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Starting from the assumption that general relativity might be an emergent phenomenon showing up at low ener-
gies from an underlying microscopic structure, we reanalyze the stability of a static closed universe filled with
radiation. In this scenario, it is sensible to consider the effective general-relativistic configuration as in a thermal
contact with an “environment” (the role of the environment can be played, for example, by a higher-dimensional
bulk or by the trans-Planckian degrees of freedom). We calculate the free energy at a fixed temperature of this
radiation-filled static configuration. Then, by looking at the free energy, we show that the static Einstein con-
figuration is stable under the stated condition. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 04.20.EX; 04.40.Nr; 04.50.+h
1. INTRODUCTION

The development of a geometrical description of the
gravitational field led Einstein in 1917 to propose that
the universe could be, overall, a three-dimensional
sphere with no other evolution than that provided by
local physics [1]. To make this sort of equilibrium state
for the universe compatible with his geometrical field
equations, he introduced the to-be-famous cosmologi-
cal constant. The cosmological constant succeeds in
counterbalancing the collapsing tendency of all matter
in the universe. Later, in 1930, Eddington proved that
Einstein’s static universe was unstable under homoge-
neous departures from the equilibrium state [2]. At that
time, Hubble had already observed the recession of gal-
axies. For this reason and in view of the instability, the
Einstein model was considered as a possible initial state
for the universe that, once destabilized, would start to
expand. (This point of view has been revisited recently
in [3, 4].)

Eddington did not clearly analyze what could trig-
ger the development of the instability, but vaguely asso-
ciated it with the formation of condensations. Thanks to
a very interesting series of works [3–8] (we do not
intend to be exhaustive), at present we know that the
instability of models of the universe that are overall
closed, homogeneous, isotropic, and static is a much
more subtle issue. From here on, we will call all these
models Einstein models, independently of their matter
content, although the model proposed by Einstein him-
self corresponds to a universe filled with dust.

On the one hand, Harrison showed [7] that, if the
equation of the state of matter is such that its associated
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speed of sound cs is greater than 1/ , all the physical
inhomogeneous perturbations are neutrally stable. This
has been recently emphasized and extended by Ellis
and Maartens [3] and Barrow et al. [4]. This case
includes a radiation-dominated universe. For 0 ≠ cs <

1/ , only a finite set of inhomogeneous modes
becomes unstable. What happens is that, in a finite-size
universe, as an Einstein model, the Jeans scale for the
formation of condensations is a significant fraction of
the maximum attainable scale. Therefore, for suffi-
ciently high speeds of sound, only the universe as a
whole can develop instability. For this same condition,

cs > 1/ , Gibbons also showed that the Einstein point
corresponds to a local maximum of entropy among the
set of geometries conformally related to it that have a
moment of time symmetry [8].

On the other hand, Bonnor showed [6] that, at least
in the simplest case in which matter satisfies an equa-
tion of state, in order to really depart from the Einstein
state, one would need a global decrease in pressure in
the entire universe (this process had already been dis-
cussed by Lemaître in 1931 under the name of stagna-
tion [5]). This suggests that a static universe describ-
able in the cosmological scales as filled with dust for
which p = 0 would not be able to change its static global
state, but only develop instabilities on smaller scales.
On the other extreme, a static universe filled with radia-
tion could, in principle, exit from this state toward a
Friedman expansion by decreasing its pressure. Here, we
will concentrate on this later model and its instability.

In this paper, we will analyze the stability of a
closed and static universe filled with radiation, but start-
ing from notions somewhat different from those in stan-
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dard general relativity. General relativity is commonly
considered to be a low-energy effective theory that
emerges from a deeper underlying structure. A particu-
lar realization of this situation is suggested by gravita-
tional features that show up in many condensed matter
systems (such as liquid helium) in the low-energy cor-
ner [9]. These types of systems suggest that both matter
particles and interaction fields could be different emer-
gent features of the underlying system: they will corre-
spond to quasiparticles and collective-field excitations
of a multiparticle quantum system. For example, in the
phase A of 3He, the quasiparticles correspond to Weyl
fermions and the collective fields to electromagnetic
and gravitational (geometrical) fields.

Imagine now that a universe of the Einstein type was
the effective result of describing the geometric and mat-
terlike degrees of freedom emerging from the underly-
ing structure. A photon-filled Einstein universe will
have a specific temperature. In the standard general rel-
ativity, the stability of the system is analyzed under the
assumption of adiabaticity: there is no heat transfer into
or out of the universe because “there is nothing outside
the universe.” However, in the emergent picture
described above, there is not any a priori reason to con-
sider the system as effectively thermodynamically
closed (let us remark that this is a nonstandard general
relativistic behavior). Therefore, it is natural to ask
what would happen with perturbance of the Einstein
state if the temperature of the underlying structure
stayed constant. We will not enter into what sets and
controls this temperature, but let us only assume that it
is independent from the behavior of the effective uni-
verse. Let us emphasize that we do not disturb general
relativity, so that the solution for the equilibrium static
universe is the same that follows from the Einstein
equations. We only allow for heat exchange with the
“environment.”

Apart from the emergent gravity picture, there exist
other situations in which the image of an externally
fixed temperature might also make sense. These are sit-
uations in which the four-dimensional world of stan-
dard general relativity does not conform to a com-
pletely closed system. We can imagine, for example,
scenarios with extra dimensions (playing the role of the
environment), from which energy could flow into and
out of the four-dimensional section.

In the following, we will compare Eddington’s sta-
bility analysis with an analysis based on the fact that the
temperature of the system is kept fixed. For that, we
will calculate the free energy of radiation-dominated
Einstein states. Let us now start by reviewing the stan-
dard Eddington instability argument.

2. EDDINGTON’S INSTABILITY ANALYSIS

Consider a generic positive-curvature FRW metric
written in the form
(1)

Here, N(t) is the lapse function, a(t) is the scale factor,
and Ωij is the metric on a unit-three sphere. Following
Schutz [10], the Einstein equations for a universe filled
with a perfect fluid can be obtained by varying the
action

(2)

This is the standard Einstein–Hilbert action supple-
mented with a boundary term and the volume integral
of the fluid pressure p. To obtain the standard form of
the Friedman and Raychaudhuri equations, we can sub-
stitute the previous FRW ansatz in the action and, after
variation, set the lapse function equal to unity, N = 1.
Specifically, the action can be written as

(3)

Here, the explicit dependence of the pressure on its
argument is determined by the condition

(4)

For example, for a radiation equation of state ρ = 3p,
one obtains from this condition that p = CN–4, with C
being a constant.

By looking at the previous action and having in mind
that we are interested in the analysis of the static solu-
tions of the system, we can define a different and simpler
functional containing all the relevant information:

(5)

Here, we have rescaled the density and pressure as  =
8πGρ,  = 8πGp. We can easily see that, by varying
with respect to N and a and setting N = 1, we obtain

(6)

(7)

In the case of a universe filled with radiation,  = 3 ,
these relations give us the radiation Einstein conditions

 = Λ,  = (3/2)Λ–1.

By looking at the functional Sst (setting N = 1), one
can also see that the Einstein point is not stable. Taking
into account that the kinetic term for the scale factor
enters gravitational action (3) with a negative sign, the
local maxima of the functional Sst will correspond to
unstable points. This is precisely the case for the Ein-
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stein point (one can perform explicitly the second vari-
ation with respect to a to check this local behavior).
This is the Eddington instability we described in the
Introduction. We have obtained it here in this varia-
tional way because of later convenience in comparing it
with the result obtained from the free energy function.

3. FREE ENERGY OF A STATIC 
GRAVITATIONAL CONFIGURATION

Let us now take a completely different point of view.
Let us analyze what happens when the perturbation of
the Einstein model is performed as immersed in a ther-
mal reservoir at a fixed temperature. For that, let us con-
sider the free energy of static gravitational configura-
tions. We follow the treatment described in [11] and ref-
erences therein. The free energy of the purely
gravitational part of a static configuration is determined
by the Euclidean action of the configuration (see, for
example, [12]),

(8)

Here, the temporal coordinate τ is periodic, with a period
equal to the inverse of the temperature T0. The symbols
Re and ge stand, respectively, for the Euclidean curvature
and Euclidean metric of the configuration. We can real-
ize that these terms, coming from the purely gravitational
sector, do not actually depend on the temperature, so they
will be there even at a temperature of zero,

(9)

We are assuming that a proper Einstein–Hilbert behav-
ior is emerging in the low-energy corner. Let us remind
you that this is not what normally happens in the stan-
dard condensed matter systems we know of. In these
cases, the Einstein–Hilbert behavior is supplemented
with noncovariant terms (see [9]).

Let us now consider the free energy of a gas of photons
(radiation) inside a curved but static geometry. The lead-
ing term in the temperature on the free energy function is

(10)

where σ ≡ π2 /15"3c2 is the Stefan–Boltzmann con-
stant and

(11)

is the Tolman temperature (we will see later that there
are other contributions to the free energy in lower pow-
ers of the temperature). For the particular geometries
we are interested in here, the total free energy can be
written as

F0 T0I
T0

16πG
-------------- τd3x ge Re 2Λ–( ).d∫–= =

F0
1

16πG
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3
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g00 x( )
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with

(13)

From this free energy, which is associated with a
static geometry filled with radiation at a temperature T0,
we can obtain the Einstein static condition. It corre-
sponds to the one that extremizes the function F. Varia-
tion with respect to N with a later evaluation in N = 1
gives

(14)

Variation with respect to a yields

(15)

Therefore, we have found the same expressions as
before: the conditions for a static Einstein universe
filled with radiation.

By inspection of the free energy function, we can
see that the Einstein static point is now located at a local
minimum. This is the main point we want to highlight
in this paper. If the perturbation of the radiation-filled
Einstein universe is done under the influence of an
externally fixed temperature (something outside the
realm of standard general relativity), then the Einstein
point will be stable.

4. CORRECTIONS DUE TO THE TEMPERATURE

In the previous section, we analyzed the free energy
of a system composed by static geometries of the Ein-
stein type as the containers, plus photon gases as the
contents. Free energy (12) is an approximation, as it
does not contain additional contributions in smaller
powers of the temperature. In the high-temperature
limit T2 @ "2Re, the total free energy for a gas of pho-
tons in a static spacetime is [11, 13]

(16)

with

(17)

Here, the prefactor  in the T2Re term is  = Nv /36"
and is obtained by integration over thermal photon
fields (see [14]). If the integration had been made using
minimally coupled scalar fields, the coefficient would
have been  = –Ns/144", with Ns the number of mini-
mally coupled scalar fields; equivalently, for Nd Dirac
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fermions, one would have  = Nd/144" [11, 13]. In our
particular case, this free energy yields

(18)

or, expressing everything in terms of  and denoting
the constant factor (8πG/σ)1/26  by the letter b,

(19)

Varying with respect to N and a, we now find

(20)

(21)

Manipulating these two conditions, one obtains

(22)

Note that, in emergent gravity, the external temperature
and thus  are fixed, while the cosmological constant
Λ (i.e., the vacuum pressure) is adjusted to the thermo-
dynamic equilibrium. This is the reason why, in the
emergent gravity, the cosmological constant is always
much smaller than its “natural” Planck value: in our

case, Λ ~ /  ! .

In the particular case of photon gas with  = 1/36",
one obtains the following modification of the Einstein
point by thermal fluctuations (here, we use " = c = 1):

(23)

This corresponds to the original Einstein point with the
Newton constant renormalized by thermal fluctuations,

(24)

For G  ! 1, i.e., when  ! , the result in
Eq. (23) coincides with that obtained by Altaie and
Dowker (see Eqs. (44) and (41) in [14]):

(25)

This demonstrates that, in equilibrium and in the limit

 ! , the thermal correction to the Einstein
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point that follows from minimization of the free energy
coincides with the result following from the conven-
tional general relativity approach, in which the Einstein
equations are solved in a self-consistent manner taking
into account thermal fluctuations [14].

Although our treatment here cannot consider the
dynamics of the system, we can understand that the
general equations for the evolution of an effective FRW
universe in contact with a fixed temperature reservoir
will be different from that of Einstein. This, in particu-
lar, must include the evolution of the “cosmological
constant” to its equilibrium value.

5. HOMOGENEOUS BUT ANISOTROPIC 
PERTURBATIONS

In standard general relativity, the Einstein point for
a Universe filled with radiation is also unstable against
homogeneous but anisotropic perturbations of the met-
ric of the Bianchi type IX (see, for example, [4]). For
completeness, in this section, we want to see whether
the Einstein isotropic point is, on the contrary, stable in
our approach.

In order to analyze the stability of the Einstein state
from our emergent gravity point of view, we need to
calculate the free energy of static configurations of the
Bianchi IX type, which include the Einstein isotropic
configuration. The general metric for these models is
[15]

(26)

(27)

(28)

(29)

Now, the free energy for these configurations is

(30)

Again, it is not difficult to see that the Einstein point is an

extremum of this free energy  =  =  = (3/2)Λ–1 =

(3/2)  and that it is a local minimum.

6. DISCUSSION

The Einstein static model was introduced as a state
of equilibrium for the universe as a whole. A few years
after its introduction, it was pointed out that it will be
unstable under perturbations. At present, we know that
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the issue of the stability of closed and static configura-
tions is not as clear-cut as it was considered to be,
although there are still several ways to create instability.
For example, a radiation-dominated universe could be
made globally unstable by a sudden decrease in pres-
sure in the entire universe.

Here, we have analyzed this global instability of a
static universe in the simple case of radiation domi-
nance, but taken a different perspective on the essence
of gravity. We have considered that general relativity
might be an emergent feature of an underlying quantum
theory of a similar nature to that describing a condensed
matter system such as liquid helium. In this case (some
other cases can also be imagined), it appears reasonable
to consider the temperature of the universe as some-
thing independent (at least in a first approximation) of
the specific characteristics of the emergent four-dimen-
sional geometry. This characteristic put us outside the
realm of standard general relativity.

Taking this perspective, we have calculated the free
energy for static universes of the Einstein type filled
with a gas of photons at a fixed temperature. We have
seen that the free energy has an extremum at the Ein-
stein point and that this extremum corresponds to a
local minimum. Therefore, thermodynamically speak-
ing, the Einstein state for the universe would be stable
under the stated condition.

It is not difficult to understand why this is the case.
The Eddington instability of the Einstein state is based
on the following fact. The contractive tendency of mat-
ter operates more strongly on short scales. Instead, the
expansive tendency of the cosmological constant oper-
ates more strongly on large scales. In the Einstein point,
these two tendencies are exactly balanced. However, if
the universe is suddenly made larger, the cosmological
constant effect takes over and further expands the uni-
verse. Reciprocally, if the universe is made smaller, the
matter dominates and causes the universe to further
contract. However, in the case analyzed here, a sudden
expansion of the universe will be accompanied by the
introduction of more photons in the system in order to
keep the temperature constant in the now larger vol-
ume. This increase in the amount of matter completely
counterbalances the cosmological constant tendency
making the universe contract back to its initial state.

We also know that the Einstein point is unstable in
standard general relativity to homogeneous but aniso-
tropic perturbations of the Bianchi type IX. Taking our
JETP LETTERS      Vol. 80      No. 4      2004
point of view, we have calculated the behavior of the
Einstein point inside the general class of static Bianchi
model of type IX. We have also found that the Einstein
point is stable in our approach.

In summary, in the standard general relativistic
point of view, the radiation-dominated Einstein state is
unstable under global perturbation of the scale factor
and also from homogeneous but anisotropic perturba-
tions. However, from the point of view of emergent
gravity, these instabilities are not present.
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Quasielastic triton knockout from 6Li and 7Li nuclei by negative pions with momenta p0 = 0.72 and 0.88 GeV/c
was studied in the region of backward pion–triton scattering. The experiment was performed at the Institute of
Theoretical and Experimental Physics (ITEP, Moscow) on a 3-m magnetic spectrometer equipped with spark
chambers. The momentum distributions of the intranuclear quasitriton motion and the excitation-energy spectra
of residual nuclei were obtained. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 25.80.Hp
Clusters play an important role in studying the struc-
ture of nuclei (see, for example, reviews [1, 2]). Within
the cluster approaches, the properties of nuclei are
determined both by the properties inherent in the clus-
ters themselves and by their relative motion. Interest in
cluster approaches has grown considerably in recent
years. This was associated both with the successes
achieved by the alpha-particle nuclear models [1, 3]
and with the development of methods of projecting [4]
the shell wave functions onto the cluster configurations,
allowing the difficulties of many-body problem to be
surmounted in calculating nuclear reactions. In this
work, we explore the quasielastic knockout of frag-
ments (clusters) from nuclei, which is an efficient
method for studying the cluster structure of light nuclei.
If one measures the kinematic parameters of both the
knock-on fragment and the scattered particle (this cor-
responds to the fully reconstructed kinematics of the
experiment), the use of the impulse approximation
makes it possible to determine, from the missing energy
and momentum, not only the energy of the residual
nucleus but also the momentum of the intranuclear
motion of the knock-on cluster and the effective num-
ber of such clusters in the nucleus under study. This
method was previously used by us in [5] to explore
backward quasielastic pion–deuteron scattering. That
experiment also provided statistics that served as a
basis for deriving the results presented below for pion-
induced quasielastic triton knockout in the forward
direction from 6Li and 7Li nuclei in the reactions

(1)

and

(2)

π– Li6 t π– X+ + +

π– Li7 t π– X.+ + +
0021-3640/04/8004- $26.00 © 20214
In particular, the excitation-energy spectra of residual
nuclei X and the momentum distributions for the intra-
nuclear motion of a quasitriton were constructed on this
basis. Both target nuclei can be considered [6, 7] as the
two-cluster systems, 6Li  t + 3He and 7Li  t +
4He, whose quasitriton cluster is involved in the afore-
mentioned reactions.

Our experiment was performed using a negative
pion beam with momenta p0 = 0.72 and 0.88 GeV/c
from the 10-GeV proton synchrotron of the Institute of
Theoretical and Experimental Physics (ITEP, Mos-
cow). Use was made of a 3-m magnetic spectrometer
equipped with spark chambers placed in a magnetic
field (see [8]). The magnetic field existed over a rather
large volume (3 × 0.5 × 1 m3), and this made it possible
to perform, for a target positioned near the center of the
magnet, a complete kinematic analysis of the reaction
of interest—that is, to measure both the momentum of
a triton knocked out in the forward direction (θlab &
10°) and the momenta of the incident-beam and back-
scattered pion. Targets from 6Li with isotopic composi-
tion 90.4% 6Li and 9.6% 7Li and from 7Li of natural iso-
topic composition (7.52% 6Li and 92.48% 7Li) were
prepared in the form of solid cylinders 9.5 cm long and
8 cm in diameter that were surrounded by 0.1-mm-
thick walls from stainless steel. All targets were
mounted on a disk, whose rotation allowed the required
target to be exposed to the beam. An important point
was that the quasielastic proton knockout [9] and
quasielastic deuteron knockout [5] reactions, each
characterized by a much larger cross section, were
simultaneously measured in this experiment. This pro-
vided a reliable calibration in separating reaction events
for (1) and (2). For a positively charged particle emitted
004 MAIK “Nauka/Interperiodica”
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from a target in the forward direction, the time of flight
was determined on a base of ~6 m by using a system of
hodoscopic scintillation counters having an area of
0.7 × 2.1 m2. The distribution of events with respect to

the squared mass  of a particle emitted in the for-
ward direction is shown in Fig. 1 according to a calcu-
lation based on its measured momentum and time of
flight. The reactions involving triton knockout were

separated using the criterion 6.3 ≤  ≤ 8.9 GeV2. For
these events, we calculated the missing momentum

(3)

and the missing energy

(4)

where T stands for kinetic energy; the indices 0, π–, t,
and X label the energies and momenta for, respectively,
the incident and final pions, the triton, and the residual
nucleus X; TX = (pF)2/2M; and M is the residual nucleus
mass. The further analysis was performed in the plane-
wave impulse approximation, and the corresponding
pole diagram for reaction (1) is displayed in Fig. 2. In
this approximation, one identifies the missing momen-
tum pF with the intranuclear momentum of a quasitriton
cluster and the missing energy Emiss with the excitation
energy of the residual nucleus. For 6Li and 7Li, Fig. 3
shows the Emiss distributions for the total statistics accu-

Mτ
2

Mτ
2

pF p0 pt p
π–––=

Emiss T0 Tt T
π– TX,–––=

Fig. 1. Distribution in the squared mass  of a forward

emitted particle in the π– + A  (π+, p, d, t) + X reac-
tions.

Mτ
2
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mulated for p0 = 0.72 and 0.88 GeV/c. At low values of
Emiss, both distributions exhibit a distinct peak associ-
ated with the quasielastic pion–triton scattering in the
backward direction. In the case of X = 3He, the position
of this peak for 6Li is determined by the quasitriton
binding energy (Eb = 15.8 MeV [6]) in the 6Li nucleus;
that is, Emiss = 15.8 MeV. The reaction thresholds for
X = p + d and X = p + p + n lie higher by 6 and 8 MeV,
respectively. The experimental resolution σ = 15–
18 MeV of our facility with respect to Emiss is insuffi-
cient for separating these reactions. The position of the
peak associated with quasielastic pion–triton scattering
on 7Li for X = 4He is determined by the quasitriton
binding energy (Eb = 2.5 MeV [6]) in the 7Li nucleus;

Fig. 2. Diagram corresponding to the plane-wave impulse
approximation.

Fig. 3. Missing-energy (Emiss) distribution in the reactions

π– + 6, 7Li  t + π– + X for the total statistics accumu-
lated at p0 = 0.72 and 0.88 GeV/c for (a) 6Li and (b) 7Li.

X
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that is, Emiss = 2.5 MeV. The reaction thresholds for X =
d + d, X = p + n + d, and X = p + n + p + n lie higher by
25, 27, and 29 MeV, respectively. For 7Li, the quasielas-

Fig. 4. Momentum of the intranuclear motion of a quasitri-
ton in the reactions π– + 6, 7Li  t + π– + X as a function
of Emiss: (a) results for a 6Li target and (b) results for a 7Li
target.

Fig. 5. Distributions of events in the momentum of the intra-
nuclear motion of a quasitriton in the reactions π– +
6, 7Li  t + π– + X for the interval –0.010 ≤ Emiss ≤
0.050 GeV: (a) results for a 6Li target and (b) results for a
7Li target. The curves correspond to the Gaussian distribu-

tion exp(– /κ2), where κ = 149 ± 56 and 93 ± 18 MeV/c

for 6Li and 7Li, respectively.

pF
2

tic peak corresponding to quasitriton knockout is more
distinct, which is seen most clearly in the two-dimen-
sional pF versus Emiss distribution (see Fig. 4). In con-
trast to what we have for 6Li, there is a pronounced con-
centration of events at low pF and Emiss in this distribu-
tion for 7Li. This is indicative of a higher weight of the
quasitriton component in the 7Li than in the 6Li nucleus.

The differential momentum distributions of the
intranuclear motion of a quasitriton are shown in Fig. 5.
They were approximated by the Gaussian functions

exp(– /κ2). For the interval –0.010 ≤ Emiss ≤ 0.050 GeV,
the values of the parameter κ proved to be κ = 149 ±
56 MeV/c for 6Li and κ = 93 ± 18 MeV/c for 7Li. They
are greater than the values of κ = 56 ± 8 MeV/c for 6Li
and κ = 82 ± 11 MeV/c for 7Li obtained for the
momenta of intranuclear motion of quasideuterons
from quasielastic pion–deuteron scattering in these
nuclei for the incident momentum p0 = 0.72 GeV/c [5,
10]. The parameter κ = 100 ± 20 MeV/c, which was
obtained for the intranuclear motion of tritons in the
measurement of quasielastic triton knockout by
590-MeV protons from 6Li in a kinematically complete
experiment [11], agrees with our experimental results,
which, in turn, agrees with the results of the calcula-
tions performed in [12, 13]. Unfortunately, we are
unaware of any similar calculations for the 7Li nucleus.
Since there are no data on elastic pion–triton scattering
(or on isotopically conjugate pion scattering on 3He
nuclei) at the energies of our experiment and at high
momentum transfers, we are unable to estimate the
effective number of quasitritons in lithium nuclei.
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We show that the series expansion of quantum field theory in Feynman diagrams can be explicitly mapped on
the partition function of simplicial string theory—the theory describing embeddings of two-dimensional (2D)
simplicial complexes into the spacetime of the field theory. The summation over 2D geometries in this theory
is obtained from the summation over the Feynman diagrams and the integration over the Schwinger parameters
of the propagators. We discuss the meaning of the obtained relation and derive the one-dimensional analog of
the simplicial theory using the example of a free relativistic particle. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 11.25.-w
1. There is hope that the large-N Yang–Mills theory
is exactly equivalent to string theory [1]. Such a string
theory, if it exists, can reveal the integrability of the
large-N Yang–Mills theory. Hence, the theory will help
in explaining the confinement phenomenon.

Despite the recent progress [2, 3] in the case of
(super)conformal theories, we still do not understand
the relation between gauge and string theories. We do
not understand which features of the relation are
generic (persist at least for nonconformal and/or nonsu-
persymmetric cases) and which are specific for the con-
crete relation of [2]. This is due to the fact that there is
no explicit proof of AdS/CFT correspondence [2, 3].

In an attempt to understand the relation between
field and string theories in general, we present, in this
note, an explicit map from the functional integral of the
matrix field theory (at finite N) onto the partition func-
tion of the simplicial string theory—the theory
describing embeddings of the two-dimensional (2D)
simplicial complexes into the spacetime of the field
theory. Our considerations are quite generic and can be
applied to the Yang–Mills theory. However, we con-
sider the model example of the matrix Φ3 theory whose
interpretation on the string theory side we understand
best of all.

The map in question is given by a duality transfor-
mation. To some extent, this duality is the lattice analog
of the T-duality map, although we do not have any com-
pact dimensions. Via this transformation, we map the
summation over the Feynman diagrams and the integra-
tion over the Schwinger parameters onto the sum over
triangulations of the 2D surfaces and integration over
the invariant 2D distances between the vertices of the

¶ This article was submitted by the author in English.
0021-3640/04/8004- $26.00 © 20218
simplicial complexes. This seems to be a summation
over all 2D geometries and all embeddings of the sim-
plicial complexes into spacetime. To understand this
point, we consider the toy example of a free relativistic
particle, for which we present a similar expression.
There, the summation over all one-dimensional (1D)
geometries is given by summation over 1D “triangula-
tions” and integrations over the lengths between the
vertices of the “triangulations.” The integration over all
positions of the vertices gives the sum over all possible
embeddings. The resulting “triangulated” expression is
exactly equivalent to the relativistic particle path inte-
gral. No continuum limit should be taken.

However, a complete understanding of the simpli-
cial string theory—at least its possible continuum for-
mulation, or maybe a continuum limit of it—is still
lacking. In particular, it is possible that, in the contin-
uum formulation, the theory describes strings in the
curved AdS5 space rather than in R4 [4].

Anyway, as usual, the relation between two theories
can be useful for both of them. In fact, the map in ques-
tion at least can give an unambiguous way of formulat-
ing the simplicial string theory. Particularly, the mea-
sure of integration and the 2D gravity action unambig-
uously follow from the matrix field theory.

The structure of the paper is as follows. In Section 2,
we present the map between the two theories. In Sec-
tion 3, we present an interpretation of the resulting dual
expression obtained in Section 2. In Section 4, we con-
sider the example of the free relativistic particle and
present a simplicial path that is integral for it. We con-
clude with he discussion in Section 5. In the Appendix,
we present a simple proof of the well-known combina-
toric formulas [5] for the Feynman integrals. These for-
mulas acquire a new meaning after the relation of the
004 MAIK “Nauka/Interperiodica”
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field theory to the simplicial string theory is estab-
lished.

2. Consider the matrix scalar field theory in the
D-dimensional Euclidian space:

(1)

where ∂ = (∂/∂x1, …, ∂/∂xD) and  is an N × N matrix
field in the adjoint representation of U(N) group: Φij, i,
j = 1, …, N. Note that we have rescaled the fields, so
that λ is the t’Hooft coupling constant, but we are not
taking the large N limit in this note.

The problems of this field theory, due to the sign
indefiniteness of the Φ3 potential, are not relevant for
most of our further considerations. We consider the
functional integral Z as a formal series expansion in the
powers of λ. To deal with connected graphs, we con-
sider logZ.

It is well known that logZ can be represented as (see,
e.g., [6, 7])

(2)

where pl is the momentum running along the propaga-
tor l; the propagators are written in the Schwinger
α-representation; the first sum is taken over the genera
g of the discretized closed 2D surfaces represented by
the fat Feynman diagrams1 [7]; the second sum is taken

over the number V of the insertions of Tr (yi) verti-
ces; χ(g) = V – L + F is the Euler characteristic corre-
sponding to the genus g diagram in the sum with V ver-

1 Each member in the sum in Eq. (2) is represented by a fat three-
valent (three links enter each of the V vertices) graph. Such a
closed graph represents a vacuum amplitude of the theory in
Eq. (1). The generalization of our considerations for the correla-
tors (open graphs) is straightforward.

Z DΦ̂ x( )∫=

× dDxNTr
1
2
--- ∂Φ̂ 2 1

2
---m2 Φ̂ 2 λ

3
---Φ̂3

++∫–
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Zlog Nχ g( ) λVC V g,( )
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∞

∑
g 0=

∞

∑=

× αn dDyi dDpm

m 1=

L

∏∫
i 1=

V
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n 1=

L

∏
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+∞
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×
α l pl

2 m
2
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2
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l 1=

L

∑–
 
 
 

,exp

Φ̂3
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tices, L propagators, and F faces;2 ∆ly is the difference
of the target space positions of the ends of the lth prop-
agator; and C(V, g) are constants that can be found from
the genus expansion of the matrix integrals (see, e.g.,
[8, 9]),

(3)

For the general D, most of the integrals under the sum
in Eq. (2) are divergent. One of the types of divergences
is proportional to the volume of the spacetime and is
just due to the translational invariance. To get rid of this
divergence, we can skip one of the L integrations over
the momenta. Another type of divergence is the stan-
dard ultraviolet (UV) divergences of quantum field the-
ory. We discuss them below.

We will perform a transformation over Eq. (2). The
same kind of transformation is performed in [10] and is
referred to as duality on the lattice. As well, a somewhat
similar transformation is made in [11] and relates some
types of Feynman diagrams of the Φ3 theory to the
amplitudes in conformal quantum mechanics.

To do this transformation, let us perform integration
over the y’s. Then, each term under the sum and integra-
tion over α’s is represented as the finite function,

(4)

where, in each of the V δ-functions, the sum goes over
the three links terminating on each of the V vertices.
There are momentum conservation conditions at each
vertex. The UV divergences in the diagrams appear
after the integrations over the α’s. To perform the trans-
formation in question, we consider integrand expres-
sions, because we would like to show that this transfor-
mation gives a nontrivial relation between the two par-
tition functions rather than a formal map from one
infinite number onto another. At the same time, the
divergences have a clear physical meaning on the both
sides of the relation as is argued in the next section.

2 Do not confuse this number with the number G of the momentum
loops of the diagram; F is the number of closed index loops of the
fat Feynman diagram.
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The conditions that are imposed by the V δ-func-
tions are usually solved via G = L – V + 1 independent
momenta running along the loops of the diagram. How-
ever, we are going to solve them via the dual graph to
the Feynman diagram under consideration. The dual
graph consists of the vertices sitting in the centers of the
faces of the Feynman diagram, and its links pass
through the centers of the propagators of the Feynman
diagram. Thus, the dual graph to a three-valent Feyn-
man diagram represents the triangulation of a 2D sur-
face. The faces of the dual graphs are triangles.

Then, each of the L momenta pl obeying conditions

 = 0 can be represented as3 

(5)

where ∆lx is the difference of the target space positions
of the ends of the link l of the dual graph (which is inter-
secting the lth propagator of the Feynman diagram),

ms are arbitrary parameters, and  are 2g closed (but
not exact) one-forms on the genus g simplicial complex
defined by the dual graph. To explain these observa-

tions, let us point out that the condition  = 0 is

equivalent to the D 2D dp = 0 conditions on the lattice
[10]. The solutions of these conditions are p = dx +

ω(s), dω(s) = 0 for all s whose lattice expres-

sion is Eq. (5).

Using this solution, we obtain

3 Note that the momenta under the sums  = 0 have alter-

nating signs. Some momenta are entering the vertex, while the
others are exiting from it. This obviously means that the links of
the Feynman diagram have orientations. Hence, the links of the
dual graph should have synchronized orientations (with the Feyn-
man diagram) to be defined in Eq. (5) which, of the edge x’s,
enters with “+” and has a “–” sign in the corresponding p, so that
all the momentum conservation conditions are fulfilled [12].

pl
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D/2

s 1=

2g

∏∫
(6)

where C'(V, g) is different from C(V, g) by the D/2
power of the determinant of the matrix relating p’s and
x’s in Eq. (5) and F is the number of the vertices (faces)
of the dual (Feynman) graph. In Eq. (6), we have used
the fact that ω’s are closed.

In the next section, we interpret the expression in
Eq. (6) as the simplicial string theory. In this context,
the summations over the genera, triangulations, and
integrations over the α’s give the summation over inter-
nal 2D geometries. The integration over the x’s—the
positions of the vertices—gives the summation over the
embeddings.

It is worth mentioning at this point that all our con-
siderations so far can be easily generalized to higher
valent fat graphs (i.e., to the matrix Φn, n ≥ 4 theory or
to non-Abelian gauge theories). However, the resulting
dual graphs in these cases contain more complicated
simplexes than just triangles [12].

3. The definition of the simplicial string theory is
well known [13]. We present it here to make the inter-
pretation of Eq. (6) obvious. First, the internal metric
on a simplicial complex is given by

(7)

where eα, α = 1, 2 are 2D vectors that set the zweibein.
They are along two edges of each triangle ∇  of the sim-
plicial complex. As well, e1, 2, 3 are lengths of the three
edges of these triangles. Second, the external metric on
a simplicial complex is given by
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(8)Gαβ ∇
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,= =
where ∆1, 2, 3x are differences of the target space posi-
tions of the vertices of each triangle of the simplicial
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complex. Hence, the discretization of the string theory
action is as follows:
(9)

S d2σ hhab∂ax∂bx => h∇ Tr h ∇
1– G ∇( )

∇
∑∫=

=  
∆1x( )2 e2
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2 e2
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2–+( )++[ ] ∇

2 h∇

--------------------------------------------------------------------------------------------------------------------------------------------------------------------.
∇
∑

Here, the sum is going over all triangles of a simplicial
complex, and

(10)

is the determinant of the internal metric. Thus, it is nat-
ural to define the partition function of the simplicial
string theory as

(11)

where F is the number of vertices of the triangulation
under the sum and αl(e), as follows from Eqs. (9) and
(10), are the positive functions of the lengths of the
edges of the two triangles glued together via the link l.
What is left to be defined are the measure [de] and the
weight S(e) of the summation over the 2D geometries.
If we would like to integrate over the e’s themselves, we
have to impose the triangle inequalities into the mea-
sure to keep the metric positive defined.

Now, we can point out the equivalence between
Eq. (6) and Eqs. (9)–(11) with the suitable choice of
[de] and S(e). In fact, the measure and the weight for the
summation over the 2D geometries in Eq. (6) unambig-
uously follow from the matrix field theory. This mea-
sure is very natural because the integration goes over
the α’s rather than e’s, which demand triangle inequal-
ities to be imposed [12]. However, the expressions for
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the discretized versions of the standard gravity actions
in terms of the α’s are not known. This explains the rea-
son why, usually in the formulation of the simplicial
string theory, one is trying to express everything
through the e’s rather than the α’s [13].

It is worth mentioning at this point that the UV
divergences of the quantum field theory in Eq. (1)
acquire a clear interpretation in the simplicial string
theory description. These divergences are just due to
the boundaries in the space of all metrics, i.e., due to the
degenerate metrics, which correspond to such situa-
tions as when some of the triangles degenerate into
links. In this context, it is interesting to understand the
meaning of the renormalization group within the sim-
plicial string theory context (see [14] for the attempts of
the explanation).

Note that Eqs. (11) and (6) are explicitly reparame-
trization-invariant, because there the integration goes
over all reparametrization-invariant 2D lengths
between the vertices of the simplicial complexes and
over the target space position x’s of the vertices rather
than over the maps [12]. In the next section, we will
present a similar situation for the relativistic particle.
After that, we will be ready for the discussion of the 2D
situation.

4. Consider the path integral for the relativistic par-
ticle,

(12)
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with measures following from the norms

(13)

The answer for this path integral is [1]

(14)

In the ζ-function regularization, we obtain

(15)

Thus, G(x, x') is the Green’s function of the Klein–Gor-
don equation.

At the same time, there is another reparametriza-
tion-invariant regularization for the path integral of the
relativistic particle, the lattice regularization, where the
lattice spacings are reparametrization-invariant one-
lengths. In this regularization naively, one has (T =

)
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and δλ0 = δλM + 1 = 0. Note that e’s are invariant 1D
lengths. If this expression for the determinant is substi-
tuted into Eq. (14), we obtain

(17)

Here, CM is some constant.
It seems that the naive lattice regularization does not

work. However, for this case, we can present a multiple
integral expression that solves the Klein–Gordon equa-
tion [12]. To obtain it, note that, in contrast, with
respect to the evolution-type equations,4 the Green’s
function of the Klein–Gordon equation has the follow-
ing feature:

(18)

However, it is easy to correct this formula in such a way
that the equality will hold. For example, we can put (for
any M)

(19)

where y0 = x and yM + 1 = x'. In this formula, we take the

integral over the moduli  = T rather than over
all e’s, and the expression under this integral depends
on T rather than all e’s separately. The latter fact can be
seen explicitly after the integration over y’s.

The expression in Eq. (19) seems to be a good can-
didate for “proper discretization” of the relativistic par-
ticle path integral. However, due to the integration over
T rather than each separate e, this integral does not

4 Which obey K(x, x'|(M + 1)∆τ) = yiK(x, y1|∆τ)K(y1,

y2|∆τ)…K(yM, x'|∆τ).
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seem to have a good local field theory interpretation.
Note that, obviously,

(20)

for any M. This is the main difference from the above
case of the relativistic particle path integral when the
limit M = ∞ is appropriately taken and the ζ-function
regularization instead of the lattice one is applied.

To obtain the integration over all e’s, let us perform
the following trick. Consider the equality

(21)

Then, it is possible to write (in each term under the sum
y0 = x, yL + 1 = x')

(22)

where CL are constants. The enumeration of the links in
this 1D case coincides with the enumeration of the ver-
tices: ∆ly = yl + 1 – yl, l = i, and in the 1D (open path)
case, L + 1 = V. If we take the integrals over y’s instead
of p’s, then the conditions are ∆ip = pi + 1 – pi = 0 (for
all i) whose continuum limit analogs are dp = ∂τpdτ =
0. The solution of the latter on the 1D interval is p(t) =
const. That is the reason why, unlike the 2D case in
Eq. (6), in the 1D situation we do not have a nontrivial
expression for the Green’s function through the xa’s.

However, the formula in Eq. (22) is in many respects
very similar to the 2D expression in Eq. (6). In fact, it
contains the summation over all discretizations of the
world-trajectory (which are 1D triangulations) and the
integration over all 1D distances between the vertices
yi’s (which is the integration over the α’s). In the 1D
case, α(e) = e. The summation over the embeddings is
given by the integration over all possible positions of
the vertices (y’s).

5. Thus, we find that the log of the functional inte-
gral for the matrix quantum field theory can be repre-
sented as the partition function of the first quantized
simplicial string theory. In the latter, we sum over all
possible embeddings of all possible simplicial com-
plexes into the target space. Instead of the summation
over the 2D metrics, we sum over all possible triangu-

d ei

i 0=

M

∑ 
 
 

∫ …

eid
i 0=

M

∏
VolDiff
--------------------…∫≠

1

p2 m2+
------------------ 1–( )L

L!
-------------

eld
el

------
l 1=

L

∏
0

+∞

∫
L 0=

∞

∑∝

× p2 m2+( )
2

----------------------- en

n 0=

L

∑–
 
 
 

.exp

G x x',( )
1–( )LCL

L!
--------------------

end

en
D/2 1+

---------------
n 1=

L

∏
0

+∞

∫
L 0=

∞

∑=

× dDyi
1
2
---

∆ly( )2

el

--------------- m
2
el+

l 0=

L

∑–
 
 
 

,exp
i 1=

L

∏∫
JETP LETTERS      Vol. 80      No. 4      2004
lations and invariant 2D distances between the vertices
of the simplicial complexes. Both of them seem to be
summations over all 2D geometries. At the same time,
the action describing embeddings of the simplicial
complexes appears to be the discretization of the stan-
dard Polyakov action for the relativistic string theory in
the flat space [1].

In an attempt to understand the resulting simplicial
string theory, we consider the relativistic particle case.
Here, we have two equivalent expressions: Eqs. (12)
and (22). One of them includes integration over all
smooth 1D metrics, while the other expression con-
tains, in effect, integration over all singular 1D metrics.
Both of them are containing summations over all 1D
geometries with the fixed topology (open paths). Note
that it is not necessary to take a continuum limit in
Eq. (22) to obtain the correct solution to the Klein–Gor-
don equation. It is not even clear how to take a contin-
uum limit in an expression like Eq. (22). In fact, taking
L = ∞ does not mean the continuum limit.

Similarly to the 1D case, the 2D expression in
Eq. (6) is explicitly reparametrization-invariant and
seems to include the summation over all 2D geome-
tries. Then, it is tempting to find a continuum expres-
sion exactly equivalent to it containing integration over
all smooth metrics. This looks like a crazy idea. At
least, there is no good reason why λVC(g, V) are the
appropriate constants for the equality to be true with a
suitable measure for the smooth metrics. There is no
freedom for the choice of CL’s in Eq. (22).

Frankly speaking, we do not know whether the
aforementioned temptation is meaningful or if it is nec-
essary to take a continuum limit, whatever that means.
A possible reason for taking a continuum limit may be
as follows [12]. In the 1D case, we have a singled out
point as the boundary of the world trajectory rather than
a curve—continuous sequence of points. Hence, the
equation for the path integral following from the varia-
tion of the boundary point is just a differential equation.
At the same time, the generalization of this differential
equation to the 2D case is a loop equation on the bound-
ary curve. Apart from that, there seems to be another
risk: the gravitational action after the change from α’s
to e’s can appear to be nonlocal. However, we do not
think that this is the case. In fact, the nonlocality, if
present, should be rather trivial because the change
from α’s to e’s is local (depends on adjacent triangles)
and the measure in Eq. (6) depends on α’s locally (it is
the product over the triangles). In any case, this ques-
tion demands a separate investigation.

Anyway, we believe that the choice among the two
possibilities can be made after the derivation/under-
standing of the meaning of the loop equation or its dis-
cretized version for the open string theory in Eq. (6).
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APPENDIX

Calculations of the Graphs

In this Appendix, we sketch a proof of some combi-
natorial formulas for the Feynman diagrams, which
have a clear meaning within the context of the simpli-
cial string theory. These formulas were proved in [5]
using the electric net analogy [15]. Our proof is purely
combinatoric and less tedious.

Consider a Feynman diagram in any scalar quantum
field theory (with standard interactions polynomial in
fields) that has VE external vertices, VI internal vertices,
and L propagators. The positions of the external verti-
ces are za, a = 1, …, and VE. All propagators are written
in the Schwinger α-representation. The expression for
this diagram, I(z1, …, ), gives a quantum field the-
ory amplitude. We would like to represent the integrand
expression under the integration over the α’s explicitly
in a combinatoric form [5].

To calculate this diagram, let us present the recur-
rent relation between the graphs [12]. Consider a com-
plete graph (all vertices of which are connected by links
to each other) with V vertices. Assign to this graph the
following expression:

(23)

Let us take the integral, say, over zV . The result is (β =
1/α)

(24)
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In this way, we can obtain an expression for any graph.
In fact, by choosing a big enough V, taking β  0 (or
α  ∞) for the missing links in the graph, and making
the appropriate number of the integrations over z’s, we
can always do this. The resulting expression has a clear
combinatoric representation [5]. This expression is
easy to see by induction from the presented here formu-
las. In particular, the resulting expression for the afore-
mentioned Feynman diagram is [5]

(26)

Here,

(27)

where, in the first expression, the sum goes over all so-
called dual-trees t1 of the diagram, while, in the second
expression, the sum goes over all dual-2-trees t2 of the
diagram. In these expressions, we take products of β’s
along the corresponding dual-co-trees and dual-co-2-
trees correspondingly; z is the difference of the
positions of the two external vertices that come together
in a dual-2-tree t2.

The definition of all these “dual-(co)-(2)-trees” is as
follows [5]. The tree graph (not necessary connected)
obtained by shrinking VI lines of the diagram such that
all VI internal vertices merge with the external vertices,
but that no pair of external vertices becomes coincident,
is called a dual-tree, and the set of VI shrunk lines, a
dual-co-tree. If we shrink VI + 1 lines, so that not only
all the internal vertices merge with the external ones,
but also exactly two external vertices come together,
then the resulting graph is a dual-2-tree and the set of
VI + 1 shrunk lines, a dual-co-2-tree.

The reason why we present these formulas here is
the following. The same kind of formulas can be writ-
ten for the dual graph to a Feynman diagram. For the
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dual graph, such an amplitude has the meaning of either
a scattering amplitude of closed strings or an open
string amplitude. Hence, for this dual graph, ∆(β) and
P(β, z) are related to the determinant of the discretized
2D Laplacian (in curved metric) and 2D classical action
(with the boundary conditions given by z’s) corre-
spondingly [12]. But this is a theme for a separate sci-
entific investigation.
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The process of light neutral vector meson electroproduction is studied in the framework of QCD factorization
in which the amplitude factorizes in a convolution of the nonperturbative meson distribution amplitude and gen-
eralized parton densities with perturbatively calculable hard-scattering amplitudes. We derive a complete set
of hard-scattering amplitudes at next-to-leading order (NLO) for the production of vector mesons, V = ρ0, ω, φ.
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* 1. The process of elastic neutral vector meson elec-
troproduction on a nucleon,

(1)

was studied in fix target and in HERA collider experi-
ments. The primary motivation for the strong interest in
this process (and in the similar process of heavy
quarkonium production) is that it can potentially serve
to constrain gluon density in a nucleon [1, 2]. On the
theoretical side, the large negative virtuality of the pho-
ton, q2 = –Q2, provides a hard scale for the process that
justifies the application of QCD factorization methods
that allow separation of the contributions to the ampli-
tude coming from different scales. The factorization
theorem [3] states that, in a scaling limit, with Q2 
∞ and xBj = Q2/2(pq) fixed, a vector meson is produced
in a longitudinally polarized state by the longitudinally
polarized photon and that the amplitude of process (1)
is given by a convolution of the nonperturbative meson
distribution amplitude (DA) and the generalized parton
densities (GPDs) with the perturbatively calculable
hard-scattering amplitudes. In this contribution, we
present the results of our calculation of the hard-scatter-
ing amplitudes at NLO.

2. p2 = p'2 =  and q'2 = , where mN and mM are
a proton mass and a meson mass, respectively. The
invariant c.m. energy sγ*p = (q + p)2 = W2. We define

¶ This article was submitted by the authors in English.
* Unité Mixte du CNRS (UMR 8627).

γ* q( )N p( ) V q'( )N p'( ), V ρ0 ω φ,, ,=

mN
2

mM
2
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(2)

We introduce two light-cone vectors,

(3)

Any vector a is decomposed as

(4)

We choose the light-cone vectors in such a way that

(5)

We are interested in a kinematic region where the
invariant transferred momentum, t, is small, much
smaller than Q2. In the scaling limit, variable ξ, which
parametrizes the plus component of the momentum
transfer, equals ξ = xBj/(2 – xBj).

GPDs are defined as the matrix element of the light-
cone quark and gluon operators [4]:

(6)
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(7)

In both cases, the insertion of the path-ordered gauge
factor between the field operators is implied. Momen-
tum fraction x, –1 ≤ x ≤ 1, parametrizes parton
momenta with respect to the symmetric momentum P =
(p + p')/2. In the forward limit, p' = p, the contributions
proportional to the functions %q(x, ξ, t) and %g(x, ξ, t)
vanish, and the distributions *q(x, ξ, t) and *g(x, ξ, t)
reduce to ordinary quark and gluon densities:

(8)

Note that gluon GPD is a function of x, *g(x, ξ, t) =
*g(–x, ξ, t).

The meson DA φV(z) is defined by the following
relation:

(9)

It is normalized to unity (z)dz = 1. Here, z is a

light-cone fraction of a quark, fV is a meson dimen-
sional coupling constant known from V  e+e– decay,
in particular, fρ = 198 ± 7 MeV:

(10)
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Here, the dependence of the GPDs, DA, and the hard-
scattering amplitudes on factorization scale µF is sup-
pressed for shortness. Since we are considering the
leading helicity nonflip amplitude, in Eq. (10), the
hard-scattering amplitudes do not depend on t. The
account of this dependence would lead to the power
suppressed, ~t/Q, contribution.1 α is a fine structure
constant, and Nc = 3 is the number of QCD colors. QV

depends on the meson flavor content. If one assumes

that it is (|u 〉  – |d 〉), (|u 〉  + |d 〉), and |s 〉

for ρ, ω, and φ, respectively, than Qρ = 1/ , Qω =

1/3 , and Qφ = –1/3, the sum in the last term of (10)
runs over q = u, d for V = ρ, ω and q = s for V = φ and

Fq(+)(x, ξ, t) = Fq(x, ξ, t) – Fq(–x, ξ, t) denotes a singlet

quark GPD, F(+)(x, ξ, t) = (x, ξ, t) stands
for the sum of all light flavors.

Due to odd C-parity of a vector meson, φV(z) =
φV(1 – z). Moreover, since V and γ* have the same
C-parities, the γ*  V transition selects the C-even
gluon and singlet quark contributions, whereas the
C-odd quark combination Fq(–)(x, ξ, t) = Fq(x, ξ, t) +
Fq(–x, ξ, t) decouples in (10).

3. Below, we present the results of our calculation of

the hard-scattering amplitudes in the  scheme.

Tq(z, x) may be obtained by the following substitu-
tion from the known results for a pion EM formfactor
(see also [8]):

(11)

1 For the analysis of other helicity amplitudes, see [5–7].
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(12)

Here and below, we use the shorthand notation  = 1 –
u for any light-cone fraction. µR is a renormalization
scale for a strong coupling, β0 = 11Nc/3 – 2nf /3, nf is the
effective number of quark flavors, and

Also, we denote

(13)

T(+)(z, x) starts from NLO

(14)

Here,

(15)

where we introduced two auxiliary functions,
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For the gluonic contribution, we obtain

(18)

where

(19)

4. The above formulas and the known NLO evolu-
tion equations describing µF dependence of the GPDs
and meson DA give a complete basis for description of
a neutral vector meson electroproduction with NLO
accuracy. At the leading order, we reproduce the known
result [9]; our results for the NLO hard-scattering
amplitudes are new.
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At high energies, W2 @ Q2 and the imaginary part of
the amplitude dominates. The leading contribution to
the NLO correction comes from the integration region
ξ ! |x | ! 1. By simplifying the gluon hard-scattering
amplitude in this limit, we obtain the estimate

(20)

Given the behavior of the gluon GPD at small x, Fg(x,
ξ, t) ~ const, we see that NLO correction is parametri-
cally large, ~ln(1/ξ), and negative unless one chooses a
value of the factorization scale sufficiently lower than
the kinematic scale. For the asymptotic form of meson

DA, (z) = 6z , the last term in (20) changes its sign
at µF = Q/e; for the DA with a broader shape, this hap-
pens at even lower values of µF.

It is interesting to note that the value  = Q2/e2 is
rather close to an estimate in the dipole approach [10]

of a typical inverse dipole size [11, 12], 1/r2 ~  =
0.15Q2, for vector meson electroproduction in the
HERA kinematic region. We believe that a study of
relationship between the collinear factorization and the
dipole approach at the NLO level would be very impor-
tant. But this question, as well as the resummation of
contributions that are large at high energies,
~(αSln(1/ξ))n, both to the hard-scattering amplitudes
and to the evolution of GPDs goes beyond the scope of
the present work.

5. As an example of our results, we compare one
point for the longitudinal cross section reported by the
ZEUS Collaboration [13], e.g., dσL/dt |t = 0 = 17 ±
4 nb/GeV2 at Q2 = 27 GeV2, W = 110 GeV, with our
predictions. In Fig. 1, we plot the dependence of the
predicted dσL/dt |t = 0(µF, µR) on factorization scale µF

for two choices of the renormalization scale: µR = µF

(the solid curves) and µR = Q/ , i.e., the BLM (Brod-
sky–Lepage–McKenzie) prescription (the dashed
curves). The data point is described in this plot by the
black horizontal line. In this numerical analysis, we use
two models of the NLO generalized parton distribu-
tions of [14], the first one based on MRST2001 forward
distribution (curves a, c) and the second one on
CTEQ6M (curves b, d). Moreover, we take the NLO
strong coupling constant αs and the asymptotic meson
DA.2 Figure 1 shows that the BLM prescription leads to

2 QCD sum rules studies [15] show that, at a low scale, the shape
of vector meson DA is close to asymptotic. At µF  ∞, any
DA approaches its limit—asymptotic DA. Due to this, we use an
asymptotic DA and postpone the study of dependence on DA
shape for future analysis.
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a smaller cross section and much flatter behavior of the
cross section on µF than for the choice µR = µF. We also
observe a substantial uncertainty of our predictions that
is due to the input parton GPDs.

Since, as mentioned above, the NLO corrections are
large, it is instructive to study the relative magnitudes of
different contributions to amplitude (10). This is done
by assuming µR = µF and for CTEQ6M GPD. In Fig. 2,
we show plots of Im} and Re} as functions of µF cor-
responding to gluonic and quark Born parts of ampli-
tude (10) (denoted as gB and qB, respectively), to the
NLO part of the gluonic contribution Tg (gN), to the
NLO part of the quark contribution Tq (qN), to the
quark contribution T(+) (q+), and to the full amplitude
(10) (denoted as full). All these separate contributions
are normalized by |}| of (10) with all terms taken into
account. Let us note that, as expected for a small x pro-
cess, the imaginary part of amplitude (10) dominates
over its real part. We observe that the NLO corrections
are mostly of opposite signs than in the corresponding
Born terms are large; consequently, the final values of
amplitude (10) are the result of strong cancellations
between Born parts and NLO terms. Without account
being taken of NLO terms, the predictions would be
substantially above the data. These results are similar to
ones obtained recently for ϒ photoproduction [16].

In this paper, we restrict our analysis to the leading
twist and neglect completely the power suppressed,
~1/Q, and the contributions. This is definitely legiti-
mate for sufficiently large Q. Most probably, at the

Fig. 1. Factorization scale dependence of predicted
dσL/dt|t = 0 at Q2 = 27 GeV2, W = 110 GeV. The horizontal
black line describes the data point. Solid curves assume
µR = µF; dashed curves, the BLM prescription. The curves
a and c (b and d) are obtained with the use of MRST2001
(CTEQ6M).
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HERA energies and Q2 ~ 20 GeV2, the higher-twist cor-
rections are still large (see, e.g., [11, 12] based on [17]).
Nevertheless, we want to stress that our leading-twist
results obtained with NLO hard-scattering amplitudes
and NLO GPDs [14] (which were adjusted to describe
HERA deeply virtual Compton scattering data) are in
qualitative agreement with the ρ meson electroproduc-
tion cross section measured at HERA.

Fig. 2. Different contributions to Im}/|}| and Re}/|}| in
dependence on µF (for µR = µF and CTEQ6M): gB, Born
term of Tg; qB, Born term of Tq; gN, NLO terms of Tg; qN,

NLO terms of Tq; q+, T(+); full, all terms of (10) included.
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The nonlinear dynamical effects of synchronization and bifurcations of Rabi oscillations and oscillations of the
center of mass of an atom moving in the field of a standing light wave are theoretically and numerically exam-
ined. After completion of a transient process, synchronized oscillations, stable with respect to small noise, are
established both upon ballistic motion of the atom and upon its oscillations in the optical potential well. The
bifurcations of limit cycle generation with different periods (tripling of the period is most pronounced) and the
passage to a chaotic strange attractor through an intermittency are obtained. © 2004 MAIK “Nauka/Interperi-
odica”.
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1. Equations of motion. Advances in manipulating
quantum systems for the purposes of their use in quan-
tum calculations, data processing, and examination of
the basic principles of quantum physics are difficult to
overestimate. Intensive work in this field is carried out
with atoms in high-Q cavities (see review [1]). Con-
sider a two-level atom interacting with a selected mode
in the form of a standing wave of a Fabry–Perot cavity.
The standard Hamiltonian of cavity quantum electrody-
namics [2]

(1)

describes, respectively, the atomic kinetic and internal
energies, the mode energy, and the energy of the atom–
field interaction, which depends on the atomic position
in the cavity. The interaction between the intraatomic,
translational, and field degrees of freedom gives rise to
a complex dynamics of the atom–field system. Apart
from the well-known and experimentally observed
effects of the collapse and revival of Rabi oscillations,
squeezed-light generation, atom cooling and trapping,
etc. (see [1, 3–6]), dynamical chaos [7], Lévi flights [8,
9], and atomic fractals [9, 10] have recently been found
theoretically and numerically in strongly coupled
atom–field system (1). These manifestations of local
instability were found and investigated within the
framework of Hamiltonian dynamics, where the spon-
taneous relaxation and photon leakage from the cavity
can be neglected on the characteristic time scale of Rabi
oscillations.

In this work, we study the dissipative dynamics of
an atom in the field of a standing light wave of a Fabry–

Ĥ0
p̂2

2ma

---------
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2
---"ωaσ̂z "ωf â†â

1
2
---+ 

 ++=

– "Ω0 k f x̂( ) â†σ̂– âσ̂++( )cos
0021-3640/04/8004- $26.00 © 20231
Perot cavity with laser pumping and report the detec-
tion of new nonlinear dynamical effects: synchroniza-
tion of internal and external atomic degrees of freedom,
limit cycles of different periods, bifurcations of limit
cycles, and chaotic strange attractors. The action of the
external laser field is described by the Hamiltonian

 = "E0 expi(ωl t – φ) + h.c. In the semiclassical
approximation (valid for strong fields and atomic
momenta exceeding photon momentum "kf), it is easy
to obtain a closed system of equations for the average
values of atomic and field operators. In a rotating frame
and with addition of the phenomenological dissipative
terms, this system takes the form

(2)

Here, ξ ≡ kf 〈 〉  and p ≡ 〈 〉 /"kf are, respectively, the
normalized atomic coordinate and momentum; e ≡
〈 exp(–iωf t) + exp(iωf t)〉  and g ≡ i〈 exp(–iωf t) –

exp(iωf t)〉  are the field variables; and x ≡
〈 exp(−iωf t) + exp(iωf t)〉 , y ≡ i〈 exp(iωf t) –

exp(–iωf t)〉 , and z ≡ 〈 〉  are the Bloch atomic vari-
ables. The time τ and the spontaneous relaxation rates
of the atom γa and the field mode γf are normalized to
the vacuum Rabi frequency Ω0; ∆ ≡ (ωf – ωl)/Ω0 is the

Ĥ1 â
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232 ARGONOV, PRANTS
external detuning. The detuning δ ≡ (ωf – ωa)/Ω0 of the
atom–field resonance, the pump amplitude E ≡ E0/Ω0,

and the atomic recoil frequency α ≡ " /maΩ0 upon
photon emission are the essential controlling parame-
ters of the system. The analysis of nonautonomous non-
linear dynamical system (2) with four degrees of free-
dom presents great difficulties. Here, we restrict our-
selves to the case of zero external detuning ∆ = 0, φ =
π/4, and a strong field. If the mean number of photons
in the mode n = (e2 + g2)/4 . (E/2γf)2 is large enough,
the field variables e and g are virtually constant. Then,
it is convenient to rewrite reduced system (2) in a form
that ensures the possibility of comparing with the
Hamiltonian version [2, 9]:

(3)

k f
2

ξ̇ αp, ṗ u ξ ,sin–= =

u̇ δv 1/2( )γau,–=

v̇ δu– 2nz ξ 1/2( )γav ,–cos+=

ż 2v ξ γa z 1+( ),–cos–=

Fig. 1. Attractors in a dynamical system: (a) the limit cycles
of period 1 (the dashed line corresponds to n = 3000 and the
solid line is for n = 10000); (b) the limit cycle of period 3
(n = 14846); and (c) the chaotic strange attractor (n =
24000). δ = 24 everywhere.
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where u ≡ (ex – gy)/2 = (x + y) and v  ≡ (gx + ey)/2 =

(y – x) have the simple meaning of variables pro-
portional to the quadrature components of the atomic
dipole moment.

2. Synchronization. By synchronization is meant
the stationary multiple ratio between the frequencies of
Rabi oscillations and atomic momentum. Note that the

oscillation frequency  of a quiescent atom in
a strong field and the frequency α1/2n1/4 of small-ampli-
tude oscillations of the atomic center of mass in a well
can differ by several orders of magnitude. The mechan-
ical oscillator imposes its own rhythm on the Rabi
oscillator both in the case of ballistic motion of the
atom and upon atomic oscillations in the field of the

optical potential Π(ξ, τ) = sinξdξ. The synchroniza-

tion manifests itself in establishing a limit cycle in the
phase space. The cycle of a period k means that motion
periodicity is observed for 2k intersections of the same
(oscillations in the well) or different (atomic flight)
nodes of the standing wave. For an atom in a well, the
projections of the limit cycles of periods 1 and 3 on the
planes (u, v) and (z, ξ) for δ = 24 are shown in Figs. 1a
and 1b. Hereafter, we set α = 0.01, γa = 0.3, and the ini-
tial momentum p0 = 60 in all numerical calculations.
The cycle size and shape are determined by the oscilla-
tion amplitude and oscillation spectrum, respectively.
The greater the nonlinearity parameter n, the more the
cycle shape differs from a harmonic shape. At the left
of Fig. 1a, two phase trajectories corresponding to n =
3000 (dashed line) and n = 10000 (solid line) are
shown. It is obvious that the second limit cycle strongly
differs from the harmonic cycle.

The time τc of establishing limit cycles is mainly

determined by the action of the friction force ,
which decelerates (or accelerates) an atom during the
time τc until its momentum achieves some quasi-sta-
tionary value  (in the literature on the mechanical
action of light on atoms, this process is referred to as
velocity grouping effect, and the corresponding
momentum is referred to as grouping momentum [3]).
For atoms whose momenta are initially close to , this
time can be estimated, except for a constant, as τc ∝
(∂ /∂αp)–1 ∝  δ/n. Depending on the parameters and
initial momentum, the average momentum  estab-
lished with time can be both zero (δ > 0; the atom is
trapped and oscillates in the optical potential well) and
nonzero (δ < 0; ballistic motion through the cavity with
velocity modulation). In the synchronization regime, a
limit cycle is established in the atom dynamics; the
cycle frequency is determined by the oscillation fre-
quency of an instantaneous momentum p about the
steady-state mean value . At δ > 0 and a sufficiently
large p0, there also exists a regime in which the atom

n/2

n/2

δ2 4n+

u∫

ṗ–

p

p

ṗ
p

p
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moves with an acceleration, whose value asymptoti-
cally tends to zero. In this case, no limit cycle is estab-
lished in a reasonable time.

In order to obtain the simplest approximate analytic
solutions for the limit cycles in the case of ballistic

17000

18000

20000

n

19000

22 23 24 25 26
δ

Fig. 2. Map of synchronization periods in relation to the
mean number n of saturation photons and dimensionless
resonance detuning δ. The cycle of period 1 is denoted by
white; the cycle of period 2 is marked by light gray; the
cycles of periods 3–12 are designated by dark gray; and the
area of chaos is shown by black.
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motion, we represent the atomic polarization, the pop-
ulation inversion, and the momentum in the form of
Fourier series in terms of harmonics α , assuming ξ .
α τ . In the approximation of small amplitudes of
higher harmonics, the limit cycle of period 1 is
described by the dominant terms of the Fourier series.
The approximate solution

(4)

is valid for a sufficiently severe constraint n ! δ2 –

α2  + /4, which, for the parameters chosen in our
numerical calculations, means that n ! δ2.

The numerical calculations confirm that, in the case
of ballistic motion and synchronization with period 1,
the second harmonic prevails in the oscillations of
momentum and population inversion, whereas the first
harmonic dominates the oscillations of atomic polariza-
tion. Similar expressions are obtained for the synchro-
nization of atomic oscillations in the optical potential
well. In this case, however, the first harmonic prevails
in the momentum oscillations, the steady component is
(obviously) absent and the conditions for the validity of
the solutions are less stringent.

3. Bifurcations and chaos. At the exact resonance
δ = 0, the optical potential vanishes, the atom flies with

p
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p p δA/2α p( ) 2α pτ ,cos–≈
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v γaA α pτ 2α pA α pτ ,sin+cos–≈
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A n/ δ2 α2 p2– n γa
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p2 γa
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Fig. 3. Map of the maximum Lyapunov exponent λ. The coordinates are the same as in Fig. 2.
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a constant initial velocity, and its internal energy oscil-
lates with a modulated Rabi frequency that is deter-
mined, in particular, by the spatial period of the stand-
ing wave. Synchronization takes place over a wide
range of controlling parameters—the mean number n
of saturation photons and the detuning δ. As the number
of photons increases, bifurcations occur and cycles
with periods 2, 3, etc. appear, up to a numerically found
cycle with period 12. On the further increase in n, cha-
otic oscillations arise, which we diagnose by a positive
value of the maximum Lyapunov exponent λ. Figure 2
shows the map of synchronization periods for a com-
paratively narrow range of n and δ. Chaos arises at a
sufficiently large number of photons; furthermore, the
greater the n, the shorter the synchronization establish-
ing time. The cycle of period 1 is shown by white; the
cycles of other periods are denoted by different tints of

Fig. 4. Bifurcation diagram for different ranges of the num-
ber n of photons (δ = 24). The arrows b1 and b3 show the
doubling of the cycles of periods 1 and 3; arrows 3, 5, and 7
show the cycles of periods 3, 5, and 7; and arrow 6 shows
the period-doubling bifurcation 3  6.
gray; and the chaos area is shown by black. Figure 3
presents the topographic map of the Lyapunov expo-
nent λ for wide ranges of n and δ values, which helps in
distinguishing between the areas of possible synchroni-
zation and chaos. As the number n of photons increases,
the approximate solutions for the cycle of period 1 lose
their validity and higher harmonics become more and
more pronounced in the oscillation spectrum. It follows
from the map of synchronization periods that cycles of
period 3 and greater appear for virtually random values
of the parameters but within the clearly seen bands,
between which only cycles of period 1 occur. The bor-
der of chaos is also strongly indented: there are isolated
islands near the border, a small deviation from which
for any controlling parameter again leads to a limit
cycle.

At fixed values of all controlling parameters, differ-
ent initial conditions can lead to different attractors. We
revealed the coexistence of different limit cycles with
riddled attraction basins [11]; that is, each point of the
basin of one attractor contains, in its arbitrarily small
vicinity, a point of the attraction basin of some other
attractor. Such limit cycles can have both different and
identical periods, but their shapes are different for close
initial conditions.

Figure 4a shows the bifurcation diagram of an atom
for the fixed initial conditions and detuning δ = 24 and
different numbers of photons n. The values of the v
component of atomic polarization in time moments
when the other u component turns to zero are laid off on
the ordinate, with only the negative values of v  being
fixed. At n & 12000, a stable cycle of period 1 is
observed and, at 12000 & n & 14000, the cycles of
period 1 begin to multiply. On further increase in n,
cycles of other periods appear along with the cycles of
period 1. It is seen from Fig. 4b that, at n & 17050,
almost all points of the diagram fall on four parallel
lines. In this case, for every value of n, there is only one
value of v ; however, upon a small change in n, the value
of v  randomly jumps from one line to another. The con-
struction of an analogous diagram with varied initial
conditions shows that, for these values of the parame-
ters, four different limit cycles of period 1 coexist in the
phase space of the system, each having its own attrac-
tion basin. The “fork” b1 in Fig. 4b implies that two new
cycles of period 1 arise from one initial cycle rather
than the period-doubling bifurcation takes place. On
further increase in n, bifurcations of the appearance of
cycles with periods other than 1 are observed. In
Fig. 4b, they are denoted by the corresponding numer-
als. Among the bifurcations in the range 14000 & n &
21000, the period-tripling bifurcations are most typi-
cal. In addition, there are period-doubling bifurcations
(for example, the vanishing of the cycle of period 3 at
n . 17900 and the appearance of the cycle of period 6)
and other bifurcations (for example, the appearance or
vanishing of the cycle of period 3 that is not accompa-
nied by the simultaneous vanishing or appearance of
JETP LETTERS      Vol. 80      No. 4      2004
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the cycles of other periods). At least, three cycles of
period 1 coexist in this entire range of n.

Beginning at n & 21000, an intermittency and,
finally, chaos in the form of a chaotic strange attractor
sets in. The projections of this attractor on the planes
(u, v) and (z, ξ) are shown in Fig. 1c. Its chaotic nature
is confirmed by the positive value of the maximum
Lyapunov exponent, and its strangeness is confirmed
by the calculated value of the fractal Hausdorff–Bezik-
ovich dimension df . 2.7 for n = 24000 and δ = 24. To
simulate the decoherence caused by the uncontrolled
environment, we introduced a stochastic force into the
right-hand side of the second equation in (3) and calcu-
lated the bifurcation diagram for different noise levels.
At a low noise level, a small smearing of the lines of
limit cycles of periods 1 and 3 is observed with reten-
tion of their characteristic properties. As the noise level
increases, the fine structure of the bifurcation diagram
in Fig. 4 is destroyed.

The synchronization of the atomic internal and
external degrees of freedom can be detected from the
atomic fluorescence spectrum. For example, the syn-
chronized ballistic motion of an atom with a cycle of
period 1 and an arbitrary shape leads to the appearance
of side bands in the spectrum at the frequencies ωf ±
jkf  (j = 1, 2, …), where  is the average velocity of
the atomic steady-state motion. The synchronization
with the cycle of period 3 gives rise to a denser spec-
trum with the frequencies ωf ± jkf /3, whereas chaos
leads to a continuous spectrum. This can be directly
verified by the calculation of the atomic mean dipole

moment d = (µ/ n)[(u – v )cosωf t – (u + v)sinωf t],
where µ is the dipole-moment transition matrix ele-
ment, which, for simplicity, is assumed to be real.

Some interesting issues of synchronization of cha-
otic oscillations and effects of random walk of an atom
with fractal properties are left beyond the scope of this
study. Actually, our results are valid for an atom in the
field of a standing wave formed not only in a cavity but

v a v a

v a

2
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also produced by two counterpropagating laser beams
in free space (see Eq. (3)). The synchronization and
bifurcation effects offer additional possibilities for con-
trolling the internal and external degrees of freedom of
an atom by varying the parameters of a laser field.

This study was supported by the Presidium of the
Russian Academy of Sciences (the program “Mathe-
matical Methods in Nonlinear Dynamics”), by the Rus-
sian Foundation for Basic Research (project no. 02-02-
17796), and by the Presidium of the Far East Division
of the Russian Academy of Sciences.
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A new method providing a significant increase in the amplitude and contrast of dark resonances is proposed.
The method is based on the use of the σ+–σ– configuration of polarized counterpropagating waves, D1-line exci-
tation in alkali metal atoms, and small-sized cells. Qualitative considerations of the scheme are confirmed by
the results of numerical calculations. A variant of a standing wave with homogeneous circular polarization is
also discussed. © 2004 MAIK “Nauka/Interperiodica”.
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1. The coherent population trapping (CPT) effect of
atoms interacting with a resonant electromagnetic field
is well known (see review [1] and references therein)
and widely used in various fields of atomic and laser
physics. The frequency and time standards (atomic
clocks) [2, 3] and magnetometers [4] are the most
promising applications in metrology. The main advan-
tage of atomic clocks based on the CPT effect in a two-
frequency field is that the corresponding RF resonance
(so-called dark resonance) is excited by optical meth-
ods. This approach opens wide possibilities for reduc-
ing the size of such devices while retaining a suffi-
ciently high precision of frequency determination [5].

However, use of the CPT phenomenon encounters
some basic physical problems associated with the opti-
mization of the two-photon resonance parameters
(width, amplitude, position, and shape of the resonance
line). In particular, a decrease in the resonance line
width can be achieved by using cells with a buffer gas
[6]. Another problem, related to an increase in the sig-
nal amplitude, can be solved by selecting a proper
scheme for the excitation of atomic levels. For exam-
ple, we have recently demonstrated [7] that excitation
of the D1 line rather than D2 provides a significant
increase in the amplitude and contrast of the nonlinear
resonance for alkali metal atoms. Unfortunately, this
method has an intrinsic limitation caused by the lack of
cyclicity in the interaction of atoms with circularly
polarized light at the D1 line.

This paper proposes a new method ensuring the
cyclicity of such interaction and, hence, providing a
further significant increase in the amplitude and con-
0021-3640/04/8004- $26.00 © 20236
trast of the dark resonance on the D1 line, as compared
to the level achieved previously in [7]. The method is
based on the use of an atomic cell of small size (much
smaller than the RF-transition wavelength) and a field
formed by counterpropagating waves with orthogonal
circular polarizations (the so-called σ+–σ– field config-
uration). In this approach, the use of a constructive
interference of two-photon transitions excited by the
unidirectional waves is quite important. Calculations
show the possibility of a manifold increase in the
amplitude of resonance signal and amplitude-to-width
ratio, as compared to those achieved by other methods.

2. In CPT-based clocks, the Zeeman sublevels with
the angular momentum projection m = 0 of two ground-
state hyperfine components of an alkali metal atom are
the working energy levels. The quantum coherence
between these sublevels is provided by two-photon
Raman transitions induced by a circularly polarized
two-frequency radiation field,

, (1)

in the presence of a level-splitting static magnetic field
directed perpendicularly to the polarization plane.

Here, e±1 =  ± iey)/  is the unit vector of the
clockwise (+) or anticlockwise (–) circular polarization
and A1, 2 are the scalar amplitudes of the corresponding
frequency components. The spectroscopic signal usu-
ally represents the total absorption depending on the
frequency difference ω1 – ω2 between the unidirec-
tional propagating waves. When this difference is
detuned in the vicinity of the ground-state ∆hfs fre-

E t( ) A1e
iω1t–

A2e
iω2t–

+( )e±1 c.c.+=

ex(+− 2
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quency, the absorption signal exhibits a more or less
pronounced dip (so-called dark resonance), whose
width is determined by the relaxation rate (transla-
tional, diffusional, and collisional) in the ground state
and by the field parameters (intensity and one-photon
detuning).

The use of dark resonances for the design of atomic
clocks encounters the need to increase the signal ampli-
tude, contrast, and amplitude-to-width ratio. One possi-
ble way to solve these problems consists in selecting
the optimum excitation scheme. It is well known [8]
that the resonance contrast for the D2 line cannot
exceed a few percent of the linear absorption. This is
caused by a small efficiency of coherence generation
between the working levels under conditions of strong
broadening of optical transition in the collisions with
buffer gas. Indeed, in the case of strong collisional
broadening, the spectral resolution of hyperfine compo-
nents in the excited state is absent. Figure 1a shows the
scheme of light-induced transitions between the work-
ing levels of the ground state (m1, 2 = 0) for the 133Cs D2
line. As can be seen, the two-photon transitions excited

Fig. 1. Schematic diagram of the light-induced transitions
from the |F1, m1 = 0〉  and |F2, m2 = 0〉  states in a two-fre-
quency field. Numbers at the levels indicate the relative
matrix elements of the circular components of the dipole
moment operator for 133Cs: (a) σ+ polarized field for the D2
line; (b) σ+–σ– field configuration for the D1 line.
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via different upper sublevels |F' = 4, m = 1〉  and |F' = 3,
m = 1〉 interfere destructively. In addition, the isolated
one-photon transitions with |F' = 5, m = 1〉  and |F' = 2,
m = 1〉  also destroy the two-photon coherence between
the lower sublevels. On the whole, it can be ascertained
that, under the conditions of strong collisional broaden-
ing of optical transitions at the D2 line of alkali metal
atoms, the dark (i.e., nonabsorbing light) state is,
strictly speaking, absent.

However, as was shown in our work [7], this prob-
lem can be solved by using the D1 line, which provides
an appreciable increase in the amplitude and contrast of
the dark resonance. Physically, this is caused by the fact
that the D1 line, in contrast to D2, exhibits the |dark〉
state even in the case of a strong collisional broadening
of the optical transition (i.e., in the absence of spectral
resolution of hyperfine components in the excited
state), provided that the two-photon resonance condi-
tion (ω1 – ω2) = ∆hfs is fulfilled. This state is a coherent
superposition of the Zeeman sublevels |F1, m1 = 0〉  and
|F2, m2 = 0〉  (see Fig. 2) and satisfies the condition

(2)

For the clockwise circular polarization, e+1, dark state
(2) has the form

(3)

d̂E( ) dark| 〉 0.=

dark| 〉 1 F1 m1, 0=| 〉 A1/A2( ) F2 m2 0=,| 〉+( ),=

Fig. 2. Schematic diagram of the light-induced transitions
in a two-frequency σ+ polarized field for the D1 line of
133Cs. Thick solid lines indicate transitions from the
|F1, m1 = 0〉  and |F2, m2 = 0〉  states (denoted by black cir-
cles). The coherence between these states is generated due
to two-photon Raman transitions at the ∆hfs frequency. The
asterisk indicates the trapping state: |pump〉  = |F2, m2 = F2〉 .
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where 1 = (1 + |A1/A2|2)–1/2 is the normalization factor.
This expression follows from the values of the dipole-
moment operator matrix elements (see Fig. 1b). How-
ever, the D1 transition in a circularly polarized field
always involves a trapping state |pump〉  = |F2, m = F2〉
(Fig. 2), which is insensitive to the two-photon detun-
ing δR = (ω1 – ω2) – ∆hfs. Atoms accumulated in this
state are excluded from the process of coherence gener-
ation between the working sublevels with m1, 2 = 0,
leading to certain constraints on the amplitude and con-
trast of the dark resonance.

This obstacle can be bypassed by using small-sized
cells and the σ+–σ– configuration of the two-frequency
field formed by counterpropagating waves (along the
z axis) with the opposite circular polarizations:

(4)

In this case, the aforementioned |pump〉  state is absent.
Dark resonances in the signal of local fluorescence aris-
ing in such a field have recently been studied in large
cells [9]. In this system, the resonance amplitude exhib-
ited a periodic spatial variation caused by the spatial
incursion of the relative phase difference 2(k1 – k2)z,
where kj = 2π/λj is the wave vector of the field with the
frequency ωj and z is the coordinate of the observation
point. Thus, the phenomenon of spatial modulation of
the signal amplitude with a period of π/(k1 – k2) is
caused by the difference in the wavelengths λ1 and λ2

of the two frequency components. For example, for
133Cs atoms, this period is π/(k1 – k2) ≈ 1.6 cm.

For the exact two-photon resonance δR = 0, the dark
state for a wave propagating in the positive direction
(e+1 polarization) has the form

(5)

E z t,( ) E1
+( )e

ik1z
e+1 E1
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e 1–+( )e
iω1t–

=
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ik2z–
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dark +( )| 〉

=  1β F1 m1 0=,| 〉 βe
i k1 k2–( )z

F2 m2 0=,| 〉+( ),

Fig. 3. Schematic diagram illustrating the formation of a
σ+–σ– field configuration (λ/4 is a quarter-wave plate).
while the dark state for the wave propagating in the
opposite direction (e–1 polarization) is

(6)

where β = /  = /  and 1β = (1 + |β|2)–1/2

is the normalization factor. These expressions follow
from the values of the dipole-moment operator matrix
elements (see Fig. 1b). As can be seen from these for-
mulas, the dark states |dark(+)〉  and |dark(–)〉  coincide at
the points zmax satisfying the condition

(7)

which implies a constructive interference of the Raman
transitions. Therefore, the dark state at these points
exists also for the total field (4) and the resonance
amplitude is maximal. At all other points of the space,
the dark states of the counterpropagating waves do not
coincide, |dark(+)〉  ≠ |dark(–)〉 , and the exact dark state
does not exist for field (4) (destructive interference),
resulting in a decrease in the amplitude of dark reso-
nance. Its amplitude is minimal at the points 2(k1 –
k2)zmin = 2nπ.

In the case of a large cell, L ≥ π/(k1 – k2), the reso-
nance amplitude of the total absorption in the σ+–σ–
field shows no significant increase because of spatial
averaging. However, for small cells with the character-
istic longitudinal size L ! 2π/(k1 – k2), phase relations
between the field components are approximately the
same over the entire volume. For this reason, placing
such a cell at a point with the coordinate obeying con-
dition (7), one can expect a significant increase in the
dark-field amplitude on the D1 line, since two-fre-
quency field (4) has a dark state, while the trapping
state |pump〉  is absent.

It should be noted that the required σ+–σ– configu-
ration (4) of counterpropagating waves can be obtained
using the standard system shown in Fig. 3. If the inci-
dent wave has the σ+ polarization, the reflected wave at
the output of quarter-wave plate will possess the oppo-
site σ– polarization. According to formula (7), the min-
imal distance from the mirror to the cell is π/2(k1 – k2).
For 133Cs atoms, this distance is about 0.8 cm; however,
with allowance made for the dielectric constant ε > 1 of
the cell window and materials of the quarter-wave
plate, the actual distance will be somewhat smaller.

3. The above qualitative considerations can be illus-
trated by the results of numerical calculations of the
total absorption signal for the σ+–σ– field configuration
in a small cell with the center placed at a point with the
coordinate zmax according to formula (7). The calcula-
tion performed for the D1 line of alkali metal atoms was
based on the application of the methods developed in
[9, 10] to the case under consideration. This approach
completely takes into account the real hyperfine and

dark –( )| 〉

=  1β F1 m1 0=,| 〉 βe
i k1 k2–( )z–

F2 m2 0=,| 〉–( ),

E1
+( ) E2
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Zeeman structures of the energy levels, as well as the
effects of optical pumping caused by the radiation
relaxation.

It was demonstrated in [10, 11] that the narrow non-
linear resonance as a function of two-photon detuning
δR is well described by the generalized Lorentzian

(8)

where γR is a parameter describing the two-photon res-
onance width; δ0 is the position of this resonance rela-
tive to the ground-state hyperfine splitting ∆hfs; C0 and
C1 are the amplitudes of the symmetric and antisym-
metric contributions, respectively; and B is the reso-
nance background level. Note that expression (8)
describes the resonance circuit both for the run-
ning/standing circularly polarized wave and for the σ+–
σ– field configuration. All quantities γR, δ0, B, C0, and
C1 depend on the following parameters: the one-photon
detuning, the total field intensity, the frequency-compo-

nent intensity ratio β2 = | / |2 = | / |2, the
ground-state relaxation rate Γ, and the one-photon opti-
cal transition width γopt. The presence of a buffer gas
influences the values of Γ and γopt, which are phenome-
nological parameters of the model and should be deter-
mined from experiment. Indeed, the value of γopt can be
estimated from the absorption of the running mono-
chromatic wave, while the value of Γ can be determined
from the two-photon resonance width (equal to 2Γ) in a
weak field (where the field-induced broadening is
absent). In the case where the collisional broadening of
the optical resonance exceeds the Doppler width (γopt >
k , which frequently occurs in practice), the atomic
motion (for one-photon resonances) can be ignored in
calculations of the spectroscopic signal.

From the practical point of view, equal intensities of
two frequency components (|β| = 1) is the most typical
and important situation. In this case, C1 = 0 (the anti-
symmetric contribution in (8) for the D1 line is absent)
and the dark resonance has the form of a symmetric
(relative to δ0) contour with the amplitude C0. This
result follows from the analysis performed in [10] and
is caused by a special relation between the matrix ele-
ments of the dipole moment operator (Fig. 1b). Clearly,
the symmetry of the resonance circuit (independent of
the one-photon detuning and the field intensity) is an
important advantage of using the D1 line rather than D2
for the design of CPT-based atomic clocks.

Figure 4 shows the results of calculations for the
133Cs D1 line. These data clearly demonstrate the advan-
tage of using the σ+–σ– field configuration instead of
the usual case of running circularly polarized waves.
The spectroscopic signal was the total field absorption
in the approximation of optically thin medium. The

f δR( ) = B
C0γR

2
/4

γR
2
/4 δR δ0–( )2+

-----------------------------------------
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atomic parameters (Γ and γopt) were taken to be equal to
the values typical of the experiments with a buffer gas.

As can be seen from Fig. 4a, the dark-resonance
amplitude |C0| can be increased by more than an order
of magnitude even at moderate intensities. The contrast
of the resonance (defined as the |C0/B| ratio) tends to
unity with increasing intensity (Fig. 4b), while the max-
imum value for the running waves is 0.5 (which is a
direct consequence of the existence of the trapping state
|pump〉). From the viewpoint of the frequency measure-
ment and stabilization, the amplitude-to-width ratio
|C0|/γR is an important parameter. As can be seen from
Fig. 4c, the use of the σ+–σ– field configuration allows
this parameter to be significantly increased. For the run-
ning wave, this ratio even begins to decrease at large
field intensities.

Fig. 4. Plots of the parameters of dark resonance (8) versus
the field intensity (for unidirectional waves) in the σ+–σ–
configuration (solid curves) and the running circularly
polarized wave (dashed curves): (a) dark resonance ampli-
tude |C0|; (b) resonance contrast |C0/B|; (c) line amplitude-
to-width ratio |C0|/γR. All calculations were performed for
Γ = 100 Hz, γopt = 1 GHz, and β = 1; intensities of the coun-
terpropagating waves in the σ+–σ– field were taken equal,
and both frequencies ω1, 2 occurred near the one-photon
resonance with the upper level |F' = 4〉 .
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For comparison, we performed analysis and numer-
ical calculations for a configuration of counterpropa-
gating waves with the same circular polarization (e.g.,
the standing σ+ wave), whereby the quarter-wave plate
in the scheme of Fig. 3 is absent. In this case, the con-
dition for the constructive interference between the two
two-photon transitions due to unidirectional waves is
satisfied if the cell is placed at a point with the coordi-
nate z = nπ/(k1 – k2). However, in this configuration (in
contrast to the σ+–σ– field), the trapping state |pump〉
does not disappear and, hence, there are no grounds to
expect a significant increase in the parameters of the
dark resonance in comparison to those observed in the
case of a usual running circularly polarized wave.
Indeed, the results of our calculations showed that spec-
troscopic signal (8) for a standing circularly polarized
wave is generally similar (provided that γopt > k ) to
the signal for a running wave with a somewhat higher
intensity. Thus, the use of a standing wave offers a way
to increase (up to two times) the effective intensity rel-
ative to the scheme with a running wave, which can also
be useful in practice.

4. In summary, we have proposed a new method pro-
viding a significant increase in the amplitude and con-
trast of dark resonances. The method is based on the use
of a σ+–σ– configuration of polarized counterpropagat-
ing waves, D1 line excitation in alkali metal atoms, and
small-sized cells. Qualitative considerations of this
scheme are confirmed by the results of numerical cal-
culations. The obtained high-contrast resonances can
be used for the design of small-sized atomic clocks.

For the verification of these conclusions, we have
performed experiments with a small-sized cell contain-
ing 133Cs vapor [12]. The obtained results are in good
agreement with the theoretical calculations. Unfortu-
nately, the insufficient power of the available laser on
the 133Cs D1 line provided only a moderate (1.5-fold)
increase in amplitude of the resonance absorption per

v

wave (we also observed a significant improvement in
comparison to the case of a standing circularly polar-
ized wave). However, the theoretical results of this
study allow us to expect a much more pronounced
increase in parameters of the dark resonance with
increasing laser intensity, due to a significant effect of
the optical pumping on ground-state Zeeman sublevels.

This study was supported by the INTAS Foundation
(grants no. 01-0855) and the Russian Foundation for
Basic Research (project no. 04-02-16488).
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The formation of stable dust structures in electron-beam-controlled non-self-sustained discharge plasma was
predicted and experimentally observed. To determine the conditions for dust-particle levitation, the self-con-
sisted one-dimensional simulation of a non-self-sustained gas discharge was carried out using a nonlocal model
of charged plasma-particle transport with allowance for electron diffusion. It is shown that, in the cathode layer
of a non-self-sustained gas discharge, a strong electric field arises in the Thomson regime, which, in conjunction
with the gravity force, forms a potential well where the dust particles undergo levitation. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 52.27.Lw
INTRODUCTION

The investigation of plasmas containing micron-
sized dust particles has attracted increased interest from
both fundamental and practical points of view [1]. In
particular, this interest is generated by the problem of
designing an autonomous photovoltaic electrical
energy source with the use of radioactive fuel in the
form of micron-sized dust particles [1, 2]. The forma-
tion of a homogeneous gas–dust mixture with sup-
pressed sedimentation and hampered deposition of dust
particles on the walls is one of the key problems in
designing such an energy source. The solution of this
problem requires the formation of an ordered structure
of dust particles, which is also necessary for reducing
the loss of ultraviolet quanta formed under the action of
high-energy radioactive-decay particles in an inert-gas
medium upon their transport to the photovoltaic con-
verters. This work is devoted to the study of the dynam-
ics of dust plasma formed upon the injection of dust
particles into an atmospheric-pressure gas ionized by
an electron beam that models the radioactive-decay β
particles.

EXPERIMENTAL

An electron beam with an energy varying from 85 to
115 kV was formed in a vacuum accelerator with a fil-
amentary cathode and led through a 14-µm-thick alu-
minum foil into a cylinder-shaped working chamber
7 cm in diameter and 3 cm in height. The radius of elec-
tron-beam core was about 0.6 cm. The accelerator exit
window was at a distance of 7.2 cm from the lower
electrode. To suppress convection, a 1.6-cm-edge glass
0021-3640/04/8004- $26.00 © 20241
cube opened at the top (on the electron-beam side) and
bottom (on the side of the lower electrode) was inserted
into the central part of the chamber. A dc negative volt-
age with an amplitude of 200–4000 V was applied to
the massive lower copper electrode. A grounded grid of
diameter 2.4 cm covering the glass cube at a distance of
1.9 cm from the cathode served as an anode. The beam
current at the exit window of the electron accelerator
varied in the experiments within 50–1000 µA (the cur-
rent density at the lower electrode varied in the range
0.05–1.0 µA/cm2). The electron accelerator operated in
the stationary mode. The injection of dust particles
from the storage ring was accomplished by the work-
ing-gas flow. The behavior of dust particles illuminated
by a laser “knife” was observed using a digital video
camera.

The video frames of the polydispersed CeO2 dust
particles with a mean size of 1 µm recorded in nitrogen
at an electron gun accelerating voltage of 115 kV, a
beam current at the exit window of about 100 µA, and
a gas pressure of 1 bar are shown in Fig. 1. Near the
lower electrode, the nitrogen ionization rate caused by
this beam in the cubic insertion was on the order of
1014 cm–3 s–1. In the first frame in Fig. 1, one can see the
persistent formation of the disk-shaped dust particles.
The evolution of this disk upon the jumplike change in
the voltage on the discharge gap is shown in the sub-
sequent frames. The voltage on the lower electrode
(−500 V at t = 0) was abruptly increased to –1000 V, as
a result of which the dust cloud exploded to form,
approximately within 14 s, a disk with clear-cut side
boundaries at a different height. Above the disk, stable
vortices were formed near the side cube walls, where
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Video frames of dust-structure evolution in a non-self-sustained gas discharge in nitrogen after an abrupt increase from –500
to –1000 V in voltage at the lower electrode (p = 1 bar; beam current 100 µA).

t = 0 (–0.5 kV) t = 3.36 s

t = 6.48 s t = 14 s
the dust particles moved up at the center and descended
along the side walls of the cubic insertion. Interestingly,
the lower boundary of the vortices virtually coincides
with the disk position.

Upon grounding the lower electrode in a time on the
order of 0.1 s, all dust particles deposited on the lower
electrode; upon removing the ground and restoring the
initial voltage, they were rejected upward. In this case,
the disk was not restored, but the vortices appeared at
their previous places. After leaking-in a new portion of
dust particles, a more developed disk was formed with
the vortices situated at the previous places. It is also
worthy of note that the dust particles did not penetrate
into the cube region below the disk level neither after
leaking nor in the course of the subsequent motion,
while, in the discharge chamber outside the cube,
where the vortex motion of dust particles is faster
because of the convective flows, the particles appeared
also near the lower electrode. The pattern of particle
movement described above in the cube also did not
change for the unchanged discharge-gap parameters.

Upon a smooth change in the voltage on the dis-
charge gap or in the beam current density, the disklike
structure smoothly moves up or down. The same behav-
ior was observed in argon, where the disk of carbon-
glass dust particles with an average diameter of about
6 µm was considerably thicker and more stable, while
the vortices near the side walls did not form. It is likely
that this was due to a considerably weaker argon heat-
ing, as compared to nitrogen, in which the energy at low
reduced fields E/N mainly goes to the excitation of the
rotational energy levels effectively coupled to the trans-
lational degrees of freedom. For this reason, in the cen-
tral near-cathode region in nitrogen, where the current
is still determined by the electronic component, while
the field already increases, a region of stronger gas-
heating arises, resulting in a weak convective upward
flow. This flow picks up the dust particles in the central
region.

A disk with a diameter of 6 µm was also formed in
nitrogen in the experiments with carbon-glass dust par-
ticles, but it was destroyed rather fast, while the forma-
tion of a disk composed of even greater dust particles of
radius 12 ± 3 µm was observed in argon. However, in
contrast to the disk formed from dust particles with a
diameter of 6 µm, which existed in argon for several
minutes almost stationary without changing its shape,
the disk formed from a coarse dust was rapidly
destroyed. Note that the dust particles in nitrogen of a
medium carbon glass in laser knife had a regular,
JETP LETTERS      Vol. 80      No. 4      2004



        

STABLE DUST STRUCTURES 243

                                                                                                  
though unstable, structure, while the structure in argon
has not been resolved so far.

NUMERICAL SIMULATION OF THE NON-SELF-
SUSTAINED GAS-DISCHARGE STRUCTURE

In [3], it was predicted that the formation of ordered
plasma dust structures in nitrogen is possible only at
low gas-ionization rates no higher than 1014 cm–3 s–1. To
determine the conditions for dust-particle levitation in
a non-self-sustained discharge (ND) in nitrogen,
numerical simulation of the cathode layer was per-
formed in this work. The simulation was carried out
using the nonlocal model of transport processes devel-
oped by us in [4] for studying the dust-particle charging
process. In a number of works devoted to ND simula-
tion [5–8], a simple model of transport processes with
constant kinetic coefficients, recombination coefficient,
and ionization rate was used, while the electron diffu-
sion was ignored. This model allows analytic solution
with some additional simplifications [9, 10]. In our
model, all kinetic coefficients and transport coefficients
are functions of electron temperature, which is itself a
function of coordinates and is determined from the
electron-energy balance equation. The inclusion of
electron diffusion is important for the correct descrip-
tion of the anode layer in the Thomson weak-current
ND glow regime.

We take the origin of the z axis at a cathode and
direct it from the cathode to an anode perpendicular to
the electrode surfaces. In our experiments, the charac-
teristic transverse size of the discharge-glow region was
several times greater than the size of cathode layer,
while the gas ionization, according to estimates, was
rather homogeneous along the radius. For this reason,
the simulation was carried out in a one-dimensional
plane geometry. The system of equations of the nonlo-
cal transport model has the form

(1)

(2)

(3)

(4)

where Re = Ri = Qion + νionne – βeineni are the electron
and ion production and loss sources; Rh = (∂(DTne)/∂z +
keneE)eE + Qionεh – peωS – βeipeni(2 – x/2) are the heat
sources; ne, ni, ke, ki, DT, and Di are the electron and ion
concentrations, mobilities, and diffusion coefficients,
respectively; pe = neTe is the electron-gas pressure; Qion
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is the z-dependent gas-ionization rate under the action
of an external source; νion is the gas-ionization fre-
quency by the intrinsic plasma electrons; βei is the elec-
tron–ion recombination coefficient, which can be repre-
sented for many ions in the form βei = βei0Te(1 – x)/2,
where x is the exponent in the dependence of the
recombination cross section on the electron velocity:

σei = σei0/ ; εe is the mean electron energy related to
the electron temperature by the expression Te = 2εe/3; εh

is the fast-electron energy going into gas heating per
one event of electron–ion pair production; ge is the elec-
tron-energy diffusion coefficient related to the heat con-
ductivity coefficient by the relationship (for the Max-
wellian distribution, these quantities coincide if the
electron free path is independent of energy)

(5)

where be is the thermoelectric coefficient; wS is the
energy-loss rate in elastic and inelastic collisions
(including ionization collisions); φ and E are the elec-
tric-field potential and strength, respectively; and e is
the absolute value of electron charge. The recombina-
tion term in the electron-energy balance equation has
not been considered in the literature so far, although it
is important in the Thomson’s weak-current non-self-
sustained discharge-glow regime, for which the field in
the positive column is exceedingly low (see below). For
the Maxwellian electron-energy distribution function,
the transport coefficients are related to each other by the
formulas

(6)

At the cathode (z = 0), the effective boundary condi-
tions for the balance equations were specified with
allowance made for the secondary ion–electron emis-
sion with the coefficient γ, and the potential was taken
equal to the potential applied to the cathode (for the
Maxwellian distribution function, the factors 1/4 and
1/2, according to the kinetic theory of gases, enter the
expressions for the unidirectional particle and energy
fluxes, respectively):

where le, li, vT, e, and vT, i are the electron and ion mean
free paths and thermal velocities, respectively; Tc is the
temperature of secondary electrons, taken equal to the
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cathode temperature; and γe, γi, and γε are the constants
defined by the relationships

(for the hard-sphere model, γe = γi = γε = 2/3). The fol-
lowing boundary conditions were specified at the anode
(z = L):

Since the calculations showed that the ion diffusion
could be ignored over the entire discharge region, we
solved the first-order differential balance equation for
ions with zero boundary condition at the anode. In this
case, the directional differences were used to approxi-
mate the derivative with respect to coordinate. In Fig. 2,
the electron temperatures obtained for the ND in the
completely nonlocal and local models are compared
with each other. In the local model, the reduced system
of Eqs. (1), (2), and (4) was solved without electron-
energy balance equation (3), and the electron transport
coefficients were determined from the local value of the
reduced field. One can see that the distinction is
observed only near the cathode, where the influence of
cold cathode on the electron temperature is significant
in the nonlocal model. For this reason, the main calcu-
lations were carried out using the local transport model.

The electric-field distributions in the ND in nitrogen
are shown in Fig. 3. These patterns are in good agree-
ment with the analytic results [9, 10]. One can see that
the field in the positive column is low and increases
drastically in the cathode region. Calculations with the
discharge-voltage switching from 500 to 1000 V were
also carried out. It proved that the field in the cathode
layer is rearranged within microseconds upon an
increase in voltage and, due to the larger inertia of the

γe 2DT /lev T e, , γi 2Di/liv T i, , γε ge/lev T e,= = =

ne γele

∂ne

∂z
--------– 0, ni γili

∂ni

∂z
-------– 0,= =

pe γεle

∂ pe

∂z
--------– 0, φ z L= 0.= =

Fig. 2. Electron temperature distribution in a non-self-sus-
tained gas discharge in nitrogen at Ud = 500 V, p = 1 bar, L =

1.0 cm, Qion = 1014 cm–3 s–1: (1) calculation with local
model and (2) nonlocal model.
dust particles in the disklike structure, they occur in the
region of strong electric fields that force them upward.

Let us estimate the electric force acting on the dust
particles in the cathode layer, where the plasma quasi-
neutrality is strongly violated. As was shown in [3], the
electron distribution in the vicinity of a dust particle at
low nitrogen ionization rates is well described by the
Boltzmann distribution, while the ion flux on the dust
particle obeys the Langevin expression. In this case, the
following transcendental equation is obtained for deter-
mining the dust-particle charge with allowance made
for the difference in the electron and ion concentrations
in the cathode layer:

(7)

where r0 is the dust-particle radius and ne0 and ni0 are,
respectively, the electron and ion concentrations at a
given point of cathode layer apart from the dust parti-
cle. On the assumption of a vacuum-type relation
between the charge and potential, Eq. (7) can easily be
solved by numerical methods.

The calculated dependences of dust-particle charges
on their position are shown in Fig. 4a, which demon-
strates the influence of the violation of plasma quasi-
linearity on the dust-particle charge. Near the cathode,
which is almost free of electrons, the dust-particle
charge becomes positive. In Fig. 4b, the electric forces
acting on a dust particle with a radius of 1 µm in the
cathode layer are shown as functions of height (gravity
force is on the order of 10–8 dyne). It is seen that the
force expelling the dust particles upward increases
drastically in the cathode layer.

Figure 4b demonstrates how the potential well is
formed for the dust particles in the cathode layer under
the combined action of an electric field and gravity
force in our experiments. Indeed, the electron-beam-
induced gas ionization in the discharge gap is inhomo-
geneous, with the ionization rate being maximal at the

πr0
2ne0v T e,

eφ
Te

------ 
 exp 4πekiqni0,–=

Fig. 3. Electric-field distribution in the non-self-sustained gas
discharge in N2 at p = 1 bar, L = 1.0 cm, Qion = 1014 cm–3 s–1:
Ud = (1) 500, (2) 1000, (3) 2000, and (4) 4000 V (the y-ordi-
nate for the dashed curves is given at the right).
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center and decreasing toward the edges. One can see
from Fig 4b that the equilibrium position rises with a
decrease in the ionization rate, so that the potential
energy of a dust particle in the gravitational field will
increase upon its moving from the center to the periph-
ery, resulting in the restoring force.

For now, we have not met with success in achieving
quantitative agreement between the computational and
experimental equilibrium positions of the dust-particle
disklike structure that is determined by the balance of
the electric and gravitational forces. In our experi-
ments, gas was heated only slightly, so that the thermo-
phoretic force acting on the dust particles was negligi-
ble. The radiometric force was also weak because of the
smallness of the energy flux to the dust particles. The
ion-drag force, which is directed against the ion flux at
high pressures in the ion-transport collision regime
because of taking away momentum from the dust parti-
cles and transfer it to the neutral-gas particles in colli-
sions, is also small. The calculations with the addition
of up to 1% oxygen to nitrogen did not change the cur-
rent–voltage characteristics and the equilibrium posi-
tion. The addition of oxygen gave rise to negative ions
in the three-particle- and dissociative-attachment pro-
cesses, which were taken into account by introducing

Fig. 4. The (a) charge and (b) electric force expelling the
dust particles from the cathode as functions of the height at
various voltages on the discharge gap and ionization rates in
N2 for p = 1 bar: (1) Ud = 500 V, Qion = 1014 cm–3 s–1, (2)

Ud = 1000 V, Qion = 1014 cm–3 s–1; (3) Ud = 500 V, Qion =

1015 cm–3 s–1; and (4) Ud = 1000 V, Qion = 1015 cm–3 s–1.
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the third balance equation in the model for the negative
ions. We believe that quantitative agreement between
the calculation and experiment can be achieved only
after correctly taking into account the influence of the
dust component on the field distribution and electron-
beam ionization loss, as well as after taking into
account the gas ionization inhomogeneity in both
height and horizontal. This requires, at least, two-
dimensional calculations.

CONCLUSIONS

The study carried out in this work has demonstrated
the possibility of formation of controlled dust struc-
tures at atmospheric pressure in fast-particle-controlled
plasmas. Numerical simulation of a non-self-sustained
gas discharge has shown that high electric fields arise
due to the charge separation in the cathode layer. The
combined action of electric and gravity fields forms
potential well acting as a trap for the dust particles. This
qualitatively explains the observed phenomenon.

This work was supported by the Russian Foundation
for Basic Research, project no. 04-02-16883a.
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The pseudogap phenomenon in underdoped and optimally oxygen-doped high-temperature superconductors
(HTSCs) of the Y1Ba2Cu3Ox system is explained from a unified point of view within the model of negative U
centers. It is shown that the pseudogap features of conductivity are not related directly to the superconductivity
but arise due to the existence of statistical interaction of negative U centers with valence-band holes. Speci-
fically due to this interaction, the hole density in the valence band does not remain constant. It differently
changes with temperature for different mutual positions of the Fermi level and the valence band top. These dif-
ferences lead to different temperature dependences of conductivity for underdoped and optimally doped samples.
© 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.30.+h; 74.20.-z
INTRODUCTION

The problem of pseudogap features in high-temper-
ature superconductors (HTSCs) has been discussed for
a long time [1]. These features can be observed experi-
mentally in a number of quantities. Concerning the
conductivity of oxygen-underdoped HTSCs, these fea-
tures manifest themselves in the following way: in the
temperature range immediately before the transition to
the superconducting state, the temperature behavior of
the conductivity has a semiconductor rather than metal
character.

Some researches believe that such a temperature
dependence of the conductivity in underdoped HTSC
samples is related to the mechanisms of carrier scatter-
ing from the spin- or charge-density fluctuations. In this
case, it is assumed that the Fermi level lies in the
valence band; i.e., according to this interpretation,
underdoped HTSCs are metals (although with low con-
ductivity due to the strong scattering) rather than semi-
conductors.

In optimally oxygen-doped HTSCs, the pseudogap
features of conductivity also manifest themselves in a
deviation of the temperature dependence of resistivity
from the linear dependence typical of metals. However,
the deviation is of the other sign in comparison with
underdoped HTSCs. With a decrease in temperature,
the resistivity decreases faster than at high tempera-
tures; i.e., an additional conductivity arises at low tem-
peratures.

It is believed that this additional conductivity at tem-
peratures above Tc indicates the presence of pairs that
may contribute to the conductivity at temperatures
close to Tc. This contribution is associated with the fluc-
tuative coherence of pairs described by the Aslamazov–
0021-3640/04/8004- $26.00 © 20246
Larkin theory [2]. Thus, the pseudogap features of con-
ductivity in underdoped and optimally doped HTSC
samples are related to different mechanisms.

In this study, it will be shown that the pseudogap
features of conductivity in underdoped and optimally
doped HTSC samples can be naturally explained from
a unified point of view within the model of negative
U centers.

MODEL OF NEGATIVE U CENTERS
The model of negative U centers is based on the

results obtained by Kulik and Pedan [3] and uses the
Hubbard Hamiltonian with negative effective correla-
tion energy:

(1)

where niσ = aiσ are the occupation numbers;  and
aiσ are, respectively, the operators of creation and anni-
hilation of an electron with spin σ at site i; and tij is the
transition matrix element between the neighboring
localization centers (negative U centers); U > 0; and it is
believed that tij ! –U. Negative values of U lead to the
attraction of electrons with opposite spins at the same
site. It is assumed that their binding energy exceeds the
ordinary Hubbard correlation energy of Coulomb inter-
action; i.e., the resulting –U interaction in (1) is nega-
tive. At low temperatures, Hamiltonian (1) gives rise to
a superconducting correlation between pairs.

In terms of delocalized electrons, the second term in
Hamiltonian (1) corresponds to the kinetic energy of
band motion, while the first term describes the attrac-
tion between electrons with the energy –U. In the BCS
model, the band width is large, and, therefore, the inter-

H U ni↑ ni↓ tijaiσ
+ α jσ,∑+∑–=

aiσ
+ aiσ

+
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action between electrons is regarded as a perturbation.
In the model of negative U centers, the energy U is so
high in comparison with tij that the second term in (1) is
assumed to be small with respect to the first one. This
is the main difference of the model under consideration
from the BCS theory. Due to the inequality U @ tij, the
approximation used in [3] was referred to as approxi-
mation of localized pairs. However, it is clear that tak-
ing into account the second term in (1) is of basic
importance for the manifestation of the transport prop-
erties of the system.

At tij = 0, the state of the system is a set of sites of
three types: an empty site, a site occupied by one elec-
tron, and a site occupied by two electrons (D+, D0, and
D– states of negative U centers, respectively). The ion-
ization energies of the D– and D0 states are denoted in
Fig. 1 as E1 and E2, respectively. The perturbation asso-
ciated with the second term in (1) (i.e., the tij ≠ 0 situa-
tion) leads to the formation of delocalized band states
of pairs and the D+ and D– states are split into two-par-
ticle (bosonic) transport bands (bands of negative U
centers). In this case, the charge transfer from one neg-
ative U center to another occurs via two virtual one-
electron transitions, so that the energy of the band

motion of pairs is equal to /U [3].

The main difference of the model under consider-
ation from the BCS theory is that the BCS theory
assumes simultaneous formation of pairs and their tran-
sition to a condensed state at the temperature of super-
conducting transition. In the model of negative U cen-
ters, coupled pairs of electrons exist at temperatures far
above room temperature and, at Tc, only their conden-
sation occurs, leading to superconductivity.

APPLICABILITY OF THE MODEL

The model of negative U centers was developed ini-
tially to explain the superconductivity of chalcogenide
glasses, since the presence of negative U centers with
high concentrations in these systems was confirmed
experimentally. After successful application of this
model to chalcogenide glasses [4], it was used to
describe the properties of HTSCs belonging to the
YBaCuO system. Within this model, the high tempera-
tures of the superconducting transition (Tc) were
explained using real physical quantities. The value of Tc

was estimated by formula (2) from [3]:

(2)

where W is the width of the two-particle transport band,

which is equal to 2z /U for a simple cubic lattice com-
posed of negative U centers (z is the number of nearest
neighbors of one negative U center), and ν is a relative
concentration of pairs equal to n/2D (n is the electron
density in the system of negative U centers and D is the
concentration of negative U centers).

tij
2

Tc W 1 2ν–( )/ ν 1– 1–( ),ln=

tij
2
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According to (2), the dependence of Tc on ν is dome-
shaped with a maximum at ν = 1/2. When ν exceeds
1/2, superconductivity occurs in the D+ band, and when
ν is smaller than 1/2, superconductivity occurs in the D–

band. Therefore, as was shown in [5], formula (2) quite
naturally explains the dome-shaped dependence of the
superconducting-transition temperature on the doping
level, as is observed experimentally for a number of
HTSC systems. For example, the dome-shaped depen-
dence of Tc on the oxygen content x for the YBaCuO
system is shown in Fig. 2.

The following suggestions were made in [5]. First,
negative U centers are complexes of copper atoms with
their oxygen environment. Second, at a structural phase

Fig. 1. Energy-band diagram of Y1Ba2Cu3Ox. The D+ and

D– bands of the states of negative U centers are shaded.
(a) Underdoped samples, the Fermi level is above the
valence band; (b) optimally doped and overdoped samples,
the Fermi level lies in the valence band.

Fig. 2. Dependence of Tc on the oxygen content for
Y1Ba2Cu3Ox. The parameter ν is related to the oxygen con-
tent x by the formula ν = 7.4 – x [5]. References to the
experimental studies are given also in [5].
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transition in the YBaCuO system, a transition from z =
4 to z = 6 occurs in the system of negative U centers
with an increase in the oxygen doping level. The theo-
retical dependences of Tc on x are shown by dashed
lines for z = 4 and 6 and the total theoretical dependence
of Tc on x corresponding to the transition from one
dashed line to the other is shown by a solid line. The
relation between the oxygen content x and the parame-
ter ν from formula (2) was determined in [5] by the for-
mula ν = 7.4 – x.

In our opinion, the difference between the cuprate-
based superconductors and classical BCS superconduc-
tors lies in the following: in the BCS theory, the con-
duction- (or valence-) band electrons located near the
Fermi level form pairs at a superconducting transition,
which serve afterward as superconducting charge carri-
ers. In the model of negative U centers, the coupled
pairs responsible for the superconductivity exist at tem-
peratures much higher than the transition temperature.
However, the effective mass of a coupled pair is so large
that the mobility (and, therefore, the conductivity) of
such particles in the normal state is negligible. Hence,
the conductivity in the normal state is due to single
holes or electrons. In YBaCuO, negative U centers cap-
ture some fraction of valence-band electrons that
depends on the temperature and the doping level. The
valence-band holes formed as a result of this process
serve as charge carriers at temperatures above the tran-
sition point. Therefore, in contrast to the BCS theory,
two types of carriers exist in the model of negative U
centers: holes (or electrons) for a normal current and
strongly coupled pairs for a superconducting current.

Let us consider now in more detail the situation with
the pseudogap features of conductivity. In the late
1990s, an anomalous behavior of the energy spectrum
above the superconducting transition temperature was
revealed for some oxide-based HTSCs. It is well known
that, when superconductivity occurs, a gap arises in the
spectrum due to the formation of pairs and their con-
densation. However, in some (mainly underdoped)
samples of oxide HTSCs, the gap in the spectrum
remains at temperatures higher than the transition
point. It has not been cleared up whether such a gap
indicates the presence of residual superconductivity or
not. Therefore, it is referred to as a pseudogap. There
are several points of view on this problem.

Some researchers [1] believe that the pseudogap in
HTSCs is similar to the mobility pseudogap in disor-
dered semiconductors (in particular, in chalcogenide
glasses). It is known that the band gap in chalcogenide
glasses contains “tails” of the density of states from the
valence and conduction bands. Due to these tails, the
band gap may become very narrow and, in some cases,
when the tails overlap, disappear. Since the mobility of
charge carriers in these tails is zero at zero temperature
and the density of states is finite, the corresponding
energy interval is referred to as a pseudogap [6].
According to the other point of view, some fraction
of pairs in the HTSCs under study exists in a coherent
state at temperatures exceeding the superconducting
temperature by tens and hundreds of K. It is believed
that, due to these remaining pairs in a material, a super-
conducting gap arises in the spectrum. In addition, the
superconductivity due to these pairs contributes to the
conductivity of the material and, thus, efficiently
decreases its resistivity (the additional conductivity
effect) [7].

As can be seen, both these approaches in the expla-
nation of the pseudogap origin are opposite in their
physical nature and, when taken alone, can explain only
the semiconductor behavior or the additional con-
ductivity.

The approach to solving this problem in terms of the
model of negative U centers made it possible to give a
unified explanation of the pseudogap features of
HTSCs.

Let us take into account the particular property of
negative U centers that was revealed in chalcogenide
glasses [8, 9]—their ability to pin the Fermi level. The
pinning effect consists in the following: until the con-
centration of impurities in chalcogenide glasses does
not exceed the concentration of negative U centers, the
Fermi level always remains between the D+ and D–

bands. This effect can also occur in HTSCs if the latter
contain negative U centers.

It was assumed in [10] that the middle between the
bands of negative U centers in underdoped samples lies
slightly above the valence band top (Fig. 1a). As a
result, the activation of one electron from the com-
pletely occupied valence band in the HTSCs under con-
sideration requires an energy of several meV (i.e., the
width of the gap between the valence band top and the
middle between the bands of negative U centers) rather
than an energy comparable with the band gap. In view
of its smallness, this gap should manifest itself only at
temperatures below 100–150 K, i.e., at temperatures on
the order of Tc. Calculations performed by the effective-
mass method [10] showed a good agreement between
experiment and theory (Fig. 3), allowing us to conclude
that the narrow gap between the valence band top and
the middle between the bands of negative U centers is a
pseudogap. Hence, it is clear that, in the model under
consideration, the pseudogap in the underdoped
Y1Ba2Cu3Ox has no superconducting character but is a
real gap and is completely due to the property of nega-
tive U centers to pin the Fermi level in the middle
between the D+ and D– bands (Fig. 1a).

PSEUDOGAP IN OPTIMALLY DOPED SAMPLES

Precise measurements of the temperature depen-
dence of the resistivity showed that, for samples with
oxygen content close to optimum, a deviation from the
metal behavior of the conductivity occurs [7].
JETP LETTERS      Vol. 80      No. 4      2004
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In the underdoped samples, the deviation of the tem-
perature dependence of the resistivity is similar to that
typical of semiconductors: the curve bends upward
with a decrease in temperature (Fig. 3). In the optimally
doped samples, in contrast, the curve bends downward
at low temperatures (the so-called additional conductiv-
ity arises). Such an anomaly is also often associated
with the manifestation of the pseudogap.

Let us show that the upward and downward bends of
the curves have the same physical nature in the model
of negative U centers and are due to the fact that the
Fermi level (Ef) lies above the valence band top in the
first case and lies in the valence band in the second case
(Fig. 1). Taking into account the valence band, Hamil-
tonian (1) takes the form

(3)

where the last term accounts for the valence band.

In Hamiltonian (3), we ignore the term ,
which describes the site-to-site electron transition,
since this term is not important for the level-occupation
statistics. We assume that valence-band electrons and
negative U centers do not interact directly. Hence,
Hamiltonian (3) describes two independent sub-
systems. In this case, the thermodynamic potential of
the system can be considered a sum of two independent
potentials: for the states of negative U centers and the
valence-band states:

(4)

In the following expression, summation is over the
states of negative U centers, which are described by the
set of n1 and n2. Here, n1 and n2 correspond to the occu-
pation of the negative U center by one electron and a
pair of coupled electrons, respectively. The following
situations with the occupation of negative U centers are
possible: the absence of an electron at a center (g = 1,
n1 = 0, n2 = 0), one electron at a center (energy level E2
is doubly degenerate, g = 2, n1 = 1, n2 = 0), and a cou-
pled pair at a center (g = 1, n1 = 2, n2 = 1). Since the
energies are the same for all negative U centers and the
total number of centers is D, we have

(5)
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The second term in Eq. (4) (Ωv) corresponds to the
valence band. Summation in this term is performed
classically over two states (0 and 1). Summation over
the valence-band states corresponding to different wave
vectors k can be replaced by integration:

(6)

Thus, the final expression for thermodynamic
potential (4) can be written as

(7)

Let us calculate the total electron density N in the
system. The second term in Eq. (8) gives the electron
Fermi distribution in the valence band. The first term in
Eq. (8) corresponds to the number of electrons in the
system of negative U centers:

(8)
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Fig. 3. Temperature dependences of resistivity. The experi-
mental data for different oxygen contents are shown by
solid lines [11]. The calculated dependences for under-
doped samples are shown by diamonds [10].
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Expression (8) describes the particle distribution for the
noninteracting systems of the valence band and nega-
tive U centers.

As was mentioned above, the energy U is so high
that we can disregard the term exp(–(E2 – µ)/T), which
is related to the single-electron density. Let us also pass
to the relative concentration through dividing expres-
sion (8) by the doubled concentration 2D of negative U
centers and take into account that the system under con-
sideration is closed, i.e., the total electron density N is
constant.

Since we disregarded single electrons in the system
of negative U centers, the relative concentration ν of
coupled pairs can change only due to a change in the
relative electron density in the valence band. We can
say that every two electrons that leave the valence band
form a coupled pair at a center. In other words, the num-
ber of generated holes that are involved in the conduc-
tion is equal to the doubled number of pairs formed at
negative U centers:

(9)

Let us consider in more detail the quantity ∆ν. The total
pair density ν is determined by formula (10). A change
in the pair density ∆ν will be measured from the param-
eter ν0, which determines the pair density specified by
the chemical structure of the material. For Y1Ba2Cu3Ox,
this parameter is determined by the oxygen content,
and we assume it to be known. If we disregard the
valence band, ν coincides with ν0:

(10)

The number of holes can be calculated by integrat-
ing over the entire valence band:

(11)

Here, Ev and Evb are the valence-band top and bottom,
respectively. For simplicity, we assume that holes arise
in the valence band only due to the escape of electrons
to the system of negative U centers. Therefore, the
absence of negative U centers implies the absence of
holes in the valence band.

Combining Eqs. (9)–(11), we obtain the equation
for the chemical potential µ:
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After finding the chemical potential µ from Eq. (12),
we can calculate the hole density p in the valence band
for a specified temperature by formula (11). If we know
the hole density, it is easy to calculate the temperature
dependence of the resistivity (13) of a material for dif-
ferent values of the parameter ν0:

(13)

Here, m is a constant independent of temperature and
s is a parameter dependent on the hole-scattering mech-
anism. The parameter s describes the temperature
dependence of mobility.

When treating the results, we varied two parame-
ters: A/D and E2 – U/2. The parameter A/D is the ratio
of the total density of states in the valence band to the
concentration of negative U centers. The energy inter-
val E2 – U/2 determines the mutual position of the mid-
dle between the D+ and D– levels and the valence band
top Ev . Figure 4 shows the results obtained with the fol-
lowing values: the total number of states in the valence
band is about 2 × 1021 cm–3, its width is 2 eV (a further
increase in the width does not influence the result of
calculation), the parameter s is 1.7, the concentration of
negative U centers is 5 × 1019 cm–3, and the pseudogap
width E2 – U/2 changes from 5.5 to –8 meV. Negative
values of the pseudogap width correspond to the case
where the Fermi level lies in the valence band (the
valence band top is taken to be zero). The density of
charge carriers (holes) in the valence band depends on
both temperature and doping level. For example, for x =
6.55 (E2 – U/2 = 5.5 meV), the valence band is com-
pletely occupied at zero temperature and the hole den-
sity is 1.3 × 1018 cm–3 at 300 K. For x = 7.0 (E2 – U/2 =
–8 meV), the hole density is 4.77 × 1017 and 4.69 ×
1018 cm–3 at T = 0 and 300 K, respectively.

If the levels of negative U centers are located in such
a way that the middle between them is by more than
1 meV above the valence band, the material behaves as
a semiconductor near the superconducting transition
temperature (the upward pseudogap bend; solid lines in
Fig. 4).

If the middle between the levels of negative U cen-
ters lies in the valence band (near the top), the resistiv-
ity curve bends downward (Fig. 4).

The latter effect can be explained as follows. When
the middle between the levels of negative U centers
(and, therefore, the Fermi level at zero temperature)
enters the valence band, all electrons above the Fermi
level pass to negative U centers at zero temperature,
giving rise to holes with density p0. At low tempera-
tures, the slope of the resistivity curve is mainly deter-
mined by the ratio 1/p0.

At higher temperatures, the number of electrons
passed from the valence band to negative U centers
increases; therefore, p increases and the slope of the

ρ T ν0,( ) mTs

p T ν0,( )
--------------------.=
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dependence ρ(T), which is approximately determined
by the ratio 1/p, decreases (13). The lower the initial
hole density p0, the more pronounced the difference
between the two slopes. Therefore, the anomalous situ-
ation with the downward bends of the resistivity curves
is most pronounced for the samples where the Fermi
level lies not very deep in the valence band (Fig. 4b). At
the same time, at very small values of p0, the resistivity
curve 1/p0 does not show a steeper slopes since it
should arise at temperatures below the temperature of
superconducting transition. In other words, the effect of
additional conductivity will be practically unobserv-
able in this case.

Having analyzed the situation with the semiconduc-
tor behavior of oxygen-underdoped HTSCs of the

Fig. 4. Resistivity as a function of the oxygen content. The
values of the pseudogap width are indicated on the right.
Negative values mean that the Fermi level lies in the valence
band (dash-and-dot curves). The occurrence of additional
conductivity is shown on an enlarged scale (b). For clear-
ness, the metallic behavior (without an additional conduc-
tivity) is shown for one of the curves (–2 meV) by the dotted
line.
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YBaCuO system and the additional conductivity occur-
ring at optimal doping, we derived the position of the
Fermi level at T = 0 K as a function of the oxygen con-
tent (Fig. 5). The change in the Fermi-level position is
confirmed by the increase in the conductivity of HTSCs
with increasing the doping level. Indeed, at a higher
oxygen content, the Fermi level penetrates deeper into
the valence band, thereby increasing the density of
holes responsible for the conductivity. Figure 2 shows
the dependence on ν rather than ν0, as in Fig. 5. The rea-
son is as follows: by the time when the data shown in
Fig. 2 were obtained, the effect of the valence band had
not been taken into account and, in this case, ν and ν0
coincide.

CONCLUSIONS

The pseudogap phenomenon in underdoped and
optimally oxygen-doped HTSC samples of the
Y1Ba2Cu3Ox system is explained from the unified posi-
tions within the model of negative U centers. In the
model of negative U centers, the superconductivity is
due to the D+ and D– bands of states of negative U cen-
ters, while the valence-band holes are responsible for
the conducting properties in the normal state.

It is shown that the pseudogap features of conductiv-
ity are not associated directly with the superconductiv-
ity but appear due to the existence of statistical interac-
tion between the negative U centers and the valence-
band holes. It is due to this interaction that the hole den-
sity in the valence band does not remain constant. Its

Fig. 5. Position of the Fermi level as a function of the oxy-
gen content in Y1Ba2Cu3Ox. The parameter ν0 is related to
x by the formula ν0 = 7.4 – x [5]. Shaded area indicates the
filling of the valence band by electrons. As the Fermi level
penetrates the valence band, the electrons located above the
Fermi level pass to negative U centers.
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changes with a change in temperature are different for
different mutual positions of the Fermi level and the
valence band top. These differences lead to the differ-
ence in the temperature dependences of conductivity in
underdoped and optimally doped samples. Thus, the
assumption made in the model of negative U centers
that two types of charge carriers exist in HTSCs at tem-
peratures above the superconducting transition (pairs of
coupled electrons (holes) and single holes) was con-
firmed by the calculations of the conductivity of
HTSCs in the normal state.
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The temperature dependence of the electrical resistance and thermopower of La2 – xSrxCuO4 + δ single crystals
with x ≅  0.003 and δ < 0.05 has been studied in the temperature range from 100 to 400 K. All crystals exhibiting
two-dimensional hopping conductivity via neighboring acceptor sites in the CuO2 plane show a significant dif-
ference in the charge transfer below and above the Néel temperature TN. This difference indicates that the loss
of a two-sublattice antiferromagnetic order strongly affects the charge transport in the CuO2 plane. The
obtained data lead to a conclusion that the crystal above TN occurs in a resonance valence bond state of the Bose
type. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Fy; 74.72.Dn; 75.50.Pp
Undoped cuprate high-Tc superconductors belong to
the class of Mott insulators and offer a good example of
realization (with small deviations from the exact
model) of two-dimensional (2D) spin 1/2 quantum
Heisenberg antiferromagnets on a square lattice [1]
with a large exchange coupling constant (J|| ≈ 1600 K).
The problem of determining the ground state of such
2D quantum antiferromagnets is still unsolved. A 2D
quantum Heizenberg antiferromagnet on a square lat-
tice may have both a Néel ground state (corresponding
to a two-sublattice spin crystal) and some other spin
states realized primarily in the form of a spin liquid [2].
Spin liquids are subdivided according to the type of
low-energy spin excitations representing resonance
valence bond (RVB) states: Bose-RVB [3] versus
Fermi-RVB [4].

There is experimental evidence [1] that, in slightly
doped cuprate high-Tc superconductors at low temper-
atures, the magnetic system of copper in the CuO2
plane corresponds to an antiferromagnetic lattice with a
long-range order. However, the observed 3D antiferro-
magnetic order is caused by weak non-Heiseberg spin
interactions: interplane interaction with J⊥ /J|| ~ 10–5 and
anisotropic interaction in the CuO2 plane with Jxy/J|| ~
10–4. The results of neutron investigations [1, 5] of the
temperature dependence of the correlation length in
La2CuO4 showed that the magnetic spin system of cop-
per above the Néel temperature (T > TN) occurs in the
regime of low-temperature renormalized classical fluc-
tuations. Theoretically, this result is equally well
described by the model of spin crystal [6] and the mod-
els of spin liquids in both Bose-RVB [7] and Fermi-
RVB [8] states. However, the spin crystal and spin liq-
0021-3640/04/8004- $26.00 © 20253
uid are characterized by essentially different magnetic
excitations. Obtained by the method of inelastic neu-
tron scattering [1, 8], the experimental data on mag-
netic excitations in the entire Brillouin zone of
La2CuO4 showed that the spin-excitation dispersion
curves are well described both by the theory of spin
waves with allowance made for quantum fluctuations
and by the models of spin liquids in Bose-RVB [9] and
Fermi-RVB [10] states. Only the data on Raman scat-
tering and IR absorption in cuprates are much better
described by the RVB theory [10]. Therefore, it is
important to continue the search for new experimental
facts elucidating the magnetic properties of cuprate
high-Tc superconductors in the Mott insulator state.

As is known [11–13], a hole introduced into the
CuO2 plane exhibits different responses to the Néel spin
crystal, Bose-RVB, and Fermi-RVB states. It is
expected that, due to a large correlation length of anti-
ferromagnetic fluctuations (several hundreds of ang-
ströms near the Néel temperature) [5], anomalies in the
charge transfer will be manifested only during the tran-
sition from spin crystal to spin liquid. Earlier [14], we
observed a significant difference in the behavior of the
charge-transfer characteristics above and below TN for
the La2CuO4 + δ crystals with TN > 310 K (Fig. 1). How-
ever, the La2CuO4 + δ crystals with TN < 300 K exhibited
a hysteresis caused by the oxygen mobility. Thus, in the
above context, it would be of interest to study the
charge-transfer process in the La2 – xSrxCuO4 crystals
free of the effects associated with the dopant mobility.

We have studied La2 – xSrxCuO4 + δ single crystals
grown by spontaneous crystallization in the course of
slow (2–3 K/h) cooling of a solution melt in a zirconia
004 MAIK “Nauka/Interperiodica”
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crucible. The crystals mechanically extracted from the
crucible had the shape of plates and pyramids with a
characteristic size of 1–5 mm and a mass of 1–15 mg.
The crystal orientation, lattice parameters, and mosaic-
ity were studied by X-ray single-crystal diffractometry.
It was established that the sample mosaicity along the c
axis did not exceed 0.05°. Superstoichiometric oxygen
was removed by annealing in vacuum at a temperature
of ≤950 K and a partial pressure of oxygen <2 ×
10−5 bar. The lattice parameters of the grown crystals
corresponded to the published data for the La2CuO4

system. Using the well-known concentration depen-
dences of the lattice parameter c for the La2CuO4 crys-
tals doped with oxygen [15] and strontium [16], the
absolute concentrations of oxygen and strontium were
determined according to Vegard’s law with an error not
exceeding 20%.

The charge transport in single crystals was studied
by the standard dc techniques using the samples with
ohmic contacts formed by firing a silver paste. The tem-
perature dependence of the electrical resistance was
studied by measuring currents in the ab plane and along
the c axis. Over the entire temperature range studied
(100–400 K), the anisotropy (ρc/ρab) varied within 102–
104; for this reason, the charge-carrier transport in the
CuO2 plane is considered below as two-dimensional.
The results of measurements of the electrical resistance
of antiferromagnetic semiconductors with hopping
conductivity [17, 18] showed that anomalies in the
vicinity of TN, if observed, had the form of weakly pro-
nounced bending points on the curves in the ln(ρ(T))
versus 1/T coordinates. For this reason, we performed

Fig. 1. Temperature dependences of (a) the electrical resis-
tance ρab(T) and the local conductivity activation energy

Eab(T) = d(ln(ρab(T))/d(T–1) and (b) the thermopower
αab(T) measured in the CuO2 plane of a La2CuO4.0013 crys-
tal with TN = 315 K.

TN

T (K)
measurements (similar to [14]) of ρab(T) with a preci-
sion that was sufficient for determining the local con-
ductivity-activation energy Eab(T) = dln(ρab(T))/d(T–1)
(see Figs. 1a–3a). Simultaneously, we also measured
the thermopower αab(T) (see Figs. 1b–3b).

The Néel temperature TN of the crystals studied was
determined by measuring the position of the maximum

Fig. 2. Temperature dependences of (a) the electrical resis-
tance ρab(T) and the local conductivity activation energy
Eab(T) and (b) the thermopower αab(T) measured in the
CuO2 plane of a La1.997Sr0.003CuO4 crystal with TN =
275 K.

Fig. 3. Temperature dependences of (a) the electrical resis-
tance ρab(T) and the local conductivity activation energy
Eab(T) and (b) the thermopower αab(T) measured in the
CuO2 plane of a La1.997Sr0.003CuO4.005 crystal with TN =
200 K.

T (K)

TN

T (K)

TN
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in the differential magnetic susceptibility χ⊥ (T) =
dMc/dH⊥ , thanks to a hidden weak ferromagnetism
with the Dzyaloshinski–Moria interaction (JDM/J|| ≈
10−2). The uncertainty in the TN determination by this
method was within ±5 K.

The results of measurements of the transport prop-
erties of La1.997Sr0.003CuO4 and La1.997Sr0.003CuO4.005
were close to the data obtained for La2CuO4 + δ single
crystals doped only with oxygen to δ < 0.0015. The
observed anomalies in the charge-transfer near the Néel
temperature show that the loss of a two-sublattice anti-
ferromagnetic order strongly affects the charge trans-
port in the CuO2 plane. Above TN, there is a strong
charge-carrier localization. When the temperature is
decreased below TN, the local activation energy Eab(T) =
d(lnρab(T))/d(T–1) decreases by several times (Fig. 4a).
An increase in the temperature above TN gives rise to a
“paramagnetic” spin contribution to the thermopower:
∆αab = (e/k)ln2 ≈ 60 µV/K (Figs. 2b and 3b).

In order to elucidate the nature of anomalies
observed in the charge-transfer characteristics, we con-
sider some important features of this transport in the
crystals studied near the Néel temperature. A compari-
son of the two temperature dependences, Eab(T) and
αab(T), indicates that the thermopower α does not con-
tain an activation contribution Eab(T)/T. For this reason,
we can ascertain (see, e.g., [17–19]) that the charge
transport proceeds by hopping at the Fermi level and a
decisive contribution to Eab(T) comes from the polaron
effect. For the crystals slightly doped with oxygen, it
was demonstrated [14] that the polaron effect is mani-
fested by the lattice distortion caused by a hole local-
ized at the acceptor, which forms a deep (~1 eV) impu-
rity level in the ~2-eV bandgap. In a sample doped with
both oxygen and strontium (Fig. 3b), the thermopower
αab(T) at T > TN exhibits a weak temperature depen-
dence, indicative of the proximity of the impurity levels
of Sr and O. In all samples studied in the temperature
range 100–400 K, the behavior of the conductivity and
thermopower outside the region of anomalies was char-
acteristic of the charge-carrier transport by hopping
between the neighboring impurity centers [19]. Here,
the impurity center is not analogous to the Zhang–Rice
singlet but, rather, represents a well-defined cluster
comprising a hole (localized at the oxygen atom) and a
small number of copper spins with a total spin of 1/2.
This structure was predicted theoretically (see [20, 21]
and references therein) and confirmed in experiment
[14, 21].

In order to establish the nature of relations between
the anomalies in the charge-transfer characteristics and
the changes in the magnetic spin system of copper, it is
important to compare the scale ξAF of antiferromag-
netic fluctuations and the average distance dab between
the neighboring impurity centers: dab ≅  3.8/(x + 2δ)1/2 Å
(Fig. 4b). Let us compare the values of dab with the cor-
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relation length ξAF of antiferromagnetic fluctuations
determined from the results of neutron scattering mea-
surements at various temperatures [5, 22, 23] for
La2CuO4 crystals with various TN values within 195–
325 K. For a crystal with TN = 325 K [5], ξAF(400 K) ≈
270 Å and ξAF(330 K) ≥ 600 Å, while, for a sample
with TN = 195 K [23], ξAF(400 K) ≈ 80 Å and
ξAF(195 K) ≈ 400 Å. Thus, for T ≤ 400 K, the average
distance dab between the neighboring impurity centers
in our samples is always smaller than the correlation
length of antiferromagnetic fluctuations. If the
observed antiferromagnetic fluctuations reflect the for-
mation of the Néel order, we can hardly expect any
change in the charge transport in the CuO2 plane upon
the appearance of a long-range magnetic order.

Of special interest is the study of the behavior of the
thermopower α(T) in the crystals with hopping conduc-
tivity in the region of magnetic transitions [19]. The
thermopower in crystals with hopping polaron trans-
port is usually considered [24] in terms of the entropy
change (per unit charge –e) caused by various factors
involved in the charge transport. For the diffusion part
of the thermopower, we have eα(T) = ∆SC + ∆SM, where
∆SC is a change in the configuration entropy for a spin-
less particle and ∆SM is the change in the magnetic
entropy. For all Fermi-glass systems, Mott [19] sug-
gested that the thermopower in the case of charge hop-
ping above TN must contain the component ∆SM = kln2
caused by the free spins of impurity states.

In La2CuO4 below TN, the interaction of the ith
impurity cluster (having the spin σi = 1/2) with the anti-
ferromagnetic environment involves two contributions
[21] reflecting the exchange interaction (with Ji ≈ J||)
and the Dzyaloshinski–Moria interaction (Ji ~ JDM). In
the molecular-field approximation,

(1)Hi σi Ji mi⋅ mi w⋅ i[ ]+( ),≈

Fig. 4. Plots of (a) the local conductivity activation energy
Eab(T) at T = 350 and 150 K vs. the distance dab between
the neighboring acceptor centers and (b) the magnetic sus-
ceptibility χc(T) vs. temperature T for
La1.997Sr0.003CuO4.005 (TN = 200 K), La1.997Sr0.003CuO4
(TN = 275 K), and La2CuO4.0013 (TN = 315 K) crystals.

(Å)
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where mi is the vector of magnetic-moment density
near the ith acceptor and wi is the vector of local rhom-
bicity enhanced due to the polaron effect. At T < TN, in
the system with a strong lattice polaron effect like that
observed in our slightly doped La2CuO4 crystals
(~0.1 eV), we have Hi @ kTN. Then, the spin of an
impurity cluster is associated with the antiferromag-
netic sublattice and its contribution to the magnetic
entropy is negligibly small.

Above TN, taking into account well-developed 2D
antiferromagnetic fluctuations with ξAF ~ 100 Å, the
interaction of the ith impurity cluster with an antiferro-
magnetic environment can be described by relation (1)
with the magnetic-moment density vector replaced by
its statistical average 〈mi〉  over the time τs ~ "/kT ≈ 3 ×
10–14 s (T ≈ 300 K) of the spin thermal fluctuations of
the impurity hole. If the antiferromagnetic fluctuations
above TN are fluctuations of the Néel order parameter,
the characteristic fluctuation time of the mi vector on
the correlation length ξAF is ξAF : τAF ≈ 1/ωAF ≈ 10–12–
10–13 s, where "ωAF is the characteristic energy of anti-
ferromagnetic fluctuations (in La2CuO4, "ωAF ≈
0.02(T)1/2/ξAF eV [5]). Thus, τAF is greater by more than
an order of magnitude than the characteristic time τs of
spin thermal fluctuations of the impurity hole. There-
fore, the fluctuations of the Néel order parameter are
quasi-stationary, and 〈mi〉  ≈ mi. In this case, interaction
(1) exceeds the Néel temperature and, hence, the spin of
the impurity cluster is associated with the copper spins,
and the magnetic contribution ∆SM/e must not be man-
ifested in the thermopower.

A different situation takes place for La2CuO4 in the
spin liquid state [4, 13], where most pairs of the neigh-
boring copper spins are fixed only within τRVB ~ "/J|| ≈
5 × 10–15 s. This value is an order of magnitude smaller
than the time of thermal fluctuations of the impurity
cluster spin and, hence, 〈mi〉  ≈ 0 and Hi ≈ 0. Thus, the
spin of an impurity hole becomes free upon the “3D
Néel ferromagnet  2D spin liquid” transition and
the thermopower acquires the magnetic contribution
∆SM/e = k/eln2 ≈ 60 µV/K due to the impurity para-
magnetism—just what was observed in our experi-
ments (see Figs. 1b–3b).

It is difficult to explain the observed strong decrease
in the activation energy of hopping conductivity at T <
TN (Fig. 1a–4a) within the framework of the usual hop-
ping-transport model, where the probability of a jump
to the neighboring impurity center (with allowance
made for the quantum effects [25]) weakly depends on
the magnetic state of these centers. However, it should
be noted (Fig. 4a) that both the local conductivity acti-
vation energy Eab(T > TN) and its change ∆Eab =
Eab(350 K) – Eab(150 K) strongly depend on the dis-
tance between the neighboring impurity clusters. This
can be explained by relating the lattice polaron effect to
the influence of a magnetic string appearing during the
jump of a hole. According to the results of our ther-
mopower measurements, the activation energy is
mostly determined by the polaron effect. Therefore, we
can assume that Eab(T) ≈ Wp(T), where Wp(T) is the lat-
tice polarization energy [19]:

(2)

Here, rp is the localization radius of the impurity state
(hole) and 1/εp = 1/ε∞ – 1/ε0 is the difference between
the inverse optical and static dielectric constants for the
slightly doped La2CuO4 (1/εp ≈ 1/6 [22]). Upon hole
tunneling to the neighboring impurity center, a “vir-
tual” string of frustrated antiferromagnetic bonds is
formed behind the hole. The mechanism of an addi-
tional hole localization consists in this string effect. In
the Néel antiferromagnet and the Fermi-RVB state, the
string of frustrated bonds is healed by the exchange
interaction due to the transverse copper spin fluctua-
tions, after which the hole acquires a finite mobility. In
the Bose-RVB state [3, 12, 13], there are long-range
antiferromagnetic pair correlations in addition to the
short-range correlations. Because of the short-range
exchange, the long-range frustrated correlations are not
healed and the probability of a jump to the neighboring
impurity center decreases. The probability of hole tun-
neling from a filled acceptor center to an empty center
exponentially depends on the hopping distance and,
hence, on the string length and the number of unhealed
bonds. This results in a decrease of the localization
radius rp of the impurity state and, according to formula
(2), to an increase in the local activation energy Eab(T).

Thus, the results of our measurements of the electri-
cal resistance and thermopower in a La2CuO4 weakly
doped with oxygen and strontium showed that an addi-
tional charge-carrier localization takes place at temper-
atures above TN. A decrease in the temperature in the
vicinity of TN leads to the disappearance of the mag-
netic contribution to the thermopower, which is proba-
bly due to the formation of a magnetic polaron state
below TN [26]. Analysis of the obtained experimental
data leads to the conclusion that La2CuO4 above the
Néel temperature occurs in the state of spin liquid with
resonance valence bonds of the Bose type.

We are grateful to A.F. Barabanov and L.A. Maksi-
mov for fruitful discussions and to A.A. Chernyshov
and N.A. Chernoplekov for their attention and support
of this investigation.
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Measurements of 90°-scattering of weak laser light are used to investigate pulsed domain switching in ferro-
electrics. The studies were performed on strontium–barium niobate (SBN) single crystals. A good agreement
of the switching parameters estimated from the optical measurements with those obtained by means of conven-
tional electrical methods proves the validity of the optical method for switching studies. Due to the limited scat-
tering volume in all three spatial dimensions, the method facilitates local probing of the switching within
the crystal bulk. In particular, local specialities of the domain density can be detected. Furthermore, the excel-
lent time resolution inherent in optical probing techniques allows for a comprehensive study of the dynamics.
© 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 77.80.Fm; 77.84.Dy; 78.35.+c
Studies in ferroelectric switching are at present tak-
ing on special significance in light of developing optical
frequency conversion in the quasi-phase matching
(QPM) mode of operation on periodically poled, i.e.,
regular domain structures (RDS) in ferroelectrics. The
ferroelectric solid solution SrxBa1 – xNb2O6 (SBN-x)
represents a material appropriate for these purposes due
to its relatively high nonlinear-optical susceptibilities
[1] and rather low coercive fields Ec ∝  103 V/cm. Two
successful attempts at optical frequency conversion on
RDS in SBN crystals have been reported [2, 3]. Manu-
facturing RDS requires studies of ferroelectric proper-
ties, particularly of ferroelectric switching. However,
there are only a few publications devoted to direct stud-
ies of the polarization process in SBN [4–7]. The
results of [4, 5] were obtained under quasistatic (slowly
varying) fields; switching under pulsed fields was
observed by means of the conventional method of
switching currents [6, 7].

In the present work, we report—for the first time, to
our knowledge—on investigations of the ferroelectric
switching of SBN crystals performed by means of light
scattering measurements at domain walls. This method
provides certain advantages over electrical methods,
because it permits observation of the switching process
with good spatial resolution over the complete crystal
and shows a better time resolution.

In SBN crystals, a 90°-scattering of a laser beam
propagating normally to the polar axis was formerly
reported [8, 9]. The scattering intensity drastically

¶ This article was submitted by the authors in English.
0021-3640/04/8004- $26.00 © 20258
decreased in poled (single-domain) crystals or at tem-
peratures above the phase transition to the paraelectric
phase [9] and could be modulated by applying a low-
frequency sinusoidal field [8], so it was undoubtedly
attributed to domain evolutions. This type of scattering
is due to the domain walls, which are the regions of an
inhomogeneity in the dielectric permittivity e and can
be treated, for example, as sandwichlike optical local
inhomogeneities in the refractive index ni [10]. Follow-
ing this assumption, an incident plane wave character-
ized by a momentum vector ki is partially reflected by a
domain wall into the direction kr = ki + 2(kiqm)qm, where
qm is the normal unit vector describing the wall geome-
try. The reflected amplitude due to a differential inho-
mogeneity δn and wall area dA can be approximated as

(1)

where H is the thickness of the wall corresponding to
δn (approximation valid for |ki |H ! 1). The total scat-
tered intensity is obtained by integrating dEr for a typi-
cal coherence volume and then incoherently, by inte-
grating over the illuminated volume. Following Eq. (1),
the complete intensity of the 90° light scattering is pro-
portional to three parameters: (1) the average domain
wall thickness, (2) the typical magnitude of the inho-
mogeneity in n in the vicinity of the wall, and (3) the
total wall area (i.e., number of domain walls within the
illuminated volume). In turn, δn depends on the applied
field E via the linear electrooptic effect.

dEr Ei ki H
δn
2n
------ A,d=
004 MAIK “Nauka/Interperiodica”



        

STUDY OF FERROELECTRIC SWITCHING 259

                                                                                               
The crystals under study were SBN-0.75 and SBN-
0.61, for which we recently published the measurement
of switching currents under pulsed fields [6, 7]. The
samples were optically polished cubes 5 × 5 × 5 mm in
size. A focused beam from a He–Ne-laser propagated
normally to the polar z axis along the x direction, and
90° scattered radiation was registered in the mutually
orthogonal direction y. Both the incident laser beam and
scattered light were polarized parallel to the z axis
(extraordinary polarization). We measured the scatter-
ing only within a small part of the illuminated area lim-
ited by a small diaphragm placed directly in front of the
crystal. Electric field pulses with a rise time of less than
1 µs were applied in the z direction. Due to the low
intensity (0.05 W/cm2) of the propagating laser beam,
any photorefractive effects under applying fields were
avoided and a uniform voltage distribution within the
crystal bulk could be assured.

Figure 1 shows a typical scattering response (lower
curve) upon an electric-field pulse (upper curve) in a
polydomain SBN-0.75 sample. At E = 0, both in poly-
domain and poled SBN crystals, a nonzero scattered
intensity Ib exists that may be related to a variety of rea-
sons, in addition to a contribution from the domains.
Below, in terms of domain evolutions, we discuss a
change of the scattered intensity ∆I = Is – Ib (a “flash”)
under an applied field pulse. According to [9], we can
assume that, in the first approximation, a variation in
the scattered intensity under applied fields may be
attributed to variations in the domain wall density.
Field-induced changes in H (see Eq. (1)) should only
contribute as a second-order effect. Field-induced
changes of the refractive indices are to be neglected, as
they should follow the field immediately and not in a
retarded way as we find it in the ∆I(t) response (Fig. 1).
Therefore, the temporal characteristics of ∆I(t) depend
on domain evolutions under a field pulse.

The kinetics of pulsed switching in ferroelectrics is
characterized by switching times τs and velocities v s ∝

 depending on the field amplitude (e.g., [11]). Using
our technique, we deduce τs directly from the kinetics
of ∆I(t) (Fig. 1), which may be fitted by an exponential
function ∆I = ∆Isat[1 – exp(–t/τs)] (the dashed lower
curve in Fig. 1). From a set of ∆I(t) curves obtained
under a pulse train (presented in the inset in Fig. 1), we

can derive the dependences τs(E) and (E). Figure 2
presents the plot τs(E) in an initially polydomain sam-
ple SBN-0.75. The values of τs range over tens of
microseconds and are in good agreement with switch-
ing times obtained under pulse fields in the same crystal
by the switching current method [6, 7]. The field depen-

dence of the switching velocity (E) in ferroelectrics
at moderate fields often obeys the exponential law

 = Aexp(–Ea/E) [11]. A fit to the measured values of

, shown as a dashed line in the inset in Fig. 2, yields

τ s
1–

τ s
1–

τ s
1–

τ s
1–

τ s
1–
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A = 5.42 × 104 s–1 and Ea = 5.1 kV/cm. The latter
amount, characterizing an “activation field” of the
switching, is reasonable and close to the values of Ea

found in other ferroelectrics, such as BaTiO3 and TGS
[11].

We continue with a discussion of the field depen-
dence of the scattering intensity, i.e., of the domain den-
sity. Figure 3 presents the plots ∆I(E) for initially poly-
domain SBN-0.61 and SBN-0.75 crystals. The right
and left branches of the curves correspond to “+” and
“–” field signs, respectively, that are uniquely settled
with respect to the crystal geometry. Every time before

Fig. 1. Example of the scattering kinetics (the lower curve)
for applying a rectangular field pulse (the upper curve). The
dashed curve in the lower represents a fit of experimental
data to the exponential function. The inset shows the field
pulse trains.

Fig. 2. Switching times as a function of the field amplitude
in a polydomain SBN-0.75. The inset shows the switching

velocity , the dashed curve represents its fit by the expo-

nential function (see text).

τs
1–
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Fig. 3. Light scattering intensities as a function of the field amplitude in polydomain crystals SBN-0.61 (a, a1) and SBN-0.75
(b, b1). Panels (a1) and (b1) show P–E loops obtained under quasistatic fields in the same crystals; labels 1, 2, 3 denote successive
field cycling.
applying a pulse train of a given polarity, the crystal
was brought into polydomain equilibrium by annealing
it in the paraelectric phase. This means that +E and –E
branches of ∆I(E) were measured under identical con-
ditions. The following common features may be recog-
nized in the ∆I(E) curves for the two crystals under
study. In the range of relatively low fields of both the
signs, ∆I only very slightly varies with E; at a certain
Emax, depending on the composition, ∆I passes a maxi-
mum; and the curves are asymmetrical—namely, in a
given crystal, the values of the Emax and peaks ∆I are
different for two field polarities. To discuss these curves
using the language of ferroelectricity, recall that,
according to the classical model [11], the polarization
(or switching) process proceeds only very slightly
under low external fields and is strongly enhanced
when approaching the coercive field Ec. At E close to
Ec, the domain structure is reconstructed, namely, new
domains are being nucleated and growing through the
crystal bulk either frontally or by means of side
domain-wall movement [11]; the domain density dras-
tically increases when approaching Ec. Provided that
the pulse duration exceeds the switching time, the crys-
tal is totally polarized (or repolarized) during a single
pulse E ∝  Ec, and so on, further enhancing the field
amplitude, the domain density tends to zero. Therefore,
the dependence of the domain density on the pulse train
amplitudes would schematically be D ≠ 0 for E < Ec, D
= Dmax for E = Ec, and D = 0 for E > Ec. In the light of
this simplified presentation, the values of Emax in the
curves of Fig. 3 should correlate with the coercive field

Ec. Different absolute values of  and  and dif-
ferent peak intensities for +E and –E branches in a
given crystal should characterize the so-called unipo-
larity, i.e., a preferable direction of Ps or, which is the
same thing, an initial nonequality of the domain densi-
ties of “+” and “–” domains, in a crystal as a whole or
at a given crystal position.

To justify this interpretation, in the insets in Fig. 3
we show dielectric hysteresis loops obtained in the
same samples in a quasistatic regime with a cycling
loop of about 2 h. The observed specific of P–E hyster-
esis, namely, “open-shaped” loops and a noncoinci-
dence of their trajectories on several first cyclings, is
characteristic for all SBN crystals [4, 5] and is
accounted for by the relaxor origin of this material [12].
The averaged values of Ec estimated from several first
P–E cycles for SBN-0.75 and SBN-0.61 are 1.5 and
2.5 kV/cm, respectively, which is in good agreement
with the average values of Emax for the same crystals
(2 and 3 kV/cm). The P–E loops are unipolar, that is,
shifted along the E axis. The unipolarity is usually char-
acterized by a bias field Eb = (|E1 – E2|)/2, where E1 and
E2 are coercive fields corresponding to the left and right
halves of a P–E loop [11]. Averaged values of Eb esti-

Emax
+ Emax

–
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mated from first P–E cycles are 0.15 and 0.3 kV/cm in
SBN-0.75 and SBN-0.61, respectively. For the optical
curves ∆I(E), we define a bias field in a similar manner
Eb = (|  – |)/2, yielding Eb = 0.3 and 0.4 kV/cm
for SBN-0.75 and SBN-0.61, respectively. These
amounts are in reasonable agreement with the dielectric
results. The values of Eb in P–E loops slightly differ
from those obtained from ∆I(E) curves because of dif-
ferent measurement conditions and rather conventional
estimates of E1, 2 from “open-shaped” P–E loops.

The results presented in Figs. 1–3 demonstrated the
validity of the optical method for ferroelectric switch-
ing studies, because all parameters deduced from the
optical measurements (coercive and bias fields, unipo-
larity, switching times, and velocities) agree with those
obtained by traditional electrical methods.

We now emphasize a fundamental divergence of the
switching process in SBN as reported in [4–7] from the
usual model scenario [11]. In SBN crystals, unlike in
ideal ferroelectrics, no uniquely determined coercive
field exists and a switched charge Qs is controlled not
only by field amplitudes but the pulse duration as well.
The total polarization (or polarization reversal) requires
applying fields over tens of seconds [6, 7], so, under
short pulses, Qs ! Ps even at E @ Ec. Under our exper-
imental conditions, we deal with a partial switching.
For this reason, the background intensity Ib in a polydo-
main crystal is practically unchanged after applying a
pulse train, and the peak ∆Imax is smeared over a rather
wide field range. The times shown in Fig. 2 describe the
switching of a small part of the crystal volume. Note
again that, despite the fact that the crystals were prelim-
inarily annealed in the paraelectric phase to bring them
to a polydomain state, they retain unipolarity. This is
why the initial domain density after annealing D0 <
Dmax (the initial light scattering I0 < Imax). This unipolar-
ity in an annealed crystal seems to be a specific of a
relaxor ferroelectric.

Now, we show an example of a local specialty of fer-
roelectric switching in SBN, which was observed by
scanning the bulk and, hence, not found by integrating
electrical methods. The field dependences ∆I(E) pre-
sented in Fig. 3 with a small scatter in the values of

 are qualitatively similar in any region of a given
crystal apart from the electrodes. However, when
approaching them, these dependences become qualita-
tively different. Figure 4 presents curves ∆I(E) obtained
in SBN-0.75 (the same as in Fig. 3b) in spots adjacent
to the electrodes—approximately 0.1 mm apart from
the upper and lower ones, respectively (the inset in
Fig. 4). Both branches of these curves were obtained in
the polydomain state, again after preliminary annealing
in the paraelectric phase. These edge-related depen-
dences of ∆I(±E) show a pronounced asymmetry. When
a positive potential is applied to an electrode, the
dependence ∆I(+E) is similar to ∆I(±E), apart from the

Emax
+ Emax

–

Emax
±
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electrodes, shows a maximum at  coinciding with
the average Emax in the bulk, and comes to a low satura-

tion level at E > . In contrast, if a negative potential
is applied to the same electrode (left branches of the
curves in Figs. 4a and 4b), then ∆I, after passing over a
slight maximum, gradually increases with E without
tending to saturate. It should be emphasized that these
dependences unambiguously correlate with the polarity
of the electrode: a gradual increase of ∆I(E) is always
observed close to the negative one. This means that,
with increasing field amplitude, the domain density
grows at the negative electrode only and becomes non-
uniformly distributed along the polar axis. The only
explanation of this asymmetry in the domain density is
a preferable domain nucleation at the negative elec-
trode and subsequent evolution in the region adjacent to
it, whereas the positive electrode is “silent.” This asym-
metry in the domain density under short field pulses
corroborates the fact that a total polarization (or polar-
ization reversal) in SBN requires applied fields for tens
of seconds [6, 7] so that domains nucleated at the neg-
ative electrode cannot germinate through the crystal
bulk during application of short pulses even at E @ Ec.
Such a nonequiprobability of the domain nucleation is
not unique; for example, a preferable domain nucle-
ation at the negative electrode was observed in LiNbO3
as well [13] by means of a successive etching of the
crystal in the course of a long-term field application. An
in situ observation of a nonuniformity of the domain
density distribution in SBN crystals presented here
would be useful for elaborating techniques for creation
of RDS.

The domain-wall induced light scattering is obvi-
ously common for a wide group of ferroelectric crys-
tals. For example, it was also observed in Gd2MoO4
[14] and Sn2P2S6 [15]. In SBN crystals, this effect is
very pronounced, perhaps because of a relatively large

Emax
+

Emax
+

Fig. 4. Light scattering intensities as a function of the field
amplitude in the vicinity of the upper (1) and lower (2) elec-
trode in a polydomain SBN-0.75 crystal. The inset repre-
sents the layout of the sample schematically.
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thickness of a domain wall or, to be more precise, of a
perturbed layer adjacent to it. A possible reason may be
either an elastic strain or a space-charge field in the
vicinity of the domain wall, which would lead to a large
inhomogeneity in the refractive indices via the elasto-
or electrooptic effects, respectively. A large elastic
strain at a moving domain wall may be specific for fer-
roelectric crystals with a large piezoelectric effect. A
space-charge field arises if the domain walls are
inclined with regard to Ps, which is actually realized in
SBN, e.g., in [16].

In summary, we were able to demonstrate that 90°
light scattering is an excellent tool for investigating fer-
roelectric switching. The scattered light intensity is due
to contributions from domain walls. The results can
complement and extend those obtained by conventional
electrical measurements. In addition to its good time
resolution, the method facilitates spatially resolved
measurements of switching processes. For example, we
detected a preferred polarity of the electrode for
domain nucleation. The potential applications of the
technique include a wide group of crystals, particularly
those possessing extended domain walls.
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The main properties and the type of the field-tuned quantum critical point in the heavy-fermion metal CeCoIn5
that arise upon application of magnetic fields B are considered within a scenario based on fermion condensation
quantum phase transition. We analyze the behavior of the effective mass, resistivity, specific heat, charge, and
heat transport as functions of applied magnetic fields B and show that, in the Landau Fermi liquid regime, these
quantities demonstrate critical behavior, which is scaled by the critical behavior of the effective mass. We show
that, in the high-field non-Fermi liquid regime, the effective mass exhibits very specific behavior, M* ~ T–2/3,
and the resistivity demonstrates T2/3 dependence. Finally, at elevated temperatures, it changes to M* ~ T–1/2,
while the resistivity becomes linear in T. In zero magnetic field, the effective mass is controlled by temperature
T and the resistivity is also linear in T. The obtained results are in good agreement with recent experimental
facts. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.10.Hf; 71.27.+a; 74.72.-h
Magnetic-field tuning of quantum critical points
(QCPs) in heavy-fermion (HF) metals becomes a sub-
ject of intense current interest because, as it is widely
accepted, an understating of quantum criticality can
clear up a mystery of the fundamental physics of
strongly correlated systems [1]. A fundamental ques-
tion is whether the QCPs observed in HF metals are dif-
ferent and related to different quantum phase transition
or their nature can be captured by the physics of a single
quantum phase transition. To answer this question, we
have at least to explore a particular quantum critical
point in order to identify its nature. It can hardly be
done on pure theoretical grounds since there can exist a
great diversity of quantum phase transitions and corre-
sponding QCPs in nature [2, 3]. Therefore, mutually
complementary experimental facts related to the criti-
cal behavior and collected in measurements on the
same HF metal are of crucial importance for under-
standing the physics of HF metals. Obviously, such HF
metal will exhibit the critical behavior and has no addi-
tional phase transitions. For example, the HF metal
CeRu2Si2 can be regarded as fit for such study because
the measurements have shown neither evidence of the
magnetic ordering, superconductivity nor conventional
Landau Fermi-liquid (LFL) behavior down to ultralow
temperatures [4]. Unfortunately, by now, only precise
ac susceptibility and static magnetization measure-
ments at small magnetic fields and ultralow tempera-
tures are known [4]. While additional measurements of
such properties as the heat and charge transport and the
specific heat could produce valuable information about

¶ This article was submitted by the author in English.
0021-3640/04/8004- $26.00 © 20263
the existence of Landau quasiparticles and their degra-
dation and clarify the role of the critical fluctuations
near the corresponding QCP. Such measurements on
the HF metal CeCoIn5 were recently reported [5–8]. It
was shown that the resistivity ρ(T) of CeCoIn5 as a
function of temperature T is linear in T in the absence
of a magnetic field [5]. Due to the existence of a mag-
netic field-tuned QCP with a critical field Bc0 . 5.1 T,
the LFL behavior is restored at magnetic fields B ≥ Bc0

[6–8]. At the LFL regime, the measurements of the spe-
cific heat and the coefficient A in the resistivity, ρ(T) =
ρ0 + A(B)T2, describing the electron–electron scatter-
ing, have demonstrated that the Kadowaki–Woods
ratio, K = A(B)/γ2(B) [9], is conserved [7]. Here, γ(B) =
C/T and C is the specific heat. It was also shown that the
coefficient A diverges as A(B) ∝  (B – Bc0)–α, with α .
4/3 [6, 8]. Moreover, a recent study of CeCoIn5 in mag-
netic fields B > Bc0 has revealed that the coefficients
A(B) and C(B), with C(B) describing a T2 contribution
to thermal resistivity κr, possess the same critical field
dependence A(B) ∝  C(B) ∝  (B – Bc0)–α, so that the ratio
A(B)/C(B) = c [8]. Here, c is a field-independent con-
stant characterizing electron–electron scattering in
metals and having a typical value of 0.47 (see, e.g., [10,
11]). The same study discovered that the resistivity
behaves as ρ(T) ∝  Tn in the high-field non-Fermi liquid
(NFL) regime, with n . 2/3, while in the low-field NFL
regime, at B ~ Bc0, the exponent n . 0.45 [8]. Note that
the same behavior of the resistivity was observed in the
HF metals URu2Si2 [12] and YbAgGe [13] on the verge
of the LFL regime and that the critical behavior takes
004 MAIK “Nauka/Interperiodica”
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place up to rather high temperatures comparable with
the effective Fermi temperature Tk and up to high mag-
netic fields. For example, the resistivity measured on
CeCoIn5 shows the T2/3 behavior over one decade in
temperature from 2.3 to 20 K, and the coefficients A(B)
and C(B) exhibit the same behavior at fields from B =
Bc0 = 5.1 T to at least 16 T [8].

In this letter, we present an explanation of the
observed behavior of the electronic system of the
heavy-fermion metal CeCoIn5 that arises upon apply-
ing magnetic fields B. We analyze the behavior of the
effective mass, resistivity, specific heat, charge, and
heat transport as functions of applied magnetic field B
and show that, in the Landau Fermi liquid regime, these
quantities demonstrate the critical behavior, which is
scaled by the critical behavior of the effective mass. In
that case, the critical behavior is determined by the fer-
mion condensation quantum phase transition (FCQPT),
the physics of which is controlled by quasiparticles
with the effective mass, which strongly depends on the
applied magnetic field B and diverges at B  Bc0. In
zero magnetic field, the effective mass is controlled by
temperature T and the resistivity is linear in T. In the
high-field non-Fermi liquid regime when the system
comes from the LFL behavior to the NFL one, the effec-
tive mass exhibits very specific behavior, M* ~ T–2/3, and
the resistivity demonstrates T2/3 dependence. In the
low-field NFL regime, at B ~ Bc0, this behavior
becomes complicated, so that the resistivity behaves as
Tn, with n ~ 0.7–0.8. At elevated temperatures and in
zero magnetic field, the behavior changes to M* ~ T–1/2,
while the resistivity becomes linear in T.

We start with a brief consideration of the LFL
regime restored by the application of magnetic field
B > Bc0. If the electronic system approaches FCQPT
from the disordered side, the effective mass M*(B) of
the restored LFL depends on magnetic field B as [14,
15]

(1)

Note that Eq. (1) is valid at T ! T*(B), where the func-
tion T*(B) ∝  (B – Bc0)4/3 determines the line on the B–
T phase diagram separating the region of the LFL
behavior from the NFL behavior taking place at T >
T*(B) [14]. To estimate the coefficient A, we observe
that, at the highly correlated regime when M*/M @ 1,
the coefficient A ∝  (M*)2, here M is the bare electron
mass [16]. As a result, we have

(2)

and observe that, in the LFL regime, the Kadowaki–
Woods ratio, K = A(B)/γ2(B), is conserved because
γ(B) ∝  M*(B).

M* B( ) 1

B Bc0–( )2/3
----------------------------.∝

A2 B( ) 1

B Bc0–( )4/3
----------------------------,∝
Let us now turn to consideration of the system’s
behavior at elevated temperatures, paying special atten-
tion to the transition region. To do this, we use the well-
known Landau equation relating the quasiparticle
energy ε(p) near the Fermi surface to variations δn(p,
T) of the quasiparticle distribution function nF(p, T)
[17, 18],

(3)

Here, µ is the chemical potential, pF is the Fermi
momentum, F(p, p1) is the Landau amplitude. For the
sake of simplicity, the summation over the spin vari-
ables is omitted. In our case, the variation δn(p, T) is
induced by temperature T and defined as δn(p, T) =
nF(p, T) – nF(p, T = 0) with nF(p, T) being given by the
Fermi–Dirac function,

(4)

Taking into account that ε(p . pF) – µ = pF(p – pF)/M*,
one directly obtains from Eq. (4) that nF(p, T  0) 
θ(pF – p), where θ(pF – p) is the step function. In our
case, Eq. (3) can be used to estimate the behavior of the
effective mass M*(T) as a function of temperature.
Actually, differentiating both parts of Eq. (3) with
respect to the momentum p, we observe that the differ-
ence pF/M*(T) – pF/M*(T = 0) is given by the integral.
In turn, the integral I can be estimated upon using the
standard procedure of calculating integral when the
integrand contains the Fermi–Dirac function (see, e.g.,
[19]). As a result, we obtain

(5)

Here, a1 and a2 are constants proportional to the deriv-
atives of the Landau amplitude with respect to the
momentum p. Equation (5) can be regarded as a typical
equation of the LFL theory, the only exception being
the effective mass M*, which strongly depends on the
magnetic field and diverges at B  Bc0 as it follows
from Eq. (1). Nonetheless, at T  0, the corrections
to M*(B) start with T2 terms, provided that

(6)

and the system exhibits the LFL behavior. At some tem-
perature (B) ! Tk, the value of the sum on the right-
hand side of Eq. (5) is determined by the second term.
Then, Eq. (6) is not valid and, upon omitting the first
and third terms, Eq. (5) can be used to determine the
effective mass M*(T) in the transition region,

(7)

ε p( ) µ–  = 
pF p pF–( )

M*
------------------------- F p p1,( )δn p1 T,( )

p1d
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T
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M
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We note that Eq. (7) has been derived in [15]. Upon
comparing Eqs. (1) and (7) and taking into account that
the effective mass M*(T) is a continuous function of T,
we can conclude that (B) ∝  (B – Bc0).

A few remarks are in order here. Equation (7) is
valid if the second term in Eq. (5) is much bigger than
the first one; that is,

(8)

and this term is bigger than the third one,

(9)

Obviously, both Eqs. (8) and (9) can be simultaneously
satisfied if M/M* ! 1. It is seen from Eqs. (1) and (9)
that, at B  Bc0, the range of temperatures over which
Eq. (7) is valid shrinks to zero, as well as (B)  0.
Thus, it is possible to observe the behavior of the effec-
tive mass given by Eq. (7) in a wide range of tempera-
tures provided that the effective mass M*(B) is dimin-
ished by the application of the high magnetic field (see
Eq. (1)). At B  Bc0 and finite temperatures, Eq. (9)
cannot be satisfied. Therefore, at elevated temperatures,
the third term comes into play, complicating the func-
tion M*(T). To estimate the exponent n, we take into
account only the third term in Eq. (5) and obtain M*(T) ∝
T–n with n = 4/5. As a result, at B  Bc0 and T >

(B), we have the approximation

(10)

with the exponent n ~ 0.7–0.8. The contribution coming
from the other terms can only enlarge the exponent. On
the other hand, n < 1 because, behind FCQPT, when the
fermion condensate is formed, M*(T) ∝  1/T [20].
Detailed analysis of this item will be published else-
where. Then, at elevated temperatures, the system
comes to a different regime. Smoothing out the step
function θ(pF – p) at pF, the temperature creates the
variation δn(p) ~ 1 over the narrow region δp ~ M*T/pF.
In fact, the series on the right-hand side of Eq. (5) rep-
resenting the value of the integral I in Eq. (3) is valid,
provided that the interaction radius q0 in the momentum
space of the Landau amplitude F is much larger than
δp, q0 @ δp. Otherwise, if q0 ~ δp, the series does not
represent I and Eqs. (5) and (7) are no longer valid.
Such a situation takes place at rising temperatures
because the product M*T grows as q0 ~ δp ~ M*T/pF ∝
T1/3, as follows from Eq. (7). As a result, the integral
runs over the region q0 and becomes proportional to
M*T/pF. Upon omitting the first term on the right-hand
side of Eq. (3) and substituting the integral by this esti-

T1*

T
Tk

-----  @ 
M

M*
-------- 
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T1*
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mation, we obtain the equation that determines the
behavior of the effective mass at T > T*(B) [14, 21],

(11)

To capture and summarize the salient features of the
LFL behavior observed recently in CeCoIn5 [7, 8], we
apply the above consideration based on FCQPT. The
study of CeCoIn5 in the LFL regime has shown that the
coefficients A(B) and C(B), determining the T2 contri-
butions to the resistivity ρ and thermal resistivity κr ,
respectively, possess the same critical field dependence
[8],

(12)

The observed critical exponent 4/3 is in excellent
agreement with that given by Eq. (2). Such a parallel
behavior of charge and heat transport with the scatter-
ing rate growing as T2 shows that the delocalized fermi-
onic excitations are the Landau quasiparticles carrying
charge e. We note that these should be destroyed in the
case of conventional quantum phase transitions [2, 3].
Nonetheless, let us assume for a moment that these sur-
vive. Since the heat and charge transport tend to
strongly differ in the presence of critical fluctuations of
superconducting nature, the constancy of the ratio rules
out critical fluctuations [8]. Therefore, we are led to the
conclusion that the observed value of the critical mag-
netic field Bc0 = 5.1 T that coincides approximately with
Hc2 = 5 T, the critical field at which the superconductiv-
ity vanishes, cannot be considered as giving grounds
for the existence of quantum critical behavior of a new
type. Then, one could expect that some kind of critical
fluctuations might cause the observed parallel behavior
of charge and heat transport. For example, this is
impossible in the case of ferromagnetic fluctuations
with a wavevector q . 0, but large-q scattering from
antiferromagnetic fluctuations of finite momenta could
degrade the heat and charge transport in a similar way
[11]. In this case, in order to preserve the Kadowaki–
Woods ratio, these fluctuations are to properly influ-
ence the specific heat, which characterizes the thermo-
dynamic properties of the system and is not directly
related to the transport one. On the other hand, there are
no theoretical grounds for the conservation of the Kad-
owaki–Woods ratio within the frameworks of conven-
tional quantum phase transitions [22]. Therefore, the
conservation of the Kadowaki–Woods ratio observed in
recent measurements of CeCoIn5 [7] definitely seems
to rule out these fluctuations. However, both the con-
stancy of the Kadowaki–Woods ratio [7] and the con-
stancy of the A(B)/C(B) ratio [8] give strong evidence in
favor of the quasiparticle picture.

Now, we turn to consideration of the resistivity ρ(T).
As we will see below, striking recent measurements of
the resistivity [8, 12, 13] furnish new evidence in favor

M* T( ) T 1/2– .∝

A B( ) C B( ) 1

B Bc0–( )4/3
----------------------------.∝ ∝
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of the quasiparticle picture and the existence of
FCQPT.

As follows from Eq. (11) and the above-mentioned
relation A ∝  (M*)2, the term AT2 ∝  M*T2 turns out to be
∝ T [14]. As a result, in zero magnetic field and rela-
tively high temperatures T > Tc, the resistivity of
CeCoIn5 is linear in T. Here, Tc is the critical tempera-
ture at which the superconductivity vanishes. This
observation is in good agreement with the experimental
facts [5].

At temperatures T < (B) and magnetic field B >
Bc0, the system exhibits LFL behavior with T2 depen-
dence of the resistivity ρ(T). Such a behavior is in
agreement with the experimental facts [6–8].

At a high applied magnetic field and finite tempera-
tures T > (B) when the system comes into the NFL
regime, the effective mass M* is determined by Eq. (7).
In this case, the range of temperatures over which
Eq. (7) is held becomes rather wide and the system
demonstrates an anomalous T2/3. Actually, upon using
the same arguments, we obtain that AT2 ∝  (M*)2T2 ∝
T2/3 and conclude that the resistivity ρ(T) ∝  T2/3. Again,
this result is in excellent agreement with the reported
observations [8, 12, 13].

If the magnetic field B  Bc0 and the temperature
is relatively high, T > (B), so that the system enters
the NFL regime, the effective mass is given by Eq. (10).
In this case, the resistivity ρ(T) ∝  (M*)2T2 ∝  Tk, with
k = 2 – 2n = 0.6–0.4. This result is in reasonable agree-
ment with the reported observation of anomalous T0.45

dependence of the resistivity in a small region near the
critical field Bc0 = 5.1 T [8].

In conclusion, we have shown that the experimen-
tally observed behavior of the electronic system of the
heavy-fermion metal CeCoIn5 arising upon applying
magnetic fields can be understood within the frame-
work of the FCQPT scenario. We have shown that, in
the LFL regime, the resistivity, specific heat, charge,
and heat transport, as functions of applied magnetic
field B, demonstrate critical behavior, which is scaled
by the critical behavior of the effective mass. We have
observed that this critical behavior is determined by
FCQPT, the physics of which is controlled by quasipar-
ticles with the effective mass, which in the LFL regime

T1*

T1*

T1*
strongly depends on the applied magnetic field and
diverges at B  Bc0. In zero magnetic field, the effec-
tive mass is controlled by temperature T and the resis-
tivity is linear in T. In a high-field NFL regime, the
effective mass exhibits very specific behavior, M* ~
T−2/3, while the resistivity demonstrates T2/3 depen-
dence. At elevated temperatures, the behavior changes
to M* ~ T–1/2, while the resistivity becomes linear in T.
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We report the first experimental observation of a nonlinear laser effect, stimulated Raman scattering (SRS), in
manmade diamond grown from the gaseous phase by the chemical vapor deposition (CVD) technique. Multiple
Stokes and anti-Stokes generation in the visible and near-IR ranges was excited under nanosecond and picosec-
ond pumping in a 350-µ-thick plate. All the registered Raman-induced lasing wavelengths were identified. We
classify the CVD-diamond as a promising χ(3)-active material for Raman laser converters in a record wide spec-
tral range. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Dr; 42.70.-a; 81.05.Uw
1. In the last decade, the use of the stimulated
Raman scattering (SRS) phenomenon in crystalline
materials to shift the wavelengths of laser emission has
become more widespread in solid-state laser physics
(see, e.g., [1–4]). The SRS process allows to compress
laser pulses. It can also improve the spatial quality of
laser beams, etc. Modern laser applications require
crystals providing large Raman frequency shifts of con-
siderably more than 1000 cm–1. (For the list of these
SRS-active materials, see Table 1. Natural diamonds
are also included in the list.) Recently, great progress
has been achieved in synthesis of large-area diamonds
at low pressure using a chemical vapor deposition
(CVD) technique [5]. The material is essentially poly-
crystalline with arbitrary oriented grains. In many
respects, the quality of CVD diamonds approaches that
of the purest natural diamonds. In contrast to natural
stones, the impurity and defect contents in CVD dia-
mond are quite reproducible and of low level.

This work is devoted to reporting on the results of
the first experimental observation of χ(3)-nonlinear laser
effect, namely, the high-order Stokes and anti-Stokes
generation in CVD diamond thin plates under nano-
and picosecond excitation in the visible and near-IR
ranges.

2. Diamond belongs to the  cubic space group
with eight atoms per unit cell (two per primitive cell)
giving to six phonon branches in the dispersion rela-
tion. At the center of the Brillouin zone (k = 0), the
three optical branches are triply degenerate and the cor-
responding phonons belong to the F2g irreducible repre-
sentation. The first-order Raman spectrum contains one

¶ This article was submitted by the authors in English.
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peak corresponding to the excitation of these optical
phonons. Diamond consists of the light mass of the
C-atoms held together by strong covalent bonding, and
this combination produces many remarkable proper-
ties for laser physics—e.g., high thermal conductivity
and a relatively large energy of Raman-active mode
≈1332.5 cm–1—that promote SRS lasing. Some physi-
cal properties of natural and manmade diamonds that
are known by us are listed in Table 2.

3. In the present work, a transparent diamond film of
≈450 µ thickness was grown on a Si substrate in a
microwave-plasma-assisted CVD reactor using CH4/H2
mixture as a source gas [6]. After the substrate was
etched off in acid, the film was laser-cut to 6 × 8 mm2

samples and mechanically polished to get plane-paral-
lel plates of 350 µ thickness. The major impurities were
75 ppm hydrogen and 1 ppm nitrogen (1 ppm = 1.76 ×
1017 cm–3) as determined from IR and UV absorption
spectra, respectively [7]. Upon growth, the grains,
being chaotically oriented in the film plane, form col-
umns with their axes directed perpendicular to surface.
Columns with a lateral size of about 40–100 µ are pre-
dominantly 〈110〉-oriented.

4. The SRS experiments with CVD diamond plate
were performed at 300 K using a cavity-free single-
pass excitation scheme and nano- and picosecond
Nd3+:Y3Al5O12 lasers with a ≈30% efficient external
frequency doublers as pumping sources (see, e.g., [17,
18]). Their generation with a Gaussian beam profile at
fundamental λf1 = 1.06415 µ (pump pulse duration
τp1 ≈ 15 ns and ≈110 ps, respectively) or SHG at λf 2 =
0.53207 µ (τp1 ≈ 15 ns and ≈80 ps, respectively) wave-
length was focused onto the diamond plate by a lens
with focal distance adjusted, so that the SRS-lasing was
004 MAIK “Nauka/Interperiodica”
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Table 1

Crystal* Space group Nonlinearity (class) ωSRS, cm–1** References

Inorganic crystals

LiHCOO · H2O χ(2) + χ(3) (polar) ≈1372 [8]

Natural diamond*** χ(3) ≈1332 [9, 10]

CVD-diamond**** χ(3) 1332.5 ± 0.8 This work

CaCO3 (calcite) χ(3) ≈1086 [9, 11, 2]

Sr(NO3)2 χ(3) ≈1057 [13]

Y(HCOO)3 · 2H2O χ(2) + χ(3) ≈1395, ≈1377, ≈2895 [14]

Ba(NO3)2 χ(3) ≈1049 [15, 16]

Organic crystals

C12H22O11 (sugar, sucrose) χ(2) + χ(3) (polar) ≈2960 [17]

C15H19N3O2 (AANP) χ(2) + χ(3) (polar) ≈1280 [18]

C16H15N3O4 (MNBA) χ(2) + χ(3) (polar) ≈1587 [19]

Metal–organic crystal

C14H26N8O13Zr (CuZn-III) χ(2) + χ(3) ≈1008, ≈2940 [20]

      * Some of these crystals are already commercial materials.
    ** Room-temperature data.
  *** Natural diamond crystals of type IIA with a thickness of about 2 mm.
**** Manmade polycrystalline diamond.

C2v
9

Oh
7

Oh
7

D3d
6

Th
6

D2
4

Th
6

C2
2

C2v
9

Cs
4

D2
5

maximum while avoiding surface and volume optical
damaging of the sample. This was achieved when the
waist beam diameter into diamond plate was 100–
160 µ. These excitation conditions provided a steady-
state χ(3)-generation regime effectively, because, for the
studied CVD diamond, τp @ T2 = 1/π∆νR ≈ 4.2 ps (here,
T2 and ∆νR are the phonon relaxation time and the line-
width of the corresponding peak in the spontaneous
Raman scattering spectrum, respectively). The spectral
composition of Stokes and anti-Stokes lasing in the vis-
ible and near-IR under maximum possible pump den-
sity power was measured with grating monochromators
equipped with appropriate detectors (Si-CCD, InSb-
diode, etc.). The generated SRS wavelengths observed
are summarized in Table 3, which contains room-tem-
perature Stokes and anti-Stokes generation wave-
lengths in CVD diamond (350-µ-thick plate) with nat-
ural abundance of isotopic (carbon) composition con-
nected with its SRS-active vibration mode ωSRS =
1332.5 cm–1 under nano- and picosecond
Nd3+:Y3Al5O12-laser excitation at λf1 = 1.06415 µ and
λf2 = 0.53207 µ (SHG) fundamental wavelengths.

5. For rough estimation of the steady-state Raman

gain coefficient  in the near-IR, we applied a simple
comparative method using the well-known relation

gssR
St1
(see, e.g., [23]) IthrlSRS = 25–30 (where Ithr is the
threshold pump intensity and lSRS is the SRS-active
length of the sample) and based on a measurement of
the pumping threshold for the first Stokes generation
component in our ≈350 µ CVD diamond (λSt1 =
1.2400 µ; see Table 3) and in a reference ≈500 µ
C15H19N3O2 (AANP) crystal (λSt1 = 1.2320 µm [18])
under the same excitation conditions. We observed that
the threshold for the first Stokes nanosecond lasing of
the diamond threshold was about 40% less than for the

AANP plate. This means that the coefficient  is no
less than 8 cm/GW. The SRS conversion efficiency into
all Stokes and anti-Stokes components in the examined
diamond sample, even when grown in not optimized
conditions, reached a value of about 30% at pump
power density of approximately 2.5 GW/cm2 under
picosecond excitation at λf 2 = 0.53207 µm wavelength.

6. In conclusion, we have discovered a χ(3)-nonlin-
ear laser potential for CVD diamonds. Due to continu-
ous progress in CVD diamond technology, large-size
(diameter >100 mm, thickness >2 mm) and even ultra-
pure CVD diamond single crystals [24] have become
available. From these considerations, we believe that
new generation of CVD diamonds in near future can

gssR
St1

gssR
St1
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Table 2

Space group  – Fm d (No. 227)

Unit-cell parameter, Å a0 = 3.56676

Site symmetry of atoms C1

Formula units per cell Z = 8*

Density, g/cm–3 d ≈ 3.51

Melting point, °C >3400
Debye temperature, K ≈1860
Band gap, eV ≈5.4
Optical transparency range, µ ≈0.225–3.8; 5.5–∞ (till radio frequencies)
Dielectric constant ε ≈ 5.7 (for f = up to 1011 Hz)

Refractive index (Sellmeier equation) (λ in µ) n2 = 1 + 

dn/dT × 106, K–1 ≈10 (for λ = 0.587 µ)

Nonlinear refractive index, 10–13 cm3 erg
(at λ = 0.545 µ and laser pulse duration τp = 4 ns)

n2 ≈ 7.2

Thermal conductivity, W/(cm K)
(for our polycrystalline CVD-diamond)

≈18

Thermal expansion coefficient, 10–6 K–1 ≈1

Elastic constants, 1011 N m2 C11 = 10.40; C12 = 1.70; C44 = 5.50

Elastooptic coefficients (at λ = 0.540–0.589 µ) p11 = –0.278; p12 = 0.123; p44 = –0.161; p11 – p12 = –0.385

Energy of SRS-active vibration mode, cm–1 ωSRS = 1332.5 ± 0.8

Linewidth (FWHM) of the Raman-shifted line in first-order 
spontaneous Raman scattering spectra, cm–1

∆νR ≈ 2.5 (for our polycrystalline CVD-diamond)
∆νR for natural diamonds ranges from 1.65 to 2.7 (see, e.g., [21, 22])

Phonon spectrum extension, cm–1** ≈1333

  * Primitive (Bravais) cell contains two formula units NBr = 2.
** From first-order spontaneous Raman scattering spectra.

Oh
7 3

4.3356λ2

λ2 0.0256–
---------------------------- 0.3306λ2

λ2 0.030625–
----------------------------------+

Table 3

Nanosecond pumping Picosecond pumping
Line attribution

Wavelength, µ Line Wavelength, µ Line

Pumping at λf1 = 1.06415 µ
0.7466 ASt3 ωf1 + 3ωSRS

0.8290 ASt2 ωf1 + 2ωSRS

0.9320 ASt1 0.9320 ASt1 ωf1 + ωSRS

1.06415 (≈1.3)* λf1 1.06415 (≈2.5)* λf1 ωf1

1.2400 St1 1.2400 St1 ωf1 – ωSRS

1.4854 St2 ωf1 – 2ωSRS

Pumping at λf2 = 0.53207 µ
0.4660 ASt2 ωf2 + 2ωSRS

0.4968 ASt1 0.4968 ASt1 ωf2 + ωSRS

0.53207 (≈0.3)* λf2 0.53207 (≈0.7)* λf2 ωf2

0.5727 St1 0.5727 St1 ωf2 – ωSRS

0.6200 St2 ωf2 – 2ωSRS

* Pump power density (in parentheses) given in GW/cm2.
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hold a leading position among all known χ(3)-active
crystalline materials for Raman laser converters.
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Within a dissipationless limit, the magnetic field dependence of the magnetoplasmon spectrum for an
unbounded two-dimensional electron gas (2DEG) system was found to intersect the cyclotron resonance line
and, then, approach the frequency given by light dispersion relation. Recent experiments done for macroscopic
disc-shaped 2DEG systems confirm theoretical expectations. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.20.Mf; 71.36.+c
Plasma oscillations in two-dimensional electron gas
(2DEG) were first predicted in the mid-1960s [1] and
then observed experimentally in a liquid helium system
[2] and silicon inversion layers [3, 4]. The recent obser-
vation [5] of a magnetoplasmon (MP) spectrum
reported to be affected by retardation effects, which
was discussed more than three decades ago, is sparking
new interest in the above problem. Taking into account
the retardation effects, we analyze 2D MP spectrum
first derived in [6]. It will be argued that, in large-mesa
two-dimensional (2D) systems [5], the role of edges
becomes less significant; therefore, the observed MP
features can be accounted for within conventional MP
theory [6] for an unbounded 2D system.

Let us assume an unbounded 2D electron gas
imbedded in dielectric in the presence of a perpendicu-
lar magnetic field. Following [7], the Maxwell equa-
tions for in-plane components of the electrodynamic
potentials A, φ yield

(1)

where h = (e/c2)(∂2/∂t2) – ∆ is the d’Lambert operator
and σ* is the conductivity tensor. Assuming the magne-
toplasmon e(iqr – iωt) propagated in 2DEG and then sep-
arating longitudinal and transverse in-plane compo-

 ¶ This article was submitted by the author in English.
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nents of the vector potential [7], the 2D magnetoplas-
mon dispersion relation yields

(2)

where κ = . This result is exactly that
obtained by Chiu [6]. Within a dissipationless limit, the
components of the conductivity tensor,

allow us to simplify Eq. (2) as follows:

(3)

where we introduce the dimensionless wave vector Q =

qc/ωp , frequency Ω = ω/ωp, and cyclotron fre-
quency Ωc = ωc/ωp, which are all expressed in a certain

frequency unit ωp = 2πne2/mc . We further clarify the
physical sense of ωp.

In absence of the magnetic field, Eq. (3) reproduces
the conventional [1, 7] zero-field longitudinal plasmon
dispersion relation e = 2πiσxxκ/ω as follows:

(4)

In the short-wavelength limit Q @ 1, one obtains the
well-known square-root plasmon dispersion as ω0 =

. The opposite long-wavelength limit
case Q ! 1 corresponds to the light dispersion relation

ωl = cq/  shown in Fig. 1 by the dotted line. In actual
fact, ωp denotes the frequency when the zero-field plas-
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mon phase velocity deduced from the square-root dis-
persion law approaches the speed of light. Note that the
authors of [5] demonstrate an excellent agreement
between the zero-field 2D plasmon theory [1, 8] and the
experimental results. For different disc-geometry quan-
tum well samples, the wave vector reported to relate to
2DEG disc diameter via q = α/d, α = 2.4 is consistent
with theory, α = 3π/4 [9].

The question we are attempting to answer is whether
retardation effects should modify the 2D magnetoplas-
mon spectrum. In actual fact, Eq. (3) demonstrates that,
at fixed Q, the plasma frequency grows with the mag-
netic field and then intersects the CR line (see Figs. 1,
2). This behavior is, however, unexpected within edge
magnetoplasmon formalism [10, 11]. Substituting Ω =
Ωc into Eq. (3), we derive the dependence (Fig. 1,
dashed line) of the MP-CR intersection frequency vs.
wave vector Ωcr(Q). It is to be noted that low-field mag-
netoplasmon remains longitudinal at ωc < ω and then
becomes transverse when ωc > ω.

Further increase of the magnetic field results in sat-
uration of the magnetoplasmon spectrum (Fig. 2) at a
certain frequency given by the light dispersion relation.
Experimentally, irrespective of 2DEG density, the mac-

Fig. 1. Magnetoplasmon dispersion at Ωc = 0 (zero-field
plasmon), 2, and 5. Asymptote: light dispersion (dotted
line). Dashed line represents the dependence Ωcr(Q) when
the condition ω = ωc is satisfied.

Theory vs. experiment [5]

d, mm n × 1010 
cm–2 Q , GHz fcr, GHz fl, GHz

1.0 66.0 1.4 31/27 36/37 44/50

1.0 25.4 3.6 21/20 34/32 44/50

0.2 4.2 108 21/20 155/– 218/–

0.1 4.2 359 23/29 308/– 435/–

* f values are given as theory/experiment.

f 0*
roscopic (d = 1 mm) disc-mesa samples demonstrate
[5] MP spectra (with the lowest radial and angular
momenta numbers) cutoff at a frequency of 50 GHz.
The latter is larger than that deduced from the light dis-
persion relation ωl/2π = 32 GHz, where we use the
GaAs dielectric constant e = 12.8. However, for an
actual (GaAs + free space) system, the average dielec-
tric constant [9], i.e., e* = (1 + e)/2, provides much bet-
ter agreement (see table), namely, that fl =

(1/2π)(qc/ ) = 44 GHz. Note that, in contrast to the
predicted MP spectrum saturation in strong fields, the
experiments in [5] demonstrate an intriguing zigzag
behavior that remains unexplained in our formalism.

It is instructive to compare the lowest angular
momentum MP spectrum reported in [5] with that pro-
vided by the present theory. For example, for
GaAs/AlGaAs heterostructure (n = 2.54 × 1011 cm–2,
m = 0.067m0, d = 1 mm, e = 12.8), one obtains ωp =
5.6 × 1010 s–1 and Q = 3.6. With the help of Eqs. (4) and
(3), the zero-field plasmon frequencies f0 = ω0/2π =
16 GHz and fcr = ωcr/2π = 25 GHz are found to be com-
parable with the experimental values 20 and 32 GHz,
respectively. An excellent agreement (f0 = 21 GHz and
fcr = 34 GHz, respectively) with experiment is provided
using the average dielectric constant, e*. The table rep-
resents the comparison between the present theory and
available experimental data. Note that, in [5], the exper-
imental range of frequencies <60 GHz is less than that
expected to include MP-CR intersection and subse-
quent spectra saturation in a low density, small disc-
mesa 2DEG case.

In conclusion, we demonstrate the strong influence
of retardation effects on the magnetoplasmon spectrum
in an unbounded 2DEG system. The magnetic field
dependence of an MP spectrum is found to intersect the

e*

Fig. 2. 2D magnetoplasmon spectra vs. dimensionless
cyclotron frequency Ωc for different MP wave vector Q = 2,
5, 10, and 30. Arrows represent the light frequency. Cyclo-
tron resonance is represented by dotted line.
JETP LETTERS      Vol. 80      No. 4      2004
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cyclotron resonance line and then approach the fre-
quency given by the light dispersion relation. Recent
MP experiments in large disc-shape 2DEG systems
confirm the theoretical predictions.
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An effective Hamiltonian for the Bose system in the mixture of ultracold atomic clouds of bosons and fermions
is obtained by integrating out the Fermi degrees of freedom. An instability of the Bose system is found in the
case of attractive interaction between components that is in good agreement with an experiment on the bosonic
87Rb and fermionic 40K mixture. © 2004 MAIK “Nauka/Interperiodica”.
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Since the first realization of Bose–Einstein conden-
sation in ultracold atomic gas clouds [1–3], studies in
this area have yielded unprecedented insight into the
quantum statistical properties of matter. Besides studies
using bosonic atoms, growing interest has been focused
on the cooling of fermionic atoms to a temperature
regime where quantum effects dominate the properties
of the gas [4–6]. This interest is mainly motivated by
the quest for the Bardeen–Cooper–Schrieffer (BCS)
transition in ultracold atomic Fermi gases [7–9].

Strong s-wave interactions that facilitate evaporative
cooling of bosons are absent among spin-polarized fer-
mions due to the exclusion Pauli principle. So, the fer-
mions are cooled to degeneracy through the mediation
of fermions in another spin state [4, 6–9] or via a buffer
gas of bosons [5, 10, 11] (sympathetic cooling). Bose
gas, which can be cooled evaporatively, is used as a
coolant, the fermionic system being in thermal equilib-
rium with the cold Bose gas through boson–fermion
interaction in the region of overlapping of the systems.

However, the physical properties of Bose–Fermi
mixtures are interesting in their own right and are the
subject of intensive investigations, including analysis
of ground-state properties, stability, effective Fermi–
Fermi interaction mediated by the bosons, and new
quantum phases in optical lattices [12–16]. Several suc-
cessful attempts to trap and cool mixtures of bosons and
fermions have been reported. Quantum degeneracy was
first reached with mixtures of bosonic 7Li and fermi-
onic 6Li atoms [5, 10]. Later, experiments to cool mix-
tures of 23Na and 6Li [17], as well as 87Rb and 40K [11,
18], to ultralow temperatures succeeded.

In this article, we study the instability and collapses
of the trapped boson–fermion mixture due to boson–
fermion attractive interaction, using the effective

¶ This article was submitted by the authors in English.
0021-3640/04/8004- $26.00 © 200274
Hamiltonian for the Bose system [14]. We analyze
quantitatively properties of the 87Rb and 40K mixture
with an attractive interaction between bosons and fer-
mions recently studied by Modugno and coworkers
[11]. They found that, as the number of bosons is
increased, there is an instability value NBc at which a
discontinues leakage of the bosons and fermions occurs
and collapse of boson and fermion clouds is observed.
Using experimental parameters, we estimated the insta-
bility boson number NBc for the collapse transition as a
function of the fermion number and temperature and
found a good agreement with the experimental results.

First of all, we briefly discuss the effective boson
Hamiltonian [14]. Our starting point is the functional–
integral representation of the grand-canonical partition
function of the Bose–Fermi mixture. It has the form
[15, 19, 20]

(1)

and consists of an integration over a complex field
φ(τ, r), which is periodic on the imaginary-time inter-
val [0, "β], and over the Grassmann field ψ(τ, r), which
is antiperiodic on this interval. Therefore, φ(τ, r)
describes the Bose component of the mixture, whereas
ψ(τ, r) corresponds to the Fermi component. The term
describing the Bose gas has the form

(2)

Z D φ*[ ] D φ[ ] D ψ*[ ] D ψ[ ]∫=

× 1
"
--- SB φ* φ,( ) SF ψ* ψ,( ) Sint φ* φ ψ* ψ, , ,( )+ +( )–

 
 
 

exp

SB φ* φ,( ) τ r φ* τ r,( ) "
∂
∂τ
----- "

2∇ 2

2mB

------------–






d∫d

0

"β

∫=

---+ V B r( ) µB– 
 φ τ r,( )

gB

2
----- φ τ r,( ) 4+
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Because the Pauli principle forbids s-wave scattering
between fermionic atoms in the same hyperfine state,
the Fermi-gas term can be written in the form

(3)

The term describing the interaction between the two
components of the Fermi–Bose mixture is

(4)

where gB = 4π"2aB/mB, gBF = 2π"2aBF/mI, mI =
mBmF/(mB + mF); mB and mF are the masses of bosonic
and fermionic atoms, respectively; and aB and aBF are
the s-wave scattering lengths of boson–boson and
boson–fermion interactions.

The integral over the Fermi fields is Gaussian; we
can calculate this integral and obtain the partition func-
tion of the Fermi system as a functional of the Bose
field φ(τ, r). Let us rewrite the integral over ψ(τ, r) in
the form

(5)

where

(6)

is the Dyson equation and Σ(τ, r, τ', r') is a self-energy,

(7)

(8)

SF ψ* ψ,( ) τ r ψ* τ r,( ) "
∂
∂τ
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2∇ 2

2mF

------------–
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0

"β
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---+ V B r( ) µF– 
 ψ τ r,( )





.

Sint φ* φ ψ* ψ, , ,( ) = gBF τ r ψ τ r,( ) 2 φ τ r,( ) 2,d∫d

0

"β

∫

ZF D ψ*[ ] D ψ[ ] 1
"
--- SF ψ* ψ,( )(–

exp∫=

---+ Sint φ* φ ψ* ψ, , ,( ) )


=  D ψ*[ ] D ψ[ ] τ r τ' r'd∫d

0

"β

∫d∫d

0

"β

∫



exp∫

--× ψ* τ r,( )G 1– τ r τ' r', , ,( )ψ τ' r',( )




,

G 1– G0
1– S–=

G0
1– τ r τ' r', , ,( ) 1

"
--- "

∂
∂τ
----- "

2∇ 2

2mF

------------–
–=

---+ VF r( ) µF– 
 δ r r'–( )δ τ τ'–( );

S τ r τ' r', , ,( )
gBF

"
-------- φ τ r,( ) 2δ r r'–( )δ τ τ'–( ).=
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Using the formula for the Gaussian integral over the
Grassmann variables [19, 20],

(9)

one has

(10)

Seff can be expanded in powers of |φ(τ, r)|2 by using the
series

(11)

To proceed, let us rewrite G0 in the form

(12)

where ω = π(2s + 1)/"β, s = 0, ±1, …, and

Because of the large number of fermionic atoms in
the system, one can use the semiclassical Thomas–
Fermi approximation [21],

(13)

where H0(p, r) = p2/2mF + VF(r) and F(x) is an arbitrary
function.

We suppose that all |φ(τi, ri)|2 have one and the same
argument (τ1, r1) (see, for example, [19]). Using
Eq. (13), Seff may be written in the form

(14)

(15)

where e = p2/2mF,  = µF – VF(r) – gBF|φ(τ, r)|2 and

κ = 21/2 /3π2"3.
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Thus, we can write the effective bosonic Hamilto-
nian in the form

(16)

The first three terms in (16) have the conventional
Gross–Pitaevskii [22] form and the last term is a result
of boson–fermion interaction. In the low temperature
limit /kBT @ 1, one can write feff(|φ|) in the form

(17)

As usual, µF can be determined from the equation

(18)

where

(19)

At low temperatures, we have

(20)

In the general case, the Bose and Fermi systems
have different temperature scales and Eqs. (17) and (20)
may be useful for studying the temperature behavior of
the Bose system, including the calculation of the criti-
cal temperature. For example, the characteristic tem-
perature for the Bose system (the transition temperature

for the ideal Bose gas) is [22] kB  = 0.94"ωB(λNB)1/3.
The Fermi temperature for a pure system is [21] kBTF =
"ωF(6λNF)1/3. Taking into account that ωF =

ωB, one can see that, for mB > mF and approx-
imately the same numbers of bosons and fermions, one
can safely use Eqs. (17) and (20) to describe the behav-
ior of the Bose system.

Let us consider now an 87Rb and 40K mixture with an
attractive interaction between bosons and fermions
[11]. The parameters of the system are the following:

aB = 5.25 nm, aBF = –  nm. K and Rb atoms were
prepared in the doubly polarized states |F = 9/2, mF =
9/2〉  and |2, 2〉 , respectively. The magnetic potential had
an elongated symmetry, with harmonic oscillation fre-
quencies for Rb atoms ωB, r = ωB = 2π × 215 Hz and

ωB, z = λωB = 2π × 16.3 Hz and ωF = ωB ≈

1.47ωB, so that mB /2 = mF /2 = V0. The collapse

Heff r
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nF r( ) 3
2
---κ e ed

1 eβ e µ̃–( )+
-------------------------.

0

∞
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nF r( ) κµ̃3/2 π2κ
8µ̃1/2
------------ kBT( )2.+=

Tc
0

mB/mF

21.7 4.8–
+4.3

mB/mF

ωB
2 ωF

2

was found for the following critical numbers of bosons
and fermions: NBc ≈ 105, NK ≈ 2 × 104.

At the zero temperature limit, expanding feff(|φ|) up
to the third order in gBF, we obtain the effective Hamil-
tonian in the form

(21)

where

(22)

(23)

and ρ2 = x2 + y2.
In principle, one can study the properties of a Bose–

Fermi mixture with the help of feff (17) without any
expansion. However, the form of the Hamiltonian (21)
gives the possibility to get a clear insight into the phys-
ics of the influence of the Fermi system on the Bose one
(see discussion below). It may be easily verified that the
expansion of the function f(x) = (1 + x)5/2 (see Eq. (17))
up to the third order in x gives a reasonably good
approximation for f(x) even for rather large values of x,
in contrast with the higher-order expansions, so one can
safely use Eq. (21) as a starting point for the investiga-
tion of the properties of the Bose subsystem.

In the derivation of Eqs. (21)–(23), we also use the
fact that, due to the Pauli principle (quantum pressure),
the radius of the Bose condensate is much smaller than

the radius of the Fermi cloud RF ≈ , so one can
use expansions in powers of VF(r)/µF.

From Eq. (22), one can see that the interaction with
Fermi gas leads to modification of the trapping poten-
tial. For attractive fermion–boson interaction, the sys-
tem should behave as if it were confined in a magnetic
trapping potential with larger frequencies than the
actual ones, in agreement with experiment [11].
Boson–fermion interaction also induces additional
attraction between Bose atoms, which does not depend
on the sign of gBF.

The last term in Heff (21) corresponds to the three-
particle elastic collisions induced by the boson–fer-
mion interaction. In contrast with inelastic three-body
collisions, which result in the recombination and
removing particles from the system [23], this term for
gBF < 0 leads to increase of the gas density in the center
of the trap in order to lower the total energy. The posi-
tive zero point energy and boson–boson repulsion

Heff r
"

2

2mB

---------- ∇φ 2 V eff r( ) µB–( ) φ 2+




d∫=

+
geff

2
------- φ 4 κ

8µF
1/2

------------gBF
3 φ 6+





,

V eff r( ) 1
3
2
---κµF

1/2gBF– 
  1

2
---mBωB

2 ρ2 λ2z2+( ),=

geff gB
3
2
---κµF

1/1gBF
2 ,–=

µF/V0
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energy (the first two terms in Eq. (21)) stabilize the sys-
tem. However, if the central density grows too much,
the kinetic energy and boson–boson repulsion are no
longer able to prevent collapse of the gas. Likewise, in
the case of Bose condensate with attraction (see, for
example, [22–24]), collapse is expected to occur when
the number of particles in the condensate exceeds the
critical value NBc.

The critical number NBc can be calculated using the
well-known ansatz for the bosonic wave function [22]:

(24)

where w is a dimensionless variational parameter that

fixes the width of the condensate and a = .

In this case, the variational energy EB has the form

(25)

This energy is plotted in Fig. 1 as a function of w for
several values of NB. It is seen that, when NB < NBc,
there is a local minimum of EB, which corresponds to a
metastable state of the system. This minimum arises
due the competition between the positive first three
terms in Eq. (25) and negative fourth term. The local
minimum disappears when the number of bosons NB

exceeds the critical value, which can be calculated by
requiring that the first and second derivatives of EB van-
ish at the critical point. In this case, the behavior of EB

is mainly determined by the second and fourth terms in
Eq. (25). For NK = 2 × 104 and aBF = –19.44 nm, we
obtain NBc ≈ 9 × 104 in good agreement with the exper-
iment [11]. It is interesting to note that the critical num-
ber of Bose atoms in the Bose–Fermi mixture is about
two orders larger than the critical number for the con-
densate with a purely attractive interaction. For exam-
ple, in the experiments with trapped 7Li [3], it was
found that the critical number of bosons is about 1000.

In Eq. (25), we use  = "ωF[6λNF]1/3 as the
chemical potential of the Fermi system µF. The cor-
rections to µF due to interaction with the Bose sys-
tem have the form µF = "ωF[6NF]1/3[1 + m1 + m2],
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where m1 =  and m2 =

− . It may be shown that

m1 + m2 ≈ 0.09 for the values of the parameters used in
these calculations.

1/2κgBF µF
0( )1/2

NB

NF

---------------------------------------------

3/4κgBF µF
0( ) 1/2–

mFωF
2 w

2
a

2
NB

NF

-------------------------------------------------------------------------

Fig. 1. Variational energy EB/NB"ωB as a function of w for
various numbers of bosons.

Fig. 2. Critical number of bosons NBc as a function of the
number of fermions NF at T = 0.
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Upon increasing the number of fermions, the repul-
sion between bosons decreases, leading to the collapse
for the smaller numbers of the bosonic atoms. In Fig. 2,
the critical number of bosons NBc is represented as a
function of the number of fermions.

Fig. 3. Critical number of bosons NBc as a function of the
boson–fermion scattering length aBF.

Fig. 4. Critical number of bosons NBc as a function of

reduced temperature kBT/EF for NF = 2 × 106.

aBF
The critical number of bosons NBc is extremely sen-
sitive to the precise value of the boson–fermion s-wave
scattering length. This is illustrated in Fig. 3.

Figure 4 shows the dependence of the critical num-
ber of bosons NBc on the temperature calculated with
the help of Eq. (17). This dependence has a simple
explanation: an increase of the temperature results in
the decrease of the local density of fermions and
reduces the interaction energy between Bose and Fermi
systems.

Finally, we make a short remark on the nature of the
collapse transition. In this article, we found the instabil-
ity point of the Bose–Fermi mixture with attractive
interaction between components. A strong rise of den-
sity of bosons and fermions (see Eq. (20)) in the col-
lapsing condensate enhances intrinsic inelastic pro-
cesses, in particular, the recombination in three-body
interatomic collisions, as is the case for the well-known
7Li condensates [23]. However, recently, M.Yu. Kagan
and coworkers suggested a new microscopic mecha-
nism of removing atoms from the system, which is spe-
cific for Bose–Fermi mixtures with attraction between
components and is based on the formation of boson–
fermion bound states [25]. It seems that the description
of the evolution of the collapsing condensate should
include both these mechanisms.
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Anticlinic-synclinic transition was studied in superthin smectic films using polarized light reflected micros-
copy. The measurements were made in a compound exhibiting the  subphase in a narrow temperature
interval between antiferroelectric  and ferroelectric SmC* phases. In films, we observed series of tran-
sitions with numbers increasing with increasing film thickness. Surface ordering leads to increasing transition
temperatures with decreasing film thickness and to change of orientation of the molecular tilt plane in layers.
Succession of transitions results from competition between the surface and the bulk ordering. We found that
line string defects may form in a film, their orientation and collective behavior resulting from elastic deforma-
tion of molecular ordering. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.30.-v; 64.70.Md

SmCFI1*
SmCA*
The unique structural quality of thin free-standing
smectic films makes them ideal objects for studies of
surface phenomena and phase transitions in restricted
geometry [1]. Of special interest are studies of struc-
tures with a two-component order parameter, when the
surface may influence both the modulus and the phase
of the order parameter. Such structures are liquid crys-
tals with polar ordering of smectic layers: fundamental
ferroelectric Smectic-C* (SmC*) [2], the antiferroelec-
tric Smectic-  ( )[3, 4] phases, and intermedi-
ate smectic subphases [3, 4]. In smectic-C (SmC) type
liquid crystals, each layer may be regarded as an orien-
tationally ordered liquid with long molecular axes tilted
by an angle θ with respect to the smectic layer normal.
The azimuthal orientation of molecules in layers is
characterized by the order parameter phase ϕ. The
structure of tilted smectics may also be described by a
two-dimensional vector, the so-called c director (pro-
jection of the nematic n director onto the smectic layer
plane) [5]. Different sequences of variation from layer
to layer of phase ϕ and modulus θ of the order parame-
ter lead to the formation of a variety of smectic struc-
tures. In the SmC* structure, the order parameter phase
ϕ in neighboring layers (i and i + 1) differs insuffi-
ciently ∆ϕ = ϕi + 1 – ϕi ≈ 0. In the  structure, mol-
ecules in adjacent layers are tilted in nearly opposite
directions ∆ϕ = ϕi + 1 – ϕi ≈ π. The order parameter
modulus is the same in all layers. The difference of ∆ϕ
from 0 and π in these structures is related to the fact that

¶ This article was submitted by the authors in English.

CA* SmCA*

SmCA*
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chirality of molecules forming the SmC* and 
induces the formation of a long-wave helix with its axis
parallel to the normal to the smectic layers.

The influence of the surface on structure and phase
transitions may be divided into two parts. (a) The sur-
face breaks up the translational and rotational symme-
try. Smectic layers in the free-standing films are per-
fectly parallel to the surfaces. The absence of layers
from one side of the surface and, hence, of interactions
related to these layers induces a modification of the
structure near the surface. In tilted smectic liquid crys-
tals, the interlayer interaction is anisotropic in the plane
of the smectic layer, i.e., the surface influences the
modulus and the phase of the order parameter. (b) The
second reason for modification of surface structure is
related to a change in its dynamics with respect to the
bulk. “Freezing” of transverse fluctuations of surface
layers leads to an increase of the order parameter [6, 7]
and to a high temperature shift of the surface SmC*–
SmA transition [8]. It is commonly admitted that
“freezing” of fluctuations directly influences the modu-
lus of the smectic order parameter. However, in com-
pounds with a structure formed by a change of the
molecular tilt direction from layer to layer, interaction
of the order parameter modulus with its phase may also
lead to a change of the order parameter phase near the
surface, i.e., to a change of the interlayer orientational
structure.

In previous studies of the  structure and

–SmC* transition in thin films, a number of

SmCA*

SmCA*

SmCA*
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principal and important results have been obtained [9–
12]. The absence of net transverse polarization in

 films with an even number of layers [9, 10] was
one of the main proofs of anticlinic structure of antifer-
roelectric. It has been shown that the temperatures of
bulk and surface –SmC* transitions in films
with a number of layers N > 4 differ [12]. However, a
number of points remain unclear, in particular, the
direction of the temperature shift of the –SmC*
transition in superthin films [9–12] and the influence of
the number of layers on the structural states. The
present investigations are the first studies of the anti-
ferro-ferri-ferroelectric transition in superthin films
with different numbers of smectic layers.

In this paper, investigations of free-standing films
have been performed in a 4-(1-methylheptyloxycarbo-
nyl)-3-fluoro-phenyl–4'[4-dodecyloxybenzoyloxy]-ben-
zoate (MHOFPDC) antiferroelectric liquid crystal
exhibiting the following phase sequence: 

(109.5°C)  (110°C) SmC* (123°C) SmA. For-

mation of subphases between  and SmC* is typ-
ical for antiferroelectric liquid crystals [3, 4]. In the
bulk sample of MHOFPDC, the transition from the
anticlinic to synclinic ordering occurs via a three-layer

 structure [13–16]. The symmetry of the

 and numerical calculations [17, 18] show that
this structure is formed by change of both the phase and
modulus of the order parameter from layer to layer.
Investigations of phase transitions and defects in thin
films were performed using polarized and depolarized
reflected light microscopy. The films were prepared by
spreading a small amount of the compound in the
SmC* phase over a 3-mm hole in a thin glass plate. The
number of smectic layers in the film was determined by
the intensity of reflected light in the backscattering
geometry [19]. For orientation of the tilt plane, we used
a magnetic field, the direction of which could be
changed with respect to the film plane [20]. Studies of
phase transitions and structure of defects were per-
formed using a digital camera.

In thin films, we observed a series of transitions with
transformation of anticlinic structure to synclinic
(Fig. 1). At higher temperatures, we also observed
transformation of the film structure related to the bulk
SmC*–SmA transition. It is known that these transi-
tions in films occur near and above the bulk transition
temperature [12, 21–24]. In the present paper, we dis-
cuss the results of investigations of the –

–SmC* transitions in thin films. In a two-layer
film we observed the transition at temperature about
140°C. This is not only higher than the transition to the
SmC* phase, but also above the phase transition in the
bulk sample from the SmC* to untilted SmA phase.
However, the two-layer film both below and above the

SmCA*

SmCA*

SmCA*

SmCA*

SmCFI1*

SmCA*

SmCFI1*

SmCFI1*

SmCA*

SmCFI1*
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transition possesses the in-plane optical anisotropy;
i.e., upon heating, the transition from antiferroelectric
to the tilted synclinic structure occurs with a suffi-
ciently high temperature shift (about 30°C) with
respect to the bulk sample. With increasing film thick-
ness, the number of transitions increases (Fig. 1). In a
three-layer film, we observed two transitions; in a four-
layer film, three transitions; and in a five- or seven-layer
film, four transitions. Transition temperatures decrease
with increasing film thickness. In thick films, the four
transitions are grouped into two pairs and the tempera-
ture range of the transitional region between anticlinic
and synclinic structures is about 10°C (Fig. 1).

As a rule, transitions occur with thermal hysteresis.
In states overheated or overcooled with respect to equi-
librium transition temperature, the transition occurs in
a short time interval in the whole film (less than 0.1 s).
The reason for the existence of this hysteresis seems to
be related to a substantial potential barrier between
anticlinic and synclinic orientations. In the case of large
thermal hysteresis, in some of the experiments, a
smaller number of transitions than shown in Fig. 1 were
observed due to their combination. For example, in a
five-layer film, three or only two transitions can occur:
one in the region of the low-temperature branch of tran-
sitions and one in the high-temperature region. When
we are able to observe the transitions at an equilibrium
temperature, they look like a sharp front moving in the
plane of the film (Fig. 2a). Figure 2b shows the transi-
tion in a film upon motion of fronts formed by two
germs of the new structure. Besides a boundary
between two structures (1–2 and 1–2'), in a number of
cases we could observe a breaking of c director orien-
tation in the same structure in the place of meeting of

Fig. 1. Transitions in thin free-standing films of MHOF-
PDC. In thick films, the low-temperature branch is related
to two interior transitions in films and the high-temperature
branch to two surface transitions. In five- and seven-layer
films, there are two pairs of transitions with close tempera-
tures of transition. N is the number of smectic layers in the
films.
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two fronts (2–2', Fig. 2b). Such sharp boundaries are
not typical for liquid crystals with in-plane orientation
ordering, in which the transition from one orientation to
another occurs, as a rule, by continuous change of c
director orientation. We shall return to this question
later when we discuss orientational defects forming in
films.

Comparing the number of observed transitions with
possible orientation of molecular tilt planes in different
smectic layers we may deduce practically unambigu-
ously the structures of superthin films and, with a large
degree of probability, the structures of thicker films. As
was mentioned before, in a two-layer film, the transi-
tion between in-plane anisotropic structures can be
only an anticlinic-synclinic transition (Fig. 3). In a
three-layer film, the transition between the  and
SmC* occurs via an intermediate structure with anti-
clinic orientation of surface layers (Fig. 3). In the center
of thick films, the sequence and temperature range of
the phases should correspond to the bulk sample. Two
low-temperature transitions in thick films should be
interpreted as transitions from an anticlinic structure to
a three-layer one and, then, to a synclinic state (Fig. 3).
Surface transitions are shifted to the high temperature

SmCA*

Fig. 2. Sharp front of the transition from an anticlinic (1) to
intermediate (2) structure in a five-layer film (a). The meet-
ing of two transition fronts (2–1) and (2'–1) may lead to for-
mation of a boundary (2–2') with breaking of the c director
orientation (b) four-layer film. T = 120.5°C (a), T = 111.3°C
(b). The horizontal size of the images is 710 µm.

2
1

2'

2

1

(‡)

(b)
region (high temperature branch). As a rule, these tran-
sitions occur independently on the two surfaces at close
temperatures.

A number of qualitative conclusions about the inter-
layer interactions could be drawn from the appearance
of the phase diagram (Fig. 1). In a two-layer film, the
high temperature shift of the transition between syn-
clinic SmC* and untilted SmA with respect to the bulk
sample is about 30°C [8, 25]. Surface ordering also
leads to increase of the anticlinic–synclinic transition
temperature in a two-layer film (Fig. 1). The same value
of temperature shift means that the transition between
tilted structures in the two-layer film occurs at the same
value of molecular tilt angle as in the bulk sample.
Antiferroelectric–ferroelectric transition results from
competition between Fa and Fs, interactions stabilizing
anticlinic and synclinic ordering in the nearest neigh-
boring (NN) layers. These interactions alone cannot
lead to formation of an intermediate structure in a three-
layer film. It is necessary to form a structure with both
anticlinic and synclinic orientations in a three-layer
film interaction between next-nearest neighboring
(NNN). Such interaction in the discrete phenomenolog-
ical theory [26, 27] is the so-called frustrating interac-
tion (Ff), stabilizing anticlinic orientation in NNN lay-
ers. In a three-layer film, the surface ordering
(i) increases the region of existence of anticlinic struc-
ture due to NN interaction Fa and (ii) stabilizes the
intermediate structure at higher temperatures with
respect to the bulk sample through NNN interaction Ff.

Fig. 3. Structures formed during transition of the film from

an anticlinic ordering ( ) to synclinic (SmC*). N is

the number of smectic layers in the films.

SmCA*

“bulk” “bulk”
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Fig. 4. Linear defects in MHOFPDC films. The tilt plane is oriented by a magnetic field in a horizontal direction. (a) π-walls with
continuous change of c director orientation. Two walls are separated by a point topological defect. The polarizers are crossed.
(b) Strings with breaking of orientation of the c director in the center of the line defect. Strings are oriented perpendicularly to the
c director. The polarizer and the analyzer are slightly decrossed. (c) Orientation of the c director near the string ending with two |s| =
1/4 point defects. (d) Strings attract and link by ends having point defects of opposite signs, forming longer strings. N = 6, H = 2
kG, T = 115.2°C. The horizontal size of the photographs is about 500 µm.

s = –1/4

s = +1/4

(‡) (b)

(c) (d)
In thick films, before the transition to the SmC*, the
surface structure is anticlinic if one considers two sur-
face layers, while it is -like if we take into
account three layers (Fig. 3), i.e., surface ordering
makes a contribution to stabilization of the surface
structure both via NN and frustrating NNN interaction.
Description of the – –SmC* transitions
in thick films needs consideration of NNNN interaction
[16, 28]. Until now, such a theoretical description of the
transitions in films has not been done.

In thin films, we observed two types of linear orien-
tation defects: walls with continuous change of c direc-
tor orientation across the defects (Fig. 4a) and string
defects with a sharp core (Fig. 4b). Strings were first
found in films by J. Pang et al. [29] but, up to now, their
internal structure and origin remain unclear. The
appearance of string defects is also connected with
thinning transitions [30]. We investigated strings in ori-
ented samples and found that strings orient perpendic-
ularly to the c director (Fig. 4b) and interact even at
large distances. In the present case, the nucleation of
defects is connected with structural transition. Figure 4c
shows the distribution of the c director near an isolated

SmCFI1*

SmCA* SmCFI1*
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string obtained by depolarized light reflected micros-
copy. This is a so-called 1/4-string [29] with the c direc-
tor oriented by an angle ±π/4 to the string near its core
and with a discontinuous change of orientation on the
angle π/2 upon crossing the string. The c director orien-
tation near the string ends corresponds to two point
topological defects with strengths s = +1/4 and s = –1/4.
Short strings may be considered as a topological dipole
[31]. Long strings repel in the direction perpendicular
to the strings due to the same direction of the bend
deformation of the c director orientation between
neighboring strings. Such strings are situated at sub-
stantial distances. With time, the average length of the
strings increases (Fig. 4d). This occurs not due to elon-
gation of isolated strings, but as a result of their head-
to-tail adjoining and formation of longer strings.
Strings shifted with respect to each other by a distance
of the order of their length interact more like topologi-
cal defects with strength ±1/4. These strings are
attracted to each other and adjoin by ends having topo-
logical defects of opposite signs.

Several proposals have been made concerning the
structure of the core [29], in particular, that it is formed
by small particles of impurities. We observed formation
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of strings after a fast transition in a film and their disap-
pearance as a result of the next transition. We may pro-
pose that the string core consists of nuclei of another
structure, such as a boundary formed as a result of tran-
sitions starting in two different parts of the film
(Fig. 2b). Particles of impurities trapped on this linear
defect may prevent string collapse from its ends.

In summary, we have reported optical reflection
measurements of a compound possessing the ,

SmC* phases and the  subphase with a small
temperature interval. Our results show that the surface
ordering effectively interacts with the phase of the
order parameter, leading to increase of transition tem-
perature in thin films and to formation of two branches
of transitions (interior and surface transitions). In film,
besides conventional walls, we observed narrow string
defects with a total topological strength of zero. Their
orientation in anisotropic film and collective behavior
are determined by elastic deformation of the in-plane
molecular ordering.
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Sharp localization transitions of chiral edge states in disordered quantum wires subject to a strong magnetic
field are shown to be driven by crossovers from two- to one-dimensional localization of bulk states. As a result,
the two-terminal conductance is found to exhibit discontinuous transitions at zero temperature between exactly
integer plateau values and zero, reminiscent of first-order phase transitions. We discuss the corresponding phase
diagram. The spin of the electrons is shown to result in a multitude of phases when the spin degeneracy is raised
by the Zeeman energy. The width of conductance plateaus is found to depend sensitively on the spin flip
rate 1/τs. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.10.Fk; 72.15.Rn; 73.20.Fz
The high precision of the quantization of the Hall
conductance of a two-dimensional (2D) electron sys-
tem (2DES) in a strong magnetic field [1] is known to
be due to the binding of electrons to localized states in
the bulk of the 2DES. Thereby, a change of electron
density does not change the Hall conductance [2–4].
The localization length in tails of Landau bands is very
small, on the order of the cyclotron length lcyc = vF/ωB =

lB. It increases toward the centers of the Lan-
dau bands, En0 = "ωB(n + 1/2) (n = 0, 1, 2, …), with
ωB = eB/m* is the cyclotron frequency (e is the elemen-
tary charge, m* is the effective mass), vF is the Fermi

velocity, and  = "/eB defines the magnetic length. In
an infinite 2DES in a perpendicular magnetic field, the
localization length at energy E diverges as ξ ~ |E – En0|–ν,
reminiscent of second-order phase transitions. The crit-
ical exponent ν is found numerically for the lowest two
Landau bands, n = 0, 1, to be ν = 2.33 ± 0.04 for spin-
split Landau levels [5, 6]. Analytical [7] and experi-
mental studies [8] are consistent with this value. In a
finite 2DES, a region of extended states should exist in
the centers of disorder of broadened Landau bands.
These states extend beyond the system size L. The
width of these regions is given by ∆E = (lcyc/L)1/νΓ,
where Γ = "(2ωB/πτ)1/2 is the bandwidth, with elastic
scattering time τ.

In quantum Hall bars of finite width, there exist, in
addition, edge states with energies raised by the con-
finement potential above the energies of the centers of
bulk Landau bands, En0 [4]. Previously, there has been
considerable interest in the study of mesoscopically
narrow quantum Hall bars [9], with emphasis on con-
ductance fluctuations [10, 11], edge state mixing [12–

¶ This article was submitted by the authors in English.

2n 1+

lB
2

0021-3640/04/8004- $26.00 © 20285
15], breakdown of the quantum Hall effect [16], and
quenching of the Hall effect due to classical commen-
surability effects [17]. It is known that, in the presence
of white noise disorder, the edge states mix with the
bulk states when the Fermi energy is moved into the
center of a Landau band. It has been suggested that this
might result in localization of edge states [14, 15]. In
this paper, we show that this is indeed the case. In par-
ticular, at zero temperature, the two-terminal conduc-
tance of a quantum wire in a magnetic field exhibit, for
uncorrelated disorder and hard wall confinement, dis-
continuous transitions between integer plateau values
and zero (Fig. 1).

Localization length ξ in a 2DES with broken time
reversal symmetry is expected from scaling theory [19–
22] and numerical scaling studies [23, 24] to be

(1)

depending exponentially on g, the 2D conductance
parameter per spin channel. l0 is the short distance cut-
off, which is the elastic mean free path l = 2g(B = 0)/kF
(kF is the Fermi wavenumber) at moderate magnetic
fields, b ≡ ωBτ < 1. For stronger magnetic fields, b > 1,
l0 crosses over to the cyclotron length lcyc. g exhibits
Shubnikov–de Haas oscillations as a function of mag-
netic field for b > 1. Maxima occur when the Fermi
energy is in the center of Landau bands. Thus, the local-
ization length increases strongly from band tails to
band centers, even when the wire width Ly is too narrow
to allow delocalization of bulk states. For uncorrelated
impurities, within a self-consistent Born approximation
[25], the maxima are given by g(E = En0) = (2n + 1)/π =

gn. Thus, ξ2D(En0) = lcycexp(π2 ) are macroscopically
large in centers of higher Landau bands, n > 1 [6, 26].
However, when the width of the system Ly is smaller

ξ2D l0eπ2
g

2

,=

gn
2
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than ξ2D, localization is expected to behave in a quasi-
1D fashion. In other words, electrons in centers of Lan-
dau bands can diffuse between the edges of the system
but are localized parallel to the edges if Ly < ξ2D. The
quasi-1D localization length is known to depend only
linearly on g. In a magnetic field, when time reversal
symmetry is broken, it is [27–29]

(2)

There is a crossover from 2D to 1D localization as the
Fermi energy moves from tails to centers of Landau
bands. Performing renormalization of the wire conduc-
tance, for the localization length, one obtains [30]

(3)

Its solution shows a crossover between quasi-1D and
2D behavior (Eqs. (2) and (1), respectively).

The conductance per spin channel, g(b) = σxx(B)/σ0,
is given by the Drude formula g(b) = g0/(l + b2) (g0 =
Eτ/", b = ωBτ) for weak magnetic field, b < 1. For b > 1,
when the cyclotron length lcyc is smaller than the mean

ξ1D 2g B( )Ly.=

ξ2 4Ly
2
g2 2Ly

2

π2
---------

1 Ly/l0( )2+

1 Ly/ξ( )2+
--------------------------- .ln–=

Fig. 1. Solid curve, left axis: two-terminal conductance of a
wire (width Ly = 80a, length L = 5000a, hard wall confine-

ment) in units of G0 = e2/h as a function of energy E in units
of t (hopping amplitude in the tight binding model). Disor-
der strength, W = 0.8t. There are x = 0.025 magnetic flux
quanta through an elementary cell a2. Dashed curve, right
axis: bulk localization length ξ in units of a as function of
E, from transfer matrix method for wire of identical proper-
ties but periodic boundary conditions and Lmax = 100000a.
Straight dashed line: Ly = 80a.
free path l, disregarding the overlap between Landau
bands, g is obtained in SCBA [25],

(4)

for |E – En| < Γ. One obtains the localization length for
b > I and |e/b – n – 1/2| < 1 by inserting g (Eq. (4)) into
Eq. (3). It oscillates between maximal values in centers
of Landau bands and minimal values in band tails
(Fig. 2). For n > 1, in band centers, one finds

(5)

In the center of the lowest Landau band (n = 0), Eq. (2)
gives a value ξ0(B) ≈ (2/π)Ly smaller than Ly . There, the
localization is 2D and the topological term [34] is effec-
tive, leading to criticality and diverging localization
lengths. In a wire of finite width Ly, localization length
ξ saturates to the critical value ξcrit ≈ 1.2Ly [5, 6] larger
than Ly. Comparison with ξn (Eq. (5)) shows that the
noncritical quasi-1D localization length exceeds ξcrit in
all but the lowest Landau bands.

If all states in centers of higher Landau bands are
localized along the wire, the question arises if there
exist extended states in the quantum Hall wire at all.

g B( ) 1
π
--- 2n 1+( ) 1

EF En–( )2

Γ2
------------------------–

 
 
 

,=

ξn
2
π
--- 2n 1+( )Ly 1

1 ly/lcyc( )2+ln

n 1/2+( )2
---------------------------------------–

1/2

.=

Fig. 2. The localization length, ξ, as obtained by inserting
g(B) into a second-order Born approximation in Eq. (3),
including a summation over all Landau levels (full line).
Broken line: ξ, with g(B) in SCBA, neglecting overlap
between Landau bands (Eq. (4)). The result of transfer
matrix calculations is plotted (dot size: numerical error
≈1%) for periodic boundary conditions [31] as a function of

magnetic flux through unit cell x = a2/2π . The dimen-

sionless conductance parameter per spin channel is
g(B = 0) = 5.1. At weak magnetic fields, doubling of ξ due
to breaking of time reversal symmetry is seen, in good
agreement with the analytical crossover formula (full line)
[30, 32]. Horizontal dashed line: Ly = 30a.

lB
2

JETP LETTERS      Vol. 80      No. 4      2004



THE MESOSCOPIC CHIRAL METAL–INSULATOR TRANSITION 287
Consider an annulus with a circumference larger than
the localization length in the center of a Landau band.
When a magnetic flux pierces the annulus, localized
states are unaffected. Guiding centers of states that
extend around the annulus do shift in position and
energy, however [4]. In a confined wire, there exist
chiral edge states that extend around the annulus. A
magnetic flux change moves these states down and up
inner and outer edges, respectively. As was shown
above, in the middle of the Landau band, the electrons
can diffuse freely from edge to edge but are localized
along the annulus with ξ > Ly. As a consequence, when
adiabatically changing the magnetic flux, an “edge
state” has to move from the inner to the outer edge,
since it cannot enter the band of localized states. This
fact has been interpreted as proof for the existence of an
extended bulk state extending around the annulus and
between edges at the energy Em, with ξ(Em) = Ly [4]. In
the following, we show that, instead, a transition from
extended chiral edge states to localized states occurs at
these energies, Em.

Using the transfer matrix method [24], we have cal-
culated the localization length as function of energy E
in a tight binding model of a disordered quantum wire
in a perpendicular magnetic field with periodic bound-
ary conditions (Fig. 1, dashed curve, right axis). Indeed,
its maxima are seen to increase linearly with energy E,
in agreement with Eq. (5). The transfer matrix result for
the two-terminal conductance G [35] is shown in Fig. 1
(solid curve, left axis) for a wire of identical properties,
but hard wall boundary conditions and finite length L.

We verify that the condition ξ(Em, p) = Ly yields the
energies Em, p, p = ±, at which m edge states mix and
transitions from the quasi-1D chiral metal to an insula-
tor occur, as signaled by sharp jumps of G in Fig. 1.
Here, m = n when this energy is above the bulk energy
of the nth Landau band, p = +, and m = n – 1 when it is
below it, p = –. For ξ < Ly, backscattering between
edges is exponentially suppressed and the localization
length of edge states increases exponentially as ξedge =
ξexp(Ly/ξ). These results are summarized in the phase
diagram (Fig. 3a), where the value of G, in units of e2/h,
is given as a function of wire width Ly and energy E in
units of "ωB. We find that G = m, where m is the number

of extended edge states. When Ly ≤ lcyc ∝  , all
edge states are localized and all conductance plateaus
collapse, G = 0, as seen in Fig. 1, close to the middle of
the band, and E = 0.

Taking into account the spin, the Zeeman splitting

 =  = gzµBB lifts the spin degeneracy, where gz is
the material-dependent Zeeman g-factor and µB is the
Bohr’s magneton. Without spin flip scattering, edge
states of different spins are not mixed. The phase dia-
gram (Fig. 3b) is, then, a superposition of two phase
diagrams (Fig. 3a) for each spin. There are phases
where the conductance is equal to the total number of

2n 1+

En
+ En

–
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edge channels, G = m+ + m–, when the bulk localization
length of electrons ξσ does not exceed the wire width,
ξσ < Ly, for either spin σ = ±. When ξσ > Ly for one spin
σ only, the conductance is carried by the number of
edge states with opposite spin, G = m–σ only. If ξσ < Ly

for both σ = ±, the conductance vanishes, G = 0. With
strong spin flip scattering, all edge states mix with bulk
states for ξσ > Ly, yielding G = 0. There are conductance
plateaus equal to the total number of edge states, G =
m+ + m–, only if ξσ < Ly is fulfilled for both spins, σ = ±
(Fig. 3c). Thus, both the sequence and width of conduc-
tance plateaus are sensitive measures of the spin flip
scattering rate 1/τs, due to electron–electron interac-
tion, spin–orbit interaction, or scattering from nuclear
spins [36]. Furthermore, the enhancement of the gZ-fac-
tor above its bulk value due to the exchange interaction
depends on the Fermi energy [38]. Accordingly, the
width of the conductance plateaus changes with energy.
In a real sample, there exists a slowly varying potential
disorder, which can stabilize edge states against mixing

Fig. 3. Schematic phase diagram of a quantum Hall wire for
L @ Ly. The full lines indicate jumps between integer pla-

teau values of conductance G, in units of e2/h, as denoted by
integers: (a) spinless electrons, (b) electrons with spin and

Zeeman-splitting (  – )/"ωB = gZ/2 without spin flip,

and (c) with a strong spin flip rate. Dotted line: inverse
cyclotron length, 1/lcyc. For a particular value of inverse
width 1/Ly (dashed line), a sequence of conductance pla-
teaus similar to Fig. 1 is obtained. In the limit of 1/Ly 
0, there are delocalization critical points of bulk states
(circles).

En
+

En
–
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with bulk states [14]. When the confinement potential is
varying slowly on the magnetic length scale lB, the
energies Em, p are expected to split into m energies, at
which edge states mix one by one with bulk states,
accompanied by steps of heights 1 in conductance G.
Both potentials can be effectively modified by the Cou-
lomb interaction as obtained by self-consistent solution
of the Poisson equation.

In the presence of long-range interactions, interact-
ing edge states form a correlated Luttinger liquid.
Renormalization due to edge plasmon excitations
enhances the interedge scattering amplitude [39]. This
results in a decrease of the localization length of the
edge states. Accordingly, the width of the plateaus of
lower Landau bands is expected to be reduced due to
the Luttinger liquid correlations. Similarly, in the frac-
tional quantum Hall regime, where the edge state exci-
tations are strongly correlated even without long-range
interactions [39], a reduction of the localization length
of edge states is expected as function of the filling fac-
tor v.

In 3D layered systems in a perpendicular magnetic
field, surface states form 2D chiral metals in plateau
regions where bulk states are localized [18]. There are
transitions between these 2D chiral metals and insulat-
ing states in long quasi-1D wires of layered electron
systems.

We conclude that, in quantum Hall bars of finite
width Ly ! ξn at low temperatures, quantum phase tran-
sitions occur between extended chiral edge states and a
quasi-1D insulator. These are driven by a crossover
from 2D to 1D localization of bulk states. These metal–
insulator transitions resemble first-order phase transi-
tions in the sense that the localization length abruptly
jumps between exponentially large and finite values. In
the thermodynamic limit, fixing the aspect ratio c =
L/Ly, when sending L  ∞ and, then, c  ∞, the
two-terminal conductance jumps between exactly inte-
ger values and zero. The transitions occur at energies
where the localization length of bulk states is equal to
the geometrical wire width. Then, m edge states mix
and electrons are free to diffuse between the wire
boundaries but become Andersen localized along the
wire. At a finite temperature, this phenomenon can be
observed when the phase coherence length exceeds the
quasi-1D localization length in centers of Landau
bands, Lϕ > ξn. It may accordingly be called the mesos-
copic chiral metal–insulator transition. In Hall bars of
large aspect ratios at low temperatures, one should
observe transitions of the two-terminal resistance from
integer quantized plateaus, Rn = h/ne2, to a Mott vari-
able-range hopping regime of exponentially diverging
resistance. Such experiments would yield new informa-
tion about edge states in quantum Hall bars. At a higher
temperature, when Lϕ < ξn, the conventional form of the
integer quantum Hall effect is recovered [1].
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