 0) = δ(x).
Thus, a simple translation of the system takes place in
this case and v is the sliding velocity. Obviously, there
always exist reasons for the broadening of the δ func-
tion in real situations. However, this aspect of the prob-
lem is of no importance here and will further be taken
into account only in illustrations without specifying the
corresponding mechanism. The inclusion of the extra
states opens the way to a “walk” of the system over dif-
ferent states and detention in them, as a result of which
the character of the evolution considerably changes. We
will analyze this by using Eqs. (3) and (4), because the
system remains simple enough for analytical inves-
tigation. 

In order to find the solution of the set of Eqs. (3) and
(4), we apply the Laplace transform with respect to
time:

Then, Eq. (4) is reduced to the relationship 

(5)

∂f
∂t
----- v

∂f
∂x
------ J– f– J+ϕ ,+–=

∂ϕ
∂t
------ J– f J+ϕ .–=

∂f
∂t
----- ∂f

∂x
------

F x, s( ) st–( ) f x t,( )exp t,d

0

∞

∫=

Φ x, s( ) st–( )ϕ x t,( )exp t.d

0

∞

∫=

Φ x s,( ) J–/ s J++( )( )F x s,( ),=

s

g
i = 1 i = 2 i = 3

g g

s s

J– J+ J– J+ J– J+

J0 J0 J0

Fig. 1. Schematic drawing of transitions between glide (g)
and sessile (s) dislocation states. 
P

which allows exclusion of ϕ from the set of equations
and obtainment of a closed equation from Eq. (3),
that is,

(6)

The solution of Eq. (6), which satisfies the normal-
ization condition f[(x, t) + ϕ(x, t)]dx = 1, has the form

(7)

The inverse Laplace transform of F(x, s) yields 

By shifting the integration variable s = s' – J+ and
regrouping the integrand, we obtain

(8)

Here, t ' = t – x/v and c' = c + J+. 
The inverse Laplace transform of unity leads to

δ(t '). The transform of the first term under the integra-
tion sign can be calculated by formula 5.5.31 taken
from [3], that is,

where I1(z) is the modified first-order Bessel function
[4]. Therefore, we obtain the distribution function con-
sisting of two contributions: f(x, t) = f1(x, t) + f2(x, t),
where 

(9)

(10)

The δ-function peak describes the displacement with an
undisturbed velocity, as is the case in the absence of
extra states. However, in their presence, this peak
decreases as the path increases. Its content is “trans-
ferred” to the second peak, whose shape corresponds to
the redistribution between the glide and sessile states.
According to the relationship x = vt, which is dictated
by the δ function, the exponential factor in Eq. (9) is
equal to exp(–xJ–/v); i.e., it represents the probability
of the dislocation not transforming into the sessile state
at a distance x or, in other words, the probability of the
jump length of the dislocation being no less than x. The

v
dF
dx
------- s 1

J–

s J++
--------------+ 

  F+ 0.=

F x s,( ) 1/v( ) sx/v( ) 1 J–/ s J++( )+( )–[ ] .exp=

f x s,( ) 1
2πi
-------- 1

v
---- –

sx
v
----- 1

J–

s J++
--------------+ 

  st+ 
 exp s.d

c i∞–

c i∞+

∫=

f x t,( )
–

x
v
---- J– J+–( ) J+t– 

 exp

2πi
---------------------------------------------------------=

× es't' e

x J– J+–( )
v s'

-------------------------

1– 1+
 
 
 

s'.d

c' i∞–

c' i∞+

∫

α /s( )exp 1– α /t( )1/2I1 2 α t( )1/2( ),∝

f 1 x t,( ) x J– J+–( )/v J+t––( )δ x vt–( ),exp=

f 2 x t,( ) x J– J+–( )/v J+t––( )exp=

× xJ–J+/ v 3 t x/v–( )[ ]( )1/2

× I1 2 xJ–J+ t x/v–( )/v[ ] 1/2( ).
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density of the probability that the jump length lies
within the interval from x to x + dx is the derivative
−d/dx(exp(–xJ–/v)) = (J–/v)exp(–xJ–/v). Hence, the
mean jump length x1 is given by

(11)

The distribution function with respect to the sessile
states ϕ(x, t) can be expressed through f(x, t) with the
use of Eq. (4). As a result, we obtain

(12)

Here, I0(z) is the modified zero-order Bessel function
[14]. 

At relatively short times, small compared to the time
of dislocation activation from the sessile state, 1/J+, the
combined distribution f2(x, t) + ϕ(x, t) has a maximum
near x = 0 and decreases as x increases (Fig. 2). How-
ever, at t � 1/J+, when many locking–unlocking acts
take place and a mean velocity is established, the distri-
bution becomes displaced from x = 0 and its maximum
shifts with time toward increasing x. 

Let us find how the mean path length changes with
time:

According to the known distribution functions (9), (10),
and (12), we obtain

(13)

where 

Thus, the dislocation motion is nonuniform in time in
the case under consideration. As follows from Eq. (13),
the time dependence of the mean path length has an
undisturbed form 〈x(t)〉  ≈ vt at small t. After a lapse of
time, long enough in comparison with the duration of
an individual jump t � 1/(J– + J+), the mean path length
is mainly determined by the renormalized averaged
velocity of motion:

(14)

In the case when the difference between the probability
of the transition into sessile states and the probability of
the liberation from them is rather large (J+ � J–), the

x1

J–

v
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xJ–

v
--------– 

 exp xd

0

∞

∫ v
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-----.= =

ϕ x t,( ) J–/v( ) –x J– J+–( )/v J+t–( )exp=

× I0 2 xJ–J+ t x/v–( )/v[ ] 1/2( ).

x t( )〈 〉 f x t,( ) ϕ x t,( )+[ ] x x.d
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× 1
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exp– .

x t( )〈 〉 vtJ+/ J– J++( ).≈
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decrease in the velocity of dislocation motion can be
significant. Equation (13) also permits one to describe
the transient behavior when, with a change in parame-
ters, for example, the temperature, the controlling
mechanism changes over from the simple glide to the
stick–slip motion. This also leads to a change in the
mechanism of the macroplastic flow of the material. 

3. TEMPERATURE DEPENDENCE 
OF THE STRAIN STRESS AND ACTIVATION 

VOLUME 

Let us apply the results obtained to the description
of the macroplastic deformation. The plastic strain rate

 for the motion of dislocations with the mean velocity
v and the density ρ is given by the Orowan relationship

 = ρbv(σ, T), where b is the Burgers vector. This rela-
tionship can be used for determining the temperature
dependence of the strain stress σ(T) at a constant strain
rate, provided that the dependences of the velocity of
dislocation motion on the stress σ and temperature T
are known. 

For thermally activated motion, the dependence of v
on σ and T is determined by the Arrhenius factor v =
v0exp(–E(σ, T)), where E(σ, T) is the corresponding
activation energy and v0 is an insignificant preexponen-
tial factor. In order to illustrate the dislocation motion,
we will use a model dependence of the activation
energy on the stress [5]: 

(15)

ε̇

ε̇

E σ( ) E0 1 σ/σ
*

( )q–[ ] p
.=

0
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(f
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Fig. 2. Evolution of the spatial distribution f(x, t) + ϕ(x, t)
of dislocations starting from the point  x = 0, x∗  = v/(J+J–)1/2

at t = 0. The instants of time t = (1) 0.1/(J+J–)1/2,

(2) 0.5/(J+J–)1/2, and (3) 1/(J+J–)1/2. 
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The resulting temperature dependence of the strain
stress in the absence of locking is shown by the dashed
line in Fig. 3 (ln( / ) = 25,  = ρbv0, p = 2, and
q = 0.5). 

In the case of motion accompanied by spontaneous
transitions to and from sessile states, we take into
account the temporal inhomogeneity of the process and
replace the velocity of dislocation motion v by its
effective value vef = lfp/tfp. Here, lfp is the mean free path
of the dislocation before it leaves “the action field”
(crops out at the surface, annihilates with other disloca-
tions, etc.) and tfp is the time of dislocation travel. For a
specified mean free path lfp, the travel time can be
obtained using the equation 〈(tfp)〉  = lfp and the kinetic
law (13). This makes it possible to determine the mod-
ified temperature dependence of the strain stress. For an
illustrative calculation, we assume that the transitions
between the glide and sessile states have a thermally
activated character, J+, – = J0exp(–E+, –/kT), with con-
stant activation energies E+ and E–. By employing the
Orowan formula for expressing the travel time, tfp =
ρblfp/ , and substituting it into Eq. (13), we obtain the
modified equation for determining the temperature and
rate dependences of the strain stress:

(16)

Here, 

When the barrier E– for transition to the sessile state
is high, the value of z is small, χ(z)/z ≈ 1; the second

ε̇0 ε̇ ε̇0

ε̇

E σ( ) kT ε̇0/ε̇( )ln kT χ z( )/z[ ]ln .+=
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Fig. 3. Calculated temperature dependence of the strain
stress [T∗  = E0/(kln( / )), σ∗ , and E0 are determined by

formula (15)]. The inset shows the experimental data for a
prismatic slip in Ti [1]. 

ε̇0 ε̇
P

term on the right-hand side of Eq. (16) vanishes; and
this equation is reduced to the conventional relationship
for determining σ(T) in a simple glide. Otherwise, if
the barrier is not too high and the thermal activation of
locking proceeds with a noticeable frequency, the strain
stress changes. Figure 3 displays the modified temper-
ature dependence σ(T), which was obtained from the
above relationships for the following parameters: E– =
1.1E0, E+ = E0, and lfpJ0/v0 = 104. 

In general, the effect of dislocation locking in
sessile states naturally leads to an increase in the strain
stress. Since the temperature dependences have a pro-
nounced exponential character in the case of thermally
activated kinetics, the transition to a modified value of
the strain stress occurs in the immediate vicinity of a
certain transition temperature Ttr, above which the
decrease in stress with an increase in temperature
becomes slower and the slope of the σ(T) curve dimin-
ishes (a plateau is observed). For comparison, the inset
in Fig. 3 shows the temperature dependence of the
strain stress upon prismatic slip in Ti according to the
data taken from [1]. 

Figure 4 depicts the temperature dependence of the
activation volume γ calculated by the formula γ =
kT/(dσ/d ). The dashed line represents the activation
volume for a simple glide in the absence of dislocation
locking. As is seen from this figure, the locking pro-
cesses result in a peak in the activation volume as Ttr is
approached. The inset shows the temperature depen-
dence of the activation volume measured experimen-
tally for the prismatic slip in Ti [1]. The dependence
shows an anomalous peak. This indicates a qualitative
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Fig. 4. Calculated temperature dependence of the activation
volume normalized to E0/σ∗ . The inset shows the experi-
mental data for a prismatic slip in Ti [1].
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agreement between the behavior calculated in terms of
the model proposed and that observed experimentally. 

The theory developed allows a satisfactory descrip-
tion of the transient behavior upon changing from an
ordinary glide to motion with spontaneous locking and
unlocking of dislocations. The above illustrations dem-
onstrate that this transition can be considered a possible
mechanism of the anomalies observed in the tempera-
ture dependences of the characteristics of plastic defor-
mation of materials subjected to mechanical tests. 

Note that similar anomalies of plasticity were also
observed in α-Fe [6, 7], Mo [8], Nb [9], Sn [10, 11], and
other materials. However, the stick–slip motion of dis-
locations was not revealed, because in situ investiga-
tions were not carried out. In these cases, the observed
anomalies were explained in the framework of the con-
ventional glide mechanism, i.e., by assuming a com-
plex double-humped relief of the Peierls–Nabarro bar-
rier [12, 13] or other hypotheses. Microscopic investi-
gations into the dislocation motion in these materials
would be useful for a more reliable identification of the
mechanism responsible for the plastic anomalies. 
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Abstract—The contribution of dislocation cores to the broadening of the reciprocal lattice point due to dislo-
cations in a crystal is estimated using the lattice Green functions for the description of the static displacements
of the atoms. It is shown that this contribution is proportional to the angle of the integral misorientation of the
dislocation substructure, which is experimentally determined by the x-ray method, and depends on some fun-
damental characteristics of the subatomic structure and the condensed state. © 2001 MAIK “Nauka/Interperi-
odica”.
It was established earlier in [1] that the shape of the
intensity distribution of x-ray scattering in the azi-
muthal direction varies with an increase in the angle of
the integral misorientation δ and successively takes the
form of Gaussian, Lorentz, and uniform distributions.
This angle is proportional to the distribution width δq⊥ ,
which corresponds to the size of the reciprocal lattice
point in the azimuthal direction. The simplest relation-
ship for δ for uniform distribution is obtained in the
case of a bent crystal which contains an excess of dis-
locations of the same sign. In the theory of x-ray dif-
fraction by imperfect crystals for the case under consid-
eration [2], this relationship has the form

(1)

where aL is the geometric factor, b is the Burgers vector
of dislocation, Q is the magnitude of the diffraction
vector, L is the dimension of the crystal (or the dimen-
sion of the irradiated region), and ∆nα is the excess den-
sity of dislocations of the same sign.

The main contribution to the experimentally deter-
mined intensity of x-ray scattering is made by the crys-
tal regions being far away from the dislocations [2].
Expression (1) justifies this law. However, in deforma-
tion processes during hardening, an essential role is
played by the distorted crystal regions immediately
adjacent to the dislocation lines. These regions make
the main contribution to the forces of the contact inter-
action between dislocations and between the disloca-
tions and point defects. This particularly holds true for
the high-temperature creep in which these interactions
determine the strain rate. This is all the more interesting
because a fundamental relationship has recently been
established between the creep rate  and the experi-
mentally determined angle δ of the integral misorienta-
tion of the substructure in the form  ~ δ–2 [3].

δ δq⊥ aLbQL ∆nα ,∼ ∼

ε̇

ε̇
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In this connection, it is necessary to determine the
contribution of the crystal regions near the dislocations
to the x-ray scattering, even though this contribution
will undoubtedly be several orders of magnitude
smaller than the contribution of the regions far away
from the dislocations. The term “near the dislocations”
means that the law of the decrease in the static displace-
ments u with the distance r from the center of the defect
in this region should differ from the law u ~ 1/r, which
is typical of large distances from dislocations [2]. At the
same time, it should also differ from the law u ~ 1/r2,
which is characteristic of point defects and which prob-
ably holds for dislocations at distances of the order of
0–1b from the dislocation line [2]. Note that the law of
decrease in the displacements with distance, u ~ 1/r3/2,
is determined in [2] as a limiting law for defects of the
second kind, to which dislocations belong. Therefore, it
can be assumed that this law holds near the dislocation
lines (at distances of the order of the radius of the dis-
location core r0, which varies from b to several b).

The static displacements in this region can be
described by the following expression with the use of
the lattice Green functions [2]:

(2)

where  is the Green function for an ideal crystal
with one atom per cell which is equal to the ith compo-
nent of the displacement of the sth atom under the
action of a unit external force applied to atom s' and
directed along the j axis. Although the dislocations lead
to variations in the force constants of the crystal, one
can restrict oneself to the zeroth approximation,
because these variations are sufficiently small.

In this case, the defect with the center at point t acts
on the s' atoms of the crystal with forces . Consid-

usi G̃ss 'ijWs 'tj,
s

∑=

G̃ss 'ij

Ws 'tj
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ering these forces external and taking into account the

definition of , we deduce that the displacement of
the sth atom due to the defect is reduced to the sum of
displacements caused by the field of forces acting on
the s' atoms around the defect and is described by
expression (2).

For monatomic crystals, the Green function can be
represented as the sum over the normal coordinates [2]:

(3)

where N is the number of the elementary cells, ekp are
polarization vectors, ωkp is the frequency of the normal
modes, M is the atomic mass, and Rss' = Rs' – Rs.

When we solve the problem of scattering by crystal
regions located near dislocations, it is necessary to
assume that atoms s and s' are arranged in the region
limited by a distance r0 from the dislocation line. In this
case, the expression for the intensity of scattering in
these regions takes the form [2]

(4)

where f 2 is the structure amplitude of the crystal free
from defects, cα = S0nα, S0 is the area per possible loca-
tion of the dislocation in the plane perpendicular to it,
nα is the density of dislocations of the system α, r =

 =  –  (  corresponds to a crystal free from
defects), and uss 'tα is the difference between the dis-
placements: uss 'tα = ustα – us'tα.

In the case of a bent crystal, we have S0 = π  and

cα = π ∆nα, where ∆nα is the excess density of disloca-
tions of the same sign. The quantity T1 is a complex one,

(5)

Here, the imaginary component ( ) describes the
intensity distribution in the azimuthal direction. Then,
according to expression (4), we have

(6)

In the limits of dislocation cores (the radius of
which does not exceed a tenth of b), it can be assumed
that the differences between the displacements uss'tα are
sufficiently small. Then, sin(Quss'tα) ≈ Quss'tα. The latter
can be expanded in a power series of Qustα, and we can
restrict ourselves to the first term of the expansion:

G̃ss 'ij

G̃ss 'ij
1
N
----

ek piek pj

Mωk p
2

------------------ ikRss '( ),exp
p 1=

3

∑
k

∑=

I1 f 2= iqr( ) T1 Rs
0 r,( )–[ ] ,expexp

ss ' r0( )
∑

T1 cα 1 iQuss 'tα( )exp–[ ] ,
t

∑
α
∑=

Rss '
0 Rs

0 Rs '
0 Rs

0

r0
2

r0
2

T1 T1' iT1''.+=

T1''

T1'' πr0
2∆nα Quss 'tα( ).sin

t

∑
α
∑–=
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
Quss'tα ≈ q1 (Qustα), where q1 is a unit diffrac-

tion vector. When we choose the reflections for which
Q is approximately parallel to ustα, we obtain

(7)

For simplicity, we carry out the calculations for a single
system of dislocations. In this case, we obtain

(8)

and for the edge dislocations [2], this quantity is deter-
mined by the expression

(9)

where A is the vector of the scattering amplitude.
It follows from the theoretical results that the inten-

sity has a detectable value when the vector q satisfies

(10)

The contribution to the azimuthal width of the scat-
tering intensity distribution due to the dislocation cores
is a variation in the quantity q in the cores. Since the

displacements ust depend on the distance  from the
dislocation center, from formulas (8)–(10), we deduce

(11)

From formulas (2) and (3), we derive the expression
for ust and then can write the contribution of the dislo-

cation cores  to the total broadening in the form

(12)

where the maximum distance is  = r0/b.

First, let us note that taking into account the conser-
vation of dimensionality, the polarization vectors
should appear as dimensionless quantities e/b.

Second, only the factor exp(ik )Ws'tj in expres-

sion (12) depends on . As was shown above, this
dependence can be represented in the form

(13)

where C1 is a constant independent of .

Rss '
0 ∂

∂Rs
0

---------

Quss 'tα QRss '
0 q1

∂
∂Rs

0
---------ustα .≈

T1'' πr0
2∆nQRss '

0 q1
∂

∂Rs
0

--------- ust,
t

∑–=

T1'' Rs
0ARss '

0 ,=

q ARs
0– 0.=

Rs
0
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dq⊥
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2∆nQ

∂
∂Rs

0
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dRs
0
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t
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Third, .

We can carry out a simple summation in expres-
sion (12). This is favored by the small size of the dislo-
cation cores and the discrete nature of the terms of the
sum. It is assumed in the summation that the variable ust

is substituted by an average value, after which the law
of the variation in ust with distance is introduced. We
can expect an error of no more than 100% in compari-
son with exact integration.

In order to have the possibility of summing over t,
let us consider the edge dislocation as a set of point
defects, each of which has its center at point t. The dis-
tance between each point t and the adjacent one is of the
order of b (more precisely, it is the distance between the
atoms in the direction of the dislocation line). However,
the displacements of atoms from their sites predomi-
nantly occur in the plane perpendicular to the disloca-
tion line. Therefore, the difference between a single
bulk point defect and a “point” defect from the disloca-
tion set is that a “defect” in the edge dislocation induces
atomic displacements only in the perpendicular plane.
The combined effect for a dislocation depends on the
number of point defects which fall within the length of
the dislocation. In the framework of the given approxi-
mation, this number is equal to L/b.

It follows from the above that the summation over s'
determines the number of displaced atoms for each
point defect. In this case, the summation over s' results
in the factor πN(r0/b)2.

The summation over k should be performed over
singular points of the reciprocal lattice with inclusion
of the weight contributions. With the results obtained in
[4], we deduce that, for bcc and fcc structures, the fac-
tor associated with the summation over k is equal to
4.59 and 4.41, respectively. This result differs only
slightly from the value of the spherical approximation:
4π/3 ≅  4.19.

The summation over p for the isotropic crystal gives
a factor of 3.

The polarization vectors can be estimated from the
dielectric properties of the atom. According to [5], the
formula for the polarization vector has the form

(14)

where εν is the permittivity of free space, Ra is the
atomic radius, E is the vector of the external electric
field, Z is the total number of electrons in the atom, and
|e | is the electron charge.

In the case of a dislocation, the quantity E = F/Z|e |
describes the electric field created as a result of the
atomic displacement. This expression can be rewritten
in the form E = F/Z|e | = Wc/Z|e |e. Here, Wc is the
energy of the dislocation core per atom. For simplicity,
it can be assumed that the ith component of the polar-

δRs
0 r0/b=

e
4πενRa

3E
Z e

----------------------,=
P

ization vector coincides with the magnitude of the
polarization vector in the j direction; that is, ei = ej = e.

The frequency of normal modes can be determined
as follows. The displacements near the dislocation line
are probably so large that interatomic distances become
close to those characteristic of the liquid or amorphous
states. This is evident from the following facts. First,
the linear theory of elasticity is inapplicable to the dis-
location core, and the core region is best represented in
the form of a singularity [6]. Second, the rate of diffu-
sion along the dislocation core is 4–5 orders of magni-
tude larger that in the bulk of the crystal lattice [7],
which approximates the rates of diffusion in liquids.
Therefore, it is reasonable to assume that the maximum
possible frequencies ωkp of normal modes in the dislo-
cation core correspond not to the Debye temperature, as
is the case in an ideal lattice, but to the melting point Tm,
i.e., �ωkp = kTm.

The energy of the dislocation core per atom is equal
to [6]

(15)

where G is the shear modulus at the temperature of the
measurement of the misorientation angle and ν is the
Poisson ratio.

The value of C1 can be found from condition (13)

when  = r0/b = 1. Let us set exp(ik ) ≅  1. This
assumption is justified, because the most prominent
displacements which lead to the reflection diffusion in
the case of edge dislocations can be measured when the

wave vector k is perpendicular to the  vector. Then,
C1 is determined only by the interatomic interaction

forces . Since  = r0/b = 1, these forces can be
calculated from the principle of the pair interaction. In
this case, the expression for the pair interaction energy
Vs't can most conveniently be represented via the

pseudopotentials of ions w0(q) at q = 2  [8]:

(16)

Here, ze is the number of effectively coupling electrons

per atom [9], m is the electron mass, and  is the
radius of the Fermi pseudosphere occupied by the
almost free, effectively coupling electrons ze [9]:

(17)

Wc
Gb2

4π 1 ν–( )
-----------------------,=

Rs
0 Rss '

0

Rss '
0

Ws 'tj Rs
0

kF'

G1 Ws 't
Vs 't

b
--------

18πze
2 w0 2kF'( )[ ] 2

bkF'
2

----------------------------------------
2kF' b( )cos

2kF' b( )3
-------------------------.= = =
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kF'
3π2ze
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-------------3

1
b
--- 18πze
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HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001



CONTRIBUTION OF DISLOCATION CORES TO X-RAY SCATTERING BY CRYSTALS 853
where Ω0 is the atomic volume. The quantity w0( )
is determined in the following manner [8]:

(18)

where C2 is the quantity equal to the ratio n3/Z and n is
the principal quantum number of the almost free, effec-
tively coupling electrons. The latter will be demon-
strated in a separate work dedicated to the problems of
the electronic structure and interatomic interaction in
transition metals.

The value of cos( b) is negative and, in most
cases, approaches –1. Taking into account that calcula-
tion of expression (16) was carried out in atomic units
and substituting the values of  and w0( ), expres-
sion (16) can be rewritten in the form

(19)

Substituting relationship (13) into expression (12),
using the results of the summation, carrying out differ-

entiation with respect to , replacing  by r0/b in
expression (13), and carrying out the substitution of all
the quantities determined above, we obtain the expres-
sion for δ  in the form

(20)

Substituting relationship (1) into expression (20)
and taking into account the numerical values of the fun-
damental constants, we can derive a relationship
between δ  and δq⊥  measured experimentally:

(21)

Let us now substitute the numerical values of all the
quantities for particular crystals (for example, for metals
from [10], for r0/b from [9], and for ze from [11]) into

relationship (21) and deduce that the values of δ  truly
represent a small part of the experimentally determined
smearing of the reciprocal lattice site δq⊥ (see table).

Summing up the results obtained, we can conclude
that, first, the contribution of the dislocation cores to
the angle of the integral misorientation of the substruc-
ture depends on the dimension of the dislocation core
or, what is the same, on the width of the splitting of the
dislocations, because they are proportional to each
other [6]. Second, this contribution depends on the fun-

2kF'
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C2πze

Ω0kF'
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kF' 2kF'
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damental properties of metals in the condensed state
(melting temperature, elastic constants, lattice parame-
ter, and the concentration of effectively coupling elec-
trons), and also on the individual features of the atom
(atomic mass, the principal quantum number of outer
shell electrons that determine the interatomic interac-
tion, and the number of electrons of the ion core).
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Calculated ratio of the smearing of the reciprocal lattice site
due to the contribution of dislocation cores to the experimen-
tally observed smearing due to the dislocations in the crystal
according to formula (21) for a number of metals

Metal /δq⊥

Cu 1.1 × 10–4

Ni 3.0 × 10–5

Ag 1.4 × 10–4

Mo 2.6 × 10–5

W 3.4 × 10–6

Nb 3.1 × 10–5

Ta 5.0 × 10–6

δq⊥'
1
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Abstract—Dislocations and dislocation plasticity are considered and compared with such dissimilar physical
phenomena as superfluidity of liquid helium and type II superconductivity. These phenomena share the com-
mon property that the dislocations, as well as quantum vortices in superconductors and superfluid helium, are
topological defects. They arise during a phase transformation which is accompanied by spontaneous symme-
try breaking caused by Bose condensation of acoustic phonons. The general problems of the evolution of
ensembles of linear topological defects and the character of the spatial structures formed by them are discussed.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The notion of a dislocation as a defect which
reduces the resistance of the crystal to a crystallo-
graphic shear and whose gliding is an elementary act of
plastic deformation of the crystal was introduced
purely phenomenologically in [1, 2]. In spite of this cir-
cumstance, the essential features of plastic deformation
of crystals were interpreted in terms of dislocations in
succeeding decades. At the present time, the notion of
crystal plasticity primarily implies dislocation plastic-
ity, that is, translation of dislocations along the most
closely packed planes, which gives rise to plastic defor-
mation of the crystal. In the general case, dislocation–
disclination plasticity takes place in circumstances
where dislocation gliding is hampered and rotations
occur in the crystal; at high temperatures, vacancy
fluxes make a dominant contribution to the deformation
of crystals and, therefore, vacancy plasticity takes
place.

The microscopic mechanism of the formation of
dislocations in an originally dislocation-free crystal
was unclear for a long time. However, this was not a
serious handicap to investigations into plastic deforma-
tion, because an actual crystal has a sufficient amount
of dislocation sources, such as Frank–Read sources,
which generate dislocations at the very beginning of
deformation. As the deformation proceeds further, the
mechanism of double cross slip of screw dislocations
starts to operate and the dislocation density increases
rapidly with deformation.

If there are no dislocations and no Frank–Read
sources in a crystal, the formation of dislocations is pre-
sumed to be due to geometric stress concentrators in the
form of steps of atomic sizes, which are present on the
surface of the crystal. Near the stress concentrators, the
local stress can be as high as the theoretical shear
strength (about ≈G/2π, where G is the shear modulus)
and the dislocations are nucleated at these sites.
1063-7834/01/4305- $21.00 © 20854
Once dislocations have been formed, they can move
through the crystal, far from stress concentrators, under
the action of negligibly low stresses, 10–5G to 10–4G.
Resistance to the dislocation movement along slip
planes can be offered by various crystal defects (impu-
rity atoms, phase precipitates, forest dislocations, etc.)
and, in crystals with directed atomic bonding, by the
Peierls potential. These obstacles increase the disloca-
tion friction stress up to (10–3–10–2)G and make dislo-
cation loops stable (when the external stress is
removed), because the dislocation lines are pinned by
obstacles.

What is the reason for the low resistance of the lat-
tice to dislocation movement when the lattice has no
special obstacles which limit motion? According to [3,
4], the formation of dislocations near stress concentra-
tors in an originally dislocation-free crystal is due to a
spontaneous breaking of the symmetry (regularity in
atomic positions) and Bose condensation of acoustic
phonons. Obviously, the coherent phonon state pro-
duced by the Bose condensation is the reason for the
low lattice resistance to the motion of dislocations.
Therefore, one can think of the crystal plasticity as a
manifestation of the superfluidity of the crystal, which
is associated with the formation of dislocations and
their motion through the crystal; that is, the plasticity is
similar to the superconductivity of metals and the
superfluidity of 4He and 3He.

In this paper, we discuss (keeping in mind the afore-
said) the general problems of the formation (and the
properties) of topological defects such as dislocations
and quantum vortices in condensed media (Section 1),
the problems of the evolution of ensembles of such
defects (Section 2), and the spatial inhomogeneous
structures formed by them (Section 3).
001 MAIK “Nauka/Interperiodica”
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1. DISLOCATIONS AS TOPOLOGICAL DEFECTS

We consider dislocations in parallel with other
diversified physical phenomena which are outside the
framework of the physics of strength and plasticity of
crystals. These phenomena are associated with a large
class of topological defects which arise in various con-
densed media (crystals, liquid crystals, superfluids) as
a result of phase transformations accompanied by a
spontaneous breaking of the symmetry [5–9]. These
defects can also be thought of as nonlinear topological
excitations of a medium under a specified external
field.

For example, in the case of type II superconductors,
topological defects in the form of quantum vortices
(fluxoids) arise when a magnetic field of strength H >
Hc1 is applied to a superconductor. In the case of super-
fluid 4He and 3He, quantum vortices appear when a
mechanical impulse is applied to a superfluid and
causes it to move at a velocity V > Vc. In crystals, quan-
tum vortices in the form of dislocations are produced,
as mentioned above, by applying a local mechanical
stress of the order of the theoretical shear strength of
the crystal lattice.

In recent publications, the subject of wide specula-
tion was one more type of topological defects, hypo-
thetical cosmic strings, which carry an enormous grav-
itational charge. According to [10, 11], they arise in the
initial stage of the expansion of the Universe and, in
time, become the centers at which matter is condensed
and stars and galaxies are formed. Cosmic strings, as
well as other topological defects, are a result of the
phase transformation that occurs in the process of rapid
expansion and cooling of hot and extremely dense pri-
mary cosmic matter.

What do all these topological defects have in com-
mon which would allow one to consider them as
belonging to the same class of phenomena in spite of
the sharp distinction between the physical media in
which they are formed? There are several properties of
this kind.

First, as indicated above, the defects under study are
formed during phase transformations with a spontane-
ous breaking of the symmetry.

Second, although the defects arise in quantum sys-
tems, they, once formed, can be treated as classical
macroscopic objects [4]. The relation to the quantum
system is manifested only in the type and magnitude of
the quantized (topological) charge carried by a defect.
This is a magnetic flux quantum in the case of vortices
in a superconductor, a quantum of the liquid particle
velocity circulation in superfluid helium, the Burgers
vector (a quantum of displacement circulation) in the
case of dislocations, and the gravitational charge per
unit string length in the case of cosmic strings.

Third, a property common to the defects is that Bose
condensation takes place in the quantum systems of
particles in which these defects are formed. The Bose
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
condensate can be separated from the normal state by
an energy gap (as is the case with Cooper electrons and
4He atoms) or can have no gap (in the case of disloca-
tions [3, 4], quantum vortices in the A phase of 3He [8],
and cosmic strings [12, 13]) if so-called Goldstone
bosons with zero minimum energy exist. In the latter
case, the order parameter is determined by the magni-
tude and direction of the wave vector [3, 8] rather than
by the energy gap.

Fourth, the topological defects at hand are charac-
terized by a self-energy per unit length (line tension)
and have a singular field, the strength of which dimin-
ishes with distance from the defect line in proportion to
r–1. In this respect, the defects under discussion can be
classified as “charged” strings.

Fifth, all the topological excitations in question can
be described using standard techniques of the gauge
field theory [3, 4, 11]. In this respect, the theory of their
formation is similar to the current theory of elementary
particles, which treats these particles as various excita-
tions of a vacuum [14].

Finally, sixth, a common property, which has not yet
been studied theoretically in detail, is the evolution of
an ensemble of linear topological defects after they
arise in the specific actual physical medium. The equa-
tions of the gauge field theory describe the formation of
individual defects rather than of their ensemble,
because the average distance between defects in an
ensemble can be much larger than the distance at which
the quantum effects are substantial. The problem of
evolution of an ensemble of linear topological defects
is considered in the next section.

2. EQUATIONS OF EVOLUTION 
OF AN ENSEMBLE OF LINEAR DEFECTS

As already noted, once the topological defects have
arisen, they can be treated as classical macroscopical
objects at distances exceeding the mean spacing
between the particles of the microcanonical ensemble
in which they are formed. Experiments show [15–21]
that the number of defects increases and the interaction
between defects become important with an increase in
the external field that causes these defects to arise.

At the present time, ensembles of dislocations [18–
21] and of quantum vortices in superfluid helium [15–
17] are the best investigated both experimentally and
theoretically. Attempts have also been made to derive
equations for the evolution of vortices in superconduc-
tors [22, 23] and for cosmic strings [11, 24, 25]. The
equations describing the time t dependence of the aver-
age density n(t) of vortices in helium and of disloca-
tions were first derived in a model developed to explain
the corresponding experimental dependences [15, 20,
21]. They have the form

(1)dn
dt
------ w δ' γ

d
---– 

  n αn3/2 βn2.–+ +=
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Fig. 1. Dependence of the generation rate of quantum vortices in 4He (a) on the vortex density  [15] in accordance with Eq. (3)
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n
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–

Here, n(t) = L(t)/V, where L(t) is the overall length of
dislocations in a crystal or of vortices in a vessel at a
given instant of time and V is the volume of the crystal
or the vessel; w is the density of vortex sources (or of
stress concentrators and Frank–Read sources in the
case of dislocations); δ' is the dislocation (or vortex)
multiplication factor on various inhomogeneities in the
corresponding media; the coefficient γ/d characterizes
the decrease in the density of topological defects
caused by their leaving the thin crystal (or a channel in
the case of vortices in helium) of thickness d; α is the
dislocation (vortex) multiplication factor due to their
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Fig. 2. Dependence of the dislocation multiplication rate in

an Al–Mg alloy on the quantity  at different tempera-
tures in the range from 77 to 473 K [21].

n
1/2
P

crossing each other; and β is the annihilation factor of
defects opposite in sign.

Equation (1) was formulated for the vortex density
in helium and for the dislocation density independently
and at different times. A theoretical substantiation of
this equation for vortices can be found in [16, 17] and,
for dislocations, in [21, 26]. Figures 1 and 2 compare
the experimental data for the evolution of the density of
vortices in 4He [15] and of dislocations in an alumi-
num–magnesium alloy [21], respectively, with the spe-
cific case of Eq. (1):

(2)

In Fig. 1a, the solid line is the dependence in Eq. (2)
expressed in terms of the dimensionless vortex density

 = n/n0:

(3)

where n0 = (α/β)2. The curve in Fig. 1b describes the

dependence of the same quantity on .
The solid line in Fig. 2 describes the dependence of

the dislocation multiplication rate (with increasing
strain) on the dimensionless dislocation density:

(4)

Equation (4) is derived from Eq. (1) in the case of dis-
locations by putting dn/dt = (dn/dε) , where ε is the
strain,  = bnu is the plastic strain rate, b is the Burgers
vector, u is the dislocation velocity, α = k1bu, β = k2bu,
n0 = (α/β)2 = (k1/k2)2, and δ = 4/k2. The rising branches
of the parabolas in Figs. 1b and 2 describe the process

dn
dt
------ αn3/2 βn2.–=

n

dn
dt
------

α2

β
-----n3/2 1 n1/2–( ),=

n1/2

δdn
dε
------ 4n1/2 1 n1/2–( ).=

ε̇
ε̇
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of multiplication of linear defects due to their crossing
each other, and the descending branches correspond to
the process of annihilation of defects opposite in sign.

It is seen that Eqs. (2)–(4) agree well with the exper-
iment. Clearly, Eq. (1) describes the evolution of an
ensemble of topological defects, regardless of the
microscopic quantum system in which the defects
arise. This equation accounts for the kinetic properties
of the defects as classical objects and for the processes
of generation, multiplication, and annihilation, which
are characteristic of linear defects. Earlier, no attention
was drawn to this important circumstance.

3. SPATIAL STRUCTURES

Another characteristic feature of the defects under
discussion is that they can form spatial structures.
These can be separated into homogeneous (chaotic
[16], ordered [27], net [28]) and inhomogeneous (band
[19, 21], cell [18, 21]) structures. The homogeneous
and inhomogeneous dislocation structures have been
best studied experimentally [18, 19, 21, 28–30]. As an
example, we will consider the formation of a cell dislo-
cation structure.

For this purpose, we represent Eq. (1) in the form

(5)

where ν = (γ/d – δ') > 0 is a coefficient characterizing
the dislocation immobilization rate at obstacles and d is
the dislocation mean free path to these obstacles (in
thin crystal plates, d is the thickness of the crystal in the
direction of motion of dislocations).

There are at least two reasons for the occurrence of
a spatially inhomogeneous dislocation flux. One of
them is associated with the long-range interaction of
dislocations and the occurrence of a correlation diffu-
sion flux due to screening of the dislocations of one
sign by dislocations of the opposite sign [21, 29, 30]:

(6)

where  are the diffusion coefficients of the first and
second order, respectively.

The other reason is the short-range (contact) interac-
tion of dislocations, which decreases the dislocation
velocity and leads to a reversed diffusion flux in the
regions where the dislocation density is higher because
of dislocation (strain) hardening of the dislocation
ensemble [21]:

(7)

where M = –∂lnu/∂lnn > 0 is the coefficient of harden-
ing (and reversing, when M > 1) of the dislocation flux.

By substituting Eq. (6) or (7) for the flux in Eq. (5),
one can find that the dislocation density becomes unsta-

∂n
∂t
------ — j⋅+ –νn αn3/2 βn2,–+=

jcr D̂1
cr —n D̂2

cr —2( )—n …,+⋅+⋅=

D̂1 2,
cr

jdf 1 M–( )D̂1
df —n⋅–=

– 1 M–( )D̂2
df —2( )—n …,+⋅
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ble with respect to spatial fluctuations δn ~ exp(ωt +
iq · r) with critical wave vector qc = (D1/2D2)1/2 and
critical increment

(8)

where Φ(n) stands for the right-hand side of Eq. (5).
The derivative (∂Φ/∂n)0 corresponds to the values of n
at which Φ(n) = 0.

If the kinetic coefficients in Eq. (5) are such that
νβ/α2 < 1, the equation Φ(n) = 0 has three roots [21]:

(9)

An analysis shows that the singular point n2 is an unsta-
ble focus and n3 is a saddle point. Neglecting the diffu-
sion fluxes of the second order in Eqs. (5) and (7),
we find that nonlinear equation (5) has a stationary
solution,

, (10a)

if f = (n3/n2)1/2 = α2/νβ > 1. This solution describes a
periodic (cell) dislocation structure with spatial period

(10b)

and a dislocation density equal to n3 at the walls of the
cells and to n2 < n3 in the interior of the cells. From
Eq. (9), it is seen that the value of n2 is determined by
the competing processes of immobilization and multi-
plication of dislocations; n3, by the competing pro-
cesses of multiplication and annihilation of disloca-
tions. As an illustration of Eq. (10a), Fig. 3 shows the
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Fig. 3. Distribution of dislocations in a cell structure in the
z = 0 plane according to Eq. (10a) for f = 102.
1



858 MALYGIN
distribution of the dislocation density n/n3 over the cell
structure in the z = 0 plane for the case where the ratio
of the dislocation densities at the walls and in the inte-
rior of the cells is n3/n2 = 104.

As for inhomogeneous structures in other ensem-
bles of linear topological defects, they have not been
observed, as far as we know, in ensembles of quantum
vortices in superconductors and superfluid helium.
From the calculations presented above, it is seen that
certain, fairly stringent requirements have to be met in
order for such structures to arise. In this connection, it
is of interest to discuss the large-scale cell structure of
the matter distribution (galaxies and stars) in the
present-day Universe [31]. In accordance with the het-
erogeneous mechanism of galaxy nucleation through
the accretion of primary matter on cosmic strings [10,
11], one can suppose that, by analogy with cell disloca-
tion structures, the inhomogeneous matter distribution
in the Universe is due to the cell structure of the cos-
mic-string distribution in it. This hypothetical mecha-
nism of formation of large-scale inhomogeneities can
be considered an alternative to the traditional mecha-
nism of their formation due to quantum fluctuations of
the density of the primary matter.

Thus, comparison of the properties of dislocations
and topological defects of other types showed that, on
the whole, dislocations possess properties that are typ-
ical of many other defects and, therefore, the phenom-
enon of plastic deformation of crystals is universal in
character. Furthermore, the evolution of an ensemble of
dislocations and that of an ensemble of vortices in
superfluid helium are described by the same equation;
this equation takes into account the kinetic specific fea-
tures of these linear objects which differentiate them
from point objects. These findings suggest that the
equations of evolution of other linear topological
defects, as well as the structures formed by them, are
similar in character.
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Abstract—A new type of magnetoplastic effects in polymers is revealed. This effect cannot be explained by
the reorientation of macromolecular units that possess a magnetic susceptibility anisotropy. It is shown that the
joint action of magnetic and electric fields and the rotational mobility of side groups in macromolecules are fac-
tors of crucial importance in changing the plasticity of polymers in pulsed magnetic fields. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It is generally believed that magnetoplastic and
other effects associated with the influence of magnetic
fields on the macroproperties of polymers are reduced
to the activation of reorientation of the macromolecular
segments possessing anisotropy of the magnetic sus-
ceptibility [1–5]. However, a number of experimental
results obtained in recent works [6, 7] showed that there
are factors other than the orientational effects (this con-
cept, even if reliably confirmed, is far from universal)
which can also account for changes in the plasticity of
polymers under the action of magnetic fields. It is rea-
sonable to suppose that other unknown channels for
changes in the molecular or supramolecular structure of
polymers are realized in magnetic fields. Evidence for
their existence is provided, for example, by the magne-
toplastic effects observed in ionic and ionic–covalent
crystals [8]. In these crystals, the magnetic field affects
spin-dependent chemical reactions between structural
defects [9, 10] and, thus, induces a considerable change
in the plastic properties even in weak constant magnetic
fields in the case when the energy transferred to a para-
magnetic particle, UM ~ µBB, is substantially less than
the mean energy of thermal fluctuations UT ~ kT (where
µB is the Bohr magneton, B is the magnetic field induc-
tion, k is the Boltzmann constant, and T is the tempera-
ture). Another reason for the existence of different mag-
netoplastic effects in these materials is the fact that the
effect of alternating magnetic fields on the plasticity of
polymers is stronger than that of constant magnetic
fields [11, 12]. The same feature is observed in many
other solids with molecular [13], covalent [14], and
metallic [15] interatomic bonds. In this respect, the aim
of the present work was to investigate experimentally
the regularities in the influence of pulsed magnetic and
electric fields on the plasticity of polymers and to reveal
the objects susceptible to magnetic field effects.
1063-7834/01/4305- $21.00 © 20859
2. EXPERIMENTAL TECHNIQUE

The samples to be studied were linear amorphous
polymers that differ from one another in their polarity,
the magnetic susceptibility, and the sizes and mobility
of their side groups [16]: a CO-95 commercial
poly(methyl methacrylate) (PMMA) plasticized by
dibutyl phthalate, H1-475K-KG2-HYOSUNG-BASF
poly(styrene) (PS) obtained by milling of granules fol-
lowed by pressing, and a C7058M sheet suspended
poly(vinyl chloride) (PVC) prepared by powder press-
ing. This allowed us to provide the appropriate condi-
tions for examination of the role played by each of the
aforementioned factors in magnetoplastic effects.

Separate investigation into different channels of
magnetic-field effects on plasticity is complicated by
the simultaneous manifestation of reorientational
effects in magnetically anisotropic segments of macro-
molecules. It should be noted that the reorientation of
macromolecules in a magnetic field of ~0.4 T at room
temperature in the polymers under consideration pro-
ceeds over a long period of time (~30 days) [4, 5]. For
this reason, in order to separate and examine other pro-
cesses sensitive to the magnetic field and capable of
affecting the plasticity, we used short magnetic-field
pulses with an amplitude of 2–30 T and a duration of
25–1300 µs, which, according to the estimates made in
[6], was insufficient to achieve reorientation of the
macromolecules. The pulsed magnetic field was
induced using a capacitor bank. The capacitor bank dis-
charged into a solenoid with a small number of turns,
which made it possible to generate magnetic-field
pulses having a shape close to a half-cycle of a sinu-
soid.

The macroproperties of polymers (including plas-
ticity) substantially depend on the characteristic fre-
quencies of intermolecular and intramolecular vibra-
tions [17]. These frequencies vary over a wide range
(from ~1015 to 105 Hz), which makes elucidation of the
001 MAIK “Nauka/Interperiodica”



 

860

        

GOLOVIN, MORGUNOV

                                                                                                                        
role of the thermofluctuation motions of macromole-
cules in the magnetoplastic effect with the use of only
one experimental technique difficult. Hence, the influ-
ence of high-frequency (1015–1013 Hz) vibrations of
macromolecules on the magnetoplastic effect was stud-
ied not only by testing the crystal plasticity but also
with the use of a SPECORD spectrometer. This made it
possible to compare the absorption spectra of film sam-
ples prior to and after their exposure to the magnetic
field. The role of the intramolecular torsional and inter-
molecular vibrations with frequencies of 1013–105 Hz
was investigated by comparing the magnitudes of the
magnetoplastic effect in samples exposed to a magnetic
field at different temperatures in the range 77–490 K,
which covered the critical temperatures of defreezing
the corresponding degrees of freedom [17].

The polymer plasticity and its change after the mag-
netic-field pulse action were judged from the Vickers
microhardness H. The microhardness was measured on
a PMT-3 microhardness tester at an indenter load of
0.2 N prior to and after exposure of the samples to a
magnetic field. Each experimental value was obtained
by averaging over the results of 20–30 individual
microhardness measurements. The magnitude of the
magnetic-field effect on the plastic properties of poly-
mers could be judged from the difference ∆H = HB –
H0, where HB and H0 are the microhardnesses after and
before exposure to the magnetic field, respectively.
Since the exposure of samples to the magnetic field and
the indentation were separated in time in all experi-
ments, the magnetic field could not affect movable
parts of the PMT instrument and did not lead to arte-
facts. In all experiments, the indentation was performed
at the same controlled temperature T = 295 ± 3 K,
which was below the glass transition temperatures Tg of
all the polymers under investigation.

10 20 30
0
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4

6

1
2
3

B, T

∆H
/H

0,
 %

Fig. 1. Dependences of the microhardness difference ∆H =
HB – H0 (HB and H0 are the microhardnesses after and
before exposure to the magnetic field, respectively) normal-
ized to the initial microhardness H0 for (1) PMMA, (2) PS,
and (3) PVC samples. The pulse amplitude is 24 T, and the
pulse duration is 80 µs.
P

3. RESULTS

It was found that exposure of PMMA and PS sam-
ples to a single magnetic-field pulse with an induction
B = 30 T and a duration of 140 µs leads to a decreases
in the microhardness by 5%. The microhardness mono-
tonically decreases with the amplitude of the magnetic-
field pulse at constant duration (Fig. 1). The microhard-
ness of PVC samples after their exposure to a single
magnetic pulse under the same conditions remains vir-
tually unchanged.

With the time passed after exposure of PMMA and
PS samples to the magnetic field, the microhardnesses
regained their initial values (Fig. 2). By repeatedly
switching on the magnetic pulse generator (after the
recovery of the initial microhardnesses of PMMA and
PS samples), the microhardness H could be reproduc-
ibly decreased to virtually the same value as in the first
exposure of the samples to the magnetic field (Fig. 2).
This implies that changes induced by the magnetic-
field pulses in the samples are reversible; i.e., they are
caused by the energy transfer from the magnetic field
and the excitation of particular structural elements of
polymers from an equilibrium state.

Thermoactivation analysis of the height of a poten-
tial barrier to relaxation of the polymeric structure
excited in the magnetic field revealed that the time con-
stant τ of the microhardness recovery decreased with an
increase in the temperature T at which the samples were
held after exposure to the magnetic field. The exponen-
tial temperature dependence of τ (see the inset in
Fig. 3b) allowed us to evaluate the activation energy for
the microhardness recovery after the action of the mag-
netic field for both polymers in which the magnetoplas-
tic effect was observed: UPMMA ~ 0.25 ± 0.06 eV and
UPS ~ 0.32 ± 0.06 eV.

In order to elucidate the mechanisms of the energy
transfer to structural units of polymers and the role of
magnetic-field pulse edges, we examined how the total
time of exposure to the magnetic field affects the micro-
hardness of the samples in the case when the exposure
was accomplished by the repetition of identical pulses.
It was found that an increase in the number N of pulses
with the amplitude B = 2 T and the duration tp = 80 µs
up to N = 50 (so that the total time of exposure Σtp to
the magnetic field is equal to 4 ms) can result in a loss
of strength of PMMA that noticeably exceeds the
experimental error (Fig. 4). However, exposure of the
sample to a constant magnetic field with B = 2 T for a
time in the range 1 < tp < 103 s (which is considerably
longer than the total duration of exposure to the pulsed
magnetic field) does not lead to a change in H. Conse-
quently, unlike the results obtained for PMMA in [1–5],
in our experiments, the presence of the magnetic field
alone did not ensure a change in the microhardness H.
The necessary condition is a variation in the magnetic
field with time. The most evident consequence of this
variation is the generation of a vortex electric field. Its
maximum strength E for a single magnetic-field pulse
HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
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with B ~ 10 T and a duration of ~100 µs for a sample
10–2 m in size is estimated at ~103 V/m.

The role of the vortex electric field in the magneto-
plastic effect was determined by comparing the results
of two series of experiments. In the first series, the
PMMA samples were exposed to a pulsed magnetic
field with different frequencies of the fundamental har-
monic νB = 1/tp and the same pulse amplitude. In this

case, we determined the threshold frequency  ~ 3 ×
103 Hz. At νΒ < ; the magnetoplastic effect was not
observed (Fig. 5, curve 1). In the second series of
experiments, the pulsed magnetic field was replaced by
the joint action of a constant magnetic field (B ~ 2 T)
and an alternating electric field with the frequency νE =
102–4 × 104 Hz and the amplitude E = 2 × 104 V/m. This
treatment of the samples for 30 min also results in the
loss of their strength, and, at νE < 3 × 103 Hz, the loss
of strength of PMMA is not observed (Fig. 5, curve 2).
Note that the alternating electric field alone, i.e., when
applied in the absence of a constant magnetic field for
30 min, does not lead to a change in the microhardness
at any value of νE in the studied range (Fig. 5, curve 3).

It is worth noting that  and  virtually coincide and
the mutual orientation of the vectors B and E in the
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Fig. 2. Dependences of the microhardness on the current
time t for (a) PMMA and (b) PS under periodic exposure of
the samples to single pulses of a magnetic field (B = 24 T,
tp = 80 µs) at T = 293 K. Arrows indicate the instants of
switching on the magnetic pulse generator. Dashed lines
correspond to the microhardness H0 of the samples not
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joint action of magnetic and electric fields does not
affect the loss of strength in polymers.

Analysis of the temperature dependences of the
magnetoplastic effect demonstrates that a decrease in
the microhardness ∆H of the samples upon exposure to
a pulsed magnetic field is observed only in the specific
range of temperatures at which the samples are treated
in the magnetic field: 250 < T < 390 K for PMMA and
230 < T < 370 K for PS (Fig. 6). Outside these ranges,
the magnetic-field pulse does not affect the microhard-
ness of the polymers under investigation. No changes in
the IR absorption spectra of the polymers in the vibra-
tional frequency range 400–4000 cm–1 were found at
any temperature of exposing the samples to the mag-
netic field.

The change in the microhardness of PMMA upon
exposure to a single magnetic-field pulse depends not
only on the temperature at which the samples are
exposed to the magnetic field, but also on the uniaxial
tensile strain ε of the sample before its treatment in the
magnetic field (Fig. 7a). The sensitivity of the plastic
properties to the magnetic-field pulse (the magnitude of
∆H) increases with an increase in ε. Since the samples
were strained at a higher temperature close to the glass
transition point, in a special series of experiments, we
demonstrated that a short-duration heating of samples
by itself does not affect the sensitivity of polymer plas-
ticity to the magnetic-field pulse. Therefore, it is this
plastic strain that brings about changes in the sensitivity
of polymers to the magnetic field. An increase in the
time interval between the strain and the magnetic-field
pulse is accompanied by a gradual decrease in the
strain-induced sensitivity of the plastic properties of
polymers to the magnetic field (Fig. 7b).

4. DISCUSSION

The absence of changes in the IR spectra of poly-
mers after exposure to a pulsed magnetic field suggests
that the magnetoplastic effect under consideration is
unrelated to stretching and bending intramolecular
vibrations of the kinetic units of macromolecules. At
the same time, the activation energies UPMMA and UPS,
which were determined for the microhardness recovery
after the action of the magnetic field pulse (Fig. 3), are
in reasonable agreement with the activation energies
available in the literature [17] for the γ relaxation tran-
sitions in PMMA and PS (Fig. 8a). The activation ener-
gies for other transitions (Fig. 8b), which were obtained
from independent measurements [17], substantially
differ from those found in our experiments. Further-
more, it is these critical temperatures of “defreezing”
the γ transitions that bound from below the temperature
range in which the magnetoplastic effect is observed
(Fig. 6). Thus, the results obtained indicate that the high
mobility of side groups [CH3 methyl groups in PMMA
and C6H5 phenyl groups in PS (Fig. 8b)] is the neces-
sary condition for the sensitivity of the plastic proper-
HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
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ties of polymers to the magnetic field. This inference is
also confirmed by the absence of the magnetoplastic
effect in PVC (Fig. 1), in which the mobility of side
groups is substantially less than that in PMMA and PS.

The plastic deformation of polymers also consider-
ably affects the free volume and the mobility of the side
groups in macromolecules. Therefore, the sensitivity of
the magnetoplastic effect to the preliminary uniaxial
tension of the samples can be explained by the increase
in the free volume under deformation of the polymers
and its decrease upon subsequent annealing (Fig. 7).

In our experiments, we established that the critical
frequency of an alternating electric field applied simul-
taneously with a constant magnetic field is in good
agreement with the frequency of the fundamental har-
monic of the magnetic-field pulse (Fig. 5). This sug-
gests that the vortex electric field plays an essential role
in the magnetoplastic effect. Since the side groups of
macromolecules in the studied polymers have dipole
moments, it can be assumed that the role of the electric
field consists in initiating their rotation. However, the
alternating electric field alone in the absence of a con-
stant magnetic field does not affect the plasticity of
polymers. Therefore, the effect under investigation can
be termed electromagnetoplastic. Note that the thresh-
old duration (~3 × 10–3 s) of the magnetic-field pulse
affecting the sensitivity of polymers to the magnetic
field coincides in the order of magnitude with the wait-
ing time τ0 for attempting to overcome the barrier,
which is derived from the Arrhenius equation

Here, U is the activation energy which we obtained for
PMMA from the thermoactivation analysis of the plas-
ticity recovery after exposure to the magnetic field
(Fig. 3) and τ is the recovery duration equal to ~105 s at
T = 293 K. To put it differently, if the duration of the
joint action of magnetic and vortex electric fields is
shorter than the characteristic time of waiting for ther-
moactivated attempts of relaxation, the magnetic-field
pulse efficiently affects the plasticity of polymers. Oth-
erwise, when the exposure time is large compared to τ0,
the magnetoplastic effect is absent.

It should be noted that the energies transferred by
the magnetic and electric (vortex electric field) com-
ponents of a pulsed magnetic field (B ≈ 2–30 T, tp ≈
10−4 s) to the units and side groups of macromolecules
are equal to UM ≅  µBB ≈ 10–4–10–3 eV and UE ≅  pEB ≈
10–7 eV, respectively. These energies are considerably
less than the activation energy for rotation of the side
groups, U ≈ 0.3 eV. However, with allowance made for
the experimentally determined number N of magnetic-
field pulses required to reach saturation of the magne-
toplastic effect (N ≈ 3 at B = 20 T, N ≈ 15 at B = 5 T, and
N ≈ 50 at B = 2 T), the total transferred energy per side
group becomes comparable to U. In the case when a
constant magnetic field is used instead of a pulsed mag-
netic field and the vortex electric field is replaced by an

τ τ 0 U1/kT( ).exp=
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external alternating electric field with the same
strength, the saturation is reached after ~107 pulses of
the electric field, which, in the presence of the mecha-
nism for energy accumulation, is comparable to or even
exceeds the activation energy U.

We made an attempt to measure the electron para-
magnetic resonance from the change in the microhard-
ness of PMMA. The experimental technique of these
measurements was described in detail in [9, 10]. In
these works, we revealed that the plasticity of ionic
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Fig. 7. Dependences of the loss of strength ∆H in PMMA
samples after exposure to a pulsed magnetic field (B = 24 T,
tp = 80 µs) on (a) the preliminary strain ε and (b) the time
passed after the extension of the sample at ε = 300% (T =
413 K). The strained sample was held at T = 353 K, and the
microhardness was measured at T = 293 K.

Fig. 8. (a) Activation energies for the recovery of polymer
microhardness after exposure to a magnetic field (hatched
regions) on the scale of activation energies for the known
relaxation transitions [17]. Kinetic units responsible for the
transitions: segments of macromolecules for α, polymer
chain units for β, side groups for γ, absorbed water (hydro-
gen bonds) for µH, physical unit –C6H5···C6H5– for µ and
µ', and physical sites of a molecular network for λ and π.
(b) Structure of macromolecular chains and intramolecular
motions in PMMA, PS, and PVC.
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crystals changes in microwave and constant magnetic
(with a certain induction) crossed fields. In the present
work, we found that the joint effect of microwave (with
a frequency of 9.5 GHz) and constant magnetic fields
on the plasticity of polymers is virtually identical to
that of the microwave field in the absence of a constant
magnetic field; i.e., unlike the results obtained in [9,
10], the excitation of electron paramagnetic resonance
in paramagnetic particles of a polymer does not lead to
a change in its plasticity. This fact, together with the
above findings, which indicate the significant role of
the side groups in the magnetoplastic effect, have dem-
onstrated that the magnetoplastic effect should be
treated on the atomic level rather than within the elec-
tron–spin approach, and, furthermore, it does not
reduce to the magnetoplastic effects observed earlier.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research, project no. 00-02-16094.

REFERENCES

1. Yu. P. Rodin, Mekh. Kompoz. Mater., No. 3, 490 (1991).

2. V. E. Gul’, S. M. Sadykh-zade, B. Yu. Trifel’, et al.,
Mekh. Polim., No. 4, 611 (1971).

3. V. A. Zhorin, L. L. Mukhina, and I. V. Razumovskaya,
Vysokomol. Soedin., Ser. B 40 (7), 1213 (1998) [Polym.
Science, Ser. B 40, 233 (1998)].

4. N. N. Peschanskaya, V. Yu. Surovova, and P. N. Yaku-
shev, Fiz. Tverd. Tela (St. Petersburg) 34 (7), 2111
(1992) [Sov. Phys. Solid State 34, 1127 (1992)].
P

5. N. N. Peschanskaya and P. N. Yakushev, Fiz. Tverd. Tela
(St. Petersburg) 39 (9), 1690 (1997) [Phys. Solid State
39, 1509 (1997)].

6. Yu. I. Golovin, R. B. Morgunov, and S. Yu. Liksutin,
Vysokomol. Soedin., Ser. B 40 (2), 373 (1998) [Polym.
Science, Ser. B 40, 63 (1998)].

7. Yu. I. Golovin, R. B. Morgunov, and S. Yu. Liksutin,
Vysokomol. Soedin., Ser. A 42 (2), 277 (2000) [Polym.
Science, Ser. A 42, 189 (2000)].

8. V. I. Al’shits, E. V. Darinskaya, T. M. Perekalina, and
A. A. Urusovskaya, Fiz. Tverd. Tela (Leningrad) 29 (2),
467 (1987) [Sov. Phys. Solid State 29, 265 (1987)].

9. Yu. I. Golovin, R. B. Morgunov, V. E. Ivanov, and
A. A. Dmitrievskiœ, Zh. Éksp. Teor. Fiz. 117 (6), 1080
(2000) [JETP 90, 939 (2000)].

10. Yu. I. Golovin and R. B. Morgunov, Zh. Éksp. Teor. Fiz.
115 (2), 605 (1999) [JETP 88, 332 (1999)].

11. S. N. Lasarov, A. A. Homic, T. V. Ljashko, and V. V. Lap-
insky, Bolg. Fiz. Zh. 15 (6), 600 (1988).

12. S. N. Lazarov, V. L. Velev, and N. P. Nikolov, Nauch. Tr.
Plovdiv. Univ. Fiz. 24 (1), 75 (1986).

13. Yu. A. Osip’yan, Yu. I. Golovin, D. V. Lopatin, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 69 (2), 110 (1999) [JETP
Lett. 69, 123 (1999)].

14. M. N. Levin and B. A. Zon, Zh. Éksp. Teor. Fiz. 111 (4),
1373 (1997) [JETP 84, 760 (1997)].

15. O. I. Datsko and V. I. Alekseenko, Fiz. Tverd. Tela
(St. Petersburg) 39 (7), 1234 (1997) [Phys. Solid State
39, 1094 (1997)].

16. A. A. Tager, Physical Chemistry of Polymers (Khimiya,
Moscow, 1978).

17. G. M. Bartenev and A. G. Barteneva, Relaxation Proper-
ties of Polymers (Khimiya, Moscow, 1992).

Translated by O. Borovik-Romanova
HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001



  

Physics of the Solid State, Vol. 43, No. 5, 2001, pp. 865–870. Translated from Fizika Tverdogo Tela, Vol. 43, No. 5, 2001, pp. 833–838.
Original Russian Text Copyright © 2001 by Myshlyaev, Prokunin, Shpeizman.

                                                                                                                         

DEFECTS, DISLOCATIONS, 
AND PHYSICS OF STRENGTH
Mechanical Behavior of Microcrystalline Aluminum–Lithium 
Alloy under Superplasticity Conditions

M. M. Myshlyaev*, M. A. Prokunin*, and V. V. Shpeizman**
* Baœkov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 

Leninskiœ pr. 49, Moscow, 117334 Russia
** Ioffe Physicotechnical Institute, Russian Academy of Sciences, 

Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia
e-mail: shpeizm.v@pop.ioffe.rssi.ru

Received September 18, 2000; in final form, October 6, 2000

Abstract—Aluminum–lithium alloy 1420, which, after equal-channel angular pressing, has a grain size of
about 3 µm, is shown to possess superplasticity in a temperature range of T = 320–395°C upon tension at a con-
stant relative strain rate of 10–2–10–3 s–1. The axial deformation at fracture can exceed 1800%. The data pro-
cessing at such large deformations should be carried out using true strains εt and stresses σt. In the flow curve,
a short stage of hardening is followed by a long softening stage. They can be described by the relation  ~

exp(−U/kT) with a constant exponent n ≈ 2 and activation energies U ≈ 1 eV for the softening stage and
U ≈ 1.4 eV for the hardening stage. The deformation is supposed to be controlled by grain-boundary sliding at
the stage of softening and by self-diffusion in the bulk of grains at the hardening stage. © 2001 MAIK
“Nauka/Interperiodica”.

ε̇t

σt
n

INTRODUCTION

In recent years, materials scientists, designers, and
metals physicists paid much attention to aluminum–
lithium alloys, since these alloys possess a unique com-
bination of physicomechanical properties, such as
enhanced elasticity modulus, small density, and rela-
tively high strength and plasticity. The application of
these alloys makes it possible to substantially reduce
the weight of aerospace vehicles with all related advan-
tages. Of the alloys of this class, one of the most prom-
ising and widely applied is the lightest (a density of
2.47 g/cm3), corrosion-resistant, weldable alloy, 1420,
which was designed in Russia [1–6]. This alloy finds
application in various welded structures, reducing their
weight by 20–25% and increasing their rigidity by up
to 6%. The alloy is superplastic and is widely used in
the production of articles of complex profile. The typi-
cal characteristics of superplasticity (SP) in its conven-
tional state (with a grain size of about 50 µm) are as fol-
lows: deformation at fracture ε = 350% and strain-rate
sensitivity coefficient (σ) m = dlnσ/dlnε = 0.45 when
being deformed at a rate  = 5 × 10–3 s–1 at 480°C [7,
8]. For the alloys with grain size d = 6–8 µm deformed
under the same conditions, the SP characteristics were
ε = 800% and m = 0.55 [9].

At present, intense works are being carried out that
are directed at improving the properties of these alloys,
e.g., at the expense of the formation of a nanocrystal-
line or a microcrystalline structure in them by virtue of
severe plastic deformation. It is commonly accepted

ε̇

1063-7834/01/4305- $21.00 © 20865
that one of the most promising methods of severe plas-
tic deformation is equal-channel angular (ECA) press-
ing [10, 11]. By using this method, a grain structure
with d = 4.5 µm was obtained in the 1420 alloy [12] and
deformation exceeding 700% was attained at a temper-
ature of 320°C and deformation rate close to 10–3 s–1;
later [13, 14], a structure with grain size d = 1.2 µm and
deformation to 1180% at a temperature of 350°C and
deformation rate close to 10–2 s–1 was obtained; in [15],
superplasticity was obtained on samples with a grain
size of ~3 µm at a strain rate of 1.7 × 10–2 s–1 in a tem-
perature range of 340–395°C and deformation of
1878% was attained at 370°C.

With the above in mind, it seemed expedient to
investigate the mechanical behavior under superplastic-
ity conditions on samples of the same type (of the same
series) as those used in [15]. Main attention will be
given to establishing the dependence that describes the
relation between the strain rate, stress, and temperature,
and to determining the numerical values of the param-
eters that enter into this dependence.

1. EXPERIMENTAL

The experiments were performed on aluminum–
lithium alloy 1420 (Al–5.5% Mg–2.2% Li–0.12% Zr).
The samples for ECA pressing were cut from a hot-
rolled plate with a recrystallized structure with a grain
size of about 20 µm. These samples were quenched in
water from 470°C and then subjected to tenfold ECA
pressing in air at 370°C to obtain rods 20 mm in diam-
001 MAIK “Nauka/Interperiodica”
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eter and 70–80 mm in length. The quenching and ECA
pressing were carried out in the Ufa State Technical
University of Aviation. The structural condition of the
rods proved to be qualitatively analogous to that
observed in the rods of the first batch in [15]. The struc-
ture consisted of grains with an average size of about
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Fig. 1. Tensile diagram of the aluminum–lithium alloy 1420
plotted using various coordinates: (a) load–elongation;
(b) true stress–true strain; and (c) true strain rate–true strain.
The initial strain rate  = 1.7 × 10–2 s–1, T = 395°C.ε̇
P

3 µm (with isolated coarser grains of 10–15 µm) with a
pronounced substructure (subgrains, dislocation cells
and tangles, isolated dislocations, precipitates of the
Al2LiMg phase, and particles of the δ' (Al3Li) phase).

The ECA-pressed rods were used to prepare plane
dumbbell samples for mechanical tests 0.85 mm thick
with a gage portion 5 mm long. The surface layers with
damages that were introduced during the sample prep-
aration were removed. The front and side surfaces of
the samples were carefully polished. The differences in
both the thickness and the width along the gage portion
of the samples did not exceed 0.01 mm. The symmetry
axis of the sample directed along its long side was cho-
sen so that it was parallel to the axis of the initial rod.

The samples were deformed on an Instron testing
machine by uniaxial tension along their axes at a con-
stant rate and temperature. The errors of measuring the
load applied to the sample and the sample elongation
were no more than 0.25 and 1%, respectively. The tem-
perature was maintained during the tests to an accuracy
of ±2.5 K.

The main characteristics that were used in the anal-
ysis of deformation were the true stress σt, the true
strain εt, and the rate of true strain . They were deter-
mined by the formulas

(1)

(2)

(3)

Here, P is the load; S0 and l0 are the initial cross-sec-
tional area and the length of the sample, respectively;
∆l is the elongation; and V is the rate of the sample
extension. The passage to true stresses, strains, and
their rates from the conventional characteristics (σ, ε,
and ) is primarily required because of the large
deformation of the samples (their length increased by a
factor of almost 20).1 

2. RESULTS AND DISCUSSION

The primary diagram that is obtained upon tensile
tests reflects the dependence of the load on the sample
elongation at a given velocity of extension V (or strain
rate  = V/l0) at a temperature T. Such a diagram,
obtained under superplasticity conditions, is shown in
Fig. 1a. It is seen that the stage of elastic deformation is
followed by a short stage of hardening, after which a
stationary stage of a constant load follows, which often
degenerates into a point, and then a long stage of soft-
ening is observed. The total elongation under optimum
conditions was up to 90.4 mm, which corresponded to
a relative deformation of 1808%. This diagram is a pri-
mary document, but it does not reflect the true depen-

1 The true strain was also used in the analysis of superplasticity of
metals in [16].

ε̇t

σt P l0 ∆l+( )/S0l0,=
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Fig. 2. Variation of the true strain rate of the 1420 alloy in the region of softening as functions of (a) true stress and (b) reciprocal
temperature (the coordinates used correspond to Eq. (4)): (a) (1), (2)  = 1.7 × 10–1; (3)–(5) 1.7 × 10–2; and (6) 1.7 × 10–3 s–1.
(1), (3) T = 395; (2), (4), (6) 370; and (5) 320°C. Roman numerals correspond to averaged straight lines for various temperatures:
(I) 395, (II) 370, and (III) 320°C; n = 2.23. (b) σt = 20 MPa, U = 0.98 eV.

ε̇

dence of deformation on the stresses. Therefore, we
also plotted a diagram that reflected the relation
between the true stress and true strain in the approxima-
tion of a uniform deformation along the sample
(Fig. 1b). This diagram also exhibits three stages of
plastic deformation. The first stage, which follows the
region of elasticity, is a very long (in contrast to the dia-
gram constructed in conventional coordinates) stage of
strain hardening. The second (stationary) stage is very
short but nevertheless much more clearly pronounced
than that in Fig. 1a. This stage is characterized by a con-
stant σt. The third stage is the stage of a monotonic
decrease in σt with increasing εt, which extends through
about half the diagram.

In order to determine what the true strain rates are at
which deformation occurs at these stages, we plotted
the dependence of  on εt under the same test condi-
tions (Fig. 1c). This diagram exhibits a monotonic
decrease in the strain rate with increasing deformation.
It follows from the comparison of data shown in
Figs. 1b and 1c that the first and second stages corre-
spond to strain rates of about 10–2 and 10–3 s–1, respec-
tively. The first value is characteristic of a superplastic
deformation (SPD) due to intragranular slip [17–20].
The second value is typical of the SPD related to grain-
boundary sliding [9, 21–23].

An analysis of the whole body of experimental data
with allowance for literature data shows that the rela-
tion between , σt, and T can most adequately be
described by the well-known equation

(4)

ε̇t

ε̇t

ε̇t ε̇t0 U/kT–( )exp=

=  A σ/σ0( )nT 1– U/kT–( ),exp
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where n ≈ 2 for the case of SPD, U is the activation
energy for SPD, k is the Boltzmann constant, A is a con-
stant, and σ0 is a parameter that is introduced from the
dimensionality considerations (σ0 = 1 MPa).

The estimates of n and U from our experiments were
performed using standard techniques. Thus, in order to
estimate n, we plotted dependences of  on σt at vari-
ous temperatures in the superplasticity region. The
dependences obtained for the third stage are depicted in
Fig. 2a. The thick solid and dashed lines correspond to
experimental data. It is seen that, to a sufficiently good
accuracy, averaged straight lines whose slope is n =
2.23 ± 0.10 can be drawn for all temperatures. This
value of n is in very good agreement with the magni-
tude of n = 2 in Eq. (4). The experimental value of the
activation energy for plastic deformation at the third
stage was determined in accordance with Eq. (4) from
the slope of the dependence shown in Fig. 2b. The value
obtained was U = 0.98 eV. Here, we took into account
that the temperature enters into Eq. (4) not only in the
exponent, but also in the denominator of the preexpo-
nential factor. Without allowance for this circumstance,
we obtained U = 0.94 eV. The difference is not very sig-
nificant. With the known parameters n and U, we can
determine that A = 1.6 × 106 K/s. This value of the acti-
vation energy for SPD is in agreement with the energy
of self-diffusion along grain boundaries Qsb = W + Rsb =
0.99 eV, where W = 0.8 eV [24] is the energy of vacancy
formation and Rsb = 0.19 eV [25] is the energy of
vacancy migration along grain boundaries or along dis-
locations (pipe diffusion).

The above discussion refers to the third stage. Now,
we turn to the first stage. In order to use Eq. (4) for such
an analysis, we should take samplings from the data

ε̇t
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Fig. 3. Same as in Fig. 2 but for the region of hardening: (a) εt = 1: (1) T = 395, (2) 370, and (3) 320°C, n = 2.23; (b) εt = 0.5:

(4)  = 1.7 × 10–1, (5) 1.7 × 10–2, and (6) 1.7 × 10–3 s–1, U = 1.4 eV.ε̇
array { , σt , T} that can be considered to have the
same structure. In the first approximation, we may take
points in the diagram with the same magnitude of
deformation εt.

Using this procedure, we chose several sets { , σt, T}
for εt = 0.5 and 1. As an example, Fig. 3a displays the

(σt) dependence for εt = 1, which demonstrates the

validity of the relation  ~ , where n = 2.23. The
data for εt = 0.5 are analogous. Figure 3b displays the

–T–1 dependence at σt = const and various exten-
sion rates in the modified coordinates for εt = 0.5. The
activation energy obtained is U = 1.4 eV. It agrees with
the energy of self-diffusion in the grain bulk (1.4–
1.5 eV [24, 26–29]). The data for εt = 1 are analogous.
An analysis of the data shown in Fig. 3 shows that the
preexponential term is  = 5 × 1010 s–1.

It seems natural to relate the deformation at the first
stage, at the stage of hardening, and the hardening itself
with the motion and interaction of dislocations. Then,
the parameter  should be written in the form

(5)

where ρ is the density of mobile dislocations, b is the
Burgers vector, λ is the dislocation free path after it
overcomes a barrier, and ν is the frequency of attacking
a barrier. Let us estimate the lower boundary for λ. To

ε̇t

ε̇t

ε̇t

ε̇t σt
n

ε̇tln

ε̇t0

ε̇t0

ε̇t0 ρbλν ,=
P

this end, we find the maximum density of dislocation
from the formula

(6)

where G is the shear modulus, by taking the maximum
value of σ = 20 MPa corresponding to the end of the
stage under consideration (Fig. 1b). We take into
account that the frequency of the attacks cannot exceed
the Debye frequency; then, using the experimentally
found value of  and assuming that b = 3 × 10–8 cm
[23] and G = 28.5 GPa [30], we obtain that the disloca-
tion free path should satisfy the condition λ ≥ 3 ×
10−4 cm, which corresponds to the average grain size.
Note that λ ≤ b for all known mechanisms of disloca-
tion motion.

On the whole, it follows from the above that the
SPD at the first stage is due to the cooperative action
of all structural elements, including grain-boundary
sliding, with the intragranular deformation by disloca-
tion slip being dominant. It seems reasonable that the
SPD is realized by processes that are similar to those
responsible for creep of metals at moderate tempera-
tures [20, 31–33] and superplasticity of aluminum
upon torsion [17–20] under conditions of dynamic
in situ recrystallization (or dynamic recrystallization
on the subgrain level).

The obtained different values of the activation ener-
gies corresponding to the first and third stages indicate
the occurrence of plastic deformation at these stages by

σ Gb ρ,=

ε̇t0
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Fig. 4. (a) Load–elongation diagram of the 1420 alloy at  T = 370°C and changes in the strain rate from 0.5 (point 1) to 1.0 cm/min
(point 2) and vice versa. (b) Magnitudes of the parameters n and m calculated from the data presented in Fig. 4a.
different mechanisms. Then, naturally, the second stage
is a transition stage from one to another mechanism and
it makes no sense to determine the parameters of
Eq. (4) for this stage.

In order to increase the reliability of the results
obtained, we performed experiments in which the mag-
nitude of n was determined by changing the extension
rate from V1 to V2 or from V2 to V1 and measuring the
load P1 at V1 and P2 at V2. Note that these experiments
also make it possible to check the validity of the above
analysis of extension diagrams and of the parameters of
Eq. (4).

The value of n was found from the known formula

, (7)

where m is the strain-rate sensitivity of the flow stress.
Figure 4a demonstrates a primary diagram P(∆l) for

the extension velocities V1 = 0.5 and V2 = 1.0 cm/min
under the conditions that are optimum for SPD. The
results of determining the parameters n and m are
shown in Fig. 4b. It is seen that their values for the first
and third stages are virtually coincident and are 2.05 ±
0.05 and 0.49 ± 0.01, respectively. They also agree well
with the values of n obtained for these stages in the
above analysis.

The obtained values of the strain at fracture and the
parameters m and n in Eq. (4) are commonly accepted
as corresponding to SPD.

CONCLUSIONS

Thus, in this work, we established the multistage
nature of superplastic deformation (SPD) and deter-
mined dependences of the true strain rate on the tem-
perature and stress for various stages of strain harden-
ing and softening. The conventional deformations of
the alloy were shown to reach 1800%; for both stages
(hardening and softening), the values of the strain-rate

n m 1– P2/P1( )ln / V2/V1( )ln[ ] 1–= =
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sensitivities are n ≈ 2 and m ≈ 0.5, which actually cor-
responds to SPD.

The deformation at the stage of hardening occurs at
a rate  ≈ 10–2 s–1 and is controlled by self-diffusion in
the bulk of grains, which is characteristic of SPD by the
mechanism of intragranular dislocation slip. This
mechanism corresponds to so-called in situ dynamic
recrystallization (or dynamic recrystallization at the
level of subgrains).

At the stage of softening, the deformation occurs at a
rate  ≈ 10–3 s–1 and is controlled by self-diffusion along
grain boundaries, which is typical of the SPD in fine-
grain materials and is due to grain-boundary sliding.
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Abstract—The results of measurements of the dynamic yield stress and the ultimate strength of aluminum sin-
gle crystals in the temperature range from 15 to 650°C, which is only 10°C lower than the melting point, are
presented. The measurements are made on samples under the action of plane shock waves with a pressure up
to 5 GPa behind the front and of a duration of ~2 × 10–7 s. It is found that the dynamic yield stress anomalously
increases, attaining, in the vicinity of the melting point, a value four times as high as that measured at room
temperature. The dynamic strength of the single crystals in this temperature range decreases approximately by
40%, a high strength being preserved in the state in which melting during extension is expected. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The elastoplastic properties and strength of materi-
als in the submicrosecond range of the duration of an
action at strain rates exceeding 104 s–1 are investigated
by studying the compression and dilatation waves gen-
erated in a sample by a high-velocity impact, explosion,
or by a pulse from a high-intensity laser or corpuscular
radiation [1, 2]. The measurements are based on the fact
that the wave structure and the dynamics of wave inter-
actions are determined, apart from the thermodynamic
equation of state for the substance, by the processes of
elastoplastic deformation and fracture in the material.

Information on the effect of temperature on the
strength properties of metals under shock-wave loading
is scarce. In experiments with iron [3], it was found that
the dynamic yield stress is independent of temperature
in the range from 76 to 573 K, while the quasi-static
yield stress in this temperature range decreases by a
factor of 2.5. A similar result was obtained for bismuth
[4] and zinc single crystals [5] in the range from room
temperature to 0.96 of the absolute melting point (Tm).
Experiments with polycrystalline aluminum and mag-
nesium [6] even demonstrated a slight increase in the
dynamic yield stress near the melting point.

Shock-wave measurements also indicate the ather-
mal nature of the strength of metals. It was found [6]
that the rupture strength of polycrystalline aluminum
and magnesium varies insignificantly upon change
from room temperature to a value amounting to 85–
90% of Tm and rapidly decreases to zero upon further
heating. In the case of zinc single crystals [5], the ather-
mal nature of the dynamic strength is preserved up to
1063-7834/01/4305- $21.00 © 20871
~0.95Tm, after which a decrease in strength is also
observed.

The athermal nature of the dynamic yield stress and
ultimate strength can be explained by the mechanism of
dislocation movement under high-rate deformation [7].
It is well known that under low-rate deformation condi-
tions, dislocations overcome obstacles because of the
combined action of the applied stress and thermal fluc-
tuations. For a high-rate deformation, higher stresses
are required. For a strain rate exceeding ~104 s–1, the
acting stresses are high enough for the obstacles to be
overcome by dislocations in the absence of an addi-
tional contribution to the stresses from thermal fluctua-
tions.

The experiments discussed by us here were aimed at
studying the main patterns of high-rate athermal defor-
mations over a wide temperature range and at determin-
ing the strength parameters of solids in states close to
melting. In this respect, the experiments with single
crystals, which provide data on the elementary mecha-
nisms and dynamics of deformation and fracture (they
are not complicated by the effect of grain boundaries,
impurities, and other structural inhomogeneities), are
most informative.

1. MATERIAL AND EXPERIMENTAL 
TECHNIQUES

The experiments were made on aluminum single
crystals of 99.999% purity, which were grown by direc-
tional crystallization from a melt in molds made of pure
graphite [8]. Plane 10 × 15-mm single crystals about
3 mm thick were oriented during their growth so that
001 MAIK “Nauka/Interperiodica”
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the normal to their surface coincided with the [100]
direction. The sample surface was subjected to polish-
ing followed by electrochemical etching to remove sur-
face defects.

Plane shock waves were created in the samples by
the impact of an aluminum plate 0.4 mm thick at a
velocity of 600 to 700 m/s, which corresponds to an
impact compression pressure in the range from 4 to
5 GPa. The explosion devices used for throwing per-
cussion plates are described in detail in [2]. For mea-
surements at high temperatures of the samples, resistive
heaters were used, which were fixed at the back surface
of the sample in the same way as described in [5, 6].
The time of sample heating by a 1-kW resistive heater
to a preset temperature did not exceed 10 min. The tem-
perature was permanently monitored to within ±5°C by
a Chromel–Alumel thermocouple fixed at the back sur-
face of the sample in the vicinity of the point at which
the shock wave process was recorded. The measure-
ments were made in the temperature range from 15 to
650°C, which is only 10°C lower than the melting point
for aluminum.

In our experiments, we measured the time variation
of the velocity of the free back surface of the samples
during its loading by the arriving shock-wave pulse.
The measurements were made using the VISAR laser-
based Doppler interferometric velocity meter [9]. Inter-
ference beats were recorded by a digital oscillograph
with a recorded signal numbering frequency of
0.5 GHz, which corresponds to 2-ns time intervals
between points on the oscillogram. The frequency char-
acteristics of the apparatus also ensured the recording
of signals with a buildup time at the 2-ns level.

2. RESULTS OF MEASUREMENTS

Figure 1 shows typical velocity profile W(t) for the
free surface at normal and elevated temperatures. A
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Fig. 1. Free-surface velocity profiles for monocrystalline
aluminum samples under shock-wave loading. The experi-
mental temperature is indicated on the curves. The sample
thickness measured at the standard temperature was
2.87 nm.
P

shock wave loses its stability due to a change in the
material compressibility with the onset of plastic defor-
mation and splits into an elastic precursor and a plastic
compression wave. The elastic precursor propagates at
a velocity slightly higher than the longitudinal velocity
cl of sound, while the velocity of the plastic compres-
sion wave D ≤ cb corresponds to the bulk compressibil-
ity of the material and is determined by the wave inten-
sity [1]. Here, cb is the “bulk” velocity of sound calcu-
lated from the bulk elastic modulus K. The amplitude of
the precursor corresponds to the dynamic limit of elas-
ticity for uniaxial deformation. The width of the steady-
state compression wave is determined by the ductility
or the stress relaxation time. For the ratio of the thick-
nesses of the sample and the striker used in our experi-
ments, the dilatation wave front overtook the shock
wave by the instant of its emergence at the surface; as a
result, the measured wave profiles do not exhibit
regions of parameter constancy behind the compression
wave front.

After a compression wave emerges at the free sam-
ple surface, a reflected dilatation wave is generated in
the sample, creating in it a tensile stress as a result of
the interaction with the relief wave of the initial com-
pression pulse. The maximum value of the tensile stress
increases as the reflected wave penetrates into the bulk
of the sample and attains a value sufficient for rapid
cleavage fracture at a certain distance from the surface.
The fracture generates in the stretched material a com-
pression wave which emerges at the surface in the form
of a so-called cleavage pulse and increases its velocity
again. Subsequent velocity oscillations are caused by
the reverberation of the wave in the split-off plate. The
decrease ∆W in the velocity of the surface from the
maximum value to its value in front of the cleavage
pulse is proportional to the breaking stress (the so-
called cleavage strength of the material), while the
period of the oscillations of the surface velocity is pro-
portional to the thickness of the split-off layer. The rate
of damping of the reverberation of the waves in the
cleavage plate is determined, among other things, by
the dispersion of waves on the fracture surface and is an
indicator of the degree of localization of the fracture.

The profiles shown in Fig. 1 readily show that the
amplitude of the elastic precursor strongly increases
with temperature; i.e., the dynamic yield stress of the
material becomes higher. The build-up time for the
parameters at the front of the elastic precursor does not
exceed 2 ns. The decrease in the time interval between
the elastic and plastic waves is a consequence of the
decrease in the shear modulus upon heating. The
decrease in the parameters behind the elastic precursor
front is usually associated with stress relaxation [10].
The parameter build-up time in the plastic shock wave
(from 0.1 to 0.9 of its amplitude) increases from 4–6 ns
at room temperature to 12–16 ns in the vicinity of the
melting point, which corresponds to strain rates of
~(3−7) × 106 s–1.
HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
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The resistance to cleavage fracture decreases
slightly upon heating, remaining high up to 650°C. The
large steepness of the cleavage pulse front indicates a
high rate of fracture evolution in the entire temperature
range. The average velocity of the surface remains vir-
tually unchanged after the passage of the first cleavage
pulse. It can therefore be concluded that the mechanical
coupling between the split-off plate and the remaining
part of the sample almost vanishes ~100 ns or less after
the beginning of fracture. A comparison of the first and
next periods of the surface velocity oscillation indicates
a possible delay of fracture by 5–10 ns in the entire
temperature range. The free surface velocity profiles
obtained in experiments at elevated temperatures dis-
play more rapid damping of oscillations after cleavage.
In all probability, the discontinuities formed at low
temperatures are localized in a narrower layer and the
roughness of the fracture surface is smaller than at high
temperatures.

3. PROCESSING OF EXPERIMENTAL RESULTS

The calculations were made taking into account the
temperature dependences of the elastic coefficients of
monocrystalline aluminum reported in [11]. The non-
linear compressibility of the material was calculated
using the impact adiabat in the form D = c0 + bu [1],
where D is the velocity of the shock wave, c0 is a con-
stant equal to the bulk velocity of sound under zero
pressure, u is the mass velocity jump in the shock wave,
and b is a constant characterizing the nonlinearity of the
material compressibility. We used the values of c0 cal-
culated from isentropic bulk elastic moduli as the func-
tions of temperatures given in [11]; the value of con-
stant b was assumed to be equal to 1.34 irrespective of
temperature.

The longitudinal stress σg at the elastic precursor
front, which is equal to the dynamic limit of elasticity
under uniaxial deformation, is calculated from the mea-
sured jump in the surface velocity We at the correspond-
ing instant on the basis of the relation [1]

(1)

where ρ0 is the density of the material and Dl is the
velocity of the elastic shock wave in it. The quantity σg

is connected with the yield stress σy for the standard
conditions of the uniaxial stressed state through the
relation [1]

(2)

where ν is the Poisson ratio. For small-amplitude elas-
tic waves, the calculation in the acoustic approximation
with Dl = cl gives a sufficiently high degree of accuracy.
However, in actual practice, the velocity of a finite-
amplitude elastic shock wave front is higher than the
longitudinal velocity of sound. Since the experimen-
tally determined amplitudes of precursors are quite
large, their velocity was calculated as follows. For

σg ρ0DlWe/2,=

σg 1 ν–( )σy/ 1 2ν–( ),=
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moderate pressures of impact compression, the velocity
of the shock wave front is equal, to a high degree of
accuracy, to the average velocity of perturbations ahead
of (ci) and behind (cs) the shock front [2]:

In this approximation, the values of cb (for a given com-
pression ratio and taking into account the constancy of
the Poisson ratio cl behind the precursor front) were
calculated from the measured surface velocity We at the
front and then the velocity Dl of the elastic precursor
was determined. The precursor velocity determined in
this way exceeds the longitudinal velocity of sound
under zero pressure by 1.5%.

The results of the measurements of the dynamic
limit of elasticity are summarized in Fig. 2, which
shows the values of the stresses corresponding to the
peak at the front of the elastic precursor and to the min-
imum behind the front. All data were obtained for a
sample thickness of 2.86 to 2.97 mm at room tempera-
ture. The values of the parameters at the top of the peak
may be slightly underestimated since the duration of
the stress peak at the elastic precursor front is close to
the time resolution limit of the measurements. Since the
Poisson ratio increases with temperature, the amplitude
of the elastic precursor increases upon heating much
more strongly than does the dynamic yield stress.

An analysis of the measured wave profiles shows
that at temperatures above 500°C, elastic precursors are
noticeably suppressed by the instant of their emergence
at the sample surface. This is manifested in that the time
intervals between an elastic and a plastic wave were 2
to 8 ns longer than the values calculated for steady-state
elastic and plastic shock waves with the measured

D ci csρ/ρ0+( )/2.=
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Fig. 2. The results of measurements of the dynamic limit of
elasticity under the conditions of uniaxial deformation (σg)
and uniaxially stressed states (σy) as functions of tempera-
ture (Tm is the melting point). Points on curves 1 and 3 cor-
respond to the values of σg and σy, respectively, correspond-
ing to the peak at the elastic precursor front, and points on
curves 2 and 4 mark the values of σg and σy, respectively,
corresponding to the minimum behind the front.
1
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amplitudes. In all probability, the velocity of the elastic
precursor front at the impact surface was slightly higher
and the velocity of the plastic shock wave was slightly
lower than at the instant of emergence at the sample
surface. To a certain extent, the difference between the
calculated and measured time intervals separating the
elastic and plastic waves is due to the fact that the cal-
culations are based on underestimated values of the
parameters at the precursor front, which leads to lower
values of the precursor velocity.

The breaking stresses appearing during splitting off
were calculated by the method of characteristics [1, 2]
from the decrease ∆W in the surface velocity from the
maximum value to its value at the front of the cleavage
pulse. In fact, this method of determining the dynamic
strength of the material is based only on the fundamen-
tal conservation laws and is not connected with any
assumptions concerning the mechanism and extent of
fracture. In the acoustic approximation [12], the tensile
stress at the onset of cleavage breaking (cleavage
strength σ*) is defined as

(3)

where c is the velocity of sound. In this expression, we
must take into account the nonlinearity in the material
compressibility; for this purpose, the extrapolation of
impact adiabats to the region of negative pressures was
carried out in the pressure vs. mass velocity coordi-
nates. The choice of the velocity of sound in Eq. (3) is
not quite clear. Stepanov [13] paid attention to the fact
that from the onset of fracture, the plastic extension in
the split-off layer changes to elastic compression. For
this reason, the velocity of the cleavage pulse front
must be equal to the velocity cl of the longitudinal elas-
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---ρ0c∆W ,=
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Fig. 3. Cleavage strength for aluminum single crystals
(symbols 1) and for polycrystalline aluminum AD1 [6]
(symbols 2) as functions of temperature. Lines 3 and 4
describe the estimates of the tensile stresses corresponding
to the beginning of melting under the adiabatic expansion of
aluminum as functions of temperature: calculated with
(3) dTm/dp = 64.1 (according to the results from [24]) and
(4) 54.6 K/GPa.
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tic waves, while the relief part of the incident compres-
sive pulse ahead of this front propagates at the velocity
of sound cb < cl determined by the bulk compressibility
of the material. As a result, the velocity profile for the
free surface becomes distorted and the surface velocity
decrement ∆W in Eq. (3) turns out to be smaller than the
value that should be expected when disregarding the
yield stress. According to Stepanov [13], the breaking
stress is defined as

(4)

It should be noted that the difference between the
values of the cleavage strength calculated from the
experimental data by using expressions (3) and (4)
decreases from 8% at room temperature to 5% near the
melting point. A more detailed analysis [14] confirms
the validity of formula (4) in the case when the impact
compression pulse has a triangular shape of its profile
at the instant of its emergence at the surface. Since the
shape of the wave profiles for the used ratio of the
thicknesses of the striker and the sample is close to tri-
angular, the possible error obtained when relation (3) is
used does not exceed 3 to 5% according to our esti-
mates, which is within the spread in the experimental
data.

The obtained values of breaking stresses during
cleavage in aluminum single crystals are presented in
Fig. 3. In view of the irreversible heating in the shock
wave, the temperature of the material at the beginning
of extension exceeds its value indicated in the figure by
3° to 5°. In our experiments, the strain rate in the relief
part of the initial compression pulse was ~(3–6) ×
105 s–1 and the thickness of the split-off layer was from
0.3 to 0.4 mm. Figure 3 also presents, for comparison, the
results obtained for polycrystalline aluminum AD1 [6].

The results obtained have a spread which is gener-
ally typical of such measurements with a high spatial
resolution. The resistance to cleavage fracture of the
single crystals is twice as high as the strength of poly-
crystalline aluminum. It should be noted, for compari-
son, that the dynamic strength of molybdenum and cop-
per single crystals is also higher than the dynamic
strength of these materials in the polycrystalline state
by a factor of 2 or 3 [15, 16]. The higher values of
strength of single crystals under uniaxial deformation
can obviously be attributed to their high homogeneity.
Polycrystalline materials always contain relatively
coarse potential seats of destruction, such as inclusions
of impurities, micropores, and grain boundaries, which
are absent in high-purity single crystals.

4. DISCUSSION OF RESULTS

The obtained experimental data show that the
dynamic yield stress near the melting point is at least
four times as large as its value at room temperature.
Since the shear modulus in this temperature interval

σ* ρ0cb∆W
1

1 cb/cl+
--------------------.=
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decreases approximately by half, the ratio of the yield
stress to the shear modulus increases accordingly by
almost an order of magnitude. It should be noted, for
comparison, that the ratio of the stress corresponding to
the onset of plastic deformation in aluminum single
crystals to the shear modulus remains virtually
unchanged under quasi-static conditions in the temper-
ature range from 300 to 600 K and then decreases by a
factor of 1.5–2 upon further heating to 900 K [17].

The plastic deformation of crystalline solids occurs
through the displacement of dislocations. The equation
connecting the velocity of dislocations with frictional
forces has the form [18]

(5)

where the left-hand side contains the friction force and
the right-hand side contains the projection of the exter-
nal load (per unit length of a dislocation) on the Burgers
slip vector, B is the friction coefficient, v is the velocity
of dislocations, b is the Burgers vector, and τ is the
shear stress acting on the sample. The larger the friction
coefficient, the higher the stress required to ensure the
given velocity of dislocations and, hence, the given
strain rate.

Without analyzing the possible mechanisms of
high-rate deformation in detail, we will compare the
observed effect of temperature on the dynamic yield
stress with the contributions of various factors to dislo-
cation drag. The motion of dislocations is decelerated
by various obstacles, as well as by frictional forces
associated with electrons and phonons [17, 18]. The
interaction between a moving dislocation and electrons
is weak and plays a noticeable role only at low temper-
atures. The phonon drag coefficient Bp in the high-tem-
perature range increases linearly with temperature [18]:

(6)

where kB is the Boltzmann constant, ωD is the Debye
frequency, and c is the velocity of sound. The resistance
offered by obstacles is obviously proportional to the
concentration of these obstacles in the crystal structure.
In particular, the thermodynamically equilibrium con-
centration of point defects in a crystal exponentially
increases with temperature [19]:

(7)

where HF is the enthalpy of the defect formation.
According to the results of measurements, the

dynamic yield stress varies almost linearly with tem-
perature, increasing approximately fourfold upon an
increase in absolute temperature by a factor of 3.2.
These results are in reasonable agreement with the tem-
perature dependence of the phonon drag coefficient.
Consequently, the dislocation drag under high-rate
deforming conditions in shock waves is probably asso-
ciated mainly with thermal vibrations of atoms.

Bv bτ ,=

Bp

kBTωD
2

π2c3
----------------,=

cd A HF/kBT–( ),exp=
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The resistance to plastic deformation can be quanti-
tatively characterized using the available experimental
data only in the vicinity of the yield stress. However,
the decrease in the steepness of a plastic shock wave
profile with heating indicates an increase in the ductil-
ity of the material as a result of a decrease in the veloc-
ity of dislocations at the level of shear stresses observed
in a steady-state shock wave. The similarity of wave
profiles behind the shock front indicates that there is no
significant decrease in the resistance to plastic defor-
mation upon heating at this stage of the process.

The cleavage fracture of plastic materials includes
generation, growth, and coalescence of numerous pores
[20]. The resistance to the pore growth is determined by
the yield stress and ductility of the surrounding mate-
rial [21]. In this connection, it is not quite clear why an
increase in the yield stress upon heating is accompa-
nied by a decrease in the strength of the material with
increasing temperature. We should probably assume
that the coalescence of high-temperature vacancies
involving the formation of micropores generates addi-
tional potential seats of destruction, ensuring an
increase in the size of the existing seats and thereby
reducing the resistance to high-rate destruction during
cleavage.

Theoretical analyses of the behavior of perfect
metallic crystals under extension [22] proved that at
temperatures above 0.5 of the melting point, ruptures
are preceded by the disordering of the crystal structure,
which was interpreted as the onset of melting. The
large-scale molecular-dynamic simulation of the onset
of destruction in copper crystals [23] also shows that
discontinuities are formed as a result of the loss of sta-
bility and the disordering of the crystalline structure in
small regions which can be identified as melting sites.
Naturally, we are speaking of metastable melting, since
all states in the range of negative pressures are metasta-
ble relative to the body split into several parts.

If we disregard the ductility and the yield stress of a
solid, its extension following impact compression can
be regarded as isentropic. If the melting curve in the
pressure vs. specific-volume coordinates has a larger
slope than that of the isentrope, the adiabatic expansion
in the range of negative pressures brings the state of the
material to the boundary of the melting region. At tem-
peratures close to Tm, the expansion isentrope intersects
the boundary of the melting region at tensile stresses
lower than the dynamic rupture strength of the material.

Let us consider the thermodynamic meaning of
melting under extension in greater detail. In contrast to
gases, negative pressures can be created in solids and
liquids. However, in the extension region, all states of a
substance lie below the triple point and are lower on the
pressure scale than the entire curve describing the equi-
librium between the solid and its vapor (sublimation
curve), which lies completely in the region of positive
pressures. For this reason, all states with a negative
pressure, including those at the boundary of the melting



876 KANEL, RAZORENOV
region, are metastable. On the other hand, the region of
the existence of the solid and liquid phases and the
position of the boundaries of this region for negative
pressures are determined by the equality of the chemi-
cal potentials of the phases, as in the case of compres-
sion. In this sense, the boundary of the melting region
(including its part lying in the range of negative pres-
sures) is in equilibrium. Melting during extension (if
any is observed) is the transformation of a metastable
solid phase into a metastable liquid.

The isentropic expansion of a substance is accompa-
nied by its cooling. Let us estimate, in the linear
approximation, the pressure for which the isentrope of
the solid phase intersects the melting curve in the p vs.
V coordinates. In order to determine the slope of the
curve in these coordinates, we can use the reference
data on the pressure dependence of the melting point
Tm(p):

(8)

The linearized equation of state for the isentrope of
a solid with initial temperature T0 (for p = 0) can be pre-
sented in the form

(9)

where Tm0 is the melting point under zero pressure.
Equations (8) and (9) lead to the condition for the inter-
section of the isentrope, which describes the expansion
of the solid, with the melting curve (or, to be more pre-
cise, the solidus line)

(10)

where the derivative dTm/dp reflects the dependence of
the melting temperature Tm on pressure p; α =
1/V(dV/dT) = 1.12 × 10–4 K–1 is the volumetric thermal
expansion coefficient; Tm0 = 933.2 K; T0 is the initial
temperature of the test; and KT = –V(dp/dV )T =
56.7 GPa and KS = –V(dp/dV )S = 71.1 GPa [11] are the
isothermal and isentropic bulk elastic moduli of the
material, respectively.

Figure 3 shows the estimates of tensile stresses at
which the melting of the material begins. The estimates
were obtained on the basis of Eq. (10) by using the
experimental value of dTm/dp = 64.1 K/GPa (according
to the results obtained in [24]) and the value of this
quantity calculated on the basis of the Clapeyron equa-
tion:

,

where ∆Vm = 2.34 × 10–5 m3/kg is the change in the spe-
cific volume during melting and ∆Sm = 428 J/kg K is the
increase in entropy. Generally speaking, a decrease in
pressure to below the triple point leads to a transition
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from melting to sublimation of the solid directly into
the gaseous phase, so that dTs/dp > dTm/dp along the
sublimation curve. Accordingly, this must decrease the
slope of the boundary of the solid-phase states in Fig.
3. It is meaningless, however, to estimate the position
of the boundary of solid-phase states by extrapolating
the sublimation curve from the triple point to the region
of extension, since the line of equilibrium between the
solid and the vapor completely lies in the region of pos-
itive pressures.

After the pressure intersects the boundary of the
melting region in the course of extension, the solid-
phase states become thermodynamically nonequilib-
rium states. It is natural to expect that the strength of a
solid should decrease abruptly after the beginning of
melting; i.e., the theoretical curves in Fig. 3 must set a
limit on the strength of the material at high tempera-
tures. However, while the experimental data for poly-
crystalline aluminum lie below the theoretical esti-
mates, the high- temperature data for aluminum single
crystals lie above this limit. It should be noted that an
impact compression of polycrystalline materials can
lead to energy localization in the vicinity of impurities,
grain boundaries, and micropores, with the formation
of “hot spots” in analogy with the pattern observed in
explosive materials [2]. At high experimental tempera-
tures, the material in hot stops might melt before the
main mass of the sample attains the boundary of the
melting region. This probably explains the spread in the
experimental temperature dependences of the dynamic
strength relative to the melting threshold.

Thus, the intersection of the theoretical boundary of
the melting region during extension, which is observed
in experiments with shock waves, is not accompanied
by an abrupt decrease in the breaking strength of the
material. Since the onset of melting is accompanied by
an increase in compressibility and a decrease in the
flow stress, structural anomalies must be formed in the
expansion wave as we enter the two-phase region.
However, the measured wave profiles in the vicinity of
the melting point are completely similar to those
recorded at lower temperatures. It can be stated that, in
our experiments, the material did not melt and the mea-
sured strength in all cases corresponds to the strength of
the solid body. Consequently, the states of the super-
heated solid were realized for a short time in high-tem-
perature experiments. The superheating was as high as
20°C relative to the threshold line 4 in Fig. 3 and 30°C
relative to curve 3.

Thus, our experiments with aluminum single crys-
tals revealed an increase in the dynamic yield stress
with temperature, which is probably due to an increase
in the phonon drag. The states of superheated solids are
detected in the case of dynamic expansion to the melt-
ing region.
HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
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Abstract—The temperature behavior of the magnetic susceptibility of a CuO low-dimensional antiferromagnet
subjected to spherically converging isentropic shock wave loading is investigated. The grain sizes in CuO poly-
crystalline samples range from 5 to 110 nm. It is demonstrated that a decrease in the grain size leads to an
increase in the role of the surface states in the magnetic properties. Unlike polycrystals prepared by standard
methods, the susceptibility of nanocrystalline samples in the range 78 K < T < 150 K decreases with an increase
in temperature, which is explained by the formation of Cu2+ paramagnetic ions on the surface of nanocrystalline
particles. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that the electrical and magnetic proper-
ties and the electronic structure of bulk samples can dif-
fer from those of surface layers due to the disturbance
of their three-dimensional periodicity. Considerable
progress achieved in microelectronics has required
knowledge of the role played by the surface in the for-
mation of physical properties of bulk materials. In this
work, we investigated the influence of the surface on
the magnetic properties of copper monoxide. The
choice of CuO as the object of our investigation was
motivated by its specific position among the transition
metal oxides. As a rule, the 3d metal oxides are three-
dimensional Heisenberg antiferromagnets. The
exchange interaction between magnetic ions occurs by
way of superexchange through oxygen ions. Copper
monoxide CuO possesses the properties of a low-
dimensional antiferromagnet with the high Néel tem-
perature TN = 230 K. Neutron diffraction measurements
revealed that Cu2+ ions in CuO undergo a three-dimen-
sional antiferromagnetic ordering at temperatures
below TN [1]. However, above TN, the magnetic suscep-
tibility χ does not decrease according to the Curie–
Weiss law but increases and passes through a broad
maximum near T = 550 K [2]. The temperature behav-
ior of the magnetic susceptibility, a large deviation of
the magnetic moment of Cu2+ ions ns = 0.68µB from a
pure spin value of 1 µB, and the available data on the
heat capacity [3] indicate the presence of strong spin
correlations and quasi-one-dimensional antiferromag-
netism in the temperature range 230 K < T < 550 K.
Among all the known low-dimensional antiferromag-
nets, the highest temperatures TN and, hence, large
exchange parameters are observed for CuO, La2CuO4,
1063-7834/01/4305- $21.00 © 20878
and YBa2Cu3O6. Relatively simple crystallographic and
magnetic sublattices, a low spin value of bivalent cop-
per ions, and a strong exchange interaction along the

preferential direction [10 ] allow us to consider copper
monoxide a model material for an infinite or broken
antiferromagnetic chain [4]. Moreover, CuO is a basic
component in cuprate high-temperature superconduc-
tors. In our previous work [5], we studied copper-con-
taining high-Tc compounds and Cu–O-based het-
erophase systems and revealed the local superconduc-
tivity which, most likely, is realized in interfacial and
surface layers.

The majority of works dealing with CuO were
devoted to the study of its bulk properties. Recently,
Sohma and Kawaguchi [6] reported the data on the
magnetic properties of CuO multilayer films. The aim
of the present work was to investigate the effect of grain
size on the magnetic susceptibility of copper monoxide
polycrystals.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Copper monoxide has a monoclinic structure (C2/c
symmetry) with the unit cell parameters a = 4.685 Å,
b = 3.422 Å, c = 5.130 Å, and β = 99.42°. A small devi-
ation of the angle between the a and c axes from 90°
can be associated with the Jahn–Teller effect due to the
presence of bivalent copper ions.

Copper monoxide samples with different grain sizes
were produced under the action of spherically converg-
ing isentropic shock waves. The procedure for prepar-
ing these sample was described in detail in [7]. After
shock action, ceramic copper monoxide had the form of

1
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Fig. 1. Microstructure observed with a scanning tunneling microscope in different layers of a shocked spherical sample of CuO:
r = (a) 0.7R and (b) 0.9R.
a spherical sample with radius R = 22 mm, from which
plates were cut out normally to the radius. The density
of initial polycrystals of CuO was equal to 70% of the
theoretical value. The density of shocked CuO reached
a maximum value of 99% for layers at a depth r > 0.5R,
which was close to the density of single crystals (98%).
However, the central region (r < 0.4R) of the com-
pressed spherical sample contained weakly pressed
CuO with a low density. The phase and structure anal-
yses of the samples were performed on a DRON-2.0
x-ray diffractometer. The grain size in the samples was
estimated by scanning tunneling microscopy (STM)
using an STM-U1 microscope (ZAO KPD, Zelenograd,
Russia). Ten and more images at different points were
obtained for each sample. The crystalline grain sizes in
the samples were determined by averaging over all the
images obtained. The magnetic susceptibility was mea-
sured on a magnetic balance over a wide temperature
range (80–600 K).

According to x-ray diffraction investigations, the
samples cut out from the dense region of the shocked
ball are single-phase. For shocked CuO samples, the
unit cell parameters a, b, and c increased only slightly,
the β angle decreased, and the diffraction lines broad-
ened considerably. The broadening of the diffraction
lines for shocked CuO samples can be associated with
both elastic stresses arising in the crystal lattice after
shock action and small sizes of coherent scattering
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
regions. Analysis of the x-ray diffraction data revealed
that the small grain size in the CuO samples made the
main contribution to the diffraction line broadening.
This agrees well with the STM data. The grain size d in
the initial polycrystal was equal to 5–15 µm. After
shock loading, grains with a maximum size d = 110 nm
were observed in the outer (r = 0.95R) and inner (r =
0.5R) layers of the dense region of the spherical sam-
ple. Intermediate layers with a relative radius r = 0.7R
contained grains with a minimum size d = 10 nm. Fig-
ure 1 shows the microstructure observed with a scan-
ning tunneling microscope in different layers of a
shocked CuO ball. It is seen that the grain sizes in lay-
ers with r = 0.7R and 0.9R differ by the order of magni-
tude. Grains with the smallest size d = 5 nm were
observed in friable CuO samples cut out from the cen-
tral region (r < 0.4R) of the ball. It should be noted that
small amounts of the Cu2O nonmagnetic phase were
found in these samples. The CuO ceramics produced by
the blast method can be considered nanocrystalline
materials.

3. MAGNETIC PROPERTIES 
OF CuO NANOCRYSTALLINE SAMPLES

The magnetic order in CuO is governed by the Cu2+

superexchange interaction through oxygen ions,
because direct exchange is impossible. The Cu–O–Cu
angle has the closest value to 180° and lies in the plane
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parallel to the [10 ] direction. Therefore, magnetic
ions are antiferromagnetically ordered in this direction.
In all other directions, the Cu–O–Cu angle is close to
90°, which provides ferromagnetic coupling. The mag-
netic structure of CuO can be represented in the form of
zigzag antiferromagnetic chains extended along the

[10 ] direction with a strong intrachain interaction and
a weak ferromagnetic coupling between the chains.
Competition between the antiferromagnetic and ferro-
magnetic interactions leads to a three-dimensional
collinear antiferromagnetism at low temperatures (T <
212 K). A three-dimensional noncolinear (spiral) mag-
netic structure is realized in the range 212 < T < 230 K.
Above TN = 230 K, as follows from the neutron diffrac-
tion, magnetic, and heat capacity data, strong spin cor-
relations are observed in CuO. Since the interchain
exchange parameter is substantially less than the intra-
chain exchange parameter, an increase in kT results in
cessation of the interaction between the chains and the
system transforms into a low-dimensional state. The
temperature dependence of the magnetic susceptibility
has a shape characteristic of low-dimensional antiferro-
magnets which undergo a phase transition to a three-
dimensional state with a long-range magnetic order as
the temperature decreases. A distinguishing feature of
low-dimensional antiferromagnets is that the suscepti-
bility χ exhibits a flattened maximum in the tempera-
ture range comparable to the exchange parameter in a
chain or a plane.

In [2, 8], it was demonstrated that the susceptibility
of CuO polycrystals with a stoichiometric composition
at low temperatures (T < 140 K) remains virtually con-
stant. As the temperature increases (T > 140 K), the sus-
ceptibility also increases and reaches a maximum near
T = 550 K. In the high-temperature range (T > 550 K),
an increase in T brings about a decrease in the suscep-
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Fig. 2. Temperature dependences of the magnetic suscepti-
bility of polycrystalline CuO samples subjected to spherical
shock wave action. Magnetic field H = 9 kOe. Crystallite
size d, nm: (1) 110, (2) 70, (3) 30, (4) 15, and (5) 5.
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tibility, which indicates a paramagnetic state of CuO. In
the vicinity of TN, a peak typical of the susceptibility of
three-dimensional antiferromagnets is absent and only
the slope of the χ(T) curve changes. The absence of the
peak in the χ(T) dependence near TN indicates a
smeared transition from the three-dimensional state
with a long-range magnetic order to the low-dimen-
sional state with strong spin correlations.

Earlier [9], we investigated the influence of intrinsic
defects and specially introduced impurity magnetic and
nonmagnetic ions on the magnetic properties of CuO. It
was shown that intrinsic defects lead to a change in
magnitude of the susceptibility χ and a shift in the tem-
perature of its maximum toward the low-temperature
range. The presence of impurity ions can result in a
change in the temperature ranges of the long- and short-
range orders. The temperature range of the long-range
order is estimated from the TN temperature. The tem-
perature of the short-range order is evaluated from the
location of the susceptibility maximum above TN and
the deviation of the effective magnetic moment from
the theoretical value. At high temperatures, spin corre-
lations disappear, all Cu2+ ions become paramagnetic,
and their effective magnetic moment should corre-
spond to µeff for isolated ions.

As was already mentioned, many works dealing
with CuO have focused on the study of its bulk proper-
ties. However, the properties of bulk samples and their
surface layers can differ because of the breaking of
bonds on the surface. In order to elucidate the role of
the surface magnetism in the formation of magnetic
properties of CuO, we measured the magnetic suscep-
tibility of ceramic samples with different crystallite
sizes. A decrease in the crystallite size should bring
about an increase in the number of intercrystalline
interfaces and, correspondingly, an increase in the con-
tribution of surface states to the measured susceptibil-
ity. Figure 2 depicts the temperature dependences of the
magnetic susceptibility in an external magnetic field
H = 9 kOe for CuO polycrystalline samples with differ-
ent mean crystallite sizes d which were subjected to
spherical shock wave action. The temperature depen-
dences of the susceptibility for samples with large crys-
tallite sizes (d ≥ 70 nm), which were cut out from dif-
ferent regions of the shocked ball, are identical to those
for CuO polycrystals prepared by the standard method.
In this d range, the crystallite size does not affect the
behavior of χ(T) (curves 1, 2 in Fig. 2). A decrease in
the crystallite sizes (d < 70 nm) is accompanied by an
increase in the susceptibility χ in the low-temperature
range (T < TN) and a decrease in the difference between
the minimum and maximum susceptibilities. For a
sample with d = 5 nm (curve 5), the susceptibility χ
depends inversely on the temperature in the range T <
140 K; i.e., the susceptibility increases with a decrease
in temperature (χ ~ 1/T). In the high-temperature range
(T > 300 K), the susceptibilities of all the samples
coincide.
HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
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As was noted above, sample no. 5 contains a small
amount of the Cu2O phase. Copper in this phase is in
the univalent state (3d10), and, hence, the cuprous oxide
should be diamagnetic. The presence of a foreign non-
magnetic phase in CuO should not strongly affect the
behavior of χ(T). In order to verify this assumption, we
measured the temperature dependences of the magnetic
susceptibility for single-crystal and polycrystalline
samples of Cu2O (Fig. 3). As the temperature increases,
the susceptibility of Cu2O polycrystals linearly
decreases from χ = 0.81 × 10–6 cm3/g at T = 78 K to χ =
0.23 × 10–6 cm3/g at T = 290 K. For a single crystal, the
dependence χ(T) is stronger and the susceptibility is
higher (χ = 1.27 × 10–6 cm3/g at T = 78 K), which can
be associated with the presence of uncontrollable impu-
rities. Note that the magnetic susceptibility of Cu2O in
the temperature range covered is substantially less than
the susceptibility of CuO. We calculated the tempera-
ture dependences of the susceptibility for the CuO–
Cu2O two-phase samples. The magnetic susceptibility
of the two-phase sample is determined by the sum of
the contributions of these two phases: χΣ = (1 –
x)χ(CuO) + xχ(Cu2O), where x is the concentration of
the Cu2O phase. The values of χ were taken from the
experimental dependences χ(T) for CuO and Cu2O sto-
ichiometric polycrystals. The calculated dependences
χ(T) for compositions containing 10 and 50% Cu2O are
displayed in Fig. 3. It is seen that the behavior of χ(T)
is similar to the temperature dependence of the suscep-
tibility for CuO. Even for a composition containing
50% CuO and 50% Cu2O, the susceptibility in the low-
temperature range should not exhibit as strong a depen-
dence χ ~ 1/T as in curve 5 in Fig. 2. Since our sample
contains no more than 3–5% Cu2O, the observed
behavior of χ(T) cannot be explained by the presence of
the Cu2O phase. As follows from the results obtained, a
decrease in the size of crystallites in shocked CuO
polycrystals does not affect the short-range magnetic
order at T > 300 K. The role of the surface states at the
intercrystalline interfaces manifests itself in the region
of the long-range magnetic order; however, the Néel
temperature remains unchanged.

4. DISCUSSION

An increase in the susceptibility of CuO polycrys-
tals with a decrease in temperature (T < 65 K) was
observed in a number of works [10–12]. The reason for
this increase in χ remains unclear. According to Seehra
et al. [12], the low-temperature increase in χ is
explained by the presence of vacancies in the cationic
sublattice and the formation of trivalent copper ions.
The magnetic moment of copper ions Cu3+ (3d8) is
larger than that of Cu2+ ions. Trivalent copper ions can
behave as a paramagnetic impurity. However, the
experimental data obtained in our earlier work [9] for
stoichiometric CuO and Cu1 – xLixO solid solutions
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
demonstrated that the anomalous behavior of the sus-
ceptibility at low temperatures cannot be explained by
the presence of Cu3+ ions. Experimental evidence of the
presence of Cu3+ ions in copper-containing oxides is
unavailable.

Above the Néel temperature, CuO is a quasi-one-
dimensional antiferromagnet. Bonner and Fisher [13]
calculated the temperature dependences of the antifer-
romagnetic susceptibility in a zero magnetic field for
Heisenberg broken chains consisting of a limited num-
ber (N = 3, 4, 5, …, 11) of spins S = 1/2. For chains with
an even number of spins, the susceptibility below the
temperature of the maximum kTmax|J | = 1.282
decreases monotonically with a decrease in tempera-
ture. For chains with an odd number of spins, the sus-
ceptibility below the temperature of the maximum also
first decreases but then increases with a further
decrease in the temperature (kTmax/ |J | < 0.6). Note that
the susceptibility of chains with a smaller number of
spins is higher. The χ(T) dependences for chains with
N = 7, 9, and 11 are similar to our experimental curves
shown in Fig. 3. The broken chains in CuO nanocrys-
talline samples can arise from the breaking of the Cu–
O–Cu exchange bonds in the surface layers of crystal-
lites upon disturbance of their three-dimensionality.
The smaller the crystallite size, the greater the contribu-
tion of the surface states and the larger the number of
dangling bonds. However, it is unlikely that the low-
temperature increase in the susceptibility χ of CuO
nanocrystalline samples is associated with one-dimen-
sional antiferromagnetism. In this case, the long-range
magnetic order should either be absent or be retained at
low temperatures (T < 78 K). For our samples, TN =
230 K. One of the reasons for the low-temperature
increase in the susceptibility can be the frustration of
antiferromagnetic interactions between the Cu2+ ions
on the crystallite surface. It is known that both perpen-
dicular (χ⊥ ) and parallel (χ||) susceptibilities of strongly
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Fig. 3. Experimental and calculated temperature depen-
dences of the magnetic susceptibility for single-phase and
two-phase polycrystalline samples: (1) Cu2O, (2) 50%
CuO + 50% Cu2O, (3) 90% CuO + 10% Cu2O, and (4) CuO.



882 ARBUZOVA et al.
Experimental and calculated magnetic susceptibilities of CuO with inclusion of Cu2+ paramagnetic ions

T, K

χexp × 10–6, cm3/g

Cu2+ ion content x, % χexp × 10–6, 
cm3/g for 

sample no. 51% 2% 3% 4% 5% 100%

77 2.94 3.53 4.12 4.70 5.29 61.20 4.11

100 2.81 3.26 3.70 4.15 4.60 47.12 3.63

150 2.80 3.10 3.39 3.67 3.96 31.42 3.15

200 3.11 3.31 3.52 3.73 3.93 23.56 3.22

250 3.43 3.58 3.74 3.89 4.05 18.85 3.46

300 3.56 3.69 3.84 3.93 4.05 15.70 3.50
frustrated antiferromagnets can increase at low temper-
atures (for polycrystals, χ = 2/3χ⊥  + 1/3χ||).

The most probable reason for the complex tempera-
ture behavior of the susceptibility is the formation of
Cu2+ paramagnetic ions on the crystallite surface due to
the frustration of three-dimensional exchange interac-
tions. Sohma and Kawaguchi [6] investigated the mag-
netic properties of multilayers in polycrystalline and
epitaxial CuO films (with different thicknesses) on
Al2O3 and MgO nonmagnetic substrates. The Néel tem-
perature of polycrystalline films 1000 Å thick was TN =
160 K, which is considerably less than the value TN =
230 K found for polycrystals. It was shown that the sus-
ceptibility of all film samples in the temperature range
4.2 K < T < 300 K is inversely proportional to the tem-
perature: χ ~ 1/T. At the same thickness of multilayers,
the susceptibility is higher for thinner films. It was
revealed that the susceptibility at 4.2 K increases lin-
early with an increase in the number of interfaces.
These authors made the conclusion that the observed
character of the χ(T) dependence is determined by the
paramagnetic component [6]. Paramagnetic ions Cu2+

are located in the planes with an effective thickness of
2–4 Å, which are adjacent to the interfacial layers. In
the CuO (20 Å)/Al2O3 (30 Å) thin films composed of
100 layers, the concentration of Cu2+ paramagnetic ions
was estimated at 6.7% of the total number of copper ions.

The dependences χ(T) obtained in the present work
for the CuO nanocrystalline samples are slightly differ-
ent: the susceptibility exhibits a minimum in the tem-
perature range T = 120–160 K. We attempted to
describe the experimental dependences χ(T) under the
assumption that the measured values of χ are the sum
of the contributions from bulk CuO and paramagnetic
ions Cu2+ on the crystallite surface. The total suscepti-
bility can be represented in the form

(1)

where x is the concentration of Cu2+ paramagnetic ions.
The first term in relationship (1) can be determined

χ 1 x–( )χ CuO( ) x
Ng2S S 1+( )µB

2

3kT
-------------------------------------,+=
P

from curve 1 in Fig. 2 for samples with large-sized
crystallites (d > 1000 Å). The Curie law can be used for
the second term in the sum, because magnetic copper
ions do not interact on the crystallite surface. The total
susceptibilities calculated for small concentrations x of
Cu2+ paramagnetic ions at different temperatures are
listed in the table. The experimental values of χ(T) for
sample no. 5 with d = 5 nm are also given in the table
for comparison. If the Cu2+ ions were predominantly in
the paramagnetic state, the first term in relationship (1)
could be ignored, because the contribution of CuO to
the total susceptibility is relatively small. However, at
small concentrations x, both contributions are compara-
ble, which determines the nonmonotonic behavior of
χ(T). As can be seen from the table, at x ≤ 0.05, the sus-
ceptibility χ should exhibit a minimum in the vicinity
of T = 150 K, which agrees with the experimental data.
We failed to achieve complete qualitative agreement
between the calculated and experimental dependences
χ(T). However, the proposed model adequately
describes the behavior of χ(T). For a sample with the
smallest crystallite size (Fig. 2, curve 5), the Cu2+ ion
concentration x was estimated at 0.03. An increase in
the crystallite size should lead to a decrease in the con-
centration x due to the decrease in the fraction of sur-
face layers in the bulk sample. The Cu2+ paramagnetic
ions can have a higher concentration in CuO multilayer
films. At concentrations x > 0.07, the susceptibility
should gradually decrease with an increase in tempera-
ture, which is in reasonable agreement with the data
obtained in [6].

5. CONCLUSION

Thus, the complex temperature behavior of suscep-
tibility in nanocrystalline samples of the CuO low-
dimensional antiferromagnets can be explained by the
presence of Cu2+ paramagnetic ions. The Cu2+ ions
located in the surface layers of nanocrystals are not
involved in the interactions and behave as a paramag-
netic impurity due to the lack of three-dimensional
periodicity and the breaking of exchange bonds. The
role of the surface states of copper ions in the magnetic
HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
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properties increases with a decrease in the crystallite
size.
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Abstract—The influence of continuous-wave pumping on the propagation of solitons of magnetostatic spin
waves is studied. It is shown that, at certain conditions when the frequency of the continuously excited wave
falls into the spectrum of a soliton-like pulse, the nonlinear interaction results in soliton decay. Numerical cal-
culations of this effect are presented. © 2001 MAIK “Nauka/Interperiodica”.
The properties of envelope solitons of traveling
magnetostatic spin waves (MSWs) in ferromagnetic
films are investigated in detail for the cases of direct
and inverse bulk MSWs [1, 2]. An important property
of solitons, namely, the conservation of their shape in
colliding with and penetrating through each other, was
observed for solitons propagating in opposite direc-
tions [3]. In a typical experimental study of MSW soli-
tons, ferromagnetic films are used; the exciting and
receiving antennas are placed on the surface of the film
at a distance of 1 cm from each other. The initial length
of MSW solitons is about 20 to 40 ns. This means that
the distance at which solitons interact at a collision is
approximately 0.02 to 0.2 cm (for an MSW group
velocity of 106 to 5 × 106 cm/s). The interaction effects
are not able to accumulate and, therefore, do not affect
the character of the soliton propagation. On the other
hand, it has been shown recently that the mutual influ-
ence of MSWs could alter the character of the wave
propagation. It has been demonstrated [4, 5] that a
modulation instability occurs as a result of the cross-
modulation of nonlinear surface MSWs, which are usu-
ally modulation-stable, and the waves become unstable
with respect to the modulation. At the interaction with
each other, the direct bulk MSWs also reveal the
induced modulation instability due to the cross-modu-
lation that is additional to the self-modulation (since,
contrary to the surface MSWs, these waves are modu-
lation unstable). Moreover, propagating along the same
direction in ferromagnetic films, the surface MSW
pulses can form envelope solitons at the interaction [6].
The character of their propagation corresponds to the
behavior at the collision of solitons considered in [7].
Thus, when two waves interact, the MSW propagation
significantly depends on the character of the interaction
between them. In [8], it was proposed to control the
propagation of optical solitons in a fiber with the aid of
continuously excited light, thereby solving the problem
of developing optical devices using only light. In the
1063-7834/01/4305- $21.00 © 20884
present paper, the influence of the continuous-wave
MSW pumping on the properties of propagating enve-
lope solitons of direct bulk MSWs is considered. Thus,
we demonstrate the possibility of controlling the for-
mation and propagation of MSW solitons by a propa-
gating microwave signal.

The propagation of weakly nonlinear MSWs in a
ferromagnetic film is considered in the nonlinear
Shrödinger equation (NSE) approximation for the mag-
netostatic potential of the wave obtained in solving the
coupled Landau–Lifshitz and Maxwell equations. The
interaction between an MSW pulse and a continuous
wave is described by the coupled NSEs supplemented
by the corresponding boundary conditions and initial
conditions. The system of coupled NSEs for direct bulk
MSWs has the form

(1)

where

Here, ωH = γH,  =  + ωHωM, ωM = γ4πM, H is the
external magnetic field, M is the saturation magnetiza-
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tion of the ferromagnet, vgi =  are the group veloc-

ities of the waves, and βi = , where ωi(ki) is the

dispersion relation of MSWs (index i indicates the first
or second wave), which is found from the transcenden-
tal equation

where d is the thickness of the ferromagnetic film, χ1
and χ2 are the components of the magnetic susceptibil-
ity tensor, k1 and k2 are the wave numbers of the MSWs,
and A and B are the amplitudes of the MSW potentials.

To describe a propagating MSW pulse, the follow-
ing initial conditions are chosen:

(2)

where A0 is the pulse amplitude. The function ζ(t) is
taken in the form

(3)

At T = tmax, where tmax is the time of the propagation of
the MSWs, this mathematical model corresponds to the
case of a continuous excitation of a wave, and at T <
tmax, to the pulse excitation. Thus, the initial conditions
for the wave propagating in the continuous regime can
also be taken into account by Eqs. (2) and (3).

The system of equations (1) describes the evolution
of the wave propagation, including the effects of self-
modulation, cross-modulation, and mismatch between
the group velocities. In the case of MSWs, the last
effect becomes crucial in determining the spectrum and
shape of the propagating pulses. The dispersion and
nonlinear lengths are the main parameters determining
the propagation of the pulse in a nonlinear dispersion
medium. The dispersion length is the distance at which
the pulse in the linear medium becomes twice as broad
due to dispersion spreading, and the nonlinear length is
the distance at which the phase of the peak of the pulse
amplitude changes by π in the absence of dispersion:

(4a)

(4b)

∂ωi

∂ki

--------

∂2ωi

∂ki
2

----------

ξkid( )tan
2ξ

ξ2 1–
--------------, ξ 1 4πχ1i+( )– ,= =

A x 0,( )
A0ζ 0( ), x 0=

0, 0 a Lx,≤<



=

A 0 t,( ) A0ζ t( ), t 0,≥=

ζ t( ) T
2
--- t– 

  , 0sech t T ,≤ ≤=

0, t T .>

LD i,
T0

2
v gi

3

βi

-------------,=

LN L i,
v g

f iPi

----------,=
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
where T0 is the initial duration of the pulse, f1 is defined
in Eq. (1), and P1 is the dimensionless wave power.
When these lengths become equal and the necessary
condition for the soliton existence (Lighthill criterion)
is fulfilled, this length is approximately equal to the dis-
tance at which the envelope soliton is formed from the
initial square pulse. In the case of direct bulk MSWs,
the distances LD and LNL can be made equal to several
millimeters by varying the operating frequency, the ini-
tial duration of the pulse, and its power. The formation
and observation of direct bulk MSW solitons are possi-
ble in this situation. Figure 1 shows the results of
numerical simulation of the propagation of a pulse of
the direct bulk MSW with an initial duration of 100 ns
and a wave frequency of 3.7 GHz for a ferromagnetic
7.5-µm thick film in an external magnetic field of
2.35 kOe. In particular, Fig. 1a shows the initial pulse
(at the entry into the film) and Fig. 1b shows the formed
soliton (after propagating over a distance of 1.5 cm
along the film).

In the case of the simultaneous propagation of the
pulse and a continuous signal, the latter significantly
affects the process of the soliton formation. In this case,
according to Eq. (1), this process, as was already men-
tioned, essentially depends on the mismatch between
the group velocities of the pulse and the continuous
wave. This is due to the fact that the magnetic perme-
ability and susceptibility of the ferromagnet are
changed in the process of propagation of the nonlinear
wave in the ferromagnetic film because of a nonlinear
frequency shift of the propagating wave. If a second
wave has a frequency which falls into the frequency
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Fig. 1. (a) Formation of a soliton of a direct bulk magneto-
static wave from an initial 100-ns Gaussian pulse presented
in (b). The vertical axis corresponds to the amplitude of the
pulse measured in arbitrary units, and the horizontal axis, to
the propagation time normalized to the initial duration of
pulse.
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region of the susceptibility change, then its characteris-
tics can also be strongly changed. Phase cross-modula-
tion, as well as self-modulation, induces frequency–
phase modulation between two wave fronts. If the fre-
quency mismatch between the pulse and the continuous
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Fig. 2. The decay of the soliton of a direct bulk magneto-
static spin wave in the process of its interaction with the
continuous pumping wave of a close frequency which dif-
fers from the central frequency of the pulse by 10 MHz (the
intensity of the continuous wave is 0.2 times the power of
the pulse peak). (a) The shape of the pulse fed to the receiv-
ing antenna; (b, c, d, e) the pulse shape at a distance of 1, 2,
3, and 4 mm away from the receiving antenna, respectively.
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wave is so large that the frequency of the continuous
wave is out of the pulse spectrum, the interaction
between two wave fronts will also be weak. In turn, the
change in the shape and spectrum of the propagating
pulse will also be weak. Due to the large mismatch
between the group velocities of the interacting pulse
and the continuous wave, the changes in the shape and
spectrum of the pulse caused by cross-modulation have
no time to accumulate and the change in the pulse shape
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Fig. 3. The decay of the soliton of a direct bulk magneto-
static spin wave in the process of its interaction with the
continuous pumping wave of a close frequency which dif-
fers from the central frequency of the pulse by 10 MHz (the
intensity of the continuous wave is 0.8 times the power of
the pulse peak). (a) The shape of the pulse fed to the receiv-
ing antenna; (b, c, d) the pulse shape at a distance of 1, 2,
and 3 mm away from the receiving antenna, respectively.
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is entirely due to the self-modulation. A numerical sim-
ulation of this process shows that there are no changes
in the shape of the output pulse, and the evolution of the
interaction is similar to that shown in Fig. 1. In the case
where the frequency of the continuous wave falls into
the spectral range of the propagating pulse, the phase
modulation due to the cross-modulation can lead to sig-
nificant changes in the shape and spectrum of the pulse.
If the intensity of the continuous wave is not small, the
pulse can decay altogether, as demonstrated in Fig. 2.
Figure 2a corresponds to the pulse entering the receiv-
ing antenna, Figs. 2b–2e show the shape of the pulse at
a distance of 1, 2, 3, and 4 mm away from the receiving
antenna, respectively.

The pulse carrier frequency is 3.7 GHz, and the con-
tinuous-wave frequency is 3.69 GHz. In this case, the
interaction between the pulse and continuous wave
becomes strong and this results in the soliton splitting
into a number of pulses. This is possible even at small
intensities of the propagating continuous wave (for
Fig. 2, the intensity of the wave is 1 mW and the com-
plete decay of the soliton takes place at distances of
about 2 cm). The soliton decay becomes faster and
occurs at shorter distances for increased continuous-
wave intensity. Figure 3 shows the soliton decay in the
process of its interaction with a continuous wave of
intensity 10 mW. In this case, the soliton decays at dis-
tances of less than 1 cm.

Similar to Fig. 2, Fig. 3a corresponds to a pulse fed
into the receiving antenna; Figs. 3b–3d demonstrate the
pulse shape at distances of 1, 2, and 3 mm away from
the entrance antenna, respectively. In the numerical cal-
culations, we did not take into account the MSW damp-
ing in the process of propagation through the ferromag-
netic films; it can be taken into account by introducing
the corresponding terms into Eq. (1). However, damp-
ing should not change the general picture of the inter-
action between the solitons and the continuous pump-
ing wave; it is possible that the effects leading to the
soliton decay due to its interaction with the continuous
wave will be revealed earlier and at smaller distances.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      200
Recently [9], it was demonstrated experimentally that a
sufficiently intense MSW could completely suppress
another MSW with a different, close frequency propa-
gating in the same direction in the case of excitation of
both waves in the continuous regime.

Thus, the interaction between MSW solitons and a
continuous pump wave propagating in ferromagnetic
films is studied in the present paper. It is shown that if
the frequency of the continuous wave falls into the soli-
ton spectral range, their interaction is strong and the
soliton is split into separate pulses. This effect enables
one to investigate the formation and propagation of
solitons with the aid of continuously excited propagat-
ing waves of similar natures.
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Abstract—A study is reported on the behavior of the isotherms of the magnetization σ(H) and of the longitu-
dinal λ ||(H), transverse λ⊥ (H), volume ω(H), and anisotropic λt(H) magnetostrictions measured at T = 80 K in
the Cu0.4Fe0.6[Ni0.6Cr1.4]O4 and Zn0.4Fe0.6[Ni0.6Cr1.4]O4 ferrite–chromites having a frustrated magnetic struc-
ture. It has been established that these ferrite–chromites do not undergo technical magnetization and that the
growth of the magnetization with the field is accounted for by two paraprocesses of different natures. © 2001
MAIK “Nauka/Interperiodica”.
The frustrated magnetic structure in ferrites can be
considered as consisting of spatially separated, sponta-
neously magnetized, ferrimagnetically ordered regions.

We earlier established [1, 2] that the ferrite–
chromites of copper and cobalt with a high Cr3+ con-
centration in the octahedral sites have a frustrated mag-
netic structure. A Mössbauer study showed the
Fe[NiCr]O4 ferrite–chromite to be magnetically frus-
trated [3]. Therefore, we believe that the
Ni0.4Fe0.6[Ni0.6Cr1.4]O4 ferrite–chromite having a still
higher content of Cr3+ ions should also possess a frus-
trated magnetic structure. The frustrated magnetic
structure in the ferrite–chromites under study is possi-
bly due to the fact that these samples contain more than
three different species of magnetic cations, which are
coupled through exchange interactions, opposite in
sign and different in magnitude. Furthermore, the pres-
ence of strong direct exchange coupling between the
Cr3+ ions on the octahedral sublattice can bring about
noncollinear magnetic ordering in spatially separated,
spontaneously magnetized regions.

This paper reports on a study of the magnetization
processes in the Cu0.4Fe0.6[Ni0.6Cr1.4]O4 and
Zn0.4Fe0.6[Ni0.6Cr1.4]O4 ferrites, because the
Ni0.4Fe0.6[Ni0.6Cr1.4]O4 ferrite–chromite possesses a
strong magnetic anisotropy due to the presence of Ni2+

ions in the triplet state on the A sublattice with an
incompletely quenched orbital angular momentum,
which requires investigation of its properties in strong
magnetic fields.

Samples of these ferrites were prepared using
ceramic technology. Both anneals were performed in
air at a temperature of 1270 K for 20 h, with subsequent
slow cooling. X-ray diffraction measurements showed
the samples to be single-phase spinels. The magnetiza-
tion and coercive force were determined by the ballistic
technique, and the magnetostriction, by strain measure-
1063-7834/01/4305- $21.00 © 20888
ments. The studies were carried out in magnetic fields
of up to 10 kOe, the magnetization was measured at
temperatures from 80 K to the Curie point, and the
magnetostriction, at temperatures from 80 to 400 K.

The magnetization process in ferro- and ferrimag-
nets is known to consist of technical magnetization and
the paraprocess (the true magnetization), whereas in
the case of frustrated magnets, one would expect the
magnetization to proceed in a different manner,
because they do not have domains.

While the field dependence of magnetization cannot
provide an answer to the question of the nature of mag-
netization, studying the λ(H) isotherms can shed light
on this problem, because the λ(H) relation behaves dif-
ferently in different processes. For instance, in conven-
tional ferrimagnets, the longitudinal (λ||) and transverse
(λ⊥ ) magnetostrictions have opposite signs in the
region of technical magnetization, and when saturation
is reached, Akulov’s rule λ|| = –2λ⊥  holds. Therefore, in
the technical magnetization region, the volume magne-
tostriction ω = 0 and the anisotropic magnetostriction
λt = const. By contrast, in the region of the paraprocess,
∆λ|| and ∆λ⊥  have the same sign and are equal in mag-
nitude, which results in the volume magnetostriction ω
becoming field-dependent, but the anisotropic magne-
tostriction remains constant, λt = const. It should be
pointed out that in nonfrustrated ferrimagnets, the sus-
ceptibilities of the paraprocess, ∆λ|| and ∆λ⊥ , which are
associated with the paraprocess, are, as a rule, negative.

Figures 1 and 2 present the isotherms of the magne-
tization σ and of the longitudinal (λ||) transverse (λ⊥ )
volume (ω) and anisotropic (λt) magnetostrictions
obtained at the temperature T = 80 K on the
Cu0.4Fe0.6[Ni0.6Cr1.4]O4 and Zn0.4Fe0.6[Ni0.6Cr1.4]O4
samples, respectively. (The volume ω and anisotropic
λt magnetostrictions were calculated from the expressions
ω = λ|| + 2λ⊥  and λt = λ|| – λ⊥ .) The coercive force Hc of
001 MAIK “Nauka/Interperiodica”
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the Cu0.4Fe0.6[Ni0.6Cr1.4]O4 and Zn0.4Fe0.6[Ni0.6Cr1.4]O4
samples at the liquid nitrogen temperature was found to
be 390 and 76 Oe, respectively, which means that the
applied magnetic fields were certainly high enough.
The isotherms σ(H) of both samples are seen not to sat-
urate; i.e., we have here a paraprocess, and a fairly
weak one: in fields above 5 kOe, we have ∆σ ≈ 2.6 ×
10–4 G cm3 g–1 Oe–1 for the Cu0.4Fe0.6[Ni0.6Cr1.4]O4 fer-
rite and ∆σ ≈ 1.1 × 10–4 G cm3 g–1 Oe–1 for the
Zn0.4Fe0.6[Ni0.6Cr1.4]O4 ferrite. Note that the magneto-
striction follows an anomalous behavior; namely, in all
fields, the transverse magnetostriction λ⊥  is substan-
tially larger than the longitudinal one, λ||; i.e., Akulov’s
rule does not hold. It should be pointed out that the sus-
ceptibilities of the magnetostriction paraprocess ∆λ||
and ∆λ⊥  are positive, but, in contrast to conventional
ferrimagnets with a nonfrustrated magnetic structure,
they are different in magnitude, ∆λ|| < ∆λ⊥ .

As can be seen from Figs. 1 and 2, the volume mag-
netostriction ω is positive starting from low fields and
it reaches a large magnitude ω ≈ 3.5 × 10–4 at H =
10 kOe for the Cu0.4Fe0.6[Ni0.6Cr1.4]O4 ferrite and 1.7 ×
10–4 for the Zn0.4Fe0.6[Ni0.6Cr1.4]O4 ferrite. At the same
time, the anisotropic magnetostriction λt does not satu-
rate in all fields, while it is also quite large: λt ≈ –2.3 ×
10–4 for the Cu0.4Fe0.6[Ni0.6Cr1.4]O4 ferrite and –0.9 ×
10–4 for the Zn0.4Fe0.6[Ni0.6Cr1.4]O4 ferrite.

Hence, our observation of the field dependence of
the anisotropic magnetostriction λt indicates no techni-
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Fig. 1. Isotherms of the magnetization σ(H) and of the lon-
gitudinal λ||(H), transverse λ⊥ (H), volume ω(H), and
anisotropic λt(H) magnetostrictions for the
Cu0.4Fe0.6[Ni0.6Cr1.4]O4 ferrite–chromite obtained at T =
80 K.
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cal magnetization in the Cu0.4Fe0.6[Ni0.6Cr1.4]O4 and
Zn0.4Fe0.6[Ni0.6Cr1.4]O4 ferrites having a frustrated
magnetic structure. The data on the volume magneto-
striction ω also suggest that the magnetization is initi-
ated primarily by the paraprocess.

Thus, we have established that the technical magne-
tization, which consists of displacement and canting
processes, does not take place in the frustrated
Cu0.4Fe0.6[Ni0.6Cr1.4]O4 and Zn0.4Fe0.6[Ni0.6Cr1.4]O4 fer-
rites and that the growth of the magnetization with the
field occurs in two paraprocesses differing in nature.
The first paraprocess involves rotation of the magnetic
moments of spontaneously magnetized regions toward
the external magnetic field, whereas the second of
them, operating in higher fields, is caused by a decrease
in the ion magnetic-moment noncollinearity in these
spontaneously magnetized regions.
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Abstract—Using a mechanically free plate of a centrally antisymmetric tetragonal antiferromagnet of the easy-
plane type as an example, it is shown that the linear magnetoelectric effect causes earlier unknown anomalies
to occur in the bulk magnon spectrum. The character of these anomalies depends critically on the relationship
between the Néel and Debye temperatures of the antiferromagnetic crystal. © 2001 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

The linear magnetoelectric effect in a magnetic
crystal is of special interest when a spin wave propagat-
ing in the magnet is accompanied by an electrostatic
rather than magnetostatic field, i.e., when the spin wave
is of the electric-dipole type in this sense because of the
magnetoelectric effect. Such a situation can be realized
in centrally antisymmetric antiferromagnetic crystals,
in which the linear magnetoelectric interaction can be
generally represented in the form [1–5]

(1)

where γ is the tensor of the magnetoelectric coupling
constants. In the two-sublattice antiferromagnet (AFM)
model, m = (M1 + M2)/2M0 is the ferromagnetism vec-
tor, l = (M1 – M2)/2M0 is the antiferromagnetism vec-
tor, M1 and M2 are the sublattice magnetizations
(|M1| = |M2| = M0), and P is the electric polarization
vector.

Calculations showed that both optical [6] and acous-
tic modes of the magnon spectrum [7] can be of the
electric-dipole type in antiferromagnetic crystals
exhibiting certain symmetry properties and possessing
the magnetoelectric interaction (1). This makes possi-
ble the formation of surface and bulk magnetic polari-
tons of the TM and EM types in such AFMs [8]. There
are many papers in which the conditions for the forma-
tion and propagation of magnetic polaritons in centrally
antisymmetric antiferromagnetic crystals were ana-
lyzed, but the dependence of these conditions on the
relationship between the Néel (TN) and Debye (TD)
temperatures in a real AFM was not taken into account
in them. At the same time, it is well known that in the
case of low-temperature AFMs (TN < TD), the crystal
lattice can dramatically affect the bulk magnon spec-
trum of the finite magnetic crystal [9, 10]. Furthermore,
the influence of the lattice on the spin-wave spectrum is
exchange-enhanced in AFMs [11].

Fpe γ̂ImP,=
1063-7834/01/4305- $21.00 © 20890
In this paper, we consider a specific example to
determine the conditions under which the presence of
the linear magnetoelectric interaction in a centrally
antisymmetric finite AFM leads to anomalies, hitherto
unstudied, in the bulk magnon spectrum of the electric-
dipole type, which are the result of combined electric-
dipole, magnetic-dipole, magnetostatic, and inhomoge-
neous exchange interactions.

1. BASIC EQUATIONS

We assume that |m | � |l | ≈ 1, i.e., that the relativistic
interactions are weak in comparison with the exchange
interaction between the sublattices. In this case, the
energy density of a magnetoelectric two-sublattice
AFM (including the magnetoelastic interaction) can be
written in terms of the vectors m and l in the form [7]

(2)

where

δ and α are the exchange constant and the exchange
stiffness between the sublattices, respectively; b and β
are the anisotropy constants (b � β); E is the electric
field; κ⊥  and κ are the dielectric susceptibilities; uik is

the magnetoelastic strain tensor; and  and  are the
magnetoelastic and elastic constants, respectively.

In the particular case of a tetragonal AFM with

 or  structure, the magnetoelectric inter-
action energy Fpe has the form [3–5]

F Fm Fpe Fme Fe Fp,+ + + +=

Fm M0
2 δ

2
---m2 α

2
--- ∇ l( )2 b

2
---lz

2 β
2
---lx

2ly
2++ + 

  ,=

Fme Biklmlilkulm, Fe ciklmuikulm,= =

Fp
1

2κ
------Pz

2 1
2κ⊥
--------- Px
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±2x

+I– 4z
±2x

–I–
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(3)

where  are the magnetoelectric coupling constants.
The dynamic properties of the system at hand are
described phenomenologically by a set of coupled vec-
tor equations:

(4)

where Hj ≡ δH/δj (j = m, l, P) and g is the gyromagnetic
ratio. Calculations show that either of the two equilib-
rium magnetic configurations [of the easy-axis (l || z)
and easy-plane (l ⊥  z) types] is possible [7].

From Eq. (4), one can calculate the spectrum of nor-
mal vibrations of the model AFM; their dispersion rela-
tion is generally a seventh-degree algebraic equation in
k2. In order to simplify analytical calculations, we
make the following assumptions.

(1) We restrict our consideration of the polariton
spectrum to the short-wavelength limit case ω/c  0.

(2) In the magnon spectrum of the easy-plane-type

configuration l || x, |M| = |P| = 0, symmetry , we

consider only normal spin-wave vibrations with ,

 ≠ 0,1 because this branch of the magnon spectrum of
the centrally antisymmetric AFM has fairly low activa-
tion energy and, therefore, is most strongly affected by
the magnetoelectric and magnetoelastic interactions.

In the case where the frequency of vibrations of the
system at hand satisfies the condition

(5)

one can eliminate P between Eqs. (4) and reduce them
to a set of equations which describes the magnetoelas-
tic dynamics of the magnetoelectric tetragonal easy-
plane AFM in the electrostatic and magnetostatic
approximation (ω/c  0) and involves only the vari-

ables , , φ, ψ, and u (with H = ∇φ ; E = ∇ψ ). These
coupled equations must be supplemented by boundary
conditions, because we consider the spin dynamics of a
finite magnetoelectric crystal. The magnetic medium is
assumed to be an infinite plate with thickness 2d, and at

1 The tilde indicates that the oscillations of the corresponding quan-
tity about its equilibrium value are small.

Fpe γ1Pz mxly mylx±( ) γ2mz Pxly Pylx±( )––=

– γ3lz mxPy myPx±( ),

Fpe γ1mz lxPx lyPy±( ) γ2Pz mxlx myly±( )––=

– γ3lz mxPx myPy±( ) γ4lzmzPz,–

γ̂

2/ gM0( )mt mHm[ ] lH l[ ] ,+=

2/ gM0( )lt lHm[ ] mH l[ ] ,+=

Ptt f HP, curl H
∂D
c∂t
--------, curl E

∂B
c∂t
--------,–= = =

div D 0, div B 0, ρ
∂2ui

∂t2
--------- ∂2F

∂xi∂uik

-----------------,= = =

4z
±2x

–I–

m̃z

l̃ y

ω2
 �  min g2δ2M0

2 f, /κ⊥ f /κ,( ),

m̃z l̃ y
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either of its surfaces, the boundary conditions for the
exchange variables are taken to be of the form [12]

(6)

where ζ is the coordinate along the normal n to the
plate surface and δ1 is the surface anisotropy constant.
As for the elastic and electrodynamic boundary condi-
tions, we assume that the corresponding expressions for
the magnetostatic (φ) and electrostatic (ψ) potentials
depend on the relative orientation of the normal n, the
equilibrium direction of the antiferromagnetism vector
l, and the direction of the spin-wave propagation k⊥ .
Thus, these boundary conditions are

(7)

(8)

where  is the elastic stress tensor, α* = α*(l/ |l |,
k⊥ / |k⊥ |), and β* = β*(l/ |l |, k⊥ / |k⊥ |). For an extended
discussion of the physical reasons for these boundary
conditions, see, e.g., [13, 14].

Calculations in the rigid-lattice approximation
(ω/cph|k|  ∞, with cph being the minimum phase
velocity of elastic waves) show that the dispersion rela-
tion of the low-frequency magnon mode of an infinite
high-temperature magnetoelectric AFM (TD < TN) for
any direction of the wave vector k has the form

(9)

where  ≡ d2 δα, �⊥  = 1 + 4πκ⊥ , � = 1 + 4πκ, Ap ≡

4π /δ, Ad ≡ 4π/δ, α1 ≡ κ⊥ γ, k2 =  +  + , s2 =

g2 αδ, and ω/c  0.

For an infinite low-temperature centrally antisym-
metric AFM (TD > TN) described by Eq. (2), the disper-
sion relation of analogous normal low-frequency spin
waves in the elastostatic approximation ω/cph|k |  0
(ω/c  0) can be written in the form [13]

(10)

where D ≡ det |Λik|, with i, k = 1, 2, 3; Dik is the alge-
braic adjunct of the element (i, k) of the determinant D;

 is the Christoffel tensor; and δik is the Kronecker
delta.
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An analysis of Eqs. (2), (9), and (10) shows that spin

waves of the type under consideration (  ≠ 0) are
accompanied by an electrostatic field (i.e., they are of
the electric dipole type) at kx ≠ 0 and by a magnetostatic
field (i.e., they are of the magnetic dipole type) at kz ≠ 0.
For this reason, we restrict our consideration to the case
of spin waves with k ∈  xz (ky = 0). Thus, in this geom-
etry, even if electromagnetic retardation is not taken
into account, this type of normal vibrations of the mag-
netoelectric crystal corresponds to a propagating bulk
polariton wave of the EH type. In what follows, we
assume that one of the two coordinate axes in the xz
plane coincides with the normal to the plate surface n.

To calculate the spectrum of bulk spin waves in a
finite magnetoelectric crystal, one can employ the
method developed in [15–17] for treating the effect of
the magnetic dipole interaction on the spectrum of bulk
exchange-type magnons propagating in a thin ferro-
magnetic film. For this purpose, by using Green’s func-
tions and the electrostatics and magnetostatics equa-
tions (for ω/c  0) subject to the boundary conditions
in (8), one can express the amplitudes of the electro-
static (ψ) and magnetostatic (φ) potentials in terms of
the amplitude of oscillations of the z component of the
ferromagnetism vector m under the assumption that
this vector is a given function of space coordinates.
Therefore, the variables that are associated with the
electrostatic and magnetostatic interaction can be
excluded from consideration and the boundary-value
problem at hand is reduced to a set of two integro-dif-

ferential equations for  ≠ 0 with exchange
[Eq. (6)] and elastic [Eq. (7)] boundary conditions. Fol-
lowing the technique developed in [15–17], we solve
the boundary-value problem by expanding  in terms
of the eigenfunctions of the exchange boundary-value
problem (6). Introducing the notation t ⊥  n, κν ≡ πν/2d,
where ν = 1, 2, …, we write

(11)

With this expansion, an infinite set of linear algebraic
equations for the unknown amplitudes Aν is arrived at,
from which one can find the corresponding dispersion
relation, which describes (in the short-wavelength
limit) the spectrum of normal low-frequency spin

waves (  ≠ 0) with allowance for the magnetic-
dipole, electric-dipole, and magnetoelastic interactions
in a film of the centrally antisymmetric AFM.

m̃z l̃ y,

m̃z l̃ y,

m̃z

mz r t,( ) Aν κνζ( )cos iωt ik⊥ t–( ),exp
ν
∑=

n || x δ1 0=( ),

mz r t,( ) Aν κνζ( ) iωt ik⊥ t–( ),expsin
ν
∑=

n || z 1/δ1 0=( ).

m̃z l̃ y,
P

Since the structure of this set of equations is quali-
tatively the same for different directions of the spin-
wave propagation and the film normal n, we present
here the corresponding expressions for the case of k ∈
xz and n || z (see Appendix):

(12)

(13)

Thus, using Green’s functions, we derived the spectrum
of bulk magnons in a thin magnetoelectric film; this
spectrum is represented in a form typical of the spectra
obtained by the coupled-mode method [18]. In
Eqs. (12) and (13), a diagonal element of the matrix
Wνρ(k⊥ ) determines the dispersion curve of the νth
mode of the spectrum of bulk spin waves in the magne-
toelectric film at hand. Each of the off-diagonal ele-
ments of the matrix Wνρ in Eqs. (12) and (13) can be
considered a matrix element characterizing the cou-
pling between the νth and ρth modes, the dispersion
law of which is determined from Eqs. (12) and (13) to
be ω2 = Wνν(k⊥ ) and ω2 = Wρρ(k⊥ ), respectively. From
Eqs. (12) and (13), it follows that for the spin-wave
geometry under consideration, we have Wνρ(k⊥ ) = 0 if
∂φ/∂ζ = ψ = 0 at n || z (1/δ1 = 0) or at n || x (δ1 = 0). In
this case, the infinite matrix of the coefficients Wνρ(k⊥ )
in Eqs. (12) and (13) becomes diagonal and the disper-
sion law of the bulk spin waves under study is given by

(14)

In order to analyze the contributions from different
mechanisms to the magnon spectrum, we will apply the
general expression (14) to some specific cases. One of
them, as was mentioned in the Introduction, is the elas-
tostatic approximation [13] for TN < TD, in which one
ignores the fact that the velocity of elastic waves is
finite (ω/cph  0); another case is the rigid-lattice
approximation (ω/cph  ∞) for TN > TD; and another
corresponds to α  0, i.e., to a negligibly weak inho-
mogeneous exchange interaction (exchangeless
approximation [12]).
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2. SPIN DYNAMICS OF A MAGNETOELECTRIC 
FILM IN THE EXCHANGELESS 

APPROXIMATION

From Eq. (14), it follows that, in the approximations
indicated above, the spectrum of bulk exchangeless
magnons with k ∈  xz in a thin magnetoelectric film can
be represented in the form (depending on the rela-
tionship between the Néel TN and the Debye tempera-
ture TD)

(15)

(16)

where R(k⊥ ) ≡ 1 + Ad k–2 + Ap (�⊥  + � )
–1

. In
Eqs. (15) and (16), kz = κν and kx = k⊥  for n || z and kz =
k⊥  and kx = κν for n || x. Equations (15) and (16) show
that the spectra of exchangeless spin waves have a con-
densation point at both k⊥   0 and k⊥   ∞; that is,
for two modes with fixed indices ν and ρ, we have
|Ων(k⊥ ) – Ωρ(k⊥ )|  0. For a high-temperature cen-
trally antisymmetric AFM, even without magnetostatic
interaction (Ad  0), the dispersion relation of bulk
magnons of the electric-dipole type [Eq. (15)] corre-
sponds to a direct wave (∂Ων /∂k⊥  > 0) at n || z and to a
back wave (∂Ων/∂k⊥ < 0) at n || x (electrostatic spin
waves), irrespective of the mode index ν. For a given
wave number k⊥  and a fixed mode index ν < ρ, from
Eq. (15) it follows that Ων(k⊥ ) > Ωρ(k⊥ ) for n || z and
Ων(k⊥ ) < Ωρ(k⊥ ) for n || x. For both types of spin waves,
regardless of the mode index ν, the dispersion curves in

Eq. (15) have an inflection point (∂2Ων /∂  = 0) at
k⊥  ≠ 0. If the electric-dipole interaction is weak in com-
parison with the magnetic-dipole interaction (γ  0),
then for the geometry at hand, the character of the dis-
persion relation is changed, as follows from Eq. (15);
for a given mode index ν, we have a back wave at n || z
and a direct wave at n || x. As for the effect of the mag-
netoelastic interaction on Eq. (15) for a high-tempera-
ture AFM, this interaction determines only the magni-
tude of the magnetoelastic gap ωme and renormalizes
the magnetic anisotropy constant, both these quantities
being independent of the magnitude and direction of
the wave vector k⊥ .

When the magnetic-dipole and electric-dipole inter-
actions are both represented in Eq. (15), the dispersion
relation of exchangeless magnons for a given mode
index ν at n || x, as well as at n || z, is a combination of
both specific cases considered above and exhibits the
following features:

(1) At k⊥  = kν, an extremum can occur, which is a
maximum or a minimum, depending on the parameters
of the magnetoelectric AFM and the relative orientation
of the film normal n in the xz plane.
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(2) The dispersion curves of modes with indices ν
and ρ (ν < ρ) described by Eq. (15) can cross [Ων(k⊥ ) =
Ωρ(k⊥ )] at a certain point k⊥  = kνρ (kν < kνρ < kρ). In this
case, if in the vicinity of the long-wavelength conden-
sation point (k⊥   0) we have Ων(k⊥ ) < Ωρ(k⊥ ) [or,
alternatively, Ων(k⊥ ) > Ωρ(k⊥ )] for ν < ρ, then for the
same curves in the vicinity of the short-wavelength
condensation point (k⊥   0), we will have the oppo-
site inequality Ων(k⊥ ) > Ωρ(k⊥ ) [or Ων(k⊥ ) < Ωρ(k⊥ ),
respectively].

The physical reason for these anomalies in the spec-
trum of bulk exchangeless magnons in a finite high-
temperature magnetoelectric crystal is the magneto-
electric effect, which gives rise to hybridization of the
magnetic-dipole and electric-dipole indirect spin–spin
interactions.

In a thin film of a low-temperature magnetoelectric
AFM, the spectrum of exchangeless spin waves exhib-
its further anomalies in addition to those described by
Eq. (15). A comparison of Eqs. (15) and (16) shows
that, at TN < TD, in addition to the electric-dipole and
magnetic-dipole mechanisms of dispersion of
exchangeless magnons, there is also an indirect spin–
spin interaction through the long-range field of quasi-
static magnetoelastic deformations. For this reason, the
dispersion of exchangeless spin waves in a thin AFM
film takes place even if Ap, d  0. In this case, the
exchangeless magnons are called elastostatic spin
waves [9, 10]. Because of this indirect spin–spin inter-
action in the geometry k ∈  xz and n || x or n || z, even in
the absence of magnetic-dipole and electric-dipole
waves, the dispersion relation of an exchangeless mag-
non mode with index ν corresponds to a back wave at
n || z and to a direct wave at n || x and has a condensation
point at k⊥   0 and ∞.

Now, we will take into account that, in a film of a
low-temperature magnetoelectric AFM, the indirect
spin–spin exchange occurs not only through the long-
range field of quasi-static magnetoelastic deformations
but also through the electric-dipole and magnetic-

dipole fields (i.e., Ap, d ≠ 0 and  ≠ 0). An analysis of
Eq. (16) reveals that hybridization of the magnetoelas-
tic and dipolar mechanisms of dispersion of bulk
exchangeless magnons gives rise to further anomalies
in addition to those described by Eqs. (15) and (16)
with Ap, d  0. In particular, for k ∈  xz, two extrema
can occur at k⊥  = k±ν on the dispersion curve of a mag-
non mode with a given index ν. One of these extrema is
a maximum, and the other, a minimum. The extreme
points k±ν are determined from Eq. (16) by putting
∂Ων/∂k⊥ = 0. Furthermore, in contrast to Eqs. (15) and
(16) with Ap, d  0, the dispersion curves of modes
with indices ν and ρ (ν < ρ) have, in addition to the con-
densation points at k⊥   0 and ∞, not one but two
cross points (crossovers) at k⊥  = k±νρ (with k–ν < k–νρ <
k+ν < k+νρ); that is, Ων(k±νρ) = Ωρ(k±νρ).
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It should be noted that if, for the spectrum of bulk
exchangeless spin waves which is considered in this
section and described by Eq. (16), the equation
∂Ων/∂k⊥ = 0 has two positive roots (k±ν ≠ 0), then the
following rule is always fulfilled for modes with indi-
ces ν and ρ (ν < ρ): if the inequality Ων < Ωρ (or Ων >
Ωρ) takes place in the vicinity of the long-wavelength
degeneracy point of the spectrum (at k⊥   0), then it
is also true in the vicinity of the short-wavelength con-
densation point (at k⊥   ∞).

Up to this point, we have analyzed the spectrum of
bulk spin waves of a finite centrally antisymmetric
magnetoelectric AFM without considering the inhomo-
geneous exchange interaction (α  0). However, as
we already mentioned in the Introduction, consistent
theory must take into account not only the direct
Heisenberg exchange interaction between the sublat-
tices, but also the indirect (magnetic-dipole, electric-
dipole, and elastostatic) spin–spin interaction in the
magnetic subsystem of the crystal at hand. An analysis
of the bulk magnon spectrum of a finite centrally anti-
symmetric AFM with regard to the inhomogeneous
exchange interaction in addition to the magnetic-
dipole, electric-dipole, and magnetoelastic interactions
is presented in the following section.

3. EFFECTS OF THE INHOMOGENEOUS 
EXCHANGE INTERACTION

Now, we consider the case of α ≠ 0. From Eq. (14),
it follows that if ω/c  0 and ω/cph  0 for TN < TD
(or ω/c  0 and ω/cph  ∞ for TN > TD), then
Eqs. (15) and (16) can be represented in the form

(17)

(18)

Here, kz = κν and kx = k⊥  for n || z (1/δ1 = 0) and kz = k⊥
and kx = κν for n || x (δ1 = 0).

A comparison of Eqs. (15) and (16) with Eqs. (17)
and (18) shows that if in the exchangeless limit
[Eqs. (15) and (16)] the inequality Ων(k⊥ ) < Ωρ(k⊥ )
takes place for modes with given indices ν and ρ (ν < ρ)
in the vicinity of a condensation point (k⊥   0 or ∞),
then even in the case of an infinitely small exchange
stiffness α, the condensation point can disappear and an
additional crossover of the Ων(k⊥ ) and Ωρ(k⊥ ) disper-
sion curves described by Eqs. (17) and (18) can arise at
k⊥  ≠ 0. If this inequality does not take place in the vicin-
ity of a condensation point of the dispersion curves of
Eqs. (15) and (16), then at α ≠ 0 this point simply dis-
appears in Eqs. (17) and (18). If in the vicinity of the
short-wavelength condensation point of the spectrum in
Eqs. (15) and (16) we have ∂Ων(k⊥ )/∂k⊥  < 0, then, in the
presence of the inhomogeneous exchange (α ≠ 0), this
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condensation point will disappear and an additional
minimum will occur on the Ων(k⊥ ) dispersion curve at
some point k⊥  ≠ 0. A comparison of Eqs. (17) and (15)
shows that the spectrum of propagating bulk spin waves
in the high-temperature centrally antisymmetric AFM
with α ≠ 0 differs dramatically from the spectrum in
Eq. (15). In particular, if Eq. (15) is such that the equa-
tion ∂Ων/∂k⊥  = 0 has a positive root at k⊥  ≠ 0 and this
root corresponds to a maximum on the dispersion
curve, then, in the presence of inhomogeneous
exchange (α ≠ 0), an additional cross point will appear
at k⊥  ≠ 0 for the dispersion curves of modes with given
indices ν and ρ, Ων(kνρ) = Ωρ(kνρ). It also follows from
Eq. (17) that these two crossover points in the spectrum
of bulk spin waves will occur only if the electric-dipole,
magnetic-dipole, and inhomogeneous spin–spin
exchange interactions are all present in the high-tem-
perature AFM (i.e.,  ≠ 0, α ≠ 0). If in the vicinity of
the short-wavelength condensation point in Eq. (15) we
have Ων(k⊥ ) < Ωρ(k⊥ ) for modes with indices ν < ρ,
then, as can be seen from Eq. (17), the indirect (elec-
tric-dipole and magnetic-dipole) spin–spin exchange in
combination with the direct (Heisenberg) exchange
will cause the appearance of a minimum at some k⊥  ≠ 0
on the dispersion curve of a mode with index ν of the
spectrum of dipole–exchange spin waves in a thin film
of the magnetoelectric AFM with TN > TD. In the case
of a film of the low-temperature centrally antisymmet-
ric AFM, an analysis of Eq. (18) shows that even in the
absence of the dipole interaction (which formally cor-
responds to the limit 4π  0,   0), the hybrid-
ization of the elastostatic and Heisenberg spin–spin
interactions leads to the following specific features in
the bulk magnon spectrum in comparison with the
exchangeless (α  0) extreme case [Eq. (16)]: (i) the
presence of two crossover points (kνρ) on the dispersion
curves of elastic–exchange spin-wave modes with indi-
ces ν and ρ for n || z or n || x and (ii) a minimum on the
Ων(k⊥ ) dispersion curve of Eq. (18). In the exchange-
less limit α  0, we have the following limit transi-
tion to the characteristic points of the spectrum in
Eq. (16): kνρ  0 and kνρ  ∞. When the electro-
static and magnetostatic indirect spin–spin interaction
are taken into account in addition to the elastostatic and
Heisenberg interactions, further anomalies occur in the
bulk spin-wave spectrum in comparison with the pure
elastic–exchange magnon spectrum (in the limit
4π  0,   0) considered above. First, in the
cases where, in the vicinity of the short-wave length
condensation point, the dispersion relation of
exchangeless bulk spin waves in Eq. (16) is of the back-
wave type (∂Ων/∂k⊥  < 0), the inclusion of the inhomo-
geneous exchange interaction leads to the appearance
of a minimum on the corresponding dispersion curve.
Second, from Eq. (18) it follows that at n || x or n || z,
the dispersion curves of modes with indices ν and ρ can
cross each other [Ων/(k⊥ ) = Ωρ(k⊥ )] as many as four
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times, if at α  0 each of these curves has two extre-
mum points at some k⊥  ≠ 0. There is always an even
number (Nνρ) of crossings of dispersion curves of
modes with indices ν and ρ at α ≠ 0, as can be seen

from Eq. (18); with an increase in ( ), the quan-
tity Nνρ can change (increase or decrease), but always
by an even number. For large enough indices ν and ρ,
or for a sufficiently small thickness of the 2d magnetic
film, the dispersion relation Ων(k⊥ ) in Eqs. (17) and
(18) is of the direct-wave type (∂Ων/∂k⊥  > 0) for any
value of the wave number k⊥  and has no inflection point

(∂2Ων/∂  = 0) and no crossover [Ων(k⊥ ) = Ωρ(k⊥ )].

As is known from crystallography [19], when ana-
lyzing the reflection and refraction of a bulk normal
wave at the boundary of a crystal, the shape of the
refraction (slowness) surface of the normal wave is of
prime importance. Therefore, the local geometry of the
wave-vector surface of normal bulk waves of an infinite
crystal significantly affects the structure of the spec-
trum of normal bulk vibrations of a finite crystal,
because the spatial distribution of the amplitude of bulk
vibrations is determined by the interference of bulk
waves incident on and reflected from the boundaries of
the crystal. In the next section, we analyze the effect of
the electric-dipole, magnetic-dipole, elastostatic, and
inhomogeneous exchange interactions on the shape of
the refraction surface of normal spin waves in an infi-
nite magnet and the relationship between the local
geometry of this surface and the anomalies of the bulk
magnon spectrum investigated above in thin films of
magnetoelectric high-temperature and low-temperature
AFMs.

4. THE SHAPE OF THE REFRACTION SURFACE

In Eqs. (17) and (18), the wave vector of the spin
waves under study lies in the xz plane. Therefore, we
should examine the shape of the intersection of the kxkz

plane and the constant-frequency surface (ω = const) of
magnons under study in k space by using Eqs. (9) and
(10), derived under the assumption that ω/c  0 and
ω/cph  0 for TN < TD and ω/c  0 and ω/cph  ∞
for TN > TD. These equations can be rewritten in the
form

(19)

(20)

where  ≡ sin2θ and k2 ≡  + . An analysis of
the extremum points of the curves described by
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Eqs. (19) and (20) and a comparison with the results of
the analysis of the dispersion relations (17) and (18)
presented above shows that a local maximum on the
dispersion curve of the waveguide magnon under study
is associated with the region of maximum negative cur-
vature in the corresponding cross section of the refrac-
tion surface of the normal spin wave of the same polar-
ization in the infinite crystal described by Eqs. (19) and
(20). The position of a maximum on the curve in k
space described by Eqs. (19) and (20) is determined by
the condition ∂k/∂θ = 0 and is a single-valued function
of frequency ω, mode index ν, film thickness 2d, and
wave number k⊥  of the waveguide magnon described by
Eqs. (17) and (18). If the refraction surface of Eqs. (19)
and (20) has a portion in which its curvature reaches a
local maximum (∂k/∂θ = 0), then, as analysis shows,
the dispersion curve of a bulk spin wave of the electric-
dipole type of Eqs. (17) and (18) has a local minimum
at the corresponding values of ω, ν, d, and k⊥ .

Now, we consider the intersection points of a curve
described by Eq. (19) or Eq. (20) and a straight line
kx = const or kz = const. An analysis of common points
of such a straight line and the refraction surface of
Eqs. (19) and (20) allows one to obtain further informa-
tion on the spectrum of the corresponding waveguide
magnon with a given wave number k⊥ , frequency ω,
and mode index ν [i.e., on the curves described by
Eqs. (17) and (18)]. In particular, if the normal n to the
film surface, lying in the kxkz plane, coincides with the
z axis (n || z), then the number of common points of the
straight line kx = k⊥  and the curve described by Eq. (19)
or Eq. (20) determines the mode indices ν of bulk spin
waves of the electric-dipole type that can propagate
along the x axis in the 2d-thick film and have the same
wave number k⊥  and frequency ω; that is, the number of
crossovers is determined. In this geometry, the com-
mon points of a curve in Eq. (19) or (20) and the
straight line kx = κν determine the values of the wave
number k⊥  with which a waveguide magnon of the
given type (with the fixed mode index ν and frequency
ω) can propagate in the thin film 2d thick. An analysis
of Eqs. (17)–(20) shows that the local geometry of a
cross section of the constant-frequency surface
described by Eqs. (19) and (20) dictates the type of
wave (direct or back) associated with that portion of the
dispersion curve in Eqs. (17) and (18) which corre-
sponds to a waveguide magnon with a given ω, κν, and
k⊥ , because the outward normal to the refraction surface
determines the direction of the group velocity of waves
[19]. In the particular case of k ∈ xz considered here, a
bulk spin wave corresponding to Eq. (17) or Eq. (18)
and propagating along the film with n || z will be of the
back-wave type if the x component of the outward nor-
mal to the refraction surface at the intersection point of
this surface and the straight line kz = κν is negative; if
the x component of the outward normal is negative, the
corresponding wave will be of the direct-wave type for
the given values of k⊥ , ω, and κν. This component can



896 TARASENKO
be equal to zero at some point k⊥  ≠ 0; this will be the
case if there is an extremum at this value of k⊥  on the
dispersion curve of a bulk wave propagating with mode
index ν and frequency ω along the 2d-thick film. The
character of this extremum (maximum or minimum) is
determined by the sign of the local curvature of the dis-
persion curve of Eq. (19) or Eq. (20) at this point.

Up to this point, we have analyzed the magnon spec-
trum of a thin film of a magnetoelectric AFM by treating
the interaction of the spin and elastic subsystems only in
the elastostatic approximation (ω/cph  0) for TN < TD
or in the rigid-lattice approximation (ω/cph  ∞)
for  TN > TD. At the same time, the dispersion rela-
tions (12) and (13), which take into account the elec-
tric-dipole, magnetic-dipole, and inhomogeneous
exchange interactions, have been derived for an arbi-
trary value of ω/cph|k|. This allows one to make a more
comprehensive analysis of the spectrum of normal bulk
magnetoelastic vibrations of a thin film of a centrally
antisymmetric AFM. This will be done in another
paper.

5. CONCLUSIONS

In this paper, by using a film of a centrally antisym-
metric antiferromagnet as an example, we have found
the necessary conditions under which the linear magne-
toelectric effect gives rise to earlier unknown anoma-
lies in the bulk magnon spectrum. For these anomalies
to occur, both the finite size of the crystal and the rela-
tionship between the Néel and Debye temperatures are
of fundamental importance. Among the specific fea-
tures of the bulk magnon spectrum affected by the mag-
netoelectric interaction are the following:

(1) Exchangeless bulk spin waves can propagate in
a thin film of the centrally antisymmetric AFM; their
spectrum Ων(k⊥ ) depends critically on the relationship
between the Néel and Debye temperatures, shows a
nonmonotonic dependence on the wave number k⊥ , and
has condensation points at k⊥   0 and ∞.

(2) In the presence of the inhomogeneous exchange
interaction, as well as in the exchangeless approxima-
tion, the Ων(k⊥ ) dispersion curve can have portions in
which ∂Ων/∂k⊥  = 0 at some points k⊥  ≠ 0. These points
can correspond to both a local maximum and a local
minimum of this dispersion curve.

(3) Crossover of Ων(k⊥ ) dispersion curves (caused
by elastostatic, magnetostatic, electrostatic, and
Heisenberg exchange spin–spin interactions) can occur
at some points k⊥  ≠ 0 for normal bulk spin waves with
mode indices ν and ρ propagating in the thin magneto-
electric film.

(4) The interrelation takes place between the local
geometry of the refraction surface of normal spin
waves in an infinite crystal and the spectrum of
waveguide vibrations in a thin film of the same mate-
rial. The correlation between the shape of the refraction
PH
surface and the spectrum and type (direct or back
waves) of waveguide vibrations also takes place for
other types of normal excitations of an infinite crystal
(phonons, excitons, etc.).

In this paper, all calculations were carried out for the

easy-plane AFM with  in the case where the
equilibrium state is characterized by l || x and |m | = 0
and the wave vector is k ∈  xz (ky = 0). It is easy to verify
that similar features of the bulk magnon spectrum will
also be observed in a centrally antisymmetric easy-

plane AFM with a  magnetic structure. All the
results obtained above are valid in this case for the same
configuration of the equilibrium state (l || x, |m | = 0), but
k ∈  yz (kx = 0) if the substitution kz  ky is made. It
can be shown that in both these cases the magnon spec-
trum in question is the short-wavelength limit of the
low-frequency branch of the spectrum of bulk magnetic
EH polaritons in the magnetoelectric crystal under
study.
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Abstract—The magnetostriction of a number of copper-containing ferrite spinels was measured. In all the fer-
rites studied, below room temperature, |λ||| was found to decrease with temperature. It is conjectured that this
decrease in |λ||| originates from an increase in the degree of covalency among the Cu2+–O2– ions, which, in turn,
reduces their spin–orbit coupling. © 2001 MAIK “Nauka/Interperiodica”.
The large magnetostriction of the ferrite spinels is
due to the spin–orbit coupling of the 3d cations in the
ferrite, whose ground state in a crystal field of cubic
symmetry is the orbital triplet. Note that the magneto-
striction can grow only at temperatures comparable
with the spin–orbit coupling energy.

At the same time, ferrites having 3d ions whose
ground state is the orbital doublet can also possess
considerable magnetostriction, provided the upper
triplet state can be admixed to the lower doublet orbital
state [1]. This admixture was found by EPR to exist for
Cu2+ ions residing at the octahedral sites of the spinel
lattice [1].

The formation of covalent bonding, due to which
the electron spin is no longer localized at the central
ion, does not affect the spin angular momentum [2], but
this is not the case with the orbital angular momentum.
It was shown [2] that covalent bonding results in a
decrease in the matrix elements of the orbital angular
momentum, which changes the shape of the spin–orbit
coupling spectrum if the covalency is taken into
account. One cannot, therefore, exclude the possibility
that a change in the degree of covalent bonding
1063-7834/01/4305- $21.00 © 20898
between the O2– ligand and the 3d cation, which gives
rise to a change in the cation orbital state, can affect the
contribution of these 3d cations to the magnetostriction.

X-ray diffraction studies [3] showed that the degree
of covalent bonding in the copper ferrite CuFe2O4 is the
greatest among the simple ferrites CuFe2O4, CoFe2O4,
ZnFe2O4, and MnFe2O4.

Our earlier study of the polycrystalline, tetragonally
distorted ferrite CuFe2O4 revealed an anomalous
behavior of the magnetostriction; namely, as the tem-
perature was lowered below 350 K, the λ⊥  and |λ||| mag-
netostrictions exhibited a rapid growth followed by a
pronounced decrease for T ≤ 250 K [4]. Based on these
observations, we suggested that the copper ferrite
undergoes a phase transition at Tt2 = 240 ± 5 K caused
by the increased degree of covalency between the Cu2+

and O2– ions, which, in turn, brings about a stronger lat-
tice compression [5].

To check this conjecture, in this work, we studied
the behavior of the magnetostriction of a number of
copper-containing ferrites possessing a spinel struc-
ture. The table shows the compositions of the ferrites
Sample parameters 

Sample c, Å b, Å a, Å c/a b/a λ|| × 106

CuFe2O4 8.536 – 8.260 1.034 – –27.6

Cu1.2Ge0.2Fe1.6O4 8.570 8.328 8.085 1.060 1.030 –4.67

CuFe1.8Al0.2O4 8.504 8.332 8.124 1.047 1.027 –4.15

CuFe1.7Al0.3O4 8.488 8.312 8.180 1.038 1.016 –10.2

CuFe1.8Cr0.2O4 8.579 – 8.259 1.038 – –16.0

CuFe1.7Cr0.3O4 8.568 – 8.259 1.037 – –6.6

CuGa0.2Al0.2Fe1.6O4 8.599 8.221 8.211 1.047 1.001 –5.2

CuGa0.3Al0.3Fe1.4O4 – – 8.299 – – –11.25
001 MAIK “Nauka/Interperiodica”
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studied. All the samples were prepared using ceramic
technology. The first anneal was performed at 750°C;
the second, at 900°C, followed by a slow cooling. Both
anneals were carried out in air. The x-ray diffraction
analysis, made at room temperature, showed all the
samples to be single-phase; the lattice parameters and
the tetragonal axis ratio are specified in the table. The
magnetization was determined by the ballistic method
within the temperature interval from 80 to 650 K, and
the magnetostriction was determined by strain gauge
measurements in magnetic fields of up to 12 kOe at
temperatures ranging from 80 to 100 K. The maximum
longitudinal magnetostriction λ|| of each sample is also
specified in the table.

Figure 1 presents temperature dependences of the
spontaneous magnetization σs and of the longitudinal
(λ||) and transverse (λ⊥ ) magnetostrictions of CuFe2O4
(the data were taken from [5]). One readily sees that
below room temperature, the longitudinal magneto-
striction |λ||| grows rapidly in magnitude, but it falls off
as the temperature is lowered further.

Because the tetragonal sites are energetically prefer-
able for the Ge4+ ion, the cations in the germanium-sub-
stituted copper ferrite should be distributed as
Ge0.2Fe0.8[Cu1.2Fe0.8]O4. Thus, substitution of the
quadrivalent Ge4+ ion for the trivalent Fe3+ ions in

CuFe2O4 increases the number of the  divalent ions
occupying the octahedral sites of the Cu1.2Ge0.2Fe1.6O4
ferrite. Figure 2 displays the temperature dependences
of σs, λ||, and λ⊥  for this ferrite. One readily sees that the
|λ||| and λ⊥  magnetostrictions grow rapidly in magni-
tude near 300 K; however, the former decreases as the
temperature is lowered further. Interestingly, no anom-
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Fig. 1. Temperature dependences of the spontaneous mag-
netization σs and longitudinal λ || and transverse λ⊥  magne-
tostrictions of the CuFe2O4 ferrite obtained at H =
10.25 kOe.
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alies were observed in the temperature dependence
σs(T). A comparison of Figs. 1 and 2 reveals that the
σs(T), λ||(T), and λ⊥ (T) characteristics (H = 12 kOe) of
the Cu1.2Ge0.2Fe1.6O4 sample behave similarly to those
of the CuFe2O4 copper ferrite.

Note that the lattice parameter a for the sample with
germanium is substantially smaller than that of the
unsubstituted copper ferrite CuFe2O4. Therefore, the
tetragonal axis ratio c/a of Cu1.2Ge0.2Fe1.6O4 is larger
than that of CuFe2O4 (see table). By contrast, the mag-
netostriction magnitude |∆λ||| of the sample with a
higher Cu2+ concentration at the B sites of the spinel
lattice became six times lower. Also, the maximum
derivative of the magnetostriction with respect to tem-
perature, |∆λ|||/∆T, for the Cu1.2Ge0.2Fe1.6O4 ferrite in
the region of 300 K is ≈1.4 × 10–6 K–1, and that for
CuFe2O4 is |∆λ|||/∆T ≈ 0.21 × 10–6 K–1, which is nearly
seven times smaller. This gives us grounds to assume
that the strong decrease in the absolute value of the
magnetostriction |∆λ||| of the Cu1.2Ge0.2Fe1.6O4 ferrite
can only be associated with the increasing degree of
covalency with decreasing temperature.

Similar results were obtained by us when measuring
the magnetostriction of the CuFe1.7Al0.3O4 ferrite,
whose lattice parameters were earlier determined
within the temperature range from 10 to 290 K [6]. An
x-ray diffraction study of CuFe1.7Al0.3O4 and
Cu1.2Ge0.2Fe1.6O4 samples [6] showed them to have an
orthorhombically distorted spinel structure (see table).
It was established that the lattice parameters of the
CuFe1.7Al0.3O4 ferrite behave anisotropically with tem-
perature; more specifically, the variation of the dimen-
sions is strongest along the a axis, while along the c
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Fig. 2. Temperature dependences of the spontaneous mag-
netization σs and longitudinal λ || and transverse λ⊥  magne-
tostrictions of the Cu1.2Ge0.2Fe1.6O4 ferrite obtained at H =
12 kOe.
1



900 ANTOSHINA, GORYAGA
axis no changes were observed to occur within the tem-
perature interval studied. As a result of the anisotropy
in thermal expansion, the deviation from the cubic
structure (c/a, b/a) is likewise a function of tempera-
ture, and while the c/a ratio decreases smoothly with
increasing temperature, the b/a ratio starts to decrease
noticeably only above 150 K. This also suggests con-
cluding that the enhancement of the cation–anion cova-
lent bonding in the CuFe1.7Al0.3O4 ferrite results in a
stronger lattice compression.

Figure 3 presents the temperature dependences of
the longitudinal (λ||) and transverse (λ⊥ ) magnetostric-
tions for the CuFe1.7Al0.3O4 ferrite obtained in a field
H = 12 kOe. The steep growth of |λ||| is seen to stop
when the sample is cooled below room temperature, as
is the case in the unsubstituted copper ferrite CuFe2O4.
A similar behavior of the temperature dependences of
the longitudinal |λ||| and transverse λ⊥  magnetostric-
tions was also observed by us to hold in the
CuFe1.8Al0.2O4 ferrite (Fig. 3). However, the |λ||| for this
composition became one-half that for the
CuFe1.7Al0.3O4 ferrite. As can be seen from the table, as
the Fe3+ ions continue to be replaced by the Al3+ ions,
the c and b parameters, as well as the c/a and b/a ratios,
decrease.

It should also be pointed out that the maximum of
the magnitude of the longitudinal magnetostriction |λ|||
depends directly on the degree of tetragonal distortion
of the sample lattice. For instance, the room-tempera-
ture c/a ratios for the CuFe2O4, CuFe1.7Al0.3O4, and
CuFe1.8Al0.2O4 compositions are 1.034, 1.038, and
1.047, respectively, while the |λ|||max are 27.6 × 10–6,
10.2 × 10–6, and 4.15 × 10–6.
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Fig. 3. Temperature dependences of (1, 3) longitudinal λ ||
and (2, 4) transverse λ⊥  magnetostrictions for (1, 2) the
CuFe1.7Al0.3O4 and (3, 4) CuFe1.8Al0.2O4 ferrites obtained
in a field H = 12 kOe.
P

These results support our assumption on the effect
of the degree of covalency on the magnetostriction of
copper-containing ferrites. As the lattice distortion
increases, the overlap of the Cu2+ eg orbitals (more spe-
cifically, of the  orbitals) obviously also

increases, and this gives rise to an enhancement of the
covalent bonding, which, in turn, decreases the spin–
orbit coupling in these ions.

Similar dependences of the longitudinal and trans-
verse magnetostrictions on temperature were also
obtained in a study of the copper ferrite–chromites
CuFe1.8Cr0.2O4 and CuFe1.7Cr0.3O4. The copper
gallate−aluminates CuGa0.2Al0.2Fe1.6O4 and
CuGa0.3Al0.3Fe1.4O4 also exhibit a decrease in |λ|||max

with increasing distortion of the lattice (see table) [7].

All the copper-containing ferrites studied include

octahedral  ions, whose orbital doublet splits into
two singlets below the Jahn–Teller transition tempera-
ture in the copper ferrite (Tc ≈ 630 K). Therefore, the

orbital angular momenta of the  ions should be, in
a first approximation, quenched completely by the
crystal field, thus resulting in a practically zero spin–
orbit coupling. However, as follows from EPR data [1],

spin–orbit coupling in the  ions admixes some of
the triplet states to the ground doublet state. This gives
rise not only to deviation of the g factor from its pure
spin value but also to its anisotropy; indeed, we have
g⊥  ~ 2.1, while g|| ~ 2.4. Thus, EPR data suggest that the

orbital angular momentum of the  ion is not com-
pletely quenched; i.e., its spin–orbit coupling is not
zero.

It is known that ferrites with a spinel structure are
ionic compounds with a noticeable admixture of cat-
ion–anion covalent bonding. The formation of covalent
bonding in ionic compounds does not affect the magni-
tude of the spin magnetic moment, whereas the orbital
angular momentum decreases [2]. Hence, a change in
the degree of covalency should affect the magnitude of
the spin–orbit coupling. Based on the above results on
magnetostriction, we believe that, for T ≤ Tt2, the

degree of covalent bonding between the  and O2–

ions in a copper ferrite increases, which, in turn,
reduces the spin–orbit coupling in these ions.

Our experimental study of the magnetostriction of
copper-containing ferrites permits one to conclude that,
in order to prepare materials with a high magnetostric-
tion, one should choose compositions with a very small
degree of covalent bonding between the 3d ions and
oxygen.
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Abstract—The surface morphology evolution and phase transformation kinetics in thin lead zirconate–titanate
(PZT) sol–gel films during rapid thermal annealing were studied by in situ measurement of scattered light inten-
sity and by recording successive instantaneous optical microscope images. We also studied the variation of the
texture perfection, the fraction of the growing phase, and the angular dependence of the scattered intensity in
partially annealed samples. The parameters characterizing the kinetics of the pyrochlore–perovskite phase
transformation were derived by a mathematical treatment of the experimental data. The phase transformation
kinetics and the film crystalline texture are shown to depend substantially on the pyrolysis temperature. The
texture formation mechanism is considered. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Thin ferroelectric films are presently prepared
mostly by chemical techniques. The most widely used
approaches capable of producing high-quality films are
the sol–gel technique and decomposition of metal-
organic compounds. In all these methods, crystalliza-
tion and formation of the corresponding phase are
achieved by thermal treatment of amorphous films.
Annealing sol–gel films of lead zirconate–titanate
Pb(Zr,Ti)O3 (PZT) produces a perovskite phase (which
possesses ferroelectric properties) through an interme-
diate phase of a pyrochlore-type structure.

The thermal treatment conditions strongly affect the
film microstructure [1–3] and ferroelectric characteris-
tics [4]. Obviously, the kinetics of formation of the
intermediate phase in the course of crystallization and
the pyrochlore–perovskite phase transformation
depends substantially on the heating rate. The best fer-
roelectric characteristics were shown to be obtained
under thermal annealing performed at high heating
rates (rapid thermal anneal) [5]. However, there are
practically no reports of in situ studies on the crystalli-
zation/phase transformation kinetics under rapid ther-
mal anneal conditions because traditional methods are
not capable of providing a high enough time resolution.
In situ studies making use of x-ray diffraction measure-
ments [6] and spectroscopic ellipsometry [7] were done
only for slow crystallization/phase transformation pro-
cesses. We have developed a method based on in situ
measurement of the elastically scattered light intensity,
which is sensitive to instantaneous changes in the sur-
face morphology and has a high enough time resolution
[8–11]. The method proposed for the mathematical
treatment of experimental data provides a possibility of
1063-7834/01/4305- $21.00 © 20902
extracting information on the phase transformation
kinetics [10].

In this work, the light-scattering method was used
for a comprehensive study of the evolution of the sur-
face morphology of PZT sol–gel films under isothermal
anneal with rapid heating. It is shown that by analyzing
experimental data one can derive the main parameters
characterizing the kinetics of formation of texturized
perovskite in PZT. To check the validity of the interpre-
tation of the results obtained, the optical data were
compared with traditional x-ray diffraction measure-
ments on partially annealed films. 

1. EXPERIMENTAL TECHNIQUES

We studied phase transformation kinetics occurring
under an isothermal anneal performed at a fast heating
rate in Pb1.1(Zr0.47Ti0.53)O3 (110/47/53) films with a
10% excess of Pb in order to compensate for its anneal-
ing-induced losses. 400–600 nm thick films, found to
be amorphous by x-ray diffraction, were deposited on
Pt/Ti/SiO2/Si substrates coated by an epitaxial platinum
layer (about 200 nm thick). Two lots of films prepared
in identical conditions and differing in the pyrolysis
temperature Tpyr, 380 and 490°C, were studied.

The annealing employed was isothermal (within the
range of 600 to 750°C) with a heating rate of about
100°C/s. We measured the integrated scattered light
intensity within an angular interval of 2°–30° directly
in the course of the anneal and obtained a sequence of
instantaneous videorecorded images of the heterophase
structure viewed through an optical microscope. To
compare the results of optical measurements with other
experimental data and to measure the angular depen-
dences of scattered light, the studies were performed on
001 MAIK “Nauka/Interperiodica”
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partially annealed samples representing fragments of
the same plate, which were annealed in different condi-
tions.

To study x-ray diffraction characteristics of the par-
tially annealed films, we obtained θ–2θ diffraction pro-
files with Co Kα radiation at room temperature within
an angular interval of 20° to 65°. We measured the
anneal time dependences of the textured-perovskite
(111) reflection intensity, integrated pyrochlore (222)
reflection intensity, and integrated intensities of the
untextured-perovskite (011), (001), and (002) reflec-
tions.

The difference in the refractive indices between the
perovskite and pyrochlore phases permitted visualiza-
tion of the spatial phase distribution with an optical
microscope [12]. A comparison of the scattered light-
intensity measurements with the film surface images
obtained by optical and electron microscopy showed
that (i) the light scattering at the bottom electrode–film
interface and in the bulk of the film is negligible and
(ii) the measured angular dependences are sensitive
only to changes in the surface morphology [13, 14].

2. EXPERIMENTAL RESULTS

The phase transformation kinetics was studied in
considerable detail by making partial anneals lasting
from 15 s to 16 min. The low annealing temperature,
Tan = 600°C, permitted one to ensure reproducibility of
the anneal conditions even in the fast initial stage of the
process.

As can be seen from a comparison of the optical and
x-ray diffraction studies, the dependences of the texture
reflection intensity and of the integrated scattered-light
intensity on the anneal time follow a similar course
(Fig. 1). These dependences can be divided into two
stages of exponential growth with substantially differ-
ent time constants (Fig. 1). For samples with Tpyr =
380°C, the fast growth stage lasts 60 s with a time con-
stant τf ~ 12 s. The time constant of the slow growth
stage τs is 880 s.

Direct observation of the evolution of film morphol-
ogy under annealing revealed that the different growth
stages are specified by different geometries of the
growing regions filled by perovskite grains. In the rapid
anneal stage, isolated regions were observed to grow
and coalesce, while the transition to the slow growth
stage was marked by the formation of a maze structure.

The obtained anneal time dependences of the inte-
grated scattered intensity Isc and of the intensity of the
textured perovskite phase reflection I(111) were fitted by
a modified Kolmogorov–Avrami formula [15–17],
describing the kinetics of two-dimensional growth in
the α model (for constant nucleation intensity and
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
growth rate) with due account of the geometric catas-
trophe (decrease in the growth dimensionality):

(1)

where td is the delay time; tcat is the catastrophe time;
and τfα and τsα are the time constants for the fast and
slow growth stages, respectively.

2.1. Studies of Samples with a Low Pyrolysis 
Temperature

X-ray diffraction measurements showed that, in the
initial state (Tpyr = 380°C), a PZT film represents a mix-
ture of an amorphous phase and a pyrochlore phase
(Fig. 2d).

The phase transformation process occurring under
thermal annealing can be divided into three stages,
namely, delay, fast growth, and slow growth.

In the delay stage, the textured perovskite phase
does not form (Fig. 2b) and the scattered light intensity
associated with the variation of the film surface mor-
phology Isc practically does not change (Fig. 2c). X-ray
diffraction studies revealed a noticeable growth of the
amount of pyrochlore (Fig. 2a). A small number of
crystallites of untextured perovskite were observed by
optical microscopy and x-ray diffraction to form and
grow slowly. This growth is apparently associated with
crystallization on defects.

The fast stage reflects a fast growth of the amount of
textured perovskite and a decrease in the amount of

I t( )

=  
I0 ∆I f 1 t td–( )3/τ fα

3–[ ]exp–{ }+ , t tcat<

I0 ∆Is 1 t td–( )2– /τ sα
2[ ]exp–{ } , t tcat> ,+
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Fig. 1. Anneal time dependences of (a) x-ray diffraction
intensity of the textured perovskite phase (111) reflection
and (b) integrated scattered light intensity. The experimental
data are fitted by exponential relations. Tan = 600°C, Tpyr =
380°C.
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pyrochlore. The perovskite phase grows epitaxially on
textured platinum. Perovskite crystallites form at the
film–substrate interface and thread rapidly through the
bulk of the film as a result of the growth anisotropy
(Fig. 2f) [1, 3]. This is paralleled by a slow increase in
the amount of untextured perovskite. The fast rise of
I(111) is accompanied by clearly pronounced optical
effects. The rise of Isc (Fig. 2c) indicates a change in the
surface morphology. This change was observed
through an optical microscope, and it brought about
changes in the angular dependence of the scattered
light intensity Isc. The increase in the angle φmax corre-
sponding to the scattered light maximum can be related
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Fig. 2. Anneal time dependences of (a) x-ray diffraction
intensity I(222) of the pyrochlore phase reflection, (b) x-ray
diffraction intensity I(111) of the textured perovskite phase
reflection, and (c) integrated scattered light intensity Isc.
Schematic illustration of the main stages in film morphol-
ogy evolution in the course of annealing: (d) initial film
stage after the pyrolysis (I), (e) growth delay stage (D),
(f) fast growth (F), and (g) slow growth (S). Tan = 600°C,
Tpyr = 380°C. (1) Defects, (2) pyrochlore, (3) textured per-
ovskite, and (4) untextured perovskite.
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to the decreasing average distance between individual
scattering centers r0 because of the increasing number
of the crystallites. The position of the maximum was
used to determine the average distance between the
scattering centers r0(t):

(2)

where λ is the incident light wavelength.

The r0(t) relation (Fig. 3a) was fitted by an exponen-
tial (τf = 22 s). We determined the variation of the per-
ovskite crystallite concentration in the fast growth stage
(see inset in Fig. 3a):

(3)

The slow growth stage is accompanied by a qualita-
tive change in the surface morphology observed by
means of an optical microscope. The slowing down of
the lateral growth rate gives rise to the formation of a
maze structure, which corresponds to a percolation-
type geometric transition and a decrease in the growth
dimensionality, 2D  1D. The growth of I(111) slows
down (τs = 850 s).

The change in the film surface morphology results
in an increase in Isc and a decrease in φmax because of the
increasing average maze period of the heterophase
structure w:
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0.2
20

106

n, mm–2

60 80

0.4
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107

40 60
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Time, s

(b)

Time, s

0.2

0.1

0.4

0 500 1000
Time, s

r 0
, µ

m
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, µ
m

Fig. 3. Anneal time dependences of (a) average separation
between scattering centers r0 in the fast growth stage and
(b) average perovskite-phase strip width in the maze struc-
ture w in the slow growth stage. The experimental data are
fitted by exponentials. Inset: increase in the perovskite crys-
tallite concentration in the fast growth stage. Tan = 600°C,
Tpyr = 380°C.
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(4)

The experimental data on w(t) (Fig. 3b) were fitted
by an exponential dependence (τs = 870 s). The features
obtained were assigned to the perovskite recrystalliza-

w φmax( ) λ / 4π φmaxsin( ).=

10
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Time, s

I s
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Fig. 4. Anneal time dependences of (a) x-ray diffraction
intensity I(222) of the pyrochlore phase reflection, (b) x-ray
diffraction intensity I(111) of the textured-perovskite-phase
reflection, and (c) integrated scattered light intensity Isc.
Schematic illustration of the main stages in film morphol-
ogy evolution in the course of annealing: (d) growth delay
(D), (e) fast growth (F), and (f) slow growth (S). (1) Defects,
(2) pyrochlore, (3) textured perovskite, and (4) untextured
perovskite. Tan = 600°C, Tpyr = 490°C.
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tion accompanied by a slow decrease in the pyrochlore
fraction.

2.2. Studies of Samples with a High Pyrolysis 
Temperature

Samples with Tpyr = 490°C were also subjected to
annealing at Tan = 600°C (Fig. 4). The observed variation
of the main characteristics is similar to that obtained for
samples with a low-temperature pyrolysis, but with sub-
stantially longer time constants (see Table 1).

In the initial stage, the amorphous phase was practi-
cally absent, with the films consisting of pyrochlore
and untextured perovskite only. The increase in the
delay stage time (Fig. 4d) may be caused by substantial
lead losses in the course of the pyrolysis. The associ-
ated pyrochlore stabilization [18] impedes the forma-
tion of textured perovskite. In addition, we observed a
slow growth of the amount of untextured perovskite.

The fast growth of textured perovskite from the sub-
strate is hampered (Fig. 4b), because the untextured
perovskite forming during the anneal suppresses the
growth of perovskite grains in the direction perpendic-
ular to the film surface (Fig. 4e).

In the slow growth stage (Fig. 4f), the pyrochlore
transforms gradually to textured perovskite. We also
observed a slow growth in the amount of untextured
perovskite.

2.3. In Situ Measurements of the Fast Phase 
Transformation Kinetics

The methods of analysis of optical measurements
developed here made it possible to study the kinetics of
the fast phase transformation at Tan = 650°C, which
cannot be investigated by conventional x-ray diffrac-
tion (Fig. 5). The variation of the integrated scattered
intensity was measured directly in the course of anneal-
ing of a sample. Obviously, the measurement accuracy
is, in this case, substantially higher than that for a series
of partially crystallized samples. The value tcat thus
obtained corresponds to completion of the fast perovs-
kite growth stage and to a decrease in the growth
dimensionality, α(2D)  α(1D).

The variation of the film surface morphology in the
course of isothermal annealing at Tan = 650°C was stud-
ied by optical microscopy in a modified thermostat. We
Table 1.  Parameters derived from an experimental data treatment for partially annealed films (Tan = 600°C)

τf , s τs, s td1, s τfα, s τsα, s tcat , s τf , s τs, s td1, s τfα, s τsα, s tcat , s

Tpyr = 380°C Tpyr = 490°C

I(222) –17 –125 32 14 178 65 I(222) –180 –1550 132 83 225 220

I(111) 13 850 36 18 162 115 I(111) 113 1230 83 90 278 245

Isc 12 890 18 33 119 140 Isc 250 3160 85 101 362 240

r0 22 870
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succeeded in experimentally discriminating regions
corresponding to different phases [12]. The phase tran-
sition was accompanied by a growth in the number and
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Time, s
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0.4

0.8

100 200 300

Fig. 5. Integrated scattered light intensities measured
directly in the course of annealing. The experimental data
are approximated by Eq. (1). Tan = 650°C; Tpyr: (a) 380, and
(b) 490°C.

Fig. 6. Evolution of the film surface area fraction occupied
by perovskite grains in the course of annealing. The experi-
mental data are approximated by Eq. (1). Tan = 650°C;
Tpyr = 490°C.

Table 2.  Parameters of phase transformation kinetics
derived from in situ optical measurements (Tan = 650°C)

Tpyr, °C td1, s τfα, s τsα, s tcat , s

Isc 380 1.3 2.5 5.6 4.9

Isc 490 1.4 13 42 21

Sper /S0 490 –6.2 24 175 33
P

size of the regions formed by grains of the textured per-
ovskite. 

By an appropriate treatment of video images we
could determine the time evolution of the fraction of the
area occupied by the perovskite phase (Fig. 6) and cal-
culate the parameters of the phase transformation kinet-
ics (see Table 2). Note that they are close to the param-
eters derived from an analysis of the integrated scat-
tered light intensity. The slight difference observed can
be attributed to the incomplete reproducibility of the
anneal conditions caused by the thermostat modifica-
tion. 

Thus, it has been shown that an in situ analysis of
the integrated scattered light intensity and of the evolu-
tion of the film surface morphology in the course of a
rapid thermal anneal permits one to study the kinetics
of the pyrochlore–perovskite phase transformation
without recourse to x-ray diffraction measurements.
The parameters characterizing the nucleation and
growth of perovskite crystallites in different stages of
the phase transformation were obtained. The validity of
the method was confirmed by comparing the light scat-
tering data with x-ray diffraction measurements made
on partially annealed films. It should be pointed out that
the in situ method proposed here permits one to study
the phase transformation process in different films
deposited on any substrate and with any bottom elec-
trode. This method makes it possible to optimize the
anneal conditions for commercial-scale production of
integrated circuits containing ferroelectrics.
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Abstract—The effect of low-angle boundaries on the dielectric properties of epitaxial Ba0.8Sr0.2TiO3 films is
studied by comparing films differing in crystalline-block size. It is found that the permittivity diminishes con-
siderably when the block sizes are reduced. The maximum of the temperature-dependent permittivity is shifted
towards lower temperatures, and the sensitivity of the permittivity to an electric field is reduced. Moreover, it
is found that the maximum in the permittivity temperature dependence is displaced towards lower temperatures
when the applied measured voltage is increased and becomes higher than the coercive voltage. The width of a
hysteresis loop decreases significantly when the frequency of the controlling field is reduced. The reasons for
the observed behavior are analyzed. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Epitaxial films of solid (Ba, Sr)TiO3 solutions are
promising for use in memory cells, controllable delay
lines, pyroelectric detectors, etc. Monocrystalline
blocks that form an epitaxial film have a well-defined
orientation in the azimuth plane and with respect to the
normal to the substrate plane and are separated by low-
angle boundaries. The azimuthal misorientation of
blocks is determined, to a great extent, by the misfit of
the lattice parameters of the film and the substrate. As
is known [1], in perovskite-structure dielectrics
(SrTiO3, in particular), nonstoichiometry with respect
to oxygen takes place in the vicinity of high-angle
boundaries. This should considerably influence the
dielectric parameters. In contrast to thin polycrystalline
layers, epitaxial films do not contain high-angle grain
boundaries and the effect of low-angle boundaries on
the dielectric properties of epitaxial films has practi-
cally not been studied. At the same time, in spite of the
relatively low density of dislocations at low-angle
boundaries (which is due to insignificant disorientation
of the blocks), this effect can be considerable, since
some defects and impurities can be concentrated in the
vicinity of boundaries. They are displaced in the course
of film formation due to the growth of crystalline nuclei
and to impurity aggregation in the pits dividing the
blocks at the film surface (see below). The influence of
low-angle boundaries in epitaxial films of
Ba0.8Sr0.2TiO3 (BSTO) on their dielectric properties is
studied in this work by comparing the properties of
films differing in block size. The compound studied is
promising for use in sensitive elements of noncooled
pyroelectric detectors of IR radiation, since the temper-
ature of the ferroelectric phase transition at which the
pyroeffect is maximal is close to room temperature in
this case.
1063-7834/01/4305- $21.00 © 20908
1. EXPERIMENT

Heterostructures containing a (100)LaAlO3 (LAO)
substrate, upper and lower film electrodes made of con-
ducting SrRuO3 (SRO) oxide, and a BSTO film were
prepared. These heterostructures were prepared by the
laser evaporation method, using an excimer laser (KrF
working mixture) with a radiation wavelength of
248 nm and a pulse duration of 30 ns. The sputtering of
the initial ceramic SRO and BSTO targets was carried
out in an oxygen atmosphere under pressure P0 =
0.4 mbar. The SRO electrodes were formed at a sub-
strate temperature Ts equal to 750°C. The BSTO films
were grown at two different temperatures Ts: 750 and
800°C. The obtained SRO/BSTO/SRO heterostructures
were cooled at a rate of 5°C per minute under an oxy-
gen pressure P0 = 1 atm. To diminish the influence of
the electrodes on the measured parameters of the plane-
parallel SRO/BSTO/SRO capacitor structures, rela-
tively thick (700 nm) ferroelectric films were chosen.

The structure of the obtained three-layered systems
was investigated by x-ray diffraction methods (CuKα
radiation, ω/2θ and φ scans, rocking curves). An
atomic-force microscope was utilized to obtain images
of the free surface of BSTO films.

Electrodes with area of 200 × 200 µm in the upper
SRO layer were formed using photolithography and ion
etching.

The capacity C and  (δ is the dielectric loss
angle) of the plane-parallel SRO/BSTO/SRO capacitor
structures prepared were measured with an HP 4263A
meter and an E7–8 bridge.

δtan
001 MAIK “Nauka/Interperiodica”
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2. EXPERIMENTAL RESULTS

For the obtained SRO/BSTO/SRO/LAO hetero-
structures, only the (n00) reflections from the ferroelec-
tric layers, electrodes, and substrate were visible in the
x-ray ω/2θ diffractograms obtained under the condi-
tions when the incident and reflected x-ray beams were
perpendicular to the substrate plane (Fig. 1a). When the
incident and reflected x-ray beams were tilted at an
angle of 45° to the substrate plane, only the (n0n) peaks
from the ferroelectric layers, film, and substrate were
visible on the diffractogram (Fig. 1b). Four peaks
(placed at 90° intervals) were observed at the φ scan for
the (111)BSTO reflection (see the inset in Fig. 1a).
Thus, grains with the 45° azimuthal disorientation were
absent in the film. Hence, the BSTO and SRO films
grown epitaxially and independently of the temperature
Ts had the following orientational relations for the lay-
ers that formed the obtained heterostructures:
(100)[101]SRO || (100)[101]BSTO || (100)[101]SRO ||
(100)[101]LAO.

The half-width (FWHM) of the peak in the x-ray φ
scan for the (111) reflection from the BSTO films was
found to be 0.6° to 0.8° independent of the Ts value. The
peak FWHM in the x-ray φ scan for the (111) reflection
from the LAO substrate was equal to 0.23°. One of the
main reasons for the 2 to 3 time broadening of the peak
in the x-ray φ scan for the epitaxial BSTO film com-
pared to the data for the monocrystalline substrate was
the azimuthal disorientation of the monocrystalline
blocks forming the substrate. Thus, the relative azi-
muthal disorientation of the monocrystalline blocks in
the (100)BSTO films grown on (100)SRO || (100)LAO
was able to be as large as 0.4°–0.6°, with allowance for
instrument error.

The half-width of the rocking curve for the x-ray
(200) reflection of the BSTO films grown at Ts equal to
800 and 750°C was 0.29° and 0.35°, respectively. The
FWHM of the rocking curve for the (200) substrate
peak was 0.11°. Thus, taking into account the instru-
ment error, the FWHMs of rocking curves for the films
prepared at 800 and 750°C were 0.18° and 0.24°,
respectively. These values prove the perfection of the
film structure (for comparison, the corresponding value
for the epitaxial BSTO films used in [2] equals 1.1°).

The crystalline lattice parameters for the grown
BSTO films were determined from the x-ray data
obtained. The crystalline lattice parameters for the
BSTO film in the (100)SRO || (100)BSTO || (100)SRO
heterostructure (Ts = 800°C) measured in the substrate
plane and along a normal to its surface were equal to
3.994 and 3.981 Å, respectively. The same parameters
for the film grown at Ts = 750°C were equal to 3.993
and 3.983 Å, respectively. It follows from these data
that the BSTO films obtained were mainly a oriented
(the c axis was parallel to the substrate plane).

The monocrystalline blocks of a BSTO film grown
at Ts = 800°C (we will refer to it as a large-block film)
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Fig. 1. (a) X-ray ω/2θ diffractogram obtained using CuKα radi-
ation for the (150 nm)SRO/(700 nm)BSTO/(150 nm)SRO/LAO
heterostructure (Ts = 750°C). The diffractogram was
obtained under the conditions where the incident and
reflected x-ray beams were situated in the plane orthogonal
to the (100)LAO plane. (1) The (200)SRO reflection and
(2, 3) CuKβ reflections from the ferroelectric film and sub-
strate, respectively. The inset shows the φ x-ray scan for the
(111)BSTO reflection from the same heterostructure.
(b) The x-ray diffractogram (CuKα, ω/2θ) for the same het-
erostructure obtained under the conditions where the inci-
dent and reflected x-ray beams were situated in the plane
orthogonal to the (101)LAO plane. (1) The (202)SRO
reflection; (2) the CuKβ reflections from the substrate. The
inset shows the rocking curves for the (200)BSTO reflection
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heterostructures grown at different Ts: (1) 800 and (2) 750°C.
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Fig. 2. Images of the free surface of the (700 nm)BSTO films grown at (100)SRO || (100)LAO at different Ts: (a) 800 and (b) 750°C.
The images are obtained by atomic force microscopy. The boundaries of the monocrystalline blocks in the ferroelectric film are
marked by hollows.
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Fig. 3. (a) Temperature dependences of the permittivity ε (curves 1, 2, 5, 6) and of 1/  (curves 3, 4) for the fine-block BSTO
film; curves 1, 3, 5, and 6 are measured at a bias voltage Ub = 0; curves 2 and 4, at 2.5 V; curves 1–4 are measured at a measuring
signal amplitude Um = 0.05 V and a frequency  f = 100 kHz; curve 5, at Um = 0.7 V and  f = 1 kHz; and curve 6, at Um = 4.3 V and

f = 1 kHz. (b) Temperature dependences of the permittivity ε (curves 1, 2) and 1/  (curves 3, 4) for the large-block BSTO film;
curves 1 and 3 are measured at a bias voltage Ub = 0; curves 2 and 4, at Ub = 2.5 V and  f = 100 kHz. The inset shows the ε(Ub)
dependence at T = 300 K.

δtan

δtan
had sizes of 150–200 nm in the substrate plane and
were decreased in their size by a factor of 3 to 5 at Ts =
750°C (fine-block films) (Fig. 2). The block boundaries
possess an excessive free energy, which induces the
formation of the characteristic pits at the free surface of
a BSTO film. According to the earlier data in [3], the
BSTO films grown under analogous conditions had a
columnar structure.

Temperature dependencies ε(T) and (T) (ε is
the permittivity) are obtained at the measuring voltage

δtan
P

Um with a frequency of 100 kHz and amplitude of 0.05 V
(which is considerably lower than the coercive voltage)
and at bias voltages Ub equal to zero and +2.5 V (the
polarity at the upper electrode). The temperature
dependences of ε were also obtained for measuring
voltages of 0.7 and 4.3 V at a frequency of 1 kHz.

The ε(T) and (T) dependences are represented
in Fig. 3. The ε(T) and (T) curves have broad max-
ima corresponding to the paraelectric–ferroelectric

δtan
δtan
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phase transition. For all ε(T) dependences at zero bias
voltage, the temperatures of maxima (Tmax) are below
the Curie temperature for the bulk Ba0.8Sr0.2TiO3 solid
solution, which approximately equals 340 K [4]. At the
same time, Tmax for the fine-block films is considerably
lower than that for the large-block films (260 and
325 K, respectively). The temperatures Tmax for the
fine-block films determined from weak-signal mea-
surements at frequencies of 1 and 100 kHz are approx-
imately the same. However, if Um increases to a value
of 4.3 V (exceeding the coercive voltage), one observes
a considerable decrease in Tmax, down to 200 K. A
decrease in ε with decreasing block size is observed in
the whole range of temperatures. When the frequency
diminishes and the amplitude of the measuring voltage
is increased up to values exceeding the amplitude of the
coercive voltage, the ε value increases.

Studies of hysteresis loops at different temperatures
showed that, when the temperature is varied from val-
ues lower than Tmax to values considerably greater than
Tmax, the loops narrow monotonically, but they still
exist even at temperatures 100 K higher than Tmax (see
the inset in Fig. 4). The corresponding temperature
dependence of the coercive field Ec is shown in Fig. 4.
A considerable (more than two times) narrowing of the
hysteresis loop with a decrease in the controlling field
frequency from 1 kHz to 120 Hz is observed.

It is found that the ε(Ub) curves are symmetric at
Tmax and higher temperatures; the maxima of the curves
are displaced by +0.3 to +0.5 V with respect to the Ub =
0 value (the inset to Fig. 3b), and the hysteresis effects
with increasing and diminishing bias voltage are insig-
nificant. In order to compare the sensitivity of the fine-
and large-block films to the bias voltage, we used the
curves of Fig. 3 and calculated the values of the ∆ε/ε(0)
ratio, where ∆ε is the amount of the decrease in the ε
value with Ub increasing from 0 to 2.5 V (the bias field
is 36 kV/cm) and ε(0) is the permittivity for Ub = 0. The
∆ε/ε(0) values at Tmax and at temperatures exceeding
Tmax by 75 K were compared. For the large-block films,
this quantity was ∆ε/ε(0) = 0.52 at Tmax and ∆ε/ε(0) =
0.32 at T = Tmax + 75 K. For the fine-block films, the
∆ε/ε(0) values were 0.26 and 0.17, respectively. Thus,
the sensitivity of the large-block films to the bias volt-
age is much greater than that of the fine-block films
both at Tmax and at higher temperatures. The sensitivity
of tanδ to the bias field is also considerably greater for
the large-block films.

3. DISCUSSION OF RESULTS

The persistence of the ferroelectric properties of the
films at temperatures considerably exceeding Tmax and
the broad maxima of the ε(T) and (T) dependences
indicate considerable inhomogeneity of the films. This
inhomogeneity can be due to fluctuations of the film
chemical composition [5], as well as to the local fields

δtan
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and mechanical stresses. The latter are mainly pro-
duced in the vicinity of grain boundaries by disloca-
tions, charged vacancies, and impurity ions.

Narrowing of the hysteresis loop with decreasing
frequency of the controlling voltage can be explained
according to [6] by the concentration of mobile charged
oxygen vacancies in the near-electrode regions in the
case of a quite slowly varied controlling field. As a
result, the field in the near-electrode regions grows,
which is favorable to the formation of nuclei of ferro-
electric domains upon polarization switching and
diminishes the coercive field.

Displacement of the maxima in the ε(Ub) and
(Ub) dependences to more positive potentials of

the upper electrode proves the existence of a built-in
field in the films. One of the main reasons for the
appearance of the built-in electric field in the BSTO
layer is the difference in the microstructure of the upper
and lower ferroelectric–oxide-electrode interfaces in
the SRO/BSTO/SRO heterostructure. The differences
in the nucleus formation process of the BSTO film on
the SRO layer surface and of the SRO layer on the
BSTO film surface lead to different densities of defects
in the vicinity of BSTO/SRO boundaries and, therefore,
to a difference in the electron parameters of the inter-
faces [7].

In particular, the built-in field can create a positive
charge associated with misfit dislocations at the lower
interface of the SRO/BSTO/SRO structure.

Using the data of [1] on the occurrence of nonsto-
ichiometric regions near the 25° interface in an SrTiO3
bicrystal, let us make an order-of-magnitude estimate
of the voltage across the film structure that is induced
by this charge. According to the data of [1], the distance
between the neighboring dislocations in the interface
plane is 12 Å and the concentration of the oxygen
vacancies in the vicinity of the interface is 6%. In our
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case, the distance d between the misfit dislocations, cal-
culated by the formula d = a1a2/(a1 – a2), where a1 and
a2 are the lattice constants of the film and the substrate,
respectively, is equal to 250 Å. Taking into account that
the misfit dislocations form a rectangular network, we
find that the dislocation density in our case is approxi-
mately 10 times lower than that cited in [1] and, there-
fore, the vacancy concentration is 10 times lower.
Assuming that the vacancy concentration cited in [1] is
related to a single atomic plane lying in the interface
plane (underestimated value), we obtain that, in our
case, the number of doubly charged oxygen vacancies
per unit area of the film–substrate interface is 1.7 ×
1012 cm–2 and the corresponding charge density Q
equals 5.5 × 10–7 C cm–2. The voltage U across the film
structure can be evaluated from the relation U = Q/C,
where C is the specific capacity of the structure. As the
result, we obtain U = 0.22 V, which is of the same order
of magnitude as the observed voltage that induces the
built-in field.

Consider the reasons for the lowering of Tmax in the
films. The displacement of Tmax can be caused by
mechanical stresses. However, one can make the con-
clusion from the phase diagram presented in [8] for
BaTiO3 films (a chemical composition which is close to
Ba0.8Sr0.2TiO3) that the two-dimensional in-plane
stresses acting in the film deposited on the substrate
must increase the temperature of the paraelectric–ferro-
electric phase transition irrespective of the stress sign.
This statement contradicts our results. Thus, the
mechanical stresses do not play an essential role in this
case. This can be explained by the fact that the thermal
stretching stresses in the film (the thermal expansion
coefficient of the film is greater than that of the sub-
strate) are partially compensated by compression
stresses due to the misfit of the crystalline lattice
parameters of the film and the substrate (the lattice
parameter of the film is greater than that of the sub-
strate). An analogous compensation for stresses is
described in [9] for Ba0.85Sr0.15TiO3 having a perfect
structure and placed on an MgO substrate.

The decrease in Tmax, which was also observed ear-
lier in BSTO films [10, 11], can be explained by size
effects taking place in thin films and fine-grain bulk
ceramics [12, 13]. The size effect is due to a decrease in
the polarization near the film surface and near the
boundaries of grains and of ferroelectric domains.
When the film thickness and the grain sizes are
decreased (and, as a consequence, the domain width
diminishes [14]), the relative volume of regions with
reduced polarization increases. The latter leads to an
abrupt fall of Tmax. For the crystalline block sizes com-
parable with the ferroelectric correlation length, the
ferroelectric effects can be totally suppressed [8, 13].
If, in our case, one takes into account the large dimen-
sion of the crystalline blocks in the direction of a nor-
mal to the film plane, it will be obvious that the polar-
ization is mainly suppressed in the vicinity of the
P

domain walls oriented along this direction. The polar-
ization is also suppressed near the block boundaries at
which electric charges and mechanical stresses,
induced by defects and impurities displaced to these
boundaries in the course of the film growth process, are
concentrated. This is why a decrease in Tmax is observed
to be more noticeable in fine-block films.

The decrease in Tmax with an increase in the measur-
ing voltage amplitude up to values exceeding the coer-
cive voltage can be related to the accompanying initia-
tion of the polarization switching process, which leads
to an increase in the permittivity [15] [this is observed
in our case (Fig. 3a)]. As pointed out above, the micro-
volumes of both paraelectric and ferroelectric phases
are present in the films in a quite broad temperature
interval. The relative volume of the ferroelectric phase
increases with decreasing temperature. As a result, the
contribution from the polarization switching to the per-
mittivity grows. This leads to a decrease in Tmax.

The observed growth of ε with an increase in the
crystalline block size is explained by the decreased
influence of the size effect considered above. In addi-
tion, the growth of the oxygen vacancy concentration in
the large-block films (evaporated at higher tempera-
tures) can also serve as the reason for the increase in ε.
As a result, the contribution from the polarization
caused by oxygen vacancies to ε is also increased [16,
17]. In our case, such a polarization can also be one of
the reasons for the above-mentioned low-frequency
dispersion of ε (another reason for the low-frequency
dispersion can be near-electrode potential barriers
[18]). However, we observed no increase in the crystal-
line cell volume, which should be caused by the growth
in the concentration of oxygen vacancies [17] in the
large-block films. For example, according to the above
data on the crystal lattice parameters in the film plane
and along the normal to it, the crystal cell volumes of
the large- and fine-block films are equal to 63.296 and
63.386 Å3, respectively. Using, for an approximate
evaluation, the dependences of the cell volume upon
the concentration of the oxygen vacancies in
Ba0.5Sr0.5TiO3 films [17], we find that the concentration
difference does not exceed 7%, with the vacancy con-
centration being lower in the large-block films. Thus,
the growth of the concentration of oxygen vacancies
does not serve as the reason for the increase in ε in the
large-block films.

The decrease in the sensitivity of ε and  to the
bias field with a decrease in the crystalline block sizes
is explained by the growth of the contribution from the
interfaces in the film in the vicinity of which the local
electric fields exist. The effect of the bias field on ε
becomes weaker against the background of these fields.

Thus, the comparison of the ferroelectric properties
of films with different sizes of crystalline blocks
showed that the low-angle boundaries in epitaxial films
having a columnar block structure considerably affect
their properties by lowering the paraelectric–ferroelec-

δtan
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tric phase transition temperature and also by diminish-
ing the permittivity and its sensitivity to the electric
bias field.
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Abstract—The electromechanical nonlinearity of a bismuth tellurite single crystal (Bi2TeO5) is investigated.
It is revealed that the noncentral forces of interatomic interaction dominate in this material. The relation
between the structural features of Bi2TeO5 and its elastic properties is analyzed. © 2001 MAIK “Nauka/Inter-
periodica”.
Single-crystal Bi2TeO5 crystallizes in the orthor-
hombic crystal system and belongs to the Abm2 space
group. The unit cell parameters are as follows: a =
11.602 Å, b = 16.461, and c = 5.523 Å. The main struc-
tural features of this material are a polar axis which
coincides with the [001] crystallographic direction and
a quite perfect cleavage plane which corresponds to the
(100) crystallographic plane [1].

Analysis of the full matrix of elastic constants for
bismuth tellurite showed that the cleavage plane and
polar axis virtually do not manifest themselves in the
elastic properties of bismuth tellurite within the exper-
imental error [1, 2]. It was of interest to reveal the rea-
son for this inadequate manifestation of the properties
of the Bi2TeO5 single crystal.

Single crystals of bismuth tellurite for investigations
were grown by the Czochralski method [3]. The mea-
surements were carried out by the resonance–antireso-
nance method.

It is known that the following conditions should be
met for certain crystals: (i) all interaction forces
between the particles constituting the crystal are central
forces, (ii) the particles have a spherical symmetry and
are positioned at the symmetry centers of the structure,
1063-7834/01/4305- $21.00 © 20914
and (iii) no strain occurs in the initial state of the crys-
tals. If these conditions are fulfilled, we have six addi-
tional relationships (Cauchy relationships) between the
elastic coefficients: C23 = C44, C56 = C14, C64 = C25,
C31 = C55, C12 = C66, and C45 = C36 [4]. For the constants
of elastic rigidity of bismuth tellurite, some Cauchy
relationships are approximately fulfilled [1, 2]. In order
to evaluate the character of the interatomic interaction
in this single crystal, the angular dependences of shear

moduli G1 =  and G2 =  were calculated

using the elastic constants taken from [1, 2]. The depen-
dences of the G1 and G2 moduli for Bi2TeO5 with rota-
tion around the crystallographic axes are shown in
Fig. 1. For cubic crystals with central forces of inter-
atomic interaction, these dependences should have a
similar character. It is seen from Fig. 1 that the depen-
dence for G1 noticeably differs from the dependence for
G2. This suggests that central interatomic interactions
are absent in the Bi2TeO5 crystal and, consequently, the
non-Coulomb forces are dominant.

For small amplitudes of atomic vibrations, the elas-
tic properties of Bi2TeO5 weakly depend on the type of
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interatomic interaction forces in the crystal lattice. This
can be due to a small difference in the forms of interac-
tion potentials between the particles in the central- and
noncentral-force fields at small vibration amplitudes.
With an increase in amplitude, the nonlinear effects
begin to play a significant part. The difference between
the potentials should have a stronger effect, since the
potential is symmetric in the former case and asymmet-
ric in the latter case. For large vibration amplitudes, the
repulsive forces should noticeably manifest themselves
in the case of non-Coulomb forces. The former forces
decrease with distance considerably faster than the
Coulomb forces, and even faster than the van der Waals
forces [5]. It is possible that the structural features of
the Bi2TeO5 single crystal will clearly manifest them-
selves in nonlinear modes.

In order to confirm this supposition, we investigated
the electromechanical nonlinearity of bismuth tellurite.
The dependences of the resonance fr and antiresonance
fa frequencies on the strain amplitude (Fig. 2) were
measured at room temperature. The samples were pre-
pared in the form of bars, which were cut out along the
[100] and [001] axes and along two intermediate direc-
tions (at 30° and 45° to the [100] direction) in the aux-
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Fig. 2. Dependences of the resonance frequency on the
strain induced by the electric field for different samples of
Bi2TeO5.

Parameters of the samples investigated

Bar length orientation fr, kHz fa, kHz γi

[100] 146.075 146.170 –8.7 ± 1.4

30° to [100] in the (010) 
plane

190.125 190.255 –7.3 ± 0.6

45° between [100] and 
[010] in the (010) plane

166.630 166.925 –3.6 ± 0.5

[010] 130.390 130.500 –1.6 ± 0.2

(100) plate 748 765 –90 ± 5.0
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
iliary (010) plane, and rectangular (100) plates. The
strain χi was calculated as QmdijEj, where Qm is the
mechanical Q factor for the sample, dij is the piezoelec-
tric modulus of bismuth tellurite [2], and Ej is the elec-
tric field applied (which causes sample strain). It is seen
from Fig. 2 that the Bi2TeO5 single crystal exhibits a
noticeable electromechanical nonlinearity at large
strains. This effect is especially strong for the (100)
plates.

The data on the electromechanical nonlinearity of
bismuth tellurite, which are shown graphically in
Fig. 2, are summarized in the table. The quantities γi =

 characterize the averaged degree of anharmo-

nicity of the crystal lattice toward the i direction.
If the system deviates from the Hooke law and calls

for account of the anharmonicity effect, the interaction
force F can be expanded into a series to the quadratic
term and can be represented as F = kr(1 + γr), where γ ≈
γi, k is the rigidity, and r is the displacement.

Applying the expression for the anharmonic interac-
tion force to the Bi2TeO5 single crystal, we obtain the
following relationships:

(1) for the [010] direction, γ = –2 and F = kr(1 – 2r);
(2) for the [100] direction, γ = –9 and F = kr(1 – 9r);
(3) for the (100) plane, γ = –90 and F = kr(1 – 90r).
It is seen from calculations and Fig. 2 that the inter-

atomic interaction force in the (100) plane with respect
to the shear strain decreases with distance very drasti-
cally. This effect is considerably less pronounced for
other planes.

Thus, it is revealed that the noncentral interatomic
interaction dominates in the Bi2TeO5 single crystal.
Because of this, the cleavage plane, which does not
manifest itself in the elastic characteristics in the case
of linear interatomic interactions, clearly manifests
itself even at a relatively small shear deformation of the
lattice.
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Abstract—The integral equations for calculating ferroelectric and antiferroelectric phase transition tempera-
tures, order parameters, and critical concentrations of solid solution components are derived. The electric
dipoles randomly distributed in the system are treated as sources of random fields. The random field distribution
function is constructed taking into account the contribution of nonlinear effects and the differences in the dipole
orientations for different solid solution components. The dependence of the phase transition temperature on the
composition of a binary solid solution in the ferroelectric–antiferroelectric and ferroelectric–paraelectric sys-
tems is calculated. Numerical calculations are carried out for the PbTixZr1 – xO3 and BaZrxTi1 – xO3 solid solu-
tions. The results obtained are in good agreement with the experimental phase diagrams of these systems. Anal-
ysis of the results indicates that any solid solution containing ferroelectric (antiferroelectric) and paraelectric
components transforms into a relaxor state at sufficiently high concentrations of the paraelectric component.
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1. INTRODUCTION

Solid solutions of different-type materials (such as a
ferroelectric and an antiferroelectric or a ferroelectric
and a paraelectric) with practically useful properties
have been investigated extensively in recent years. An
example of these materials can be provided by the
PbZr1 – xTixO3 (PZT) system whose representatives
have found wide technical applications [1], including
modern branches of electronic engineering [2]. For the
most part, the compositions of solid solution materials
with important properties fall in the concentration
regions near the boundaries between different phases in
phase diagrams. In particular, the most interesting
regions for PZT lie in the vicinity of the morphotropic
curve of the coexistence of two ferroelectric phases
with different symmetries and in the vicinity of the
boundary between the ferroelectric and antiferroelec-
tric phases [2, 3]. The characteristic features of phase
diagrams, as well as the anomalies of the properties,
essentially depend on the type of solid solution compo-
nents (ferroelectric, antiferroelectric, or paraelectric).
In this respect, it is of interest to compare the phase
diagrams of PZT (a solid solution of antiferroelectric
PbZrO3 and ferroelectric PbTiO3) and the
BaZrxTi1 − xO3 (BZT) solid solution which consists of
ferroelectric BaTiO3 and paraelectric BaZrO3 [4]. The
difference in the properties of BaZrO3 and PbZrO3 indi-
cates the special role played by lead ions in phase tran-
sitions in materials with a perovskite structure [5]. The
phase diagrams of PZT and BZT differ radically (see
1063-7834/01/4305- $21.00 © 20916
[6, 7]): several phases with a long-range order are
observed in PZT, whereas BZT at x = 0.27 exhibits a
relaxor behavior. In order to elucidate the mechanisms
and driving forces responsible for the phase diagram of
solid solutions, it is expedient to perform theoretical
calculations. Earlier, we proposed a model which is
based on the calculations of electric fields (induced by
randomly arranged electric dipoles) and their effect on
the order parameter [8]. In the present work, we
extended this model by taking into account the contri-
butions of nonlinear and spatial correlation effects and
different dipole orientations. As a result, we con-
structed the concentration dependence of the transition
temperature, calculated the order parameters for lat-
tices of different symmetries (i.e., the changes in the
solid solution symmetry), and established the existence
of the morphotropic region and the formation of the
glass state. The more refined model was used to calcu-
late the phase diagrams of the PZT and BZT solid solu-
tions. The theoretical and experimental phase diagrams
for these materials are in good agreement.

2. ORDER PARAMETERS

For a solid solution composed of ferroelectric and
antiferroelectric materials, we introduce three order
parameters. Within the two-sublattice model, there are
two order parameters for the antiferroelectric compo-
nent (ferroelectric L2F and antiferroelectric L2A) which
describe the homogeneous and inhomogeneous dis-
placements of ions, respectively. The third order
001 MAIK “Nauka/Interperiodica”
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parameter L1F corresponds to the ferroelectric compo-
nent of the solid solution. By assuming that the electric
dipoles capable of aligning along the electric field E
play the dominant role in the behavior of the system
during phase transitions, the order parameters in the
Ising model can be represented in the following
form [9]:

(1a)

(1b)

(1c)

Here,  and  are the effective dipole moments of
the first (x = 1) and second (x = 0) components; T1F is
the temperature of the transition to the ferroelectric
phase of the first component; and T2F and T2A are the
temperatures of transitions to the ferroelectric and anti-
ferroelectric phases of the second solid-solution com-
ponent, respectively.

In a mixed system, dipoles of both components are
arranged in a random way and can be treated as sources
of random fields. In this case, the order parameters in
formulas (1) should be averaged with a random field
distribution function f(E, L1F , L2F). Note that the elec-
tric field E in the general case is the sum of the external
and internal fields. Hereafter, we will assume that the
external field is absent. With allowance made for the
contribution of the nonlinear and correlation effects to
the distribution function [10], the order parameters for
a mixed system can be written as

(2a)

(2b)

(2c)

(2d)
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Here, ϕi(E) is a nonlinear function of the field which
takes the form of expression (2d) for lattices with the
center of inversion in the paraelectric phase. In this
case, α3 is the coefficient of the nonlinear term (hereaf-
ter, it will be considered maximum among all the
expansion terms) and f(E, L1F , L2F) is the random field
distribution function. It can easily be shown that, when
both components are ferroelectrics, i.e., L2A = 0,
Eq. (2b) has a form identical to Eq. (2a) (as should be
expected) but with other parameters. Therefore, rela-
tionships (2a)–(2d) describe the general case. Accord-
ing to these relationships, the dependences of the order
parameters on the properties of the solid solution com-
ponents and their percentage can be expressed through
the random field distribution function. It should be
emphasized that the L parameters are the fractions (0 ≤
L ≤ 1) of the coherently aligned dipoles of the solid
solution components. The polarization P as a true order
parameter of the solid solution can be expressed in
terms of Li as follows:

(3)

where a1 and a2 are the lattice parameters and x and 1 – x
are the mole fractions of the first (A) and second (B)
components of the A1 – xBx solid solution, respectively.
Note that, as expected, L2A contributes neither to the
polarization of the solid solution nor to the random field
distribution function. The orientation of the polariza-
tion vector of the solid solution is determined by the
vector sum of dipoles according to relationship (3). In
order to determine the coefficients of this sum, it is nec-
essary to calculate the order parameters L1, 2F from rela-
tionships (2), which depend on the form of the f(E, L1F ,
L2F) function.

3. RANDOM FIELD DISTRIBUTION FUNCTION

In the general case, electric dipoles of both types
serve as sources of random fields. Since we are inter-
ested in a linear distribution function in which nonlin-
ear and spatial correlation effects are absent, these
dipoles can be considered independent. Then, the dis-
tribution function for the solid solution is a convolution
of the distribution functions for dipoles of two types
[11]. In the Gaussian approximation for these func-
tions, the distribution function for the solid solution is
described by the following relationship:

(4)

(5)

P
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where E0 is the mean field and ∆E1 and ∆E2 are the half-

widths of the distribution functions induced by the 

and  dipoles, respectively. These half-widths can be
written in the form [12]

(6)

where ε1 and ε2 are the permittivities and rc1 and rc2 are
the correlation radii of the first and second components
of the solid solution, respectively.

From relationships (4)–(6), it follows that the distri-
bution function for the solid solution depends on the
concentration of its components, the order parameters
L1F and L2F, the transition temperatures T1F and T2F, the
dipole moments, and other physical parameters.

4. GENERAL EQUATIONS DESCRIBING
THE PHASE DIAGRAM

The phase diagram should describe a variation in the
temperatures of transitions to different phases with an
increase in the mole fraction of one of the components
with due regard for a change in the phase symmetry.
The required information can be obtained from the
solution of a set of integral equations (2) taking into
account relationships (4) and (5). Substitution of
expression (4) into the set of Eqs. (2) leads to sixfold
integrals which can be simplified using the dependence
of all the integrals on the scalar product Eei, i.e., only
on the parallel ei component of the field. This allows us
to integrate with respect to the other two components of
the E field and then to perform integration with respect
to d*ρ. As a result, we obtain the relationships

(7)
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2
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P

where E0i = E0ei (i = 1 and 2); i.e., E0i depends on the
angle θ between the directions of dipoles of two types,
because e1e2 = cosθ. The parameters ∆i also depend on
the angle, that is,

(8)

Relationships (7) represent the final form of integral
equations that determine the dependence of the order
parameters L2A, L2F, and L1F on the mole fraction x. In
turn, these order parameters determine the polarization
of the system [see formula (3)]. The temperatures TC

and TA of transitions to the ferroelectric and antiferro-
electric phases of the solid solution are derived from
relationships (7) in the limiting case when the order
parameters tend to zero. Thus, from expressions (7), we
can obtain the following set of equations:

(9a)

(9b)

(9c)

where

(10)

and

(11)

are the dimensionless variables. As can be seen, the TA

temperature is determined from formula (9c) and the TC

temperature is found from expressions (9a) and (9b).
The solution of these equations has the form
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(12a)
τC

TC

T2F

--------≡ 1
2
---[xλFI1 τC( ) 1 x–( )I2 τC( )+=

± xλFI1 τC( )( )2 1 x–( )I2 τC( )( )2 2 2θ( )λFx 1 x–( )I1 τC( )I2 τC( )cos+ + ] ,
(12b)

Expressions (12) are also the integral equations, because
Ii [formula (10)] depends on the transition temperature.
Their solution gives the dependences of TA and TC on the
mole fractions and the material parameters of the solid
solution components [see expressions (11)].

5. COMPARISON OF THE THEORY
WITH EXPERIMENT

5.1. Phase diagram of PbZr1 – xTixO3. The compo-
nents of this solid solution are antiferroelectric PbZrO3
with the transition temperature T2A = 503 K (T2F ≈ T2A

[9]) and ferroelectric PbTiO3 with the temperature
T1F = 763 K of the transition from the paraelectric to the
ferroelectric phase with a tetragonal symmetry. Both
components contain electric dipoles which are ran-
domly distributed in the solid solution. With allowance
made for the symmetry of the components, it can be
assumed that vectors  and  are oriented along the
crystallographic directions [001] and [111], respec-
tively. From the above data, we have the following

parameters: λF ≈ 1.516, λA = 1, and cosθ = 1/ . The
other parameters were obtained by the fitting to the
experimental phase diagram of PZT. First of all, we
determined the TA temperature from relationship (12b).
The integral I2 was numerically calculated at α2 = 0.3
and q2 = 2.9. The dependence of TA on the mole fraction
x is depicted by the dashed line in Fig. 1. Note that the
TA temperature decreases with an increase in x and
becomes equal to 0 K at x = xC = 0.093 (where xC is the
critical mole fraction at which the antiferroelectric
phase disappears). It is seen that the theoretical results
are in reasonable agreement with the experimental data
shown by open squares in Fig. 1. At the same time, the
transition temperature TC, which was calculated from
expression (12a), increases with an increase in x (the
solid line in Fig. 1). Our theory holds for small values
of x (see the inset in Fig. 1). The fitting of TC over the
entire range of x was performed by varying the values
of p, q1, q2, α1, and α2. The best agreement was
achieved at p = 0.828, q1 = 0.239, q2 = 0.364, α1 = 3.9,
and α2 = 4.3. As can be seen from Fig. 1, the fitting is
also satisfactory at x > 0.6, i.e., in the titanium-rich
region. For intermediate mole fractions in the range
0.1 < x < 0.6, the accuracy of such a fitting is not as high
as in other concentration ranges. In our opinion, this
discrepancy is associated with the existence of addi-

τ A

T A

T2A

--------≡ 1 x–( )I2 τ A( ).=

d1
* d2

*

3
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tional order parameters in the aforementioned range.
These order parameters arise upon improper ferroelec-
tric transitions between the high-temperature and low-
temperature rhombohedral phases in which the sponta-
neous rotation of oxygen octahedra induces the phase
transition and makes a certain contribution to the spon-
taneous polarization [6]. The symmetries of different
ferroelectric phases, as well as the symmetry of the
morphotropic region with the coexistence of both sym-
metries (the dotted line in Fig. 1), were calculated by
formulas (3), (7), and (8) with the same parameters that
were used in the calculations of the transition tempera-
tures. It is seen from Fig. 1 that the morphotropic region
lies between x = 0.453 at T = 0 K and x = 0.463 at T =
611 K. Thus, the theoretical calculations adequately
describe the actual phase diagram [13] shown by open
squares in Fig. 1. Note that the best agreement was
achieved under the assumption that the half-widths ∆i

of the distribution functions for each component are
determined by the properties of the other component of
the solid solution. This confirms the assumption that
sources of random fields of one component disturb the
long-range order of the other component.

Fig. 1. Phase diagram of PbZr1 – xTixO3. Open squares are
the experimental data taken from [13]. Calculated transition
temperatures are represented by the solid line for the transi-
tion from the paraelectric phase Pc to the ferroelectric
phases Fr and Ft, the dashed line for the transition from the
antiferroelectric phase AF to the rhombohedral ferroelectric
phase Fr, and the dotted line for the transition from the Fr
phase to the tetragonal ferroelectric phase Ft. The inset
shows the temperatures of transitions from the Pc phase to
the Fr phase at small x.
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5.2. Phase diagram of BaZrxTi1 – xO3. The main
component of this solid solution is the BaTiO3 ferro-
electric material which can undergo three transitions to
the ferroelectric phases with tetragonal, orthorhombic,

and rhombohedral symmetries at  = 400 K,  =

305 K, and  = 184 K, respectively. The BaZrO3

phase is paraelectric at all temperatures [4]. In order to
fit our theory to the aforementioned experimental find-
ings for BZT, we propose the following model.

T2F
1( ) T2F

2( )

T2F
3( )

400

300

200

100

0 0.1 0.2 0.3 0.4 0.5
x

Fr

PcFt

Fo

T, K

Fig. 2. Phase diagram of BaZrxTi1 – xO3. Open circles,
squares, and triangles are the experimental data taken from
[7]. The calculated transition temperatures are represented
by the dashed line for the transition between the tetragonal
Ft and orthorhombic Fo ferroelectric phases, the dotted line
for the transition from the Fo phase to the ferroelectric
rhombohedral phase Fr, and the solid line for the transition
from the paraelectric cubic phase Pc to the Ft and Fr phases.

1.0

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1.0
x

L

T = 0 K

Fig. 3. Dependence of the order parameter on the mole frac-
tion x for the BaZrxTi1 – xO3 system at T = 0 K.
P

It is assumed that zirconium ions in the BZT solid
solution can be displaced in such a way that they trans-
form into random electric dipoles for the BaTiO3 com-
ponent. These dipoles are the main sources of a random
field. Since BaZrO3 is treated as a paraelectric phase,
the half-width of the distribution function should be
larger than the mean field induced by zirconium
dipoles. On this basis, we can describe the phase dia-
gram of BZT with the use of relationships (3), (7), and
(8) for the following parameters:

(13)

The angles between the dipole directions are chosen
from symmetry considerations: cosθ(1) = 1, cosθ(2) =

1/ , and cosθ(3) = 1/ . The results of calculations
are displayed in Fig. 2. It is seen that the proposed the-
ory adequately describes the experimental phase dia-
gram (see [7] and references therein). Note that the
accuracy of the fitting of the dotted and dashed lines to
the experimental points at x > 0.12 is no more than 10%.

Figure 3 shows the order parameters calculated for
the BZT solid solution with the use of the parameters
specified by relationships (13) at T  0. It is easy to
verify that the order parameters in this limit coincide
with each other: L1 = L2.

As can be seen from this figure, the fraction L of
coherently oriented dipoles at x > 0.3 is less than 0.9,
which corresponds to a mixed ferroelectric glassy state
[14]. The critical fraction xC of zirconium ions at which
the formation of the dipole glass occurs (L = 0) is equal
to approximately 0.82. The behavior inherent in relaxor
materials (i.e., the fulfillment of the Vogel–Fulcher law
for the dynamic permittivity) was observed at x ≥ 0.25
in recent works (see [7] and references therein).

The critical value xC for the transition to the dipole
glass phase was predicted by our theory. Unfortunately,
the experimental data were obtained only in the con-
centration range up to x = 0.5. Whether or not a state of
the dipole glass type exists in a system of BaTiO3 and
BaZrO3 solid solutions can be revealed only in the case
of complete mutual solubility of the components over
the entire concentration range.

6. DISCUSSION

As is known, the differences in the properties of lead
and barium compounds are determined by the specific
role of lead ions in phase transitions. In a perovskite-
type structure ABO3, all A ions, except lead ions in this
position, contribute insignificantly to the lattice polar-
ization. By contrast, lead ions, for example, in PbTiO3,

T1F 250 K, q1 0.6, q2 0, α1 0,= = = =

α2
1( ) 0.3, p 1( ) 2,= =

α2
2( ) 2, p 2( ) 1.63,= =

α2
3( ) 8, p 3( ) 1.25.= =

2 3
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make the main contribution to the polarization (see, for
example, [5] and references therein). In the case of
PbZrO3, the antiferroelectric state is characterized by
displacements of lead ions. In the framework of the
model proposed, the solid solution components intro-
duce electric dipoles with moments d1 and d2 into the
system. Here, di is the total dipole moment of a unit cell
of the corresponding solid-solution component, i.e., the
vector sum of the displacements of Pb and Ti ions for
PbTiO3 or Ti ions for BaTiO3. Note that all the displace-
ments are considered with respect to an oxygen octahe-
dron. Consequently, the contribution of lead ions can be
separated only on the basis of independent microscopic
calculations or measurements of the /  ratio,
which, in our model, is treated as a fitting parameter.
The estimation of this ratio from the known displace-
ments of Ti ions in PbTiO3 and Zr ions in PbZrO3 (see,
for example, [5]) gives p = /  ≈ 0.8, whereas the
best fitting is achieved at p = 0.828 (see Section 5.1).

Since nothing is known about displacements of Zr
ions in BaZrO3, we can calculate the ratios k1 = p1/p3
and k2 = p2/p3, which are independent of the dipole
moment of Zr ions. Then, we compare these values
with those obtained from the ratios of polarizations in
the corresponding ferroelectric phases (see, for exam-
ple, [15]): k1 = 1.8 and k2 = 1.4, whereas our model
gives k1 = 1.6 and k2 = 1.3 [see relationships (13)].
Moreover, from the p parameters specified by relation-
ships (13), it follows that the displacement of the Zr ion
in BaZrO3 is only half as large as the displacement of
the Ti ion in the BaTiO3 tetragonal phase. Therefore,
the use of our model leads to reasonable ionic displace-
ments in PZT and BZT. Actually, the fitting parameters
that depend on the half-width of the distribution func-
tion can be estimated from formulas (6) in the case
when the correlation radii and the dipole moments are
known.

The parameters dependent on the coefficients of
nonlinear terms play an important role in describing the
features of the phase diagram for BZT, because these
parameters determine the location of maxima in the

dependence of TC on x. The fitting parameters  are
in qualitative agreement with the coefficients of nonlin-

ear terms α for different BaTiO3 phases:  <  <

 [see relationships (13)] and α(1) < α(2) < α(3) (see
[15]). At the same time, the quantitative evaluation of

the  parameters is a complex problem whose solu-
tion requires independent measurements of these quan-

tities. Nonetheless, the  quantities are treated as fit-
ting parameters, whereas other parameters can be esti-
mated from a priori considerations. Another interesting
feature of the phase diagram for BZT consists in
emerging the relaxor properties at x ≥ 0.27. As far as we
know, such a behavior has never been observed for PZT

d1
* d2

*

d1
* d2

*

α2
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α2
1( ) α2

2( )

α2
3( )

α2
i( )

α2
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PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
solid solutions. This can be explained by the fact that
the spontaneous polarization due to the displacement of
lead ions in PbTiO3 is twice as large as the polarization
in BaTiO3 [5]. As a result, a random field induced by Zr
ions is incapable of destroying the more stable long-
range order in PbTiO3. At the same time, this field can
destroy the less stable long-range order in BaTiO3 at a
sufficiently high concentration of Zr ions.

In summary, it can be concluded that, in a certain
concentration range, the solid solution consisting of a
ferroelectric and a paraelectric should transform into
the relaxor state. This statement follows from the fact
that the contribution of the paraelectric component to
the mean field E0 is sufficiently small, but it completely
determines the half-width of the distribution function
[q2 = 0, see relationships (13)]. The contribution of the
ferroelectric component to E0 [see formula (5)]
decreases because of the decrease in 1 – x with an
increase in x, provided that subscripts 1 and 2 refer to
the paraelectric and ferroelectric phases, respectively,
and T2A = 0 and L2A = 0 in relationships (7). Therefore,
an increase in the paraelectric concentration brings
about a decrease in the mean field strength and an
increase in the half-width of the distribution function ∆
[see expressions (8)]. This should lead to a decrease in
the ratio E0/∆ with an increase in x. Since the state of
the system under consideration [paraelectric (PE), fer-
roelectric (FE), dipole glass (DG), and a mixed ferro-
electric glass (FG) in which the long-range order coex-
ists with a short-range order of dipole glass] depends
strongly on the E0/∆ ratio (Fig. 4), it can be inferred
that, as the mole fraction x increases, the system trans-
forms from the ferroelectric state into the ferroelectric
glassy state and then into the dipole glass state at a suf-
ficiently low temperature (see arrows in Fig. 4). It is
known that the ferroelectric glassy and dipole glass
states are the characteristic features of relaxor materials

PE

FE

FG

DG

0 1 E0/∆

1

T/∆

Fig. 4. A schematic phase diagram for a disordered sys-
tem [16].
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[14]. These phases exhibit a nonergodic behavior and
follow the Vogel–Fulcher law, which describes the tem-
perature dependence of the dynamic dielectric suscep-
tibility. This can be associated with the formation of
random electric fields in the system [17].

From the calculated dependence of the order
parameter on the mole fraction x for the
(BaTiO3)1 − x(BaZrO3)x system, we obtain the mole
fraction at which this system transforms into the
relaxor state (x ≈ 0.3, Fig. 3). It is seen from Fig. 3 that
the BZT system is in the ferroelectric glass phase in the
range 0.3 < x < 0.8 and could be in the dipole glass
phase at x ≥ 0.8; however, the question as to whether the
BZT solid solutions exist at x > 0.5 remains open. The
assumption that a mixed ferroelectric–paraelectric sys-
tem transforms into a relaxor state is confirmed by the
existence of the dipole glass state and the relaxor prop-
erties in the (BaTiO3)1 – x(SrTiO3)x system at x ≥ 0.9
[18]. It is most likely that this transition also occurs in
the paraelectric–antiferroelectric system. However,
unlike the ferroelectric–paraelectric system in which
T2F is the temperature of the transition to the existing
ferroelectric phase, T2F in the case under consideration
is a characteristic of the hypothetical ferroelectric
phase, which follows from the two-sublattice model for
antiferroelectrics and is close to (even if slightly less
than) the T2A temperature [9].

7. CONCLUSION

Thus, in the present work, the random-field theory
was applied to the calculation of the phase diagrams for
mixed ferroelectric systems, specifically for the PZT
and BZT solid solutions. The theoretical approximation
proposed describes, both qualitatively and quantita-
tively, the experimental phase diagrams, including the
relaxor behavior of BZT in the range x > 0.3. However,
the corresponding experimental value of x is equal to
approximately 0.25. This discrepancy can stem from
the assumption that the electric dipoles of zirconium
ions are the main sources of random fields. Zirconium
ions can also be considered dilatation centers or elastic
dipoles, which, as is known, destroy the long-range
order and lead to the appearance of relaxor properties
[14]. Similar calculations and the calculation of the
contribution from the tilting of oxygen octahedra to the
polarization of PZT are currently being performed by
the authors and will be reported in a separate paper.
P
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Abstract—A new treatment of the problem of a two-dimensional Wannier–Mott exciton in a uniform electric
field, based on the parabolic coordinates, is presented. The quasi-stationary Hamiltonian is regularized, and the
efficient numerical methods are applied. The dependence of the exciton binding energy on the electric field is
computed. The results are very close to those obtained by the perturbation theory calculations. © 2001 MAIK
“Nauka/Interperiodica”.
1 The three-dimensional Wannier–Mott exciton
(WME) is usually described within the effective-mass
approximation [1–11]. The essential effect of an exter-
nal uniform electric field E is that the problem becomes
nonstationary. The exciton can be ionized, and its life-
time is finite, which necessitates the use of the time-
dependent Schrödinger equation (SE). However,
assuming that the exciton lifetime is sufficiently long,
one can treat the problem as a quasi-stationary one and
employ the time-independent SE

(1)

where εg is the energy gap and εexc is the total exciton
energy. It is analogous to the hydrogen atom problem [12].

Equation (1) is not solvable analytically for E ≠ 0. In
the parabolic coordinates, the 3D WME problem trans-
forms to two coupled one-dimensional eigenvalue
problems [3, 5–8, 12]. The case when both the electron
and the hole motion are restricted to two dimensions
(which can be modeled by a very deep and narrow
quantum well and is analogous to a two-dimensional
atom) can be treated similarly [9]. The 2D problem was
solved analytically in [13] for E = 0. The case of E ≠ 0
was investigated numerically in [9]. Both 3D and 2D
cases with E = 0 were also considered in the momen-
tum space [11].

In this paper, we present a new approach to the 2D
WME problem. It is based on a parabolic coordinate
system defined in a way different from that in [9]. This
approach (1) is a generalization of the standard method

1 This article was submitted in English.
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presented in [12] for the 3D hydrogen atom, (2) results
in the Hamiltonian regularization, and (3) allowed us to
perform a numerical analysis of the problem with the
help of the efficient modern methods of linear algebra.

In the standard variable-separation procedure, one
introduces the center-of-mass coordinate R, the relative
coordinate r, and the reduced mass µ. This allows the
total envelope function to be written in the form Φ(R,

r) = exp(iK · R)ψ(r), which gives εexc = 

+ ε + εg. The wave function ψ satisfies the dimension-
less SE

(2)

Equation (2) is written in the atomic units of length a0 =

 (effective Bohr radius), energy W0 =  (effec-

tive Rydberg), and field E0 = .

1. TWO-DIMENSIONAL EXCITON FOR E = 0
IN POLAR COORDINATES

In the polar (or cylindrical) coordinate system (r, ϕ),
Eq. (2) for E = 0 reads

�
2K2

2 me* mh*+( )
-----------------------------

–∇ 2 2
r
---– 2E r⋅+ ψ r( ) εψ r( ).=

��
2

µe2
-------- µe4

2�
2
�

2
-------------

e

�a0
2

--------

1
r
--- ∂

∂r
----- r

∂
∂r
----- 

  1

r2
---- ∂2

∂ϕ2
--------- 2

r
---––– ψ r ϕ,( ) εψ r ϕ,( ).=
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It is solvable analytically [13]. The normalized eigen-
functions of the bound states are

(3)

for |m | ≤ n = 0, 1, 2, …; λn = (n + 1/2)–1; and c stands
for “cylindrical.” The eigenenergies are εn, m = εn =

−(n + 1/2)–2. The symbol  denotes the general-
ized Laguerre polynomials [14].

2. TWO-DIMENSIONAL EXCITON 
IN PARABOLIC COORDINATES

This section presents an idea of a new approach to
the problem. Let us write the SE (2) in the parabolic
coordinate system using Eqs. (A1) and (A3)

(4)

We factorize ψ(u, v) = f(u)g(v) and remove the singu-
larity by multiplying Eq. (4) by u2 + v2. After separat-
ing the variables, we get two coupled equations with
separation parameter C

ψn m,
c r ϕ,( )

λn
3/2

π
-------- n m–( )!

n m+( )!
-----------------------=

× e
λnr–

2λnr[ ] m Ln m–
2 m 2λnr( )eimϕ

LN
a x( )

1

u2
v

2+
----------------- ∂2

∂u2
-------- ∂2

∂v 2
---------+ 

  4

u2
v

2+
-----------------––

--+ u2
v

2–( )E ψ u v,( ) εψ u v,( ).=

d2

du2
-------- εu2 Eu4 2–+–– f u( )

–10

V

u, v

–10
–6 –2 0 2 6 10

0

10

20

30

40

Fig. 1. The quasi-potentials V+ (dashed line) and V– (solid
line) for E = 0.15 and for E = 0 (dotted line).
PH
(5)

Equations (5) are one-dimensional Schrödinger-like
equations. They are eigenvalue problems for the sepa-
ration parameter C. The binding energy ε is a parameter
in the functions V±, which we call quasi-potentials (they
correspond to potentials in the ordinary SE)

(6)

where w denotes the coordinate u or v. The quasi-
potentials are shown in Fig. 1.

The numerical procedure of solving Eq. (5) should
then consist in finding such a value of ε(E) for which
the eigenvalues C and –C match both equations (5).

Here, we should note that the alternative definition
of the parabolic coordinates in Eq. (A4) applied in [9]
also leads to variable separation. One then gets a set of
two ordinary SEs (with ε being the eigenvalue), but the
singularity is not removed and the numerical problem is
more difficult.

The value of f(0) is unknown. We cannot impose the
convenient boundary condition f(u = 0) = 0, because it
would imply ψ(0, 0) = 0. In order to avoid this diffi-
culty, let us extend the domain of u to negative values
(we make use of the properties of the conformal map-
ping). This involves the condition

(7)

(see Appendix). The quasi-potentials in Eq. (6) are even
functions. Therefore, from Eq. (7), it follows that f(u)
and g(v) have to be either both even or both odd.

3. ANALYTICAL RESULTS FOR E = 0

The case of E = 0 is solvable analytically. Equa-
tions (5) then read (the plus–minus sign corresponds to
the second and the first equation, respectively)

(8)

where w means u or v; f– and f+ denote f and g, respec-
tively; and λ2 = –ε. We note that Eq. (8) is an “inverted”
quantum linear oscillator eigenvalue problem with the
eigenvalues 2 ± C = (2n± + 1)λ for n± = 0, 1, 2, … and

the eigenfunctions fn±(x) = exp(–(1/2)λx2)Hn±( x),
where HN(x) denotes Hermite polynomials [14].

It is easy to show that  = 2/(n+ + n– + 1), where
n+ and n– denote the parabolic quantum numbers. From

=  d2

du2
-------- V+ u( )+– f u( ) Cf u( ),–=

d2

dv 2
--------- εv 2 Ev 4 2–––– g v( )

=  d2

dv 2
--------- V– v( )+– g v( ) Cg v( ).=

V± ε; w( ) εw2 Ew4 2,–±–=

ψ u v,( ) ψ u v–,–( )=

d2

dw2
--------- λ2w2+– f ± w( ) 2 C±( ) f ± w( ),=

λ

λn+ n–,
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Eq. (7), we get n+ + n– = 2n, where n = 0, 1, 2, …
denotes the principal quantum number describing the

energy of an eigenstate  = εn = –  = –(n + 1/2)–2.
Normalized wave functions have the form

where  is the normalization factor depending only

on n:  = In. We will change the indices of ψ in
order to put n among them. As the secondary quantum
number, we choose j = 1/2(n+ – n–) = –n, –n + 1, …,
n − 1, n.

Finally, the normalized eigenfunctions of bound
states in parabolic coordinates are

(9)

where “p” stands for “parabolic.”

4. NUMERICAL RESULTS

The solution of Eq. (5) is equivalent to finding a zero
of the function

for a given E. Here,  denotes the lowest eigenvalues
of the separation constant C obtained from the first and
the second equations in (5) for the respective signs.

We computed the eigenvalues  with the help of a
precise and efficient grid matrix method [15–17].

The applied methods solve the SE within a finite
interval with the boundary conditions assuming the
wave function to vanish at its ends. This is equivalent to
putting infinite potential barriers there. These boundary
conditions cause no essential error for the quasi-poten-
tial V+(u) if the interval considered is sufficiently wide.
For the quasi-potential V–(v), the function g(v) does
not vanish for |v |  ∞ and the error caused by bound-
ary conditions has to be minimized. We did this by
using the modified potential shown in Fig. 2. The inter-
val d was enlarged until it no longer affected the results.

The results of the computation are presented in
Fig. 3. We compare the computed correction to the

ground state energy (E) with one obtained from
the second-order perturbation theory [9]

εn+ n–, λn
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1
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λnv( ),
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ψn j,
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3/2

π
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in j+ 1/2( )λn u2
v

2+( )–[ ]exp

2n n j–( )! n j+( )!
---------------------------------------------------------------------=

× Hn j– λnu( )Hn j+ λnv( ),

h E; ε( ) C0
+ E ε,( ) C0

– E ε,( )+=

C0
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C0
±

∆ε0
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∆ε0
pert E( ) 21

128
---------– E2 0.164E2.–≈=
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The results obtained with these two methods do not

differ much (|∆ (E)| is higher than |∆ (E)| by
less than 1% for E < 0.05 and about 10% for E ~ 1).
Therefore, the two-dimensional exciton, as a relatively
strongly bound system, is weakly polarizable and the
perturbation theory gives surprisingly good results.
This observation is in agreement with one made in [9].
The situation is different for the 3D case [9, 10].

We also computed the tunneling coefficient T within
a WKB-like 1D approximation (tunneling along the x
direction). It reaches a relatively high value (T ~ 0.1) at
E ~ 0.7.

5. CONCLUSIONS

The main results presented in this paper are as fol-
lows.

(1) The Schrödinger equation describing a two-
dimensional Wannier–Mott exciton in a uniform elec-
tric field can be transformed to two coupled one-dimen-
sional eigenvalue problems of the anharmonic linear
oscillator type.

ε0
comp ε0

pert

v

V

d d

Fig. 2. The modified quasi-potential (v).V–'

0
–0.3

E

∆ε

0.4 0.8 1.2

–0.2

–0.1

0

0.1

Fig. 3. Numerical results:  (solid line) and 

(dashed line).

∆ε0
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(2) The applied coordinate transformation results in
Hamiltonian regularization, which allows us to use
simple and efficient numerical algorithms.

(3) The problem is nonstationary and the applied
quasi-stationary approach has an approximate charac-
ter for strong external fields.

(4) The numerical calculations show that the exciton
ground state disappears at E � 1.1 (in atomic units).

(5) The computed ground state energy correction
does not differ much from the results of the perturba-
tion theory. This means that the 2D exciton is less
polarizable than the 3D exciton.

In further investigations, it will be important to
solve the time-dependent Schrödinger equation (at
least approximately, by using the complex energy  =
ε – iΓ) and to evaluate the exciton lifetime. It also
seems interesting to investigate a 2D exciton with a 2D
Coulomb potential (lnr).

APPENDIX

THE PARABOLIC COORDINATE SYSTEMS

The parabolic coordinates (u, v) are defined on the
x–y plane as [18]

(A1)

We choose u ≥ 0 and  = . Relations (A1)
can be written as a two-branch conformal mapping

(A2)

the connection with the polar coordinates (r, ϕ) is also
simple. The x–y plane is mapped into two equivalent
half-planes u ≥ 0 and u ≤ 0. Therefore, it is possible to
consider only symmetric functions f(–u, –v) = f(u, v),
but on the whole u–v plane.

In the parabolic coordinates (A1), we have

(A3)

ε̃

x
1
2
--- u

2
v

2–( ), y uv .= =

vsgn ysgn

x iy+ reiϕ u iv+( )2;= =

∇ 2 = 
1

u2
v

2+
----------------- ∂2

∂u2
-------- ∂2

∂v 2
---------+ 

  , dS = u2
v

2+( )dudv .
P

The parabolic coordinates are sometimes defined in a
different way [9]

(A4)

these relations cannot be written as a conformal map-
ping.
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Abstract—A small-angle x-ray scattering study of the structure of Cu : SiO2 composite films obtained by mag-
netron cosputtering is reported. The experimental spectra are analyzed by direct numerical simulation of scat-
tering from a polydisperse system of spherical particles with a high volume concentration. The calculated scat-
tering spectra were found to fit well to the experiment if a log-normal particle distribution in size is assumed,
and the parameters of this distribution were determined. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

There has recently been an increase in interest in the
investigation of composite materials (nanocomposites),
i.e., structures containing nanosized metal grains dis-
tributed randomly in an insulating matrix [1]. The elec-
trostatic energy of a metal particle of such a size
charged by one electron, Ec, should reach hundreds of
millielectronvolts, which means that such structures
should exhibit macroscopic charge quantization effects
at up to room temperatures [2]. This makes nanocom-
posites promising materials with a device potential for
nanoelectronics [3].

The method most widely used in the fabrication of
composite materials is magnetron cosputtering from
two sources [1]. Metal grains form in these materials as
a result of phase separation in a supersaturated solid
solution of a metal in an insulator [4]. Because grain
formation in a composite material is governed by statis-
tical processes, the grains thus produced are distributed
in size. This distribution is an important structural char-
acteristic which should be known for a theoretical anal-
ysis of the electrical properties of composite materials
[5]. Structural studies of composite materials by trans-
mission electron microscopy (TEM) show the metal
grains to be predominantly spherical in shape, as well
as permit one to estimate their characteristic size. Nev-
ertheless, there is still no reliable method capable of
yielding detailed information on the grain size distribu-
tion.

This paper reports on a small-angle x-ray scattering
(SAXS) study of the structure of a composite material
conducted to learn about the character of the grain dis-
tribution in size. SAXS is a diffraction method
employed widely to probe the supratomic structure of
substances. The most essential merit of SAXS is its
capability of analyzing the structure of disordered sys-
1063-7834/01/4305- $21.00 © 20927
tems [6]. In the case of systems with a low concentra-
tion of spherical scattering centers, the problem of
deriving the particle size distribution from a SAXS
spectrum can be solved in an explicit form [7]; how-
ever, the material under study has a high concentration
(28 vol %) of metal grains. Interparticle interference
effects play an important part in the scattering from
such structures. In this case, the problem of finding the
particle size distribution cannot be solved in an explicit
form. The scattering data obtained from systems with a
high concentration of spherical particles are usually
analyzed either within the Percus–Yevick approxima-
tion taking into account interparticle interference [8] or
by a direct numerical simulation of scattering. Employ-
ing numerical simulation for an analysis of scattering
from high-concentration systems has, in our opinion, a
more universal character, whereas the Percus–Yevick
approach introduces a certain error, which increases
with increasing concentration [9].

In this work, an analysis of experimental SAXS data
through numerical simulation of scattering from a com-
posite material permitted derivation of the grain size
distribution with a high accuracy. We also demon-
strated the effect of the width of the size distribution
and of the concentration of the metallic phase on the
SAXS spectral shape.

1. PREPARATION OF Cu : SiO2 FILMS 
AND THEIR STRUCTURAL ANALYSIS BY TEM 

AND X-RAY DIFFRACTOMETRY

We studied composite metal–insulator films pre-
pared by magnetron cosputtering of the metal and insu-
lator on a rotating silicon substrate, with copper used as
the metal and amorphous SiO2 as the insulator. The
films were obtained on an SCM-450 magnetron sput-
001 MAIK “Nauka/Interperiodica”
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tering setup (Alcatel, France) in an argon environment,
with the substrates rotated above the Cu and SiO2
sources. The sputtering rates were chosen so that less
than one monolayer of material would be deposited on
the substrate in one transit over the sources. In this way,
one obtained 200-nm thick composite Cu : SiO2 metal–
insulator films with a copper concentration of 28 vol %.
A detailed description of the technology involved can
be found in [10].

Figure 1 presents a TEM photomicrograph of a part
of a film. The material prepared is seen to be an amor-
phous matrix containing randomly spaced metallic
clusters of a spherical shape (grains) with an average
size of about 3 nm. However, deriving a particle size
distribution from such a photograph would be
extremely difficult, because the images of individual
grains overlap strongly as a result of their high density.

The structure of the Cu : SiO2 films thus prepared
was studied also by x-ray diffractometry. An overall
x-ray diffraction spectrum exhibited peaks correspond-
ing to reflections from the 〈111〉  (reflection angle 2θ =
43.3°) and 〈200〉  (2θ = 50.5°) copper lattice planes. The
presence of these peaks implies unambiguously that the
metal grains in the composite film under study have a
crystal structure characteristic of bulk copper.

10 nm

Fig. 1. TEM image of a composite film.
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Fig. 2. Experimental SAXS spectrum (symbols) and simu-
lation (solid line). Inset: grain distribution in the radius.
P

2. ANALYSIS OF COMPOSITE FILM SAXS 
SPECTRA

The small-angle x-ray scattering study was made
with Cu Kα radiation (λ = 1.54 Å). The experimental
curves were obtained on an x-ray setup with a Kratky
collimator. Collimation corrections accounting for the
beam height and width were introduced. The SAXS
intensity was measured to within ±1%. The x-ray beam
measured 0.1 × 12 mm. The measurement technique is
described in detail in [11]. An experimental SAXS
spectrum is displayed in Fig. 2 (symbols).

The scattering intensity is given in the general case
by the well-known Zernike–Prinz expression [12]

 (1)

where s is the scattering vector; its magnitude is s =
4π/λ sinΘ; 2Θ is the scattering angle; F(s) is the aver-
aged form factor of the scattering particles, which
depends only on their shape and size; S(s) is a structural
factor depending on the mutual particle location; and N
is the number of particles in the system.

For a polydisperse system of particles of the same
shape with a size distribution D(r), we have

 (2)

where the form factor of a sphere of radius r can be
written as [6]

 (3)

As can be seen from Eq. (3), the expression for the form
factor contains the particle size only in a dimensionless
product sr. The structural factor S(s) has the form

 (4)

where rj is the position vector of the jth particle. Rela-
tion (4) can be recast for a macroscopically isotropic
system as [13]

 (5)

where V0 is the volume of the system; n = N/V0 is the
density of scattering sites; g(r) is the radial correlation
function of mutual particle location [13], which has the
meaning of the probability to find the center of a sphere
at a distance r from that of the given sphere; and F0 is
the form factor of the scattering system of volume V0.
The contribution of the last term becomes small already

I s( ) NF2 s( )S s( ),=

F s( ) f s r,( )D r( ) r,d∫=
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---πr3 3

srsin sr srcos–

sr( )3
--------------------------------------× .=

S s( ) 1
N
---- is r j rk–( )( ),exp

j k,
∑=

S s( ) 1 n g r( ) 1–( ) srsin
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for s > 2π/L, where L is the dimension of the scattering
volume in the direction of the scattering vector.

The composite material under study is a structure
with a high concentration of scattering particles; the
complex form and the concentration dependence of the
g(r) function for such systems does not permit one to
solve analytically the inverse problem of deriving the
particle size distribution from a SAXS spectrum. The
small-angle scattering data for such systems are ana-
lyzed by simulating the scattering structure, and the
parameters of the distribution are found by fitting the
model to the experimental spectrum. Percus and Yevick
[8] proposed an analytical approximation to the corre-
lation function g(r) for concentrated systems of spheri-
cal particles; however, the error associated with this
approximation grows with increasing concentration
[9]. An alternative approach valid for any concentration
consists in a direct numerical simulation of small-angle
scattering, and it is this approach that was used in the
present work.

In our model, the composite material was treated as
a system of spherical scattering centers (metallic
spheres) having a given size distribution. We employed
the so-called log-normal distribution, characteristic of a
broad class of polydisperse systems, in which clusters
form by self-organization [14]

 (6)

Here, r0 and β are the parameters of this distribution
and the volume concentration c of the spheres is
another parameter. Spheres with the size distribution in
Eq. (6) were arranged randomly in a given volume Lx ×
Ly × Lz so as to preclude their overlap. The quantities r0

and β were subsequently used as fitting parameters
when comparing the results of the simulation with the
experimental curve; however, in actual fact, it suffices
to perform fitting by the β parameter in the sr dimen-
sionless coordinates and after that find r0 by a proper
scaling of the spectrum.

Direct calculation of the radial correlation function
g(r) involves computational difficulties and requires a
large number of averagings, because even small fluctu-
ations in the correlation function g(r) at large r affect
the magnitude of the structural factor considerably
because of the rapid growth of the r2 factor in the inte-
grand in Eq. (5). This entails large errors in the determi-
nation of the structural factor for small s. A less cum-
bersome approach lies in a direct calculation of the
amplitude and total scattering intensity

 (7)

D rln( ) 1

2πβ
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The parallelepiped in which the spheres were arranged
measured 2500r0 × 20r0 × 20r0, with its long side
aligned with the scattering vector. By choosing these
dimensions, we succeeded in excluding the effect of
scattering from the volume as a whole [the “zeroth
peak” corresponding to the last term in Eq. (5)] within
the scattering-vector region of interest. The number of
the spheres was ~50000 for a volume concentration
about 30 vol % and the above dimensions of the paral-
lelepiped. In addition, the scattering spectra obtained
were averaged incoherently over 500 random realiza-
tions.

3. DISCUSSION OF RESULTS

Before beginning to fit the experimental SAXS
spectrum, one has to establish the influence of the
parameters of the structure such as the volume concen-
tration c and dispersion β on the shape of this spectrum.
This will permit one to estimate the accuracy with
which these parameters can be determined by the fitting
procedure.

Figure 3 illustrates the influence of the interference
effects on the shape of a SAXS spectrum. The dashed
line in the figure shows the form factor of a sphere; it
should coincide with the SAXS spectrum in the low-
concentration limit. One readily sees that as the sphere
concentration increases, there appears in the spectrum
an interference dip at low angles and a maximum shift-
ing toward increasing s. The position of this maximum
corresponds to the average distance between the sphere
centers in the system. All the spectra in Fig. 3 were cal-
culated for a monodisperse system.

Figure 4 displays the dependence of the scattering
spectrum shape on the standard deviation β. For conve-

Formfactor

10 vol %

20 vol %

30 vol %

10
sr

Intensity, arb. units

2 3 4 5

0.2

0.6

1.0

Fig. 3. Calculated SAXS spectra for different metallic-
phase concentrations (for a monodisperse system).
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nience of comparison, all spectra are shifted by prop-
erly choosing r0 so that their maxima coincide in posi-
tion with the maximum in the experimental curve. The
size distributions themselves are plotted in the inset.

The experimental SAXS spectrum was fitted using
the known volume concentration c = 28 vol %. The fit-
ting procedure was as follows: first, we determined (for
a fixed ) the value of β providing the best fit of the
experimental to the calculated spectrum in dimension-
less coordinates sr0; the maximum of this curve is

denoted by smax . After this, we used the position of

the maximum in the experimental curve  to find

r0 = smax/ . The results of the fitting are shown in
Fig. 2 by a solid line; the parameters of the grain size
distribution in the real structure obtained by this fitting
are r0 = 1.4 nm and β = 0.2. The corresponding distri-
bution in the radii is plotted in the inset in Fig. 2. The
results of the calculations are seen to coincide with the
experimental spectrum with a very good accuracy,
which indicates the validity of using the log-normal
size distribution in the model.

Note that, as is evident from Fig. 4, the shape of the
SAXS spectrum is very sensitive to a variation of the β
parameter, thus permitting one to determine its value
from the results of the fitting with a high accuracy. The
calculated SAXS spectrum was found to deviate
noticeably from the experiment when β differed from
its optimum value already by ∆β = 0.025. The error ∆r
in the determination of r0 is governed by that of finding
the position of the maximum in the experimental SAXS
spectrum, ∆s, namely, ∆r/r0 ~ ∆s/smax. In our experi-
ment, the resolution in the scattering vector ∆s was
0.1 nm–1, which corresponds to ∆r/r � 10%.
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Fig. 4. Calculated SAXS spectra for different β parameters.
Inset: corresponding distributions in the radius.
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The average grain radius differs from r0 because of
the asymmetry in the distribution:

 (8)

This value is in good agreement with the TEM data.

Thus, we have studied spectra of small-angle x-ray
scattering in a Cu : SiO2 composite material prepared by
magnetron cosputtering. The Cu volume concentration
in the material was 28 vol %; at such concentrations,
interference effects play a dominant role in the SAXS
spectrum formation. The Cu grain size parameters were
derived by direct scattering-intensity simulation. The
model calculation was performed under the assumption
of the grains having a log-normal size distribution, and
we obtained very good agreement of the results of the
calculation with the experiment. This permits one to
maintain that this form of the size distribution is valid for
such materials. The high sensitivity of the SAXS spectral
shape to a variation of the distribution parameters per-
mitted us to determine the values of these parameters in
the Cu : SiO2 composite material with a high accuracy:
r0 = 1.4 ± 0.1 nm, β = 0.200 ± 0.025. The average grain
radius obtained by fitting, r � 1.5 nm, is in good agree-
ment with TEM data. Note that no data on the specific
size distribution could be obtained earlier by other tech-
niques.
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Abstract—The optical absorption spectra of magnetic quasi-2D Co island films and of hybrid Co/SiO2 multi-
layers in which island films are separated by SiO2 layers were studied. It was found that, when the Co film was
masked by a thin SiO2 layer, the absorption considerably increased and exceeded 0.8. This was observed when
the Co fraction was substantially lower than its critical value for the percolation transition. Moreover, the max-
imal absorption in this case weakly depends on both the effective film thickness and the number of Co layers.
Numerical analysis shows that the observed peculiarities of the absorption spectra of the structures based on
quasi-2D granulated Co films are connected to a great extent with the peculiar features of the interference
effects occurring in such systems. © 2001 MAIK “Nauka/Interperiodica”.
The metal–insulator composites (granulated films)
are ensembles of chaotically distributed small metallic
inclusions of 1 to 10 nm in size and of an insulator fill-
ing the space between them. There is some critical frac-
tion of a metal x = xc (the percolation threshold) above
which these materials exhibit metallic properties.
Below the threshold, the composite conductivity is
determined by tunnel transfer of electrons between sep-
arate granules of the metal and is similar to the hopping
conductivity of doped semiconductors. From the phys-
ical and practical points of view, the most interesting
are a number of unique phenomena observed in these
materials at metal fractions near the percolation thresh-
old, in particular, anomalous absorption and scattering
of radiation and nonlinear optical phenomena [1, 2]. In
the case of magnetic nanocomposites, the phenomena
of interest are the magnetooptical and magnetorefrac-
tive effects, the giant negative magnetoresistance, and
the giant anomalous Hall effect [3–5].

At the present time, on the example of quasi-2D
granulated films based on nonmagnetic metals such as
Au [6, 7], it is established that the maximal anomalous
absorption in such systems is reached in the vicinity of
the percolation transition and does not exceed 0.5,
which is in accordance with the results of theoretic cal-
culations [1]. In this work, we report the results of an
experimental investigation of the optical absorption
spectra of magnetic quasi-2D Co island films and
1063-7834/01/4305- $21.00 © 20932
hybrid Co/SiO2 multilayers in which Co island films
are separated by SiO2 layers. It is found that, when the
Co film is covered by a thin SiO2 layer, the absorption
grows considerably and exceeds 0.8. This is observed
when the Co fraction is substantially lower than its crit-
ical value for the percolation transition. Moreover, the
maximum absorption in this case weakly depends on
both the effective film thickness and the number of Co
layers.

The quasi-2D structures were prepared by evapora-
tion of a Co island film with an effective thickness of
1.0 to 1.25 nm upon an Si substrate covered with a
buffer SiO2 layer 300 nm thick. The homogeneity of the
film was achieved by rotation of the silicon substrate,
keeping its temperature at a level of 300 K. The multi-
layers consisted of alternating Co island films and 3- to
5-nm thick SiO2 layers. The results of the sample struc-
tural studies were reported in [4]. The percolation tran-
sition in these systems was observed for an effective Co
thickness of ≈2.0 nm [4]. Two types of structures were
studied: structures with an external masking SiO2 layer
≈50 nm thick, preserving the Co films from the effect
of the surrounding atmosphere, and structures without
this layer.

The absorption A in these structures was determined
from measurements of their transmission T and reflec-
tion R by the formula A = 1–T–R. Measurements were
001 MAIK “Nauka/Interperiodica”
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Absorption spectra of a hybrid Co/SiO2 system. (a) Experimental spectra of the SiO2 (50 nm)/nanocomposite Co–SiO2/buffer SiO2
layer (300 nm)/Si system: (1) Co (1.3 nm)/SiO2 bilayer, (2) [Co (1.8 nm)/SiO2 (3 nm)]n = 8 multilayer, (3, 4) theoretical spectra for
the SiO2 (50 nm)/nanocomposite Co–SiO2/SiO2 buffer layer (300 nm)/Si (x = 0.4, L = 0.8) system with nanocomposite thickness 5
and 30 nm, respectively. (b) Experimental spectrum of the nanocomposite Co–SiO2/SiO2 buffer layer (300 nm)/Si system: (1) Co
(1.8 nm)/SiO2 bilayer, (2) theoretical spectrum of the nanocomposite Co–SiO2/SiO2 buffer layer (300 nm)/Si system with nanocom-
posite thickness 5 nm, x = 0.4, and L = 0.8.
carried out by means of a Bruker IFS 113 Fourier spec-
trometer in the wavelength range λ = 1.2–70 µm at
300 K. The results of our studies are presented in the
figure.

First, we note that the absorption A in the quasi-2D
structures without a masking SiO2 layer, with the metal
fraction value being in the vicinity of the percolation
transition (the effective Co thickness is 1.8 nm), is close
to 0.5 and practically does not depend on the quantum
energy at frequencies higher than the frequency deter-
mined by the inverse electron relaxation time, as was
predicted in [1]. A reflection maximum is detected in
insulating Co–SiO2 films with Co layers 1.3- to 1.6-nm
thick. The energy of this maximum �ω ≈ 0.67 eV is
considerably lower than the excitation energy of sur-
face plasmons �ωsp for isolated Co particles (for spher-
ical Co particles in SiO2, one estimates �ωsp ≈ 1.3 eV
for the plasma frequency �ωp = 3.7 eV). We also note
that the absorption at the maximum has an anomalous
value of 0.84, considerably exceeding the theoretical
limit for two-dimensional granulated films. In addition,
the shape of the spectrum changes only insignificantly
in the midinfrared region with increasing film thickness
(from 1.3 to 1.6 nm). It is interesting that for multilay-
ers (the number of Co/SiO2 bilayers is eight) having a
masking covering, the absorption is also 0.8 at a maxi-
mum. However, the maximum is observed not at
0.62 eV, as is the case with bilayers, but at 0.5 eV (see
figure).

To analyze the observed peculiarities, a numerical
calculation of the absorption spectra was carried out.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      200
The calculation was made in the framework of the gen-
eralized effective-medium model taking into account
the form anisotropy of particles [8]. Initially, we calcu-
lated the diagonal components of the effective permit-
tivity tensor for a layer of ferromagnetic particles by
using the symmetrical Maxwell–Garnett approximation
[8]. We considered this layer to be a Cox–(SiO2)1 – x

nanocomposite and varied both the filling factor x and
the particle form factor L. Further on, using the Fresnel
formulas, we calculated the absorption of the
SiO2/nanocomposite Co–SiO2/buffer SiO2 layer/Si sys-
tem taking into account the reflection at the interfaces
and absorption in the substrate. We suppose that the
particles (their size is 1 to 2 nm [4]) have, on average,
an anisotropic form; however, they are assembled in
clusters at intermediate fraction values. In addition, due
to their magnetic properties, the new-formed particle
clusters (in particular, chains of granules) have an
anisotropic form [9]. The results of the calculation are
also represented in the figure. As is clear from the fig-
ure, the calculations which take into account the fact
that elongated objects (“ellipsoids”) having a semimi-
nor-to-semimajor axis ratio up to 1 to 5 are formed in
the sample satisfactorily describe the spectrum of the
samples with an effective Co thickness equal to 1.3 nm.
If one considers spherical particles, then the absorption
will be lower than 0.8. The main condition for obtain-
ing such a value and the absorption maximum is the
interference, which is taken into account in calculations
by the Fresnel formulas. One obtains the correct posi-
tion and the value of the absorption maximum for mul-
1
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tilayers, but the other part of the spectrum differs from
the experimental one. This is due to the fact that the
multilayer system was calculated in the framework of
the effective-medium approximation and the periodic-
ity of layers has not been taken into account; that is, the
multilayer system was considered as a granulated alloy.
It is also necessary to point out that the description of
the quasi-2D Co–SiO2 layer in terms of the effective-
medium theory for the three-dimensional case can also
lead to additional error, especially in the very vicinity
of the percolation threshold [10].

Thus, the numerical analysis shows that the
observed peculiarities of the absorption spectra for
structures based on the quasi-2D granulated Co films
are mainly due to the specific features of the interfer-
ence effects occurring in these systems. The anisotropy
of the form of Co clusters, which is due to the ferro-
magnetic properties of the metal, also plays a notice-
able role. We also note that quite a high level of absorp-
tion of the Co/SiO2 bilayers with activated conductivity
indicates the principle possibility of their use for cre-
ation of highly sensitive bolometric sensors of IR radi-
ation. The absorbing element in such sensors serves at
the same time as a temperature indicator.
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Abstract—The influence of fluctuations in the number of Fermi particles on the charge state of fine-dispersed
metallic grains in an insulating matrix is investigated. It is suggested that the system of grains does not form a
tunnel medium and that charge transfer between metallic elements of the composite occurs due to thermal exci-
tations of electrons over barriers. As follows from a calculation of the grand partition function, the average
charge of the ith grain is a nonlinear function of the potential Vi of the conductor. © 2001 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

The unusual electrical properties of fine-dispersed
granulated (nanocrystalline) materials are due to the
small sizes of grains, the insulating interlayers between
them, and charge discreteness [1–6]. In particular,
when the characteristic energy of charge fluctuations
on metallic grains Ec = e2/2C (e is the electron charge
and C is the typical capacity of grains in contact with
each other) exceeds the energy of thermal fluctuations,
a phenomenon called Coulomb blockade occurs in
charge transfer in a fine-dispersed grain medium [7–
10]. This effect, in its simplest form, was observed and
explained earlier in the late 1960s [7]. Numerous
experiments (see, e.g., [5, 6, 8]) have shown that the
voltage–current characteristics (VCC) of these media
are nonlinear. In most cases, when the voltage V across
a sample is not very large, the experimental dependence
R(T, V ) can be represented as R(T, V ) = R(T )g(T, V ),
where g(T, V )  1 at V  0 and R(T ) is the tem-
perature dependence of the resistance, providing that
the Ohm law is valid. Experiments carried out with
nanocomposites of various compositions show that
R(T ) ~ exp(T0/T )α, where T0 ~ Ec has the meaning of
activation energy, and the exponent α falls in the range
from 1/4 to 1 [1–8]. A similar dependence with the
most typical exponent α = 1/2 was first obtained in the
framework of the theory of activated tunneling [8], by
assuming that some “structure relation” exists between
the sizes of the grains and the distances between them.
However, as has been shown recently [10], the “1/2 law”
is not due to any artificial selection rules for the tunnel
intergrain junctions but is a simple consequence of a
wide spread in the grain sizes, typical of actual nano-
composites. In [3], another approach (based on an anal-
ysis of relaxation processes in the system) to the
description of current states in granulated media was
stated and the peculiarities of conducting tunneling
1063-7834/01/4305- $21.00 © 20935
structures containing metallic grains in a barrier layer
were considered. It is particularly remarkable that the
Coulomb blockade effects are also exhibited by a vari-
ety of disordered conductors revealing a diffusion scat-
tering mechanism [11].

The Coulomb blockade effect is clearly observable
when investigating single-electron tunneling transport
through metallic islands [12, 13] (the island diameter is
less than 5 nm): equidistant Coulomb steps occur in the
VCC. Each step corresponds to a time-averaged island
charge change of unity. A remarkable result of those
experiments is the observation of this effect at liquid
nitrogen and room temperatures. This is due to extra
small diameters of metallic islands, which are attained
by their preparation technology using a scanning tun-
neling microscope and combined electron-beam lithog-
raphy and ionic-beam deposition.

Another interesting property of such mesoscopic
structures is the correlation between the acts of tunnel-
ing of individual electrons. The time correlation of tun-
neling events is most clearly manifested by voltage
oscillations with a frequency f = I/e [14], which appear
when a junction having a small capacity is connected to
a source of a direct current I. In [15], single-electron
oscillations were observed in one-dimensional blocks
of aluminum–aluminum-oxide–aluminum tunneling
junctions (each including from 15 to 53 junctions) with
an area of up to 0.006 µm2 and a capacity of ~0.2 fF.

A theory describing systems with magnetic micro-
grains was developed in [9]. Spin-dependent electron
tunneling combined with the Coulomb blockade was
investigated both in Co–Al–O films with various com-
positions [16] and in a Co/Al2O3/Co tunnel junction
[17], in which aluminum oxide contained a layer of Co
microclusters with dimensions from 2 to 4 nm. The tun-
neling structure based on a granulated film, which con-
sisted of magnetically hard ferromagnetic nanoparti-
001 MAIK “Nauka/Interperiodica”



 

936

        

MEDVEDEV, GRISHIN

                                                                                                                 
cles of Co80Pt20 introduced in a SiO2 matrix, was inves-
tigated in [18].

In the case where the grains are in a superconduct-
ing state, the Coulomb energy Ec should be compared
with the characteristic energy of the Josephson interac-
tion Ej between the grains [19–22]. For sufficiently
small values of the Ej/Ec ratio, the charge fluctuations
in grains destroy the long-range phase coherence and,
consequently, superconductivity in the granulated sys-
tems is suppressed. A phase diagram of the granulated
superconductors with allowance made for quantum
effects and dissipative currents in the system was thor-
oughly analyzed in [23].

A theory of all the effects mentioned above is based
on the assumption that electrons (Cooper pairs) can
overflow from one grain to another by means of acti-
vated tunneling, the probability of which is determined
by the expression P ~ exp(–2χs – T0/T ), where χ =
2πh–1(2mΦ0)1/2, m is the free electron mass, Φ0 is the
effective height of a barrier, χ–1 is the decay length of
the wave function in the insulator, and s is the thickness
of the insulating interlayer. In the case where the ine-
quality χs � T0/T is met, the conductivity of the nano-
composites will be associated only with thermal activa-
tion of charge carriers and will be due to thermal elec-
tron flow over barriers between the microparticles. The
effect of the charge fluctuations in such a system of two
metallic particles, but forming a usual capacitor rather
than a tunneling junction, on the capacity of the system
was calculated in [24]. Depending on the relationship
between the parameters involved, the differential
capacity of the two metallic particles oscillates or
exhibits a resonant behavior similar to that of the capac-
ity of a single grain introduced into an insulating layer
of a tunnel junction [3]. Therefore, when a nanocom-
posite is a constituent of an electric circuit, it would be
expected that the average charge of the ith grain 〈Qi 〉 =
e〈Ni – N0i 〉  (Ni is the operator of the Fermi particle num-
ber on the ith conductor and N0i is the number of charge
carriers on the ith conductor in the absence of a charge
on it) will no longer be linearly related to the potentials
Vi as occurs in the classic theory of electricity.

The aim of the present work is to calculate the grand
partition function Z of a system of charged metallic
grains in an insulating matrix with allowance for the
fluctuations of an excess number of Fermi particles on
the grains. A systematic approach using a microscopic
Hamiltonian for the energy of the electrostatic interac-
tion between charges in the system made it possible to
perform calculations in a mean-field approximation
for micrograins with sizes satisfying the condition
ri min /λTF � 1 (here, ri min is the minimum geometric size
of the ith conductor and λTF is the Thomas–Fermi
radius). According to the result obtained for Z, the dis-
tribution

 (1)Qi〈 〉 β 1– ∂ Z/∂Vi eN0i–ln –∂Ω/∂Vi eN0i–= =
P

(β is the inverse temperature and Ω is the thermody-
namic potential of the system) is determined in a non-
trivial way by the potentials Vi. In particular, the differ-
ential capacity of two neighboring grains becomes
dependent on the potential difference between them.

1. GRAND PARTITION FUNCTION OF A SYSTEM 
OF CHARGED METALLIC GRAINS

We consider a nonideal Fermi gas placed in a ther-
mostat of a grand canonical ensemble with a fixed vol-
ume v = Σvi (here, vi is the volume of the ith conduct-
ing element of the system) and a temperature and
chemical potential of the ith conductor µi = µ0 + eVi (µ0
is the chemical potential of the system at equilibrium).
In this case, in order to calculate 〈Qi 〉  [see Eq. (1)], one
should find the thermodynamic potential

 (2)

of a system of conductors in an insulating matrix. Here,
H = ΣH0i + Hint, where H0i are the Hamiltonians of indi-
vidual elements of the ensemble of conductors, and Hint
is the operator of the electrostatic interaction energy
between the charge densities in the system

 (3)

In Eq. (3), V(r – r') is the Coulomb potential and
δρ(r) = ρ – n is the operator of the excess charge den-
sity (the density n allowing for the effect of the posi-
tively charged background is determined in such a way
that n = N0i/vi when the point r is in the volume of the
ith metallic reservoir). The partition function of a sys-
tem of charged conductors can be written as the aver-
aged Tτ exponential

 (4)

The angle brackets in Eq. (4) denote averaging over
the equilibrium ensemble of electron subsystems situ-
ated in different grains and not interacting with each
other

 

The dependence Hint on τ in Eq. (4) results from the
use of the interaction representation.

The explicit form of the operator Hint enables one to
represent Eq. (4) for Z in the form of the functional inte-
gral [25]

 

Ω v T µ, ,( ) β 1– Sp β H ΣµiNi–( )–[ ]exp{ }ln–=

=  β 1–– Zln

H int 1/2 dr r'V r r'–( )δρ r( )δ r'( ).d∫=

Z Z0 T τ H int τ( ) τd

0

β

∫–exp
0

.=

…〈 〉 Z0
1– Sp βΣ H0i µiNi–( )–[ ]…exp{ } .=

Z A 1– Dϕ r τ,( )∫=
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where

 

 (6)

The representation of the Tτ exponential in Eq. (4) in
the form of Eq. (5) is convenient because ϕ(r, τ) is
defined in Eq. (5) in all space, with ϕ(r, τ)|r → ∞ = 0.

According to the self-consistent, or mean, field
approximation, the main contribution to the integral in
Eq. (5) comes from the function ϕ(r, τ) corresponding
to a minimum of the functional S{ϕ(r, τ)}. In the inte-
rior of the ith conductor, this function obeys the equa-
tion

 (7)

In the regions where 〈〈δρ i(r, τ)〉〉  = 0, we have

 (8)

For the average value of a variable in Eq. (7), we
have introduced the notation

 (9)

We make a natural assumption that, for a thermody-
namically equilibrium state, a solution of Eqs. (7) and
(8) should be sought among functions independent of τ.
Then, as can easily be seen, Eqs. (7) and (8) are the
Poisson and Laplace equations, respectively, for calcu-
lation of the electrostatic field of conductors carrying a
complex charge, distributed over the metal volumes
with a density δρi(r) = ie〈〈δρ i(r)〉〉 .

Therefore, the function ϕ(r) can be identified with
the electrostatic potential of the field of the system of
bodies with complex charges. In particular, it follows
that inside the ith grain (far from the surface layer
whose thickness is about the Thomas–Fermi radius
λ TF, within which the charge of the conductor is con-
centrated in electrostatics) the sought function ϕ(in)i(r)

× dτ dr ∇ϕ r τ,( )( )2/8π βΩ1 ϕ r τ,( ){ }–∫
0

β

∫–
 
 
 

exp

=  A 1– Dϕ r τ,( ) S ϕ r τ,( ){ }–{ } ,exp∫

A Dϕ r τ,( ) dτ dr ∇ϕ r τ,( )( )2/8π∫
0

β

∫–
 
 
 

,exp∫=

Ω1 ϕ r τ,( ){ } β 1––=

× Z0 T τ ie dτ drϕ r τ,( )δρ r τ,( )∫
0

β

∫–
 
 
 

exp
0 

 
 

.ln

∇ 2ϕ in( )i r τ,( ) 4πδΩ1 ϕ r τ,( ){ } /δϕ r τ,( )–=

=  4πie δρi r t,( )〈 〉〈 〉 .–

∇ 2ϕ ex( ) r τ,( ) 0, with ϕ ex( ) r τ,( ) r ∞→ 0.= =

δρ r τ,( )〈 〉〈 〉

=  
T τ ie dτ drϕ r τ,( )δρ r τ,( )∫∫–[ ]δρ r τ,( )exp

0

T τ ie dτ drϕ r τ,( )δρ r τ,( )∫∫–[ ]exp
0

-----------------------------------------------------------------------------------------------------------------.
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is equal to a constant. As for the surface layer (∆r ~ λTF),
here the functions ϕ(in)i(r) change insignificantly; how-
ever, in order to calculate these changes, one should
make a complicated microscopic consideration with
allowance for the real boundary.

It is possible, however, to exclude such small dis-
tances and to solve the problem macroscopically. Then,
in the zeroth approximation, ϕ(in)i(r) in the overall
region occupied by a metal will be equal to the solution
of Eq. (7) with the appropriate boundary conditions at
the conductor surface. This approximation is possible
because, by analogy with electrostatics, in order to cal-
culate ϕ(in)i(r), one can use an expansion of this func-
tion into a power series in a small natural parameter
λTF/ri min (here, ri min is the minimal geometric size of the
ith grain).

Indeed, considering the quantity [ϕ(in)i(r) – (r)]

as a perturbation [ (r) is the value of ϕ(in)i(r) corre-
sponding to the electrical neutrality condition deep
inside the metallic inclusion] in the definition of 〈〈δρ (r,
τ)〉〉  in Eq. (9), one can easily verify that the following
equation is valid:

 (10)

where K(r – r') is determined by the average
〈δρ(r)δρ(r')〉0. In fact, K(r – r') represents the polariza-
tion operator of the system of electrons interacting with
each other and with the compensating positive back-
ground. The results of calculation of K(r – r') are well
known (see, e.g., [26]). According to these results, as
applied to metals, the imaginary part of the kernel
K(r − r') is equal to zero in the static case (we are inter-
ested in the electron–electron interaction only),
whereas the character of the ReK(r – r') change enables
one to state that, in r space, this function is essential
only at distances |r – r'| of the order of λTF. This fact
(along with the weak dependence of the ϕ(in)i(r) func-
tion on the coordinate r) enables one to estimate the
integral in Eq. (10). It can easily be shown that in the
dimensionless variables r/ri min the right-hand part of
Eq. (10) is proportional to (ri min)/λTF)2.

Consequently, to compensate such large values (the
gradients of the function ϕ(in)i(r), as mentioned, cannot
be significant because of the smooth behavior of this

function), the first correction ϕ(in)i(r) – (r) must be
~(ri min)/λTF)–2. Based on this result, one can assume that
the zeroth approximation to ϕ(in)i(r) is governed by
Eq. (7) up to the boundaries of the conductors. The
behavior of ϕ(ex)(r) in the insulating matrix will still be
described by Eq. (8).

Such an approach is always suggested by the ordi-
nary electrostatics of a system of charged conducting

ϕ in( )i
0

ϕ in( )i
0

∇ 2ϕ in( )i r( )

=  4πie dr'K r r'–( ) ϕ in( )i r'( ) ϕ in( )i
0 r'( )–( ),∫–

ϕ in( )i
0

1
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bodies (see, e.g., [27]). In this approach, along with a
volume charge density, a surface charge density σ(r)
always appears, which determines the boundary condi-
tions for potentials at the surface of conductors. In our
case, these conditions completing Eqs. (7) and (8) have
the form

 (11)

In Eq. (11), ni is a unit outward normal to the conductor
surface and rs are points which belong to the surface.

Now, inside any metal inclusion, up to its surface
boundary, the electrical neutrality condition 〈〈δρ i(r)〉〉  =
0 must be satisfied, which determines the zeroth

approximation  for ϕ(in)i.

Then, we invoke the fact that Eq. (6), which deter-
mines the functional Ω1, can be written as the trace of
the operator form

 (12)

For the metallic grains, the operator npi = Σ apσ

(where  and apσ are the creation and annihilation
operators, respectively, for a particle with a momentum
p and a spin σ) commutes with the Hamiltonians
describing the system of free electrons in each grain,
and therefore, the trace of the corresponding operator
can readily be calculated. As a result we obtain

 (13)

where Ω0i = –β–1lnZi is the thermodynamic potential of
the noncharged conductor and fp is the Fermi distribu-
tion function.

According to the definition of 〈〈δρ i(r, τ)〉〉 , follow-
ing from Eq. (7), and Eq. (13) for Ω1, the requirement
〈〈δρ i(r, τ)〉〉  = 0 is satisfied when

 . (14)

On the other hand, the values of the functions ϕi(r) at
the surface of the conductors can be expressed in terms
of the coefficients of the capacity and electrostatic
induction Cik and the total “charge” of the kth grain

 (15)

Indeed, according to the initial assumptions, the
determination of ϕ(ex) is reduced to the standard
Dirichlet problem. Therefore, the sought equality (15)
results from the boundary conditions for ϕ(in)i and ϕ(ex)
in Eq. (11).

ni ∂ϕ ex( )/∂r ∂ϕ in( )i/∂r–( ) r rs= 4πσi;–=

ϕ ex( ) r rs= ϕ in( )i r rs= .=

ϕ i
0

ieβΣN0iϕ i
0( )exp

× Π βΣ H0i p( ) e iϕ i
0 Vi–( )npi+[ ]–{ } .exp

apσ
+

apσ
+

Ω1 ΣΩ0i=

– ieΣN0iϕ i
0 2β 1– Σ 1 f p e

βe iϕ i
0

Vi–( )–
1–( )+[ ] ,ln–

eϕ i
0 –ieVi 2πnT , n+ 0 1± 2± 3± …, , , ,= =

ϕ in( )i
0 ΣCik

1– ie dr δρk r( )〈 〉〈 〉∫ 
  .=

Thus, with Eqs. (13) and (14), the functional inte-
gration in Eq. (5) makes it possible to represent the
grand partition function of the system of charged con-
ductors in the simple form

 (16)

 

The exponent in the upper line of Eq. (16) formally has
the form of an expression of the total electrical energy
of the system of conductors carrying charges. There-
fore, it is not surprising that, when disregarding the
fluctuations in the number of electrons on the conduc-
tors (with the fixed integer charges 〈Qi 〉  = e(Ni – N0i)
when Ni is a number rather than an operator), the calcu-
lation in accordance with the scheme presented above
results in the expression iϕi = Vi and in the exponent in
the form of the classical result for the potential energy
of charged conductors. The result (16) is “canonical”
with respect to the number of particles, as it is the trace
of the operator with a variable number of electrons on
the elements of the ensemble of conducting bodies. In
this case, some ambiguity appears in the values of the
stationary points ϕi of the action and, as a consequence,
in the charge [see Eqs. (14), (15)]. This fact is reflected
in the additional summation in Eq. (16) over indices n
and m.

2. AVERAGE CHARGE OF AN ELEMENT 
OF THE NANOCOMPOSITE

Relation (16) defines the thermodynamic potential
of the ensemble of grains in the mean field approxima-
tion and, according to Eq. (1), the average values of the
operators Qi in the same approximation. Compact
expressions for 〈Qi 〉  can be obtained only in some limits
in the case of many bodies. In the important particular
case Cik = Ciδik (Ci is the capacity of the ith grain), that
is, disregarding the long-range Coulomb interaction of
the charges on different grains, calculations of Z by for-
mula (16) give the known expressions [3] for 〈Qi 〉  in the
form of nonmonotonic functions of the voltage. If iden-
tical metallic grains interact with each other in pairs, we
obtain a nontrivial result for the relationship between
the average charge of the system and the voltage U pre-
sented in [24]. Indeed, for the system of two interacting
identical grains, we have N10 = N20 and the potentials of
the grains are V1 = U/2 and V2 = –U/2. Then, using
Eq. (16), we find that

 (17)

Here,  is the renormalized constant A–1 (  =
A−1Σexp[βC0(2πmT )2/2e2], where C0 = 2(C11 + C12)),

Z Z0A 1– eβΣN0iVi( )Σ iβ/2Σϕ i n( ) Qi〈 〉–[ ]expexp=

=  Z0A 1– eβΣN0iVi( )Σ iβ/2ΣCik–[expexp

× –iVi 2πnT /e+( ) –iVk 2πmT /e+( ) ] .

Z Z0 Ã
1– Σ a ix/2 πn/a+( )2–[ ]exp=

=  Z0 Ã
1–

x2/4a( )θ3 πx/2– π2/a–( )exp,[ ] .exp

Ã
1–

Ã
1–
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x = eU/Ec, a = T/Ec, and θ3(ξ, ζ) is an elliptical θ func-
tion.

Substituting Eq. (17) into Eq. (1), we find that the
average charge of the capacitor is

 (18)

Formula (18) makes allowance for fluctuations of elec-
trons on the grains which form an ordinary capacitor
(Q = CU in classical electrostatics). In the limiting
cases (a � 1 and a � 1), relation (18) leads to the
results of [24]. We emphasize that, when the system
given is connected to a source of a current, fluctuations
of the charge on the capacitor plates can be due to elec-
trons coming from the source or leaving the source.

Figure 1 demonstrates the dependence of the aver-
age charge 〈Q〉(x) on the dimensionless variable x =
eU/Ec at various values of the parameter a. At low tem-
peratures (a < 1), the jumps in 〈Q〉  are consistent with
the concepts known about the Coulomb blockade effect
in electronics [27]. Due to its discreteness, the charge
on the capacitor does not change till the voltage
achieves the value which corresponds to the equal prob-
ability of detecting the states with k and k + 1 electrons.
The charge fluctuations between these states smooth
the steps on the 〈Q〉(x) dependence. When a � 1, the
system becomes nonsensitive to changes in the number
of Fermi particles by unity.

A simple numerical calculation shows that the dis-
creteness of charge carriers affects the equilibrium pro-
cess of the capacitor charging (long characteristic times
τ = RC, where R is the ohmic resistance of the circuit),
and the potential difference of the capacitor varies in
accordance with a complicated nonexponential law
(Fig. 2). In Fig. 2, the dimensionless quantity y = U/ε is
plotted on the ordinate axis, where ε is the electromo-
tive force of the source, and the time normalized to τ is
plotted on the abscissa axis. The charging current of the
capacitor will also exhibit “step” behavior. Therefore,

Q〈 〉  = CU ea∂ θ3 πx/2– π2/a–( )exp,[ ]{ }ln /∂x.+

2

1

1

〈Q〉

x
4 6 8 10

2

3

4

5

2

3

Fig. 1. Dependence of the average charge of a capacitor on
the dimensionless variable x = eU/Ec at different values of
the parameter a: (1) 0.01, (2) 0.1, and (3) 1.
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electromagnetic oscillations in resonant circuits con-
taining a capacitor of a small capacity will not go on in
time according to a simple periodic law.

In order to elucidate whether the approximation
used is valid and adequate to describe the experimental
data, we need to estimate the ratio ri min/λTF. The Tho-
mas–Fermi radius λTF is of the order of the interatomic
space; therefore, for microparticles of a radius r ~ 10 nm,
the inequality r/λTF � 1 is easily satisfied. Next, it is
important to have experimental conditions providing a
sufficiently large electrostatic energy Ec. The only
parameter to control Ec is the geometrical capacity C.
When C ~ 10–18 F, we have Ec ~ 10–21 J. For these values
of C, the quantum properties of the system associated
with the necessity of allowing for the charge discrete-
ness will be exhibited at temperatures of about 10 K.

In concluding, we emphasize other essential aspects
of the calculation made above. First, we assumed that
the ensemble of grains in an insulating matrix is not a
tunneling medium at a nonzero potential difference
between the grains. This is adequate for the case of tun-
neling junctions with low transparency, and the approx-
imation is valid if the correction to the electron energy
due to the tunneling operator is small compared to the
electrostatic energy Ec. Second, we disregarded spatial
quantization of the electron spectrum, because when
the sizes of particles are decreased, the effects of charge
discreteness occur before the quantum effects become
essential [28].
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Abstract—The angular dependence of the intensity of specularly reflected x-rays from a crystal coated with an
amorphous film under the conditions for glancing noncoplanar diffraction is rigorously analyzed theoretically.
The anomalous angular dependence is shown to be very sensitive to the presence of thin amorphous films sev-
eral nanometers thick. The optimum conditions for recording are realized at glancing angles of 1.5–4 times the
critical angle for total external reflection. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

X-ray diffraction and the phenomenon of total exter-
nal reflection (TER) are extensively used to analyze the
structure of thin surface layers of semiconducting single
crystals and crystals covered with amorphous and crys-
talline films [1] (see also reviews [2–4]). The use of
strongly asymmetric geometries of diffraction, in which
x-rays are reflected from atomic planes making approxi-
mately the Bragg angle with the surface of the crystal,
allows one to considerably decrease the penetration
depth of the field into the crystal and to probe thinner lay-
ers, about 10 nm thick. In these geometries, either the
incident or diffracted beam makes a small, glancing
angle (comparable to the critical angle for TER) with the
crystal surface and the specular reflection of x-rays
becomes important in forming the diffraction pattern.
The dynamical theory of strongly asymmetric coplanar
diffraction was developed in [5–9].

In [10], the amplitudes of the specularly reflected
and diffracted waves were calculated for a radically
new geometry of noncoplanar diffraction in which the
reflecting atomic planes of the crystal are perpendicular
to the crystal surface (their tilt with respect to the nor-
mal is ψ = 0) and the incident, refracted, and diffracted
rays do not lie in one plane. In this case, both the inci-
dent and diffracted beams can simultaneously make
small angles ϕ0 and ϕh, respectively, with the crystal
surface and undergo strong specular reflection (SR).
Experimentally, this geometry of diffraction was real-
ized later [11] for investigating thin crystalline alumi-
num films 7.5–200 nm thick grown on GaAs substrates
by the molecular beam epitaxy method.

In order to analyze diffraction in the glancing geom-
etry, one has to exactly solve the equations of the
dynamical theory rather than use the usual two-wave
approximation [1–4]. For the case of ψ = 0, this theory
1063-7834/01/4305- $21.00 © 20941
is based on a solution to a biquadratic dispersion equa-
tion and it has been developed for both perfect single
crystals [12, 13] and crystals covered with amorphous
[14] or crystalline films [15]. It was shown that diffrac-
tion reflection curves are highly sensitive to the pres-
ence of films and can be used to detect structural imper-
fections of surface layers as thick as several nanometers
and more. The results of numerous experiments in
which the predictions of this theory were employed are
outlined in [1, 4].

The next important step was made in [16, 17], where
the theory of glancing Bragg–Laue x-ray diffraction
was constructed for a perfect crystal whose reflecting
planes are tilted at a small angle ψ ≠ 0 to the normal to
the crystal surface rather than being perpendicular to
this surface. There is considerable current interest in
this theory, because in actual practice, it is difficult to
achieve strict parallelism of the surface and atomic
planes when cutting and grinding a crystal, and a tilt
angle ψ even as small as several minutes of an arc leads
to noticeable distortions of diffraction curves [1, 4, 16,
17]. Furthermore, crystals with tilt angles of ψ ~ 3°–4°
are employed in some semiconductor technologies.

In the case of ψ ≠ 0, the dispersion relation is a
fourth-degree equation and can be solved only numeri-
cally. When the glancing angles ϕ0 and ϕh exceed the
critical angle for TER, the influence of the specularly
reflected wave on diffraction becomes much weaker
and the problem is simplified. An approximate modi-
fied dynamical diffraction theory was developed in
[18–20]. This theory allows one to solve the problem
analytically for any values of ϕ0 and ϕh, except for a
narrow range near the critical angle of TER, for both
perfect crystals [18, 19] and crystals with an amor-
phous surface film [18, 20].
001 MAIK “Nauka/Interperiodica”
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It should be noted that all the papers mentioned
above were primarily concerned with diffraction reflec-
tion curves and did not investigate the angular depen-
dence of specular reflection curves. At the same time,
as was first indicated in [4], the presence of an amor-
phous film on the crystal surface can noticeably affect
the specularly reflected x-ray intensity as a function of
the departure of the angle of incidence from the Bragg
diffraction angle.

In this paper, the exact solution to the dispersion
fourth-degree equation is found and used to analyze the
angular dependences of the specular and diffraction
reflections over the entire range of glancing angles and
tilt angles of the reflecting planes with respect to the
crystal surface. An analysis of specular reflection under
the conditions for asymmetric noncoplanar diffraction
is of considerable interest because of the high sensitiv-
ity of the so-called “specular mark” [4] to thin (about
1–3 nm thick) amorphous surface films. It is shown that
the specular-reflection curves are dispersive in charac-
ter and are similar to yield curves of secondary radia-
tion in the x-ray standing-wave method [4], but the sig-
nal is much stronger, which can be a basis for a more
rapid method of investigating thin films. The emphasis
is on the case of small glancing angles of x-rays and on
the situations where the simplified equations of the
dynamical theory allow one to make calculations
within reasonable accuracy.

1. A PERFECT SINGLE CRYSTAL

First we consider the specular and diffraction reflec-
tion of a plane x-ray wave E0exp(ik0r) from a perfect
single crystal. Radiation is incident from vacuum at an
arbitrary glancing angle ϕ0 (measured with respect to
the crystal surface) such that simultaneous diffraction
reflection occurs from atomic planes which make an
arbitrary angle ψ with the inward-pointing normal n
(the z axis) to the crystal surface.

In the region z ≤ 0, above the crystal surface, the
field consists of three waves:

 (1)

where E0, Es, and Eh are the amplitudes of the incident,
specularly reflected, and diffracted waves, respectively;
|k0 | = |ks | = |kh | = k0; k0 = 2π/λ is the wave vector in vac-
uum; λ is the wave length; and ksz = –k0z.

In the crystal (z ≥ 0), the x-ray wave excites two
coherent waves, transmitted and diffracted:

 (2)

where D0 and Dh are the amplitudes and q0 and qh =
q0 + h are the wave vectors of the transmitted and dif-
fracted waves in the crystal, respectively; and h is a
reciprocal lattice vector. The tangential (along the crys-
tal surface) components of the wave vectors of the inci-

E r( ) E0 ik0r( )exp=

+ Es iksr( )exp Eh ikhr( ),exp+

E r( ) D0 iq0r( )exp Dh iqhr( ),exp+=
P

dent and refracted waves must be equal, and only the
normal component is changed; therefore, the wave vec-
tor in the medium q0 is

 (3)

where ε � 1 is a quantity to be found; it is small because
of the smallness of the x-ray polarizability χ ~ 10–5.

From Maxwell’s equations, it follows that the
amplitudes D0 and Dh in Eq. (2) and the quantity ε in
Eq. (3) obey a system of dynamical equations [1, 4]:

 (4a)

 (4b)

where γ0 = k0z/k0; γh0 = (k0 + h)z/k0; χg (g = 0, h, ) are
the Fourier transforms of the crystal polarizability χ(r);
C = 1 and C = cos2ϑ  for the σ and π x-ray polarizations,
respectively; ϑ  is the angle between the wave vector of
the incident wave and the reflecting atomic planes; and

α = 1 – (k0 + h)2/  = 2∆ϑ sin2ϑB is a quantity charac-
terizing the deviation ∆ϑ  = ϑ  – ϑB of the diffraction
angle from the exact Bragg angle ϑB, which is defined
by the equation h = 2k0sinϑB. In terms of the glancing
angle ϕ0, we can write

 (5)

where ψB = 2sinψsinϑB is an effective tilt-angle
parameter of the reflecting planes (ψ > 0, hz < 0). If ϕ0,
ψ � 1, then we have γ0 ≈ ϕ0 and ψB ≈ 2ψsinϑB.

Let ϕh be the angle (measured from the crystal sur-
face) at which the diffracted wave passes to vacuum;
then, the z component is khz = –k0γh, where γh = sinϕh

(ϕh > 0). Diffraction reflection to the region z < 0 (the
Bragg geometry) occurs at glancing angles ϕ0 such that
γ0 < ψB; i.e., γh0 < 0 in Eqs. (4) and (5). At given angles
ϕ0 and ψ the exit angle ϕh is given by [16]

 (6)

therefore, the condition α > –  determines the allow-
able values of the deviation ∆ϑ  from the Bragg angle.

The case of the opposite inequality (α < – ), where
the diffracted wave decays rapidly in vacuum (see [1–
3]), will not be considered in this paper.

The system of equations (4) has a nontrivial solution
for the amplitudes D0 and Dh if the determinant of the
system is equal to zero:

 (7)

This is a fourth-degree equation in ε; it has four roots εj,
and, therefore, four transmitted waves and four dif-
fracted waves can propagate in the crystal with ampli-
tudes Dgj (g = 0, h; j = 1, 2, 3, 4). A simple analytical

q0 k0 k0εn,+=

ε2 2γ0ε χ0–+( )D0 CχhDh– 0,=

ε2 2γh0ε χ0– α–+( )Dh CχhD0– 0,=

h

k0
2

γ0 ϕ0, γh0 γ0 ψB,–=sin=

γh γh0
2 α+( )1/2

;=

γh0
2

γh0
2

ε2 2γ0ε χ0–+( ) ε2 2γh0ε χ0– α–+( ) C2χhχh–  = 0.
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solution to Eq. (7) can be found only in the case of
ψ = 0, where the reflecting planes are perpendicular to
the crystal surface. Indeed, in this case, we have γh0 = γ0,
and Eq. (7) is reduced to a biquadratic equation. Dif-
fraction of x-rays in this geometry was considered in
detail in [12–15]. In the general case, however, the dis-
persion equation (7) can be solved only numerically.
For a thick crystal, only those solutions should be cho-
sen for which Imεj > 0. An analysis shows [16] that
only two roots meet this condition in the Bragg geom-
etry, which we will designate by ε1 and ε2.

To determine the field amplitudes in Eqs. (1) and
(2), we use the conditions of continuity of the tangen-
tial components of the electric and magnetic fields at
the crystal surface. In the case of glancing angles, the
continuity of the magnetic field is equivalent to the con-
tinuity of the derivative of the electric field with respect
to the coordinate z. Therefore, we have a system of four
equations:

 

 (8)

 

where

 (9)

In deriving Eq. (8), we have used the relation Dhj =
RjD0j between the amplitudes of the diffracted and
transmitted waves in the crystal, which follows from
Eq. (4a), where

 (10)

A solution to system (8) for the coefficients of the field
amplitudes for the specular and Bragg reflections, Rs =
Es/E0 and Rh = Eh/E0, respectively, has the form

 (11)

where we have introduced the notation

 (12)

The quantities γ0, γh, and Γgj are defined in Eq. (9) and
Rj is given by Eq. (10). The factor 1 + Rs in Eq. (11) for
Rh allows for the influence of specular reflection on dif-
fraction. Equations (11) are identical (except for the
notation) to the corresponding equations derived in [1,
16], where, however, the emphasis was on the analysis
of the diffraction reflection coefficient Rh.

Expressions (11) and (12) are the exact solution to
the problem on specular and diffraction reflection of x-

E0 Es+ D01 D02,+=

γ0 E0 Es–( ) Γ01D01 Γ02D02,+=

Eh R1D01 R2D02,+=

γh– Eh Γh1R1D01 Γh2R2D02,+=

γ0 ϕ0, γh ϕh,sin=sin=

Γ0 j γ0 ε j, Γhj γh0 ε j j 1 2,=( ).+=+=

R j ε j
2 2γ0ε j χ0–+( )/Cχh.=

Rs

γ0 γ1–
γ0 γ1+
----------------, Rh

R1 ρR2–
1 ρ–

--------------------- 1 Rs+( ),==

γ1

Γ01 ρΓ02–
1 ρ–

------------------------, ρ
R1 γh Γh1+( )
R2 γh Γh2+( )
------------------------------.= =
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rays from a perfect single crystal; they are valid for any
glancing angle ϕ0 and exit angle ϕh (at γ0 < ψB) and any
allowable deviation ∆ϑ  from the exact Bragg angle.

Now, we consider some specific limit cases. If the
deviation ∆ϑ  from the Bragg angle corresponding to
strong diffraction reflection is large, i.e., |α| � |χh |, then
the partial reflection coefficient R1 tends to zero. In this
case, from Eq. (12), it follows that ρ  0 and γ1 
γ0 + ε1, where ε1 = γs – γ0, as can be seen from Eq. (10) at

R1 = 0. For any glancing angles ϕ0, we have γs = (  +
χ0)1/2. Therefore, Eq. (11) for the coefficient of specular
reflection is reduced to the well-known Fresnel formula
Rs = rs = (γ0 – γs)/(γ0 + γs). There is no diffraction reflec-
tion in this case, because Rh  R1 = 0.

Now, we analyze the case of the glancing angle ϕ0
being much greater than the critical angle for TER ϕc =
|Reχ0 |1/2. Taking into account that the polarizability χh

is small, it can be shown that at ϕ0, ϕh � ϕc, the roots of
dispersion relation (7) differ greatly in value, ε1 � ε2,

where ε2 ≈ |γh0 | + (  + χ0)
1/2

 ≈ 2|γh0 | + (α + χ0)/2|γh0 |
and Reε1 ~ χ0r/2γ0 � γ0. Therefore, we have R1 � R2
[see Eq. (10)] and γh + Γh1 � γh + Γh2 in Eq. (12); that
is, ρ � 1 and γ1 ≈ γ0 + ε1, where ε1 can be calculated
from Eqs. (4) and (7) by dropping the terms quadratic
in ε1 in them. The same results are obtained solving
Eq. (7) numerically. Since Imε2 � Imε1, the field with
amplitude D02 penetrates anomalously deep into the
crystal. In the case at hand, we have ε1 � γ0; therefore,
Rs � 1 and one can ignore the influence of the specular
reflection on diffraction. At the same time, the total
wave field in the crystal in Eq. (2) dramatically affects
the angular dependence of the specular reflection when
the diffraction reflection is strong. From Eqs. (11) and
(12), the amplitude coefficients of specular and diffrac-
tion reflection are found to have a simple form:

 (13)

where

 (14)

and b = –γ0/γh0 is an asymmetry coefficient of Bragg
reflection (b > 0); the upper or lower sign in Eq. (14) is
chosen according to which of them meets the condition
Imε1 > 0. Since ε1 � γ0, the angular dependence of the
specular reflection coefficient Rs(∆ϑ) is determined
fundamentally by the ε1(∆ϑ) dependence.

Equation (13) for Rs can also be derived from a sim-
pler line of reasoning. Indeed, at fairly large glancing
angles, the specular reflection affects diffraction only
slightly and only one strong wave propagates in the
crystal. Therefore, instead of Eq. (8), one can write

γ0
2

γh
2

Rs

ε1

2γ0 ε1+
-------------------, Rh–

2γ0ε1 χ0–
Cχh

------------------------,= =

ε1 1/4γ0( ) χ0 1 b–( ) αb–{=

± χ0 1 b+( ) αb+( )2 4C2bχhχh–[ ] 1/2 }
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simpler relations E0 + Es = D01 and γ0(E0 – Es) = (γ0 +
ε1)D01, from which Eq. (13) for Rs is immediately
obtained.

Figures 1 and 2 show diffraction reflection PR =
(γh/γ0)|Rh |2 and specular reflection Ps = |Rs |2 curves,
respectively. These curves are calculated for the (220)
reflection of a single crystal of silicon for Cu Kα  radia-
tion in the case of the tilt angle ψ = 4° and different val-
ues of the glancing angle ϕ0. Solid lines 1 correspond
to the exact expressions (11) in which a numerical solu-
tion of the general fourth-degree equation (7) is used,
while dashed lines 2 are calculated from approximate
expressions (13). It is seen from Figs. 1a and 2a that the
reflection curves calculated using the exact and approx-
imate theories for the glancing angle ϕ0 = 50′, which is
about four times greater than the critical angle for TER
ϕc = 13.38′, almost coincide. Calculations show that the
approximate theory can be used for glancing angles
ϕ0 ≥ (2–3)ϕc.

At smaller angles ϕ0 ≤ (1–2)ϕc, the reflection curves
predicted by the exact and approximate theories
become significantly different (Figs. 1b, 2b) and the lat-
ter theory is inadequate. For example, for a large devi-
ation ∆ϑ  from the Bragg angle, the specular-reflection
curve must asymptotically approach the corresponding
Fresnel value calculated without regard for diffraction.
This asymptotic behavior takes place only in the exact
theory. At the same time, at |α| � |χh |, it follows from
Eq. (14) that ε1 ≈ χ0/2γ0. Substitution of this expression

into Eq. (13) gives Rs ≈ –χ0/4 , which is true only for
fairly large glancing angles.

The distinctive feature of specular reflection under
the condition for diffraction is an anomalous angular
dependence Ps(∆ϑ), which is dispersive in character,
showing a minimum and a maximum near the diffrac-
tion angles ∆ϑ1, 2 = ∆ϑ0 ∆ϑB (which correspond to

γ0
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Fig. 1. Diffraction reflection curves from a perfect crystal as
a function of the deviation ∆ϑ  from the Bragg angle at the
glancing angle ϕ0 equal to (a) 50′ and (b) 13′. The curves are
calculated from the exact (curves 1) and approximate
(curves 2) theories. Si(220) reflection, Cu Kα  radiation, and
ψ = 4°.
P

the edges of the region of total diffraction reflection),
where

 

 

Such an anomalous behavior of specular reflection was
first discussed in [4]. It should be noted that much the
same behavior is shown by yield curves of secondary
radiation ISP ~ 1 + |Rh |2 + 2σi ReRh with an escape depth
small in comparison with the extinction length Lex =
λ(γ0|γh0 |)1/2/πC |χh |, where σi = C |χhi |/χ0i and χgi = Imχg

[1, 4, 21]. The analogy will be more obvious if one
expresses the quantity ε1 in Eq. (13) in terms of the
coefficient of diffraction reflection. In this case, the
amplitude of specular reflection becomes

(15)

where σ = Cχh/χ0. As is the case with the x-ray stand-
ing-wave method [1], the second factor in Eq. (15)
characterizes the amplitude of the total field at the crys-
tal surface. In contrast to σi, however, the quantity σ in
Eq. (15) for specular reflection is determined by the
ratio of the complex polarizabilities χh and χ0 rather
than by the ratio of their imaginary parts.

The minimum and maximum on the specular reflec-
tion Ps(∆ϑ) curve in Eq. (15) are due to the fact that, in
the case of diffraction reflection, we have Rh ≈ 1 and the
phase of Rh varies almost linearly from π at ∆ϑ  = ∆ϑ1

to zero at ∆ϑ  = ∆ϑ2. In this case, Rh(∆ϑ1, 2) ≈ . For
small glancing angles (γ0 � ψB), the reflection asym-
metry coefficient is b � 1. As the angle ϕ0 increases and
becomes such that γ0 ≈ ψB, we have b � 1 and, there-
fore, the contrast of the specular reflection (Ps) curve
increases. At the same time, the width of the maximum
on the diffraction reflection curve and the angular range
in which the anomaly on the specular reflection curve
is observed are decreased.

∆ϑ 0 χ0 1 b+( )/ 2b 2ϑ Bsin( ),–=

∆ϑ B C χh / b1/2 2ϑ Bsin( ).=

Rs χ0/4γ0
2( ) 1 σRh+( ),–≈

b1/2+−

6
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Fig. 2. Angular dependences of the specular reflection
curves from a perfect crystal at the glancing angle ϕ0 equal
to (a) 50′ and (b) 13′. 1—exact theory; 2—approximate the-
ory; and 3—specular reflection without regard for diffrac-
tion. Si(220) reflection, Cu Kα  radiation, and ψ = 4°.
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Under the conditions for specular reflection at
large glancing angles, the penetration depth of the
field Ls � Lex is such that Ls = λ/(2πImγs) and, there-
fore, the formation of the refracted wave and of the
specular-reflection field in the range where diffraction
reflection is strong is determined by the coherent
superposition of the transmitted and diffracted waves.
By contrast, in the range of small angles, ϕ0 ≤ ϕc, the
penetration depth of the field is Ls ≤ Lex and, therefore,
this length is determined fundamentally by total exter-
nal reflection. The diffraction reflection is formed in a
thinner layer and becomes more kinematic, with the
result that the maximum on the diffraction reflection
curve decreases in height and becomes broader (curve 1
in Fig. 1b). The specular-reflection curve also
smoothes noticeably and has a shallow minimum
(curve 1 in Fig. 2b). For example, for the parameters
that were used in calculating the curves in Figs. 1 and 2,
we have Ls = 1.9 µm, Lex = 0.1 µm, and b = 0.35 for
ϕ0 = 50′ and Ls = 0.03 µm, Lex = 0.08 µm, and b = 0.07
for ϕ0 = 13′.

2. CRYSTAL COVERED 
WITH AN AMORPHOUS FILM

Now, let us consider x-ray reflection from a crystal
covered with a homogeneous amorphous film with
arbitrary thickness d and polarizability χ1. The fields in
vacuum and in the crystal are given by Eqs. (1) and (2),
respectively. In the general case, the field in the film
consists of four waves:

 (16)

where A0 and As are the amplitudes of the transmitted
and specularly reflected waves in the film, respectively,
excited by the incident wave and Bs and B0 are the
amplitudes of the transmitted and specularly reflected
waves, respectively, excited in the film by the Bragg
wave passing from the crystal to the film. Since the tan-
gential components of the corresponding wave vectors
must be equal, we have a0t = ast = k0cosϕ0 and b0t = bst =
k0cosϕh. The relations for the normal components are
a0z = –asz = k0s0 and b0z = –bsz = k0sh, where

 (17)

The continuity conditions for the electric and mag-
netic fields at the upper and lower boundaries of the
film lead to a system of eight equations for the wave
amplitudes in Eqs. (1), (2), and (16). At the vacuum–
film boundary, we have

 

 (18a)

 

E r( ) A0 ia0r( )exp As iasr( )exp+=

+ B0 ib0r( )exp Bs ibsr( ),exp+

s0 γ0
2 χ1+( )1/2

, sh γh
2 χ1+( )1/2

.= =

E0 Es+ A0 As,+=

γ0 E0 Es–( ) s0 A0 As–( ),=

Eh B0 Bs, γhEh– sh B0 Bs–( ),=+=
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and at the film–substrate interface, we have

 

 (18b)

 

where j = 1, 2; fg = exp(ik0sgd) and fgj = exp(ik0Γgjd) are
coefficients that allow for changes in the phase of the
waves and their absorption during propagation of the
waves through the film.

A solution to the system of equations (18) for the
amplitude coefficients of specular and diffraction
reflection can be conveniently written in a compact
form:

 (19)

where

 

 

 

 

Here, sg = (  + χ1)1/2 and r0 and rh are the Fresnel
reflection coefficients of the semi-infinite medium with
a film with polarizability χ1 at glancing angles ϕ0 and
ϕh, respectively.

First, as in the preceding section, we consider some
specific cases. At d = 0 (no film), we have fg, fgj = 1; F =
1; and ρd = ρ; the general expressions (19) are reduced
to Eq. (11) for the perfect crystal. In the case of a thick
film (k0Ims0d � 1), the factors that allow for absorption
tend to zero (f0  0, F  0), there is no diffraction
(Rh = 0), and Rs = r0; that is, specular reflection is deter-
mined by the Fresnel reflection coefficient of a medium
with polarizability equal to that of the film χ1.

If |α| � |χh | (negligibly weak diffraction), then ρd �

1 (see Section 2), γ1 = (  + χ0)1/2, and we arrive at the
familiar Airy formula [22], which describes oscillations

A0 f 0 As f s
1–+ D0 j f 0 j,

j

∑=

s0 A0 f 0 As f 0
1––( ) Γ0 jD0 j f 0 j,

j

∑=

B0 f h Bs f h
1–+ R jD0 j f hj,

j

∑=

sh B0 f h Bs f h
1––( ) ΓhjR jD0 j f hj,

j

∑=

Rs

r0 Q0 f 0
2+

1 r0Q0 f 0
2+

--------------------------, Rh

R1 ρd R2–
1 ρd–

----------------------- 1 Rs+( )F,==

Q0

s0 γ1–
s0 γ1+
---------------, γ1

Γ01 ρdΓ02–
1 ρd–

---------------------------,= =

ρd

R1 sh Γh1Qh+( )
R2 sh Γh2Qh+( )
------------------------------------,=

Qh

1 rh f h
2–

1 rh f h
2+

-------------------, rg

γg sg–
γg sg+
--------------- g 0 h,=( ),==

F
1 rh–

1 rh f h
2–

-------------------
1 Q0+

1 Q0 f 0
2+

--------------------- ik0 s0 sh ψB–+( )d[ ] .exp=

γg
2

γ0
2

1



946 BUSHUEV, ORESHKO
3000

2500

2000

1500

Is, cps

(a)

5
1
2
3
4

–10 0 10 20 30 40 50

150

100

50

0

(b)

5
1
2
3
4

–10 0 10 20 30
∆ϑ , arcsec

150

100

50

0

1

2

–10 0 10 20 30
∆ϑ , arcsec

200

–20

Is , cps

Fig. 3. Effect of the thickness of an amorphous film on the
angular anomalies of the specularly reflected intensity.
Glancing angle ϕ0 is (a) 20′ and (b) 40′. Film thickness
d (nm) of (1) 1, (2) 2, (3) 3, (4) 4, and (5) 0 (perfect crystal).
The incident radiation intensity I0 = 105 cps, SiO2 film,
(220) reflection, Cu Kα radiation, and ψ = 4°.

Fig. 4. Effect of the tilt angle ψ of atomic planes on the
angular dependence of the specularly reflected intensity
from a crystal covered with a film (solid lines) and the per-
fect crystal (dashed lines) for the thickness of amorphous Si
film d = 3 nm, glancing angle ϕ0 = 40′, and tilt angle ψ equal
to (1) 2° and (2) 5°. Beam intensity I0 = 105 cps, Si(220)
reflection, and Cu Kα radiation.
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(due to film thickness) in the specular reflection curve
for the film–substrate system:

 (20)

where r1 = (s0 – γs)/(s0 + γs) is the Fresnel reflection
coefficient characterizing the film–substrate interface

and γs = (  + χ0)1/2. If χ1 = χ0, i.e., the film and sub-
strate have the same optical density for x-rays, then
r1 = 0, r0 = rs, and from Eq. (20) it follows that Rs = rs.
In other words, far from the range in which diffraction
occurs, the presence of the film on the crystal surface
has little or no effect on the specular reflection from
such a film–substrate system. At the same time, as will
be shown below, if diffraction takes place, then the
angular dependence of specular reflection from this
system differs markedly from that in the case of the
crystal with no film (Fig. 4).

The case of glancing angles ϕ0,h > ϕc is of interest;
here, the specular reflection curves are highly sensitive
to the presence of a very thin amorphous surface layer,
even when only several nanometers thick.

Figure 3 shows specularly reflected-intensity curves
Is = |Rs |2I0, where I0 is the intensity of the incident x-ray
beam from a single crystal of silicon with an amor-
phous SiO2 surface film for different film thickness and
various glancing angles (Cu Kα  radiation, (220) reflec-
tion, ψ = 4°). For the SiO2 film, the critical angle for
TER is 12.67′. It is seen from Fig. 3 that the behavior
of the specular reflection curves essentially depends on
the presence of the film and on its thickness. This
dependence is more pronounced for larger glancing
angles (cf. the curves in Figs. 3a, 3b). The possibility of
using specular reflection in analyzing the structure of
the thinnest surface layers was first indicated in review
[4] (the “specular mark” method), but a detailed theo-
retical treatment of this interesting phenomenon was
not made in that paper. Specular reflection curves show
a general resemblance to photoelectron- and fluores-
cence-yield curves for thin layers, which suggests that
the specularly reflected wave can be considered one of
the channels of secondary radiation [4]. Although the
specular reflection coefficient is very small at glancing
angles ϕ0 > ϕc, the specularly reflected intensity can be
high enough and considerably (1–3 orders of magni-
tude, all other things being equal) exceed the counting
rate of photoelectrons or fluorescent quanta used in the
x-ray standing-wave method.

Let us estimate the ratio of the fluorescence inten-
sity from the film (PF) to the specularly reflected inten-

sity Ps = /16  on the near portion of the tail of the
TER curve [ϕ0 ~ (2–4)ϕc]. The intensity PF is deter-
mined by the absorbed energy in a film of thickness d;
therefore, PF ≈ (ck0χ1id/γ0β)(∆Ω/4π), where χ1i is the
imaginary part of the polarizability of the film, c is the
relative concentration of the atoms whose fluorescence
radiation is recorded, β is the electron conversion coef-

Rs r0 r1 f 0
2+( )/ 1 r0r1 f 0

2+( ),=

γ0
2

χ1
2 γ0

4
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ficient, and ∆Ω is the covered solid angle. Thus, we
have

 

If, for example, d ≈ 1 nm, λ ≈ 0.1 nm, β ~ 10–50, c ≈
0.5, ∆Ω ≈ 2π, and the glancing angle ϕ0 ~ 2ϕc, then, for
the typical values of polarizability |χ1| ~ 10–5 and χ1i ~
0.02|χ1|, we obtain PF/Ps ~ 3 × (10–3–10–2); that is, the
specularly reflected intensity is one to two orders of
magnitude higher than the x-ray fluorescence intensity.
This is the reason that the “specular mark” method is
expected to have considerable promise.

From general expressions (19), one can derive a
simpler approximate expression for the specular reflec-
tion coefficient Rs at glancing angles ϕ0, ϕh > ϕc. Since
ρd � 1 in this case, we have γ1 = ϕ0 + ε1 and, therefore,

 (21)

where

 

Here, r0 ≈ –χ1/4  and s0 ≈ ϕ0 + χ1/2ϕ0.

The sensitivity of the specular-reflection curves to
the presence of an amorphous film on the crystal sur-
face is due to the drastic changes in the specular reflec-
tion from the film–crystal interface in the range where
diffraction reflection is strong. Indeed, outside this
range, we have ε1 ≈ χ0/2ϕ0 and Re in Eq. (21) is propor-
tional to the difference in the polarizabilities χ1 – χ0,
whereas in the diffraction range, the polarizability of
the crystal χ0 is replaced by the effective polarizability
2ϕ0ε1(∆ϑ) and Im(ε1) � χ0i/2ϕ0. Therefore, Re ≠ 0 even
if the polarizabilities of the film and substrate are equal,
χ1 = χ0. In addition, the effect of the phase factor
exp(2ik0s0d), which depends on the film thickness, also
increases.

Figure 4 shows the specular reflection curves for a
single crystal of silicon covered with a film of amor-
phous silicon (χ1 = χ0) for two different values of the tilt
angle ψ. It is seen that the sensitivity of specular reflec-
tion to the presence of the film increases with decreas-
ing angle ψ. Calculations show that specular reflection
curves for a perfect crystal and for a crystal with a film
differ by 10–30% even in the case of very thin films,
about 0.5 nm thick.

The main problem in practical realization of this
method is the need for high collimation of the incident
radiation with respect to both the glancing angle (δϕ ~
1′) and the diffraction angle (δϑ ~ 1′′ ). The requirements
imposed on the x-ray beam divergence in the horizontal
plane can be met by employing a highly asymmetric
monochromator with asymmetry coefficient b ~ 1/40,
and those imposed in the vertical plane can be filled
using a micro-focus x-ray tube and a narrow slit at the
collimator exit (see [1, 18] and references therein).

PF/Ps 8cβ 1– d/λ( ) γ0
3χ1i/χ1

2( )∆Ω.≈

Rs r0 Re+( )/ 1 r0Re+( ),≈

Re χ1 2ϕ0ε1–( ) 2ik0s0d( )/ 2ϕ0 2ϕ0 ε1+( )[ ] .exp=

ϕ0
2
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3. THE MAIN RESULTS AND CONCLUSIONS
In this paper, we developed an exact dynamical the-

ory of specular reflection of x-rays from a crystal cov-
ered with an amorphous film in the case where strongly
asymmetric noncoplanar Bragg diffraction takes place;
that is, the theory is based on the solution of a disper-
sion (algebraic) equation of the fourth degree. The
problems of diffraction and specular reflection are
solved in the general case, and the results obtained are
valid over the entire range of glancing angles of the
incident beam and angles of departure of the diffracted
wave. With this theory, it is shown that the angular
dependence of the specularly reflected intensity is
highly sensitive to the presence of a thin (several
nanometers thick) amorphous film on the surface of the
crystal and to the film thickness. This problem can be
easily generalized to the case of specular reflection
from an inhomogeneous film with an arbitrary depth
distribution of the electron density by introducing a
system of recurrent relations which are a generalization
of the well-known Parratt formulas.

The specularly reflected intensity is high enough to
make a proximate analysis of the thin surface and tran-
sition layers. The sensitivity of this method to the film
thickness is about 0.5 nm and increases with the glanc-
ing angle; however, this is accompanied by a decrease
in the intensity of the reflected signal. The optimum
glancing angles lie in the range from 1.5 to 3–4 times
the critical angle for total external reflection; at smaller
glancing angles, the sensitivity becomes noticeably
lower. In actual practice, crystals in which the reflecting
atomic planes are tilted at an angle of 1°–5° are prefer-
able. For radiation with a wavelength of 0.15–0.2 nm,
the restrictions on the radiation collimation and on the
angular resolution of the method are less severe.

In this paper, it is shown that the data on specular
reflection under the conditions for Bragg diffraction
can be used for nondestructive examination of the
structure of very thin surface layers and interfaces.
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Abstract—Thin layers of InN are grown by molecular beam epitaxy on (0001) sapphire substrates. The influ-
ence of thin (15 nm) InN buffer layers and their temperature treatment on the structural quality of the grown
layers is investigated by double-crystal and triple-crystal x-ray diffractometry. It is revealed that the preliminary
high-temperature (900°C) annealing of the buffer layer leads to a notable improvement in the quality of the lay-
ers grown on this buffer. The densities of vertical screw and vertical edge dislocations decrease (to 1.9 ×108 cm–2

and 1.3 × 1011 cm–2, respectively) with an increase in the distance from the interface (by ~1 µm). © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Group III element nitrides have attracted consider-
able interest due to their unique optical and electronic
properties [1]. However, in recent years, researchers
have focused particular attention on GaN and its solid
solutions AlGaN and InGaN. There are only a few
works concerned with the preparation and structural
characterization of InN layers grown by organometallic
vapor-phase epitaxy [2–4]. The low temperatures and
growth rates used in molecular beam epitaxy can play a
significant role in the improvement of the structural
quality of InN layers. However, all attempts to obtain
high-quality molecular-beam epitaxial InN layers have
failed because of the low dissociation temperature
(~630°C) and the drastic increase in the nitrogen vapor
pressure with a rise in temperature in the range of
450−540°C. In our earlier work [5], we described the
preparation of qualitative thin molecular-beam epitax-
ial InN layers and reported the first results of their char-
acterization by different investigation techniques. The
purpose of the present work was to investigate thor-
oughly the structural perfection of molecular-beam epi-
taxial InN layers as functions of their thickness and the
type of buffer layer with the use of double-crystal and
triple-crystal x-ray diffractometry.
1063-7834/01/4305- $21.00 © 20949
2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The InN samples 0.4–1.5 µm thick were grown on
Al2O3(0001) substrates by molecular beam epitaxy
with plasma initiation of nitrogen discharge [6]. For
this purpose, we used an ASTEX commercial source
with electron cyclotron resonance, which provided
growth rates of 0.02–0.20 µm/h at nitrogen flow rates
of 1–5 cm3/min (sccm = standard cubic centimeter per
minute) and indium cell temperatures in the range
750−780°C.

We studied five InN samples (Table 1): for sample
no. 258, the InN layer was grown on a substrate when
its temperature decreased to the growth temperature
after the high-temperature (1000°C) annealing; for
sample no. 254, the base InN layer was grown at a tem-
perature of 470°C on a low-temperature (LT) InN
buffer layer, which was preliminarily grown at a tem-
perature of 300°C; and for samples 269, 239, and 280,
the buffer layer was subjected to an additional high-
temperature (HT) annealing (900°C) prior to the growth
of the base InN layer with different thicknesses t1. The
diffracted x-ray intensities were measured on double-
crystal and triple-crystal diffractometers using CuKα1
Table 1.  Half-widths ω of the x-ray diffraction reflection curves for InN layers (in seconds of arc)

Sample no. t1, µm/buffer
ωθ

0002
ωθ–2θ
0002

ωθ
1124

ωt

1010
ωtwt

258 1.50/absent 2140 174 2164 1100 12000
254 0.45/LT 777 80 755 680 8386
269 0.40/HT 698 75 628 638 7555
239 0.65/HT 350 55 566 571 6672
280 1.00/HT 336 43 472 513 5560
001 MAIK “Nauka/Interperiodica”
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Fig. 1. The θ–TCD curves for the (0002) reflection of InN.
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Sample no. 280
radiation (Bragg geometry) and MoKα1 radiation (Laue
geometry). High-quality Ge(220) crystals were used as
a monochromator and an analyzer.

The double-crystal diffraction curves were mea-
sured with a wide open detector window for (a) the
(10 0) symmetrical reflections in the Laue geometry,
(b) asymmetrical reflections in the Bragg geometry at a
glancing angle of the (11 4) incident and (11 )
reflected x-rays (the normal to the surface lies in the
scattering plane), and (c) the (10 l) symmetrical reflec-
tions in the Bragg geometry from planes forming
angles with the (0001) surface in the range from 17° to
72° [the “out-of-plane” (oop) curves, the normal to the
surface lies outside the scattering plane].

The angular full widths at half-maximum (FWHM)
of the diffraction curves for the symmetrical reflections
(0002) and (0004) were measured on a triple-crystal
diffractometer in the Bragg geometry in two directions:
parallel and normal to the diffraction vector [(θ–2θ)
and θ scan modes, respectively].

1

2 24

1

Fig. 2. Dependences of the full width at half-maximum
(FWHM) of the diffraction curves for the (10 l) reflection
of InN on the angle ξ.
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3. EXPERIMENTAL RESULTS

The experimental half-widths ω are listed in Table 1.
Corrections for the natural half-width, instrumental
broadening, and sample bending in analysis of the
experimental values of ω were introduced according to
the procedure described in [7]. These corrections were
insignificant compared to the broadening due to struc-
tural defects.

Figure 1 shows variations in the θ–triple-crystal dif-
fraction (TCD) curves for the (0002) reflection as func-
tions of the type of buffer layer used (samples 258, 254,
and 269) and the thickness of layers on the high-tem-
perature InN buffer layer (samples 269, 239, and 280).

3.1. Influence of the type of buffer layer on w. The
half-widths of the diffraction curves considerably
decrease when going from the layer grown on sapphire
without a buffer layer (sample no. 258) to the layer
grown on the low-temperature InN buffer layer (sample
no. 254) and then to the layer grown on the InN buffer
layer subjected to the high-temperature treatment (sam-
ple no. 269). For the θ–2θ scan mode, ωθ–2θ is propor-
tional to  (where ΘΒ is the Bragg angle).

For three samples under consideration, the follow-
ing condition is met: ωθ0002 > ωθ0004. In this case, the
ratios ωθ0002/ωθ0004 are approximately identical. At
the same time, the ratio between the half-widths of the

Bragg curves for the (11 4) and (11 ) asymmetrical
reflections becomes less than unity when going from
sample no. 258 to the layers grown on the InN buffer
layer. As follows from these results, the scattering
region changes its location with respect to the diffrac-
tion vector and the surface of the sample but remains
strongly asymmetrical in shape for all three samples

(ωθ � ωθ–2θ). For sample no. 258, we have ωθ11 4 ≈
ωθ11  ≈ ωθ0002; i.e., the half-width does not depend
on ΘB and the recording geometry, and the scattering
region (an ellipse) is extended along the normal to the
diffraction vector. For samples with an InN buffer layer,

ΘBtan

2 24

2
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the following condition is satisfied: ωθ11 4 < ωθ11 ;
i.e., the major axis of the ellipse does not coincide with
the normal to the diffraction vector.

The dependences of the half-widths ωoop for a series
of the symmetrical Bragg reflections on the ξ angle
between the basal plane (0001) and the planes of dif-
fraction are depicted in Fig. 2. As can be seen, all the
samples, except for sample no. 258, have a similar
dependence ωoop = f(ξ), which, according to [8], indi-
cates that the disordering in the layer plane and the
mosaic spread contribute independently to the mea-
sured half-widths ωoop. The approximation of the
experimental values of ωoop by relationship (3) taken
from [8] results in the half-widths ωtwt which are deter-
mined only by the degree of layer disordering in the
sample plane.

3.2. Influence of the layer thickness on wwww for InN
samples with a high-temperature buffer. An increase
in the layer thickness from 0.4 to 1.0 µm results in a
gradual decrease in the half-widths of the diffraction
curves for all the reflections. The sole exception is pro-
vided by an increase in the half-width of the double-

crystal rocking curve for the (11 ) asymmetrical

reflection. The ratio ωθ11 4/ωθ11  decreases with
an increase in the thickness. This implies that the major
axis of the ellipse (the shape of the scattering region)
rotates in the reciprocal space from the direction along
the normal to the diffraction vector toward the direction
parallel to the surface.

4. DISCUSSION

In x-ray diffraction analysis of defect structures
with strongly misfit layers (including nitrides), it is
usual, with rare exception [9], to measure the broaden-
ing of symmetrical and asymmetrical reflections in the
Bragg geometry. As a rule, the mosaic model is used for
the studied layers with angular rotations of microcrys-
tallites (coherent scattering regions) with respect to
each other. This leads to the so-called tilt broadening
(ωtilt) of the θ curves, which is identical for all the
Bragg reflections in the direction perpendicular to the
diffraction vector. At the same time, the broadening
associated with the limited size of coherent scattering
regions aligned parallel (τx) and normal (τz) to the sam-
ple surface depends on the diffraction angle. This
dependence of the contributions to the broadening on
the diffraction angle was used in analysis of diffraction
curves, for example, in [7, 10]. The disordering
(microrotation, the so-called twist) of layers in the sam-
ple plane is characterized by the half-width ωtwt of the
so-called φ scan [4, 10, 11].

The data on ωtilt make it possible to calculate the den-
sity of vertical screw dislocations by the formula [12]

 (1)

2 24

24

2 24

ρvs ωtilt
2 / 4.35bc

2( ),=
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where bc is the Burgers vector of vertical screw disloca-
tions (for InN, its value is equal to 0.5704 nm). The
replacement of ωtilt by ωtwt gives the density of ran-
domly arranged vertical edge dislocations (bc is
replaced by ba = 0.3540 nm for the vertical edge dislo-
cation in InN).

Metzger et al. [10] noted that x-ray diffraction anal-
ysis of the defect structure of GaN on the basis of the
half-widths measured only for symmetrical reflections
in the Bragg geometry has certain limitations. In our
opinion, the use of asymmetrical reflections measured
in the Bragg geometry, which was proposed by these
authors, is inefficient. This is explained by the fact that,
in the general form, the broadening of asymmetrical
reflections involves a complex combination (which
depends on the projections of the displacement vectors
onto the diffraction vector due to the presence of
defects) of the contributions from the microrotations
and microstrains parallel and normal to the planes of
diffraction and also the broadenings associated with
limited sizes of coherent scattering regions aligned par-
allel and normal to the sample. The necessity of simu-
lating the ratio between components in the measured
half-widths makes analysis of the defect structure more
difficult.

Earlier [13], we demonstrated that the use of x-ray
diffraction in the Laue geometry can considerably
enhance the potentials of x-ray diffractometric analysis
of the crystal perfection of nitride compounds. In this
respect, we also measured the symmetrical Laue dif-

fraction from the (10 0) planes perpendicular to the
sample surface. Unfortunately, because of the low
luminosity of the triple-crystal diffractometer, the high
normal photoelectric x-ray absorption coefficient for
InN, and the small layer thickness, we succeeded only

in measuring x-ray diffraction for the (10 0) reflection
on a double-crystal diffractometer.

An important point in analysis of the dislocation
structure is that the experimental half-widths are related

by the inequality ωθ(0002, Bragg geometry) > ωθ(10 0,
Laue geometry). Analysis of the θ curves in terms of
the mosaic spread model of coherent scattering regions
showed that, for sample no. 258 and, to a lesser extent,
sample nos. 254 and 269, the tilt component which is
independent of the recorded reflection makes a domi-
nant contribution to the broadening, whereas the contri-
bution of the size effect is small. If the layer consisted
of mutually rotated micrograins with a defect-free lat-
tice, the ωtilt values measured in the Bragg and Laue
geometries would be identical. However, we have the
inequality ωtilt (Bragg) > ωtilt(Laue). This circumstance
indicates the necessity of refining the mosaic model,
which was used earlier to analyze the results of x-ray
diffractometric measurements for the layers under
investigation. Below, we will analyze the broadening of
x-ray reflections under the assumption that the broad-

1

1

1

1
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ening of the θ curves is determined by the size effect
(due to the limited size of coherent scattering regions)
and two misorientation components. The first compo-
nent ωtilt is associated with the rotation of coherent
scattering regions and does not depend on the chosen
reflection and the recording geometry. The mosaic
spread in nitrides is caused by the considerable lattice
mismatch of the layer and the substrate and its atten-
dant island-type three-dimensional growth. The second
component ωϕ is determined by the presence of defects
(for the most part, the grown-in vertical screw and edge
dislocations) in microregions. The contributions to the
θ–triple-crystal diffraction curve are summed accord-
ing to the quadratic law, because the majority of theo-
retical calculations of x-ray diffraction in crystals with
randomly distributed dislocations, as well as our mea-
surements, lead to a Gaussian shape of the broadened
diffraction line, that is,

 (2)

where the superscripts B and L refer to the Bragg and
Laue geometries, respectively. To put it differently, the
broadening of the symmetrical reflection (θ-scan) is
associated not only with the size effect along the planes

of diffraction ( ) and the mosaic spread ( ),
but also with the micromisorientations of the planes of

diffraction ( ) due to the presence of defects in
coherent scattering regions.

The broadening of the θ–2θ curves is determined by
two components

 (3)

where  describes the size effect along the normal

to the planes of diffraction and  accounts for the

microstrain (proportional to ) of the planes of
diffraction along the normal to them.

The size of coherent scattering regions along the
normal to the layer is approximately equal to the layer
thickness (Table 2), and the contribution of the size

effect to the broadening ωθ10 0 of the Laue curves in
formula (2) is insignificant. The vertical screw and edge
dislocations, which are the dominant type of disloca-

tions in nitrides, do not affect ωθ10 0, and the third
term in relationship (2) for the Laue geometry is deter-
mined only by dislocations of two types: horizontal
screw and horizontal edge dislocations with the Burg-
ers vector parallel to the interface (the so-called misfit
dislocations). The probability that dislocations of the
former type occur is low (see, for example, [10]), and
the misfit dislocations localized near the interface can
affect the diffraction curve only in the case of thin lay-
ers. Therefore, the tilt component in expression (2) for
the Laue geometry can be considered predominant. At
the same time, all three broadening components con-

ωθ
B L( )( )2 ωtx tz( )

B L( )( )2
= ωtilt

B L( )( )2 ωϕ
B L( )( )2

+ + ,

ωtx tz( )
B L( ) ωtilt

B L( )

ωϕ
B L( )

ωθ–2θ
B L( )( )2 ωtz tx( )

B L( )( )2
= ωε

B L( )( )2
+ ,

ωtz tx( )
B L( )

ωε
B L( )

ΘBtan

1

1

P

tribute to ωθ0002. In this case, the third term is deter-
mined only by the presence of vertical screw disloca-
tions (whose displacement vector is parallel to the dif-
fraction vector) in the layers. The occurrence of vertical
edge dislocations does not affect ωθ0002, because their
Burgers vector is perpendicular to the diffraction vec-
tor. Consequently, by subtracting the contribution of
the size effect and the tilt contribution (identical for the
Bragg and Laue geometries) from ωθ0002, we obtain

the broadening component  for the symmetrical
Bragg curve, which is determined only by the presence
of vertical screw dislocations in the layers. For sample
no. 258 (t1 = 1.5 µm and the influence of a strongly
defective region near the interface can be ignored), the
calculation by formula (1) gives the density of vertical
screw dislocations ρvs(sample no. 258) = 4.9 × 109 cm–2.

The accuracy in the determination of the dislocation
density, which is determined by the accuracy in the
measurement of the θ half-widths of the triple-crystal
diffraction curves (10%) and the ωtwt half-width (20%),
is better than 40% for both screw and edge dislocations.

For the samples grown on the low-temperature and
high-temperature buffer layers, the dislocation densi-
ties ρvs calculated under the assumption that ωθ1010 =
ωtilt are equal to 0.51 × 108 and 0.65 × 108 cm–2, respec-
tively. The surprising thing is that ρvs(sample no. 269) >
ρvs(sample no. 254), because all the half-widths mea-
sured for sample no. 254 are larger than those for sam-
ple no. 269. This can be explained by the fact that, for
thin (<0.5 µm) samples, the defect layer near the inter-
face makes a certain contribution to the broadening of

the ωθ10 0 half-width measured in the Laue geometry,

and hence, we have ωθ10 0 ≠ ωtilt. It can be assumed
that the growth on the low-temperature buffer layer
(less ordered) brings about the formation of a more
defective and thicker layer near the interface, which

contributes to ωθ10 0 (sample no. 254). As a conse-
quence, analysis of the broadenings for sample no. 254
leads to an overestimated contribution of ωtilt and
underestimated values of ωϕ and ρvs. For sample no.
269, this effect manifests itself to a lesser degree.
Therefore, the ρvs densities given in Table 2 for samples
no. 254 and 269 have approximate values and should be
treated as minimum.

A gradual decrease in the half-widths measured for
the samples on the high-temperature buffer layer with
an increase in the layer thickness reflects an improve-
ment in their crystal perfection. Analysis of the ratios

ωθ0002/ωθ0004 and ωθ11 4/ωθ11  shows that, as
the layer thickness increases, the disposition of the
scattering region (ellipse) in the reciprocal space
changes from being extended along the normal to the
diffraction vector (the tilt effect) to being extended
along the surface (owing to the micromisorientations of

ωϕ
B

1

1

1
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the planes of diffraction around vertical screw disloca-
tions). Since the size effect is rather small, only the last
term remains in formula (2) and the ωθ0002 half-width
measured for samples 239 and 280 is determined pri-
marily by vertical screw dislocations, which are typical
of nitrides. Their densities ρvs calculated using relation-
ship (1) are listed in Table 2.

By assuming the linear dependence ρvs = f(t1), we
obtain ρvs = 2.2 × 108 cm–2 for sample no. 269, which is
considerably larger than the ρvs value calculated for the
same sample under the assumption that ωθ1010 ≈ ωtilt.
This is indirect evidence in favor of the assumption

that, in addition to the tilt component, the ωθ10 0
quantity measured for thin samples in the Laue geome-
try involves the component associated with individual
microdefects (misfit dislocations).

For detailed characterization of the structural per-
fection of epitaxial nitride layers, it is insufficient to
measure the symmetrical diffraction in the Bragg sym-
metry [4, 10, 11, 13]. A three-dimensional growth of
nitrides leads to rotations of micrograins with respect to
each other in the layer plane. Grown-in (vertical) edge
dislocations also bring about microrotations in the layer
plane. For this reason, the measurements of crystal lat-
tice disordering in the layer plane are important for the
general structural characterization of layers and the
quantitative estimation of the density of vertical edge
dislocations [from formula (1)].

Two currently available methods are used to mea-
sure the disordering in the layer plane. In the glide
geometry method, the rocking curve is recorded from

the (10 0) planes perpendicular to the surface [11, 13].
The limitation of this method resides in the fact that the
information derived refers only to an extremely thin
surface layer (~10 nm) due to the small angles of inci-
dence (~0.1°). The interpolation of the obtained values
of ωtwt to the whole sample is open to question.

The so-called φ scan method is widely used for mea-
suring ωtwt and consists in recording the angular distri-
bution of the diffracted x-ray intensity for an asymmet-
rical reflection upon azimuthal rotation of the sample
around the normal to it (the normal lies in the scattering
plane) [10, 11]. Lee et al. [4] used this method and
obtained very large values of ωtwt for InN samples.
However, apart from the low sensitivity of this method
(because of the large vertical divergence of the x-ray
beam), the measured value of ωtwt includes the tilt con-
tribution [8]. Srikant et al. [8] showed that the correct
value of ωtwt can be obtained in the Bragg geometry not
from the measurement of the φ scan curve but from
analysis of the dependence of the half-width on the ξ
angle between the planes of diffraction and the basal
plane (0001) for a series of symmetrical Bragg reflec-

tions of the (10 l) type. An increase in ξ leads to a
decrease in the tilt contribution and an increase in the
twist component of the measured half-width. The mea-

1

1

1
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surement of the dependence ωoop = f(ξ) and its approx-
imation by a relationship of type (3) given in [8] allow
one to derive (at ξ = 90°) the half-width ωtwt of the rock-
ing curve recorded from the (1010) plane perpendicular
to the basal plane, which is determined only by the
twist component of the disordering.

The densities of vertical edge dislocations ρve were
calculated by formula (1) with the use of the ωtwt values
obtained in much the same manner as in [8]. The ρve
densities calculated under the assumption of a random
dislocation arrangement are listed in Table 2. It can be
seen that the density of vertical edge dislocations
decreases when going over to the sample with a high-
temperature buffer layer (sample no. 258  sample
no. 269) and with an increase in the layer thickness
(sample no. 269  sample no. 280). It is worth noting
that the difference in the densities of vertical screw and
vertical edge dislocations is rather large (three orders of
magnitude). A similar difference was observed earlier
by Metzger et al. [10] for GaN layers grown by organo-
metallic vapor-phase epitaxy. The data obtained for sin-
gle-crystal (as a whole) samples no. 239 and 280 char-
acterize the density of randomly distributed vertical
edge dislocations, whereas a columnar structure with
the low-angle boundaries formed by vertical edge dis-
locations is characteristic of samples no. 258 and 254
and, to a lesser extent, sample no. 269.

5. CONCLUSION

Thus, in the present work, we investigated the defect
structure of thin molecular-beam epitaxial InN layers
on sapphire by x-ray diffractometry.

The asymmetry of diffraction scattering in the recip-
rocal space is characteristic of all the studied samples.
The scattering region is extended along the surface of
the samples grown on the high-temperature InN buffer
layer at t1 > 0.5 µm, which is associated with the geom-
etry of dislocation arrangement (along the c axis) and
the anisotropy of deformation fields around disloca-
tions.

It was found that the structural quality of layers
drastically improves upon growth on the InN buffer

Table 2.  Grain sizes along (τx) and perpendicular (τz) to the
surface and the densities of vertical screw (ρvs) and vertical
edge (ρve) dislocations

Sample no. τx, µm τz, µm ρvs, 108 cm–2 ρve, 1011 cm–2

258 0.08 1.77 48.8 6.21

254 0.17 0.41 ≥0.51 3.03

269 0.26 0.49 ≥0.65 2.46

(2.20)

239 0.54 2.04 1.92

280 1.15 1.88 1.33
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layer subjected to the high-temperature (900°C) treat-
ment.

The defect structure of the layers is characterized by
a large number of vertical screw and vertical edge (their
number is three orders of magnitude larger) dislocations.
The densities of vertical screw and vertical edge disloca-
tions decrease (to 1.9 × 108 cm–2 and 1.3 × 1011 cm–2,
respectively) with an increase in the distance from the
interface (by ~1 µm).
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Abstract—This paper reports the results of calculating the disjoining pressure and average thickness of smectic
layers in free-standing liquid-crystal films heated above the temperature of breakdown of the smectic order in
the bulk of the mesogens. The effect of the disjoining pressure on the reflectivity of free-standing smectic-A
films with different numbers of smectic layers has been studied. The results of the calculations agree with the
experimental study of the reflectivity of free-standing smectic-A films in the optical wavelength range. © 2001
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Smectic liquid crystals (LC) possess a remarkable
capability of forming free-standing films, whose area
may be of the order of 1 cm2 [1] and whose thickness
varies from a few hundred to two or even one smectic
layer [2, 3]. This makes such films ideal subjects for
investigating the behavior of two-dimensional physical
systems. In addition, they frequently exhibit phenom-
ena not observed in the bulk of an LC [4–15]. For this
reason, free-standing smectic films (FSSFs) have been
intensively studied both experimentally [2–20] and the-
oretically [21–30] in the past 15–20 years.

One of the most efficient methods for the experi-
mental study of the FSSFs is the investigation of their
optical characteristics, more specifically of the trans-
mission spectra [20] and reflectivity [3, 4, 9–14], in the
optical wavelength range. It is the reflectivity measure-
ments [9, 10] made on free-standing smectic-A films
(FSSAFs) of some LC compounds that revealed in
them a new remarkable phenomenon of the abrupt thin-
ning of a film when heated above the temperature at
which the smectic order in the bulk phase of the LC
breaks down. Due to these jumps, the thickness of an
FSSAF may vary sequentially from a few tens to two
smectic layers and the temperature at which two-layer
films exist may exceed by ~10–20 K that of the smec-
tic-A–isotropic (Sm-A–I) or Sm-A–nematic (Sm-A–N)
phase transformation in thick samples of the same
mesogens. Later high-precision measurements of the
optical reflectivity of free-standing films of LC materi-
als exhibiting a similar behavior, for instance, of the
partially fluorinated mesogen 2-[4-(1,1-dihydro)-2-(2-
perfluorobutoxy)perfluoroethoxy]phenyl-5-octyl pyri-
midine [H8F(4,2,1)MOPP], demonstrated considerable
compression of the smectic layers in these films [14]. In
these studies, the average thickness of the smectic lay-
1063-7834/01/4305- $21.00 © 20955
ers in an N-layer FSSAF was determined from mea-
surements of its reflectivity R by using the relation

 (1)

where c = [(  – 1)k0L]2/4, n0 is the ordinary refractive
index, k0 is the wave number of the monochromatic
light used in the experiment, and L is the average thick-
ness of the film smectic layer. The quantity n0 was con-
sidered temperature-independent and equal to the ordi-
nary refractive index of the volume smectic-A phase of
the LC used to prepare the FSSAF. It was found that as
an N-layer film (N = 10, 9, 8, …, 3) was heated to the
highest temperature it could sustain, Tc(N), the average
thickness of its layers decreased monotonically down
to a minimum value, after which, following a jump
down in the number of FSSAF layers by one, it
increased, likewise in a jump, to nearly its initial value.
When subsequently heated, the FSSAF film, now (N – 1)
layers thick, exhibited a similar behavior. The changes
in the average thickness of the film smectic layers
reached about 1 Å. It should also be pointed out that the
minimum average layer thickness in the N-layer film,
which was reached at Tc(N), decreased with a decreas-
ing layer number N. In other words, the minimum aver-
age layer thickness for a nine-layer film was smaller
than that of a ten-layer one, for an eight-layer film it
was smaller than for a nine-layer one, etc. Reflectivity
measurements made on free-standing films of another
partially fluorinated LC compound, H10F5MOPP,
which were also observed to undergo layer-thinning
transitions when heated above the Sm-A–I transforma-
tion temperature in the volume phase, exhibited a sim-
ilar behavior of the smectic layers; however, when
heated to the maximum temperature Tc(N) they were
able to sustain, their reflectivity decreased with increas-
ing temperature nearly two times more slowly than that

R cN2,=

n0
2
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of similar films of mesogen H8F(4,2,1)MOPP. These
observations are in marked contrast with the data [12]
on the reflectivity of FSSAFs of the 54COOBC
mesogen, whose molecules have ordinary alkyl tails
without fluorine atoms. Although free-standing films of
this compound also undergo jumpwise layer-by-layer
thinning when heated above the Sm-A–I transition tem-
perature in the volume mesogen, increasing the temper-
ature of such a film with a given number of layers N to
the maximum possible level Tc(N) does not bring about
a noticeable change in its reflectivity. By Eq. (1), a
faster decrease in the reflectivity of an N-layer film with
increasing temperature corresponds to a larger negative
value of the thermal expansion coefficient KL of its lay-
ers. By contrast, if the reflectivity of a film does not
change when heated to Tc(N), the temperature at which
its thickness decreases in a jump, then the average
thickness of the smectic layers of such an FSSAF does
not depend altogether on temperature. It follows that
the compression of smectic layers in free-standing
H10F5MOPP films is lower than that in the
H8F(4,2,1)MOPP liquid-crystal FSSAFs, while in
free-standing 54COOBC films the layers are not com-
pressed at all. The reason for the layers of free-standing
films of different mesogens to behave so differently
remains unclear.

It should be pointed out that relation (1), used in the
treatment of measurements in all experimental FSSAF
reflectivity studies [3, 4, 9–14], is valid only for a
homogeneous film with a refractive index which does
not depend on the distance to its bounding surfaces
[31]. Free-standing smectic films may, however, be
considered homogeneous only at temperatures substan-
tially below the Sm-A–N or Sm-A–I phase-transition
temperature in the LC volume. In this case, the Sm-A
structure is well established throughout the film volume
and the orientational and translational molecule order-
ings in the inner and surface layers of a film differ little
from one another. If one assumes that the ordinary, n0,
and extraordinary, ne, refractive indices in free-standing
films, as well as in thick LC samples, depend on the ori-
entational order parameter s [32], then these indices
should likewise be practically the same for all film lay-
ers. However, as was already mentioned, smectic layers
in an FSSAF were observed to be compressed at tem-
peratures substantially in excess of the point at which
smectic order breaks down in the mesogen volume. By
a microscopic model [24, 25, 27, 29], which reproduces
fairly well the behavior of free-standing films heated
above the Sm-A–N or Sm-A–I phase-transition temper-
atures, both the orientational and translational ordering
in the inner layers of a film can be considerably less
pronounced than near the free bounding surfaces. This
theoretical conclusion was confirmed experimentally
[20] in a study of optical transmission spectra of cyano-
biphenyl FSSAFs of different thicknesses in the region
of the electronic absorption bands of the LC molecules.
It was found that orientational ordering of molecules in
P

the surface layer of a film does exceed that in the inner
layers. Additionally, one observed a noticeable weak-
ening of the orientational order in an FSSAF under
heating. Hence, the refractive indices n0 and ne in such
films should vary with the distance from the free sur-
face, as well as depend on temperature, which is totally
disregarded when using the simple relation (1) in the
treatment and interpretation of measurements [3, 4, 9–
14] of the FSSAF optical reflectivity. Without taking into
account the refractive index profiles in FSSAFs and their
temperature behavior, one cannot derive from these data
the correct temperature dependence of the thickness of
smectic layers and, hence, the extent of their compres-
sion. For instance, the experimentally observed [12]
absence of a noticeable temperature dependence of the
reflectivity of free-standing smectic-A 54COOBC LC
films heated up to a jumpwise decrease in their thickness
by an integral number of layers in no way means the
absence of such a compression.

We are showing in this work that the factor respon-
sible for the compression of layers in free-standing
smectic-A films is the disjoining pressure, which is cre-
ated in these films when heated above the temperature
of the breakdown of the smectic order in a volume LC.
The pressures arising in FSSAFs of different thick-
nesses are calculated in terms of the microscopic model
[24, 25, 27, 29]. The temperature dependences of the
average thickness of the smectic layers in these films
compressed by the disjoining pressure are calculated.
These calculations take into account the dependences
of the tension (compression) moduli B on the distance
from the film bounding surfaces and on temperature,
which likewise are determined within the model [24,
25, 27, 29] developed for free-standing smectic-A
films. A study is made of the effect of disjoining pres-
sure on the reflectivity of FSSAFs with different num-
bers of smectic layers. The calculation of the reflectiv-
ity of free-standing films makes use of a characteristic
matrix M [31] constructed for a layered dielectric plate,
each layer of which is characterized by a thickness Li

equal to that of the ith smectic film layer compressed by
the disjoining pressure and by a “local” refractive index
ni, which is calculated based on the orientational order-
parameter profile in the FSSAF found by the micro-
scopic model [24, 25, 27, 29]. The results of the calcu-
lations are in agreement with the experimental mea-
surement of the reflectivity of free-standing smectic-A
films in the optical wavelength range and permit one to
explain the difference in the temperature dependences
of these quantities between films prepared of partially
fluorinated mesogens and LC films formed by mole-
cules with conventional alkyl tails.

1. DISJOINING PRESSURE AND COMPRESSION 
OF SMECTIC LAYERS IN FREE-STANDING 

SMECTIC-A FILMS

Consider an N-layer, free-standing smectic-A film
with unit surface area, which is in contact with a reser-
HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
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voir of the same mesogen maintained at the same tem-
perature T and external pressure Pext. This reservoir is
needed to maintain the film in a stable state [1], because
it compensates the losses of its molecules through
evaporation. We assume that the thickness of this film
decreases by one smectic layer at constant T and Pext.
The LC molecules lost by the film as a result of this
thinning transfer naturally to the reservoir. Let FN and
FN – 1 be the free energies of the original, N-layered, and
the new, (N – 1)-layered, FSSAF, respectively; Fr1 is the
free energy of the reservoir before it received the film
molecules; and Fr2, its free energy after this transfer.
Then we can write the change ∆F in the total free
energy of the film + reservoir system caused by a
decrease in the film thickness by one layer as

 (2)

If the temperature T of the film + reservoir system is
substantially lower than that of the Sm-A–N or Sm-A–I
phase transition in the LC volume, the reservoir sur-
rounding the FSSAF is in the Sm-A phase coinciding
with the smectic-A film structure and its thinning by
one layer is equivalent to a transfer of this layer to the
reservoir without any change of its state. Obviously
enough, the change in the free energy of the FSSAF +
reservoir system is in this case practically zero and the
decrease in the film thickness does not require any
work to be done.

The situation changes substantially if one considers
a decrease in the FSSAF thickness by one smectic layer
at a temperature T exceeding the temperature at which
the smectic order in the LC volume breaks down. In this
case, the reservoir surrounding the film is either in the
isotropic or in the nematic phase and the smectic film
layer transferring to it will assume one of these less
ordered states. Hence, the change in the film + reservoir
system energy should be different from zero. For
instance, if the Sm-A phase in the mesogen forming the
FSSAF transfers under heating to an isotropic state,
whose free energy is usually taken as the zero level
from which the energy will be reckoned, the change ∆F
in the total free energy of the film + reservoir system
can be written as

 (3)

The quantity ∆F, which can be found by means of
the microscopic model [24, 25, 27, 29] for any N-layer
FSSAF at any temperature T in the region of its exist-
ence, is equal to the work to be done on a film of unit
area in order to reduce its thickness by one layer. This
work is associated with an additional pressure

 (4)

which is applied to the layers in the FSSAF by its free
bounding surfaces. Derjaguin [33] showed that this
pressure, which he called disjoining, should act in any
bounded thin liquid layer with a structure different
from that of the volume phase. If the quantity ∆F in

∆F FN 1– Fr2+( ) FN Fr1–( ).–=

∆F FN 1– FN .–=

∆P ∆F/L,–=
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Eq. (4) is positive, then the disjoining pressure pre-
cludes FSSAF thinning and the film layers are sub-
jected to tension. By contrast, if ∆F < 0, then the dis-
joining pressure favors film thinning and its layers are
compressed. As we shall show later, it is the latter situ-
ation that is realized in an FSSAF when it is heated
above the temperature of smectic order breakdown in
the LC volume.

Application of disjoining pressure to the smectic
layers in free-standing smectic films should result in a
change in their thickness. By Hooke’s law, the thick-
ness Li of each ith film layer can be presented as

 (5)

where L0 is the layer thickness in the absence of disjoin-
ing pressure and Bi is the tension (compression) modu-
lus of the ith FSSAF layer. These moduli can be readily
found from the following considerations. It is well
known that the tension (compression) modulus B of
smectic layers in a volume smectic LC is proportional
to the squared translational order parameter τ [32]. If
we assume that the relations connecting the elastic
moduli with the orientational and translational order
parameters in free-standing films throughout the tem-
perature range of their existence, including the temper-
atures above the Sm-A–N or Sm-A–I phase transition
points in a bulk LC, are the same as in the bulk
mesophases, then the elastic moduli Bi in Eq. (5) for
smectic layers in an FSSAF can also be calculated
within the microscopic model of [24, 25, 27, 29]. This
model permits determination of the orientational, si(T ),
and translational, τi(T ), order parameters for each film
layer of an arbitrary thickness and for any temperature
T within the range of its existence. Moreover, in the
case of very thick films (N  ∞), the values of these
parameters at the film center obtained by this model
coincide completely with the results yielded by the
well-known theory of McMillan [34] for the bulk smec-
tic-A phase. If one knows the elastic modulus B in the
bulk smectic-A phase at some temperature T0 [B(T0) ≡
B0] lower than the Sm-A–I or Sm-A–N phase-transition
point, then the model of [24, 25, 27, 29] permits one to
find the order parameter τ(T0) ≡ τ0 at this temperature,
after which one can, using the relation

 (6)

determine the elastic moduli Bi for all film layers of a
given thickness for any temperature T within the region
of the film existence.

2. REFLECTIVITY OF FREE-STANDING 
SMECTIC-A FILMS

In calculating the reflectivity of an N-layered
FSSAF, we shall consider the latter as a nonuniform
dielectric plate made up of N layers with thicknesses
equal to those of the film smectic layers Li and “local”

Li L0 1 ∆P/Bi–( ),=

Bi T( ) B0 τ i T( )/τ0( )2,=
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refractive indices ni. By [31], propagation of a normally
incident monochromatic light through such a plate can
be fully described by a characteristic 2 × 2 matrix M,
whose elements are determined by the relations

 (7)

 (8)

 (9)

For the reflectivity R of such a layered dielectric
plate, we have [31]

 (10)

where

 (11)

If the condition

 

which is valid for visible radiation and not too thick
FSSAFs (N ≤ 10), is met, one comes readily to the rela-
tion

 (12)

One can easily verify that if the film is assumed spa-
tially homogeneous (n1 = n2 = … = ni = … = nN = n0),
as is done in [3, 4, 9–14], Eq. (12) transforms to Eq. (1).

The local refractive indices ni for FSSAF layers can
be found from considerations similar to those used by us
earlier for determination of the elastic tension (compres-
sion) moduli Bi of the film layers. It is known that the
dependences of the ordinary, n0, and extraordinary, ne,
refractive indices for a bulk LC phase on the orienta-
tional order parameter s can be cast as follows [32, 35]

 (13)

 (14)

where A is a constant characteristic of a given mesogen,

 is the mean polarizability of the LC molecules, and
∆β is the anisotropy of their polarizability. If one knows
these refractive indices for the bulk smectic-A phase at

the above-mentioned temperature T0 [n0(T0) ≡ ,

ne(T0) ≡ ], which is lower than the Sm-A–I or Sm-
A–N phase-transition point, the model of [24, 25, 27,

M11 M22 1,= =

M12 ik0 Li,
i 1=

N

∑–=

M21 ik0 ni
2Li.

i 1=

N

∑–=

R r 2,=

r M11 M12+( ) M21 M22+( ) ] / M11 M12+( )[–[=

+ M21 M22+( ) ] .

k0 ni
2 1+( )Li � 1,

i 1=

N

∑

R k0
2/4( ) ni

2 1–( )Li

i 1=

N

∑
2

.≈

n0
2 1 A β 1/3( )∆βs–( ),+=

ne
2 1 A β 2/3( )∆βs+( ),+=

β

n0
0( )

ne
0( )
P

29] makes it possible to find the orientational order
parameter s(T0) ≡ s0 at this temperature and, by combin-

ing Eqs. (13) and (14), to determine the quantities A
and A∆β entering them. If one also assumes the local
refractive indices ni and the local orientational-order
parameters si in free-standing films to be connected by
the same relations as in the bulk of the mesophases,
then the local refractive indices for the FSSAF layers
can be calculated by means of Eqs. (13) and (14) by

substituting in them the obtained values of A  and A∆β
and the local orientational-order parameters si calcu-
lated by the microscopic model of [24, 25, 27, 29]. For
normal incidence of light on the film, the final expres-
sion for the local refractive indices ni takes the form

 (15)

Equations (12) and (15), as well as the relations (4)–(6)
derived earlier, solve completely the problem of finding
the reflectivity R of an N-layered FSSAF for any tem-
perature T within the region of its existence.

3. RESULTS OF THE NUMERICAL 
CALCULATIONS AND THEIR DISCUSSION

We carried out numerical calculations of the disjoin-
ing pressure ∆P, average smectic-layer thickness L =
(1/N) , and reflectivity R for FSSAFs consist-
ing of N = 10, 9, 8, 7, and 6 layers. These films were
assumed to be made of an LC undergoing a strong first-
order transition from the isotropic to the smectic-A
phase. In the model of McMillan for a bulk smectic-A
phase [34], as well as in the model of [24, 25, 27, 29]
developed for free-standing smectic-A films, the model
parameter α = 2exp[–(πr0/L)2] ≥ 0.98 corresponds to
this case. Here, r0 is a characteristic radius of interac-
tion for the model pairwise intermolecular potential
used in the theory of McMillan. We used α = 1.05 in the
calculations. This choice was motivated by the fact that
the reflectivity measurement [12, 14] was done on free-
standing films of mesogens undergoing a first-order
Sm-A–I phase transition. By the model of McMillan
[34], for α = 1.05, the temperature of the Sm-A–I phase
transition in the bulk of the LC is TAI = 0.2249(V0/kB),
where V0 is the intermolecular interaction constant and
kB is the Boltzmann constant. The intermolecular inter-
action constant V0 was chosen such that the absolute
temperature TAI of the Sm-A–I phase transition in the
bulk of the LC coincided with the experimentally found
temperature (344 K [14]) of this transition in the par-
tially fluorinated LC [H8F(4,2,1)MOPP]. The orienting
action of the film free surface on LC molecules was
assumed to be strong enough. The ratio of the interac-
tion constant W, which in the model of [24, 25, 27, 29]
determines the effective external field simulating this

β

β

ni
2 ne

0( )( )2
2 n0

0( )( )2
+[ ] /3=

– ne
0( )( )2

n0
0( )( )2

–[ ] si/s0( ).

Lii 1=
N∑
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action, to the intermolecular interaction constant V0
was taken to be 1.8. By this model, for such a strong
orienting action of the free surface on the LC mole-
cules, heating an FSSAF to the high-temperature limit
of its existence brings about not its rupture but rather a
jumpwise thinning by an integral number of layers. It is
this effect that was observed to occur experimentally
[12, 14] in free-standing LC films of H10F5MOPP,
H8F(4,2,1)MOPP, and 54COOBC. The smectic-layer
thickness L0 in the absence of disjoining pressure was
assumed equal to L0 = 30 Å, and the concentration ρ0
of the molecules in the LC was taken to be ρ0 = 1.5 ×
1021 cm–3, a figure typical of most mesogens. The elas-
tic tension (compression) modulus of smectic layers,
B0, was considered determined at a temperature slightly
lower than the Sm-A–I transition point TAI in the bulk of
the LC and taken equal to B0 = 5.5 × 108 dyn/cm2, a fig-
ure nearly an order of magnitude larger than the values
(B0 ~ 107–108 dyn/cm2) typical of conventional LCs
consisting of molecules with alkyl tails. The reason for
this choice consists in that it is the partially fluorinated
mesogens [13, 18], whose FSSAFs demonstrate jump-
wise layer-by-layer thinning under heating, that are
characterized by tension (compression) moduli of
smectic layers larger than the same moduli for the con-
ventional LCs. For the sake of simplicity, the refractive

indices  and  were also considered determined
at a temperature slightly below TAI. The first of them

was assumed to be  = 1.48, the figure used in the
experiments [3, 4, 9–14]. As for the second refractive

index, , we used three values in the calculations,

 = 1.6, 1.65, and 1.7. The reasons for this choice
will be discussed later.

First, we calculated by the model of [24, 25, 27, 29]
the disjoining pressure ∆P for FSSAFs of different
thicknesses and for different temperatures, up to the
limiting temperatures of their existence, Te(N). Figure 1
presents the dependence of ∆P on the reduced temper-
ature T* = kBT /V0, which corresponds to the heating of
a free-standing film, initially ten smectic layers thick,
above the temperature TAI of the breakdown of smec-
tic order in the LC bulk. In this process, the film
undergoes a sequence of layer-by-layer thinnings
(10  9  8  7  …); these thinnings, iden-
tified by breaks in the temperature dependence, divide
it into sections describing the behavior of disjoining
pressure in a ten-, nine-, eight-, and seven-layer FSSAF.
Within each of these sections, this pressure is positive
and grows monotonically with increasing temperature,
to reach its largest value at the highest temperature at
which a film with given number of layers can exist.
Hence, in all the FSSAFs, the smectic layers are acted
upon by a compressive force, which increases with
their heating. The maximum value of ∆P for a nine-
layer film is larger than that for a ten-layer one, for an

n0
0( ) ne

0( )

n0
0( )

ne
0( )

ne
0( )
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eight-layer film it is larger than for a nine-layer one, etc.
One also sees that the absolute value of the disjoining
pressure in free-standing LC films may be quite large.
For instance, in a seven-layer FSSAF, the maximum ∆P
exceeds the atmospheric pressure nearly fivefold.

Next, using relations (5) and (6), from the above
temperature dependence of disjoining pressure in the
initially ten-layer FSSAF, we derived the temperature
dependences of the thicknesses of the layers of this film
acted upon by this pressure. The results obtained in this
way are shown in Fig. 2, which displays the tempera-
ture dependence of the average thickness L of the film
smectic layers. As in Fig. 1, this relation consists of
separate sections for a ten-, nine-, eight-, and seven-
layer FSSAF, separated by breaks at the temperatures
corresponding to the layer-by-layer thinning of the
film. Within each of such sections, L falls off monoton-
ically with increasing temperature to reach its smallest
value at the highest possible temperature of existence
of a film with a given number of layers. However, as the
number of layers decreases in a jump by one, the aver-
age film thickness also increases in a jump. This theo-
retical result, which is in excellent agreement with the
experiments [14] made on H8F(4,2,1)MOPP liquid-
crystal FSSAFs, allows the following fairly simple
qualitative explanation. As was already mentioned, the
model of [24, 25, 27, 29] predicts a monotonic growth
of disjoining pressure in an N-layered, free-standing
film heated to the highest temperature Tc(N) it can sus-
tain (Fig. 1). In addition, the model predicts a decrease
in the local parameters of the orientational, si(T ), and
translational, τi(T ), order for FSSAF layers under such

0.220
0

T*

∆P, 105 dyn/cm2

0.224 0.228 0.232 0.236 0.240

10

20

30

40

50

60

N = 10

N = 9
N = 8

N = 7

Fig. 1. Temperature dependence of the disjoining pressure
∆P in an FSSAF which initially contained ten smectic lay-
ers. The figures (N = 10, …, 7) above individual sections of
the plot refer to the number of layers in the film.
1
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heating and, hence, a decrease in their tension (com-
pression) moduli Bi. Thus, by Eq. (5), the thickness Li

of smectic layers in an N-layer film should decrease
with increasing temperature because of the action of the
disjoining pressure. When reaching the limiting temper-
ature Tc(N), an N-layer FSSAF loses one smectic layer,
which brings about, by this model [24, 25, 27, 29], a
jumpwise increase in the disjoining pressure, as well as
in the order parameters, si(T ) and τi(T ). However, the
jump in the disjoining pressure is fairly small (Fig. 1),
while the abrupt growth of the order parameters and,
hence, of the Bi elastic moduli is substantial. As a result,
by Eq. (5), the thicknesses Li of the smectic layers of an
(N – 1)-layer film should increase in a jump compared
with those for an N-layered FSSAF. It should also be
pointed out that the lowest average layer thicknesses in
an N-layer film reached at Tc(N) were shown by us to
decrease with decreasing layer number N (Fig. 2)
because of the growth of the maximum disjoining pres-
sure (Fig. 1). This result, as well as the order of magni-
tude (~1 Å) of the theoretically calculated absolute value
of the decrease in the average layer thickness of free-
standing films heated above the Sm-A–I transition point
in a bulk LC, also agrees well with the experiment [14].

Relations (12) and (15) were used to calculate the
temperature dependence of the reflectivity R of an
FSSAF, originally ten smectic layers thick, which was
heated above TAI (Fig. 3). We used for this purpose the
temperature dependences of the film layer thicknesses
Li calculated earlier. As was already mentioned, the

magnitude of the ordinary refractive index  of the
volume smectic-A phase used in the calculations was

n0
0( )

0.220
28.8

L, Å

T*
0.224 0.228 0.232 0.236 0.240

29.0

29.2

29.4

29.6

29.8

30.0

N = 10

N = 9

N = 8

N = 7

Fig. 2. Dependence of the average thickness L of smectic
layers in an FSSAF on reduced temperature T*. The film
consisted initially of ten layers. Notation as in Fig. 1.
P

taken equal to 1.48. As for the extraordinary refractive
index of the volume smectic-A phase, the temperature
dependence plotted in Fig. 3 was calculated assuming

it to be  = 1.6. Our choice was based on the following
considerations. As a rule, the birefringence ∆n = ne – n0
of LCs consisting of molecules with conventional alkyl
tails is ~0.2 [35]. However, ∆n decreases substantially
when the fluorine atoms are substituted for hydrogen in
the alkyl tails [14]. Because in the experiment in [14]
one measured the reflectivity of FSSAFs made of par-
tially fluorinated LC H8F(4,2,1)MOPP and because we
are comparing our calculations with the results
obtained in that work, the value of ∆n was assumed to
be one-half that of the conventional LCs. Similarly to
the above temperature dependences of ∆P and L
(Figs. 1, 2), the temperature dependence of the film
reflectivity displayed in Fig. 3 consists of sections
(steps) separated by breaks which correspond to layer-
by-layer FSSAF thinning. Each step describes the tem-
perature dependence of the reflectivity of a film with a
given number of layers. One readily sees that all these
steps have a small negative slope, which is in full agree-
ment with the experimental results [14].

Finally, we studied the dependence of the reflectiv-
ity of an FSSAF with a given number of layers on the

extraordinary refractive index  of the volume LC
phase. Figure 4 shows the temperature dependences of
the reflectivity R of a six-layer film calculated for

 = 1.6, 1.65, and 1.7. One readily sees that the

reflectivities calculated for the first two values of 
decrease monotonically with increasing temperature;

ne
0( )

ne
0( )

ne
0( )

ne
0( )

N = 10

N = 9

N = 8

N = 7

0.220
40
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R, arb. units

0.224 0.228 0.232 0.236 0.240

60

80

100

120

140

160

Fig. 3. Temperature dependence of the reflectivity R of a
free-standing smectic-A film, which consisted initially of

ten smectic layers.  = 1.6. Notation as in Figs. 1 and 2.ne
0( )
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also, for  = 1.6, the reflectivity R falls off about two

times faster than it does for  = 1.65 with increasing

T*, while for  = 1.7 the film reflectivity practically
does not change under heating. These observations can
be explained as follows. As can be seen from Eqs. (12)
and (15), the temperature dependence of the FSSAF
reflectivity R is determined, for a given number N of its
layers, by two competing processes. One of them is the
decrease in the smectic layer thickness Li caused by the
increase in the disjoining pressure ∆P and the decrease
in the elastic moduli Bi with increasing temperature.
The other competing process is the increase in the local
refractive indices ni, which is initiated, by Eq. (15), by
the decrease in the local orientational-order parameters
si of the film subjected to heating. Relation (15) also

suggests that the larger the difference between the 

and  indices, the steeper the growth of the local
refractive indices ni, and vice versa. Hence, in the case
of weak birefringence ∆n, the second of the competing
processes contributes less than the first one and the film
reflectivity decreases with increasing temperature. For
larger ∆n, this decrease slows down. Finally, for a large
enough birefringence of the volume Sm-A phase, the
growth of the local refractive indices ni can completely
compensate the decrease in the smectic layer thickness
Li of the film, as a result of which the reflectivity of the
latter will not change under heating. This theoretical
conclusion accounts completely for the difference in
the behavior of FSSAFs prepared from the partially flu-
orinated LCs H10F5MOPP and H8F(4,2,1)MOPP and
the 54COOBC LC consisting of molecules with con-
ventional alkyl tails, which was pointed out in the Intro-
duction. As was already mentioned, the birefringence
of the first two mesogens should be smaller than that of
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0( )
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0( )

ne
0( )

ne
0( )

n0
0( )

1

2

3

0.233
48.4

T*

R, arb. units

0.234 0.235 0.236 0.237 0.238 0.239 0.240

48.8

49.2

49.6

Fig. 4. Temperature dependences of the reflectivity R of a
six-layer FSSAF calculated for different extraordinary

refractive indices  in the volume Sm-A phase: (1) 1.6,
(2) 1.65, and (3) 1.7.

ne
0( )
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
the third one. Therefore, heating of their free-standing
films brings about a decrease in the reflectivity of the
latter for a fixed number of smectic layers. The birefrin-
gence ∆n of the 54COOBC LC is ~0.2, as a result of
which heating its FSSAF does not affect their reflectiv-
ity noticeably.
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Abstract—A method for evaluating the energy stability of carbon nanoclusters is proposed. The stabilities of
the nanoclusters with different structures, such as diamond and graphite, tubulenes and graphite, are compared.
Two series of stable clusters with new structures, namely, alm-ene and alm-ine, are derived. A comparison is
performed for small graphite clusters containing boron atoms that play a significant role in the reaction of
fullerene formation. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation into the formation, growth, and trans-
formation of carbon nanoclusters is a fundamental
problem of nanomaterials science [1]. A detailed theo-
retical treatment of the microscopic properties of nano-
clusters, as a rule, is performed by quantum-chemical
methods. However, none of the currently available
quantum-chemical methods, as applied to cluster sys-
tems, can be considered efficient by virtue of their spec-
ificity (a wide variety of structures and sizes, unusual
valence, the presence of strongly delocalized electrons,
and a substantial contribution of the surface energy). As
a consequence, there is a need to compare the results
obtained by different computational methods. This
leads to considerable problems, especially when com-
paring the energy stabilities of carbon nanoclusters.

A distinguishing feature of clusters as a state of mat-
ter is the nonmonotonic dependence of their properties
on the number of particles (molecules, atoms, and ions)
in a cluster. Unlike molecules, a cluster possesses an
“individuality.” This means that, beginning with a cer-
tain number of atoms N, the cluster involves “an infi-
nitely large” number of different stable structures. This
also implies that experimental studies deal with the
averaged quantities, and the mesoscopic effects can
take place.

An infinite variety of clusters consisting of N atoms
can be partitioned into series of sets. In terms of quan-
tum-chemical calculations, each set contains clusters
that converge to the same arrangement of atoms in the
course of geometric optimization. It is clear that this
partition should depend on the calculation procedure
and the method and parameters of optimization. Here-
after, an individual carbon nanocluster will be taken to
mean one of the representatives of a set that corre-
sponds to a particular valley of the potential energy sur-
face, for example, a cluster whose geometry corre-
sponds to a minimum of this valley.

In this respect, it is necessary to discuss separately
the problem of describing (constructing) an individual
1063-7834/01/4305- $21.00 © 20963
carbon nanocluster. Formally, in some cases, any two
clusters should be considered to be different (even
though these clusters differ little in their atomic posi-
tions), because their properties differ substantially.
However, except for the case when all atomic positions
are known, a cluster can be defined using the structural
diagram that is usually constructed according to special
rules. Such a unified approach allows one to avoid con-
fusion when comparing different clusters.

For example, the structure of an individual carbon
nanocluster can be described with the use of (i) the
main unit A (an analog of the unit cell), (ii) the method
of constructing (a set of symmetry operations Ti) the
whole cluster from the main units, and (iii) a set of
defects Di. Therefore, each cluster can be treated as a
result of sequential applications of the above operations
to the main unit, i.e., ΣDi(ΣTi(A)). The unit cell is con-
structed using the mean bond lengths and bond angles,
except for special cases. Formally, the unit cell involves
not only the atomic positions but also the multiplicities
of bonds between atoms.

2. DETERMINATION OF THE ENERGY 
STABILITY OF CARBON NANOCLUSTERS

The energy stability of carbon nanoclusters can be
determined by the method proposed in the present
work. This method makes it possible to compare the
stabilities of the clusters with different numbers of
atoms under vacuum and in a condensed phase. This
approach is based on the assignment of a specific
energy parameter [the energy of a conventional atom
(ECA) or the energy of a conventional bond (ECB)] to
each cluster.

The algorithm for determining the energy of a con-
ventional atom in a carbon cluster consisting of N
atoms is as follows.

(1) A cluster is constructed in such a way that all
dangling bonds are saturated with stabilizing elements
(hydrogen or pseudocarbon atoms). This is required to
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Energy of a conventional atom in carbon clusters: (1, 2) diamond (this series is obtained using a carbon skeleton of an ada-
mantane molecule), (3, 4) graphene (clusters contain an integral number of rings), (5, 6) alm-ene (clusters are formed by the main
units of a bicyclooctatriene carbon skeleton), (7, 8) alm-ine (clusters are formed by the main units of a tetraethynylmethane carbon
skeleton), and (9) fullerene series (the dashed line indicates “globular” graphene clusters) [2]. Calculations are performed (1, 3, 5,
7, and 9) with inclusion of dangling bonds and (2, 4, 6, and 8) without regard for these bonds.
exclude the strong dependence of the optimized geom-
etry of the cluster, its electronic properties, and the
energy on the computational method.

(2) The geometry of the cluster is optimized by
quantum-chemical methods, and the cluster energy is
calculated.

(3) The cluster energy is divided by the total number
of bonds in the cluster (the resulting quantity will cor-
respond to the energy of a conventional bond) and then
should be multiplied by the valence (the number of
bonds for a given atom), which is characteristic of the
carbon atom in the cluster (the valence can have a frac-
tional value). As a result, we obtain the energy of a con-
ventional atom.

A comparison of the conventional-atom energies of
the clusters allows us to determine their relative energy
stability. The larger the absolute value of the conven-
tional-atom energy of the clusters, the higher their rel-
ative energy stability. When analyzing the energies of
the clusters with a similar structure, we can separate the
contributions of the carbon–carbon and carbon–hydro-
gen bonds. As a rule, the energy of the C–H bond is 20–
25% less than that of the C–C bond. A comparison of
the energies for cluster series should be performed with
this correction under the assumption that the stabiliza-
tion occurs through bonding carbon atoms. However,
inclusion of this correction is meaningless for individ-
ual carbon clusters, because their individuality will be
lost during averaging.

In order to calculate the upper limit of the ranges
where the energies of clusters with different degrees of
surface stabilization can fall, the energy of the C–H
bonds (ECB · NH) should be subtracted from the total
energy and the conventional-atom energy should be
P

recalculated. When comparing the cluster series, it is
expedient to compare the aforementioned ranges of
possible conventional-atom energies.

The algorithm proposed was used to calculate car-
bon nanoclusters with the following structures: dia-
mond, graphite, nanotube, alm-ene, alm-ine, and
fullerene. All the calculations were performed using the
HyperChem 4.5 program for SGI on an OCTANE
workstation. The molecular geometry was optimized
with the PM3 method. The PM3 method is currently
considered the best semiempirical method used for
these purposes. For large-sized systems, we applied the
PM3/MM2 scheme, which, according to preliminary
calculations, led to the same qualitative results as the
PM3 method.

3. STABILITY OF CARBON NANOCLUSTERS 
WITH DIAMOND AND GRAPHITE STRUCTURES

We carried out a comparative evaluation of the sta-
bilities of diamond and graphite nanoclusters. Our cal-
culations demonstrate that diamond clusters are more
stable than the graphene fragments (Fig. 1). However,
the correction for the difference between the energies
of the carbon–carbon and carbon–hydrogen bonds
leads to a change in the relative stability of clusters.
This means that the stability of a carbon nanocluster is
completely determined by the interaction on its surface.

It is worth noting that even clusters with the charac-
teristic properties of a bulk material are still sufficiently
small with respect to the dominant role of the surface
for their stabilization. For example, the difference
between HOMO and LUMO was estimated at 5.6 eV
(this value is characteristic of the diamond band struc-
ture) when the number of atoms in a cluster was of the
HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
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order of 102: 200 atoms (the MM2/MINDO3 scheme)
and 60 atoms (the PM3/MINDO3 scheme), depending
on the basic parameters used in the calculation.

4. STABILITY OF NANOTUBES

The stability of nanotubes was also estimated using
the proposed algorithm. It is generally believed that the
energy of the nanotube formation does not depend on
the symmetry type and can be determined only by the
radius R of the cylinder.

We calculated the energies of the linear chains of
graphene (up to four rows) and the rings of nanotubes
(Fig. 2). Figure 3 shows the binding energies Eb per C–
C bond as a function of the number of carbon atoms for
a graphene ribbon and a nanotube ring. As can be seen
from these data, the sufficiently large nanotubes (con-
taining more than 100 atoms) have the same energy as
the graphene fragments.

According to the theory of chemical bonding, each
carbon atom in a graphite structure forms three identi-
cal σ bonds with the neighboring carbon atoms in the
plane and the free pz orbital (not involved in the σ bond-
ing) is perpendicular to this plane. The overlap of the pz

orbitals brings about the formation of the π bonds and
further stabilization due to conjugation (aromaticity).
The graphene bending into a tube is accompanied by a
decrease in the overlap of pz orbitals, a weakening of
the π bonds, and the stabilization due to a partial satu-
ration of the dangling bonds [2].

The calculations performed demonstrate that, at suf-
ficiently large radii (larger than 5 Å and seven benzene
rings), the energy loss due to the overlap of pz orbitals
is compensated and the nanotube becomes almost iden-
tical in energy to the graphene fragment (for nanotubes
of small radii, the repulsion of their opposite walls is

Fig. 2. A graphene ribbon and a nanotube ring.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
significant). Therefore, it can be concluded that
whether a nanotube or a graphene cluster is formed is
determined only by the kinetic parameters of the pro-
cess (the presence of a catalyst, material for cluster
growth, etc.). A similar situation occurs in the diamond
synthesis when the kinetic parameters completely
determine the efficiency of the synthesis procedure.
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Fig. 3. Dependence of the energy Eb per C–C bond on the
number of carbon atoms for a graphite fragment (solid line)
and tubulenes.
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5. STABLE CARBON NANOCLUSTERS 
WITH A NEW STRUCTURE

It should be noted that, although diamond is the
hardest material, the binding energy in the graphite
plane is higher than that in diamond. We attempted to
construct the three-dimensional carbon phases with a
combination of the diamond and graphite properties.
The phase with single and double bonds was termed
alm-ene (the main unit is a bicyclooctatriene molecule),
and the phase with single and triple bonds was referred
to as alm-ine (the main unit is a tetraethynylmethane
molecule) (Fig. 4).

It follows from the results obtained (Fig. 1) that the
clusters of these structures correspond in energy to the
range of conventional-atom energies of diamond and
graphite clusters and, as a consequence, can occur in
nature. If crystalline phases of these structures were syn-
thesized, these materials should be very light and hard.

Theoretically, an infinitely wide variety of clusters
containing double and single bonds and benzene rings
occurs in nature. In general, their structure can be con-
ceived as a result of spatially inhomogeneous dia-
mond–graphite transformation into an intermediate
state (upon transition from the diamond to the graphite
structure, the rings of diamond cyclohexane skeleton
transform into the graphite benzene rings). This phase
is thermodynamically unstable for the transformation
into diamond or graphite and can exist only in the form
of carbon nanoclusters due to surface interactions.

6. FORMATION OF HEAVY FULLERENES 
AND A BORON ATOM

The above algorithm was applied for evaluating the
stability of small graphene clusters with inclusions of
boron atoms. From the standpoint of organic chemistry,
the behavior of boron has a characteristic feature,
namely, the displacement reaction of carbon–carbon
bonds similar to those shown in Fig. 5 (the formation of
the so-called 5–7 defect). It is quite possible that the 5–

Fig. 5. Reactions of (a) transformation of the 6–6 structure
into the 5–7 structure and (b) bending of a planar cluster.
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7 defect is responsible for the bending of planar
graphene fragments into a fullerene. We carried out a
series of calculations for the formation of a 5–7 defect
in small graphite clusters. The calculation was per-
formed according to the general scheme; however, the
energy was not converted per atom for simplicity. As
can be seen from Fig. 6, the presence of boron leads to
a substantial decrease in the difference between the clus-
ter energies of the 6–6 and 5–7 structures, which should
encourage a more frequent formation of the 5–7 defects.
The energies of negatively charged clusters were calcu-
lated according to the same procedure. It was found that
the presence of a charge in a system consisting of two
rings (naphthalene) also favors a decrease in the differ-
ence between the cluster energies.

It is our opinion that these results should be taken
into account in analysis of the formation of fullerenes
by the arc discharge method, because, according to [3],
the presence of boron atoms in an electric arc promotes
the formation of heavy fullerenes.
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Abstract—The model proposed earlier for the formation of closed carbon particles from fullerene nuclei is dis-
cussed. Experimental data in support of this model are analyzed. The possible mechanisms of particle formation
are treated within the microscopic concepts. Theoretical relationships for describing the rate and the time of
particle growth are derived, and a number of quantitative estimates are made. The conclusion is drawn that the
particle growth is similar in a number of traits to crystal growth from the gaseous phase. Consideration is also
given to the specific features of the particle growth. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In my previous work [1], a new model was proposed
for the structure of closed carbon particles, their nucle-
ation, and growth. Consideration was given to soot par-
ticles in the form of nanoparticles composed of several
layers—the so-called onionlike carbon form. In my
opinion, all these particles differ in size, i.e., in the
number of layers, the shape, and the number and the
type of defects.

Essentially, the model is as follows: defect-contain-
ing fullerenes serve as particle nuclei, and the particles
themselves are multilayer formations with a hole at the
center whose size and configuration correspond to the
size and configuration of the initial fullerene nucleus.
Concentric layers which grow around the central core
as a result of a gas–solid phase transition and are sepa-
rated by a distance of ~3.4 Å consist of distorted and
defective carbon networks.

The function of defects of fullerene nuclei and
neighboring carbon layers can be fulfilled by vacancies
and their aggregates, adjacent pentagons C5, seven-
membered rings C7, stacking faults characteristic of
graphites (such as the rotation of layer regions around
the normal), incomplete shells, heteroatoms (H, O, N,
S, etc.), stressed bonds (which can arise from the cur-
vature of the growing surface), and others.

In the present work, an attempt was made to obtain
some estimates for this model.

Leaving aside nanotubes, we will distinguish, for
definiteness, the following forms of disperse solid car-
bon: single-layer fullerenes, soot consisting of closed
multilayer particles of different sizes and shape and
their aggregates, and carbon (including fullerene) black
which involves single (planar or bent) carbon network
fragments or their small-sized stacks.
1063-7834/01/4305- $21.00 © 20967
2. JUSTIFICATION OF THE MODEL

It is known that, according to the classical theory,
growth on perfect crystal surfaces involves the formation
of a two-dimensional nucleus under statistical fluctua-
tions of adsorbed atoms [2]. In this case, the nucleation
requires very high activation energies (~3.6 × 103 kT,
where k is the Boltzmann constant and T is the temper-
ature), so that the growth rates at real temperatures
should be close to zero [3]. In actual fact, even at very
low supersaturations, the growth rates are sufficiently
high at the expense of nucleation on the structural
defects. Atoms or molecules adsorbed on the surface
are bound to it owing to an additional energy of the
defect, and the fluctuation formation of two-dimen-
sional nuclei is not necessary. Similarly, perfect
fullerenes cannot serve as nuclei of soot particles by
virtue of their stability, i.e., a low reactivity as com-
pared to defective fullerenes, and, hence, they can be
obtained in a free state. In particular, Lozovik and
Popov [4] simulated a defect-free fullerene C60 as the
first surface of a multilayer nanoparticle and reached
the conclusion that single carbon atoms and C6 micro-
clusters cannot be adsorbed on the fullerene surface
even at temperatures above 182 and 30 K, respectively.

On this basis, the assumption on the role of struc-
tural defects as sources of soot particle growth is
wholly justified. The electron microscope images
obtained by Iijima [5, 6] confirm the fact that multilayer
globular particles contain a large number of structural
defects both in central spheroids with a diameter of 8–
10 Å and in adjacent concentric shells. Other experi-
mental data that can be considered indirect evidence in
favor of the model proposed are also available.

Gerhardt et al. [7] noted that, upon combustion of
hydrocarbons, the number of soot particles is larger in
the flame regions in which the number of fullerenes
formed is greater.
001 MAIK “Nauka/Interperiodica”
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According to Goeres and Sedlmayr [8], the intro-
duction of hydrogen into helium suppresses fullerene
formation upon electric arc evaporation of graphite. As
a consequence, the presence of excess H2 in flames
leads to cessation of the growth of soot particles [9].

It is known that soot particles are formed after the
completion of a preliminary process, which is con-
firmed by the existence of the induction time tind, i.e.,
the time from the onset of the soot formation to the
appearance of the first particles. Upon combustion of
hydrocarbons, the induction time is estimated at tind ~
10–4–10–3 s [9], which coincides with the time of
fullerene formation [7, 10].

Ugarte [11] observed the formation of spherical par-
ticles upon heating samples with an electron beam to
temperatures of 800–2400°C. Amorphous carbon col-
lected in an arc-discharge apparatus in the form of both
soot and carbon black which contained fragments with
sizes of the order of several angstroms was studied. The
particles arose from the structural transformation of the
material as a result of growing defective concentric lay-
ers around the central spherical core 6–10 Å in diame-
ter. The multilayer nanotubes transformed into globules
in which the number of layers was larger than that in the
initial particles. The longer the time of heating and the
higher its temperature, the larger the size of globules
and the closer their shape to spherical. After the com-
pletion of the process, the sample transformed into soot
which almost completely consisted of spherical parti-
cles. Particles with diameters up to several microns
were observed upon prolonged annealing.

3. NUCLEATION AND GROWTH OF PARTICLES

A theoretical description of soot particle nucleation
presents considerable difficulties. This is explained by
the fact that a universally accepted microscopic model
for the formation of fullerenes is currently unavailable
(some existing variants can be found, for example, in
[12]). We can only argue that, since carbon atoms can-

421

3

5

6

Ri

A schematic representation of carbon particle growth:
(1) surface of a soot globule of radius Ri, (2) layer defect,
(3) surface nucleus, (4) adsorbed particles, (5) carbon vapor
particle, (6) evaporated particle. Particles 4–6 correspond to
carbon atoms or carbon molecules (clusters).
P

not be joined at once in amounts necessary for fullerene
formation, this process has a complex nature and
involves a number of sequential elementary acts, each
proceeding very rapidly.

There also exist certain difficulties associated with
the following circumstances. Many macroscopic con-
cepts are inapplicable to the early stages of the conden-
sation of any vapor. In particular, the notion of surface
tension cannot be used in the case when we consider the
formation of nuclei containing several tens of atoms,
because the latter cannot be separated into surface and
bulk atoms in order to determine the corresponding free
energies. It is also impossible to use the concepts of liq-
uid and solid states. For this reason, despite numerous
attempts to overcome these and other difficulties, a rig-
orous statistical solution to the problem of vapor con-
densation is absent.

Let us assume that a fullerene nucleus has already
been formed and a carbon globule with a current radius
Ri grows. Here, 1 ≤ i ≤ N is the ordinal number of a car-
bon layer and N is the number of layers. The centers of
the layer growth (surface nuclei) are formed at the sur-
face points with structural defects which capture car-
bon particles (in our case, atoms or molecules) of mass
M. These nuclei grow and coalesce to form a continu-
ous layer. The material for the growth comes either
directly from the surrounding medium (the supersatu-
rated carbon vapor at pressure P) or in the form of
adsorbed particles which migrate over the surface until
they are attached to the growth center or evaporate back
into the surrounding medium (see figure).

According to [3], the surface diffusion coefficient is
given by

 (1)

and the mean lifetime of a particle τs in the adsorbed
state can be defined as

 (2)

By assuming that the frequency factors ν1 ~ ν2 ~ ν and
taking into consideration that the mean displacement of
a molecule in the adsorbed state is represented as  =
Dsτs, we obtain

 (3)

where Ws is the evaporation energy and Us is the activa-
tion energy for the transition between two equilibrium
positions separated by a distance a on the surface.
When the binding energy between carbon layers is
taken equal to 42 kJ/mol [13] (which corresponds to
0.435 eV per atom) with allowance made for the fact
that, in the general case, we have Ws/Us > 3, the value
of λs can be as great as ~104a. Therefore, the surface
diffusion can make the main contribution.

Ds a2ν1 Us/kT–( )exp=

1/τ s ν2 Ws/kT–( ).exp=

λ s
2

λ s a Ws Us–( )/2kT[ ]exp ,∼
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The diffusion flux along the surface toward the
formed step with height h, which corresponds to the
interlayer distance, can be written as

 (4)

where ns is the number density of adsorbed particles,
which determines the surface supersaturation σs =
ns/ns0 – 1. The equilibrium number density of adsorbed
particles is given by

 (5)

where n0 is the surface atom density. We assume that
the number nsv/τs = P(2πMkT )–1/2 of particles comes
from a vapor onto a unit area in a unit of time and that
the number ns/τs of particles evaporates back. From the
condition for the conservation of adsorbed particles, it
follows that

 

and the diffusion equation has the form

 (6)

If the number of defects in a soot particle is equal to Ξ,
the mean surface density of defects is defined by

 (7)

where SΣ =  is the total surface area of layers,
which for a spherical particle is represented as

 

Let us assume that the value of 〈ξ〉  is sufficiently large,
so that spherical surface regions between defects can be
approximated by planes. By using relationship (4) and
the boundary conditions σs = 0 near the step (high-rate
capture of adsorbed particles) and σs = σ far from the
step [3] with due regard for expressions (1), (2), and
(5), we obtain the following solution of Eq. (6) for the
rate of step motion v = –Js/n0:

 (8)

where σ = (P – P0)/P0 is the relative supersaturation and
P0 is the saturation carbon vapor pressure at a given
temperature. Factor 2 accounts for fluxes on both sides
of the step.

The mean time ti of the layer growth when the area
of the growth island reaches a value of ~1/〈ξ〉  is ti ~
1/〈ξ〉 1/2v, and the time of forming the whole globule is
defined by the relationship

 (9)

Js Dsgradns,–=

ns0 n0 Ws/kT–( ),exp=

divJs nsv ns–( )/τ s=

λ s
2∇ 2ns ns nsv–( )– 0.=

ξ〈 〉 Ξ /SΣ,=

Sii∑

SΣ 4π Ri i 1–( )h+[ ] 2

i 1=

N

∑=

=  2πN R1
2 R1 N 1–( )h+[ ] 2+{ } .

v 2aσν
3Ws Us+

2kT
----------------------– 

  ,exp=

tΣ N / ξ〈 〉 1/2
v .=
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The mean rate of particle growth in the direction nor-
mal to the surface is as follows:

 (10)

4. FEATURES OF PARTICLE GROWTH
FROM CARBON VAPOR

The supersaturation of a medium plays an important
role in growth from the gaseous phase, because it deter-
mines the driving force of the phase transition:

 

where µv is the chemical potential of a vapor and µs is
the chemical potential of a solid phase. The pressure P0
of equilibrium carbon vapor in the temperature range
2402–3199 K falls in the range 1.33 × 10–3–13.3 Pa
[13]. Upon thermal decomposition of hydrocarbons,
efficient soot formation usually occurs at temperatures
below 3000 K and pressures close or comparable to
atmospheric [9, 14, 15]. Therefore, the degree of super-
saturation of a gaseous medium, as a rule, is very high.
In our opinion, it is quite reasonable to assume that,
upon laser or arc graphite evaporation, the pressure of
nonequilibrium carbon vapor in local regions of high-
rate formation of soot particles also considerably
exceeds the saturation carbon vapor pressure.

It is common knowledge that carbon atoms have a
clear-cut tendency to aggregation, and the amount of
atomic carbon upon thermal decomposition of carbon
compounds is negligibly small. For example, the laser
evaporation of graphite results in the formation of clus-
ters Cn with n ≥ 2 [16]. According to Modak et al. [17],
the ignition of an electric arc across graphite electrodes
in toluene or benzene is accompanied by the formation
of clusters with n ≥ 4 in the solution. Upon combustion

of acetylene and benzene, ions Cn  with 3 ≤ n ≤ 19
were observed by Gerhardt et al. [7] in flame regions
with the highest temperatures.

The smallest-sized carbon clusters  are very
stable, and their dissociation energy lies in the range
~5–7 eV [18]. This is many times larger than the mean
thermal motion energy that is typical of soot formation
temperatures. Atomic carbon vapor can exist at ele-
vated temperatures. Particularly, reasoning from the
distribution of 12C and 13C isotopes in fullerenes, Ebbe-
sen et al. [19] drew the inference that atoms are com-
pletely mixed in an electric arc in which the tempera-
tures can be as high as ~10000°C [20].

As follows from the calculations performed by Yi
and Bernholc [21], a cluster with n = 2 can easily (with-
out an energy barrier) be incorporated into the structure
of a fullerene layer, which leads only to an increase in
the size of a closed shell. The reactions with C3 results
not in incorporation but in surface chemosorption. The
distance between a single adsorbed atom and the sur-
face turns out to be half as large as d002 of graphite. To

V N RN/tΣ.=

µv µs– ∆µ kT σ,ln= =

H3
+

C2–19
+

1
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put it differently, there are grounds to believe that the
soot formation has a cluster nature and soot particles
can efficiently grow at n > 2.

Clusters C6 play an important role in the formation
of closed carbon particles. Taylor et al. [22] demon-
strated that fullerenes can be efficiently synthesized by
pyrolysis of naphthalene C10H8 when C60 is built up of
clusters C10, i.e., double hexagons C6. The cluster
nature of the soot formation can be corroborated by the
following facts. The addition of aromatic or polyaro-
matic hydrocarbons to methane in amounts of ~1 vol %
brings about an increase in the number of formed soot
particles and the soot yield (the ratio between the
weights of soot and carbon in an initial material) by
several times. The soot yield is maximum (~95%) upon
burning of polyaromatic hydrocarbons [15] and mini-
mum (no more than 4% [23]) upon combustion of
methane. In other words, compared to simple hydrocar-
bons, the use of aromatic compounds as an initial mate-
rial can lead to the formation of a substantially larger
number of fullerene nuclei. Soot particles also readily
grow from clusters of hexagons C6 and their aggre-
gates. When atomic carbon is formed upon decomposi-
tion of an initial material, it can be assumed that the
process as a whole involves the stage of the formation
of hexagons C6 [24], including multiple hexagons. On
the other hand, it is difficult to justify limitations on the
growth from the Cn clusters, where 2 < n < 6. It seems
likely that the growth from C6 or clusters with the clos-
est sizes is most efficient. Growth directly from atomic
vapor is improbable.

5. EXPERIMENTAL DATA AND DISCUSSION

Upon soot formation, the supersaturation of a
medium determines the flow of matter and, as in usual
(for example, epitaxial) growth, the number of defects
Ξ. This is consistent with the data obtained by Guo et al.
[25]. Upon laser evaporation of graphite, a decrease in
the temperature of the furnace with an initial sample
(which is equivalent to an increase in σ) was attended
by an increase in the defectiveness of the resulting mul-
tilayer nanotubes.

According to formula (10), the growth rate of soot
particles depends on the degree of defectiveness,
because 〈ξ〉  determines the density of surface nuclei.
Actually, as follows from [9], the growth rate of pyrocar-
bon layers on the formed soot particles changes at the
initial stage. For acetylene soot obtained upon spontane-
ous (explosive) decomposition of C2H2 at temperatures
up to 3000 K, the growth rate increases by several times.
By contrast, for channel soot produced upon burning of
hydrocarbons in a laminar flow at T = 1550–1700 K, the
growth rate decreases several times. The growth rate in
different experiments reaches a steady-state value after
the deposition of carbon in amounts equivalent to
0.1−1.5 monolayers. This can be explained as follows.
The defectiveness of layers is increased in the channel
P

soot and decreased in the acetylene soot. Therefore, the
growth rate at the initial stage reaches a rate that corre-
sponds to defectiveness under the given experimental
conditions, i.e., to specific supersaturation.

As regards supersaturation, it is known that the crys-
tal growth rate at large σ is directly proportional to σ
for any growth mechanism [26]. A similar dependence
is observed for soot particles over a wide range of pres-
sures, specifically in the range from 0.1 Torr to 21 atm
for methane. The temperature dependences of the
growth rate on the Arrhenius coordinates are straight
lines with a negative slope [9, 14]. To put it another
way, the character of the dependences on σ, T, and 〈ξ〉
in relationships (8) and (10) is in agreement with exper-
imental data and, as a consequence, it can be assumed
that these formulas, as a whole, correctly describe the
main regularities of the particle growth process. Now,
we estimate the particle growth time from formula (9).
Let N = 100, which corresponds to a diameter of ~700 Å.
This diameter is typical of acetylene soot particles with
mean sizes. Let defectiveness (7) be such that there is
one imperfect ring for each 10–100 carbon rings. By
assuming that a particle is built up of C6 clusters at
T ~ 3000 K and σ ~ 104, we obtain tΣ ~ 1–3 µs, which
is close to the formation times of acetylene soot parti-
cles [9, 14, 15].

The total time � of soot particle formation can be
conveniently separated into the nonstationarity time tn,
the time tf of fullerene nucleus formation, and the par-
ticle growth time tΣ, that is,

 

The time tn is the time it takes for the size distribution
of clusters (that corresponds to the given conditions) to
be attained in a medium after “switching on” the super-
saturation, so that tn, in its meaning, can be considered
the induction time of fullerene formation. For a gaseous
phase, the time tn can be represented in the form [26]

 (11)

where nc is the number of atoms in a cluster of mass Mc

and w+ is the frequency of the attachment of atoms to
this cluster. For carbon clusters with nc = 6–18, the non-
stationarity times are approximately identical. For
example, under the conditions of the experiments carried
out by Gerhardt et al. [7] (temperatures up to 2000 K and
a pressure of 27 mbar), tn ~ 10–5 s. As was noted above,
the total time measured for the fullerene formation by
these authors (or tind in our designations) is no longer
than 1 ms [7]. In other words, with allowance made for
the estimate obtained from formula (11), we have
tind ≈ tf . The induction time is virtually independent of
the concentration and is determined by the temperature
and the type of the initial material. Upon combustion at
1500°C, tind is equal to 1.9 ms for acetylene and 0.9 ms
for toluene and is less than 0.22 ms for green oil (a mix-
ture of polycyclic hydrocarbons). On the other hand,

� tn t f tΣ+ + tind tΣ.+= =

tn nc
4/3/w+∼ nc

4/3 2πMckT( )1/2/Pac
2,=
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the times � are of the same order of magnitude. For
example, at tind ≈ 1 ms, we have � ≈ 4 ms. For acetylene
soot, at tind ≈ 2 µs, � ≈ 5–7 µs [9, 14]. Consequently, tf

and tΣ are also of the same order of magnitude and soot
particles grow very rapidly. It is known that the normal
growth rates VN for combustion processes are of the
order of several µm/s. Similar rates are also character-
istic of epitaxial films which grow at comparable (i.e.,
very high) supersaturations. These films are formed in
the amorphous or polycrystalline state due to the high
rate of their growth [26].

6. ON THE GROWTH MECHANISMS

The island (or Volmer–Weber) mechanism is real-
ized upon growth of soot particles, because the bonds
between atoms of a deposited material are stronger than
the bonds between these atoms and the surface on
which they are adsorbed. In this case, the following
condition should be met [26]:

 (12)

where α is the free surface energy, αs is the free adhe-
sion energy, ε1 is the binding energy between the near-
est atoms, and εs is the binding energy between the
adsorbed atoms and the substrate. In the case of carbon,
relationship (12) is fulfilled with a large margin. For the
island mechanism, the relation between crystal and
substrate orientations is weakly pronounced and the
surface diffusion is facilitated. Therefore, not only sin-
gle atoms but aggregates can migrate. For this reason,
the fact that estimates with the use of formulas (3) and
(8)–(10) were obtained for C6 clusters rather than for
carbon atoms, to a first approximation, seems to be rea-
sonable.

Normal rather than layer-by-layer (tangential)
growth is observed upon crystal growth under the con-
ditions of large supersaturations. Consequently, there
are grounds to believe that, upon growth of closed car-
bon particles, shells are not formed sequentially (one
after another), but several carbon layers grow simulta-
neously; in this case, each layer has a large number of
growth centers due to the high degree of defectiveness.
The annealing favors the same orientation and a
decrease in the number of defects. Just as amorphous or
crystalline epitaxial films crystallize upon annealing, so
turbostratum carbon structures (as is well known)
graphitize. For example, pyrocarbon transforms into
pyrographite at temperatures of ~3000 K. At these tem-
peratures, soot globules are polygonized [27, 28]; i.e.,
the layers become ordered, and plane surfaces in the
form of crystal facetings are formed in the initially
spherical particles. As a result, the graphitized soot, like
graphite, is chemically inert [29]. Faceted particles can
also arise upon their growth at high temperatures [5]. At
T > 3000 K, the sublimation of carbon brings about the
destruction of globules [30].

∆α 2α α s– ε1 εs–( )/a
2

0,>= =
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      200
The shape of a faceted particle can be analytically
described as an envelope of a set of planes in terms of
the Wulf theorem [2, 26]. In our case, it can be repre-
sented as

 (13)

where n is the normal to the particle surface at the point
specified by the radius vector r. When the normal growth
rate V is independent of time and a soot particle has a
spherical shape, it is easy to see that relationship (13) is
equivalent to formula (10) and that we have a sphere
instead of a set of planes.

Morphological stability is observed upon soot for-
mation, and dendritic forms are not formed despite the
large supersaturation. The particles retain their config-
uration, which is originally determined by the shape of
the fullerene nucleus. If the nucleus is formed under
isotropic conditions, the shape of a soot particle is close
to spherical. By contrast, particles with a lower symme-
try are observed in the case of preferential directions of
the physical fields and flows of matter, including, most
probably, a rather short-term (during nucleus forma-
tion) anisotropy. Moreover, the nucleus shape can
depend on the defect type.

7. CONCLUSION

All the foregoing allows us to make the following
inferences. The model proposed in [1] was confirmed
experimentally and theoretically. The growth of a
closed carbon particle can be treated as the formation of
pyrolytic carbon layers on a single-layer nanosubstrate
due to the vapor–solid phase transition. To put it differ-
ently, the formation of soot particles can be reduced to
a process similar to the crystal growth from the gaseous
phase with a number of specific features. In both cases,
the growth in a specified direction and at a sufficiently
high rate is realized only when the structure involves
broken chains with strong bonds. These bonds are
observed in the presence of defects.

A microscopic theory of soot formation is absent.
Apart from the problems discussed above, theoretical
interpretation of this process involves serious problems
when analyzing processes at the interface, because
atomic carbon is unlikely to make a considerable con-
tribution and the growth from clusters is theoretically
poorly understood. Moreover, an important role can be
played by the attendant nonstationary effects, which
were virtually omitted in our discussion.

Most likely, the soot formation is a unique process
which proceeds according to the same scenario irre-
spective of conditions. Rapid phenomena (combustion,
explosion, and electric arc) and the processes occurring
on a time scale of the order of tens of minutes (anneal-
ing of carbon black and production of thermal soot by
hydrocarbon pyrolysis) lead to the same result—the
formation of closed particles with concentric layers and
a fullerene-like core at the center.

rn( ) V n t,( ) t,d

0

tΣ

∫=
1
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Abstract—A new scheme of fullerene formation is proposed on the basis of the similarity between the exper-
imentally detected carbon structures. According to experimental data, the microclusters of C2 and C10 are syn-
thesized first and then either an intermediate nucleus cluster or an obtainable lower fullerene is assembled from
them. A high-symmetry fullerene can be assembled with a high probability from a nucleus cluster with a “good”
symmetry. The atomic and electronic structures of molecules such as C36, C60, C70, and C76 are analyzed. For
C36, the NMR spectra are calculated and compared with the experimental data. © 2001 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

The very fact of the existence of fullerenes with a
definite symmetry is astonishing, although the reasons
behind the formation of precisely such fullerenes
among the variety of carbon structures are unknown.
For example, only one isomer for C60 (Fig. 1) and for
C70 with the highest symmetry [1, 2] and, hence, with a
minimal entropy has been detected in a macroscopic
amount, although a much larger number of isomers can
exist theoretically for each molecule. It is not com-
pletely clear why only some fullerenes with a definite
symmetry are formed under identical conditions. In all
probability, a comparison of the peculiarities in the
structure of the existing molecules with the theoreti-
cally constructed fullerenes would clarify the mecha-
nism of formation of carbon-based nanostructures.

1. A REVIEW OF SOME MODELS

The first assumption explaining the formation of
fullerenes was that fragments of monolayers ejected
from the surface of evaporating graphite are coiled into
a spherical molecule [1, 3]. However, subsequent
experiments with carbon isotopes proved that the
growth of fullerenes begins from monatomic vapor.
According to the experimental data [4, 5], the conden-
sation of carbon atoms follows the following scheme:
after the complete mixing of atoms in a plasma, clusters
grow in the form of linear chains. After the chain length
becomes ten or more atoms, the chains are closed to
form stable ring-shaped structures.

At present, several models of the synthesis of
fullerene molecules exist [6–11]. These models are
mainly constructed using the methods of molecular-
1063-7834/01/4305- $21.00 © 20973
dynamic simulation. We will consider models of two
types: the droplet model [7–9] and the model of poly-
cyclic structures [10].

In the droplet model, the following mechanism of
fullerene formation from the supersaturated carbon
vapor is proposed. At the initial stage of the process
(condensation), nanosize nuclei are formed. With
decreasing temperature, the nuclei are grouped into
clusters whose size increases and the structure becomes
more and more complex, leading to the formation of
fullerenes. Thus, according to the droplet model, the
formation of carbon molecules passes through the fol-
lowing three stages: the formation of a nuclei in the
form of small linear clusters and their branching; the
formation of cycles and of a two-dimensional surface;
and the growth of the surface and its closure into
fullerene structures.

The droplet model explains the growth of “droplets”
(fullerenes) as the result of collisions. The structural
rearrangement occurs during the annealing between
collisions. However, this model has a number of obvi-
ous drawbacks. In particular, it fails to explain the for-
mation of high-symmetry molecules and the absence of
structural isomers. For example, apart from the Ih sym-
metry (Fig. 1), C60 can theoretically exist in the form of
a molecule with symmetry D2d, C2, C2v, D5, etc. Along
with the experimentally obtained molecules, the theory
erroneously predicts the highly probable formation of
undetected fullerenes such as C58.

In the model of polycyclic structures [10], for N >
20 (N is the number of carbon atoms), clusters are
formed whose structure is interpreted as two coupled
rings in the form of a propeller. For N > 30, clusters
appear in the form of three coupled rings resembling a
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Some isomers of fullerene C60.
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flower bud, and so on. The relative concentration of
such polycyclic structures increases with the cluster
size, significantly exceeding the concentration of sim-
ple rings for N > 30. It is assumed that the growth of
coarse clusters occurs predominantly through the coag-
ulation of ring structures. Aleksandrov et al. [10] ana-
lyzed the coiling into a fullerene of the structures con-
P

sisting of three rings connected to form a bud or a three-
blade propeller. The formation occurs through the con-
nection of the nearest atoms at the base of the structure
and resembles the closing of a bud. The fullerene
formed in this way has an ellipsoidal shape and con-
tains adjacent pentagons (it can also have heptagonal
cycles). Subsequently, the pentagons grow apart over a
HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
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Table 1.  Heat of formation for isomers of fullerene C78 cal-
culated using the Hartree–Fock semiempirical method PM3

Fullerene Heat of formation, 
K/mol

Experimentally 
detected fullerenes [13]

C78–C2v 6100 +

C78– 6075 +

C78–D3 6115 +

C78–D3h 6110 –

C78– 6185 –

C2v'

D3h'
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sphere (as in the droplet model), which leads to a
decrease in the angular stress in the structure (Stone–
Wales isomerization [12]).

The model of polycyclic structures cannot explain
the absence of intermediate fullerenes such as C62, C64,
C66, etc., as well as the isomers of C60 and C70. In view
of its reversibility, the Stone–Wales isomerization gen-
erally presumes the existence of several structural iso-
mers for a fullerene, e.g., for C60. However, it can be
seen, for example, for higher fullerenes (Table 1) that
not all isomers are formed in spite of all the premises
including the small difference in energy. The model
also predicts a high probability for the existence of
Table 2.  Maximum and minimum atomic spacings in fullerene molecules*

Fullerene
Bond length, Å

Fullerene
Bond length, Å

min max min max

1 C20–Ih 1.45 1.52 25 C54–C2v 1.38 1.49

2 C24–D6h 1.38 1.52 26 C56–D2 1.36 1.49

3 C26–D3h 1.38 1.50 27 C58–Cs 1.35 1.49

4 C28–Td 1.39 1.54 28 C60–Ih 1.38 1.46**

5 C30–C2v 1.36 1.53 29 C60–C2 1.37 1.48

6 C30–D5h 1.39 1.50 30 C60–C2v 1.45 1.49

7 C32–D2 1.39 1.52 31 C60–D2h 1.35 1.50

8 C32–D3 1.39 1.51 32 C60–D5d 1.38 1.49

9 C34–C1 1.39 1.52 33 C62–C2 1.37 1.48

10 C36–D2d 1.38 1.50 34 C64–D2 1.39 1.48

11 C36–D3h 1.37 1.49 35 C66–C2 1.38 1.48

12 C36–D6h 1.41 1.50 36 C68–C2 1.39 1.48

13 C38–C2 1.36 1.53 37 C70–D5d 1.38 1.46***

14 C40–D2 1.37 1.51 38 C76–D2 1.37 1.47

15 C40–D2h 1.35 1.53 39 C76–Td 1.37 1.48

16 C40–D5d 1.40 1.51 40 C78–C2v 1.36 1.47

17 C40–Td 1.39 1.49 41 C78– 1.36 1.48

18 C42–D3 1.37 1.50 42 C78–D3 1.37 1.47

19 C44–D2 1.37 1.50 43 C78–D3h 1.35 1.48

20 C46–C2 1.37 1.50 44 C78– 1.36 1.46

21 C48–C2 1.38 1.50 45 C80–Ih 1.39 1.47

22 C50–C2 1.40 1.49 46 C84–D2 1.36 1.47

23 C50–D5h 1.38 1.48 47 C84–D2 (helical) 1.36 1.46

24 C52–C2 1.37 1.49 48 C84–D2d 1.36 1.47

49 C84–Td 1.36 1.46

    * The average of the minimum values is 1.38 Å; the average of the maximum values is 1.49 Å.

  ** Experiment: min 1.37 ± 0.01; max 1.47 ±  [2].

*** Experiment: min 1.39 ± 0.01; max 1.44 ± 0.01 [2].

C2v'

D3h'

0.01

0.03 
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molecules which have not been detected experimen-
tally.

The electronic structure has been disregarded in the
current models of fullerene formation. Simulations of
the synthesis conditions have been carried out using the
methods of molecular dynamics on the basis of model
potentials which do not reflect the complex electronic
structure at plasma temperatures (3000 to 5000 K).

The present work is devoted to an analysis of the
electronic structure and the energy parameters of the
possible fullerenes in the ground state in order to deter-

–20 –10 0
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Fig. 2. Total electron densities of states for some fullerene
molecules (bold curves correspond to experimentally
detected structures).
P

mine the potential difference between the experimen-
tally detected and undetected molecules. The problem
was solved using the quantum-chemical approach.

2. QUANTUM-CHEMICAL ANALYSIS

In order to calculate the equilibrium atomic and
electronic structures, we applied the Hartree–Fock
semiempirical quantum-chemical method PM3 using
the program GAMESS [14]. The choice of the quan-
tum-chemical approach was dictated by the fact that the
application of semiempirical quantum-chemical meth-
ods reduces the computer time as compared to the ab
initio methods. At the same time, the results obtained
by using ab initio and semiempirical quantum-chemi-
cal methods are in good agreement. Semiempirical
methods correctly describe the electronic structure, as
well as the equilibrium geometry of the C60 and C70
molecules (Table 2 also presents, for comparison, the
experimental results obtained in [2]). It was proved in
[15] that the semiempirical MNDO and PM3 methods
reproduce the results obtained by ab initio calculations
(3–21G) and provide a satisfactory description for the
experimental photoelectronic-microscopy data [16].
The semiempirical methods successfully describe car-
bon-based systems such as fullerenes. Thus, the choice
of the semiempirical methods for such systems is quite
justified.

In order to determine the behavior of carbon clusters
in the atomic and electronic structures, we consider
here the maximum number of theoretically possible
and experimentally obtained carbon clusters and their
isomers. In all, 49 fullerenes were constructed, from
C20 to C84 [13, 17–21]. First of all, we considered the
experimentally observed fullerenes C60–Ih, C70–D5d,
C78–C2v, C78– , and C78–D3 [1, 2, 13] and their iso-
mers, as well as intermediate fullerenes such as C40,
C42, …, C62, C64, …. The choice of the isomers was
determined by the computer time and by their reason-
able number (for example, about five hundred different
isomers with trigonal, tetragonal, pentagonal, hexago-
nal, and heptagonal cycles can be constructed for C36
[20]).

Table 2 gives the bond lengths in fullerene mole-
cules. In view of a considerable spread in the values of
bond lengths, only the minimum and maximum nuclear
spacings were taken for the analysis. It follows from
Table 2 that the minimum lengths of the bonds for all
the molecules presented here lie in the same interval
with an average minimum bond length of 1.38 Å. The
same is true of the maximum bond lengths for which
the average value is 1.49 Å. Proceeding from the fact
that the nuclear spacings for various types of bonds lie
in definite intervals, we can assume that the atomic
structures of these fullerenes are identical.

The total densities of states were constructed as the
energy spectrum of a cluster in which the energy of
each molecular orbital was presented as a line, and the

C2v'
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Fig. 3. Dependence of the total energy per atom on the molecular weight of fullerenes.
intensities of all lines were assumed to be equal to
unity. Further, each line was replaced by the Gaussian
distribution with a half-width of 0.4 eV, and the inten-
sities of all the distributions for each energy value were
summed. The electron density distribution in Fig. 2
shows the absence of any basic difference in the struc-
tures of the top of the valence bands, primarily in the
gap width and the shape of peaks both for known
fullerenes and for undetected molecules.

An analysis of the dependence of the total energy
per atom on the molecular weight of fullerenes (Fig. 3)
indicates a general tendency towards an increase in the
fullerene stability upon an increase in their molecular
weight. It can be seen from this dependence that the
choice according to the total energy per atom in the pro-
cess of the formation of molecules does not play any
significant role. For example, the energies of formation
of the experimentally detected fullerenes C60 and C36
differ approximately by a factor of two, but no interme-
diate fullerenes (C38, C40, C42, C44, etc.) were detected
in macroscopic amounts in spite of the fact that their
energies of formation lie in the interval between those
for C60 and C36.

The right-hand side of the graph in Fig. 3 shows that
the difference in the total energy for higher fullerenes is
small. This can apparently be explained by the fact that
the isomeric effect does not play any significant role
here as, for example, in the case of lower fullerenes
since pentagons in different isomers are in isolated
states. Thus, judging from the energy criterion, all iso-
mers of higher fullerenes must exist since the energy
difference between them is small (see Table 1).

A comparison of the electron densities, the bond
lengths, and the binding energies of the theoretically
predicted molecules shows that, from the viewpoint of
the electronic and atomic structures, all fullerenes can
rightfully exist. The entropy does not noticeably affect
the formation of fullerenes either since isomers with
the highest symmetry (Ih for C60) are predominantly
formed. Consequently, it can be concluded that the pos-
HE SOLID STATE      Vol. 43      No. 5      2001
sibility of the formation of a certain isomer of a
fullerene cannot be determined proceeding from the
atomic and electronic structures and energy stability.

Thus, while constructing the model of the fullerene
synthesis on the basis of the analysis of the atomic and
electronic structures of calculated carbon clusters, we
must exclude such factors as the energy advantage of a
certain fullerene or an isomer, the peculiarities of the
electronic structure, and the binding energy for the
obtained fullerene. Proceeding from the above-men-
tioned factors, it is impossible to construct a model cor-
rectly describing the obtaining of only certain
fullerenes and, hence, it is impossible to select the
existing molecules by comparing their energies. Conse-
quently, we must determine other conditions affecting
the process of fullerene formation.

3. MODEL OF SYNTHESIS–ASSEMBLING
OF FULLERENES

After the quantum-chemical analysis was com-
pleted, we endeavored to find some other differences
morphologically between the obtained and undetected
molecules on the basis of the above conclusions. For
this purpose, we considered the mutual arrangement of
pentagons and hexagons, as well as the fullerene syn-
thesis conditions.

The experiments show (see above, as well as [4, 5])
that first the C2 (“twos”) and similar structures, as well
as the ring structures with a size starting from ten
atoms, are synthesized in the plasma from a monatomic
vapor, the presence of C10 (“tens”) being regarded as
preferable [10]. On the basis of these experimental
data, molecules were disassembled into their compo-
nents with the subsequent recognition of similar frag-
ments among detected molecules and with revealing
the differences between the experimentally observed
and the possible fullerenes.

While disassembling the experimentally detected
fullerene molecules (C60 with Ih, C70 with D5h, C78 with
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C2, C10 C36–D6hC36–D3h

C60–C2vC60–IhC52–C2

C70–D3hC62–C2C70–D5d

Fig. 4. Various fullerene molecules disassembled visually into components, in which the common fragments C2 and C10 are singled out.
C2v, C78 with , C78 with D3, etc.) into components,
we paid attention to the fact that all the existing
fullerenes have similar fragments C2 and C10 or only the
fragment C10 (in the form of a doubled hexagon), as in
the case of C60 (Fig. 4). The remaining (undetected)
fullerenes contain additional fragments in the form of
hexagons, solitary carbon atoms, etc., which are not
encountered in the experimental data. Consequently,
while analyzing the model of fullerene synthesis, we
must presume that at a certain stage, fullerenes are
probably synthesized via the C10 and C2 structures,
which are combined into the “initial” carbon cluster,
viz., a nucleus cluster.

Let us now consider a possible process of formation
of molecules such as C60 and C70. At the first stage, car-
bon structures are synthesized in the form of linear
chains from a monatomic plasma flow [4, 5]. At the sec-
ond state, the linear structures are closed when the
chain length comprises ten or more atoms. Judging
from the experimental data, the formation of twos and
tens is preferential [10]. Then these structures succes-
sively collide and coalesce to form carbon nucleus clus-
ters. At this stage, the C2 microclusters are also
absorbed in the case of C70.

Figure 5 shows a possible course of the formation of
carbon clusters. The end product of the synthesis is

C2v'
P

determined by the symmetry of the nucleus cluster. The
figure illustrates a possible course of the synthesis for
C60 and C70 molecules (in the case of C70, five more C2
fragments are added). For fullerene molecules with the
number of atoms greater than 70, the number of frag-
ments in nucleus clusters can exceed three and the
dimension of the fragments themselves may be larger.

As the number of nucleus clusters increases, they
start colliding, which leads to assembling large clusters
followed by crystallization into fullerene molecules. At
this stage, we must pay attention to the symmetry of the
nucleus clusters obtained, which determines the num-
ber of effective collisions leading to the growth of the
carbon skeleton. In the case of C60, the nucleus cluster
has the principal symmetry axis C3 (see Fig. 5 (4)). In
the given case, this is apparently the optimal symmetry
since three ways of bonding with a similar cluster are
possible (each time, through an angle of 2π/3) (see
Fig. 5 (5)). It is perhaps for this reason that the proba-
bility of the formation of a fullerene on the basis of a
nucleus cluster with a low symmetry (C1) is low,
because the cluster structure contains surface regions
inaccessible for effective collisions which may lead to
the formation of a closed system such as a fullerene.

It should be emphasized that the scheme of assem-
bling presented here is not the only possible scheme;
HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
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the formation of the initial clusters with another sym-
metry and, hence, with a different probability of assem-
bling into a fullerene is also possible.

Piskoti et al. [21] recently synthesized the lower
fullerene C36 in a macroscopic amount. At the same
time, they investigated the obtained fullerene by using
13C NMR spectroscopy and compared the results with
the theoretical NMR spectra for various hypothetical
isomers of C36. We used the synthesis–assembling
model constructed by us to analyze the lower fullerene
C36 and to find its isomer which can be formed in accor-
dance with the results of the NMR experiments. It fol-
lows from spatial considerations (see Fig. 4) that in all
probability the formation of C36 with D3h is easier and
preferred.

Piskoti et al. [21] stated that the NMR spectrum cor-
responds to the D6h symmetry. However, the experi-
mental spectrum obtained with such a resolution can be
interpreted in a different way. To this end, we theoreti-
cally calculated the 13C NMR spectra for three isomers
of C36: with D6h, D2d, and D3h (the first two correspond
to the fullerenes reported in [21]) by using the GIAO
method with the 6–31(d) basis. The experimental spec-
trum was compared with our theoretical NMR spectra.
It can be seen from Fig. 6 that the theoretically calcu-
lated spectrum of the molecule with symmetry D6h may
correspond to the experimental spectrum. It should be
noted that the peak in the experimental spectrum with a
chemical shift ~137.5 ppm has a relatively larger half-
width than the peak with ~149 ppm, although the areas
under these peaks are approximately equal (see
Fig. 6b). For this reason, two lines in the peak with the
larger amplitude (with a chemical shift of 149 ppm) are
closely spaced and give an amplitude twice as large as
that in the peak with 137.5 ppm. Similarly, the latter
peak may also contain two lines, but their separation is
larger than in the peak with 149 ppm; consequently, the
137.5 ppm peak has a larger half-width but a smaller
amplitude. The broadening of the peak with the
137.5 ppm shift cannot be explained by the existence of
only one isomer with D6h (see Figs. 6c, 6d) as in [21].
The situation is possible when the system contains
other isomers, e.g., with D3h (see Fig. 6e), which can
explain the experimentally observed broadening of the
137.5 ppm peak. In our opinion, the isomer with the D3h

symmetry is advantageous from the spatial consider-
ations (see Fig. 4), although it is less advantageous
from the energy point of view (see Fig. 3).

Thus, the synthesis–assembling model of carbon
structures presented above can explain the existence of
structures C36, C60, C70, … and the absence of many
lower fullerenes; the intermediate structures between
C60 and C70 (such as C62, C64, C66, …); and the struc-
tural isomers of the C60 and C70 molecules, as well as
the absence of a large number of isomers for the mole-
cules of higher fullerenes since they cannot be assem-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
bled from the intermediate clusters C10 and C2. Conse-
quently, the assembling of fullerenes is determined by
the symmetry of the nucleus cluster obtained and by the
symmetry-dependent probability of the effective colli-
sion between the fragments of clusters in the plasma.
These factors determine the molecular weight of
fullerenes, as well as the number of molecules with a
definite symmetry being synthesized.

4. CONCLUSIONS

Our results can be summarized as follows.

(1) In order to develop the model of the formation
of carbon clusters, we theoretically constructed
49 fullerenes. First of all, the experimentally detected

A B
3

1

2

1 2

3

1

2

3

4

5

Fig. 5. Hypothetical scheme of synthesis–assembling of
fullerene molecules: (1) formation of carbon chains from a
monatomic vapor; (2, 3) the result of collision of ring struc-
tures leading to the formation of one of the possible nucleus
clusters; (4, 5) three possible ways of collision between
nucleus clusters A and B (1A–1B, 2A–2B, 3A–3B), (1A–2B,
2A–3B, 3A–1B), (1A–3B, 2A–1B, 3A–2B).
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molecules C60–Ih, C70–D5d, C78–C2v, C78– , and
C78−D3 and their isomers were constructed. Since the
symmetry of C36 is unknown as yet, we constructed three
isomers with D6h, D2d, and D3h. We also considered inter-
mediate fullerenes such as C40, C42, …, C62, C64, ….

(2) The existence of any fullerene with five- and six-
atom cycles in the structure is not forbidden from the
viewpoint of the atomic and the electronic structure.

(3) The synthesis–assembling model was verified
for the recently discovered lower fullerene C36. On the
basis of our model and from a comparison with the
experimental NMR spectra, it can be predicted that the
formation of fullerene C36 with D3h is most probable.

(4) We proposed a possible scheme of the formation
of fullerene molecules on the basis of “twos” and
“tens,” which was developed from the similarity of the
experimentally detected molecules (their components)
and, accordingly, from the difference between the
experimentally obtained fullerenes and hypothetical
carbon clusters. In this model, the effect of the elec-
tronic structure and the energy parameters as factors in
the process of high-temperature synthesis can be
regarded as insignificant. The Stone–Wales isomeriza-
tion should apparently also be disregarded.

The impossibility of a correct quantum-chemical
simulation under the conditions of the high-tempera-

C2v'
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Fig. 6. The 13C NMR spectrum for the lower fullerene C36:
(a) experimental spectrum from [21]; (b) experimental spec-
trum; (c) calculated spectrum for C36 with D6h from [21],
(d) our calculation of the spectrum for C36 with D6h, and
(e) our calculation of the spectrum for C36 with D3h.
P

ture synthesis of fullerenes necessitates the construc-
tion of formal phenomenological models based on the
experimental data concerning the behavior of carbon
atoms in the plasma and on the indirect evidence based
on the morphological similarity between the experi-
mentally detected carbon clusters.

The probability of effective collisions resulting in
the formation of a fullerene with a high symmetry is
higher for nucleus clusters with a high symmetry. Con-
sequently, the form of the nucleus cluster determines
the symmetry of the future fullerene, its molecular
weight, and the number of molecules being synthe-
sized.
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Abstract—Earlier, we found the energies of formation and the electron band structures of the fullerene
molecule C60 and its methylated and hydrogenated chemical derivatives with saturated r6 bonds of the type
C60(CH3–r6–H)n with n from 1 to 6. Based on the self-consistent molecular-orbital method, we found the ener-
gies of singlet and triplet excitations for each molecule by the ∆SCF technique. We compared the electron struc-
ture of the fullerene molecule with experimental data and other theoretical calculations and showed that the
semiempirical quantum-chemical technique used in our work satisfactorily explains the experimental photolu-
minescence spectra of fullerene-containing star-shaped polystyrenes. Partial or complete removal of the dipole
inhibition for the transitions in isomers that are formed upon chemical saturation of double bonds makes it pos-
sible to follow changes in the electron structure of the pπ shell of the fullerene molecule by spectroscopic tech-
niques. Specific optical spectra of the first excited singlet states (spectra of absorption, luminescence, and exci-
tation of luminescence) as well as phosphorescence of the first spin–triplet state are described. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Let us consider a chemical modification of a
fullerene molecule in which a partial saturation of the
covalent bond r6 that separates two hexagonal faces of
the fullerene molecule occurs. The corresponding
derivatives with n saturated bonds will be designated
C60(R1–r6–R2)n. Such a modification occurs, e.g., upon
the methylation of fullerene, when the radical is the
CH3 group, or upon hydrogenation, when the radical is
a hydrogen atom. The chemical synthesis of fullerene-
containing star-shaped polystyrenes [1] leads to a
mixed saturation of the type C60(CH3–r6–H)n, where
the methyl group represents a polymer chain attached
to a fullerene.

The tight-binding model [2] and quantum-chemical
calculations [3] show that the change of the electron
structure of the pπ shell upon such chemical modifica-
tion can be described through the effect of the nearest
monomeric unit, e.g., the methyl group. These theoret-
ical conclusions are confirmed by the photolumines-
cence spectra of films and solutions of fullerene-con-
taining star-shaped polystyrenes with a variable num-
ber n of covalently attached polymer rays [2, 4].

Earlier, we found the energies of formation and the
electron structures of the fullerene molecule C60 and its
methylated and hydrogenated derivatives with satu-
rated bonds r6 of the type C60(CH3–r6–H)n with n from
1 to 6 [3]. The calculations were performed using a
quantum-chemical program with a semiempirical
parametrization (INDO) in the RHF (restricted Hartri–
1063-7834/01/4305- $21.00 © 20982
Fock–Roothan) approximation, since all the above
molecules have a closed electron shell (the standard
quantum-chemical terminology is used [5]). It was
found in particular that the highly symmetric isomers
of fullerene, whose saturated bonds are located uni-
formly over the fullerene surface, have a greater heat of
formation than the low-symmetrical ones and, there-
fore, must be formed in a greater concentration. Based
on the self-consistent molecular-orbitals (MOs) method,
the energies of singlet excitations were found by the
∆SCF technique for each molecule. These calculations
make it possible to represent the shape of the optical
spectra of a real mixture of isomers that is formed as a
result of the reaction of chemical synthesis and predict
how the type of location of saturated bonds affects the
polarization dependences.

The aim of this work was as follows:

(1) to complement the spectrum of singlet states [3]
with triplet states for both the C60 molecule and its iso-
mers with saturated bonds;

(2) to compare the obtained electron structure of the
fullerene molecule with experimental data and other
theoretical calculations; and

(3) to clarify to what extent the semiempirical quan-
tum-chemical method used in this work is adequate for
the explanation of experimental spectra of photolumi-
nescence of fullerene-containing star polystyrenes [2].
001 MAIK “Nauka/Interperiodica”
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1. EXCITED STATES 
OF THE FULLERENE MOLECULE C60

In the figure below, we give, along with the results
of calculations of lower singlet excitations [3], new
data on the lower triplet excitations of the fullerene
molecule and its most symmetrical isomers with three
and six saturated bonds. The ∆SCF calculation method
is described in the Appendix; the dimensionality of the
expansion was from 591 to 597 determinants, depend-
ing on the irreducible representation of the term sought.
The excitations of all types with energies that are
greater than those shown in the figure form an almost
continuous spectrum that begins from the upper levels
shown in each band.

The experimental data on the photoluminescence of
polymers with covalently bound fullerene [2] can suc-
cessfully be interpreted with the help of the right-hand
half of the figure if the calculated spectrum of the
fullerene molecule shown in the left-hand side of the
figure is correctly compared with the experiment.

On the whole, the spectrum of excitations agrees
with the present-day concepts of the C60 molecule (the
references below are given not only and not necessarily
to the pioneering works, but rather to recent and com-
prehensive or review papers).

(1) There is a low-located singlet state S1 (1T2g =
2.220 eV [3] in the figure); corresponding transitions
are shown by dashed arrows. The marking S1 shows the
level 0–0 from which the electron-vibrational lines that
are observed in the optical spectra are measured. In
experiments, the dipole-forbidden transitions between
S1 and the ground state S0 can be detected in many
ways, e.g.,

(a) in the optical absorption and luminescence of
solutions [6–9], e.g., upon freezing to helium tempera-
tures [10]; S1 ≈ 1.88 eV was obtained from the mirror-
symmetry rule of the luminescence spectra (the lower
marking in the figure);

(b) in the spectra of photoexcited luminescence (flu-
orescence) from cryocrystal matrices of Ne and Ar [11]
and in the spectra of two-photon ionization in the gas-
eous phase [12]; S1 ≈ 1.94 eV was obtained by extrapo-
lation of the line spectra based on quantum-chemical cal-
culations of the oscillator strengths upon electron-vibra-
tional transitions (the upper marking in the figure);

(c) in the spectra of energy losses of protons H+ and

 ions [13], there are maxima at 2.26 and 1.9 eV,
which fall into the range of optical absorption related to
the dipole-forbidden singlet transitions.

(2) The dipole-allowed optical electron transition
S0  Sn (for the symmetry group Ih, this the 1Ag 
1T1u transition) is separated from the dipole-forbidden
transitions. In the figure, the allowed transition is
shown by a solid arrow from the ground state into the
state 1T1u = 2.764 eV (which was calculated in our pre-

H2
+
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vious paper [3]). In the experiment, this transition is
related to a narrow line in the spectrum of optical
absorption whose position is only slightly affected by
the surroundings of the molecule, irrespective of
whether these are the molecules of the solvent or crys-
tal. For a solution of C60 in toluene, this is the line at
3.05 eV (407 nm) [14] marked in the figure by Sn. In the
spectrum of optical absorption, this line is separated
from the absorption band caused by electron-vibra-
tional transitions by a wide dip, which can be related to
the absence of singlet solutions in the range of 2.220–
2.714 eV in the figure.

In the spectrum of energy losses of protons H+ [13],
the dipole-allowed transition is associated with the
maximum 2.98 eV. That fact that it is not so sharp as in
optics (although the authors of [13] note that it is the
sharpest of all scattering peaks) can be explained by the
insufficient selectivity of the method in symmetry; it is
seen from the figure that, according to our calculation,
there are singlet states 1T1g, 1Gg, 1T2u, and 1Gu close in
energy near 1T1u.

Results of calculations, using the ∆SCF method, of excited
states of the fullerene molecule C60 and its derivatives of the
type C60(CH3–r6–H)n. Designations of the excited states:
squares stand for singlet states; triangles, triplet states; solid
symbols, even states; and open symbols, odd states. The
degeneration (1–5 for the fullerene and 1–2 for its deriva-
tives) is indicated by the number of symbols given at a spec-
ified level. The numerals 1 and 2 near the orbital triplets of
the molecule distinguish the T1p and T2p representations
(p = g, u stands for the parity). The spectra of the fullerene
derivatives are ordered with respect to the energy of forma-
tion [3]; to the left in each line with a given n, the spectrum
of the basic isomer is shown. The spectra of isomers are
marked by their symmetry group and by the type of the loca-
tion of saturated bonds [3]. The asterisks correspond to
experimental data. The solid arrows show dipole-allowed
transitions; dashed arrows, dipole-forbidden transitions; and
wavy arrows, spin-forbidden transitions.
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(3) The triplet excitations of the C60 molecule man-
ifest themselves in the kinetics of the luminescence of
the singlet excited state S1 and, possibly, in the spectra
of energy losses of  ions [13], when spin transfer
from electrons of the fullerene to the electron of the
scattered ion is possible. An analysis of the kinetics of
luminescence was performed for the model with a sin-
gle triplet state T1 below S1 and led to the magnitude of
the singlet–triplet energy gap S1 – T1 = 35 ± 2 kJ/mol =
0.36 ± 0.02 eV [6] (in the figure, two of the three mark-
ings T1—the upper and the lower—were obtained by
subtracting this experimental value from S1). Accord-
ing to our calculation, there are four singlet states into
which the singlet excitation S1 can “overflow” as a
result of internal conversion rather than one; two of
them are the low-lying states 3T2g = 1.414 eV and 3Gu =
1.750 eV and it is these states to which the low-energy
wing of the luminescence band could be related. 

The luminescence of the triplet state (phosphores-
cence) was observed only at helium temperatures [10].
To provide this luminescence, spin–orbit interaction,
which removes the transition inhibition, should be
increased; this can be made by adding substances with
heavy atoms to the solution (in the above-cited work,
ethyl iodide C2H5I was used). In the figure, the middle
marking T1 = 12531 cm–1 ≈ 1.55 eV represents the
experimental position of the phosphorescence maxi-
mum [10].

Note that the term 3T2g is the most low lying excita-
tion of the molecule C60 according to all electron-struc-
ture calculations, whereas the data concerning the low-
lying singlet states exhibit substantial scatter, which
will be considered below. Two triplet states, 3T1u and
3T1g, according to calculations, are close in energy to
the first singlet excitation; their existence can explain
the extremely efficient internal conversion of the mole-
cule C60 after the optical excitation S0  S1 [14]. In
the figure, this hypothetical transition with small
energy transfer, caused by spin–orbit interaction, is
shown by a wavy horizontal line; after this transition,
the energy can drop rapidly through the triplet levels.

(4) Optical absorption on triplet transitions T1 
Tm in the band with a maximum at 740 nm (1.68 eV) is
observed upon the application of the excitation S0 
S1 [15, 16]. These experiments made it possible to
relate the lifetime of the triplet state T1 at various tem-
peratures to the density of vibrational modes of the
molecule both in the gaseous and condensed phases
[17]. If we assume that the maximum is associated with
a dipole-allowed transition, this transition should be
3T2g  3Gu, 3Hu. According to our calculation, the
low-lying states 3Gu = 1.750 eV and 3Hu = 2.510 eV do
not fit the role of the final state Tm in energy in the
experimental spectrum. The IR radiation corresponding
to these transitions is possibly not detected at room
temperature in solutions; or the matrix elements of

H2
+

P

these dipole transitions are small. The next excitation of
the dipole related to the ground triplet excitation,
3Gu(2) = 3.026 eV (the highest of the triplet excitations
in the figure), can already be compared in energy with
the experimentally observed state Tm; this is shown in
the figure by a solid arrow.

Turning to the scattering spectrum of  ions [13],
we find that, most likely, the Tm state is located in the
band with a maximum at 3.2 eV: it is only for this band
that we obtain T1 ≈ 3.2 – 1.68 = 1.52 eV (≈820 nm),
which lies in the above-indicated ranges of fluores-
cence and phosphorescence. Of course, this is a very
rough estimate of the position of the ground triplet
state, since the scattering spectra in [13] are given on a
coarse scale; however, the method itself is a substantial
supplement to optical experiments, being selective in
spin and nonselective in the dipole moment of excita-
tions.

(5) The optical excitation of even singlet states
S1  Sm occurs in the absorption band with a maxi-
mum at 910 nm (1.36 eV; reckoned from S1 in the fig-
ure) [15]; the solid arrow corresponds to the dipole-
allowed transition 1T2g  1Gu(2) between the corre-
sponding calculated states.

Thus, the above quantum-chemical calculation sat-
isfactorily describes the whole body of experimental
data concerning the excited states of the molecule C60;
the deviation of experimental markings from the calcu-
lated values is ±(0.1–0.3) eV (it is shown in the figure
by brackets drawn to the left from the energy axis). The
error is due to the need for restricting the ∆SCF method
in the dimensionality as well as for ignoring the elec-
tron correlations in the energy and wave function of the
ground state in the Hartree–Fock approximation [18].

The only large discrepancy with some theoretical
methods concerns the position of the even singlet states
1T1g and 1Gg with respect to the first singlet excitation
S1 = 1T2g; the gap between them was found to be S2 –
S1 ≈ 0.5 eV. The basic contribution to all even states
comes from the transitions between the HOMO and
LUMO states hu  t1u: already in terms of such a
15-dimensional ∆SCF problem the gap proves to be
about 0.2 eV. This means that the discrepancy between
the results of semiempirical calculations of the S2 – S1
gap is most likely to be due to the contribution of inter-
electron integrals of a certain type [5], which, although
only insignificantly affecting the electron structure of
the ground state, prove to be substantial in the ∆SCF
approximation. The INDO (intermediate neglect of dif-
ferential overlap) parametrization used in this work
takes into account a greater number of types of two-
center interelectron integrals and, therefore, is more
preferable than the CNDO/S parametrization (complete
neglect of the differential overlap), which was used
when the small value of S2 – S1 ≈ 50 cm–1 was obtained
in [11]. In view of the low accuracy of quantum-chem-

H2
+
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ical methods, we cannot rely on the fact that the levels
of different symmetry proved to be close in energy; this
small value has also not been confirmed by calculations
based on other parametrizations [19]. Nevertheless, the
model with three closely lying excited singlet states is
assumed to be correct [19, 20] since it quantitatively
explains the large number of electron-vibrational lines
in the optical spectra of fullerene molecules in cryoc-
rystalline matrices [11, 12].

On the one hand, the quantitative simulation of
spectra in [11] is based on a quantum-chemical estima-
tion of oscillator strengths for various singlet excita-
tions, and the good agreement with experiment indi-
cates the validity of the calculation technique used. On
the other hand, the role of empirical factors upon simu-
lation is too large: the calculation is based on a large
number of close vibrational frequencies that are known
from experiment, which does not always permit one to
strictly identify the type of vibration; the spectrum
shapes were obtained after an adjustment of the
“weights of radiating states” 1T2g, 1T1g, and 1Gg, which
also admits other possibilities, e.g., the splitting of the
electron term 1T2g due to either the field of the cryocrys-
tal matrix (it is not by chance that the weights proved to
be different for the Ne and Ar matrices) or to the
dynamic Jahn–Teller effect. Thus, the problem of the
first excited singlet state of the full-symmetry C60 mol-
ecule cannot be considered solved and the width of the
S2 – S1 gap should be found by a nonempirical method,
i.e., using ab initio calculations.

2. EXCITED STATES OF DERIVATIVES OF C60 
WITH SATURATED BONDS

Now, we turn to the right-hand half of the figure.
Note the following features of the excitation spectra of
the fullerene derivatives with saturated bonds. From the
chemical point of view, the changes in the spectra as
compared to the initial molecule are insignificant and
can be explained in terms of the tight-binding approxi-
mation for the basic pπ orbitals (radially directed
hybrid atomic C 2p orbitals). From the point of view of
spectroscopy, the changes are more significant and are
due to the reduced molecule symmetry: these are, first,
partial (S6) or complete (C3) removal of the dipole for-
biddenness for singlet transitions and, second, the
appearance of optical polarization.

2.1. Isomers of C60(CH3–r6–H)3. Among the iso-
mers with n = 3, the greatest heat of formation is charac-
teristic of the isomer with a C3 symmetry and a “cube”-
type arrangement of saturated bonds (the bonds are
located on three neighboring faces of the cube into which
the fullerene molecule is inscribed [3]). As can be seen
from the spectrum of this isomer in the figure, instead of
the singlet states S1, 2, …, n of the fullerene separated by a
gap, it has the first singlet excitations 1A (σ-polarized
transition from the ground state) and 1E (π-polarized
transition). The spectrum of the optical absorption of the
PHYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
isomer is expected to have significant differences from
that of the fullerene, since the transitions into both states
are allowed and both are located in the range of the dip
in the absorption spectrum; in addition, the two features
corresponding to them at the absorption edge of the iso-
mer should have a characteristic ratio of the intensities of
the σ and π components equal to 1 : 2. A similar feature
should be observed in the excitation spectrum of lumi-
nescence of the state 1A, which is connected by a dipole-
allowed transition with 1E.

In comparison with the luminescent first singlet
state of the fullerene S1 = 1T2g, the first singlet states of
the isomer are shifted upward by 0.3 eV; qualitatively,
this agrees with measurements [2].

Because of the low symmetry, the internal conver-
sion in the isomers with n = 3 is forbidden only in spin;
therefore, the phosphorescence of this isomer (no
attempts to detect it experimentally have been made so
far) can turn out to be more intense and less prolonged
than that of the fullerene; the transition energy, accord-
ing to calculations, remains almost unchanged (see fig-
ure).

2.2. Isomers of C60(CH3–r6–H)6. The two isomers
with n = 6 with the greatest and closest heats of forma-
tion have an arrangement of saturated bonds of the
“cube” type; apparently, they should be synthesized in
almost equal concentrations. The excitation spectrum
of the isomer with the C3 symmetry is similar to that of
the above-described isomer with n = 3, except that its
first singlet excitations are located higher and the split-
ting of the σ- and π-polarized components is greater by
a factor of about 3 (0.3 eV). Thus, the changes in the
shape of the luminescence bands and the shift of the
energy maximum with changing n (experimentally
observed in [2]) are qualitatively reproducible.

Apart from the shape of the band, the excitation
spectra (see figure) make it possible to judge the com-
parative intensity of luminescence in isomer series.
Indeed, we see that the luminescence intensity
increases in parallel with the shift of the maximum with
increasing n (the number of polystyrene chains
attached to fullerene [2]). As the reference samples, we
used films of C60 on silicon obtained by vacuum subli-
mation and solutions of fullerene in toluene (1 mg per
1 ml). In comparison with these reference samples, the
intensity of luminescence of fullerene-containing poly-
styrenes (FPS) increases severalfold and is maximum
for n = 6. Taking into account that the concentration of
fullerene in FPS samples is a few percent or even a few
fractions of a molar percent, we should conclude that
the quantum efficiency of the luminescence of the
fullerene entering into an FPS increases by more than
an order of magnitude. This indicates that the saturation
of double bonds of the fullerene molecule C60 upon the
attachment of polystyrene chains, which leads to the
removal of the dipole forbiddance of optical transitions,
plays an important role in the mechanism of lumines-
cence. A quantitative comparison requires additional
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experiments on the separation of luminescence and
absorption bands into isolated components.

For the isomer with the S6 symmetry, the splitting of
σ- and π-polarized components of dipole-allowed sin-
glet transitions is even greater (0.4 eV), but in this case
there appears an important feature, namely, an almost
unpolarized singlet dipole-forbidden excitation (1Ag ≈
1Eg) located between the dipole-allowed excitations.
The optical spectra of the luminescence excitation from
the 1Au state of this isomer should differ in both the
shape and intensity from all other spectra shown in the
figure, since the decrease in the energy upon transition
from the excited state 1Eu occurs predominantly
through the 1Eg and 1Ag states rather than directly into
the first singlet state S1 = 1Au.

Finally, the energy of phosphorescence of this iso-
mer (see figure) is the lowest of all the others; it is lower
by approximately 0.2 eV than that for the fullerene and
two other isomers that were considered.

CONCLUSIONS
The above investigation permits us to make the fol-

lowing conclusions.
The partial or complete removal of the dipole for-

biddance of the transitions in isomers that are formed
upon chemical saturation of n double bonds makes it
possible to use spectroscopic methods to follow
changes in the electron structure of the pπ shell of the
fullerene molecule.

At n = 3 and 6, the greatest heats of formation are
characteristic of the isomers of high symmetry with sat-
urated bonds located at the faces of the cube that cir-
cumscribes the fullerene molecule.

In comparison with the luminescent first singlet
state of fullerene, the center of gravity of the split (into
the σ and π components) first singlet state of the isomer
with n = 3 is shifted upward, into the region of small
optical absorption of fullerene; for the two isomers with
n = 6, this state is located even higher and the splitting
into polarized components is greater than for n = 3.
This qualitatively explains the change in the shape of
the luminescence band and the shift in the energy of its
maximum with increasing n that was observed in
experiment [2].

The isomers with n = 3 and 6 and symmetry C3
should have almost mirror optical-absorption and lumi-
nescence spectra with two features at the absorption
edge (σ and π components) with a characteristic ratio
of intensities of 1 : 2. A similar feature should be
observed in their luminescence excitation spectra of the
lower (σ-polarized) state, which is connected by a
dipole-allowed transition with the upper state. For the
isomer with n = 6 and symmetry S6, both the mirror
symmetry of the absorption and luminescence spectra
and the correlation between the luminescence spectrum
and the spectrum of excitation of σ luminescence are
P

broken, since there is an almost unpolarized singlet
dipole-forbidden state located between the components
of the dipole-allowed excitation.

The internal conversion into the spin-triplet state in
the isomers with saturated bonds is forbidden only in
spin; therefore, their phosphorescence can prove to be
more intense and less prolonged than that of fullerene;
the energy of the transition decreases markedly (by
about 0.2 eV, according to calculations) only for iso-
mers with symmetry S6.

APPENDIX

The ∆SCF Method for Electron Excitation 
of the Ground State with a Closed Shell

Consider a multielectron system with a closed shell.
The molecular orbital (MO) method yields for it a sin-
gle-determinant ground state Φ0. A quantum-chemical
calculation using the restricted Hartree–Fock method
(RHF) gives self-consistent MOs of two types: occu-
pied orbitals of type a with two electrons of opposite
spins σ = α, β (the determinant Φ0 is formed precisely
of these orbitals) and unoccupied (virtual) orbitals of
type v. We will mark the spatial parts of MOs that are
degenerate in energy by primes. Thus, i = a, v means
one of the occupied or unoccupied electron shells
belonging to the irreducible representation Γi of the
space group of the multielectron system, and i ' will cor-
respond to one of the MOs of this shell (the number i '
of MOs is equal to the dimensionality of the represen-
tation Γi).

The single-electron excitations, according to the
Brillouin theorem, should be constructed by replacing
one of the MOs entering into Φ0 (i.e., a'σ'), by one of
the virtual MOs (v ''σ''). For brevity, we will designate
such a construction a'σ'  v ''σ'' and the correspond-

ing determinant . The Brillouin theorem on the
orthogonality [5]

 (A1)

provides the possibility of expanding the wave function
of an excited state in determinants (A1). If the ground
state has only closed (completed) shells, then the
orbital energies of the shells found on the basis of self-
consistent MOs,

 (A2)

make it possible to estimate the energies of excitation
as ∆E ≈ εv – εa (Koopman’s theorem [5]). Here, h
denotes the single-electron part of the Hamiltonian (the
kinetic energy of electrons and their potential energy in
the field of the cores) and g is the two-electron energy
(Coulomb repulsion of electrons).

Φa 'σ '
v ''σ ''

Φa 'σ '
v ''σ '' Φ0〈 | 〉 0=

εi i '〈 |h i '| 〉= i 'a1''〈 |g i 'a1''| 〉 i 'a1''〈 |g a1''i '| 〉–[ ] ,
a1'' a1∈
∑

a1

∑+

i a v ,,=
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Let us calculate the energy of an excited term Γ.
Then, we should choose excitations a  v such that
for them the condition

 (A3)

be fulfilled.
The wave functions of the spin–singlet (1Γ) and

spin–triplet (3Γ) terms are constructed in the form

 (A4)

The symmetrizing (projection) coefficients Γa'v ' are
given by group relationships, and the expansion coeffi-
cients  should be found by solving the variational
problem (they should minimize the quantum-mechani-
cal average of the Hamiltonian of the system for the
wave functions (A4)). According to the Slater rules [5],
the average is written through the matrix elements

 (A5)

where ∆ = 2 at S = 0 (singlet excitation) and ∆ = 0 at
S = 1 (triplet excitation). The variational problem for
Eq. (A4) reduces to the eigenproblem of the form

 (A6)

When numerically solving Eq. (A6), there is no need to
consider the projection coefficients Γa'v ''. It suffices to
choose those pairs of shells for single-electron excita-
tions that satisfy condition (A3); then, the projection
coefficients will factor the coefficients Ca'v '' in Eq. (A6)
and the vector columns constructed of these coeffi-
cients will prove to be the partners of all irreducible
representations, including Γ, that are formed by direct
products (A3) that enter into the expansion.

In order to achieve good accuracy of calculations, it
is necessary to perform expansion in as large a number
of excited determinants as possible; therefore, the cal-
culations using the ∆SCF method usually begin with
the introduction into Eq. (A4) of, primarily, those exci-
tations a  v that have the smallest difference in the
orbital energies (A2); then, the convergence of the exci-
tation energies calculated from Eq. (A6) is investigated
with increasing dimensionality of the expansion. In this
step, the most important advantage of high-symmetry
systems manifests itself; many excitations can be elim-
inated from the expansion from symmetry consider-
ations (A3). Apart from an increase in the accuracy,
another aim is achieved in this case: to the calculated

Γa Γv× Γ …+=

ΦΓ
S Ms,( )

Cav
S( ) Φa '

v ''Γa 'v '' ,
a ' a v '' v∈,∈

∑
a v : Γa Γv×, Γ …+=

∑=

Φa '
v ''

1

2
------- Φa 'α

v ''α Φa 'β
v ''β±( ), S 0 1;  M s ,  0= = 

Φ

 

a

 

'

 

β

 

v

 

''

 

α

 

Φ

 

a

 

'

 

α

 

v ''β, , S 1, Ms 1.±= =





=

Cav
S( )

Ha1' v 1'' a2', v 2''
S( ) Φa1'

v 1''〈 |H Φa2'
v 2''| 〉 δa1' a2' δv 1''v 2'' εv 1

εa1
–( )= =

– v 1
''a2

'〈 |g v 2
''a1

'| 〉 ∆ v 1
''a2

'〈 |g a1
' v 2

''| 〉 ,+

Ha1' v 1'' a2', v 2''
S( ) Ca2' v 2'',

S( )

a2' v 2'',
∑ ∆E S( )Ca1' v 1''

S( ) .=
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excitation energies, an irreducible representation is
ascribed, which is necessary to analyze experimental
spectra.

The eigenvectors (A6) can be used for group-theo-
retical analysis of MOs of complex systems. Thus, with
only the results of a quantum-chemical calculation of
the Ih–C60 molecule at hand, it is quite difficult to deter-
mine to which of the irreducible representations (T1p or
T2p) the triply degenerate shell belongs (the parity p = g
and it can easily be determined from the MO LCAO
coefficients of atoms connected by inversion). Let, for
example, there be need of classifying two completed
shells of the same parity a = tiu, tju. We choose any four-
fold-degenerate unoccupied shell of arbitrary parity,
e.g., v = gg, and numerically solve the problem (A6) at

 (A7)

with 24 determinants in the expansion. For the icosahe-
dron group I, we have

 

i.e., the excitation tiu  gg does not contribute to the
term Tiu. At i ≠ j, the eigenvectors Cav, whose eigen-
numbers ∆E are triply degenerate, belong to either T1u

or T2u and have an easily detectable feature: 12 of its
24 components are zero on that half of excitations (A7)
that does not contribute to the corresponding term. The
above example shows that the group-theoretical analy-
sis with the help of eigenvectors of the ∆SCF problem
can significantly simplify the investigation of the spa-
tial symmetry of MOs.
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Abstract—The molecular and electronic structures of the (CpFe)2C60H10 complex of the D5d symmetry, where
Cp is the ·C5H5 cyclopentadienyl radical, are simulated using the ab initio Hartree–Fock–Roothaan method in
the 3-21G basis set. In this complex, hydrogen atoms are attached to carbon atoms of the C60 fullerene which
occupy α-positions with respect to two oppositely lying five-membered rings. Each FeCp semisandwich moiety
is linked to atoms of one of these five-membered rings by the η5–π-type bond. It is found that the energy of the
η5–π Fe–C60H10 bonds in the (CpFe)2C60H10 complex is comparable to that of the η5–π Fe–Cp bond in the
FeCp2 ferrocene molecule. The optimum geometry calculated for the (CpFe)2C60H10 complex is used for mod-
eling of the structure of the quasi-linear macromolecule [–FeC60H10–]n, n � 1 (I). The band structure of the
energy spectrum of macromolecule I is calculated in the valence approximation of the extended Hückel method
within the crystalline-orbital approach. The band gap in the spectrum of macromolecule I is ~2.27 eV. The band
structure of the spectrum of this macromolecule is compared with the spectra of the hypothetical molecules
[−FeCp–]n and [–FeC20–]n. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Organometallic polymers have long attracted the
attention of physicists and chemists as substances
which can be used for fabrication of new current-con-
ducting and magnetic materials.

In principle, organometallic polymers can be of
different types. In coordination polymers, for exam-
ple, metalloporphyrins, metal atoms are directly
bonded to each other due to the interaction between
the d orbitals. Organometallic polymers of other types
contain bridge ligands joining the metal atoms. Aromatic
cyclic molecules and radicals (for example, the ·C5H5
cyclopentadienyl radical, the C6H6 benzene molecule,
chalcogenides, and halides [1]) can serve as bridges.
Multiple-decker sandwich compounds Mn(Cp)n + 1 or

Mn(C6H6)n + 1, where Cp = ·C5H5 and M are transition
metal atoms, can be considered oligomer precursors of
organometallic macromolecules of this type. In these
macromolecules, metal atoms are arranged between
cyclic ligands (the C6H6 benzene molecules or the
·C5H5 radicals) and are linked to each of them through
the η6–π- or η5–π-type bond, respectively; i.e., they are
bonded to all carbon atoms of these ligands.

The triple-decker complex (Ni2 ) was originally
synthesized by Werner and Salzer [2, 3]. X-ray diffrac-
tion analysis [4] revealed that this complex consists of

Cp3
+

1063-7834/01/4305- $21.00 © 20989
three parallel cyclopentadienyl rings separated by Ni
atoms [3]. However, further attempts to increase the
number of fragments in these complexes and to obtain
the macromolecules with the η5–π-type bonds between
the repetitive units failed. This can be explained by the
decrease in strength of the M–Cp bonds in the M–CpM
fragments with an increase in the number of monomer
units in these complexes. At the same time, it was dem-
onstrated that the use of electron-deficient boron-con-
taining heterocycles (for example, the C3B2H5 five-
membered heterocycle) as bridge ligands made it pos-
sible to synthesize the Mn(C3B2H5)n + 1 oligomers with
a sandwich structure and even the [–NiC3B2H5–]n orga-
nometallic polymers. The electrical conductivity of
these polymers at room temperature was equal to the
conductivity of germanium (κ = 10–2 s cm–1 [1]).

An efficient method for synthesis of the multiple-
decker sandwich systems in a gas phase has been devel-
oped in recent years. This method is based on the laser-
induced evaporation of the substance. In particular,
Kaya and coworkers [5], as well as other researchers
(see, for example, [6, 7]), succeeded in synthesizing new
multiple-decker oligomer and polymer sandwich transi-
tion-metal complexes Mn(C6H6)n + 1 (M = Co, Ti, etc.)
with the η6–π-type bonds, in which benzene molecules
alternate with metal atoms.

Revealing the superconducting properties of alkali
metal fullerides stimulated the search for superstruc-
001 MAIK “Nauka/Interperiodica”
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tures which could be synthesized from fullerene com-
plexes (or their derivatives) with metals. For example,
the complexes Mn(C60)m (where M = Sc, Ti, or V) were
prepared by the aforementioned laser method in the gas
phase. It was demonstrated by chemical methods that
some of these complexes have a multiple-decker sand-
wich structure in which metal atoms are coordinated in
the η6 mode with atoms of the carbon cage and alter-
nate with C60 fullerenes [8–11].

Naturally, the question arises about the possible
existence of fullerene complexes of this type but with
an η5–π-type bonding. If these complexes have a quasi-
linear structure, they can be considered analogues of
the MnCpn + 1 structures. In this case, it should be
expected that the energy of the η5–π M–C60 bond in
these complexes should depend only slightly on the
number of monomers due to the remoteness of the five-
membered rings of the C60 fullerene whose atoms are
bonded to metal atoms.

Fig. 1. Complex 2η5–π-(FeCp)2C60H10 (Ia).
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It was shown earlier in our publications [12, 13] that
the existence of the stable η5–π complexes of the poly-
hedral carbon cluster C60 is highly improbable. The rea-
son is that the C60 conjugated system is rather strongly
delocalized, and the polarization of the atoms of the
five-membered face is weak (see also references in
[12]). However, when the pure carbon cluster is
replaced by its cyclopentadienyl derivatives C60R5, i.e.,
the systems in which the functional R groups are
attached to carbon atoms located in the α-positions
with respect to the same five-membered face, the con-
jugated system is disrupted. This leads to an increase in
the probability of the formation of sufficiently stable
complexes of the η5 type. For example, it was proved
that the energy of the η5-type Fe–C60H5 bond in the η5–
π-CpFeC60H5 complex is comparable to the energy of
the Fe–Cp bond in the ferrocene molecule [12]. More-
over, the theoretical predictions were confirmed by the
synthesis of the semisandwich MC60Ph5 complexes,
where M = Li, In, or Tl [14].

Biscyclopentadienyl derivatives of the C60 fullerene,
namely, the C60R10 systems in which the cyclopentadi-
enyl rings separated by R groups are arranged on the
opposite faces of this polyhedral biradical, can be con-
sidered bulk bridges which join metal atoms into the
quasi-linear polymers [–MR5C60R5–]n (I).

It was of interest to investigate the current-conduct-
ing properties of these polymers and related structures,
namely, the hypothetical quasi-linear macromolecules
[–M–Cp–]n (II) and [–M–C20–]n (III).

In the present work, this problem was solved for
M = Fe as an example. The C20 cluster is chosen as a
fullerene whose conjugated system had the minimum
length. For this reason, the degree of delocalization of
molecular orbitals, which are suitable for bonding with
the M atom, should be considerably less than that for
C60. The synthesis of the C20 fullerene in the gas phase
was described in detail in [15].

2. CALCULATION PROCEDURE

The monomer systems were calculated by the ab
initio Hartree–Fock (HF) method in the 3-21G basis set
using the GAMESS software package [16]. The geo-
metric parameters thus obtained were used for model-
ing the structure of the repetitive units of macromole-
cules I–III. The band structures of the energy spectra of
these systems were calculated in the valence approxi-
mation of the extended Hückel method [17] within the
crystalline-orbital formalism. The calculations were
performed with the LATTIC program [18]. The param-
eters used in the extended Hückel method were taken
from [19], in which the triple-decker sandwich struc-
tures were investigated. The computations were carried
out on a DEC 3000 AXP 400X workstation.
HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001
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3. RESULTS AND DISCUSSION

The geometry of the repetitive units of macromole-
cules I–III was determined as follows.

(a) The structure of the (FeCp)2C60H10 complex (Ia)
is shown in Fig. 1. The Fe–H5C60H5 fragment of this
complex can be considered a repetitive unit of macro-

H

Fe

HH

H H

HH

Fe

HH

H

Fig. 2. Complex 2η5–π-(FeCp)2C20 (IIIa).
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molecule I. It was assumed that complex Ia has the D5d
symmetry. The local energy minimum was found as a
result of the HF/3-21G optimization of the energy of
this complex by the geometric parameters. The struc-
ture which corresponds to this minimum is shown in
Fig. 1. Complex Ia is a rather stable molecule. The
energy of the CpFe–H5C60H5 bond is comparable to the
energy of the Fe–Cp bond in the ferrocene molecule
(~78 kcal mol–1, see also [12]). Note that the distance
from the Fe atom to the nearest carbon atoms of the
fullerene and cyclopentadienyl fragments is approxi-
mately the same (differs by 0.02 Å). For this reason, the
distance between the Fe atoms, which is equal to
10.1 Å, was taken as the magnitude of the translational
vector for macromolecule I. The atomic coordinates
determined for the FeC60H10 fragment of complex Ia
were used as the atomic coordinates of the repetitive
unit of macromolecule I.

(b) When constructing the structure of the repetitive
unit –FeCp– of macromolecule II, we used the results
of the ab initio calculation of the ferrocene molecule
Fe(Cp)2 with the D5d symmetry in the same 3-21G basis
set. The length of the translational vector for macro-
molecule II was taken to be equal to the distance
between the five-membered rings in the ferrocene mol-
ecule (~3.33 Å). The atomic coordinates determined
for the FeCp fragment of the ferrocene molecule were
used as the atomic coordinates of the repetitive unit of
macromolecule II.

(c) The structure of the 2η5–π-CpFeC20FeCp com-
plex (IIIa) is shown in Fig. 2. The FeC20 fragment of
this complex can be considered a repetitive unit of mac-
romolecule III. It was assumed that complex IIIa has
the D5d symmetry. The local energy minimum was
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Fig. 3. Schematic diagram of the single-electron energy levels of macromolecules I–III: (a) [–C60H10Fe–]n (I), (b) [–CpFe–]n (II),
and (c) [–FeCp20–]n (III) and [–Li@C20Fe–]n (III').
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found as a result of the HF/3-21G optimization of the
energy of this complex by the geometric parameters.
The structure which corresponds to this minimum is
shown in Fig. 2. Complex IIIa is a rather stable mole-
cule. The energy of the CpFe–C20 bond is equal to
~76 kcal mol–1. The length of the translational vector
for macromolecule III was taken to be equal to the dis-
tance between the iron atoms (7.27 Å). Atomic coordi-
nates of the FeC20 fragment of complex IIIa were used
as those for the repetitive unit of macromolecule III.

The variance curves for the single-electron spec-
trum of macromolecule I are shown in Fig. 3a. It is seen
that this spectrum has a semiconductor character with a
band gap of ~2.27 eV. This character of the spectrum
can be associated with the disturbance of the conju-
gated system in the macromolecule due to attachment
of the H atoms to C60 fullerenes.

The spectrum of macromolecule II is displayed in
Fig. 3b. The elementary fragment of II contains an odd
number of electrons. Therefore, this spectrum has a
metallic character with a rather narrow top of the
valence band. Its width is as small as ~0.3 eV.

The spectrum of macromolecule III is shown in
Fig. 3c. This spectrum has a metallic character. The top
of the valence band is also narrow (~0.2 eV). This char-
acter of the spectrum indicates that molecule III can be
considered a quasi-linear conjugated system with a
nearly uniform distribution of conduction electrons.

The spectrum of the [–Li@C20Fe–]n (n � 1) frag-
ment of macromolecule III' is also shown in Fig. 3c. It
was assumed that one Li atom is located at the center of
each fullerene. It turned out that the variance curves for
the doped III' and undoped III systems in the vicinity
of the Fermi level are virtually identical. The Fermi
level shifts upward by ~0.45 eV, and the band gap
increases.

In conclusion, we note that macromolecule I is of
most interest among three hypothetical macromole-
cules under consideration. For this molecule, the
energy of the η5–π M–C60H10 bonds is comparable to
the energy of the η5–π Fe–Cp bond in the ferrocene
molecule. Moreover, this energy should depend weakly
on the number of repetitive units, because the metal
atoms are widely spaced in the molecule. The macro-
molecules built up of the MC60R10 particles do not nec-
essarily have a quasi-linear structure. Two-dimensional
or three-dimensional systems can be formed depending
on the mutual arrangement of the cyclopentadienyl
fragments of the C60R10 biradical.
P

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research (project nos. 98-03-33016 and
99-02-17578), the Scientific and Technical Program
“Fullerenes and Atomic Clusters,” and the Ministry of
Science (project no. 9.4.06).

REFERENCES

1. W. Siebert, Usp. Khim. 60 (7), 1553 (1991).

2. H. Werner and A. Salzer, Synth. React. Inorg. Met.-Org.
Chem. 2, 239 (1972).

3. A. Salzer and H. Werner, Angew. Chem. 84, 949 (1972).

4. E. Dubler, M. Textor, H. R. Oswald, and A. Salzer,
Angew. Chem. 86, 125 (1974).

5. K. Hoshino, T. Kurikawa, H. Takeda, et al., J. Phys.
Chem. 99, 3053 (1995).

6. T. Kurikawa, M. Hirano, H. Takeda, et al., J. Phys.
Chem. 99, 16248 (1995).

7. T. Yasuike, A. Nakajima, S. Yabushita, and K. Kaya,
J. Phys. Chem. 101, 5360 (1997).

8. T. Yasuike and S. Yabushita, J. Phys. Chem. A 103, 4533
(1999).

9. S. Nagao, Y. Negishi, A. Kato, et al., J. Phys. Chem. A
103, 8909 (1999).

10. A. Nakajima and K. Kaya, J. Phys. Chem. A 104, 176
(2000).

11. M. Hirano, K. Juda, A. Nakajima, and K. Kaya, J. Phys.
Chem. A 101, 4893 (1997).

12. A. L. Chistyakov and I. V. Stankevich, Izv. Akad. Nauk,
Ser. Khim., No. 9, 1649 (1999).

13. A. L. Chistyakov, I. V. Stankevich, and N. P. Gambaryan,
Izv. Akad. Nauk, Ser. Khim., No. 5, 855 (1995) [Russ.
Chem. Bull. 44, 828 (1995)].

14. M. Sawamura, H. Iikura, and E. Nakamura, J. Am.
Chem. Soc. 118, 12850 (1996).

15. H. Prinzbach, A. Weiler, P. Landenberger, et al., Nature
407, 60 (2000).

16. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Com-
put. Chem. 14, 1347 (1993).

17. R. Hoffmann, J. Chem. Phys. 39, 1397 (1963).

18. D. A. Bochvar, E. G. Gal’pern, and I. V. Stankevich, Zh.
Strukt. Khim. 29 (1), 26 (1988).

19. J. W. Lauher, M. Elian, R. H. Summerville, and R. Hoff-
mann, J. Am. Chem. Soc. 98, 3219 (1976). 

Translated by N. Korovin
HYSICS OF THE SOLID STATE      Vol. 43      No. 5      2001


	801_1.pdf
	808_1.pdf
	811_1.pdf
	818_1.pdf
	823_1.pdf
	830_1.pdf
	836_1.pdf
	841_1.pdf
	845_1.pdf
	850_1.pdf
	854_1.pdf
	859_1.pdf
	865_1.pdf
	871_1.pdf
	878_1.pdf
	884_1.pdf
	888_1.pdf
	890_1.pdf
	898_1.pdf
	902_1.pdf
	908_1.pdf
	914_1.pdf
	916_1.pdf
	923_1.pdf
	927_1.pdf
	932_1.pdf
	935_1.pdf
	941_1.pdf
	949_1.pdf
	955_1.pdf
	963_1.pdf
	967_1.pdf
	973_1.pdf
	982_1.pdf
	989_1.pdf

