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Abstract—The contributions to four basis densities of polarization distribution for an arbitrary electromagnetic
medium are determined. Mixed polarizabilities given by tensors of up to the fourth rank are considered. Specific
physical examples are discussed. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Electromagnetic properties of some substances
(e.g., crystals [1]) are described predominantly by the
distributions of dipoles. Multipole expansion of the
density of such a distribution differs from expansion of
the current of charges and leads to unusual interaction
of dipole systems with external fields. Comprehensive
analysis of such expansions is not only of academic
interest. It is known [2, 3] that multipole expansion of
current (charge) density within the framework of the
Maxwell–Lorentz electrodynamics involves three
types of basis dipoles: electric Q, magnetic M, and
(polar) toroidal T. An electromagnetic medium without
free and bound charges (ρ ≡ 0), as well as unclosed cur-
rents (divj = 0), is described only by magnetic and tor-
oidal polarizations [4]. When describing the distribu-
tion of magnetization in a nucleus, Blatt and Weisskopf
(see [5], where they cite earlier works) were apparently
the first to introduce magnetic contributions to toroidal
polarizations by the name “induced electric transverse
moments.” In classifying point groups of magnetic
symmetry of crystals, several authors [6–9] have
pointed to the fact that a toroidal dipole exhibits sym-
metry of a special type. Magnetic substances allowing
toroidal ordering have been referred to as toroics. The
references cited give examples of such magnetic crys-
tals. Recent experimental studies of toroidal polariza-
tion have been made on magnetic piezoelectric
Ga2 − xFexO3 [10] and magnetoelectric Cr2O3 [11].

In 1986, a family of axial toroidal moments was
included in the apparatus of the electrodynamics of
continuous media [12].1 A short time later, these
moments found prominent application in molecular
physics. In 1991, it was demonstrated [13] that crystal-
lization of some aromatic compounds (e.g., anthracene,
phenanthrene, or pentacene) may produce an axial tor-
oidal microdipole by ordering electric dipoles of atoms

1 Historically [8], the basis dipole of this family is sometimes des-
ignated as G.
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of a cyclic fragment involved in a complex molecule of
a benzene ring C6 (Fig. 1). This has made it possible to
give insight into the interaction between microcrystals
of aromatic compounds and an alternating magnetic
field [14]. Such an extraordinary type of electromag-
netic induction is known as aromagnetism.

These advances, as well as the inadequacy of the
theory of the Aharonov–Bohm effect [15] and the dis-
covery of similar effects (see, for example, [16]),
necessitate a more systematic approach to multipole
representation of various configurations that can arise,
for example, in dipole media and to selecting parame-
ters for the description of electromagnetic properties of
quantum objects like complicated molecules.

In this work, we found complete sets of basis
dipoles for dipole media of most physical importance
[9]. Based on the mathematical fact of their existence,
we demonstrate possible unusual responses of con-
densed matter to uniform and/or dynamic electric and
magnetic fields. This paper is an extension of [12, 17].

CONSTRUCTION OF MULTIPOLE MOMENTS 
FOR SPIN (DIPOLE) MEDIA AND THEIR 
INTERACTION WITH EXTERNAL FIELDS

Let us consider a system of continuously distributed
elementary electric dipoles that can be described by a
function d : r ∈  V limited in space and, in the general
case, time-dependent. Assume that internal interactions
in this system or applied external fields lead to the for-
mation and ordering of variously configured aggre-
gates, each consisting of a finite number of elementary
dipoles. We will describe the properties of the aggre-
gates by multipole parameters. The first three terms in
the expansion of the energy of their interaction with
external fields are

W d r( )E r( )d3r

V
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1
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where Q = (r)d3r is the conventional total dipole
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Fig. 1. (a) Model in which electric microdipoles add up to
total dipole moment Q; (b) model of a dipole axial toroidal
moment T(d) realized in a toroid-shaped dielectric when
electric microdipoles are oriented along the azimuthal direc-
tions; (c) model of a dipole poloidal moment P(d) realized in
a toroid-shaped dielectric when electric microdipoles are
oriented along the meridional directions; (d) centrosymmet-
ric polarization of a spherical dielectric layer having the

symmetry of a spherical capacitor; scalar moment  is

the main multipole characteristic of this object; (e) model of
the longitudinal rms radius of the electric dipole moment

 (double cylindrical layer); (f) equatorial section of a

thin-walled torus with magnetic microdipoles on the merid-
ians; poloidal dipole moment P(µ) is the multipole charac-
teristic of this object upon its contraction to a point.

r0
2( )

r1
2( )
electric moment of the system, T(d) = (1/2)  × d)d3r

is the dipole axial toroidal moment, and P(d) =

(1/10) r(rd) – 2r2d]d3r is the dipole polar poloidal

moment (see Figs. 1a–1c).
These three vectors form a basis allowing one to

represent the density of distribution of a given type. In

addition, (1) contains  = Ed3r, a scalar moment

corresponding to the time derivative of the rms charge
radius in the expansion of the current (i.e., to the double

spherical layer, see Fig. 1d);2  = 2r(rE) + r2E]d3r,

the rms radius of the longitudinal component of the
dipole moment Q, generated by the double cylindrical

layer of the dipoles (see Fig. 1e); and Qij and , the
electric and toroidal quadrupole moments determined
by conventional rules. In (1), all the interactions of the
multipole characteristics with the field or its derivatives
are local and written for the “center” of the system.

For the interaction energy between magnetic dipoles
and an external nonuniform magnetic field, mH is sub-
stituted for dE and we have

(2)

It is seen that, according to electromagnetism dual-
ity, the dipole moment Q in Eq. (1) is replaced by the
dipole magnetic moment M (characterizing an equiva-
lent current loop); T(d), by the polar toroidal dipole T(µ);
and the vector poloidal moment P(d), by the dipole axial
poloidal moment P(µ). If the magnetic moments are car-
ried by spin particles (e.g., neutrons), then the multi-
pole expansion of the distribution of their magnetic
moments (in a nucleus or a neutron star) acquires the
primary sense. Zheludev [6] was the first to predict tor-
oidal ordering of spin magnetic moments in perovskites
within the theory of condensed matter. For ultrathin
films, ordering of magnetic particles into closed config-
urations that can be described by toroidal moments
seems to be a rule rather than an exception [18, 19].
Note that exchange interactions between coplanar spins
give rise to the Kosterlitz–Thouless lattice of “antitor-
oidally” arranged vortexes.

It is evident that expansions like (1) and (2) can be
obtained for the remaining two fundamental (toroidal)

2 In the specific case of zero inner radius, such a configuration is
sometimes called “hedgehog.”
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dipole distributions t(r) and g(r). It is unlikely that the
resulting high-order vortexes are realized in crystals.
They may form in exotic media where the elementary
carriers initially possess, for example, toroidal dipole
moments. Recent experimental data indicate that neu-
trinos are apparently Majorano particles forming dense
media (1015 cm–3). It is known [20, 21] that neutrinos
have only toroidal dipole moments. That coherent exci-
tations in such media, in particular, hadron gravita-
tional excitations, are a possibility was first indicated
in [22].

VECTOR PARAMETERS 
AND NONLINEAR MEDIA

The above discussion is related to so-called linear
electrodynamics. In its terms, elementary objects (e.g.,
dipoles) are controlled by a field or a current of a given
type upon contact interaction so that the parameters of
the objects remain unchanged. One can also consider
more complex objects consisting of dipoles: quadru-
poles, octupoles, etc. An example of associated macro-
scopic constructions is two or three current loops that
are closely spaced or form a single circuit. Consider a
wire ring shaped like a propeller. In each of the loops,
the electric current generates a magnetic field and the
magnetic properties can approximately be described by
magnetic moments. The energy of local interactions
between the two loops and an external magnetic field of
arbitrary configuration is then given by

(3)

Here, “locality” means that both terms in the above for-
mula are written for the centers of the loops. In addition
to the vectors µi and µk, which relate to the different
loops and are specified at different points {1} and {2}
in the space, we introduce a quadrupole moment of the
system as a symmetric tensor µik of the second rank. As
in the previous section, the parameter µik takes into
account the contribution to the energy from the gradient
of the external magnetic field (i.e., due to field nonuni-
formity between the centers of the loops). Then Eq. (3)
can be approximately recast as

(4)

Now all the terms are written for some middle point
(hereafter, the center of the system). Such a representa-
tion reflects the essence of multipole expansion.

Assume that the loops are made of a flexible wire.
Then, the magnetic field orienting the magnetic
moments can deform the loops. We take this perturba-
tion into account by introducing the quadrupole polar-
izability α(m) of the medium. The additional energy of
local interaction of the system with a magnetic field is
given by the expression

(5)

WL µiHi 1{ } µkHk 2{ } .+=

WL µiHi 0{ } µkHk 0{ } µik∇ iHk 0{ } .+ +=

WNL α ik
m HiHk 0{ } ,=
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which is nonlinear in field in this case. Eventually, we
come to a qualitatively new property of the system of
dipoles. It may be concluded that the external field Hi

induces an additional magnetic dipole polarization of

the medium Mk = Hi, which can interact with the

field Hk. Here,  is the quadratic magnetic suscepti-
bility of the medium.

Thus, we introduced a nonlinear interaction
accounting for the nonlinear response of the medium to
a magnetic field. Basically, the tensor α may have an
arbitrary number of subscripts. In the expression for
energy, it must be convolved with the corresponding
symmetric tensor for the vector of the external mag-
netic field strength. A system consisting of electric
dipoles may naturally experience deformations similar
to those described above. If the electric susceptibility
αe is substituted for the magnetic one, the expression
for the energy of interaction with an external electric
field will be completely identical to Eq. (5). In real sys-
tems, atoms and molecules are in continuous motion
due to external and internal factors. Therefore, interre-
lation between the sources via the fields may give rise
to mixed polarizabilities. For example, in the case of
electromagnetic polarizability, the interaction energy is
given by

(6)

Bearing in mind the organization of computer mem-
ory, we introduce the polarizability of the third rank,
corresponding to the Hall effect symmetry, and the
respective interaction energy

(7)

where Jl is the external current passing through the sys-
tem.

In particular, this current may be a displacement
current when the system is inside a capacitor. Assume

that the tensor  is asymmetric with respect to sub-
scripts i and k. Then, for a given experimental configu-
ration, the asymmetric part of the tensor EiHk can be
related to the Poynting vector of light passing through
a crystal with appropriate nonlinear properties. Follow-
ing the preceding considerations, we may introduce the
induced toroidal polarization

(8)

responding to the current Jl passing through the crystal.

Indeed, an electromagnetic wave may reorient the
polarization of a ferromagnetic dielectric, turning it
into a weak ferromagnet with a toroidal polarization.
Such behavior is typical of perovskites, manganites
[23], and other complex compounds.

α ik
m( )

α ik
m( )

WNL βijk
em( )EiH jHk.=

WNL
1
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em( )EiHk Jl,=

α ikl
em( )

Tl
1
c
---α ik[ ] l

em( )EiHk α jl
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In experiments, approaches to measuring the toroi-
dal polarization are simpler. For example, Popov et al.
[10] studied the response of Fe–Ga oxide single crys-
tals to a magnetic field. It is known that such materials
combine the ferromagnetic and piezoelectric properties
(by analogy with elastic loops). The authors of [10]
measured the electric polarization induced in the crys-
tal by a magnetic field H:

(9)

where  is the tensor of electromagnetic suscepti-
bility.

The asymmetric part of the tensor  defines the
dipole toroidal moment in accordance with the duality
relation

(10)

where eijk is the Levi-Civita symmetric unit tensor.
The polarization per unit volume of the oxide gives

the dipole toroidal moment |T| = 24 µB Å. Similar
results were obtained for Cr2O3 magnetoelectric sub-
jected to a strong magnetic field (exceeding the field of
spin flop transition).

CONTRIBUTIONS OF THE POLARIZABILITIES 
TO THE VECTOR POLARIZATIONS AND THEIR 

MULTIPOLE EXPANSIONS

In this section, we develop a comprehensive formal-
ism of contributions of the highest (mixed) polarizabil-
ities to four basis densities of polarization distribution
for an arbitrary medium: P, M, T(µ), and T(d). Further
multipole expansion of the energy of their interaction
with external polarizations would generalize the above
formulas for the case of nonlinear media. Based on the
fundamental interactions of each of the polarizations,
we introduce polarizabilities that take into account all
possible mechanisms whereby external fields and cur-
rents induce a given polarization. The most general
expression for electric polarization up to contributions
of the fourth order is given by

(11)

Pi α ij
em( )H j,=

α ij
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Here, dots denote the number of contracted subscripts

in the corresponding tensor, Jm := 1/c(j + ) ≡ curlH,
Je := curlE, and subscripts at the polarizabilities denote
their tensor rank. One can pass to irreducible tensors by

introducing half-sums and half-differences for 

and , etc. For magnetic polarization, we obtain

(12)

for toroidal polarization of magnetic nature,

(13)

and for toroidal polarization of electric nature,

(14)
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With allowance for dual symmetries,  = ,

 = , etc. All the contributions to the polariza-
tions containing vectors Jm and Je are called nonlocal.
In several recent experiments, they were separated from
local effects [24]. In these formulas, some of the field
strength vectors can be replaced by their derivatives.
The rank of the polarizabilities will increase in this
case, and these contributions to the corresponding
polarizations will become nonlocal. A set of nonlinear
cross terms may include not only magnetoelectric ones,
but also mechanomagnetic, thermoelectric, and others.

Let us proceed to multipole expansion of the vector
polarizations with regard for the properties of the polar-
izabilities. For this purpose, we use formulas (1) and
(2) for the interaction energy between these polariza-
tions and external fields. We start from the analysis of
electric polarization. The presence of the electric field
vector in the associated expression modifies the defini-
tion of the multipole moments. The dipole moment Q =

(r)d3r acquires additional terms due to the polariz-

abilities , , …, , … . For example, the con-

tribution related to  is

(15)

Such a contribution can be considerable if the

medium exhibits strong nonlinear properties and  is
large. This addition also depends on the integral. In
spherical coordinates, it can be rewritten as

(16)

where n = E/|E|.
Such integrals are common in electrodynamics and

statistical mechanics. They are found from the general
formula

(17)

These integrals become difficult to take if divE = 0
or divH = 0. Fields applied to crystals in physical
experiment may be of different natures (in particular, of
different frequencies). Specifically, the Pockels effect,
usually considered as linear, is actually a second-order
effect, since it involves the simultaneous action of a
low-frequency electric field and a light wave where the
electric component usually prevails. The well-known
Kerr effect is believed to be quadratic, because the
refractive index of a crystal is proportional to the square
of the low-frequency refractive field. However, judging
from the expression for interaction energy, this effect is
generally of the third order. One should also distinguish
between static and dynamic effects. In the latter, one

β2
m( ) β̂2

e( )

δ2
τ( ) δ̃2

τ( )

P∫
α2

e( ) α3
e( ) γ4

emτ( )

α3
e( )

Q3
e( ) α3

e( ) : EEd3r.∫=

α3
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EiEkd
3r∫ E2r2 r nink Ω,d∫d∫=

nin jnk…nl∫
=  

1
L!
----- δijδk…δ…l δikδj…δ…l …+–{ } .
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L
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must take into account sum and difference frequencies,
which may strongly influence the amount of the effect.

Using expression (11), one can easily derive a
formula for Q where all the nonlinear local contribu-
tions are included. If in (11)–(14) we capitalize the let-
ters denoting the nonlocal polarizabilities, the contribu-
tion, for example, from the nonlocal polarizability of
the second rank to the dipole moment will be repre-
sented as

(18)

The tensor in the integrand can be separated into
irreducible parts. Then its trace, equal to divE, will be
the external charge density distribution. The symmetric
and antisymmetric parts are responsible for interaction
with the quadrupole and axial components of an exter-
nal field, respectively.

CONCLUSION

A comprehensive formalism of such multipole
expansions is easy to develop. The parametrization of
the expression for the interaction energy between a
polarization and an external field will lead to a cubic
lattice infinitely occupying the space, for example, in
the positive directions of the X, Y, and Z axes. On the X
(principal) axis, we will plot the values of the moments
describing a complex electromagnetic system in order
of ascending l polarity. On the Y axis, we will plot the
contributions from the radii (to the power 2n) of the dis-
tributions for each of the moments in order of ascend-
ing power n. Recall that multipole analysis is mathe-
matically based on the theory of generalized functions.
Therefore, in spite of the erroneous views regarding the
domination of the moments, the values of the radii may
appear to be much more important for the description
of a particular system. Specifically, an ellipsoidal dou-
ble layer with a small eccentricity is more appropriately
described by the rms charge radius than by the electric
quadrupole moment. From the geometrical point of
view, the radii describe the deviation of each of the
l-pole moments from its value specified at the point
with actually zero dimensions [25]. As follows from
[25], both moments and radii could be corrected for
nonlinearity in the interaction of a given system with an
external field. The corrections can be plotted vertically
in parallel to the Z axis (in order of ascending number
of subscripts in the polarizability tensors) over each
position of the matrix fixing the values of the moments
or radii.

Note that the majority of experiments employ either
static or harmonic fields. It should be noted that, to
reveal first-order vortex structures (toroidal dipoles),
the “true” response function (i.e., free of other multi-
pole interactions) is obtained by applying fields linearly
increasing with time. The contributions of the poloidal
dipoles (second-order vortex structures or two-tori
[26]) can be revealed by applying a magnetic field that

Q3
e( ) A3

e( ) : ∇ Ed3r.∫=
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grows quadratically with time. In general, the power in
the time dependence of the field must equal the order of
an n-torus. It is natural that the response amplitude will
decrease sharply with increasing n owing to the relativ-
istic factor (1/c)n in the expression for the energy of
interaction of an n-torus with an external field.

Note that the separation of the vector contributions
is most convenient in analyzing, for example, small-
size crystal objects. The advantages of the method
become even more obvious in studying the electromag-
netic responses from low-dimension structures used in
nanotechnology.

ACKNOWLEDGMENTS
This work was supported by the Russian Interdisci-

plinary Scientific and Technical Program “Fundamen-
tal Metrology,” project no. 2.51.

REFERENCES
1. Yu. N. Venevtsev, V. V. Gagulin, and V. N. Lyubimov,

Ferroelectric Magnets (Nauka, Moscow, 1982).
2. V. M. Dubovik and A. A. Cheshkov, Fiz. Élem. Chastits

At. Yadra 5, 791 (1974) [Sov. J. Part. Nucl. 5, 318
(1974)].

3. V. M. Dubovik and L. A. Tosunyan, Fiz. Élem. Chastits
At. Yadra 14, 1193 (1983) [Sov. J. Part. Nucl. 14, 504
(1983)].

4. V. M. Dubovik, in Proceedings of the 3rd Seminar
“Group-Theoretical Methods in Physics (Nauka, Mos-
cow, 1986), Vol. 2, pp. 356–362.

5. J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear
Physics (Wiley, New York, 1952; Inostrannaya Lite-
ratura, Moscow, 1954).

6. I. S. Zheludev, Izv. Akad. Nauk SSSR, Ser. Fiz. 33, 204
(1969).

7. H. Schmid, Int. J. Magn. 4, 337 (1974).
8. E. Ascher, in Magnetoelectric Interaction Phenomena in

Crystals, Ed. by A. Freeman and H. Schmid (Gordon and
Breach, New York, 1975), p. 69.

9. V. M. Dubovik, S. S. Krotov, and V. V. Tugushev, Kristal-
lografiya 32, 540 (1987) [Sov. Phys. Crystallogr. 32, 314
(1987)].
10. Yu. F. Popov, A. K. Zvezdin, A. M. Kadomtseva, et al.,
Zh. Éksp. Teor. Fiz. 114, 263 (1998) [JETP 87, 146
(1998)].

11. Yu. F. Popov, A. M. Kadomtseva, A. K. Zvezdin, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 69 (4), 302 (1999) [JETP
Lett. 69, 330 (1999)].

12. V. M. Dubovik, L. A. Tosunyan, and V. V. Tugushev, Zh.
Éksp. Teor. Fiz. 90, 590 (1986) [Sov. Phys. JETP 63, 344
(1986)].

13. M. A. Martsenyuk and N. M. Martsenyuk, Pis’ma Zh.
Éksp. Teor. Fiz. 53 (5), 229 (1991) [JETP Lett. 53, 243
(1991)].

14. N. A. Tolstoœ and A. A. Spartakov, Pis’ma Zh. Éksp. Teor.
Fiz. 52 (3), 796 (1990) [JETP Lett. 52, 161 (1990)].

15. G. N. Afanas’ev, Fiz. Élem. Chastits At. Yadra 21, 172
(1990) [Sov. J. Part. Nucl. 21, 74 (1990)].

16. X. G. He and B. H. J. McKellar, Phys. Rev. A 47, 3424
(1993); G. N. Afanas’ev, Fiz. Élem. Chastits At. Yadra
24, 512 (1993) [Phys. Part. Nucl. 24, 219 (1993)].

17. V. M. Dubovik, M. A. Martsenyuk, and N. M. Mar-
tsenyuk, Fiz. Élem. Chastits At. Yadra 24, 1056 (1993)
[Phys. Part. Nucl. 24, 453 (1993)].

18. B. N. Filippov, L. G. Korzunin, et al., Fiz. Met. Metall-
oved. 87 (6), 17 (1999).

19. N. A. Usov, J. Magn. Magn. Mater. 203, 277 (1999).
20. V. M. Dubovik and V. E. Kuznetsov, J. Mod. Phys. A

143, 5257 (1998).
21. E. N. Bukina, V. M. Dubovik, and V. E. Kuznetsov, Phys.

Lett. B 435, 134 (1998).
22. V. M. Koryukin, Izv. Vyssh. Uchebn. Zaved., Fiz.,

No. 10, 119 (1996).
23. L. M. Sandratskii and J. Kübler, Phys. Rev. Lett. 76,

4963 (1996).
24. V. P. Drachev, S. V. Perminov, S. G. Rautian, and

V. P. Safonov, Pis’ma Zh. Éksp. Teor. Fiz. 68 (8), 618
(1998) [JETP Lett. 68, 651 (1998)].

25. V. M. Dubovik and V. V. Tugushev, Phys. Rep. 187 (4),
145 (1990).

26. G. N. Afanasiev and V. M. Dubovik, Fiz. Élem. Chastits
At. Yadra 29, 891 (1998) [Phys. Part. Nucl. 29, 366
(1998)].

Translated by A. Chikishev
TECHNICAL PHYSICS      Vol. 46      No. 2      2001



  

Technical Physics, Vol. 46, No. 2, 2001, pp. 139–146. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 71, No. 2, 2001, pp. 8–15.
Original Russian Text Copyright © 2001 by Ucha

 

i

 

kin, Saenko.

                                                    

THEORETICAL AND MATHEMATICAL PHYSICS
On the Theory of Classic Mesodiffusion
V. V. Uchaikin and V. V. Saenko

Ul’yanovsk State University, Institute for Theoretical Physics, Ul’yanovsk, 432700 Russia
e-mail: uchaikin@sv.uven.ru

Received March 27, 2000

Abstract—A simple model of the classical random walk of particles with a constant speed and anisotropic
angular distribution is used to study the characteristic features of mesodiffusion, that is, of an intermediate stage
between the ballistic regime (short times) and ordinary diffusion (long times). In the extreme case of anisotropy,
namely, walking along a straight line, the process can be described by the telegraph equation, whose solution
contains δ-functions accounting for the ballistic component. As the anisotropy becomes less pronounced, the
δ-singularity transforms into a frontal burst (the quasi-ballistic component), beyond which the distribution can
be satisfactorily described by the telegraph approximation. In the other extreme case of isotropic walking, the
frontal burst disappears and the telegraph approximation, contrary to general belief, proves to be cruder than
the diffusion approximation. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Research into the preparation of high-purity semi-
conductor materials with perfect crystal structure gave
birth to a new branch in condensed matter physics, the
study of mesoscopic systems [1–3]. Mesoscopic nano-
structures present a unique possibility to experimen-
tally study the transfer process in a medium with a well-
defined potential field not perturbed by random impuri-
ties and other defects. The existence of three temporal
intervals is essential to this process in which the trans-
fer mechanisms are different: an interval (0, t1) where
the ballistic transfer is dominant; an interval of (t2, ∞);
an interval (t2 > t1) of ordinary (gaussian) diffusion, and
an intermediate interval (t1, t2) of a transfer mechanism
called mesoscopic diffusion [4], which we will call
mesodiffusion.

The quantum-mechanical analysis of the one
dimensional problem carried out in [4] has shown that
the distinctive feature of mesodiffusion is a deviation
from Fick’s law

which is replaced in this region by the Maxwell–Catta-
neo relationship

In combination with the continuity equation

,

it gives an equation for the distribution density ρ(x, t) of

j D
∂ρ
∂x
------,–=

j D
∂ρ
∂x
------– Θ∂j

∂t
-----, Θ 0.>–=

∂ρ
∂t
------ ∂j

∂x
------–=
1063-7842/01/4602- $21.00 © 20139
the particles

which is called the telegraph equation. Its solution for a
short-time (for example, instantaneous) source repre-
sents a diffusion front, beyond which there are no dif-
fusing particles, and in the vicinity of which they travel
in the ballistic regime. At long times, the ballistic com-
ponent decays and the remaining part of the solution for
large samples transforms into a gaussian packet that
satisfies an ordinary diffusion equation.

The results obtained in [4] apply, however, to a
rather artificial model of a particle walking along a
fixed x-axis with zero transverse velocity component
and an alternating longitudinal component (the one-
dimensional walk). This model does not distinguish
between the nonscattered particles and those multiply
scattered in one (say, positive) direction of the x-axis,
thus eliminating the differences between the telegraph
and kinetic equations, on the one hand, and creating the
specific δ-singularity at the diffusion wave front that is
lacking in the real physical process on the other.

The other extreme case is considered to be the one-
velocity model of isotropic scattering, a time-indepen-
dent version of which was thoroughly studied in con-
nection with its use in neutron physics and nuclear
reactor problems [5–7]. The time-dependent version of
the model is considered in relatively few papers (see
reference in [8–10]) in which the telegraph equation
appears as an approximation. However, the quantitative
analysis of its accuracy has not still been carried out.

The present study considers the class of the mesod-

iffusion models relying on a parameter ν ∈  [1/ , 1].
It is assumed that the distribution of the cosine of the

∂ρ
∂t
------ Θ∂2ρ

∂t2
--------+ D

∂2ρ
∂x2
--------,=

3
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angle ω between the x-axis and the direction of particle
movement after scattering is independent of the direc-
tion of movement before scattering and has the density

(1)

The initial direction of a particle which starts to
move from the origin of the coordinates at the time t = 0
has the same density distribution. The parameter

is the root mean square cosine, ν = 1/  for isotropic
walking and ν = 1 for one-dimensional walking. The
smooth dependence of the scattering indicatrix (1) on
the parameter ν enables the evolution of distributions
with the variation of ν to be followed and a conclusion
about the relationship between the solutions of the dif-
fusion, the telegraph, and the kinetic equations, to be
made.

THE TELEGRAPH EQUATION 
AND ONE-DIMENSIONAL MESODIFFUSION

The telegraph equation, derived (as pointed out in
[11]) by Lord Kelvin in connection with the laying of
the first transatlantic cable, has the form (in dimension-
less time units t)

(2)

Its solution fν(x, t) has the meaning of a current at a
point x of the conductor at t. The parameter ν is related
to the self-induction and the resistance of a conductor
of unit length. Under the initial conditions

,

it consists of two terms

(3)

The first term describes two instant pulses moving
away from the origin of the coordinates with a velocity ν:

The second term gives a continuous part of the solu-
tion that fills the interval between these pulses (–νt <
x < νt):

Wν ω( ) α 1+
2

------------- ω α , ω 1, α≤ 3ν2 1–

1 ν2–
----------------- 0.≥= =

ν ω2Wν ω( ) ωd

1–

1

∫
1/2

α 1+
α 3+
------------- 

 
1/2 1

3
-------≥= =

3

∂2 f ν

∂t2
-----------

∂ f ν

∂t
--------+ ν2∂2 f ν

∂x2
-----------.=

f ν x 0,( ) δ x( ), ∂ f ν x t,( )/∂t[ ] t 0= 0= =

f ν x t,( ) f ν
0( ) x t,( ) f ν

s( ) x t,( ).+=

f ν
0( ) x t,( )

1
2
--- δ x νt–( ) δ x νt+( )+[ ] t/2–{ } .exp=

f ν
s( ) x t,( ) 1

4ν
------ I0 t2 x2/ν2–( )/4( )[=

+ t I1 t2 x2/ν2–( )/4( )/ t2 x2/ν2– ]e t /2– .
Note the following properties of this solution:

(4)

(5)

(6)

(7)

These turned out to be just the properties needed for
the description of a quite different process—symmetri-
cal random walk along a straight line [12–15], in which
fν(x, t) has the meaning of the probability density at
time t and the parameter ν is the velocity of free move-

ment of a particle. The term (x, t) describes the dis-
tribution of the particles which did not change their
direction of movement during time t. They are found at
points x = νt and x = –νt and form the front of the dif-
fusion packet which occupies the interval [–νt, νt]; the
probability to find a particle outside this interval is
equal to zero. At t  ∞, the function fν(x, t) tends to
the normal distribution gν(x, t) with the variance 2ν2t
[13] and satisfies the ordinary diffusion equation

with the initial condition gν(x, 0) = δ(x). Because of its
approximate (asymptotic) nature, the function does not
contain information about the diffusion front, but
describes only the large central part of the diffusion
packet (Fig. 1).

ISOTROPIC MESODIFFUSION

From the physical point of view, however, the one-
dimensional model considered in [4] proves to be rather
artificial, since, as a result of collisions, the velocity of
a real particle may take other directions as well, not just
the ones colinear to the x-axis. We chose the unit of
length in such a way that the absolute value of the par-
ticle velocity between collisions (assumed to be con-
stant) would be equal to 1. In the case of one-dimen-
sional walking of such a particle along the x-axis, its
distribution will be described by the density f1(x, t). If
the particle acquires a new direction independent of the
previous one and possessing the same distribution as
the initial one after a collision then the density ρ(x, t) of

f ν x t,( ) 0, x νt,≤>
f ν x t,( ) 0, x νt,>=

f ν x t,( ) xd

ν t–

ν t

∫ 1,=

x2 f ν x t,( ) xd

ν t–

ν t

∫ 2ν2 t t–{ }exp 1–+[ ] ,=

f ν x t,( ) gν x t,( )∼ 1

4πν2t
------------------ x2

4ν2t
----------–

 
 
 

,exp=

t ∞.

f ν
0( )

∂gν

∂t
-------- ν2∂2gν

∂x
2

----------=
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the distribution of its x-coordinate at time t satisfies the
integral kinetic equation [10, 16]

(8)

where ρ(0)(x, t) is the distribution density of the x-coor-
dinate of the nonscattered particle.

From elementary probabilistic considerations, it can
be found that this random coordinate is uniformly dis-
tributed between –t and t for an isotropic source (we
recall that the velocity is equal to 1)

(9)

Let ψ(x, ω, t) be the joint distribution density of the
x-coordinate and the cosine of the angle between the
particle velocity and the x-axis at time t:

It is known [16] that the integral equation (8) with
kernel (9) is equivalent to the integrodifferential Boltz-
mann equation

(10)

with the initial condition

Expansion in terms of Legendre polynomials

transforms Eq. (10) to a chain of equations

Retaining the first L + 1 equations and discarding in
the last of them the term ∂ψL + 1/∂x, we obtain a PL

approximation that is well known in neutron physics
[7–9]. In particular, in the P1 approximation,

ρ x t,( ) ρ 0( ) x t,( )=

+ dt' dx'ρ 0( ) x' t',( )ρ x x'– t t'–,( ),

t'–

t'

∫
0

t

∫

ρ 0( ) x t,( ) 2t( ) 1– t–{ } , x t<exp

0, x t.>



=

ψ x ω t, ,( ) ωd

1–

1

∫ ρ x t,( ).=

∂
∂t
----- ω ∂

∂x
------ 1+ + ψ x ω t, ,( ) 1

2
--- ψ x ω t, ,( ) ωd

1–

1

∫=

ψ x ω t, ,( ) 1
2
---δ x( ).=

ψ x ω t, ,( ) l 1/2+( )Pl ω( )ψl x t,( ),
l 0=

∞

∑=

ψl x t,( ) Pl ω( )ψ x ω t, ,( ) ω, ψ0 x t,( ) ρ x t,( )≡d

1–

1

∫=

∂ψl

∂t
--------

1
2l 1+
-------------- l 1+( )

∂ψl 1+

∂x
-------------- l

∂ψl 1–

∂x
--------------+ 1 δl0–( )ψl+ +  = 0.

∂ψ0

∂t
---------

∂ψ1

∂x
---------+ 0,

∂ψ1

∂t
---------

1
3
---

∂ψ0

∂x
--------- ψ1+ + 0.= =
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Eliminating ψ1 from this equation, we obtain an
equation for ψ0 ≡ ρ in the form

so that

(11)

The presence of ν = 1/  is clear since the root
mean square projection of the isotropically distributed
unit vector of the velocity onto one of the axes is con-
sidered. However, the solution of Eq. (11) according to
the properties (4)–(7) is nonzero only in the interval

[−t/ , t/ ] and has δ-singularities at the boundary
points, whereas the exact solution covers the interval
[−t, t] and at the boundary points has finite discontinu-
ities equal to (2t)–1exp{–t} due to nonscattered radia-
tion (9). Figure 2 shows that in this problem, the tele-
graph approximation describes the transfer process less
accurately than the diffusion approximation. This
result, unexpected at first glance, calls for care regard-
ing the conclusions of studies in which the time-depen-
dent diffusion approximation is refined with the use of
the telegraph equation [17, 18].

ANISOTROPIC MESODIFFUSION

As is evident from the foregoing, the relations
between the diffusion and telegraph equations and the
kinetic equation in the considered extreme cases are
opposite in a certain sense; namely, in the one-dimen-
sional case, the diffusion solution is a poorer approxi-

∂2ρ
∂t2
-------- ∂ρ

∂t
------+

1
3
---∂2ρ

∂x2
--------,=

ρ x t,( ) f
1/ 3

x t,( ).=

3

3 3
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Fig. 1. The distributions ψ(ξ, t) = tf1(ξt, t) (solid curve) and
ψ'(ξ, t) = tg1(ξt, t) (dashed curve) for one-dimensional ran-
dom walking.
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mation, while in the three-dimensional isotropic case,
conversely, the telegraph approximation is less accurate
than the diffusion approximation. A smooth transition
from one case to the other can be conveniently achieved
by taking the angle distribution of a particle after exit
from the source and after each scattering in form (1).

The telegraph approximation in this scheme is easy
to obtain using a Fourier–Laplace transform of the
integral equation (8) with the distribution of nonscat-
tered particles corresponding to the indicatrix of scat-
tering (1):

(12)

As it follows from Eq. (8), the transform

satisfies the equation

(13)

where

ρ 0( ) x t,( ) t 1– Wν x/t( ) t–{ } , x t.<exp=

ρ̃ k λ,( ) dt dx ikx λ t–{ } ρ x t,( )exp

t–

t

∫
0

∞

∫=

ρ̃ k λ,( ) ρ̃ 0( ) k λ,( ) 1 ρ̃ k λ,( )+[ ] ,=

ρ̃ 0( ) k λ,( ) dt dx ikx λ t–{ } ρ 0( ) x t,( )exp

t–

t

∫
0

∞

∫=

= α 1+( ) λ 1+( ) ωαdω
λ 1+( )2 ωk( )2+

----------------------------------------

0

1

∫

0 0.2 0.4 0.6 0.8 1.0
ξ

10–5

10–4

10–3

10–2

10–1

100

101
ψ

t = 3

t = 10

t = 30
t = 100

Fig. 2. The distributions ψ(ξ, t) = tρ(ξt, t) for isotropic ran-
dom walking. Dots are the results of the Monte Carlo simu-
lation, solid curves are the telegraph approximation, and
dashed curves are the diffusion approximation.
At k  0, this transform has the asymptotics

Substituting it into Eq. (13) and executing simple
transformations, we obtain

This relationship is nothing else than the Fourier–
Laplace transform of the telegraph equation

(14)

with the initial conditions ρ(x, 0) = δ(x) and
[∂ρ(x, t)/dt]|t = 0 = 0.

A comparison of solution (3) above to Eq. (14) with
the results of numerical solution of the integral equa-
tion (8) with kernel (12) by Monte Carlo simulation
(see the Appendix) is shown in Fig. 3 in variables ξ =
x/t and

In the top part of the figure, it is seen that even at
ν2 = 1/2, where the angle distribution linearly depends
on ω, in the region ξ < ν the telegraph solution is closer
to the exact solution than the diffusion one. As the
anisotropy is further increased, a frontal burst appears
in the exact solution, which describes the distribution
of the particles that always move with a positive x-pro-
jection of the velocity. In the limit ν2  1, this burst
transforms to the limit δ-function of the telegraph solu-
tion. At ν2 ≥ 0.7 outside the frontal burst, the telegraph
approximation is in good agreement with the exact
solution.

FRONTAL BURST

An analytical description of the frontal burst can be
conveniently obtained using the so-called method of
moments [19, 20]. Let z = t – x be a lag of the particle
from the extreme point of the front t and ρ+(z, t) the dis-
tribution over z at time t of particles moving all the time
in the positive x-axis direction, more specifically, those
invariably having a positive projection of the velocity
on this axis. For this density, an equation similar to
Eq. (8) will also be valid (corrected for the nonnegativ-
ity of z):

(15)

=  
α 1+
λ 1+
------------- 1–( )n

2n α 1+ +
-------------------------

n 0=

∞

∑ k
λ 1+
------------ 

 
2n

.

ρ̃ 0( ) k λ,( ) λ 1+

λ 1+( )2 ν2k2+
------------------------------------.∼

λ2 λ ν2k2+ +[ ] ρ̃ k λ,( ) λ 1.+=

∂2ρ
∂t2
-------- ∂ρ

∂t
------+ ν2∂2ρ

∂x2
--------, t 0>=

ψ ξ t,( ) tρ ξ t t,( ).=

ρ+ z t,( ) ρ 0( ) z t,( )=

+ dt' dz'ρ 0( ) z' t',( )ρ+ z z', t– t'–( ),

0

t'

∫
0

t

∫
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where

(16)

It is convenient now to perform the Laplace trans-
form over both variables, z and t:

giving the formula

(17)

Obviously,

where

is the Laplace transform of the nth moment of the dis-
tribution ρ+(z, t)

For nonscattered radiation,

from whence

and so forth. Differentiating Eq. (17) with respect to s,
we obtain the corresponding expressions for the
moments of the distribution of all particles forming the
frontal burst:

,

and so forth. The inverse Laplace transform by the res-

ρ 0( ) z t,( ) t 1– Wν 1 z/t–( ) t–{ } , 0 z t.< <exp≡

ρ̃ s λ,( ) dt dz λ t– sz–{ } ρ+ z t,( ),exp

0

∞

∫
0

∞

∫=

ρ̃+ s λ,( ) ρ̃ 0( ) s λ,( )
1 ρ̃ 0( ) s λ,( )–
-------------------------------.=

∂nρ̃+ s λ,( )/∂sn[ ] s 0= 1–( )nm̃n λ( ),=

m̃n λ( ) λ t–{ } mn t( )exp td

0

∞

∫=

mn t( ) znρ+ z t,( ) z.d

0

∞

∫=

ρ̃ 0( ) s λ,( ) α 1+
2

------------- ωαdω
1 λ 1 ω–( )s+ +
---------------------------------------,

0

1

∫=

m̃0
0( ) λ( ) 1

2 1 λ+( )
--------------------, m̃1

0( ) λ( ) 1

2 1 λ+( )2 α 2+( )
-----------------------------------------,= =

m̃2
0( ) λ( ) 2

1 λ+( )3 α 2+( ) α 3+( )
--------------------------------------------------------,=

m̃0 λ( ) 1
1 2λ+
---------------,=

m̃1 λ( ) 2

α 2+( ) 2λ 1+( )2
-----------------------------------------,=

m̃2 λ( ) 4
2 2λ 1+( ) α 2+( ) α 3+( )+

α 2+( )2 α 3+( ) λ 1+( ) 2λ 1+( )3
-------------------------------------------------------------------------------=
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Fig. 3. The distributions ψ(ξ, t) for t = 5 and the specified
values of ν2. The top plot corresponds to isotropic walk. The
notations are the same as in Fig. 2. The δ-singularities in the
telegraph approximation are denoted by vertical arrows.
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idue method gives

(18)

(19)

Using the obtained relationships for the moments, it
is easy to find the center of gravity of the considered
particle distribution:

whose velocity

m0 t( ) 1/2( ) t/2–{ } ,exp=

m1 t( ) t
2 α 2+( )
--------------------- t/2–{ } ,exp=

m2 t( ) 4 2t t2/2+–

α 2+( )2
----------------------------- 4 t 2–( )

α 2+( ) α 3+( )
------------------------------------+ t/2–{ }exp=

+
4 α 1+( )

α 2+( )2 α 3+( )
-------------------------------------- t–{ } .exp

x t z– t m1 t( )/m0 t( )–
α 1+
α 2+
-------------t

2t

1 ν 2–+
----------------,= = = =

ẋ
2

1 ν 2–+
----------------=

Fig. 4. Distributions ψ+(ξ, t) = tρ+(ξt, t) of particles moving
in the positive x-axis direction. Solid circles are the results
of Monte Carlo simulation; solid curves are approximations
by Eq. (21) and for particles which changed their x-compo-
nent sign of the velocity at least once. Open circles are the
results of the Monte Carlo simulation.
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at ν2 close to the limiting value of 1 is only slightly less
than the velocity of the front formed by the nonscat-
tered particles (16) moving parallel to the x-axis. The
dispersion of the considered packet

increases at t  ∞ as 4(α + 1)t/[(α + 2)2(α + 3)], so
that its relative width

tends to zero with time as t –1/2. The propagation regime
of such particles will be referred to as quasiballistic. It
also includes particles in the ballistic regime; that is, the
nonscattered particles whose distribution is given by
density (16) and characterized by a finite surge

(20)

The fraction of ballistic particles in a quasi-ballistic
packet is

Except for step (20), the solution of Eq. (15) can be
approximated by the formula

It meets the normalizing condition

and has the moments

Equating the first and second moments to those
given by Eqs. (18) and (19), respectively, we obtain a
system of equations to determine parameters γ and µ as
functions of t and ν2:

The results of the numerical calculations of γ(t, ν2)
and µ(t, ν2) are presented in the table. In Fig. 4, the

σx
2 σz

2 m2 t( )/m0 t( ) m1 t( )/m0 t( )[ ]2–= =

δ t( ) σx t( )/x t( ) 2

α 1+( ) α 3+( )t
------------------------------------------∼=

∆ρ 0( ) ρ 0( ) 0 t,( ) α 1+
2t

------------- t–{ } .exp= =

η t( ) m0
0( ) t( )/m0 t( ) t/2–{ } .exp= =

ρ+ z t,( ) γµ2z
2Γ 2/γ( )
-------------------- t/2– µz( )γ–{ } .exp=

ρ+ z t,( ) zd

0

∞

∫ 1/2( ) t/2–{ }exp=

znρ+ z t,( ) zd

0

∞

∫ Γ n 2+( )/γ( )
2µnΓ 2/γ( )

------------------------------- t/2–{ } .exp=

2Γ 4/γ( )Γ 2/γ( )
Γ 3/γ( )[ ]2

-------------------------------------
m2 t( )
m1 t( )[ ]2

-------------------- t/2–{ } ,exp=

µ Γ 3/γ( )
2m1 t( )Γ 2/γ( )
---------------------------------- t/2–{ } .exp=
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The parameters γ and µ in formula (21)

t

ν2

0.80 0.90 0.95 0.99

γ µ γ µ γ µ γ µ

2 0.854 12.69 0.765 35.73 0.729 84.69 0.703 484.8

4 1.103 3.777 0.978 9.908 0.928 22.70 0.892 126.5

6 1.401 1.808 1.229 4.505 1.161 10.07 1.111 55.01

8 1.756 1.093 1.521 2.622 1.428 5.752 1.362 30.98

10 2.184 0.758 1.861 1.767 1.737 3.822 1.650 20.36

12 2.709 0.573 2.262 1.308 2.096 2.799 1.981 14.78

14 3.378 0.459 2.747 1.032 2.521 2.189 2.368 11.48

16 4.280 0.384 0.348 0.851 3.035 1.793 2.828 9.359

18 5.609 0.332 4.129 0.726 3.678 1.521 3.391 7.900

20 7.914 0.294 5.213 0.635 4.524 1.324 4.107 6.849
approximation

(21)

is compared with the results of the Monte Carlo simu-
lation of the distribution of particles moving all the time
in the positive x-axis direction. Good agreement
between these results enables the solution of the kinetic
equation to be presented in the form of a sum of the
slowly varying component of the solution of the tele-
graph equation and two bursts ψ+(ξ, t) and ψ–(ξ, t),
which are symmetric about the origin of coordinates.

CONCLUSIONS

The main conclusions of the study are as follows.
The spatial distribution of particles emitted by an
instantaneous point source in the case of mesodiffusion
differs from the ordinary diffusion distribution by the
occurrence of a front, beyond which the density is zero.
The front moves away from the source with the velocity
of a freely moving particle.

In the case of one-dimensional mesodiffusion, there
are δ-singularities at both fronts accounting for the bal-
listic regime. Together with the continuous part of the
solution of the telegraph equation, they give an exact
solution of Boltzmann’s kinetic equation.

Taking into account the angle distribution of the par-
ticles results in the disappearance of the singularities
and the emergence instead of well pronounced frontal
bursts in the case of strong anisotropy when ν2 > 0.8,
which merge into the background of the smooth com-
ponent at ν2 < 0.7. The shape of the surges correspond-
ing to the ballistic regime is well approximated by for-
mula (21).

ψ+ ξ t,( ) tρ+ 1 ξ–( )t t,( )=

=  
t2γµ2 1 ξ–( )

2Γ 2/γ( )
------------------------------ t/2– µt 1 ξ–( )( )γ–{ }exp
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At ν2 > 0.7, the continuous part of the telegraph
equation is in satisfactory agreement with the solution
of the kinetic equation (if ξ is not too close to 1) and,
together with the above-mentioned approximation of
the frontal burst, can be used as an approximation of the
exact solution.

In the case of weak anisotropy, the telegraph
approximation approximates the exact solution less
accurately than the diffusion approximation.
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APPENDIX

SOLUTIONS OF EQUATIONS (8) AND (15) 
USING MONTE CARLO SIMULATION

The analog simulation of the considered process
presents no special problems; however, the obtained
histograms are not very convenient for describing the
density in the region of high gradient. Indeed, in the
analog simulations, the estimation of the density ρ at
point x* at time t* is obtained by building an elemen-
tary section (layer) of length ∆x* in the vicinity of the
point x* and calculating the quantity

(A1)

where N0 is the total number of statistical sampling tra-
jectories; N(∆x*, t*) is the number of trajectories which
are found in the layer ∆x* at the moment of time t*.

ρ̂ ∆x* t*,( ) N ∆x* t*,( )
N0∆x*

---------------------------,=
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The estimator (A1) is not unbiased and its mathe-
matical expectation

is equal to the function ρ(x, t*) averaged over ∆x*
rather than its sought-for value ρ(x*, t*). According to
the mean value theorem,

where x' ∈  ∆x*, but the exact position of x' is not
known.

This uncertainty is the source of a horizontal error.
Estimator (A1) itself contains a statistical “vertical”
error.

Obviously, the horizontal error component can be
reduced by decreasing ∆x*, which in turn results in an
increase in the vertical error. It is possible to completely
eliminate the horizontal error from the results by tran-
sition from the analog scheme to the following modifi-
cation of the method. Let

(A2)

and X1, T1, X2, T2, …, XN(t*), TN(t*) be random coordi-
nates and instants of time of the collisions of the parti-
cle in a given trajectory; N(t*) is a random number of
collisions in the interval (0, t*). It is obvious that

(A3)

is the unbiased estimate of the functional (A2)

Now represent Eq. (8) in the form

where

According to Eqs. (A2) and (A3), the unbiased esti-
mator of the functional Jh(t*) is

(A4)

Since ρ0(x* – Xi, t* – Ti) in the adopted system of
units describes the density of the flux and the density of

Mρ̂ ∆x*, t*( ) 1
∆x*
---------- ρ x t*,( ) xd

∆x*

∫=

1
∆x*
---------- ρ x t*,( )

∆x*

∫ ρ x' t*,( ),=

Jh t*( ) dt dxh x t,( )ρ x t,( ),∫
0

t*

∫=

Ĵh t*( ) h Xi Ti,( )
i 1=

N t*( )

∑≡

MĴ h t*( ) Jh t*( ).=

ρ x* t*,( ) ρ0 x* t*,( ) Jh t*( ),+=

h x t,( ) ρ0 x* x, t* t––( ).=

Ĵh ρ0 x* Xi– t* Ti–,( ).
i 1=

N t*( )

∑=
collisions of nonscattered particles, then estimator (A4)
can be considered as a sort of local estimation [21].
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Abstract—It is shown that zero-field potentials may be responsible for the Aharonov–Bohm effect. A magnetic

field B = curlAf has a physical (gauge-invariant) meaning for field potentials Af, whereas a circulation dr

has a physical meaning for zero-field potentials A0. © 2001 MAIK “Nauka/Interperiodica”.

A0
C∫°
INTRODUCTION

The Aharonov–Bohm effect, an intriguing quantum-
mechanical phenomenon, was predicted in 1939 and
1949 [1, 2] and then discovered and theoretically
treated in 1959 [3]. Its essence is that a charged quan-
tum particle moving in a region where a stationary
magnetic (or electric) field is absent but the vector (or
scalar) potential is nonzero is subjected to electromag-
netic influence. A deeper insight into the nature of the
Aharonov–Bohm effect (ABE) has been given in the
course of long-standing discussion [4, 5]. However,
inexact and sometimes incorrect assertions on this
problem are still appearing in the physics literature.
The necessary condition for the ABE is the presence of
gauge-invariant potentials that do not produce electro-
magnetic fields. Since such potentials (zero-field poten-
tials) must have the form

,

the function Ψ was, generally speaking, mistaken for
the function of gradient transformation in the vast
majority of works. This resulted in a paradox in both
classical and quantum cases: “…, we may retain the
present local theory and, instead, we may try to give a
further new interpretation to the potentials. In other
words, we are led to regard A(r) as a physical variable.
This means that we must be able to define the physical
difference between two quantum states which differ
only by gauge transformation” [3]. In papers devoted to
the ABE, the necessary condition for its existence has
virtually not been discussed. In the stationary case, it
was generally assumed that “a nontrivial topology of
the region of charged particle propagation” is necessary
for the ABE [6].

After the cogent experiments of Tonomura et al. [7],
the potentialities of studying the stationary ABE had
apparently been exhausted and physicists began to
study the nonstationary ABE [8–12]. In [8, 9], the pos-

A0 gradΨ, ϕ0 1
c
---∂Ψ

∂t
--------–= =
1063-7842/01/4602- $21.00 © 20147
sibility of the quasi-ABE occurring in the presence of
solely field potentials was considered. In [10−12], a
variable magnetic flux was specified but corresponding
fields and potentials were not discussed. Nevertheless,
the origin and structure of the fields are of fundamental
importance for the ABE. Indeed, as was shown (see,
e.g., [13]), in the stationary case, the ABE is due to
zero-field potentials, changing only the phase of the
wave function. The necessary condition for the ABE is
the presence of zero-field potentials that cannot be
eliminated by gauge transformation.

The notion of zero-field (redundant) potentials was
first introduced for solving boundary problems in elec-
trodynamics of anisotropic media [14–16] and is very
seldom encountered in the physics literature. The
authors of [17] argue that “electric and magnetic field
vectors cannot be expressed in terms of vector poten-
tials” in anisotropic media. The conventional approach
to such problems was to use electric and magnetic field
strengths or, for zero scalar potentials, vector potentials
proportional to them as unknown functions (Coulomb
gauge). Such an approach turned out to exclude the
possibility of satisfying boundary conditions in aniso-
tropic media due to the intrinsic structure of Maxwell’s
equations (see Section 2).

The use of electromagnetic potentials with nonzero
scalar potential in order to regularly satisfy boundary
conditions was first proposed by academician
Tikhonov in 1959 [18]. The evolution of these ideas has
given rise to a general method for solving boundary
problems in electrodynamics of anisotropic media,
which is referred to as the method of redundant poten-
tials [14–16, 19]. Its basic idea is the use of potentials
that do not generate an electromagnetic field to regu-
larly satisfy boundary conditions. The main results of
this method are reported in Sections 1 and 2. However,
even its authors state that “these potentials make no
physical sense, since, being a direct consequence of
gauge invariance, they generate zero electromagnetic
fields” [19].
001 MAIK “Nauka/Interperiodica”
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As is shown in Section 5, zero-field potentials, gen-
erally speaking, differ from gauge transformation
despite the same form. The fact that two equivalence
relations for vector potentials A and A' (curlA = curlA'
and A – A' = gradχ) do not coincide in the general case
was apparently first mentioned in [20] and rigorously
proven in the cohomology theory [21].

1. ZERO-FIELD POTENTIALS IN A UNIAXIAL 
DIELECTRIC MEDIUM

Consider an anisotropic dielectric medium with a
permittivity tensor  = diag(ε, ε, ε1), i.e., a uniaxial
medium, which is the simplest special case of a homo-
geneous anisotropic medium.

The free-field Maxwell equations for electromag-
netic potentials have the form (in any gauge)

(1a)

, (1b)

where δ is the Laplacian operator. Projecting these
equations on the principal axes of anisotropy, we obtain

(2a)

(2b)

(2c)

(2d)

Let us use the Chetaev method [16, 19] to study sys-
tem (2). Its determinant, involving the operator coeffi-
cients, is identically zero. This means that the equations
in system (2) are linearly dependent. In this case, one of
the equations, e.g., the last one, may be eliminated.
Solving the obtained system by the Cramer rule, we

ε̂

graddivA ∆A
µ
c2
---- ∂2

∂t2
------- ε̂A

µ
c
--- ∂

∂t
----- ε̂gradϕ+ +– 0,=

div ε̂ 1
c
---∂A

∂t
------- gradϕ+ 

  0=

∂2Ax

∂y2
-----------–

∂2Ax

∂z2
-----------

µε
c2
------

∂2Ax

∂t2
-----------+–

+
∂2Ay

∂x∂y
------------

∂2Az

∂x∂z
-----------

µε
c

------ ∂2ϕ
∂t∂x
-----------+ + 0,=

∂2Ax

∂y∂x
------------

∂2Ay

∂x2
-----------

∂2Ay

∂z2
-----------––

+
µε
c2
------

∂2Ay

∂t2
-----------

∂2Az

∂y∂z
-----------

µε
c

------ ∂2ϕ
∂t∂y
-----------+ + 0,=

∂2Ax

∂z∂x
------------

∂2Ay

∂z∂y
-----------

∂2Az

∂x2
-----------–+

–
∂2Az

∂y2
-----------

µε1

c2
--------

∂2Az

∂t2
-----------

µε1

c
-------- ∂2ϕ

∂t∂z
----------+ + 0,=

ε
c
--
∂2Ax

∂x∂t
----------- ε

c
--
∂2Ay

∂y∂t
-----------

ε1

c
----

∂2Az

∂z∂t
-----------+ +

+ ε∂2ϕ
∂x2
--------- ε∂2ϕ

∂y2
--------- ε1

∂2ϕ
∂z2
---------+ + 0.=
find the equations of differential constraints imposed
on the unknown functions:

(3)

where x0 = ct and the operators L and L2 have the form

(4a)

(4b)

(4c)

Relation (3) implies that the general potentials A
and ϕ are representable as the sums A = Af + A0 and
ϕ = ϕ f + ϕ0. The field-producing terms Af and ϕ f sat-
isfy the basic (dispersion) relation (irrespective of the
gauge)

(5)

The terms A0 and ϕ0, which identically satisfy sys-
tem (2) but do not satisfy (5), are related by the condi-
tion

i.e., they do not generate fields.
In quantum problems, just as in the stationary ABE,

allowing for zero-field potentials causes only a change
in the phase of the wave function. Therefore, the pres-
ence of zero-field potentials is the necessary condition
for the ABE.

In the isotropic case (ε1 = ε), each of the Cartesian
coordinates of the vector potential is an independent
solution of the wave equation. In order to satisfy the
boundary conditions, three independent solutions are
required [9]. Hence, the system of boundary conditions
is closed. For an anisotropic medium, this is not the
case: the introduction of zero-field potentials becomes
a must to satisfy the boundary conditions. This asser-
tion will be clarified in the next section.

2. GENERAL REPRESENTATIONS FOR A VECTOR 
POTENTIAL IN A UNIAXIAL MEDIUM

To complete the definition of system (2), we replace
its last equation by a linear equation in the general form
[19]

(6)

∂
∂x0
--------LL2A ∇ LL2ϕ ,–=

L
∂2

∂x2
-------- ∂2

∂y2
-------- ∂2

∂z2
------- µε ∂2

∂x0
2

--------,–+ +=

L1
∂2

∂x2
-------- ∂2

∂y2
-------- ∂2

∂z2
------- µε1

∂2

∂x0
2

--------,–+ +=

L2 L1 1
ε1

ε
----– 

  ∂2

∂z2
-------–=

=  ∂2

∂x2
-------- ∂2

∂y2
--------

ε1

ε
---- ∂2

∂z2
------- µε1

∂2

∂x0
2

--------.–+ +

LL2A f 0, LL2ϕ
f 0.= =

∂A0

∂x0
--------- gradϕ0+ 0;=

Lx Ax LyAy LzAz L0ϕ+ + + 0,=
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which is the most general gauge condition (Lk are linear
operators of differentiation with respect to coordinates
xk). Calculating the determinant of the resulting system,
we find that the potentials have to satisfy the equations

(7)

with the operator

Thus, the general representation of the potentials

has the form A =  +  + A0, where

(8)

and the potentials must satisfy the additional condition

i.e., A0 = gradΨ and ϕ0 = –∂Ψ/∂x0, where Ψ is any dif-
ferentiable function.

The last equation in (8) is referred to as redundant
[19].

Let us put Lα = eαβ∂/∂xβ (α and β = x, y, z) and L0 =
µ∂/∂x0. Then, Eq. (6) may be represented in the form of
the generalized Lorentz condition

(9)

and the operator of the redundant equation is given by

(10)

Choosing the tensor  in the form

we obtain

(10a)

For e = e1 = ε, the redundant operator S coincides
with L; for e = ε1 and e1 = ε, S = L2. The former case
coincides with the Chetaev optimal gauge condition
[19]; and the latter, with the Tikhonov condition [18].
In these and only in these cases, the redundant equation
appears, showing up as one of the second-order equa-
tions into which the general equation decomposes [19].
For e = e1 = ε, general system (2) takes the form

(11a, 11b)

LL2SA 0, LL2Sϕ 0= =

S
∂
∂x
------Lx

∂
∂y
-----Ly

∂
∂z
-----Lz

∂
∂x0
--------L0.–+ +=

A 1( )
f A 2( )

f

LA 1( )
f 0, A 2( )

f 0, SA0 0= = =

∂A0

∂x0
--------- gradϕ0+ 0;=

divêA f µ∂ϕ f

∂x0
---------+ 0,=

S divêgrad µ ∂2

∂x0
2

--------.–=

ê

ê diag
1
e
--- 1

e
--- 1

e1
----, , 

  ,=

S
∂2

∂x2
-------- ∂2

∂y2
--------

e
e1
---- ∂2

∂z2
------- µe

∂2

∂x0
2

--------.–+ +=

LAx
f 0, LAy

f 0,= =
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(11c)

From these equations,

(12)

with L  = 0 and L2  = 0 in accordance with (8).
From the last equations in (11) and (12), we come to the
equation

(13)

In view of the Chetaev gauge condition, Eq. (13)
yields

(14)

i.e.,  and ϕ f(1) coincide with the zero-field poten-

tials. Therefore,  = 0, which results in

(15)

Finally, for the Chetaev gauge condition, the general
representation of the vector potential in a uniaxial
medium (for Ak, ϕ ~ eiωt) has the form [19]

(16a)

(16b)

(16c)

where k0 = ω/c and  satisfy the redundant equation

L  = 0.

The general representation for the potentials (16)
makes it possible to solve boundary problems in elec-
trodynamics of uniaxial media. Unlike the case of an
isotropic medium, here there appears additional condi-

tion (15), relating  to . However, the bound-
ary conditions cannot be satisfied using solely the com-
ponents of the field potentials. Indeed, let it be required
to solve the Fock–Sommerfeld problem of a dipole
field generalized for an anisotropic medium. In this
case, it is necessary to determine seven functions

(bounded at infinity): three components ( , , and

) of the vector potential in a vacuum (z < 0), three

components ( , , and ) of the vector

L2Az
f 1

ε1

ε
----– 

  ∂
∂z
-----

Ax
f

∂x
------

Ay
f

∂y
------+ 

  .=

Ax
f 2( ) 0, Ay

f 2( ) 0, Az
f Az

f 1( ) Az
f 2( )+= = =

Az
f 1( ) Az

f 2( )

L2Az
f 1( ) 1

ε1

ε
----– 

  ∂
∂z
-----

∂Ax
f 1( )

∂x
--------------

∂Ay
f 1( )

∂y
--------------+ 

  .=

∂Az
f 1( )

∂x0
-------------- ∂ϕ f 1( )

∂z
--------------+ 0;=

Az
f 1( )

Az
f 1( )

∂Ax
f 1( )

∂x
--------------

∂Ay
f 1( )

∂y
--------------+ 0.=

Ax Ax
f 1( ) 1

ik0
------

∂ϕ0
1( )

∂x
------------,+=

Ay Ay
f 1( ) 1

ik0
------

∂ϕ0
1( )

∂y
------------,+=

Az Zz
f 1( ) 1

ik0
------∂ϕ 1( )

∂z
------------,+=

ω0
1( )

ϕ0
1( )

Ax
f 1( ) Ay

f 1( )

Ax
0 Ay

0

Az
0

Ax
f 1( ) Ay

f 1( ) Az
f 1( )
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potential, and the function  in the anisotropic half-
space (z > 0). Thus, to satisfy the boundary conditions,
we have 14 constants. They can be determined from the
seven conditions of boundedness at infinity. Three
more equations result from continuity conditions for
the vector potential components at z = 0. The continuity
conditions for the normal derivatives of the tangential
components of the vector potential yield two additional
equations. One equation results from relation (15)

between  and . Finally, we should take into
account the Tikhonov field excitation condition (the
jump of the normal derivative of the vector potential
component that is parallel to the direction of current),
which allows for the presence of a dipole.

Thus, one can uniquely solve this problem only by
introducing zero-field potentials. This also means that,
along with field potentials, zero-field potentials are also
uniquely determined in a given gauge.

3. RELATION BETWEEN ZERO-FIELD 
POTENTIALS AND GAUGE TRANSFORMATION

Let initial potentials A and ϕ be related to each other
by general gauge relation (6); that is,

(17)

and new potentials A' and ϕ' are related as

(18)

Here, Lk, , L0, and  are any linear operators with
constant coefficients.

It is well known that electromagnetic fields E and B
are gauge-invariable:

Substituting these expressions into Eq. (18), we
arrive at

(19)

The last equation represents the condition that must
be satisfied by the function χ of gauge transformation if
the potentials are related to each other by gauge condi-
tions (17) and (18). Generally, this equation differs
from the redundant equation SΨ = 0. The only special
case where Eq. (19) coincides with the redundant one is
the restricted gauge transformation Lk =  and

L0 = .

Finally, we should take into account that the func-
tion χ in gradχ must be single-valued (which is always

ϕ0
1( )

Ax
f 1( ) Ay

f 1( )

Lk Ak L0ϕ+
k 1=

3

∑ 0, ϕ L0
1– Lk Ak,

k 1=

3

∑–= =

Lk' Ak' L0' ϕ'+
k 1=

3

∑ 0, ϕ' L0'( ) 1– Lk' Ak' .
k 1=

3

∑–= =

Lk' L0'

A' A gradχ , ϕ'+ ϕ 1
c
---∂χ

∂t
------.–= =

Lk'
∂χ
∂xk

--------
k 1=

3

∑ 1
c
---L0'

∂χ
∂t
------– Lk' L0' L0

1– Lk–( )Ak.
k 1=

3

∑–=

Lk'

L0'
true in a simply connected domain), since this is the
only case when the circulations of A and A' coincide:

(20)

We have come to the conclusion that the equalities
curlA = curlA' and A' = A + gradχ are equivalent only
in a simply connected domain [21]. In contrast to dif-
ferential equations describing local properties of the
vector fields A and A', condition (20) describes their
global properties.

Thus, even if the redundant equation for zero-field
potentials coincides with that for the function of gauge
transformation, their solutions [in view of (20)] may be
different in multiply connected domains. It is this case
that takes place in the ABE [3].

4. THE STRUCTURE OF THE VECTOR POTENTIAL 
IN THE CASE OF MAGNETOSTATIC ABE

In the initial version of the magnetostatic ABE [3],
the influence of the region outside an infinite solenoid
with constant current on electron motion was studied.
Let us consider the structure of the vector potential in
this problem on the basis of the above-developed the-
ory. It is worth mentioning that, if the solenoid is con-
sidered as a smooth thin-walled continuous cylinder,
we can take the entire space to be a homogeneous
anisotropic medium with a conductivity that is nonzero

only in the ea direction at ρ = R (ρ =  and the
z axis is aligned with the axis of solenoid symmetry).
The thinner the wire and the less the winding pitch, the
more accurate such a treatment. Therefore, the poten-
tial must have the form A = Af + A0, where Af is the
field-generating potential and A0 = gradΨ is the zero-
field potential.

In the magnetostatic case (ϕ = 0 and µ = ε = 1), L =
L2 = ∆. The equations of differential constraints (3) will
take the form

(21a)

(21b)

Hence, either ∆Ax = ∆Ay = ∆Az = 0 or

Completing the definition of this system by operator (6)
with Lx = ∂/∂x, Ly = ∂/∂y, Lz = ∂/∂z, and L0 = 0, i.e., by
the condition divA = 0, we obtain Eq. (7) in the form
∆2A = 0. This means that the operator of the redundant
equation is S = ∆ and coincides with L. By virtue of the

Adl∫° Adl.∫°=

x2 y2+

∂
∂z
-----∆Ax

∂
∂x
------∆Az,=

∂
∂z
-----∆Ay

∂
∂y
-----∆Az.=

∂Ax

∂z
---------

∂Az

∂x
--------– By 0,= =

∂Az

∂y
--------

∂Ay

∂z
---------– Bx 0.= =
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symmetry of the problem, one can put Aρ = Az = 0 and
Aα = Aα(ρ). In view of the boundedness of the solution
at the origin, its form in the range 0 ≤ ρ < R may be

A1α = c1ρ (  = A1α and  = 0). In the outer region
(ρ > R), the general solution has the form A2α = c3ρ +
c2/ρ. However, one cannot require the potential to be
bounded at infinity, since the system is infinite. Physi-
cally, it is clear that the magnetic field outside the sole-

noid is equal to zero (  = 0). Therefore, in the outer
region, the redundant equation ∆A0 = 0 subject to
curlA0 = 0 should be solved. This condition selects the
proper solution A2α = c2/ρ. This fact was not found out
earlier due to the coincidence of the redundant and gen-
eral operators in this problem. In this case, the
Tikhonov condition for field excitation is given by

where I is the current per unit solenoid length. This
condition is the same as that of the jump of the mag-
netic field tangential component in the usual statement
of the problem.

Using the Tikhonov condition and the continuity
condition for the potential at ρ = R, we obtain the final
solution: A1α = Iρ/cR (0 ≤ ρ < R) and A2α = IR/cρ (R <
ρ < ∞). The constants in these formulas can be
expressed in terms of the magnetic field flux inside the
solenoid: A1α = (Φ/2πR2)ρ and A2α = Φ/2πρ.

The potential in the outer region is a zero-field
potential, so that A2 = gradΨ. However, since this
region (R < ρ < ∞) is doubly connected, the function Ψ
is multiple-valued and dr ≠ 0 despite the fact that

curlA2 ≡ 0. Here, the nonequivalence mentioned in Sec-
tion 3 takes place. This means that the Stokes theorem

(in the form dr = ds, where the contour C

encloses the solenoid in the outer region and S is the
area inside the contour C) is inapplicable [21]. Never-
theless, this formula is incorrectly used in all the papers
devoted to the ABE.

Outside the solenoid, the Stokes theorem applies to
the region between two closed contours C1 and C2 that
enclose the solenoid. A gap between the contours
makes the region simply connected. In this case,

dr =  = ω1, where ω1 is the cyclic constant

[21] that equals the flux Φ = 2πIR/c = πR2B in our case,
where B is the field inside the solenoid. For a restricted
gauge transformation, the function χ of gauge transfor-
mation (the same both inside and outside the solenoid)
has to satisfy the Laplace equation ∆χ = 0 (0 ≤ ρ < ∞).
It is well known [22, 23] that the solution of the Laplace
equation in the entire space subject to χ|ρ = ∞ = 0 is iden-

A1
f A1

0

A2
f

∂A1α

∂ρ
------------ ∂A2α

∂ρ
------------

ρ R=

–
2I
cR
------,=

A2∫°

A∫° B∫°

A1C1∫° A2C2∫°
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tically zero. Thus, the potentials A1α and A2α are defined
uniquely (in the gauge divA = 0).

5. THE STRUCTURE OF THE VECTOR 
POTENTIAL FOR AN AC SOLENOID

Consider nonstationary excitation of an infinite
cylindrical solenoid with infinitely thin walls to illus-
trate the existence of nonstationary zero-field potentials
as a generalization of the stationary magnetostatic
ABE. Choosing a cylindrical coordinate frame (ρ, α, z)
with the z axis directed along the solenoid axis, we can
represent the volume distribution of current as

(22)

where R is the solenoid radius and ω is the circular fre-
quency of the current.

The nonzero components of the vector potential, Aρ
and Aα, have the form [17] (further, we will omit the
factor showing the harmonic dependence on time)

(23a)

(23b)

where G(r, r') = – (k|r – r') is the Green func-

tion for the Helmholtz equation [17],  is the Han-
kel function, and k = ω/c.

The integrals appearing in (23) are easily evaluated
using the addition formula for the Hankel functions
[17]:

(24)

Eventually, we obtain

(25a)

jα ρ α z, ,( ) I0δ ρ R–( ) i nα– ωt+( ),exp=

jρ jz 0,= =

Ar jα r'( ) α α'–( )G r r',( )sin V',d

V

∫=

Aα jα r'( ) α α'–( )G r r',( )cos V',d

V

∫=

iπ
c
-----H0

2( )

H0
2( )

H0
2( ) k ρ2 R2 2ρR α α'–( )cos–+( )

=  e im α α'–( )– Hm
2( ) kR( )Jm kρ( ), ρ R<

Jm kR( )Hm
2( ) kρ( ), ρ R.>




m ∞–=

+∞

∑

Aα
iπ2I0R

c
----------------e inα––=

×
Hn 1+

2( ) kR( )Jn 1+ kρ( ) Hn 1–
2( ) kR( )Jn 1– kρ( ), ρ R<+

Jn 1+ kR( )Hn 1+
2( ) kρ( ) Jn 1– kR( )Hn 1–

2( ) kρ( ), ρ R,>+


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(25b)

In the case n = 0, i.e., in the absence of angle modu-
lation, formula (11) yields

(26)

In the stationary case (ω  0), these relations result
in the well-known formulas Aα = Jρ/cR and Aα = JR/cρ
(ρ > R), where J = 2πRI0 is the current per unit length
in the solenoid wall.

The only nonzero magnetic-field component corre-
sponding to potentials (26) has the form

(27)

for alternating current or

(28)

in the stationary case.

In order to divide the vector potential outside the
solenoid into two terms according to (1), we separate
out the term whose curl is equal to zero in (12). This can
be done uniquely as follows:

(29)

where  is the component of the field potential,  is
the component of the zero-field potential, and

(kρ) = (kρ) – 2i/πkρ.

Let us write the real parts of the potential compo-
nents in (29):

(30a)

(30b)

Aρ
π2I0R

2c
--------------e inα––=

×
Hn 1+

2( ) kR( )Jn 1+ kρ( ) Hn 1–
2( ) kR( )Jn 1– kρ( )– , ρ R<

Jn 1+ kR( )Hn 1+
2( ) kρ( ) Jn 1– kR( )Hn 1–

2( ) kρ( )– , ρ R.>



Aα
2iπ2I0R

c
-------------------

H1
2( ) kR( )J1 kρ( ), ρ R<

J1 kR( )H1
2( ) kρ( ), ρ R,>




–=

Aρ 0.=

Bz

2iπ2I0Rk
c

----------------------
H1

2( ) kR( )J0 kρ( ), ρ R<

J1 kR( )H0
2( ) kρ( ), ρ R,>




–=

Bz

4πI0

c
----------- ρ R<( ), Bz 0  ρ R>( )= =

Aα
2iπ2I0R

c
-------------------J1 kR( )H̃1

2( )
kρ( )–=

+
4πI0RJ1 kR( )

ρ
--------------------------------- Aα

f Aα
0 ,+≡

Aα
f Aα

0

H̃1
2( )

H1
2( )

ReAα
f

=  W πJ1 kρ( ) ωtsin 2
kρ
------ πY1 kρ( )+ ωtcos–

 
 
 

,

ReAα
0 W

2
kρ
------ ωt,cos=
where

and Y1 is the Neumann function.

In the stationary case,  = 0 and  = JR/cρ. From
the condition of absence of an electric field, one can
obtain the expression for the scalar zero-field potential:

(31)

where α is the azimuthal angle. In the stationary case,
ϕ0 = 0.

Note that there exists a relation between the sole-
noid radius and the electromagnetic field wavelength.
This relation is defined by the roots of the equation
J1(kR) = 0 and yields the zero field outside the solenoid,
as follows from (15). However, in this nonstationary
case, zero-field potentials also vanish; here, we are
dealing with a closed waveguide. Zero-field potentials
are equal to zero for all n ≠ 0 as well. One can easily
evaluate the flux inside the solenoid:

(32)

The circulation of the vector A0 on any contour
enclosing the solenoid (cyclic constant) is given by

(33)

Obviously, ω1 ≠ Φ in the general (nonstationary)
case. Therefore, their coincidence in the stationary case
(k0  0) should be considered as accidental.

Generally speaking, this fact completely changes
our understanding of the ABE. The reason for the ABE
is zero-field potentials. A magnetic field B = curlAf has
a physical (gauge-invariant) meaning for field poten-

tials Af, whereas a circulation dr has a physical

meaning for zero-field potentials A0.
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Abstract—A transformation formula for wave functions of type (x1) (x2), where ψn is the eigenfunction

of a harmonic oscillator for the nth energy level, was found for an arbitrary rotation of the (x1, x2) Cartesian
system. By way of example, matrix elements for contact interaction of two particles in an external harmonic
potential field were calculated. © 2001 MAIK “Nauka/Interperiodica”.

ψn1
ψn2
STATEMENT OF THE PROBLEM

Let us have an isotropic harmonic oscillator of mass
m and fundamental frequency ω. Its complete Hamilto-
nian can be represented as the sum of one-dimensional
Hamiltonians describing oscillation along two orthog-
onal axes x1 and x2:

(1)

The properties of the eigenfunctions of operators

 are well known [1]. We will take advantage of the
expression for the eigenfunction for the nth energy
level (n = 0, 1, 2, …) normalized to unity:

(2)

where

(3)

is the wave function of the ground state. The quantum
production operator is explicitly written as

(4)

and its conjugate (annihilation operator), as

(5)

Our goal is to see how the wave functions of type
(x1) (x2) transform when the coordinate system

rotates through an angle χ in the plane (x1, x2); in other

Ĥ Ĥ1 Ĥ2,+=

Ĥ j
"

2

2m
------- ∂2

∂x j
2

-------- 1
2
---mω2x j

2, j+– 1 2.,= =

Ĥ j

ψn x j( ) 1

n!
--------- â j

†( )nψ0 x j( ),=

ψ0 x j( ) mω
π"
-------- 

 
1/4 mωx j

2

2"
--------------– 

 exp=

â j
† mω

2"
--------x j

"
2mω
------------

∂
∂x j

-------,–=

â j
mω
2"
--------x j

"
2mω
------------

∂
∂x j

-------.+=

ψn1
ψn2
1063-7842/01/4602- $21.00 © 20154
words, how the wave functions transform in going to
the new (primed) coordinates

(6)

As far as we know, such a transformation has not
been considered in the literature. This is associated
largely with the fact that it is natural to represent the
wave function of an axially symmetric harmonic oscil-
lator as the product of the radial part, which depends on
the polar radius alone and hence is invariant under rota-
tions, and a function like exp(iMϕ), where ϕ is an angu-
lar variable and M is an integer. Moreover, the addition
theorem for Hermitian polynomials, or, which is the
same, for eigenfunctions of a harmonic oscillator, has
also not been covered in the mathematical literature
concerning special functions (see, e.g., the comprehen-
sive monograph [2]).

Before calculating the coefficients in the transform

(7)

we will point to their obvious properties. First, when
the coordinate axes are rotated, only degenerate states
belonging to the same eigenvalue of the complete

Hamiltonian  mix. Hence, the necessary condition

for (χ) to be other than zero is the fulfillment of
the equality

(8)

Second, since the basis functions are real, so are the
coefficients of the transform; for them, the unitary
property changes to the property of orthogonality.
Thus, the inverse transform (in going from the new

x1' χx1 χx2, x2'sin+cos χx1 ξ x2.cos+sin–= =

ψn1
x1( )ψn2

x2( ) Kn1n2

n1' n2' χ( )ψn1'
x1'( )ψn2'

x2'( ),
n1' n2',
∑=

Ĥ

Kn1n2

n1' n2'

n1 n2+ n1' n2' .+=
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coordinates to the old) has the form

(9)

CALCULATION OF THE TRANSFORM 
COEFFICIENTS

Direct calculation of the coefficients (χ)
implies the definition of the quantum production oper-

ators  and  in the new coordinates. This is done

by replacing xj in (4) by . With (6), we find

(10)

These expressions are substituted into the defini-
tions of (x1) and (x2). Removing the parentheses

in the (x1) (x2) product, collecting similar terms,

and bearing in mind that ψ0(x1)ψ0(x2) = ψ0( )ψ0( ),

we find the coefficient preceding ( ) ( ) in
the form of a finite sum. After cumbersome computa-
tion using various identities known from the angular
momentum theory [3], we eventually come to

(11)

In view of the known property [3]

,

formula (11) can be recast as

(12)

Here,  is the function whereby the Wigner D func-
tion that corresponds to a rotation through Eulerian
angles (α, β, γ) is expressed

Under rotation, the wave functions with certain total
angular momentum J and its projection M onto the z
axis transform as

(13)

The argument of the wave function involves two
angular variables ϑ  and ϕ and the spin variable σ; the

ψn1'
x1

'( )ψn2'
x2

'( ) Kn1n2

n1' n2' χ( )ψn1
x1( )ψn2

x2( ).
n1 n2,
∑=

Kn1n2

n1' n2'

â1
'† â2

'†

x j'

â1
† χ â1

'†cos χ â2
'†,sin–=

â2
† χ â1

'† χ â2
'†.cos+sin=

ψn1
ψn2

ψn1
ψn2

x1' x2'

ψn1'
x1' ψn2'

x2'

Kn1n2

n1' n2' χ( ) d1
2
--- n2' n1'–( )1

2
--- n2 n1–( )

1
2
--- n1 n2+( )

2χ( ).=

dMM'
J β( ) d M'– M–

J β( )=

Kn1n2

n1' n2' χ( ) d1
2
--- n1 n2–( )1

2
--- n1' n2'–( )

1
2
--- n1 n2+( )

2χ( ).=

dMM'
J

DMM'
J α β γ, ,( ) iMα–( )dMM'

J β( ) iM'γ–( ).expexp=

ΨJ M' ϑ ' ϕ' σ', ,( )

=  ΨJM ϑ ϕ σ, ,( )DMM'
J α β γ, ,( ).

M J–=

J

∑
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primed quantities are their values in the new (rotated)
coordinate system. In essence, relation (13) defines the
Wigner functions.

We omit a routine procedure of directly computing

the transform coefficients (χ), the more so as
expressions (11) and (12) can be obtained by another,
less trivial but faster, way. It uses isospin formalism,
widely employed in the theory of two-level atom
ensembles [4]. Let us introduce the operators of isospin
projections onto three orthogonal axes in an auxiliary
(isospin) space:

(14)

It is easy to check that these operators satisfy the
usual commutation relations for angular momentum

(15)

two other similar relations are obtained by circularly
permutating subscripts 1, 2, and 3. Also, each of the

operators  (k = 1, 2, or 3) is commutatively related to
the spin square operator:

(16)

where

(17)

Thus, the wave function (x1) (x2) is the eigen-

function of the operators  and , and the eigenvalues
of the operators are 1/2(n1 + n2) and 1/2(n1 – n2),
respectively.

Now consider a rotation through an angle χ in the
(x1, x2) plane. It is evident that

(18)

where the variable φ is a polar angle reckoned from the
x1 axis toward the x2 axis. In addition [1, 3],

Using definitions (4) and (14), one can show that

(19)

in other words, a rotation through an angle χ in the
(x1, x2) plane is reduced to a rotation through an angle 2χ
about the x2 axis in the isospin plane. Thus, formula (12)

Kn1n2
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† â1
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and its equivalent (11) immediately follow from (19) in
view of (13).

MATRIX ELEMENTS OF CONTACT 
INTERACTION

By way of example, the relations obtained will be
used in calculating matrix elements of contact interac-
tion. As is known [5], in ensembles of ultracold atoms,
where s-wave isotropic scattering of length a dominates
because of the smallness of the collision energy, atomic
interaction can be approximated by the contact pseudo-
potential

(20)

where r and r' are the positions of colliding atoms (µ is
their reduced mass), g = 2π"2µ–1a is the effective inter-
action constant, and δ(3) is the three-dimensional Dirac
delta function.

To refine the existing theory of degenerate atomic
gas in a magnetic trap [5], it seems of interest to calcu-
late matrix elements of contact interaction using the
basis of eigenfunctions of a harmonic oscillation. Con-
sider two atoms of equal mass m (µ = m/2) that had

quantum numbers  before collision (the subscript j =
1, 2 numbers the atoms, while the superscript k = x, y, z
stands for the Cartesian axes directed along the mag-
netic axes of the trap). The quantum numbers after col-
lision will be primed. In the general case, all three fun-
damental frequencies of oscillation along the axes dif-
fer; we, however, will omit the super- and subscripts at
ω to make the mathematical notation simpler. The
desired matrix element is defined as

(21)

where

(22)

is the matrix element from the one-dimensional delta
function. Two properties of  immediately fol-
low from definition (22). First, this element remains
invariable for any permutation of its four subscripts.
Second, it is other than zero only if the sum n1 + n2 +

 +  is even.

To compute matrix element (22), we will transform
the coordinates in such a way as to separate the center-

U r – r'( ) gδ 3( ) r r'–( ),=

n j
k

n j
k' U n j

k〈 〉 g T
n2

k'
n1

k'
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k
n2

k ,
k x=

z
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Tn2' n1' n1n2
dx1 dx2ψn2'

x2( )ψn1'
x( )
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+∞

∫
∞–

+∞

∫=

× δ x1 x2–( )ψn1
x1( )ψn2

x2( )

Tn2' n1' n1n2

n1' n2'
of-mass motion of two particles and their relative
motion:

(23)

Formally, this transformation is a rotation through
an angle of π/4 in the (x1, x2) “plane.” With (7), we find

(24)

(  is Kronecker’s symbol). Substituting the eigen-
functions of a harmonic oscillator in the explicit form
(i.e., expressing them through Hermitian polynomials)
[1] and using the basic result of this work [expression
(11)], one can represent (24) in the form

(25)

where s under the summation sign runs over all integers
for which the arguments of the factorials in (25) are
nonnegative. Hereafter, we introduce the designations

After tedious routine rearrangements that follow
from the angular momentum theory [3], (25) is reduced
to a form that is free of the Wigner functions but con-

tains Clebsch–Gordan coefficients  (such a
form is very convenient when the computation is per-
formed with the Mathematica 3.0 program package,
where the Clebsch–Gordan coefficients are used as
standard functions):

(26)

x1'
1

2
------- x1 x2+( ), x2'

1

2
------- x2 x1–( ).= =

Tn2' n1' n1n2

1

2
------- Kn1n2

ν1ν2 π/2( )Kn1' n2'
ν1' ν2' π/2( )

ν1 ν2 ν1' ν2', , ,
∑=

× δν1ν1'
ψν2'

0( )ψν2'
0( )

δν1ν1'

Tn2' n1' n1n2
1–( )J' J– mω

2π"
----------=

× dM2s J–
J π/2( )dM' 2s J' 2J–+ +

J π/2( )
s

∑

× 2s( )! 2s 2J' 2J–+( )!
s! s J' J–+( )!22s J' J–+
-------------------------------------------------------,

J
1
2
--- n1 n2+( )= , J'

1
2
--- n1' n2'+( ),=

M
1
2
--- n2 n1–( ), M'

1
2
--- n2' n1'–( ).==

C j1m1 j2m2

jm

Tn2' n1' n2
 = ζ2 J J'+( )

mω
2π"
----------

J4 max J3 l– M M'–,( )=

J3 l+

∑
J3 J J'–=

J J'+

∑
l J J'–=

J J'+

∑

× 1–( )
J4 M' M– J J' l–+ + +( )/2

ζ l J'– J+

× ζ J4 M– M'+ CJM J' M'–
J3M M'–

CJ3M M'l0–
J4M M'–

CJl J'J'J– l–
J3 J J'–

CJ3 J J'l J'– J–
J40
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Here, ζs = [(–1)s + 1] (i.e., ζs = 1 or 0 if s is even or

odd, respectively). Matrix elements for powers of the
difference between the coordinates of two atoms (and,
hence, for the energy of their interaction in the form of
a power series other than pseudopotential (20)) can be
calculated in a similar manner.
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Abstract—Nonlinear vibrations of a charged drop that are caused by a virtual initial perturbation of the
equilibrium spherical shape of the drop were considered. The perturbation can be proportional to any of the free
vibration modes. The spectrum and stability of the vibrations were studied correct to second order of smallness.
© 2001 MAIK “Nauka/Interperiodica”.
(1) Charged drop stability is of considerable interest
in geophysical applications, scientific instrumentation,
technical physics, and engineering [1]. However, most
of the theoretical investigations into the problem were
based on a linear approximation. The nonlinearity of
the phenomenon has been taken into account in analyt-
ical and numerical studies only recently [2–10],
although some results of the nonlinear approach were
also obtained within simpler linear approximations
[11, 12].

We will consider a drop whose electric charge is
smaller than critical in terms of Rayleigh instability.
Let its surface undergo vibrations of large amplitude.
Our aim is to calculate the shape of the drop and the
parameters of surface vibrations. We formulate the
problem in a more general nonlinear form than in
[2−10] and solve it by the multiple scale method up to
terms of second order of smallness in amplitude of the
initial disturbance of the drop surface. We use a differ-
ent method of satisfying initial conditions than in
[2−10]. It allows us to obtain the solution up to second-
order terms when the initial perturbation is associated
with the excitation of an arbitrary vibrational mode.

(2) Consider a drop of an ideal incompressible per-
fectly conducting liquid with a density ρ and a surface
tension coefficient σ and study the time evolution of its
shape. We assume that the drop is in a vacuum, its
charge equals Q, and its volume equals the volume of a
sphere of radius R. At the initial time instant t = 0, the
equilibrium spherical shape of the drop undergoes a
virtual axisymmetric perturbation of fixed amplitude
that is much smaller than the drop radius and is propor-
tional to one of the Legendre polynomials. We aim at
calculating the spectrum of drop capillary vibrations
occurring under such conditions, i.e., at finding the
shape of the drop at each subsequent time instant t > 0.
1063-7842/01/4602- $21.00 © 20158
In what follows, we will use the dimensionless vari-
ables for which R = ρ = σ = 1.

Since the initial perturbation of the drop is axisym-
metric and small, we introduce the following simplifi-
cations. The shape of the drop is assumed to be axisym-
metric both at the initial and at each subsequent time
instant, and the equation for the shape of the drop writ-
ten in polar coordinates with the origin at the center of
the drop has the form

(1)

The motion of the liquid inside the drop is assumed
to be potential. This means that the field of the liquid
velocities V(r, t) is wholly defined by the potential
function ψ(r, t); i.e., V(r, t) = —ψ(r, t).

Under the above conditions, the evolution of the
drop is described by the Laplace equations for velocity
potential ψ(r, t) and electrostatic potential Φ(r, t):

, (2), (3)

where ∆ is the Laplacian, with the boundary conditions

(4)

(5)

(6)

, (7)

(8)

To make system (2)–(8) closed, we formulate addi-
tional conditions:

r Θ t,( ) 1 ξ Θ t,( ), ξ  ! 1.+=

∆ψ r, t( ) 0, ∆Φ r, t( ) 0= =

r 0: ψ r, t( ) 0,

r ∞: Φ r, t( ) 0,

r 1 ξ Θ t,( ): 
∂ξ
∂t
------+ ∂ψ

∂r
-------

1

r2
---- ∂ξ

∂Θ
-------∂ψ

∂Θ
-------,–= =

∆p
∂ψ
∂t
-------

1
2
--- —ψ–( )2–

1
8π
------ —Φ( )2+– —n=

Φ r, t( ) Φg t( ).=
001 MAIK “Nauka/Interperiodica”
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conservation of drop charge

(9)

and conservation of drop volume

where

(10)

The initial conditions for the problem will be set by
taking the initial axisymmetric perturbation of the equi-
librium spherical surface of the drop in the form

(11)

and by equating the initial speed of the surface to zero:

(12)

In (6)–(12), ∆p is the difference between constant
pressures inside and outside the drop in equilibrium, n
is the unit normal vector to surface (1), Φg(t) is the posi-
tion-independent potential on the drop surface, ε is the
amplitude of the initial perturbation of the drop surface,
Pk(µ) is the kth-order Legendre polynomial, and ξ0 is a
constant determined from (10) up to terms of second
order of smallness:

(13)

(3) We will take advantage of the well-known mul-
tiple scale method to solve the problem up to quadratic
terms in the small parameter ε [13]. To do this, we rep-
resent the required functions ξ(Θ, t), ψ(r, t), and Φ(r, t)
in the form of a series in ε and assume that the functions
depend not merely on time but on various time scales
Tm ≡ εmt; that is,

(14)

1
4π
------– n—Φ( )dS

S

∫°  = Q, where S = 

r 1 ξ Θ t,( )+=

0 Θ π≤ ≤
0 φ 2π,≤ ≤

r2 r Θsind Θd φd

V

∫ 4
3
---π,=

V

0 r 1 ξ Θ t,( )+≤ ≤
0 Θ π≤ ≤
0 φ 2π.≤ ≤

=

t 0: ξ Θ( ) ξ0 εPk µ( )   k 2≥( )+= =

µ Θcos≡

t 0: 
∂ξ Θ( )

∂t
--------------- 0.= =

ξ0 ε2 1
2k 1+( )

--------------------– O ε2( ).+=

ξ Θ t,( ) εm ξ m( ) Θ T0 T1 T2 …, , , ,( ),,
m 0=

∑=

ψ r t,( ) εm ψ m( ) Θ T0 T1 T2 …, , , ,( ),,
m 0=

∑=

Φ r t,( ) εm Φ m( ) Θ T0 T1 T2 …, , , ,( ).,
m 0=

∑=
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The time differentiation is performed with respect to
each time scale by the rule

Substituting (14) into boundary problem (2)–(10)
and equating terms of the same order of smallness to
each other in each of the equations, we easily obtain a
set of boundary problems from which one can succes-
sively determine the unknown functions ξ(m), ψ(m), and
Φ(m), where m = 1, 2, 3, … . Since Eqs. (2)–(5) are lin-
ear, each of the functions ψ(m) and Φ(m) from (14) must
obey them. Therefore, these functions, as solutions to
(2)–(5), may be given by

(15)

Successive corrections ξ(m) to the expression for
drop shape will be sought as a series in Legendre poly-
nomials:

(16)

(4) Up to the zeroth order in ε, the solution for the
equilibrium system is

(17)

as follows from (2)–(10).

(5) Up to the first order in ε (m = 1), boundary con-
ditions (6)–(10) for solutions (15) and (16) to deter-

mine ,  and  are transformed to

∂
∂t
----- ∂

∂T0
--------- ε ∂

∂T1
--------- ε2 ∂

∂T2
--------- O ε2( ).+ + +=

ψ m( ) r Θ T0 T1 T2 …, , , , ,( )

=  Dn
m( ) T0 T1 T2 …, , ,( )rnPn µ( ),

n 1=

∞

∑
Φ m( ) r Θ T0 T1 T2 …, , , , ,( )

=  Fn
m( ) T0 T1 T2 …, , ,( )r n 1+( )– Pn µ( ).

n 0=

∞

∑

ξ m( ) r Θ T0 T1 T2 …, , , , ,( )

=  Mn
m( ) T0 T1 T2 …, , ,( )Pn µ( ).

n 1=

∞

∑

ξ 0( ) r Θ T0 T1 T2 …, , , , ,( ) 0;=

ψ 0( ) r Θ T0 T1 T2 …, , , , ,( ) 0;=

Φ 0( ) r Θ T0 T1 T2 …, , , , ,( ) Q
r
----,=

Dn
m( ) Fn

m( ) Mn
m( )

r 1: 
∂ξ 1( )

∂T0
----------- ∂ψ 1( )

∂r
------------,= =

∂ψ 1( )

∂T0
------------–

1
4π
------dΦ 0( )

dr
------------- ∂Φ 1( )

∂r
-------------

+
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(18)

From (18), we easily obtain first-order corrections
to the coefficients of series (15) and (16):

(19)

(20)

(21)

where c.c. means complex conjugate terms. The func-
tions an and bn are determined up to higher orders of
smallness. To complete the first-order problem, an and
bn are set to be constants and derived from initial con-
ditions (11) and (12). It is of interest to find the error of
the first-order approximation of the solution and also
the time intervals where such an approximation is valid.
It is clear that

(22)

where  and  are constants.

From (14), we have (in the linear approximation in ε)

or, in view of (22),

(23)

The error in this expansion is of the order of the first
term if t ≈ O(ε–1). The expansion is not valid for t ≥
O(ε−1). Thus, (23) is applicable in the time interval t ≤

+
dΦ 0( )

∂r2
-------------ξ 1( )


 2 ∆Ω+( )ξ 1( ),–=

Φ 1( ) dΦ 0( )

dr
------------- ξ 1( )–+ Φg

1( ),=

∂Φ 1( )

∂r
------------- d2Φ 0( )

dr2
--------------- 2

dΦ 0( )

dr
-------------+ 

  ξ 1( )+ µd

0

π

∫ 0,=

ξ 1( ) µd

0

π

∫ 0, ∆Ω
∂

∂µ
------ 1 µ2–( ) ∂

∂µ
------ 

  .= =

M0
1( ) T0 T1 T2 …, , ,( ) 0,=

M0
1( ) T0 T1 T2 …, , ,( )

=  An T1 T2 …, ,( ) iωnT0( ) c.c.+exp

n 1≥( ),

Dn
1( ) T0 T1 T2 …, , ,( ) 1

n
---

∂Mn
1( ) T0 T1 T2, ,( )

∂T0
------------------------------------------ n 1≥( ),=

Fn
1( ) T0 T1 T2 …, , ,( ) QMn

1( ) T0 T1 T2 …, , ,( )=

n 0≥( ),

An T1 T2,( ) an T1 T2 …, ,( ) ibn T1 T2 …, ,( )[ ] ,exp≡

Φg
1( ) = 0, ωn

2 n n 1–( ) n 2+( ) W–[ ] , W
Q2

4π
------,≡≡

an T1 T2 …, ,( ) ân O εt( );+≈

bn T1 T2 …, ,( ) b̂n O εt( ),+≈

ân b̂n

ξ Θ t,( ) εξ 1( ) Θ T0 an T1 …,( ), bn T1 …,( ), ,[ ] O ε2( )+≈

ξ Θ t,( ) εξ 1( ) Θ t ân b̂n, , ,( ) εO εt( ).+≈
O(1); the error in this case is of the order of ~ε2. How-
ever, (23) can also be used in the time interval t ≤ O(ε–1)
to analyze surface motion if the first-order solution is
comparable to the initial perturbation. A more detailed
estimate of the applicability of (23) can be obtained in
the next (second) order of smallness in ε.

Substituting (23) into initial conditions (11)–(13)
with regard for (16) and (19)–(22) and equating the
terms of the same order of smallness to each other, we
easily find

where δnk is the Kronecker symbol (δnk = 1, if n = k,
and 0 if n ≠ k).

Eventually, the function describing the surface evo-
lution in the linear approximation in ε has the form

(24)

It follows from this solution that, in the first-order
approximation in the perturbation amplitude ε, the drop
surface executes harmonic vibrations around the equi-
librium sphere that are associated with the kth (initially
excited) mode.

In the same approximation, the velocity and electro-
static potentials have the form

(25)

(6) To find the functions ξ(2)(Θ, t), ψ(2)(r, t), and
Φ(2)(r, t) (that is, second-order corrections to the solu-
tions), we first derive a set of equations that is obtained
from (6)–(10) by equating terms proportional to ~ε2:

ân
1
2
---δnk, bn 0 n 1≥( ),= =

ξ Θ t,( ) ε ωkt( )Pk µ( ) O ε2( ).+cos=

ψ r t,( ) ε
ωk

k
------ ωkt( )Pk µ( )sin– O ε2( ),+=

Φ r t,( ) Q
r
---- ε ωkt( )cos

Q

r3
----Pk µ( ) O ε2( ).+ +=

r 1: ∂ξ 2( )

∂T0
-----------

∂ξ 1( )

∂T1
-----------+=

=  ∂ψ 2( )

∂r
------------

∂2Ψ 1( )

∂r2
---------------ξ 1( ) ∂ξ 1( )

∂Θ
-----------∂ψ 1( )

∂Θ
------------,–+

∂ψ 2( )

∂T0
------------– ∂ψ 1( )

∂T1
------------

∂2ψ 1( )

∂r∂T0
---------------ξ 1( )––

–
1
2
--- ∂ψ 1( )

∂r
------------ 

 
2 ∂ψ 1( )

∂Θ
------------ 

 
2

+
1

8π
------ 2

∂Φ 0( )

∂r
-------------∂Φ 2( )

∂r
-------------+

+
∂Φ 1( )

∂r
------------- 

 
2 ∂Φ 1( )

∂Θ
------------- 

 
2

2
dΦ 0( )

dr
-------------d2Φ 0( )

dr2
---------------ξ 2( )+ +

+ 2
dΦ 0( )

dr
-------------∂2Φ 1( )

∂r2
--------------- d2Φ 0( )

dr2
---------------∂Φ 1( )

∂r
-------------+ 

  ξ 1( )
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(26)

Now, substituting (15) and (16) (m = 2), along with
solutions (17) and (19)–(21), into boundary conditions (26),
one obtains differential equations for the coefficients

(T0, T1, T2, …). The solutions to this system do not
have secular terms if

Hence, an and bn do not depend on time T1. Their
dependence on the “slower” time scales T2, T3, etc. can
be found in higher orders of approximation. Finally, the
solution to the equations derived from (26) has the form

+
dΦ 0( )

dr
-------------d3Φ 0( )

dr3
--------------- d

2Φ 0( )

dr2
--------------- 

 + 
 

2

ξ 1( )( )2

+ 2 ∆Ω+( )ξ 2( ) 2ξ 1( ) 1 ∆Ω+( )ξ 1( )– 0,=

Φ 2( ) dΦ 0( )

dr
-------------ξ 2( ) ∂Φ 1( )

∂r
-------------ξ 1( ) 1

2
---d2Φ 0( )

dr2
--------------- ξ 1( )( )2

+ +  = Φg
2( ),+

dΦ 2( )

dr
------------- ∂Φ 1( )

∂r2
------------- 2

∂Φ 1( )

∂r
-------------+ 

  ξ 1( ) ∂Φ 0( )

∂r2
------------- 2

∂Φ 0( )

∂r
-------------+ 

 +

0

π

∫

× ξ 2( ) 1
2
---d3Φ 0( )

dr3
--------------- 2

dΦ 0( )

dr2
------------- dΦ 0( )

dr
-------------+ + 

 +

× ξ 1( )( )2 ∂Φ 1( )

∂Θ
-------------∂ξ 1( )

∂Θ
----------- dµ– 0,=

ξ 2( ) Θ t,( ) ξ 1( ) Θ t,( )( )2
+[ ] µd

0

π

∫ 0.=

Mn
2( )

∂an

∂T1
--------- 0,

∂bn

∂T1
--------- 0.= =

M0
2( ) T0 T2 …, ,( ) 1

2n 1+( )
-------------------- An T2 …,( ){

n 1=

∞

∑–=

× An T2 …,( ) An T2 …,( )[ ]2 i2ωnT0( )exp c.c. } ,++

M0
2( ) T0 T2 …, ,( )

cn T2 …,( )
an T2 …,( )
------------------------- idn T2 …,( )+





=

--× An T2 …,( ) iωnT0( ) c.c.+exp




Nn T0 T2 …, ,( ),+

Nn
2( ) T0 T2 …, ,( ) λmln

+( ) Am T2 …,( )Al T2 …,( ){
l 1=

∞

∑
n 1=

∞

∑≡

× i ωm ωl+( )T0[ ]exp λmln
–( ) Am T2 …,( )Al T2 …,( )+
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In the last series, the summation is performed over
all integer z for which the expressions under the facto-
rial sign are nonnegative. The bar over An in (27) means
the complex conjugate. The Clebsch–Gordan coeffi-

cients  and  are other than zero only if their
subscripts satisfy the relations [14]

(28)

The coefficients in series (15) for ψ(m)(r, t) and
Φ(m)(r, t) are related to solutions (19) and (27) as fol-
lows:

× i ωm ωl–( )T0[ ]exp c.c.+ } ,

λmln
+( ) γmln ωmωlηmln±

ωn
2 ωm ωl±( )2–

--------------------------------------,=

γmln Kmln
ωm

2 n m– + 1( ) + 2n l l 1+( ) 1–[ ] + [l m 1)+(≡

– m 2m 2n– 7+( ) 3+ ]n
W
2
----- αmln

1
m
----ωm

2 n
W
2
-----+ ,+

ηmln Kmln
n
2
--- m– 1+ 

  αmln
1
m
---- 1 n

2l
-----+ 

  ,+≡

Kmln Cmln
000[ ]2

, αmln m m 1+( )l l 1+( )Cmln
000 Cmln

110– ,–≡≡

Cmln
000

0  if m l n+ + 2g 1,+=

where g  is an integer,

1–( )g n– 2n 1+ g!
g m–( )! g l–( )! g n–( )!

--------------------------------------------------------

× 2g 2m–( )! 2g 2l–( )! 2g 2n–( )!
2g + 1( )!

-----------------------------------------------------------------------------
1/2

if m l n+ + 2g g  is an integer( ),=

≡

Cmln
110– 2n 1+ n!≡

× m l n–+( )!m m 1+( )
n m l–+( )! n m– l+( )! m l n 1+ + +( )!l l 1+( )

----------------------------------------------------------------------------------------------------------------
1/2

× 1–( )m 1 z+ + m z 1–+( )! n l z– 1+ +( )!
z! m z– 1+( )! n z–( )! l n– z 1–+( )!

------------------------------------------------------------------------------------------.
z

∑

Cmln
000 Cmln

110

m l– n m l+( ),≤ ≤
m l n+ + 2g g  is an integer( ).=

Dn
2( ) T0 T2 …, ,( ) 1

n
---

∂Mn
2( ) T0 T2 …, ,( )

∂T0
------------------------------------------





=

× m m 1–( )Kmln αmln–[ ] 1
m
----

l 1=

∞

∑
m 1=

∞

∑
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The coefficients cn(T2, …) and dn(T2, …) in (27) are
unknown functions of time. Like the functions an and
bn, they do not depend on the time scales T0 and T1. By
analogy with the linear approximation, we complete
the study of the problem in the second-order approxi-
mation in ε by assuming that the unknown functions cn,
dn, an, and bn are constants determined by initial condi-
tions (11)–(13). Then, series (14) for drop surface per-
turbation takes the form

(29)

where , , , and  are constants.

Approximation (29) is valid in the time interval t ≤
O(1) with an error ~ε3. In the time interval O(1) < t ≤
O(ε–1), the error is comparable to the second term in
(29), which is of second order of smallness. Therefore,
only the first term, associated with the linear approxi-
mation, remains valid. Thus, approximate linear solu-
tions (24) and (25) are strictly applicable (uniformly
suitable) in the time interval t ≤ O(ε–1). The entire
expansion (29) can be used in the time interval t ≤ O(ε–1)
provided that the term quadratic in ε is a small correc-
tion to the linear term.

The characteristic time scale for the dimensionless
variables adopted is t∗  = (R3ρ/σ)1/2. It is about 0.004 s

for a water drop of radius 1 mm and about 0.12 s when
R = 1 cm. Hence, (29) adequately describes time evolu-
tion of the water drop shape at times t ≤ 0.01 s for R =
1 mm and t ≤ 0.3 s for R = 1 cm. If the perturbation
amplitude ε is about 0.1, solution (24) remains valid up
to times one order of magnitude greater than those
given above.

Substituting (29) in view of (16) into initial condi-
tions (11)–(13) and equating the terms of the same
order of smallness, we obtain the following relation-
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ships:

From these expressions and using (19), (20), and

(27), we determine the constants , , , and :

Then, the coefficients (t) from (19), (20), and
(27) take the final form

(30)

It can be seen that the coefficients (t) are pro-

portional to the quantities . Due to (27), the latter
are proportional to the Clebsch–Gordan coefficients

 and  and, according to (28), are nonzero
only if n = 2j, where j = 0, …, k.

Substituting (30) into (29), we find that the evolu-
tion of the drop surface is described up to terms of sec-
ond order of smallness (in the time interval t ≤ O(ε–1)
by the function

(31)

(7) It follows from (31) that the initial perturbation
of any even or odd kth single mode of capillary vibra-
tions results in the excitation (in the second order of
smallness) of only even modes with numbers from the
interval [0, 2k]. This is illustrated in Figs. 1a–1d. These
figures show the time dependences of the amplitudes

 of various second-order modes of charged drop

t 0: Mn
1( ) δnk, Mn

2( ) δn0

2k 1+
---------------,–= = =

∂Mn
1( )

∂t
------------- 0,

∂Mn
2( )

∂t
------------- 0 n 0 1 2 …, , ,=( ).= =

ân b̂n ĉn d̂n

ân
1
2
---δnk, b̂n 0,= =

ĉn
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Fig. 1. Dimensionless time dependence of the dimensionless amplitudes  of the (1) zeroth, (2) second (principal), (3) fourth,

(4) sixth, (5) eighth, and (6) tenth modes of charged drop capillary vibrations at W = 3.9. The modes are excited as a result of second-
order coupling. The initial deformation of the equilibrium spherical shape is due to the perturbation of the (a) second, (b) third,
(c) fourth, and (d) fifth modes. The dimensionless amplitude of the perturbation is  ε.

Mn
2( )
capillary vibrations excited as a result of coupling [see
(31)]. The initial perturbation of the equilibrium spher-
ical shape is specified by the excitation of modes 2–5
(Figs. 1a–1d, respectively) at W = 3.9. (A spherical
drop becomes unstable when the parameter W attains
the critical value W∗  = 4.) It is seen that a drop with a
charge somewhat smaller than critical may exhibit its
charge instability through a fast increase in the princi-
pal mode amplitude (n = 2). Such behavior is indepen-
dent of the initial perturbation of the equilibrium spher-
ical shape. This result is in conflict with the predictions
from the linear theory but is in qualitative agreement
with [8], where nonlinear vibrations of a charged drop
were numerically evaluated. When the initial perturba-
tion is associated with the fifth mode, the time depen-
dences of the excitation amplitudes are also in quanti-
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
tative agreement with data from [8] in the second order
of smallness.

It follows from Fig. 1 that the rate of increase in the
principal mode amplitude grows with the number of the
mode that specifies the initial deformation. As the num-
ber of this mode increases, so does the total number of
modes of capillary vibrations due to coupling. Odd
modes are excited only in the third-order approxima-
tion as a result of coupling between the excited odd kth
mode and second-order even modes produced by the
kth one.

Figure 2 illustrates drop shapes calculated using (1)
and (31) at various dimensionless time instants with W
values close to critical. In this case, the initial deforma-
tion of the equilibrium spherical shape is specified by
the perturbation of the third (Fig. 2a) and fourth
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Fig. 2. Shapes taken by the drop at various time instants tε when the initial deformation ε = 0.3 of the equilibrium spherical shape
is due to the virtual perturbation of various modes at W = 3.8. In both figures, curves 1 depict the equilibrium spherical shape and
curves 2, the shape at the initial time instant [the spherical shape deformed by a perturbation of type εPn(µ)]. (a) n = 3 and tε =
(3) 0.065, (4) 0.26, and (5) 0.585; (b) n = 4 and tε = (3) 0.24, (4) 0.36, and (5) 0.57.

1.0
(Fig. 2b) modes. The axis of symmetry is horizontal. It
should be noted that, according to perturbation theory,
formula (31) is uniformly suitable when t < ε–1. It fol-
lows from the figures that the restriction on time t is
actually even more stringent. Curves 4 in all the figures
were drawn at the boundary of the domain of uniform
expansion applicability. This follows from a compari-
son of the resulting deviation of the drop shape
(curves 4) from that at the initial time instant (curves 2).
Moreover, the volume of the drop associated with
curves 4 is apparently different from the initial one. Yet,
it is seen that, when the initial deformation of the equi-
librium shape is specified by even Legendre polynomi-
als, its time evolution is also described by even Legendre
polynomials and the shape remains symmetric about the
origin. For large enough t (at the boundary of the domain
where the solution is uniformly suitable), the drop tends
to break down into two equal parts. If the initial deforma-
tion is due to odd Legendre polynomials, the drop shape
at each subsequent time instant is asymmetric about the
origin even though only even modes are excited by sec-
ond-order mode coupling. At large t, such drops tend to
break down asymmetrically.

It is clear from physical reasoning that viscosity,
which has not been taken into account in our study,
would lead to damping of all the modes. However, the
damping decrement for higher order modes is larger
than for lower order ones. If a time interval is large
enough, the amplitude of an initially excited higher
order odd mode may go to zero faster than the ampli-
tude of lower even modes excited by it. Then, further
vibrations of the drop and its possible breakdown into
two parts will be symmetric.

It follows from the above discussion and from the
figures that the amplitude of the principal mode of cap-
illary vibrations increases fastest, irrespective of the
form of the initial deformation. The calculations used
in our study are valid as long as the amplitudes of sec-
ond-order modes are smaller than the amplitude of the
initial perturbation. Therefore, an increase in the prin-
cipal mode amplitude to a value of the order of ε means
an extension of the drop into a spheroid with the eccen-
tricity squared, e2 ≈ 3ε – 5.25ε2 [15]. Even small values
of ε ~ 0.1 will lead to a considerable extension of the
drop and, according to [16], to a decrease in the W value
critical for the onset of charge instability of the drop. In
the approximation linear in e2, this critical value for a
spheroidal drop has the form

(32)

Thus, if the Rayleigh parameter W is close to the
critical value, the drop may become unstable. Let the
Rayleigh parameter of the drop W = W+ be slightly
smaller than its critical value W∗  = 4. Then, from (32),
one can find the current dimensionless amplitude a2 of
the principal mode when the drop becomes unstable:

If, for example, W+ = 3.6, the drop becomes unstable
when the dimensionless amplitude of the principal
mode reaches a value of a2 ≈ 0.16. Being unstable, the
drop loses some amount of charge by emitting many
fine, heavily charged daughter droplets [1, 17].

(8) It is seen from Fig. 1 that the amplitudes of all
second-order modes oscillate around some midlines
above the abscissa. This means that drop vibrations
occur not around a sphere but around a lower symmetry
body. Time-independent terms in (31) specify this
body:
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where k is the number of an initially excited mode.

It is easy to check that the body around which sec-
ond-order vibrations occur is composed only of even
modes independently of the type of first-order modes
excited. Hence, this body is a prolate spheroid, not a
sphere as predicted in the Rayleigh linear analysis [1].
It is interesting that the parameters of such a spheroid
depend on the drop charge, i.e., on the parameter W,

through the coefficients . The shapes of the bod-
ies discussed above and calculated with (33) for various
k are shown in Fig. 3. It is seen that, as the number of
an initially excited mode increases, the stretching of the
body around which vibrations take place grows.

(9) The solutions obtained also describe the reso-
nance coupling between individual modes of drop
vibrations that was analyzed in detail in [3]. Such cou-
pling arises when second-order modes oscillate with

frequencies satisfying the condition  = j2  for
some value of charge Q, where j is an integer and m ≠ n.
As a result, the amplitude of one of the modes increases
in time periodically and infinitely (within our approxi-
mation). In [3], the resonance between the initially
excited fourth and sixth modes at W = 2.67, i.e., when

 = 4 , was studied. The same resonance takes
place in our study when only the fourth mode is
excited. The time dependence of the amplitude of the
sixth mode excited by the initial generation of the
fourth mode for W = 2.67 and small time intervals is
similar to curve 4 in Fig. 1c. However, Fig. 1c demon-
strates the results of calculation at W = 3.9; here, the
sixth mode amplitude increases because of energy
transfer between modes coupled in the second order. In
a time interval larger than that used in Fig. 1c, the
amplitude of the sixth mode decreases with time. The
time dependence of the sixth mode amplitude is shown
in Fig. 4 for comparison. The graphs are constructed for
resonance conditions, W ≈ 2.667 (curve 1), and far from
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±
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Fig. 3. Bodies around which the drop nonlinearly vibrates at
W = 3 when the initial deformation of amplitude ε = 0.3 is
due to the virtual excitation of various modes. Curve 1 is the
equilibrium spherical shape, and curves 2–5 correspond to
initially excited modes with numbers 2–5.
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resonance, W = 3.9 (curve 2), when the fourth mode
was initially excited. The time interval in Fig. 4 is larger
than in Fig. 1c. The run of the curves is obviously dif-
ferent. Resonance coupling takes place when terms

with the factors ~(  – j2 )–1 appear in (31).

CONCLUSION

The instability of a drop bearing a charge that is
slightly smaller than critical was studied in the qua-
dratic approximation with respect to the amplitude of
the initial deformation. Due to coupling between vari-
ous modes of capillary vibrations, this instability can be
initiated by virtual excitation of not only the principal
mode but of any mode, no matter whether it is odd or
even. The drop exhibits nonlinear vibrations around a
prolate spheroid, not a sphere as follows from a linear
analysis. In contrast to aperiodic instability of such a
drop, which is a consequence of energy transfer
between excited adjacent modes, vibrational instability
may result from resonance coupling of nonadjacent
modes.
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Abstract—The influence of ions with different charge signs on the stimulation of silicon etching under plasma
conditions is studied. Fluorine radicals are produced in a glow discharge with a nonuniform pressure. A beam
of positive or negative ions is created using a Penning ion source. The flow of fluorine radicals and the ion beam
are superposed on a silicon surface placed in a high vacuum. Positive ions may be converted into fast neutrals
via resonance charge exchange in the parent gas. It is shown that fast neutrals have the highest catalytic effect.
The catalytic effect of positive ions is about two times less. Negative ions occupy the intermediate position. For
the first time, it is found that some kinds of ions (e.g., molecular oxygen) do not accelerate, but rather decelerate
the etching process; i.e., they behave as inhibitors. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The phenomenon of ion-stimulated etching of sili-
con was discovered more than 20 years ago [1, 2] and,
at present, is widely used in microelectronics [3, 4].
The phenomenon, in essence, is as follows. When a sil-
icon surface is bombarded by ions, e.g., argon ions with
energies of 500–1000 eV, the solid surface is sputtered.
Under the above conditions, the sputtering yield is
approximately unity. In microelectronics, this process
is referred to as ion-beam etching and is characterized
by the rate Vph = dh/dt, where h is the plate thickness.
Another limiting case is etching by halogen radicals
(F*, Cl*, Br*, or I*, fluorine being most often used).
This is a heterogeneous reaction of the gas–solid type.
Silicon is removed as a result of a chemical reaction
proceeding according to the generalized formula Si +
4F  SiF4. Silicon tetrafluoride is a gas that sponta-
neously leaves the surface of the treated material. In
this case, the plasma is only used to obtain fluorine rad-
icals from the molecules of more stable initial gases
(CF4, SF6, etc.). Etching proceeds at a rate of Vch,
which depends on the halogen concentration and the
solid temperature. If the silicon surface is exposed to
the simultaneous action of an ion flow and fluorine rad-
icals, etching proceeds at a rate of Vi, which may be
several times higher than the sum Vph + Vch . The process
is synergistic in character [5, 6] and, hence, is of gen-
eral scientific interest. It can be observed not only in sil-
icon–halogen systems, but also in a number of gasifica-
tion reactions, such as carbon–oxygen or tungsten–flu-
orine reactions. Keeping in mind the general character
of the results, we nevertheless will focus on the Si–F
system, because it is the most widely used in practice
and, hence, the best studied.
1063-7842/01/4602- $21.00 © 20167
The process of plasmochemical etching can be
divided into the following main stages: (i) delivery of
the working gas molecules to the plasma discharge
region, (ii) transformation of the working gas mole-
cules into chemically active particles via dissociation
and ionization, (iii) delivery of the chemically active
particles to the etched surface, (iv) physical and chem-
ical adsorption of the chemically active particles on the
surface, (v) the chemical reaction itself, (vi) desorption
of the reaction products from the surface, and (vii)
removal of the reaction products from the plasma
region and vacuum chamber. This comprehensive clas-
sification is given according to [4]. Stages (i), (iii), and
(vii) are important for designing plasma chemical reac-
tors but do not directly affect ion stimulation itself.
Stage (ii) may have only indirect influence via the
chemical composition of the reacting system. It worth
noting that mass spectroscopy and optical studies show
[7, 9] that all of the neutral fragments of the molecules
of the initial gas (as a rule, CF4 or SF6), as well as their
positive and negative ions, have been recorded in an RF
discharge plasma. However, more than 75% of dissoci-
ating CF4 molecules decompose into  and F* rad-
icals [10].

When analyzing the mechanism for ion stimulation,
most authors restrict themselves to considering stages
(iv)–(vi). Let us consider the possible consequences of
ion bombardment of a silicon surface. In stage (iv), ions
may (a) enhance nondissociative chemisorption due to
the breaking of Si–Si bonds in the crystal lattice, which
results in the formation of free valence silicon bonds,
and (b) cause the dissociation of complex radicals (like

 or ) absorbed on the surface with subsequent
chemisorption of their fragments. In stage (v), the reac-
tion rate may increase due to surface loosening, which

CF3*

CF3* SF5*
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leads to both the breaking of Si–Si bonds and the for-
mation of channels in the treated material, along which
chemical reagents can penetrate into deeper layers. In
stage (vi), ion bombardment may cause forced desorp-
tion of (a) the intermediate reaction products (usually
volatile SiF2), (b) the final product SiF4, and (c) the
nonvolatile products.

There are arguments in favor of each of the effects
listed above. The problem is that the results of each
experiment are usually treated as supporting one of the
mechanisms, but as discarding the other ones. For
example, the authors of [5, 11] conclude that dissocia-
tive chemisorption plays a major role, assuming that
surface loosening is of minor importance. The results
of [12–14] contradict this opinion. In 1978, Mauer et
al. [15] showed that ion bombardment may cause
induced desorption of the intermediate reaction compo-
nent SiF2. This concept has been well developed in
recent years. The results of ion-stimulated etching
[16, 17] show that surface bombardment by heavy par-
ticles may result in the complete rearrangement of
chemical bonds in the SF6–Si system, which makes the
situation even more intricate.

Thus, a unified opinion on the mechanism for ion
stimulation of plasmochemical etching of silicon is still
lacking; therefore, the problem calls for further analy-
sis. Taking into account the previous long-term and
comprehensive investigations, one can expect that only
new approaches may lead to considerable progress. An
attempt at such an approach, as well as the first experi-
mental results, is described below.

FORMULATION OF THE PROBLEM

The following fact is worthy of attention. Etching of
silicon in halogen-containing plasma can be acceler-
ated not only by ion flows, but also by electron flows.
The difference is that ion stimulation occurs in almost
any medium, whereas electron stimulation can occur
only in some specific media. Thus, electron beams with
densities of 2–4 mA/cm2 increase the etching rate by a
factor of four to six when CF4 or CF3Cl is used; how-
ever, the effect is not observed in XeF2 and SF6 plasmas
[11, 18]. This means that it is expedient to investigate
the influence of the ion charge sign on the stimulation
of silicon etching. This problem is of especial interest,
because negative ions are proposed to be used to
improve the treatment of semiconductors (see, e.g.,
[19]).

Finally, when comparing positive and negative ions,
it would also be reasonable to investigate the role of fast
neutrals, which can be regarded as ions with zero
charge.

The prototype of our experimental device was that
used in [5]. Such a system allows one to imitate plasma
conditions, which offers wide experimental possibili-
ties, because in a real plasma, it is impossible to change
only one of the parameters and hold the other parame-
ters constant. The design and features of the device are
described in the next section.

Sulfur hexafluoride and oxygen were used as work-
ing gases because they form a very compatible pair. To
study the problem in question, it is necessary to pro-
duce beams of positive ions, negative ions, and fast
neutrals of the same gas with approximately the same
intensities. Fluorine is less appropriate for such pur-
poses. Our investigations showed that in a Penning dis-
charge, which is often used as an ion source, the inten-
sity of the beam of negative fluorine ions is almost one
order of magnitude higher than that of F+ ions. Due to
inevitable loss during charge exchange, we could not
obtain fast neutrals in the necessary amounts. As will be
shown below, oxygen is free of these drawbacks. On
the other hand, the silicon etching rate is constant over
a wide range of the O2 relative concentration in a mix-
ture of sulfur hexafluoride with oxygen, which consid-
erably facilitates the interpretation of the results.
Finally, the yield of Si atoms per incident ion is much
higher for etching in SF6 in comparison with that in
CF4, which facilitates performing the experiments.

As reference beams, we used beams of argon ions
and fast argon atoms, because argon has been used in a
great number of experiments and its properties are well
studied.

EXPERIMENTAL SETUP

As was mentioned above, the prototype of our
experimental device was that used in [5]. The idea of
the experiment is to use two independent sources, one
of which produces an ion flow and the other produces a
flow of radicals. Both flows are superposed on a silicon
surface placed in a high vacuum. In this case, the sys-
tem parameters can be varied independently over a
wide range. The experiments were carried out in a cap-
type device at a background pressure of ~2 × 10–3 Pa.
A diagram of the device is shown in Fig. 1.

We used a Penning discharge with a cold cathode as
an ion source. The source design was similar to that
described in [20]. The source chamber was sealed and
connected to a high-vacuum chamber through a
1.5-mm-diameter aperture. This allowed us to have a
working pressure in the source of 2–10 Pa at a pressure
in the high-vacuum chamber no higher than 10–2 Pa.
A cell was placed in the gap of a magnetic core assem-
bled from permanent magnets. The magnetic induction
in the center of the source was ~0.07 T. The character-
istic discharge current was 100–120 mA at a discharge
voltage of 600–750 V (the cathode diameter was 2 cm,
and the anode length was 2.2 cm). The working gases
were argon and oxygen. The ions were extracted across
the magnetic field. The extractor voltage was 2.5 kV.
The beam was focused by a single lens and then decel-
erated to an energy of 1 keV.

As is known [21], when an ion beam is extracted
from the source into a vacuum, intense ion charge
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
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exchange occurs in the parent gas near the extraction
aperture. Under our conditions, the conversion coeffi-
cient due to this effect can attain 30%. To prevent fast
neutrals from reaching the silicon surface, the beam
was turned through an angle of ~12° by a cylindrical
electrostatic capacitor and then passed through a Winn
filter, which was assembled from permanent magnets in
an armored case. The transit base was ~6.5 cm. The
magnetic field was almost uniform in the ~4-cm-long
central region, where the magnetic induction attained
0.16 T. Outside of this region, the magnetic induction
dropped steeply. The distance between the plates of the
electrostatic capacitor in the filter was 8 mm. The plates
were 14 mm high. The inlet and outlet slits of the filter
were rectangular in shape (5 × 12 and 3 × 12 mm in
size, respectively). About 2 cm behind the filter, the
strip beam reached a grounded receiver (Fig. 2). The
upper part of the beam was used to treat the silicon sur-
face. A 2.5-mm-diameter aperture 3 (Fig. 2) in the main
plate of the receiver was used to monitor the beam
parameters. The system was supplied with an addi-
tional electrode ES, which either suppressed secondary
electron emission or extracted secondary electrons
from collector 2, depending on the voltage applied.
When operating with positive ions, electrode ES was
used to suppress secondary emission.

In the Winn filter, the ion beam was separated either

by mass (  and O+;  and O–) or by charge (Ar+ and
Ar2+). Figure 3 shows that the source produced negative
and positive oxygen ions in comparable amounts in
both atomic and molecular form. The separation degree
was 70–90%. The beam of argon ions almost com-
pletely consisted of Ar+.

Fast neutrals (Ar0, , and O0) with an energy of
1 keV were produced from positive ions via resonant

charge exchange in the parent gas (Ar+ in Ar,  in O2,
and O+ in O2). For this purpose, the sides of the electro-
static capacitor of the Winn filter were sealed to obtain
a 64-mm-long tube of a rectangular cross section (8 ×
14 mm). In the middle part of the tube, there were aper-
tures for measuring the pressure and the gas flow rate.
Such a design, together with a high-vacuum space
under the cap of the device, formed a charge-exchange
chamber with differential pumping. The inlet and outlet
slits of the Winn filter increased the pressure gradient.
At a gas pressure of ~0.4 Pa in the center of the charge-
exchange chamber, the pressure in the space under the
cap was no higher than 10–2 Pa.

The degree of beam charge exchange was measured
according to the technique described in [22]. The tech-
nique is based on the assumption that ions and fast neu-
trals of the same elements eject electrons from the
metal surface with the same efficiency; i.e., their coef-
ficients of secondary emission are the same (ki – e =
kn − e). Strictly speaking, this is true only in the energy

O2
+ O2

–

O2
0

O2
+
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range in which kinetic ejection prevails over potential
ejection.

The measurement procedure was as follows. In the
beginning, the gas inlet into the recharging chamber
was shut, an auxiliary electrode S9 (Fig. 1) was
grounded, and the beam losses were almost absent. The
Winn filter was tuned to a certain type of ions, e.g., Ar+.
By varying the voltage polarity on electrode ES, we
could either suppress secondary electron emission or
extract all secondary electrons from the collector. In the
first case, we obtained the ion current Ii, whereas in the
second case, we obtained the collector current Ik = Ii +
Ie (where Ie is the secondary electron current). Then, we
have ki – e = Ie/Ii = (Ik – Ii)/Ii. It turned out that this
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Fig. 1. Diagram of the experimental device: (1) ion source,
(2) extractor, (3) single lens, (4) decelerating electrode,
(5) electrostatic turning capacitor, (6, 7) magnet yoke and
electrostatic capacitor of the Winn filter, (8) inlet and outlet
filter slits, (S9) auxiliary electrode, (10) receiving unit,
(11) cathode, (12) quartz retort, (13) glass tube, (14) auxil-
iary anode, (15) gas inlet, and (i) trajectory of the ion beam.
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Fig. 2. Diagram of the receiving unit: (1) grounded case,
(2) collector, (3) aperture for monitoring the beam parame-
ters, (4) treated silicon plate, (5) shielding case, (i) ion
beam, (ES) electrode for suppression of secondary emission
or extraction of secondary electrons from the collector. The
x- and y-axes in Fig. 1 and the z- and y-axes in Fig. 2 make
the same left-hand Cartesian triple.
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parameter varied in a rather wide range; hence, it was
measured more than once at certain time intervals dur-
ing every experiment.
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Fig. 3. Mass spectra of the ion beam: Ii is the beam current
recorded by the collector of the receiving unit, U is the volt-
age on the electrostatic capacitor of the Winn filter, the pres-
sure in the source is (a, b) ~6 and (c) ~4 Pa, and the dis-
charge current is (a, b) 120 and (c) 80 mA.
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Fig. 4. Unrecharged ion current Iir, electric equivalent of the
flow of fast neutrals In, and their sum Is = Iir + In as functions
of the pressure in the charge-exchange chamber; the work-
ing gas is argon.
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Then, the gas was supplied to the charge-exchange
chamber. A part of the ions was recharged, while the
other part passed through the chamber unchanged.
When a sufficiently high positive voltage was applied
to electrode S9, all the recharged ions were reflected
from it and were not able to leave the Winn filter. This
can be easily verified by measuring the collector cur-
rent in the regime of suppression of secondary emis-
sion. The measurements showed that the total reflection
was observed at US9 higher than 1100 V. Let us now
change the polarity of electrode ES to positive and mea-
sure the current of secondary electrons. Since the ions
do not reach the collector, the current Ie may be caused
only by the flow of fast neutrals. According to [22], we
have In = Ie/ki – e. Here, the quantity In is the electric
equivalent of the flow of neutrals, i.e., the current to the
collector if every fast atom had a charge equal to the
electron charge.

When the gas inlet to the charge-exchange chamber
is open, electrode S9 is grounded, and secondary emis-
sion from the collector is suppressed, one more param-
eter Iir (the current of unrecharged ions) can be mea-
sured. This current was measured only in auxiliary
experiments.

The dependence of Iir, In, and their sum Is on the gas
pressure in the central part of the charge-exchange
chamber is shown in Fig. 4. The working gas is argon.
It is seen that In reaches its peak value at P ~ 0.5 Pa and
then decreases slowly. The latter is associated with the
scattering of fast neutrals by gas atoms. A similar
dependence is observed for molecular and atomic oxy-
gen, but at a pressure two to three times higher.

We draw attention to two important facts. First, Is is
equal to the initial current of the ion beam (before the
gas was supplied to the charge-exchange chamber) with
a high accuracy in the range P ≤ 0.2 Pa, which supports
the validity of this measurement technique. Second, if
we assume that the measurement error is high, the
intensity of the actual flow of neutrals cannot be higher
than a preset value, because the intensity of the total
flow of neutrals and unrecharged ions cannot exceed
that of the initial positive ion beam.

A glow discharge in a gas flow with a highly nonuni-
form pressure served as a source of fluorine radicals
(Fig. 1). A duralumin cathode 11 with an area of 2 cm2

was placed into quartz bulb 12 with a volume of
~10 cm3, into which SF6 gas was input. The bulb was
connected to a vacuum chamber through a 22-cm-long
glass tube 13 with an inner diameter of 8 mm. There
was a side branch at a distance of 6 cm from the tube
end, where the auxiliary anode 14 was placed. At a
standard SF6 flow rate of 900 cm3 Pa/s, the gas pressure
near the cathode was 25–30 Pa and, in the space under
the cap, it was ~7 × 10–3 Pa. The auxiliary anode was
used to help initiate the discharge with a highly nonuni-
form pressure. In the normal regime, the voltage across
the discharge was 2.5–3 kV and the current was 4 mA.
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
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The current was about equally shared between the aux-
iliary anode and the grounded elements of the cap.

Fluorine atoms were obtained due to dissociation of
sulfur hexafluoride molecules in the positive column of
the discharge. The measurements showed that, outside
of the glass tube, the etching rate of Si, which is deter-
mined by the concentration P*, is described well by the
dependence Vet ~ 1/R2, where R is the distance from the
tube end. The axis of the radical source made an angle
of ~20° with the plane of the receiver plate and with the
silicon surface. The distance between the tube end and
the center of the ion beam (Fig. 1) was 2 cm. A perma-
nent magnet was placed behind the receiver plate to
create a magnetic field (~7 × 10–3 T) directed along the
y-axis (Fig. 1). This field prevented electrons of the
glow discharge from reaching the region where the
beam ions and fluorine radicals interacted with the
treated surface.

MEASUREMENT TECHNIQUE 
AND EXPERIMENTAL RESULTS

The etching rate was determined by direct measure-
ments of the etch depth. For this purpose, Si sample 4
was placed on receiving plate 1 (Fig. 2). Its upper part
was protected from the influence of fluorine and the ion
beam by casing 5. The interferometer microscope mea-
sured the height of the step between treated and
untreated parts of the sample; usually, it was about sev-
eral microns. As was mentioned in the previous section,
the rate of radical etching followed the law Vet ~ 1/R2.
For this reason, when the ion beam was switched off,
the profile of the etch depth along the x-axis had the
shape shown in Fig. 5a. The origin of the x-axis was at
the end of the glass tube. When the silicon surface was
simultaneously exposed to the radical and ion flows, the
etching was accelerated in the region of their combined
action and a step appeared in the profile of the etch
depth (Fig. 5b). It is easy to extrapolate curves d and e
and to obtain the value of ∆h. The distance R was taken
equal to 2 cm to obtain ∆h ≅  h, where h is the depth of
silicon etching by fluorine radicals without ion stimula-
tion.

The yield of silicon atoms per incident ion Y (the
main measured quantity) was determined as follows.
Let the increment of the etch depth due to ion bombard-
ment during the time ∆t be ∆h. The number of atoms
removed from the surface is determined by the expres-
sion NSi = ∆hρNa/µ, where ρ and µ are the density and
molar weight of silicon, respectively, and Na is
Avogadro’s number. The number of ions incident per
unit area is Ni = j∆t/e = I∆t/eS, where j is the ion current
density, I is the collector current, S is the collector area,
and e is the electron charge. Since the beam current
density was about several microamperes per square
centimeter, the value ∆t was typically several hours. It
was impossible to keep the parameters of the source
unchanged over such a long period. Hence, instead of
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
the value I∆t, its integral value Φ = dt was measured.

To determine it, an integrating scheme was installed in
the collector circuit. To find the yield of silicon atoms
per incident fast neutral atom, we measured the value of
Φ, in which the current I was replaced with the equiva-
lent current In described above. As a result, we obtained
Y = ∆hρNaeS/µΦ. For each type of stimulating particle,
a series of not less than five measurements was per-
formed. The averaged data are given below.

It is known [13] that the yield of silicon atoms
strongly depends not only on the ion mass and ion
energy, but also on the experimental conditions. The
yield is typically from 4 [5] to 20 [23] for Ar+ ions with
an energy of 1 keV. In our experiments, we obtained
Y(Ar+) = 5.7 ± 1.3 atom/ion. Since this value was closer
to the results of [5], we used it as a reference value.

For fast argon atoms, we obtain Y(Ar0) = 10.6 ±
1.5 atom/neutral, i.e., Y(Ar0)/Y(Ar+) ≅  1.85. This result
is unexpected for two reasons. First, as mentioned in
the Introduction, the stimulating influence of ion bom-
bardment is mainly associated with the breaking of
Si−Si bonds, loosening of the silicon surface, and
induced desorption of the intermediate products of the
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Fig. 5. Qualitative dependence of the silicon etch depth on
the x coordinate (the point x = 0 is at the end of the radical
source tube; see Fig. 1): (a) the ion source is switched off,
and only the radical source operates; (b) etching is stimu-
lated by the ion flow; and (c) the case when the process is
decelerated by some external factors.
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SiFx reaction (x = 1, 2, or 3). The existence of these
effects and their substantial contribution to the etching
process is undoubted. However, this influence is only
mechanical; it cannot depend on the states of the upper
electron shells (recall that the ion energy is 1 keV, while
the electron transitions at the upper shells correspond to
energies of one to two tens of electronvolts). This
makes us assume the existence of an additional etching
channel, which has not been previously accounted for.
Second, it is known [24, 25] that when an ion
approaches the surface, it is usually neutralized before
colliding due to Auger or tunnel processes; i.e., almost
always, it is fast neutrals that reach the surface. How-
ever, the place, time, and mechanism of neutralization
are different. For this reason, we doubt the validity of
the measurement technique for In. However, as was
shown in the previous section, even if we assume the
presence of a substantial error, the actual flow of fast
neutrals cannot exceed a preset value, because this
would contradict the current balance. On the other
hand, Y ~ 1/j and, consequently, the obtained value of
Y(Ar0) is actually the lower limit. Therefore, it is
proved that stimulating influence of ion bombardment
on plasmochemical etching of silicon depends not only
on the ion mass and ion energy, but also on the popula-
tion of its upper electron levels.

The experiments showed that atomic oxygen also
accelerates the etching process. In this case, Y(O+) =
1.9 ± 0.2 atom/ion, Y(O0) = 3.4 ± 0.5 atom/neutral, and
Y(O–) = 2.1 ± 0.5 atom/ion. Fast neutrals have the stron-
gest stimulating effect: Y(O0)/Y(O+) ≅  1.8. Negative
ions take an intermediate position.

Unlike the particles mentioned above, the ions of
molecular oxygen do not accelerate, but decelerate the
etching process. As a result, a hole (rather than a step)
is formed in the etch depth profile in the region exposed
to the beam action (Fig. 5c). For convenience, this pro-
cess can be regarded as negative catalysis, whereas its
intensity can be characterized by negative values of Y,
because ∆h is negative. It was found that all kinds of

molecular oxygen ( , , and ) exhibit properties

of inhibitors with Y( ) = –2.9 ± 0.3 atom/ion,

Y( ) = –2.3 ± 0.2 atom/neutral, and Y( ) = –2.6 ±
0.3 atom/ion. Negative ions again occupy an intermedi-
ate position between positive ions and fast neutrals. The
observed decelerating action cannot be directly associ-
ated with the formation of SiO2, which, as is known, is
etched by fluorine at a much slower rate than pure sili-
con. Such effects are observed in the mixture of SF6 and
oxygen only when the relative concentration of O2 is
higher than 50%. In our case, the flow of SF6 molecules
onto the target is more than two orders of magnitude
higher than that of molecular ions.

The qualitative difference between the influence of
atomic and molecular oxygen is noteworthy. The
former accelerates, while the latter decelerates the pro-
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cess of etching, although the chemical element is the
same. We cannot exclude the possibility that the reason
is the difference between the ion masses and, hence, the
ion momentum at the same energy. However, it is
unlikely because, as shown in [23], the yield of silicon
atoms per incident ion is a very weak function of the ion
energy, at least in the range from 500 to 3000 eV. Solv-
ing this problem requires further investigations.

CONCLUSIONS
The first results of investigations of the influence of

the ion charge sign on the stimulation of plasmochem-
ical etching of silicon show the following.

(1) Among the particles that accelerate the etching
process, fast neutrals have the maximum catalytic
effect. The catalytic influence of positive ions is about
two times less. Negative ions occupy an intermediate
position.

(2) It is found that some kinds of ions do not accel-
erate, but decelerate the etching process; i.e., they
behave as inhibitors. Among such particles (at energies

of 1 keV) are all kinds of molecular oxygen ( , ,

and ).

(3) The results obtained allow us to conclude that
the effects of loosening the silicon surface and forced
desorption of the intermediate reaction products
incompletely describe the influence of ion bombard-
ment. There should be an additional channel of silicon
etching, whose efficiency depends not only on the
energy and mass of the ion, but also on the population
of its upper electron levels.
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Abstract—The properties of corona discharge in strong water electrolytes are studied experimentally. An anal-
ysis of the measured time-integrated spectrum of the corona plasma emission shows the presence of a thin vapor
layer between the plasma and liquid. The time dependences of the layer thickness are derived from the dis-
charge shadowgraphs. The role of the transition layer in the energy conversion process in a corona discharge in
strong electrolytes is determined. © 2001 MAIK “Nauka/Interperiodica”.
Studies of the electric and hydrodynamic character-
istics of pulsed corona discharges in water electrolytes
[1, 2] showed that, under certain conditions, the
branched spray corona transforms into a continuous
plasma formation, in which the level of hydrodynamic
perturbations is comparable to that in spark underwater
discharges [3]. At initial electric fields in the range E0 =
106–108 V/m, the key condition for such a transforma-
tion is the high electrical conductivity of electrolytes
(on the order of 10 S/m). In this case, if the surface of
the point electrode provides an electric-current density
and electric-field strength high enough to ignite a dis-
charge over the entire surface of the point, then a
plasma piston with any given configuration, depending
on the geometry of the point, can be formed in a liquid
[2]. These factors, along with the high stability of the
electric and hydrodynamic characteristics, stimulate
interest in corona discharges in strong electrolytes.
Such discharges possess a high technical potential and
have advantages over other types of electric explosions
in liquids. They can be realized in very small volumes
and are characterized by stable pressure levels, elevated
resources of the electrode systems, and a wider range of
electric conductivity of the media in which the electric-
explosion energy conversion occurs.

A further investigation of corona discharges in
strong electrolytes requires a detailed explanation of
the mechanism for this phenomenon. In the existing
electrodynamic models of corona discharge in a strong
electrolyte [4, 5], the equivalent circuit for the dis-
charge gap is represented by two series-connected non-
linear resistors formed by the expanding plasma piston
and liquid. The total resistance varies due to variations
in the plasma-piston radius and nonlinear electric-con-
ductivity distribution, which is related to the tempera-
ture gradient caused by Joule heating. This model is
based on the fact that, using conventional experimental
1063-7842/01/4602- $21.00 © 20174
techniques, it is impossible to divide the total energy
dissipated in the discharge gap into equivalent compo-
nents. In this case, the transition from plasma to liquid
is regarded as a jump. However, studies of the underwa-
ter-spark channel show that, between the plasma and
liquid, there is a thin transition layer in which the ther-
modynamic parameters T and ρ vary gradually [6, 7].
The existence of such a layer is explained by the facts
that the characteristic pressure in the plasma channel
attains 108–109 Pa and the water parameters are higher
than the critical ones, so that the channel cannot have a
sharp plasma–liquid boundary.

Studies of a pulsed diaphragm discharge [8, 9]
(which is similar to a pulsed corona discharge because
it occurs in the same media and also leads to the forma-
tion of a plasma bunch) demonstrate the presence of a
transitional gas layer which plays a decisive role in the
discharge evolution because of the high current density
near the plasma bunch.

The facts listed above show that it is necessary to
answer the question of whether a plasma–liquid transi-
tion layer arises in a corona discharge in a strong elec-
trolyte when a continuous plasma region is formed, and
to study the role of the transition layer in the discharge
evolution.

EXPERIMENTAL SETUP

The experimental setup consisted of electrical and
optical parts. The electrophysical part was the dis-
charge circuit of a capacitor bank with the parameters
U0 = 10–30 kV, C = 3–6 µF, and L = 2.4 µH. The dis-
charge current and the voltage across the discharge gap
were recorded by an S8-17 oscilloscope with the help
of a coaxial shunt and capacitive voltage divider. The
optical part of the experimental setup (Fig. 1, top view)
consisted of the spectral and shadowgraph sections.
001 MAIK “Nauka/Interperiodica”
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A discharge was ignited in a discharge chamber, which
was a parallelepiped 240 × 480 × 390 mm in size. The
chamber had three windows made of highly transparent
polished Plexiglas. The chamber material was
Kh18N9T stainless steel. A brass rod electrode (with a
curvature radius of the point of r0 = 1.5 mm) insulated
with polyethylene was mounted at the flange of the lat-
eral wall of the chamber. The discharge chamber wall
served as the negative electrode. As an electrolyte, we
used an optically transparent distilled water solution of
NaCl, which was preliminarily settled and filtered. The
salt concentration in the electrolyte varied depending
on the required electrolyte conductivity. In this experi-
ment, it was σ0 = 10 S/m. One of the windows was
mounted perpendicular to the rod electrode to prevent
defocusing of the optical scheme during the spectral
measurements of the plasma evolution. With the help of
a deflecting mirror and an intermediate achromatic
quartz lens (f = 75 mm), the optical plasma radiation
was focused at the entrance slit of a DFS-452 spec-
trograph. The spectrograph recorded the emission spec-
tra over the range 190–1100 nm with a high resolution.
In our experiments, we used a built-in 600-line/mm
grating with maximum reflectivity at a wavelength of
500 nm. In this case, a film covers the wavelength range
up to 360 nm, which is convenient when investigating
the overview spectra of little-studied objects. To iden-
tify the spectrum under investigation, we used an
IVS-28 standard spectrum source in whose discharge
chamber an aluminum emission with a well-known
spectrum was generated. With the help of a deflecting
mirror and an intermediate lens, the aluminum emis-
sion was focused at the entrance slit of the spectrograph
and was recorded on a free part of the film parallel to
the spectrum under investigation. The mutual position
of the spectrum under investigation and the reference
spectrum was adjusted by a special film-carrier mecha-
nism.

The shadowgraph section, which was developed for
the visual identification of a thin plasma–liquid transi-
tion layer, operated on the principle of the defocused
diaphragm [10]. A GOR-100M pulsed ruby laser was
used as a light source. Using a plane-parallel light
beam, we could partially prevent the lens effect of the
shock front of the corona discharge. To enlarge the size
of the light spot in which optical nonhomogeneities
were studied, a collimator broadening the light beam to
50 mm was placed between the laser and the discharge
chamber. A receiving Yupiter-36B objective (f =
250 mm) was placed on the optical axis behind the dis-
charge chamber. In the recording part of the optical sys-
tem, a Kaleinar-3B objective (f = 150 mm) was used to
produce a sharp image of an object (which was posi-
tioned in the object plane) on the visualizing screen or
on the photorecorder film. The use of the above objec-
tives in the optical system was necessary because of
fairly long (≥74 mm) working segments, which is
important for the defocused diaphragm method with a
high resolution (up to 45 line/mm) in the center of the
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
light spot. A visualizing screen made of opal optical
glass was placed behind the recording objective. Using
this screen, we could visually observe the image when
adjusting the system or preparing to film and could
check the quality of the device adjustment. For high-
speed photography, we used a VFU-1 photorecorder
with a magnifying lens (5- and 10-fold magnification),
which operated as a streak camera. The optical system
as a whole permitted a resolution of 10–5–10–4 m. As a
visualizing diaphragm, a set of grids with a step of 0.05
to 1.0 mm was used. The diaphragm was positioned
directly behind the object, because, in this case, light
rays are deflected at large angles in the transition layer.

All components of the optical system were mounted
on a 3750-mm-long optical bench to prevent an adverse
vibration effect. The frame of the optical system lay on
100-mm-thick rubber pads. The discharge chamber
was installed on an individual platform fastened rigidly
to the laboratory floor and was mechanically isolated
from the optical system to prevent misalignment of the
latter.

In the first stage of adjusting the optical system, we
also carried out an experiment to determine the shape
of the plasma bunch at given parameters of the electric
circuit, point radius, and electrolyte. In this case, the
time evolution of the plasma corona was recorded by a
VFU-1 streak camera in the time loupe regime with a
time resolution of 5 × 10–7 s. An IFK-2000 pulsed lamp
was used as the illuminator.

EXPERIMENTAL RESULTS

Frame-by frame photography of the discharge dem-
onstrated that, in the chosen range of electric-circuit
parameters and σ = 10 S/m, a plasma bunch produced
with a hemispherical point is shaped like a hemispher-
ical layer. Investigations of the time-integrated emis-
sion spectrum of the continuous plasma of a corona dis-

1

2 3 4 5 6 7

8 9
10

11
1213141516

Fig. 1. Optical part of the experimental setup: (1) photore-
corder, (2) visualizing screen, (3) recording objective,
(4) receiving objective, (5) visualizing diaphragm, (6) elec-
trode, (7) discharge chamber, (8) collimator, (9) pulsed
laser, (10) adjusting laser, (11) diffraction-grating spec-
trograph, (12) intermediate lens, (13) removable deflecting
mirror, (14) standard spectrum source, (15) intermediate
lens, and (16) deflecting mirror.
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charge have revealed that, against the background of an
intense continuum, a wide absorption band correspond-
ing to the sodium resonance doublet is observed in all
of the discharge regimes under study. The band broad-
ens with increasing initial voltage. Figure 2 shows the
time evolution of the Na doublet profile in the emission
spectrum of the corona-discharge plasma, measured
with reference to the known emission spectrum of Al.

580 584 588 592 596
λ, nm

0

0.5

1.0
1

2

3

Fig. 2. Time evolution of the Na doublet profile in the
plasma emission spectrum of the corona discharge at differ-
ent values of U0: (1) 10, (2) 15, and (3) 20 kV for C = 3 µF.

(‡)

(b)

Fig. 3. Shadowgraphs of the corona discharge at different
values of U0: (a) 29 and (b) 15 kV for C = 6 µF.
The total absorption corresponding to the Na resonance
doublet (λ = 589–589.6 nm) is most pronounced when
the initial voltage U0 is increased to 15 kV. This indi-
cates that, between the plasma and electrolyte, there is
a boundary gas layer in which the temperature is nearly
one order of magnitude lower than the plasma temper-
ature and the transition from the plasma to the gas layer
may occur abruptly. The fact that the recorded spectrum
does not contain additional absorption lines corre-
sponding to the transitions from the resonant level is
evidence that the emitted radiation passes through a
fairly narrow, weakly absorbing vapor layer in the visi-
ble region.

From the time-integrated emission spectrum
obtained in our experiments, we could not accurately
evaluate the size of the observed transition layer. The
thickness of the transition layer was estimated by
assuming that it is inversely proportional to the coeffi-
cient of continuous absorption in the spectral region
near λ = 589 nm. Using the data on the absorption coef-
ficient calculated for a low-temperature oxygen–hydro-
gen plasma [11], we found that, for χ589 ≈ 4 × 104 mm–1,
the half-thickness of the gas layer is equal to δ ≈ 1/χ ≅
2.5 × 10–2 mm.

Figure 3 shows the shadowgraphs of a corona dis-
charge. The inflection of the diaphragm-grid shadows
is seen against the background of the time evolution of
the plasma bunch. The shadow bands are inflected in
three regions: (i) the compression-wave region, (ii) the
region where the electrolyte is heated, and (iii) the tran-
sition-layer region. At high initial capacitive-storage
voltages, a shock is observed in the compression-wave
region; as the initial voltage decreases, the shock
becomes diffuse. The electrolyte is heated more inten-
sively when the electric parameters ensure a more
intense energy release in the discharge. By the transi-
tion-layer region, we mean the region adjacent to the
plasma where the inflection angle of the grid shadows
becomes negative.

From the shadowgraphs of the discharge, the time
dependences of the thickness of the layer in which the
inflection of shadow bands was observed were calcu-
lated for different discharge-circuit parameters (Fig. 4).
The dependences were calculated taking into account
the inflection of shadows due to the lens effect in the
compression-wave region [7]. The layer thickness
increases rapidly only during the first microseconds
(to 2 µs) of the discharge. For most of operating condi-
tions, the transition layer thickness reaches 0.05 mm
and increases only by the end of the energy release in
the discharge gap. However, we also observed dis-
charges with high stored energies (U0 = 29 kV, C =
6 µF) in which the transition layer thickness reached a
fairly large value of 0.2–0.3 mm.

On the whole, the experimental data on the transi-
tion layer thickness that were obtained using the shad-
owgraph technique agree with the above estimate
obtained from spectral measurements. This fact is evi-
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
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dence that the plasma–liquid transition layer is cor-
rectly identified in the shadowgraphs.

DISCUSSION 
The experimental results obtained allow us to esti-

mate the role of the transition layer in the time evolu-
tion of a pulsed corona and the influence of the pro-
cesses of energy conversion in this layer on the total
energy balance in a discharge. During the evolution of
the plasma bunch in a corona discharge, the intensity of
surface evaporation of the liquid is governed by radia-
tion, heat conduction, and Joule heating. To determine
the energy that is spent on the formation of the transi-
tion layer and is dissipated in it, we consider the condi-
tions at the plasma–liquid interface, i.e., at the phase-
transition boundary. The temperature T of the liquid
layer adjacent to the transition layer grows due to Joule
heating by the current I flowing through the layer. The
time-dependent distribution of T can be determined
from the one-dimensional heat conduction equation

(1)

where ρl is the mass density,  is the specific heat, α
is the thermal conductivity of water, νr is the radial
velocity, and w(t) is the heat-source power density.

In our case, we have

(2)

The label l stands for the liquid parameters. Similar
relations hold for both the transition-layer region and
the coronal plasma. The continuity conditions for the
current density J, mass and energy flows, potential ϕ,
and temperature T are satisfied at the phase-transition
boundary. A mathematical description of this time-
dependent process with nonlinear boundary conditions
at the initially unknown phase-transition boundaries,
even with some model simplifications, is rather compli-
cated. For this reason, we restrict ourselves to some
estimates in our analysis. We will use the following
estimation parameters: the transition layer thickness
δ = 2.5 × 10–4 m, the current I = 2 × 104 A, the temper-
ature T = 5 × 103–2 × 104 K, the plasma-bunch radius
(including the electrode radius) rp = 4 × 10–3 m, and the
initial electrical conductivity of the liquid σ0 = 10 S/m.
This parameters correspond to the regime with high
stored energy. The induced convection of liquid by a
plasma piston may be ignored. The reason is that, in
spite of rather high flow velocities (νr can attain 1/3 of
the speed of sound), convection does not redistribute
the temperature in the local regions of interest. Heat can
be transferred through the transition layer from the
plasma to the liquid by convective heat conduction (α =
0.683 W/(m deg)) and dissociative heat conduction,
which, according to [8], is the main heat-conduction

ρlcνl

T l∂
t∂

------- νr

Tl∂
r∂

-------+ 
  ∂

r∂
----- α T∂

r∂
------ 

  w t( ),+=
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w t( ) 2
J2 t( )
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mechanism in such systems and for which we take αd =
1.4 W/(m deg). For the maximum attainable tempera-
ture gradient, this flow can be estimated as

In addition, the gas can be heated due to radiant heat
transfer with g = σST 4 = 3.5 × 107–9 × 109 W/m2, where
σS is the Stefan–Boltzmann constant. Joule heating in
the transition layer can be estimated from Eq. (2) as

Even assuming that σtl is on the order of the electric
conductivity of water, the power of Joule heating in the
transition layer is 3–4 orders of magnitude higher than
the heat power transferred from the plasma. In fact, the
temperature and pressure dependences of the electric
conductivity of the vapor of a water solution of NaCl
[12] are such that, at temperatures on the order of
400°C, the conductivity reaches its maximum (nearly
ten times σ0 for vapor at 100°C) and then decreases
below σ0 at temperatures on the order of 600°C at
108 Pa or 800°C at 2 × 108 Pa. This means that the elec-
tric conductivity of the gas in the transition layer is
maximum at both boundaries of the layer and is mini-
mum (below σ0 for vapor at 100°C) in the center of the
layer. From here, we estimate the electric conductivity
averaged over the layer to be on the order of two to four
times σ0 for 100°C, which increases the power released
in the layer by one order of magnitude. In this case, the
energy released in the transitional layer for 10 µs is esti-
mated to be on the order of 400 J. Evidently, this is the
upper estimate and the actual value may be several
times lower; however, this estimate shows that the tran-
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-----------
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5.46 107 W/m2,×=

αd∆T
δ

-------------
T 2 104K×=
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Fig. 4. Thickness of the visualized transition layer at U0 =
(1, 3) 29 and (2, 4) 22 kV for C = (1, 2) 6 and (3, 4) 3 µF.
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Table

t, µs I, A rp, m δ, m dδ/δ dδ/δ, calculation

1.75 17 027 0.0070 2.1 × 10–4 – 0.155

3.50 18 611 0.0080 2.3 × 10–4 0.087 0.108

5.25 17 027 0.0085 2.5 × 10–4 0.080 0.071

7.00 13 859 0.0085 2.7 × 10–4 0.074 0.047
sition layer plays an important role in the process of
energy conversion in corona discharges in electrolytes.

Finally, we estimate the role that Joule heating of
water adjacent to the transition layer plays in the layer
formation. We consider a water layer with an arbitrary
thickness x; the only requirement is that x be much less
than rp. The density of the heat flux due to evaporation
from a spherical surface of radius R is

Here, rs is the specific heat of evaporation and cp is the
specific heat of water. We assume that this flux is com-
pletely provided by Joule heating at the boundary of the
layer. Taking into account that, in our case, the radius is
R = rp + δ (where only the transition layer thickness
changes due to evaporation from the surface) and x and
δ are small, using Eqs. (1) and (2) we can write

Since x is chosen arbitrarily and the main scale
length of the problem is δ, we can substitute x with δ
and integrate this expression using the experimental
time dependences of the current and corona radius.
Since the water temperature distribution across the
layer and its time dependence, as well as the phase-
transition dynamics, are unknown, we consider only
the limiting case (water heated to the critical tempera-
ture). Then, we obtain

where Q = 4π2ρc[cp(Tc – T0) + rs]. Here, the label c
stands for the parameters at the critical point. The val-
ues of dδ/δ calculated using this expression and the
experimental values of the transition layer thickness for
one of the regimes with a high stored energy are given
in the table.

A rather close agreement between the calculated
and experimental values confirms that, in the active

q ρl
Rd
td

------ cp T T0–( ) rs+[ ] .=

δd
x

-----
I2 td

4π2rp
4σlρl cp T T0–( ) rs+[ ]

-----------------------------------------------------------------.=

δd
δ
----- I2dt

σlrp
4 Q

--------------,≈
stage of the corona evolution, its propagation deep
inside the gap may be largely related to heating and a
phase transition, probably a transition of the second
kind (over the lability line), rather than hydrodynamical
or other processes.

Thus, optical studies of the plasma–liquid transition
layer in a pulsed corona discharge in a strong water
electrolyte have shown that this layer plays a significant
(or even decisive) role in the formation and evolution of
the corona.
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Abstract—Results of an experimental study of the correlation between the accelerating gap parameters in a
plasma source of electrons and the limiting magnitudes of the gas pressure and the voltage applied to the gap
are presented. It has been found that the electron beam increases the electrical strength of the gap. © 2001 MAIK
“Nauka/Interperiodica”.
The importance of the problem of beam plasma gen-
eration in the fore-vacuum range of gas pressures for
some technological applications, such as annealing and
melting of materials, electron-beam surface treatment,
and initiating beam-plasma discharges in plasmochem-
istry [1], has stimulated a demand for reliable and effi-
cient electron sources capable of producing an electron
beam at pressures of about 100 mtorr. This problem can
be solved with plasma sources of electrons utilizing a
cold (unheated) cathode discharge [2, 3]. It is the capa-
bility of producing intense electron beams at elevated
pressures that makes plasma electron emitters superior
to hot-cathode systems whose lifetime at such pres-
sures is very short.

Earlier [4–7], we developed a plasma source of elec-
trons on the basis of a hollow-cathode discharge capa-
ble of producing a stable electron beam with a current
up to 1 A and energy of the order of 10 keV.

The results of experimental investigations aimed at
determining the maximum pressures at which electron
beam generation is still possible are presented in this
paper. Basic factors limiting the operating pressure are
discussed as well.

The plasma source of electrons used in our experi-
ments is shown schematically in Fig. 1. The electron
emitting plasma is formed in the discharge chamber,
which consists of a hollow copper cathode 1 and a flat
hollow anode 2 with an axial emission hole 3 16 mm in
diameter. To stabilize the plasma boundary and screen
the accelerating field in the discharge system, a fine
metal grid was placed in the anode hole. The mesh
dimension varied from 0.25 × 0.25 to 1.0 × 1.0 mm. The
geometric transparency of the grid was close to 70%. In
some cases, the grid was replaced with a perforated
electrode with hole sizes close to the grid mesh dimen-
sions. A beam of electrons was extracted through the
emitting anode hole by applying a voltage across the
accelerating gap between anode 2 and extractor 4. Pres-
sure was increased by admitting a gas (air) into the
1063-7842/01/4602- $21.00 © 20179
working chamber of the setup. This produced equal
pressures in the gas-discharge chamber and in the
region of beam acceleration and transport. The design
of the source and its parameters have been detailed in
[4, 7].

The limiting magnitudes of the gas pressure pm and
voltage Um were registered at the moment immediately
preceding a big increase in current Ie (breakdown) in
the circuit of the accelerating voltage source. As could
be expected, the values of pm and Um varied in inverse
proportion. The experiments showed that both quanti-
ties increased with decreasing mesh dimension h and
the distance d between the anode and the extractor, as
illustrated in Figs. 2 and 3. The variation of the break-
down voltage with pressure (Fig. 3) is, in fact, the Pas-
chen curve for a constant distance between the elec-

Fig. 1. Diagram of the plasma source of electrons.
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Fig. 2. Variation of the maximum operational pressure with
the mesh dimensions of the anode grid. Extracting voltage
Ue, kV: (1) 4, (2) 7, (3) 12; discharge current Id = 500 mA.

4

80

Um, kV

p, mtorr
100 120 140 160

2

8

10

14
1

2

3

60
0

12

16

6

4
5

Fig. 3. Variation of the maximum extracting voltage with the
gas pressure. Distance d between the anode and the extrac-
tor, mm: (1) 5, (2) 15, (3) 25, (4) 50, (5) 75. The discharge
current is 1 A; h = 0.45 mm.
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Fig. 4. Same as in Fig. 3 at different values of the discharge
current Id, A: (1) 1.0, (2) 0.5, (3) 0.
trodes. It was expected that the presence of an electron
beam in the accelerating gap would facilitate discharge
initiation (breakdown) in the gap due to effective ion-
ization of the residual gas by the electron beam. In the
experiment, however, the breakdown voltage in the
presence of the electron beam in the accelerating gap
turned out to be higher compared to the conventional
Paschen’s breakdown (Fig. 4).

As noted in some papers [8, 9], the basic distinctive
feature of the fore-vacuum operating regime of a
plasma source of electrons is the high ionization rate of
the gas in the accelerating gap producing a backflow of
ions, which affects the parameters of the electron emit-
ting plasma in such a way that the plasma density
becomes higher. This, in turn, causes an increase in the
emission current and further growth of the gas ioniza-
tion rate. Under certain conditions, an avalanche ion-
ization develops that switches the discharge over from
the anode to the extractor. Following this, the accelerat-
ing gap voltage drops down to a few tens of volts and
the beam collapses.

Growth of the plasma density in the vicinity of the
emission hole also shifts the plasma boundary toward
the extractor, reducing the extent of the space charge
layer in the accelerating gap and, consequently, the
effective length of the accelerating gap (the distance
between the emission boundary in the plasma and the
accelerating electrode). The avalanche growth of the
current and the shift of the plasma boundary are pre-
vented from occurring by the grid, which performs its
stabilizing function for as long as an increase in the
emission current is compensated by the plasma poten-
tial growth and corresponding decrease in the emission
surface area of the plasma due to expansion of the space
charge layer separating the plasma from the grid elec-
trode [10]. Thus, pm is determined by the combined
action of the two processes.

We assume that the basic relaxation mechanism of
plasma ions in the accelerating gap is their recharge by
gas molecules and that the mechanism of ion escape is
diffusion [9]. Then, taking into account the condition of
plasma quasi-neutrality and confining ourselves to the
one-dimensional case, we obtain a relation between the
plasma density n(0) in the emission hole and the current
density ji due to ions exiting the accelerating gap,

(1)

where n0 is the plasma density in the absence of ion
flow; Qi is the total interaction cross section of slow
ions in the plasma; Qn is the cross section for the
recharging of fast ions; and Mi and Ti are the ion mass
and the plasma ion component temperature, respec-
tively.

Taking into account known relations for a chaotic
electron current from the plasma and for the efficiency

n 0( ) n0

3 jiQi
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of ionization by fast-moving electrons, we obtain

(2)

(3)

where je is the electron current density at the plasma
boundary; ν is the mean thermal velocity of plasma
electrons; Te and m are the electron component temper-
ature and the electron mass, respectively; Z is the num-
ber of ions produced by an electron in the accelerating
gap; nn is the concentration of neutral molecules in the
accelerating gap; Qe is the ionization cross section of
the gas molecules for interaction with fast electrons;
and d is the accelerating gap length.

Then, we can write for the ion current density

(4)

Substituting Eq. (4) in Eq. (1) and solving the
obtained expression with respect to n(0), we get

(5)

Let us determine the thickness of a layer separating
the plasma from the grid within a grid opening, assum-
ing that the anode current in the operating regime of the
electron source is zero. Under such conditions, the
thickness ll of the layer is

(6)

where Ul is the potential drop across the layer, which
depends on the ratio of the mean thermal velocities of
the plasma ions and electrons.

Substitution of Eq. (5) into Eq. (6) gives an expres-
sion convenient for qualitative analysis:

(7)

If an approximate equality ll ≈ h is adopted as a cri-
terion of plasma boundary stability, then in the case
where p = nnkT and the dependence of Ui on pressure is
weak, the relationships between pm, h, and d become
clear. Increasing either the gas pressure p or distance d
causes, according to Eq. (7), a reduction of the layer
thickness ll and, consequently, the plasma boundary
stability can be ensured with smaller dimensions h of
the grid opening.

To analyze the role of voltage Ue across the acceler-
ating gap, let us turn to expression (1) and note that ji

grows with Ue due to better focusing of the electron and
ion beams. Thus, as Ue increases, the plasma density
near its boundary increases as well, with all the ensuing
consequences. From the decrease in ll with increasing
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Ue, we conclude that it is necessary to reduce h to pro-
vide the plasma boundary stability.

Enhancement of the electrical strength of the accel-
erating gap due to the electron beam observed in the
experiment (Fig. 4) may be caused by local heating of
the gas in the beam region. At constant pressure, heat-
ing of the gas reduces the gas density and, conse-
quently, the ion backflow [11]. Another possible reason
is overcompensation of the electron beam, which
causes the formation of a positive space charge in the
accelerating gap [12]. In this case, a substantially non-
uniform distribution of the accelerating field potential
is realized, which is equivalent to a decrease in the
accelerating gap effective length. Under experimental
conditions, the operating point in the space of the accel-
erating gap parameters is on the left branch of Pas-
chen’s curve, and the corresponding decrease in the gas
density and the accelerating gap length due to the flow
of electrons make the electric strength of the gap
higher.

Thus, our investigations have demonstrated the pos-
sibility of producing an electron beam in a system with
a plasma cathode in the fore-vacuum range up to
100 mtorr.
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Abstract—The formalism of phase transition waves is shown to be applicable to the description of both fast
and slow discharges in condensed media. The definitions of a streamer and leader are refined, and the mecha-
nisms for their formation and propagation are described. The discharge propagation velocities in low- and high-
resistivity media are estimated. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

An analysis of the available experimental data on
different types of discharges in condensed media
showed that they can be divided into fast and slow dis-
charges. The discharges in low-resistivity media propa-
gate with velocities no higher than the speed of sound
and should be classified as slow discharges. Fast dis-
charges are formed in high-resistivity media and prop-
agate with supersonic speeds.

In this paper, we present a unified approach to
describing spark discharges as phase transition waves.

PHASE TRANSITION WAVES

The action of strong electric fields on low-conduc-
tivity or dielectric condensed media can result in phase
transitions such as melting and/or evaporation during
the electric or laser breakdown of solid or liquid low-
conductivity media such as dielectric–semiconductors
or semiconductor–metals in dielectrics or high-resistiv-
ity semiconductors. Under certain conditions, the
above phase transitions propagate in the form of waves
[1–3].

Let us consider phase transition waves whose for-
mation and propagation require both the spatial inho-
mogeneity of the electric field E and mechanisms pro-
viding its propagation in a medium. Let δE be the char-
acteristic length of the region in which the electric field
is nonuniform and in which a phase transition occurs,
and some parameter f of a medium (e.g., the internal
energy, density, electric conductivity, or density of cur-
rent carriers) varies steeply. Then, the velocity of the
phase transition wave can be estimated from the
expression [2]

(1)

where ∆f = |fmax – f0 |, f0 is the initial distribution of the
parameter f, w(E) is the rate at which this parameter

u ≅ 
w E( )δE

∆f
------------------ v ,+
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varies, and v is the velocity of thermal expansion or
flow of the medium.

When describing the phase transition waves, it is
important to know the mechanism for expelling the
field from the region where the phase transition occurs
and to find the width of the wave front, i.e., the charac-
teristic length of the region in which the field is nonuni-
form.

STREAMER DISCHARGE 
IN A CONDENSED MEDIUM

The fact that plasma channels in dielectrics and
semiconductors propagate with supersonic velocities
exceeding the drift velocities of the current carriers
point to the wave nature of the processes in a streamer
discharge.

A plasma channel that is formed in a high-resistivity
medium in the region with a strong electric field due to
impact ionization, photoionization, or generation of
current carriers by the electric field and that propagates
toward the opposite electrode in the form of an ioniza-
tion wave will be referred to as a streamer.

Streamer propagation in high-resistivity condensed
media exhibits some general features. Discharge is ini-
tiated in regions where the electric field is highly non-
uniform, e.g., at the interfaces with dielectric inclu-
sions, rough electrode surfaces, and electrodes with
small radii. A random distribution of different types of
inhomogeneities on the electrode surfaces and in the
medium itself results in the stochastic nature of
streamer formation and propagation.

In the region where the electric field is strong, the
density of current carriers sharply increases. The one-
dimensional equation for the current carrier density in
Cartesian coordinates has the form

(2)∂n
∂t
------ µ∂ nE( )

∂x
--------------- D

∂2n

∂x2
--------–– w E( ) n

τ r

----,–=
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where w(E) is the rate of electron–hole pair production;
τr is the recombination time; D is the diffusion coeffi-
cient; and µ and n are the electron mobility and density,
respectively.

From Eq. (2), we can obtain a rough estimate for the
ionization wave velocity,

(3)

where w0 = w(Emax), v0 = µEmax, and n0 = nmax.
In a strong electric field, the ionization rate substan-

tially exceeds the recombination rate and the drift
velocity is much higher than the diffusion velocity.
Thus, the ionization wave velocity is determined by the
expression

(4)

The inequality w(E)/n0 @  determines the thresh-
old electric field E* at which the wave is formed and the
length δE of the region in which the nonuniform electric
field at a given voltage is E > E*. The ionization wave
velocity is always higher than the sum of the drift and
diffusion velocities of carriers. In the case of intense
ionization, it is much higher than this sum. Hence, if a
strong electric field is applied to a high-resistivity
medium, a streamer propagates with supersonic speed.

The increase in the electron density at the wave front
is limited in time by the Maxwellian relaxation time
τm = ε/σ, where ε is the permittivity and σ is the electric
conductivity. Then, the maximum electron density is
determined by the expression

(5)

where e is the electron charge.
Correspondingly, the maximum conductivity in the

streamer head is σ0 ≅  (eεµw0)1/2. During the same time
τm, the electric field is expelled to the region in front of
the streamer head. Since the conductivity in the
streamer is limited and the strong electric field at the
streamer front exists for a very short time, the streamer
is a weakly ionized low-temperature plasma channel.
Consequently, the lattices of solid dielectrics or semi-
conductors do not melt during the streamer discharge.
In gas discharge physics, the low degree of ionization
and low temperature of a streamer are used for its defi-
nition.

An important property of a streamer is its self-prop-
agation ability, which is associated with the mechanism
for expelling a strong electric field from the streamer
head. However, the voltage drop along the plasma
channel dictates a rapid increase in the applied voltage
as the distance passed by the streamer in the divergent
field increases. Since the streamer is a weakly ionized

u ≅ 
w0

n0
------ 1

τ r

----– 
  δE

D
δE

----- v 0,+ +

u ≅ 
w0δE

n0
------------ v 0.+

τ r
1–

n0

εw0

eµ
--------- 

 
1/2

,=
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plasma channel, the field is not fully expelled from it.
Hence, a necessary condition for streamer self-propa-
gation is the formation of a space charge in its head.

Let us consider the processes occurring in the anode
region. The electrons are able to leave for the electrode;
this effect is related to the so-called field ionization [4].
The higher the electronic work function of the metal
and the electric field near the anode, the higher the field
ionization probability. The departure of electrons
results in the formation of a positive space charge. Dur-
ing the time τ, the space charge will shift by a distance
r = (µ + µ+)Eτ, where µ+ is the mobility of the positive
current carriers (ions or holes). The space-charge elec-
tric field E ' is determined from Poisson’s equation
divE ' = ep/ε, where p is the density of the positive cur-
rent carriers. The streamer starts propagating if the
space-charge electric field reaches the threshold value
E* (E ' ~ E*). The time necessary for satisfying this
condition can be determined from the above relations
by taking into account the rough equality p ~ ω0τ. Thus,
the time during which the streamer is formed is esti-
mated as

(6)

Since no melting or evaporation occurs in a streamer
discharge, the slope of the phase trajectory ∆P/∆T on
the P–T phase diagram must be larger than the deriva-
tive dP/dT taken along the solid–liquid (or liquid–gas
for liquid media) phase equilibrium curve:

(7)

In phase transitions in strong electric fields, the elec-
tric field pressure P = εE2/2 plays a decisive role. The
area on the phase diagram that corresponds to the con-
ditions in the streamer head is characterized by the
electric field pressure and the temperature, which
increases due to Joule heating. The high local electric
field in the streamer head (E > 109 V/m) corresponds to
a pressure of P > 107 Pa. The rates at which the electric
field pressure and the temperature vary are determined
by the following expressions:

(8)

(9)

where τf is the time during which the field increases to
the amplitude value, ρ is the mass density, and c is the
heat capacity.

Since ∆P/∆T . (∂P/∂t)/(∂T/∂t), we can find an
upper limit for the time during which the electric field
increases to the threshold value E*:

(10)

τ e

e µ µ++( )w E*( )
---------------------------------------- 

  1/2

.=

∆P
∆T
------- dP

dT
-------.<

∂P/∂t εE∂E/∂t ≅ εE2/τ f ,=

∂T /∂t σE2 ρc( ),=

τ f
ερc
σ
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where the derivative dT/dP characterizes how the phase
transition temperature varies with pressure along the
phase equilibrium curve.

From the above considerations, it follows that, for a
streamer discharge to form, the rise time of the applied
voltage pulse must satisfy inequality (10).

One of the most interesting features of a streamer
discharge is the crystallographic orientation of plasma
channels, whose description sometimes requires rather
sophisticated hypotheses. As an example, it was shown
that in the most thoroughly studied crystals of zinc
selenide and cadmium sulfide, the directions of
streamer discharges coincide with the calculated direc-
tions of synchronization of microwave and light waves
[5, 6]. The microwaves are generated during the propa-
gation of the streamer head as a result of the competi-
tion among different processes, which leads to periodic
changes (oscillations) in the electric field and plasma
density at the streamer front [7].

Although modeling streamer propagation with
allowance for the emission of electromagnetic waves is
rather complicated, the parameters of a streamer prop-
agating in cadmium sulfide at different voltages can be
estimated using formulas (5) and (6). According to the
experimental data [1], the characteristic size of the
region of a strong electric field is δE = 5 × 10–6 m. Then,
the threshold field is E* ≅  3.2 × 108 V/m. For δE = 2 ×
10–6 m, we have E* ≅  3.5 × 108 V/m.

The electron drift velocity in cadmium sulfide at E >
108 V/m is saturated and equal to v = 105 m/s [1]. For
D ≅  10–1 m2/s and δE = 2 × 10–6 m, the calculated min-
imum velocity is umin ≅  1.5 × 105 m/s. For δE = 5 ×
10−6 m, we have umin ≅  1.2 × 105 m/s. These calculated
values coincide with the measured values of the mini-
mum velocity [8].

The characteristic features of the streamer discharge
in cadmium sulfide deduced from formulas (5) and (6)
are as follows. The streamer starts to form at t ≅  3 ns at
a maximum field of E ≅  5.4 × 108 V/m. The strong ion-
izing field is localized within a small region (δE = 3 ×
10–6 m) and affects the crystal during very short time
intervals (t ≅  10–13 s). The streamer propagation veloc-
ity is u ≅  4 × 106 m/s, the maximum electron density in
the streamer is n0 ≅  6 × 1024 m–3, and the conductivity
in the streamer head is σ ≅  2 × 102 S/m.

LEADER DISCHARGE IN A CONDENSED 
MEDIUM

The definition of a streamer allows one to define
more accurately the leader discharge. The leader is
known to form in a weakly ionized medium during the
onset of the ionization–heating instability; i.e., the pro-
duction of current carriers is governed by Joule heating,
whereas the rate at which they are produced is deter-
mined by the dependence of the ionization rate on the
temperature.

A plasma channel that is formed in a low-conductiv-
ity medium due to nonuniform Joule heating of a
plasma and propagates toward the opposite electrode in
the form of ionization wave will be referred to as a
leader. Hence, the leader may propagate along the
already formed streamer channel. The leader velocity is
also higher than the drift velocity of the current carriers.
The leader is a high-temperature plasma channel.

As an illustration, let us consider the breakdown in
water in the nanosecond range [9]. For a positive elec-
trode potential, the breakdown in distilled water in the
nanosecond range proceeds as follows. Dissociation,
which leads to streamer formation within t < 10 ns,
starts in the local regions with a strong electric field,
which appear near microinhomogeneities on the elec-
trode surface. An increase in the temperature in the
streamer results in a sharp increase in the probability of
thermal ionization w(T); consequently, conductivity
continues to rise and the streamer channel transforms
into the leader channel.

The minimum time for the streamer formation is t ≅
4 ns. There is a narrow peak of the field in the ionization
wave propagating from the anode to cathode. This peak
is caused by a positive space charge at the streamer
head, as well as by its elongated shape. As a result, the
field in front of the streamer increases to E ≅  2 ×
109 V/m for U = 100 kV, interelectrode spacing l =
10−2 m, and initial conductivity of water σ0 = 2.76 ×
106 S/m. The field inside the streamer decreases to E ≅
3 × 105 V/m as the electric conductivity increases. The
streamer propagation velocity is u ≅  2 × 105 m/s; for
U = 50 kV, we have u ≅  5 × 104 m/s. These values agree
well with estimates obtained using expression (5).

Behind the streamer front, the temperature grows
due to intense Joule heating, which causes ionization
and further increase in the electric conductivity. The
streamer transforms into a leader, whose velocity is less
than the propagation velocity of the streamer front. The
distribution of the temperature is highly nonuniform
both along and across the plasma channel; the temper-
ature of the channel can attain T ≅  104 K [9].

SLOW SPARK DISCHARGE 
IN A LOW-CONDUCTIVITY MEDIUM

An electric breakdown in low-resistivity solid or liq-
uid media may develop in a few microseconds after
applying the voltage due to the melting and evaporation
of the material, which leads to the formation of a gas
plasma. In this case, the solid–liquid–gas–plasma
phase transitions occur consecutively due to Joule heat-
ing in the region where the electric field is nonuniform.
The initial scale length on which the electric field varies
is determined by the configuration of the discharge gap,
which usually ranges from 10–6 to 10–2 m. The field gra-
TECHNICAL PHYSICS      Vol. 46      No. 2      2001



SPARK DISCHARGES IN CONDENSED MEDIA 185
dient is limited only by the experimental facilities. The
propagation velocity of the phase transition wave can
be calculated using the rough formula

(11)

where ∆ε is the total change in the specific internal
energy of a medium at the wave front.

It follows from formula (11) that the propagation
velocity of a discharge in a low-resistivity medium can
vary over a wide range. However, the relation between
the propagation velocity and phase transitions leads to
the following restriction that is well known from exper-
iments: the discharge propagation velocity in this case
cannot exceed the speed of sound c, because phase tran-
sitions in condensed media are accompanied by a
change in the volume. Thus, the formation time of a
slow discharge is limited from below: τ > δ/c. The dura-
tion of the applied voltage pulse should be at least
longer than the discharge formation time.

In slow discharges, the electric field pressure
becomes important after the transition of the material to
the gaseous state. Since a gas is dielectric, both the
electric field strength and electric field pressure inside
the produced gas bubble are higher than those in the
surrounding low-conductivity medium. The formation
of a slow spark discharge is completed by a gas dis-
charge, which results in plasma production. The elec-
tric field strength and electric field pressure in the
plasma channel decrease, whereas the temperature and
gas-kinetic pressure increase.

CONCLUSION

The definitions of a streamer and leader in con-
densed media are refined. The formation times and

u ≅ 
j2δE

σ∆ε
---------- v ,+
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propagation velocities of slow and fast discharges are
estimated.

A unified approach to describing slow and fast spark
discharges in condensed media as phase transition
waves is proposed, which allows a quantitative expla-
nation of the difference in the discharge propagation
velocities.

It is shown that the medium density changes signif-
icantly only in slow discharges, which is related to the
liquid–gas phase transition.
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Abstract—A comparison between the kinetics of helium desorption upon linear heating of samples saturated
using various regimes is performed, and the effect of dislocations on the retention of helium in materials is esti-
mated. In order to investigate the effect of the conditions of saturation of materials with helium on its retention,
samples of austenitic stainless steel 0Kh16N15M3B saturated using various methods were studied, namely,
helium irradiation in a cyclotron, in a magnetic mass-separation setup, inside IRT-2000 and BOR-60 reactors,
and using the so-called “tritium trick” technique. The investigations show that when saturation of the samples
with helium is accompanied by the introduction of radiation defects (in wide limits of helium concentrations
and radiation damage), the kinetics of helium evolution from samples of this type is adequate to the kinetics of
its evolution from samples irradiated in a reactor. The investigation of the kinetics of helium evolution from the
samples of 0Kh16N15M3B steel both after a preliminary deformation and in the process of deformation
showed that, in the process of heating, the helium atoms can migrate along dislocation pipes, resulting in a sig-
nificant effect on the release of helium and its redistribution in the volume of the material. The activation energy
for helium pipe diffusion in austenitic steel 0Kh16N15M3B is about 0.7 eV. Mobile dislocations favor the ejec-
tion of helium onto the surface of the material, to grain boundaries, interphase interfaces, etc. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

It is known that, under the effect of irradiation,
materials can change their physical and mechanical
properties. The main factors that restrict the reserve of
the material service life are radiation swelling, high-
temperature and low-temperature irradiation embrittle-
ment, radiation creep, etc. An important role in these
detrimental phenomena belongs to gaseous products of
nuclear reactions, including helium.

Since the direct irradiation of materials in a reactor
requires much time and material cost, at present, in order
to imitate the accumulation of helium, various express
methods are used, such as the irradiation of materials with
helium ions of various energies, irradiation with high-
energy electrons and γ photons, saturation from a plasma,
etc. Naturally, the question arises to what extent this or that
technique is acceptable for adequately simulating reactor
irradiation. In this work, we make an attempt to qualita-
tively compare the kinetics of helium desorption upon lin-
ear heating of samples saturated using various techniques
and to estimate the role of dislocations in the retention of
helium in materials.

EXPERIMENTAL

The investigation of the kinetics of helium evolution
from samples of structural materials in the process of
uniform heating was performed in a high-vacuum mass
spectrometer setup [1]. To study the effects of the con-
1063-7842/01/4602- $21.00 © 20186
ditions of material saturation with helium on its reten-
tion in the material, we investigated samples of an
austenitic stainless steel 0Kh16N15M3B saturated
with helium using various methods. Upon simulation of
the effect of reactor irradiation on the properties of a
material, it is insufficient to specify definite values of
the helium concentration and its distribution; one
should also ensure a specified scaling characteristic of
the material damage. This characteristic is determined
by the value of a coefficient K, which is expressed as
the ratio of the rate of helium formation (He, appm/s)
to the rate of production of atomic displacements
(dpa/s). Thus, for a number of materials, we have
K = 0.3 appm/dpa for irradiation in a fast reactor
EBR-II and K = 70 appm/dpa for irradiation in an HFIR
reactor [2].

In order to study the effects of deformation on the
retention of helium in the 0Kh16N15M3B steel, we
investigated the kinetics of helium evolution from
undeformed materials, from materials subjected to a
preliminary cold working (to 15 and 50%), and in the
process of deformation.

EXPERIMENTAL RESULTS

1. Effect of the Saturation Conditions on the Kinetics 
of Helium Evolution from Materials

In order to substantiate the methods of express imi-
tation of the accumulation and retention of helium in
001 MAIK “Nauka/Interperiodica”
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structural materials upon reactor irradiation, we per-
formed a comparative analysis of the spectra of gas
evolution from samples of 0Kh16N15M3B steel irradi-
ated in a cyclotron [3], in an ILU-100 magnetic mass-
separation setup [4], in IRT-2000 and BOR-60 reactors
[5], as well as saturated with helium using the “tritium
trick” method [6]. Upon irradiation in a cyclotron, the
samples were uniformly saturated with helium to con-
centrations of 1 × 103 at. % throughout the volume. The
irradiation temperature did not exceed 400 K.

The saturation of samples in an ILU-100 magnetic
mass-separation setup was performed using bombard-
ment of the material studied with α particles with an
energy of 70 keV to a fluence of 3 × 1020 ion m–2. The
range of α particles with this energy is about 200 nm.
The temperature of irradiation did not exceed 400 K.
The calculated concentration of helium in the near-sur-
face layer was about 1 at. %.

Irradiation of the samples in an IRT-2000 reactor
was performed at temperatures below 420 K to fluences
of 1.1 × 1023 neutron m–2 for fast neutrons (E >
2.6 MeV) and 2.6 × 1024 neutron m–2 for thermal neu-
trons. The experimentally determined helium concen-
tration in samples irradiated in the IRT-2000 reactor
was 3.5 × 10–4 at. %.

As the samples irradiated in the BOR-60 reactor, we
used pieces cut out from the can of a fuel element that
had been irradiated to a fluence of 7.8 × 1026 neutron m–2

(E > 0.1 MeV). The irradiation temperature was about
850 K. The samples were studied both in the initial
state and after the inner layer that was in contact with
the nuclear fuel was etched away. The experimentally
determined concentrations of helium in these samples
proved to be 2.0 × 10–3 and 1.7 × 10–3 at. %, respec-
tively. The characteristics of the samples are given in
the table.

Figure 1 schematically displays the spectra of
the rate of helium evolution from the samples studied in
the process of uniform heating at a rate of 7 K/min. Fig-
ure 1a displays the spectrum of helium evolution from
a sample irradiated with α particles in a cyclotron. The
identification of the peaks of the helium thermodesorp-
tion curve is given in [7], where, along with the study
of the kinetics of helium evolution, electron micro-
scopic investigations of the evolution of the dislocation
structure and the development of helium-induced
porosity were performed. Peak A (activation energy E ≈
0.7 eV) corresponds to helium release via pipe diffu-
sion along dislocations that emerge onto the surface;
peak B (E ≈ 0.8 eV) corresponds to growth of disloca-
tion loops, their emergence onto the surface, and the
evolution of the related helium through dislocation
pipes; peak C (E ≈ 2.4 eV) is ascribed to helium diffu-
sion by the vacancy mechanism. The activation energy
for the process of helium evolution at temperatures cor-
responding to peaks A and C, which are connected with
helium diffusion, were calculated using the known
method based on the heating of samples at various rates
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
[8]. The activation energy of helium evolution at a tem-
perature corresponding to peak B was calculated from
the rate of growth of interstitial loops [9]. Helium evo-
lution at higher temperatures (at T > 1200 K) may be
related to the migration of helium–vacancy complexes
HexVy . These conclusions are confirmed indirectly by
the results of recent works concerning the investigation
of the evolution and distribution of helium in various
materials [10–12].

Note the complete identity of the spectra of the rate
of gas evolution from the samples uniformly saturated
in a cyclotron (Fig. 1a) and those irradiated in the
IRT-2000 reactor (Fig. 1c). The spectrum of gas evolu-
tion from the sample irradiated with α particles with an

(a)

(b)

(c)

(d )

(e)

(f)
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B
C

C
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Fig. 1. Spectra of the gas evolution rates upon uniform heat-
ing (7 K/min) of samples of 0Kh16N15M3B steel saturated
with helium using various techniques: (a) uniform satura-
tion of the entire volume in a cyclotron; (b) irradiation with
α particles using a magnetic mass-separation setup (energy
of helium atoms 70 keV); (c) irradiation in an IRT-2000
reactor; (d) irradiation in a BOR-60 reactor (as-irradiated
state); (e) irradiation in a BOR-60 reactor after etching away
a surface layer from the side that was in contact with the
fuel; and (f) saturation using the “tritium trick” technique.
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energy of 70 keV exhibits peaks B and C (Fig. 1b). The
absence of peak A is possibly related to the fact that the
related process is already realized during the irradiation
due to the near-surface distribution of helium. The shift
of peak C toward lower temperatures can also be
related to the near-surface distribution of helium [13]. 

The spectra of the rates of helium evolution from the
0Kh16N15M3B steel samples irradiated in the
BOR-60 reactor (Figs. 1d, 1e) show that helium is
released only at high temperatures exceeding the irradi-
ation temperature. This is likely to be due to the realiza-
tion of processes responsible for gas evolution at lower
temperatures during irradiation. The gas evolution cor-
responding to the initial sample (Fig. 1d) exhibits two
peaks with maxima of the evolution rate at 940 and
1200 K, whereas in the spectrum of helium evolution
from the sample with an etched-away inner layer
(Fig. 1e), only one peak located at 1200 K is present.
This difference in the kinetics of helium evolution from
these samples is explained by the different distribution
of helium in the material. Thus, in the initial sample the
inner layer is enriched in helium by the introduction of
α particles from the fuel. In the sample with an etched-
away inner surface, helium is distributed uniformly
throughout the volume of the sample. The peaks in the
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Fig. 2. Variation of the temperature of the maximum rate of
helium evolution through the vacancy mechanism upon lin-
ear heating of the samples (at a rate of 7 K/min) as functions
of the depth of a near-surface layer saturated with helium
(solid line, calculated) and the grain size (dashed line,
experiment).
curve of helium thermodesorption from the initial sam-
ple correspond to the same mechanism of diffusion via
vacancies: the first peak is connected with the emer-
gence of helium from the near-surface layer, while the
second peak is related to the emergence of helium from
the entire volume of the sample. Figure 2 shows the
variation of the temperature of the maximum rate of gas
evolution (calculated on the basis of [13]) correspond-
ing to helium diffusion by the vacancy mechanism
upon linear heating of the sample at a rate of 7 K/min
as a function of the thickness l of the near-surface layer
saturated with helium that determines the gas evolution
at this stage. It follows from a comparison of data pre-
sented in Fig. 2 with the temperatures of the maxima of
the gas-evolution rate (Figs. 1d, 1e) that the thickness
of this layer in the initial sample is about 0.5 µm, which
agrees in order of magnitude with the range of α parti-
cles that are incorporated into the steel from the fuel
element [14]. The gas evolution with a maximum at
1200 K, which is controlled by helium evolution from
the volume of the sample, is approximately 10 µm,
which agrees with the average grain size in the samples
studied. It was shown in [15] that grain boundaries are
unsaturated traps for inert gases. Therefore, the evolu-
tion of inert gases from materials only occurs from
near-surface grains of the material. Figure 2 displays
the experimentally found temperatures of the maxi-
mum rate of helium evolution from samples uniformly
saturated with helium in a cyclotron as functions of the
depth of evolution and the grain size. This dependence
suggests that helium evolution from irradiated materi-
als occurs only from near-surface layers of the samples
(in this case, the thickness of this layer is about 10 µm).
The rest of the helium is likely to be captured by inter-
nal traps such as grain boundaries, dislocations, radia-
tion defects, etc.

Figure 1f displays the curve of the helium evolution
rate from a sample saturated using the “tritium trick”
technique. This thermodesorption curve has two peaks,
which correspond to energies of activation equal to 0.7
and 2.4 eV. This indicates that when saturating the
material using a “damage-free” method, such as the
“tritium trick” technique, the gas atoms that are
retained in the material during the saturation time are
Characteristics of the samples studied

Saturation
technique Energy Temperature, K Fluence, m–2 Amount of helium,

at. % Parameter K [2]

(n, α) [5] Spectrum of the 
IRT-2000 reactor

420 2.0 × 1024 9.5 × 10–4 400

(n, α) [5] Spectrum of the 
BOR-60 reactor

850 3.8 × 1026 2.0 × 10–3 0.6

1.7 × 10–3

He* [3] 0–29 MeV 400 1.0 × 1020 1.0 × 10–3 4000

He* [4] 70 keV 400 3.0 × 1020 1.0

T  3He [6] 300 5.0 × 10–7
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mainly linked with dislocations and vacancies. The
absence of a noticeable helium evolution at tempera-
tures above 0.85Tmol indicates the absence of stable
helium–vacancy complexes.

Thus, we may conclude that, as to the behavior of
helium in structural materials, the simulation experi-
ments that ensure the simultaneous introduction into
the material lattice of both helium and radiation defects
(in wide limits of helium concentrations and radiation
damage) sufficiently adequately reproduce reactor irra-
diation. Most probably, this is due to the stabilization of
definite configurations of radiation defects by helium
atoms. When helium is introduced by damage-free
methods, in each case one should take into account the
specific features of its retention and its mobility. The
neglect of these features can lead to an incorrect treat-
ment of the results obtained. It has been found that
helium evolution upon linear heating of irradiated sam-
ples begins only at temperatures exceeding the irradia-
tion temperature. This circumstance can be used to
determine the temperature of sample irradiation.

2. Effect of Deformation on the Retention 
of Helium in Materials

The investigation of the effect of deformation on the
retention of helium in materials was performed using
samples of 0Kh16N15M3B steel uniformly saturated
with the gas as a result of bombardment with helium
ions in a cyclotron [3] to a concentration of 1 × 10–3 at. %.
The irradiation temperature did not exceed 400 K. The
samples were studied in an austenitized state and after
a preliminary cold deformation to 15 and 50%. Imme-
diately before the experiment, the samples (5.0 × 5.0 ×
0.1 mm in size) were subjected to electropolishing with
subsequent rinsing in alcohol to clean the surface.

Figure 3 displays the curves of helium desorption
(in the process of uniform heating at a rate of 7 K/min)
from the austenitized and preliminarily deformed sam-
ples. It is seen from the figure that, in the case of
deformed samples (Figs. 3b, 3c), the low-temperature
peak A, which is ascribed to helium emergence onto the
surface by the mechanism of diffusion along disloca-
tion pipes, becomes higher. The greater the preliminary
deformation, the greater the increase in the height of
peak A. Peak B, which is related to the emergence onto
the surface of dislocation loops in the process of their
growth and to the subsequent evolution of helium by
pipe diffusion, becomes somewhat lower. Note that a
significant evolution of nitrogen and of a small amount
of other chemically reactive gases was also observed in
this temperature range, which was likely due to the dis-
solution of Cottrell atmospheres in the process of the
emergence of dislocation loops onto the surface upon
their growth. The contribution of this process to helium
evolution from steel samples upon heating decreases,
as should be expected, with increasing amounts of pre-
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
liminary deformation (with increasing density of dislo-
cations).

Simultaneously, we determined the absolute
amounts of helium evolving in the process of isochro-
nous annealings of the samples studied (annealing
duration was 0.5 h) using the method of evaporation of
the sample in a vacuum with subsequent mass-spectro-
scopic recording of the helium evolved [5]. These
investigations showed that the amount of helium
evolved at the low-temperature stage increases with
increasing deformation. The total amount of helium
evolved in the process of isochronous annealings at
temperatures up to 1373 K is approximately the same
for all the samples. The results obtained once more con-
firm the assumption that helium evolution at tempera-
tures of 0.27 to 0.3 Tmol is related to the migration of
helium atoms along dislocation pipes. The greater the
deformation, the greater the number of dislocations that
emerge onto the surface of a sample, and the greater the
amount of gas, which diffuses along the dislocation
pipes, that evolves from the sample.

To further clarify the effect of dislocations on the
retention of helium in materials, we studied the release
of helium from samples of 0Kh16N15M3B steel in the
process of deformation at a temperature of 543 K. This
temperature corresponds to the low-temperature peak
of helium evolution, which was ascribed by us to the
migration of helium atoms along dislocation pipes. To
this end, we designed and constructed, at the cover
plate of the annealing chamber of the high-vacuum

(a)

(b)

(c)

A
B

C

A
B C

C

B

A

arb. units

400 600 800 1000 1200 T, K

Fig. 3. Spectra of the rates of gas evolution upon a uniform
heating of the samples (7 K/min) saturated with helium in a
cyclotron: (a) initial state; (b) after a preliminary cold defor-
mation to 15%; and (c) after a preliminary cold deformation
to 50%.



190 ZALUZHNYŒ, SUVOROV
mass spectrometric setup for studying the kinetics of
gas evolution [1], a special attachment that permitted us
to deform the samples studied at various rates in the
range from 10–5 to 10–3 s–1. The samples for the investi-
gation were stamped from a sheet 0.3 mm thick. The
samples were 100 mm in length and 4 mm in width.
The saturation with helium was performed using irradi-
ation with α particles in a cyclotron [3]. The irradiation
temperature did not exceed 400 K. The helium concen-
tration was 10–3 at. %.

The experimental procedure was as follows. First,
the sample was heated to the test temperature (543 K)
and held at this temperature until helium stopped evolv-
ing. Then, the sample was deformed at a rate of 10–3 s–1.
The evolution of helium was observed only at the
moment of sample failure. The amount of helium
evolved was very small, at the level of the sensitivity of
the technique, and was most likely related to its evolu-
tion from the fracture surface. The results of this exper-
iment only permit us to make a conclusion on the low
probability of interaction of mobile dislocations with
helium atoms, which, after irradiation of the material
with helium ions in the accelerator and preliminary iso-
thermal annealing at a temperature of 543 K, are most
likely located in radiation vacancies, which under these
conditions are the main sinks for interstitial helium
atoms. Assuming that the interstitial helium atoms
interact more efficiently with dislocations, we
attempted to “pin” them at dislocations by preliminar-
ily (prior to heating) deforming the irradiated sample at
room temperature. In this case the interstitial helium
atoms, upon subsequent heating, can be trapped by dis-
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Fig. 4. Deformation-induced helium evolution from sam-
ples of 0Kh16N15M3B steel in the process of heating:
(a) variation of the temperature; (b) sample elongation; and
(c) rate of helium desorption.
locations, which in turn should manifest itself in the
kinetics of its evolution from the sample. Such an
experiment was performed in the following way. An
irradiated sample was fixed in grips in the annealing
chamber and deformed at a rate of 5 × 10–5 s–1. Then, it
was heated at a constant rate of 1.5 K/min to a temper-
ature of 543 K, at which the stage of gas evolution was
observed (which was ascribed by us to the migration of
helium atoms along dislocations), held at this tempera-
ture until the gas evolution stopped, and deformed at
various rates up to failure. During the experiment,
changes in the partial pressure of the evolved helium in
the experimental volume of the setup were recorded.
The results of the investigation are given in Fig. 4. It is
seen that room-temperature deformation is not accom-
panied by helium evolution. An increase in the temper-
ature to 543 K leads to insignificant gas evolution.
The activation energy of this process calculated using
the known technique of heating at various rates is E =
0.2 eV [8], which suggests that this peak of helium evo-
lution is related to helium release from the material as
a result of its diffusion via the interstitial mechanism
[16]. This is related to the fact that after irradiation part
of the helium atoms are still located in interstices. After
the heating is stopped, gas evolution is observed during
30 min of isothermal holding, which can be ascribed to
diffusion of helium atoms along dislocation pipes. Fur-
ther deformation at a rate of 5 × 10–5 s–1 for 20 min was
accompanied by helium evolution at a virtually con-
stant rate. A twofold increase in the deformation rate
led to an increase in the gas evolution rate. No increase
in the gas evolution was observed upon sample frac-
ture.

The results obtained suggest the possibility of both
diffusion of helium atoms along dislocation pipes and
the entrainment of helium atoms onto the sample sur-
face with mobile dislocations.

Since the deformation of the samples of
0Kh16N15M3B steel leads to an increase in the evolu-
tion of helium from the material, we can suggest that
deformation at these temperatures may favor the trans-
fer of helium to grain boundaries at temperatures that
are lower than the characteristic temperatures of high-
temperature radiation embrittlement. This may lead to
a degradation of the mechanical characteristics of the
material in the case of thermomechanical loading under
conditions of generation and incorporation of helium
atoms into the surface of materials in combination with
pulsed temperature actions, e.g., upon plasma disrup-
tion in fusion reactors.

The possibility of pipe diffusion of helium is con-
firmed by the results of [17], where, in particular, the
effect of alternating loading on the kinetics of helium
evolution from the A7 alloy (99.7% pure aluminum)
was studied. The authors of [17] found that upon the
action on the material of an alternating loading (trans-
verse bending of the sample at a frequency of 1 Hz) in
the elastic region (the stresses calculated from the mag-
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
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nitude of flexure were ±0.6, ±1.2, ±1.8, and ±2.4 ×
107 N/m2); the low-temperature peak of helium evolu-
tion (at ~400 K) was shifted upon uniform heating
toward lower temperatures in comparison with the state
in the absence of a load, and the greater the load, the
greater the shift. At the same time, as the stresses
increase, the rate of helium evolution increases in this
temperature range. The observed changes in the kinet-
ics of gas evolution with increasing mechanical stresses
is ascribed to the fact that upon cyclic loads the trap-
ping of helium with dislocations occurs not only during
the random walking of helium atoms, but also via their
approach to the dislocation due to dislocation bowing.
With increasing external load, the sag of the dislocation
bowing increases, thereby increasing the probability of
trapping of helium atoms by a dislocation and their
transfer to the surface. An increase in the load leads to
an increase in the absolute amount of helium whose
reemission occurs through dislocations.

CONCLUSION

The investigation of the effect of helium introduc-
tion into the lattice of a material on the kinetics of gas
evolution shows that, as to the behavior of helium in
structural materials, simulation experiments that ensure
the simultaneous introduction into the material lattice
of both helium and radiation defects (in wide limits of
helium concentrations and radiation damage) satisfac-
torily describe the effects of reactor irradiation. Most
probably, this is caused by the stabilization of definite
configurations of radiation defects by helium atoms.
When helium is introduced using damage-free meth-
ods, in each case one should take into account the spe-
cific features of its retention and its mobility in the
material. The neglect of these features can lead to an
incorrect treatment of the results obtained. The fact that
helium evolution upon heating of irradiated samples
begins only at temperatures that exceed the irradiation
temperature can be employed to determine the irradia-
tion temperature.

The investigation of the kinetics of helium evolution
from the samples of 0Kh16N15M3B steel both after
their preliminary deformation and in the course of
deformation showed that, in the process of heating,
helium atoms can migrate along dislocation pipes,
resulting in a significant effect on helium evolution and
its redistribution in the volume of the material. The acti-
vation energy for pipe diffusion of helium in the auste-
nitic 0Kh16N15M3B steel is about 0.7 eV. Mobile dis-
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
locations can favor helium transfer to the surface of the
material, grain boundaries, or interphase interfaces.
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Abstract—The well-known model of current–voltage (I–V) characteristics of a MOS transistor (MOST) in
weak inversion [1] was modified with regard to lateral nonuniformity of the semiconductor surface potential. A
simple technique for determining the fluctuation parameter and the spectral density of interface states from
drain-current (output) and drain–gate (transfer) single-threshold I–V characteristics is developed. Combined
with measurements of the MOST threshold voltage, it makes possible the calculation of the effective oxide
charge. The technique is fairly accurate and is useful for IC process control. © 2001 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

It is known that interface states and lateral nonuni-
formity (LN) of the semiconductor surface potential
strongly affect the drain-current and drain–gate charac-
teristics of a MOST [2]. In an effort to account for the
drain–gate curves of a low-voltage CMOS inverter,
Swanson and Meindl [3] developed an approximate
model of the subthreshold I–V characteristics. Over-
straeten, Declerck, and Muls proposed a useful method
for determination of the interface state density from the
MOST subthreshold I–V characteristics [1]. They
assumed that, under weak inversion conditions, the dif-
fusion component of the current dominates and the
semiconductor potential at the interface is uniform.
However, most MOS structures are actually character-
ized by a random distribution of the interface charge
density [4–7]. This results in a statistical scatter of the
potential ys. The scatter is usually described by the
Gaussian distribution [4]

(1)

where  is the mean value of the potential and σ is its
standard deviation.

The nonuniformity of the surface potential substan-
tially increases when the transistor is subjected to ion-
izing radiation [8–13]. However, a postirradiation
decrease in the slope of the drain–gate characteristic is
usually associated only with an increase in the interface
state density [14–16]. Despite the obvious need for tak-
ing into account the lateral nonuniformity of the radia-
tion-induced defect distribution, this has not been done
before.
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It is the aim of this work to develop a basic model of
a weak-inversion-channel MOS transistor [1] with
regard for lateral nonuniformity of the device. A solu-
tion to this problem would allow designers to correctly
treat postirradiation changes in the drain–gate sub-
threshold characteristics and to elaborate a technique
for determining the interface parameters that includes
surface potential fluctuations.

MODEL OF A WEAK-INVERSION MOS 
TRANSISTOR

To be definite, consider a p-channel MOST.
The bulk potential φB, surface potential ys, and drain
voltage VD are negative in this case. The channel poten-
tial V varies from 0 at the source to VD at the drain. The
relationship between the gate voltage Vg, surface poten-
tial ys, and potential V at any point of the channel is
written as

(2)

Here, VFB = φms – Q0t/Cox is the flat-band voltage, φms is
the difference in the work functions between the metal
and the semiconductor, Q0t is the fixed oxide charge,
Cox is the geometric oxide capacitance, Qsc is the total
charge of the space-charge region (SCR) of the semi-
conductor, and Dss is the spectral density of interface
states.

Our fluctuation model of the MOST I–V character-
istics in the weak inversion range will be based on the
model put forward in [1], where the formula for sub-
threshold current was derived on assumption that,
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under weak inversion, the mobile hole charge Qp in the
SCR is much less than the charge of the depletion layer
(ionized donor impurity) QB; i.e., Qsc ≈ QB. The deple-
tion layer charge QB was expanded in a series near the
midpoint of the weak inversion range ys = 1.51lnλ,
where λ = ni/ND is the degree of doping of the semicon-
ductor, ni is the intrinsic concentration of charge carri-
ers, and ND is the donor concentration. Note that for-
mula (2) incorporates the total space charge Qsc, which
includes the charge of mobile minority carriers. It is
clear from the physical considerations that the effect of
surface potential fluctuations on the inversion layer
charge is the strongest. Hence, a more rigorous
approach to the problem would be the expansion of Qsc

rather than QB:

(3)

where  and  are the SCR charge and capaci-
tance, respectively, for the surface potential ys = 1.5lnλ.

Substituting (3) into (2) yields

(4)

The value in the brackets is the MOST gate voltage
 at which the surface potential equals 1.5lnλ. Let us

introduce the notation [1]

(5)

In view of (5), expression (4) can be recast as

(6)

Eventually, we obtain the relationship between the
surface potential ys and the gate voltage Vg:

(7)

From Eq. (7), it follows that, at relatively low inter-
face state densities (qDss ! Cox), the surface potential
depends only slightly on V and depends largely on the
gate voltage and the semiconductor doping level.

We now proceed to an analysis of the MOST I–V
characteristics under weak inversion. In order to find
the charge of mobile holes in the channel under weak
inversion conditions, we write the expression for SCR
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total charge Qsc as a function of surface potential ys and
channel potential V [17]:

(8)

where

is the Debye screening length.

This expression can be rearranged to the form

(9)

Taking into account that, in the weak inversion
range, the charge of mobile holes in the channel is
much less than that of ionized donors,

(10)

one can expand expression (9) into a series, leaving
only zero- (QB) and first-order (Qp) terms:

(11)

where the mobile hole charge Qp is described by the
expression [1]

(12)

Here, CD(ys) is the capacitance of the depletion layer
between the inversion layer and the quasi-neutral inte-
rior of the semiconductor.

If the surface potential is nonuniform, the SCR
(depletion layer) capacitance CD must be averaged over
the surface potential, which is distributed according to (1).
As a result, we come to the expression for CD as a func-
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tion of the mean surface potential  [18]:

(13)

Similarly, the total SCR capacitance, through which
the parameters m and n in [18] are defined, is found by
averaging the total capacitance over the surface poten-
tial:

(14)

.

The average surface potential and the gate voltage
are related by Eq. (7). This equation contains the volt-
age , which has the following form for an LN
MOST:

(15)

where  is calculated from the formula [18]

(16)

Thus, with surface potential fluctuations taken into
consideration, the charge of mobile holes in the channel
under weak inversion can be given in a form similar
to (12):

(17)

In view of (7), formula (17) can be recast as

(18)
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Although the drain current ID in the weak inversion
range is of a diffusion character, it can be calculated
from the general expression

(19)

as shown in [19]. Here, Z and L are the channel width
and length, respectively, and µp is the hole mobility in
the channel.

Substituting expression (18) into (19), we obtain the
final expression for drain current in the subthreshold
operating range of an LN MOS transistor:

(20)

where the capacitance CD( ) is given by (13) and m
and n, by (5).

Under weak inversion and for low interface state
densities, the mean surface potential  corresponding
to a given gate voltage Vg is determined by the expres-
sion

(21)

Thus, formula (20) in combination with (13) and
(21) allows one to calculate the MOST I–V characteris-
tics under weak inversion with regard for the LN of the
surface potential. The form of expression (20) is similar
to that of the earlier relationship for subthreshold char-
acteristics [1], but the parameters appearing in these
expressions are different. For example, instead of the
depletion layer capacitance CD, the parameters m and n
in expression (20) contain the total SCR capacitance
Csc including the inversion layer capacitance. In addi-
tion, all of the capacitances in (20) are averaged over
the surface potential.

The basic static parameter of a MOST, the threshold
voltage VT, is calculated with consideration for surface
potential fluctuations by the formula

(22)

where the threshold SCR charge QscT corresponding to
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the mean surface potential 2lnλ is given by [18]

(23)

DETERMINATION OF INTERFACE 
PARAMETERS

Expression (20) may be recast in the more compact
form

(24)

where

(25)

If the MOST drain–gate characteristic is plotted in
the semilogarithmic coordinates lnID – qVg/kT, its slope
is equal to

(26)

It should be noted that the parameter n is propor-
tional to the characteristic subthreshold voltage S =
∂Vg/∂ , which changes the drain current by one
order of magnitude. Using formula (26), one obtains

(27)

As follows from expression (24), as the drain volt-
age grows, the drain current tends to the value

(28)

which is called subthreshold saturation current. For-
mula (24) can thus be recast as

(29)

If the MOST subthreshold drain-current character-
istic is plotted in the coordinates

its slope is equal to

(30)
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The parameter m can be found by dividing expres-
sion (30) by (26). Using definition (5), one can obtain
an experimental value of the SCR capacitance in the
midpoint of the weak inversion range by the formula

 = (m – 1)Cox. For a given dopant concentration ND,

the capacitance  depends only on the fluctuation

parameter. Therefore, using the analytical  vs. σ
dependence [formula (14)] and the experimental 
value, one can calculate the fluctuation parameter σ.
Nomograms illustrating the  vs. σ dependences for
different dopant concentrations in the semiconductor
are presented in Fig. 1. They allow us to find the fluctu-
ation parameter.

If m and n are known, the spectral density Dss of
interface states can be calculated. In fact, from the def-
initions of m and n [formulas (5)], we have

(31)

The density of interface states from formula (31)
corresponds to the mean surface potential  = 1.5lnλ,
i.e., to the midpoint of the weak inversion range. Since
the energy dependence of the interface state density is
weak in this range [1, 4], the density can be set constant
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× 1
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Fig. 1. SCR capacitance in the midpoint of the weak inver-
sion range  vs. fluctuation parameter σ nomograms. ND
is the dopant concentration in the MOST substrate.

Csc*
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with a high accuracy. Hence, the value of Dss found can
be extended to the entire subthreshold range.

Thus, from the slopes of the MOST drain–gate and
the drain-current characteristics plotted in semiloga-
rithmic coordinates, the fluctuation parameter σ and the
spectral density Dss of interface states are found.

With Dss and σ known and the threshold voltage VT

determined (for example, by extrapolating the (Vg)
curve in the strong inversion region to the Vg axis [17]),
the effective oxide charge Q0t can be calculated. Indeed,
in view of the relationship VFB = φms – Q0t/Cox, from for-
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Fig. 2. Output characteristics of the p-channel MOST under
weak inversion. Gate voltage Vg = –2 V, dopant concentra-
tion in the substrate ND = 1015 cm–3, oxide thickness d0x =
200 nm, spectral density of interface states Dss = 5 ×
1010 cm−2 eV–1, flat-band voltage VFB = –1 V, and channel
width-to-length ratio Z/L = 1. The fluctuation parameter σ =
(1) 3, (2) 4, and (3) 5.
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Fig. 3. Transfer characteristics of the p-channel MOST
under weak inversion. The gate voltage VD = –1 V. The other
parameters are the same as in Fig. 2.
mula (22) we obtain

(32)

where the space charge QscT is given by formula (23).

Note that, in our method, the MOST interface
parameters have been obtained without using the
assumption [14] that the interface state charge is equal
to zero in the “midgap.”

RESULTS AND DISCUSSION

Results of simulation of the drain-current and drain–
gate characteristics under weak inversion are presented
in Figs. 2 and 3. The fluctuation parameter σ was varied
from 0 to 5; dopant concentration ND, from 1014 to
1016 cm–3; and interface state density Dss, from 0 to
1011 cm–2 eV–1.

It is seen that the slope of the ln(1 – ID/IDmax) vs.
VD curve (i.e., the value of m/n) increases with σ, the
increase becoming significant at σ > 3 (Fig. 2). At the
same time, the slope of the lnID vs. Vg curve, i.e., the
value of 1/n, remains almost constant at σ < 3 but sig-
nificantly decreases with growing σ for σ > 3 (Fig. 3).
The effect of σ on the threshold voltage shift ∆VT =
VT(σ) – VT (σ = 0) is illustrated in Fig. 4. When σ > 2,
the threshold voltage starts to grow markedly. Note also
that the higher the dopant concentration in the substrate
ND, the faster the VT shift increases with σ (Fig. 4).
The effect of surface potential fluctuations on the char-
acteristic voltage S is shown in Fig. 5. At σ > 2, S also
grows rapidly because of an increase in the SCR capac-
itance .

It should be noted that the slope of the drain–gate
characteristics decreases with an increase in both inter-
face state density Dss and σ. In addition, interface states
shift the MOST threshold voltage, increasing its abso-
lute value.

Let us apply our technique to determine the inter-
face parameters from experimental drain-current and
drain–gate characteristics of a test p-channel MOST.
The transistor was fabricated on a KÉF-4.5 silicon sub-
strate (resistivity 4.5 Ω cm, phosphorus concentration
1015 cm–3). The gate oxide (SiO2) thickness was dox =
40 nm. A high LN of the surface potential was achieved
by Co60 γ irradiation (energy of quanta Eγ ~ 1.2 MeV).
Plotted in semilogarithmic coordinates, the experimen-
tal drain-current and drain–gate characteristics had
clearly defined linear portions. Their slopes were

 = m/n = 0.89 and  = –1/n = –0.75. Using
these values, we calculated the SCR capacitance in the
midpoint of the weak inversion range,  = (m – 1)C0x =

Q0t QscT– Cox VT φms 2
kT
q

------ λln–– 
 –=

+ 2qDss
kT
q

------ λ ,ln

Csc*

αDtan αgtan

Csc*
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1.57 × 10–8 F/cm2, and then (from the corresponding
nomogram in Fig. 1) the fluctuation parameter σ = 2.8.
The spectral density of interface states calculated from
formula (31) was found to be Dss = 7.7 × 1010 cm–2 eV–1.

From the  (Vg) curve in the strong inversion range,
we also estimated the threshold voltage: VT = –1.6 V.
Finally, substituting the values of VT, Dss, and σ into
formulas (23) and (32), we calculated the effective
oxide charge Q0t = 6.15 × 10–8 C/cm2.
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Fig. 4. Threshold voltage shift ∆VT due to surface potential
fluctuations vs. σ. d0x = 200 nm; ND = (1) 1014, (2) 1015, and
(3) 1016 cm–3.
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Thus, from static subthreshold I–V characteristics,
one can estimate the MOST charge parameters having
regard to the LN of the oxide–semiconductor interface.
The method is useful for IC process control.
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Abstract—Laser-induced diffusion (“implantation”) of magnesium atoms into silicon was studied experimen-
tally. Neodymium-glass laser irradiation (λ = 1.06 µm, τ ~ 0.4 ms) was found to increase the diffusion coeffi-
cient and solubility of magnesium in silicon. Current–voltage and capacity–voltage characteristics, as well as
thermostimulated current spectra of 〈Si + Mg〉  crystals, were obtained. © 2001 MAIK “Nauka/Interperiodica”.
Infrared (IR) detectors operating in the atmosphere
transmission ranges (3–5 and 8–14 µm) are still a focus
of interest today. The characteristics and efficiency of
semiconductor IR detectors markedly depend on the
properties that an injected impurity imparts to the semi-
conductor. The most important parameters in this
respect are impurity levels in the energy gap, cross sec-
tion of carrier capture by these levels (hence, electron
and hole lifetimes), photoionization cross section, and
electroactive impurity concentration [1].

Due to high manufacturability and high concentra-
tion of electroactive impurity atoms, deep- and shal-
low-impurity silicon has recently started to play a sig-
nificant role as a basic material for photodetectors oper-
ating in the range indicated above. However, in spite of
the advances in silicon technology, doping of silicon by
certain impurities with traditional methods is often a
challenge. Therefore, modern semiconductor electron-
ics widely employs photonic technologies. Laser irradi-
ation is one of them [2–5].

It is well known that magnesium is a suitable dopant
for silicon infrared detectors operating in the 8–14 µm
range. Being an interstitial impurity, magnesium
behaves as a helium-like double donor with ionization
energies Ec = 0.107 and 0.25 eV for the neutral (Mg0)
and singly ionized (Mg+) donor states, respectively [6–8].

Hall measurements have revealed another four shal-
low donor levels with ionization energies of 0.04,
0.055, 0.08, and 0.093 eV [8]. The 0.055 and 0.093 eV
levels have also been discovered from photoconductiv-
ity spectra [9]. The presence of the latter level, as well
as of the deep levels indicated above, has been con-
firmed by theoretical study [10]. Hall measurements
performed in [7] on Mg-doped n-silicon have indicated
two plausible electrically different states of magnesium
ions. The first is the amphoteric state with the acceptor
level Ec = 0.115 eV, and the second is the donor level
Ec = 0.227 eV.
1063-7842/01/4602- $21.00 © 20198
Reproducibility, uniformity, and degree of doping
are strongly dependent on diffusion source, diffusion
annealing temperature, and cooling rate. However, the
small segregation coefficient and the high vapor pres-
sure of magnesium at the melting temperature of sili-
con greatly hamper the introduction of Mg into silicon
during growth. This has fostered a search for new tech-
niques of doping silicon by magnesium.

It is well known that laser irradiation (with an
energy density W ~ 1 J/cm2) of semiconductor materi-
als gives rise to nonequilibrium effects that are charac-
terized by enhanced migration of impurity atoms dur-
ing short laser pulses [2].

In this paper, we report on laser-induced “implanta-
tion” of magnesium into silicon with a view to product-
ing Si〈Mg〉-based IR detectors. As a starting material,
we took floating-zone p-Si(111) wafers of thickness
less than 1.0 mm and resistivity ρ ~ 20–40 kΩ cm.
Chemically cleaned wafers were coated by a magne-
sium film evaporated at a pressure of 4 × 10–5 mm Hg.
Properly selected deposition rates and substrate tem-
perature (T = 250°C) provided for good adhesion of a
~0.2-µm-thick deposited layer.

Then, the covered surface was irradiated by a
focused beam from a Nd-glass free-running laser
(wavelength λ = 1.06 µm, pulse width τ ~ 0.4 ms).
Laser fluence was chosen according to the wafer sur-
face temperature evaluated from the dependence of the
temperature on the pulse energy and exposure time
[2, 3, 11]. At the fluence W ~ 1.5 J/cm2, the surface is
heated up to the MgSi eutectic temperature, ~950°C for
36.61 wt % Si [12]. Reflowing of the wafer surface was
clearly observed under a microscope. Note that, at
smaller laser fluences, Mg2Si eutectic with 58 wt % Si
(the eutectic temperature is about 637°C [12]) did not
form. The beam scanned only half the wafer surface by
moving the objective table in two perpendicular direc-
tions. The other half of the wafer remained intact. After
irradiation, which most likely resulted in the formation
001 MAIK “Nauka/Interperiodica”
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of MgSi eutectic, the wafers were placed into a diffu-
sion chamber with a continuous flow of inert gas and
standard thermal diffusion for 10 h at T = 1200°C was
carried out.

After diffusion, the wafers were quickly cooled by
immersion in water at room temperature. Then, the
samples were mechanically and chemically treated. It
was found that the Mg-coated side of the wafer
changed the conductivity type from p to n over the
entire surface. On the back side of the wafers, the con-
ductivity type remained the same as before diffusion
(i.e., p-type). To measure the diffusion depth of Mg
atoms, a skew metallographic section was made and the
conductivity type across the wafer was determined. The
diffusion depth of Mg atoms estimated from the n–p
junction position was found to be L* ~ 650 and L ≤
500 µm in the irradiated and unirradiated parts of the
wafer, respectively (here, L* and L are the depths of the
n–p junction in the respective parts of the surface).
Along with these measurements, a four-point probe
method was used to determine the sample resistivity,
which turned out to be smaller in the irradiated part
(Fig. 1).

An extension of the doped layer and an increase in
the conductivity of the irradiated part can be explained
as follows. (1) Laser irradiation causes magnesium sili-
cides, for example, MgSi, to form on the surface. They
may serve as an infinite diffusion source [13]. (2) Laser
irradiation produces a liquid phase on the surface,
where the impurity diffusion coefficient is considerably
larger than in single-crystal (solid) silicon; assuming
that the extension of the magnesium-doped layer is
fully accounted for by the increased diffusion coeffi-
cient in the liquid phase and using the relationship

(where D is the diffusion coefficient and τ is the pulse
duration), one obtains a diffusion coefficient in the melt
that exceeds the known values by several orders of
magnitude. (3) Irradiation generates defects (for exam-
ple, silicon vacancies), which not only accelerate diffu-
sion [14, 15], but also increase the ultimate solubility of
electroactive magnesium atoms [4]. In addition, ather-
mic, photoinduced diffusion is not ruled out either [16].

To display the advantages and characteristic fea-
tures of this laser technique, we studied current–voltage
(I–V) and capacitance–voltage (C–V) characteristics, as
well as thermostimulated current (TSC) spectra, of
laser-irradiated silicon wafers covered by a magnesium
film (〈Si + Mg〉) for different laser fluences. To perform
these measurements, we made alloyed Au + 1% Sb and
Al contacts to the n- and p-type sides of the samples,
respectively.

As seen from the I–V characteristics shown in
Fig. 2, irradiation with a laser-fluence W = 1.8 J/cm2

produces a rectifying structure. With an increase in the
laser fluence, the rectifying properties deteriorate,
which may be due to either the formation of magne-

L* L– Dτ=
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sium silicides (Mg2Si or MgSi) at W = 1.8–2.5 J/cm2 or
magnesium evaporation from the near-surface region at
high fluences (at W > 2.5 J/cm2, silicon melts). The
scatter in the voltages at which the forward current
sharply rises is probably associated with the formation
of magnesium silicides with different potential barrier
heights. The absence of reverse saturation current in
Fig. 2 is probably related to current leak across the
junction because of a spread in the beam intensity over
the surface area.

The C–V characteristics for the irradiated samples
were taken at a frequency of 1 MHz (Fig. 3). From
Figs. 2 and 3, it follows that, at W = 1.8 J/cm2, when the
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Fig. 1. Resistivity profiles and n–p junction depths for
(1) unirradiated and (2) irradiated parts of the wafer.

I, µA

8

6

4

2

–2

–4

–5 –4

1 2 3 4 5 V, V

1

2
3

4

1 2 3 4

–3 –2 –1

Fig. 2. I–V characteristics of 〈Si + Mg〉 structures after irra-
diation with on energy density W = (1) 1.8, (2) 2.4, (3) 2.8,
and (4) 3.3 J/cm2.



 

200

      

ARUTYUNYAN et al.
rectifying properties are the best, the C–V curve (Fig. 3,
curve 1) closely agrees with the theoretical depen-
dence. This curve was used to calculate the concentra-
tion profile N(x) of ionized impurity atoms [17]. From
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Fig. 3. C–V characteristics of 〈Si + Mg〉 structures after irra-
diation with an energy density W = (1) 1.8, (2) 2.4, and
(3) 2.8 J/cm2.
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the expression

where A is the surface area of a test varactor, U0 is the
barrier height at the metal–semiconductor junction, U
is the reverse bias, and x = (εε0A)/C, one obtains by dif-
ferentiation

The calculated dependence N(x) is shown in Fig. 4.
It is seen that the impurity atom concentration in the
surface layer, N ~ 1016 cm–3, exceeds the known value
of the ultimate solubility of magnesium in silicon [1].

To record TSC spectra at 80 K and above, the wafers
were immersed in a liquid nitrogen cryostat with opti-
cal windows. The samples were in contact with a cop-
per unit having a heater to smoothly vary the wafer tem-
perature. The temperature dependence of the current in
the range indicated above was measured at a heating
rate of ~0.4 K s–1.

The TSC spectra were analyzed according to the fol-
lowing procedure [18]. Placed into a vacuum cryostat,
the sample was cooled in liquid nitrogen and then
exposed to light from the fundamental band. Then, the
sample was uniformly heated in darkness, and the tem-
perature variation of the current was recorded. Compar-
ing the resulting dependences with those obtained with-
out preliminary low-temperature photoexcitation of the
sample, one can discover TSC peaks due to trap deple-
tion. These data clarify the energy of the traps in the
energy gap. Sometimes, the trap concentrations and
capture cross sections can also be determined.

Under certain conditions, the initial stage of TSC
growth can be described as

(1)

where Ei is the trap energy reckoned from the edge of
the nearest allowed band [18].

TSC spectra of the irradiated samples with the
deposited magnesium film (〈Si + Mg〉) are presented in
Fig. 5. A peak indicating the appearance of a local cen-
ter is seen at Tmax = 105 K. Note that laser irradiation of
the reference silicon wafers (without the magnesium
films) does not give rise to the peak in the TSC spectra,
thus pointing to the “magnesium” origin of this peak.
The corresponding energy level determined by for-
mula (1) from the initial stage of TSC growth (Fig. 5,
curve 1) was equal to Ec = 0.13 eV, whereas that respon-
sible for the equilibrium conductivity of the irradiated
samples (Fig. 5, curve 2) was found to be Ec = 0.28 eV.
These values are in good agreement with the literature
data for magnesium levels in silicon [6–8].

Thus, we can argue that laser irradiation of 〈Si + Mg〉
samples favors magnesium diffusion into silicon. At
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particular radiation intensities, the conductivity type
changes and rectifying current–voltage characteristics
are observed. The magnesium concentration profile
constructed from the capacitance–voltage characteris-
tics shows that, in the near-surface region, the magne-
sium concentration exceeds the concentration of elec-
troactive magnesium atoms reported elsewhere in the
literature. As follows from the TSC spectra, laser irra-
diation 〈Si + Mg〉  produces local centers with ioniza-
tion energies Ec = 0.13 and 0.28 eV.
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SOLID-STATE ELECTRONICS
Profiling of Holographic Diffraction Gratings 
by Using Silver–Arsenic Triselenide Interaction
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Abstract—Rulings of holographic gratings were profiled by interaction of silver with chalcogenide glassy
semiconductors. The shape of the rulings was determined with an atomic force microscope. Angular and spec-
tral dependences of the diffraction efficiency of the gratings were found, and a relation between these depen-
dences and the grating surface pattern was analyzed. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Profiled (blazed) gratings make it possible to con-
centrate energy in a given spectrum range. Of special
interest are profiled holographic gratings (PHGs), since
they combine the advantages of ruled gratings with
those of conventional (unprofiled) holographic gratings
(CHGs), namely, high diffraction efficiency in a given
spectrum range and low level of light scattering. One
method of fabricating PHGs is making them from
CHGs. To do this, an initial symmetric grating is usu-
ally etched by an inclined ion beam [1].

The recent trend in CHG technology is the use of
chalcogenide glassy semiconductor (CGS) films [2–5].
These films are high-resolution inorganic photoresists.
Due to light-induced structure transformations, their
solubility, particularly, in organic alkaline solvents,
changes. Based on this effect, symmetric CHGs are
obtained when an interference pattern is recorded (writ-
ten) on a CGS film with subsequent selective etching in
organic alkaline etchants [2–5].

One of today’s problem in this field is the transfor-
mation of symmetric CGS-based CHGs into asymmet-
ric ones. Publication [5] reports PHGs prepared by ion
etching of symmetric CHGs formed on CGS films. The
unique properties of CGS films allow for other,
unusual, methods for transforming their surface pat-
tern. In [6, 7], we developed a method of fabricating
blazed HGs. In this method, symmetric rulings of an
initial grating are made asymmetric by using additional
oblique monochromatic or polychromatic irradiation
and chemical etching of the irradiated grating.

In this work, we made an attempt to fabricate PHGs
through interactions that take place when silver layers
are vacuum-deposited onto CGS films. Ag–CGS inter-
action begins during deposition [8] and continues at a
different rate (depending on a specific Ag–CGS sys-
tem) after the deposition process is terminated [9]. The
metal penetrates into the semiconductor to form a
metal-enriched (to several tens of atomic percent)
1063-7842/01/4602- $21.00 © 20202
phase. This phase differs in properties from both the
metal and the semiconductor [10, 11]. Profiling was
accomplished by transforming starting symmetric
(unprofiled) HGs written on CGS films. Here, we took
advantage of the fact that the etching selectivity for Ag-
doped CGS films is much higher than the photoinduced
selectivity.

In deciding on a CGS material, preference was
given to As2Se3. First, the use of arsenic triselenide
makes feasible writing of a starting symmetric HG by
means of a He–Ne laser [12], which was used in this
work. Second, the rate of interaction between As2Se3
and Ag is one of the highest among CGS–Me systems:
intense interaction proceeds both during and after dep-
osition of the metal even at room temperature [9].

PROFILING TECHNIQUE AND STUDY 
OF SYMMETRIC AND ASYMMETRIC 

HOLOGRAPHIC GRATINGS
Starting gratings were written on relatively thick

(800–1000 nm) As2Se3 films deposited onto mirrorlike
glass substrates by thermal evaporation of glassy
As2Se3. The gratings were exposed on a holographic
setup based on the wave amplitude division method.
The spatial frequency of the gratings was 600 mm–1.
Writing was carried out with a He–Ne laser (λ =
632.8 nm). The radiant exposure was ~10–1 J/cm2.
After exposure, the samples were etched in an amine-
based alkaline solution. During etching, the CGS film
was selectively dissolved with the formation of rulings
of regular shape.

The next procedure was profiling. A thin (1–10 nm)
Ag layer was applied on the gratings at a certain angle
ϕ varying from 10° to 80° with respect to the normal to
the grating. The grating was mounted in such a way that
the flux of evaporated silver was directed normally to
the rulings. Ag penetrates into the As2Se3 layer at the
instant of deposition and also as a result of subsequent
001 MAIK “Nauka/Interperiodica”
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chemically and thermally stimulated diffusion to form
a metal-enriched semiconductor layer (reaction prod-
uct). The etch rate of Ag-doped CGS films in alkaline
etchants is much lower than for undoped ones; there-
fore, in subsequent etching of the grating, the former
served as a protective mask. Unprotected regions of the
As2Se3 layer were etched off, and the grating (rulings)
became asymmetric. In this way, we obtained profiled
(blazed) gratings. Profiling was performed in the same
amine-based etchant, which was used to pattern the
starting gratings.

To estimate the profiling effect, we recorded angular
and spectral dependences of the absolute diffraction
efficiency η for the starting and transformed gratings in
the first diffraction order (η is defined as the ratio of the
first-order diffraction intensity to the incident inten-
sity). Prior to optical measurements, the as-prepared
and profiled gratings were covered by a 100-nm-thick
reflection aluminum film. η vs. β curves (β is the angle
of incidence of light) were taken with an LGN 208 A
laser (λ = 632.8 nm, β = 0°–80°). Spectral measure-
ments of η were made using Littrow’s autocollimation
scheme. The angle between the incident and diffracted
beams was about 8°; and the spectral range, 400–
800 nm. Both the spectral and angular dependences of
η were measured for s- and p-polarized light (E is per-
pendicular and parallel to rulings, respectively), as well
as for unpolarized light.

The surface pattern of the gratings was examined
with a Dimension 3000 scanning probe microscope
(Digital Instruments) in the AFM tapping mode.

RESULTS AND DISCUSSION

The geometric and diffraction properties of the as-
prepared and profiled gratings show that the effect of
profiling depends, to some extent or another, on many
process parameters. Among them are the amount of Ag
deposited on the as-prepared grating and the angle of
deposition, time of Ag–As2Se3 interaction, thickness of
the As2Se3 film on which the initial symmetric grating
is written, exposure and etching conditions for prepara-
tion of the starting grating, and etching conditions for
profiling. The fact that the desired effect is related to a
wide variety of physical and chemical factors implies
its significant stability. In addition, this allows us to
assume that the properties of PHGs thus obtained can
be varied in wide limits. On the other hand, it becomes
difficult to estimate the relative contribution of the
above factors to the PHG performance. In general, they
can be subdivided into three groups: those associated
with the CGS film (primarily its thickness and deposi-
tion rate), those that govern the fabrication of the sym-
metric grating, and those closely related to Ag–CGS
interaction.

The first two have been much studied. Empiric
experimental studies and numerical simulation of HG
writing in CGS-based inorganic resists have been per-
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
formed [2, 3]. These experiments and also the simula-
tion of surface patterning suggest that not only the
depth but also the shape of the pattern depends on the
initial thickness of the layers, their properties, exposure
conditions, etch times, and etchant selectivity. Holo-
graphic diffraction gratings with rulings of sinusoidal
and cycloidal shapes have been obtained.

We performed experiments with gratings that had
sinusoidal rulings, which are the most studied. Figure 1
shows a typical AFM image of the starting symmetric
grating with a spatial frequency of 600 mm–1. As seen
from the image, the shape of the rulings is truly close to
sinusoidal. The depth of the grooves is h0 ≈ 150 nm;
hence, the modulation depth h0/d ≈ 0.09 (the spacing of
the grating is 1667 nm). The distance between identical
points on the tops of the neighboring rulings (surface
distance) is 1700 nm, or 2% greater than the horizontal
distance between the rulings (which equals the spacing
of the grating). The mean angle of inclination of the
facets (facet angle) is ~10°, the steepest being 15°. For
the wavelength and angle-of-incidence ranges used in
the experiments, the diffraction efficiency of such grat-
ings was the same (within the accuracy of measure-
ment: 2% for angular and 5% for spectral measure-
ments) when they were irradiated from opposite direc-
tions perpendicular to the rulings.

Figure 2 shows the profile of a typical asymmetric
grating made from a symmetric one by additional evap-
oration of a silver film of thickness 〈hAg〉  = 3.6 nm (this
value is averaged over the grating area) at 50° to the
normal to the substrate surface, and subsequent etch-
ing. The ruling depth in the new, asymmetric, grating is
more than twice that in the initial one, 355 nm, and the
modulation depth is h0/d ≅ 0.21. The minimum is
469 nm away from the left peak and 1198 nm from the
right one; that is, the projection of the larger facet onto
the substrate surface is nearly three-fourths of the grat-
ing spacing. The smaller facet has a gradually increas-
ing steepness with an average angle of 37°; the steepest

h, nm
150

100

50

0

–50

–100
0 1 2 3 4 5 6

x, µm

Fig. 1. Ruling profile in the initial symmetric holographic
grating.
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portion is inclined 80° with respect to the substrate.
With the larger facet, the situation differs. It can be
divided into three parts: top (gently sloping), middle
(nearly a plateau), and bottom (the steepest portion).
The height of the gentle (top) portion somewhat
exceeds the ruling half-height; here, the average incli-
nation is about 10°. The inclination of the bottom por-
tion is close to the maximum steepness of the smaller
facet. On average, the larger facet angle is about 16°.

From a comparison between the ruling shapes of the
initial and transformed gratings, it follows that the front
facets of rulings of the initial grating remain practically
intact. This means that the reaction product nearly com-
pletely protected the CGS layer from dissolution during
profiling etching. The first (gentle) portion of the larger
slope virtually copies the profile of the initial sinusoidal
grating. The back (left-hand in Fig. 2) facets were
affected by etching much more noticeably. Here, small
plateaus correspond to the partially etched bottom part
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Fig. 2. Ruling profile in the grating transformed from the
initial grating shown in Fig. 1.
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Fig. 3. Angular dependences of the diffraction efficiency of
the PHG for light polarized parallel to the ruling direction.
λ = 632.8 nm.
of the left-hand slope of initial rulings. As we move
upward along the left-hand slope, the etch depth of the
initial grating increases, the PHG bottom lying almost
in the middle of the back slope.

The degree of asymmetry of the profiled grating was
studied by taking the angular and spectral dependences
of the diffraction efficiency η. For p polarization, the
angular dependences are plotted in Fig. 3. Here,
curves 1 and 2 were obtained when light was incident
on the larger and the smaller facet, respectively. For
normal incidence (ϕ = 0, symmetric arrangement of
diffraction orders), the diffraction efficiencies mea-
sured on the two facets differ by a factor of 8.5. This
points to the considerable asymmetry of the ruling
shape. For the larger facet, the maximum efficiency was
observed when the angle of incidence was close to the
mean facet angle. For the smaller one, two peaks
appear: the angular position of one of them (–50°) is
close to the mean slope of this facet, while that of the
other (20°) coincides with the position of the peak from
the larger facet and is likely to be associated with
rereflections of the light incident on the larger facet.
The share of total energy accounted for by conjugate
diffraction orders is maximal at 20°; in other words, the
maximum amount of light is reflected and rereflected at
this angle. Figure 4 shows the angular dependences for
s polarization. At ϕ = 0, the diffraction efficiency for the
larger and the smaller facet is, respectively, 44 and
8.5%; i.e., the difference is fivefold. Unlike p polariza-
tion, here distinct anomalies are observed. The anom-
aly at β = 15° is associated with the disappearance
(appearance) of the second order; while that at 38°,
with the appearance (disappearance) of the conjugate
order. The anomalies are more pronounced for the
reflection from the smaller facet possibly because of the
greater effect of the larger facet on the smaller than vice
versa. Thus, the angular dependences in the case of p
polarization more adequately depict the ruling shape.

Spectral dependences of the diffraction efficiency
for unpolarized light that were taken in the autocollima-
tion regime on the larger facet of the rulings (curve 1),
on their smaller facet (curve 2), and for the symmetric
grating (curve 3) are shown in Fig. 5. Throughout the
spectral range (400–800 nm), the diffraction efficiency
for the larger facet exceeds that for the smaller one. For
wavelengths of 620, 660, and 700 nm, these values dif-
fer by a factor of 5.7, 4.5, and 4.5, respectively. Also,
the efficiency for the larger facet exceeds that for the
symmetric grating, except for the short-wave part of the
interval. This means the profiling has a significant
effect between 500 and 800 nm, and at 620 nm, the
effect is the greatest. If the wavelength 620 nm is taken
as the blaze wavelength, one can determine the blaze
angle ϕb (the larger-facet angle). This angle is found
from the formula [13]

(1)2d ϕbsin mλb,=
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where λb is the blaze wavelength, d is the lattice spac-
ing, and m is a diffraction order.

The blaze angle equals 11°. Comparing the value of
the blaze angle obtained from spectral measurements
with the facet angles, we see that λb nearly coincides
with the slope of the gentle portion of the larger facet.
The peak at the blaze angle is not very pronounced
because the three portions on the larger facet greatly
differ in slope.

Simple geometric simulation of Ag deposition will
allow us to describe Ag–As2Se3 interaction in quantita-
tive terms. Let the x axis be directed normally to the rul-
ings and the y axis, normally to the substrate (Fig. 6).
The density of Ag deposited on the ruling surface (and,
hence, the thickness of the Ag film) depends on the
amount of the metal evaporated and the angle between
the Ag flux and each specific deposition area on the rul-
ing surface. Then, the thickness of the metal at a point
x in the cross section perpendicular to the grating relief
is given by

(2)

where K is a proportionality coefficient, which depends
on the amount of Ag deposited, and Θ(x) is the angle of
incidence of the Ag flux on the ruling surface at the
point x.

We also have

(3)

where ϕ is the angle of incidence of the Ag flux on the
substrate that is reckoned from the normal to the sub-
strate and α(x) is the ruling inclination to the flat sur-
face of the substrate at the point x.

Equation (2) is valid if the sticking coefficient of the
metal is independent of the angle of incidence on the
CGS film surface and on the amount of the metal
deposited. The profile of the initial sinusoidal grating is
described by the expression

(4)

where d is the grating spacing and h0 is the height of the
profile.

The inclination of this grating to the substrate sur-
face is then expressed as

(5)

where h0/d is the modulation depth for the initial
grating.

Figure 6 illustrates the distribution of the Ag film
thickness along the ruling of the initial grating. The
thickness was calculated by formulas (2), (3), and (5).
Comparing this distribution with the distortions of the
initial grating due to the metal deposition and subse-
quent etching, one can conclude that etching is virtually
absent for hAg(x) > 3 nm. When hAg(x) is less than 3 nm,
the etch rate sharply grows. Since the Ag films (of
thickness less than 10 nm) deposited on the noninter-

hAg x( ) K Θ x( ),cos=

Θ x( ) ϕ α x( ),–=

h x( ) h0/2( ) 1 2πx/d( )cos+( ),=

α x( ) πh0/d[ ] 2πx/d( )sin–[ ]{ } ,arctan=
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Fig. 4. The same as in Fig. 3 for light polarized perpendicu-
lar to the ruling direction.

Fig. 5. Spectral dependences of the diffraction efficiency for
unpolarized light.
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acting substrate are discontinuous (form islands), they
could not play the role of a mask during profiling etch-
ing. It appears that protection is provided by the top
metal-doped CGS layer. The Ag thickness critical for
the formation of the mask is seen to be about 3 nm. This
value is close to that obtained earlier upon calculating
the Ag amount incorporated into the As2Se3 film when
the metal is thermally evaporated on this film [8]. The
etch rate is maximal at the point one-fourth of the spac-
ing away from the top of the ruling back facet, where
the Ag thickness estimated is minimal, 2.3 nm.

From the measurements and simulation of the
shapes of the initial and profiled gratings, an empiric
relationship ∆h(hAg) can be derived, where ∆h is the
thickness of that part of the As2Se3 film dissolved dur-
ing etching and hAg is the amount of the Ag deposit. As
follows from correlation analysis data, this empiric
relationship is fairly accurately approximated by the
sum of two exponentials:

(6)

With (6), we simulated the transformation of the ini-
tial symmetric gratings into asymmetric ones. The ini-
tial grating was assumed to be sinusoidal with a modu-
lation depth of h0/d = 0.09. Variable parameters were
angle of deposition of Ag particles and the thickness of
the metal deposited.

The simulation confirms experimental data suggest-
ing that the profiling effect takes place in a wide range
of these parameters. For example, it was shown that, as
the Ag film gets thinner (at a given angle of Ag deposi-
tion) and etching of the Ag-doped grating becomes
selective, the initially symmetric profile transforms into
an asymmetric one because of a slight (~0.01d) shift of
its maxima and a more considerable (~0.05d) shift of its
minima to the left of the initial grating rulings. The
modulation depth remains practically unchanged in this
case, since the minima and maxima lower roughly
equally. With further decreasing 〈hAg〉 , the ruling shape
can be approximated by an asymmetric trapezoid. The
modulation depth in such a grating is somewhat larger
than in the initial symmetric one. As 〈hAg〉  continues to
decrease, the shape becomes nearly triangular, the pro-
jections of the ruling facets on the x axis being about
0.7d for the larger and 0.3d for the smaller. For an
extremely thin Ag film, the larger facet has two drasti-
cally differing slopes because of a sharp increase in the

∆h hAg( ) 204.93 hAg 2.412–( )– /0.125{ }exp=

+ 61.51 hAg 2.412–( )/1.553–{ } .exp
etch rate. The maximum ratio of the facet projections is
~0.72d/0.28d in this case.

CONCLUSION

Thus, our results indicate that the profile of a holo-
graphic grating can be changed by using Ag–As2Se3
interaction. The blaze angle in the PHGs depends on
the modulation depth of the initial sinusoidal gratings
and also on the angle of deposition and the Ag layer
thickness. By controlling the Ag distribution along the
ruling cross section through a change in the deposition
angle and the Ag layer thickness, one can substantially
change the grating profile and, hence, the blaze angle,
which specifies the reflection properties of the grating.
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Abstract—An experiment to optimize an ultraviolet (UV)–vacuum ultraviolet (VUV) multiwave emitter using
chlorine molecules and chlorides of heavy inert gases is reported. The emitting medium was an Ar–Kr–Cl2 or
an Ar–Kr–Xe–Cl2 (HCl) mixture kept at a pressure ranging from 1 to 30 kPa. Excitation was effected by means
of a transverse volume discharge with spark preionization. Emission spectra were examined. The dependences
of the emission intensity on the total pressure of the medium, partial pressures of its components, charging volt-
age, and number of discharge pulses were studied. It is demonstrated that such a discharge emits simultaneously
in the 308, 258, 236, 222, 175, and 160 nm bands due to the transitions XeCl(B–X), Cl2(D'–A'), XeCl(D–X),
KrCl(B–X), ArCl(B–X), and H2(B–X), respectively. It was established that the respective intensities are close to
each other if the partial pressures are as follows: PAr = 10–20 kPa; PKr, Xe = 0.4–0.6 kPa; PCl2

 = 0.2–0.4 kPa,
PHCl = 0.08 kPa, and PH2

 = 0.5–1.0 kPa. It was found that the addition of H2 to the medium decreases the inten-

sities of the excimer bands, increases the emission resource (to 104 pulses or higher), and expands the operating
wavelength range. The last-named effect is due to Lyman H2 bands (at 158–161 nm). © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Today, electric discharge excimer lamps offer the
highest power and the best selectivity among sources of
spontaneous emission in the wavelength range 200–
350 nm [1–3]. For this reason, they are widely
employed in microelectronics, high-energy chemistry,
biology, and quantum electronics [4–6]. On the other
hand, the majority of them operate at a single wave-
length determined by the emitting medium. It seems
worthwhile to explore the feasibility of multiwave
lamps, namely, those using particular B–X transitions
of RX* molecules, where R is Ar, Kr, or Xe and X is F
or Cl. These sources could find application in pulse
photometry, biochemistry, biophysics, and medicine.
For example, they could serve to calibrate detectors of
short-wave light pulses or to simultaneously treat
selected molecular bonds in compounds having high
chemical or biological activity. We designed such emit-
ters for the range 353–222 nm. Some of them operate at
222 (KrCl), 249 (KrF), 308 (XeCl), and 353 (XeF) nm,
with F and Cl being provided by CF2Cl2 molecules
[7, 8]. Other emitters use multicomponent media (con-
sisting of He, Kr, Xe, HCl, and SF6), which include two
heavy inert gases and differing halogen-containing
molecules [9, 10]. To generate photons with higher
1063-7842/01/4602- $21.00 © 20207
energies, we started looking for ways to expand the
operating range into the VUV region (≤190 nm). Early
results were obtained with a source emitting at
258 ( ) and 175 (ArCl*) nm, the medium consisting
of He (Ne), Ar, and Cl2 (HCl) [11].

This paper reports on an experiment to optimize a
UV–VUV emitter operating simultaneously at 308,
258, 236, 222, 175, and 160 nm. Operating mixtures
were composed of Ar, Kr, Xe, Cl2 (HCl), and H2.

EXPERIMENTAL SETUP

The medium was excited by transverse volume dis-
charge (TVD). Spark preionization was effected auto-
matically in the interelectrode space. A sketch of the
emitter is shown in [8]. A TVD plasma occupied a vol-
ume of 18 × 2.2 × 1.0 cm3, and the electrodes were
spaced 2.2 cm apart. TVD was initiated by a two-loop
LC circuit including a 30-nF storage ceramic capacitor
and 20 pulse-sharpening ceramic capacitors (KVI-3,
470 pF, 20 kV), the latter providing a total capacitance
of 9.4 nF. The capacitors were combined into two banks
sealed with an insulating compound. The banks were
placed near the TVD electrodes and preionization spark

Cl2*
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gaps inside a discharge chamber. This excitation circuit
closely resembles the system used for generating fast
ionization waves in pulsed longitudinal discharge [12–
14], since the main part of the circuit has a very small
inductance (less than 10 nH), the discharge plasma is
separated from the grounded shields by a high-permit-
tivity insulator (the compound), and the pulses of TVD
current are narrower than 30 ns.

Spectra were examined with a 0.5-m vacuum mono-
chromator including a diffraction grating with
1200 lines per millimeter. The reciprocal linear disper-
sion of the spectrophotometer was 1.4 nm/mm. The
emission emerged from the hermetically sealed dis-
charge chamber via a CaF2 window. The photodetector
was built around an FÉU-142 photomultiplier with a
LiF window. The chambers containing the photomulti-
plier and the grating, respectively, were evacuated to a
residual pressure P ≤ 10–3 Pa. The monochromator–
photomultiplier system operates in the spectral band
130–350 nm. The spectrophotometer was calibrated
against the continuous emission of H2 in the region
165–350 nm.

160 200 240 λ, nm

175 [ArCl(B–X)] nm

222 [KrCl(B–X)] nm

258 [Cl2*] nm

Fig. 1. TVD plasma emission spectrum of the Ar–Kr–Cl2
mixture with PAr = 13.3, PKr = 0.6, and PCl2

 = 0.24 kPa.
EMISSION AND RESOURCE 
CHARACTERISTICS

Figure 1 shows an emission spectrum of the TVD
plasma in an Ar–Kr–Cl2 mixture. Note that the UV–
VUV power is emitted largely at wavelengths of 175,
222, and 258 nm, which, respectively, correspond to the
transitions ArCl(B–X), KrCl(B–X), and Cl2(D'–A'). If
small amounts of Xe and H2 are added to the medium,
the spectrum also exhibits bands at 308, 236, and 158–
161 nm, representing the transitions XeCl(B–X),
XeCl(D–X), and H2(B–X), respectively. (The third tran-
sition produces Lyman H2 bands.) With the Ar–Cl2
(HCl) mixture, only two bands are pronounced, at 258
and 175 nm. If Cl2 is replaced with HCl, the emission
due to Cl2(D'–A') and ArCl(B–X) is less intense for all
of the mixtures. It was found that the intensity at
175 nm is maximal if the partial pressure of Cl2 is 0.2–
0.4 kPa and that of HCl, 0.08 kPa. This is because HCl
and Cl2 have strong and zero VUV absorption, respec-
tively. With the Ar–Cl2 mixture, the optimal value of
P(Ar) is within 8–15 kPa at a reasonable level of the
charging voltage U across the storage capacitor (U = 4–
15 kV). If the total pressure P in the mixture is raised
above 30 kPa, the TVD becomes inhomogeneous. As U
is increased from 5 to 15 kV, the intensity linearly rises
by a factor of 3–5 for all of the bands observed.

Figures 2 and 3 show the intensities emitted in the
excimer bands and the Cl2(D'– A') band against PKr for
the Ar–Kr–Cl2 mixture and the Ar–Kr–Xe–Cl2 mixture,
respectively. In the former case, a rise in PKr to ≥0.05 kPa
leads to an increase in the intensity for KrCl(B–X) and
a decrease in that for ArCl(B–X). For Cl2(D'–A'), the
radiation yield is maximal at PKr = 0.3 kPa. If PKr =
0.6 kPa, the intensities of the three bands are close to
each other. At PKr < 0.05 kPa, a rise in the Kr concen-
tration leads to an increase in the intensity for ArCl(B–X)
(probably, due to changes in disharge parameters such
as ne and Te). At PKr ≥ 0.05 kPa, the decrease for
ArCl(B–X) and the attending increase for KrCl(B–X),
which proceed at equal rates, stem from the fact that Ar
atoms are replaced by Kr atoms in the formation of
excimer molecules. It has been demonstrated [15] that
the largest rate constant k in this process is that of
energy transfer from Ar(3P2) to Kr with the formation
of Kr[5p(3/2)2]: k = 5.6 × 10−12 cm3/s. The process runs
vigorously in an Ar–Kr plasma at PKr = 0.1–1.0 kPa,
which agrees with Fig. 2.

With the Ar–Kr–Xe–Cl2 mixture (Fig. 3), the inten-
sity curves run in a more complicated fashion. As PKr is
increased, the intensity for KrCl(B–X) rises again,
whereas the intensities for XeCl(B–X) and ArCl(B–X)
exhibit a peak if P(Xe) = 0.4 kPa or a decrease if PXe is
larger. For Cl2(D'–A'), the curve has a valley at PKr =
0.4 kPa. Such behavior is mainly due to energy transfer
from Ar(3P2) to Kr and Xe atoms [15–17] and to spe-
cific features of interaction between excited Kr and Xe
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
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atoms in a Kr–Xe plasma [18, 19]. Compared with the
emitting media of electric discharge excimer lasers and
high-pressure (P ≥ 100 kPa) excimer lamps, the recom-
bination reaction Ar+ + Cl– + (Ar)  ArCl* + (Ar)
plays a less important part in TVD at P = 1–30 kPa,
since its rate constant may be one order of magnitude
smaller at such low buffer gas pressures (e.g., 10 kPa
rather than 100 kPa) [20]. Instead, the initial TVD stage
is governed by the “harpoon” reaction Ar(m) + Cl2 
ArCl* + Cl [21, 22], which requires that the plasma
contain excited (metastable) atoms of heavy inert
gases. This reaction to produce ArCl(B) may proceed at
a rate as high as 7 × 10–10 cm3/s [23]. For PAr = 13.3,
PXe = 0.4, and PCl2

 = 0.24 kPa, the respective intensities
emitted in the excimer bands and the Cl2(D'–A') band
are comparable to each other if PKr = 0.4–1.2 kPa. This
result allows using such an emitter in UV–VUV pulse
photometry.

From Fig. 4, where the emission intensity is plotted
against the number of discharge pulses N for the
KrCl(B–X) band of the Ar–Kr–Cl2 mixture, one can
evaluate the emission resource (the number of pulses
after which the intensity is halved). In the experiment,
the emission resource was found to be as high as
(1−2) × 104 pulses. The resource characteristic was
obtained under stationary conditions (in the absence of
gas flow), the discharge chamber having a passive vol-
ume of 10 l. The emission resource is determined
mainly by the purity of the buffer gas (we used com-
mercial-grade Ar) and the materials of the electrodes
and the discharge chamber (stainless steel, aluminum,
acrylic plastic, fluoroplastic, and quartz). Intensity fluc-
tuations could be suppressed by pumping fresh portions
of the gas through the emitter at a small rate
(≤0.01 m/s). Alternatively, one could employ a solid-
state source of Cl2 and a regenerator of the waste emit-
ting mixture; the former would be switched on if the
intensity falls below a given level. Also, note that the
resource of an electric discharge laser operating at
308 (XeCl) and 222 (KrCl) nm and using a He–R–HCl
mixture at P ≥ 100 kPa can be increased by two orders
of magnitude by introducing a small amount of H2
(PH2

 ≤ 130 Pa) into the lasing medium [24].

To expand the operating band of the emitter by
means of Lyman H2 bands, we investigated the effect of
H2 on TVD emission. Figure 5 shows the respective
intensities in the ArCl, , and  bands as functions
of PH2

 for the Ar–HCl–H2 mixture. It is seen that the
ArCl* and H2 intensities are reduced considerably if
PH2

 is raised to a sufficiently high level (≥0.1 kPa). The
spectrum exhibits Lyman bands, at 158–161 nm, if
PH2

 ≥ 0.3 kPa. At PH2
 = 0.57 kPa, the ArCl* and H2

intensities are the same. As PH2
 is increased further, the

Lyman bands become dominant. If a small amount of
H2 is added to the Ar–Kr–HCl mixture, the intensity in
the ArCl(B–X) band slightly decreases and the resource

H2* Cl2*
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characteristic develops a plateau (curve 2 in Fig. 4).
Consequently, the emission resource increases consid-
erably (N > 104 pulses). The intensities of the RX*
bands fall mainly because of intense energy transfer
from Ar(m) to H2 [25] and the reduction of HCl when
the decay products of the former process interact with
H2. With the mixtures containing H2, strong continuous
emission was also observed in the region 200–400 nm

0 0.4 0.8 1.2 1.6 2.0

40

80

120

J, arb. units

PKr, kPa

0 0.4 0.8 1.2 1.6 2.0

50

100

J, arb. units

PKr, kPa

2

3

1

2

5

1

3

4

Fig. 2. TVD emission intensity vs. Kr partial pressure
at a wavelength of (1) 175 (ArCl), (2) 222 (KrCl), and

(3) 258 ( ) nm for the Ar–Kr–Cl2 mixture with PAr =

13.3 kPa and PCl2 = 0.24 kPa (U = 12.5 kV).

Cl2*

Fig. 3. TVD emission intensity vs. Kr partial pressure
at a wavelength of (1) 175, (2) 222, (3) 236, (4) 258, and
(5) 308 nm for the Ar–Kr–Xe–Cl2 mixture with PAr = 13.3,
PXe = 0.4, and PCl2 = 0.24 kPa (U = 12.5 kV).
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at PH2
 ≥ 0.5 kPa. This may be attributed to the formation

of ArH* molecules [26] or to continuous emission from

H2 (a3  – b3 ). In this experiment, we were unable
to distinguish between these types of continuous spec-
trum. For longitudinal pulse discharge, which develops
in the form of a fast ionization wave, it has been dem-
onstrated that this system offers a strong continuous
hydrogen spectrum in the UV range if PH2

 ≥ 1.33 kPa

and E/N ≥ 100 Td, the excitation rate of the a3  state
of H2 being 1.3 × 1020 cm3/s [27]. However, in [27], no

Σg
+ Σu

+

Σg
+

2

1

0 2.5 5.0 7.5 10.0
N, 103 puls

0.75

1.00

0.50

J, arb. units

Fig. 4. TVD emission intensity vs. the number of discharge
pulses at a wavelength of (1) 222 (KrCl) and (2) 175 (ArCl) nm
for the (1) Ar–Kr–Cl2 and (2) Ar–Kr–HCl–H2 mixtures with
PAr = 13.3, PKr = 0.4, PCl2 = 0.24, PHCl = 0.12, and PH2

 =
0.13 kPa.

0 0.5 1.0
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40

PH2
, kPa
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3

Fig. 5. TVD emission intensity vs. H2 partial pressure at a
wavelength of (1) 160 [H2(B–X)], (2) 175 (ArCl), and

(3) 258 ( ) nm for the Ar–HCl–H2 mixture with PAr =
13.3 and PHCl = 0.12 kPa (U = 12 kV).

Cl2
*

n

n

×

data concerning the efficiency with which VUV emis-
sion is excited are available. With Ar–Kr–HCl–H2 mix-
tures, these processes lead to a decrease in the intensi-
ties of the excimer bands when the H2 concentration is
raised.

CONCLUSION

We have established that a TVD plasma in Ar–Kr–
Cl2 and Ar–Kr–Xe–Cl2 mixtures is an efficient multi-
wave source of pulsed emission at 308, 258, 236, 222,
and 175 nm due to the transitions XeCl(B–X), Cl2(D'– A'),
XeCl(D–X), KrCl(B–X), and ArCl(B–X), respectively.
For a reasonable charging voltage (4–15 kV), the
respective intensities are close to each other if PAr = 10–
20 kPa, PKr, Xe = 0.4–0.6 kPa, PCl2 = 0.2–0.4 kPa, and
PHCl = 0.08 kPa. With a small amount of H2 added to the
mixture, PH2

 ≤ 0.1–0.2 kPa, the resource characteristic
acquires a plateau and the emission resource increases.
If PH2

 is raised above 0.5–1.0 kPa, the intensities of the
bands corresponding to the excimer molecules and

 fall by one order of magnitude and Lyman H2

bands appear at wavelengths of 158–161 nm. The opti-
mal composition of the emitting medium is determined
by the energy transfer processes Ar(m)–Kr, Xe, H2, and
Kr(m)–Xe and by the formation of the ArH* and

H2(a3 ) molecules.
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Abstract—A theory of synthesis of current on a strip from a given realizable radiation pattern is developed.
The theory chooses the space of currents from the condition that the near-zone field is limited. The space of
patterns is defined as the image of the space of currents due to current-to-pattern mapping. For these spaces, the
Hilbert structure is introduced and the basis is constructed. As a result, the problem of synthesizing current from
a given pattern is reduced to expansion over the basis. A numerical example is considered. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION AND STATEMENT 
OF THE PROBLEM

A relationship between the density of surface cur-
rents induced on both sides of a strip of electrical width
2a, j(t), and a radiation pattern F(χ) is given by the inte-
gral equation [1–3]

(1)

Real angles correspond to |χ| ≤ 1. However, it is
common practice to consider the function F(χ) at any
real χ.

Equation (1) has been studied in many investiga-
tions. Analytical methods of synthesizing currents from
a given realizable radiation pattern have been devel-
oped in [2, 3]. Variational methods that calculate cur-
rents producing a radiation pattern close to a given one
(not necessarily realizable) are addressed in [4]. In
these publications, it is assumed that the current j(τ)
belongs to the space L2; i.e.,

(2)

or, by virtue of Parseval’s identity,

(3)

However, the selection of the space L2 has not been
substantiated in the publications cited above.

Synthesis of current on an unclosed surface has also
been considered in [5], where the current is found with
regard for the Meixner conditions imposed on its edge
behavior. However, to date, methods developed in [5]

F χ( ) Ka j a iaχt( ) j t( )exp t.d

1–

1

∫= =

j t( ) 2 t +∞<d

1–

1

∫

F χ( ) 2 χd +∞.<
∞–

∞

∫
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have been implemented for closed surfaces, but none
for unclosed surfaces.

Whereas the problem of synthesizing current on a
closed surface from a given radiation pattern has been
covered adequately [6], many problems concerning
unclosed surfaces, in particular, the problem of choos-
ing the space of currents, remain unsolved.

The purpose of this paper is to develop a criterion
for choosing the space of currents, to construct the
space of currents for a strip and the space of radiation
patterns, and to study radiation described by formula (1)
in appropriate spaces.

ENERGY INTEGRAL: H-POLARIZATION 
PROBLEM

In this section, we consider the H-polarization prob-
lem: the strip is located in the plane y = 0, the generatrix
of the strip is parallel to the z axis, and the currents jx(τ)
pass parallel to the x axis (perpendicularly to the strip
edge) and vanish at the edge. In our opinion, the space
of currents should be chosen from physical consider-
ations. Namely, we must assume that not only the far-
field power but also the near-field power is limited. It is
the condition that ensures the uniqueness of solutions
to the Maxwell equations [7].

Let us find a condition that provides the finiteness of
the field power in the near zone. To this end, we inte-
grate the Poynting vector along a closed line l encir-
cling the cross section of the strip and contract this line
into a segment:

(4)

where E and H are the fields produced by the currents
jx(τ), 2  is the width of the strip, the asterisk means

P
1
2
--- E H*,[ ] n ld

l

∫ ã
2
--- Ex τ( ) jx* τ( ) τ ,d

1–

1

∫–= =

ã
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complex conjugation, and the normal n is parallel to the
y axis.

Next, we express the electric field Ex in terms of the
current density jx(τ) [1] as

(5)

and represent the Hankel function in formula (5) as the
Fourier integral

(6)

Substituting (5) into (4) in view of (1) and (6), we
obtain

(7)

Energy integral (7) converges if

(8)

As follows from (8) and (3), the fact that the currents
belong to the space L2[–1, 1] does not suffice for the
field power to be finite. To meet this condition, it is nec-
essary to narrow the space L2[–1, 1].

ENERGY INTEGRAL: E-POLARIZATION 
PROBLEM

Consider the E-polarization problem: the currents
jz(τ) pass parallel to the z axis (parallel to the edge of
the strip) and tend to infinity at the edges. In this case,
integration of the Poynting vector yields

(9)

We write the electric field Ez in terms of the current
density jz(τ),

(10)
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and substitute this expression into (9) to obtain

(11)

For energy integral (12) to be finite, it is sufficient
that

(12)

A comparison of (12) and (3) shows that the space
L2[–1, 1] has become narrower: there exist currents that
satisfy (12) but do not belong to L2[–1, 1].

SPACE OF CURRENTS 
IN THE H-POLARIZATION PROBLEM

We introduce the space of currents by means of the
operator

(13)

It is known [8] that the operator A is symmetric and
positive definite and its domain of definition D(A) is
everywhere dense in L2[–1, 1]:

(14)

Hereafter, (. , .) means a scalar product in L2[–1, 1].
The positive definiteness of the operator A allows one
to introduce the energy space HA [9], which is defined
as a completion of D(A) on the norm

(15)

and the scalar product in this space is defined as

Next, let us establish a relationship between HA and
the Sobolev space ([–1, 1]), which can be regarded

[10] as a completion of ([–1, 1]) (the set of infinitely
differentiable finite functions with the support [–1, 1])
on the norm

(16)

P i
µ
ε
---

ãπ
8a
------ 1

χ2 1–
------------------ F χ( ) 2 χ .d

∞–

+∞

∫=

1

χ2 1–
--------------------- F χ( ) 2 χ +∞.<d

∞–

+∞

∫

Au( ) τ( ) 1
π
--- χ χ τ t–( )[ ]u t( )cos td χd

1–

1

∫
0

+∞

∫=

≡ 1
2π
------ χ iχ τ t–( )–( )exp td χ .d

1–

1

∫
∞–

+∞

∫

Au u,( ) γ2 u u,( ), u D A( ), γ2 0.>∈∀≥

u[ ]2 Au u,( ),=

u v,[ ] Au v,( ).=

H1
2
---

C0
∞

u 1
2
---

2 1
2π
------ 1 χ+( ) ũ χ( ) 2 χ ,d

∞–

+∞

∫=
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where

The positive definiteness of the operator A immedi-
ately yields the equivalence of norms (15) and (16).
Consequently, the energy space HA coincides with the
Sobolev space ([–1, 1]). A significant advantage of

the norm and the scalar product introduced above is that
they allow one to analytically introduce an orthonormal
basis of HA [8] in the form

(17)

To conclude this section, write the operator A in the
coordinate form:

(18)

The equivalence of representations (13) and (18) for
the operator A on a dense set is validated by the well-
known expression

(19)

where C is the Euler constant.

SPACE OF PATTERNS IN THE H-POLARIZATION 
PROBLEM: BASIS

We introduce Sobolev spaces [11] on the straight

line Hs(–∞, +∞) as a completion of the set (–∞, +∞)
of infinitely differentiable finite functions on the norm

(20)

where

The constant factor preceding the integral in the
right-hand side of (20) is introduced for convenience.

ũ χ( ) u t( ) iχt( )exp t.d

1–

1

∫=

H1
2
---

ϕn τ( ) 2
πn
------ n τ( )arccos[ ] ; nsin 1 2 …,, ,= =

Aϕm ϕn,( )
0, m n≠
1, m n.=




=

Au( ) τ( ) 1
π
--- ∂

∂τ
----- u t( ) ∂

∂t
----- 1

τ t–
-------------ln t.d

1–

1

∫=

1
τ t–
-------------ln C

χ τ t–( )[ ]cos 1–
χ

----------------------------------------- χd

0

1

∫+=

+
χ τ t–( )[ ]cos
χ

-------------------------------- χ ,d

1

+∞

∫

C0
∞

ũ s
2 1

2π
------ 1 χ+( )2s ũ χ( ) 2 χ +∞,<d

∞–

+∞

∫=

ũ χ( ) u t( ) iχt( )exp t.d

∞–

+∞

∫=
Designate the Fourier transform for the space Hs(–∞,

+∞) as (–∞, +∞). In the latter, the norm is also
defined by relationship (20). The spaces Hs(–∞, +∞)

and (–∞, +∞) are Hilbert spaces with the scalar
product

(21)

The operator K1, or the Fourier transform as an
operator, which maps from the space ([–1, 1]) into

the space (–∞, +∞), is an isomorphism; this map-

ping does not change the norm. Therefore, the image of
([–1, 1]) is a closed set on which the inverse opera-

tor  is defined and limited. At the same time, the

Sobolev space ([–1, 1]) coincides with the energy

space HA, in which the basis is analytically specified.
Therefore, we will assume that the operators act in the
energy space HA.

We consider again Eq. (1),

, (22)

and map it from the energy space j ∈  HA into the Sobo-

lev space F ∈  (–∞, +∞). Define the space of patterns

as the image of HA due to the mapping Ka : Im(Ka). On
the set Im(Ka), the scalar product is given by

(23)

which is equivalent to scalar product (21). This state-
ment follows from the positive definiteness of the oper-
ator A. The set Im(Ka), being a closed set, is a Hilbert
space with scalar product (23).

We define the basis functions  of this space
through the basis functions ϕn of the space of currents:

(24)

With definition (17) of the basis functions ϕn (17)
and the definition of the operator Ka, the basis functions

H̃s

H̃s

u v,〈 〉 s
1

2π
------ 1 χ+( )2sũ χ( )ṽ χ( ) χ .d

∞–

+∞

∫=

H1
2
---

H̃1
2
---

H1
2
---

K1
1–

H1
2
---

F χ( ) Ka j a iaχt( ) j t( )exp td

1–

1

∫= =

H̃1
2
---

Kau Kav,( )1
2
---

1
2π
------ KauKav χ χ ,d

∞–

+∞

∫=

f n
a

f n
a Kaϕn.=
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 are found as

(25)

where Jn are Bessel functions.

Functions (25) were derived using the integrals of
the products of trigonometric functions and Chebyshev

polynomials of the second kind. The basis functions 
are orthonormal by construction:

(26)

Relationship (26) can also be verified using the tab-
ulated integral

(27)

An arbitrary function F belonging to the space of
patterns Im(Ka) can be expanded over the orthonormal

basis : 

(28)

From an expansion for the pattern, we immediately
obtain an expansion for the current:

(29)

As a result, the problem of finding the current from
a given realizable radiation pattern is reduced to the
problem of expanding over a given orthonormal basis.
Thus, the above-stated problem of finding the current
from a given realizable radiation pattern in the case of
H polarization has been completely solved.

SPACE OF CURRENTS 
IN THE E-POLARIZATION PROBLEM

We introduce the space of currents by means of the
operator

(30)

We also need the weight spaces L2, q with the scalar

f n
a

f n
a χ( )

=  
1–( )k 1– 2π 2k 1–( )

J2k 1– aχ( )
χ

------------------------, n = 2k 1–

i 1–( )k 1– 4πk
J2k aχ( )

χ
-------------------, n 2k,=

f n
a

f n
a f m

a,( )1
2
---

0, m n≠
1, m n.=




=

Jm χ( )Jn χ( )
χ

---------------------------- χd

0

+∞

∫ 2

π m2 n2–( )
-------------------------- m n–

2
-------------π.sin=

f n
a

F χ( ) F f n
a,( )1

2
---

f n
a χ( ).

n 1=

+∞

∑=

j τ( ) F f n
a,( )1

2
---
ϕn τ( ).

n 1=

+∞

∑=

Lu( ) τ( ) 1
π
--- u t( ) 1

τ t–
-------------ln t.d

1–

1

∫=
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product defined as

(31)

Consider an operator L that maps the weight space

L2, ρ into the weight space , where ρ(t) = .

Chebyshev polynomials of the first kind Tn(t) =
cos[(n – 1) ] (n = 1, 2, …) form a basis of the
space , while weighted Chebyshev polynomials

Tn(t)/ρ form a basis of the space L2, ρ. The following
relationship is valid for the operator L [12]:

(32)

Let I denote an identity operator that maps from the
space  into the space L2, ρ and relates a function

u(τ) to a function u(τ)/ρ(τ). We consider the operator

(33)

As follows from relationship (32), this operator is
positive. The positiveness (this property alone) of the
operator IL also allows the introduction of the energy
space HL [9], which is defined as a completion of L2, ρ
on the norm

(34)

The space HL is a Hilbert space with the scalar
product

(35)

According to (32), the orthonormal basis of this
space has the form

(36)

The power space HL can be shown to coincide with
the Sobolev space ([–1, 1]), which is defined as a

completion of ([–1, 1]) (the set of infinitely differ-

u v,( )2 q, u t( )v t( )q t( ) t.d

1–

1

∫=

L
2 ρ 1–,

1 t2–

t( )arccos
L

2 ρ 1–,

L Tn/ρ( ) τ( )
2, nln 1=

1
n 1–
-----------Tn τ( ), n 1.≠







=

L
2 ρ 1–,

IL: L2 ρ, L2 ρ, .

u[ ]2 ILu u,( )2 ρ, .=

u v,[ ] ILu v,( )2 ρ, .=

ψn τ( ) = 

1
π 2ln
------------

1

1 τ2–
-----------------,   n 1=

2 n 1–( )
π

------------------
n 1–( ) τ( )arccos[ ]cos

1 τ2–
----------------------------------------------------,  n 1,>

ILψm ψn,( )
0,  m n≠
1,  m n.=




=

H1
2
---

C0
∞
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entiable finite functions with the support [–1, 1]) on the
norm

(37)

where

Calculate the Fourier transform of the basis func-
tions:

(38)

Using formula (38) and methods presented in [8],
one can easily prove that norms (34) and (37) are equiv-
alent. Note in conclusion that the energy space HL cor-
responds to the E-polarization problem: if the function
describing the current belongs to HL, then energy inte-
gral (12) is finite.

SPACE OF PATTERNS IN THE E-POLARIZATION 
PROBLEM: BASIS

The operator K1, or the Fourier transform as an
operator, mapping from the space ([–1, 1]) into the

space (–∞, +∞), also is an isomorphism; this map-

ping does not change the norm. Therefore, the image of
([–1, 1]) is a closed set on which the inverse opera-

tor  is defined and limited. The Sobolev space

([–1, 1]) coincides with the energy space HL, in

which the basis is given analytically. Therefore, we
consider Eq. (1) once more,

, (39)

and map it from the energy space j ∈  HL into the Sobo-

lev space F ∈  (–∞, +∞). Equation (39) differs from

Eq. (1) by a constant factor.

u 1
2
---

2 1
2π
------ ũ χ( ) 2

1 χ+
---------------- χ ,d

∞–

+∞

∫=

ũ χ( ) u t( ) iχt( )exp t.d

1–

1

∫=

K1ψn iχt( )ψn t( )exp td

1–

1

∫=

=  

π
2ln

--------J0 χ( ),   n 1=

1–( )k 1– 2π 2k 1–( )J2k 2– χ( ),    n 2k 1–=

i 1–( )k 1– 4πkJ2k χ( ),   n 2k.=

H1
2
---

H̃1
2
---

H1
2
---

K1
1–

H1
2
---

F χ( ) Ka j iaχt( ) j t( )exp td

1–

1

∫= =

H̃1
2
---
We define the space of radiation patterns as the
image of HL due to the mapping Ka : Im(Ka). In this
space, we introduce a scalar product equivalent to (21)
by the formula

(40)

where f = Kau, g = Kav, and C is the Euler constant.
If f or g is zero at χ = 0 (all functions K1ψn possess

this property at n > 1), scalar product (40) simplifies to

The set Im(Ka), being a closed set, is a Hilbert space
with scalar product (40). As follows from (32), the

basis functions  of this space have the form

(41)

An arbitrary function F belonging to the class of
realizable patterns Im(Ka) can be expanded over the

orthogonal basis :

(42)

where

It should be noted that the basis  is orthonormal
at n > 1. From an expansion for the pattern, we imme-
diately obtain an expansion for the current:

(43)

f g,( )1
2
---
 = 

C
π
---- f 0( )g 0( )

1
2π
------ f χ( )g χ( ) f 0( )g 0( )–

χ
----------------------------------------------- χd

χ 1<
∫+

+
1

2π
------ f χ( )g χ( )

χ
----------------------- χ ,d

χ 1>
∫

f g,( )1
2
---

1
2π
------ f χ( )g χ( )

χ
----------------------- χ .d

∞–

+∞

∫=

gn
a

gn
a iaχt( )ψn t( )exp td

1–

1

∫=

=  

π
2ln

--------J0 aχ( ),   n 1=

1–( )k 1– 2π 2k 1–( )J2k 2– aχ( ),   n 2k 1–=

i 1–( )k 1– 4πkJ2k aχ( ),    n 2k.=

gn
a

F χ( ) cngn
a χ( ),

n 1=

+∞

∑=

cn

F gn
a,( )1

2
---

gn
a gn

a,( )1
2
---

--------------------,   n 1=

F gn
a,( )1

2
---
,    n 1.>

=

gn
a

j τ( ) cnψn τ( ).
n 1=

+∞

∑=
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The problem of finding the current from a given
realizable pattern in the case of E polarization has also
been solved completely.

NUMERICAL RESULTS

We consider an example of calculating the current
from a given radiation pattern, e.g., in the H-polariza-
tion problem. Let the pattern have the form

This radiation pattern is realizable [2]. By selecting
appropriate M and N, one can obtain various narrow-
beam patterns without secondary lobes (Fig. 1). How-

FN
M χ( ) 1 χ2–( )M

aχ( ) aχ 1 a2χ2

π2n
----------– 

 
n 1=

N

∏
1–

.sin=
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Fig. 1.
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ever, in this case, the inequality M < N must be satisfied

(in Figs. 1–4, N = 10). The radiation pattern (χ) has
only a weak dependence on the length of a radiator a.
However, the radiator length strongly affects other
parameters. Figure 2 plots the radiated-to-total power
ratio against a. At small a, the radiated power is much
smaller than the total power. As a increases, the ratio
grows. Figures 3 and 4 illustrate curves for the current.
At small a, the current oscillates and, as calculations
show, is large. Though narrow-beam secondary-lobe-
free patterns can be produced at small a’s, such an
approach is extremely inefficient. As a increases, the
current distribution becomes smoother. The narrower
the pattern, the larger a must be to increase the power
ratio and, accordingly, to smooth out the current.
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Metal Systems
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Abstract—Spectra of exchange dipole electromagnetic–spin waves in tangentially magnetized asymmetric
planar-layer metal–insulator–ferromagnetic–insulator–metal (MIFIM) systems were studied theoretically. It is
shown that symmetry breakdown due to a difference in the permittivities of the insulating layers may substan-
tially enhance interaction between the spin and electromagnetic waves. This improves the electrical controlla-
bility of the dispersion properties of the spin waves, for example, by varying the permittivity of one of the layers
that are in contact with the ferromagnetic film. Optimal geometries of the layer structures that provide the best
electrical control are suggested. © 2001 MAIK “Nauka/Interperiodica”.
Spin waves in ferromagnetic films and layer struc-
tures are used to advantage in various microwave
devices. The basic advantage of spin-wave devices is
the possibility of their electrical tuning by varying the
permanent magnetic field applied to the ferromagnetic
film. However, this way of tuning suffers from draw-
backs, such as large dimensions of the magnetic sys-
tems, low speed, and high power consumption. Tuning
of spin-wave devices can be improved by using layer
structures containing both ferromagnetic and ferroelec-
tric layers. In such structures, a new mechanism of con-
trolling the dispersion characteristics of spin waves
propagating in layer waveguide systems appears, since
ferroelectrics can change their permittivity under the
action of a permanent magnetic field. This mechanism
offers high speed and is not power-hungry.

It seems therefore logical to study the wave spectra
in layer structures in which ferroelectric and ferromag-
netic layers are in contact. Since ferroelectrics are of
high permittivity, a theory of spin waves that includes
electromagnetic delay (which is usually neglected)
should be elaborated.

In [1], we developed a theory of exchange dipole
electromagnetic and spin waves propagating in sym-
metric layer MIFIM systems. It was shown that such
systems allow the control of the spin wave spectrum by
varying the permittivity of the ferroelectric layers.
Based on this effect, a variety of spin-wave devices for
processing microwave signals tuned through a change
in the constant electric field can be designed. However,
the geometry of the symmetric layer structure is hardly
feasible.

This work is aimed at investigating the spectrum of
exchange dipole electromagnetic and spin waves in
1063-7842/01/4602- $21.00 © 20219
asymmetric tangentially magnetized MIFIM systems
and at finding the optimum geometry that provides the
best controllability and is easy to implement in prac-
tice.

Consider an unbounded plane-parallel layer struc-
ture in the y0z plane (Fig. 1). It includes an isotropic
ferromagnetic film of thickness L that has a saturated
magnetization Ms and a permittivity eL. The film is sep-
arated from two perfectly conducting metal screens by
insulating layers of thicknesses a and b and permittivi-
ties ea and eb, respectively. The origin is placed at the
center of the ferromagnetic film. It is assumed that the
film is magnetized to saturation by a permanent mag-
netic field of strength H0 applied along the z axis. The
spins on the surfaces of the film are assumed to be non-
interacting.

For convenience, we introduce the second coordi-
nate system ξηζ  rotated through an angle ϕ about the x
axis. The ζ axis coincides with the direction of wave
propagation.

y

x, ξ

η

ζ

z
ϕkζ

H0

L
a

b

Fig. 1. Layer structure geometry.
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In the structure considered, a dispersion relation for
exchange dipole spin and electromagnetic waves is
derived by jointly integrating the complete set of the
Maxwell equations and equations for magnetization
motion using the Green tensor function formalism for
planar-layer structures [2, 3]. The result is a transcen-
dental equation that relates the eigenfrequency ω of the
nth mode of spin waves to the longitudinal wave num-
ber kζ:

(1)

where

Ωnk ωM An
xx–( ) Ωnk ωM An

yy ϕcos
2

An
zz ϕsin

2
+( )–[ ]

– ω ωM An
xz ϕsin+( ) ω ωM An

zx ϕsin–( ) 0,=

An
xx = 1–

kζ
2

γL
2 κn

2+
-----------------

1
h γLd( )Nsin

----------------------------
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2γL
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1 Db 1–( )n Tb+( ) Cn
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-------------------------=
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-------------------------–=
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-------------------------=
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 

+ Cn
2 γL

γb
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An
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2
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1
h γLd( )Nsin

-----------------------------
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3
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L 1 δ0n+( )
-------------------------+=

× Cn
3 γL
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γb
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Cn
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The elements Ny, , and  are obtained from N,
Ti, and Di by the replacement

The other designations are the same as in [1].
In parallel with dispersion relation (1) for the

exchange dipole spin waves, one can deduce a disper-
sion relation for the natural waves of the structure in the
absence of magnetization in the layer L. For the TE
mode,

(2)

and for the TM mode,

(3)

Note that each of the factors in Eqs. (2) and (3)
depends both on wave number kζ and on frequency ω.

Practical spin-wave devices usually employ two
types of spin waves: longitudinal waves, propagating in
the direction of the permanent magnetic field (ϕ = 0),
and transverse waves, traveling at a right angle to the
field (ϕ = π/2).

Longitudinal spin waves interact with lower order
TM0 electromagnetic waves, which are free of cutoff
[1]. For longitudinal spin waves, a dispersion relation
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Cn
3 h γL a L+( )( )sin 1–( )n h γLa( ),sin–=
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Fig. 2. Change in the spectra of electromagnetic–spin waves when symmetry breakdown is due to different thicknesses of the a
and b layers.
may relate the slope of the dispersion curve for the TM0
waves with ea and eb. In symmetric MIFIM structures,
such a control mechanism was shown to be inefficient
[1]. As follows from Eq. (1), if the symmetry breaks
down, this mechanism becomes still less efficient,
because any asymmetry weakens interaction between
longitudinal spin waves and electromagnetic TM0
waves.

Transverse spin waves extensively interact with TE1
electromagnetic waves. They have a cutoff frequency
that varies with the permittivity of the ferroelectric
layer. If the cutoff frequency lies close to the frequency
range of long (low-frequency) spin waves, the disper-
sion curve for the spin waves considerably changes.

Thus, transverse spin waves appear to be the most
promising for control of the dispersion by varying the
permittivity of ferroelectrics. Therefore, in subsequent
analysis of asymmetric layer structures, we will con-
sider transverse spin waves alone.

Magnetostatic studies of the dispersion characteris-
tics of spin waves in asymmetric layer MIFIM struc-
tures [2, 3] show that transverse spin waves have the
property of nonreciprocity; that is, their dispersion
characteristics depend on the sign of the longitudinal
wave number kζ. One more nonreciprocity mechanism
emerges when electromagnetic delay is taken into con-
sideration. In this case, transverse spin waves propagat-
ing in the opposite directions along the ζ axis interact
with electromagnetic waves with various efficiencies.

Figure 2 shows the spectrum of transverse electro-
magnetic–spin waves when symmetry breakdown is
due to various thicknesses of the insulating layers. In
the calculations, the parameter values were as follows:
L = 20 µm, eL = 14, ea = eb = 1000, and H0 = 3400 Oe.
In Fig. 2a, a = b = 300 µm; in Figs. 2b and 2c, a =
100 µm and b = 500 µm. The thicknesses of the ferro-
electric layers were taken so as not to change the cutoff
frequency of the TE1 electromagnetic wave. In Figs. 2b
and 2c, the waves propagate, respectively, in the posi-
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
tive and negative directions along the ζ axis. Dashed
lines are the dispersion curves for TE1 electromagnetic
waves and transverse spin waves. In the former case,
the curves were calculated for the unmagnetized L layer
(fast waves), and in the latter, the magnetostatic
approximation (slow waves) was used. Solid lines
depict the spectrum of the electromagnetic and spin
waves that follows from Eq. (1). It is seen that, in the
asymmetric layer structure, the transverse spin waves
propagating in the opposite directions of the ζ axis var-
iously interact with the electromagnetic waves. Com-
pared with the case of symmetric MIFIM structures, for
the waves traveling in the positive and negative direc-
tions, the interaction efficiency grows and diminishes,
respectively. This can easily be explained by consider-
ing the cross-sectional distribution of the magnetic
fields hξ and hζ, which provide interaction between
transverse spin and TE1 electromagnetic waves. It turns
out that the polarizations of these fields for both waves
mainly coincide in one case and differ in the other.

Figure 3 shows the variation of the spectrum of the
transverse spin waves when symmetry breakdown is
associated with different permittivities of the layers.
Here, L = 20 µm, eL = 14, a = b = 300 µm, and H0 =
3400 Oe. In Fig. 3a, ea = eb = 1000; in Figs. 3b and 3c,
ea = 1630 and eb = 14. As in the case when the layers a
and b are heterogeneous in thickness, a difference in
their permittivities causes the nonreciprocity of the
waves traveling in the opposite directions of the ζ axis.
For those traveling in the negative direction, interaction
is stronger; while for those propagating in the negative
direction, weaker, as compared with the symmetric
structure.

The above analysis implies that the asymmetric
structure can provide stronger interaction between
transverse spin and electromagnetic waves. Note also
that the layer structure shown in Fig. 3c is quite feasi-
ble: the properties of the layers L and b are close to
those of epitaxial YIG films grown on GGG substrates.
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Fig. 3. Change in the spectra of electromagnetic–spin waves when symmetry breakdown is due to different permittivities of the
a and b layers.
Enhanced interaction between electromagnetic and
spin waves in asymmetric layer structures makes it pos-
sible to improve the efficiency of controlling the spec-
trum of exchange dipole spin waves by varying the per-
mittivities of the layers. Thus, the asymmetric layer
structures offer greater promise for devices with electri-
cally tunable properties.

Figure 4 exemplifies the control of the dispersion
characteristics of transverse spin waves traveling in the
negative ζ-axis direction. Here, the permittivity of the
layer a in the asymmetric layer structure (L = 20 µm,
eL = 14, a = b = 300 µm, and eb = 14) varies from 1400
to 800. The calculation is made for the permanent mag-
netic field H0 = 3000 Oe. The dashed line is the disper-
sion curve of the spin waves in the magnetostatic

0 50 100 150 200
kζ, cm–1

9.5

10.0

10.5

11.0
ω/2π, GHz

800

1000

1200
1400

Fig. 4. Control of spin wave dispersion characteristics in the
asymmetric layer structure.
approximation, and solid lines show dispersion curves
obtained from Eq. (1) at various ea (the associated val-
ues are indicated by figures).

A comparison of our Fig. 4 with Fig. 4 in [1], show-
ing the control of the dispersion characteristics for
transverse spin waves in the symmetric structure,
clearly points to a better controllability of the spin wave
spectrum in the asymmetric structure. As ea varies, the
spin wave dispersion curve changes in a much wider
range of longitudinal wave numbers. Moreover, in the
asymmetric structure, the frequency range of the upper
branch of hybridized dispersion curves is higher than in
the symmetric one. This provides single-mode propa-
gation of transverse spin waves throughout the range
of ea.

Thus, the asymmetric structures are candidates for
spin-wave devices intended for processing microwave
signals. They are easier to fabricate and offer better tun-
ing capabilities than the symmetric ones.
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Abstract—The states of a long rotating charged ellipsoidal bunch in a longitudinal uniform magnetic field are
studied. The states are described using two integrals of motion that couple the transverse velocities  and 
with the x and y coordinates; the frequency ωH = eH/mc (where H is the total magnetic field); and the quantities
ω1 and ω2, which characterize the Coulomb repulsion in the x and y directions. It is shown that equilibrium
states with a high charge density per unit length (ν * 1) can exist. © 2001 MAIK “Nauka/Interperiodica”.

ẋ ẏ
Rapid progress in accelerator technology during the
last few decades has required the development of meth-
ods for solving problems related to the dynamics of
charged particles under different conditions. Of special
interest are situations in which charged particles inter-
act with the self-fields of dense bunches. In this paper,
a charged bunch rotating in a magnetic field is studied
with allowance for the interaction of the particles with
the self-field of the bunch.

Note that the behavior of long charged-particle
bunches (or beams) with elliptic cross sections in a lon-
gitudinal magnetic field is as yet poorly investigated. In
[1], a beam with an elliptic cross section in a magnetic
field in the presence of an external quadrupole structure
was studied. A nonsteady ellipsoidal bunch in the
absence of a magnetic field was investigated in [2].

Diamagnetic properties of beams with circular cross
sections were studied within the so-called rigid rotator
model [3]. In this paper, the ellipsoidal bunch is
described using another model that differs from the
rigid rotator model in that the average angular velocity
is assumed to depend on the angle. The effect of the
interaction delay, which may be important for dense
bunches, is also studied.

1. We consider the motion of charged particles in a
magnetic field aligned with the z-axis with allowance
for repulsion caused by the particle space charge. Let
the x- and y-axes be directed along the principal axes of
the elliptic cross section of a rotating bunch. In this
case, the equations of motion have the form

(1)

where  is the angular rotational velocity of the bunch,
ωH = eH/mc, H is the total magnetic field, and the

ẋ̇ ẏ 2Θ̇ ωH+( )– x Θ̇
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parameters ω1 and ω2 describe the Coulomb repulsion
of the particles in the ellipsoidal bunch.

In the frame of reference related to the principal
axes, we have

where

is the charge density per unit length and N is the total
number of particles in the bunch. It is assumed that lon-
gitudinal size of the bunch is much larger than its trans-
verse dimensions (Rz @ Rx, Ry).

Equations (1) have periodic solutions x ~ eiΩt and y ~
eiΩt with

(2)

From Eq. (8), which will be derived below, it fol-
lows that physically allowable (real) values of Rx /Ry

can be obtained when

This inequality substantially limits the domain of
parameters in which nonsteady equilibrium states can
exist. Taking into account the relationship

ω1
2 νc2

Rx Rx Ry+( )
-----------------------------, ω2

2 νc2

Ry Rx Ry+( )
-----------------------------,= =

ν 3e
2
N

mc2Rz

---------------=

Ω1 2,
2 ωH

2 2Θ̇2
2Θ̇ωH ω1

2
– ω2

2–+ +
2

---------------------------------------------------------------------=

± Θ̇
ωH

2
-------+ 

 
2

ωH
2 2 ω1

2 ω2
2+( )–( )

ω1
2 ω2

2–
2

------------------ 
 

2

.

ω1
2 ω2

2+
2

------------------
ωH

2

4
-------– ω0

2 ωH
2

4
-------– K0

2
0.>= =

δ0
4 4K0

2 ωH

2
------- Θ̇+ 

 
2

–
∆2

4
----- 0+=

∆ ω1
2 ω2

2–=( ),
001 MAIK “Nauka/Interperiodica”



224 CHIKHACHEV
it also follows from Eq. (8) that  + ωH/2 . /ωH,

which results in real values of Ω . If  and ωH are con-
stant, then Eqs. (1) have the following invariants:

Setting

where α1, 2 are positive constants representing the dis-
tribution function in the form

and integrating this function with respect to velocities,
we obtain that the density is nonzero in an elliptic
region in the x and y coordinates. The complete expres-
sion for the integral of motion I is

(3)

where
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For the distribution function specified above, the
semiaxes of the elliptic cross section of the bunch are
determined by the formulas

(5)

The expressions for  and  and Eq. (5) yield
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Below, we consider the case δ0  0; i.e.,
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principal axes of the elliptic cross section of the bunch
as follows:

Integrating the expressions

and taking into account the equalities

,

we obtain

(9)

(10)

From Eqs. (9) and (10), we find the magnetic self-
field of the bunch

The external field is characterized by ΩH =
eH(ext)/mc, and the self-field is characterized by the dif-
ference ωH – ΩH, which can be expressed as follows:
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Using expressions (9), Eq. (11) can be transformed
into

(12)

Taking into account the interaction delay in the
lower order approximation leads to the correction to the
bunch potential

(13)

3. Let us analyze Eqs. (8) and (12) taking into
account the relationship
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(17)

Accordingly, instead of Eq. (8), we obtain

(18)

It follows from here that
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The external field can be found from the following
set:
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Assuming that the term ν |Ω0 | in Eqs. (18) and
(19) is small, for the external field we obtain
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where the term proportional to ν2 is always positive;
i.e., when the delay in the potential is taken into
account, the attenuation of the external field is stronger
than in the case when the delay is ignored.
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Since the average quantities satisfy the relationships

the maximum average particle velocities in the rest
frame are

where

When ω1 @ ω2 and  . /2, the inequalities

 ! c and  ! c are valid for ν * 1.
The mean-square velocities are on the order of v0

(note that v0 ! c at any ν). This means that dense
bunches can be confined by the external field. The par-
ticles in a long bunch expand rather slowly along the
field lines.

Thus, in this paper, the states of a long charged high-
density bunch rotating in a magnetic field have been
studied and the effect of the interaction delay on these
states has been estimated.
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Abstract—The effects of electric and magnetic field intensities, the triggering-pulse droop rate, and the elec-
trode diameter on the processes of electron beam formation and generation were studied experimentally. The
results of mathematical simulation of the secondary-emission multiplication of the electron flow are presented.
Tubular electron beams with a wall thickness of 1.5–2 mm, a current density of 1–70 A/cm2, and a particle
energy of 5–100 keV were obtained. It was shown that several electron bunches could be obtained during a sin-
gle voltage pulse. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The pulse and mean power of microwave sources, as
well as their service life, depend on the type of the cath-
ode [1–4]. It is well known that magnetron diodes
based on cold secondary-emission metal cathodes have
a prolonged service life (~100 000 h [2]) and provide
high density electron emissions (~50 A/cm2 [4]). These
diodes have a rather simple design and can be effec-
tively used as microwave sources. However, certain
effects relevant to beam generation in magnetron
diodes are insufficiently understood, both theoretically
and experimentally. In particular, the process of space
charge formation in the anode–cathode gap in crossed
electric and magnetic fields is virtually obscure [5]. To
solve this problem, physical processes in the magnetron
diode in the magnetic field exceeding the Hull cutoff

field (HHull = 6.72(U)1/2[ra(1 – / )]–1, where H is the
longitudinal magnetic field (Oe); U is the voltage
across the diode (V); and rc and ra are the cathode and
anode radii (cm), respectively) should be studied both
theoretically and experimentally.

The goal of this work was to study the processes of
electron layer formation near the secondary-emission
metal cathode and electron beam generation in a mag-
netron diode.

EXPERIMENTAL SETUP AND METHODS

Parameters of the electron beams generated by mag-
netron diodes were studied using the experimental
setup shown in Fig. 1. The setup consisted of a high-
voltage pulse modulator (1) (voltage amplitude, 5–
200 kV; pulse duration, 2–10 µs; triggering pulse
amplitude, up to 15 kV; triggering pulse duration,
~70 ns); a high-voltage generator (2) for inducing sec-
ondary emission (amplitude, up to 3.5 kV; duration, 1–

rk
2 ra

2

1063-7842/01/4602- $21.00 © 20227
10 ns); a focusing solenoid (4) (magnetic field intensity,
up to 3500 Oe; longitudinal nonuniformity, ~8%); a
vacuum chamber (3) containing a secondary-emission
diode with a central copper cathode (5) and a tubular
stainless-steel anode (6) (electrode length, 100–
140 mm; pressure in the chamber is maintained at a
level of ≤10–6 torr using an ion pump); an indication
system consisting of current and voltage detectors and
a Faraday cup (7) with a calorimetric power meter; and
a synchronization system. The electron energy was
determined by measuring the electron absorption by
aluminum foil. The beam spot size was measured using
the beam spot image on X-ray film and molybdenum
foil. The electron beam produced by the magnetron
diode powered by a pulse modulator at a pulse repeti-
tion rate of 10–50 Hz was studied.

Secondary emission was induced both by an exter-
nal voltage pulse applied to the anode from separate
pulse sources (U = 1–15 kV, tdroop ~ 2–100 ns) and by a
voltage surge droop in the initial part of the cathode
voltage pulse (self-triggering). The amplitude of this

1 2

3 4 5 6 7

r

R1 R2

R3

Fig. 1. Diagram of the experimental setup.
001 MAIK “Nauka/Interperiodica”



 

228

        

VOLKOLUPOV 

 

et al

 

.

                                                               
surge varied from 10 to 100 kV; the droop duration was
about 1 µs (Fig. 2).

EXPERIMENTAL RESULTS 
AND DISCUSSION

1. Electron beam formation. The processes of
electron beam formation were studied using magnetron
diodes with different values of the ratio ra/rc (1.2–15).
Typical oscillograms of the cathode voltage pulse and
Faraday cup beam current obtained using a magnetron
gun (ra = 1.3 cm; rc = 0.25 cm) are shown in Fig. 2. Sec-
ondary emission was induced by the cathode voltage
pulse surge droop. As seen from the oscillograms, the
electron layer is formed and the beam is generated upon
the surge droop. The process of beam current genera-
tion during the voltage droop occurs in two stages: a
relatively slow voltage droop (hundreds of nanosec-
onds) and a fast voltage droop (nanoseconds or tens of
nanoseconds). During the first stage (curve 1), auto-
electronic emission and accumulation of autoelectrons
in the anode–cathode gap occur (idle run of modulator).
During the second stage (curve 2), the electron layer is
formed and the beam is generated. It should be noted
that duration of the slow droop stage depends on the
electric intensity E. A decrease in the electric intensity
from 120 to 40 kV/cm caused an increase in the slow
droop stage duration from 250 to 600 ns.

Autoelectrons are emitted during the slow droop
stage. The energy of the electrons moving in a decreas-

0 1 2 3 4 5 6 7 8 9
t, µs

5

10

15

20

25
I, A

3

10

30

50

70

U, kV

1

90

2

Fig. 2. Oscillograms of the cathode voltage pulse: (1) mod-
ulator idling; (2) beam generation mode; and (3) Faraday
cup beam current mode.
ing electric field and a static magnetic field along cyc-
loidal trajectrories increases. This causes electron bom-
bardment of the cathode. As the electric field near the
cathode decreases, at a certain moment the electron
energy becomes sufficient for removing secondary
electrons with a secondary-emission coefficient σ
greater than one. Secondary electrons can be removed
both by electrons with the energy of 0.3–1 keV incident
at a right angle and by electrons with lower energies
incident at smaller angles. Once the electrons have been
emitted, the stage of fast voltage droop begins. This
stage is characterized by an avalanche-like increase in
the number of bombarding and knocked-out electrons.
A sharp increase in the number of electrons causes a
decrease in the voltage level, thereby enhancing the
voltage droop rate. As a consequence, the energy of
electrons bombarding the cathode increases and
reaches a point where σ > 1. This causes a further
increase in the number of electrons near the cathode
until a dynamic equilibrium is attained, and the electron
layer near the cathode is formed. On attaining equilib-
rium, the stage of steady-state secondary-electron mul-
tiplication begins and the beam is generated. It was
revealed experimentally that the beam was generated
when the electron-drift velocity v = E/H was equal to
0.1–0.2 s (depending on experimental conditions).

It was found experimentally that the fast droop stage
duration and, therefore, the beam current buildup time
depended on the anode and cathode diameters and the
voltage droop rate and duration. For example, if the
cathode diameter exceeded 0.2 cm, the anode diameter
exceeded 2.2 cm, the droop duration was 0.1–0.5 µs,
and the droop rate exceeded 20 kV/µs, the beam current
pulse buildup time exceeded 10 ns. Experiments with
magnetron diodes with cathode and anode diameters of
0.2 and 1.0 cm, respectively, showed that the beam cur-
rent was generated within a shorter time interval (1–
10 ns). The duration of the time interval was equal to
the droop duration. The droop rate was 1200–
300 kV/µs. At such a high droop rate, the number of
primary autoelectrons is rather small. However,
because of a high pulse droop rate, the energy of these
autoelectrons acquired in 10–20 gyroperiods reaches a
value at which σ > 1.

Collective motion of electrons during their multipli-
cation can cause space charge oscillations. This
becomes possible at the steady-state stage, when the
space charge reaches a certain minimum density and
the electron layer begins to shield the cathode, which
results in potential sagging in the anode–cathode gap
and a decrease in the electric field strength near the
cathode. The energy of electrons is changed as a result
of their interaction with the fields induced by space-
charge oscillations. The noise accompanying this inter-
action can be observed in the beam current pulse. It was
found experimentally that the noise was stronger when
a large-diameter cathode (80 mm) was used; i.e., the
noise increased with decreasing electric intensity. The
noise amplitude reached 20% of the beam current
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
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amplitude. The noise wave period was equal to several
nanoseconds.

2. The dependence of the beam generation cur-
rent on the diode dimensions. The dependence of
electron beam parameters on the diode dimensions was
studied. The cathode diameter d ranged from 2 to
80 mm; and the anode diameter D, from 10 to 140 mm.
The values of the Faraday cup beam current I, cathode
voltage U, and the magnetic field intensity H for vari-
ous anode and cathode diameters are given in the table
for eight modifications of the magnetron diode. The
electric field strength near the cathode varied from 20
to 125 kV/cm (at a constant voltage pulse amplitude).
It was found that the beam current obeyed the Lang-
muir–Child law. At a given voltage, the beam current
amplitude could be maximized by tuning the magnetic
field strength. Electron beams with a current ranging
from 1 to 50 A and a particle energy ranging from 5 to
100 keV were obtained.

At the initial stages of beam generation, short
(~1 µs) surges were observed on the beam current pulse
plateau. These surges were caused by gas desorption
from the cathode surface and gas ionization [4]. After
the diode was aged, the beam current pulse amplitude
and shape remained invariant.

The dependence of the beam current on the cathode
diameter is shown in Fig. 3. These curves were
obtained at a voltage of 24 kV and anode–cathode dis-
tance of 5 (curve 1) and 20 mm (curve 2). It can be con-
cluded from these curves that the beam current is
inversely proportional to the logarithm of the ratio
between the anode and cathode diameters. This result is
in good agreement with the dependence obtained for
classical magnetrons [6]. As seen from Fig. 3, the beam
current decreases with increasing anode–cathode dis-
tance. However, one of the advantages of the diode is
that it operates at rather low magnetic intensities
(≤1000 Oe). In this case, the magnetic coil heating is
insignificant, so that it is not necessary to adjust the
magnetic field. In addition, this allows a magnetron
diode with specified parameters (current, magnetic
field intensity, and dimensions) to be designed.

3. Effect of electric and magnetic fields on elec-
tron beam formation. The effect of the magnetic field
strength on beam generation at a constant cathode volt-
age amplitude was studied. There was a sharp rise, a
plateau, and a sharp decrease in the Faraday cup beam
current amplitude with increasing magnetic field. Such
behavior was caused by changes in the electron trajec-
tories and processes of energy accumulation by elec-
trons in the anode–cathode gap in an increasing mag-
netic field. If the anode–cathode spacing was signifi-
cantly larger, the dependence became smoother. This
allowed beam current tuning over a wide range. The
experimental data for the magnetron diode (anode
diameter, 50 mm; voltage, 60 kV) are given in the table.
It follows that the current can be varied from 0.5 to
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
10 A by changing the magnetic field strength from
1100 to 2000 Oe.

The diode working range dependence on the cath-
ode voltage amplitude at a given magnetic intensity was
studied. It was found that an approximately 20% varia-
tion in the voltage amplitude had virtually no effect on
the process of electron beam formation in a static mag-
netic field. As the cathode voltage approached the ∆U
limit from above or below, the conditions for beam gen-
eration were violated, and the voltage pulse instability
caused secondary emission breakdown (Fig. 4).

The use of this effect in experiments with a magne-
tron diode with anode and cathode diameters of 78 and
40 mm, respectively, allowed the beam current to be
completely modulated in amplitude at a carrier fre-
quency of 1 MHz (Fig. 5). For this purpose, sinusoidal
modulation of the voltage pulse peak was performed,
and electron bunches were obtained at the diode output
on the dips of the sinusoid. Complete modulation of
current at a carrier frequency of ≥1 MHz was also
attained in experiments with a magnetron diode of the
same dimensions by tuning the magnetic field distribu-
tion over the diode axis. Multispiking generation of the
electron beam could be attained by varying the ampli-
tude and longitudinal distribution of the magnetic field.

20
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Fig. 3. Dependence of the beam current on the cathode
diameter.

Table

d, mm D, mm U, kV I, A H, Oe

2 10 7 1.6 2100

5 26 32 14 1900

5 50 60 1 1400

5 50 60 10 2000

16 50 17 5 600

40 50 30 50 2200

40 78 100 50 1800

80 100 19 8 1100
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For example, an electron beam pulse with an amplitude
of ~15 A and duration of 8 µs was obtained at a cathode
voltage of 55 kV and a magnetic intensity of ~1150 Oe
(cathode diameter, 40 mm; anode diameter, 78 mm). As
the magnetic intensity decreased to 700 Oe, the beam
current pulse assumed a spiky shape with a generation
period of ~1 µs and a current amplitude of 30 A (dura-
tion of each spike was 10–30 ns).

0.5 µs

5 A

10 kV

I

U

Fig. 4. Oscillograms of the cathode voltage U and beam cur-
rent I; the cathode diameter is 5 mm, the anode diameter is
26 mm, and H = 1800 Oe.
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Fig. 5. Oscillograms of the beam current I and cathode volt-
age U; H = 700 Oe.
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Fig. 6. Shape of the anode voltage pulse.
The beam spot size on the collector was measured.
It was determined that the beam cross section consisted
of concentric rings with a uniform azimuthal intensity
distribution. The beam diameter was approximately
equal to the cathode diameter, and the beam wall thick-
ness was 1–2 mm. Therefore, the energy of electrons in
the electron layer was about 0.5–1 keV, which approx-
imately corresponded to the maximum secondary emis-
sion coefficient for copper. Experiments with a magne-
tron diode with a cathode 80 mm in diameter showed
that, if the cathode was exposed to a nonuniform mag-
netic field with a transverse component (about 5%), the
beam spot image was partly sharp and partly fuzzy. The
thicknesses of the sharp and fuzzy parts were about 2
and 3–4 mm, respectively. This fuzziness was caused
by the nonuniformity of the magnetic field.

THEORETICAL STUDY OF THE ELECTRON 
FLOW MULTIPLICATION

Theoretical simulation of the secondary emission
development and the steady-state stage of the second-
ary-emission cathode operation was performed to study
specific features of the processes occurring in a magne-
tron diode. The steady-state stage was analyzed using a
three-dimensional mathematical model of a magnetron
diode. The model was based on a self-consistent set of
simultaneous differential equations of motion (for elec-
tron flow) and the Poisson equation (for calculating the
space-charge forces).

The magnetron diode simulated by this model was
assumed to have the following parameters: cathode
diameter, 5 mm; anode diameter, 26 mm; peak anode
voltage (0 < t < t1), 75 kV; anode voltage plateau (t2 <
t < t3), 35 kV; voltage droop duration (t1 < t < t2),
1.25 µs; voltage plateau duration, 60 µs; magnetic
intensity, 2000 Oe; and cathode length, 90 mm. A linear
approximation of the shape of the voltage pulse applied
to the anode is shown in Fig. 6. The value of the anode
voltage within the interval t2 < t < t3 was taken as the
working value. The large-particle method described in
[7] was used to study the dynamics of the electron flow
formation processes.

Consider specific features of electron processes in
the magnetron diode. These processes are nonsteady
(secondary-emission multiplication occurs at the anode
voltage pulse surge droop (t1 ≤ t ≤ t2)). On the other
hand, the spatial distribution of the electron flow should
be studied using a three-dimensional cylindrical coor-
dinate system (r, ϕ, z). The mathematical model of the
magnetron diode is based on the self-consistent set of
simultaneous equations of motion for the electron flow

v r∂
t∂

-------- ηE0
r t( ) rv ϕ

2 ωcrv ϕ ,–+=
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(1)

where vr, ϕ, z are the electron velocity components, ωc =
ηB0 is the cyclotron frequency, and η = e/m is the
reduced electron charge; and on the Poisson equation
(for calculating the space-charge field)

(2)

where ρ = ρ(r, ϕ, z) is the space charge (SC) density.
The set of simultaneous equations (1) and (2) was

solved in the quasi-stationary approximation for a con-
stant anode voltage within the limits of the motion
equation integration step (beginning at t = t1). The step
was taken to be ∆T = (1/10)Tc, where Tc = 2π/ωc is the
cyclotron oscillation period. The equation of motion
was solved numerically using the Runge–Kutta method
of the fourth order. The quiet start model [8] was used
as the model for determining the initial coordinates and
velocities of the particles in the magnetron diode inter-
action space.

The Poisson equation (2) was solved by the Hock-
ney method of finite differences using fast Fourier
transforms [9, 10] at given initial and boundary condi-
tions. Numerical differentiation of the SC potential at
the nodes of the finite-difference mesh was used for
determining the electrostatic field intensity E0 =
−gradU. Discrete values of the SC potential (least-
squares method) were locally smoothed to reduce fluc-
tuations of the calculated SC field.

The results of the simulation are presented in Figs. 7
and 8. The energy distribution of the primary electrons
(large particles (macroparticles) with a charge of q =
0.8 × 10–13 C) and the theoretical approximation of the
experimental dependence of the secondary-emission
coefficient for copper on the primary electron energy
[11] are shown in Fig. 7. As seen from Fig. 7, the num-
ber of low-energy macroparticles (i.e., particles with
energy corresponding to σ ≤ 1) is more than 60% of the
total number of macroparticles bombarding the cath-
ode. The presence of low-energy particles affects the
SC field distribution near the cathode surface (within a
distance equal to the selected mesh size ∆r = (ra –
rc)/32). Changes in the number of low-energy particles
affect the cathode current (limitation of emission by the
SC field). The number of macroparticles with energies
higher than the first critical potential (i.e., the energy
for which σ > 1) depends on the voltage applied. The
macroparticle energy increases with increasing voltage.
It should be noted that the critical potential value used
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for voltage normalization was determined from the
Hull cutoff field. For the magnetron diode under study,
the critical potential was found to be 139 kV.

The theoretical radial distribution of the SC density
in the diode interaction space and the experimental
radial distribution of the beam intensity at the collector
surface are shown in Fig. 8. The maximum SC densities
in the three cases under consideration were calculated:
in the first case, ρ/ρbr = 0.19; in the second case, ρ/ρbr =
0.16; in the third case, ρ/ρbr = 0.1, where ρbr is the Bril-
louin density of the space charge. In the third case
(Ua/Ucr ≈ 0.3), the theoretical and experimental distri-
butions of SC density are in satisfactory agreement.
The presence of electrons in the paraxial region is
caused by cycloidal motion of electrons.

Numerical simulation of secondary-electron emis-
sion from the cathode surface at the steady-state volt-
age stage (t2 ≤ t ≤ t3) was performed. The secondary-
electron emission was caused by bombardment of the
cathode with primary electrons with energies of 300,
560, and 700 eV. The plateau voltage was equal to U =

500
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Fig. 7. (1) Dependence of the secondary-emission coeffi-
cient σ on the particle energy and (2) dependence of the
number of primary electrons Nc on the particle energy
(Ua/Ucr = 0.7).
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Fig. 8. Ua/Ucr = (1) 0.7; (2) 0.5; and (3) 0.3.
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Fig. 9. Time dependence of the number of electrons in the electron layer (E = 300 eV).

Fig. 10. Time dependence of the number of electrons in the electron layer (E = 700 eV).
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Fig. 11. Time dependence of the potential in the middle of
the anode–cathode gap.
40 kV; the magnetic field intensity, H = 2000 Oe. A hot
cathode was the source of primary electrons. When the
hot cathode had worked for several nanoseconds, it was
switched off. The initiated process of electron multipli-
cation was studied. When the energy of the primary
electrons reaches 700 eV, irregular disturbances of the
electron density of the space charge occur with a delay
of >30 ns (Fig. 10). If the energy of the primary elec-
trons is about 300 eV, these disturbances are insignifi-
cant (Fig. 9). These results are in qualitative agreement
with the results presented in [5]. As seen from the
obtained results, the secondary-emission coefficient of
the cathode material should be maximal at an incident
electron energy of ~500 eV. The time dependence of the
potential in the middle of the anode–cathode gap is
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
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given in Fig. 11. As seen in Fig. 11, there is a decrease
in the potential caused by thermoelectrons in the begin-
ning of the curve. When thermionic emission ceases,
the accumulated electrons disperse, causing a slight
increase in the potential. Then, there is a decrease in the
potential (the duration of the decrease is 10–15 ns)
caused by the completion of transient processes and
formation of the space charge maintained by the sec-
ondary emission.

The results of calculations are in satisfactory agree-
ment with the results of experiments on electron beam
generation using magnetron diodes.

CONCLUSION

It was shown that magnetron diodes with metal sec-
ondary-emission cathodes can be used to generate
straight electron beams with high current densities.
Tubular electron beams with a current density of up to
50–70 A/cm2, the outer diameter of 3.5–84 mm, a wall
thickness of 1.5–2 mm, and a particle energy of 5–
60 keV were obtained (pulse duration was 10 µs). It
was revealed experimentally that a beam current pulse
train could be generated using a single voltage pulse.
Magnetic field variation was shown to allow 10- to
20-fold tuning of the current. The processes of electron
multiplication and the steady-state stage of secondary
emission were studied theoretically. It was shown that
magnetron diodes could be used as electron sources for
high-power microwave devices and charged-particle
accelerators. They also can be used as fast high-voltage
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
switches with characteristic commutation times of sev-
eral nanoseconds.
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Abstract—Exposure characteristics that were obtained when growing various films on natural low Miller index
surfaces of several crystals were collected and analyzed. An evolution theory that explains their special form
was constructed. The type of dose characteristics obtained suggests that the surface underwent a reconstruction,
i.e., a nonequilibrium phase transition that occurs on the surface. A quantitative analysis of the experiments
available has been performed. In particular, a quantitative estimation was obtained of to what extent coverage
with lead hinders the oxidation of the surface of a nickel crystal. Upon intense light or electron irradiation of
silicon, divacancies are the predominant centers of the formation of point and extended radiation defects, as
well as of local regions of melting. For some two-dimensional systems (divacancies, sulfur atoms on the sur-
faces of passivated semiconductors, oxide films), delay times and evolution times for the self-organized struc-
ture formed were determined. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The processes of film nucleation in an open growth
system on a crystal surface are characterized by peri-
odic fluctuations of the adatom concentration. Various
ways of the development of two-dimensional nuclei of
a new phase, e.g., by the mechanism of Volmer–Weber
or Stranski–Krastanov, are possible, but the predomi-
nant factor always is the appearance of large-scale peri-
odic fluctuations [1].

In recent works [2, 3], magnetic films were applied
(using a shrouded sublimation source cooled by liquid
nitrogen) on the surface of semiconductors such as Ge
and GaAs subjected to sulfide passivation. Analogous
evaporation of oxygen onto the surface of pure and
lead-covered nickel was performed in [4]. Passivation
of the silver surface with chlorine upon the evaporation
in an ultrahigh vacuum was studied in [5]. At present,
automated methods of controlling growth surfaces are
widely developed. One of such methods is based on the
measurement of the temporal dependence of the inten-
sity of electron-diffraction patterns [6] (which is stud-
ied in our work as well). These investigations con-
firmed the result known from biology [7] and econom-
ics [8] according to which the properties of open
systems are connected with the character of their
microscopic interactions more closely than in the equi-
librium case. Nevertheless, one can usually reveal the
general empirical regularities. This work is devoted to
their explanation for the case of thin films. In particular,
the role of evaporation temperature upon film prepara-
tion is discussed. On the one hand, with increasing
evaporation temperature (e.g., upon deposition of mag-
netic films or upon passivation or oxidation), a signifi-
cant interdiffusion of the main contacting components
occurs. In this case, the magnetic moment of the iron
1063-7842/01/4602- $21.00 © 20234
film vanishes and the superlattice becomes destroyed.
On the other hand, with decreasing evaporation temper-
ature, the film grown (e.g., a photocathode) proves to be
very coarse and highly defective because of the
decreased diffusion along the surface of contact. The
magnetic structure of a film or the crystal structure of
individual layers of a photocathode without deteriorat-
ing the sharpness and flatness of the layer boundaries
can be preserved by using buffer layers.

The maintenance of stable growth of the energeti-
cally unfavorable free surface of iron upon gas-phase
deposition of fcc iron films on a sulfided (100) surface
of semiconductors [2, 3] is ascribed to the interaction of
sulfur atoms with the growing surface. The decrease in
the growth entropy appears to be due to the floating out
of a sulfur layer on top of the surface. The processes
that occur on the surface are controlled by Auger elec-
tron spectroscopy (AES) [2–4] and low-energy electron
diffraction (LEED) [2, 3]. In spite of the great impor-
tance of the problem from the viewpoint of practical
application and the large number of theoretical models
[9, 10], the evolution processes that determine the
adhesion of thin films with low-index surfaces (sur-
faces with low Miller indices) have yet been clarified at
present insufficiently.

On a microscopic level, the guarantee of the forma-
tion of an ideal film on a semiconductor surface appears
to consist in that the applied atoms have no electron
orbitals that could produce energy levels in the forbid-
den zone of the main crystal. In this case, no charge
transfer occurs onto the bonding orbitals, and the ada-
toms can freely move along the surface or a boundary.
It is exactly upon such movement that the above-men-
tioned coarse-scale fluctuations arise that serve as a
basis for the formation of clusters of a new phase, just
001 MAIK “Nauka/Interperiodica”
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as upon the diffusional decomposition of solid solu-
tions [1]. On the whole, the main factor that determines
the structure, morphology, and sharpness of the grow-
ing film is the diffusion of the lighter atoms (sulfur,
oxygen) along the boundary between the heavier sub-
stances (semiconductor and iron, nickel, and lead). For
example, the probability of the formation of sulfide
bonds on a semiconductor surface upon sulfiding is
determined by the diffusion of oxygen vacancies in the
oxide film [11]. The three-dimensional diffusion theory
of growth that was applied in [4] to the case of oxida-
tion of pure nickel failed in explaining the first plateau
in the exposure dependence of the intensity of the oxy-
gen Auger peak. The exposure curve of oxidation of
nickel with a lead coating [4] cannot be interpolated at
all; no model can be associated with the experimental
points. The authors of [2, 3] also give no approximation
for the exposure dependence that they obtained for the
intensity of the LEED pattern. All this was done in the
present paper. We show that a satisfactory agreement
between the theory and experiment can be obtained
assuming that the evolution processes on the surface
begin from the coalescence of a pair of diffusing ada-
toms. The grid of nanoclusters that arises in the process
of deposition on the surface is determined by the num-
ber of initial protopairs. Formally, the situation is as if,
during the entire process of condensation of adatoms,
the critical nuclei contain only one pair of adatoms.

STRANSKI–KRASTANOV THEORY
OF EVOLUTION PROCESSES

The adhesion of iron films to sulfided (100) surfaces
of semiconductors is stabilized owing to the continuous
segregation of sulfur through an ordered c (2 × 2) iron
layer. The stabilization of the process, as follows from
the similarity of dose characteristics, occurs also upon
oxidation of the (100) nickel surface; here, the move-
ment normal to the surface occurs inward. In both
cases, the key event is the formation of molecules such
as FeS2 and NiO2, e.g.,

(1)

Suppose that only the lightest adatoms (sulfur, oxy-
gen) participate not only in the transverse motion but
also in the movement along the interface, whereas the
migration of heavy atoms (iron, lead) is absent. Upon
the deposition of an iron film, diffusional motion in the
preliminarily adsorbed layer of sulfur atoms is initiated
and is accompanied by the floating of sulfur on top of
the free surface in the perpendicular direction. The dif-
fusion occurs according to the equation

(2)

Here, n is the concentration of adatoms per unit surface
area; D is the coefficient of atomic diffusion parallel to
the surface; τ is the lifetime of atoms on the surface
with respect to desorption; G(n) is the rate of genera-

Fe 2S+ FeS2.=

n∂
t∂

----- div nbF D∇ n–( )+ G n( ) n
τ
---.–=
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tion of adatoms on the surface; F is the elastic force
[12] due to the lattice-parameter dependence on the
film composition; and b is the mobility. The quantities
G(n) and F in Eq. (2) are considered to be functions of
the concentration n. According to reaction (1), the for-
mation of one sulfide bond that favors the adhesion of
the iron film (coating) to the sulfided semiconductor
substrate requires the simultaneous localization of two
sulfur atoms at one immobile iron atom. The nickel
oxide has a variable composition NiOx with x = 0.98–
1.7 and therefore [13] can be regarded as a solid solu-
tion of two compounds, namely, NiO and NiO2. Thus,
the probability of the independent localization of a pair
of oxygen atoms near one nickel atom is important for
the formation of the oxide film as well.

The homogeneous lattice chemical reactions, such
as the formation of complex secondary radiation
defects [14, 15], or oxidation or synthesis of molecules
(e.g., by Eq. (1)), satisfy the balance equation

(3)

In the two-dimensional case [11, 15–17], Eq. (3) can
lead to a bistability of the atomic coating, i.e., to its ten-
dency to be in one of two states with different steady-
state concentrations n. For this to occur, it is necessary
that the rate of generation G(n) of primary quasiparti-
cles be a nonlinear function of the concentration n.
Among the variety of open systems, objects of this type
occur quite frequently. Thus, the transition to bistable
solutions of the homogeneous balance Eq. (3) occurs,
e.g., in the case of heat-conducting [16] or optical [17]
systems, as well as upon radiation defect formation
[14, 15]. Such a structural phase transition can be due
to the fact that the formation of chemical bonds at the
initial and final stages of a reaction occurs at different
rates. For example, the formation of iron sulfide FeS
molecules is a process with a higher activation energy,
characterized by a smaller probability G1 than the prob-
ability of attachment (G2) of a sulfur atom to a layer
that already contains such molecules. This means that
G2 > G1 and that the curve of the G(n) function has the
form shown in Fig. 1 by the solid line. The existence of
several stages of oxidation was reliably established,
e.g., for the oxidation of nickel with oxygen [4] or sil-
ver with chlorine [5]; they were shown to include
(1) chemisorption of an oxidizer on the free surface,
(2) complete oxidation of the surface up to the forma-
tion of one or several monolayers of an oxide, and (3) a
slow thickening of the oxide film.

The multistage character of the reaction causes a
nonmonotonic reaction rate as a function of n, which
corresponds to a nonlinear G(n) dependence. As was
indicated above, Eq. (3) can have three solutions if G(n)
is nonlinear. Among the solutions shown in Fig. 1, cor-
responding to “sparse” (nl), intermediate (nc), and
“dense” (nh) states of the system of adatoms or other
quasiparticles, two extreme solutions represent stable

G n( ) n
τ
---.=
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states. In the intermediate range of concentrations nl <
n < nh, the balance Eq. (3) leads to bistability of the
homogeneous state of the system. The arising instabil-
ity of solutions of the diffusion Eq. (2) can be consid-
ered by analogy with bifurcations known from hydro-
dynamics [18].

Two regimes of the loss of stability of solutions of
differential equations are known from hydrodynamics,
which differ in their symmetry [18]. Their experimental
effects are quite various; for surfaces, they consist in
the formation of geometrical patterns of various shapes.
They are observed, e.g., on metallic electrodes upon
electropolishing [19] or in the form of local melting
regions on illuminated silicon [20]. The regime of iso-
tropic turbulence of the Qouette flow (e.g., in the space
between coaxial cylinders) corresponds in the case of
Eq. (2) to zero elastic force F = 0. This regime leads to
a transformation of closed isolines. Another regime that
admits a linear analysis of stability using the Lyapunov
criterion (see, e.g., [21]) is characterized by plane sym-
metry and corresponds to Poiseuille flow [18]. The
Lyapunov exponents transform a laminar flow into a
turbulent regime; a generalization of this law onto the
phase space determines a new characteristic time of the
system [22]. It is exactly the plane regime that is real-
ized upon growing iron films on the surface of semicon-
ductors such as Ge and GaAs. Upon the floating out of
the layer of sulfur atoms that passivates the boundary of
the semiconductor through the layer of iron atoms, the
concentration n is maximum at the boundary and falls
off to vanish at the free surface because of evaporation.
This kinetic state is described approximately by the set-
tling of a linear gradient ∂n/∂x = const. As the x axis, the
perpendicular to the surface plane was taken. By per-
forming a Fourier transform with respect to the longitu-
dinal coordinate y, which is oriented parallel to F

nl nc nh n

G1

G2

G(n)

Fig. 1. Schematic dependences of the incoming (G(n), solid
line) and outgoing (n/τ, dashed line) terms of the kinetic
Eq. (2) on the concentration of particles n. Along the hori-
zontal axis, stable (nl and nh) and unstable (nc) solutions of
the stationary homogeneous Eq. (3) are indicated; along the
vertical axis, the limiting values of G1 and G2 for the func-
tion G(n) are given.
[15, 18], we obtain the following expression for the lin-
ear addition to the steady-state concentration:

(4)

where k and ω are the wave vector and the frequency of
the wavelike disturbance.

In the same approximation, we represent the func-
tions G(n) and F(n) in the form of expansions in a small
addition δn:

(5)

Here, C is the coefficient of the linear expansion that is
determined by the elastic force [12] that is due to the
effect of the irradiating beam of particles, and the fre-
quency ν is defined as

(6)

Substituting Eqs. (4)–(6) into Eq. (2), we obtain (for
details, see [15]) that a longitudinal wave is established
along the surface; for a constant gradient ∂n/∂x, it is
characterized by the frequency ω = knCb and damping
γ = k2D – ν. Therefore, the condition sufficient for the
solutions to Eq. (2) to be stable in the Lyapunov crite-
rion sense is a significant sink of particles, i.e.,

(7)

Condition (7) is fulfilled in the region of the extreme
roots nl and nh, where the chemical lattice reaction
occurs steadily and uniformly. If the sink of particles is
insufficient, so that ν > 0, then a negative damping is
possible, γ = k2D – ν < 0. This occurs in the central por-
tion of Fig. 1, where, in a certain region near the inter-
mediate root of Eq. (3), the straight line n/τ has a slope
that is smaller than that of the G(n) curve. If the stabil-
ity criterion (7) is violated, the amplitude A(t) increases
in accordance with the Lyapunov exponent [22]
because of the negative damping γ. However, this
growth is limited by the nonlinear nature of Eq. (2). The
equation for the squared modulus of the amplitude A(t)
averaged over the wave period, which describes its sat-
uration, can be obtained by the Landau method [18].
Certainly, there are restrictions inherent in this method,
but the comparison with the experiment [2–4] (see
below) indicates that apparently all of these restrictions
are met. It is the real boundary of stability found from
the Lyapunov criterion [21, 22] that should be deter-
mined by that unique type of disturbances and by the
same frequency ω(k) that yield zero damping (γ = 0). In
this case, we can expand the averaged temporal deriva-
tive of |A|2, i.e., 〈∂|A|2/∂t〉 , in A, in which, for the reasons
that were indicated in [18], it is sufficient to retain only
a few lowest terms that do not vanish upon averaging.
The terms of odd orders in amplitude A necessarily
contain a periodic factor and vanish upon averaging.

δn A t( ) i ky ωt–( ){ } f x( ),exp=

F n( ) Cδn, G n( ) 1
τ
--- ν+ 

  δn.= =

ν G∂
n∂

-------
1
τ
---.–=

1
τ
--- G∂

n∂
-------.≥
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Among the terms of even, e.g., fourth, orders in A, there
are terms such as A2A*2 = |A|4, which do not vanish
upon averaging.

Note here, returning to the restrictions of the
method, that the above temporal derivatives of the type
〈∂|A|2/∂t〉  are direct analogs of the “probabilities of tran-
sition per unit time” that are calculated in perturbation
theory on the basis of the nonstationary Schrödinger
equation of quantum mechanics [23]. In this sense, the
Landau method is applicable to nondegenerate sys-
tems. At a temperature close to absolute zero, any sys-
tem is in a nondegenerate state. For open systems, the
analog of temperature appears to be the intensity of an
external action, so that the theory that is developed here
is applicable for the case of negligibly small external
flows. In economics [8], the conclusions that will be
made below may be of interest in the area of insufficient
financing. Our interest in the squared modulus |A|2 in
this case is related to the fact that the probability of coa-
lescence of a pair of atoms per unit area or of the for-
mation of other similar microstructures, e.g., divacan-
cies, is proportional to the statistical weight, i.e., the

number of combinations  = n(n – 1)/2. By averaging
the expansion of this number into a series in the ampli-
tude A, we obtain precisely |A|2, and the rate of genera-
tion of sulfide bonds, molecules of FeS2 or NiO2, or
divacancies in silicon wafers is equal to

(8)

This rate is given by the average temporal derivative
from the quantity of this type. By writing the Landau
constant α, which was introduced in [18] in a similar
expansion, through the limiting concentration of dou-
ble bonds N0W, we obtain

(9)

where τl is the characteristic time determined by the
Lyapunov exponent [22].

It was shown previously [11, 15] that coarse-scale
fluctuations δn are settled in the system after this time,
which lead to the evolution of the structure of semicon-
ductor wafers and, in some cases, can be observed in
the form of characteristic patterns on the surface. The
solution to Eq. (9) is the exposure dose characteristic of
the evolution type

(10)

Scaling considerations permit us to unambiguously
correlate the parameters of deposition of the films in
[2–4] or burning out of molten regions in [20] with the
theoretical constants that describe them; actually, this
has already been done in Eq. (10). Since Eq. (9) is a
first-order differential equation, its integration results

Cn
2

NW∂
t∂

----------
1
2
--- A 2∂

t∂
----------- .=

NW∂
t∂

----------
NW

τ l

------- 1
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in a single constant, which is designated in Eq. (10) as
exp(t0/τl). There are grounds to believe that the con-
stant t0 that occurs in this equation is precisely that time
that is required for the kinetic energy that is necessary
to “swing” a corresponding fluctuation to be accumu-
lated. For example, a delay t0 can take place between
the beginning of the bombardment of the surface with
iron atoms and the floating out of sulfur atoms from the
surface because of the inertia of the latter ones. The
delay time t0 may be considered independent of the
intensity of the external action I, in particular, of the
density of the flux of atoms from the outside. Note the
dependence of the evolution time τI on the intensity of
action I. Taking into account what we said above about
the smallness of the external action I, we perform an

expansion of the reciprocal time into a series in I:  =
ξ + ηI, where ξ and η are positive phenomenological
constants. To complete the consideration of the Stran-
ski–Krastanov theory of evolution processes, we note
that it is exactly that mechanism that is realized upon
growth of lateral structures such as quantum filaments
and quantum dots. They are formed via the diffusion
mechanism of the development of a single monolayer,
which is accompanied by decomposition through the
Stranski–Krastanov mechanism. On the contrary, for
growing superlattices, a vicinal surface should be used
[24], and, in this case, thermal diffusion leads to the
destruction of the growth steps.

ANALYSIS OF EXPERIMENTAL RESULTS

The structure of iron films deposited on passivated
surfaces of semiconductors was controlled in [2, 3] by
the method of low-energy electron diffraction (LEED).
The above theory permits one to describe the character-
istic evolution type of the exposure characteristic con-

τ I
1–
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Fig. 2. Time variation of the intensity of the [1/2, 1/2]
S/Fe(100) diffraction reflection in the process of iron depo-
sition at 150°C. The experimental points are given accord-
ing to [2]; the curve was obtained by the least-squares
method using Eq. (10). The adjustable parameters are a =
t0/τl = 1.66 and b = 1/τl = –0.37 min–1.



238 VOŒTENKO
structed using LEED investigations. Upon oxidation of
pure and lead-coated surfaces of nickel [4], the intensi-
ties of the oxygen Auger signal were measured, which
were proved to depend on the exposure time too. In the
latter case, the lead film also was subjected to a partial
oxidation; the process of oxidation consisted in the dif-
fusion of oxygen into the space between the nickel and
the lead films. On the whole, the situation was the same
as upon the deposition of iron films on the sulfided sur-
face. A satisfactory agreement between the theory and
the experiment indicates the nonuniform reconstruction
of semiconductor and metallic surfaces in the process
of deposition.

Figure 2 displays the intensity of the signal of dif-
fraction reflections from a square lattice of sulfur atoms

0 5 10 15 20 25

0

2

–2

–4

–6

t, min

ln(N0/N – 1)

Fig. 3. The height of the oxygen Auger peak as a function of
the time of oxygen deposition onto a pure nickel surface
(100). The experimental points are given according to [4];
the curve was obtained by the least-squares method using
Eq. (10). The adjustable parameters are a = t0/τl = 2.77 and
b = 1/τl = –0.33 min–1.
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Fig. 4. Same as in Fig. 3 for the case of oxygen deposition
onto a (100) surface coated with lead. The adjustable param-
eters are a = t0/τl = 1.84 and b = 1/τl = –0.038 min–1.
on the surface of iron (S/Fe(100) [1/2, 1/2] LEED
spots) in the process of iron deposition at a temperature
of 150°C according to [2]. In the process of deposition
of iron and floating of sulfur atoms, a chain is formed
around pairs of sulfur atoms, and, in this way, a cluster
of the square lattice of sulfur atoms is formed. We
assume that the brightness of the S/Fe(100) [1/2, 1/2]
LEED spots is proportional to the number of nanoclus-
ters that are formed in this way, i.e., to the number of
the initial pairs (FeS2 molecules). The straight line in
Fig. 2 represents the fitting of the dose dependence of
the above diffraction reflections using Eq. (10). In the
caption to Fig. 2, we give the numerical values of the
coefficients that describe the straight line y = a + bt (fit-
ting parameters); the corresponding evolution time τl =
–1/b for Fig. 2 turned out to be τl = 2.70 min. It was the
fulfillment of the conditions of the theory of partially
inhomogeneous reconstruction of the surface (see
Eq. (10)) that, in our opinion, predetermined the reten-
tion of magnetic properties of the films [2]. It is of inter-
est that this high quality was obtained at a moderate
temperature of deposition T = 150°C, which turned out
to be possible due to the advantages of the technique of
sulfiding [11]. The adjustable delay time proved to be
t02 = 4.48 min. The magnetic structure of the film is
controlled by the formation of sulfide pairs inside the
film. The division of the entire iron layer into domains
with a low (nl) and a high (nh) concentration of sulfur
explains the retention of the magnetic properties of the
film upon its saturation with sulfur. In this case, the
magnetic domains become closed through the regions
with a low concentration of sulfur ni.

Figures 3 and 4 display dose characteristics of the
processes of oxidation of the pure and lead-coated sur-
faces of nickel. The straight lines represent the fitting of
the experimental data points (squares) obtained by
Auger spectroscopy using Eq. (10) by the linear least-
squares method. The evolution time τl = –1/b was
obtained to be 3.00 min for the pure surface (Fig. 3) and
26.3 min for the surface coated with lead (Fig. 4). The
delay times t0 also differ by about an order of magni-
tude, namely, t01 = 8.3 min for the pure surface and t02 =
48.4 min for the surface coated with lead. The good
agreement between the experiment and the theory
developed, just as in the case of iron films, indicates the
high quality of the films; oxygen films were deposited
at room temperature. The difference in the times for the
two different regimes of oxidation characterizes the
protecting effect of the lead coating and also confirms
the adequacy of the theory.
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Abstract—The kinetics of sorption of atomic hydrogen by pyrolytic, quasi-single-crystal, and RGT commer-
cial-grade graphite was studied. The processes of sorption and subsequent thermal outgassing are shown to pro-
ceed in a similar manner for all the three types of graphite. Thermal desorption spectra obtained during linear
heating of hydrogen-saturated samples have two peaks. A mathematical model including features of the thermal
desorption kinetics that are observed when heating is terminated is suggested. According to this model, two
types of traps with binding energies of 2.4 and 4.1 eV are present in graphite. The physical justification of the
model is given. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Over recent years, most of studies on hydrogen–
graphite interaction have been concerned with applica-
tions, namely, with the use of graphite for protecting
the first wall of fusion reactors. Therefore, interactions
of several-keV hydrogen ion beams with commercial-
grade graphites have largely been considered. A large
body of both experimental and theoretical data is avail-
able in this field [1–12]. In these works, emphasis has
been given to chemical erosion of the graphite surface
[8, 13–18]. As to desorption, only that of hydrocarbons
has been studied extensively in spite of the fact that the
amount of hydrogen incorporated into hydrocarbons
leaving the surface during thermal desorption is much
smaller than the amount of hydrogen desorbed as H2
molecules. In addition, in most of the studies it is
assumed that atomic hydrogen–graphite interaction is a
purely surface process and the possibility of hydrogen
dissolution in graphite is usually ignored. We believe
that, when graphite is exposed to an atomic hydrogen
flux, the possibility of hydrogen dissolution may mark-
edly increase in comparison with the situation when
equilibrium molecular hydrogen is involved. At least
some hydrogen atoms may occur beneath the adsorbent
surface even at room temperature. Unfortunately, the
simulation of atomic hydrogen sorption by graphite
with volume processes taken into account has been
reported only in two of the works cited above [17, 18].

As was noted, most of sorbed hydrogen molecules
leave graphite as H2 molecules as the temperature rises.
Available literature data on the kinetics of this process
are, however, scarce and refer mostly to the estimation
of the number of hydrogen molecules from thermal
desorption spectra (TDS). The only attempt to deter-
mine the energy of activation of desorption was based
on the a priori assumption that this process is of a dis-
sociative nature [8]. Therefore, is was the aim of this
work to determine the kinetic and energy parameters of
desorption processes that take place after the graphites
1063-7842/01/4602- $21.00 © 20240
have been irradiated by atomic hydrogen. Based on the
kinetic information, one can develop models of pro-
cesses occurring in this system and, in particular, sepa-
rate surface and volume effects contributing to atomic
hydrogen sorption.

MATERIALS

Commercial-grade RGT graphite (ρ = 2.20–
2.26 g/cm3) contains about 7.5 at. % of titanium and is
produced by unidirectional hot pressing of carbon–tita-
nium powder [19]. Most of the RGT grains are disk-
shaped and lie parallel to the basal plane of the graphite
lattice. The mean grain size is about 10 µm.

Pyrolytic graphite is of density ρ = 2.186 g/cm3. On
a microscale, it has a layered structure with a spacing of
0.5–1.0 µm in the growth (c-axis) direction because of
the step growth kinetics. We studied two types of pyro-
lytic graphite that differed in temperature of final
annealing: true pyrolytic graphite (PG) and quasi-sin-
gle-crystal graphite (QSCG). The former looked like
commercial-grade graphite with a rough surface.
QSCG had a much smoother and shiny surface, which
indicates its higher structural order.

EXPERIMENTAL

The sorption/desorption kinetics was studied with
thermal desorption spectrometry. Graphite samples
were made in the form of ribbons measuring 1 × 40 ×
0.5 mm. The surface of the ribbon was parallel to the
basal graphite plane. The sample was attached to
current leads and placed into a vacuum chamber.
The residual (mainly hydrogen) pressure was kept at
10–8 torr. The temperature, which can be varied accord-
ing to a specified law, was measured with a W/WRe
thermocouple. The desorbed hydrogen was detected by
a magnetic sectorial mass spectrometer. Prior to sorp-
tion experiments, the samples were annealed for a long
001 MAIK “Nauka/Interperiodica”
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time at 1200°C. At the end of annealing, the tempera-
ture was momentarily raised to 1400°C.

Purified hydrogen was supplied to the chamber
through a diffusion filter. Atomization was carried out
when the gas passed near a 100-µm-diam. tungsten fil-
ament heated to 2500°C. The filament was arranged
parallel to the sample at a distance of 5–8 mm so that
the atomic hydrogen flux struck the surface parallel to
the basal plane of the sample. The irradiation dose was
calculated with regard for the inlet hydrogen pressure,
atomization yield, and mutual arrangement of the sam-
ple and the atomizer.

The probability of hydrogen atomization on tung-
sten heated to 2100°C was taken equal to 0.3 [20]. Dur-
ing exposure, the hydrogen pressure was 10–2 torr. The
flux of hydrogen atoms toward the front side of the
sample was estimated at 5 × 1013 H0/(cm2 s) in view of
the experiment geometry.

EXPERIMENTAL RESULTS

Unlike the RGT samples [21], the PG and QSCG
samples did not sorb molecular hydrogen at pressures
below 5 torr and temperatures below 600°C. During
linear heating, noticeable desorption of H2 was
observed only after these graphites had been irradiated
by atomic hydrogen. A typical postirradiation TDS for
the PG is presented in Fig. 1. For the other types of
graphites, the spectra are similar. No marked differ-
ences were also observed in the atomic hydrogen sorp-
tion kinetics. Dependences of the sorbed hydrogen
quantity on the sorption temperature and irradiation
dose for all the three graphites are much the same. The
structure of the graphites and their purity seem to insig-
nificantly affect the sorption/desorption kinetics with
atomic hydrogen involved.

Two TDS peaks at 850 and 1250°C in Fig. 1 are
related to hydrogen release from two states with differ-
ent binding energies. The temperatures of the desorp-
tion peaks were independent of the initial hydrogen
concentration, indicating the first order of the desorp-
tion kinetics. If heating is linear and the kinetics is of

the first order, ln(α/ ) should vary linearly with
Ed/kTm (α is the rate of heating, Tm is the temperature of
the desorption maxima, Ed is the energy of activation of
desorption, and k is the Boltzmann constant) [22].
From the slope of this dependence, one easily obtains
the energy of activation of desorption. For the first
state, the energy of activation estimated for three rates
of heating was found to be 2.4 eV. For the second state,
the energy of activation can be estimated only roughly,
since the temperature of heating was close to that of the
second desorption peak (at repeated heating to higher
temperatures, the sample rapidly broke down). The
value of Ed for the second state was evaluated at about
4 eV. Note that the above energies of activation were

Tm
2
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obtained under the assumption that hydrogen is present
only on the surface.

In the next series of experiments, the sorption con-
ditions were identical, but the final heating tempera-
tures were different (Fig. 2). When heating was termi-
nated (Fig. 2, curves 1–4), the desorption rate began to
fall sharply, the time of fall being almost independent
of the final temperature of heating. Within 10–20 s, the
desorption rate decreased to several percent of its max-
imum; i.e., hydrogen release was nearly completely
stopped. The desorption rate sharply decreases in spite
of the fact that the sample still contains a large amount
of hydrogen, which is released at a subsequent rise in
the temperature (Fig. 3, curves 1–3). In the experiments
the results of which are illustrated in Fig. 3, the sample
was first heated to some intermediate temperature,
which was kept for 45 s, and then heating was contin-
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Fig. 1. Typical TDS of PG irradiated by hydrogen atoms.
Linear heating with a rate of 25 K/s.
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Fig. 2. TDS obtained after sorption of H0 when linear heat-
ing was terminated at different temperatures. PG, heating
rate 25 K/s.
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ued at the same rate to 1200°C. After the second heat-
ing, the remaining hydrogen was totally released, its
amount being practically the same as in the case when
it was desorbed at similar temperatures but under con-
tinuous heating. The kinetic characteristics of hydrogen
release also remained unchanged. These features were
typical of all three graphites.

Such an unusual desorption kinetics cannot be
explained in terms of classical desorption from surface.
For the first-order desorption kinetics, when heating is
stopped, the desorption rate must decrease exponen-
tially with a time constant proportional to exp(–Ed/kT);
hence, at Ed = 2.4 eV, the rate of fall at 600°C and
800°C would differ by several orders of magnitude.
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Fig. 3. TDS obtained after sorption of H0 when linear heat-
ing was first terminated at different temperatures and then
continued to 1200°C. PG, heating rate 25 K/s.
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Fig. 4. TDS of PG irradiated by ~200-eV H+ ions. Linear
heating was terminated at 1000 and 1200°C, heating rate
25 K/s.
It should be noted that the unusual hydrogen desorp-
tion kinetics was also observed after the graphites had
been irradiated by ~100-eV hydrogen ions. The hydro-
gen was desorbed in the same temperature interval; the
desorption rate sharply dropped after heating had been
terminated; and after the second rise in the temperature,
the remaining hydrogen was entirely desorbed. The
only difference was the absence of two distinct peaks
(Fig. 4).

DISCUSSION

An adequate kinetic model is the first step toward
understanding basic processes underlying gas–solid
interaction. The model of choice must take into consid-
eration the following. Upon irradiation, hydrogen is
implanted into graphite part way down the surface (tens
of nanometers for ion energies of several hundred elec-
tron volts [6]), and mass transfer conclusively plays a
part in the outgassing process. Since the process kinet-
ics are similar after irradiation by atoms and by ions,
one can suggest that a considerable fraction of hydro-
gen atoms penetrates into the volume of the sample;
hence, the outgassing kinetics also includes mass trans-
fer in the bulk of the graphite. Note, however, that all
the features of the hydrogen evolution kinetics (for
example, the presence of two peaks) cannot be covered
by the simple diffusion model.

Thus, graphite outgassing should be described in
terms of at least three processes two of which are
strongly temperature-dependent (i.e., have a large
energy of activation) and show up as the TDS peaks.
The third one, which is responsible for a decrease in the
desorption rate when heating is stopped, must depend
on temperature only slightly. This may be hydrogen
diffusion between adjacent graphite layers [23]. This
process requires a very small activation energy largely
because these layers are loosely bonded and spaced at
more than 3 Å apart. From our estimates [24], the
energy of activation of diffusion in RGT graphite is no
more than 0.5 eV. Therefore, the following model
seems to be the most plausible. During sorption of the
atoms or ions, a hydrogen-saturated layer of some
thickness forms beneath the surface and two sorts of
traps arise in the graphite. These traps, having large
energies of activation, capture the hydrogen. Upon
heating, the hydrogen escapes from the traps into the
mobile phase, with its migration over the sample being
accompanied with reverse trapping. It is also assumed
that the rate of desorption from the surface far exceeds
the rate of the other processes and is not the limiting
stage of outgassing.

To mathematically represent this model (diffusion
with reverse capture by traps of two sorts), we used a
set of differential equations from our previous work
[25].

Calculations which follow substantiate the determi-
nation of the activation energy of hydrogen detrapping
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
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using the slope of the ln(α/ ) vs. 1/Tm curve. Within
the model suggested, we evaluated TDS for linear heat-
ing with various rates. The energy of hydrogen evolu-
tion from traps of the first sort was assumed to be
2.4 eV, and the diffusion coefficient was varied
between 10–7 and 10–4 cm2/s. It turned out that the slope

of the ln(α/ ) vs. 1/Tm curve obtained in the model
was practically coincident with that of the curve con-
structed from experimental data (Fig. 5). Therefore, the
value of 2.4 eV was taken as the energy of hydrogen
evolution from traps of the first sort. Also noteworthy is
that the energy of activation of detrapping can be deter-
mined without knowing the exact value of the diffusion
coefficient. As the diffusion coefficient value, we took
the one obtained in experiments on sorption of molec-
ular hydrogen by RGT graphite: D = 10–6 cm2/s [24].
As follows from calculations, with such a diffusion
coefficient and the saturated layer thickness of the order
of the RGT grain size, the falls in the desorption curves
when heating is switched off are adequately described
if unactivated capture by traps of the first sort has a time
constant of 25 s–1.

Capture by traps of the second sort must be of an
activation nature, since transitions from one state to the
other were observed at none of the rates and final tem-
peratures of heating used. The model adequately
describes both thermal desorption under linear heating
to 1200°C and thermal desorption falls when heating is
terminated (Fig. 6). The parameter values used were as
follows: preexponential in the expression for diffusion
coefficient D0 = 10–6 cm2/s, energy of activation of dif-
fusion ED = 0, preexponentials in trapping rate con-
stants for traps of the first and second sort r1 = 25 and
r2 = 7.0 × 107 s–1, energies of trapping activation for
traps of the first and second sort  = 0 and  =
2.0 eV, preexponentials in detrapping rate constants for
traps of the first and second sorts b1 = 2.0 × 1011 and
b2 = 5.0 × 1013 s–1, and energies of detrapping activation
for traps of the first and second sort  = 2.4 and  =
4.1 eV.

Note that the vast majority of studies where hydro-
gen ion–graphite interaction was simulated points to
the necessity of considering hydrogen capture by traps
localized in the bulk of graphite. The binding energies
of trapped hydrogen vary in wide limits: from 0.5 to
4.5 eV [1–3, 5, 7–11, 26–31].

The nature of the traps and specific sorption/desorp-
tion processes still remains unclear. Dangling bonds of

carbon atoms in the ( ) and ( ) planes seem to
be the most probable sites of hydrogen sorption. Linear
defects like dislocations (dangling boundaries of
graphite layers) may readily form in graphite because
of creeping of one layer on another during pyrolysis.

The C–H bond energy on the ( ) graphite plane is

Tm
2

Tm
2
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Eb1
Eb2

1010 1120

1010
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higher than on the ( ) plane by 0.8 eV [32]. Thus,
the difference in bond energy per molecule for the dif-
ferent planes at the boundary of a graphite layer is
1.6 eV. This value is in good agreement with the above
results.

We believe that hydrogen capture by the traps of the
first or the second sort can be related to the production
of C–H bonds with carbon atoms belonging to edge dis-

locations on the ( ) or ( ) planes, respectively,
in the bulk of graphite. During sorption, transport of
hydrogen in the form of atoms saturates dangling bonds
of the edge dislocations to the maximum possible
extent. During thermal desorption, the hydrogen is
detrapped in the form of molecules and migrates along
graphite layers until it reaches the crystallite boundary

1120

1120 1010

ln(α /T2
m)

–10

–11

–12

–13
9.0 9.5 10.0 10.5 11.0 11.5

1/kTm

2.36 eV
2.38 eV

2.25 eV

2.25 eV

Fig. 5. ln(α/ ) vs. 1/Tm for the first desorption peak

within the diffusion–recapture model. D = (d) 10–7, (h)
10−6, (m) 10–5, and (+) 10–4 cm2/s.
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and leaves the material through the pore network, grain
boundaries, or other macrodefects.

It should be noted that this is only a possible physi-
cal interpretation of the mathematical model. Basically,
thermal desorption spectrometry cannot elucidate the
physical nature and location of the traps. In layered
structures like graphite, sorption/desorption processes
proceed in a rather unusual manner. For example, for-
eign atoms and molecules may be accumulated in large
amounts between graphite layers [33]. Unfortunately,
intercalation in the hydrogen–graphite system has yet
received little attention. One can assume, however, that
hydrogen atoms falling between graphite layers recom-
bine to form molecules and become “blocked” in inter-
planar gaps. In this case, hydrogen release would
require either molecule dissociation or severe deforma-
tion (up to local destruction) of the graphite plane;
hence, energy must be spent to activate desorption. To
confirm the validity of the above assumptions, atomic-
hydrogen-induced modifications of the graphite surface
must be examined.

CONCLUSION
Thus, when atomic hydrogen interacts with PG,

QSCG, and commercial-grade RGT graphites, sorp-
tion/desorption processes are virtually independent of
the material type, being governed by processes in the
bulk. Hydrogen release during heating is well described
by the mathematical model including diffusion with
reverse capture by traps of two sorts. Physically, the
traps are treated as dangling bonds of edge dislocations

on the ( ) and ( ) planes. Diffusion of atoms
goes both along and across graphite layers, while
molecular diffusion takes place in interplanar gaps
only.

REFERENCES
1. W. Moller, J. Nucl. Mater. 162–164, 138 (1989).
2. K. L. Wilson and W. L. Hsu, J. Nucl. Mater. 145–147,

121 (1987).
3. R. A. Causey, J. Nucl. Mater. 145–147, 151 (1987).
4. P. G. Fischer, R. Hecker, H. D. Rohrig, and D. Stover,

J. Nucl. Mater. 64, 281 (1977).
5. K. Nakayama, S. Fukuda, T. Hino, and T. Yamashina,

J. Nucl. Mater. 145–147, 301 (1987).
6. W. R. Wampler and C. W. Magee, J. Nucl. Mater. 103,

509 (1982).
7. G. Hansali, J. P. Biberian, and M. Bienfait, J. Nucl.

Mater. 171, 395 (1990).
8. V. Phyllipps, E. Vietzke, M. Erdweg, and K. Flaskamp,

J. Nucl. Mater. 145–147, 292 (1987).

1120 1010
9. S. Fukuda, T. Hino, and T. Yamashina, J. Nucl. Mater.
162–164, 997 (1989).

10. D. K. Brice, Nucl. Instrum. Methods Phys. Res. B 44,
302 (1990).

11. R. A. Causey, M. I. Blaskes, and K. L. Wilson, J. Vac.
Sci. Technol. A 4, 1189 (1986).

12. D. Federici and C. H. Wu, J. Nucl. Mater. 186, 131
(1992).

13. P. C. Stangeby, O. Ausiello, A. A. Haasz, and B. L. Doyle,
J. Nucl. Mater. 122–123, 1592 (1984).

14. P. Hucks, K. Flaskamp, and E. Vietzke, J. Nucl. Mater.
93–94, 558 (1980).

15. J. W. Davis, A. A. Haasz, and P. C. Stangeby, J. Nucl.
Mater. 155–157, 234 (1988).

16. I. S. Youle and A. A. Haasz, J. Nucl. Mater. 182, 107
(1991).

17. T. Tanabe and Y. Watanabe, J. Nucl. Mater. 179–181, 231
(1991).

18. M. Balooch and D. R. Olander, J. Chem. Phys. 63, 4772
(1975).

19. A. P. Zakharov, Report on the Contract N 7/4 between
Sintez NTO, St. Petersburg, Russia and Fusion Centre
(Moscow, 1995).

20. J. Smith and W. Fait, in Interaction of Gases with Sur-
faces (Mir, Moscow, 1965), p. 362.

21. E. Denisov, T. Kompaniets, A. Kurdyumov, and
S. Mazaev, J. Nucl. Mater. 233–237, 1218 (1996).

22. D. Woodruff and T. Delihar, Modern Techniques of
Space Science (Cambridge Univ. Press, Cambridge,
1986; Mir, Moscow, 1989).

23. B. M. U. Scherzer, J. Wang, and W. Moller, Nucl.
Instrum. Methods Phys. Res. B 45, 54 (1990).

24. E. A. Denisov, T. N. Kompaniets, A. A. Kurdyumov, and
S. N. Mazaev, J. Nucl. Mater. 212–215, 1448 (1994).

25. E. Denisov, T. Kompaniets, A. Kurdyumov, and
S. Mazaev, Plasma Devices Op. 6, 265 (1998).

26. E. Hoinkis, J. Nucl. Mater. 182, 93 (1991).
27. W. R. Wampler, B. L. Doyle, R. A. Causey, and K. Wil-

son, J. Nucl. Mater. 176–177, 983 (1990).
28. J. Redmond and P. L. Walker, J. Chem. Phys. 64, 1093

(1960).
29. A. P. Zakharov, Processes of Accumulation and Reemis-

sion of Hydrogen Isotopes in Carbonic Materials on
Interaction with Ion and Plasma Streams (Report) (Inst.
Fiz. Khim. Ross. Akad. Nauk, Moscow, 1991).

30. S. L. Kanashenko, A. E. Gorodetsky, V. N. Chernikov,
et al., J. Nucl. Mater. 233–237, 1207 (1996).

31. V. N. Chernikov, A. E. Gorodetsky, S. N. Kanashenko,
et al., J. Nucl. Mater. 217, 250 (1994).

32. J. P. Chen and R. T. Yang, Surf. Sci. 216, 481 (1989).
33. S. A. Solin and H. Zabel, Adv. Phys. 37, 87 (1988). 

Translated by V. Isaakyan
TECHNICAL PHYSICS      Vol. 46      No. 2      2001



  

Technical Physics, Vol. 46, No. 2, 2001, pp. 245–248. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 71, No. 2, 2001, pp. 117–119.
Original Russian Text Copyright © 2001 by Andreeva, Kolgatin.

                                                            

EXPERIMENTAL INSTRUMENTS AND TECHNIQUES

       
On the Possibility of Determining Spalling Strength 
of Metals in a Submillisecond Range from Experiments 

with a Penetrating Radiation Effect on a Target
T. A. Andreeva and S. N. Kolgatin

St. Petersburg State Technical University, ul. Politekhnicheskaya 29, St. Petersburg, 195251 Russia
e-mail: Kolgatin@spes.stu.neva.ru

Received December 1, 1999

Abstract—The strength of a metal under the action of short pulses is of great interest. Meanwhile, the problem
concerning the magnitude of a tensile stress that leads to cleavage has not yet been solved theoretically. In this
paper, an attempt is made to clarify, using the mathematical simulation method, the parameters of pulse radia-
tion that can yield the clearest answer to the question of which of the existing theories of strength works best
in metallic materials subjected to short pulses of micro- or nanosecond range. Recommendation are given on
the optimal experimental design. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The strength of a metal under the action of short
pulses of micro- or nanosecond range is of great practi-
cal interest. Meanwhile, the question of the magnitude
of a tensile stress that leads to cleavage has not yet been
solved theoretically. There are facts [1] that favor the
kinetic theory of strength [2]. Some authors [3] believe
that the strength attainable in the submillimeter range is
independent of the pulse duration and is a result of
motion of elementary carriers of plastic deformation.
The final choice of this or that theory must be made on
the basis of an analysis of additional experimental data.
It would be convenient to extract such data from exper-
iments on the effects of pulse penetrating radiation on a
flat plate using the interferometric method of measur-
ing the velocity of motion of the back surface of a tar-
get. In this case, the understanding of gas-dynamics
processes that occur upon the absorption of energy in
the target would favor the correct interpretation of the
results obtained. In this work, we made at attempt,
using the mathematical simulation method, to clarify
the variation of which parameters of pulse radiation can
yield the clearest (from the viewpoint of the problem
stated) results. Recommendations are given on the opti-
mal experiment design.

RESULTS AND DISCUSSION

There exist numerous types of devices based on
pulsed sources of penetrating radiation that can be
employed for generating compression waves in metal-
lic targets (relativistic electron beams [4], lasers [5],
X-ray sources based on Z pinches [6], etc.). The radia-
tions differ in penetrating power, which can arbitrarily
be characterized by parameters such as the average
mass coefficient of absorption χ, the pulse duration
1063-7842/01/4602- $21.00 © 20245
τpulse, and the power of the heat flux on the surface q0.
By varying one or two of these parameters, we can
change (in certain limits) the criterion of momentari-
ness [7] and, consequently, the amplitude of the shock
pulse in metal. Of practical interest is the dependence
of the time for which the metal exists in the state of ten-
sion on the pulse parameters, as well as the intervals of
χ, τpulse, and q0 in which one can distinguish the exact
instant at which spalling occurs.

We describe the formation and propagation of a
compression wave in the target by a set of equations of
gas dynamics, which, in the Lagrangian coordinates s =

(ξ)dξ (where ρ is the density, x is the Euler coordi-

nate, and ξ is the integration variable), has the follow-
ing form:

(1)–(3)

(4), (5)

(6)–(8)

Here, t is the time; v is the velocity; p, the pressure, ε,
the internal energy; W, the heat flow due to thermal con-
ductivity; Q, the specific energy contribution; k and λ,
the thermal diffusivity and thermal conductivity coeffi-
cients, respectively; fp and fε, the thermal and caloric
equations of state, respectively, taken from [8]; and fλ,
the dependence of the thermal conductivity on the den-
sity and temperature, which is defined as in [7], using
the dependences from [9, 10]. The energy contribution
Q was calculated by the Bouguer law

(9)

ρ
0

x∫

∂ 1/ρ( )
∂t

----------------
∂v
∂s
-------,

∂x
∂t
------ v ,

∂v
∂t
------- ∂p

∂s
------,–= = =

∂ε
∂t
----- p

∂v
∂s
-------– ∂W

∂s
--------– Q s t,( ), W+ k

∂T
∂s
------,–= =

p = f p ρ T,( ), ε = f ε ρ T,( ), k = ρ f λ ρ T,( ).

Q q0χ χs–( ) f t,exp=
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where q0 is the density of the energy flux on the surface;
χ is the mass-averaged absorption coefficient (a constant
quantity); and ft is a function of the temporal shape of the
pulse, which approximately was assumed to be

(10)

The initial conditions for the above set of equations
had the form

(11)

On the surface (s = 0), the following boundary con-
ditions were used:

(12)

f t

1 1 t
tpulse
----------– , t– 2tpulse≤

0, t 2tpulse.>
=

v 0 s,( ) 0; p 0 s,( ) p0;= =

ρ 0 s,( ) ρ0; T 0 s,( ) T0.= =

p t 0,( ) p0, W t 0,( ) σSt T4 T0
4–( ),= =

5 4
3

2

1

–8 –6 –4 –2 0 2 4 6 8

30

20

10

0

–10

p, kbar

x, mm

Fig. 1. Distribution of pressure over the thickness of the
plate at various time moments.
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Fig. 2. Velocity fields inside the target at various time
moments.
where σSt is the Stefan–Boltzmann constant and T0 is
the initial temperature.

On the second surface (s = sM), we have

(13)

The set of gas-dynamics equations (1)–(13) was
solved by the finite-difference method [11]. To provide
the stability of calculations, a linear artificial viscosity
was used. As a sample for the investigation, a copper
plate 7 mm thick was taken. In order to answer the
question posed at the beginning of the paper, the ampli-
tude and the duration of the energy pulse, as well as the
magnitude of the mass absorption coefficient, were
varied.

Figure 1 displays the evolution of a compression
wave in the plate under the effect of a radiation pulse
with the parameters tpulse = 1 µs, χ = 2.8 m2/kg, and q0 =
6 × 1013 W/m2. Curve 1 refers to the time moment t =
0.5 µs (radiation maximum); curve 2 refers to the
instant tpulse = 1.0 µs (the end of the pulse); curve 3, to
the instant tpulse = 2.0 µs; curve 4, to tpulse = 2.6 µs; and
curve 5, to tpulse = 3.1 µs. At the initial stage, there is
formed a pressure peak at the wall (curve 1), which then
propagates to the target depth (curves 2, 3). After the
compression pulse emerges onto the free back surface
of the target, a rarefaction region is formed near it
(curve 5). The size of the rarefaction region is virtually
independent of the parameters of the radiation pulse
such as tpulse and χ, whereas the amplitude of the tensile
stress is mainly dependent on q0. The maximum tensile
stress and the rate of deformation are observed at a
point that is located about 2.0 mm from the back sur-
face (this corresponds to the distance passed by the
sound in a period equal to half the pulse duration).

The pressure in the plate can be estimated from the
velocity of motion of the back surface, which in turn
can be measured by the interferometric methods [12].

The velocity fields at various time moments for the
variant under consideration are shown in Fig. 2. At the
initial stage, an evaporated gas layer is stripped off
from the front surface of the target; the velocity of this
layer in the coordinate system chosen is negative,
whereas in the condensed medium a flow is formed that
is directed toward the radiation flow (curves 1, 2). As
the shock wave propagates into the metal, the velocity
of the rear surface first increases gradually (curves 3, 4)
and then decreases (curve 5).

The allowance for the fracture of the target material
was performed according to both above-mentioned the-
ories. According to the first of them (the temporal the-
ory of strength [2]), the material service life depends on
the applied stress and temperature, which activate the
process of breaking interatomic bonds. According to
the second theory [3], the strength properties of the
material in a submillimeter range are the result of
motion of elementary carriers of plastic deformation

p t sM,( ) p0, T t sM,( ) T0.= =
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such as dislocations, disclinations, and grain bound-
aries.

The simulation of fracture in terms of the temporal
theory of strength was performed by the following
algorithm. After the temperature, velocity, density,
Euler coordinate, internal energy, and pressure have
been calculated, the elements of the array of deforma-
tion rates were calculated at a new time step at each kth
point of the difference scheme:

(14)

then, for points where the pressure proved to be nega-
tive (pk(t) < 0), the data obtained were compared with
the limiting value of b∗ . In this variant of the calcula-

tion, the scabbing occurred after b∗  reached a limiting

value equal to [1]

(15)

In the second variant of the calculation, the fracture
condition was assumed to occur when the negative
pressure at one of the nodes of the difference mesh
σ(k) = (–1)pk(t) reached the limiting value equal to [1]

(16)

If the conditions of the target fracture were fulfilled
at the kth node, then the following boundary conditions
were set at this node, p(t, sk) = p0 and T(t, sk) = T0, and
the subsequent calculation was performed only for the
nodes from the (k + 1)th to the last node.

Figure 3 displays the variation of the velocity of the
back surface Vw accessible for the experimental deter-
mination as a function of time. Curve 1 corresponds to
calculations using Eq. (15); curve 2 was calculated by
Eq. (16). It is seen that in the second case fracture
occurs later. If the material does not fail, the Vw(t)
dependence falls off smoothly (curve 3 in Fig. 3). Note
that the presence of scabbing simulated by any of the
two models under consideration leads to a discernible
difference in the calculated dependence for Vw .

Conditions necessary to check which of the theories
is valid can be judged from Fig. 4, which gives the
results of numerical simulation of scabbing on the rear
surface in a wide range of the pulse parameters tpulse, χ,
and q0. The lower surface corresponds to condition (15);
the upper one, to condition (16). It is seen that, at the
given values of the tensile strength, there is a significant
gap between the surfaces in the whole interval of the
pulse parameters. When the pulse parameters fall into
this gap, the scabbing or the retention of the integrity of

b k( ) 1–( )
pk t( ) pk t δt–( )–( )

δt
----------------------------------------------;=

b* 100
kbar
µs

-----------.≈

σ 50 kbar.≈
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
the sample can serve as arguments in favor of this or
that physical model of fracture.
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Abstract—A modified procedure for determining the bearing capacity or maximum admissible pressure on a
friction unit has been developed. The new feature of the procedure is a test of the wear capacity of a material
as a function of pressure. The procedure has been tested on fluoroplastics doped with fullerene-containing soot
lubricated with water. F-4 fluoroplastic with 1% fullerene-containing soot added to it shows a 30% higher bear-
ing capacity. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The subject of this work, which is the bearing capac-
ity of modified fluoroplastics under friction, happens to
be at the junction of two branches of science—the
physics of strength and polymer materials science. The
bearing capacity of a material under friction is, in
essence, a test of its strength under more complicated
test conditions than simple stretching, compression,
bending, and so on. It is, in fact, a shear deformation
accompanied by contact interactions, often in the pres-
ence of a lubricant (producing a wedging action around
microcracks or the Rebinder effect), which does not
affect the main features of the phenomenon.

In the pioneering work of Khrushchov [1] a proce-
dure has been developed for determining the maximum
admissible pressure Pmax on a material, which is run-in
as one of the counterfaces in a friction unit. But the
actual quantity Pmax defined in this procedure is the
strength characteristic of the material, which, by anal-
ogy with the bearing capacity of a friction unit (defined
as the maximum admissible pressure on a friction unit,
exceeding which may cause scouring), we call the bear-
ing capacity of a material. Note that there is one more
closely related performance characteristic: the maxi-
mum admissible operating pressure of a friction unit

. This parameter is usually chosen to be lower than
the bearing capacity of a friction unit by some arbitrary
quantity so that the wear of a friction unit is small or

close to zero at pressures of P < .

The purpose of this work was to modify the proce-
dure for determining the bearing capacity of materials
proposed in [1] to adapt it to new promising materials
such as fullerene-containing fluoroplastics.

The procedure for determining Pmax proposed in [1]
is based on the stepwise loading of a planar specimen
pressed against the periphery of a disk rotating at a con-

Pmax
w

Pmax
w

1063-7842/01/4602- $21.00 © 20249
stant speed (Fig. 1). In the specimen, a crater forms of
length U that increases with time. The crater depth is
always much less than the disk diameter. Initially, the
specimen is loaded with a small load F = q. In the
beginning, the counterfaces are nonconformal, their
contact area is extremely small, and the unit pressure at
the contact is very high. As the crater deepens, the pres-
sure drops rapidly and the crater length asymptotically
approaches a constant value (Fig. 1a). As soon as the
measured crater length stops increasing (the so-called
stable crater), a load F = 2q is instantly applied to the
friction unit. The crater length first increases rapidly,
then the process slows down, and the crater length
asymptotically approaches a new stable value. At the
moment when the higher load is applied, the pressure P
jumps up and then decreases (as the contact area grows
due to attrition), finally settling at a higher level.

In a similar way, loads F = 3q, 4q, and so on are
applied to the friction unit, and the above process is
repeated until, starting with a load qmax = nq, the ulti-
mate pressure on the stabilized crater no longer
increases at this and still higher loads. Furthermore, the
pressure seldom stays at the level reached; more often,
it drops with every new load despite further increases in
the rate of attrition and the crater length.

In Fig. 1b, a diagram is given of the crater lengths
and pressures in U, P coordinates. To a first approxima-
tion, the crater area is equal to the area of its projection
on the specimen plane; therefore, F ≈ PUb (where b is
the crater width). Lines F = const in U, P coordinates
are hyperbolas (point 1 lies on hyperbola F = q,
points 1', 2 on hyperbola F = 2q, and so on). The line
linking points 1, 2, 3, etc., is the locus of points corre-
sponding to the lengths of stable craters. Area A can be
defined as corresponding to friction with low wear;
area B, to friction with imperfect lubrication (boundary
friction); and area C, to pressures unattainable for the
given friction unit.
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Schemes of displaying the data used in [1]: (a) presentation of the dependence of the crater length U and pressure P on test
duration (or the number of disk rotations); (b) same data in U–P coordinates; in the inset: schematic of the friction unit.
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Fig. 2. Test results for six commercial purity metals in [1].
Figure 2 shows the diagrams in U, P coordinates for
six commercial purity metals (lead, tin, cadmium, zinc,
and copper) lubricated with kerosene [1]. The U–P dia-
gram (magnitude of Pmax, slope of the initial part of the
U(P) curve, the curve behavior at F > qmax, and so on)
proved to be typical for a given friction unit, especially
of a metal–lubricant combination. It has been found
that the Pmax values do not correlate with the Brinell
hardness.

The existence of Pmax has as yet no physical expla-
nation. An assumption made in [1] is that the surface
temperature of the specimen can rise up to the metal
melting point (or the temperature which destroys some
protective layer at the surface) for a short time after the
application of a load in excess of qmax. The local tem-
perature rise was discussed in a number of works and
has been observed experimentally [2].

However, our opinion, as well as that of the author
of [1], is that such a large temperature rise under abun-
dant lubrication is unlikely to occur. In our studies, a
hypothesis has been propounded that shear deforma-
tion can lower the melting point of crystal grains at the
surface. According to this hypothesis [3], any structural
changes in a polycrystalline specimen which hinder the
migration of dislocations and the process of shear
deformation of crystallites should cause an increase in
Pmax. This approach makes the lack of correlation
between Pmax and the Brinell hardness in metals com-
prehensible [1].

This experimental technique has a number of draw-
backs. The wear particles sinking to the crater bottom
can be abrasive; as the crater becomes deeper, the fric-
tion of the lateral surfaces against the crater walls
becomes more significant, and building the U–P dia-
gram is quite laborious. In this study, an attempt has
been made to eliminate the above drawbacks of the
technique and apply the modified technique to some
new and promising materials. The basic approach is the
same as in [1].

EXPERIMENTAL TECHNIQUE

A friction shaft-plane unit (Fig. 1) was used in the
tests. This arrangement provides an easy escape for the
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
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wear particles from the tribological contact zone; no
lateral friction problems arise as the wear groove width
a (which is an analog of the crater length in [1])
increases in size. The tests were carried out in a stan-
dard 2070 SMT-1 roller friction machine. The specimen
tested was a rectangular plate 10 mm thick clamped in a
specially designed holder. The plate was approached
from below by a roller of diameter D = 46 mm and thick-
ness 16 mm made of wear-resistant chromium-nickel-
molybdenum steel of grade 18Kh2NChMA (GOST
4543-71) rotating at ω = 400 min–1, which corresponds
to a linear sliding velocity of 1 m/s. The roller width
was always larger than the specimen width b. The roller
was submerged 2 mm into a 200 ml water bath. Lubri-
cation with water prevented the surface temperature
from rising; even at the heaviest loads, the water tem-
perature in the bath did not exceed 50°C, which is too
low to cause significant changes of the tribological
characteristics of the specimens studied.

The tests were carried out for two experimental set-
ups. In setup I (basic), the specimen and the roller were
in contact along a line. The initial load F was 100 N.
The friction torque M was continually monitored.
Every 300 s, the test was interrupted, the groove width
a was measured under an optical microscope, and then
the specimen was loaded with a higher load. It was
determined beforehand that 300 s is enough time for the
groove width and the pressure at the contact to reach a
quasi-stable value. The load was increased to a maxi-
mum of 1600 N in increments of 200 N. From the mea-
sured wear, the groove width nominal pressures in the
beginning (Ps) and end (Pe) of the loading step were
determined. As distinct from work [1], a Pe(F) depen-
dence was built using the obtained data. The load value
beyond which the quantity Pe stopped to grow was
assumed to be the maximum admissible load and the
corresponding Pe the maximum admissible pressure.

In tests with setup II, relatively small area grooves
of various widths were first abraded to determine the
linear wear rate Ih at different initial loads. Note that Ih

depends not only on pressure, but also on the initial
load. Therefore, for the data comparisons to be correct,
we carried out tests for the same load F = 1600 N,
which is the highest of the loads in the range investi-
gated. As will be seen below, in tests with setup II, an
additional criterion, the closeness of Ih to zero, could be
applied for estimating the maximum admissible pres-
sures, which is especially important in cases where the
quantity Pe could not be determined unambiguously
from Pe(F) data.

In every version of the tests (kind of setup, fluoro-
plastic specimen, load and pressure magnitudes), three
to eight experiments were carried out. The resulting
characteristics represent arithmetic means of the data
for the particular version of the test. Relative values of
the root-mean-square error for the arithmetic means of
tribological characteristics are ~5% for nominal pres-
sures P, ~6% for friction coefficients, and ~10% for the
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
wear intensities. Details of the processing of measure-
ment data and calculations of the tribological character-
istics have been given in earlier works [3–5].

MATERIALS AND PREPARATION 
OF SPECIMENS

Materials for the tribological tests were grade F-4
polytetrafluoroethylene (GOST 10007-80) and an
F-4K20 composite (TU6-05-1412-76), which is a poly-
tetrafluoroethylene containing 20 wt % of coal coke.
All tested materials also contained 1 wt % fullerene
soot introduced under the same conditions as the coal
coke.

The fullerene soot was produced in the plasma of an
electric arc [6]. About 8% of a fullerene mixture
(mainly C60 and C70 in the ratio ~75/25) was extracted
from the soot using toluene as a solvent. The soot intro-
duced into the fluoroplastics was that which remained
after extraction, and it still contained a considerable
amount of higher fullerenes (~12%) [7]. About 1% of
fullerene soot was introduced in the material under
study under the same technical conditions as when
introducing coal coke.

RESULTS AND DISCUSSION

In tests using setup I, it was found that following
every increase in the load F, the rate of wear processes
taking place in the tribological contact rapidly declines
and stabilizes. As a result, the wear groove width a
(analog of the crater length in [1]) and depth h initially
increase drastically and afterwards, as the contact test
goes on, change only slightly. The wear rate of the tri-
bological contact is determined by the pressure, which

FN

ω

a

1
2
3

4

Fig. 3. Schematic of the friction unit test: (1) specimen;
(2) specimen holder; (3) rotating steel disk; (4) water bath;
a is the width of the wear groove.
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depends on the contact area. Alongside the increase and
subsequent stabilization of the wear groove depth and
the tribological contact area, a rapid decrease and lev-
eling off of the pressure in the tribological contact
occurs. Thus, the growth of the tribological contact area
and lowering of pressure are interrelated; their rates and
ultimate values depend on the load on the contact and
the wear groove width, the latter being, in turn, the
function of the wear resistance of the material.

In Fig. 4, Pe(F) curves for the fluoroplastic speci-
mens are shown. It is seen that Pe initially rises as F is
increased and that, at F values of 800–1000 N, Pe levels
off at different levels.

One exception is the starting F-4 fluoroplastic, for
which two stable pressure levels have been observed:
Pe = 8 MPa at F = 400 N and Pe = 11 MPa at F =
1400 N. But, as shown below, low wear is observed at
pressures of Pe < 11 MPa, so this value should be taken
as the maximum admissible value.

For the F-4K20 fluoroplastic containing 20% car-
bon coke, the admissible pressure is higher (~14 MPa),
possibly due to significant transformation of the defor-
mation mechanism of the polytetrafluoroethylene crys-
tallites. The presence of numerous defects due to the
coke impurity makes the dislocation mechanism of
shear less effective.

It is remarkable that the introduction of just 1% soot
produces an even slightly greater rise of the admissible
pressure to Pe = 15 MPa. The cause, in our opinion, is
the high chemical activity of fullerenes, which is partic-
ularly seen in the formation of a fullerene-polymer net-
work on the friction surfaces [5].

At least two mechanisms of the growth of Pe involv-
ing fullerenes can be suggested. According to one,
fullerenes penetrate only amorphous regions of the
amorphous-crystalline network where its points are
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Fig. 4. Dependence of the pressure Pe at the end of test step
on the load F applied to the specimen. (1) F-4 fluoroplastic;
(2) F-4 + 1% fullerene soot (F-4SZh1); (3) fluoroplastic
composite F-4K20; (4) F-4K20 + 1% fullerene soot
(F-4K20SZh1).
located. According to the other, the fullerenes penetrate
the crystallites, which induces high concentrations of
dislocations in them, thus impeding shear deformations
of the crystallites and of the material as a whole. Which
of the two mechanisms is applicable can be determined
using different structural methods, and such an attempt
will be undertaken in our next study. In a recent report
[8], a simple technique for identifying the easiest slip
planes in polymer crystallites was proposed. This tech-
nique can be used for estimating the effect of fullerenes
on the susceptibility of polymer crystallites to shear
deformation.

Introduction into F-4K20 of the fullerene soot
strengthens this material still further: the admissible
pressure rises to 16 MPa.

In Fig. 5 the results of the tests for setup II are
shown. The introduction of 1% fullerene soot resulted
in a significant reduction of the linear wear rate for the
same pressures: by a factor of 2–3 in F-4 (specimen
F-4SZh1) and a factor of 1.3–1.7 in F-4K20 (specimen
F-4K20SZh1). In this figure, it is seen that at P < Pmax
the quantity Ih approaches zero. Using the data in
Fig. 5, an unambiguous choice of Pe value for the F-4
fluoroplastic could be made. Note that, in contrast to
metals, pressures in excess of Pmax are quite feasible,
but the wear rates will be higher. Therefore, operating
pressures for a material can be only those below Pmax.

CONCLUSIONS

To conclude, a modified procedure for determining
the bearing capacity of a material in a friction unit has
been proposed. In addition to the dependence of pres-
sure on the applied load, this procedure yields data on
the linear wear rate as a function of pressure. The range
of admissible pressures for a material or its bearing
capacity is defined as a range in which the pressure is
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Fig. 5. Dependence of the linear wear rate Ih on pressure
in  the contact: (1) F-4; (2) F-4SZh1; (3) F-4K20;
(4) F-4K20SZh1.
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not rising (with increasing load) and the wear is not
high.
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Abstract—The object of investigation was an integrated pressure transducer with a differential pressure-sensi-
tive element based on two parallel-connected p-channel dual-drain MIS transistors. The transistors were made
on the planar side of a silicon membrane with the rigid central region near the edges of membrane’s thin part
(valley). The optimum design of the transducer and its basic characteristics were determined. © 2001 MAIK
“Nauka/Interperiodica”.
The progressively growing demand for semiconduc-
tor pressure transducers [1] stimulates a search for new
types of high-sensitivity elements that combine low
power consumption and low intrinsic noise. In the pre-
vious work [2], we studied the sensitive elements based
on silicon field-effect dual-drain pressure-sensitive
transistors subjected to uniform uniaxial elastic
mechanical strain.

In this work, we consider a more general case when
the strain varies linearly with the MIS transistor
(MIST) channel length. Such a distribution of elastic
strain occurs in the valley of a specially shaped rigid-
center membrane upon membrane loading. It has been
shown [3, 4] that this membrane, combined with a dif-
ferential sensitive element, decreases the effect of “par-
asitic” mechanical stresses due to transducer packag-
ing. Moreover, it also provides a linear output charac-
teristic of high-sensitivity thin-membrane transducers,
in which the bending of the membrane upon loading is
comparable to its thickness.

In what follows, we will optimize the design of the
pressure transducer with a differential sensitive ele-
ment built around two parallel-connected p-channel
dual-drain MISTs. The schematics of the silicon mem-
brane and the crystallographic orientation of the tran-
sistor channels are given in Fig. 1. The pressure-sensi-
tive transistors are placed on the planar side of the
membrane near the edges of its thin part (valley). When
the membrane is loaded uniformly and the transistors
are placed symmetrically about the plane passing
through the center of the valley so that it is parallel to
the edges of the valley and perpendicular to its plane,
elastic mechanical stresses in the vicinity of the devices
are equal in magnitude and opposite in sign [3, 4].

Figure 2 shows the layout and the connection dia-
gram of the sensitive element. With appropriate bias
voltages (U0, UG) applied and in the absence of pres-
sure, the drain currents of transistors T1 and T2 are the
1063-7842/01/4602- $21.00 © 20254
same, since their layout and geometries are identical;
hence, the output signal Uout (Fig. 2) is zero provided
that load resistances are equal: RD1 = RD2 = RD.

When pressure is applied, the membrane converts
the load distributed over the surface to uniaxial elastic
tensile (compressive) strain in the regions where the
transistors are located. Because of this, the mobility µp

(100)

1

2

3

4

[011] n-Si

[001]
-

y

x [010]

W
D1

D2

[011]

Σ(x)
S

0

–Ly/2

Ly/2

p-Si

Fig. 1. Arrangement of the sensitive element on the mem-
brane and the crystallographic orientation of the transistor
channels: 1, dual-drain MIS strain-sensitive transistors (S,
source; D1 and D2, drains); 2, rigid central island; 3, valley;
and 4, membrane support.
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of majority carriers (holes) becomes anisotropic and
additional strain-induced transverse and longitudinal
electric fields arise in the FET channel [2]. They cause
current disbalance in the drain circuits, as a result of
which the output current appears.

Below, we calculate a strain-induced potential
change in the MIST channel and the relative, SR, and
absolute, SA, sensitivities of the transducer (SR is also
called the conversion efficiency).

Let the MIST channel be bounded by the regions

(1)

The potential will be calculated under the following
assumptions and simplifications. 

(i) The conductivity in the xy plane is anisotropic
due to uniaxial elastic mechanical stress Σ aligned with
the [110] direction (Fig. 1). The Σ(x) dependence has
the form [3, 4]

(2)

where |k0|, |k1| ≤ 1 and k0Σ0 is the mechanical stress at
the point x = 0. 

(ii) Elastic mechanical stresses and the anisotropy
parameter [2]

(3)

(Π44 is the piezoresistive coefficient of shear for p-Si)
are sufficiently low. Hence, the inequality max|a(x)| ! 1 is
valid (in calculations, a0 will be set equal to 0.06) and
the conductivity tensor components can be written as

(4)

(iii) The transistor channel is relatively thin (Lx, Ly

@ Lz), and its conductivity in the smooth approximation
[5, 6] is given by

(5)

where C is the capacity per unit area of the gate–semi-
conductor structure, UDS is the potential difference
between the source and the drain, UC is the cutoff volt-
age (gate voltage at which the channel conductivity
vanishes), and UG is the gate voltage. We assume that
UDS < UC – UG (UDS, UC, UG > 0) and the transistor is in
the on state.

In view of the above simplifications, the potential
distribution ϕ(x, y) in the channel can be considered as
quasi-planar; then, in the first approximation with
respect to the anisotropy parameter, the spatial distribu-
tion of the potential is expressed as

(6)

0 x Lx, Ly/2– y Ly/2, 0 z Lz.≤ ≤≤ ≤≤ ≤

Σ x( ) Σ0 k0 k1x/Lx+( ),=
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=  
µpC
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2
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∂y2
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------+ + 0=
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with the boundary conditions

(7)

(8)

Equations (6)–(8) are solved by the Fourier method:

(9)

where

(10)

(11)

Figure 3 depicts the distribution of the transverse
potential difference ∆ϕ(x) along the channel when the
anisotropy parameter depends in various ways on the
coordinate x:

(12)

The form of the anisotropy parameter is seen to con-
siderably affect the longitudinal distribution of ∆ϕ(x).
Note that a problem similar to Eqs. (6)–(8) was numer-
ically solved for the case when conductivity anisotropy

y
Ly
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Fig. 2. Layout and connection diagram of the transistors.
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Fig. 3. Distribution of the transverse potential difference
along the channel. UDS = 3 V and UC – UG = 5 V. Coeffi-
cients k0 and k1 in the expression for the anisotropy param-
eter a(x) = a0(k0 + k1x/Lx) are (1) k0 = 1, k1 = 0; (2) k0 = 0,
k1 = 1; and (3) k0 = k1 = 0.5.
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Fig. 4. SA as a function of the channel geometry. (1)–(3) the
same as in Fig. 3.
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Fig. 5. SR as a function of the channel geometry. (1)–(3) The
same as in Fig. 3.
was induced by an external magnetic field. The ∆ϕ(x)
curve for uniform strain (k0 ≠ 0, k1 = 0) agrees well with
the numerically calculated distribution of Hall voltage
in the channel of an MIS magnetotransistor [7].

Now let us calculate the conversion efficiency SR

and the absolute sensitivity SA of the pressure trans-
ducer. Let the drains D1 and D2 be separated by a gap
W (Fig. 1) and have the same width LD = (Ly – W)/2. The
values of SA and SR are found by integration [2]:

(13)

(14)

Here,  =  =  are the drain currents of transis-
tors T1 and T2 in the absence of strain:

(15)

Integrating Eq. (13) and (14) in view of Eq. (10) and
(11) yields

(16)

(17)

where

(18)

The absolute and relative sensitivities of the strain-
sensitive transistor as functions of the channel geome-
try are shown in Figs. 4 and 5. The run of the SA vs.
Ly /Lx curve is almost the same for the uniform and non-
uniform distributions of mechanical strain (Fig. 4): SA

monotonically increases and saturates at Ly /Lx ≥ 2. For
k1 = 0, this is consistent with the similar analytical
dependence for an MIS magnetotransistor [7]. The
dependence of SR on Ly /Lx (Fig. 5) features a peak at
Ly /Lx = 0.1–0.2 for the nonuniform case (k1 ≠ 0). From
the curves represented in Figs. 4 and 5, one can find the
optimal value of Ly /Lx at which SR and SA are maximal.

Figures 6 and 7 depict analytical dependences of SA

on the drain–source, UDS, and gate–source, UG, poten-
tial differences for CRDµp = 10–2. As UDS grows (Fig. 6),
the absolute sensitivity linearly increases and peaks at
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UDS ≈ (UC – UG)/2. The run of curves 1–3 to a great

extent is defined by the dependence (UDS) [expres-
sions (15) and (17)]. With an increase in UG, SA drops
practically linearly (Fig. 7, curves 1–3). As follows
from formula (16), SR is virtually independent of UDS

and UG.

To conclude, consider briefly one more basic prop-
erty of a pressure transducer: linearity of the load char-
acteristic. It is known [3, 4, 8] that possible reasons for
the nonlinearity of piezoresistive membrane transduc-
ers are nonlinear conversion of pressure to elastic strain
by that part of the membrane where the sensitive ele-
ment is located and also nonlinearity of the piezoresis-
tive effect. Experimental and theoretical studies [3, 4,
8] suggest that the nonlinearity of the load characteris-
tic due to the above reasons is greatly reduced by the
differential design of the sensitive element, where one
of the transistors is under compression and the other,
under stretching.

Thus, the design of the pressure transducer pro-
posed in this work increases the absolute sensitivity

ID
0

Fig. 6. SA vs. UDS for UC – UG = 5 V.
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UDS, V
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twofold and provides a better linearity of the load char-
acteristic compared to the single-transistor design [2].
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Abstract—A simple X-ray diffraction technique for determining the easiest slip planes in amorphous–crystal-
line polymer grains is suggested. The efficiency of the technique was demonstrated with polyethylene and
polyamide-6. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Determination of the easiest slip planes in solids is
a complex, while well-established, procedure. Usually,
bulk single crystals are deformed and then examined
with electron microscopy, as well as electron and X-ray
diffraction methods [1–4]. In the case of polymers,
many small single crystals grown in dilute solutions are
settled out on plastic substrates that are subsequently
deformed [4].

It would be logical to assume that the easiest slip
planes observed in polymer single crystals are also
present in mosaic polycrystals; however, this statement
is in doubt. Moreover, in polymer crystals, the easiest
slip planes usually coincide with planes of chain fold-
ing, and the direction of the latter depends on growth
conditions for both bulk single crystals and single-crys-
tal grains. At least, folding planes in the crystals and
grains may differ. Therefore, determination of slip
planes (and the easiest slip planes, in particular) in
polycrystalline polymer materials seems to be a topical
problem, since this is necessary for a better understand-
ing of deformation mechanisms in amorphous–crystal-
line polymers.

In this work, we present a simple technique for find-
ing the easiest slip planes in amorphous–crystalline
polymers.

EXPERIMENTAL

First, a sufficiently thick highly oriented amor-
phous–crystalline film of a crystallizable polymer is
formed by any one of the preparation procedures. Its
thickness, dictated by transmission X-ray diffraction
analysis, usually ranges from 0.1 to 2 mm. Thick films
are structurally more uniform; in addition, substrate
effects are avoided in this case. Highly oriented crystal-
lites are prepared, for example, by orientation drawing
at temperatures sufficient for crystallization or recrys-
1063-7842/01/4602- $21.00 © 20258
tallization processes to occur [4]. Macromolecules in
the crystallites are then oriented largely along the draw-
ing direction. If the film is amorphized or does not crys-
tallize during the orientation process (for example, if
orientation drawing is carried out at temperatures
below the glass-transition temperature), it can be
annealed. The annealing conditions should be selected
in such a way as to preserve the preferential orientation
of the molecules along the drawing direction (e.g.,
annealing can be performed at a fixed length of the
specimen). The need for initially thick films may show
up at this stage as well, since the film geometry must
prevent plane texturing of the crystallites. It is desirable
that the film texture be axial relative to the texture axis,
which coincides with the direction of macromolecules
in the crystallites. When an X-ray beam is incident nor-
mal to the drawing direction, a large-angle diffraction
pattern for such films is similar to a rotating-crystal pat-
tern and exhibits a set of curved reflections on the layer
lines (primarily on the zero layer line, or equator). The
equatorial reflections are those from crystallographic
planes parallel to the axes of macromolecules. It is just
along these planes that share strain in polymer crystals
takes place [4].

Once the highly oriented amorphous–crystalline
film has been prepared, the next orientation drawing
(reorientation) is carried out at a large angle (from 20°
to 70°; 45° seems to be the best) to the direction of the
first drawing. To make this procedure easier, a piece is
cut out of the initial specimen in such a way that its long
sides make the given angle with the first drawing direc-
tion (Fig. 1a).

During the second drawing, diffraction patterns are
taken from strained specimens from time to time. The
X-ray beam remains perpendicular to the specimen all
the time. A typical change in the large-angle diffraction
pattern is demonstrated in Figs. 1b and 1c. The diffrac-
tion pattern turns toward the direction of the second
001 MAIK “Nauka/Interperiodica”
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W1

W2

α

(a)

W2

W1

α12

W2

1

2

Ψ

Fig. 1. (a) Specimen preparation: W1, direction of the first orientation drawing of the polymer film at a temperature T1; W2, direction
of the second orientation drawing at T2; and α, angle between these directions. (b) Large-angle X-ray diffraction pattern for the ini-
tial specimen (after the first drawing); 1 and 2 are equatorial reflections. (c) Large-angle X-ray diffraction pattern for the specimen
stretched in the direction W2; the reflections are turned toward this direction, reflection 2 from the easiest slip planes being ahead of
reflection 1.

(b) (c)
drawing, but the equatorial reflections from the easiest
slip planes are ahead of those from other planes: the
former are rotated through a larger angle toward the
second drawing axis. Note that such a criterion for
determination of the easiest slip planes is valid not only
for reversible but also for low plastic strains.

In addition, slip, or shear strain, inside the crystal-
lites may lead to radial broadening of reflections from
the slip planes; this effect is, however, noticeable only
for intense reflections. Moreover, it shows up only
when reorientation occurs in a system of highly ori-
ented crystallites where the macromolecule axis is
aligned with the texture axis. If these axes do not coin-
cide or the angle of reorientation is close to right angle,
shear strain of the crystallites may cause the reverse
effect: radial narrowing of the reflections [5].

RESULTS AND DISCUSSION

Polyethylene. First, we applied our technique to
low-density polyethylene. Grains of commercial poly-
ethylene of molecular weight M = 25 × 103 were used
to mold 1.4-mm-thick films. The operating temperature
and pressure were 200°C and 5 MPa, respectively. The
films were quenched in room-temperature water. Then,
they underwent uniaxial stretching to an elongation by
a factor of 5 (first orientation) at T1 = 85°C and to an
elongation by a factor of 9 at T1 = 20°C. Next, speci-
mens cut out of the films at various angles α to the first
orientation direction (Fig. 1a) were subjected to step
strain (second orientation) at temperatures T2 = 20 and
85°C in a special chamber inside the X-ray chamber.
After each step, the stressed specimens were held for
12 h and large-angle diffraction patterns were recorded
on a flat X-ray film. The X-ray beam was directed nor-
mally to the X-ray film plane. Ni-filtered CuKα radia-
tion was used.
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
Figure 2 shows a typical large-angle diffraction pat-
tern obtained under recoverable strain (~50%) in the
experiments with T1/T2 = 85/20 for α = 75°. The
200 reflection is an angle Ψ ahead of the 110 reflection
when they rotate toward the vertical direction of a new
equator. Like 110, other equatorial reflections, hk0 and
0k0, are also left behind. The same is true for the
100 reflection of the monoclinic modification of the
polyethylene (the closest to the center of the pattern).
The last-named reflection is likely to appear because of
martensitic transformation. The azimuth angle of

W2

110

200

ψ

Fig. 2. Large-angle X-ray diffraction pattern for the polyeth-
ylene specimen after the first drawing at T1 = 85°C and after
uniaxial elastic stretching (~50%) at an angle α = 75° to the
first drawing direction for T2 = 20°C. At the center, the asso-
ciated low-angle pattern is shown.
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advance Ψ is small, no more than several degrees. This
means that slipping along other paratropic planes pro-
ceeds with almost the same easiness; specifically, it
obviously proceeds along the (110) planes.

The (110) reflection is the most intense; therefore,
its radial broadening is seen immediately from the dif-
fraction patterns without any measurements. Under

W2

110

200

Ψ

Fig. 3. The same as in Fig. 2 for the specimen drawn at T1 =
20°C and stretched to 50% at T2 = 20°C for α = 45°. The
residual strain after load removal is 15%.
elastic strain, this broadening is known to reversibly
change [6]. It is associated with shear strain of the crys-
tallites due to intracrystallite slipping. The sign of the
shear strain is the distorted low-angle diffraction pat-
tern at the center of Fig. 2.

Similar results were obtained for the other tempera-
ture conditions of the first and second drawings: T1/T2 =
20/20 and 85/85. In Fig. 3, a large-angle pattern for the
20/20 series is depicted; the strain of the specimen,
50%, is not fully recoverable: after load removal, the
residual strain was ~15%. However, in this case, too,
the 200 reflection leads and the angle of advance Ψ is
small. The low-angle diffraction pattern at the center of
Fig. 3 is an indication of the shear strain in the crystal-
lites.

In polyethylene, the (110) plane is the most closely
packed. Usually, it is also the easiest slip plane. In our
case, however, the easiest slip plane is (200), second in
packing density [7]. It appears that here the (200) plane
is the folding plane, which in many ways explains the
results observed.

Thus, in highly oriented mosaic amorphous–crystal-
line polyethylene, at least two slip systems, (200)[001]
and (110)[001], are present, the former being the sys-
tem of easiest slip. This is consistent with the literature
data [7].

For right-angle reorientation (α = 90°), one might
expect the (200)[020] slip system; however, this system
was not revealed. The crystallites first were at short-
term unstable equilibrium and then were separated into
two sets with the (200)[001] and (110)[001] slip sys-
tems.

Polyamide-6. In polyamide-6, the macromolecule
axes are aligned with the b axis. Intermolecular interac-
tion in polyamide-6 is known to strongly depend on the
crystallographic direction because of hydrogen bonds
(a) (b) (c)

W1
002

200

200

002

200

W2 W2

Ψ

002

Fig. 4. Large-angle X-ray diffraction pattern for the oriented polyamide-6 film annealed at 200°C and then uniaxially stretched (sec-
ond drawing) at an angle α = 45° to the initial orientation at T2 = 20°C; the second drawing was performed in the horizontal direction.
The strain ε = (a) 0, (b) 22% (fully recoverable strain), and (c) 300% (irreversible strain to prerupture with necking).
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formed in the (002) planes. Slipping transverse to these
planes is therefore greatly hindered in polyamide-6.

Let us see how this well-known situation is reflected
in experiments using our approach. Polyamide-6 spec-
imens were prepared by annealing (2 h, 200°C) ori-
ented commercial PK-4 films of fixed length. Further
procedures were the same as with the polyethylene.

Figure 4 demonstrates large-angle diffraction pat-
terns obtained after reorientation under room condi-
tions for α = 45°. When the strain was recoverable
(~22%), the angles of rotation for the equatorial reflec-
tions drastically differed: the 002 reflections turned
through nearly 30°, while the positions of the
200 reflections remained almost unchanged. Hence, the
easiest-slip plane is (002).

Two points seem to be noteworthy in our opinion.
First, note that the 200 reflections turn insignificantly
even at a subsequent plastic strain of 300%, when the
002 reflections are set on a new equator. Second, the
002 reflections markedly broaden in the radial direc-
tion. In the case of plastic strain, this may be associated
with melting of initial crystallites and the nucleation of
new, smaller, ones; for elastic strain, this indicates the
presence of shear strain in the crystallites.

Thus, our approach was tested on two polymers
with extremely different intermolecular interactions. It
can be assumed that the vast majority of other crystal-
lizable polymers are close to those studied or lie in
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
between by intermolecular interaction force. It is there-
fore hoped that our technique for determination of eas-
iest slip planes in mosaic amorphous–crystalline poly-
mers will be applied to studying other crystallizable
polymers.
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Abstract—Luminescent properties of PbI2 and PbI2 : 0.5 mol % MnCl2 crystals under X-ray or N2-laser exci-
tation are studied experimentally. The measurements are performed at temperatures ranging from 85 to 295 K.
For PbI2 crystals under laser excitation, spectral bands with peaks near 495 and 512 nm, respectively, are
observed at 85 K. With X-ray excitation at the same temperature, luminescence is observed in the 515- and
715-nm bands. The doping decreases the intensity in the 515-nm band, increases it for longer wavelengths, and
shifts the highest peak to 700 nm. At 85 K, the doping has an insignificant effect on the excitation energy accu-
mulated by trapped electrons. Certain PbI2 crystals also exhibit a peak in a region of 580–595 nm. This peak
becomes much higher if the crystal is treated with an N2 laser at room temperature or if it is heated to 450–
485 K. As the measurement temperature rises from 85 to 295 K, luminescence intensity decreases considerably.
With X-ray excitation at room temperature, the yield of PbI2 : Mn luminescence peaked at 660 nm for doped
crystals is about three times larger than the yield peaked at 555 nm for nondoped crystals. The spectral curves
and underlying radiative processes are discussed. © 2001 MAIK “Nauka/Interperiodica”.
The luminescence from PbI2 crystals excited by
X-ray pulses was addressed in [1]. With temperature
raised from 77 to 293 K, it was revealed that the emis-
sion intensity decreases by a factor of ~25 and the spec-
tral peak shifts from 520 to 550 nm. A remarkable fea-
ture of the crystals is that the temperature rise has an
insignificant effect on the pulse luminescence decay
time, which is 0.4 ns at most. The high density and
short luminescence decay time of PbI2 crystals suggest
that they may be used as fast scintillators. Regarding
the activated PbI2 crystals, little attention has been
given to their luminescent properties under pulsed or
stationary X-ray excitation.

This experimental study examines the luminescence
from PbI2 : Mn crystals under stationary excitation by
X-rays or laser radiation. We used an LGI-21 nitrogen
laser operating at λ = 337.1 nm. Our aim was to explore
the effect of Mn doping on the accumulation of excita-
tion energy by trapped electrons, the specific light
yield, and the luminescence spectrum for temperatures
ranging from 85 to 295 K.

The crystals were grown by the Stockbarger–Bridg-
man technique [2]. During their growth, the melt was
doped with ~0.5 mol % MnCl2. The starting material
(PbI2) was of analytical-grade purity and was further
purified by oriented crystallization [2]. Luminescent
properties of the crystals were studied according to the
technique described in [3].

First, let us consider the luminescence spectra of
nondoped crystals. With laser excitation at 85 K, we
detected an intense narrow band with a peak near
512 nm and a faint band centered at 495 nm. With X-
ray excitation at the same temperature, the spectrum
1063-7842/01/4602- $21.00 © 20262
consists of bands at 515–520 and 715 nm. Some of the
specimens also exhibited a peak in the region of 580–
595 nm under both types of excitation (see curve 1 in
Fig. 1). This peak becomes much higher after the crys-
tal (in the cryostat) is heated to 450–485 K or treated
with N2 laser radiation at room temperature. These
crystals retain their luminescent properties for about six
months in storage at the laboratory.

If the measurement temperature is raised from 85 to
295 K, luminescence decreases considerably. With X-
ray excitation at room temperature, the spectral curve
has a low-intensity band centered at 555 nm and a wide
plateau between 640 and 780 nm (see curve 2 in Fig. 1).

I, arb. units

500 600 700 800 λ, nm

2
×0.2

1

Fig. 1. Luminescence spectra of a PbI2 crystal under X-ray
excitation for (1) 85 and (2) 295 K.
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Similar shapes have spectra obtained with laser excita-
tion near the higher temperature limit.

At 85 K, trapped electrons accumulate a small
amount of energy during laser or X-ray excitation.
When the temperature is raised to 295 K, nonelemen-
tary peaks were observed in the thermoluminescence
curves at about 117 K.

Now, let us proceed to Mn-doped PbI2 crystals.
Consider the case of X-ray excitation. At 85 K, lumi-
nescence intensity was found to decrease by three times
in the 515-nm band and to increase for longer wave-
lengths, with the highest peak shifted to 700 nm
(curve 1 in Fig. 2). The plateau between 590 and
610 nm stems from a peak at 595 nm, which character-
izes the thermally treated PbI2 crystals.

A rise in temperature crucially reduces the peak at
700 nm. Specifically, for 150–295 K, its height is about
5% of that for 85 K. At 295 K, the spectrum is charac-
terized by a low-intensity wide nonelementary band
centered at 660 nm (curve 2 in Fig. 2). At this tempera-
ture, the specific light yield is about three times larger
than that of nondoped crystals. The energy accumu-
lated under X-ray excitation is small again.

Let us consider laser excitation. At 85 K, the spec-
trum has a low-intensity band centered at 700 nm as
well as an intense narrow band at 515 nm (curve 1 in
Fig. 3). If the temperature is raised to 295 K, the lumi-
nescence intensity is strongly quenched and the crystal
emits at wavelengths longer than 550 nm (curve 2 in
Fig. 3). The falling segment of the spectral curve indi-
cates emission peaks at 660 and 700 nm.

Figure 4 shows the luminescence intensity in the
bands at 515 and 700 nm against temperature for the
case of laser excitation. It is seen that the two curves
differ markedly. As temperature increases from 85 to
180 K, the intensity in the 515-nm band decreases rap-
idly and monotonically (curve 1), whereas that in the
700-nm band increases slightly until 95 K is reached
and then decreases monotonically (curve 2). Eventu-
ally, intensity falls to a very low level in both cases.

Thus, the above results demonstrate that doping
with Mn changes the PbI2 luminescence spectrum. For
laser excitation, a new band arises. For X-ray excita-
tion, the intensity is redistributed in favor of longer
wavelengths. At low temperatures, a similar effect was
observed in crystals doped with CdI2. Based on [4–7],
we reason that interstitial Mn ions have a valency of 2.
No luminescence from Mn2+ centers in the crystals was
observed near the lower temperature limit. This may
stem from the fact that the excited states of doping ions
are in the conduction band or that the dopant forms no
efficient recombination centers that could compete with
those of the matrix [8].

Some authors attribute the edge emission at 512 nm

to  centers in PbI2 [9, 10]. The low-intensity peak
located near 495–500 nm is associated with the radia-
tive relaxation of free excitons. If PbI2 is irradiated with

I2
–

TECHNICAL PHYSICS      Vol. 46      No. 2      2001
photons corresponding to band-to-band absorption, an
induced signal can be detected at 77 K. The signal rep-
resents electron paramagnetic resonance (EPR) and
exhibits a line with a g-factor of 2.009. This EPR signal
is ascribed to Pb+ centers in PbI2. They result from elec-
tron trapping by irregular Pb2 ions located near
extended defects or at sites where lead–iodine bonds
are broken. Another EPR signal, which has a compli-
cated nature and reflects hyperfine interaction, is asso-
ciated with a hole trapped by two I– ions with the for-

mation of an  molecular ion [10, 11].

In single crystals and polycrystals of PbI2, the
715-nm band has a high quantum yield mainly under

I2
–

I, arb. units
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Fig. 2. Luminescence spectra of a PbI2 : Mn crystal under
X-ray excitation for (1) 85 and (2) 295 K.
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Fig. 3. Luminescence spectra of a PbI2 : Mn crystal under
laser excitation for (1) 85 and (2) 295 K.
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optical excitation near the absorption band edge. It is
conceivable that the EPR signal with g = 2.009 and the
red band of photoluminescence have a common mech-
anism, since they both obey a boat-shaped temperature
characteristic in a range of 80–150 K [10]. In all likeli-
hood, the red band is caused by defects in the crystal
bulk, and the photoluminescence probably stems from
recombination. This explains why a nondoped perfect
PbI2 crystal does not luminesce in the 715-nm band
when it is irradiated with an N2 laser operating at a
wavelength for which the crystal offers strong intrinsic
absorption in a near-surface layer, but does luminesce
when it is irradiated with X-rays, which have a higher
penetrating power.

Based on [10], one could associate this optical emis-
sion with the 3P1  1S0 radiative transitions in Pb2+

ions induced by the recombination of holes with Pb+

electron-trapping centers. Investigating the photovol-
taic properties of PbI2 crystals has revealed that this
material is an n-type semiconductor if its temperature is
below 180 K [12]. Otherwise, it is a p-type semicon-
ductor. We therefore suggest that the 715-nm emission
is produced by the recombination of electrons and the
holes confined to halogen ions in the neighborhood of
Pb+ ions. The latter ions are associated with anionic
vacancies [13] that are always present in PbI2 as a result
of the volatilization of iodine during crystal growth
[14]. In short, we connect the 715-nm emission with α-
centers (see also [15]). Since Mn2+ has a smaller ionic
radius compared to Pb2+ [16], the presence of Mn2+ ions
in a PbI2 crystal causes lattice disordering and hence a

100 200 T, K

1

2

I/Im

1.0

0.5

Fig. 4. Normalized luminescence intensity vs. temperature
for (1) the 515- and (2) the 700-nm band in the case of a
PbI2 : Mn crystal under laser excitation.
rise in the concentration of the centers of long-wave
luminescence both in the bulk and near the surface.

An abrupt decrease in the intensity–temperature
characteristic measured at 515 nm may result from the
temperature-stimulated delocalization of holes from Vk

centers [8]. Some of the holes are then trapped by
deeper centers; hence, a slight increase in the curve for
700 nm is observed. In this band, luminiscence quench-
ing near the higher temperature limit may be induced
by both the temperature-stimulated delocalization of
holes from the centers, followed by their radiationless
recombination at deep electron-trapping centers, and
ionic and photochemical processes [2].

A peak in the region 580–595 nm, which is charac-
teristic of a near-surface region in nondoped crystals, is
probably related to oxygen [17]. As noted above, this
peak can be made higher by heat or laser treatment of
the crystal. The luminescence intensity markedly
decreases as the temperature rises from 85 to 200 K.

We also studied the kinetic properties of lumines-
cence from PbI2 crystals under β-, γ-, or X-ray excita-
tion according to the techniques described in [1, 17].
The results agree with [1]. This allows us to infer that,
for the 515- to 520-nm and the 555-nm band, doped
crystals under X-ray excitation also have a short lumi-
nescence decay time (τ1 ≈ 0.5 ns). The longer lumines-
cence decay time (τ2 ≈ 1.5 × 10–5 s) of nondoped crys-
tals measured between 500 and 800 nm at room tem-
perature seems to stem from the radiative relaxation of
excitons confined to defects.

REFERENCES

1. A. S. Voloshinovskiœ, P. A. Rodnyœ, and A. Kh. Kkhudro,
Opt. Spektrosk. 76 (3), 428 (1994) [Opt. Spectrosc. 76,
382 (1994)].

2. Wide-Gap Layered Crystals and Their Physical Proper-
ties, Ed. by A. B. Lyskovich (Vishcha Shkola, Lviv,
1982).

3. O. M. Bordun, I. M. Bordun, and S. S. Novosad, Zh.
Prikl. Spektrosk. 62 (6), 91 (1995).

4. V. G. Abramishvili and A. V. Komarov, Fiz. Tverd. Tela
(Leningrad) 31 (4), 68 (1989) [Sov. Phys. Solid State 31,
583 (1989)].

5. M. S. Brodin, A. O. Gushcha, B. E. Derkach, et al., Fiz.
Tverd. Tela (Leningrad) 30 (11), 3481 (1988) [Sov.
Phys. Solid State 30, 1999 (1988)].

6. V. G. Abramishvili, A. V. Komarov, S. M. Ryabchenko,
et al., Fiz. Tverd. Tela (Leningrad) 29 (4), 1129 (1987)
[Sov. Phys. Solid State 29, 644 (1987)].

7. M. S. Brodin, I. V. Blonskiœ, and V. N. Karataev, Ukr. Fiz.
Zh. (Russ. Ed.) 34 (4), 526 (1989).

8. E. D. Aluker, D. Yu. Lusis, and S. A. Chernov, Electron
Excitations and Radioluminescence in Alkali Metals
(Zinatne, Riga, 1979).
TECHNICAL PHYSICS      Vol. 46      No. 2      2001



LUMINESCENCE FROM Mn-DOPED PbI2 CRYSTALS 265
9. J. Arends and J. Verwey, Phys. Status Solidi B 23 (1),
137 (1967).

10. I. Z. Irdutnyœ, M. T. Kostyshin, O. P. Kasyarum, et al.,
Photostimulated Interactions in Metal–Semiconductor
Structures (Naukova Dumka, Kiev, 1992).

11. A. V. Patankor and E. E. Schneider, Phys. Chem. Solids
27 (3), 575 (1966).

12. Takeshi Hagihara, Shunji Nigata, and Nobuvoso Ayai,
Jpn. J. Appl. Phys. 20 (5), 1003 (1981).

13. I. Baltag, S. Lefrant, L. Miyut, and R. P. Mondescu,
J. Lumin. 63, 309 (1995).
TECHNICAL PHYSICS      Vol. 46      No. 2      2001
14. M. S. Brodin, V. A. Bobik, I. V. Blonskiœ, and N. A. Davi-
dova, Fiz. Tverd. Tela (Leningrad) 32 (2), 403 (1990)
[Sov. Phys. Solid State 32, 232 (1990)].

15. I. A. Parfianovich and É. E. Penzina, Electron Color
Centers in Ionic Crystals (Vostochno-Sibirskoe Knizh-
noe Izd., Irkutsk, 1977).

16. G. B. Bokiœ, Crystal Chemistry (Nauka, Moscow, 1971).
17. V. V. Averkiev, I. M. Bolesta, I. M. Kravchuk, et al., Ukr.

Fiz. Zh. (Russ. Ed.) 25 (8), 1392 (1980).

Translated by A. Sharshakov



  

Technical Physics, Vol. 46, No. 2, 2001, pp. 266–267. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 71, No. 2, 2001, pp. 137–138.
Original Russian Text Copyright © 2001 by Gyrylov.

                               

BRIEF COMMUNICATIONS

                                     
Glow Discharge with an Annular Hollow Cathode
E. I. Gyrylov

Section of Physical Problems at the Presidium of Buryat Science Center, Siberian Division, 
Russian Academy of Sciences, Ulan-Ude, 670047 Russia

e-mail: ofp@bsc.buryatia.ru
Received April 10, 2000; in final form, August 4, 2000

Abstract—A discharge system with peripheral discharge chambers (Penning cells) and common hollow cath-
ode with only one cell supplied with power is studied. It is shown that a jumpwise transition from a dark dis-
charge to a glow discharge is accompanied by the penetration of plasma into the hollow cathode. © 2001 MAIK
“Nauka/Interperiodica”.
Due to a high plasma density in a glow discharge
with a hollow cathode, such discharges are widely used
as plasma sources of charged particles [1, 2]. In this
paper, we study a discharge system with an annular hol-
low cathode and two peripheral discharge chambers
(Penning cells) [3], one of which is supplied with
power, whereas the anode of the other chamber is con-
nected to the cathode (Fig. 1). The penetration of the
plasma into the hollow cathode was established by the
ion current from a single probe, which was set at the
end of the hollow cathode near the aperture of the
working cell. The discharge was ignited at a residual
pressure of air in the vacuum chamber.

Experiments show that the transition from a dark
discharge to a glow discharge occurs in a jump. At a
pressure of 13.3 Pa and voltage of 70 V, the discharge
current I changes rapidly from 1–50 µA to 1–10 mA
and the discharge voltage V falls by 5–10 V. This tran-
sition is accompanied by penetration of the plasma into
the hollow cathode, the probe current being 1 µA. The
absence of the effect of a hollow cathode at low current
is related to the fact that, in this case, the charged parti-
cles do not enter the hollow cathode from the Penning
cell. The plasma and electrons do not penetrate into the
hollow cathode because of the drop in the cathode
potential in front of the cathode aperture, whereas the
penetration of ions is hindered by their scattering in
front of the aperture due to the specific shape of the
boundary of the cathode dark space.

As the current increases, the length L of the region
of the cathode voltage drop decreases. At certain criti-
cal parameters of the reflex discharge, the cathode dark
space shrinks so that the ion shell in front of the hollow
cathode aperture breaks and the plasma penetrates into
the cathode. The condition for penetrating is L ! R,
where R is the radius of the hollow cathode [1].

The maximum current of the dark discharge attained
200 µA at a discharge voltage of 950 V and a pressure
of 8 Pa; in this case, the probe current was zero. The
dependence of the discharge current on the voltage at a
1063-7842/01/4602- $21.00 © 20266
pressure of 11.7 Pa is shown in Fig. 2. When the glow
discharge was ignited at the minimum value of the dis-
charge current required for this type of a discharge to
exist (1–1.4 mA), there was plasma in the hollow cath-
ode and the probe current attained 8 µA. As the current

123 4 5

Fig. 1. Diagram of the discharge system: (1) hollow cath-
ode, (2) anode, (3) flat cathode, (4) permanent magnet, and
(5) probe.
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Fig. 2. The discharge current I vs. voltage V at a pressure of
11.7 Pa.
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decreased further, the glow discharge transformed into
the dark discharge; in this case, there was no plasma in
the hollow cathode and the probe current was zero.

The decrease in the voltage after the ignition of a
glow discharge versus pressure is shown in Fig. 3. The
higher the ignition voltage, the larger the decrease in
the voltage; the ratio ∆V/V ranges within 0.5–1.

Figure 4 presents the dependence of the discharge
voltage on the argon pressure for different values of the
discharge current in the case when only one cell is sup-
plied with power, whereas the other cell is insulated. At
a constant discharge current, the discharge voltage
decreases with increasing pressure.

Thus, it is experimentally shown that, in the dis-
charge system under study, plasma penetrates into the
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Fig. 3. The decrease in the voltage after the ignition of a
glow discharge vs. pressure.
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hollow cathode when the discharge switches from the
dark mode to the glow one.
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Fig. 4. Dependence of the discharge voltage V on the argon
pressure P for different values of the discharge current: I =
(1) 10, (2) 50, (3) 100, (4) 150, (5) 200, and (6) 250 mA.
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Abstract—An electrostatic system based on a plane capacitor is suggested to provide monochromatization of
the beams of charged particles. In addition to monochromatization, this system also straightens the beam tra-
jectory. The parameters of the system are calculated numerically within a broad range of variation of its
strength. © 2001 MAIK “Nauka/Interperiodica”.
Two-electrode plane capacitors are widely used for
the energy filtration of charged particles. For this pur-
pose, the capacitor should be operated in the mirror
mode with the beam inlet and outlet through its plate.
A number of electrodes with linear potential variation
are placed along the edges to provide field homogene-
ity. To simplity the system design, these electrodes can
be replaced by end diaphragms, with a potential equal
to the potential of any of the capacitor plates. Although
both the linear dispersion and energy resolution of such
a device are on par with similar characteristics of a clas-
sical plane capacitor, the former has a much simpler
design than the latter [1]. To ensure angular beam
focusing in the mirror mode, both the source and the
detector of the charged particles should be near the
capacitor. However, in some cases, this requirement
cannot be met.
1063-7842/01/4602- $21.00 © 20268
In the preceding works [2, 3], we studied the work-
ing modes of an energy filter based on a cylindrical
capacitor as charged particles entered through the end
electrode. This system allows a more convenient
arrangement of the source, detector, and other ele-
ments. If the beam intersects the capacitor axis at two
points (double intersection), this system provides a
straight beam-propagation trajectory. In this case, the
system is of considerable interest for developing cer-
tain physical devices based on the monochromatic
beams of charged particles.

The goal of this work was to solve similar problems
using plane electrodes. The cross section of the sug-
gested device is composed of three plane-parallel plates
and two plane end diaphragms and is shown in Fig. 1.
The diaphragms are placed close to the outer plane
electrodes, and their holes are coated with grids to
allow the beam to enter and exit. Fieldmaking poten-
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Fig. 1. A three-electrode plane capacitor with end diaphragms providing a straight trajectory of beam propagation.
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tials are applied to the outer electrodes, whereas both
the inner plate of the capacitor and the end diaphragms
are grounded. The length of the system is several times
longer than its width.

The geometrical electric parameters of the system
were calculated numerically using the TEO computer
program for a plane problem [3]. If the beam inlet
direction is parallel to the longitudinal axis of the sys-
tem and the inlet site is at a certain distance from the
axis, the strength of the system and its total length
should be chosen to meet the following condition: the
focused beam spot size at the site of the first intersec-
tion should be as large as possible, whereas the output
beam should be as parallel as possible. Therefore, this
system provides a straight trajectory of beam propaga-
tion and its energy filtration according to the size of the
first slit in the middle plate.

The results of numerical calculations of the param-
eters of the energy filter described above are given in
Fig. 2. In these calculations, the distance between the
plane electrodes and the gap between the outer and end
electrodes were taken to be a = 10 mm and s = 0.2a,
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Fig. 2. Parameters of the system shown in Fig. 1 as functions
of its strength: (1) distance from the axis to the beam
entrance and exit in case of an axial beam trajectory; (2) sys-
tem length; and (3) linear energy dispersion.
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respectively. The trajectories of propagation of an elec-
tron beam with an initial energy of ε0 = 100 eV in one
of the working modes of the device are shown in Fig. 1.

The parameters of the system were chosen to make
the inlet and outlet coordinates of the axial beam trajec-
tory equal to one another: x = x0 = x1 (Fig. 2, curve 1).
In this case, dependence of the total length of the sys-
tem L on its strength eV/ε0 (where V is the potential dif-
ference between the outer and middle plates of the
capacitor) is characterized by curve 2 (Fig. 2), whereas
the dependence of the coefficient of linear dispersion
D = ∆z ε0/∆ε is characterized by curve 3 (Fig. 2). It fol-
lows from Fig. 2 that the stronger the system, the
smaller its length and dispersion and the closer the
beam is to its axis. If the inlet size of a parallel beam is
∆x0 = 0.1a, the size of the beam at the first intersection
site does not exceed 0.02a, whereas the outlet size of
the beam is ∆xj < 1.2∆x0. The exit angle of the axial tra-
jectory in any working mode does not exceed 0.5°, and
the maximum deviation of peripheral trajectories is less
than ±3°.

The energy filter with straight beam trajectory
described in this work is based on a three-electrode
plane capacitor with end diaphragms. The parameters
of the energy filter are close to those of a similar system
based on a cylindrical capacitor. In terms of design
characteristics, this energy filter is compatible with var-
ious optoelectronic systems composed of plane ele-
ments. It should be noted that such purely electrostatic
systems are similar to a Wien filter with crossed elec-
trostatic and magnetic fields.
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Abstract—For a superconducting superlattice consisting of alternating layers of two materials with thicknesses
a and b, an analogue of the Cooper formula is obtained for boundary conditions in the general form. The effect
of the boundary conditions on the critical temperature is studied, and the possibility of order parameter local-
ization in the layers with a higher critical temperature is demonstrated. © 2001 MAIK “Nauka/Interperiodica”.
The phenomenon of high-temperature superconduc-
tivity has recently generated interest in experimental
[1, 2] and theoretical [3–5] investigation of supercon-
ducting superlattices. The advanced deposition tech-
niques enable one to produce artificial superlattices
with smoothly varying parameters. Therefore, superlat-
tices have a great potential for simulating properties of
layered superconductors.

Let a superlattice consist of two alternating super-
conducting layers A and B of thicknesses a and b and
have a total period L = a + b. In the classical statement
of the Cooper problem, the boundary conditions
imposed on the wave function (WF) of a Cooper pair
are the continuity of the WF and its first derivative at
the interface:

(1)

where mA, B is the effective mass of charge carriers and
subscripts A and B relate to the materials on each side
of the interface.

Suppose that the critical temperature in layer A, TcA,
is higher than in the other, TcB. In the general case, the
WF and its derivative on one side of the interface
should be joined with a linear combination of Ψ and
∂Ψ/∂z at its other side:

(2)

where

(3)

l is an arbitrary constant length, and  stands for the
transition matrix at the interface.

ΨA ΨB,
1

mA

------- ∂Ψ
∂z
-------- 

 
A

1
mB

------- ∂Ψ
∂z
-------- 

 
B

,= =

ΨA

ϕA
 
  t11 t12

t21 t22

ΨB

ϕB
 
 = T̂ AB

ΨB

ϕB
 
  ,=

ϕA l
∂Ψ
∂z
-------- 

 
A

, ϕB l
mA

mB

------- ∂Ψ
∂z
-------- 

 
B

,= =

T̂ AB
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It is interesting to trace a relationship between the
transition matrix and the superlattice critical tempera-
ture. For this purpose, we will study the effect of the
boundary conditions upon the density of states on the
Fermi surface and, hence, upon Tc (a, b) in terms of the
BCS theory in the effective mass approximation. Such
a method was applied within the Eliashberg approach
[6] to derive the critical temperature for an ellipsoidal
Fermi surface.

We consider the Debye frequencies and the con-
stants of four-fermion interaction in the BCS theory to
be the same; this assumption is justified because of a
weak dependence of Tc on ωd and on the order of the
electron–phonon interaction constants (the weak cou-
pling model). The layers are considered to differ in
mass only. Due to the periodic structure of superlat-
tices, the carrier masses can be renormalized and the
concept of longitudinal and transverse effective masses
can be introduced [7]. Then, employing the transition
matrix method, the electron spectrum is readily
obtained from the solution of the Schrödinger equation
for the wave function envelope satisfying the general-
ized boundary conditions. The effective masses at dif-
ferent points of a Brillouin zone can be found by
expanding the energy in terms of the wave vector. Anal-
ysis shows that, at the top of a mini-Brillouin zone, lon-
gitudinal and transverse masses are expressed as

(4)

where

m|| h
mA κbsinh

k a b+( )Ca
2

--------------------------,=

h ζ t22
2 α2t12

2+( ) ζ 1– t11
2 t21

2 α 2–+( )+=

– 2 α t11t12 α 1– t21t22+( )cothκb,
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(5)

The other designations follow [7]. The effective
constant of interaction in the BCS expression for criti-
cal temperature

(6)

can be evaluated from

(7)

Introducing the longitudinal and transversal effec-
tive mass means that the Fermi surface is an ellipsoid.
For this spectrum, the density of states is given by

(8)

A feature of our model is that the effective mass and,
hence, the critical temperature depend on the general-
ized boundary conditions. Let us trace the behavior of
the Tc (a, b) function derived in view of the expressions
for m|| and m⊥ . The generalized boundary conditions
lead to the localization of the order parameter: as a ⇒  0,
Tc tends not to TcB but to T* > TcB, where T * is defined

by elements of the transition matrix . As this takes
place, the high-Tc layers behave as planar defects,

m⊥
1– mA

1– θ mB
1– 1 θ–( ),+=

θ
Ca

2

2 a b+( )
--------------------a 1 kasin

ka
-------------+ 

  ,=

Ca
2 2 a b+( ) a 1 kasin

ka
-------------+ 

  b
κbsinh

κb
----------------- 1+ 

 +




=

× 1 kacos+
coshκb 1+
--------------------------- t11 t12β

κb
2

------tanh–




1–

.

Tc
2γ
π
------ωDe

1/λeff–
=

λ eff Neff 0( )g.=

Neff 0( )
P0

π2
----- m||m⊥ .=

T̂ AB
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where the order parameter is localized. A similar situa-
tion is observed in bulk superconductors [8], where it is
reasoned by the presence of Tamm levels. With ordi-
nary boundary conditions (1), the order parameter
localization does not occur and we come to the Cooper
limit; i.e., Tc smoothly varies between TcA and TcB.
These results are of interest for the interpretation of
experimental data on order parameter localization on a
dislocation network [1].

In conclusion, by choosing a transition matrix, one
can control the minizone structure of an electron in a
superlattice and, consequently, the density of states on
the Fermi surface. The latter parameter, in turn, is
responsible for the localization effect experimentally
observed in superconducting superlattices.
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