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The optical spectra and the second-harmonic generation (SHG) are studied in a noncentrosymmetric
GdFe3(BO3)4 magnet. In the region of weak absorption (α ~ 20–400 cm–1) below ~3 eV, three absorption bands
are distinguished, which can be unambiguously assigned to forbidden electronic transitions from the ground
6A1 state of the Fe3+ ion to its excited states 4T1 (~1.4 eV), 4T2 (~2 eV), and 4A1, 4E (~2.8 eV). Intense absorption
begins in the region above 3 eV (α ~ 2–4 × 105 cm–1), where two bands at ~4.0 and 4.8 eV are observed, which
are caused by allowed electric dipole charge-transfer transitions. The spectral features of SHG in the 1.2–3.0-eV
region are explained by a change in the SHG efficiency caused by a change in the phase mismatch. It is shown
that in the weak absorption region, phase matching can be achieved for SHG. © 2004 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 42.65.Ky; 71.20.Eh; 78.20.Ci; 78.20.Hp
Substances and structures in which several sub-
systems with different order parameters can be distin-
guished have attracted attention since the 1960s and are
called multiferroics [1–4]. These parameters can be
spontaneous magnetization and antiferromagnetic vec-
tor in magnets, spontaneous electric polarization in fer-
roelectrics, spontaneous deformation in ferroelastics,
etc. In multiferroics, interaction between subsystems is
possible when certain spatial and temporal symmetry
conditions are fulfilled. Cross-interactions in multifer-
roics open up new possibilities for the development of
devices based on the mutual control of magnetic, elec-
tric, and deformation states. Initial attempts to develop
competitive devices proved to be unsuccessful due to
the weakness of the interactions observed. However,
quite recently several studies were reported that dem-
onstrated a revival of interest in multiferroics. Materials
and multiphase heterostructures with “giant” effects
were synthesized [5–10], which opens up the outlook
for applications of multiferroics in information systems
as sensors and in spintronic devices.

Rare-earth iron borates with the general formula
RFe3(BO3)4, where R is a rare-earth element, are char-
acterized by an unusual combination of a number of
physical properties and can be assigned, according to
some of these properties, to multiferroics. They are
crystallized into the trigonal huntite structure described
by the noncentrosymmetric space group R32 (no. 155)
with three formula units in the unit cell, Z = 3 [11]. Note
0021-3640/04/8005- $26.00 © 20293
that crystals with the huntite structure have the same
point group 32, as crystalline quartz but, of course, dif-
fer from quartz in their chemical composition and,
hence, in their physical properties. A change in temper-
ature induces structural and magnetic phase transitions
in iron borates, but their character is not clear at present
in most cases [11–14]. Magnetic ordering can, in prin-
ciple, occur both in the iron and rare-earth sublattices,
and these sublattices also determine the optical proper-
ties of rare-earth iron borates. 

Trivalent Fe3+ ions in the RFe3(BO3)4 crystal struc-
ture occupy the 9d octahedral sites with the local sym-
metry 2, which form one-dimensional (1D) helicoid
chains extended along the trigonal axis [11]. The octa-
hedral sites of the Fe3+ ion are typical of many other
oxide iron compounds including, for example, cen-
trosymmetric iron borate FeBO3, rare-earth orthofer-
rites RFeO3, and ferrite garnets R3Fe5O12. However, a
significant difference between the crystalline structures
of huntite and these materials, and especially the non-
centrosymmetric arrangement of magnetic ion sites and
the noncentrosymmetric structure of huntite itself
should result in a number of substantial differences
between the optical properties of rare-earth iron borates
and the oxides of trivalent iron studied earlier. Note
that, in the huntite structure, as in quartz, the second-
harmonic generation (SHG) is allowed in the electric
dipole approximation [15]. For the point group 32, the
yyy = –xxy = –xyx = –yxx, xyz = –yzx, and xzy = –yzx
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components of the susceptibility χijk(2ω) of the second
harmonic are nonzero [3].

In this paper, we report a comparative study of opti-
cal absorption, birefringence, and SHG in gadolinium
iron borate GdFe3(BO3)4. We also present the results of
the ellipsometric study of this material in the region
between 0.6 and 5.4 eV, performed in the reflection
geometry. This allowed us to determine the dispersion
of the main optical parameters in a broad spectral
range. The results obtained suggest that it is possible to
produce phase matching for SHG in this magnetic
material, which, as far as we know, was not investigated
earlier for other magnetic materials [16].

Fig. 1. Absorption spectra of (a) gadolinium iron borate
GdFe3(BO3)4 at T = 9 and 295 K and (b) iron borate FeBO3
at T = 15 K.

Fig. 2. Absorption spectra of GdFe3(BO3)4 and FeBO3 at

the 6A1(4A1g)  4T1(4T1g) transition.
The GdFe3(BO3)4 single crystals were grown by the
method described in [13]. Optical studies were per-
formed with plane-parallel oriented plates of thickness
from 0.1 to 1.0 mm. The absorption spectra were
recorded using a Cary 2300 spectrophotometer and a
Spex monochromator. The SHG spectra were studied in
the transmission geometry at the normal incidence of
the fundamental radiation on a sample. The method
described in [17] was used. The ellipsometric study was
performed using an ellipsometer at several angles of the
incidence of light on a sample, which allowed us to
determine with good accuracy the ordinary and extraor-
dinary refractive indices no and ne, the absorption coef-
ficients ko and ke, and the birefringence ∆n = no – ne.

The linear absorption spectra of gadolinium iron
borate and iron borate are shown in Fig. 1. They are
qualitatively similar on the whole. Absorption in the
region below 3.0 eV is comparatively weak, and it was
studied in the transmission geometry along the optical
axis. In this region three absorption bands are observed,
which correspond to the electronic transitions between
the (3d)5 states of the shell of the Fe3+ ion in the octahe-
dral crystal field produced by oxygen O2– ions [18].
Because the transitions from the 6A1 ground state to the
excited 4T1 and 4T2 states and the degenerate (4A1, 4E)
state are forbidden by the spin-selection rules, the
intensity of the corresponding absorption bands is com-
paratively low. Moreover, the intensity of these transi-
tions in GdFe3(BO3)4 is substantially lower than in
FeBO3 and other trivalent iron oxides. Figure 2 shows
the absorption spectra in the region of the first 6A1 
4T1 transition for gadolinium iron borate and FeBO3.
The Fe3+ ion in both these materials is located in the
octahedral environment consisting of six O2– ions,
which produce a crystal field and cause the splitting of
the degenerate states of a free ion. In our case, this is the
4G state [18]. The Fe–O bond lengths in these com-
pounds are close and are 2.028 Å in FeBO3 [19] and
2.026(2) Å, 2.044(2) Å, and 1.950(2) Å (the average
bond length is 2.007 Å) in GdFe3(BO3)4 [11]. The val-
ues of the parameter 10Dq of the cubic crystal field are
also close, as was confirmed by the coincidence of the
positions of the absorption bands of these compounds
with an accuracy of 1–2%. Two observations are sur-
prising: (i) the absence of the fine structure in the region
of the first transition in gadolinium iron borate. We can-
not yet explain this unexpected fact; and (ii) a substan-
tial decrease in the intensity of absorption bands in gad-
olinium iron borate by approximately a factor of six for
the first transition, by a factor of ten for the second tran-
sition, and by a factor of fifteen for the third transition,
although, unlike FeBO3, the Fe3+ ion in this iron borate
is located in the noncentrosymmetric environment. The
difference between the absorption-band intensities
increases in the approach to the fundamental absorption
edge determined by the allowed transitions. Even more
illustrative is a comparison of iron borates with orthof-
JETP LETTERS      Vol. 80      No. 5      2004
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errites RFeO3, in which the Fe–O bonds vary from
2.006 to 2.014 Å [20]. According to our measurements,
the maximum absorption coefficient for the first transi-
tion in orthoferrites is α . 400 cm–1.

One can see from Fig. 3b that absorption above
3.0 eV is stronger, and it should be assigned to the
allowed electric dipole transitions. In oxides of 3d tran-
sition metals, these are charge-transfer transitions [21].
In the cluster model, this is the electron transfer from
the oxygen ion to the iron ion, while in the band model,
this is an electronic transition from the valence band
formed predominantly by the oxygen 2p orbitals to the
conduction band formed predominantly by the 3d orbit-
als. One can see from Fig. 3a that the observed transi-
tions are polarized, resulting in the crystallographic
birefringence ∆n = no – ne and in linear dichroism ∆k =
ko – ke. In the relatively transparent region, ∆k . 0 and
∆n . 0.1; i.e., birefringence is rather strong, and the
crystal is negative. Note for comparison that birefrin-
gence in crystal quartz in the visible region has the
opposite sign and is on the order of ∆n ~ 0.06–0.07
[22]; i.e., it is somewhat lower than in gadolinium iron
borate.

In the region of intense absorption, two absorption
bands are observed at ~4.0 and 4.8 eV. Let us compare
these spectra with the spectra of other iron oxides. The
intense absorption bands of FeBO3 lie in the region
from 3.38 to 3.75 eV [23], while in orthoferrites such
bands are located, according to our data, at even lower
energies, namely, 3.16, 3.9, and 4.4 eV. This redshift of
the allowed electric dipole transitions qualitatively
explains the increase in the intensity of the forbidden
d−d transition in passing from gadolinium iron borate
to FeBO3 and orthoferrites, because forbidden transi-
tions borrow the intensity of allowed transitions; the
smaller their separation, the greater the degree of bor-
rowing. Therefore, although the Fe–O bond lengths are
almost the same in different materials and, hence, the
local crystal fields are close, the optical properties of
these materials can be substantially different. A signif-
icant difference between the spectra of iron borates and
orthoferrites is already manifested in the fact that the
former are transparent at a sample thickness of a few
hundred micrometers in the green spectral region at
2.4 eV (see Fig. 1), while the latter are transparent only
at thicknesses on the order of a hundred micrometers in
the red spectral region at 2.0 eV [24]. In both cases, the
absorption bands are caused by the transitions in the 3d
shell of the Fe3+ ion in the region below ~3.0 eV and by
the charge-transfer transitions at ~3.0 eV. In our opin-
ion, the great difference in the absorption spectra of
iron borates and orthoferrites is mainly explained by
the difference in their crystal structures. The Fe–O–Fe
bonds in orthoferrites form a three-dimensional net-
work, whereas this bond in gadolinium iron borate, is in
fact, one-dimensional and is realized only along the
octahedral chains extended along the trigonal axis
while the chains are not coupled to each other [11]. 
JETP LETTERS      Vol. 80      No. 5      2004
It is known that most magnetic materials are cen-
trosymmetric media, and SHG is forbidden in the elec-
tric dipole approximation. Nevertheless, SHG can be
observed in magnetic materials with various cen-
trosymmetric and noncentrosymmetric structures due
to the break of the inversion center caused by magnetic
ordering or the inclusion of magnetic dipole transitions
into the three-photon process of harmonic generation
[16]. Iron borates crystallize into the R32 noncen-
trosymmetric structure, and hence, SHG is allowed in
the electric dipole approximation. We studied SHG in
the transmission geometry, in which light propagated
along the optical axis k || z in a sample of thickness
t = 100 µm. Figure 4 shows the SHG intensity I2ω nor-
malized to the squared fundamental radiation intensity

. The inset in Fig. 4 shows the azimuthal dependence
of the SHG intensity I2ω ~ (χxxx cos3ϕ)2, where ϕ is the
angle between the crystal axes in the basal plane of a
trigonal crystal and the polarization vector of the funda-
mental light wave. The results were obtained in the
region of comparatively weak absorption. The SHG
signal drastically decreases when absorption increases
to α . 400 cm–1 at the 6A1  (4A1, 4E) transition (see
Fig. 1) and then vanishes as absorption further
increases in the region above ~3.0 eV.

The decrease in the SHG signal with increasing
absorption is also explained by a change in the coher-
ence length, which is predominantly determined in the

Iω
2

Fig. 3. (a) Dispersion of the ordinary (dot-and-dash curve)
and extraordinary (solid curve) refractive indices and
absorption coefficients of GdFe3(BO3)4 at T = 295 K. Inset:
dependence of the phase-matching angle θ on the pump
energy. (b) Absorption spectra for light propagating along
(dot-and-dash curve) and perpendicular to (solid curve) the
optical axis.
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transparency region by the dispersion of the refractive
index and gradually decreases from ~15 to 0.9 µm in
the region from 0.6 to 1.6 eV (from 1.2 to 3.2 eV for the
second harmonic).

The oscillatory spectral dependence of the SHG
intensity can be explained by the mechanism of Maker
fringes observed upon changing the angle of incidence
of fundamental radiation on a crystal [25, 26]. In our
case, oscillations are caused by a change in the SHG
efficiency that is not due to a change in the effective
path length of light in the crystal but due rather to a
change in the phase mismatch ∆κ = 2κω – κ2ω when the
fundamental frequency varied, where κ = nωω/c is the
wavenumber at the corresponding frequency. In this
case, the dependence of the SHG intensity on the light
frequency is described by the expression [15]

(1)

where dijk = , and L is the crystal thickness. The

function I2ω/ d2 calculated by expression (1) is pre-
sented in Fig. 4b. We also took into account in the cal-
culation the absorption of the SHG signal. One can see
from this figure that the periodicities of the experimen-
tal and calculated spectra coincide.

Figure 3a shows that GdFe3(BO3)4 crystals have
large birefringence ∆n . 0.1, allowing the realization of
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Fig. 4. (a) Spectral dependence of SHG in GdFe3(BO3)4 at
T = 6 K. Inset: azimuthal dependence of the SHG signal for
the energy ESH = 2.43 eV. (b) Spectral dependence of the
SHG intensity calculated by expression (1).
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phase matching of the first type (ooe) in GdFe3(BO3)4
for the efficient SHG. The inset in Fig. 3 presents the
dependence of the phase-matching angle on the pump
energy. In particular, the phase-matching angle for a
pump energy of 1.17 eV from a Nd:YAG laser is θ .
52°. In our opinion, the above conclusion about the pos-
sibility of realizing phase matching in the magnetic
material permits the extension of studies of the relation
between the magnetic and nonlinear optical properties.
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It is shown experimentally that the axicon focusing of intense femtosecond laser pulses in transparent dielec-
trics leads to efficient excitation of shock waves. A method is developed for measuring the dynamics of shock
waves, which uses a frequency-chirped probe pulse and has high spatial (~1 µm) and time (~10 ps) resolutions.
The initial stage of the evolution of an intense (up to 10 GPa) shock wave is studied by this method. © 2004
MAIK “Nauka/Interperiodica”.

PACS numbers: 67.57.Lm; 76.60-k
One of the important features of the interaction of
focused femtosecond laser pulses with matter is the
possibility of a strong spatial localization of energy
release in a material due to a minor role of heat conduc-
tion during the action of an ultrashort laser pulse. In
addition, as the laser pulse is shortened, the energy den-
sity required to modify material is, as a rule, reduced [1,
2]. These properties are especially important for a num-
ber of applications, first of all for the precision laser
machining of materials with micron and submicron
accuracy. The interaction of an ultrashort laser pulse
with condensed matter is almost always accompanied
by shock-wave generation [3]. The study of the behav-
ior of a material irradiated by a tightly focused laser
beam poses the nontrivial problem of the observation of
shock waves with high spatial (~1 µm) and time
(~10 ps) resolutions. In this paper, we studied experi-
mentally the dynamics of shock waves excited by
intense femtosecond laser pulses focused by an axicon
lens onto transparent dielectrics. For this purpose, we
developed an original method to observe the shock-
wave dynamics during a laser pulse with a high spatial
resolution.

Figure 1 shows the scheme of our experimental
setup for studying shock-wave generation. Shock
waves were excited by ~100-fs, ~0.8-µm pulses from a
Ti:sapphire laser [4] with a pulse repetition rate of
10 Hz. The femtosecond pulses were amplified using a
standard scheme [5] in which a femtosecond pulse of a
master oscillator is stretched in time, the obtained fre-
quency-chirped pulse is amplified to the required
energy, and then the amplified pulse is compressed in
time. The laser pulse energy in our experiments did not
exceed 10 mJ. The output laser beam of diameter d =
8 mm was directed on an axicon lens with the base
angle β = 20°. It is known [6] that an axicon focuses a
Gaussian radiation beam in a line directed along the
0021-3640/04/8005- $26.00 © 200298
axicon axis. The maximum radiation intensity on the axi-
con axis in our experiments was I = (1–2) × 1014 W/cm2.
A target made of a transparent dielectric [poly(methyl
methacrylate) (PMMA)] was placed in the region of
maximum radiation intensity and displaced from pulse
to pulse in order to irradiate a given site of the target
only by one laser pulse. It was shown earlier [7] that the
axicon focusing of a femtosecond laser pulse produced
a bright luminous filament inside a transparent dielec-
tric, instead of which a long channel with a diameter of
a few microns and a length of up to one centimeter
remained after the end of the pulse. The luminous fila-
ment was interpreted as the formation of a plasma chan-
nel, which, as was shown, efficiently absorbs the laser
pulse energy. Absorption of the laser radiation energy
should result in the generation of an expanding cylin-
drical shock wave, which is studied in this paper.

We studied the dynamics of production of a plasma
channel and shock-wave generation by the following
method. A part of the frequency-chirped amplified laser
pulse was deflected to provide for its temporal com-
pression and passed, with a controllable delay, (perpen-
dicular to the axicon axis) through the region where the

Fig. 1. Scheme of the experimental setup.
04 MAIK “Nauka/Interperiodica”
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plasma channel was produced. The duration of the fre-
quency-chirped probe pulse was τp ~ 200 ps. Then, the
probe pulse was projected with a ×100 magnification
on the entrance slit of a spectrometer equipped with a
12-bit CCD camera (PCO, model Pixel Fly). Because
the different wavelengths of the frequency-chirped
pulse propagate through the interaction region at differ-
ent instants of time, the horizontal axis in the spectrum
at the exit slit of the spectrometer will be proportional
to time (in the case of a linear frequency modulation),
while the vertical axis corresponds to the spatial coor-
dinate. Therefore, the spectrum displayed on the CCD
monitor gives the spatiotemporal sweep of the trans-
verse size of the region in which the plasma channel is
produced, similarly to a picture obtained by means of a
streak camera. The spatial resolution in our experi-
ments was ~1 µm and was mainly determined by the
numerical aperture of the microscope objective used to
project the laser beam with magnification on the
entrance slit of the spectrometer. The time resolution,
determined by the spectral resolution of the spectrome-
ter (by the entrance slit width providing the required

Fig. 2. Dependence of the fraction α of the femtosecond
laser pulse energy absorbed in a PMMA sample on the
pulse energy.
JETP LETTERS      Vol. 80      No. 5      2004
signal level on the CCD camera), was ~10 ps. The
energy of the incident femtosecond pulse and the pulse
transmitted through a sample was measured with cali-
brated photodiodes.

As mentioned above, when some threshold intensity
on the axicon axis was exceeded, a breakdown occurred
in the target material, which was accompanied by the
formation of a plasma channel. Figure 2 shows the frac-
tion of the femtosecond pulse energy absorbed in the
plasma channel as a function of the incident pulse
energy. One can see that this fraction rapidly increases
above the breakdown threshold, and already for W ≈
4 mJ, a significant fraction of the incident pulse energy
(~30%) is absorbed in the plasma. Figure 3 demon-
strates three spatiotemporal sweeps of the interaction
region obtained on the CCD camera for three different
delays of the probe pulse with respect to the intense
femtosecond pulse producing the plasma channel (τd =
0, 0.5, and 1.0 ns). Each sweep was obtained during one
laser pulse. The images in Fig. 3 were obtained by pro-
cessing the initial frames to filter out a small-scale
structure observed in the spatial distribution of the
×100-magnified probe pulse. The data were obtained
for PMMA using ~2.5-mJ incident pulses. The first
image (τd = 0 s) demonstrates the channel formation. At
the arrival time of the intense femtosecond pulse, the
probe pulse is not absorbed. Then, after the end of the
femtosecond pulse, absorption of radiation in the chan-
nel increases with a characteristic time of ~100–150 ps.
The transverse size of the channel does not change on
this time scale. The presence of weaker horizontal
bands is caused by the finite aperture of the microscopic
objective that was used to project the image on the
entrance slit of the spectrometer [8]. The second image
(τd = 0.5 ns) shows the increase in the transverse size of
the channel with time, which is caused by the expan-
sion of the region of the material heated by the laser
pulse into the surrounding unheated medium. Apart
from the channel located at the central region, a second
structure is observed, which has a greater transverse
size and a diameter increasing in time—a shock wave
expanding from the channel. For a large delay of the
probe pulse (~2 ns), the channel diameter no longer
increased, and the position of the shock-wave front
became indiscernible. The channel size at large delays
0 0.5 1.0 τd, ns

10 µm

Fig. 3. Spatiotemporal sweeps of the image of the interaction region for different delays τd ≈ 0, 0.5, and 1.0 ns of the probe pulse
with respect to the ~2.5-mJ femtosecond pulse.
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corresponded to the channel size observed in the frames
detected within a few seconds after the end of the
intense femtosecond pulse.

Figure 4 shows the time dependences of the channel
diameter and the position of the shock-wave front
obtained from the CCD images discussed above. Note
some specific features of these dependences: for t <
0.5 ns, the channel diameter is independent of time.
This is probably explained by the fact that the charac-
teristic travel time of the acoustic perturbation is ts ~
rk/cs ~ 0.5 ns (here, rk is the channel radius and cs is the
sound speed in PMMA), i.e., is comparable to the chan-
nel size.

During the entire expansion time, the channel diam-
eter approximately doubles, which results in the
approximately four fold increase in the volume of the
heated material (due to the cylindrical geometry of the
experiment). Accordingly, the material density in the
channel decreases by a factor of four after expansion.
This probably indicates that PMMA (organic glass),
which was initially a solid, decomposes upon heating
caused by absorption of laser radiation energy by the
plasma, and at least a part of the PMMA decomposition
products are in a gas phase.

Our experimental method allows us to measure, in
principle, both the velocity of material motion (via the
dynamics of the channel diameter) and the shock-wave
velocity during one laser pulse. This is sufficient for the
construction of the shock adiabat of the material and the
determination of its equations of state. The position of
the shock-wave front was measured with an accuracy of
±15%; this value was mainly determined by aberrations
appearing in the high-magnification imaging of small
(a few microns) objects on the entrance slit of the spec-
trometer. 

Fig. 4. Time dependences of the channel diameter and the
shock-wave-front position. The pulse energy is ≈2–3 mJ.
Figure 5 shows the experimental dependence of the
shock-wave velocity V on the energy of the femtosec-
ond pulse producing the plasma channel. The dashed
straight line in the figure indicates the sound speed in
organic glass [9]. For the cylindrical geometry, the scal-
ing of the shock-wave velocity with the absorbed

energy has the form [10] v  ~ , where η is the frac-
tion of the absorbed energy (Fig. 2) and W is the laser
pulse energy. This dependence is also presented in
Fig. 5. By using the results of the shock-wave study in
organic glass obtained in [11], we can find from the
shock-wave velocity the dependence of pressure in the
shock wave on the incident pulse energy (crosses in
Fig. 6). One can see that this pressure rapidly increases

ηW4

Fig. 5. Dependence of the shock-wave front velocity on the
laser pulse energy. Circles are the experiment; the solid
curve is the scaling for a cylindrical geometry; and the
dashed straight line is the sound speed in PMMA.

Fig. 6. Pressure inside the shock wave as a function of the
laser pulse energy. Crosses are the estimate by the shock-
wave velocity; the solid curve is the estimate of thermal
pressure.
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with the pulse energy and exceeds 10 GPa at maximum
pulse energies. The shock wave is generated by the
pressure produced by the heated target material in the
plasma channel. The estimate of a thermal pressure,
taking into account the measured absorbed energy of
the incident pulse and using the ideal-gas model for the
target material, is shown by the solid curve in Fig. 6.
The estimate shows that the thermal pressure and pres-
sure inside the shock wave are close to each other.

Consider now the dynamics of the increase in
absorption of the probe pulse by the heated material in
the plasma channel. Analysis of the images presented in
Fig. 3 shows that, after the end of the femtosecond
pulse producing the plasma channel, absorption gradu-
ally increases with a characteristic time of ~100–
150 ps. This dependence can be interpreted in the fol-
lowing way. The plasma produced in the channel by the
intense femtosecond pulse has, according to calcula-
tions [12], the concentration ne ≈ 1019–1020 cm–3, which
should result in a noticeable absorption. However, the
plasma lifetime is most likely to be much shorter than
one picosecond [13]. Therefore, the time resolution of
our experiments (~10 ps) does not allow us to detect
absorption in the plasma. The observed increase of
absorption with the characteristic time ~100–150 ps is
probably determined by the decomposition of PMMA
molecules due to their strong heating caused by absorp-
tion of the laser radiation energy, which is accompanied
by the formation of strongly absorbing products of
PMMA decomposition (carbonization of organic glass)
[14]. The experimental data on the absorption dynam-
ics give the dependence of the absorption increase rate
in the plasma channel on the temperature of the mate-
rial in the channel (Fig. 7). The material temperature
was estimated by the fraction of the absorbed energy
while taking the channel size into account. One can see
from Fig. 7 that the absorption increase rate decreases
with increasing material temperature. This result is
somewhat unexpected because, if absorption is deter-
mined by the PMMA decomposition products, then, as
is known from chemical kinetics [15], the concentra-
tion n of absorbing decomposition products should be
described by the equation

(1)

where N is the initial concentration of PMMA mole-
cules, ν is a constant, E is the activation energy of the
reaction, and T is the temperature. It follows from
Eq. (1) that the formation rate of absorbing decomposi-
tion products drastically increases with temperature;
i.e., the increase in absorption rate in the plasma chan-
nel, which is proportional to the concentration of
decomposition products, should also increase. This is
inconsistent with the dependence presented in Fig. 7.
This discrepancy can be explained by assuming that the
activation energy decreases under extreme experimen-
tal conditions (at high temperatures and pressures) with
increasing laser pulse energy. Such a decrease in the

dn/dt Nν E/kT– ,=
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activation energy of the decomposition reaction (com-
pared to the isothermal conditions described by Eq. (1))
was observed in shock-wave-compression experiments
[15].

Thus, we have studied the dynamics of a shock wave
generated upon axicon focusing of intense femtosecond
pulses onto PMMA. We used a method that allowed for
the investigation of the dynamics during a single laser
pulse with high spatial and time resolutions. We have
shown that a few millijoule femtosecond laser pulse can
generate shock waves with rather large amplitudes
(>10 GPa). The absorption dynamics of the probe radi-
ation show the complicated kinetics of target-material
decomposition during shock-wave compression.

This work was supported by the Russian Foundation
for Basic Research (project nos. 01-02-17512 and
02-02-17271).
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The phase diagram of weakly coupled XXZ chains in a transverse magnetic field is studied using the mean-field
approximation for the interchain coupling and known exact results for an effective one-dimensional model. The
results are applied to the quasi-one-dimensional antiferromagnet Cs2CoCl4, and the value of interchain interac-
tion in this compound is estimated. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.10.Jm
The effects induced by magnetic fields in low-
dimensional magnets are the subject of intensive theo-
retical and experimental research [1]. One of the strik-
ing effects is the dependence of magnetic properties of
quasi-one-dimensional (Q1D) antiferromagnets with
anisotropic interactions on the direction of the applied
magnetic field. For example, the behavior of these sys-
tems in a transverse magnetic field is drastically differ-
ent in comparison with the case of a longitudinal field
applied along the anisotropy axis. In particular, the
transverse field induces a gap in the spectrum and the
antiferromagnetic long-range order (AF LRO) in the
perpendicular direction. A quantum phase transition
takes place at some critical field, where the LRO and
the gap vanish. The phase transition of this type has
been observed in the Q1D antiferromagnet Cs2CoCl4

[2]. The simplest model of the one-dimensional aniso-
tropic antiferromagnet in the transverse field is the
spin-1/2 XXZ chain described by the Hamiltonian

(1)

where ∆ is an anisotropy parameter, assumed to be
0 ≤ ∆ ≤ 1.

It has been proposed [2] that low-energy properties
of Cs2CoCl4 is described by (1) with J = 0.23 meV and
∆ = 0.25. In contrast to the case of the longitudinal field,
the symmetry-breaking transverse field does not com-
mute with the XXZ Hamiltonian and the exact integra-
bility of (1) is destroyed. The model (1) has been inves-
tigated using different approximate approaches [3–6].
The scaling estimates at a small field [7] show that the
transverse field generates the staggered magnetization

¶ This article was submitted by the authors in English.

*1D = J Sn
xSn 1+

x Sn
ySn 1+

y ∆Sn
z Sn 1+

z+ +( ) H Sn
x,∑–∑
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Mst = 〈(–1)n 〉  (AF LRO in the Y direction) and the gap
in the spectrum m (at H = 0, the spectrum is gapless):

(2)

To study model (1), when the field H is not small, a
mean-field approximation (MFA) has been proposed in
[7] and elaborated in [8]. The MFA is based on the Jor-
dan–Wigner transformation of spin-1/2 operators to the
Fermi ones with the subsequent mean-field treatment of
the four-fermion interaction term. As a result, the aris-
ing Hamiltonian is quadratic in Fermi-operators, and it
is solved exactly. Transforming this MFA Hamiltonian
back to spin variables, we obtain a spin-1/2 XY model
in the longitudinal field:

(3)

where parameters J', γ, and h are determined by the
MFA self-consistent conditions [7, 8].

Model (3) is exactly solvable, and its properties are
well studied [9]. This model undergoes a T = 0 phase
transition of the 2D Ising universality class at h = 1 cor-
responding to the MFA value of the critical field

(∆). In particular, in the vicinity of the critical field

Mst ~ | (∆) – H|1/8. A comparison of the MFA results
with those obtained in precise numerical DMRG calcu-
lations shows high accuracy of the MFA at H * J [8].
The dependence Mst(H) for ∆ = 0.25 obtained with use
of the MFA and scaling estimate (2) is shown in Fig. 1
by a dashed line. This magnetization curve is qualita-
tively similar to that observed in neutron-scattering
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experiments on Cs2CoCl4. At the same time, there is
essential difference in the low-field behavior of Mst.
The experimental AF ordered moment is finite at H = 0,
while Mst  0 according to (2). This difference is due
to weak interchain couplings in real systems, and these
couplings form a 3D magnetically ordered moment
below the Néel temperature TN. Besides, interchain
couplings extend the 1D ordered phase with Mst ≠ 0 to
finite temperatures. Therefore, to describe low-temper-
ature properties of real Q1D compounds, it is necessary
to take into account interchain interactions.

In this letter, we will consider the system of coupled
parallel XXZ chains in a transverse field described by
the Hamiltonian

(4)

,

where n and r label lattice sites along the chain and in
perpendicular directions, δ is summed over two near-
est-neighbor vectors in the transverse directions, and J⊥
is a weak coupling between neighboring chains.

A standard method for treating model (4) is to use
the mean-field approximation for interchain coupling
and to treat the resulting effective 1D problem as
exactly as possible [10, 11] (we call this approach as
chain mean-field theory (CMFT) to distinguish it from
the MFA for the 1D model (1)). We assume that AF
order in each chain to be oriented along the Y direction
and the uniform magnetization along the X axis as it
occurs in the pure 1D model (1). The quasi-1D model
contains another mechanism to generate the LRO. If
one of the chains is AF ordered, the interchain cou-

* J Sn r,
x Sn 1 r,+

x Sn r,
y Sn 1 r,+

y ∆Sn r,
z Sn 1 r,+

z+ +( )∑=

+ J ⊥ Sn r,
x Sn r δ+,

x Sn r,
y Sn r δ+,

y ∆Sn r,
z Sn r δ+,

z+ +( )∑
– H Sn r,

x∑

Fig. 1. The dependence of the T = 0 LRO parameter on mag-
netic field for a 1D chain (dashed line) and Q1D system
(solid line) for ∆ = 0.25.
plings induce an effective staggered field on the nearest
chains. In the CMFT, interchain coupling is replaced by
effective fields and the Hamiltonian (4) reduces to an
effective 1D Hamiltonian having the form

(5)

where fields Hx and Hy are determined by self-consis-
tency relations

(6)

z is the transverse coordination number.

At first, we consider the model (5) at H = 0 and T =
0. It can be easily shown that the self-consistency rela-

tion gives 〈 〉  = 0 and the model (5) reduces to the XXZ
chain in the staggered field. The low-energy properties
of this model are described by a quantum sine-Gordon
model [12]

(7)

where Φ(x) and Θ(x) are boson and dual fields, respec-
tively, v (η) = Jsin(πη)/(2 – 2η) is the sound velocity,
and the coefficient A(η) was found in [13].

The spectrum of *0 is gapless. The perturbation V
has the scaling dimension η/2 and generates the mass
gap

(8)

where the constant C is [14]

(9)

The staggered magnetization Mst is related to mass
gap m as [13]

(10)
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where

(11)

From Eqs. (8) and (10), we get

(12)

(13)

The AF LRO Mst survives at T < TN. The Néel tem-
perature TN can be found using the random phase
approximation (RPA). The RPA dynamical susceptibil-
ity of coupled chains in the disordered phase (T > TN) is

(14)

The condition determined TN is

(15)

The dynamical susceptibility of the 1D XXZ model at
T ! J is known [15]

(16)

where

(17)

Using the condition (15), we extract the Néel tem-
perature at H = 0:

(18)

We note that the ratio TN/m does not depend on J⊥
and is determined by 1D parameter η only.

An analysis of experimental data carried out in [2]
has shown that the Q1D antiferromagnet Cs2CoCl4 con-
sists of two interpenetrating sublattices with identical
intrasublattice interactions. These sublattices are non-
interacting on the CMFT level. Each sublattice has tet-
ragonal symmetry and described by model (4) with
z = 4. However, no direct experimental data on the
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value of the interchain interaction J⊥  is available. The
Néel temperature in Cs2CoCl4 at H = 0 is TN = 0.0813J =
0.217 K [2]. Using these data, we can estimate the
unknown value of J⊥  in Cs2CoCl4. Substituting ∆ = 0.25
(A = 0.1405) in (18), we find

(19)

This value is very small, so that our assumption
about the Q1D behavior of the system is justified.

Further, using the found value of J⊥ , we can find the
staggered magnetization Mst at T = 0. According to
Eq. (12), Mst = 0.348. The experimental value of the AF
ordered moment at T ! TN is Mst ≈ 0.342 [2]. Such a
perfect coincidence confirms our estimate (19).
Besides, the found value of J⊥  gives us also the gap (13)
m = 0.78 K. It is remarkable that even so small inter-
chain coupling as in Eq. (19) causes so large value of
LRO and the gap.

At H = 0 and T = 0, the AF LRO is generated by the
interchain couplings. At H > 0, the “one-dimensional”
mechanism is switched. The crude estimation of the
value H*, at which this mechanism becomes predomi-
nant, can be obtained by a comparison of (2) with (13),

(20)

At H > H* in Hamiltonian (5), the mean field Hx can
be neglected in comparison with H, and, at T = 0, the
main effect of Hy consists in a small shift of the critical

field  (see below).

At H =  and Hy = 0, the spectrum of model (5)

is gapless. The perturbation Hy  has scaling

dimension 1/8 and generates the mass gap m ~ (Hy/J)8/15

and AF LRO Mst ~ (Hy/J)1/15 in model (5). Self-consis-
tency relations (6) therefore give

(21)

To estimate the Néel temperature TN(H) in the RPA,
it is necessary to know the finite temperature staggered

susceptibility (0, π) for the model (1) at H > 0.
Unfortunately, it is unknown. Instead, we consider
MFA model (3), for which the susceptibility can be
found. As it was noted above, the MFA describes cor-
rectly the ground-state properties of the model (1) at
H ≥ J. We expect that the MFA gives a satisfactory
description of (1) at low temperature (T ! J) as well.
The problem of finding TN(H) can be solved in the same
manner as it was done by Carr and Tsvelik in [16] for
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Q1D quantum Ising model, which, on the CMFT level,
reduces to (3) with γ = 1.

We are mainly interested in the region of the fields

near the critical field (∆) or at h ~ 1 in terms of
MFA Hamiltonian (3). Exactly at h = 1, where the
model (3) is critical, the staggered susceptibility at T !
J, according to [15] is,

(22)

where sound velocity at the critical field v c = γJ ' is
determined from the MFA self-consistent equations [7]
and

(23)

with Glaisher constant A . 1.282.

The Néel temperature in the RPA is

(24)

For ∆ = 0.25, the critical field in the MFA is  ≈
1.6 J and v c ≈ 0.185 J. Therefore, the estimated Néel

temperature for Cs2CoCl4 is TN( ) = 0.145 K.

Near the critical field at H *  (disorder region
in the 1D model), the low-temperature staggered sus-
ceptibility is well approximated by the formula [1]

, (25)
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Fig. 2. Schematic phase diagram of model (4). The phase
boundary separates the antiferromagnetic phase with Mst ≠
0 from the paramagnetic phase without AF LRO.

1/(2 – η)
where the gap m = |H – | and the phase relaxation
time τc = (π/2T)em/T In this case, the RPA condition of
phase transition (15) reads

(26)

At first, we estimate the shift of the critical field

δHc =  –  caused by interchain couplings. This
shift is determined by the condition T  0 in Eq. (26):

(27)

For ∆ = 0.25 and found value of J⊥  (19), the shift of
the critical field is about 3%. We note that, in the vicin-

ity of the critical point , the low-energy properties
of Q1D model (4) belong to the universality class of the
(3 + 1)-dimensional classical Ising model.

Equation (26) gives also the behavior of Néel tem-

perature near the 3D critical point  – H ! δHc:

. (28)

At intermediate fields H* < H <  (the 1D
ordered region), the low temperature T ! m staggered
susceptibility has an exponential form [1]

(29)

with correlation length ξc = v em/T [1]. Thus,
for zJ⊥  ! m(m/v)3/4, the RPA criteria (15) yields

(30)

Combining the found expressions for Néel tempera-
ture in different regions (18), (24), (28), and (30), we
arrive at the phase diagram schematically shown in
Fig. 2. Since the gap m(H) in the AF ordered region has
a maximum at some intermediate value of field [7, 8],
then, according to Eq. (30), the function TN(H) also has
a maximum as shown in Fig. 2. This fact was experi-
mentally observed in Cs2CoCl4 [2].
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Investigation of the temperature and magnetic-field dependences of the electrical conductivity and the velocity
and damping of the transverse ultrasonic waves at a frequency of 770 MHz revealed the temperature and mag-
netic hysteresises of the elastic parameters and the electrical resistivity. This is explained by the influence of
magnetization on the structural phase transition in a manganite sample. The two-phase crystal structure influ-
ences the magnetization process and the behavior of resistivity in the vicinity of the concentrational intersection
of the magnetic and structural phase transitions. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 62.65.+k; 75.50.Pp
Strong interactions between the electron, magnetic,
and lattice subsystems in lanthanum manganites
La1 − xRxMnO3 (R = Ca, Ba, Sr) account for a variety of
physical phenomena observed in these systems, includ-
ing structural transformations, magnetic phase transi-
tions, and insulator–metal transitions, depending on the
concentration of R ions and on temperature [1]. It was
established that the colossal magnetorestance (CMR)
observed in these manganites occurs upon the transition
from the state of a paramagnetic insulator to a ferro-
magnetic metal in the applied magnetic field [2]. How-
ever, the nature of CMR in these compounds still
remains unclear, since the proposed model of a two-
phase magnetic state [3] does not explain the whole
diversity of the experimental facts. Moreover, it
becomes more evident that the nature of this phenome-
non is not always described by a single mechanism and
can depend in some manganite compositions not only
on the magnetic phases, but on the dielectric phases as
well.

The question concerning the influence of magneti-
zation on the character of structural phase transitions
and CMR has been discussed almost since the very dis-
covery of CMR [1, 2]. At the same time, the effect of
structural phases on the behavior of magnetization and
CMR was studied to a lesser extent, although certain
activity in this direction has been observed in recent
years [4, 5].

These circumstances stimulated us to study the
interrelation between the magnetic and structural order
and the role of these interactions in the CMR phenom-
enon by means of high-frequency ultrasonic waves and
magnetoresistance measurements. High-frequency
ultrasound at frequency f = 770 MHz (λ ≅  5 µm) allows
0021-3640/04/8005- $26.00 © 20308
the phase and spatial inhomogeneities caused by the
structural or magnetic fluctuations to be determined
with a greater precision. In addition, the velocity and
damping of ultrasonic waves are highly sensitive to the
magnetic and structural phase transitions.

The investigation was performed on a single crystal
of La1 – xSrxMnO3 (x = 0.175) manganite, since it was
assumed [1, 6] that the intersection of the structural and
magnetic phase-transition temperatures in this system
takes place for 0.17 ≤ x ≤ 0.18 in a rather extended tem-
perature interval (T = 180–280 K). However, the tem-
perature of the structural transition in the manganite
with x = 0.175 had to be refined. In addition, the sample
with x = 0.175 needed evidence of microscopic struc-
tural inhomogeneities [7]. Therefore, it was expected
that the mutual influence of the magnetic and structural
orderings in this sample would be the strongest. More-
over, the compound with x = 0.175 exhibits the most
pronounced CMR among all the lanthanum strontium
manganites studied.

The single-crystal sample (grown in the group
headed by A.M. Balbashov at the Moscow Power Insti-
tute) had the shape of a parallelepiped with the dimen-
sions 5 × 5 × 8 mm. The sample edges were parallel to
within a few seconds of arc and the faces were oriented
perpendicular to the axes [100], [010], and [001].
The  ultrasonic pulses with a duration τu = 0.5–0.8 µs
were excited and detected by a rod-shaped piezotrans-
ducers made of x-cut lithium niobate crystals. The
velocity and damping of the transverse ultrasonic
waves were studied as functions of the temperature (in
the range T = 150–350 K) and the applied magnetic
field (H = 0−10 kOe). The measurements were per-
formed in the piezotransducer–sample–piezotrans-
004 MAIK “Nauka/Interperiodica”
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ducer scheme, whereby the ultrasonic pulses propa-
gated along the [100] axis (in the cubic representation).
The resistivity of the sample as a function of the exter-
nal factors (temperature and magnetic field) was mea-
sured using the conventional four-probe technique.

Obviously, in the case of such a high acoustic fre-
quency, it is possible that acoustic anomalies may be
caused by the spatial inhomogeneities in the sample
composition. However, the X-ray microprobe analysis
of the chemical composition, performed at the Institute
of Metal Physics, Yekaterinburg for the La, Sr, and Mn
atoms, revealed no inhomogeneities in the spatial distri-
bution of these components in the sample to within
1 µm. The high chemical homogeneity of the sample is
also confirmed by the small width of the magnetization
and magnetic susceptibility curves [8], because any
spatial inhomogeneity would lead to their temperature
broadening. Thus, since the ultrasound wavelength was
~5 µm, the inhomogeneities in the chemical composi-
tion cannot be the reason of any acoustic anomalies in
the sample studied.

The investigation of the propagation of transverse
ultrasonic waves in the La1 – xSrxMnO3 crystal with x =
0.175 revealed sharp variations in the velocity and
damping of these waves in three temperature intervals:
T = 297–307, 280–285, and 200–230 K (Figs. 1, 2). The
acoustic anomalies in the region of 283 K showed no
hysteresis and could be attributed to the phase transi-
tion from the paramagnetic (PM) to the ferromagnetic
(FM) state, which was confirmed by the results of mag-
netic measurements performed for the same sample [8].
The changes in the velocity and damping exhibited hys-
teresises centered at 305 and 220 K and, hence, they
could be assigned to the first-order phase transitions.
We believe that a significant increase in the degree of
damping with decreasing temperature in the interval
T = 200–300 K is caused by the scattering of ultrasonic
waves on the microscopic structural inhomogeneities
observed earlier in [7]. Indeed, below 200 K, i.e., with
the formation of the homogeneous structure, the damp-
ing decreases.

In the temperature range from 310 to 150 K, the
velocity and damping of the ultrasonic waves varied in
the applied magnetic field. The most pronounced varia-
tions of the elastic modulus (c44) in the magnetic field
were observed in the interval T = 200–300 K, where
these changes also exhibited hysteresis. The magnetic-
field-induced changes were observed even in the fields
appreciably lower than 10 kOe. The application of a
magnetic field also shifted the positions of maxima in
the temperature dependences of the ultrasound velocity
and damping near 300 K to lower temperatures.

Beginning at T = 305 K, we observed a decrease in
the resistivity in magnetic fields H < 10 kOe (Fig. 3),
with a hysteresis in the temperature interval T = 200–
220 K. The CMR signal at H = 10 kOe exhibited two
peaks, at T = 310 and 220 K.
JETP LETTERS      Vol. 80      No. 5      2004
Fig. 1. The temperature dependence of the elastic modulus
c44 in La0.825Sr0.175MnO3 manganite. The inset shows the
region of 295–325 K on a larger scale.

Fig. 2. The temperature dependence of the amplitude At of
the transverse mode of ultrasonic oscillations in
La0.825Sr0.175MnO3 manganite. The inset shows the region
of 295–325 K on a larger scale.

Fig. 3. Plots of the resistivity ρ versus magnetic field for
La0.825Sr0.175MnO3 manganite at T = 288, 295, and 305 K.
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Thus, we can state that the sharp variations in the
parameters of acoustic waves and resistivity observed
in the regions of 305 and 220 K can be assigned to the
first-order phase transitions, specifically, to the transi-
tions from the rhombohedral to the orthorhombic struc-
ture in the PM and FM phases, respectively. The first of
these transitions is strongly influenced by the appear-
ance of a magnetic order. As follows from the data on
the increase in Tc with increasing content of strontium
ions [1], from the temperature dependence of the mag-
netization of the sample with x = 0.175 [9], and from
the NMR data [9], the local regions where the magneti-
zation exceeds the average magnetization of the sample
appear even at T ~ 310 K. The growth of spontaneous
magnetization leads to the reverse transition from the
orthorhombic to the rhombohedral phase, as was
assumed for a sample with x = 0.170 in a magnetic field
[1]. The need for a magnetic field in the case of a sam-
ple with x = 0.170 is explained by the absence of spon-
taneous magnetization in this sample near the structural
phase-transition temperature (Ts). In our case, the mag-
netization is initially present and the external field only
increases the total magnetization of the sample.

The difference ∆E in elastic energies of the two

structures is not very large, because ∆E = cK(∆V/V)2,

where V is the unit-cell volume, c is the elastic modu-
lus, ∆V is a change in the unit-cell volume upon the

structural phase transition, and κ = (c11 + 2c12).

Therefore, using the known data for ∆V in a manganite
crystal with the given composition [10], one obtains the
value ∆E/kB ~ 5.5 K (kB is the Boltzmann constant). As
can be seen from Fig. 1, the change in the elastic mod-
ulus C44 in the vicinity of the structural phase transition
does not exceed 10–15%, which approximately corre-
sponds to the accuracy of the determination of the
energy difference ∆E (the estimate of ∆E was obtained
using the average value of c44).

At the same time, a change in the magnetic energy
per unit cell for the magnetization M and spin 3/2 in the
case of Mn3+ ions amounts to ∆EM/MκB ≈ 6κB/T [11].
Since the transformation of the rhombohedral (R) to the
orthorhombic (O) structure in the PM phase is incom-
plete, the field of spontaneous magnetization M is suf-
ficient to provide a 3–5 K shift in the transition temper-
ature. The orthorhombic structure is eventually estab-
lished upon the second transition (i.e., in the FM phase)
in the temperature interval T = 200–230 K. In a mag-
netic field H ≤ 10 kOe, the degree of FM spin ordering
increases, which enhances the increase in the ultrasonic
wave velocity and the decrease in the damping of the
transverse acoustic waves caused by the R  O struc-
tural transition.

Near the intersection of the structural and magnetic
phase transitions, microscopic inhomogeneities appear
in the PM phase. These were characterized by us as
magnetoelastic domains [7]. The presence of such

1
2
---

1
3
---
domains can be considered as a two-phase magnetic
and a two-phase structural states in the sample, which
were determined by the temperature and the applied
magnetic field. It is pertinent to drew an analogy with
the behavior of ferroelectric relaxors, which also
belong to the class of perovskites in which the coexist-
ence of paraelectric and ferroelectric phases induces
the formation of ferroelectric clusters in the paraelec-
tric phase [12, 13]. Thus, the state of a manganite crys-
tal with x = 0.175 in the temperature interval T = 200–
310 K can be considered to be characteristic of the
inhomogeneous restructured systems.

The formation of microscopic structural inhomoge-
neities influences, to a certain extent, the character of
magnetization and especially the temperature depen-
dence of the electrical conductivity and CMR. The
appearance of elastic stresses at the domain boundaries
will hinder, as was theoretically predicted in [14], the
process of monodomenization with the formation of a
homogeneous magnetic state in the sample. This is evi-
denced by the appearance of a magnetic hysteresis in
the resistivity at temperatures corresponding to the two-
phase structural state (Fig. 3).

The formation of a two-phase (R–O) structural state
characteristic of the lanthanum–strontium manganite
with x = 0.175 leads to an increase in the resistivity at
T = 300–310 K as a result of the decrease in the charge-
carrier transfer between the FM domains. This increase
in the resistivity is one of the factors responsible for the
growth in the amplitude of resistance variations in the
magnetic field (Fig. 3). This is confirmed by a decrease
in the resistance over a wide range of temperatures [8],
by the two peaks observed in the temperature depen-
dence of CMR, and by a small jump in Tc for the com-
positions in the vicinity of x = 0.175 [2].

Thus, we believe that two structural states, rhombo-
hedral and orthorhombic, coexist in a single crystal of
lanthanum strontium manganite La1 – xSrxMnO3 with
x = 0.175 over the entire temperature range from 220 to
300 K. The rhombohedral state is maintained due to the
magnetic ordering of the sample. In turn, the presence
of two structural phase states slows the growth of ferro-
magnetic ordering in the sample.
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An interplay of the Kondo scattering and exciton effects (d–f Coulomb interaction) in intermediate valence sys-
tems and Kondo lattices is demonstrated to lead to an essential change of the scaling behavior in comparison
with the standard Anderson model. In particular, a marginal regime can occur where characteristic fluctuation
rate is proportional to flow cutoff parameter. In this regime, the “Kondo temperature” itself is strongly temper-
ature-dependent, which may give a key to the interpretation of controversial experimental data for heavy fermi-
ons and related systems. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.27.+a; 71.28.+d; 75.30.Mb
There is an interesting class of rare-earth com-
pounds such as Ce4Bi3Pt3, SmB6, and SmS under pres-
sure (the “golden” phase), TmSe, and YbB12, which
were called earlier intermediate valence (IV) com-
pounds and now are treated as “heavy-fermion (HF)
semiconductors” or “Kondo insulators” (for a review,
see [1, 2]). The various names emphasize different
peculiarities of these compounds. As for electron
energy spectrum, most of them are narrow gap semi-
conductors with an anomalously small energy scale
(gap width) on the order of tens or hundreds of kelvins
(see [2] and a review of earlier experiments in [3]). At
the same time, they demonstrate an intermediate
valence of rare earth ions (usually, between 2+ and 3+)
in a number of properties, e.g., in the lattice constants
(which are intermediate between those for isostructural
compounds with di- and trivalent ions), core level spec-
tra (which are a mixture of the spectra of di- and triva-
lent ions with comparable weights), and many others
[1, 4, 5].

As well as for the HF metals, the origin of this
small-energy scale is a key point for understanding the
anomalous properties of the IV compounds. For the HF
metals, it is commonly accepted now that they are
Kondo lattices, which means that this energy scale (the
Kondo temperature TK) is a width of the Kondo reso-
nance owing to spin-dependent scattering of conduc-
tion electrons by f-electron centers [6]. As a result of an
interplay of the Kondo effect and interatomic magnetic
interactions, the TK value for a lattice can strongly differ
from that for an isolated impurity [7], spin fluctuations
being of crucial importance for the HF behavior. It is
very natural to expect that these effects are important

¶ This article was submitted by the authors in English.
0021-3640/04/8005- $26.00 © 20312
also for the IV compounds. At the same time, valence
or charge fluctuations should be also considered. They
are determined in part by the Coulomb (“Falicov–Kim-
ball”) interaction between conduction and localized
electrons [8]. Taking into account these interactions
together with the hybridization processes, it is possible
to describe the IV state as a kind of exciton condensa-
tion [3, 9]. Note that, in the IV regime, the one-center
spinless Falicov–Kimball model with hybridization is
formally equivalent to the anisotropic Kondo problem,
different valent states playing the role of pseudospin
“up” and “down” states [10]. It is the degeneracy of
quantum states for a scattering center, which is impor-
tant for the formation of the Kondo resonance [11]. In
the IV case, the divalent and trivalent states are degen-
erate by definition, so that this analogy is not surpris-
ing. Therefore, it is natural to consider the formation of
the Kondo resonance for the IV compounds taking into
account both spin and charge fluctuations, or, equiva-
lently, both the “Kondo” and exciton (“Falicov–Kim-
ball”) effects. This is the aim of the present work. Since
there is no clear demarcation between the IV and
Kondo systems, it will be shown that the excitonic
effects may be relevant also for the latter case.

To investigate the effects of interaction of current
carriers with local moments, we use the Hamiltonian of
the asymmetric infinite-U SU(N) Anderson model with
inclusion of the Falicov–Kimball interaction (on-site
d–f Coulomb repulsion G),

(1)

* tkckm
† ckm V ckm

† f km f km
† ckm+( )+[

km
∑=

+ E f f km
† f km ] G f im

† f imcim'
† cim' ,

imm'

∑+
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where the on-site f–f Coulomb interaction is put to
infinity, so that doubly occupied states are suppressed;

 = |im〉〈 i0| are the Hubbard operator (|im〉  and |i0〉
are single-occupied and empty states); we neglect, for
simplicity, the k-dependence of the hybridization V.
Note that similar calculations can be performed for
realistic rare-earth ions, including the case of two mag-
netic configurations (see [12]).

Following [10], we treat coherent and incoherent
cases. In the first case, a dispersion in the spectrum of
f-electrons occurs. For simplicity, this is assumed to be
proportional to the conduction electron spectrum, Ef k =
Ef + λek, ek ∝  tk, λ = –1 (the f-band has a hole charac-
ter). In the incoherent regime, λ = 0, so that f-electrons
remain localized. Note that, in the presence of an
energy gap, we always deal with the coherent regime.

The renormalization of Coulomb parameter G and
hybridization V is obtained, similar to [10], from the
two-particle Green’s function

, (2)

which determines the vertex. We obtain a singular cor-
rection with the structure

(3)

where nkm = 〈 ckm〉  is the Fermi function. In the
coherent regime, a similar correction occurs from the
dispersion of f-states. Correction (3) contains a loga-
rithmic Kondo-like divergence, owing to charge fluctu-
ations, which is cut at Ef (the latter quantity plays the
role of the external field in the equivalent anisotropic
Kondo model). Unlike the renormalization of Ef, the
renormalizations of V and G do not contain the degen-
eracy factor of N.

The renormalization of Ef owing to spin-flip pro-
cesses is obtained in the second order in hybridization
(cf. [12–14])

(4)

We have taken into account, in Eq. (4), the Hartree
renormalization of f-level energy, which occurs in the
coherent case, Ef  Ef + Gn, n being the concentra-
tion of conduction electrons; we put in numerical cal-
culations n = 1, which corresponds to the Kondo
regime.

To derive the scaling equations for the effective
model parameters, we use the poor-man scaling
approach [15]. Picking out in the integrals with the
Fermi functions (3), (4), the contributions from the
energy layer C < E < C + δC near the Fermi level EF =

f im
†

Fmm'
σ E( ) f im

† cim' cim'
† f im〈 | 〉〈 〉 E=

δFmm'
σ E( ) GFmm'

σ E( )
nqm'

E tq– E f+
--------------------------,

q
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ckm
†

δE fm V2 nqm'

EF tq–
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m' m q,≠
∑=
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0 (C < 0), and replacing Ef  Ef (C), V  V(C),
G  G(C), we obtain (cf. [10])

(5)

(6)

(7)

where ρ is the bare conduction-electron density of
states at EF. Earlier [3], we have considered the exciton
effects with neglecting spin fluctuations. We will see
that the renormalization (4) results in new essential
effects.

We have, from Eqs. (6) and (7)

, (8)

so that G(C) = G(0) in the incoherent regime. From (6),
we derive, in the incoherent and coherent cases, respec-
tively,

(9)

(10)

where w(C) = C – Ef (C) and D is a cutoff parameter of
the order of bandwidth (we put in numerical calcula-
tions D = ρ–1 = 1). Then, we have a closed equation for
w(C). In particular, for the incoherent regime,

(11)

When Ef lies sufficiently below the Fermi level (the
Kondo regime), the quantity |w(C)| can become small
with decreasing |C|. We can use this condition to define
the boundary between IV and Kondo cases. The formal
definition of IV systems is the absence of solutions to
the equation w(C) = 0, which determines only the
Kondo resonance (cf. [6, 16]). Physically, the Kondo
lattice has a three-peak density of states (two Hubbard
bands and the Kondo resonance), which is similar to the
“doped Mott insulator” (note that, in the dynamical
mean-field theory (DMFT), the Hubbard model is
reduced to the Anderson impurity model [17]). On the
other hand, IV state is similar to the phase of strongly
correlated metal: the Kondo peak as a separate solution
is absent.

For G(0) = 0, the boundary condition for the Kondo
state is |Ef (0)| > Γ = (N – 1)ρV 2(0). In the opposite IV
case, |w(C)| remains finite. For G(0) ≠ 0, V(C) increases
during the renormalization process and the effective
level width Γ(C) becomes larger, so that the IV region
becomes wider. A temperature dependence of the
energy gap (an increase with decreasing temperature)
in IV compounds was observed experimentally in
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SmB6 [18], YbB12, and Ce4BiPt3 [2]. According to our
treatment, the dependence of the effective hybridization
V(C) is nonmonotonous: it passes through a maximum.

Now, we consider in more detail the incoherent
case, which should be realized for diluted systems (the
Anderson’s localization prevents coherence at low tem-
peratures). To present numerical results (Figs. 1–4), we
use the variable ξ = ln|D/C|. As follows from (9), in the
Kondo case, the hybridization parameter V(C)
decreases practically by a jump when we approach the
point C= Ef (C) (see Fig. 2). With further decreasing of
|C|, a considerable region arises where we have to high
accuracy C ≅  Ef (C) (Fig. 1). More exactly, we have
∂w(C)/∂C . 0, so that we obtain, from (11), near the
maximum of w(C),

(12)w C( ) . D N 1–( )ρV2 0( )/C
1/2ρG 0( )

.–

Fig. 1. Scaling trajectories –Ef (ξ) for V(0) = 0.1, G(0) = 0.1,
and N = 2 in the incoherent case as compared to the curve
|C |/D = exp(–ξ) (dashed line). The parameter values (for the
curves from below to above) are Ef(0) = –0.08, –0.1, –0.14.

Fig. 3. Scaling trajectories –Ef (ξ) for V(0) = 0.05, G(0) =
0.05, N = 6, Ef(0) = –0.09, –0.11, –0.15 in the coherent case.
In this regime, V(C) = |C/[(N – 1)ρ]|1/2 and the effective
s–f exchange parameter is ρI(C) = ρV2(C)/Ef (C) =
−1/(N – 1) = const.

In a standard consideration, the condition C = Ef (C)
determines an energy scale for a crossover to the regime
of a heavy-fermion (Kondo) local Fermi liquid [13].
The “marginal” situation with Ef (C) ≅  C in a whole
interval of cutoff parameter C means an essentially
non-Fermi-liquid (NFL) picture. A similar mechanism
of NFL behavior in magnetic Kondo lattices was pro-
posed in [7, 19], where a soft boson was obtained with
the characteristic energy (C) ≅  |C|. Note also that a
regime with a rate on the order of parameter fluctua-
tions 1/τφ(T) ∝  T is typical near a quantum phase tran-
sition [20]. Our situation is reminiscent of this regime
in the sense that the characteristic valence fluctuation
frequency max(ρV2(T), |Ef(T)|) is proportional to T
(after a natural replacement |C |  T).

ω

Fig. 2. Dependences V(ξ) for the same parameter values as
in Fig. 1 (for the curves from below to above).

Fig. 4. Dependences V(ξ) for the same parameter values as
in Fig. 3. 
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Physically, a regime in which a typical energy scale
is just the temperature means a classical (Maxwell–
Boltzmann) electron gas (interacting with local
momenta): the heat capacity is approximately constant,
etc. Of course, in a pure form, this behavior is never
observed, since, according to our results, it takes place
only in a restricted temperature interval. However, we
have a strong deviation from a simple scaling picture in
which we just enter strong-coupling regime, the char-
acteristic “Kondo” temperature being T-independent.
In particular, the Wilson number is nearly constant,
but differs considerably from that in the singlet state
(Ief = –∞).

A similar “marginal” region in the dependence
Ef (C) occurs not only for the Kondo but also for the IV
state near the critical line (in such a situation, the
dependence w(C) has a shallow minimum and V(C) a
sharp maximum; see Figs. 1, 2).

To estimate the Kondo temperature, we can use
Haldane’s arguments for the Anderson model with N =
2 [13]. The generalization to arbitrary N can be per-
formed as (cf. [21])

(13)

This expression is formally based on perturbation the-
ory (two-loop scaling). However, Haldane noted that
replacing in this formula both D and Ef by the charac-
teristic energy scale T* = –C, which is determined from
the equation C = Ef (C), yields the correct estimation for
the Kondo temperature. As demonstrated above, in the
presence of exciton effects (the Falicov–Kimball inter-
action G), a situation is possible in which this equation
holds approximately in a whole energy interval. The
energy scale T*, where the marginal regime starts, is
considerably changed by the exciton effects.

In the coherent case, the last term in Eq. (5) results
in a smearing of the singularity, especially for small N.
However, with increasing N, the dependence Ef (C)
(Fig. 3) becomes qualitatively similar to that in the
incoherent case. On the other hand, the dependence
V(C) (Fig. 4) is essentially modified even for N  ∞.
At C ≅  Ef (C), we have

(14)

Solution to this Riccati equation is obtained in terms of
the imaginary-argument Bessel and Macdonald func-
tions Ip(x) and Kp(x) with x = 2|(N –
1)ρV 2(0)C|1/2/[nG(0)], p = 0, 1. For large N, the quan-
tity ∂V(C)/∂C and, consequently, V 2(ξ)/Ef (ξ) turn out
to be practically ξ-linear near the maximum of w(C).
Thus, we have a classical electron liquid with singular
interactions that have logarithmic energy dependences.
With further decreasing |C |, we have, from Eq. (6),

(15)

TK  . D ρ I N( )1/N 1/ρNI( ), Iexp V2/E f .=

1 = N 1–( )ρV2 C( )/C– n G 0( )/V 0( )[ ]∂ V C( )/∂C.–

∂V C( )/∂C C 1/2–∝ E f C( ) 1/2–=
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so that the correction to V2(C)/Ef (C) is proportional to
|C |–1/2.

The d–f Coulomb interaction can strongly renormal-
ize hybridization, which leads to the increase of a char-
acteristic energy scale. In the incoherent regime, it is a
width of the resonance; in the coherent one, the width
of (indirect) gap or pseudogap [3]. The renormalization
of the fluctuation rate ρV 2(C) can be very strong (about
an order of magnitude for realistic parameters). The
corresponding temperature dependences can be found
in both regimes by the RG approach with the replace-
ment |C|  T.

In standard treatments of HF systems, one picks
usually anomalous magnetic contributions to thermo-
dynamic properties and compares them with exact
results in the one-impurity Kondo problem. In particu-
lar, the dependences of the crystal-field level width
from both inelastic neutron scattering and nuclear mag-
netic resonance have the form Γ(T) ∝  T1/2. In the Kondo
resonance model, such a behavior takes place above the
Kondo temperature TK, but in some cases (CeB6,
CePd3B0.6, and YbBe13), the dependence T1/2 takes
place at very low temperatures of a few kelvins [22].
Further, the characteristic energy scale from γT-linear
term in specific heat is of the order of tens of kelvins,
whereas the temperature where γ starts to deviate from
constant is just a few kelvins. Thus, there exists no
unique energy scale. We have demonstrated that,
indeed, the infrared behavior can be essentially differ-
ent from that in the simple Anderson model owing to
the spin dynamics (see [7, 19]) and charge fluctuations
(exciton effects) considered in the present work.

Of course, the estimations performed are qualita-
tive, since they are based on a continuation of a pertur-
bative GellMann–Low scaling function to the strong
coupling region. At the same time, the statement that
exciton effects cannot be described by a universal tem-
perature-independent TK seems itself to be reliable.
Recently, direct ways of observing the Kondo reso-
nance (STM) were proposed [23]. As we know, they
have not yet been applied to the IV systems. It would be
interesting to compare the results for TK of these new
experimental methods with those from investigating
thermodynamic properties.
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Giant Fluctuations of Radiation Intensity of Two-Dimensional 
Electrons in Double Quantum Wells
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Giant fluctuations of the recombination-radiation intensity of two-dimensional electrons were studied in double
quantum wells with different well and barrier widths in the regime of the integer quantum Hall effect. It was
found that the giant fluctuations of photoluminescence intensity in double quantum wells with a narrow barrier
(l < 150 Å) occur in a narrow magnetic-field interval, where the sum of electron concentrations in both wells
corresponds to the integer filling factors 4, 8, and 12. It was established that, under these conditions, the coef-
ficient C12 of correlation between the radiation intensities from different wells is close to unity. It is shown that,
as the barrier width increases (l > 200 Å), the coefficient C12 decreases, changes sign, and goes to zero at l =
400 Å. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 11.25.Hf, 11.30.Pb
1. In our previous studies of the giant fluctuations of
recombination radiation in a system of two-dimen-
sional electrons under conditions of the quantum Hall
effect, we focused on the photoluminescence spectra of
single quantum wells (QWs) [1, 2]. It was established
that, under the conditions when this effect was
observed, the recombination processes correlated at
macroscopic distances with a characteristic correlation
length of 1–2 mm [2]. One of the possible explanations
of this phenomenon is that a new coherent macroscopic
state with a collective wave function arises in the elec-
tron system. Analysis of the spatial correlations
between the recombination-radiation intensities at dif-
ferent points of the sample performed using two light
guides [2] showed that, upon the artificial separation of
a 2D system into two subsystems by a potential barrier
in the sample plane, the collective character of the mac-
roscopic wave function of the electron system is
destroyed, and the correlations disappear. Apart from
the possibility of forming a potential barrier in the 2D
plane, there is an alternative possibility of separating
electron systems in the perpendicular direction, which
is realized in double quantum wells. The electron-tun-
neling time between the wells in the coupled double
quantum wells (DQWs) can be varied by varying the
barrier width and, hence, the electron systems can be
effectively separated by destroying the collective wave
function. In this work, the correlations between the
photoluminescence intensities of two QWs are studied
in the regime of giant fluctuations for different potential
barrier widths between the wells.

2. The samples studied in this work were grown by
molecular-beam epitaxy. An undoped GaAs/Al0.3Ga0.7As
superlattice with a total thickness of about 13000 Å
was grown on a GaAs substrate, whereupon a system of
0021-3640/04/8005- $26.00 © 20317
two GaAs quantum wells with thicknesses L = 150–
300 Å separated by barriers of different width (l = 50−
600 Å) was formed. The double quantum wells were
surrounded at two sides by 400-Å-thick Al0.3Ga0.7As
spacers and 650-Å-thick layers of doped Al0.3Ga0.7As
(N ~ 1018 cm–3). The 2D-electron mobility in the struc-
tures studied was 106 cm2/(V s). The structure parame-
ters are given in the table.

The photoexcitation was performed using a laser
LED with a photon energy of 1.653 eV. A Kaderk
monochromator provided a spectral resolution of
0.03 meV. The photoluminescence signal was detected
using a CCD semiconductor detector. The sample was
placed in a helium cryostat (at T = 1.5 K) inside a super-
conducting solenoid that produced a magnetic field of
up to 12 T. The excitation of photoluminescence signals
and their collection was accomplished using one of the
light guides. To detect separately the photolumines-
cence (PL) signals of 2D electrons from different wells,
we used the fact that the radiations from the wells with
different widths or different electron densities are spec-
trally separated. With the object of unbalancing the
electron densities in the wells, we used an additional
He–Ne laser irradiation (with a wavelength of 633 nm).

Table

DQW no. L1, Å L2, Å l, Å NS, cm–2

1 220 300 50 7.3 × 1011

2 250 250 200 4.3 × 1011

3 150 150 200 4.8 × 1011

4 250 300 400 4.7 × 1011

5 200 200 600 8.3 × 1011
004 MAIK “Nauka/Interperiodica”
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This additional photoexcitation was mainly absorbed in
the near-surface AlGaAs layer and reduced the electron
concentration in the well that was situated closer to the
structure surface [3]. Simultaneously with the record-
ing of the PL spectra, they were mathematically pro-
cessed. The mean intensities 〈I1, 2〉  obtained for the two
wells in a measurement time, the variances D1, 2 =

〈∆ 〉 , the ratios D1, 2/〈I1, 2〉  of the variance to the mean
intensity, and the coefficient of correlation C12 =
〈∆I1∆I2〉/(D1D2)1/2 were estimated.

3. As in the case of a single quantum well (SQW),
the giant fluctuations in the DQW structures were
observed near the characteristic discontinuities in the
spectral positions of the lines arising in the integer Hall-
effect regime. In the structures with a narrow barrier
(l < 150 Å), this regime occurred simultaneously for
both wells, i.e., at the same magnetic field. A system of
two-dimensional electrons in double quantum wells is
characterized by two concentrations, because, due to
the interwell tunneling, the symmetric and antisymmet-
ric electronic states are energy-split [4, 5]. As a result,
the degeneracy caused by the presence of two quantum
wells is removed in the electron-energy spectrum, and
the electron Fermi surface proves to consist of two cir-
cles corresponding to two different Fermi quasimo-
menta (and, hence, to two different electron concentra-
tions) [5]. The narrower the barrier, the higher the tun-
neling probability, the greater the energy splitting, and
the stronger the distinctions between the Fermi quasi-
momenta and between the electron densities. Both elec-
tron densities could be determined separately using the
standard technique [6] of analyzing the Landau-level
fans in the luminescence spectra recorded at a temper-

I1 2,
2

Fig. 1. (a) Zero-field photoluminescence spectrum mea-
sured for a double quantum well 220/50/300 at a tempera-
ture of 1.5 K, and (b) magnetic-field dependences of the
Landau energy levels. Arrows indicate the lowest size-quan-

tization energy levels  and  in the wells and the Fermi

energy EF.

E0
1

E0
2

ature of 1.5 K in a perpendicular magnetic field. As an
example, Fig. 1 shows the photoluminescence spec-
trum measured for the structure with a barrier l = 50 Å
in zero magnetic field and the field dependences of the
Landau energy levels. These curves can be used to

determine the energy positions  and  of the lowest
size-quantization levels in the wells, the Fermi energy
EF, and the tunneling splitting. The concentrations of
2D electrons thus defined for both wells are 4.25 × 1011

and 3 × 1011 cm–2, respectively. A similar procedure for
determining the electron concentrations could be used
for all the studied structures, as well as under the con-
ditions of the additional illumination, in which case the
concentration could be changed in only one of the
wells. For this purpose, we used the light from a He–Ne
laser to reduce the electron concentration in the quan-
tum well situated closer to the sample surface [3].

In Fig. 2, the field dependences of the ratio of vari-
ance to the mean integrated intensity (integration over
the entire spectrum) are shown for the structure with a
barrier l = 50 Å. One can see from this figure that, as in
the case of a single quantum well, anomalously large
fluctuations of the radiative 2D-electron-recombination
intensity are also observed for the double quantum
wells, although in very narrow magnetic-field intervals,
and the noise dispersion is maximal in the fields for
which the total factor νtot = ν1 + ν2 has the integer values
4, 8, and 12. The absence of singularities for the filling
factors 6 and 10 suggests that the Landau levels are
fourfold degenerate (in spin and pseudospin or in the
well index [7]). One more important feature of the
observed giant fluctuations is that the filling factors
determined for each of the wells from two concentra-

E0
1 E0

2

Fig. 2. Magnetic-field dependence of the variance-to-mean
integrated intensity ratio measured for a double quantum
well with the barrier width l = 50 Å. The noise variance is
anomalously large when the total filling factor (νtot = ν1 +
ν2) becomes integer νtot = 4 (B ≈ 8 T), 8 (B ≈ 4 T), and 12
(B ≈ 2.7 T). The dotted lines indicate the values of magnetic
field (B = 6.21 and 8.8 T) for which the filling factor in the
first and second wells is ν = 2.

ntot

ntot

ntot

〈D
/L
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 1

〉
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tions are not integers at the resonance field values. At
the same time, in fields corresponding to the integer fill-
ing factors of the “individual” wells, the noise has the
usual Poisson character. Analogous results were also
obtained for the structures with wider barriers (l <
200 Å), whereas the character of observed dependences
is distinctly different for the samples with the widest
barriers (l = 400 and 600 Å) (see below).

4. The use of quantum wells of different widths
allowed us to measure separately the properties of
recombination radiation from different wells. This was
achieved due to the fact that, because of a heavy hole
mass, holes were well separated among the wells at l >
50 Å, and the difference in the electron and hole size-
quantization energies resulted in an appreciable spec-
tral shift of emission lines from the different wells. As
a result, the correlation analysis of only two lines in the
emission spectrum suffices to determine the coefficient
of correlation between the fluctuations measured in dif-
ferent wells. Similar correlation measurements could
also be made for the structures with identical wells, but,
only under the conditions where the electron concentra-
tions were markedly different due to the additional pho-
toexcitation by the He–Ne laser.

The spectrum and the ratio D1, 2/〈I1, 2〉  (B = 7.82 T)
measured at a temperature of 1.5 K for the sample with
the barrier width l = 50 Å are shown in Fig. 3. The cor-
relation C12 was calculated between the fluctuations of
the recombination lines corresponding to the lower spin
sublevels of the ground-state size-quantization sub-
bands of each of the two wells (lines at 1.515 and
1.519 eV, respectively). The radiation intensities of
both wells almost fully correlate (C12 = 0.98). The coef-
ficient of correlation between the radiation intensities
of one of the wells and its first excited subband (1SB)
C0SB1 was also calculated. This value proved to be close
to –1; i.e., the fluctuations in the ground and first
excited subbands, in effect, anticorrelate. It should be
noted that the minima of the D1/〈I1〉  ratio correspond to
the maxima of the luminescence lines in the first well;
i.e., the fluctuations are caused, to a large extent, by a
change in the positions of spectral lines. The lumines-
cence fluctuations of the second well proceed without
any significant changes in the line positions.

In the double quantum wells with barrier l = 200 Å,
the giant intensity fluctuations were also observed in
the luminescence spectra at νtot = 4, 8, and 12. In the
course of recording the PL spectra of this system, neg-
ative C12 values (–0.56) were obtained near the filling
factor νtot = 4. Inasmuch as the wells in this sample had
identical widths, we applied an additional illumination
from the He–Ne laser to achieve the desired spectral
resolution for the emission lines from the different
wells. In contrast to νtot = 4, the values of C12 were pos-
itive near the filling factor νtot = 8. The fact that the sign
of the correlation coefficient C12 changes with the
changing of the barrier width and filling factor suggests
JETP LETTERS      Vol. 80      No. 5      2004
that the correlation effects depend in an oscillatory
fashion on the interwell-tunneling probability. This fact
may be indicative of the relationship between the
observed phenomenon and the Josephson effect in the
SNS structures and may also be evidence of the appear-
ance of a new coherent macroscopic electronic state
possessing a collective wave function in the regime of
the quantum Hall effect.

In the structures with l = 400 Å, the intensity fluctu-
ations in the two neighboring wells, as before, notice-
ably exceeded the Poisson noise, but the coefficient C12

Fig. 3. (a) Luminescence and (b) noise spectra measured at
B = 7.82 T for a double quantum well with the barrier width
l = 50 Å (νtot = 4). The radiation intensities from both wells
almost fully correlate with each other (C12 = 0.98) and anti-
correlate with the radiation intensity from the first excited
subband (C0SB1 = – 0.97).

Fig. 4. The (a) luminescence and (b) noise spectra measured
at B = 7.6 T for a double quantum well with the barrier
width l = 600 Å. It is seen that only one of the wells pro-
duces noise (at ν2 = 2), which illustrates the absence of cor-
relation between the fluctuations of radiative recombination
in the wells.

ntot

ntot

0.98
–0.97

D
/〈I

〉
D

/〈I
〉



320 LEBEDEV et al.
was close to zero; i.e., the fluctuations did not correlate.
One cannot apply the term “total filling factor” to the
double quantum wells with the widest (l = 600 Å) bar-
rier, because the radiation-intensity fluctuations in the
wells were independent of each other and developed
when the filling factor for one of the wells was equal to
2, 4, or 6. The fluctuation amplitude in this structure
was appreciably lower than in the structures with the
narrower barriers, and only the fluctuations of the emis-
sion line with a maximum near 1.523 eV, correspond-
ing to the 2D-electron recombination in the well situ-
ated farther from the surface, were mainly observed
(Fig. 4).

5. Thus, the results obtained in this work show that,
as the width of the potential barrier between two quan-
tum wells increases, the character of giant lumines-
cence-intensity fluctuations that have arisen under the
conditions of the quantum Hall effect changes. In struc-
tures with a narrow (l = 50 Å) barrier, the fluctuations
in two neighboring quantum wells fully correlate. As
the barrier width increases from 50 to 200 Å for the fill-
ing factor νtot = 4, the correlation coefficient C12 takes
negative values, decreases in magnitude, and becomes
virtually zero upon the further increase in the barrier
width to 400 Å. One can assume that, in the case of a
narrow potential barrier (l = 50 Å), the positive coeffi-
cient of correlation obtained for both νtot = 4 and 8
stems from the collective wave function with the same
phase in both neighboring wells. As the barrier width
increases to l = 200 Å, a phase difference may arise
between the layer wave functions, resulting in the anti-
correlation of the noises from different wells. For the
structures with barrier l ≥ 400 Å, the overlap between
the wave functions of the two neighboring wells is
insignificant and C12 tends to zero. It is conceivable that
the change in the sign of C12 in the structures with
l = 200 Å upon the transition from νtot = 8 to 4 is caused
by the change in the symmetry of the electron wave
function.
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The hole thermal-emission rates and the cross sections for hole capture to the bound states in Ge quantum dots
in Si are determined by admittance spectroscopy. The capture cross sections and the activation energies for
emission rate are found to be related to each other by the Meyer–Neldel rule with a characteristic energy of 27 ±
3 meV, which does not depend on the quantum-dot size. It is established that the capture cross section changes
with temperature following the activation law. The experimental data are evidence of a unified multiphonon
mechanism for the activation processes of hole transitions from the Ge quantum dots to the Si valence band and
hole capture back into the quantum dots. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.20.Mf; 73.50.Pz
The charge-carrier excitation and recombination
processes in heterostructures with quantum dots (QDs)
play a key role in the operation of new-generation
devices, such as lasers and photodetectors based on
quantum effects in low-dimensional systems. If elec-
trons are emitted from the bound states to the allowed
band, energy can be absorbed, and if charge carriers are
captured from the allowed band to the QD bound states,
energy should be evolved. The main questions are
(i) what is the source of this energy, (ii) to what excita-
tions it is transferred, and (iii) what is the energy-trans-
fer mechanism? For example, the capture to the local
levels formed by the impurity centers and defects in
semiconductors can be controlled by either the Auger
processes or by the emission of a large number of
phonons in one event, or by the cascade mechanism
through the intermediate states (see [1] and references
therein). In this study, we used admittance spectroscopy
to determine the hole-capture cross sections and hole
thermal-emission rates from the bound states in the
Ge/Si QD layers to the continuous-spectrum states. The
conclusion is drawn that the QD thermal ionization and
the hole capture by QDs are multiphonon processes.

Samples were grown by molecular-beam epitaxy on
the p+-Si(001) substrates with a resistivity of 0.005 Ω cm
doped with boron to a concentration of ~1019 cm–3. Ge
layers of different thicknesses deff (deff = 0, 6, 8, and
10 monolayers (MLs); 1 ML = 1.4 Å) were epitaxially
introduced inside the p-Si layer (B concentration 5 ×
1016 cm–3; layer thickness 0.7 µm) at a distance of
0.4 µm from the substrate. The formation of Schottky
diodes was completed by the vacuum deposition of a Ti
film on the sample surface. The area of the Ti contact
0021-3640/04/8005- $26.00 © 20321
was 4.4 × 10–3 cm2. The high-energy electron diffrac-
tion patterns of the surfaces of Ge island films (deff = 6,
8, and 10 ML) showed that the Ge nanoclusters had a
pyramid shape. The average sizes of the Ge nanocluster
bases in the growth plane, as determined by high-reso-
lution electron microscopy, were 8, 10, and 15 nm for
deff = 6, 8, and 10 ML, respectively. The height-to-base
ratio was about 1 : 10. The sheet density of nanoclusters
was (3–4) × 1011 cm–2.

The admittance was measured using a Fluke
PM6306 RCL Meter bridge in the frequency range 10–
300 kHz at temperatures from 77 to 300 K. The ampli-
tude of the ac component of the applied voltage was
25 meV.

By analogy with the deep-level transient spectros-
copy (DLTS) of semiconductors [2, 3], admittance
spectroscopy of structures with QDs is based on mea-
suring the admittance arising upon the QD charge
exchange due to the emission of charge carriers from
QD to the allowed band and their capture to the local-
ized states in QD. Let us consider this situation by an
example of a Ti/p-Si/p+-Si Schottky diode with a layer
of Ge QDs introduced into the p-Si base region (Fig. 1).
As the reverse bias Ub (positive and negative polarities
of the Ti contact and p+-Si substrate, respectively)
changes, the hole energy levels in Ge QDs shift with
respect to the Fermi level EF in the p+-Si layer, leading
to a change in the hole filling factor in QDs. The ac
component of the voltage applied to the diode stimu-
lates the emission of holes from the levels located near
EF to the valence band of Si during the first half-period
and the hole capture to the bound states in QDs during
004 MAIK “Nauka/Interperiodica”
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the second half-period. According to the detailed bal-
ancing principle, the thermal emission rate can be writ-
ten as [2, 3]

(1)

where gt is the degeneracy factor, σp is the effective
cross section for hole capture into QDs, 〈v th〉  is the aver-
age thermal velocity of the holes, Nv is the effective
density of states in the Si valence band, Ei is the hole
energy level in a Ge QD (counted from the valence
band top in Si), kB is the Boltzmann constant, and T is
temperature. In the general case, the temperature
dependence of the capture cross section can follow the
activation law [1, 4–6]: σp(T) = σp0exp(–Eσ/kBT). Tak-
ing into account this circumstance and using the

en T( ) 1/gt( )σp T( ) v th〈 〉 Nv

Ei

kBT
---------– 

  ,exp=

Fig. 1. Dependence of the capacitance on reverse bias for
samples with deposited Ge layers of different thickness.
Measurements at room temperature at frequency f =
100 kHz. Thicknesses of Ge layers are given in monolayers.
Inset shows the valence-band profile of a Si Schottky diode
with a layer of Ge QDs built into the base.

Fig. 2. Temperature dependences of the conductance of the
samples with deposited Ge layers of different thickness.
Measurements are at Ub = 2 V at frequency f = 50 kHz.

G
/ω

Ub
expressions Nv = 2(2πm*kBT/h2)3/2 and 〈v th〉  =
(8kBT/πm*)1/2 (where m* is the effective mass of the
density of states and h is Planck’s constant), we can
write

(2)

where Ea = Ei + Eσ. In experiments, the temperature
dependence of the admittance G is measured at a fixed
reverse bias Ub and frequency f of the probe ac voltage.
The dynamic admittance, which is related to the charge
exchange in QDs, should be highest at the temperature
Tm satisfying the condition [7]

(3)

where ω = 2πf. At lower temperatures, when en(T) ! ω,
holes are frozen at the QD levels; therefore, the admit-
tance is low. At high temperatures, the corresponding
hole levels are depleted and do not contribute to the
conductance. As a result, G tends to zero again. By
determining Tm experimentally at different fixed fre-
quencies ω, we can find the temperature dependence of
the thermal emission rate en(T) and then, plotting the

dependences of ln(en/ ) on  according to expres-
sion (2), determine the activation energy Ea and the pre-
exponential factor for the capture cross section σp0.

Figure 1 shows the capacitance–voltage (C–V) char-
acteristics of the samples with deposited Ge layers of
different thickness deff. The measurements were per-
formed at room temperature at a frequency f = 100 kHz.
The dependence of the capacitance on reverse bias for
the sample without a Ge layer shows no specific fea-
tures and has the form of the conventional C–V charac-
teristic of a Schottky contact with a p-type semiconduc-
tor. The capacitance–voltage curves of the samples with
Ge QDs show characteristic steps caused by the addi-
tional capacitance that is due to a change of the charge
in the QD layer [8–10]. At zero bias, QDs accumulate
holes and become positively charged. At Ub > 4, 5, and
6 V for deff = 6, 8, and 10 ML, respectively, holes escape
from QDs and the latter become neutral.

Figure 2 shows the temperature dependences of the
conductance normalized to frequency for different
samples. The curves were measured at Ub = 2 V and f =
50 kHz. As in the case of C–V characteristics, the con-
ductance of the sample without Ge QDs shows no spe-
cific features. For the Schottky diodes with QDs, the
G(T) curves contain maxima, which shift to higher tem-
peratures with increasing QD size. Let us rewrite
Eq. (2) in the form

(4)

en T( )
16πm*kB

2

gth
3

-----------------------σp0T2 Ea

kBT
---------– 

  ,exp=

en Tm( ) . ω/2,

Tm
2 Tm

1–

Tm

Ei Eσ+

kB Tm
2 A/en Tm( )( )ln

----------------------------------------------,=
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where A = 16πm* σp0/gth3. It can be seen from
Eq. (4) that the increase in the value of Tm correspond-
ing to the highest conductance can be explained either
by a shift of the hole-level energy Ei in QDs from the
top of the Si valence band with increasing QD size (deff)
or by a decrease in the capture cross section. Looking
ahead (see Figs. 5, 6), we note that both of these factors
are at work.

Figure 3 shows the temperature dependences of the
conductance of the sample with deff = 6 ML. Similar
curves were obtained for the samples with Ge layers of
other thicknesses. The behavior of G(T) can be qualita-
tively explained as follows. At a fixed bias Ub, the hole
level in QD coinciding with the Fermi level in the p+-Si
substrate undergoes charge exchange. The rate of hole
emission from this level decreases with decreasing tem-
perature; therefore, with a decrease in the probe-volt-
age frequency, the condition for the maximum conduc-
tance (3) is satisfied at lower temperatures (Fig. 3a).

With an increase in reverse bias, the holes localized
at deeper QD levels, for which condition (3) at a fixed
frequency is satisfied at higher temperatures, contribute
to the conductance. For this reason, the conductance
peak in Fig. 3b shifts to higher temperatures with
increasing Ub. At Ub > 4 V, Ge QDs become completely
depleted and the maximum on the G(T) curve, which is
related to the charge exchange in QDs, disappears. At
the same bias, the end of the plateau is observed on the
C–V characteristic of the sample with deff = 6 ML
(Fig. 1).

Figure 4 shows the typical dependences en/ ( )
for deff = 8 ML, plotted in semilogarithmic coordinates.
The activation energies Ea of the hole-emission rate
were found from the slope of the approximating
straight lines, and the preexponential factor of the cap-
ture cross section σp0 was determined from the point of
intersection of the approximating lines and the ordinate
axis. The resulting values of Ea are shown in Fig. 5. We
should note two circumstances. First, the activation
energy tends to change discretely with variation in the
reverse bias. This is especially pronounced for the sam-
ple with deff = 8 ML. Apparently, such a behavior is due
to the discrete spectrum of holes in Ge QDs. Second,
the value of Ea for all samples exceeds the available the-
oretical and experimental values of the hole-level ener-
gies in Ge QDs with sizes considered here. For exam-
ple, the ground-state hole energy in a Ge QD with a lat-
eral size of 15 nm (deff = 10 ML) is about 400 meV [11–
14], whereas the maximum activation energy in the
emission rate is ≈700 meV. This means that Eσ ≈
300 meV; i.e., the temperature dependence of the cap-
ture cross section follows the activation law. Previously,
the same values of Eσ (≈300 meV) were obtained for
structures with InAs/GaAs QDs by DLTS [5]. Accord-
ing to the existing theoretical concepts [1, 4] the strong
(activation) temperature dependence of the capture

kB
2

Tm
2 Tm

1–
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Fig. 3. Temperature dependences of the conductance of the
sample containing a Ge layer with thickness deff = 6 ML.
Measurements with (a) a fixed reverse bias Ub = 1 V and dif-
ferent probe voltage frequencies and (b) a fixed frequency
f = 50 kHz and different reverse biases.

Fig. 4. Temperature dependence of the emission rate nor-

malized to squared temperature, em/ , for the sample

with deff = 8 ML, plotted in the Arrhenius coordinates for
different reverse biases.

Tm
2

G
/ω
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cross section is evidence of a multiphonon capture
mechanism. Within this model, thermal lattice vibra-
tions lead to fluctuations of the depth and width of the
potential well and, therefore, change the position of the
electron energy level in this well. There is a nonzero
probability for the fluctuating level to appear inside the
continuous spectrum of the allowed band, after which a
free electron may pass to this level. Then, the vibra-
tional excitation of the system will relax over the entire
volume of the crystal. In this case, the activation energy
for capture is the minimum excitation energy of a lat-
tice configuration that ensures the local-level entry into
the band of delocalized states. 

The most important result of this study is the revela-
tion of a relationship between the capture cross section
and the activation energy of the emission rate obeying

Fig. 6. Dependence of the capture cross section σp0 on the
activation energy of the hole emission from Ge QDs to the
Si valence band, which demonstrates that the Meyer–Neldel
rule is valid for samples with deposited Ge layers of differ-
ent thicknesses.

Fig. 5. Dependences of the activation energy of the rate of
hole emission from Ge QDs to the Si valence band on the
reverse bias for samples with deposited Ge layers of differ-
ent thicknesses.

Ub
the Meyer–Neldel rule. The Meyer–Neldel relation,
which was established for the conductance of powder
semiconductors [15], represents the exponential depen-
dence of the activation energy Ea for a thermally acti-
vated process on the preexponential factor ν0 of the
same process: ν0 = ν00exp(Ea/E0). This relation is valid
for a great variety of phenomena in many different sys-
tems, for example, annealing metastable defects in a-
Si:H [16]; conduction in a-Si:H [17], a-Si:Me alloys
[18], porous Si [19], and fullerenes [20]; and electron
ejection from traps associated with defects in binary
and ternary alloys [21].

Figure 6 shows the experimental values of σp0 cor-
responding to different values of Ea. The Meyer–Neldel
relation σp0 = σ00exp(Ea/E0) is valid for σp0 ranging
within seven orders of magnitude. The value of σ00
decreases with increasing deff and takes the values
(2.9 ± 1.4) × 10–19, (1.1 ± 0.4) × 10–19, and (4.1 ± 1.7) ×
10−20 cm2 for deff = 6, 8, and 10 ML, respectively. How-
ever, the characteristic energy E0, determined from the
slope of the σp0(Ea) curves, is independent of the QD
size (deff) and has the same value E0 = 27 ± 3 meV for
all samples with QDs.

Most mechanisms (such as the dispersion transport
[16], the statistical shift of the Fermi level and the tem-
perature shift of percolation thresholds [22, 23], and the
defect-controlled relaxation [24], etc.) that are used to
explain the validity of the Meyer–Neldel relation for
various disordered systems imply the exponential dis-
tribution of the trap energies [25] or potential barrier
heights [24] in a system. Since the density of states in
QDs is an oscillating rather than an exponential func-
tion of energy, these mechanisms are invalid in the case
under consideration. It is also very difficult to explain
within the framework of these models why the energy
E0 is independent of deff. In addition, the change in the
parameter σ00 with the retention of the Ea value contra-
dicts the conclusions drawn in [24, 25].

In our opinion, the experimental results obtained by
us can be more adequately described by the mechanism
of many-particle excitations proposed in [26–28]. In
this case, the Meyer–Neldel rule is a natural conse-
quence of the linear relationship between the free
energy, enthalpy, and entropy of the many-quasiparticle
system. If such excitations are phonons (which, appar-
ently, holds true for the system studied), then E0 =
Eph/lnN, where Eph is the phonon energy and N is the
number of phonons involved in a thermally activated
process [27]. Thus, to a logarithmic correction, the
characteristic energy E0 is nothing but the phonon
energy. The energy of an optical phonon in Ge is equal
to 38 meV and only weakly depends on the QD size if
the latter is much larger than the interatomic distance.
Indeed, this value is close to the experimental value of
E0 (27 meV). Using the relation between E0 and Eph, we
obtain a reasonable estimate: N = 4.
JETP LETTERS      Vol. 80      No. 5      2004
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Thus, both processes in layers of Ge/Si QDs—the
emission of holes from QDs and their capture into
QDs—can be described in terms of the same mul-
tiphonon mechanism.

This study was supported by the Russian Founda-
tion for Basic Research (project no. 03-02-16526) and
the program of the President of the Russian Federation
in support of young doctors of science (grant no. MD-
28-2003-02).
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The model of a spatially restricted liquid-crystal system with microscopic impurities homogeneously distrib-
uted in the system is considered. The thermodynamic correlations of the director-orientation fluctuations and
the correlations of the scalar order parameter characterizing impurities in the system are investigated for this
system. It is shown that the impurity correlations are weaker than in a pure isotropic liquid. The correlations in
the director deviations depend essentially on the wavevector and can be substantially weakened in the presence
of impurities. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 31.15.Kb; 61.30.-v; 61.30.Cr
In spite of the tangible progress made in recent years
in the study of liquid crystals, some problems still
remain topical and incompletely resolved [1–3]. The
problem of calculating the correlation of the fluctua-
tions of orientational order in nematic crystals in the
presence of impurities may be related to the aforemen-
tioned problems. Taken alone, this problem is rather
many-sided, and its solution is essentially determined
by the type of impurity particles, their nature, and by
several other factors [4]. In this work, a model is sug-
gested for studying the correlation behavior of the
director fluctuations in a liquid-crystal spatially
restricted system with the geometry of a plane-parallel
layer in the presence of thermodynamically equilibrium
impurities homogeneously distributed in the system.
Note that such systems without impurities were rather
successfully studied in a number of works (see, e.g.,
[5]). We will study the microscopic impurities that are
suggested to be interpret as an isotropic liquid sub-
system in the nematic matrix.

For definiteness, we will consider a nematic liquid
layer of thickness L confined between two identical sur-
faces. The z axis is directed perpendicular to the layer
plane, and the confining surfaces have the coordinates
z = 0 and L. The deformation energy of liquid crystal is
taken in the form

(1)

where Ki (i = 1–3) are the Frank moduli and n is the
director unit vector that depends, in the general case, on
the spatial coordinate. Integration is over the sample
volume. We also assume that the anchoring at the wall

Flq = 
1
2
--- K1 divn( )2 K2 ncurln( )2 K3 n curln×( )2+ +( ) V ,d∫
0021-3640/04/8005- $26.00 © 20326
surfaces is rigid, so that the director at the surface is
directed perpendicular to the walls.

Apart from this energy that is caused, as was men-
tioned above, by the distortion of the director orienta-
tion, one should also take into account the energy of
isotropic impurities and their direct interaction with liq-
uid crystal. In particular, the subsystem of isotropic liq-
uid is characterized by the Hamiltonian

(2)

where φ(r) is the scalar order parameter (e.g., deviation
of density from its mean value), and the parameters a
and b are the standard parameters of the Landau theory.

The natural question arises as to how one should
characterize the interaction of a nematic matrix with
isotropic impurities. In the model adopted, this interac-
tion is considered as a process of director orientation in
the gradient field of the order parameter. The corre-
sponding term should be invariant about the direction
inversion. There can be several such terms. However, it
can easily be shown that they all lead to essentially sim-
ilar effects. For this reason, to obtain qualitative results,
we consider only one energy term that describes the
interaction of the nematic with the impurities:

(3)

In this case, the parameter W characterizes the interac-
tion between the nematic and impurities, and it can be,
strictly speaking, either positive or negative.

Fil
1
2
--- aφ2 b ∇φ( )2+( ) V ,d∫=

Fll W ∇ n⋅( ) n∇φ( ) V .d∫–=
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Therefore, we will consider below the following
total energy of the system:

(4)

It is quite obvious that the homogeneous director distri-
bution along the direction perpendicular to the nematic
layer is statistically equilibrium for this system.

Of interest to us are the thermodynamic director
fluctuations in such a system. With this in mind, we
consider, as is customary, the director deviation from
the equilibrium value. We choose the vector δn(r) =
(δnx(r), δny(r), 0) as a quantity characterizing the direc-
tor deviation (the z axis is chosen perpendicular to the
plane of nematic layer). Next, we consider the energy
increment (to a second approximation in the director
deviation) caused by the director fluctuations. In partic-
ular, taking into account the boundary conditions for
the director and the condition following from the mini-
mization of the total Hamiltonian with respect to the
scalar order parameter (its derivative with respect to the
coordinate z at the boundary is zero), we represent the
director deviation and the order parameter in the form
of series

(5)

(6)

where α = {x, y}. We then perform the Fourier trans-
form in the layer plane, according to the relation

(7)

with the vector r lying in the layer plane and S deter-
mining the layer area. As a result, one has, in a single-
constant approximation (K1 = K2 = K3 ≡ K),

(8)

Next, it is convenient to introduce the parameter

(9)

F Flq Fil Fll.+ +=

δnα r( ) δnα m( ), x y,( ) πmz/L( ),sin
m 1=

∞

∑=

φ r( ) φm x y,( ) πmz/L( ),cos
m 1=

∞

∑=

f r( ) 1
S
--- f q( ) iqr( ),exp

q

∑=

δF
L

4S
------ K q2 π2m

2
/L2+( ) δn m( ) q( ) 2---


q

∑
m 1=

∞

∑=

+ b q2 π2m2/L2 a/b+ +( ) φm q( ) 2

+
2iWπm

L
------------------qδn m( ) q( )φm* q( )

 .

h m( ) q( ) δn m( )
iWπmqφm* q( )

KL q2 π2m2/L2+( )
--------------------------------------------.+=
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In this case, the free energy corresponding to an indi-
vidual harmonic can be represented as

(10)

Using this expression and the theorem on the energy
equipartition among the degrees of freedom, one
obtains the statistical mean for the order parameter fluc-
tuations:

(11)

One can readily see that the new features arise, as com-
pared to a pure liquid.

To study the director correlations, it is reasonable to
represent the director via the projections onto the layer
plane in such a way that, say, the x axis coincides with
the direction of the q vector (clearly, this representation
is unique for each wavevector). Then, instead of the
parameter h, it is more suitable to introduce another
(scalar) parameter, namely, 

(12)

One can easily see that the correlators for different pro-
jections of the vector of director deviations are differ-
ent. Namely, one has for energy

δFq m( ),
L

4S
------ K q2 π2m2

L2
------------+ 

  h m( ) q( ) 2


=

+ b q2 π2m2

L2
------------ a/b+ + 

  W2π2m2q2

KL2 q2 π2m2/L2+( )
-----------------------------------------------+ 

 φm q( ) 2


 .

φm q( ) 2〈 〉

=  
2kBTS/L

b q2 π2m2/L2 a/b+ +( ) W2π2m2q2

KL2 q2 π2m2/L2+( )
-----------------------------------------------+

------------------------------------------------------------------------------------------------------------.

νm q( ) φm q( )
iWπmqnx* q( )

bL q2 π2m2/L2 q/b+ +( )
----------------------------------------------------------.–=

δFq m( ),
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4S
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



α x y,=

∑

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=

Statistical correlator G(k) ~ 〈|φ(k)|2〉  for (solid line) pure liq-
uid and (dashes) in the presence of liquid crystal.
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(13)

In this expression, δα, β is the Kronecker delta. It is then
clear that no changes, as compared to a pure nematic,
occur in the statistical correlations in the direction per-
pendicular to the wavevector q. In particular, one has in
this case

(14)

The correlations appreciably weaken along the
wavevector direction. For the corresponding vector
component, one has

(15)

Clearly, the dependence in the latter case is qualita-
tively the same as for the order parameter correlations
of isotropic impurities.

Thus, when comparing the fluctuations of scalar
order parameters in the system of interest with those in
a pure liquid, one arrives at the conclusion that the pres-
ence of a nematic has a stabilizing effect on the fluctu-
ation correlations. At the same time, impurities exert
the same effect on the correlations of director orienta-
tion. However, in the latter case, this effect shows up
only in the fluctuation wavevector direction. Consider-
ing that the Fourier transforms of the correlation func-
tions determine the light-scattering intensity, and that
the intensity of this scattering from the director fluctu-
ations is an order of magnitude higher than for the light
scattering from the density fluctuations, this result is of
interest from the viewpoint of the experiments with
light scattering in these systems.

In addition, one can see from Eq. (15) that the last
term in the denominator is constant for the isotropic
component of the system (i.e., impurity liquid) at the
critical point defined by a/b + π2/L2 = 0 (this is a critical
point of a restricted system; for the unrestricted system,
this condition takes the form a = 0), for which reason
one can speak about a change in the fluctuation correla-
tion radius in the direction determined by the wavevec-
tor q.

From a practical point of view, of prime interest are
the values of statistical correlators in the “laboratory”
system. It is evident that these correlators are expressed
in terms of a linear combination of the statistical corre-
lators obtained above. One can thus expect that, when

+
W2π2m2q2 δnα m( ), q( ) 2δα x,

bL2 q2 π2m2/L2 a/b+ +( )
-----------------------------------------------------------------





+ b q2 π2m
2

L2
------------ a/b+ + 

  νm q( ) 2





.

ny m( ), q( ) 2〈 〉
2kBTS

KL q2 π2m2/L2+( )
--------------------------------------------.=

nx m( ), q( ) 2〈 〉

=  
2kBTS/L

K q2 π2m2/L2+( ) W2π2m2q2

bL2 q2 π2m2/L2 a/b+ +( )
------------------------------------------------------------+

------------------------------------------------------------------------------------------------------------.
conducting an experiment (e.g., on light scattering by
the system under consideration), some difficulties of a
fundamental nature can arise, because, in this case, one
would have to offset an addition that is small compared
to the contribution introduced to the scattering intensity
directly from the liquid-crystal subsystem. It may well
be that this is precisely the reason why such measure-
ments have not been carried out so far. Based on the
data of this work, one can expect that the scattering
peak in this case would be appreciably broader than in
a pure substance.

Nevertheless, the relative simplicity of the sug-
gested model allows its physical interpretation to be
somewhat extended. For instance, it can evidently be
applied at least to a partial description of the two-phase
region of a nematic–isotropic liquid system. Here, a
qualitative correlation is seen between the model
results and the data (theoretical and experimental)
obtained for such (and related) systems [4, 6]. In addi-
tion, of interest is an isotropic system with a relatively
low concentration of strongly anisotropic molecules. In
this case, one can deal with a binary solution or a liquid
with impurities. The shift of critical parameters (tem-
perature) as a function of the concentration (or other
characteristics of the interaction between the sub-
systems) and the linear sizes (in the case of spatial con-
finement) is ordinarily the main effect to be studied [7].
With the correction for the critical indices, our results
agree well with the data on both liquid-crystal [5, 7] and
liquid (one-component and binary) [7–9] systems.
Finally, the character of the correlation behavior of the
system is in qualitative agreement with the Monte Carlo
results obtained for a liquid-crystal system with impu-
rities (concerning the critical-point shift) [10].
Although the impurities in that work were regarded as
frozen-in, qualitative agreement should occur, because,
considering the zero mean-statistical value of the order
parameter of an isotropic subsystem and the random
character of its fluctuations, the latter can be inter-
preted, with some reservations, as an external random
field. At the same time, the models with such fields
often serve as a base for studying the behavior of liquid
systems in porous media (see, e.g., [11] and references
therein). In this respect, the suggested model is not con-
tradictory to the presently available data.

In spite of the aforementioned, the problem of the
correlation behavior of the director fluctuations in a
nematic liquid crystal with impurities calls for further
investigation. In this respect, the refinement of the
model by introducing the dependence of the Frank
moduli on the mixture composition, as well as the
inclusion of various types of interactions between the
subsystems in the model, seems to be most promising.
Nevertheless, the performance of an adequate experi-
ment is likely the most complicated problem, because
the majority of the aforementioned experimental works
allow the practicability of the model to be checked only
indirectly.
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On Electron Transport in ZrB12, ZrB2, and MgB2 
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We report on measurements of the temperature dependence of resistivity, ρ(T), for single-crystal samples of
ZrB12, ZrB2, and polycrystalline samples of MgB2. It is shown that the cluster compound ZrB12 behaves as a
simple metal in the normal state, with a typical Bloch–Grüneisen ρ(T) dependence. However, the resistive
Debye temperature, TR = 300 K, is three times smaller than TD obtained from specific heat data. We observe the
T2 term in ρ(T) of all these borides, which could be interpreted as an indication of strong electron–electron inter-
action. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.15.Gd; 74.60.Ec; 74.70.Ad
It is known that boron has a tendency to form cluster
compounds. In particular, there are octahedral B6 clus-
ters in MeB6, icosahedral B12 clusters in β-rhombohe-
dral boron, and cuboctahedral B12 clusters in MeB12. So
far, several superconducting cubic hexa- (MeB6) and
dodecaborides (MeB12) have been discovered [1] (Me =
Sc, Y, Zr, La, Lu, Th). Many other cluster borides (Me =
Ce, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm) were found to
be ferromagnetic or antiferromagnetic [1, 2]. Even
though the superconductivity in ZrB12 was discovered a
long time ago (Tc = 6 K) [1], there has been little effort
devoted to the study of electron transport and basic
superconductive properties of dodecaborides. Only
recently, electron transport of solid solutions
Zr1 − xScxB12 [3] as well as the band structure calcula-
tions of ZrB12 [4] has been reported. Understanding the
properties of cluster borides as well as the supercon-
ductivity mechanism in these compounds is very
important.

In this letter, we address this problem. We present
the results from measurement of the temperature
dependences of resistivity, ρ(T), for single crystals of
ZrB12. Comparative data from single crystals of ZrB2
and polycrystalline samples of MgB2 are also pre-
sented. The superconducting properties of ZrB12 will be
published elsewhere.

Under ambient conditions, dodecaboride ZrB12
crystallizes in the fcc structure of the UB12 type (space
group Fm3m), a = 0.7408 nm [5]. In this structure, the
Zr atoms are located at interstitial openings in the close-
packed B12 clusters [3]. In contrast, ZrB2 shows a phase

¶ This article was submitted by the authors in English.
0021-3640/04/8005- $26.00 © 20330
consisting of two-dimensional graphitelike monolayers
of boron atoms with a honeycomb lattice structure,
intercalated with Zr monolayers (with lattice parame-
ters a = 0.30815 nm and c = 0.35191 nm [6]).

The ZrB2 powder was produced by the boron car-
bide reduction of ZrO2. The ZrB12 single crystals were
obtained from a mixture of a certain amount of ZrB2

and an excess of boron (50–95%). The resulting mate-
rials were subjected to a crucible-free RF-heated zone-
induction melting process in an argon atmosphere. The
obtained single-crystal ingots of ZrB12 and ZrB2 have a
typical diameter of about 5–6 mm and a length of
40 mm. A metallographic investigation detected that
the ZrB2 crystal is surrounded by a polycrystalline rim
about 0.5 mm thick. The measured specific density of
the ZrB12 rod is 3.60 g/cm3, in good agreement with the
theoretical density. The X-ray diffraction measure-
ments confirmed that both ingots are single crystal. We
found the cell parameters of ZrB12, a = 0.74072 ±
0.00005 nm, to be very close to the published values [5].

Polycrystalline MgB2 and CaMgB2 samples were
sintered from metallic Mg or a mixture of Ca, Mg pow-
ders and boron pellets using a similar technique as was
outlined in our earlier work [6]. This technique is based
on the reactive liquid Mg, Ca infiltration of boron. X-
ray diffraction patterns and optical investigation show
large grains of single MgB2 phase, with much smaller
grains of semiconducting CaB6 phase visible in-
between. The density of MgB2 grains was rather high,
2.4 g/cm3, while the samples prepared from Mg infiltra-
tion had a smaller density of 2.2 g/cm3. Only MgB2
004 MAIK “Nauka/Interperiodica”
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samples cut from large grains were studied. These sam-
ples will be denoted as CaMgB2.

We used a spark erosion method to cut the samples
into a parallelepiped with dimensions of about 0.5 ×
0.5 × 8 mm. Single-crystal samples were oriented along
〈100〉  for ZrB12 and in hexagonal [0001] and basal

[1 00] directions for ZrB2, respectively. The orienta-
tion process was performed using an X-ray Laue cam-
era. The samples were lapped by diamond paste and
subsequently etched: ZrB12 in hot nitrogen acid, ZrB2 in
mixture of H2O2/HNO3/HF, and MgB2 in 2% HCl plus
water-free ethanol.

A standard four-probe ac (9 Hz) method was used
for resistance measurements. We used Epotek H20E
silver epoxy for the electrical contacts. The samples
were mounted in a temperature variable liquid helium
cryostat. Temperature was measured with platinum
(PT-103) and carbon glass (CGR-1-500) sensors. The
critical temperature measured by RF susceptibility [6]
and ρ(T) was found to be Tc0 = 5.97 K for ZrB12 samples
and 39 K for MgB2 polycrystalline samples, respec-
tively.

We display the temperature dependence of the resis-
tivity for ZrB12, MgB2, and CaMgB2 in Fig. 1 and that
of ZrB2 in Fig. 2. To emphasize the variation of ρ(T) in
a superconductive state, we plot these data in the inset
of Fig. 1. The samples demonstrate a remarkably nar-
row superconducting transition with ∆T = 0.04 K for
ZrB12 and with ∆T = 0.7 K for both MgB2 samples.
Such a transition is a characteristic of good quality sam-
ples.

Recently, we reported superconductivity at 5.5 K in
the polycrystalline samples of ZrB2 [6]. This was not
confirmed in later studies [7]. As we can see from
Fig. 2, no superconductivity was observed in single-
crystal samples of ZrB2 down to 1.3 K, while a pro-
nounced slope change in ρ(T) is observed around 7 K.

1

Fig. 1. Temperature dependence of the resistivity, ρ(T), of
ZrB12 single-crystal (open circles), MgB2 (squares), and
CaMgB2 (crosses) samples. The solid lines represent BG
fits to the experimental data by Eq. (1).
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Such behavior could be associated with nonstoichiom-
etry in the zirconium sublattice [8]. In ZrB2, the Fermi
level is located in the pseudogap. The presence of Zr
defects in Zr0.75B2 leads to the appearance of a very
intense peak in the density of states in the vicinity of the
pseudogap and subsequent superconductivity [8]. We
strongly believe that the observation of [6] was due to
the nonstoichiometry of our samples. Superconductiv-
ity in nonstoichiometric samples is very common in
other borides: MoB2.5, NbB2.5, Mo2B, W2B, and BeB2.75
[9, 10].

It is worth noting that ZrB12 is mostly boron, and
one could speculate that its resistivity should be rather
high. In contrast, we observe that the room-temperature
resistivity of ZrB12 is almost the same as for MgB2 and
ZrB2 samples. The ρ(T) is linear above 90 K with the
slope of ρ(T) more pronounced than in MgB2 or ZrB2.
The residual resistivity ratio RRR of 9.3 for ZrB12 as
well as RRR ≈ 10 for MgB2 and ZrB2 samples suggests
that the samples are in the clean limit. One can predict
a nearly isotropic resistivity for fcc ZrB12, which can be
described by the Bloch–Grüneisen (BG) expression of
the electron–phonon e–p scattering rate [11]:

(1)

Here, ρ(0) is the residual resistivity, ρ1 = dρ(T)/dT is the
slope of ρ(T) at high T (T > TR), t = T/TR, TR is the resis-
tive Debye temperature, and J5(1/t) is the Debye inte-
gral. As we can see from Fig. 1, all data for ZrB12 fall
very close to the theoretical BG function (solid line). To
emphasize the variation of ρ(T) at low T, we plot these
data as ρ(T) – ρ(0) versus t5J5(1/t) in Fig. 3 on a log–log
scale. The BG formula predicts a linear dependence of

 – ρ(0)] versus  with the slope

ρ t( ) ρ 0( )– 4ρ1t5 x5ex xd

ex 1–( )2
--------------------

0

1/t

∫ 4ρ1t5J5 1/t( ).= =

ρ T( )[log t5J5 1/t( )[ ]log

Fig. 2. Temperature dependence of ρ(T) of ZrB2 single-
crystal samples in basal plane (circles) and in the c direction
(squares).
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equal to unity. We use TR as a fitting parameter to
achieve agreement at high temperatures. For compari-
son, we also present our ρ(T) data of ZrB2 and MgB2

calculated in a clean case of the two-band model [12].

It is clear from Fig. 3 that, above 25 K, the BG
model describes the ρ(T) dependence of ZrB12 fairly
well. It is remarkable that this description works well
with constant TR = 300 K. At the same time, TD calcu-
lated from specific heat data [13] is three times higher.
Furthermore, TD increases from 800 to 1200 K as tem-
perature varies from Tc up to room temperature. In
order to shed light on this discrepancy, we used a model
applied to LaB6 of [14]. We can treat the boron sublat-
tice as a Debye solid with TR and the Zr ions as indepen-
dent Einstein oscillators with characteristic tempera-
ture TE. The effect of the Einstein mode on the resistiv-
ity of a metallic solid is discussed in [15]:

(2)

Here, N is the number of oscillators per unit volume, K
is a constant that depends on the electron density of the
metal, and M is the atomic mass. We fit the data by sum-
ming Eqs. (1) and (2) and living KN/M, ρ1, TR as free
parameters. Although the model calculations perfectly
match the data (see solid line in Fig. 3), the TE we
obtain is unreasonably small (TE = 50 K) and the differ-
ence between TR and specific heat TD becomes even
worse, TR = 270 K. We believe that this inconsistency
of TR and TD can be explained by limitation of TR by a
cutoff phonon wave vector q = kBT/"s. The latter is lim-
ited by the Fermi surface (FS) diameter 2kF [16] rather
than the highest phonon frequency in the phonon spec-
trum.

ρE T( ) KNe
TE/T

MT e
TE/T

1–( )
2

------------------------------------.=

Fig. 3. The ρ(T) – ρ(0) vs. reduced Debye integral t5J5(1/t)
for ZrB12 (open circles), ZrB2 in the basal plane (crosses),
and CaMgB2 (squares). The dashed line is ρ(T) of MgB2
calculated in the two-band model [12].
According to band structure calculations [4], the FS
of ZrB12 consists of an open sheet along the ΓL direc-
tion at point Γ with kΓX = 0.47 Å–1, a quasispherical
sheet at point X (kXΓ = 0.37 Å–1), and a small sheet at
point K (kKΓ = 0.14 Å–1). We suggest that TR is limited
by the small FS sheet. Unfortunately, the experimental
FS model and the sound velocity are not yet known.
Therefore, we cannot corroborate this suggestion by
experimental FS.

As we can see from Fig. 3, the ρ(T) of ZrB2 and
MgB2 samples deviates from the BG model even more
dramatically. Putti et al. [17] modified the BG equation,
introducing variable power n for the tnJn(1/t) term in
Eq. (1). The best fit to the data was obtained with n = 3,
which, in fact, ignores the small-angle e–p scattering.
Recently, Sologubenko et al. [18] reported a cubic T
dependence in a, b plane resistivity below 130 K in the
single crystals of MgB2. This was attributed to the inter-
band e–p scattering in transition metals.

However, we believe that there are strong objections
to this modified BG model: (i) a cubic ρ(T) dependence
is a theoretical model for large-angle e–p scattering,
and no evidence of it was observed in transition and
nontransition metals; (ii) the numerous studies of the
ρ(T) dependence in transition metals have found it to be
consistent with a sum of electron–electron e–e, T2, and
e–p, T5, contributions to the low-T resistivity, which
may easily be confused with a T3 law [11, 19, 20]; and
(iii) the interband σ–π e–p scattering plays no role in
normal transport in the two-band model for MgB2 [12].

In order to solve these problems, we added an e–e
scattering T2 term in Eq. (1) [19, 20] as a possible sce-
nario. Indeed, keeping in mind that the BG term is pro-
portional to T5 at T < 0.1TR, the ρ(T) dependence may
be presented in a simple way [19, 20]: [ρ(T) – ρ(0)]/T2 =

α + βT3. Here, α and β = 497.6ρ1/  are parameters of
e–e and e–p scattering terms, respectively. Such a plot
should yield a straight line with a slope of β, and its
intercept with y-axis (T = 0) should be equal to α. Fur-
ther, to be consistent with the BG law, the β parameter
should lead to the same TD as obtained from high-T
log–log fit in Fig. 3, and both coefficients must be inde-
pendent of ρ(0). We determined ρ(0) from the intercept
of linear ρ(T) versus T2 dependence with the T = 0 axis
and plotted the [ρ(T) – ρ(0)]/T2 versus T3 in Fig. 4. It is
evident that the measured resistivity approaches a qua-
dratic law at T < 25 K in ZrB12, at T < 100 K in ZrB2,
and at T < 150 K in both MgB2 samples.

The regime of applicability of a two-term fit is lim-
ited to temperatures below 0.1TR. At larger T, the e–p
term increases more slowly than T5 law, and this is why
the data are no longer consistent with the two-term
equation. From the intercept with T = 0 axis, we find
very similar values of α for ZrB12 and ZrB2 samples in
the basal plane (α = 22 and 15 pΩ cm K–2, respec-
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tively), while α is about five times larger for the
CaMgB2 sample, 95 pΩ cm K–2. The slopes of β give ρ1
and TR values largely consistent with high-temperature
log–log fits for the ZrB12 and ZrB2 samples.

However, low-T results for β and ρ1 are far from
consistent with high-T data for both MgB2 and CaMgB2
samples. Nevertheless, the magnitude of TR = 900 K for
MgB2 extracted from log–log fit above 150 K is in
excellent agreement with TD = 920 K obtained from
low-temperature specific heat measurements [21] and
is considerably lower than the reported data based on T3

dependence of ρ(T) (TR = 1050–1226 K, where the T2

term was ignored) [7, 17, 18]. A similar fit for the theo-
retical curve is even more consistent with TR = 900 K;
however, we have to mention that violation of Matthies-
sen’s rule in MgB2 may mask the intrinsic ρ(T) depen-
dence [12].

In general, there are many scattering processes
responsible for the T2 term in ρ(T) of metals: (i) size-,
surface-, dislocation-, and impurity scattering-induced
deviations from Matthiessen’s rule (see references in
[22]), (ii) e–p scattering for small cylindrical FS sheets
relative to the phonon wave vector [16], (iii) inelastic
electron impurity scattering (e–i) [23], (iv) the quantum
interference between e–i and e–p scattering [24], and
(v) e–e scattering [19, 20].

We can estimate some of these effects. We use the
Drude law to obtain the residual electron mean free

path l = 4πvF/ρ . Using a Fermi velocity of vσ =

3.2 × 107 cm/s and a plasma frequency  = 5.16 ×
1015 s–1 for MgB2 σ-band [12], we obtain l ≈ 100 nm.
This implies that size effects are negligible for both
MgB2 samples and Zr borides. In agreement with ZrB2
data (see Fig. 4), the α is proportional to ρ(0) for inelas-
tic e–i scattering [23, 24]. However, this term is
1.5 times lower for CaMgB2 relative to MgB2, which
has the same ρ(0).

We can try to estimate the contribution from the
small FS sheets to α. The T2 term was observed in ρ(T)
and electron scattering rates of Bi and Sb, which was
attributed to a lack of one q component for e–p scatter-
ing on small cylindrical FS sheets [16]. The FS of
MgB2 is composed of two warped open cylinders run-
ning along the c axis that arise from σ boron orbitals
[12, 25]. The FS of ZrB2 consists of nearly ellipsoidal
surfaces joined together at the corners [26, 27], which
may also be responsible for the T2 term in ρ(T). We can
use the sound velocity s = 1.1 × 106 and 8 × 105 cm/s for
MgB2 and ZrB2, respectively [28, 29], to estimate the
lowest temperature, Tmin = "kFs/kB, when the phonon
wave vector q matches the neck of a smaller σ tube in
MgB2 (kσ = 0.129 Å–1 [25]) or the diameter of the ellip-
soidal sheets in ZrB2 (kF = 0.095 Å–1 [26]). We obtain
Tmin = 95 and 60 K, respectively. Thus, we conclude

ωp
2

ωp
σ

JETP LETTERS      Vol. 80      No. 5      2004
that q < kF at T < 100 K in both diborides, which implies
that the contribution of 2D FS sheets to α is negligible.

In general, only umklapp e–e scattering contributes
to ρ(T), whereas normal collisions are significant in
compensated medals and in thermal resistivity [20].
Borides have rather high TD, which depresses the e–p
scattering, so that the e–e SR term is easier to observe.
Notice, however, that the α value for MgB2 is five times
larger than the corresponding values in ZrB12 and ZrB2.
The latter values are, in turn, five times larger than in
transition metals (αMo = 2.5 pΩ cm K–2 and αW = 1.5–
4 pΩ cm K–2 [19, 20]). Therefore, additional experi-
ments must be performed for more pure samples before
final conclusion about the origin of the T2 term in
borides can be drawn.

In conclusion, we present a study of the ρ(T) of sin-
gle crystals of ZrB12, ZrB2, and polycrystalline samples
of MgB2. Large differences between resistive and spe-
cific heat Debye temperatures have been observed for
ZrB12. The results provide evidence of a T2 term for all

Fig. 4. Low-temperature behavior of [ρ(T) – ρ(0)]/T2 versus
T3 for (a) ZrB12 (circles), ZrB2 in the basal plane (squares),
ZrB2 along c (triangles) and (b) MgB2 (circles) and
CaMgB2 (squares) samples.
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these borides at low T, the origin of which is not yet
understood.
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To identify optical transitions that can excite long-wavelength stimulated radiation in uniaxially compressed
Ga-doped germanium, the absorption and photoconduction spectra of this material were studied over a wide
range of pressures in the [111] and [001] directions. It was found that some of the excited states of gallium
impurity became resonant upon the buildup of pressure. The energy levels of these states reach the light-hole
band, whereupon they enter this band and remain near its edge, showing up in the form of broad bands. No sin-
gularities confirming the existence of the impurity resonance states were observed in the spectra near the edge
of the heavy-hole band. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.55.Cn
In [1], long-wavelength stimulated radiation was
observed from gallium-doped germanium crystals (N ≈
1014 cm–3) prepared in the form of total internal-reflec-
tion cavities. The radiation appeared at low tempera-
tures (4.2 K) in a strong (2–4 kV/cm) electric field upon
crystal uniaxial compression with a pressure P of 4–
10 kbar. It was assumed [2] that this effect is associated
with the population of the impurity energy levels, split
due to the crystal deformation and located in the light-
hole band by hot holes. Calculations [3–5] confirmed
that such resonance states could lie near the heavy-hole
band edge. The subsequent interpretation [6–8] of the
experimental results was based on the assumption that
the acceptor spectra in uniaxially compressed Ge crys-
tals are characterized by the local levels in the forbid-
den gap and resonance levels “attached” to the heavy-
hole band edge. However, we are not aware of direct
experiments confirming such an interpretation.

Similar states are known in silicon, whose absorp-
tion [9] and photoconductivity (PC) spectra have peaks
corresponding to the transitions from the ground state
1S3/2 of group III acceptors to the 2P1/2 and 3P1/2 states
in the valence-band branch split off by the spin–orbit
interaction. These peaks are shifted to high energies
from the narrow lines of the fundamental P3/2 series by
an energy close to the spin–orbit splitting (44 meV) and
are broadened (≈0.5 meV) due to a short lifetime. How-
ever, Raman scattering studies [10] have proved that the
1S1/2 level of boron impurity is not a resonance level
and lies in the forbidden gap at a distance of 23 meV
from the valence-band edge. The subsequent calcula-
tions [11] gave a close position of this level. Our anal-
ysis of the impurity absorption and PC of uniaxially
compressed Ga-doped germanium showed that the res-
onance states of this impurity really exist, but that their
0021-3640/04/8005- $26.00 © 20335
spectrum differs fundamentally from the one predicted
in [3–5].

We studied Ga-doped germanium samples (N ≈
1014 cm–3) 1 × 1 × 10 or 2 × 2 × 10 mm in size, which
were cut in the [111] and [001] directions. GaInSn alloy
contacts (liquid state at room temperature) were
applied to the ends of the samples. Excessive alloy was
squeezed from under the contacts upon the compres-
sion of the samples between electrodes made of
annealed copper. The PC noise in the samples with such
contacts was determined by the background fluctua-
tions at room temperature. To study the absorption and
to normalize the PC spectra, a germanium photoresistor
doped with Sb (N ≈ 1015 cm–3) was located behind the
sample. The photodetector aperture was limited by a
short tube mounted in the immediate vicinity of the
sample. This protected the detector from the radiation
bypassed in the sample. The sample in a casette was
immersed in the helium bath (4.2 K) of a cryostat with
windows made from fused or crystalline quartz to limit
the background intensity. This enabled us to increase
manyfold the threshold sensitivity of both the detector
and the samples in the photon energy range 7–12 and
10–30 meV. The spectra were studied using an LAFS-
1000 Fourier spectrometer with Dacron optical splitters
of thicknesses 12 and 6 µm.

In the impurity absorption and photoconductivity
spectra, only allowed transitions from the populated
states are seen. In the Ga-doped germanium at low tem-
peratures, these are the transitions from the lower
branch of the 1S state to the P states and to the valence
band. Spectroscopic absorption studies can provide
information on the energy spectrum restricted by these
conditions. In this case, however, samples with a rather
large optical thickness are required (either of a large
004 MAIK “Nauka/Interperiodica”
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size or with a high impurity concentration). For the
photoconductivity study, weak absorption in the sample
is sufficient. However, in the photoelectric measure-
ments, PC appears only upon the hole excitation to the
valence band or to the local states that are close to it and
capable of photothermal ionization. The results pre-
sented below were obtained by the most effective of
these methods.

Figure 1 shows the absorption spectra of Ge(Ga)
under low pressures applied in the [111] direction. For
P = 0, the spectrum shows lines at the following ener-
gies hν (meV): A(10.17), B(9.84), C(9.2), and D(8.44).
The weak long-wavelength lines E(8) and F(6.74) are
not seen in the figure. Considering that these lines
appear upon hole excitation from the ground state, we
will denote the final impurity states by the same letters.
The ground-state energy of the Ga impurity in Ge is
taken equal to 11.32 meV [10]. A theory of optical
absorption and photoionization of group III acceptors
in germanium was developed in [11]. Upon crystal

Fig. 1. Spectral dependences of the absorption coefficient k
of the germanium sample (2 × 2 × 10 mm) doped with Ga
with an concentration N = 1.4 × 1014 cm–3 under uniaxial
compression in the [111] direction with pressure P (kbar):
0 (1), 0.23 (2), 0.47 (3), 0.7 (4), 0.93 (5), 1.16 (6), 1.4 (7),
1.6 (8), and 1.86 (9).
compression, the ground state of the acceptor impurity
splits into the lower (1S1/2) and upper (1S3/2) branches.
The C state does not split, while the D state slightly
splits upon compression in the [111] direction. The
splitting of the D line into two components is due to the
splitting of the ground state 1S and is observed up to
P ≈ 1 kbar. With increasing P, the thermal population of
the upper branch decreases, and this component van-
ishes. A weak component splits off from the C line and
shifts to lower energies [11], while the C component
itself approaches the valence band (P ≈ 1 kbar), reaches
its edge (P ≈ 1.2 kbar), and enters the allowed energy
band (P ≈ 1.5 kbar). It is seen that the decrease in the
C-line intensity is accompanied by an increase in the
absorption at the light-hole band edge, while the C line
itself transforms into a broad band (≈1 meV) in the
region of continuous spectrum and reduces its ampli-
tude with an increase in pressure.

The subsequent evolution of the Ge impurity states
with increasing pressure can be traced in the PC spectra
(dashed curves in Fig. 2). One can see that the D line
also approaches the light-hole band and is stabilized at
the band edge at a distance of about 0.3 meV. With
increasing pressure, this line is shifted toward low ener-
gies because of a decrease in the energy of the ground
state 1S1/2. The band into which the C line transforms
broadens upon an increase in P and finally turns into a
step near 9 meV at high pressures. Simultaneously, the
band slightly shifts deep in the light-hole band. At P ≈
6 kbar a new broad band (marked by asterisk in Fig. 2)
appears in the PC spectrum. This may be due to the
splitting of the deep E or F state, whose upper energy
levels reached the valence-band edge. It can be seen
from Fig. 2 that all these bands are slightly shifted deep
in the light-hole band even under high pressures. The
studies in the region of 10–30 meV have revealed that
the PC monotonically decreases upon an increase in the
photon energy hν until this energy becomes sufficient
for the excitation to the heavy-hole band, after which
the PC increases. The boundary between the PC regions
corresponding to the light and heavy holes is clearly
seen. It shifts to high energies in proportion to P. No
local singularities indicating the presence of resonance
impurity states in this spectral range were detected.

Splitting of the acceptor impurity states upon the
compression of a germanium crystal in the [001] direc-
tion is more complicated (see [12] and literature cited
therein) and more difficult to interpret. The PC spectra
recorded upon the germanium deformation in this
direction are presented in Fig. 3. It is seen that a number
of peaks appearing under low pressures at the edge of
continuous energy spectrum sequentially enter the
light-hole band and transform into broad bands. With
increasing P, only one of the D components remains
outside the band, while all broad bands are concen-
trated in the energy interval near 2 meV above the D
line. This interval is bounded by dashed curves in
Fig. 3. As in the case of compression along the [111]
JETP LETTERS      Vol. 80      No. 5      2004
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direction, no local singularities are observed in the PC
spectra at photon energies of 10–30 meV. The photo-
conductivity decreased monotonically until the heavy-
hole PC appeared. An analogous result was obtained in
[13] in the PC study of Ga-doped germanium com-
pressed along the [001] direction. Although the posi-
tions calculated in [5] for the resonance states near the
heavy-hole band edge were indicated in the spectra
published in [13], no singularities in this energy range
were seen in the figures. It is also possible that, due to
a too high resolution in [13], strong interference in the
sample did not permit one to trace the evolution of
impurity states.

The obtained experimental results lead to the con-
clusion that the evolutions of the P-type states of the Ga
impurity under the germanium axial compression in the
[111] and [001] directions are similar. In the range of
high pressures, where the stimulated emission can be
excited [1, 2, 6–8], only the D state remains localized.
The energy levels of other states are concentrated in the

Fig. 2. Photoconductivity (PC) spectra of a Ge(Ga) sample
(1 × 1 × 10 mm, 1.8 × 1014 cm–3) [111] || P (kbar): 0 (1),
0.47 (2), 0.93 (3), 1.4 (4), 1.86 (5), 2.3 (6), 2.8 (7), 3.3 (8),
3.7 (9), 4.2 (10), 4.6 (11), 5.1 (12), 5.6 (13), 6.0 (14), 6.5
(15), 7.0 (16), and 7.4 (17). Dashed lines mark the energies
of states C and D and a nonidentified state (asterisk).
JETP LETTERS      Vol. 80      No. 5      2004
light-hole band near its edge, where these states show
up as broad (≈1 meV) bands. Hence it follows that these
states are resonant, i.e., lie inside the continuous energy
spectrum and, thus, have short lifetimes (≈10–11 s). This
result contradicts the calculations [3–5]. It should be
emphasized once again that the spectroscopic studies
provide information only on the behavior of the P-type
states to which the optical transitions from the acceptor
ground state 1S1/2 are allowed. For example, the possi-
bility of an alternative evolution of the S-type state can-
not be ruled out. Consequently, the possible role of the
resonance states can be clarified via investigation of the
photoconductivity spectra and the absorption of sponta-
neous and stimulated radiation under identical condi-
tions. It should be noted that the inverse population of
the resonance states in the vicinity of the light-hole
band edge can also result in the excitation of stimulated
radiation. The appearance of such radiation at P =
3.9 kbar in the [001] direction immediately after the Ga

Fig. 3. PC spectra of a Ge(Ga) sample (1 × 1 × 10 mm, 5 ×
1013 cm–3) [001] || P (kbar): 0 (1), 0.93 (2), 1.4 (3), 1.86 (4),
2.3 (5), 2.8 (6), 3.3 (7), 3.7 (8), and 4.2 (9). Dashed lines sin-
gle out the energy range where the excited states of the Ga
impurity are seen.
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impurity breakdown and for hν ≈ 10 meV was reported
in [14].
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The effect of uniaxial compression on the behavior of shallow aluminum acceptor centers in silicon has been
studied. The µAl impurity atoms were created by implanting negative muons into silicon single crystals doped
with phosphorus to 1.6 × 1013 cm–3 (sample 1) and 1.9 × 1013 cm–3 (sample 2). The muon polarization was stud-
ied in the temperature range 10–300 K. Measurements were performed in a magnetic field of 2.5 kG oriented
perpendicularly to the muon spin. The samples were oriented so that the selected crystal axis ([111] and [100]
in samples 1 and 2, respectively), the magnetic field, and the initial muon-spin polarization were mutually per-
pendicular. External pressure applied to the sample along the indicated crystal axis changed both the absolute
value of the acceptor magnetic-moment relaxation rate and the character of its temperature dependence. © 2004
MAIK “Nauka/Interperiodica”.

PACS numbers: 71.55.Cn; 76.75.+i
INTRODUCTION

In recent years, a gap in the experimental investiga-
tion of the interactions between shallow acceptor impu-
rities in the silicon crystal lattice was filled thanks to the
use of polarized negative muon beams. This approach
provided data on (i) the hyperfine interaction at the
acceptor center (AC), (ii) the rate and mechanisms of
magnetic-moment relaxation of this center, (iii) the
scattering of free charge carriers (electrons and holes)
by such centers in silicon crystals with the acceptor
impurity concentration close to or higher than the criti-
cal value (nc) corresponding to the semiconductor–
metal transition, (iv) the interactions between impuri-
ties, and (v) the AC ionization mechanism and ioniza-
tion rate in the nondegenerate n- and p-type silicon [1–
4]. Although the impurities and defects in semiconduc-
tors have been studied for more than half a century, the
above data on the behavior of shallow acceptor levels in
silicon were obtained for the first time.

This paper presents the results of our investigation
into the effect of uniaxial stress on the behavior of shal-
low aluminum acceptor centers in silicon crystals (see
also [5, 6]). Interest in the investigation of the behavior
of such acceptor impurities in strained silicon crystals
is caused by a number of factors. As is known, the sili-
con crystal lattice in the epitaxially grown layers (e.g.,
on germanium or diamond substrates) and heterostruc-
tures occurs in a strained state. This state is analogous
0021-3640/04/8005- $26.00 © 20339
to that arising in a crystal compressed in the direction
perpendicular to the surface of the substrate on which
the crystal was grown. The possibility of using strained
silicon doped with a donor or acceptor impurity for the
creation of a prototype of the quantum computer is
being extensively discussed [7, 8]. Another factor stim-
ulating investigations into the behavior of acceptor
impurities in strained silicon is the possibility of refin-
ing the AC Hamiltonian in semiconductors with dia-
mond like crystal structure. In the general case, this
Hamiltonian has a rather complicated form [9].

The first experimental evidence of the effect of sili-
con-crystal strain on the behavior of acceptor centers
was obtained in EPR studies [10, 11]. The possibility of
using polarized negative muons for studying acceptor
impurities in silicon is thanks to the fact that, upon
muon trapping, Si atom converts into a muonic atom
µAl that is analogous to an aluminum atom with respect
of the electron shell structure. The muon-spin polariza-
tion depends on the electron-shell state (paramagnetic
or diamagnetic) of the muonic atom (AC), on the hyper-
fine interaction in the AC, and on its interaction with the
environment.

EXPERIMENTAL

Measurements were performed using a GPD spec-
trometer [12] placed at the µE1 muon channel of the
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependences of the (a) muon-spin relaxation rate and (b) precession-frequency shift in a silicon crystal with a
phosphorus-impurity concentration of 1.6 × 1013 cm–3 (sample 1), measured in the absence of applied pressure (open circles) and
under a pressure of 3 kbar (closed circles). The curves are drawn (a) by least squares and (b) as a guide to the eye.

Fig. 2. Temperature dependences of the (a) muon-spin relaxation rate and (b) precession-frequency shift in silicon with a phospho-
rus-impurity concentration of 1.9 × 1013 cm–3 (sample 2), measured in the absence of applied pressure (open circles) and under a
pressure of 1.7 kbar (closed circles). The curves are drawn by least squares.
proton accelerator of the Paul Scherrer Institute (PSI,
Switzerland). Samples cut from silicon single crystals
had the shape of a regular tetrahedral prism with a 9.5 ×
9.5 mm base and a height of 22 mm. Two samples
doped with phosphorus to 1.6 × 1013 cm–3 (sample 1)
and 1.9 × 1013 cm–3 (sample 2) were studied. The sam-
ples were oriented so that a selected crystal axis ([111]
and [100] in samples 1 and 2, respectively) was perpen-
dicular to the base (to within ±1°). A uniform magnetic
field applied to the samples was produced by Helm-
holtz coils. The magnetic field had a strength of 2.5 kG
and a long-term stability no worse than 10–4. It was ori-
ented so that the field vector, selected crystal axis
([111] and [100] in samples 1 and 2, respectively), and
the initial muon-spin polarization were mutually per-
pendicular.

The crystal samples were uniaxially stressed in a
high-pressure cell. The cell was made of a heat-treated
beryllium bronze and allowed a pressure of up to 5 kbar
to be applied to the sample base. The applied pressure
(i.e., the stress in the sample) was monitored using a
tensoresistor of the EV001 P1-5-350B type (NIIFI,
Penza). The pressure sensor was glued to one of the
prism faces with a BF-2 glue, after which the glue was
polymerized at a high-temperature. The cell with a
fixed pressure was placed into a cryostat cooled by liq-
uid helium vapor. The sample temperature in the range
from 4 to 300 K was maintained with an accuracy of
0.1 K.

The time evolution of the muon polarization P(t) in
the sample was studied by measuring the decay elec-
trons from the reaction µ–  e– +  + νµ. The time
dependence of the number of detected electrons is
described by the exponential modulated by the P(t)
function. The measurement technique and the proce-
dure used for reconstructing the parameters of muon-
spin polarization from the experimental µ–SR spectra
are described in detail in [1, 2].

RESULTS

Figures 1 and 2 show the experimentally measured
temperature dependences of the relaxation rate λ and
the shift ∆ω/ω0 of the muon-spin precession frequency
for silicon crystals with a phosphorus-impurity concen-
tration of 1.6 × 1013 cm–3 (sample 1) and 1.9 × 1013 cm–3

νe
JETP LETTERS      Vol. 80      No. 5      2004



        

THE EFFECT OF UNIAXIAL STATIC PRESSURE 341

                                                                        
(sample 2), respectively. The shift of the precession fre-
quency was defined as the difference ∆ω = ω – ω0
between the precession frequencies ω at a temperature
T and at room temperature. 

The arrows in the insets in Figs. 1 and 2 indicate the
mutual orientation of the applied magnetic field, the
crystal axis, and the initial muon polarization. The pres-
sure was applied along the indicated crystal axis and
amounted to 3.0 and 1.7 kbar for samples 1 and 2,
respectively. The results of measurements for the sam-
ples under the applied static pressure are compared
with the data obtained in the absence of loading. 

As can be seen in Figs. 1 and 2, the application of an
external pressure leads to a significant change in the
muon-spin relaxation rate. Moreover, the character of
the temperature dependence of relaxation rate also
changes. In contrast to the relaxation rate, the effect of
pressure on the shift of muon-spin precession fre-
quency is insignificant in both samples. These results
do not contradict the theoretical estimates [13], accord-
ing to which the most pronounced effect of an external
pressure on the frequency shift is expected for a silicon
crystal compressed along the [011] axis.

According to [14], the following relationships hold
between the quantities characterizing the time evolu-
tion of the muon-polarization vector at the 1S level of
µAl atom and the parameters characterizing the interac-
tion of this AC in the silicon crystal lattice:

(1)

(2)

Here, A is the hyperfine interaction constant between
the muon and the AC electron shell; ν is the magnetic-
moment relaxation rate of this center; " = h/2π; h is
Planck’s constant; kB is Boltzmann’s constant; µB and

 are the Bohr magneton for electron and muon,
respectively; g is the AC g factor; ωe = gµBB/" is the
angular frequency of precession of the magnetic
moment of the AC electron shell in magnetic field B;
and T is temperature. For a shallow acceptor center in
silicon, J = 3/2 [9] and g = –1.07 [15].

By fitting relation (1) to the experimental data on the
muon-spin precession-frequency shift for sample 2 at
T & 50 K, we obtained the hyperfine spitting constants
A/h = 32 ± 0.9 MHz in the absence and A/h = 26.3 ±
1.0 MHz in the presence of external pressure. The
curve in Fig. 1b corresponds to the best approximation
of experimental data obtained in the absence of pres-
sure.

The experimental temperature dependence of the
muon spin-relaxation rate was approximated by
Eq. (2), assuming [2] that the hyperfine splitting con-

∆ω
ω0
--------

gµB

2µB
µ--------- J J 1+( )A

3kBT
------------------------,–=

λ J J 1+( )
3

-------------------- A/"( )2

ν
---------------- A/"( )2ν

ν2 ωe
2+

--------------------+
 
 
 

.=

µB
µ
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stant is A/h = 26.5 MHz and that the magnetic-moment
relaxation rate of the acceptor center depends on the
temperature as ν = CTα. The values of the coefficient C
and the parameter α for the samples studied are given
in the table.

For sample 1, the value of α in the absence of pres-
sure is close to three, which is in good agreement with
our previous results (see, e.g., [2]) for this sample. For
sample 2 in the absence of external pressure, we
obtained α . 2. It should be noted that, for more than
ten n- and p-type silicon samples with impurity concen-
trations &2 × 1017 cm–3 studied previously in the
unloaded state, we obtained α . 3 [2]. The fact that the
value of α for sample 2 in the unloaded state is close to
two likely indicates that the relaxation rate ν depends
on the mutual orientation of the crystal axis and the
magnetic field.

One can see from the data in the table that the exter-
nal static pressure leads to a decrease of more than two
orders of magnitude in the value of the coefficient C in
the expression for the magnetic-moment relaxation rate
of the acceptor center, while the parameter α increases
approximately by two units.

The observed dependence of the relaxation rate of
the AC magnetic moment on the external pressure in
silicon is quite understandable from a theoretical stand-
point, although the quantitative calculations of this
effect have not been performed so far (because of con-
siderable computational difficulties). According to [9],
a fourfold-degenerate state in the absence of strain

Parameters of the temperature dependence of the magnetic
moment relaxation rate ν = CTα for an acceptor center in silicon

Sample 1 Sample 2

Pressure,
kbar 0 3 0 1.7

C, µs–1 4.4 ± 2.6 0.02 ± 0.01 60 ± 20 0.150.08

α 2.7 ± 0.2 4.8 ± 0.3 2.0 ± 0.1 3.80.2

Fig. 3. Level splitting in the ground state of a shallow accep-
tor center in silicon in a magnetic field B (a) in the absence
of compression and (b) in uniaxially compressed crystal
with the strain energy ∆. Dashed lines in (b) show the addi-
tional splitting caused by the random internal stresses.
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effectively interacts with the phonon field, causing a
high relaxation rate of the AC magnetic moment even at
low temperatures. Under pressure, the fourfold-degen-
erate state of this center splits into two Kramers dou-
blets (Fig. 3). The interaction of these doublets with
phonons is weak and, accordingly, the relaxation rate of
the AC magnetic moment decreases.

CONCLUSION
We have demonstrated experimentally that the

uniaxial static compression at temperatures below 50 K
significantly modifies the temperature dependence of
the relaxation rate of the AC magnetic moment in sili-
con. In order to gain more detailed information about
the effect of an external pressure on the interaction
between the acceptor impurity and the silicon crystal
lattice, we are planning to study the dependence of the
muon-spin relaxation rate and the precession-fre-
quency shift on the external pressure and on the mag-
netic-field orientation about the crystal axis.
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We discuss the quantum phase transition that separates a vacuum state with fully gapped fermion spectrum from
a vacuum state with topologically protected Fermi points (gap nodes). In the context of condensed-matter phys-
ics, such a quantum phase transition with Fermi point splitting may occur for a system of ultracold fermionic
atoms in the region of BEC–BCS crossover, provided Cooper pairing occurs in the non-s-wave channel. For
elementary particle physics, the splitting of Fermi points may lead to CPT violation, neutrino oscillations, and
other phenomena. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 11.30.Er; 71.10.-w; 73.43.Nq
There are two major schemes for the classification
of states in condensed matter physics and relativistic
quantum field theory: classification by symmetry and
by universality classes.

For the first classification method, a given state of
the system is characterized by the symmetry group H,
which is a subgroup of the symmetry group G of the rel-
evant physical laws (see, e.g., [1] for symmetry classi-
fication of superconducting states). The thermody-
namic phase transition between equilibrium states is
usually marked by a change of the symmetry group H.
The subgroup H is also responsible for topological
defects, which are determined by the nontrivial ele-
ments of the homotopy groups πn(G/H) (cf. [2]).

The second classification method deals with the
ground states of the system at zero temperature (T = 0),
i.e., it is the classification of quantum vacua. The uni-
versality class determines the general features of the
quantum vacuum, such as the linear response and the
energy spectrum of fermionic excitations. For transla-
tion-invariant systems in which momentum is a well-
defined quantity, these features of the fermionic quan-
tum vacuum are determined by momentum-space
topology. For (3 + 1)-dimensional systems, there are
only three basic universality classes of fermionic vacua
[3]: (i) vacua with fully gapped fermionic excitations,
(ii) vacua with fermionic excitations characterized by
Fermi points (the excitations behave as massless Weyl
fermions close to the Fermi points), and (iii) vacua with

¶ This article was submitted by the authors in English.
0021-3640/04/8005- $26.00 © 200343
fermionic excitations characterized by Fermi surfaces.
(Fermi points pn are points in three-momentum space at
which the energy vanishes, E(pn) = 0, and similarly for
Fermi surfaces Sn, with E(p) = 0 for p ∈  Sn.)

It may happen that, by changing some parameter q
of the system, we transfer the vacuum state from one
universality class to another without changing its sym-
metry group H. The point qc, where this zero-tempera-
ture transition occurs, marks the quantum phase transi-
tion. For T ≠ 0, the phase transition is absent, as the two
states belong to the same symmetry class H. Hence,
there is an isolated singular point (qc, 0) in the (q, T)
plane. Two examples of a quantum phase transition are
(i) the Lifshitz transition in crystals, at which the Fermi
surface changes its topology or shrinks to a point, and
(ii) the transition between states with different values of
Hall (or spin-Hall) conductance in (2 + 1)-dimensional
systems.

In this letter, we discuss the quantum phase transi-
tion between a vacuum with fully gapped fermionic
excitations and a vacuum with Fermi points. At the
transition point q = qc, a topologically trivial Fermi
point emerges from the fully gapped state. This mar-
ginal Fermi point then splits into two or more topolog-
ically nontrivial Fermi points (see figure). The topolog-
ically protected Fermi points give rise to anomalous
properties of the system in the low-temperature regime
(cf. Section 7.3.2 of [4] and Part IV of [3]).

These effects may occur in a system of ultracold fer-
mionic atoms in the region of BEC–BCS crossover in a
04 MAIK “Nauka/Interperiodica”
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non-s-wave Cooper channel. Superfluidity in the BEC
regime and the BEC–BCS crossover has been observed
for 40K and 6Li atoms [5–9]. In these experiments, a
magnetic-field Feshbach resonance was used to control
the interactions in the s-wave channel. For the case of
s-wave pairing, there are fully gapped vacua on both
sides of the crossover and there is no quantum phase
transition. If, however, the pairing occurs in a non-s-
wave channel, a quantum phase transition may be
expected between the fully gapped state and the state
with Fermi points. It was reported recently [10, 11] that
three p-wave Feshbach resonances were found for 6Li
atoms. This suggests the possibility of future observa-
tions of non-s-wave pairing and of the quantum phase
transition associated with the splitting of Fermi points.

Here, we will discuss two examples of such a tran-
sition, using, for simplicity, p-wave spin-triplet pairing
and their possible analogs in relativistic quantum field
theory. We also argue in the following that a similar
quantum phase transition characterized by Fermi point
splitting may occur for the Standard Model of elemen-
tary particle physics [12], but refer the reader to [13–
15] for further details. In fact, condensed-matter phys-
ics provides us with a broad class of quantum field the-
ories not restricted by Lorentz invariance, which allows
us to consider many problems in the relativistic quan-
tum field theory of the Standard Model from a more
general perspective. Just as for nonrelativistic systems,
the basic properties of relativistic quantum field theo-

Quantum phase transition at q = qc between a fully gapped
vacuum and a vacuum with topologically protected Fermi
points (gap nodes). At q = qc, there appears a marginal
Fermi point with topological charge N = 0 (inset at the top).
For q > qc, the marginal Fermi point has split into two Fermi
points characterized by nonzero topological invariants N =
±1 (inset on the right). For a system of ultracold fermionic
atoms qualitatively described by Hamiltonians (1) and (9),
the critical parameter is qc = 0 [note that eight Fermi points
emerge for the case of Hamiltonian (9)]. For Dirac fermions
with CPT violation in Hamiltonian (6), the parameter q is
chosen as q ≡ |b| and the critical parameter is qc = M.
ries (including quantum anomalies) are determined by
momentum-space topology, which classifies relativistic
vacua according to the same three universality classes.

Since we are only interested in effects determined
by the topology and the symmetry of the fermionic
Green’s function G(p), we do not require a special form
of the Green’s function and can choose the simplest one
with the required topology. First, consider the Bogoli-
ubov–Nambu Hamiltonian, which qualitatively
describes fermionic quasiparticles in the axial state of
p-wave pairing. This Hamiltonian can be applied to
both the Bardeen–Cooper–Schrieffer (BCS) and Bose-
Einstein condensation (BEC) regimes, and also to
superfluid 3He–A [4]. Specifically, the Bogoliubov–
Nambu Hamiltonian is given by

(1)

and G–1(iω, p) = iω – H(p), with " = 1. Fermionic atoms
of mass m with a given direction of the atomic spin are
considered, assuming that only these atoms experience
Feshbach resonance. The orthonormal triad ( , ,

 ≡  × ) and maximum transverse speed c⊥  of the
quasiparticles characterize the order parameter in the

axial state of triplet superfluid. The unit vector  corre-
sponds to the direction of orbital momentum of the
Cooper pair or the diatomic molecule. We further
assume that the parameter q is controlled by the mag-
netic field in the vicinity of the Feshbach resonance.

The energy spectrum of these Bogoliubov–Nambu
fermions is

(2)

The BCS regime occurs for q > 0, with the parameter q
playing the role of a chemical potential. In this regime,
there are two Fermi points, i.e., points in three-momen-
tum space with E(p) = 0. For energy spectrum (2), the

Fermi points are p1 = pF  and p2 = –pF , with Fermi

momentum pF = .
For a general system, be it relativistic or nonrelativ-

istic, the stability of the ath Fermi point is guaranteed
by the topological invariant Na, which can be written as
a surface integral in frequency-momentum space. In
terms of the fermionic propagator G = G(p0, p1, p2, p3),
for pµ = (ω, p), the topological invariant is [3]

(3)

where Σa is a three-dimensional surface around the iso-
lated Fermi point pµa = (0, pa) and “tr” stands for the
trace over the relevant spin indices.

H
p 2/2m q– c⊥ p ê1 iê2+( )⋅
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For the case considered, the trace in Eq. (3) is over
the Bogoliubov–Nambu spin and the two Fermi points
p1 and p2 have nonzero topological charges N1 = +1 and
N2 = –1. The density of states in this gapless regime is
given by ν(E) ∝  E2. At q = 0, these two Fermi points
merge and form one topologically trivial Fermi point
with N = 0. This intermediate state, which appears at
the quantum phase transition (qc = 0), is marginal: the
momentum-space topology is trivial and cannot protect
the vacuum against decay into one of the two topologi-
cally stable vacua. For q < 0, the marginal Fermi point
disappears altogether and the spectrum becomes fully-
gapped. In this topologically stable fully-gapped vac-
uum, the density of states is drastically different from
that in the topologically stable gapless regime: ν(E) = 0
for E < |q|. All this demonstrates that the quantum phase
transition considered is of purely topological origin.

Note that, if a single pair of Fermi points appears in
momentum space, the vacuum state has nonzero inter-

nal angular momentum along , i.e., this quantum vac-
uum has the property of an orbital ferromagnet. Later,
we will discuss an example with multiple Fermi points,
for which the total orbital momentum is zero and the
vacuum state corresponds to an orbital antiferromagnet.

We now turn to elementary particle physics [12]. It
appears that the vacuum of the Standard Model above
the electroweak transition (vanishing fermion masses)
is marginal: there is a multiply degenerate Fermi point
p = 0 with topological charge N = 0. It is therefore the
intermediate state between two topologically stable
vacua, the fully gapped vacuum and the vacuum with
topologically nontrivial Fermi points. In the Standard
Model, this marginal Fermi point is protected by sym-
metries, namely the continuous electroweak symmetry
(or the discrete symmetry discussed in Section 12.3.2
of [3]) and the CPT symmetry.

Explicit violation or spontaneous breaking of one of
these symmetries transforms the marginal vacuum of
the Standard Model into one of the two topologically
stable vacua. If, for example, the electroweak symme-
try is broken, the marginal Fermi point disappears and
the fermions become massive. This is known to happen
in the case of quarks and electrically charged leptons
below the electroweak transition. If, on the other hand,
the CPT symmetry is violated, the marginal Fermi point
splits into topologically stable Fermi points. One can
speculate that the latter happens for the Standard
Model, in particular with the electrically neutral lep-
tons, the neutrinos [13–15]. The splitting of Fermi
points may also give rise to a CPT-violating Chern–
Simons-like term in the effective gauge field action [16,
17], as will be discussed later.

Let us first consider this scenario for a marginal
Fermi point describing a single pair of relativistic chiral
fermions, that is, one right-handed fermion and one
left-handed fermion. These are Weyl fermions with
Hamiltonians Hright = s · p and Hleft = –s · p, where s

l̂
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denotes the triplet of Pauli matrices and natural units
are employed with c = " = 1. Each of these Hamilto-
nians has a topologically stable Fermi point, p = 0. The
corresponding inverse Green’s functions are given by

(4)

The positions of the Fermi points coincide—p1 = p2 =
0—but their topological charges (3) are different. For
this simple case, the topological charge equals the
chirality of the fermions, Na = Ca (i.e., N = +1 for the
right-handed fermion and N = –1 for the left-handed
one). The total topological charge of the Fermi point
p = 0 is therefore zero.

The splitting of this marginal Fermi point can be
described by the Hamiltonians Hright = s · (p – p1) and
Hleft = –s · (p – p2), with p1 = –p2 ≡ b from momentum
conservation. The real vector b is assumed to be odd
under CPT, which introduces CPT violation into the
physics. The 4 × 4 matrix of the combined Green’s
function has the form

(5)

Equation (3) shows that p1 = b is the Fermi point with
topological charge N = +1 and p2 = –b the Fermi point
with topological charge N = –1.

Let us now consider the more general situation with
both the electroweak and CPT symmetries broken. The
Hamiltonian has, then, an additional mass term,

(6)

This Hamiltonian is the typical starting point for inves-
tigations of the effects of CPT violation in the fermi-
onic sector (see, e.g., [18, 19] and references therein).
The energy spectrum of Hamiltonian (6) is

(7)

with  ≡ b/|b| and q ≡ |b| ≥ 0.
Allowing for a variable parameter q, one finds a

quantum phase transition at qc = M between fully
gapped vacua for q < M and vacua with two Fermi
points for q > M. These Fermi points are given by

(8)

Equation (3), now with a trace over the indices of the
4 × 4 Dirac matrices, shows that p1 is the Fermi point

Gright
1– iω p,( ) iω s p,⋅–=

Gleft
1– iω p,( ) iω s p.⋅+=

G 1– iω p,( ) iω s p b–( )⋅– 0

0 iω s p b+( )⋅+ 
 
 

.=

H s p b–( )⋅ M

M s p b+( )⋅– 
 
 

=

=  HDirac I2 s b⋅( ).⊗–

E±
2 p( ) M2 p 2 q2 2q M2 p b̂⋅( )2

+ ,±+ +=

b̂

p1 +b̂ q2 M2– ,=

p2 b̂– q2 M2– .=



346 KLINKHAMER, VOLOVIK
with topological charge N = +1 and p2 the Fermi point

with topological charge N = –1 [see figure, for  =
(0, 0, 1)]. The magnitude of the splitting of the two

Fermi points is given by 2 . At the quantum
phase transition qc = M, the Fermi points with opposite
charge annihilate each other and form a marginal Fermi
point p0 = 0. The momentum-space topology of this
marginal Fermi point is trivial (topological invariant
N = +1 – 1 = 0).

The full Standard Model contains eight pairs of
chiral fermions per family and a quantum phase transi-
tion can be characterized by the appearance and split-
ting of multiple marginal Fermi points. For systems of
cold atoms, an example is provided by another spin-
triplet p-wave state, the so-called α-phase with orbital
antiferromagnetism. The Bogoliubov–Nambu Hamil-
tonian, which qualitatively describes fermionic quasi-
particles in the α-state, is given by [1, 4]:

(9)

with |p|2 ≡  +  +  and Σ · p ≡ σxpx +
exp(2πi/3)σypy + exp(–2πi/3)σzpz.

On the BEC side (q < 0), fermions are again fully
gapped, while, on the BCS side (q > 0), there are eight
Fermi points, pa (a = 1, …, 8), situated at the vertices of
a cube in momentum space [1]. The fermionic excita-
tions in the vicinity of these points are left- and right-
handed Weyl fermions. In terms of the Cartesian unit
vectors ( , , ), the four Fermi points with right-
handed Weyl fermions (Ca = +1, for a = 1, …, 4) are
given by

(10)

while the four Fermi points with the left-handed Weyl
fermions (Ca = –1, for a = 5, …, 8) have opposite vec-
tors.

Since the quantum phase transition between the
BEC and BCS regimes of ultracold fermionic atoms
and the quantum phase transition for Dirac fermions
with CPT violation are described by the same momen-
tum-space topology, we can expect common properties.
An example of such a common property would be the
axial or chiral anomaly. For quantum anomalies in (3 +
1)-dimensional systems with Fermi points and their
reduction to (2 + 1)-dimensional systems, see, e.g., [3,
20] and references therein.

b̂

q2 M2–

H
p 2/2m q– Σ p⋅( )c⊥ / 3

Σ p⋅( )†c⊥ / 3 p 2/2m– q+ 
 
 
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px
2 py

2 pz
2

x̂ ŷ ẑ

p1 pF +x̂ ŷ ẑ+ +( )/ 3,=

p2 pF +x̂ ŷ ẑ––( )/ 3,=

p3 pF –x̂ ŷ ẑ+–( )/ 3,=

p4 pF –x̂ ŷ ẑ–+( )/ 3,=
One manifestation of the anomaly is the topological
Wess–Zumino–Novikov–Witten (WZNW) term in the
effective action. The general expression for the WZNW
term is represented by the following sum over Fermi
points (see, for example, Eq. (6a) in [21]):

(11)

Here, Na is the topological charge of the ath Fermi point
and τ ∈  [0, 1] is an additional coordinate which param-
etrizes a disc, with the usual spacetime at the boundary
τ = 1.

In the Standard Model, Eq. (11) can be seen to give
rise to an anomalous Chern–Simons-like action term in
the gauge-field sector. Start, for simplicity, from the
spectrum of a single electrically charged Dirac fermion
(charge e) and again set c = " = 1. In the presence of the
vector potential A of a U(1) gauge field, the minimally
coupled version of Hamiltonian (6) is

(12)

The positions of the Fermi points for q ≡ |b| > M are
then shifted due to the gauge field,

(13)

with a plus sign for a = 1 and a minus sign for a = 2.
This result follows immediately from Eq. (8) by the
minimal substitution pa  pa – eA, consistent with
the gauge principle. For relativistic quantum field the-
ory and with different charges ea at the different Fermi

points, one has the general expression pa =  + eaA.

Next, insert these Fermi points into formula (11)
and assume the charges to be τ dependent, so that pa =

 + ea(τ)A. Specifically, we use a parameterization
for which the charges ea(τ) are zero at the center of the
disc, ea(0) = 0, and equal to the physical charges at the
boundary of the disc, ea(1) = ea. From Eq. (11), one then
obtains the general form for the Abelian Chern–
Simons-like term

(14)

This result has the “relativistic” form

(15)
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with gauge field Aµ(x), Levi–Civita symbol eµνρσ, and a
purely spacelike “vector” kµ,

(16)

Note that only gauge invariance has been assumed in
the derivation of Eq. (16). As shown in the Appendix of
[13], Chern–Simons vector (16) can be written in the
form of a momentum-space topological invariant.

Returning to the case of a single Dirac fermion with
charge e and using Eqs. (8) and (16), one finds that the
CPT-violating Chern–Simons parameter k can be
expressed in terms of the CPT-violating parameter b of
the fermionic sector,

(17)

This particular contribution to k comes from the split-
ting of a marginal Fermi point, which requires |b| ≡ q >
M, as indicated by the step function on the right-hand
side [θ(x) = 0 for x ≤ 0 and θ(x) = 1 for x > 0].

In the context of relativistic quantum field theory,
the existence of such a nonanalytic contribution to k
has also been found by Perez-Victoria [22] and Andri-
anov et al. [23] using standard regularization methods,
but with a prefactor larger by a factor of 3 and 3/2,
respectively. The result (17), on the other hand, is deter-
mined by the general topological properties of the
Fermi points [13] and applies to nonrelativistic quan-
tum field theory as well. In condensed-matter quantum
field theory, the result has been obtained without ambi-
guity, since the microphysics is known at all scales and
regularization occurs naturally.

For the “ferromagnetic” quantum vacuum of Hamil-
tonian (6), the Chern–Simons vector k obtained from
Eq. (16) by summation over all Fermi points (8) is non-
zero and given by Eq. (17). For the “antiferromagnetic”
α-phase vacuum of Hamiltonian (9), the vector k van-

ishes, because  = 1 for the fermion charges ea = ±1
and p1 + p2 + p3 + p4 = 0 for the tetrahedron (10). A sim-
ilar situation may occur for the Standard Model: anti-
ferromagnetic splitting of the Fermi point without
induced Chern–Simons-like term [13]. The antiferro-
magnetic splitting may, however, lead to other observ-
able effects, such as neutrino oscillations [14, 15].

In conclusion, one may expect quantum phase tran-
sitions in systems of ultracold fermionic atoms, pro-
vided the pairing occurs in the non-s-wave channel. The
quantum phase transition separates an anomaly-free
fully gapped vacuum on the BEC side and a gapless
superfluid state on the BCS side, which is characterized
by Fermi points and quantum anomalies. This phenom-
enon is general and may occur in many different sys-
tems, including the vacuum of the relativistic quantum
field theory relevant to elementary particle physics.
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With the object of verifying the presence of a region of anomalous iron compressibility at negative pressures,
as predicted by the ab initio calculations, the reflection of compression pulses from the surfaces of iron single
crystals was detected. No evidence of the expected formation of rarefaction shock waves was observed in the
range of attained tensile stresses up to 7.6 GPa. The breaking stresses achieved 25–50% of the theoretical iron
ultimate strength for a load duration of ~10–8 s. The dependence of breaking strength on the extension rate did
not reveal any singularities in the region of assumed anomaly in iron compressibility. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 62.20.Mk; 62.50.+p; 64.30.+t
The modern technique used in the experiments with
shock waves allows the properties of materials to be
studied at negative pressures down to –15…–20 GPa
and lower [1–3]. In this case, the analysis of the states
of a substance in the tension region is based only on the
fundamental conservation laws with the extrapolation
of the data on the equations of state at large compres-
sions. At present, the ab initio calculations provide a
more reliable and objective estimate of the equation of
state for a substance at high (up to the spinodal) nega-
tive pressures. For example, the aluminum zero iso-
therm was calculated in [4] using the density functional
theory with the generalized gradient corrections. It has
no singularities and has a minimum at a pressure of
−11.2 GPa. The extrapolation of the aluminum Hugo-
niot curve gives the close value of –13.4 GPa for the
pressure at the minimum. First attempts at measuring
the compressibility at negative pressures have been
undertaken for solids [5] and liquids [6], but the appli-
cability range of the suggested methods is as yet lim-
ited.

Recent ab initio calculations of the iron zero iso-
therm [7] have revealed its anomalous behavior in the
negative pressure range. The computational results
shown in Fig. 1 demonstrate the jump in volume caused
by the rearrangement of the crystal energy spectrum at
a pressure of –3.4 GPa and the presence of a minimum
at –13.4 GPa. The extrapolation of the α-iron [8] Hugo-
niot curve gives a minimum at –31.6 GPa, which differs
by 2.3 times from the ab initio results.

The presence of a region of anomalous compress-
ibility in the vicinity of –3.4 GPa should give rise to the
shocks upon the propagation of expansion waves in
iron, thereby providing the possibility of experimental
verification of the existence of such an anomaly. For
0021-3640/04/8005- $26.00 © 20348
this purpose, a set of experiments was carried out, and
the corresponding results are presented in this work.

The tensile stresses (negative pressures) were pro-
duced in the plane iron samples upon the reflection of
submicrosecond one-dimensional compression pulses
from the sample surfaces. A 0.8-mm-thick iron sheet of
99.98% purity contained arbitrarily oriented grains
with transverse sizes up to 5–8 mm. The samples 0.2–
0.75 mm thick and 12–15 mm in diameter were cut in
such a way that they contained one coarse grain in the
central region. This precluded the premature initiation
of the destruction at the intergrain boundaries in the

Fig. 1. The calculated [7] zero isotherm (solid line) and the
extrapolated Hugoniot adiabate of α iron (dashed line). V0
is the specific volume at 293 K and zero pressure. Dashes
indicate the measured destructing stresses (spall strength) in
iron for various shock-loading durations. AB is the region of
anomalous compressibility, where one expects the forma-
tion of the rarefaction shock wave.
004 MAIK “Nauka/Interperiodica”
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controlled central region of the sample. The compres-
sion pulses were generated by the impact of an alumi-
num plate that was accelerated using an explosive
device [3]. The thickness of the impactor was varied
from 50 to 400 µm; the impact velocity was equal to
650 ± 50 or 1200 ± 50 m/s. In the experiments, the
velocity ufs of the free rear surface of the sample was
measured as a function of time t. Measurements were
carried out using a Doppler laser velocimeter VISAR
[3, 8] with a time resolution of 0.4 ns.

Examples of the velocity profiles measured for the
free sample surfaces are shown in Fig. 2 for two impact
load durations differing by a factor of ten. One can see
that the elastoplastic compression wave and a portion of
the ensuing expansion wave emerge at the surface wave
profiles. After the reflection of the compression pulse
from the free surface, the tensile stresses are generated
inside the sample to initiate its destruction (spalling).
This is accompanied by the relaxation of tensile
stresses and formation of a compression wave (spall
pulse), whose emergence at the surface causes the sec-
ond increase in the surface velocity. Under the given
loading conditions, the damping of the surface velocity
upon its decrease from the maximum to the value ahead
of the front of the spall pulse is proportional to the
breaking stress. The subsequent surface-velocity oscil-
lations are caused by the multiple wave reflections
inside the spalled layer of the sample between its rear
and breaking surfaces.

On the whole, the free-surface velocity profiles
measured for the iron samples were similar to those
obtained for other metals [3] and gave no evidence of
the formation of rarefaction shocks. An analysis of the
wave profiles allows the breaking stresses (spall
strength) to be determined with a high accuracy. The
spall strength σsp was calculated on the basis of the
analysis of the interaction between the incident and
reflected waves [3, 9]. It was defined as a decrease in
the surface velocity ∆ufs from its maximum value to the
value ahead of the front of the spall pulse. In the acous-
tic approximation,

where ρ0 is the density of a material, δ is the correction
for the velocity-profile distortion due to a difference
between the velocity (cl) of the spall-pulse front propa-
gating over the stretched material and the velocity (cb)
of the plastic portion of the incident unloading wave
ahead of it. In this work, the breaking stresses were
determined with allowance for the nonlinear compress-
ibility of a material [3], for which reason its equation of
state was extrapolated to the tension region. The corre-
sponding negative breaking pressures differ from σsp by
2/3 of the yield stress. The difference between the
breaking pressure and stress did not exceed 10%.

The measurement results are summarized in Fig. 3
in the form of a dependence of the iron spall strength on

σsp
1
2
---ρ0cb ∆ufs δ+( ),=
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the extension rate /V0 in the incident shock-load
pulse, calculated as

where  is the measured free-surface velocity gradient
in the unloading portion of the incident compression
pulse. In actuality, these values of the deformation rates
are equal, except for a constant factor on the order of
few units, to the growth rate of a discontinuity volume
in the material at the initial stage of its spall breaking
[3].

With an increase in the extension rate from ~105 to
~5 × 106 s–1, the breaking strength increases from 2.9 to

V̇

V̇ /V0 u̇1/2cb,=

u̇1

Fig. 2. Free-surface velocity profiles of high-purity iron
plates of thicknesses (1) 0.19 and (2) 0.77 mm after the
impact by the 0.05- and 0.04-mm-thick aluminum plates
with velocities of 1200 and 650 m/s, respectively.

Fig. 3. Dependence of the spall strength on the deformation
rate. Dashes correspond to the approximation σsp =

0.89( /V0)0.29. The results of analogous measurements for
molybdenum single crystals with different orientations [1]
and aluminum [2] are given for comparison.

V̇



 

350

        

RAZORENOV 

 

et al

 

.

                                                   
7.6 GPa, and the spall thickness decreases from –400 to
40 µm. In this range, the measurement results can be

approximated by the function σsp = 0.89( /V0)0.29 GPa,
shown by dashes in Fig. 3. The comparison with similar
data on the molybdenum [1] and aluminum [2] single
crystals demonstrates the similarity of the spall-
strength dependences on the extension rate and does
not reveal any singularities in the region of the pre-
sumed anomaly in the iron compressibility.

One can see in Fig. 1 that the range of attained ten-
sile stresses fully covers the anomaly region on the cal-
culated iron zero isotherm. Inasmuch as the topological
electronic transitions [7] should be virtually inertialess,
it seems improbable that the compressibility associated
with these transitions does not reveal itself because of a
short duration of the action of negative pressures. At the
same time, the electronic structure of iron crystals was
calculated in [7] for 0 K, whereas the experiments pre-
sented in this work were performed at room tempera-
ture. It is conceivable that the anomaly of iron com-
pressibility occurs only at low temperatures and disap-
pears with heating. In this case, the instability of crystal
structure may be one of the factors that are responsible
for the cold-iron brittleness phenomenon.

The spinodal position in the condensed phase of a
substance determines the theoretical ultimate or “ideal”
tensile strength of a material. If the iron 0 K isotherm
really has a minimum at –13.4 GPa, as follows from the
ab initio calculations [7], then, according to the mea-
surements, ~55% of the iron ultimate strength is real-
ized during ~10–8 s of the action of tensile stresses. At
the same time, a comparison of the maximal measured
spall breaking strength with the estimated ultimate
strength via extrapolating the Hugoniot adiabate sug-
gests that ~24% of iron ideal strength was realized in
our experiments. Similar estimates for molybdenum [1]
and aluminum [2] gave 25 and 29%, respectively.

Thus, our room-temperature shock-wave experi-
ments have not confirmed the existence of a compress-

V̇

ibility anomaly for iron in the negative pressure range,
as was predicted by the ab initio calculations. We
intend to continue our experimental study at low tem-
peratures. For a shock load of a duration of ~10–8 s, the
breaking stresses are comparable with the theoretical
iron ultimate strength.

We are grateful to G.V. Sin’ko and N.A. Smirnov for
proving the ab initio results on iron compressibility
before their publication. This work was supported by
the Russian Foundation for Basic Research (project
no. 03-02-16379) and the program for basic research of
the Presidium of the Russian Academy of Sciences
“Thermal Physics and Mechanics of Intense Energetic
Actions.”
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Uniaxial compression of the p-type GaAs/Al0.5Ga0.5As heterostructures induces magnetic breakdown between
the spin-split ground-state subbands of two-dimensional heavy holes. This phenomenon serves as direct exper-
imental evidence of a strong qualitative modification of the energy spectrum of these structures upon uniaxial
deformation. This modification has been revealed by numerical calculations, and, according to it, the subband
spin splitting decreases upon compression, while the contours of the hole Fermi surface in both subbands touch
one another in the compression direction in a pressure range of 2.5 kbar. © 2004 MAIK “Nauka/Interperiod-
ica”.

PACS numbers: 73.21.Fg; 73.40.Kp
Magnetic breakdown is one of the phenomena that
most clearly demonstrate the quantum nature of charge-
carrier motion in solids and represents the electron
(hole) tunneling in a magnetic field through the classi-
cally forbidden regions of momentum space at the sites
of close approach of the electron (hole) orbits. Since its
discovery, it has been studied both as a fundamental
phenomenon and as a tool for revealing the special fea-
tures of the carrier energy spectra in metals and semi-
conductors. For instance, a change in the isoenergy sur-
face connectivity accompanied by the intraband mag-
netic breakdown observed in single-crystal Bi1 – xSbx

alloys upon uniaxial compression [1] allowed one to
unambiguously establish the presence of a saddle point
in the energy spectrum of the Bi1 – xSbx alloys with x ≥
0.2. In this work, the development of magnetic break-
down is observed in a system of two-dimensional (2D)
holes at the p-GaAs/Al0.5Ga0.5As heterojunction upon
uniaxial compression. This phenomenon is direct
experimental evidence of the compression-induced
Fermi-surface (FS) modification in these structures that
was revealed in our previous work [2]. The calculations
in [2] and the experimental study in this work were per-
formed for heterostructures with the same configura-
tion, layer sequence, and carrier concentration in a
quantum well (QW).

The p-type GaAs/Al0.5Ga0.5As structures were
grown from molecular beam epitaxy at the Niels Bohr
Institute, University of Copenhagen, on a GaAs sub-
strate in the [001] direction with the following layer
sequence: a 1-µm pure GaAs; a 70-Å undoped
0021-3640/04/8005- $26.00 © 20351
Al0.5Ga0.5As spacer; a 500-Å active layer of Be-doped
(5 × 1017 cm–3) Al0.5Ga0.5As; and a 50-Å capping layer
of Be-doped (1 × 1018 cm–3) GaAs. Samples with sizes
3.0 × 0.8 × 0.5 mm were split off from a disk along the
natural glide planes with the long side directed along
[110], and a mesa in the Hall configuration was etched
in the central part of the sample. The termination pads
were formed by the diffusion of the Au:Zn alloy, and
20-µm gold wires were sealed to them by the ultra-
sound method. The quantum Shubnikov–de Haas
(SdH) oscillations, whose frequency determines the
2D-hole cross sections and the corresponding concen-
trations, were studied at a temperature of 1.5 K in mag-
netic fields up to 6 T. The total hole concentration was
also determined from the Hall effect and found to be
Ns = 7.6 × 1011 cm–2 at normal pressure P = 0.

The uniaxial compression was performed in a com-
plex system [3, 4] consisting of an elastic ring made
from a nonmagnetic 40KhNYu steel and a rectangular
sample rigidly fixed in it by low-temperature epoxy
resin (Fig. 1). The ring converts the stretching force
applied along the z axis into the compressive force
along the y axis (along the sample). The stretching
force is applied to the ring at liquid helium tempera-
tures using a special device and is determined from the
elongation of a calibrated steel spring comprising a part
of this device. The advantages of this method are as fol-
lows: (1) a rigid fixation of the sample carefully
adjusted to the ring allows one to circumvent the
requirement that its end faces be strictly plane-parallel,
which is necessary in the traditional methods of com-
004 MAIK “Nauka/Interperiodica”
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pression in anvils; and (2) the central symmetry of a
load applied to the sample removes the requirement
that the sample axis in anvils be strictly oriented along
the compressive force, since otherwise only a small
deviation from this orientation leads to premature sam-
ple destruction. In this work, uniaxial compression up
to 5 kbar was performed along the sample length in the
[110] direction.

According to the calculation of the energy spectrum,
only the ground state of heavy holes is occupied in the
p-GaAs/Al0.5Ga0.5As heterostructures with the indi-
cated geometry and carrier concentration [2]. Because
of the lack of inversion symmetry in a triangular QW at
a single heterojunction, this state is split into two spin-
nondegenerate subbands. The dispersion law for such
subbands is strongly nonparabolic, and the spin split-
ting at the Fermi level is εg = 2.14 meV in the [110]
direction and εg = 1.65 meV in the [100] direction.
After applying uniaxial compression, the spin splitting
of the subbands is reduced [2], and the Fermi surface
(FS) undergoes strong qualitative transformation for
both subbands (Fig. 2). The 2D FS contours for sub-
band 0 with a higher effective mass and for “light” sub-
band 1 (the corresponding FS sections are S0 and S1)
transform in the momentum space into elongated

Fig. 1. Elastic element converting tension into uniaxial
compression of the sample: (1) sample, (2) ring, (3) “ears”
for the fixation in the stretching device.
ellipses that touch one another in the compression
direction [110] at the critical pressure Pcr = 2.5 kbar.
The energy gap between the subbands εg = 0 in this
direction remains very small in the vicinity of Pcr. A
further buildup of pressure to 5 kbar removes the
degeneracy at the Fermi level in the [110] direction,
although the proximity of the S0 and S1 orbits in this
direction still plays a large role.

The SdH oscillation frequencies F0 and F1 are pro-
portional to the FS sections in the spin subbands S0 and
S1, and the corresponding hole concentrations are n0 =
eF0/hc and n1 = eF1/hc. The experimental dependence
of these parameters on the uniaxial compression is
shown in Fig. 3. Whereas the frequencies F1 in light
subband 1 can be calculated directly from the oscilla-
tory dependences at low magnetic fields, the frequen-
cies F0 for heavy subband 0 are determined from the
Fourier spectra of magnetoresistance oscillations
(Fig. 4). The concentration n0 can also be determined as
n0 = Nh – n1, where Nh is the total hole concentration
determined from the Hall effect. Against the back-
ground of an overall decrease in the total concentration
of 2D holes in the QW, the carriers are rearranged
among the spin subbands, as a result of which n0
decreases and n1 increases (Fig. 3). This result is in
agreement with our previous data obtained in [5] for the
p-GaAs/Al0.5Ga0.5As heterostructures with a higher
hole concentration. The spectral composition of the
quantum SdH oscillations is rather simple at P = 0 and
becomes more complicated under uniaxial compres-
sion, as can be seen both directly from the magnetic-
field dependences of magnetoresistance oscillations
(Fig. 4b) and from the corresponding Fourier spectra
(Fig. 4a).

Before proceeding to the analysis, it is worth noting
that the smallness of the subband spin splitting εg in the
structures studied hampers the observation of the tran-
Fig. 2. The FS contours S0 and S1 in two spin-split subbands of 2D heavy holes at different pressures along the [110] direction. For
P = 2.5 kbar, the magnetic-breakdown regions are hatched, and the numerals 1, 2, 3, and 4 correspond to the different segments of
the magnetic-breakdown orbits.
JETP LETTERS      Vol. 80      No. 5      2004
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Fig. 3. Dependences of the (left scale) concentration and the
(right scale) SdH frequency on the uniaxial compression: Ns
is the total hole concentration in the QW; n0 and n1 are the
concentrations in the spin-split subbands 0 and 1, respec-
tively. Different symbols correspond to different samples.
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sition from the weak-field regime, where the interband
magnetic breakdown is absent, to the strong-field
regime, where it occurs and, in the available magnetic
fields of 6 T, can be observed in our samples even in the
absence of uniaxial compression. The breakdown field

is HB ≈ /εFµ, where µ = e"/m*c, and the breakdown

probability is W =  [6], so that, according to esti-
mates, the magnetic breakdown can occur with the
probability W = 0.4 even in fields H ≥ HB ≈ 3–4 T. In
Fig. 5, the Fourier transforms of the SdH oscillations at
P = 0 are shown in various magnetic-field ranges. At
fields below 4 T, only a single frequency F1 correspond-
ing to the S1 section for holes with the smallest effective
mass  = 0.22m0 [2] is, in effect, present in the Fou-
rier spectrum, whereas the amplitude of oscillations
with frequency F0 (section S0 for the holes with mass

 ~ 0.9m0) is still small in this range of magnetic
fields, and the corresponding peak is hardly visible.
However, at H > 4 T, both fundamental frequencies F1
and F0, as well as their sum F0 + F1 suggesting the non-
zero probability of magnetic breakdown between the
subbands, are seen in the Fourier spectrum in Fig. 5.
The fact that all Fourier spectra in Fig. 4a correspond to

εg
2

e
HB/H–

m1*

m1*
Fig. 4. (a) Fourier spectra and (b) the corresponding SdH quantum oscillations for different uniaxial compressions. F0 and F1 are
the fundamental frequencies. The magnetic-breakdown frequencies are numbered for P = 1.3 kbar: (1) (F0 – F1)/2, (2) (F0 + F1)/4,
(3) (F0 + F1)/2, and (4) F0 + F1.
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the Fourier transforms of the SdH oscillations in mag-
netic fields H < 4 T (Fig. 4b) counts in favor of the
unambiguous interpretation of the magnetic breakdown
as a consequence of the uniaxial compression.

At P ≥ 1.3 kbar (Fig. 4a), the Fourier spectra become
more complicated because of a change in the FS of 2D
holes upon uniaxial compression (Fig. 2). The possibil-
ity of transition from one quasi-classical orbit to the
other under the magnetic-breakdown condition affects
the dynamics of charge-carrier motion, and, for the FS
depicted in Fig. 2c, orbits 1–3 and 2–4 ((F0 + F1)/2 fre-
quency and its F0 + F1 harmonic, respectively) appear,
apart from the classical orbits consisting of the 1–4
(S0 section; F0 frequency) and 2–3 (S1 section; F1 fre-
quency) segments. In this case, the fundamental fre-
quencies F0 and F1, according to the data in Fig. 3,
approach each other under pressure, as do also the con-
ditions for their observation, so that these frequencies
are not resolved in the Fourier spectra at the maximal
pressures. Of greatest interest, from the viewpoint of
the theory of magnetic breakdown, is the appearance of
the difference frequency (F0 – F1)/2 that can be related
to the areas of “segments” 1–2 and 3–4 in Fig. 2c. Such
orbits are not allowed in the quasi-classical picture of
magnetic breakdown, while the corresponding differ-
ence frequencies are the result of quantum interference
and are not associated with the oscillations of the

Fig. 5. Fourier spectra of the SdH oscillations for different
regions of magnetic field in the absence of compression.
charge-carrier density of states. If the magnetic break-
down is phase-coherent, the magnetic-breakdown-
paired trajectories (of types 1–2 in Fig. 2c) going in the
same direction represent a specific “quantum interfer-
ometer” whose base is formed by the sections between
the trajectories [6]. Such different interference frequen-
cies were previously observed while studying the mag-
netic breakdown both in three-dimensional materials
(e.g., niobium [7]) and, recently, in 2D organic conduc-
tors [8].

In closing, we note that the magnetic breakdown is
developed upon uniaxial compression between two FSs
belonging to different spin-split subbands of the heavy-
hole ground state in a system of 2D holes in an asym-
metrical triangular QW at the GaAs/Al0.5Ga0.5As het-
erojunction. The complication of the Fourier spectra of
SdH quantum oscillations under pressure serves as an
indicator of the magnetic breakdown. Apart from the
fundamental frequencies characterizing the real FS sec-
tions in the momentum space, the combination and dif-
ference frequencies and their harmonics appear in the
spectra. The observed phenomenon is direct experi-
mental evidence of the strong anisotropic modification
of the 2D-hole FS upon uniaxial compression, as was
predicted previously by the numerical calculations.
According to the calculation, the subband spin splitting
at the Fermi level decreases to zero in the uniaxial com-
pression direction at Pc = 2.5 kbar, which serves as a
basis for the development of the interband magnetic
breakdown.
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The low-energy part of the vibration spectrum of KNbO3 was studied by cold neutron inelastic scattering in the
cubic phase. In addition to acoustic phonons, we observe strong diffuse scattering, which consists of two com-
ponents. The first one is quasistatic and has a temperature-independent intensity. The second component
appears as quasielastic scattering in the neutron spectrum, indicating a dynamic origin. From analysis of the
inelastic data, we conclude that the quasielastic component and the acoustic phonon are mutually coupled. The
susceptibility associated with the quasielastic component grows as the temperature approaches TC. © 2004
MAIK “Nauka/Interperiodica”.

PACS numbers: 61.12.-q; 63.50.+x; 64.60.-i; 77.80.-e
ABO3 perovskites form a class of important materi-
als, in part because of potential technical applications
but also due to fundamental interest in the physics of
phase transitions [1, 2]. At sufficiently high tempera-

tures, many of these perovskites have  cubic sym-
metry, and structural phase transitions can take place as
the temperature is lowered. Well-known examples are,
e.g., the cubic–tetragonal phase transition in SrTiO3

(TC ≈ 105 K) or in BaTiO3 (TC ≈ 425 K) (for a review,
see [3]). There are, however, ABO3 perovskites, which
have been less studied. An example is the first-order
cubic–tetragonal phase transition in KNbO3 which
occurs at TC ≈ 683 K when cooling the crystal from
above the transition temperature [4].

The mechanism of the cubic–tetragonal (C–T)
phase transition in KNbO3 is still controversial.
Whereas well-defined soft phonon modes with fre-
quency varying with temperature have been detected in
many materials close to TC [1–3], only an overdamped
excitation has been observed in cubic KNbO3 with neu-
tron scattering, and it has been suggested that the nature
of the C–T phase transition in that compound is similar
to the displacive C–T transition in BaTiO3 [5, 6]. On the
other hand, two coexisting and essentially uncoupled
modes are inferred from analysis of optical data in the
cubic phase of KNbO3: a relaxation mode and a soft
phonon, with the relaxation process driving the C–T
phase transition [7].

¶ This article was submitted by the authors in English.
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We reinvestigated the low-energy part of the vibra-
tion spectrum in KNbO3 under improved resolution
conditions, first, to try to elucidate the mechanism of
the phase transition in this crystal and, second, to check
whether the diffuse scattering found in [8] is of static or
dynamic origin. The inelastic cold-neutron scattering
measurements reported here were performed with the
three-axis TASP spectrometer located at the neutron
spallation source SINQ (Paul Scherrer Institute, Swit-
zerland). A large single crystal of KNbO3 (~20 cm3,
mosaic ~80′) was mounted into an ILL-type furnace. To
decrease the level of incoherent background, the sam-
ple holder was made from pure niobium. The crystal
was aligned in the (hk0) scattering plane. The measure-
ments were performed in the temperature range 727–
1030 K. The (002) reflection of pyrolytic graphite (PG)
was used to monochromate and analyze the incident
and scattered neutron beams, respectively. The spec-
trometer was operated in the constant final-energy
mode with kf = 1.97 Å–1. A PG filter was used to remove
higher-order wavelengths. The horizontal collimation
was 10′/Å–80′–80′–80′. With that configuration, the
energy resolution at zero-energy transfer is ~0.4 meV.
By monitoring the position and intensity of the (1, 1, 0)
Bragg peak, the temperature of the cubic–tetragonal
phase transition upon cooling was found at TC = 684 ±
2 K, in close agreement with published data [4, 6]. The
temperature of the sample was controlled by two ther-
mocouples. The temperature gradient through the sam-
ple did not exceed 15 K.
004 MAIK “Nauka/Interperiodica”
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Before analyzing the inelastic neutron spectra quan-
titatively, it is convenient to address the q-dependence
of the elastic neutron response. Figure 1 shows repre-
sentative elastic scans along the (1, 1 ± q, 0) direction
at T = 760 and 1030 K, respectively. This intense and
broad scattering is similar to the diffuse scattering
observed in KNbO3 by Guinier et al. [8] using X-rays
and reflects the presence of atomic disorder in the per-
ovskite cell. In KNbO3, atomic disorder yields diffuse
scattering along the [100] direction both in the X-ray
and neutron diffraction patterns. Here, we approximate
the line-shape of the neutron diffuse scattering intensity
by a Lorentzian profile:

(1)

where q0 is the position in reciprocal space, κ is the
inverse of the correlation length ξ, and I0 yields the inte-
grated intensity. From a fit to the elastic data at T =
1030 K, we obtain ξ = 64 ± 6 Å. It turns out that the
shape and intensity of the diffuse scattering measured in
the (2, 0, 0) Brillouin zone (BZ) do not depend on tem-
perature (see insert of Fig. 2). This is in agreement with
the results of [8], where the intensity of the diffuse scat-
tering is found to be temperature-independent in the
cubic phase and to decrease abruptly by ~30% immedi-
ately below TC. On the other hand, it turns out that the
intensity of the diffuse scattering measured along (1,
1 ± q, 0) slowly decreases when increasing the tempera-
ture from TC. This suggests that, in this BZ and for tem-
peratures relatively close to TC, the diffuse scattering con-
sists of two Lorentzian components (see inset of Fig. 1).

We now turn to the analysis of the inelastic neutron
scattering spectra. Figure 2 shows an example of a con-

A q( ) 1
π
---

I0

q q0–( )2 κ2+
--------------------------------,=

Fig. 1. Profiles of elastic scans in the (0η0) direction at T =
760 and 1030 K. Raw data are shown by circles. The dotted
line is the result of fits as described in the text. The bold line
shows the Lorentzian profile. The dash-dotted line stands
for the intense and narrow Bragg peak. The intensity is
given in a logarithmic scale. The insert shows the difference
of the elastic scans I(T = 760 K) – I(T = 1030 K) fitted with
Eq. (1). 1 rlu corresponds to 1.57 Å–1.
stant-q scan taken at Q = (2, –0.1, 0) and T = 1030 K.
The spectrum contains an inelastic peak at "ω = 4 meV
from the transverse acoustic (TA) phonon and a narrow
peak centered around zero-energy transfer. To analyze
the data quantitatively, we, hence, modeled the neutron
scattering intensity I(Q, ω) in the following way:

(2)

The symbol ⊗  stands for the 4D convolution with the
spectrometer resolution function R(Q, ω) [9]; B
denotes the background level; and S(Q, ω) is the neu-
tron scattering function, which is related to the imagi-
nary part of the dynamical susceptibility χ''(Q, ω)
through

(3)

with the temperature factor [n(ω) + 1] = [1 –
exp(−ω/T)]–1. We approximate the central peak by a
δ-function in energy

(4)

with A(q) given by Eq. (1). The line-shape of the acous-
tic phonon is given by the usual damped-harmonic
oscillator (DHO),

(5)

In Eq. (5), γq is the damping and Ωq =  with
ωq = cq [10] is the renormalized frequency of the
acoustic phonons. For small values of momentum
transfers q, a linear dispersion for the acoustic phonon
branch is a reasonable approximation and the phonon
damping approximately follows a dq2-dependence

I Q ω,( ) S Q ω,( ) R Q ω,( ) B.+⊗=

S Q ω,( ) n ω( ) 1+[ ]
π

--------------------------χ'' Q ω,( ),=

SCP A q( )δ ω( ),=

χDHO q ω,( ) Ωq
2 iγqω– ω2–( ) 1–

.=

ωq
2 γq

2+

Fig. 2. Neutron scattering spectrum from KNbO3 at 1030 K.
Raw data are shown by open circles. The solid line is the
result of fit as described in the text. The intensity is given in
a logarithmic scale. The apparent width of the phonon peak
is due to the resolution effects. The insert shows the temper-
ature and the q dependences of the intensity of the central
peak. 1 rlu = 1.567 Å–1.
JETP LETTERS      Vol. 80      No. 5      2004



DYNAMICS OF CUBIC–TETRAGONAL PHASE 357
[11]. The scattering function used to fit the neutron data
then reads

(6)

where Q = q + τ is the neutron scattering vector, τ is a
reciprocal lattice vector, and f1 is the structure factor of
the acoustic phonon. As shown in Fig. 2, Eqs. (1)–(6)
parametrize the experimental data in the (2, 0, 0) BZ
well. The central peak is resolution-limited and temper-
ature-independent. The acoustic phonon branch has a
stiffness c = 28 ± 1.3 meV Å2, and the damping is small
at low q, γq = dq2 with d = 55 ± 6 meV Å2 (0.05 < q <
0.15 (rlu)). In the temperature range 750 K < T <
1030 K, no qualitative change in the dispersion of the
acoustic phonon was observed for data taken along (2,
q, 0) (|q| < 0.15 (rlu)).

On the contrary, for temperatures below T = 1030 K,
an additional component is observed in the inelastic
spectra for constant-q scans in the (1, 1, 0) BZ. For
means of comparison, Fig. 3 shows two representative
neutron scattering spectra measured in the (1, 1, 0) BZ
at T = 1030 and 727 K, respectively. At T = 1030 K, the
spectrum consists of two components: a central peak
(CP) and a phonon response around "ω = 4 meV. How-
ever, as the temperature is lowered to T = 727 K, addi-
tional quasielastic scattering (QE) appears along the (1,
1 ± q, 0) direction. The intensity of this quasielastic
scattering grows when approaching TC. From the above
discussion, we conclude that, in the (1, 1, 0) BZ, the
inelastic neutron spectra consist of three contributions:
a central peak, quasielastic, and phonon scattering. To
describe the quasielastic scattering, we introduce a
Debye-like relaxation function,

(7)

where χ(0, T) is the temperature-dependent static sus-
ceptibility, κ is the inverse of the correlation length, and
Γq = Γ0 + Dq2. Taking into account the quasielastic scat-
tering modifies the neutron cross section to

(8)

However, the scattering function given in Eq. (8) fails in
reproducing the experimental data in the (1, 1, 0) BZ for
T < 1030 K. For example, Fig. 3 shows an inelastic spec-
trum at T = 727 K and Q = (1, 1.075, 0), where a quali-
tative change in the phonon line-shape accompanied by
a shift in the position of the phonon peak is observed.
These two effects suggest that coupling between the
quasielastic component and the acoustic phonons
becomes important as the temperature approaches TC.

The dynamical susceptibility for two coupled excita-
tions was considered in details in [3, 12, 13] and is given by

(9)

S Q ω,( ) SCP Q ω,( ) n ω( ) 1+[ ]
π

-------------------------- f 1
2χDHO'' Q ω,( ),+=

χq el– q ω,( ) χ 0 T,( )
1 q2/κ2+
---------------------- 1 iω/Γq–( ) 1– ,=

S Q ω,( ) SCP Q ω,( )=

+
n ω( ) 1+[ ]

π
-------------------------- f 1

2χDHO'' Q ω,( ) f 2
2χq el–'' Q ω,( )+[ ] .

χCM Q ω,( )
f 1

2χ1 f 2
2χ2 2λ f 1 f 2χ1χ2+ +

1 λ2χ1χ2–
-----------------------------------------------------------------,=
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where χi ≡ χi(Q, ω), i = 1, 2 are the dynamical suscep-
tibilities of the uncoupled phonon and QE component,
respectively. In the following, we take fi as real con-
stants, since in KNbO3, all the atoms are situated on
centers of symmetry. The interaction term is λ ≡ λ(q, ω) =
(gr + iωgi)q2. Finally, the scattering function reads

(10)

In order to obtain a good agreement between Eq. (10)
and the neutron spectra, it was necessary to fit the com-
plete set of data (0 < q < 0.2) taken at a given tempera-
ture simultaneously. Figures 4 and 5 show the results of
such calculations for T = 727 and 760 K. We obtain
gr = 20 ± 3 meV2 Å2 and gi = 95 ± 6 meV2 Å2. Introduc-
tion of a coupling between the QE and acoustic modes
has two consequences. First, Eq. (9) yields a better
description of the line-shape of the inelastic neutron
spectra. Second, (Q, ω) is enhanced at low-energy
transfers. Further, we obtained Γ0 = 0.19 ± 0.05 meV
and D = 44 ± 4 meV Å2 for the damping of the QE com-
ponent. As discussed above, both the CP and the line-
shape of the acoustic phonons are temperature-inde-
pendent in the (2, 0, 0) BZ. Hence, to fit the data mea-
sured in the (1, 1, 0) BZ as a function of temperature,
we fixed the parameters of the CP and the acoustic
phonons. The only parameter left to describe the tem-
perature dependence of the neutron spectra is the sus-
ceptibility of QE scattering χ(0, T). As shown in Fig. 5,
the intensity of the quasielastic component is a maxi-
mum close to TC and decreases continuously with
increasing temperature. The temperature dependence
of χ(0, T) follows approximately the Curie–Weiss law
∝ 1/(T – T0) with T0 = 615 ± 23 K in good agreement
with the value deduced from dielectric measurements

S Q ω,( ) SCP Q ω,( ) n ω( ) 1+[ ]
π

--------------------------χCM'' .+=

χCM''

Fig. 3. Neutron scattering spectrum from KNbO3 at T =
1030 and 727 K, respectively. The solid and dashed lines are
the results of fit as described in the text. To emphasize the
QE component, the intensity is given in a logarithmic scale.
Note the pronounced change in the phonon line-shape at
lower temperature.
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Fig. 4. Observed and fitted inelastic neutron intensities
taken in the (1, 1, 0) BZ at T = 727 K. Fitted curves were
obtained with Eq. (10). Intensity is given in a logarithmic
scale.

Fig. 5. Observed and fitted inelastic neutron intensities
taken in the (1, 1, 0) BZ at T = 760 K. Fitted curves were
obtained with Eq. (10). Intensity is given in a logarithmic
scale.

Fig. 6. Temperature dependence of the susceptibility of the
QE component. The solid line is a fit to the data as explained
in the text.
T0 = 633 ± 5.9 K [14] and T0 = 615 K [15]. This sug-
gests that the cubic–tetragonal transition in KNbO3 is
driven by the quasielastic relaxational excitation. The
intensity of the quasielastic component is strong in the
(1, 1, 0) zone and has a small intensity in the (2, 0, 0)
Brillouin zone, which indicates that the relaxation mode
is due to correlated atomic motion of optical character.
However, at all q and temperatures, we did not observe
that the relaxation mode evolves into an underdamped
optic phonon branch. Thus, we conclude that QE scat-
tering in KNbO3 is not due to a usual overdamped soft
phonon but is related to disorder in the lattice.

To summarize, we measured the low-energy part of
the vibration spectrum of KNbO3 in the cubic phase
with inelastic neutron scattering. We find a coexistence
of a static and a quasielastic component. The static
component appears to correspond with static disorder
in the cubic cell and is temperature-independent in
agreement with X-ray results [5]. The quasielastic com-
ponent is coupled with the acoustic phonon branch, and
its intensity follows the Curie–Weiss law well.

This work was performed at the spallation neutron
source SINQ, Paul Scherrer Institut, Villigen (Switzer-
land) and was partially supported by the Russian Foun-
dation for Basic Research, grant no. 02-02-17678.
P. Günter and A. Choubey acknowledge partial support
by the Swiss National Science Foundation.

REFERENCES
1. G. A. Smolenskiœ, V. A. Bokov, V. A. Isupov,

N. N. Krainik, R. E. Pasynkov, and M. S. Shur, Ferro-
electrics and Related Materials (Nauka, Leningrad,
1971; Gordon and Breach, New York, 1984).

2. M. E. Lines and A. M. Glass, Principles and Applica-
tions of Ferroelectrics and Related Materials (Claren-
don Press, Oxford, 1977; Mir, Moscow, 1981).

3. A. D. Bruce and R. A. Cowley, Structural Phase Transi-
tions (Taylor and Francis, London, 1981; Mir, Moscow,
1984).

4. G. Shirane, H. Danner, A. Pavlovic, and R. Pepinsky,
Phys. Rev. 93, 672 (1954).

5. A. C. Nunes, J. D. Axe, and G. Shirane, Ferroelectrics 2,
291 (1971).

6. M. Holma and Haydn Chen, J. Phys. Chem. Solids 57,
1465 (1996).

7. M. D. Fontana, A. Ridah, G. E. Kugel, and C. Carabatos-
Nedelec, J. Phys. C 21, 5853 (1988).

8. R. Comes, M. Lambert, and A. Guinier, Acta Crystallogr.
A 26, 244 (1970).

9. M. Popovichi, Acta Crystallogr. A 31, 507 (1975).
10. B. Fåk and B. Dorner, Physica B (Amsterdam) 234, 1107

(1997).
11. A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589

(1962).
12. R. K. Wehner and E. F. Steigmeier, RCA Rev. 36, 70

(1975).
13. G. J. Coombs and R. A. Cowley, J. Phys. C 6, 121 (1973).
14. S. Triebwasser, Phys. Rev. 101, 993 (1956).
15. V. K. Yanovskii, Sov. Phys. Solid State 22, 1284 (1980).
JETP LETTERS      Vol. 80      No. 5      2004



  

JETP Letters, Vol. 80, No. 5, 2004, pp. 359–362. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 80, No. 5, 2004, pp. 408–411.
Original English Text Copyright © 2004 by Pudalov, Kirichenko, Klimov, Gershenson, Kojima.

                                                                                                  
Unexpected Negative Nonmonotonic Magnetoresistance 
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We report observation of the unexpected negative and nonmonotonic magnetoresistance of 2D electrons in Si-
MOSFET subjected to a varying in-plane magnetic field superimposed on a constant perpendicular field com-
ponent. We show that this nonmonotonic magnetoresistance is irrelevant to the energy spectrum of mobile 2D
electrons. We also observed variations of the density of mobile electrons with the in-plane field. We argue that
both variations of the negative magnetoresistance and of the density of mobile electrons originate from the band
of localized states. The latter coexist and interact with mobile electrons even at relatively high density, a factor
of 1.5 higher than the critical density of the apparent metal-insulator transition. © 2004 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 71.10.Ay; 71.30.1h; 72.10.2d; 73.40.Qv
The properties of the dilute strongly interacting two-
dimensional (2D) electron liquid, and, in particular, the
apparent metal-insulator transition (MIT) in 2D remain
challenging [1, 2]. One of the main problems here is to
understand the individual roles of two major driving
forces, disorder and electron–electron (e–e) interac-
tions. Purely interaction effects between mobile 2D
electrons have been intensely studied both theoretically
[3–9] and experimentally [10–14]; the role of disorder
in these studies is limited to scattering of mobile elec-
trons solely.

In contrast, the interplay of disorder and interac-
tions, particularly interaction between localized and
mobile electrons, is considered much rarely [15–17];
experimental investigations of it are rare. One might
expect that the interplay should become more and more
important as electron density decreases and approaches
the critical density of the 2D MIT.

Usually, the presence of the localized states does not
reveal itself in 2D transport, which is dominated by
mobile electrons. The in-plane magnetic field, in a first
approximation, does not couple to orbital motion,
affecting only spins of mobile and localized electrons;
for this reason, the in-plane field is a useful tool for
studying localized states. Correspondingly, the influ-
ence of the localized states on magnetotransport have
been detected in [18–20] in the strong in-plane field
gµB|| ~ 2EF: under such conditions, the magnetoresis-

¶ This article was submitted by the authors in English.
0021-3640/04/8005- $26.00 © 20359
tance (MR) and the field of its saturation have been
found to depend on disorder (e.g., on sample mobility)
and deviate from the behavior predicted for purely
mobile electrons [5, 6].

In the current paper, we report an observation of the
negative and nonmonotonic MR in weak in-plane fields
gµB|| ! 2EF, which arises when perpendicular compo-
nent B⊥  of the field is superimposed onto in-plane com-
ponent B||. Measurements have been made with a high-
quality Si-MOS sample (peak mobility 2.4 m2/Vs at T ≈
0.1 K) in 3He/4He dilution refrigerator. The perpendic-
ular and in-plane components of the magnetic field
were independently controlled using a crossed-field
set-up with two superconducting coils [10].

Figure 1 shows the MR versus perpendicular field
for different fixed B|| values. Starting the field of ~0.3 T
(right after the weak localization suppression), on the
top of the interaction-induced monotonic MR δρxx(B⊥ ) ∝
–(ωcτ)2 [6], one can see conventional Shubnikov-de
Haas (SdH) oscillations. Density values n quoted in the
paper were determined from the period of these oscilla-
tions in perpendicular field. The oscillatory component
ρxx(B⊥ ) is in a qualitative agreement with conventional
theory of quantum oscillations.

In the purely in-plane field, for the density range
studied, (1.1–2.2) × 1011 cm–2, the MR grows monoton-

ically (∝  in low fields) [11] in a qualitative agree-
ment with the interaction-induced MR [5, 6]. However,

B||
2
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when a fixed perpendicular field is applied and the in-
plane field is swept, the MR varies in unexpected non-
monotonic fashion, as shown in Fig. 2. First, the resis-
tance decreases, passes through a minimum and, then,
starts rising as anticipated [5, 6]. For n = 1.6 × 1011 cm–2,
the minimum occurs at B|| ≈ 1.3 T, as shown in Fig. 2a.
Second, the resistance exhibits weak oscillations; the
oscillations are enlarged in Fig. 2b by subtracting the
monotonic background (fitted with the second order

Fig. 1. Shubnikov-de Haas oscillations in a perpendicular
field for three values of the in-plane field B||. Density is indi-

cated in units of 1011 cm–2.

Fig. 2. (a) Typical ρ(B||) dependence in the presence of the
B⊥  field (dots); ρ(B||) calculated according to Eqs. (1) and
(2). (b) Oscillations δρ/ρ vs. B||. Electron density n = 1.6 ×
1011 cm–2, temperature T = 0.2 K, B⊥  = 1.14 T.
polynomial). The field-positions of the two ρ(B||) min-
ima in Fig. 2 depend on electron density and on B⊥
field. We note that, at higher densities and higher kFl @
1 values, these effects are not seen and the field depen-
dence of ρxx(B||) measured on these same samples
becomes monotonic [11].

The monotonic negative magnetoresistance versus
B|| might be a result of the interaction-induced correc-
tions to σxx [5, 6]:

(1)

where ω⊥  is the cyclotron frequency in the B⊥ -field and

δ (B||) is negative and caused by the magnetic field
switching-off of the spin-exchange processes in the
triplet channel [5]:

(2)

where the Kb and Kd are functions of x = g*µB||/kBT, as
given in [5]. The line in Fig. 2 shows the theoretical
dependence calculated according to Eqs. (1) and (2),

using the measured [10] value  = –0.45 for this den-
sity. The calculated dependence appears to be much
stronger. Moreover, it describes a positive (rather than
negative) MR, because, for the given value ωcτ ≡ µB|| =
0.76 < 1, the square bracket in Eq. (1) is positive.

We conclude, therefore, that, for low densities and
low kFl ~ 1 values, the MR in B|| field is governed by
mechanisms different from purely interaction correc-
tions [5, 6]; this conclusion is in accord with our earlier
observations [19, 18]. In attempt to identify the origin
of the ρ(B||) oscillations, for each electron density, we
have calculated the energy spectrum using the experi-
mentally determined [10] renormalized m* and g*-fac-
tor values. Figure 3 represents an example of the calcu-
lated energy spectrum for one density and B⊥  field
value. In this plot, the energy levels vary as

(3)

For simplicity, we have neglected: (i) the quantum
oscillations of the Fermi energy, (ii) B⊥ - and B||-field
dependences of the effective mass and g-factor, and
(iii) the valley splitting. We also presumed that EF(0) =
nπ"2/gvm*, with m* being the renormalized effective
mass [10].

Considering the energy spectrum of mobile elec-
trons calculated with the above reasonably admitted
assumptions, we find that it cannot produce either a
negative MR or its oscillations. Indeed, the B⊥  field of
1.14 T is chosen so that EF lies in the middle of the
energy gap; this is confirmed by Fig. 1, where this field
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corresponds to the resistivity minimum. As B||
increases, the Fermi energy remains within the same
energy gap until ≈4 T (see Fig. 3); therefore, no oscilla-
tions can be anticipated until B|| = 4 T. In order to test
whether or not the presence of a fixed in-plane field
causes unforeseen changes to the energy spectrum, we
have made similar calculations of the energy spectra at
a varying B⊥  field for each curves shown in Fig. 1 (i.e.,
for B|| = 1, 1.5, and 2 T); the calculated spectra agree
with the SdH oscillations. We conclude, therefore, that
the observed features in R(B||) are not (solely) related
with the energy spectrum of mobile 2D electrons.

In order to elucidate the origin of the anomalous
oscillatory and negative MR (Fig. 2), we plot, in Fig. 4,
the typical density n of mobile electrons versus the B||
field as determined from fitting the SdH oscillations
[10] at fixed gate voltage value. The perpendicular field
in these SdH measurements varied from 0.2 to 1 T to
provide sufficiently high number of filled Landau levels
(>8) and a weak amplitude of the oscillations δρ/ρ ! 1.
As Fig. 4 shows, the density of mobile electrons
increases slightly with the in-plane field; this does not
correlate with either the energy spectrum (Fig. 3) or
with a weak monotonic dependence of the effective
mass (and, hence, the Fermi energy) on B|| [21, 22, 14]
(note that the frequency of SdH oscillations does not
depend on m* being dependent solely on the Landau
level’s degeneracy). Since the total charge in the Si-
MOSFET (which is a plane capacitor) does not vary
with B||, we conclude that there is an exchange of elec-
trons of a few percent between the reservoirs of 2D-
mobile and localized states.

The effects of exchange of electrons are natural if
the localized electrons fill the upper Hubbard band [15,
16]; the latter will float up toward the Fermi energy as
density decreases. The upper Hubbard band is expected
to be narrow [16]; therefore, the in-plane magnetic field
should quickly polarize it. The spin-polarization and
motion of the band of localized states in the B|| field
may thus be the reason for the dependence of n on B||
shown in Fig. 4. The latter dependence, in its turn,
explains semiquantitatively the unexpected monotonic
negative MR, ∆ρ, as observed in the B|| field [see
Fig. 2a]: ∆ρ = (dρ/dn)∆n(B||). With the experimentally
determined value dρ(B = 0)/dn = 11.5kΩ/h per
1011 cm–2 (for this same gate voltage) and ∆n(B||) = 5 ×
109 cm–2 (see Fig. 4), we anticipate a decrease in
ρ(B||) = 0.6kΩ/h in the field range B|| = 0–1.5 T, which
agrees well with the monotonic negative magnetoresis-
tance, shown in Fig. 2.

The nonmonotonic variation of the MR may also
result from the peaked structure of the Hubbard band.
The role of the B⊥ -field in this picture is to produce a
ladder structure of the density of states in the band of
mobile electrons, Eq. (1); this ladder moves with the in-
plane field relative to the peaked Hubbard band. There-
fore, the nonmonotonic MR is not seen in a purely in-
JETP LETTERS      Vol. 80      No. 5      2004
plane field, though the localized band contributes a
sample-dependent monotonic part to the in-plane field
magnetoresistance [19, 11, 18]. An interesting question
is whether or not the density of mobile electrons varies
solely with a B|| or with a B⊥  field; however, answering
this question poses a difficult technical challenge.

To summarize, for the low-density 2D electron liq-
uid in Si (n ~ 1011 cm–2; close to but noticeably larger
than the critical density), we observed an unexpected
negative and oscillatory magnetoresistance in the in-
plane magnetic field when a weak perpendicular com-
ponent of the field is superimposed onto the in-plane

Fig. 3. Energy spectrum of mobile 2D-electrons calculated
for n = 1.6 × 1011 cm–2 and B⊥  = 1.14 T, with the renormal-
ized m* and g*-factor measured in [10]. Bold dots mark
field positions of the measured MR minima. Bold line
shows Fermi energy EF, and thin lines show energy levels
for spin down (↓ ) and spin up (↑ ) electrons. The levels are
doubly degenerate, due to the two valley-spectrum.

Fig. 4. Typical dependence of the density of mobile elec-
trons on the in-plane magnetic field, determined from the
Shubnikov-de Haas oscillations period. Inset shows sche-
matic energy diagram of the spin up, spin down and impu-
rity bands, and direction of their motion with B|| field.
Energy spectrum corresponds to B⊥  = 1.14 T and B|| = 1 T.

↓

0↓
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field. Analysis of MR features shows that the negative
MR and its oscillations are irrelevant to the energy
spectrum of mobile electrons. We also observed a con-
comitant weak variation of the density of mobile elec-
trons with B||. The density variation is likely to cause the
unexpected negative MR. We believe that the observed
effects hint at the involvement of the localized states in
the transport at low densities; the latter may supply
electrons to and from the band of extended states even
at a density as high as 60% larger than the critical den-
sity of the M-I transition. In other words, the observed
effects are evidence for the hybridization of mobile and
localized carriers in the vicinity of a 2D MIT. As elec-
tron density decreases and approaches the critical value
of the MIT, the interaction between the localized and
extended states is expected to grow. The interaction
between the mobile and localized states, which is often
ignored, may play an essential role in the overall phe-
nomenon of 2D MIT.

The work was partially supported by the NSF, ARO
MURI, INTAS, RFBR, and Russian programs
“Strongly Correlated Electrons,” “Physics of Nano-
structures,” “Quantum and Nonlinear Processes,” and
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tific Schools program.
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We present a model that provides a plausible explanation of the effect of zero-resistance and zero-conductance
states in two-dimensional electron systems subjected to a magnetic field and irradiated with microwaves
observed in a number of experiments and of the effect’s main features. The model is based on the concept of
absolute negative conductivity associated with photon-assisted scattering of electrons on impurities. It is shown
that the main features of the effect can be attributed to the interplay of different electron scattering mechanisms.
© 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.40.-c; 73.43.-f; 78.67.n
1. INTRODUCTION

The possibility of states in which the dissipative
electric current in a nonequilibrium electron system (a
system in which the majority of electrons have negative
effective mass) flows in the direction opposite to the
electric field, i.e., the usual (or absolute) conductivity
of the system is negative, was discussed by Kroemer in
the late 1950s [1]. Rather realistic mechanisms of such
an absolute negative conductivity (ANC) in two- and
three-dimensional substantially nonequilibrium elec-
tron systems (2DESs and 3DESs) in magnetic field
were considered more than three decades ago [2–4]. At
the same time, the mechanism of ANC in a 2DES sub-
jected to a magnetic field and irradiated with micro-
waves associated with impurity scattering of 2D elec-
trons accompanied by the absorption of microwave
photons was proposed by one of us [5]. It was shown
that the dissipative conductivity is an oscillatory func-
tion of the ratio of microwave frequency Ω to electron
cyclotron frequency Ωc. At Ω somewhat exceeding Ωc

or a multiple of Ωc, the photon-assisted impurity scat-
tering of 2D electrons with their transitions between the
Landau levels (LLs) results in a contribution to the dis-
sipative current flowing opposite to the electric field. At
sufficiently strong microwave radiation, this scattering
mechanism can dominate, leading to ANC when Ω *
NΩc, where N = 1, 2, 3, …. The transformation of the
dissipative current versus electric field characteristic is
schematically shown in Fig. 1. The effect of vanishing
electrical resistance (in the Hall bar configuration) and
of vanishing electrical conductance (in the Corbino
configuration) in a 2DES in magnetic field irradiated
with microwaves has recently been observed by Mani

¶ This article was submitted by the authors in English.
0021-3640/04/8005- $26.00 © 20363
et al. [6], Zudov et al. [7], and Yang et al. [8]. Anderson
and Brinkman [9], Andreev et al. [10], and Volkov and
coworkers [11] suggested that this effect, i.e., the
appearance of ZR-states (and ZC-states), is attributed
to ANC associated with photon-assisted impurity scat-
tering of 2D electrons (put forward in [5, 12]) and an
instability of homogeneous states in a conductive
media with ANC. The latter was noted by Zakharov
[13] and discussed in early papers on ANC in 2DESs
(see, for example, [4]). The structure of the electric-
field distributions corresponding to ZR- and ZC-states
that arose as a result of the instability is determined by
the shape of the current-voltage characteristic (in par-
ticular, by the value of E0) and the features of the diffu-
sion processes. Recent experimental findings [6–8]
have stimulated a surge of experimental (for example,
[14–17]) and theoretical papers (for example, [18–24]).
Preliminary brief overviews can be found in [25, 26]. In
particular, the results of early theoretical studies of
ANC caused by photon-assisted impurity scattering

Fig. 1. Schematic view of dissipative current-voltage char-
acteristics JD = JD(E) without (P = 0) and with (P > 0)
microwave irradiation.
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were generalized by the inclusions of the LL broaden-
ing and high microwave power effects [18–20]. A qua-
siclassical model that is valid at large filling factors and
sufficiently strong electric field (or when a long-range
disorder determines the dissipative current) was devel-
oped by Vavilov and Aleiner [21]. A possible role of
photon-assisted acoustic phonon scattering was dis-
cussed in [22–24].

A theoretical model for ZR- and ZC-states should
explain at least the following details that are observed
experimentally: (a) the phase of the magnetic-field
dependence of the resistance (dissipative conductivity),
i.e., the positions of maxima and minima; (b) very slow
dependence of the magnitude of the dissipative conduc-
tivity maxima and minima on the microwave power
(tending to saturation in the range of elevated powers);
(c) steep decrease in the maxima and minima magni-
tude resulting in vanishing of ANC and, hence, in van-
ishing ZR- and ZC-states with increasing temperature;
and (d) relatively small magnitude of the minima and
maxima in 2DESs with moderate electron mobility that
makes impossible the attainment of ANC and its conse-
quences.

In this letter, we discuss a scenario for the appear-
ance of zero-resistance (ZR) as well as zero-conduc-
tance (ZC) states in 2DESs invoking the concept of
ANC associated with photon-assisted impurity scatter-
ing complicated by electron–electron interaction and
photon-assisted acoustic phonon scattering. The pro-
posed scenario provides plausible explanations of the
main experimental facts.

Fig. 2. Inter-LL electron transitions: (a) photon-assisted
impurity for both Ω > Ωc and Ω < Ωc and (b) photon-
assisted acoustic phonon scattering mechanisms (only tran-
sitions for Ω > Ωc are shown).
2. ANC DUE TO PHOTON-ASSISTED 
SCATTERING

The effect of ANC in a 2DES system in magnetic
field under microwave irradiation is associated with the
following [5, 12]. The dissipative electron transport in
the direction parallel to the electric field and perpendic-
ular to the magnetic field is due to hops of the electron
Larmor orbit centers caused by scattering processes.
These hops result in a change in the electron potential
energy, δe = –Fδρ. Here, F is the dc electric force acting
on an electron that is determined by the net in-plane dc
electric field, including both the applied and the Hall
components, and δρ is the displacement of the electron
orbit center. If the electron orbit center displaces in the
direction of the electric force (δρ > 0 and δe < 0), the
electron potential energy decreases. In equilibrium, the
electron orbit center hops in this direction are domi-
nant, so the dissipative electron current flows in the
direction of the net dc electric field. However, in some
cases, the displacements of the electron orbit centers in
the direction opposite to the electric force (with δρ < 0
and, hence, δe > 0) can prevail, resulting, in the dissipa-
tive current flowing opposite to the electric field.
Indeed, if an electron absorbs a photon and transfers to
a higher LL, a portion of the absorbed energy N"Ωc

(" is the Planck constant) goes to increase of the elec-
tron kinetic energy, hence, the change in the electron
potential energy is δe = "(Ω – N"Ωc). If (Ω – N"Ωc) >
0, so that δρ < 0 (see Fig. 2a), the potential energy of
electrons increases with each act of their scattering.

3. PHASE OF THE DISSIPATIVE
CONDUCTIVITY OSCILLATIONS

Summarizing the results of previous calculations [5,
12, 21] (see also [20, 22]), the variation of the dissipa-
tive dc current under the effect of microwave radiation
(photocurrent) can be presented as

, (1)

if FL ! "Γ,

,(2)

when FL > "Γ and L > di, and

, (3)

when FL > "Γ and L ! di (smooth disorder). Here, e is
the electron charge, Γ is the LL broadening; L is the
magnetic length; di is the spacing between 2DES and
the donor sheet; vH is the Hall drift velocity, K0(z) is the
McDonald function; and ΘN = 1 – exp(–N"Ωc/T),
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where T is the electron temperature. The factor ΘN is
due to the contribution of scattering processes with
both absorption and emission of microwave photons.

The coefficients  are determined by the matrix ele-
ments of photon-assisted interaction of electrons with
impurities (remote ones and those in a 2DES) and sur-
face roughness as well as by the amplitude of the ac
microwave electric field % and the electron distribution
function. As follows from (1)–(3), the microwave pho-
tocurrent reaches a maxima at NΩc – MΩ = ∆(+) and
minima at NΩc – MΩ = –∆(–) with ∆(+) . ∆(–) ~ max{Γ,
FL/"}. According to (1)–(3), the net dissipative current
approximately coincides with its dark value at the reso-
nances NΩc = MΩ. At NΩc – MΩ = –∆(–) and suffi-
ciently strong microwave radiation (when |Jph| > Jdark),
the net dissipative dc current JD = Jdark + Jph becomes
directed opposite to the electric field, resulting in insta-
bility. This pattern of the oscillatory behavior of the
microwave photocurrent is in line with the qualitative
reasoning in the previous section. It is consistent with
the experimental results [6–8, 14–16].

As shown, the photon-assisted acoustic phonon
scattering processes (see Fig. 2b) also lead to an oscil-
latory dependence of the microwave photoconductivity.
However, the phase of these oscillations is opposite to
that in the case of photon-assisted impurity scattering
[23, 24]. This can add complexity to the microwave
photoconductivity oscillations and can even result in
their suppression, particularly at elevated temperatures
(see Section 6).

4. POWER NONLINEARITY

The dependence of the factor  microwave field is

given by (ξΩ), where JM(z) is the Bessel function
and ξΩ ∝  % is proportional to the amplitude of classical
oscillations of the electron orbit center in the micro-
wave field (see, for example, [19, 20]). The terms with
M > 0 correspond to the transitions with the absorption
and emission of M real microwave photons. Thus, the
magnitudes of the microwave photoconductivity max-
ima and minima, maxσph and |minσph|, where σph =
Jph/E, are generally nonlinear functions of the micro-
wave power P ∝  |%|2. This is due to the effect of virtual
photon absorption and emission on the electron scatter-
ing processes. At low microwave powers, maxσph ∝  P
and |minσph| ∝  P. However, when ξΩ ∝  % approaches
bM, where bM corresponds to the maximum value of
JM(z), the magnitude of maxσph fairly slowly increases
with microwave power P in line with the experimental
observations in [6, 7] and others. This occurs at such
powers that the amplitude of classical oscillations of
the electron orbit center in the microwave field
becomes on the order of L. The pertinent characteristic
power Pmax increases with Ω approximately as Pmax ∝

IN
M

IN
M

JM
2
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Ω3 [19]. Another consequence of the nonlinear mecha-
nism in question is that, at high microwave powers, the
magnitudes of maxima and minima corresponding to
higher resonances (Ω ~ NΩc with N > 1) are not too
small compared to those near the cyclotron resonance
(Ω ~ Ωc).

Slowing down of the increase in maxσph and
|minσph| with increasing microwave power can be also
associated with some heating of the 2DES. As shown
below, an increase in the electron temperature leads to
broadening of the LL and, consequently, to smearing of
the resonances.

5. TEMPERATURE EFFECTS

As seen from (1), the microwave photoconductivity
σph markedly decreases due to the processes with emis-
sion of microwave photons. This effect becomes essen-
tial when the electron temperature increases from T <
N"Ωc ~ "Ω to T > N"Ωc ~ "Ω. The microwave photo-
conductivity maxima and minima also strongly depend
on the LL broadening. The latter can be rather sensitive
to the temperature. In particular, at moderate micro-
wave powers P, for a Lorentzian shape of the LLs, one
obtains the following temperature dependence:

(4)

Here, the dark conductivity and photoconductivity stem
from scattering processes involving impurities, while
the value σph depends on the sharpness of the reso-
nances and, hence, on the net LL broadening. The net
LL broadening is determined by the impurity (and
roughness) scattering processes and by the electron–
electron interaction. The LL broadening due to elec-
tron–electron interaction steeply increases with the
electron temperature. Taking into account that, in the
experimental situation, the 2DES Fermi energy EF @
"Ωc, one can use the following temperature depen-

dence [27]: Γe(T) ∝  (T/EF)2ln( /T), where Ry*
is the effective Rydberg. For f = Ω/2π = 50 GHz, the
factor associated with the emission of microwave pho-
tons in (4) reduces approximately by half with temper-
ature increasing from 1 to 3–4 K. Setting EF = 10 meV,
we find that Γe|T = 3 K/Γe|T = 1 K . 9. Hence, according to
(4), in a 2DES with high electron mobility (in the
absence of magnetic field) in which Γ is determined pri-
marily by the electron–electron scattering so that Γ .
Γe, the span of the dissipative conductivity oscillations,
i.e., the values maxσph and |minσph| can decrease by
several orders of magnitude when the temperature
increases by a few K. However, in 2DESs with moder-
ate electron mobility (limited, say, by residual impuri-
ties and interface roughness) in which Γi * Γe, an
increase in Γ with increasing temperature and, hence, a

maxσph
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minσph
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decrease in maxσph and |minσph| can be less pro-
nounced, as is confirmed by experimental data.

Since photon-assisted acoustic phonon scattering
provides the microwave photoconductivity maxima and
minima at NΩc & MΩ and NΩc * MΩ , respectively,
i.e., approximately at the point where photon-assisted
impurity scattering yields, on the contrary, the micro-
wave photoconductivity minima and maxima, the
former mechanism can interfere with the latter, modify-
ing the oscillations and even effectively suppressing
them. This is possible if photon-assisted acoustic
phonon scattering becomes essential with increasing
temperature [23, 24]. A marked intensification of this
mechanism occurs when T * "s/L = Tac, where s is the
speed of sound. In the experimental situations, Tac .
0.5 K.

6. EFFECT OF HIGH ELECTRON MOBILITY

Although the oscillations of microwave photocon-
ductivity as a function of the cyclotron frequency (i.e.,
the magnetic field) were observed in 2DESs with elec-
tron mobility in a rather wide range, sufficiently deep
microwave photoconductivity minima that can result in
ANC were observed only in the samples with fairly
high electron mobility. In the framework of the model
under consideration, this can be explained as follows.
The relative amplitude of the microwave photoconduc-
tivity oscillations is very sensitive to the LL broaden-
ing. In sufficiently perfect 2DESs with weak scattering
of electrons on residual impurities immediately in the
2DES and on the interface roughness, the LL broaden-
ing is determined primarily by the electron–electron
interaction. Indeed, when electron sheet concentration
Σe is about the sheet concentration of remote impurities
Σi, the ratio of quantities Γi and Γe can be estimated
roughly as Γi/Γe ∝  (Σi/Σe)exp(–2di/L). The exponential
factor in this formula is due a spatial separation of elec-
trons and donors, which gives rise to an exponential
decrease in the matrix element of electron-impurity
interaction. Hence, at di > L, one obtains Γi ! Γe. In the
experiments with 2DESs having high electron mobility,
di/L . 1.4, so that the latter exponential factor is about
0.06. Since the electron–electron scattering processes
are effectively suppressed with decreasing temperature
[27], the microwave maxima and, which is more impor-
tant, minima are well pronounced and can surpass the
dark conductivity at low temperatures and when micro-
wave radiation is strong enough. This leads to ANC in
some ranges of a magnetic field when certain relations
between Ω and Ωc are met. In contrast, in samples with
moderate electron mobility, a significant contribution to
the LL broadening is provided by residual impurities
and interface roughness. This prevents the attainment
of a sufficiently large ratio |minσph|/σdark, which is nec-
essary for ANC.
We believe that main experimental facts on ZR- and
ZC-states and related effects can be explained in the
framework of the concept based on ANC caused by
photon-assisted impurity scattering of electrons and
affected by electron-electron and photon-assisted
acoustic phonon interactions.
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State-dependent local dynamical variables (LDVs) sharply differ from the ordinary operators of quantum
mechanics. The N-level model system shows the physical importance of such operators in the complex projec-
tive Hilbert state space CP(N – 1). The process of quantum measurement in terms of LDVs is described. © 2004
MAIK “Nauka/Interperiodica”.

PACS numbers: 03.65.-w
In our macroscopic experience, we have a solid
pseudo-Euclidian space-time structure. The physical
conservation laws have rid us from doubts about the
identifying the macroscopic system. The identification
of the quantum system at very short and at cosmic dis-
tances is not so simple. How may one be sure that, say,
a right helicity photon has been send by Alice? Physi-
cally, this question may be formulated as follows: what
is an objective criterion for the identity of a quantum
system, or, what is the physical mechanism of the self-
identification (self-conservation) of a quantum system?
We can no longer rely upon space-time symmetries,
since it is just these properties that should be estab-
lished in some approximation a posteriori. In such a sit-
uation, one should have conservation laws relying upon
the geometry of the intrinsic transformation groups and
its submanifolds.

I formulate the covariant dynamics of an N-level
quantum system and corresponding local dynamical
variables (LDVs) based purely on the SU(N) geometry.
Since the quantum states are rays, in fact, only transfor-
mations from the coset submanifold G/H = U(N)/U(1) ×
U(N – 1) = CP(N – 1) act effectively on the rays of
states. However, LDVs (defined in terms of tangent
vectors to CP(N – 1)) being expressed in terms of local
quantum coordinates (π1 = Ψ1/Ψ0, …, πN – 1 = ΨN – 1/Ψ0)
are subject to the action of the whole SU(N) group.
Hence, we may assume that SU(N) transformations of
the N-level quantum system are locally equivalent to a
definite motion of the LDVs in CP(N – 1) (the “super-
relativity” principle [1]). Therefore parallel transport in
CP(N – 1) is the method of N-level quantum system
identification, expressing the conservation law of the
LDV, should be observable and curvature-dependent.

1. I would like attract attention to the global prop-
erty of the internal symmetries in quantum mechanics.
They have been realized mostly in imitation of the form
of space-time symmetries; namely, their operators give
a linear representation of the corresponding groups. To

 ¶ This article was submitted by the author in English.
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my mind, the nonlinear realization seems to be actually
capable of shedding light on the measurement as an
objective process [2].

In fact, nonlinear group realizations have been
already used in the framework of the phenomenological
Lagrangians method in QFT [3] and in the theory of
spin wave interaction [4]. The breakdown of the
“chiral” dynamical group SU(N) up to the isotropy
group H = U(1) × U(N – 1) has been proposed [1], but
in an abstract form without clear physical argumenta-
tion. I will now show that, in simple optical measure-
ments, the state-dependent LDVs play the key role in
the objective interpretation of quantum theory.

My aim is to calculate the phase difference accumu-
lated during the parallel transport of LDVs correspond-
ing to light polarization along different paths in CP(1).
Let me describe the polarization optics measurement in
terms of LDVs. The model setup providing the unitary
evolution of the polarization state of light is simple. A
fixed Cartesian reference frame (O, x, y, z) in physical
space will be used. Initially, one has a beam of light in
a linear polarization state in the x-direction |x〉  =

(|R〉  + |L〉) = (1, 1)T propagating along the z-axis.

Then the polarization states in the y-direction is |y〉  =

(|R〉  – |L〉) = (–i, i)T and, then, |R〉  = (1, 0)T, |L〉  =

(0, 1)T. The coherent superposition state will be
denoted, as usual, as |Ψ〉 = (Ψ0, Ψ1)T. The Poincaré
sphere refers to the coordinates (o, s1, s2, s3) in the iso-
space of the polarization. In general, the coherence vec-

tor lies on the isotropy “light cone”  –  –  –  =

0, where  = I2 = 〈Ψ|Ψ〉 is the square of the beam
intensity. It means the coherence vector may fall into
the Poincaré sphere under nonunitary evolution. I will
restrict myself to the unitary one.

The initial state |x〉  is modulated passing through an
optically active medium (say using the Faraday effect

1
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in YIG film magnetized along the main axes in the z-
direction by a harmonic magnetic field with frequency
Ω and angle amplitude β). Formally, this process may

be described by the action of the unitary matrix 
belonging to the isotropy group of |R〉  [1]. Then, the
coherence vector will oscillate along the equator of the
Poincaré sphere. The next step is the dragging of the

oscillating state |x'(t)〉  = |x〉  with frequency ω up to
the “north pole” corresponding to the state |R〉 . In fact,
this is the motion of the coherence vector. This may be
achieved by the variation of the azimuth of the linear
polarized state from θ/2 = –π/4 up to π/4 with help of a
dense flint of appropriate length embedded into the
sweeping magnetic field. Further, this beam should
pass the λ/4 plate. This process of variation of the ellip-
ticity of the polarization ellipse may be described by the

unitary matrix  belonging to the coset homoge-
neous submanifold U(2)/U(1) × U(1) = CP(1) of the
dynamical group U(2) [1]. This dragging without mod-
ulation leads to the evolution of the initial state along
the geodesic of CP(1), and the trace of the coherent
vector is the meridian of the Poincaré sphere between
the equator and one of the poles. The modulation
deforms both the geodesic and the corresponding trace
of the coherence vector on the Poincaré sphere during
such unitary evolution.

The action of the λ/4 plate depends upon the state of
the incoming beam state (the relative orientation of the
fast axes of the plate and the polarization of the beam).
Furthermore, only relative phases and amplitudes of
photons in the beam have a physical meaning for the
λ/4 plate. Neither the absolute amplitude (intensity of
the beam) nor the general phase affect the polarization
character of the outgoing state. It means that the device
action depends only upon the local coordinates π1 =
Ψ1/Ψ0 ∈  CP(1). Small relative re-orientation of the λ/4
plate leads to a small variation of the outgoing state.
This means that the λ/4 plate reorientation generates
the tangent vector to CP(1). It is natural to discuss the
two components of such a vector: velocities of the vari-
ations of the ellipticity and of the azimuth (inclination)
angle of the polarization ellipse. These are examples of
LDVs. The comparison of such dynamical variables for
different coherent states requires that affine parallel
transport agrees with the Fubini-Study metric. The
deep reason for this is as follows.

2. Let us assume that the initial state is ( , …,

) and the final state is ( , …, ). The state

( , …, ) may be reached from any different state

( , …, ). In order to know the source of this
state, there should be some mark or “key.” This may be
achieved by establishing a set of constraints that an
observer agrees are “good enough” for the identifica-
tion. Here, we have a subjective factor. But this may be

ĥos3

ĥos3

b̂os1'

πA
1

πA
N 1– πB

1 πB
N 1–

πB
1 πB

N 1–

πA'
1 πA'

N 1–
avoided if we chose intrinsic invariants of the CP(N –
1) geometry. Then, the subjective element will disap-
pear and, hence, one will have an objective criterion for
the identification. Formally, it is based upon Cartan’s
method of moving a frame, which eliminates the neces-
sity of a “second particle” as a reference frame for the
“first” one [5]. Generally, the “minimally full” descrip-
tion of the quantum state in CP(N – 1) requires the

adjoint representation of SU(N) in the  field
parameter space. In fact, these effective multipole fields
describe the intensity of the device’s action. The tan-

gent vector fields (differential operators) Dα =  +

c.c., where , are as follows:

(1)

These vector fields replace, in my approach, the Pauli
matrices of AlgSU(2), the Gell–Mann matrices of
AlgSU(3), etc. [1]. The LDVs are state-dependent, i.e.,
local in CP(N – 1), and their expectation values (the
scalar product in the sense of the Fubini-Study metric)
are not bilinear in general. Such expectation values are
similar to an expectation value in the modified quantum
mechanics of Weinberg [6]. The path-dependent paral-
lel transport of the LDV in the affine connection

(2)

agrees with the Kählerian metric (Fubini-Study metric)

, (3)

as will be shown in the case of CP(1). Here, κ = r–2 is
the curvature of the sphere serving as a model of
CP(N – 1) through the stereographic projection. I will
assume, temporarily and for simplicity, that r = 1.

The essential differences between my approach and,
say, the approach of Anandan and Pati [7] are, first, that
I use the parallel transport of dynamical variables local
in CP(1) instead of the quantum state parallel transport.
Second, the geometric frequency I use is local and
applicable to any superposition state, whereas the
Anandan–Pati “reference section” of the state is bilocal
and singular for the orthogonal initial and final states.
Note that Berry’s [8, 9] and the Aharonov–Anandan
[10, 11] “parallel transport” laws of the quantum state
are defined in original Hilbert space. This kind of par-
allel transport is not an object of the intrinsic geometry
of a parameter space (Berry) or the projective Hilbert

RN
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state spaces (Aharonov–Anandan); see, for example,
the explanation in [12]. Such a definition discards the
dynamical phase shift and extracts the pure topological
consequences of the rotations of polarizers, λ/4 plates,
etc. However, there are some reasons to keep dynamics
with geometry [10, 1, 13]. In particular, the fundamen-
tal importance of the complex projective geometry of
the state space CP(N – 1) [11, 14, 2, 1, 15, 13] strongly
suggests working in the intrinsic geometry of CP(N – 1)
associated with quantum dynamics.

3. Now, I introduce parallel transport of real dynam-

ical variable T = T1  + T1* , T1* = (T1)*, assum-

ing that T1 obeys the equations

(4)

These equations have exact solutions along a geodesic

of CP(1): T1(s) = ξ(1 + ) +iη(1 + ).
The scalar product Gik*Ti(s)Tk*(s) = ξ2 + η2 is the

invariant of the parallel transport.
The modulation of the polarization plane orientation

deforms the geodesic γ(t) to f(t). Equations (4) have, for
such a path of parallel transport, only the numerical
solutions, which we shall call Ξ1(t), c.c. Allow me to
show the difference between the parallel transported
vectors T1(s) along the geodesic γ(t) and the vector S1 =

Ξ1 – Ξ1dπ1 pointwise “shifted” from the deformed
path f(t) to the “reference” geodesic γ(t) where dπ1 =

π1( f (t)) – π1(γ(t)). It means all local tensors and 
were calculated on the “reference” geodesic. The angle
between these two vectors along the “reference” geode-
sic will be expressed through cos χ(t):

(5)

The cosine of the angle between the exact solution of
the equation Ti(γ(t)) and the numerical solution
Ξk*( f(t)) for the parallel transport along the deformed
geodesic is shown in Fig. 1.

The result is very interesting: all parallel vectors
transported along different paths look like a smoothly
opening “umbrella” along the geodesic. At θ = π/2, the
parallel transported dynamical variable along one of
the deformed geodesies f(t) are orthogonal (in the sense
of the Fubini-Study metric) to the “handle” of the
“umbrella”; the parallel transported vector along the
geodesic. In fact this means that the result of the paral-
lel transport is local: this is uniquely defined by the
geodesic issuing from the initial point and by the
dynamical variable (tangent vector). It seems to be a
preliminary conclusion, like a “decoherence process”
in the projective Hilbert state space.

∂
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Let me briefly consider the expected phase modula-
tion shift accumulated during the parallel transport of
the velocities of the ellipticity and the inclination angle
in the real experiment described in Section 1. The key
role belongs to the curvature κ, which I put equal to 1
in previous formulas. Now, I assume that curvature of
the state space CP(N – 1) is the measure of the correla-
tions between the different LDVs. Volkov et al. used
sphere curvature as a phenomenological constant of
spin wave interaction [4]. I set the curvature as the fine
structure constant κ = e2/"c ≈ 0.007. The reason for this
choice will be discussed elsewhere. If the modulation
frequency Ω = 4000π radians/s has the angle amplitude
β = 0.017 radians and the dragging frequency ω =
10π rad/s, the behavior of the velocities of the elliptic-
ity and the azimuth angle is shown in Figs. 2 and 3.

All the LDVs discussed assume that the velocity of

ellipticity e variation is measurable. Since, now,  is

curvature-dependent, it differs from the “flat” parallel
transport. Then, the instant frequency (the speed of the
modulation phase variation) is a function of θ and e and
it should contain, besides the frequencies ω and βΩ, the
frequency κβΩ . It would be interesting to measure it in
an experiment. The modulation frequency to this aim
should be essentially higher than I used in my calcula-
tions.

The topological character of the Berry [8, 9], Aha-
ronov–Anandan [10, 11],and Wilczek–Zee [16] phases
arises as a macroscopic environmental reaction on the
quantum dynamics of an “immersed” quantum system.
The anholonomies of the “parallel transport” of the
state vector are expressed as some effective gauge fields
reflecting the topological character of the transforma-
tion groups of orientations of macroscopic elements
(polarizers, λ/4 plates, etc.) of the quantum setup.
Therefore, it is not so strange that there are close clas-
sical analogies of the topological phases in classical

de
dt
------

Fig. 1. The square of the cosine of the observable angle
between two parallel transported vectors along the geodesic
γ(0, π/2) and deformed geodesic f(0, π/2) against the angle
length in radians of the geodesic. The relationship between
frequencies is as follows: Ω = 10π radians/s, ω = π rad/s.
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physics (e.g., the Hannay angle [9]). This is the reason
the dynamic phase should be discarded in order to get a
definite geometric (topological) phase. Therefore, in
general, it is impossible, of course, to define these
gauge fields in some fundamental sense. But such
gauge fields may be truly fundamental in two important
cases of the complex projective state space CP(N – 1).
First, since we believe that rays of quantum states are

Fig. 2. The time dependence of the ellipticity velocity. Ini-
tial conditions: ξ = ℜ (de/dt) = –31.4 radians/s and η =
ℑ (de/dt) = 0.

Fig. 3. The time dependence of the azimuth angle velocity.
Initial conditions: ξ = ℜ (dθ/dt) = 213.5 rad/s and η =
ℑ (dθ/dt) = 0.
the fundamental notions at any level. Second, CP(1)
may be treated as the Qubit coherent state space under
quantum information processing. In these cases, there
arises a new geometro-dynamics phase that relates to
the affine gauge field. The corresponding gauge fields
associated with the curvature of CP(N – 1) are state-
dependent and realize the local gauge transformation of
the moving quantum frame in CP(N – 1) [1, 15, 13, 17].
They are akin to the Wilczek–Shapere gauge fields
related to the problem of a deformable body in fluid
[18].

I sincerely thank Yakir Aharonov for the discussion
of nonlinear modification of quantum theory and Larry
Horwitz for numerous useful discussions and notes.
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