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We analyze the contribution from excitation of the (q )(f ), (q )g1…gn(f ) Fock states of a photon to high-
mass diffraction in DIS. We show that the large-Q2 behavior of this contribution can be described by DLLA
evolution from the nonperturbative f  valence state of the pomeron. Although of higher order in pQCD, the
new contribution to high-mass diffraction is comparable to that from the excitation of the q g Fock state of the
photon. © 2004 MAIK “Nauka/Interperiodica”.
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In this communication, we report a direct evaluation
of high-mass diffractive deep inelastic scattering (DIS)
from excitation of the (q )(f ) Fock states of a photon
(Fig. 1), where q and f are light quarks. The interest in
this problem can be formulated as follows.

On the one hand, within perturbative QCD (pQCD)
diffractive DIS, γ*p  X + p', can be described as
quasielastic scattering and excitation of multiparton
Fock states X of the incident photon of virtuality Q2 [1,
2]. As such, it is a manifestly nonlinear (quadratic)
functional of the dipole cross section for the multipar-
ton states, X = q , q g,…. For the forward case, t = 0,
where t is the (p, p') momentum transfer squared,

(1)

where σ and σ3 stand for the dipole cross section for the
Fock states |q 〉  and |q g〉 , respectively, interacting
with the proton target and evaluated at the starting point
of the small-x evolution, xIP = x0. On the other hand,
motivated by the triple-reggeon approach to diffraction
excitation [3], one would like to reinterpret a high-mass
diffractive DIS as an inclusive DIS off the pomeron,

(2)

If possible at all, such a color dipole representation will
only be meaningful if the effect of higher Fock states of
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the photon can consistently be reabsorbed into the
small-β evolution of σIP(xIP , β, r) [2, 4]. Here, β =
Q2/(M2 + Q2), where M is the mass of the diffractive
system, is the Bjorken variable for DIS off the
pomeron, xIP = x/β is the rapidity gap variable—the
fraction of the proton’s lightcone momentum carried by
the exchanged pomeron—and x = Q2/2mν is the stan-
dard Bjorken variable for DIS off the proton, and ν is
the photon energy.

It is not clear a priori that nonlinear Eq. (1) can be
cast in linear form (2). Furthermore, the expected val-

Fig. 1. The color dipole structure of diffractive excitation of

perturbative (q )( f ) state of the photon with the rapidity
gap ∆η from the proton. The contribution of other diagrams

with radiation of the gluon and/or splitting g  f  after
the interaction with the target vanishes to DLLA.
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ues of the square of the dipole cross section in (2) tend
to be dominated by the contribution from large, nonper-
turbative, dipoles: r ~ rf = 1/mf ~ 1 fm for the excitation
of q  states, which is the Born term for β ~ 1, and ρ ~
Rc ~ 0.25 fm for the Born term of high-mass, i.e.,
small-β, diffractive DIS: excitation of the q g Fock
states (for the determination of the propagation radius
of perturbative gluons, Rc, from lattice QCD and else-
where, see [5, 6]). Still, despite the manifestly nonper-
turbative Born term, resummation of double-leading-
log approximation (DLLA)—strongly ordered energy
and dipole size—contributions from q g1…gn excita-
tion is possible and has been shown to correspond to the
familiar DLLA evolution of the diffractive structure
function [2]. Starting from [7], in phenomenological
studies of diffractive DIS, it has become customary to
apply the DGLAP evolution [8] to the whole diffractive
structure function (SF),

(3)

(being differential in t, the so-defined diffractive SF is
dimensionful, and σIP(xIP, β, r) has a dimension [mb]2,
but that does not affect its evolution properties; the
t-integrated diffractive SF is dimensionless, but the
modulation of the SF by the β-dependent diffraction
slope [9] can spoil the evolution properties and, below,
we focus on forward diffraction, t = 0). Although it has
been argued that it is plausible [10] and the DGLAP
evolution analyses have met with certain phenomeno-
logical success ([11–13] and references therein; for the
review, see [14]), a direct demonstration of such a
DGLAP evolution property of diffractive DIS is still
missing.

The principal problem with extension of the analy-
sis [2] to the contribution of the (q )(f ),

(q )g1…gn(f ) Fock states is that the f  dipoles have
a large nonperturbative size, R ~ rf = 1/mf @ Rc. The

gross features of β-distribution in γ*p  (f )p' are
well understood: in close analogy to the valence struc-
ture function of the proton, it is peaked at β ~ 1/2, so
that only finite masses, M2 ~ Q2, are excited [1, 15].
However, it is not obvious that this nonperturbative
valence β-distribution defined by γ*p  (f )p' will
enter the evolution of the q  sea of the pomeron in pre-
cisely the same way as the valence quark density enters
the evolution of the sea of nucleons. Here, we report a
direct demonstration that such a pQCD evolution holds
at least to the DLLA accuracy. Furthermore, we show
that, although the (q )(f ) contribution is of higher
order in the pQCD coupling αS (see Fig. 1), it is
enhanced by a potentially large numerical factor,

q
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∝ [σ(rf)/σ(Rc)]2, and, numerically, it is comparable to
the leading-order q g contribution. We report also a
derivation of the inclusive spectrum of gluon jets from
diffraction excitation of the q g states of the photon,
which clarifies the small-r2 scaling properties of
σIP(xIP, β, r).

The further presentation is organized as follows. We
start with a brief introduction into the color dipole
description of small-β diffraction and demonstration of
representation (2) for excitation of the q g state. Then,

we show how the DLLA contribution from (q )(f )
excitation to f D(4)(t = 0, xIP, β, Q2) can be cast in form
(2) with σIP(xIP, β, r) evaluated for scattering of the q

dipole on the f  valence state of the pomeron. We
present the DLLA evaluation of the small-β diffractive
SF, compare our results with experimental data [12,
13], and conclude with a brief summary.

In the color dipole QCD approach to DIS [2, 4, 16],
the two principal quantities are the dipole cross section,
σ(x, r), for interaction of the q  dipole r with the pro-
ton target, and the q  dipole size distribution in the

projectile photon |Ψγ*(Q2, z, r)|2. In terms of σ(x, r),
the cross section of inclusive DIS has the form of an
expectation value over the q  Fock state, σγ*p(x, Q2) =
〈q |σ(x, r)|q 〉 , the effect of higher-order perturbative
Fock states, q g1…gn, can be reabsorbed into the lead-
ing log(1/x) color dipole BFKL evolution of σ(x, r).
The relationship between the dipole cross section and
the unintegrated gluon structure function ^(x, κ2) =

∂G(x, κ2)/∂ , reads

(4)

where Rc = 1/µG is the Yukawa correlation radius for
perturbative gluons, and, in the DLLA for small

dipoles, A . 10. Because of  scaling violations,
G(x, A/r2) rises with the hard scale A/r2. To the lowest
order in pQCD [16, 17],

(5)

where NcVN(k) can be regarded as the number of valence
partons in the proton resolved by gluons at the scale k2.
Here, the vertex function VN(k) = 1 – G2(k, –k) and
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the two-quark form-factor of the target nucleon,

G2(k, –k), vanishes for k2 * , where RN is the
radius of the nucleon.

The q g contribution to (1) describes the first itera-
tion of the  evolution of diffractive DIS and
can be separated into the radiative correction to the
small-mass q  excitation and the Born term of the
high-mass q g excitation as follows. Let r, r, and r –
r be the –q, g–q, and g–  separations in the impact
parameter (transverse size) plane. The q g three-body
interaction cross section equals [2]

(6)

For soft perturbative gluons carrying a small fraction of
a photon’s momentum, zg ! 1, and Yukawa infrared
regularization, the wave function of the three-parton
q g state equals [2, 4]

(7)

where _(r – r, r) is the kernel of the color dipole
BFKL equation

(8)

and we also showed the DLLA approximation for r2 !
r2. The form factor of the infrared cutoff, F(z), satisfies
F(0) = 1 and F(z) ∝  exp(–2z) at z > 1 [2, 7].

Now notice that, in view of (7), the q g contribution
to (1) can be rearranged as

(9)

The first term in the right-hand side of (9) is the radia-
tive correction to the small-mass q  excitation with the

RN
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rapidity gap xIP ~ x, i.e., the contribution from the two-
parton state to the total cross section of diffraction (1)
must be calculated with the BFKL-evolved

(10)

The second term in (9) is the Born term of the high-
mass three-parton, q g, excitation with the rapidity
gap xIP = x0. In the high-mass regime dzg/zg =
dM2/(M2 + Q2) and after undoing the zg-integration, the
DLLA three-parton cross section takes the form

(11)

It gives a flat small-β behavior of f D(4)(t = 0, xIP, β, Q2)
with the strength controlled [2, 15] by nonperturbative
large ρ, cut off from above at ρ ~ Rc by the nonpertur-
bative form factor F(µGρ). The small-ρ integration can
safely be extended to ρ = 0, so that (11) is of the desired
color dipole form (2) and can be treated as DIS off the
sea generated by perturbative splitting of gluons from
the valence gg state of the pomeron. There is one
caveat, though: the gluon density in the pomeron
defined by Eq. (11),

(12)

is short of the collinear scaling violations present in (4).
The extension of the above analysis to the DLLA

description of diffractive excitation of the high-mass
(q )(f ) Fock state of the photon proceeds as follows.
As we shall see a posteriori, the DLLA contribution
comes from r2 ! r2 ! R2. First, we recall that the q
excitation is dominated by very asymmetric pairs, in
which one of the final partons carries a very small frac-

tion of the photons momentum, z ~ /Q2 ! 1, so that,

in the impact parameter space, the fast parton with  =
1 – z flies along the photon’s trajectory, while the
slower parton is at large transverse distance r ~ 1/mq

from the parent photon [1]. Consequently, the fast par-
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ton of the f  shall have the same impact parameter as
the gluon radiated by the parent q  dipole. In view of
the DLLA ordering, r2 ! r2 ! R2, the partons of the
parent q  dipole and the fast parton of the radiative f
pair can be treated as the pointlike (anti)triplet color
charge, and the (q )(f ) state interacts with the target

nucleon as the f  dipole with the dipole cross section

σ(xIP, R). The distribution of f  color dipoles in the
gluon of transverse momentum k is identical to that in

the photon subject to the substitutions Ncαem  
TFαS(k2) and Q2  k2, so that the diffractive cross
section of interest equals

(13)

where the flux of gluons in the parent q  state is given
by the momentum-space version of (7):

(14)

Finally, note that

(15)

where (xIP, k2) can be reinterpreted as a number of

charged valence partons, i.e., twice the number of f
dipoles, in the pomeron. Upon the substitution of (15)
and (14) into (13), one readily recovers dipole represen-
tation (2), in which σIP(xIP, β, r) is evaluated from
Eq. (4), in which unintegrated gluon density (5) is sub-
stituted for by the unintegrated gluon density evolved
from the f  state of the pomeron,

(16)
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Furthermore, (xIP, k2) vanishes at k2 = 0 and,

according to [1, 16], flattens at k2 @ , which, in

comparison to (5), suggests a transverse size for the f
component of the pomeron rf ~ 1/mf. One can come to
the same conclusion from the point that the dominant

contribution to (14) comes from f  dipoles with R ~
1/mf.

The DLLA analysis of q g1…gn excitation devel-
oped in [2] can readily be extended to the higher,

(q )g1…gn( f ), states. The crucial point is that, to

DLLA, the f  dipole is the largest one, so that the cor-
responding contribution to the diffractive cross section
is still given by Eq. (13), where the DLLA evolution is
reabsorbed into the flux of gluon gn, which is the softest
with respect to the photon. Viewed from the pomeron
side, that amounts to the DLLA small-β evolution of
σIP(xIP, β, r) with the boundary condition defined by
gluon density (16). As such, the emerging

 structure of DLLA expan-
sion in the energy and collinear logarithms for diffrac-

tive SF from (q )g1…gn( f ) excitation is identical to
the DLLA structure of the proton SF. As shown in [2],
DLLA expansion for diffractive SF from (q )g1…gn

excitation is of a marginally different structure,

. In addition, the two
components of the diffractive structure function have a
manifestly different xIP-dependence [7]: driven by

σ(xIP, rf) in (16) for the q , (q )(f ), (q )g1…gn( f )
excitations and by σ(xIP, Rc) for the (q )g1…gn excita-
tions. This concludes the proof of DLLA small-β evo-
lution at fixed xIP of such a two-component diffractive
structure function, f D(4)(t = 0, xIP, β, Q2).

The absence of a scaling violation in (11) and (12)
implies that, in contrast to (5), the corresponding unin-

tegrated gluon density (β, k2) vanishes for large k2.
A closely related observable is the transverse momen-
tum, p, spectrum of semihard diffractive gluons with
p2 ! r–2 ! Q2 [18]. Since p is a variable conjugate to r,
upon the relevant Fourier transforms,

N f f
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Fig. 2. The comparison with the experimental data on small-β, small-xIP diffractive structure function ([12], full circles; [13], full

triangles) of the theoretical evaluation of f D(3) =  +  shown by the solid line. The dotted line corresponds to ,

and the dashed line represents .

f qqg
D 3( )

f
qq( ) f f( )

D 3( )
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f
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D 3( )
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(17)

Within the reinterpretation of diffraction as DIS of
pomerons, the p has the meaning of intrinsic transverse
momentum in the valence gg state of the pomeron.
Indeed, spectrum (17) falls more steeply than the 1/p2

spectrum of gluons from inclusive DIS off a nucleon.
The numerical results for high-mass, small-β diffrac-

tion depend on the input dipole cross section σ(x, r).
Here, we evaluate the lowest-order q g and (q )( f )
contributions to diffractive DIS in a specific color
dipole BFKL model [4, 19], which gives a good
description of the proton SF data. The applicability
domain of the small-β, small-xIP formalism is β, xIP <
x0 ! 1, the experience with inclusive DIS suggests x0 ~
0.03, although the theoretical curves in Fig. 2 are
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stretched up to xIP = 0.1. This small-β, small-xIP domain
is almost at the boundary of the HERA experiments,
and the corresponding experimental data on the t-inte-
grated diffractive structure function f D(3)(xIP, β, Q2)
from H1 ([12], circles) and ZEUS ([13], triangles) are
shown in Fig. 2. We evaluate this structure function as

with the central value of the diffraction slope BIP = BD =

7.2 ±  GeV–2 as reported by ZEUS [20]. The
apparent growth of the experimentally observed
f D(3)(xIP, β, Q2) toward large xIP ~ 0.1 is usually attrib-
uted to the nonvacuum admixture to the pomeron
exchange. Two features of the theoretical results for
small-β diffraction are noteworthy. First, the contribu-
tions from q g and higher-order (q )( f ) states are of
comparable magnitude because Rc ! rf and the latter is
enhanced ∝ [σ(xIP, rf)/σ(xIP, Rc)]2. Second, because of
the same inequality of the important dipole sizes, Rc !
rf, the xIP-dependence of the q g excitation is steeper

than that of the (q )( f ) excitation. This point has
been made already in [7]: the numerically significant

f D 3( ) xIP β Q2, ,( ) t f D 4( ) t xIP β Q2, , ,( )d∫=

≈ 1
B3IP
---------- f D 4( ) t 0 xIP β Q2, , ,=( )

1.1 0.9–
+0.7

q q f

q

q f
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contribution from the (q )( f ) excitation makes the
overall xIP-dependence of f D(3)(xIP, β, Q2) weaker than
evaluated in [7] for pure q g excitation. The solid
curve in Fig. 2 is the combined contribution from the
two mechanisms. It is in reasonable agreement with the
HERA data.

To summarize, we reported the first explicit proof of
the DLLA evolution property of the contribution to dif-
fractive structure function from excitation of (q )( f ),

(q )g1…gn( f ) Fock states of the photon. We demon-
strated that the corresponding diffractive SF can be cast
in the color dipole representation. The boundary condi-
tion for DLLA small-β evolution is provided by the
Born dipole cross section built perturbatively upon the
valence f  state of the pomeron, as defined by the

γ*p  ( f )p' excitation, in precisely the same man-
ner as in inclusive DIS off the nucleon starting with the
valence quark distribution. Compared to the q g exci-

tation, the (q )( f ) is of a higher order to pQCD. Still,
the numerical evaluations confirm the expectation that
the pQCD αS suppression is compensated for by the

larger dipoles in the (q )( f ) state compared to the
q g state of the photon.

This work has been partly supported by the INTAS
(grant no. 00-00366) and the DFG (grant
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Abstract—After analysis of 5797 h of data from the detector NEMO3, new limits on neutrinoless double beta
decay of 100Mo (T1/2 > 3.1 × 1023 y, 90% CL) and 82Se (T1/2 > 1.4 × 1023 y, 90% CL) have been obtained. The
corresponding limits on the effective majorana neutrino mass are: 〈mν〉  < (0.8–1.2) eV and 〈mν〉  < (1.5–3.1) eV,
respectively. Also the limits on double-beta decay with Majoron emission are: T1/2 > 1.4 × 1022 y (90% CL) for
100Mo and T1/2 > 1.2 × 1022 y (90% CL) for 82Se. Corresponding bounds on the Majoron-neutrino coupling con-
stant are 〈gee〉  < (0.5–0.9) × 10–4 and <(0.7–1.6) × 10–4. Two-neutrino 2β-decay half-lives have been measured

with a high accuracy,  = [7.68 ± 0.02(stat) ± 0.54(syst)] × 1018 y and  = [10.3 ± 0.3(stat) ± 0.7(syst)] ×
1019 y. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 14.80.Mz; 23.40.-s
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Interest in neutrinoless double beta decay (2β0ν) has
seen a significant rebirth in recent years after evidence
for neutrino oscillations was obtained from the results of
atmospheric [1] and solar [2–6] neutrino experiments
(see, for example, the discussions in [7–9]).

This observation of oscillations was recently con-
firmed by the KamLAND experiment with reactor
antineutrinos [10] and by the new SNO result [11].
These results are an impressive proof that neutrinos
have a non-zero mass. However, the experiments study-
ing neutrino oscillations are not sensitive to the nature

 ¶ This article was submitted by the authors in English.
0021-3640/04/8006- $26.00 © 20377
of the neutrino mass (Dirac or Majorana?) and provide
no information on the absolute scale of the neutrino
masses, since such experiments are sensitive only to the
difference, ∆m2. The detection and study of 2β0ν decay
may clarify the following problems of neutrino physics
(see discussions in [12–14]): (i) the neutrino’s nature—
is the neutrino a Dirac or a Majorana particle?; (ii) the
absolute neutrino mass scale (a measurement or a limit
on m1); (iii) the type of neutrino mass hierarchy (nor-
mal, inverted, or quasidegenerate); and (iv) CP viola-
tion in the lepton sector (measurement of the Majorana
CP-violating phases).
004 MAIK “Nauka/Interperiodica”
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The main goal of the NEMO3 experiment is to study
neutrinoless double beta decay of different isotopes
(100Mo, 82Se, etc.) with a sensitivity of up to ~1025 y,
which corresponds to a sensitivity for the effective
Majorana neutrino mass at the level of ~(0.1–0.3) eV
[15]. The planned sensitivity for double beta decay with
Majoron emission is ~1023 y (the sensitivity for the cou-
pling constant of Majoron to neutrino 〈gee〉  is at the
order of ~10–5). In addition, one of the goals is a precise
study of 2β2ν decay for a number of nuclei (100Mo,
82Se, 116Cd, 150Nd, 130Te, 96Zr, and 48Ca) with high sta-
tistics and to study all the major characteristics of the
decay.

NEMO3 is a tracking detector, which in contrast to
76Ge experiments [16, 17], detects not only the total
energy deposition, but also other important parameters
of the process. These include the energy of individual
electrons, their angular distribution, the event vertex
coordinates in the source plane, etc. This provides a
unique opportunity to monitor and reject backgrounds.
Since June of 2002, NEMO3 has been running in the
Frejus Underground Laboratory (France), located at a
depth of 4800 m.w.e.

The detector has a cylindrical shape and consists of
20 identical sectors (see Fig. 1). A thin (~30–
60 mg/cm2) source is placed in the center of the detec-
tor, which contains 2β-decaying nuclei and has a total
area of 20 m2 and a mass of about 10 kg. In particular,
it includes 7.1 kg of enriched Mo (average enrichment
is 98%; the total mass of 100Mo is 6.914 kg) and
0.962 kg of Se (enrichment is 97%; the total mass of
82Se is 0.932 kg). To investigate the external back-
ground, part of the source is made of very pure natural

Fig. 1. The NEMO3 detector. 1—source foil; 2—plastic
scintillator; 3—low radioactive PMT; 4—tracking chamber
(6.180 octagonal Geiger cells).

NEMO3
 materials (TeO2—0.767 kg and Cu—0.621 kg). The
level of contamination of the source with radioactive
impurities was obtained from measurements using low-
background HPGe-detectors.

The basic detection principles of NEMO3 are the
following. The energy of the electrons is measured with
plastic scintillators coupled to PMTs (1940 individual
counters), while the tracks are reconstructed from
information obtained with drift Geiger cells (6180
cells). The tracking volume of the detector is filled with
a mixture of ~95% He, 4% alcohol, 1% Ar, and 0.15%
water at 20 mbar above atmospheric pressure. In addi-
tion, a magnetic field of 25 Gauss parallel to the detec-
tor’s axis is created by a solenoid surrounding the
detector. The magnetic field is used to identify elec-
tron–positron pairs to suppress the background associ-
ated with these events.

The main characteristics of the detector’s perfor-
mance are the following. The energy resolution of the
scintillation counters lies in the interval of 14–17%
(FWHM for 1 MeV electrons). The time resolution is
250 ps for an electron energy of 1 MeV. The reconstruc-
tion accuracy of a two-electron (2e) vertex is around
1 cm. The characteristics of the detector are studied in
special calibration runs with radioactive sources. The
energy calibration is carried out using 207Bi with con-
version electrons at energies 0.482 and 0.976 MeV, and
90Sr with the end-point of the β spectrum at 2.283 MeV.
The vertex reconstruction accuracy for 2e– events was
determined in measurements with 207Bi. The time-of-
flight properties were determined via measurements
with 60Co, in which two γ-quanta are emitted simulta-
neously, and 207Bi, for which two electrons are emitted
simultaneously, and neutron sources that provide high
energy electrons crossing the detector.

The detector is surrounded by a passive shield made
of 20 cm of steel, 30 cm of water contained in tanks
covering the vertical exterior of the detector and wood
and paraffin on the top and bottom. The level of radio-
active impurities in the construction materials of the
detector and the passive shield was tested with low-
background HPGe detectors.

From June to December of 2002, a number of cali-
bration and test measurements were carried out, as
were the first data taken for double beta decay studies.
Since February 14, 2003, the detector has been rou-
tinely taking double beta decay data. Calibrations with
the radioactive sources are carried out every
1.5 months. Calorimeter stability is checked daily
using a laser system between calibrations. A detailed
description of the detector and its characteristics is pre-
sented in [18].

In this paper, we present the results for 100Mo and
82Se. Only part (5797 h of measurement) of the avail-
able data has been analyzed.
JETP LETTERS      Vol. 80      No. 6      2004
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2e-events with a common vertex at the source have
been selected. For 2e-events, an electron was defined as
a track between the source foil and a fired scintillation
counter with the energy deposited being greater than
200 keV. The track curvature must be consistent with a
negatively charged particle. The time-of-flight mea-
surement should be consistent with the hypothesis of
two electrons leaving the source from a common vertex
simultaneously. In order to suppress the 214Bi back-
ground, which is followed by a 214Po α-decay, it is
required that there be no delayed Geiger cell hits close
to the event vertex or the electron track (within a delay
of up to 700 µs). A typical 2e-event is shown in Fig. 2.

Figure 3 shows the 2β2ν energy spectrum for 100Mo.
The total number of useful events (after background
subtraction) is ~141000. The signal-to-background
ratio is 40/1, while it is 100/1 for energies above 1 MeV.
This means that the background is negligible. The
detection efficiencies, which included the selection
cuts, were estimated by Monte Carlo (MC) simulations.
This was done for two models of 100Mo decay. The first
one is the higher state dominance (HSD) mechanism,
and the second is the single state dominance (SSD)
mechanism (see [19]). For the SSD mechanism, it is
assumed that the decay goes via the lowest 1+ state of
100Tc [20]. The detection efficiencies calculated by MC
simulations were 5.68% for the SSD mechanism and
6.33% for the HSD mechanism. Correspondingly, the
following results were obtained for the 100Mo half-life:

Preliminary analysis of the experimental single
electron energy spectrum favors the SSD hypothesis.
However, at the moment this question remains open
and requires further studies. Both values are in agree-
ment with the world mean value from other experi-
ments: (8 ± 0.7) × 1018 y [21, 22].

2β0ν-Decay

The energy range 2.65–3.2 MeV has been investi-
gated. The information about the electron’s energies
and their angular distribution in 2e-events can be used
to improve the selection of candidate events and, thus,
improve the NEMO3 sensitivity [23]. Introducing a
higher threshold of 900 keV for each electron, one gets
13 candidate events in this energy window. This is in
agreement with our expectations from the background
(18.8 events), coming mainly from 222Rn (13 events),
plus the 2β2ν contribution (5.8 events). The calculated
2β0ν efficiency is 8.2%. As a result, a limit has been set
at T1/2 > 3.1 × 1023 y (90% CL), which is better than the
best previous measurement (T1/2 > 5.5 × 1022 y [24]).
Using the nuclear matrix elements (NMEs) from [25–

T1/2 = 7.68 0.02 stat( ) 0.54 syst( )±±[ ] 1018y SSD( ),×

T1/2 = 8.57 0.02 stat( ) 0.6 syst( )±±[ ] 1018y HSD( ).×
JETP LETTERS      Vol. 80      No. 6      2004
27], the following range of limits on the neutrino mass
has been derived: 〈mν〉  < (0.8–1.2) eV. This range can be
compared with that of the 76Ge experiment [16] (using
the same NMEs [25–27]), 〈mν〉  < (0.33–0.84) eV.

For neutrinoless double beta decay caused by the
right current admixture (λ term) in weak interactions, a
2.8–3.2 MeV energy window was used. An additional

Fig. 2. A view of a reconstructed 2e-event in NEMO3. The
sum energy of the electrons is 2024 keV; the energies of the
electrons in the pair are 961 keV and 1063 keV.

Fig. 3. 2β2ν spectrum of 100Mo, background subtracted.
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cut on the electron energies, |E1 – E2| > 800 keV [23],
allows an extra background suppression. In this case,
there are only three candidate events in the 2.8–
3.2 MeV window, with 2.8 (2.0 + 0.8) expected. With
an efficiency of 4.2%, this gives T1/2 > 1.8 × 1023 y (90%
CL) and 〈λ〉  < (1.5–2.0) × 10–6, using the NMEs from
[28].

2β0νχ-Decay

The energy interval 2.65–3.2 MeV has been studied.
Introducing a threshold of 750 keV for each electron,
one gets only 18 events (13.7 + 8 are expected with an
efficiency of 0.49%) and the half-life limit yields T1/2 >
1.4 × 1022 y (90% CL). This value is better than the pre-
vious one (T1/2 > 5.8 × 1021 y [29]), and the correspond-
ing limit on the Majoron-neutrino coupling constant
(NMEs from [25–27]) is 〈gee〉  < (0.5–0.9) × 10–4. This
is one of the best limits for the majoron coupling con-
stant.

DOUBLE BETA DECAY OF 82Se

The energy spectrum of 2β2ν-events for 82Se is
shown in Fig. 4. A higher threshold of 300 keV was
used in order to improve the signal-to-background
ratio. The total number of useful events after the back-
ground subtraction is ~1800. The signal-to-background
ratio is approximately 4 : 1. The detection efficiency
has been calculated by MC calculations to be 6.02%.
The 82Se half-life value obtained is

This value is in agreement with our previous mea-
surement with NEMO2 [30] and with the world average
value of (9 ± 1) × 1019 y [22].

T1/2 10.3 0.3 stat( ) 0.7 syst( )±±[ ] 1019× y.=

Fig. 4. 2β2ν spectrum of 82Se, background subtracted.
2β0ν-Decay

Three events have been detected in the interval
2.65–3.2 MeV. The expected background in this energy
windows is 5.3 events. Again, this background is
mainly due to 222Rn. An efficiency of 15.8% gives a
limit for the 82Se 0ν-decay of T1/2 > 1.4 × 1023 y (90%
CL), which is better than the previous value by one
order of magnitude (T1/2 > 1.4 × 1022 y at 90% CL [31]).
The corresponding limit on the effective neutrino mass,
using NMEs from [25–27], is mν < (1.5–3.1) eV.

For neutrinoless double beta decay caused by the
right current admixture (λ term) in weak interactions,
the 2.65–3.2 MeV energy window was used and a cut
on the electron energy, |E1 – E2| > 800 keV [23] was
applied. The number of events is zero, and the effi-
ciency is 8.5%. This gives T1/2 > 1.1 × 1023 y (90% CL)
and 〈λ〉  < (3.2–3.8) × 10–6, using the NMEs from [32,
33].

2β0νχ-Decay

The energy interval 2.3–3.2 MeV was studied. The
number of selected events is 39, while 40 is the esti-
mated background. Using an efficiency estimated by
MC calculations (4.2%), the following limit was
obtained, T1/2 > 1.2 × 1022 y (90% CL). This is better
than the previous best limit (T1/2 > 2.4 × 1021 y [30]).
Using this result and NMEs from [25–27], one gets the
corresponding limit for the Majoron-neutrino coupling
constant 〈gee〉  < (0.7–1.6) × 10–4.

At present, the NEMO3 tracking detector is continu-
ing to collect data. At the same time, work is in progress
to improve the detector’s performance, background
conditions and data analysis techniques. In particular, a
radon barrier tent has been installed, and a radon-trap-
ping factory will be in operation in the autumn of 2004,
which will help reduce the 222Rn background by a fac-
tor of 10–100. It is believed that the sensitivity of the
experiment can be increased significantly in the near
future.
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Electron–positron pair production from vacuum in an electromagnetic field created by two counterpropagating
focused laser pulses interacting with each other is analyzed. The dependence of the number of produced pairs
on the intensity of a laser pulse and the focusing parameter is studied with a realistic three-dimensional model
of the electromagnetic field of the focused wave, which is an exact solution of the Maxwell equations. It has
been shown that e+e– pair production can be experimentally observed when the intensity of each beam is I ~
1026 W/cm2, which is two orders of magnitude lower than that for a single pulse. © 2004 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 12.20.Ds
Electron–positron pair production from vacuum in a
strong constant electric field has long been predicted
[1, 2]. The imaginary part of the electromagnetic-field
Lagrangian, Im+, that is associated with the interaction
of the field with the vacuum of charged particles with
spins 0 and 1/2 was obtained in an explicit form in [3].
A similar formula for the case of vector bosons was
derived in [4]. For electric field strengths much lower
than the critical value, the exact expressions for Im+
[3, 4] reduce to the formulas obtained in [1, 2]. Such a
process of e+e– pair production was referred to as the
Schwinger effect.

The probability of producing e+e– pairs from vac-
uum is determined by the critical electric field %cr =
m2c3/e" = 1.32 × 1016 V/cm characteristic for QED. For
such fields, an electron–positron pair gains an energy of
about mc2 at a distance of the Compton electron wave-
length. However, such a strong constant field cannot be
obtained experimentally. Therefore, many researchers
focused on theoretical analysis of pair production in
alternating electric fields [5–13], which can be obtained
by means of lasers [14].

Due to recent advances in laser technology, laser
intensities have increased by many orders of magnitude
and reached ~1022 W/cm2, which is still far from the

critical intensity Icr =  = 4.6 × 1029 W/cm2. Sev-

eral ways of reaching I ~ Icr have recently been pro-
posed. One of them was demonstrated in the SLAC
experiment devoted to investigation of nonlinear QED
processes accompanying the interaction of high-energy
electrons and photons with laser pulses. First, experi-
ments on the nonlinear Compton scattering of

c
4π
------%cr

2
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46.6 GeV electrons by a laser pulse with an intensity of
1018 W/cm2 were carried out [15]. Then, the same group
observed e+e– pair production when laser photons that
were backscattered up to several GeVs by a 46.6-GeV
electron beam interacted with a pulse of the second
laser [16]. This experiment is the first laboratory evi-
dence of inelastic light-by-light scattering involving
only real photons. Another possibility of creating
superstrong electromagnetic fields was indicated in
[17]. In the scheme proposed there, strength %cr is
reached due to nonlinear interaction between electro-
magnetic and Langmuir waves in a plasma. In this case,
the pulse is squeezed, its frequency increases, and it is
focused by the breaking Langmuir wave. Thus, detailed
analysis of the Schwinger effect in time-dependent
electromagnetic fields, including the field of focused
pulses, becomes urgent for experiments.

As is known [3], a plane electromagnetic wave of
arbitrary intensity and spectral composition does not
create e+e– pairs from vacuum, because both invariants
of the electromagnetic field, ^ = (E2 – H2)/2 and & =
(E · H), are equal to zero. In [18], the Schwinger effect
was studied for a focused pulse described by a realistic
three-dimensional field model proposed in [19]. In con-
trast to a spatially uniform, time-dependent electric
field [5–13], this model is based on the exact solution
of the Maxwell equations. In this work, we consider the
Schwinger effect in the field of two coherent, counter-
propagating, focused laser pulses, each of which is
described by the model developed in [19]. The use of a
superposition of two focused pulses enables one to
detect e+e– pair production for intensities much lower
than those for a single pulse [18]. We compare our
results with the previous results obtained in [5–13] for
004 MAIK “Nauka/Interperiodica”
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the model of a uniform field %(t) and determine the
accuracy of this approximation.1 

We use the method based on the fact that the charac-
teristic length of the process is determined by the
Compton wavelength Âc = "/mc, which is much smaller
than the laser-radiation wavelength, i.e., Âc ! λ. In this
case, the number of pairs produced at an arbitrary point
per unit volume per unit time can be calculated by for-
mulas from [1–3] for a constant uniform field. Then, the
total number of produced particles is obtained as an
integral over volume V and pulse duration τ:

(1)

Here, e = %/%cr and η = */%cr are the reduced fields,
where the invariants % and * are equal to the electric
and magnetic field strengths, respectively, in the refer-
ence frame where they are parallel to each other:

(2)

It is well known that the electromagnetic field of a
focused light beam is not transverse and, therefore, can-
not be assigned a certain polarization type. However,
the focused-beam field is always representable as a
superposition of electromagnetic fields with a trans-
verse, only electric or magnetic, vector [20], and polar-
ization for the transverse vector can be defined for each
of these fields. Such fields are called e and h polarized,
respectively. In this work, we consider only e-type
fields.

As was shown in [19], there is an exact solution of
Maxwell equations in vacuum that describes a wave
propagating along the z axis:

(3)

(4)

Here, ω is the frequency; x, y, and z are the spatial coor-
dinates; and 

(5)

1 Such a field is approximately realized near the antinodes of a
standing light wave arising as a superposition of two laser beams.

N
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Fields (3) and (4) describe a focused laser beam [19],
where R can be treated as the radius of the focal spot,
L is the diffraction length, and ∆ is the focusing param-
eter. It is worth noting that ∆ ~ 0.1 even if the laser
beam is focused such that R ~ λ (diffraction limit). For
this reason, we assume that ∆ ! 1. Under this condi-
tion, a solution describing Gaussian beams has the form

(6)

To describe a laser pulse of finite duration τ, it is neces-
sary to introduce the time envelope g(ϕ/ωτ) by the fol-
lowing change in Eqs. (3) and (4):

(7)

where f(ϕ) = g(ϕ/ωτ)exp(–iϕ) [19]. It is assumed that
g(0) = 1 and g decreases exponentially at the periphery
of the pulse for |ϕ| @ ωτ. Then, according to [19], we
take g(t/τ) = exp(–4t2/τ2) in the focal plane z = 0 and set
τ = 10 fs. In this case, the electric and magnetic fields
of this model are an approximate solution of the Max-
well equations up to the second-order terms in the
parameters ∆ and 1/ωτ.

To obtain expressions describing the electric and
magnetic fields of a pulse propagating in the negative z
direction, it is necessary to change z  –z and H 
–H in Eqs. (3) and (4). For functions F1 and F2, this
means a change to the complex conjugated functions

 and . The electromagnetic field arising as a
superposition of the fields of two counterpropagating
pulses is described by the expressions

(8)

(9)

Formulas for the invariants ^ and & of the electromag-
netic field are very unwieldy and are not presented. We
only emphasize that (in contrast to the case of a single
focused pulse) the invariants ^ and & are not propor-
tional to the focusing parameter ∆ and do not vanish
when ∆  0.

We present calculations by formulas (1)–(9). Figure 1
shows the field % in the z = 0 plane for t = 0 for (a) a
single wave and (b) superposition of two such waves.
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Fig. 1. Reduced field ε = %/%cr as a function of the spatial coordinates x and y at t = 0 for (a) a single e polarized wave and
(b) counterpropagating beams. The parameters are E0 = 0.1%cr, z = 0, and ∆ = 0.1.
The number of produced pairs as a function of the
intensity of counterpropagating pulses for various ∆
values is shown in Fig. 2a. It is seen that the number of
pairs increases only slightly when ∆ decreases, in con-
trast to the case of pair production by a single focused

Fig. 2. Number N of e+e– pairs vs. the (a) intensity I of the
counterpropagating beams for the focusing parameters ∆ =
(from bottom to top) 0.1, 0.075, and 0.05 and (b) parameter
∆ for I = 1026 W/cm2. Calculations for pulse duration τ =
10 fs.
pulse [18]. This behavior is associated with the fact that
the parameter ∆ enters into the definition of the
focused-pulse volume V = πR2L ~ R3/∆. Therefore, a
decrease in ∆ leads to an increase in volume where pairs
are produced. Figure 2b shows the number of produced
pairs as a function of the parameter ∆ for fixed beam
intensity I ~ 1026 W/cm2.

Thus, the effect of the pulse focusing degree on the
pair production process is much weaker than that for a
single focused pulse, where the number of pairs
decreases rapidly when ∆ decreases for fixed intensity
[18]. Electron–positron pairs are produced primarily by
the electric field arising in the antinodes of the standing
wave. This makes it possible to compare our results
with the results for the problem of pair production by a
spatially uniform, time-dependent electric field [5–13].

Let us assume that the total magnetic field is equal
to zero over the entire focusing region, i.e., H = 0.
Using the results of [5–13] at each space point, we
obtain the number of particles as an integral over vol-
ume V and pulse duration τ. As was shown in [13, 21],
the dynamic effects, i.e., the dependence of N on fre-
quency ω, are manifested for wavelengths λ < 10–8 cm,
which are far from the region of available and designed
laser systems. Therefore, disregarding the time depen-
dence of the electric field, we obtain

(10)

which differs from Eq. (1) only in the absence of the
magnetic field. Figure 3 shows the number of pairs cal-
culated as a function of the intensity by formulas (1),
(10), and for the spatially uniform field according to [5–
13]. In these calculations, the electric field is assumed
to have strength 2E0 over the entire focusing volume.
This strength corresponds to the peak strength of the
field arising as a superposition of two counterpropagat-

N V τ c

4π2lc
4

------------ε2 π
ε
---– ,expd

0

τ

∫d

V

∫=
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ing beams. Thus, the approximation of a spatially uni-
form electric field provides an upper bound for the
number of e+e– pairs. Making allowance for spatial
inhomogeneity, i.e., the field structure near the focus
(see Fig. 1), reduces the number of pairs. The magnetic
field leads to a further decrease in the number of pairs,
because it twists the subbarrier trajectory and increases
the imaginary part of the action function. Thus, it is
important to take into account both the spatial field
structure and magnetic field effect in analysis of e+e–

pair production by the electromagnetic field arising as
a superposition of two counterpropagating laser pulses.
The production of pairs can be detected for radiation
intensity 1026 W/cm2, which is two orders of magnitude
less than that for a single focused pulse. We emphasize
that the number of pairs increases only slightly when
the parameter ∆ decreases, and this behavior differs
substantially from that obtained in [18].

This work was supported by the Russian Foundation
for Basic Research (project nos. 03-02-17348 and 04-
02-17157), the Ministry of Industry, Science, and Tech-
nology of the Russian Federation (Federal Program,
project no. 40.052.1.1.1112), and the Ministry of Edu-
cation of the Russian Federation (project no. 1618).

Fig. 3. Number N of pairs as a function of the intensity I for
∆ = 0.1. Lines 1, 2, and 3 correspond to formulas (1), (10),
and uniform-field approximation, respectively.
JETP LETTERS      Vol. 80      No. 6      2004
REFERENCES
1. F. Sauter, Z. Phys. 69, 742 (1931); Z. Phys. 73, 547

(1931).
2. W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).
3. J. Schwinger, Phys. Rev. 82, 664 (1951).
4. V. S. Vanyashin and M. V. Terent’ev, Zh. Éksp. Teor. Fiz.

48, 565 (1965) [Sov. Phys. JETP 21, 375 (1965)].
5. E. Brezin and C. Itzykson, Phys. Rev. D 2, 1191 (1970).
6. S. Popov, JETP Lett. 13, 185 (1971); Sov. Phys. JETP

34, 709 (1972).
7. V. S. Popov, JETP Lett. 18, 255 (1973); Sov. J. Nucl.

Phys. 19, 584 (1974).
8. N. B. Narozhny and A. I. Nikishov, Sov. Phys. JETP 38,

427 (1974).
9. V. M. Mostepanenko and V. M. Frolov, Sov. J. Nucl.

Phys. 19, 451 (1974).
10. M. S. Marinov and V. S. Popov, Fortschr. Phys. 25, 373

(1977).
11. A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko,

Vacuum Quantum Effects in Strong Fields (Énergoat-
omizdat, Moscow, 1988) [in Russian].

12. A. Ringwald, Phys. Lett. B 510, 107 (2001); hep-
ph/0112254; hep-ph/0304139.

13. V. S. Popov, JETP Lett. 74, 133 (2001); Phys. Lett. A
298, 83 (2002); JETP 94, 1057 (2002).

14. T. Tajima and G. Mourou, Phys. Rev. ST Accel. Beams
5, 031301 (2002).

15. C. Bula, C. Bamber, D. L. Burke, et al., Phys. Rev. Lett.
76, 3116 (1996).

16. D. L. Burke, S. C. Berridge, C. Bula, et al., Phys. Rev.
Lett. 79, 1626 (1997).

17. S. V. Bulanov, T. Zh. Esirkepov, and T. Tajima, Phys.
Rev. Lett. 91, 085001 (2003).

18. S. S. Bulanov, N. B. Narozhny, V. D. Mur, and
V. S. Popov, Phys. Lett. A 330, 1 (2004).

19. N. B. Narozhny and M. S. Fofanov, Zh. Éksp. Teor. Fiz.
117, 867 (2000) [JETP 90, 753 (2000)]; Phys. Lett. A
295, 87 (2002).

20. M. Born and E. Wolf, Principles of Optics, 2nd ed. (Per-
gamon, New York, 1964; Nauka, Moscow, 1973).

21. S. S. Bulanov, Phys. Rev. E 69, 036408 (2004).

Translated by R. Tyapaev



  

JETP Letters, Vol. 80, No. 6, 2004, pp. 386–388. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 80, No. 6, 2004, pp. 439–441.
Original English Text Copyright © 2004 by Ioffe, Oganesian.

                                                                                                                                                                
Pentaquark Decay Is Suppressed by Chirality Conservation¶ 
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It is shown that, if the pentaquark Θ+ =  baryon can be represented by the local quark current ηΘ, its
decay Θ+  nK+(pK0) is forbidden in the limit of chirality conservation. The Θ+ decay width Γ is proportional

to 〈0| |0〉2, where 〈0| |0〉 , q = u, d, s, is quark condensate, and, therefore, is strongly suppressed. The

polarization operator of the pentaquark current is calculated using the operator product expansion. The Θ+ mass
found by the QCD sum rules method is in reasonable agreement with experiment. © 2004 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 12.38.-t; 12.39.-x

uudds

α s
2 qq qq
Last year, the exotic baryon resonance Θ+ with
quark content Θ+ =  and mass 1.54 GeV [1, 2]
was discovered. Later, the existence of this resonance
was confirmed by many groups, although some
attempts to find it were unsuccessful (see [3] for a
review). The Θ+ baryon was predicted in 1997 by Dia-
konov, Petrov, and Polyakov [4] in the chiral soliton
model as a member of an antidecouplet with hyper-
charge Y = 2. Recent theoretical reviews are given in [5,
6]. Θ+ was observed as a resonance in the systems nK+

and pK0. No enhancement was found in pK+ mass dis-
tributions, which indicates an isospin T = 0 of Θ+, in
accord with theoretical predictions [4].

One of the most interesting features of Θ+ is its very
narrow width. Experimentally, only an upper limit was
found, and the stringer bound was presented in [2]: Γ <
9 MeV. The phase analysis of KN scattering results in
an even stronger limit on Γ [7], Γ < 1 MeV. A limitation
close to the latter was found in [8] from the analysis of
the Kd  ppK reaction and in [9] from K + Xe colli-
sion data [2]. The chiral quark soliton model gives an
estimation [4] of ΓCQSM & 15 MeV (Jaffe [10] claims
that this estimation has a numerical error and, in fact,
ΓCQSM & 30 MeV; see, however, [11]). In any case, the
estimation [4] for ΓCQSM follows from the cancellation
of large and uncertain numbers and is not quite reliable.
Therefore, until now, the narrow Θ+ width has been a
theoretical puzzle.

Here, we suggest a qualitative explanation for it.
Suppose that Θ+ may be represented by the local five-
quark current ηΘ. An example of such a current is

(1)

¶ This article was submitted by the authors in English.

uudds

ηΘ x( )

=  εabc daCσµνdb( )γνucsγµγ5u u d( )–[ ] / 2,
0021-3640/04/8006- $26.00 © 20386
where a, b, and c are color indices; C is the charge con-
jugation matrix; and u, d, and s are quark fields. Sup-
pose also that the amplitude of Θ+  nK+ decay is
proportional to the vacuum average,

(2)

where ηn(x) is the neutron quark current [12],

(3)

and jµ5 = γµγ5u is the strange axial current. Let us
neglect quark masses and perform the chiral transfor-
mation q  γ5q. It is evident that ηn and jµ5 are even
under such a transformation, while ηΘ is odd. There-
fore, matrix element (2) vanishes in the limit of chiral
symmetry. It is easy to see that this statement is valid
for any form of pentaquark and nucleon quark currents
(spinless and with no derivatives). In the real world,
chiral symmetry is spontaneously broken. The lowest-
dimension operator, corresponding to violation of
chiral symmetry, is . Thus, matrix element (2) is pro-
portional to quark condensate 〈0| |0〉 . Moreover, if Θ+

is a genuine five-quark state (not, say, the NK bound
state), then, in (2), hard gluon exchange is necessary,
which leads to an additional factor of αs. The necessity
of having gluonic exchange in order to get a nonvanish-
ing value of } is confirmed by direct calculation of }
for any ηΘ by the QCD sum rules method for a three-
point function suggested in [13]. We come to the con-

clusion that ΓΘ ~ 〈0| |0〉2, i.e., ΓΘ is strongly sup-
pressed. This conclusion takes place for any genuine
five-quark states—the states formed from five current
quarks at small separation—but not for potentially
bounded NK-resonances, corresponding to large rela-
tive distances. There is no such suppression for the lat-
ter. In order to be confident that Θ+ is described by the

} 0〈 |T ηn x( ) j5
λ y( ) ηΘ 0( ), ,{ } 0| 〉=

ηn εabc daCγµdb( )γ5γµuc=

s

qq
qq

α s
2 qq
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local five-quark current ηΘ (1), calculate in QCD the
polarization operator,

(4)

and demonstrate that it may be represented by the con-
tribution of Θ+ and exited states (continuum). Consider
p2 < 0 and |p2| to be large enough, and use the operator
product expansion (OPE) and QCD sum rule method
for baryons [12]. The Lorenz structure of Π(p) has the
form

(5)

Π1(p2) is calculated with the account of operators up to
dimension 12, and Π2(p2) up to dimension 13. The
masses of u and d quarks are neglected, and the s-quark
mass ms is accounted for in the first order. A factoriza-
tion hypothesis is assumed for operators of higher
dimensions, and operators of anomalous dimensions
are neglected, as well as αs corrections. On the other
side, represent Π(p) in terms of physical state contribu-
tions, Θ+ and continuum, starting from some (p2)0 ≡ s0.
After Borel transformation, the sum rules are given by

(6)

(7)
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where m is the Θ+-mass, M is the Borel parameter (q =
u, d),

(8)

and the sign of g is defined by the form of the covariant

derivative ∇ µ = ∂µ – ig(λn/2) .  is given by the
matrix element

(9)

where υΘ is Θ+ spinor, and  = (2π)8λ2. Continuum
contributions are transferred to the left-hand side of the
sum rules, resulting in the appearance of the factors

(10)

The values of , determined from Eqs. (6) and (7),
are plotted in Fig. 1 (Fig. 1a; for m, the experimental
value of mΘ = 1.54 GeV was put in), and the value of m
obtained as a ratio of (7) to (6). The parameters were
taken in accord with the recent determination of QCD
condensates [14, 15] at the normalization point µ2 =

2 GeV2: a = 0.63 GeV3, b = 0.24 GeV4,  = 1 GeV2,
ms = 0.15 GeV, and γ = 0.8. It was chosen that s0 =

4.5 GeV2. As is seen from Fig. 1a, the values of 
obtained from (6) and (7) weakly depend on M2 and
coincide with one another in the interval 2.0 < M2 <
2.6 GeV2. The value of mΘ may be estimated as mΘ =
1.6 ± 0.2 GeV. The positivity of the left-hand side of (7)

a 2π( )2 0〈 |qq 0| 〉 , γ– 0〈 |ss 0| 〉/ 0〈 |qq 0| 〉= = ,

b 2π( )2 0〈 |
α s

π
-----G2 0| 〉= ,

g 0〈 |qσµν λn/2( )Gµν
n q 0| 〉 m0

2 0〈 |qq 0| 〉≡ ,

Aµ
n λ

0〈 |ηΘ Θ+| 〉 λυ Θ,=

λ2

En
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2

λ2

Fig. 1. The M2 dependence of sum rules (6), (7): (a) 

from Eq. (6) (solid line),  from Eq. (7) (dashed line);
(b) m obtained as a ratio of (7) to (6).
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clearly shows that the parity of Θ+ is positive. The result
only slightly varies at the variation of s0 within 10–
15%.

A few remarks are in order. The first term in (1) con-
tains two left dLdL or two right dRdR quark components,
while neutron current ηn (3) is proportional to dLdR (see
[12], Eq. (61)). Therefore, in the chiral limit, two-had-
ron reducible contributions [16] are absent in the case
of the ηΘ current (1). The same conclusion follows
from the opposite chiralities of currents ηΘ and ηn. The
inspection of the sum rules shows that the main contri-
butions arise from operators of high dimensions (d = 6,
8 in (6) and d = 5, 9, 11 in (7)), unlike in the case of nor-
mal hadrons, where low-dimension operators are dom-
inant. This means that pentaquark indeed differs very
much from usual hadrons. There is a remarkable can-
cellation in (6) and (7) among the contributions of var-
ious operators. Therefore, the results are sensitive to
unaccounted corrections (violation of factorization, αs

corrections, etc.). Thus, a less-than-perfect fulfillment
of the sum rules is not surprising.

The QCD sum rule calculations of pentaquark
masses with local ηΘ were performed in [17–19].
Unfortunately, unsuitable chirally nonvariant five-
quark currents were chosen, and the results change
drastically after subtraction of two-hadron reducible
contributions [16]. Moreover, in [17], only one struc-
ture was considered and important terms of OPE were
omitted.

The consideration of  current, corresponding
to isospin T = 1, shows that sum rule (7) is essentially
smaller than (6). Thus, in case of T = 1, there is no res-
onance structure at masses of 1.5–2.0 GeV, only a back-
ground more-or-less equally populated by the states of
positive and negative parities (at the total angular
momentum j = 1/2).

One of the authors (A. Oganesian) is indebted to
K. Goeke and to M. Polyakov for their hospitality and
for useful discussions.
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Waveguide regimes of nonlinear-optical interactions allow a reduction of quantum noise in spectra of coherent
Raman scattering (CRS). We will find the optimal waveguide length providing the maximum quantum limit for
the signal-to-noise ratio in waveguide CRS and assess this ratio for laser intensities right below the optical
breakdown threshold. This analysis shows that the quantum-limit signal-to-noise ratio of coherent femtosecond
CRS spectroscopy of the gas phase can be increased in the waveguide regime by more than four orders of mag-
nitude relative to the regime of tight focusing. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Dr; 61.46.+w
Coherent Raman scattering (CRS) [1, 2] is one of
the most efficient and informative methods of nonlinear
spectroscopy. This technique provides a high spatial,
temporal, and spectral resolution [3, 4], offering a pow-
erful tool for studying excited gas media, plasmas,
flames, and combustion [5, 6]. Methods of CRS are also
widely employed for the investigation of femtosecond
dynamics and control of vibrational wave packets in
molecular systems [7], as well as coherent microscopy
of biological objects [8]. Recent years have witnessed a
rapid growth of new applications of femtosecond CRS,
such as three-dimensional microscopy of coherent anti-
Stokes Raman scattering (CARS) [8] and coherence-
controlled CARS [9].

Waveguide CRS regimes [10–14] suggest the ways
to radically improve the sensitivity and expand the
applicability area of CRS spectroscopy. In particular,
CRS spectroscopy in planar film waveguides can pro-
vide a level of sensitivity sufficient for measuring
CARS spectra from molecular monolayers [11, 12].
The sensitivity of CARS spectroscopy in the gas phase
has been improved by using hollow waveguides [13,
15, 16], including hollow photonic-crystal fibers [17].

Quantum and classical noise sources set fundamen-
tal limitations on the sensitivity of CRS spectroscopy
[1, 2]. In this work, we will show that waveguide
regimes of nonlinear-optical interactions allow a reduc-
tion of quantum noise in CRS spectra. It will be dem-
onstrated that the quantum limit for the signal-to-noise
ratio of coherent femtosecond CRS spectroscopy of the
gas phase can be increased in the waveguide regime by
more than four orders of magnitude with respect to the
regime of tight focusing.

Noise in CRS spectra can be induced by classical
and quantum mechanisms. Fluctuation of pump field
0021-3640/04/8006- $26.00 © 20389
intensities is the main source of classical noise in CRS
spectroscopy. The classical limit of the signal-to-noise
ratio is controlled under these conditions by root-mean-
square deviations of pump powers and the ratio of the
resonant and nonresonant parts of the relevant nonlin-
ear-optical susceptibility. The root-mean-square devia-
tion of the photodetector current due to pump power
fluctuations is written as [1, 2]

(1)

where the angular brackets stand for averaging in time,
ε is the total root-mean-square deviation of the pump
powers (in two-color CRS ωCRS = 2ω1 – ω2 with pump
field frequencies ω1 and ω2, we have ε = 4ε1 + ε2, where
ε1 and ε2 are the root-mean-square power deviations of
the pump fields with the frequencies ω1 and ω2, respec-
tively), and

(2)

is the photodetector current induced by a CRS signal
with power PCRS and frequency ωCRS (η is the quantum
efficiency of the photodetector, and e is the electron
charge).

Shot noise of a photodetector is usually the most
significant source of quantum noise. The shot-noise-
induced root-mean-square deviation of the photocur-
rent from the detector used to register a CRS signal is
given by [1, 2]

(3)

where ∆ν is the detection bandwidth, related to the time
constant T of the photodetector by the expression ∆ν =
1/T.
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The CRS spectroscopic signal includes both a reso-
nant component, related to a Raman-active mode of the
medium under study, and a nonresonant background:

(4)

where Pr is the power of the resonant part of the signal
and Pnr is the power of the nonresonant background.
The total signal on the photodetector is given by

(5)

Combining Eqs. (1)–(5), we represent the signal-to-
noise ratio in CRS spectroscopy as

(6)

In the case of an intense nonresonant background, we
arrive at the following classical limit for the signal-to-
noise ratio:

(7)

The coherent nonresonant background can be effi-
ciently suppressed with the use of the polarization tech-
nique [1], by introducing a time delay between laser
pulses [4], or by applying methods of coherent control
[9]. With a suppressed coherent background, Eq. (6)
yields the following expression for the classical limit of
the signal-to-noise ratio in CRS spectroscopy:

(8)

The quantum limit of S/N under these conditions is
given by

(9)

We now demonstrate that the quantum limit of the
signal-to-noise ratio in waveguide CRS can be substan-
tially reduced relative to the regime of tightly focused
pump fields. We use for this purpose the following
generic expression for the intensity of phase-matched
two-color CRS [1, 2]:

(10)

where I1 and I2 are the intensities of the pump fields, χ(3)

is the nonlinear-optical susceptibility responsible for
the CRS process, and l is the effective length of nonlin-
ear-optical interaction. For focused pump fields, the
effective length of nonlinear-optical interaction is con-
trolled by the confocal parameter. In the case of focused
Gaussian beams, this length is

(11)
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where a is the waist radius of the focused beam and λ is
the radiation wavelength. A waveguide with a core
radius a would thus provide a CRS power enhancement
in the phase-matching regime by a factor of

(12)

where (PCRS)w and (PCRS)t are the CRS powers in the
waveguide regime and the regime of tight focusing,
respectively, for the same powers of the pump pulses.

According to Eqs. (9) and (12), the figure of merit
for the quantum-limit signal-to-noise ratio in phase-
matched waveguide CRS relative to the regime of tight
focusing is proportional to the effective nonlinear inter-
action length l and inversely proportional to the fiber
core radius a squared:

(13)

where (S/N)q, w and (S/N)q, t are the quantum limits for
the CRS signal-to-noise ratio in the waveguide and in
the regime of tight focusing, respectively, for equal
powers of the pump pulses.

Radiation loss is the key factor limiting the figure of
merit for the CRS signal-to-noise ratio in the
waveguide regime. Radiation losses and the phase mis-
match of guided modes enter into the expression for the
CRS intensity through the factor [1, 2]

(14)

where ∆α = (2α1 + α2 – αCRS)/2; α1, α2, and αCRS are
the radiation losses at the wavelengths ω1, ω2, and ωCRS,
respectively; and ∆β is the mismatch of the propagation
constants of the waveguide modes involved in the non-
linear-optical interaction.

Phase matching for waveguide CRS, controlled by
the parameter ∆β, can be achieved for a given set of
guided modes through the cancellation of the material
and waveguide dispersion components [16]. Figure 1
illustrates this possibility for the CRS process ωCRS =
2ω1 – ω2 (ω1 and ω2 are the frequencies of the pump
fields) in a hollow fiber filled with atmospheric-pres-
sure air. The fundamental guided modes of the pump
fields with the wavelengths λ1 = 2πc/ω1 = 532 nm and
λ2 = 2πc/ω2 = 660 nm generate in this case the CRS sig-
nal in the fundamental waveguide mode. The phase-
matching condition ∆β = 0 is achieved for the consid-
ered process with a fiber core radius a of about 32 µm.
Within a broad range of a values, starting with approx-
imately 25 µm, the coherence length lc = π/2|∆β| for
waveguide CRS (curve 1 in the inset to Fig. 1) is larger
than the coherence length for the same process in free

ξ
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atmospheric-pressure air with no waveguide (curve 2 in
the inset to Fig. 1).

Analysis of Eq. (14) reveals the existence of an opti-
mal waveguide length in the regime of phase matching,
∆βl ! 1, providing the maximum figure of merit for the
quantum-limit CRS signal-to-noise ratio (Fig. 2):

(15)lopt
1

∆α
-------

2α1 α2+
αCRS

--------------------- 
  .ln=

Fig. 1. Mismatch of the propagation constants for the modes
of an atmospheric-air-filled hollow fiber involved in the
CRS process ωCRS = 2ω1 – ω2 (ω1 and ω2 are the frequen-
cies of the pump fields) as a function of the fiber core radius a.
The fundamental waveguide modes of the pump fields with
wavelengths λ1 = 2πc/ω1 = 532 nm and λ2 = 2πc/ω2 =
660 nm generate the CRS signal in the fundamental
waveguide mode. The material dispersion of atmospheric
air is included. The horizontal line shows the phase-match-
ing condition, ∆β = 0. The inset displays the coherence
length lc = π/2|∆β| for the considered CRS process in an air-
filled hollow fiber (1) and in the atmospheric air with no
waveguide (2) as a function of the fiber core radius.

Fig. 2. The factor M [Eq. (14)], describing the influence of
radiation losses and phase mismatch of guided modes on
the efficiency of CRS, as a function of the nonlinear-optical
interaction length l: (1) α1 = 0.03 cm–1 and α2 = αCRS =

0.01 cm–1, (2) α1 = α2 = αCRS = 0.02 cm–1, and (3) α1 =

α2 = 0.01 cm–1 and αCRS = 0.02 cm–1.
JETP LETTERS      Vol. 80      No. 6      2004
For hollow fibers with a core radius on the order of
a ≈ 5 µm, the quantum limit for the CRS signal-to-noise
ratio in the waveguide regime, as can be seen from the
results presented in Fig. 3, can be increased by roughly
four orders of magnitude. For high-intensity laser
pulses, decrease in the fiber core radius is limited by
optical breakdown. Introducing Ib to denote the inten-
sity corresponding to the critical laser fluence at the
threshold of optical breakdown, we derive the follow-
ing expression for the minimum fiber core radius:

 = P/πIb, where P is the power of the pump pulse.

In view of Eqs. (13) and (15), the maximum figure
of merit for the quantum-limit CRS signal-to-noise
ratio is

(16)

Now, we use Eqs. (7), (13), and (16) to analyze the
ways to improve the signal-to-noise ratio for the
waveguide CRS spectroscopy of the gas phase. Classi-
cal noise can be reduced in this case by using power-
stabilized femtosecond pump pulses. Methods for sup-
pressing the nonresonant background in femtosecond
CRS include the use of time-delayed pump–probe laser
pulses [1, 4] and coherent-control strategies [9].

Hollow fibers are at the heart of waveguide-
enhanced gas-phase CRS spectroscopy. For standard
hollow fibers, a decrease in the fiber core radius leads
to a rapid growth of radiation losses, which scale as
λ2/a3. This circumstance imposes a limitation on the
minimum core radius of hollow fibers. Core diameters
for hollow fibers used in experiments typically range
from 100 up to 500 µm. Such waveguides are essen-
tially multimode. The difference in phase and group
velocities of guided modes simultaneously excited in
such waveguides gives rise to uncertainties in time-

amin
2

µmax

λ Ib

∆αP
-----------

2α1 α2+
αCRS

--------------------- 
  .ln=

Fig. 3. Figure of merit for the quantum-limit signal-to-noise
ratio in waveguide CRS spectroscopy relative to the regime
of tight focusing as a function of the core radius a of a hol-
low fiber for λ = 1 µm; l = lopt; and α1 = α2 = αCRS =

(1) 0.01, (2) 0.02, and (3) 0.03 cm–1.
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resolved measurements and complicates accurate cali-
bration of the nonlinear signal as a function of the gas
pressure [15]. Radiation losses of hollow-core-guided
modes can be radically reduced in the case of hollow
fibers with periodic (photonic-crystal) cladding [18–
22]. Such fibers can support isolated guided modes
confined to the hollow core, allowing a radical
enhancement of nonlinear-optical processes [23–26].

Radiation intensities on the order of Ib ~
1014 W/cm2, typically leading to an optical breakdown
of atmospheric-pressure gases, can be achieved by cou-
pling 75-MW laser pulses into a hollow photonic-crys-
tal fiber (PCF) with a core radius of about 5 µm. Fem-
tosecond pulses of such a power level are produced by
standard solid-state mode-locked laser systems with
regenerative amplification. Transmission of such fem-
tosecond pulses through hollow PCFs has been dem-
onstrated by experiments [27] (see also [22]). Expres-
sion (16) with lopt ≈ 100 cm gives the following estimate
on the maximum figure of merit for the quantum-limit
signal-to-noise ratio of femtosecond CRS spectroscopy
with such pump pulses (Fig. 3): µmax ~ 1.3 × 104.

The analysis performed in this work shows that
waveguide regimes of nonlinear-optical interactions
allow a reduction of the level of quantum noise in CRS
spectra. The expressions derived in this paper for the
optimal length of the waveguide providing the maxi-
mum quantum-limit CRS signal-to-noise ratio and the
maximum figure of merit for this ratio in the quantum
limit at the threshold of optical breakdown suggest the
possibility of a substantial lowering of quantum noise
in the CRS spectroscopy of the gas phase based on the
use of high-power femtosecond laser pulses.

This work was supported in part by the President of
the Russian Federation (grant MD-42.2003.02), the
Russian Foundation for Basic Research (project
nos. 02-02-17098, 03-02-16929), INTAS (project
nos. 03-51-5037, 03-51-5288), the Civilian Research
and Development Foundation (CRDF, project no. RP2-
2558), and the European Research Office of the US
Army (contract no. 62558-03-M-0033).
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Parametric X-ray radiation (PXR) due to dynamic diffraction of relativistic electrons is experimentally
observed at small angles to the propagation velocity of electrons in a tungsten crystal. The specific features of
the experimental method are described, and forward PXR reflections from two crystallographic planes of tung-
sten are reliably measured. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.70.-g; 79.90.+t
Diffraction of the Coulomb field of a fast charged
particle propagating in a crystal gives rise to parametric
X-ray radiation (PXR) [1–3]. The theory predicts the
existence of PXR reflections propagating both along
the direction of Bragg scattering and along the emitting
particle velocity. However, while the first of the reflec-
tions has been studied in detail theoretically and exper-
imentally (see, for example, [4, 5] and references
therein), PXR along the particle velocity, or forward
PXR, has not been observed so far, although relevant
attempts have been made over more than thirty years
[6–8].

The forward PXR attracts interest for two reasons.
First of all, the observation of such radiation would
prove the existence of dynamic diffraction in the case of
PXR, because the forward PXR is a purely dynamic
effect [4]. In addition, the forward PXR can be inter-
preted as Cerenkov radiation, which appears due to a
change in the refractive index of a crystal upon dynamic
diffraction of the electromagnetic field of a fast particle
(the effective refractive index becomes greater than
unity, which opens up the channel of Cerenkov energy
losses of the particle) [9]. Therefore, the observation of
forward PXR would confirm the existence of a new
type of Cerenkov radiation in the X-ray range.

Experimental observation of the forward PXR is
mainly complicated by a small width of the PXR spec-
trum compared to typical energy resolution of X-ray
detectors (∆ω ≥ 150 eV), which leads to the efficient
averaging of the forward PXR against the background
of broadband bremsstrahlung and transient radiation.
This problem can be solved only by using a crystal grat-
ing spectrometer. Note that, in all experiments devoted
to the search for forward PXR, targets made of light
0021-3640/04/8006- $26.00 © 20393
elements were used. Therefore, the width of the sought-
for radiation spectrum did not exceed a few electron-
volts [10], and for this reason these experiments have
failed.

The observation of forward PXR produced by
855-MeV electrons on the (111) plane of a 56-µm thick
silicon crystal and detected with a crystal grating spec-
trometer was recently reported in [11]. However, the
method of suppression of the transient-radiation back-
ground in the vicinity of the Bragg frequency, where the
forward PXR spectrum is located, used in this experi-
ment is incorrect. The method is based on the use of the
negative interference of transient-radiation waves
appearing on the input and output surfaces of the target.
As shown in [12], it is in the vicinity of the Bragg fre-
quency, where transient radiation should be completely
suppressed due to interference, that a narrow radiation
peak caused by dynamic effects appears. The contribu-
tion of this mechanism to the intensity of detected radi-
ation was not analyzed [11], and, therefore, the nature
of the narrow radiation peak observed in this paper
remains open.

Our paper is devoted to the experimental search for
forward PXR reflection. According to the results of the-
oretical analysis [10], we use a crystal target made of a
heavy element–tungsten. This target offers three impor-
tant advantages: (i) a substantial increase (up to a few
tens of eV) in the width of the forward PXR reflection,
which results in a drastic improvement of the signal-to-
noise ratio; (ii) an increase in the working (Bragg) fre-
quency, which reduces absorption of photons in air with
increasing the distance between the crystal and a detec-
tor and allows the use of the advantages of the measure-
ment method [13] for analyzing radiation characteris-
004 MAIK “Nauka/Interperiodica”
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tics; and (iii) a complete exclusion of dynamic effects,
caused by diffraction of transient radiation in the crys-
tal, due to strong absorption of detected photons in the
crystal. On the other hand, as the target thickness
increases, the effect of multiple scattering of electrons
and the contribution of bremsstrahlung drastically
increase. As shown experimentally and confirmed by a
special analysis, the latter can even change the sign of
the effect observed.

Measurements were performed using an inner elec-
tron beam of the Tomsk synchrotron. Figure 1 shows
the scheme of the experiment. Electrons accelerated to
the final energy E0 = 500 MeV were incident on a sin-
gle-crystal target placed in a goniometer. The radiation
under study propagated through a collimator, “purified”
by a magnet, and was directed to an experimental hall,
where the detecting equipment was installed. The crys-
tal was oriented with respect to the electron-beam
direction according to the readings of a NaI(Tl) detec-
tor in the Compton mounting, which detected photons
upon channeling and bremsstrahlung with energy ω >
0.5 MeV scattered in a converter. The parameters of the
electron beam and experimental instruments and the
method of orientation are considered in [14, 15].

The X-ray component of radiation was detected
using two crystal grating spectrometers based on pyro-
lytic graphite crystals mounted in goniometers at a dis-
tance of 13–15 m from the target, where radiation was
generated, and NaI(Tl) detectors of size ∅ 40 × 1 mm,
which were located at a distance of 3–5 m from graph-
ite crystals. Under these conditions, the energy resolu-
tion of spectrometers weakly depends on the mosaic
structure of crystals but is determined by their angular
aperture (∆θx ~ ±0.1 mrad, ∆θy = ±0.6 mrad) and the
collimation angle of diffracted radiation [13]. The col-
limation angle in the diffraction plane (horizontal)
∆Θx ~ 0.7 mrad provided the resolution of spectrome-
ters ∆ω/ω ~ 1%. The background level for photons of
energy ω ≥ 40 keV did not exceed 2–5%. Because of
strong absorption of photons with lower energies in the
air and target, the background level increased up to
20−30% for ω = 28.3-keV photons (see below). The

Fig. 1. Scheme of the experiment: W: tungsten crystal;
PG: pyrolytic graphite crystal; NaI: NaI(Tl) spectrometers;
S: scatterer.
characteristics of the spectrometers and measuring
methods are described in detail in [13].

As shown in [8, 10], the optimal method for search-
ing for forward PXR is measurement of the dependence
of the number of photons in a narrow spectral range on
the crystal orientation. For photons with energies above
20–25 keV, the Bragg condition can be satisfied only
for several low-index planes and quite specific crystal
orientations. A criterion for the observation of the effect
is the coincidence of Bragg energies for the orientation
angles at which the peak of the photon yield is observed
with the energies to which diffractometers are tuned.
According to the theory [9, 10], the forward PXR inten-
sity in a tungsten crystal becomes comparable with the
transient radiation intensity only for photons with ener-
gies ω ≤ γωp ~ 80 keV, where γ is the Lorentz factor and
ωp is the plasma frequency of the medium. Therefore,
we detected simultaneously the yield of photons with
ω < γωp (67, 40, and 29 keV) and ω > γωp (95 and
97 keV). To control the absence of radiation during
plane channeling, we measured the yield of ≥0.5-MeV
photons by means of a Compton NaI(Tl) detector.
This detector was also used to make the electron-beam
direction coincident with the crystal axis, from which
the reorientation angles of crystal planes were mea-
sured.

Measurements were performed for a tungsten single
crystal of size 8.5 × 0.41 mm, with the 〈111〉  orientation
and the surface mosaic structure σ < 0.2 mrad. In tung-
sten crystals grown by the same method, anomalous
propagation of X-rays was observed [16]. The crystal

was mounted in the goniometer so that the ( ) plane
was almost vertical. This allowed us to study dynamic

effects in radiation both for the ( ) plane and two
(110) planes turned by 30° with respect to this plane.
The measurements of orientation dependences of the
yield of scattering photons in the case of plane channel-

ing (Fig. 2a, curve 1) showed that the ( ) plane is
turned by the angle β = 3.5° ± 0.2° with respect to the
vertical plane. Therefore, dynamic effects in radiation
should be observed for each of the crystal planes at dif-
ferent orientation angles Θ (see Fig. 2b).

One can see from the orientation dependence of the
yield of 67-keV photons (curve 2) that the X-ray radia-
tion intensity depends substantially on the orientation
of crystal planes with respect to the electron-beam
direction. Therefore, as in experiment [8], measure-
ments were performed for the case of the intersection of
the 〈111〉  axis, when the plane channeling effect was
absent.

Our measurements showed that no forward PXR
peaks were observed for relatively hard photons with
ω ≥ γωp (67, 95, and 97 keV). The presence of the crys-
tal structure manifested in the decrease in the number of
photons detected by spectrometers when the Bragg
energy for the given orientation of the crystal coincided

112

112

112
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with the photon energy (see Fig. 3a, curve 1). The posi-
tions of minima of the orientation dependence corre-
spond to the kinematic conditions for diffraction of
photons directed along the electron beam with an error
no worse than 1%. For example, for ω = 67 keV, the cal-

culated positions of minima for the ( ), ( ), and

( ) reflections are 46.6, 49.9, and 72.2 mrad,
whereas the measured values are 46.3, 49.5, and
71.9 mrad. The depth of minima changes from 12–15%
for ω = 67 keV to ~10% for ω > 90 keV. The typical
value of the full width of the minimum is ∆Θ ~ 1.5–
2.5 mrad. The experimental curve differs from the the-
oretical curve (a narrow minimum with a width of the
order of the Darvin table width ∆Θ ≤ 0.1 mrad and
depth ~0.5 from the substrate level), because graphite
crystals are not parallel to the plane on which diffrac-

101 011

112

Fig. 2. (a) Orientation dependences of radiation yield.
Curve 1: signal of the detector of Compton photons with
ω ≥ 0.5 MeV; 2: ω = 67 keV; (b) scheme of the arrangement
of crystal planes: H is the horizontal plane (vertical plane is
not shown); Θ is the angle between the 〈111〉  axis and the
electron-beam direction in the horizontal plane; Θ2(1) =
Θcos(30° ± β) are angles between the propagation direction

of electrons and planes ( ) and ( ).101 011
JETP LETTERS      Vol. 80      No. 6      2004
tion occurs and spectrometers have a finite angular
aperture and a limited resolution.

The calculation of the orientation dependence of the
forward PXR yield [10], taking into account multiple
scattering of electrons and diffraction of bremsstrahl-
ung in a crystal, confirmed that, for the photon energy
ω ~ γωp and zero observation angle (the detected radia-
tion is emitted along the electron-beam direction), dif-
fraction of bremsstrahlung inside the crystal masks the
sought-for effect. The forward PXR becomes dominant
only for the photon energy ω ≤ 0.5γωp (see Fig. 4).

The orientation dependences measured for photon
energies 40 and 28.3 keV exhibit distinct maxima,
whose positions, as minima for hard photons, agree
with the Bragg law (see Fig. 3). These maxima are not
related to radiation with a continuous spectrum or to
experimental errors. This is confirmed by their absence
in the yield of ≥0.5-MeV photons (Fig. 3a, curve 1) and
their different positions in the orientation dependences
of the yield of photons with different energies (Fig. 3b).
The position and shape of the maxima were reliably
reproduced in repeated measurements.

Fig. 3. Orientation dependences of soft radiation yield:
(a) ω = 95 keV (curve 1); ω = 40 keV (curve 2); ω ≥
0.5 MeV (curve 3); (b) ω = 40 keV (curve 1); ω = 28.3 keV
(curve 3).
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Measurements of the spectra of diffracted radiation

at the peak for ω = 40 keV –  = 83.9 mrad and at
the neighboring points (Θ = 81.3 and 79.3 mrad)
showed that the radiation intensity increases only for
the first reflection order. The radiation intensity in the
higher reflection orders coincides for all the spectra.
The crystal thickness t = 0.41 mm substantially exceeds
the lengths la ~ 42 and 19 µm at which photons are
absorbed, i.e., the peaks observed in the orientation
dependences of the yield of photons with ω < γωp are
caused by radiation excited inside the crystal. The only
known mechanism of radiation of electrons in crystals
with such properties is parametric (quasi-Cerenkov)
X-ray radiation along the electron propagation velocity
in a crystal [9].

The peak positions  = 76.6 (110.2) mrad and

 = 83.9 (120.9) mrad measured in experiments for
photons with energy 40 (28.3) keV differ somewhat

from the estimated values  = 77.9 (110.2) mrad

and  = 83.6 (118.2) mrad. The distance between
the peaks is larger by 1.5 and 2 mrad than follows from
the Bragg law. For both photon energies, the width of

the peak for the ( ) plane is almost twice as large as

that for the ( ) plane. For ω = 40 keV, this peak quite
distinctly divides into two peaks (Fig. 3b).

According to the theory, the forward PXR energy is
determined by the angle θ|| of escape of a photon in the
direction perpendicular to the plane at which reflection
occurs. The reflection intensity along the electron prop-
agation direction is zero, while the maximum of the

angular distribution corresponds to the angle  =

Θ
011

exp

Θ
101

exp

Θ
011

exp

Θ
101

est

Θ
011

est

011

101

θ||
FPXR

Fig. 4. Orientation dependences of the X-ray radiation yield
in the (110) plane in the region of Bragg angles x =

(g2/2 )(ω – ωB/ωB) (see [10]). Curve 1: ω = 65 keV;

2: ω = 40 keV; 3: ω = 26 keV.

ωg
2

. We detected photons caused by

electrons moving at the angle θFPXR to the electron-
beam direction. Radiation was generated on the planes
of the tungsten crystal turned by the angle ~30° with
respect to the reflecting plane of the diffractometers.
Along with a finite angular aperture and limited resolu-
tion of the spectrometers, this should inevitably result
in the broadening of experimental curves and in the
decrease in the amplitude of the peaks compared to the
theoretical predictions. We plan to take experimental
factors into account and compare quantitatively the
results of measurements with the theory in the next
paper.

The results of the study can be summarized as fol-
lows:

(i) We have observed quasi-Cerenkov X-ray radia-
tion of fast charge particles in a material with a medium
refractive index n < 1.

(ii) Diffraction suppression of bremsstrahlung of
relativistic electrons in a crystal has been reliably
observed, and the competition between quasi-Cerenkov
radiation and diffraction suppression of bremsstrahlung
has been demonstrated.

We thank Prof. V.V. Boiko and Prof. E.P. Naiden for
placing a tungsten crystal at our disposal, the study of
the target quality, and determining the geometrical
position of planes on the target surface. This work was
partially supported by the Russian Foundation for Basic
Research (grant nos. 01-02-17471 and 03-02-16587),
the program “Universities of Russia” (grant nos. UR
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and Technical Program” (grant FRP no. 09-03), and the
“Internal Grant Program” of Belgorod State University
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Experimental data on the shock compression, temperature, and absorptivity of gaseous deuterium with an initial
density close to its value in the liquid state were obtained on a spherical explosion shock-wave generator in a
pressure range of 80–90 GPa. The obtained results are compared with the existing experimental and theoretical
data. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 52.25.-b; 52.35.Tc
At present, advances in laser fusion and progress in
the understanding of the structure and evolution of
astrophysical objects have quickened interest in the
study of thermodynamic and electrophysical properties
of hydrogen—the simplest and most abundant element
in nature—in the megabar pressure range [1, 2]. To
achieve shock-compression megabar pressures, various
methods of shock-wave excitation are used: intense
laser radiation [3, 4], high-power pulse currents [5, 6],
and spherical explosion devices [2, 7]. Although the
laser data demonstrate anomalously high compressibil-
ity of deuterium plasma, this was not confirmed by the
electrodynamic and explosion experiments.

In this work, gaseous deuterium with a high initial
density, close to the density of liquid deuterium, was
chosen as the object of investigation. The use of gas-
eous deuterium was dictated by the possibility of
obtaining its initial parameters with a high certainty,
because they are fully determined by the initial gas
pressure and temperature. Besides, the temperature and
light absorption coefficients were measured in this
work simultaneously with the compressibility, allowing
additional information to be gained on the parameters
of the state and optical properties of the shock-com-
pressed deuterium plasma.

Experimental measurements of dynamic charac-
teristics. For the experiments with gaseous deuterium
under a high initial pressure, a hemispherical capsule
0021-3640/04/8006- $26.00 © 20398
was devised (Fig. 1), whose geometrical sizes corre-
sponded to a hemispherical shock-wave generator
MZ-13 [8]. Capsule frame 1 and base 2 were made
from a high-strength steel possessing high stability of
its characteristics in a hydrogen atmosphere. To

Fig. 1. Hemispherical experimental device: (1) frame;
(2) base; (3) screen (aluminum AD-1); (4) aluminum (AD-1)
sample; (5) housing; (6) optical sensors; (7) measuring line;
(8) explosive; (9) air gap; (10) impactor (steel 3).
004 MAIK “Nauka/Interperiodica”
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enhance the shock-compression pressure in deuterium,
hemispherical 1.5-mm-thick aluminum (AD-1) screen
3 was placed under steel frame 1.

At a fixed distance (determined by the height of alu-
minum samples 4) from the aluminum screen, hemi-
spherical brass housing 5 was mounted, inside which
eight optical sensors 6 for measuring shock velocity in
deuterium were symmetrically arranged on a circle
with radius R = 5 mm. Similar sensors were also placed
beneath the samples to measure shock velocity in them
and use this velocity for determining the shock-com-
pression parameters in the aluminum screen. The sen-
sors were fabricated from 200-µm o.d. silica fibers with
several-micron-thick aluminum jackets along the
whole length to eliminate spurious illumination. The
fibers were glued in base 2 and brass hemisphere 5;
their polished top ends were mounted flush with the
outer surface of the hemisphere. The bottom (in the
scheme) ends terminated in the optical connector (not
shown in the figure) for joining the optical sensors to
external fiber lines 7, through which the shock-front
radiation was transmitted to detectors. The central fiber,
with a diameter of 600 µm, served also for measuring
the shock velocity in gas and the shock-front tempera-
ture.

After the initiation of potent explosive 8, steel hemi-
spherical impactor 10 was accelerated through gap 9 by
the explosion products to form, upon the collision with
hemispherical frame 1, a shock wave in it, that was then
sequentially transmitted to the aluminum housing of
sensors 6 and to the gaseous deuterium. The latter was
compressed and irreversibly heated. To eliminate the
influence of the shock wave on the experimental results,
air from the space between frame 1 and impactor 10
was pumped out to a residual pressure of no higher than
10 torr.

The capsule was filled with gaseous deuterium from
a metal-hydride source of high-pressure vanadium-
based hydrogen isotopes. To achieve a pressure of
250 MPa using the vanadium-deuteride source, it suf-
fices to heat it to a temperature of ~450 K [9].

Before the experiments, the capsules were tested for
strength and tightness. The tests showed that the cap-
sules withstood up to a gas pressure of ~220 MPa with-
out destruction and noticeable residual deformations of
the construction. During the course of testing, deforma-
tion of hemisphere floors was detected, and it was sub-
sequently taken into account in the processing of the
experimental results.

Two experiments, with the initial gas parameters
P0 ≈ 203 MPa (2000 atm) and T0 = 273 K in the first
experiment and P0 ≈ 157 MPa (1550 atm) and T0 =
278 K in the second, were performed using shock-wave
generators of the same type. The gas temperature was
assumed to be equal to the temperature measured by a
thermocouple at the hemispherical capsule surface.
Under these conditions, the initial gas densities calcu-
lated according to [10] were ρ0 = 0.153 g/cm3 and ρ0 =
JETP LETTERS      Vol. 80      No. 6      2004
0.1335 g/cm3, respectively, which is close to the density
of liquid deuterium (ρ0 = 0.171 g/cm3).

The shock-front glow was detected in the visible
region by optical transducers based on photodiodes
with a signal rise time no worse than 2 ns and photo-
multipliers with an anode-pulse rise time of 1.2 ns. The
shock-wave passage time was measured from the
instant of glow appearance to the instant of glow decay
due to the damage of the fiber end by the shock wave.
The typical oscillograms of the shock-front glow in
gaseous deuterium are shown in Fig. 2. The brightness
temperature of shock-compressed deuterium was deter-
mined from the glow amplitude (Fig. 2b) in the satura-
tion region.

The measurements of the average shock velocities
in dense gaseous deuterium gave Dexp = (29.14 ±
0.56) km/s at P0 > 203 MPa (2000 atm) and Dexp =
(29.29 ± 0.36) km/s at P0 ≈ 157 MPa (1550 atm). The
measurement error was determined using Student sta-
tistics with a fiducial probability of 90%. The experi-
mental values of the average shock velocity corre-
sponded to the middle of the gauge length, and, to
reduce them to the shock-decay boundary at the deute-
rium–aluminum interface (Fig. 1), corrections were
introduced. To this end, one-dimensional calculations
of the shock motion in the elements of the experimental
hemispherical device were performed using the gas-
dynamic program developed at the Russian Federal
Nuclear Center, All-Russia Research Institute of Exper-
imental Physics. For the deuterium calculations, the
equation of state was borrowed from [11], and the equa-
tions of state for the remaining materials were those
used at the Institute. To assess the correctness of the
equations of state used in the program for the materials
of the device, an independent test of the computational
scheme was carried out. In the test calculations, the
shock velocities in 4-mm-thick iron and aluminum
screens were estimated and the results were compared
with the experimental data for MZ-13 in [8]. The test-
ing showed that shock velocities calculated for iron and
aluminum agree, to within 1%, with the experimental
data DFe = 17.35 km/s and DAl = 20.9 km/s [8].

The transition from the measured shock velocities to
their instant values corresponding to the shock-decay
boundary at the aluminum–deuterium interface was
done as follows. The results of gas-dynamic computa-
tions were used to calculate the average shock veloci-
ties  in deuterium and the velocities Db at the screen–
deuterium boundary. Since the shock wave in a hemi-
spherical generator is nonstationary, the average veloc-
ity on the measurement radius exceeds the velocity Db

at the inner boundary of the screen. With allowance
made for the relative difference between the values
δD = (  – Db)  obtained from the computational
results, the corrections ∆D = δDDexp to the experimen-
tally measured shock velocity were calculated. The
resulting shock velocities in gaseous deuterium became

D
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Fig. 2. Shock-front radiation oscillograms for gaseous deuterium. Detectors: (a) photodiode sensors and (b) photomultipliers.
Arrows show the points at which the time of shock-wave motion was measured.
reduced to its boundary with aluminum: Db =
27.95 km/s in the first experiment and Db = 28.02 km/s
in the second.

The correction to the average shock velocity Dexp =
21.17 km/s measured in the experiments with reference
aluminum samples was done in a similar way. The cor-
rected shock velocity in aluminum at the boundary with
deuterium was found to be Db(Al) = 20.4 km/s.

The solution to the problem of shock decay at the
deuterium–aluminum boundary with the indicated
velocities and the use of the law of conservation of
mass bring about the following shock-compression
parameters for gaseous deuterium: D = 27.95 km/s
(shock velocity), U = 21.84 km/s (mass velocity), P =
93.4 GPa, and ρ = (0.70 ± 0.06) g/cm3 in the first exper-
iment and D = 28.02 km/s, U = 22.2 km/s, P = 83 GPa,
and ρ = (0.64 ± 0.04) g/cm3 in the second. To solve the
problem, an aluminum unloading isentrope was con-
structed using the equation of state given in [12]. The
initial state on the Hugoniot curve had parameters U =
12.04 km/s and P = 665.4 GPa that were obtained from
the shock-velocity measurements in aluminum
(Db(Al) = 20.4 km/s).

Measurements of the optical characteristics of
shock-compressed deuterium. The temperature of
shock-compressed deuterium was measured using a
high-speed four-channel optical pyrometer [13]. The
radiation of the shock front in deuterium was recorded
via the fiber line at wavelengths of 450, 498, 550, and
600 nm. To separate the corresponding spectral inter-
vals, a set of interference light filters with a transmis-
sion bandwidth at half maximum ∆λ ≈ 10 nm was used.
Prior to the experiments, the optical line for measuring
temperature was calibrated against a reference light
source. The thermal radiation flux from a heated body
with the radiating capacity R is given by the Planck’s
formula,

(1)
N λ( ) RC1λ

5– C2/λT( )exp 1–[ ] 1–=

=  C1λ
5– C2/λTb( )exp 1–[ ] 1– .
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Table

Experiment Calculations (chemical model [1, 23])
Experi-
mentρ0,

g/cm3
P,

GPa
ρ,

g/cm3
T,

103 K
T,

103 K
ne,

1022/cm
nD,

1022/cm
nD2,

1022/cm
ΓD /6

0.134 83 0.64 22.9 23.2 2.3 5.1 5.6 15 2.7 0.42 This work

0.153 93.4 0.70 24.1 22.5 2.5 5.0 6.6 16 3.0 0.47 This work

0.171 107 0.77 – 23.0 2.8 5.3 7.1 17 3.4 0.50 [25]

0.199 121 0.85 – 21.9 3.0 4.9 8.5 18 3.8 0.57 [7]

neλe
3 π Σn jgd

3( )
Here, R is the radiating capacity of the body, λ is the
wavelength, T is the actual temperature, Tb is the bright-
ness temperature, and the constants are C1 = 1.19 ×
10−16 (W m2)/sr and C2 = 0.0144 mK. The temperature
of the shock-compressed gaseous deuterium was deter-
mined from the four measured spectral temperatures by
the nonlinear least-squares method for two parameters
T and R, followed by iterations to obtain exact estimates
for the quantities of interest.

At the spectral temperatures experimentally mea-
sured for the shock-compression pressure P = 93.4 GPa
in the range 450–600 nm, the best fit to the Planck’s
function is achieved, in the grey-body approximation,
at the temperature T = 24100 ± 2200 K and a radiating
capacity of 0.485 ± 0.075.

Analysis of the oscillograms obtained in the experi-
ment with pressure P = 83 GPa (Fig. 2b) indicates that
the saturation of the shock-front radiation correspond-
ing to the optical thickness (close to unity) of shock-
compressed gaseous deuterium is not achieved in the
blue spectral region (λ = 406 nm). Since this does not
allow the use of the least-squares method for estimating
the actual temperature and radiating capacity, only the
average value T = 22900 ± 2000 K of the brightness
temperature was presented for this experiment.

As in [14, 15], the rise of the shock-front glow after
the wave enters gaseous deuterium can be due to the
increase in the thickness of the shock-compressed layer
and to its transparency. Neglecting the reflection and
using the Bouguer–Lambert–Beer formula for trans-
mittance,

(2)

where α is the absorption coefficient of a layer of thick-
ness l, one can write the rise of radiation intensity in the
normal direction as

(3)

where I0 is the radiation intensity of an optically dense
layer, l = (D – U)t is the thickness of a shock-com-
pressed substance, and t is the shock-wave passage time
in the substance. Then, with the known kinematic
parameters D and U, one can use the experimental

τ α l–( ),exp=

I I0 1 α l–( )exp–[ ]=

=  I0 1 α D U–{ } t–( )exp–[ ] ,
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oscillogram to determine the light absorption coeffi-
cient α in the shock-compressed deuterium:

(4)

The average value of this coefficient obtained for the
compressed gaseous deuterium after processing the
experimental oscillograms was found to be α ≈ 69 cm–1

in the wavelength range 450–600 nm for a shock com-
pression of 93 GPa.

The estimates made for the absorption coefficient
within the framework of the classical approach using
the calculated parameters and the Kramers–Unsold for-
mula give α ≈ 4 × 104 cm–1, which is three orders of
magnitude larger than the measured values. Such a dis-
crepancy is evidence that the ionization and dissocia-
tion processes at the shock front likely bypass the rise
of the plasma-bunch radiation.

Comparison with the results of theoretical calcu-
lations. Our experiments differ from the majority of
previous experiments in that the dynamic compression
characteristics fixing the position of the Hugoniot curve
in the P–V plane are measured simultaneously with the
temperature of the shock-compressed deuterium, which
is highly important for the construction of a complete
thermodynamic map for the system.

The experimental results are presented in the table
and Fig. 3 in the pressure–density coordinates and, in
the temperature–pressure coordinates, in the same table
and Fig. 4, together with the available experimental
data and the results of theoretical calculations in two
variants.

In the first variant, the calculations were carried out
using the equation of state constructed for hydrogen
within the relatively simple compressible covolume
model (CCM) [11]. A mixture of five sorts of particles
was considered: molecules, atoms, positive molecular
ions, protons, and electrons. The thermal equation of
state for the particle of the ith sort has the form
Vi(P, T) = VC, i(P) = RmT/P, where V is the molar volume
and Rm is the molar gas constant. The covolumes VC, i
were assumed to depend only on pressure and be addi-
tive. For molecules, the covolume was constructed
using the experimental data on the static compression
of solid hydrogen up to a pressure of 2.5 GPa [16] and
quasi-adiabatic compression of gaseous hydrogen in

α I0 1/ D U–( )t[ ] 1 I/I0–( ).ln–=
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the pressure range 40–800 GPa [17, 18]. For atoms, the
covolume was constructed using simple theoretical
estimates and experimental results for P > 300 GPa [17,
18]. For molecular ions and protons, they were taken to
be formally equal to the covolumes of, respectively,
molecules and atoms (for electrons, VC, e(P) ≡ 0). The
caloric equation of state was obtained from the thermal

Fig. 3. Deuterium Hugoniot adiabates. Experiment: (1) [3],
(2) [6], (3) [2, 7], (4) [25], and (5) this work. Calculations:
(6) [27], (7) SAHA-IV [1, 23], (8) CCM [11], solid thick
line for ρ0 = 0.199 g/cm3, solid thin line for ρ0 =

0.171 g/cm3, dash-and-dot line for ρ0 = 0.153 g/cm3, and

the dotted line for ρ0 = 0.1335 g/cm3. Arrows indicate the
“limiting” compressions (ρ/ρ0 = 4) for each of the four
Hugoniot curves.

Fig. 4. Pressure dependence of the temperature of shock-
compressed gaseous deuterium: (1) experiment; calcula-
tion: (2) SAHA-IV model [1, 23], (3) CCM model [11];
solid lines are for ρ0 = 0.153 g/cm3 and dashes are for ρ0 =

0.1335 g/cm3.

(

equation using the second law of thermodynamics. The
contribution from the vibrational and rotational degrees
of freedom of molecules and molecular ions in the par-
tition functions was taken into account in the “rigid
rotator–harmonic oscillator” approximation, without
rovibrational cutoff at the level of dissociation energy,
while the contribution from the excited electronic states
was disregarded. The equations for the equilibrium
concentrations of the components have the form of the
usual Saha equations, in which the equilibrium constant
is additionally multiplied by the factor
exp(−∆GC, r(P)/RT), where ∆GC, r is a change in the
covolume chemical potential in the rth reaction. As a
result, the energy of molecular dissociation into two
atoms formally decreases by ∆GC, dis(P) = 2GG, D(P) –
GC, D2(P) with the pressure buildup, whereas the ioniza-
tion potentials of molecules and atoms do not change
by virtue of the definition adopted above for the covol-
umes of charged particles. For the states achieved in our
experiments, the CCM calculations predict a noticeable
degree, nD/nD2 ~ 3, of deuterium dissociation and a rel-
atively low degree, nD+/nD ~ 10–2, of temperature ion-
ization. The CCM-calculated Hugoniot curves show
two density maxima: the lower corresponds to the
molecular dissociation, and the upper corresponds to
the particle ionization. The position of the second max-
imum can be affected by many factors. In particular, the
rovibrational cutoff at the level of dissociation energy
of molecular ions leads to a decrease in the concentra-
tion of this component in the mixture at high tempera-
tures and pressures and, as a result, to a noticeable
decrease in the density and pressure at the upper maxi-
mum and to a steeper asymptotic form of the Hugoniot
adiabate ρHug  4ρ0.

In the second variant, the calculations were per-
formed using a modified plasma chemical model [19]
with the universal SAHA-IV code [20]. In this model,
hydrogen (deuterium) was calculated as a strongly non-
ideal mixture of ions, electrons, atoms, molecules, and
D– and D2+ ions. When calculating the equilibrium
plasma composition and its thermodynamic properties,
the partial degeneracy of the electronic component and
the interactions between all sorts of particles were
taken into account. To describe the coulombic nonide-
ality, an improved modification of the pseudopotential
approach suggested in [21] was used. With this modifi-
cation, the effective electron–ion interaction was
described by the short-range-corrected Coulomb poten-
tial (Glauberman–Yukhnovskiœ potential). The effective
depth of this potential was taken as equal to the interac-
tion energy of an electron–ion pair at the average dis-
tance between heavy particles (ions, atoms, and mole-
cules). This corresponds to the cutoff energy adopted in
this model for separating the free and bound (intra-
atomic) states in the calculation of atomic partition
functions. Apart from the contribution from the Cou-
lomb interaction between charged particles, the strong
repulsion of heavy particles at close distances [20] was
JETP LETTERS      Vol. 80      No. 6      2004
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taken into account. This was accomplished using the
approximate equation of state for “soft spheres” [22],
modified to a mixture of particles with different diame-
ters. The degree of softness of the intermolecular repul-
sion potential was chosen from the requirement of the
best description of the experimentally measured equa-
tion of state for condensed hydrogen at room tempera-
ture. The calculations in this approximation [1, 23]
showed not only the dominant role of the D2–D2 inter-
action but also that the position of the deuterium Hugo-
niot adiabate and the temperature dependences on the
adiabate are highly sensitive to the choice of the D–D
and, notably, D–D2 repulsion parameters. In our calcu-
lations (part of them are summarized in the table), the
parameters of the intermolecular and interatomic repul-
sions were chosen according to the ab initio atom–atom
approximation [24]. In terms of the model of soft
spheres, this leads to a relatively high ratio of the effec-
tive diameter of deuterium atom to the diameter
D2{d(D)/d(D2) ~ 0.8}. An important consequence of
this choice is that the “self” volumes of the reaction
products show no appreciable change during the deute-
rium dissociation process and, correspondingly, there is
no mechanism that would stimulate the pressure-
induced dissociation in a strongly compressed equilib-
rium system of molecules and atoms at the expense of
the gain in self-volume.

Calculations in the modified plasma chemical
model [1, 19, 23] show that the states arising behind the
shock-wave front in this work and in the experiments
with maximal pressure [2, 7] correspond to a dense
strongly nonideal (ΓD ≈ 1), partially ionized (ne/nD ~ 1),

partially degenerate (ne  ~ 3), and practically isother-
mic (T ≈ 22–24 kK) deuterium plasma with parameters
given in the table.

An analysis of the data presented in the table shows
that the physical conditions realized in the shock exper-
iments at the Institute of Experimental Physics are dis-
tinguished by a combination of strong coulombic non-
ideality (Γd @ 1), electron-component degeneracy

(ne  ~ 1), and strong influence of the short-range
repulsion that manifests itself in the high values of the
so-called packing parameter πnidi3/6 ~ 1 (di is the self-
size of a heavy particle of the ith sort (atom, molecule,
etc.)).

One can see in Fig. 3 that the experimental data
obtained in this work agree well with the data calcu-
lated on the basis of the CCM and SAHA-IV models. It
is worthy of note that these theoretical models agree
simultaneously both with the results of our experiments
on the shock compression of a preliminarily com-
pressed gaseous deuterium and with the results of the
shock compression of liquid and solid deuterium [2, 7,
25]. This suggests that the results of all shock-wave
experiments conducted at the Institute of Experimental
Physics are mutually consistent. Nevertheless, the fact
that, although the Hugoniot adiabates in both theoreti-

λ e
3

λ e
3
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cal models tend to the ideal-gas asymptotic compres-
sion limit ρHug/ρ0  4 [26] at the high-pressure and
high-temperature limits, the character of this tendency
is different for both models. This renders the necessity
of obtaining new experimental data in the pressure
range ~0.2–1.0 TPa topical and necessitates the use of
ab initio calculations for determining the thermody-
namic functions of dense hydrogen (deuterium)
plasma.

From the comparison (Fig. 4) of the experimentally
determined and calculated temperatures, it follows that,
as earlier, the experimental results obtained in this
agree satisfactorily with the results of both CCM and
SAHA-IV calculations. It should be noted that the coin-
cidence of the theory and experiment for the caloric and
thermal equations of states indicates, first, that the the-
oretical models are adequate and, on the other hand,
that the experimental data obtained in this work are
self-consistent.
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program “Thermal Physics and Mechanics of Intense
Pulsed Actions,” a Presidential Grant (no. (NSh-
1938.2003.2), and a State Contract of the Ministry of
Education and Science of the Russian Federation
(no. 40.009.1.1.1192).
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The thermo emf in Czochralski-grown silicon single crystals (Cz-Si) was experimentally studied in a range of
pressures up to 20 GPa. The pressure dependences revealed phase transitions in the metallic phase of silicon,
which passed from tetragonal to orthorhombic and then to hexagonal lattice. The high-pressure silicon phases,
as well as the metallic high-pressure phases in ANB8 – N semiconductors, possess conductivity of the hole type.
As the pressure decreases, the emf behavior reveals transitions to the metastable phases Si-XII and Si-III. Pre-
liminary thermobaric treatment of the samples at a pressure of up to 1.5 GPa and a temperature of T = 450–
650°C influences the thermoelectric properties of Cz-Si at high pressures. © 2004 MAIK “Nauka/Interperiod-
ica”.

PACS numbers: 72.20.Pa
The advantages of high-pressure measurements,
offering an effective tool for studying semiconductor
materials, were demonstrated half a century ago by the
results of investigation of the electrical properties of sil-
icon and germanium [1]. Theoretical and experimental
investigations of the properties of silicon at high pres-
sures P are still of considerable importance for eluci-
dating the laws governing transformations of the elec-
tron structure depending on the interatomic distances in
the entire class of semiconductor materials of the
ANB8 – N type (which is most important for practical
applications) [2–5]. In addition, the interest in studying
the behavior of silicon at high pressures is related to the
wide use of silicon-based structures in tensometric
devices and, in recent years, in micro- and nanolectro-
mechanical and -optoelectromechanical (MEMS,
NEMS, MOEMS) systems [2].

In a range of pressures up to 20 GPa, silicon forms
(besides the initial diamondlike structure) three struc-
tural modifications, including body-centered tetragonal
(β-Sn type), orthorhombic (Imma), and simple hexago-
nal (sh) [3]. The study of the structure of silicon at high
pressures (up to ~20 GPa) was performed by means of
diffraction of X-ray and synchrotron radiation [3],
Raman scattering [4], optical transmission and absorp-
tion spectroscopy [5], electric resistance measurements
[6, 7], and superconducting transition temperature
determination [8, 9]. Some of these methods were more
sensitive to certain phase transitions and much less
effective in the study of other transformations. For
example, the transition from tetragonal (β-Sn) to
orthorhombic (Imm) modification, according to the
structural data [3], is accompanied by a very small
change in the volume (~0.2%) as compared to that
observed for the subsequent phase transition onto the
0021-3640/04/8006- $26.00 © 20405
hexagonal sh phase (~0.5%). However, the former tran-
sition, being much stronger, affects the superconduct-
ing transition temperature [9]. The scatter of pressures
corresponding to the phase transitions in silicon
observed in the published data [3–9] is also related to
the fact that structure-sensitive techniques reflect termi-
nation of the phase transformation [3], whereas moni-
toring of the electron properties allows the onset of the
transition to be detected [6, 7].

A highly effective method for the investigation of
phase transitions in crystals under pressure is based on
the measurement of thermo emf [10, 11], especially in
cases where such transitions are accompanied by sig-
nificant changes in the electron structure (in particular,
by inversion of the sign of majority carriers). The orig-
inal investigations of the thermoelectric properties of
silicon at high pressures [12–14] revealed a semicon-
ductor–metal phase transition related to the structure
transformation from a diamondlike to tetragonal β-Sn
lattice, which is actually accompanied by inversion of
the sign of thermo emf [13, 14]. It is interesting to note
that the results of thermoelectric measurements in sili-
con under pressure [12] were also useful for explaining
a decrease in thermo emf observed in the experiments
with silicon point contacts [15] performed within the
framework of investigations of the electron-phonon
interactions and the phonon density of states [15].
However, the phase transitions under pressure in the
metallic phase of silicon were not studied by the ther-
moelectric method.

In this context, the aim of this study was to trace the
phase transitions in silicon under pressure of up to
~20 GPa by means of thermo emf measurements.

The experiments were performed on silicon crystals
grown by the Czochraski technique. Czochralski-grown
004 MAIK “Nauka/Interperiodica”
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The main parameters of silicon samples (Cz-Si)

No. Wafer
Annealing conditions Concentration (cm–3)

Temperature (°C) Pressure (GPa) Time (h) Residual oxygen Carrier (type)

I Si W18 Initial 11 × 1017 1.86 × 1015 (p)

D1 Si W18 450 0.0001 10 10.3 × 1017 3.1 × 1015 (n)

D2 Si W18 450 0.1 10 8.9 × 1017 3.7 × 1015 (n)

D3 Si W18 450 0.6 10 8.7 × 1017 5 × 1015 (n)

D4 Si W18 450 1.4–1.45 10 7.7 × 1017 1.48 × 1016 (n)

B1 Si W18 600 0.0001 10 10.7 × 1017 1.86 × 1015 (p)

B2 Si W18 600 0.1 10 9.9 × 1017 9.3 × 1014 (p)

B3 Si W18 600 0.6 10 10.2 × 1017 5.1 × 1014 (p)

B4 Si W18 600 1.4–1.45 10 10.2 × 1017 9.6 × 1014 (p)

C1 Si W19 650 0.0001 10 9.1 × 1017 2.04 × 1015 (p)

C2 Si W19 650 1.5 10 8.2 × 1017 1.12 × 1015 (p)
silicon (Cz-Si) wafers contain residual oxygen atoms
occupying predominantly interstitial lattice sites [16–
18]. Under the action of pressure and temperature
(annealing), a certain fraction of interstitial oxygen
atoms forms (depending on the treatment conditions)
electrically active clusters (thermodonors), while other
atoms form coarse, electrically inactive precipitates.
This may change both mechanical and electrical prop-
erties of Cz-Si [16–18]. Our samples were cut from two
Cz-Si wafers (W18 and W19) with a high content of
interstitial oxygen. In order to vary the charge carrier
density, the samples were annealed (at 450, 600, or
650°C) under high pressure (~1.5 GPa) in the gas phase

Fig. 1. Plots of the thermo emf S vs. pressure P for Cz-Si
samples measured at T = 295 K in the vicinity of the semi-
conductor–metal transition (measurements in the pressure
increase mode). 
(helium or argon) [19]. The treatment conditions are
listed in Table 1. The crystal structure of Cz-Si samples
before and after treatment at various pressures up to
~20 GPa was monitored by ultrasoft X-ray spectros-
copy using L2,3 emission lines [14].

In this study, the values of thermo emf S(P) and
electric resistance R(P) of Cz-Si samples with dimen-
sions ~0.2 × 0.2 × 0.05 mm were measured in high-
pressure chambers made of conducting diamond anvils
[10]. Alternative techniques using a chamber with a
compressed capsule [20] or transparent diamond anvils
with implanted contacts [21] restrict the pressure inter-
val of thermo emf measurements to 12 GPa. The pres-
sure in a compressed spacer made of a lithographic
stone was determined using calibration plots prelimi-
narily constructed by monitoring phase transitions in a
series of reference substances (ZnSe, CdTe, etc.) with
an error of ~10% [10, 12]. The temperature gradient
was created by heating one of the anvils; the tempera-
ture was monitored with the aid of thermocouples fas-
tened at various points on the anvils [22, 23]. The val-
ues of S(P) and R(P) were measured as described in
[10, 12] on an automated setup capable of monitoring
and storing data on the pressure (force), temperature
difference, sample response signals, anvil displacement
(compressive strain of the sample), and some other
parameters [22, 23]. The errors of determining S and R
amounted to ~20 and 5%, respectively. The accuracy of
thermo emf determination was checked by measuring a
sample of lead (special purity grade), the thermo emf of
which is close to zero (S ≈ –1.27 µV/K) [24, 25].

Preliminary thermobaric (P–T) treatment of the
samples led to a change in the density and type of
charge carriers (as a result of the formation of thermo-
donors [26, 27]; see table) and, accordingly, to modifi-
cation of the S(P) curve (Fig. 1). However, in the region
corresponding to the metallic phase of silicon (i.e.,
above the point of the semiconductor-metal phase tran-
JETP LETTERS      Vol. 80      No. 6      2004



        

THERMOELECTRIC PROPERTIES OF HIGH-PRESSURE SILICON PHASES 407

  
sition, P ≥ 7 GPa), the plots of thermo emf versus pres-
sure for Cz-Si samples of both p and n types were sim-
ilar (Fig. 2). The samples with positive thermo emf
exhibited a minimum of S at P ~ 7–11 GPa, followed by
a growth of S with P up to ~13–14 GPa and by subse-
quent decrease of S at pressures above 15–16 GPa
(Fig. 2). The last two features were also observed in the
S(P) curves of most samples with the n type of conduc-
tivity (Fig. 2). The values of thermo emf in the metallic
phases of all samples were close (S ≈ 8 ± 3 µV/K), but
these values exhibited significant variations with pres-
sure. For example, the baric coefficient of thermo emf
for samples of the p type doubly changed sign in the
pressure range studied (P up to 20 GPa) (see Fig. 2).

It is natural to attribute sharp changes in the baric
coefficient of thermo emf, dS/dP (Fig. 2), to phase tran-
sitions in the metallic phase of silicon, where β-Sn,
Imma, and sh lattices are sequentially formed as the
pressure increases from ~10 to 16 GPa [3]. In contrast
to thermo emf, the values of electric resistance R and its
baric coefficient changed rather insignificantly in the
pressure range studied (these data are not presented
here). The high-pressure phases of silicon are charac-
terized by high values of the optical reflection coeffi-
cients in the visible spectral range [5], which gives evi-
dence of a high density of charge carriers and agrees
with the low values of thermo emf observed for these
phases (Fig. 2). Indeed, the optical properties of the sh
phase of silicon correspond to the model of a polyvalent
metal (such as aluminum) with almost free charge car-
riers [5]. However, in contrast to trivalent aluminum
characterized by the negative thermo emf [25], the
high-pressure phases of silicon (as well as most of the
metallic high-pressure phases of ANB8 – N semiconduc-
tors [11]) exhibit positive thermo emf (Fig. 2).

The results of the electron structure calculations for
the β-Sn silicon phase [28] showed that this phase rep-
resents a metal with strongly overlapped bands. Reduc-
tion of the crystal symmetry from cubic to tetragonal,
with the corresponding increase in the coordination
number from 4 to 6, alters the arrangement of electron
energy levels. As a result, the d orbitals begin to partic-
ipate in the formation of two new bonds. In the metallic
β-Sn silicon phase, the d-orbitals are strongly coupled
with the occupied valence s and p states, especially in
the vicinity of the Fermi level [28]. An expression for
the thermo emf of a metal with s and d electrons playing
the role of charge carriers is as follows [24]:

S ≈ –(π2/3)(k0/e)(k0T)[3/(2EF) 
– (1/Nd(E))(dNd(E)/ ,

where EF is the Fermi energy, k0 is the Boltzmann con-
stant, e is the electron charge, T is the absolute temper-
ature, E is the electron energy, and Nd is the density of
states in the d band. A contribution due to the scattering
of s electrons by carriers in the d band (the second term
in square brackets] usually significantly influences the
value and sign of thermo emf [24]. According to the

dE ) ]E EF=
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above formula, the difference in thermo emf between
various metallic high-pressure silicon phases observed
in this study can be explained by variations of the s–d
scattering as a result of crystal lattice reconstruction
and the corresponding transformation of the electron
structure.

When the pressure applied to a sample decreases,
silicon exhibits reverse phase transitions to the rhombo-
hedral Si-XII (r8) phase (at ~9.4 GPa) and the body-
centered cubic Si-III (bc8) phase (~2 GPa) [3, 29].
These transitions are clearly manifested by changes in
the baric coefficient of thermo emf observed below the
indicated P values (Fig. 3). The fact that thermo emf
values of the Si-III phase (S ≈ +15 ± 5 µV/K) are higher
than those of the metallic high-pressure silicon phases
is consistent with the results of measurements of the
Hall effect [29], according to which Si-III is a p-type
semimetal with indirect (~0.3 eV) band overlap and a
hole density of np = (5 ± 2) × 1020 cm–3.

The X-ray emission spectra of the samples mea-
sured upon pressure release were rather close to the
spectra of amorphous silicon [14]. Detailed analysis of
these spectra will be presented in a special publication.

Thus, we have monitored a sequence of phase tran-
sitions in silicon (β-Sn  Imma  sh) by measur-
ing changes in thermo emf in the course of increasing

Fig. 2. Fragments of the S(P) curves in the region of phase
transitions in the metallic silicon phase. Arrows indicate the
boundaries of transitions to the body-centered tetragonal
(β-Sn type), orthorhombic (Imma), and simple hexagonal
(sh) according to [3]. Cross-hatched regions show the scat-
ter of phase transition pressures according to the data
reported in [4–9].
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pressure applied to the sample; measurements in the
pressure decrease mode revealed transitions to the
Si-XII and Si-III phases. The observed high-pressure
silicon phases, as well as the metallic high-pressure
phases in ANB8 – N semiconductors [11], possess con-
ductivity of the hole type. Because of a very small dif-
ference in the total energy of the crystal lattice, the
structural transitions between metallic silicon phases
accompanied by insignificant volumetric changes [3].
These phase transitions are also rather weakly mani-
fested in the electric resistance (as shown in [6, 7] and
confirmed in this study) and in the optical spectra [5],
but they are reliably revealed by changes in the baric
coefficient of thermo emf. There is a certain similarity
in the pressure-induced variations in the thermo emf S
observed in this study and in the superconducting tran-
sition temperature Tc [9], whereby the maximum
changes are observed for the phase transition with the
minimum volumetric effect (β-Sn  Imma [3]).

The pressure dependences of thermo emf in Cz-Si
have proved to be sensitive to the oxygen defect struc-
ture of samples modified using preliminary P–T treat-
ments (Fig. 2). In particular, the maximum pressure of
the semiconductor–metal phase transition was
observed for the sample (D2) with an oxygen concen-
tration of about 9 × 1017 cm–3 (see the inset in Fig. 2 and
data in the table), which also showed the minimum
value of thermo emf in the metallic high-pressure
phases (Fig. 2). Since the structural defects modify not
only the elastic properties, but the electron structure as
well (by changing the occupancy of electron energy

Fig. 3. Plots of the thermo emf S vs. pressure P for Cz-Si
samples at T = 295 K (measurements in the pressure
decrease mode). Arrows indicate the boundaries of transi-
tions to the rhombohedral Si-XII (r8) phase and the body-
centered cubic Si-III (bc8) phase according to [3]. The inset
shows the typical plots of thermoelectric response vs.
temperature difference for (1) sample D2 at 18 GPa and
(2, 3) sample I at 19.5 GPa and upon pressure release,
respectively.

U
 (

µV
)

bands and the character of carrier scattering), they may
actually account for an additional contribution to
thermo emf [24, 25]. For this reason, thermoelectric
measurements at high pressures can be used for rapid
diagnostics of the microsamples taken from commer-
cial single crystal silicon ingots (grown for the most
part by the Czochralski technique) [16–18].
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An equation describing the impurity transport in a percolation medium is obtained and the inferences drawn
from this equation are analyzed based on the scale invariance concept. A determining part in this analysis is
allowance for the sinks inherent in such media. At distances shorter than the correlation length, the particles are
transferred in the regime of subdiffusion; at large distances, the concentration asymptotics exhibits a character-
istic “tail” shape. In the medium occurring in the state above the percolation threshold, the impurity transport
over time periods longer than the characteristic time related to the correlation length is well described by the
classical equation with a renormalized diffusion coefficient. In this case, the concentration tail has a Gaussian
shape at moderate distances and tends to subdiffusion asymptotics at very long distances. A relation is estab-
lished between the factor determining renormalization of the diffusion coefficient and the factor determining a
decrease in the number of active impurity particles at large times. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 05.40.-a; 05.45.Df; 05.60.Cd
A considerable number of practically important
problems involving the migration of impurities in
strongly disordered media reduce to the problem of
impurity transport in a percolation medium [1–3]. The
results obtained so far refer predominantly to evalua-
tions of the mean square displacements of particles R(t)
for large times. However, in many cases, it is also
important to know more detailed characteristics of the
impurity distribution, in particular, for the distances r @
R(t) representing the so-called concentration “tails.” In
order to determine these characteristics, it is necessary
to derive an equation describing evolution of the parti-
cle concentration with time. In our opinion, the equa-
tions reported in the literature are not satisfactory, being
either based on the formalism of fractional derivatives
not involving profound physical content [4] or obtained
by generalization of the classical diffusion equation
with a coordinate-dependent diffusion coefficient [3].
The latter circumstance is in obvious discrepancy with
the fact that the impurity concentration of interest is a
characteristic averaged over an ensemble of realiza-
tions of the strongly disordered medium studied.

The aim of this study was to obtain an equation
describing the impurity transport in a percolation
medium and to derive and analyze the inferences from
this equation.

First, let us briefly formulate the properties of a
medium that are substantial for the subsequent analysis
[1]. The main specific feature of percolation media is
that they consist of nonoverlapping regions (clusters)
such that the transport inside each cluster is possible
whereas the passage of particles between clusters is
impossible. Since only finite clusters exist in such a
0021-3640/04/8006- $26.00 © 20410
medium occurring in the state below the percolation
threshold, the transport of particles over large distances
in this state is hindered. Finite clusters possess fractal
properties. Above the percolation threshold, the
medium contains an infinite cluster and the transport of
particles is not limited with respect to the range. A key
characteristic of such a medium is the correlation
length ξ. Below the percolation threshold, the distribu-
tion of clusters with respect to size l falls in the region
l < ξ (the number of clusters with dimensions l @ ξ is
exponentially small). On approaching the percolation
threshold, the correlation length exhibits unlimited
growth: ξ  ∞. Above the percolation threshold, this
parameter becomes finite again and the distribution of
finite clusters exhibits the same properties as those
below the threshold. As for the infinite cluster, it pos-
sesses (like the finite clusters) fractal properties and is
scale invariant on the spatial scale L < ξ, while being
statistically homogeneous on the scale L @ ξ. An
important topological feature of any cluster is that it can
be subdivided into two regions, backbone (bb) and a set
of dead ends (de), so that bb connects remote parts of
the cluster and all de are linked to bb, each at a single
site, while being isolated from each other. It is impor-
tant to note that the fractal dimension of de is greater
than that of bb. In what follows, the particles of impu-
rity occurring within bb will be called “active.” The
total number of active particles decreases with time,
since they are lost in de and localized in small clusters.

Taking into account the above considerations, the
equation describing the concentration of active parti-
004 MAIK “Nauka/Interperiodica”
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cles averaged over an ensemble of realizations of the
medium can be written as follows:

(1)

where j(r, t) is the density of the particle flux related to
the transport over bb. In comparison to the usual trans-
port equation reflecting the law of conservation of the

total number of articles N(t) = (r, t), Eq. (1) con-

tains the additional term Q describing the sinks of par-
ticles lost in de and localized in small clusters:

(2)

The flux density j(r, t) is determined by the physical
mechanism of particle transport. We will assume that
the transport proceeds by walks with a limited step size.
The particle flux and concentration are related by Fick’s
law: j = –D∇ c. Accordingly, transport equation (1) can
be rewritten with allowance for expression (2) as

(3)

Let us analyze the structure of the integrand kernel
ϕ(t). Possessing fractal properties, the percolation
medium is scale invariant in the spatial interval ξ0 !
l ! ξ, where ξ0 determines the short-range correlation
radius. This implies that there exists a time interval
τ0 ! t ! τ in which the function ϕ(t) is self-similar and
can be written in the following form:

(4)

(the minus sign is explained below). The exponent α is
confined within the interval 0 < α < 1, where the left
boundary is determined by the condition of conver-
gence of the integral of ϕ(t) for large times and the right
boundary by the condition that the contribution of sink
in Eq. (3) at τ0 ! t ! τ will predominate over the deriv-
ative with respect to time. A comparison between vari-

ous terms in Eq. (3) shows that ϕ(τ0)τ0 ~ D/  and
ϕ(τ)τ ~ D/ξ2, from which it follows that

Beyond the fractal interval and at large times, t @ τ,
the function ϕ(t) (similar to the spatial correlations for
r @ ξ) decreases quite rapidly, so that all power
moments in time exist. At short times, t < τ0, the contri-
bution of the second term in Eq. (3) does not exceed the
first term, which implies that

∂c r t,( )
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2
, t & τ0.∼
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It should be emphasized that Eq. (3), obtained by aver-
aging over an ensemble of realizations of the medium,
is valid for the spatial scales greater than ξ0.

Proceeding from the established properties of the
function ϕ(t), let us find the corresponding Laplace’s

transform of ϕs. In the interval τ–1 ! s !  of
Laplace’s variable, we have

(5)

For s < τ–1, the function ϕs can be expanded into
series in integer powers of sτ. This property of ϕs,
together with formula (5), implies that the function ϕs

possesses a branching point at s1 = –τ–1 (this can be con-
sidered as the definition of τ) in the complex plane of
the variable s and that the values of ϕs at s = 0 and s =
s1 are of the same order of magnitude (in the absence of
other special conditions). These values can be esti-
mated as

(6)

Now, let us study the properties of solutions of
Eq. (3). For definiteness, we will consider a problem
with the initial condition, assuming that all particles at
t = 0 are concentrated at the origin (in view of the trans-
lational invariance of the problem, selection of the ori-
gin is arbitrary), c(r, 0) = N0δ(r). Then, the solution of
Eq. (3) has the following form:

(7)

Let us analyze inferences from this expression. For
the times t ! τ0, solving Eq. (3) reduces to finding a
solution of the classical diffusion equation with Q = 0
and, accordingly, ϕ = 0.

In the interval τ0 ! t ! τ, integration of solution (7)
over the entire space gives the total number of active
particles as a function of time:

(8)

where Γ(x) is the Euler gamma function. Note that the
plus sign in the right-hand side of formula (8) is due to
the minus sign selected in formula (4), which is evidence
of the correct choice of sign in the latter expression.

Using solution (7), we obtain an expression for the
concentration of active impurity particles at the origin
in the time interval τ0 ! t ! τ:

(9)

τ0
1–

ϕ s
1
τ0
---- sτ0( )α .≅

ϕ0 ϕ s1
, 1

τ0
----

τ0

τ
---- 

 
α

.∼

c r t,( )
N0

4πDr
-------------- sd

2πi
--------

ϕ s s+
D

------------- 
 

1/2

r– st+ 
  ,exp

a i∞–

a i∞+

∫=

Ima 0, a 0.>=

N t( )
N 0( )
------------ Γ 1– α( )

τ0

t
---- 

 
1 α–

,=

c 0 t,( )
N0

4πDt( )3/2
-----------------------

τ0

t
---- 

 
1 α–( )/2– 2

π
-------Γ 1 α

2
---+ 

  απ
2

-------.sin≅



412 DYKHNE et al.
In accordance with (7), the general expression for the
concentration of active particles at τ0 ! t ! τ and ξ0 !
r ! ξ has the following structure:

(10)

where the function F(η) rapidly decreases for η > 1.
According to this, the size of the main concentration
cloud at time t can be estimated as

(11)

This estimate shows that the impurity transport in the
model under consideration (with allowance for 0 < α <
1) corresponds to the regime of subdiffusion.1 With
allowance for relations (8) and (11), expression (9)
obeys the obvious relation c(0, t) ~ N(t)/R3(t).

The concentration of active particles at large dis-
tances (i.e., in the “tail”) is given by the formula

(12)

This expression describes the behavior of the concen-
tration at distances up to r ~ ξ0t/τ0. In order to determine
the asymptotic behavior of the concentration for r @
ξ0t/τ0, it is necessary to go out of the framework of the
applicability of Eq. (3). Proceeding from the model
adopted, it is only possible to indicate a majorant crite-
rion:

(13)

The behavior of the particle concentration at t @ τ
depends on whether the medium occurs in the state
below or above the percolation threshold. Below this
threshold, we obtain an estimate:

In order to describe the transport in a medium above the
percolation threshold, let us divide the concentration of
active particles into two parts, c(r, t) = cf (r, t) + c∞(r, t),
where the first part includes the particles belonging to
the system of finite clusters and the second refers to
particles occurring in the infinite cluster. The initial
conditions are set as cf (r, 0) = c(r, 0)(1 – P∞) and

1 It should be noted that both the physical formulation of the prob-
lem and the results of analysis are, on the whole, different from
those for the model [5] based on the equation with a fractional
derivative with respect to time.
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c∞(r, 0) = c(r, 0)P∞, where P∞ is the probability for a
particle to fall within the infinite cluster. The behavior
of cf (r, t) is analogous to that considered for the sub-
threshold states. The same laws are valid for the behav-
ior of c∞(r, t) at t < τ, except that the exponent α in rela-
tion (6) differs from the previous value [6, 7] (although
it still falls within the interval 0 < α < 1).

The cardinal difference in the transport for t > τ is
related to the fact that the infinite cluster obeys the con-
dition ϕ0 = 0. This condition follows from the property
of statistical homogeneity at r @ ξ, whereby the num-
ber of active particles in the infinite cluster at t  ∞
tends to a finite limit. Indeed, Eq. (3) implies that

From this, we infer (since N∞(∞) ≠ 0 and ∂N∞(∞)/∂t = 0),

that  ≡ ϕ0 = 0. Hence, for s ! τ–1, the function

ϕs has the form ϕs ≅  As, where A ~ (τ/τ0)1 – α @ 1. This
implies that, for t @ τ, the concentration of particles
c(r, t) ≅  c∞(r, t) obeys the classical diffusion equation

with renormalized diffusion coefficient . The renor-
malization factors for the diffusion coefficient and the
total number of particles obey the equality

(14)

The behavior of the particle concentration at the tail
of the distribution for the times t @ τ has the following

character. First, at distances in the interval,  !
r ! ξ(t/τ), the concentration tail has a Gaussian shape

corresponding to a renormalized diffusion coefficient 
and the total number of particles N∞(∞). Then, at r @
ξ(t/τ), a subdiffusion asymptotics of type (12) is fol-
lowed with the limitations indicated above.

The authors are grateful to S.A. Rybak for fruitful
discussions.
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The two-loop temperature hysteresis of integrated intensity of Raman scattering of light is explained theoreti-
cally for a line of frequency 50 cm–1 in a superconducting oxide Ba1 – xKxBiO3 single crystal. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 74.25.Kc; 74.25.Gz
The cuprate-free superconductor Ba1 – xKxBiO3

(BKBO) with the superconducting transition tempera-
ture Tc ≅  32 K (for samples with x ≅  0.37) occupies a
special place among high-temperature oxide supercon-
ductors. Superconducting BKBO compounds crystal-
lize into a cubic perovskite structure, do not contain an
analog of the CuO2 layers inherent in cuprates, are dia-
magnetic, and do not possess a static magnetic order.
Although the considerable isotopic effect and the
superconducting gap width match the results of the
standard BCS model, other mechanisms of the forma-
tion of the superconducting state (in addition to the
phonon mechanism) should be employed for explain-
ing high values of Tc and low densities of states of
charge carriers.

It has been generally accepted [1] that the unique
properties of these compounds are determined to a con-
siderable extent by the dynamics and the electron struc-
ture of BiO6 octahedra. The vibrational spectrum of
BKBO strongly depends on the dopant (potassium)
concentration x; however, all samples with different
values of x exhibit a phonon vibration at a frequency of
50 cm–1. This line appears in the Raman spectra for the
XX polarization owing to the R type rotational distor-
tion [2]. The line intensity is maximal for metallic sam-
ples with x ≈ 0.33 and exhibits an intriguing feature,
i.e., two-loop hysteretic behavior as a function of tem-
perature in the range 10–200 K [2]. It is interesting to
note that latticed instability with a strong softening of
elastic moduli, as well as hysteretic temperature behav-
ior for samples with x ≈ 0.37 (which was discovered
with the help of ultrasonic measurements [3]), is
observed in the same temperature range.

It will be shown below that the existence of the
50-cm–1 line in the Raman spectra and that its bistable
behavior can be explained using existing concepts of
the dynamics of building blocks of the BKBO crystal
0021-3640/04/8006- $26.00 © 20413
lattice, i.e., BiO6 octahedra, as well as their electronic
structure.

It was found [4] that there exist two types of BiO6

octahedra with two different lengths of the Bi–O bond
and rigidities. The crystal structure of the parent com-
pound BaBiO3 is formed by alteration of expanded
(soft) and compressed (hard) BiO6 octahedra. The elec-
tronic structures of soft and hard octahedra are also dif-
ferent. In a soft BiO6 octahedron, 2 antibonding orbitals
are completely filled with 20 electrons, while such

orbitals in a hard  octahedron are filled with 18

electrons and a free energy level (hole pair ) is

present in the upper antibonding orbital. Doping of
BaBiO3 with potassium is equivalent to addition of
holes and leads to partial replacement of large soft octa-
hedra by small hard ones. This results in a decrease in
the number of static breather and rotational distortions
and their gradual disappearance. According to neutron
diffraction data [5], the structure of the compound ulti-
mately becomes, on average, cubic for a doping level of
x ≥ 0.37. However, the EXAFS analysis of the four
nearest spheres in the bismuth surroundings for sam-
ples with x ≥ 0.37 indicates local rotations of octahedra
through 4°–5° [6], while Raman spectra indicate that
the symmetry becomes lower as compared to simple
cubic symmetry [7]. Moreover, it was found [1, 8] that
oxygen ions belonging simultaneously to BiO6 and

 octahedra vibrate in a two-well asymmetric
potential, while oxygen ions belonging to identical

 octahedra vibrate in a simple harmonic poten-
tial. The two-well shape of the potential is due to differ-
ent fillings of the upper antibonding orbital in BiO6 and

 octahedra. During tunneling of an oxygen ion
from one well to the other, an electron pair simulta-

BiL2O6

L2

BiL2O6

BiL2O6

BiL2O6
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neously passes from a BiO6 octahedron to a 
octahedron; accordingly, these octahedra exchange
their roles (i.e., the dynamic exchange BiO6 

 takes place). In [1], superconductivity in bis-
muth-containing compounds is regarded as movement
of local electron pairs of this type.

With increasing doping level, the number of

 octahedra increases and, for x ≥ 0.33, the lat-
tice acquires three-dimensional complexes, i.e., spa-

tially overlapping  octahedra. The free energy
level in these complexes expands to form the conduc-
tion band, and metal-type conductivity is formed when
the energy of localization of electron pairs becomes
equal to zero [1]. As a result, all octahedra in a complex
can perform coherent rotational vibrations (e.g., around
the [001] axis). Figure 1 shows such a complex sche-
matically in the BiO2 plane of octahedra along the [100]
direction. The dynamic exchange by the roles of octa-

hedra BiO6  , which is realized due to the
escape of an oxygen ion from the global minimum of
the asymmetric two-well potential and the transfer of

an electron pair to a  octahedron, is compli-
cated in this case since it would require mismatching of
the cooperative movement of the entire complex of

 octahedra. Cooperativity first leads to suppres-
sion of fluctuation-induced jumps of an oxygen ion
from the global minimum to a local one upon heating of
the system to a certain temperature. Second, matched
rotational vibrations of the octahedra in the complex,
which locally distort the cubic perovskite structure,
may become Raman-active (this is actually observed
for vibrations at a frequency of 50 cm–1). The emer-
gence of local distortions of cubic structure due to cor-
related rotational vibrations of octahedra in the entire
complex of this type can be treated as a locally realized
phase transition of displacement type (the symmetric
potential with two shallow minima in the [010] direc-
tion in Fig. 1 confirms this statement).

We will consider the emergence of local distortions
and lattice instability in rotational distortions of octahe-

BiL2O6

     

BiL2O6

BiL2O6

BiL2O6

     BiL2O6

BiL2O6

BiL2O6

                                                           

Fig. 1. Schematic representation of a cooperated complex
of octahedra in the BiO2 plane in the [100] direction (see
text); dark circles correspond to Bi and light circles, to O.
dra about the [001] axis by using the Hamiltonian

(1)

where νo is the local frequency of small oscillations in
the absence of interactions (νo = 50 cm–1 in our case),
Ql is the generalized coordinate describing the rotation
of octahedra, B is the anharmonicity constant, v ll' are
the interaction constants, and M is the mass. We choose
the asymmetric two-well potential for describing the

motion of oxygen ion belonging to BiO6 and 
octahedra in the form

(2)

where α, β, and γ (>0) are constants and q is the gener-
alized coordinate of the ion. Vibrations of octahedra
depend on the position of oxygen ions in the two-well
potential. This can be accounted for by introducing the
cubic and quartet terms of the interaction,

(3)

where Qk are the Fourier components of coordinates Ql

and  and  are the coupling coefficients. We can
represent the renormalization of the initial frequency
(νo  νr) in the self-consistent phonon approximation
in the fourth-order interaction in Hamiltonian (1) and in
the first and second approximations in perturbation the-

ory in  and , respectively, in the form

(4)

(see also [9]). Here, 〈Q〉  and 〈δQ2〉  = 〈(Q – 〈Q〉)
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)] is the oxygen ion frequency in the two-
well potential. The mean values 
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determined self-consistently from the equations
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while 〈Q〉  and 〈δQ2〉  can be determined from the equa-
tions

(6)

where v  = , m is the mass of an oxygen ion, and
θ = kBT. In deriving Eq. (4), we took into account the
fact that the vibrational frequency of octahedra is much
smaller than the frequency of oxygen ions. For the tem-
perature range we are mainly interested in, we have
kBT @ νo; for this reason, for simplicity, variance 〈δQ2〉
is represented by the classical formula in relations (6).
The value of Meff can be determined by comparing the
local phase transition temperature To, estimated by for-
mula kBTo ≈ Meff , with the experimentally

measured value . Since 〈Q〉max ≈ 0.15 Å for rotation
of octahedra through 5° for a lattice constant a ≈ 4.3 Å

and  ≈ 300 K [2], we obtain an estimate of Meff ≈
800m; i.e., the complex consists of 200 octahedra and
occupies a region of approximately 25 × 25 × 25 Å3.
Parameters α, β, and γ of potential (2) can be estimated
on the basis of EXAFS data, i.e., from a potential bar-
rier height of ~0.026 eV and the local maximum and
local minimum coordinates ~0.075 and ~0.15 Å,
respectively [8].

For crystals with a perovskite cubic structure, prin-
cipal-order terms in the power expansion of polarizabil-
ity in Raman-active modes are absent in view of the
symmetry and the main contribution to the Raman scat-
tering tensor comes from second-order terms. For this
reason, we can express the integrated intensity of light
scattering in the form

(7)

or, taking into account the second equation in (6), we
can write the reduced intensity in the form

(8)

At temperatures higher than the critical temperature To

of a local phase transition of the displacement type, we
have 〈Q〉  = 0 and, in accordance with formula (8), inten-
sity I = 0. After the emergence of local distortions
〈Q〉2 ~ To – T, intensity in the temperature range T < To

differs from zero and increases upon cooling. The tem-
perature dependence of reduced intensity I/θ calculated
using formulas (8) and (4)–(6) is in qualitative agree-
ment with the experimental curve (Fig. 2). Obviously,
the temperature hysteresis in the form of a two-loop
curve is due to temperature renormalization of fre-
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quency νo because of interactions  and  (see
Fig. 3). It should be recalled that these interactions rep-
resent the nonlinear relations between rotational vibra-
tions of octahedra with the breather-type vibrations of
oxygen ions in a two-well potential in the [100] direc-

tion. The inclusion of the contribution from  or

from  alone leads to a simple (one-loop) hysteresis:
the intensity of scattered light in the bistability region is
lower for sample cooling and higher for sample heating

H int
3( ) H int

4( )

H int
3( )

H int
4( )

Fig. 2. Hysteretic behavior of the reduced integrated inten-
sity of Raman scattering for a line at frequency 50 cm–1 in
a single crystal of Ba0.67K0.33BiO3; B = 4.6 eV Å–4, v  =

3.11 eV Å–2,  = 1.65 eV Å–3,  = 1.24 eV Å–4,

α = 3.69 × 101 eV Å–2, β = 7.5 × 102 eV Å–3, γ = 3.3 ×
103 eV Å–4, and Meff = 800m, where m is the mass of an
oxygen atom.

λk
3( ) λkk

4( )

Fig. 3. Temperature dependence of renormalized frequency
νr plotted in accordance with formula (4).
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if  is taken into account. If only  is taken into
consideration, the circumvention of the hysteresis
curve is inverted (i.e., the cooling curve lies above the
heating curve). The competition of the contributions

from  (with a minus sign, since this contribution
differs from zero in the second order of perturbation

theory) and from  (with the plus sign if  > 0)
forms the hysteresis curve of the two-loop type.

Thus, the presence of a phonon line of frequency
50 cm–1 in the Raman spectrum of a single crystal of
superconducting oxide Ba1 – xKxBiO3 and the bistable
temperature dependence of its integrated intensity
reflect a number of features of the local lattice and elec-
tronic structures of this compound. First, this line
emerges due to rotation of soft and hard BiO6 octahe-
dra. Rotational distortions are realized in the form of a
local phase transition of the displacement type in the
cooperated complex of hard octahedra, which may
exchange their roles with soft octahedra owing to
breather-type vibrations of oxygen ions in a two-well
potential. Second, the integrated intensity of Raman
scattering for this line decreases upon sample heating
and vanishes at the critical temperature To of a local
phase transition of the displacement type (i.e., in the
case when cooperated coherent vibrations of the com-
plex of octahedra are disrupted and local distortions in
the cubic perovskite structure disappear). Third, the
temperature hysteresis of the integrated intensity is due
to the asymmetric nature of the dependence of rota-
tional vibrations of octahedra with renormalized fre-
quency νr on two nonequivalent positions of the oxygen
ion transferring an electron pair from a soft to a hard

H int
3( ) H int

4( )

H int
3( )

H int
4( ) λ kk

4( )
octahedron. The bistable behavior of this ion in the two-
well potential is ensured by the cooperative behavior of
the complex of octahedra; in addition, the competition

of the contributions from interactions  and  to
νr forms a hysteretic curve of the two-loop type for the
temperature dependence of the intensity.
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The structure of 2D anions placed on a hydrogen substrate in the presence of gaseous helium is discussed. It is
shown that these structures, shaped like quasi-two-dimensional disks, are created in a threshold-like manner in
the vicinity of critical density nc ~ 1020 cm–3, which is appreciably lower than the critical density for the appear-
ance of spherical electronic bubbles in gas and linearly depends on temperature. Experiment confirms the exist-
ence of such autolocalized states. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 67.55.Ig
Electronic bubbles in helium are beautiful autolo-
calized formations. After they had been first discovered
and identified in liquid [1, 2], they were studied in
detail in gaseous helium with the aim of determining
the critical conditions for their appearance [3]. It turned
out that the creation of bubbles has a threshold charac-
ter, the gas density in the center of the bubble is (expo-
nentially) close to zero, and the critical density nk is
sensitive to temperature:

(1)

Almost at the same time, the idea became popular of
the possible change in the critical conditions for the for-
mation of bubbles in the presence of external forces that
localize electron free motion in one or two spatial direc-
tions, irrespective of autolocalization mechanism. This
effect was described in detail for an electron in a strong
magnetic field, in which its motion in the plane normal
to the magnetic field is restricted by the cyclotron orbit
with radius rc. It was shown [4, 5] that the free electron
motion in this case along the magnetic axis is also lim-
ited. A thresholdless one-dimensional autolocalization
arises with the characteristic coupling length

(2)

and gas density weakly perturbed in a cigar-like region.
Here, T is the temperature, m is the free-electron mass,
ao > 0 is the zero-point scattering amplitude for an indi-
vidual gas atom, and ng is the unperturbed gas density.

A disk-shaped autolocalization was also briefly
pointed out when an electron is placed near a insulator
free boundary and its vertical degree of freedom is
quantized by the image force. In this case, gaseous
helium autolocalizes electron free motion in the insula-

nk T2/3.∝

lH
2mT

π"
2ng

--------------
rc

ao

----- 
 

2

, lH @ rc,=
0021-3640/04/8006- $26.00 © 20417
tor plane in the threshold-like fashion with the localiza-
tion radius R [6],

(3)

where the critical value nc is given below by Eq. (13).
As in the case of Eq. (2), the gas density inside the bub-
ble is weakly perturbed at the initial stage, allowing one
to speak about a weak autolocalization regime.

To date, results (2) and (3) and other predictions of
the theory of weak autolocalization were thought to be
speculative. However, it has become clear that the
autolocalization occurs in other experiments, namely,
in the works of Adams et al. [7–12] mainly devoted to
the study of the influence of weak localization on the
conductivity of 2D electrons over solid hydrogen in the
presence of gaseous helium. It turned out that, apart
from “weak coherent localization,” the data [7–12] give
evidence of another interesting phenomenon, called by
those authors “fluctuative localization” (in my opinion,
corresponding to a weak 2D electron autolocalization
in the gas phase). The commonly accepted term weak
localization is complemented by the term coherent to
emphasize the difference between two types of weak
localization: coherent and autolocalization. In the first
case, one implies a contribution to the scattering cross
section for the closed electron trajectories appearing
with a certain probability upon multiple electron scat-
tering by defects (e.g., gas atoms). In this case, the gas
density is not perturbed. In the second case [7–12], 2D
electrons are autolocalized on the deep gas-density
fluctuations. The “depth” of gas holes is maintained by
the electrons localized in them. Nevertheless, particular
details of this model are not clear (see below). Weak (as
in [6]) autolocalization is a possible alternative. It is
physically clearer, and the computational details for
conditions [7–12] are close to the experimental data. It
is the purpose of this work to consider the problem of
disk-shaped electron localization in gaseous helium.

R 2– 1 nc/ng–( ), ng nc,>∝
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1. Let us consider the functional F determining the
degree of electron localization over a flat dielectric sub-
strate in the presence of gaseous helium with concen-

tration ng. Its density  has the form

(4)

(5)

Here, m and mg are the electron mass and the mass of a
gas atom, respectively; n(z, r) is the local gas density;
ϕ(z, r) is the electron wave function; and f(T) is the
known function of temperature T. As in the case of the
electronic bubble in liquid helium, the main energy
gain leading to electron localization comes as a result of

a decrease in gas density in the bubble zone (  in

Eq. (4)); the energy of zero-point vibrations (  in
Eq. (4)) prevents the decrease in the anion size. In con-

trast, the terms  and  restrict the anion size
from above. With an increase in the gas density, the

term  transforms into the well-known contribution
from surface tension. However, at the initial stage of
weak localization, this term is insignificant and will be
considered below as perturbation. For stages (4) and
(5), this assumption is confirmed by the experimental
data on the sensitivity of critical conditions (1) and (3)
to temperature. This is possible if the first term in the

sum  +  is dominant (T scenario). In the regime
of strong localization, the situation may change (∇  sce-
nario).

In the T scenario, the variation of F with respect to
n leads to the well-known relation between n(z, r) and
ϕ|(z, r)|2 [3]:

(6)

In this variation, the total number of helium atoms must
be conserved (requirement (5) for gas density), and the
corresponding Lagrange factor should be introduced in
the Euler equation for n(z, r).

Using Eq. (6), one can rewrite the functional F as

(7)
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By varying Eq. (7) with respect to ϕ and using Eq. (5),
one can write the nonlinear equation for this function.
However, it cannot be analytically solved in the general
case. Because of this, to reveal the details of electron
autolocalization, one should apply the variational
method to functional (7).

The form F in Eq. (7) also applies in the three-
dimensional case. By taking the wave function in the
form

(8)

(r is the three-dimensional radius, and k is the variable
parameter) and determining the expression for F from
Eqs. (7) and (8), one finds that a well-defined minimum
for F as function of k may exist, with the extremal value
kmin belonging to the parameters corresponding to the
inequality

(9)

In other words, a three-dimensional electron in gaseous
helium may be autolocalized (small-radius anion), and
the localization region is virtually free of helium vapor
even at the initial moment (see [4] for details). In liquid
helium, this formation assumes the form of an elec-
tronic bubble with a characteristic radius on the order of
20 A. Among other important statements about the 3D
bubble in gas, we note the possibility of making F in
Eq. (7) dimensionless after the introduction

(10)

It follows, in particular, that the critical density for the
formation of a 3D bubble should depend on tempera-
ture as in Eq. (1).

For the electronic states at the insulator surface, the
conditions for electron autolocalization should be
sorted. This assumption is in accordance with the gen-
eral positions of quantum mechanics and is confirmed
by the subsequent calculations.

Setting

(11)

for quasi-2D electron (e is the dielectric constant of
solid hydrogen, r is the two-dimensional radius, and
q is the variable reciprocal localization radius) and
minimizing F (7) with ϕ(r, z) from Eq. (11) with respect
to q, one finds for qmin:

(12)
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(13)

with γ from Eq. (11). Result (12), (13) has structure (3)
and was obtained with some numerical remarks in [6].

The quantity qmin is positive by definition. This
means that weak localization in the form (11), (12) is
possible only if

(14)

i.e., if appears in the threshold-like fashion.

Using Eqs. (11)–(13), expression (7) for F can be
written in the form 

(15)

Note that Eqs. (11)–(14) are obtained on the
assumption that

,

where κ is from Eq. (9) One can readily see that this
parameter has an additional multiplier,

,

compared to F/T. In other words, the parameter κ can be
relatively small when the relative localization energy
F/T already exceeds unity. This fact should be taken
into account in the analysis of Eq. (15).

2. Let us dwell upon the localization mechanism in
[11]. Here, it is assumed that the localization energy Ec

is the sum of two terms,

(16)

The gain  is due to a decrease in the gas density in

the vicinity of localized electron, and the loss  cor-
responds, as above, to the electron zero-point vibra-
tions.

To determine , one uses the probability of equi-
librium particle-number fluctuation in an ideal gas [16]:

(17)

Next, taking into account that

(R and 〈z〉  are the electron-localization lengths in the
horizontal and vertical directions, respectively), one
obtains from Eq. (17),

(18)
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Finally, the expression for δng should be substituted

with a plus sign into definition (4) for , which is a
version of :

(19)

The quantity  (19) depends on R, and the general
expression Ec in Eq. (16) has an extremum as a function
of R. The resulting extremal expression for the energy
of electron capture by the fluctuative hole has the form

(20)

Note that the use of formula (17) in scenario (16)–
(20) is not necessary. To make sure of that, let us intro-
duce Eq. (17) (the authors of [7–12] assume that this
expression is universal for the description of any
polaron formation) into the problem of a bubble in liq-
uid helium. In this case, formula (17) or its analog (18)
gives again

(21)

Here R is the bubble radius, a is the interatomic dis-
tance, and nl is the liquid density.

Then, one has for the bubble δnl = nl, so that esti-
mate δnl (21) takes the form

(21a)

This estimate is invalid, because the electronic bubble
is empty in liquid and, hence, δnl should be estimated as

(21b)

Although model (16)–(20) is qualitatively inconsis-
tent, one may take it into account sometimes, because
the data in [11] were processed using this model. By
comparing Eqs. (15) and (20), one can readily verify
that, in the region linear with respect to ng (i.e., where
ng @ nc), they differ by the factor ao/〈z〉:

(22)

This fact should be taken into account when discussing
the experimental data.

3. Experimental. The authors of [7–12] assumed
that an electron can be autolocalized over solid hydro-
gen in the presence of gaseous helium on the basis of
the data on 2D conductivity, which demonstrates acti-
vation behavior in a certain range of parameters (in the
vicinity of density nc much lower than the 3D threshold
in Eq. (9)). The corresponding activation energy
increases linearly with gas density. The authors of [7–
12] assumed that their localization model is consistent
and that the linear increase in the activation energy as a
function of ng is the most important detail. They repre-
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sented the data on the activation energy in the form
(inset in the figure) that demonstrates this linearity most
clearly. For the unknown reason some portions of the
lnσo/σ(ng, T) curves were shifted relative to each other
(see comment to Fig. 4 in [11]). This linearity is clearly
seen from the normal positions of these lines. The con-
stant γ∗  obtained from the graphs in Fig. 4 in [11] well
coincides with (20). This fact counts in favor of model
(16)–(20) and not model (11)–(15). However, nothing
was said in [11] about the correction to gas density over
the hydrogen surface. The van der Waals forces make
gaseous helium denser over hydrogen, just as this
occurs over liquid helium, where the surface sealing
brings about the additional terms of gas origin in the
temperature dependence of surface tension (see [17]).
As a result, the local gas density is higher in the anion-
localization region than in the volume. For this reason,
the agreement between the experiment and predictions
(20) with respect to the correctness of estimating γ∗
(using Eq. (22)) signifies that the experiment is closer
to formula (15) than to (20).

Let us discuss the initial portions of all lnσo/σ(ng, T)
curves (figure). They show noticeable (increasing with
T) departure from linearity. This effect is absent in
model (16)–(20) and present in description (11)–(15).
For clarity, the data from [11] are reconstructed on the
basis of two considerations: first, all curves for the
lnσo/σ(ng, T) dependences as functions of density ng

must converge, by definition, at the zero point for dif-
ferent T. Second, the relative threshold for creating
local states should demonstrate approximately the same

Inset: data from [11] on lnσo/σ(ng, T) as a function of ng at
various temperatures: T = (circles) 1.8 K; (triangles) 4 K;
(squares) 5.1 K; and (inverted triangles) 7.7 K. The figure
contains the same data shifted with the retention of the slopes
and satisfying the two requirement: all lines must converge at
the point ng = 0 (this requirement corresponds to definition
(20)), and the threshold for the appearance of activation
behavior of conductivity should be the same for different
temperatures shown in the figure. For comments, see text.
sensitivity for different temperatures. The results of
such reconstruction are presented in the figure. The
threshold character of the appearance of 2D anions is
clearly seen, as well as a shift of critical point in the
desired direction upon an increase in T and smooth
transitions to the linear dependences at ng > nc.

Thus, information on the disk-shaped electronic
bubbles at the hydrogen surface in the presence of gas-
eous helium has been collected in this work. The for-
malism determining the parameters of such a formation
has the same origin as in [3–5]. It allows one to work
with both three-dimensional bubbles and their analogs
in the presence of external localizing fields. The con-
clusions of the theory have been compared with conclu-
sions following from the model suggested in [11] for
electron localization in deep gas-density fluctuations.
The experiments [11] evidencing the presence of disk-
shaped autolocalized electron states at solid hydrogen +
gaseous helium have been discussed.

This work was supported in part by the Russian
Foundation for Basic Research, project no. 03-02-
16121.
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taking into account the scattering of electrons by phonons. © 2004 MAIK “Nauka/Interperiodica”.
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Apparently, Bloch was the first to consider a quan-
tum nonsuperconducting ring in an alternating mag-
netic field [1]. He proposed this model as a simple illus-
tration of the Josephson effect. Later, quantum rings in
alternating fields were studied, in particular, in view of
the problems of quantum pumps (beginning with [2])
and as applied to Aharonov–Bohm oscillations in the
mesoscopic regime [3]. Despite the fact that it is rather
difficult to study experimentally the effect of an alter-
nating magnetic field on quantum objects, these prob-
lems have attracted the attention of researchers. The
problem is still of interest, which is evidenced by the
studies published from time to time [4–9]. However, the
effect of the inelastic scattering of electrons on the elec-
tric response of a quantum ring has not been investi-
gated.

In this study, we consider a single-channel quantum
ring in an adiabatically changing magnetic field. In
such a field, along with a persistent current, an induc-
tive current is induced in the ring, which is proportional
to the vortex electric field. In contrast to the persistent
current, the inductive current is determined by the elec-
tron kinetics. We will consider the problem, taking into
account the scattering of electrons by phonons. It is
assumed that a magnetic field varies slowly, which
makes it possible to expand the response of the circular
current in terms of the vortex electric field, i.e., the
derivative of the magnetic flux with respect to time. The
response to the vortex field can be considered the con-
ductance of a contactless quantum ring. In contrast to
the conventional statement of the problem, it is pro-
posed to perform contactless measurements of the ring
conductance, in particular, by absorption of a high-fre-
quency electromagnetic field. Note that the steady-state
potential of impurities in the ring does not lead to real
scattering, since, due to the conservation of coherence,
the steady states of electrons in a magnetic field are
Bloch states with conservation of the azimuthal current
(which is zero in the absence of a magnetic field). That
is why we restrict our consideration to an ideal ring
interacting with phonons. At low temperatures, the
0021-3640/04/8006- $26.00 © 20421
scattering by phonons is relatively weak; therefore, the
ring conductance can reach a large value (significantly
exceeding the conductance quantum). This is the differ-
ence of a single-channel ring from a single-channel
microcontact, the conductance of which is restricted
from above by the conductance quantum due to the
inevitable relaxation of electrons in reservoirs.

STATEMENT OF THE PROBLEM

Let us consider an ideal quantum ring of radius R
made of an n-type semiconductor with a quadratic elec-
tron spectrum. The ring is placed in slowly varying
magnetic field H(t) directed along the ring axis. The
effect sought is a correction to the persistent current
J0(Φ):

(1)

Here, % = – (t)/c is the voltage induced in the ring by
the alternating magnetic field, Φ(t) = H(t)πR2 is the
magnetic flux, and G is the ring conductance. The con-
ductance of the ring depends on its size and the mag-
netic flux. Obviously, in the large-radius limit, ring con-
ductance G must pass into the conductance of a one-
dimensional (1D) system and cease to depend on mag-

netic flux Φ. We will expand all expressions in .

The electronic states in the absence of scattering can
be described by adiabatic (instantaneous) terms eν. In
particular, in the absence of spin–orbit interaction,
states of electrons ν are characterized by the projection
of angular momentum m on the ring axis z and spin
number σ = ±1 and described by the adiabatic terms
eν = (m + φ)2/2meR2 + σgµBH/2, φ = Φ/Φ0 (hereinafter,
the flux is measured in quantum-flux units Φ0 = 2πc/e,
and me is the electron mass), µB is the Bohr magneton,
and g is the Landé g factor. Hereinafter, " = 1. The lev-
els with the same values of σ intersect each other at the
points φ = 0 and 1/2.

J Φ( ) J0 Φ( ) G Φ( )%.+=

Φ̇

Φ̇
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The angular-velocity operator contains the value of
magnetic flux. Thus, when the flux varies, the current of
electrons in the above states varies synchronously with
the flux [9]. With an increase in the flux, acceleration of
electrons (similar to the betatron acceleration) occurs.
For example, if the flux changes linearly with time, the
current also increases linearly. At the same time, it is
obvious that the vortex electric field is constant in this
case. Taking into account the relaxation should lead to
a constant current superimposed on the alternating as a
function of flux persistent current. Thus, the effect of
relaxation radically changes the final result.

KINETIC EQUATION

The relaxation of electrons will be taken into
account in terms of the quantum kinetic equation. Sim-
plifying this equation, we will use the fact that the mag-
netic flux varies slowly. This makes it possible to
neglect the effect of the time dependence of the flux on
the scattering. In addition, the scattering is considered
in the lowest order of the perturbation theory. Techni-
cally, we used the form of the kinetic equation from
[10, 11].

As the relaxation mechanism, we consider the scat-
tering of electrons by acoustic phonons. For simplicity,
we assume that the spectrum of phonons is isotropic
and their interaction with electrons is not violated by
the existence of the object boundaries (in particular, for
a quantum ring buried in the bulk of a material with
similar properties). In this case, the Hamiltonian
describing the interaction of one electron with phonons
has the form

(2)

Here, bq is the operator of annihilation of a phonon in
state q. The interaction with phonons is described by
the quantity |Cq|2 = (BDq + BP/q)/V [12], which includes
the deformation (BDq) and piezoelectric (approximated
by the isotropic ratio BP/q) contributions (V is the vol-
ume of the system). The quantities BD and BP are
related to the momentum-relaxation times in the initial
three-dimensional crystal with respect to the deforma-
tion and piezoelectric interactions (τDA and τPA, respec-
tively) for the temperature and the energy of an electron
corresponding to the energy of optical phonon ω0:

(3)

Here, s is the speed of sound.
In the representation of the mσ states, Hamiltonian (2)

proves to be diagonal with respect to quantum number σ:

(4)

Here, q⊥  =  and Jn(x) is a Bessel function.

*e ph– Cq eiqrbq h.c.+( ).
q

∑=

BD
πs

τDA 2meω0( )3/2
-----------------------------------, BP

2πs

τPA 2meω0( )1/2
----------------------------------.= =

eiqr( )m σ; m' σ',, Jm m'– q⊥ R( )δσσ' .=

qx
2

qy
2+
The density matrix is also diagonal with respect to σ
and (in view of the axial symmetry of the ring) m. As a
result, the kinetic equation can be written for the diag-
onal elements of the density matrix ρνν ≡ ρν:

(5)

The probability of a phonon-induced transition is given
by the expression

(6)

where N(ωq) = (exp(ωq/T) – 1)–1 is the equilibrium
phonon distribution function, eν'ν = eν' – eν, and γ =
BP/BD.

Note that wν'ν = wνν'exp(eν'ν/T).

Let us represent the density matrix as an expansion

in the nonadiabaticity: ρν = f(eν – µ) +  + …. The
first term is the quasi-equilibrium density matrix, which
coincides with the Fermi function f(x) = (exp(x/T) + 1)–1.
The latter depends on the instantaneous values of levels
and the corresponding values of the chemical potential
µ. The chemical potential is determined from the con-
dition of constant average number of electrons N in the
ring:

(7)

This approach is valid in the absence of spin splitting.
When spin splitting is taken into account, due to the dif-
ference in the energy levels with different values of σ,
one has also to consider the conservation of the number
of electrons with given σ, introducing different Fermi
levels µσ for spin sublevels:

(8)

(9)

The quasi-equilibrium density matrix makes the right-
hand side of Eq. (5) vanish. Let us linearize Eq. (5) with
respect to the additional term in the density matrix,
assuming the flux to be slowly varying. The derivatives
of fν ≡ f(eν – µσ) with respect to time give the left-hand
part of the quantum kinetic equation:

(10)

ρ̇ν wν'νρν' 1 ρν–( ) wνν'ρν 1 ρν'–( )–( ).
ν'

∑=

wν'ν δσσ'

BD

4π2
-------- d3q q

γ
q
---+ 

  Jm m'–
2 q⊥ R( )∫=

× N ωq( )δ eν'ν ωq+( ) N ωq( ) 1+( )δ eν'ν ωq–( )+[ ] ,

ρν
1( )

f eν µ–( )
ν
∑ N , ρ 1( )

ν
∑ 0.= =

f eν µσ–( )
m

∑ Nσ,=

ρν
1( )

m

∑ 0.=

Dν φ̇
∂ f ν

∂µ
-------- Vν'

∂ f ν'

∂µ
---------/

∂ f ν'

∂µ
--------- Vν

∂ f ν

∂µ
--------–

m'

∑
m'

∑ ,=
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where the angular velocity of an electron in the state ν
is Vν = ∂eν/∂φ and, after the linearization, the chemical
potentials can be considered identical. The condition of
conservation of the number of particles (8) is ensured
by the equality  = 0. In fact, expression (10)
includes only the “orbital” part of the velocity (m +
φ)/meR, since the spin contribution vanishes.

The resulting quantum kinetic equation has the form
of a steady-state equation,

(11)

where Wν'ν = wν', ν(1 – fν) + wνν' fν. In this equation, time
serves a parameter entering the instantaneous values of
the chemical potential and the spectrum via the flux.
System (11) has a degenerate kernel: the additional
term in the quasi-equilibrium distribution function
related only to the variation in the Fermi level
((∂fν/∂µ)∆µ) makes the left-hand side vanish; the
unambiguous solution to the system is fixed by the
additional condition (9).

After integration, we find:

(12)

When the condition eνν' R/s @ 1 is satisfied, the
function Sm(y) can be replaced by its asymptotic form at
large values of the argument: Sm(y) ≈ 1/2y.

The conductance is determined by the equation

(13)

CALCULATION OF THE CONDUCTANCE
IN THE ABSENCE OF SPIN SPLITTING

In the absence of spin splitting (g = 0), the energy
spectrum of electrons satisfies the following condi-
tions:

(14)

(15)

It follows from the first condition that Wm, m'(–φ) =

W−m, –m'(φ), (–φ) = – (φ), and G(–φ) = G(φ). The
second condition yields G(φ + 1) = G(φ).

Dνm∑

Wν'νρν'
1( ) Wνν'ρν

1( )–
ν'

∑ Dν,=

Wν'ν δσσ'

BD

2πs4
-----------=

× eν'ν
3 γs2

eν'ν+( )Sm' m– eν'ν R/s( )

× θ eν'ν( ) N eν'ν( ) 1 f ν–+( ) θ eνν'( ) N eνν'( ) f ν+( )+[ ] ,

Sm y( ) x xd

1 x2–
------------------Jm

2 xy( ).

0

1

∫=

Gφ̇ e2

2π
------ Vνρν

1( ) e2

2πmeR
----------------- m φ+( )

ν
∑ ρν

1( )
.≡

ν
∑=

em φ( ) e m– φ–( ),=

em φ 1+( ) em 1+ φ( ).=

ρm
1( ) ρ m–

1( )
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These properties of the electron spectrum make it
possible to solve analytically system of equations (12)
at φ = 0 or 1/2. It can be easily seen that the income term
in kinetic equation (11) becomes zero at these values of
φ. As a result, we have, for these values of the flux:

(16)

with the inverse relaxation time

(17)

At φ ≠ 0, 1/2, formula (16) can be considered a naive
solution in the relaxation-time approximation. The
exact result can be found by numerical solution of sys-
tem of algebraic equations (11). At sufficiently low
temperatures, the main contribution to the conductance
is determined by the pair levels (for example, a and b)
that are closest to the Fermi level and located at oppo-
site sides of it. In this case,

(18)

It can be seen from (18) and (12) that the conductance
exponentially increases when the levels a and b
approach each other.

This behavior is affected by a factor related to Cq. If
the emitted energy is low, the piezoelectric interaction
is dominant; otherwise, the deformation interaction
prevails. In both limits, the transition probability
increases. The other factor, Smm'(|emm'|R/s), also affects
the behavior of the conductance. In particular, the con-
ductance oscillates at a large product of the wave vector
of an emitted phonon by the ring radius.

Figure 1 shows the numerically calculated depen-
dence of the conductance of a ring with a radius of
10−6 cm with one electron on magnetic flux at different
temperatures. Parameters of GaAs were used: τPA =
4 ps, τDA = 8 ps, s = 5 × 105 cm/s, and ω0 = 421 K. With
these parameters, electrons from lower levels (m = 0,
−1) are involved in the conduction and the deformation
mechanism of scattering is dominant. For comparison,
the dependence of the conductance on flux calculated in
the τ approximation (dotted line) for T = 0.3/2meR2 is
also shown in Fig. 2. This curve coincides with the
dependence obtained by numerical solution of the
kinetic equation at φ = 0 and 0.5 and significantly dif-
fers from it at other points. The strong peak at φ = 0.5
is due to the intersection of levels. The same peak at
φ = 0 is suppressed because the velocity of an electron
in the state with m = 0 is zero. The oscillations are due
to the commensurability of the wavelengths of emitted

G φ( ) e2

π
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meR2( )2
-------------------=

× τm φ( ) m φ+( )2∂ f m
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---------, φ

m
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phonons and the ring radius. Note the presence of a dis-
continuity in the derivative G(φ) at the points φ = 0 and
1/2, which is caused by the nonanalyticity of the transi-
tion probability as a function of eνν' at eνν' = 0.

Figures 2a and 2b show the results of calculation of
the conductance for many-electron quantum rings with

Fig. 1. Dependences of the conductance (on logarithmic
scale) on magnetic flux for a quantum ring with a radius of
10–6 cm containing one electron at different temperatures.
The dotted line is the calculation in the τ approximation.
The parameters of GaAs were used.
radii R = 10–6 and 10–5 cm and a fixed integer number
of electrons N. At low temperatures, at the points φ = 0
and 1/2, the chemical potential lies between the nearest
levels for N = 4n + 2 and coincides with one of the lev-
els for N ≠ 4n + 2. When φ ≠ 0, 1/2, the Fermi level coin-
cides with one of the ring levels at an odd N and lies
between ring levels at an even N. This circumstance
determines the difference in the behavior of the conduc-
tance for different N. In the ring with a radius of
10−6 cm, the main mechanism is scattering by the defor-
mation potential, while in the ring with a radius of 10–5

cm the scattering by the piezoelectric potential plays a
key role. Oscillations mainly manifest themselves in
the ring with a small radius, where the energies of
phonons are higher and their wavelengths are shorter.
In this case, since only longitudinal phonons are
involved in the scattering, the spread of oscillations due
to the difference in the frequencies of phonons of dif-
ferent type is insignificant. Hence, it was neglected.

ACCOUNT OF THE SPIN SPLITTING

Since the Hamiltonian is diagonal with respect to
the spin indices, the contributions of different spin pro-
jections on the z axis to the current are additive. There-
fore, the conductance regarded as a function of the
chemical potential and flux, taking into account the
Fig. 2. Dependences of the conductance of a GaAs quantum ring with an integer number of electrons (indicated for the correspond-
ing curves) in the absence of spin splitting at T = 1/2meR

2 and R = (a) 10–6 and (b) 10–5 cm on a magnetic field.
JETP LETTERS      Vol. 80      No. 6      2004



INDUCTIVE CURRENT IN A QUANTUM RING 425
splitting, Gs is the sum of the conductances of the spin
components. Each spin component is determined by the
same expressions as in the absence of splitting with a
shift of µ by a half of the spin splitting µ  µ ±
gµBH/2:

(19)

At a given integer number of electrons, the chemical
potential should be determined according to formula (7).
Formula (19) can also be used for an oblique magnetic
field, taking into account that the total magnetic field
enters the expression for the spin splitting, whereas
only the vertical component of the field enters the
expression for the flux. Note that the periodicity with
respect to the flux (taking into account the spin split-
ting) occurs only when φ and H are regarded as inde-
pendent arguments.

DISCUSSION

In view of the fact that, at low temperatures, we
obtained a very large change in the conductance with
changing the magnetic field, the question arises
whether this result is the consequence of the approxi-
mations used here or not. Let us note the limitations
related to these approximations and begin with the adi-
abatic approximation. It was assumed that the field var-

ies slowly, so that  ! δe. This condition is violated
when levels intersect each other. However, the rate of
variation in the magnetic field is generally very low
and, therefore, this effect can manifest itself only in a
very narrow range near the point of intersection of the
levels.

It was also assumed that energy equilibrium is
established in the absence of exchange in particles
between the ring and reservoir. This condition can be
easily satisfied using sufficiently thick barriers. In addi-
tion, taking into account the energy of the ring charging
leads to the occurrence of a finite energy barrier
between different charge states and to the quantization
of the average charge of the ring at low temperatures
(below the charging energy).

In our opinion, the most significant limitation is the
assumption about the ideality of the ring. The asymme-
try caused by the fluctuation potential inevitably results
in the level splitting. When this potential is low, it man-
ifests itself only near the point of intersection of the lev-
els φ = 0 and 1/2, due to which the electron velocity
becomes zero at these points; as a result, the contribu-
tion of the levels that are closest to the Fermi level to the
conductance vanishes and the conductance peaks in the
low-temperature range sharply decrease. When the
level splitting induced by the magnetic field exceeds the
asymmetry-induced splitting, the result should pass to
the above-considered limit of an ideal ring. When the
fluctuation potential is rather high in a ring of large

Gs 1
2
--- G µ 1

2
---gµBH φ,– 

  G µ 1
2
---gµBH φ,+ 

 + 
  .=

φ̇

JETP LETTERS      Vol. 80      No. 6      2004
radius, the allowed bands become exponentially narrow
due to the localization; as a result, with an increase in
the length of the ring circumference, the average elec-
tron velocity and the conductance exponentially
decrease.

To conclude, we should note that, with an increase
in the magnetic field, the scattering mechanism studied
here limits the current in an ideal ring. The resulting
current is determined by the dissipative conductance.
The conductance of an isolated ring may reach signifi-
cant values, greatly exceeding the conductance quan-
tum. At low temperatures, the interlevel transitions are
suppressed, whereas only these transitions lead to scat-
tering. A variation in the spacing between the levels
with varying the magnetic field strongly (exponen-
tially) affects the conductance that leads to the sharp
maxima in the dependence of the conductance on the
magnetic field. Thus, the conductance of a 1D ring, in
contrast to a 1D conductor, depends on the magnetic
field even in the absence of spin splitting. In weak mag-
netic fields, the magnetoconductance G(φ) – G(0) can
be either negative or positive. In addition, in the model
with scattering by the deformation potential, a linear
dependence of the conductance on magnetic field can
be observed.

This study was supported by the Russian Founda-
tion for Basic Research (project nos. 00-02-16377 and
02-02-16398), the program “Leading Scientific
Schools” (project no. NSh-593.2003.2), and INTAS
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The optical properties and structure of gadolinium iron borate GdFe3(BO3)4 crystals are studied at high pres-
sures produced in diamond-anvil cells. X-ray diffraction data obtained at a pressure of 25.6 GPa reveal a first-
order phase transition retaining the trigonal symmetry and increasing the unit cell volume by 8%. The equation
of state is obtained and the compressibility of the crystal is estimated before and after the phase transition. The
optical spectra reveal two electronic transitions at pressures ~26 GPa and ~43 GPa. Upon the first transition,
the optical gap decreases jumpwise from 3.1 to ~2.25 eV. Upon the second transition at P = 43 GPa, the optical
gap deceases down to ~0.7 eV, demonstrating a dielectric–semiconductor transition. By using the theoretical
model developed for a FeBO3 crystal and taking into account some structural analogs of these materials, the
anomalies of the high-pressure optical spectra are explained. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.50.Ks; 71.27.+a; 71.30.+h; 81.40.Tv
1. INTRODUCTION

A GdFe3(BO3)4 crystal belongs to the family of rare-
earth borates RM3(BO3)4 (R is a rare-earth element,
M = Al, Ga, Fe, Sc), which are isostructural to a natural
mineral huntite CaMg3(CO3)4 [1] and have trigonal

symmetry with the space group R32 ( ) [2, 3].
Recently, the nonlinear optical and laser properties of
these materials were found [4–6], which attracted great
attention from researchers.

The structure of rare-earth iron borates RFe3(BO3)4
can be represented in the form of layers perpendicular
to the c-axis (C3) and consisting of trigonal RO6 prisms
and lower-size FeO6 octahedra [2, 3]. The FeO6 octahe-
dra are connected by their faces and form helical one-
dimensional weakly coupled chains elongated along
the c-axis. Boron atoms form isolated triangles with

oxygen atoms, producing  groups of two types.
Triangles of the type B(1)O3 are connected by their ver-
tices only with the FeO6 polyhedra, while triangles of
the type B(2)O3 are connected by two vertices with dif-
ferent chains of the FeO6 octahedra and by the third
vortex with the RO6 prism.

The physical properties of rare-earth iron borates
are poorly studied, which is mainly explained by the
difficulty of growing high-quality crystals, especially
for optical studies. The recent measurements [7, 8] of

D3h
7

BO3
3–
0021-3640/04/8006- $26.00 © 20426
the magnetic susceptibility, magnetization, and heat
capacity showed that a GdFe3(BO3)4 borate crystal is a
compensated antiferromagnetic with the Néel tempera-
ture TN = 38 K, and the spin-flop transition occurs in the
crystal at a temperature about 10 K. It is assumed that
magnetic ordering below TN concerns only iron ions,
whereas the Gd3+ ions remain paramagnetic at least
down to liquid helium temperature [7]. In addition,
quite recently the structural phase transition was also
discovered in this crystal at T = 156 K [9].

In this paper, we studied the optical properties and
change in the structure of a GdFe3(BO3)4 crystal at high
pressures produced in diamond-anvil cells. We found
two phase transitions at pressures ~26 and ~43 GPa
accompanied by the jumpwise narrowing of the optical
gap and the dielectric–semiconductor transition.

2. EXPERIMENTAL

High-quality transparent, dark green GdFe3(BO3)4
crystals were grown from solution in a melt [10]. The
crystal lattice parameters at normal pressure are a =
9.5491(6) and c = 7.5741(5) Å.

X-ray diffraction studies at pressures up to 40 GPa
were performed with a polycrystalline sample obtained
by single-crystal crushing. The sample was studied at
room temperature in a diamond-anvil cell in a special-
ized laboratory setup at the Max-Planck Institut für
004 MAIK “Nauka/Interperiodica”



        

STRUCTURAL AND ELECTRONIC TRANSITIONS 427

                                                                                  
Chemie (Mainz, Germany). X-rays were generated by
a rotating Mo anode (0.7093 Å) with a special focusing
system. Spectra were recorded in the transmission
geometry using an Image Plate detector. The high-pres-
sure cell allowed the recording of the spectra in the 30°
range of angles 2Θ. The diameter of the diamond anvils
was 300 µm, and the diameter of a hole in a tungsten
gasket, where a sample was placed, was about 100 µm.
Pressure was transmitted to a sample through a PES-5
polyethylsilaxane liquid. To provide quasi-hydrostatic
conditions, the working volume of the cell was filled by
1/3 with a sample and by 2/3 with the PES-5 liquid.
Pressure was measured by a standard method by the
shift of the fluorescence line of ruby.

The optical absorption spectra were measured for a
GdFe3(BO3)4 crystal at pressures up to 60 GPa at room
temperature in the diamond-anvil cell. Diamond anvils
of diameter ~400 µm were used. The hole at the center
of a rhenium gasket had a diameter of ~120 µm. Mea-
surements were performed for a thin plate of size ~50 ×
40 × 15 µm punctured from a massive GdFe3(BO3)4

crystal. The light beam was directed perpendicular to
the basis plane of the crystal. Pressure was imparted to
a sample through a PES-5 liquid providing quasi-
hydrostatic compression. A single crystal remained
undamaged after the pressure removal. The optical
setup for the study of absorption spectra allows one to
perform measurements in the visible and near-IR
ranges from 0.3 to 5 µm. An FEU-100 photomultiplier
was used as a detector in the visible region, while in the
near-IR region a germanium diode cooled in liquid
nitrogen was used. The light-spot diameter on a sample
was ~20 µ. The absorption spectrum was calculated
from the expression I = I0exp(–αd), where d is the sam-
ple thickness, I0 is the reference signal intensity outside
the sample, and α is the absorption coefficient.

Fig. 1. X-ray diffraction patterns of the GdFe3(BO3)4 poly-
crystal at room temperature at some pressures below and
above the phase transition. W denotes the position of a
reflection from a tungsten gasket.
JETP LETTERS      Vol. 80      No. 6      2004
3. EXPERIMENTAL RESULTS

3.1. High-pressure X-Ray Studies

The dependence of the X-ray diffraction pattern of a
GdFe3(BO3)4 crystal on pressure is shown in Fig. 1. As
pressure increases, peaks in the diffraction pattern shift
in the direction of larger angles, and new peaks appear
at P > 25 GPa, indicating the transformation of the crys-
tal structure. For P = 25.6 GPa, reflections from two
coexisting low- and high-pressure phases are observed.
This can be caused by incompletely hydrostatic condi-
tions and the presence of a pressure gradient in the cell
or by a peculiarity of the first-order phase transition.
One can see from Fig. 1 that the main peaks for a new
high-pressure phase are identical to those for the low-
pressure phase. Therefore, the high-pressure phase was
indexed assuming that the crystal symmetry is pre-
served after the structural phase transition (see Fig. 1).
Figure 2 shows the pressure dependence of the unit cell
volume for the GdFe3(BO3)4 crystal at room tempera-
ture calculated using the data presented in Fig. 1.
Experimental points for the low-pressure phase were
approximated by the Berch–Murnagan equation,

(1)

The approximation gave the bulk modulus B0 =
159.5 ± 6.3 GPa, its derivative B' = 4 (fixed), and unit
cell volume at the normal pressure V0 = 594.69 Å3.
After the structural transition at P = 25.6 GPa, experi-
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× 3
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– 
  1– .

Fig. 2. Baric dependence of the unit cell volume of the
GdFe3(BO3)4 crystal at room temperature. 
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mental points for the high-pressure phase were approx-
imated by the modified Birch-Murnagan equation,

(2)

and we obtained B26 = 219.5 ± 6.5 GPa,  = 4 (fixed),
and V26 = 486.022 Å3.

Therefore, the structural transition in the
GdFe3(BO3)4 crystal at P = 25.6 GPa is the first-order
symmetry-retaining transition accompanied by the
~8% jump in the unit cell volume. Note that the crystal
compressibility in the high-pressure phase is higher
than that in the low-pressure phase.

Figure 3a shows the pressure dependence of the
crystal-lattice parameters. One can see that the struc-
tural transition is accompanied by a jumpwise decrease
in the parameter c, whereas the parameter a decreases

P 25.6 GPa+
3
2
---B26

V
V26
-------- 

  5/3–

1
V

V26
-------- 

  2/3–

– 
 =

× 3
4
--- B26' 4–( ) 1

V
V26
-------- 

  2/3–

– 
  1–

B26'

Fig. 3. Baric dependences of the unit cell parameters a and
c in the GdFe3(BO3)4 crystal at room temperature (a) and of
the a/c ratio (b).
gradually. Figure 3b shows the pressure dependence of
the ratio a/c of the lattice parameters.

3.2. Optical Absorption Spectra

For measurements at normal pressure, the
GdFe3(BO3)4 crystals were prepared in the form of thin
plates of area ~2 mm2 and thickness from 42 to 53 µm.
The plate plane was oriented parallel or perpendicular
to the threefold crystallographic axis C3, and a light
beam was directed perpendicular to the plate. Optical
spectra were recorded in the spectral range from 10000
to 40000 cm–1 (1.24–4.96 eV) at 300 K. The spectral
width of the slit of a grating monochromator was
10 cm–1. The accuracy of measurement of the absorp-
tion coefficient was 3%. We found that the absorption
spectra were virtually identical for both orientations.

Figure 4 shows the absorption spectrum of the
GdFe3(BO3)4 crystal at normal pressure at room tem-
perature. For comparison, the absorption spectrum of
the well-studied iron borate FeBO3 obtained by us ear-
lier [11] is also presented. We found that the energies of
absorption bands of the GdFe3(BO3)4 and FeBO3 crys-
tals coincide with an accuracy to tenths of electron-
volts. Three groups of absorption bands at 1.4, 2.0, and
2.8 eV were observed. The energy gap determining the

Fig. 4. Absorption spectra of (a) GdFe3(BO3)4 and
(b) FeBO3 single crystals at normal pressure and room tem-
perature.
JETP LETTERS      Vol. 80      No. 6      2004
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fundamental absorption edge in the GdFe3(BO3)4 crys-
tal is Eg = 3.1 eV, which is somewhat greater than in
FeBO3 (2.9 eV).

The similarity of the absorption bands suggests that
the optical properties of FeBO3 and GdFe3(BO3)4 coin-
cide in the energy range 1–3 eV, and the three groups of
bands A, B, and C (Fig. 4) are caused by the
6A1g(6S)  4T1g(4G), 6A1g(6S)  4T2g(4G), and
6A1g(6S)  (4G) d–d transitions, respectively

[11].

To determine the possible contributions from rare-
earth ions, we recorded the transmission spectra of the
GdFe3(BO3)4 crystal of thickness 1.58 mm at 300 K
using the InSb and Si detectors [12]. We found that the
Gd3+ ion has no absorption bands in a broad spectral
region up to 32500 cm–1 (4 eV). Therefore, the A, B,
and C bands in the spectra of GdFe3(BO3)4 (Fig. 4)
should be assigned to the d–d transitions in Fe3+, i.e., to
the transition from the 5/2 ground state to the 3/2
excited state.

The pressure dependence of the absorption spec-
trum of the GdFe3(BO3)4 crystal is shown in Fig. 5.
Before the phase transition at P ≈ 26 GPa, the position
of the C band can be distinctly observed. One can see

A4

1g E
4

g,

Fig. 5. Absorption spectra of the GdFe3(BO3)4 crystal at
different pressures at room temperature.
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that the energy of this band is virtually independent of
pressure in this pressure range, being equal to ~2.8 eV
(Fig. 6).

In the critical region near Pc1 = 26 GPa, the spectrum
changes noticeably due to the phase transition
described above. In this case, the optical gap decreases
jumpwise from ~3 to ~2.25 eV (Fig. 6). In a new phase,
the optical gap strongly decreases down to ~1.7 eV with
increasing pressure from 26 to 43 GPa (Fig. 6) and then
sharply decreases down to ~0.7 eV at the pressure Pc2 =
(43 ± 2) GPa. Therefore, at Pc2 ≈ 43 GPa, the second
phase transition occurs in the GdFe3(BO3)4 crystal with
changing electronic structure, and, according to the
optical-gap value, this transition can be interpreted as
the dielectric–semiconductor transition.

To estimate the pressure Pmet at which the optical
gap vanishes and complete metallization occurs, we
approximated the baric dependence of the optical gap
after the phase transition at Pc2 = 43 GPa by the linear
function

(3)E E0 1 P
Pmet
---------– 

  .=

Fig. 6. Baric dependences of the absorption edge in (a)
FeBO3 and (b) GdFe3(BO3)4 single crystals at room temper-
ature. The triangles and circles for GdFe3(BO3)4 correspond
to different measurement series; C is the absorption band.
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In the absence of additional transitions, the approxima-
tion gives E0 = (1.31 ± 0.05) eV (E0 is the effective opti-
cal gap in a new phase extrapolated to zero pressure)
and Pmet = 135 ± 11 GPa.

Therefore, we observed two phase transitions
accompanied by an optical-gap jump in the
GdFe3(BO3)4 crystal at Pc1 ≈ 26 GPa and Pc2 ≈ 43 GPa.
The electronic transition at the point Pc1 ≈ 26 GPa coin-
cides with the structural transition. It is quite probable
that the second electronic transition at Pc2 ≈ 43 GPa is
also accompanied by the structural transition. However,
we could increase pressure only up to 40 GPa in our
study and, therefore, could not achieve the second
phase transition. Note that after pressure was decreased
to the normal value, the single crystal remained undam-
aged; however, its color changed from dark green to
light brown.

Figure 6 also shows the baric dependence of the
optical gap in iron borate FeBO3 [13]. The pressure at
which the electronic phase transition occurs with a
drastic change in the energy gap in FeBO3 is close to
the value of Pc2 for the GdFe3(BO3)4 crystal, which
again confirms the similarity of the electronic struc-
tures of these compounds.

4. DISCUSSION OF RESULTS. COMPARISON
OF THE ELECTRONIC STRUCTURE OF IRON 

BORATES GdFe3(BO3)4 AND FeBO3

The absorption spectra show that the electronic
structure of the GdFe3(BO3)4 crystal is close to that of
FeBO3 and is determined in the energy range to 4 eV in
the vicinity of the Fermi level by the Fe ion and its envi-
ronment. The interionic distances Fe–O and B–O in
FeBO3 and GdFe3(BO3)4 are also close to each other
(see table). This allows one to use some theoretical con-
cepts developed for FeBO3 [11, 13, 14] and
GdFe3(BO3)4.

The GdFe3(BO3)4 dielectric has in the ground state
the localized d electrons of Fe3+ in FeO6 octahedra and
the localized f electrons of Gd3+ in GdO6 prisms. Inside
the BO3 group, a strong sp hybridization of boron and
oxygen orbitals takes place. At the same time, the
hybridization of the d electrons in Fe with the sp elec-
trons in BO3 is extremely weak (as follows from the
calculations of the band structure of FeBO3 [15, 16]).

In the one-electron approach based on ab initio cal-
culations, the partially filled d5 terms of Fe3+ and f 7

The B–O and Fe–O interionic distances and the optical gap
Eg in GdFe3(BO3)4 and FeBO3 crystals

B–O, Å Fe–O, Å Eg, eV

FeBO3 1.3790 2.028 2.9

GdFe3(BO3)4 1.3676 2.029 3.1
terms of Gd3+ would lead to partially filled bands and,
hence, to the metallic state. However, due to strong
electron correlations, both the d and f electrons are in
the regime of the Mott-Hubbard dielectric. Therefore,
the many-electron approach taking strong electron cor-
relations into account is required to describe adequately
the electronic structure and optical properties of
GdFe3(BO3)4.

A strong boron-oxygen hybridization in the BO3 tri-
angle determines the splitting of bonding and antibond-
ing molecular orbitals that form the top Eν of the filled
valence band and the bottom Ec of the empty conduc-
tion band. The energy gap between them for
GdFe3(BO3)4 Ego = Ec – Eν = 3.1 eV is somewhat
greater than that in the FeBO3 crystal (2.9 eV) because
the smaller B–O distance in the first crystal leads to a
stronger hybridization (see table).

The one-electron scheme of the valence band and
the conduction band is overlapped by the single-parti-
cle d and f electron resonances with energies

where E(dn) and E(f n) are the energies of many-elec-
tron terms of iron and gadolinium. These energies are
calculated taking into account the effects of strong elec-
tron correlations [13]. Because the hybridization for
Fe–O and Gd–O is weak, the levels Ω virtually do not
interact with the sp bands of the BO3 group.

Because the Gd3+ ion does not absorb at energies hω
below 4 eV, the filled level Ωf ν = E( f 7) – E( f 6) lies
below this energy, while the empty level Ωf c = E( f 8) –
E( f 7) lies above this energy. Therefore, only the d
states of iron are located within the forbidden gap Eg,
and in this sense the electronic structures of FeBO3 and
GdFe3(BO3)4 are similar in this energy range. More-
over, because the Fe–O bond lengths in the FeO6 octa-
hedra in FeBO3 and GdFe3(BO3)4 crystals are close (see
table), one can expect a similarity of the Racah param-
eters A, B, C and the cubic component of the crystal
field ∆ = εd(eg) – εd(t2g) for the iron ion. The ground-
level energies of the dn configurations, taking strong
electronic configurations into account, are expressed in
terms of these parameters as [11, 17]

(4)

Here, εd is the one-electron energy of the d electron in
an atom. For the t2g and eg orbitals in a cubic crystal
field, this level splits into εd(t2g) = εd – 0.4∆ and εd(eg) =
εd + 0.6∆. The Racah parameters in a crystal field
depend on the number of the d electrons in the dn con-
figuration. However, this dependence is rather weak

Ωd E dn 1+( ) E dn( ), Ω f– E f n 1+( ) E f n( ),–= =

E E5
1 d4,( ) 4εd 6A 21B– 0.6∆,–+=

E A6
1 d5,( ) 5εd 10A 35B,–+=

E T5
2 d6,( ) 6εd 15A 21B– 0.4∆.–+=
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and therefore can be neglected for simplicity. As in
FeBO3, the absorption spectrum of the GdFe3(BO3)4
crystal at "ω < Eg is determined by the d–d transitions
in the Fe3+ ion (excitons) with the energies

(5)

A comparison of the absorption spectra of FeBO3 and
GdFe3(BO3)4 at normal pressure shows (Fig. 4) that the
energies of these excitons coincide, which confirms
that the Racah parameters and crystal-field parameters
are coincident for these two crystals. These parameters
are [11, 18]: A = 3.42 eV, B = 0.084 eV, C = 0.39 eV,
and ∆ = 1.57 eV.

The great intensity of the absorption band C in the
spectrum of GdFe3(BO3)4, as in the case of FeBO3, can
be explained by the overlap of the charge-transfer
absorption due to the p6d5  p5d6 process. The cre-
ation of an additional electron in the Fe3+  Fe2+ tran-
sition requires the energy

(6)

while the annihilation of an electron (creation of a hole)
in the Fe3+  Fe4+ transition requires the energy

(7)

The Ωc and Ων levels have the meaning of the upper and
lower Hubbard subbands and can be expressed in terms
of the Racah parameters in the form

(8)

The difference between them (or splitting) is deter-
mined by the effective Hubbard parameter,

(9)

The analysis of behavior of the optical spectra of the
FeBO3 crystal at high pressures showed [13] that the
crystal field increases with pressure, whereas the Hub-
bard subbands broaden only slightly. As the crystal field
increases, the energy of high-spin terms of iron ions
almost does not change, while the energy of low-spin
states decreases. For P = 47 GPa, this leads to the cross-
over of the terms, which is accompanied by the mag-
netic collapse and a jumpwise change in electronic and
transport properties [13].

The similarity of the electronic structures of the
GdFe3(BO3)4 and FeBO3 crystals suggests that the elec-
tronic transition that we found in the GdFe3(BO3)4 crys-
tal at Pc2 = 43 GPa is also related to the spin crossover

εA E T4
1( ) E A6

1( ),–=

εB E T4
2( ) E A6

1( ),–=

εC E E4
1( ) E A6

1( ) or A4
1.–=

Ωc E T5
2 d6,( ) E A6

1 d5,( ),–=

Ων E A6
1 d5,( ) E E5

1 d4,( ).–=

Ωc εd 5A 14B 0.4∆,–+ +=

Ων εd 4A 14B 0.6∆.+–+=

Ueff Ωc Ωn– E0 d4( ) E0 d6( )+= =

– 2E0 d5( ) A 28B ∆–+ 4.2 eV.= =
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and the values of critical pressures for both crystals are
close (Fig. 6).

However, these crystals also reveal some differences
at high pressures. First, we found the structural and
optical transitions in GdFe3(BO3)4 at 26 GPa, which
were not observed in FeBO3. Because the crystal struc-
ture of GdFe3(BO3)4 is more complicated, the presence
of the additional transitions in this crystal is not surpris-
ing. The theory [11, 13, 14] considered the pressure-
induced variation in the electronic properties only for a
specific crystal lattice, and it cannot explain the transi-
tion at 26 GPa. To do this, the total energy of the crystal
should be calculated, as was done for FeBO3 [19].

The second difference is related to magnetic proper-
ties. It is also caused by the more complicated crystal
structure of GdFe3(BO3)4, where the chains of oxygen-
octahedral-containing iron are weakly coupled, and the
exchange interaction between neighboring iron atoms
involves a long chain of intermediate atoms, being
therefore much weaker than in FeBO3. Indeed, the Néel
temperature in GdFe3(BO3)4 TN = 38 K is an order of
magnitude lower than that in FeBO3 (TN = 350 K). The
Mössbauer spectra in the FeBO3 crystal at room tem-
perature reveal a magnetically ordered state at the low-
pressure phase [20], and the magnetic collapse at the
transition point Pc is manifested as the disappearance of
the magnetic order parameter owing to a drastic
decrease of TN at the high-pressure phase during the
spin crossover. Unlike FeBO3, the spin crossover in the
GdFe3(BO3)4 crystal, which is observed from optical
spectra at room temperature, occurs against the back-
ground of the paramagnetic state and is not a real (mag-
netic) phase transition. At the crossover point, the effec-
tive magnetic moment of the Fe3+ ion changes, which
can be observed by the jumpwise change in the slope of
the temperature dependence of the inverse magnetic
susceptibility and by Mössbauer spectra. We plan to
perform such studies in the near future.
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The tunnel and lateral conductivities of an Al/GaAs tunnel structure with a surface Si δ-doped layer are mea-
sured at liquid-helium temperatures under a hydrostatic pressure of up to 3 GPa. Transition of the δ layer to the
insulating state at a pressure of about 2 GPa is revealed. During this transition, the tunnel resistance increases
steadily (on a logarithmic scale) and the zero-bias anomaly in the tunnel resistance exhibits a sharp peak. These
results are interpreted in terms of representations of the effect of pressure on the energy-band structure and
behavior of DX levels. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 62.50.+p; 73.21.-b; 73.30.+y; 73.40.Gk
Recently, in the study of the effect of pressure on the
tunnel spectrum of the Al/δ–GaAs structure [1], it was
suggested that a two-dimensional (2D) electron gas
formed in the near-surface δ-doped layer may undergo
a transition to the insulating state. The experimental
difficulties inherent in tunnel measurements of high-
impedance samples were overcome by developing an
improved measurement scheme [2], which makes it
possible to measure a voltage drop on a δ layer and
exclude the distortion of the restored tunnel spectrum
caused by this drop.

In this paper, we report the results of simultaneous
measurements of the conductivity of a δ layer and the
tunnel spectra under pressures above 2 GPa.

We investigated an Al/δ(Si)–GaAs structure having
two tunnel junctions with the initial (at P = 0) density
of 2D-electron gas n2D ~ 1 × 1012 cm–2 (sample Z1B7)
grown by molecular-beam epitaxy at the Institute of
Radio Engineering and Electronics of the Russian
Academy of Sciences (IREE RAS) [3]. The distance
between the Al/GaAs interface and the δ-doped layer
(common for both junctions) was about 20 nm.

The tunnel spectra and the conductivity of the δ
layer were measured by the four- and two-contact
methods, respectively, at a temperature of 4.2 K, and, in
some cases, upon evacuation at temperatures &2 K
under pressures of up to 3 GPa.

Hydrostatic pressures were applied at room temper-
ature using a fixed-pressure chamber of the cylinder–
piston type using polyethylene–siloxane liquid PÉS-1
as a pressure-transmitting medium. Upon loading, the
pressure was monitored by a Manganin resistance sen-
sor, and, after fixing pressure, the chamber was placed
0021-3640/04/8006- $26.00 © 20433
in a cryostat. The exact value of pressure at low temper-
atures was determined from the well-known baric
dependence of the temperature of superconducting
transition in tin. This technique was described in detail
in [4].

Figure 1 shows typical tunnel spectra (dependences
of the logarithmic derivative of the conductivity
dlnσ/dV on bias) measured at different pressures.
These curves account for the effect of pressure on both
the position of quantum-confinement bands (to which
wide minima correspond) and the many-body interac-
tions—electron–electron interaction (the singularity of

Fig. 1. Tunnel spectrum of sample Z1B7 at T = 4.2 K. The
curves for different pressures are shifted along the vertical
axis with respect to each other by 50 V–1. Pressure in GPa
is indicated near each curve.
004 MAIK “Nauka/Interperiodica”
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the type of derivative of the dip in the conductivity at a
zero bias and the so-called zero-bias anomaly (ZBA))
and electron–phonon interaction at biases correspond-
ing to the energies of LO phonons (about ±36.5 meV).

Figure 2 shows the baric dependences of the δ-layer
sheet resistance and the tunnel resistance at a zero bias
(excluding the ZBA). As can be seen from Fig. 2, a
sharp increase in the lateral resistance (sheet resistance
of the δ layer) by about three orders of magnitude is
observed at a pressure ≈1.9 GPa, which is indicative of
the transition to the insulating state. Figure 3 shows that
a sharp increase in the ZBA amplitude with a subse-
quent drop is observed in the same pressure range.
Since the ZBA accounts for the properties of specifi-
cally the tunnel contact (i.e., including the properties of
the δ-layer region located directly under the gate), we
can assume that the properties of the δ layer change
synchronously over its total area. At somewhat lower
pressures, a small change in the slope of the logarithmic
baric dependence of the tunnel resistance was also
observed.

As additional evidence of the transition of the δ
layer to the insulating state, we can note the sharp
change in the thermal resistance coefficient: from
≈−0.03 ± 0.02 K–1 in the range 0–1.8 GPa to ≈–4 K–1 at
P = 2 GPa.

We believe that the transition of the δ layer to the
insulating state is mainly due to the pressure-induced
changes in the energy-band structure of GaAs and, in
particular, to the presence of DX centers, which are
characteristic of substitutional impurities (Sn, Si, Te) in
III–V semiconductors.

Figure 4a shows the potential distribution near the
interface, which determines the number, position, and
filling of quantum-confinement levels. In the case under
consideration, as found from the self-consistent solu-
tion of the Schrödinger and Poisson equations [1], at

Fig. 2. Dependences of the differential tunnel resistance
Rtun at Vbias = 0 (n and , for gates 1 and 2, respectively) and
the lateral resistance Rδ on pressure at T = 4.2 K.
P = 0, only one level E0 is located in the potential well
below the Fermi level and the corresponding energy
distances are E0 – EΓ ~ 92 meV and EF – E0 ~ 33 meV.
According to the data of Maude et al. [5], at concentra-
tions of Si close to the doping level of the δ layer in the
samples studied here (4.5 × 1012 cm–2), EDX – EΓ ~
270 meV and dEDX – Γ/dP ~ 94 meV/GPa.1

As can be seen from the energy-band diagram
(Fig. 4b), the overlap of the Fermi level with the level
of DX centers must begin at the pressure

A further increase in the pressure leads to the Fermi-
level pinning and localization of carriers at DX centers,
due to which the effective concentration of carriers
involved in the charge transport over the δ layer gradu-
ally decreases. When the Fermi level is below the
mobility threshold with respect to the quantum-con-
finement level, transition to the insulating state occurs.
The pressure range corresponding to this transition can
be roughly estimated as

These estimates are in good agreement with the exper-
imental values.

Within these representations, the behavior of the
tunnel resistance can be explained qualitatively as fol-
lows. Under pressure, the height of the tunnel barrier
increases no faster than the band gap width
(~100 meV/GPa); the barrier width is determined (in

1 In another publication by the authors (Phys. Rev. Lett. 59, 815
(1987)), the following values were reported: EDX – EΓ ~
234 meV and dEDX – Γ/dR ~ –48 ± 23 meV/GPa.

P1
EDX EΓ–( ) E0 EΓ–( )– EF E0–( )–

dEDX Γ– /dP
------------------------------------------------------------------------------------= 1.65 GPa.≈

∆P
EF E0–

dEDX Γ– /dP
------------------------------- * 0.35 GPa.≈

Fig. 3. Dependences of the (d) ZBA amplitude and (j) ZBA
width on pressure.
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the first-order approximation) by the distance between
the δ layer and the interface, i.e., changes insignifi-
cantly, and the density of states at the Fermi level for
the 2D level changes as the effective mass, i.e., also
insignificantly. Therefore, the general exponential char-
acter of the dependence of the tunnel current on bias
undergoes no sharp changes at the transition to the insu-
lating state.

Nevertheless, the above factors still have some
effect and the slope of the dependence lnRtun(P) begins

Fig. 4. (a) Distribution of the potential near the interface and
the system of quantum-confinement levels and (b) change in
the relative position of the characteristic energy levels under
pressure. EX is the edge of the X valley, EDX is the level of
DX centers, EF is the Fermi level, E0 is the edge of the lower
quantum-confinement subband, and EΓ is the edge of the
conduction band (the Γ valley).
JETP LETTERS      Vol. 80      No. 6      2004
to change as soon as some of the free electrons are
localized at DX centers, which leads to a change in the
space charge. As can be seen from Fig. 1, the dips cor-
responding to the quantum-confinement levels are
fairly wide. This circumstance indicates a significant
inhomogeneity of the δ layer (or the barrier height) over
the tunnel-contact area, which manifests itself as an
apparent broadening of the E0 level. Due to this, the
kink in the baric dependence of the logarithm of the
tunnel resistance shifts to somewhat lower pressures as
compared with the above estimate.

The behavior of the ZBA is not quite clear. On the
one hand, this phenomenon was attributed to the effects
of exchange-correlation interaction and an increase in
the ZBA amplitude under pressure was predicted for
three-dimensional systems [7]. On the other hand, the
behavior of the ZBA near the transition to the insulating
state of the 2D system studied here may indicate, for
example, the appearance of a Coulomb gap [8] in the
spectrum, which, as is known, may manifest itself in
tunneling [9]. In any case, the origin of a sharp peak in
the baric dependence of the ZBA near the transition to
the insulating state, the significant magnitude of this
effect, and the nonmonotonic dependence of the ZBA
width on pressure deserve to be carefully studied.

We are grateful to A.Ya. Shul’man and V.A. Volkov
for their helpful participation in discussions and
V.M. Pudalov for valuable remarks. This study was
supported by Russian Foundation for Basic Research
and grants from the INTAS and the Division of Physical
Sciences of RAS.
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Landau–Zener Problem for Energies Close
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We examine a previously overlooked aspect of the well-known Landau–Zener (LZ) problem, namely, the
behavior in the intermediate, i.e., close to a crossing point, energy region, when all four LZ states are coupled
and should be taken into account. We calculate the 4 × 4 connection matrix in this intermediate energy region,
possessing the same block structure as the known connection matrices for the tunneling and in the over-barrier
regions of the energy and continuously matching those in the corresponding energy regions. Applications of the
results may concern various systems of physics, chemistry, or biology, ranging from molecular magnets and
glasses to Bose condensed atomic gases. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 05.45.-a; 31.50.Gh; 72.10.-d
The standard textbook Landau–Zener (LZ) theory
[1] concerns a crossing problem of two linear diabatic
potentials U# ± FX (X = 0 is the crossing point). How-
ever, in spite of its more than half-century history, semi-
classical solutions of this problem have been found
only in the limits of small or large energies E (we will
call these regions tunneling and over-barrier, respec-
tively), i.e., for

(1)

where U12 is the interlevel interaction, which, in the LZ
model, does not depend on X. For the intermediate
energy region,

(2)

only interpolating relations between exponentially
decaying solutions in the tunneling and oscillating
solutions in the over-barrier energy regions are known
(see e.g., [2, 3]). Analytical and numerical study of this
region (2) is the objective of this paper.

Our approach is motivated by a semiclassical instan-
ton approximation [4–6]. The idea is to construct two
linearly independent continuous (with continuous first
derivatives) approximate solutions to the Schrödinger
equation that, in the asymptotic region, coincide with
semiclassical solutions, and, in the vicinity of the turn-
ing points, coincide with the exact solutions of the so-
called comparison equation (i.e., the exact solution of
the Schrödinger equation for the chosen appropriately
approximate near the turning points’ potentials). In
what follows, the Weber equation [7] will be used as the

¶ This article was submitted by the authors in English.

U# E–  @ U12; U# E–  ! U12,

U# E– U12,≤
0021-3640/04/8006- $26.00 © 20436
comparison equation and be valid near the second-
order turning points for an anharmonic potential [3, 8,
9]. To justify this choice, it is sufficient to note that the
anharmonic corrections remain semiclassically small
(i.e., proportional to higher orders of the " series) in the
region where the solutions of the comparison equation
have to be matched smoothly with the semiclassical
solutions. Luckily, the analogous approach is valid for
treating two diabatic potential crossing points (the LZ
problem), and the comparison equations for this case
are two coupled Weber equations with indices and
arguments determined by the solutions of the algebraic
characteristic equation.

The LZ problem for crossing diabatic potentials is
equivalent to the coupled Schrödinger equations, which
can be transformed by the substitution

(3)

into a fourth-order linear differential equation with
coordinate-independent coefficients at the derivatives,

(4)

where Dn ≡ dn/dXn and γ @ 1 is the dimensionless semi-
classical parameter, which is determined by the ratio of
the characteristic potential scale over the zero oscilla-

Ψ κX( )Φexp=

D4Φ 4κ D3Φ 6κ2 2αγ2–( )D2Φ+ +

+ 4 κ3 αγ2κ–
1
2
---γ2 f– 

  DΦ

+ κ4 2αγ2κ2– 2γ2 fκ– γ4 α2 u12
2– f 2X2–( )+[ ]Φ  = 0,
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tion energy, and all other dimensionless appropriately
rescaled variables are

(5)

where scale for the energy is given by Ω2 = F2/mU12
(m is a mass) and space scale is determined by the char-
acteristic size a0 of the potential in the vicinity of the
crossing point.

Equation (4) admits semiclassical solutions by the
Fedoryuk method [10–12], since the coefficients at the
nth-order derivatives proportional to γ–n and all the four
asymptotic solutions read as

(6)

where we designated

Equation (4), up to anharmonic terms proportional
to X2DΦ, X3Φ, and X4Φ, can be formally derived by
simple manipulations (two sequential differentiations
and summations) from the following second-order
equation:

(7)

where the coefficients are

(8)

where the equation for κ referred to in what follows by
the characteristic equation is

(9)

where

and

(10)

The fundamental solutions to (7) read as

(11)

α 2
U# E–
γ"Ω

----------------, f
2a0F
γ"Ω
------------, u12

2U12

γ"Ω
-----------,= = =

Ψ j
sc( ) u12

2 f 2X2+( ) 1/4– λ j x( ) xd

0

X

∫ 
 
 

,exp=

j ++ +– –+ ––, , ,( ),=

λ j λ j
0 u j, λ j

0+ γ α u12
2 f 2X2+±( ),±= =

and u j γf λ j
0( )2 αγ–( )

1–
.=

D2Φ a0 a1X a2X2+ +( )Φ+ 0,=

a0 κ2 αγ2–
γ2 f
2κ
-------- 1 δ+( );–=

a1 γ2 fδ; a2 γ2 fκδ,–= =

κ4 αγ2κ2–
1
4
---γ4u12

2+ κ4δ2 1 2δ+( )– R κ δ,( ),+=

R κ δ,( ) = 2κ6( ) 1–
1 3δ–( ) 1 δ+( ) 3– 1 Q– 1 2Q2 )––( );

Q 8δ2 1 δ+( ),=

δ γ2 f

4κ3
--------.=

Dp
γ4 f 2

κ2
---------- 

 
1/4

± X
1

2κ
------– 

  ,
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where

(12)

In the tunneling and over-barrier regions of energies,
where δ < 1/4, these four solutions (two solutions of
(11) for the two largest modulus roots of characteristic
Eq. (9)) can be separated into two independent pairs
(orthogonality of the Weber functions with different
indices). Thus, one can say that the crossing point is
equivalent to two second-order turning points with dif-
ferent Stokes constants (see, e.g., [13]).

In the tunneling region, the two largest modulus
roots of (9) are (two other roots are small and do not sat-
isfy semiclassical approach)

(13)

and the four linearly independent solutions (11) are
matched to semiclassical solutions (5) in the region α >
f |X | > u12, where the exponent of the wave function can
be expanded over the small parameter δ:

(14)

Since κ|X | ≤ (4δ)–1, expansion (13), which is conver-
gent with alternating signs, determines the accuracy of
the asymptotically smooth transformation. Putting
everything together, we obtain the conclusion that the
anharmonic corrections to Weber functions (11) are
small (in other words, the parameter δ determines the
accuracy of our approximation). The same kind of anal-
ysis can be performed in the over-barrier region, where
one finds two imaginary largest modulus roots of the
characteristic equation (see details in [9]).

It is a more difficult task to find solutions in the
intermediate energy region, where two roots of the
characteristic equation are real and two are imaginary
ones having the same modulus, i.e., moving upon α
variation along a circle with the radius γ . In this
case, the semiclassical solutions can be presented as
certain linear combinations of the comparison equation
solutions, and the roots are

(15)

p
1
2
---–

γ4 f 2

κ2
---------- 

 
1/2–

a0
a1

2

4a2
--------– 

  .+=

κ κ 0 1
δ2

2
-----

κ0
2

2κ0
2 αγ2–

-----------------------±
 
 
 

;±=

κ0
γ
2

------- α α 2 u12
2–+( )

1/2
,=

Φ κX δ κX( )2 2
3
---δ2 κX( )3– …+ + 

  .exp∝

u12/2

κ1 2,  . γ
u12

2
------- iϕ( );exp±

κ3 4,  . iγ
u12

2
------- iϕ–( ),exp±



438 BENDERSKII et al.
where

(16)

Correspondingly to roots (16), the arguments and the
indices of Weber functions (11) and (12) read as

(17)

and

(18)

where

(19)

Semiclassical solutions (6) are matched asymptotically
smoothly to the linear combinations of the Weber func-
tions in the region u12 > f |X |. Since it follows from (17)
and (18) that, at large δint, the indices of the Weber func-
tions are also large, one can use the asymptotics of the
Weber functions (known due to Oliver [14, 15]) with
large arguments and indices,

(20)

At z2 @ 4|p + (1/2)|, (20) is reduced to the usual asymp-
totic expansion of the large argument Weber functions
and, in the opposite limit (i.e., in the intermediate
region), (20) corresponds to the expansion of the expo-
nent over odd powers of z. We can also find the asymp-
totics to the solutions of (7),

(21)

that are valid at arbitrary values of the parameters ai

(including a2 = 0).

The fundamental solutions to the comparison equa-
tion are the asymptotics for the wave functions in form
(3), namely,

(22)

and

(23)

ϕtan
u12 α–
u12 α+
-----------------.=

z1 = z2 = 2κ int δint iϕ /2–( ) X 2κ int( ) 1– iϕ–( )),exp–(exp

z3 = z4

=  2κ int δint iϕ /2( ) X 2κ int( ) 1– iϕ( )),exp–(exp

p1 p2 1–=

=  1–
1

4δint
---------- iϕ–( ) 1 2δint

2 2iϕ–( )exp+( ),exp–

p4 = p3 1–  = 1–
1

4δint
---------- iϕ( ) 1 2δint

2 2iϕ( )exp+( ),exp–

κ int γ u12/2( )1/2; δint γ2 f( )/ 4κ int
3( ).= =

Dp z( ) 1
2
--- z2 4 p

1
2
---+ 

 – 
  1/2

zd∫– .exp∝

Φ0 i a0 a1X a2X2+ + xd∫–( )exp∝

Ψ j
± κX( )Dp z j X( )±( ),exp=

Ψ1
+ Ψ4

+, F1 X( )( ), Ψ2
– Ψ3

– F1 X( )–( ),exp∝,exp∝

Ψ1
– Ψ3

–, iF2 X( )( ), Ψ2
+ Ψ4

– iF2 X( )–( ),exp∝,exp∝
where

(24)

Wave functions (23) asymptotically smoothly turn into
semiclassical functions (6). The accuracy of this match-
ing is determined by the anharmonic corrections, i.e.,
by the parameter δint (19) and Olver asymptotic (20)
works, even on the boundary z2 . 4|p + (1/2)|. The
parameter δint is no longer small when, simultaneously,

(25)

However, asymptotic matching of the solutions should
be performed at small |X | < γ–1, where comparison
Eq. (12) and, therefore, the characteristic Eq. (9) are
valid, even though, upon increasing δint, the potential
becomes more and more anharmonic. At α = 0 and
u12 = 0, Eq. (9) (taking into account the term R(κ, δ))
has the doubly degenerate root κ = 0, i.e., in terms of
(12), a1 = ±γ2f and a2 = 0. Thus, in this limit, (12) is
equivalent to two decoupled Airy equations, corre-
sponding to the diabatic potentials. These solutions turn
smoothly into semiclassical solutions (6), and the
anharmonic corrections in the matching region are
small over the parameter γ–1/2.

We conclude that, in the both intermediate energy
subregions—large κ (i.e., ∝γ ) and small κ (i.e.,

∝ )—comparison Eq. (12) is reduced to two decou-
pled equations: Weber or Airy ones, respectively. This
simple observation enables us to construct the universal
connection matrix for both intermediate energy regions
by using Olver asymptotic expansion (21). The four
roots (15) distributed over the circle with the radius

γ  on the complex plane determine the following
combinations of the comparison equation solutions
matching semiclassical solutions (6). Namely,

(26)

where the superscript “sc” indicates the semiclassical
solutions. Combining the asymptotic expansions for
these combinations, we find that, at the crossing point,

the matrix  is

F1 2, X( ) = γ u12 α± 1 δint+( )X κ int
2 δint

2 2iϕ–( )X2exp–

+
γ f 2

12u12 u12 α±
---------------------------------- 1 α

u12
------- δint–± 

  X3.

α f
γ
--- 

 
2/3

≤
u12

2γ2
-------- 

  1/3

; u12
2
γ
---.≤=

γ

u12/2

Ψ1
+ Ψ4

+ Ψ++
sc ; Ψ2

– Ψ3
– Ψ+–

sc ;++

Ψ1
– Ψ3

+ Ψ–+
sc ; Ψ2

+ Ψ4
– Ψ––

sc ,++

Ûc''
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(27)

Ûc''

2π/Γ q*( )( ) 2χ q*( )–( )exp 0

0 Γ q( )/ 2π( ) 2χ q( )( ) 1 2πq2–( ) πq1( )cos
2

exp–( )exp

0 2πq2–( ) πq1( )cosexp

2πq2–( ) πq1( )cosexp 0

=

0 2πq2–( ) πq1( )cosexp–

2πq2–( ) πq1( )cosexp– 0

2π/Γ q( )( ) 2χ q( )( )exp 0

0 Γ q*( )/ 2π( ) 2χ q*( )( ) 1 2πq2–( ) πq1( )cos
2

exp–( )exp

,

where

(28)

and, in addition, we introduce the following abridged
notations:

(29)

and, analogously,

(30)

where ϕ is defined by (16).

Connection matrix (27) in the intermediate energy
region is our main result and the motivation for this
publication. This matrix generalizes the results we pre-
sented in [3]. It is ready for further applications, and, to
reap the fruits of the result, we compute the LZ transi-
tion probability |T |2, which is universally valid for the
tunneling, over-barrier, and intermediate energy
regions (solid line in the figure). It is instructive to com-
pare our result with the perturbative Landau approach
(see, e.g., [1]) valid at small coupling constants. In first-

order perturbation theory, the transition amplitude 
reads

(31)

where we designated ε = –αf –2/3 and Ai is the first kind
Airy function. All even higher order terms equal zero,
and odd terms read as

(32)

q = q1 iq2; q1 2,+  = 
γu12 u12 α±

4 f
-------------------------------; q* = q1 iq2,–

χ χ1 iχ2; 2χ1 q1 q1
1
2
---– 

  q ϕq2,+ln–=+=

2χ2 q2 q2 q ϕ q1
1
2
---– 

  ,–ln–=

ALZ
1( )

ALZ
1( )

2iu12
π
ε
---Ai 22/3ε( ),=

ALZ
2n 1+( ) ALZ

1( )( )2n 1+
.=
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Therefore, the series can be easily summed up giving,
the generalized Landau formula

(33)

We show this perturbative solution by the dashed line in
the figure. Note that, although Eq. (32) reproduces the
oscillating energy dependence of the LZ transition
amplitudes, the equation gives oscillation periods that
are quite different from those we calculated by our 4 ×
4 connection matrix (27). This difference occurs
because the perturbation (say, two) method disregards
the contributions from the increasing solutions to the
Schrödinger equation, which are relevant in the inter-
mediate energy region.

ALZ ALZ
1( )

1 ALZ( )2+[ ] 1–
.=

Energy dependent LZ transition probability: the solid line
is the 4 × 4 connection matrix (27) calculations; the dashed
line represents the generalized perturbative Landau for-
mula (33).
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The effect of the anisotropy of the interaction of a spin chain in the XXZ Heisenberg model on the concurrence
of the states of neighboring sites is studied. When anisotropy increases, the maximum concurrence in a mag-
netic field increases above the value reached in the absence of the field. The maximum magnetic field allowing
entanglement is linearly related to the anisotropy parameter. © 2004 MAIK “Nauka/Interperiodica”.
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As is known, quantum states can exhibit a so-called
entanglement that corresponds to nonlocal correlations
of measurable quantities and has no classical analog.
The state of a part of such quantum system can be deter-
mined by measuring (possibly destroying) the other
part of the system. This property underlies quantum
processing of information and is necessary for working
quantum algorithms. The so-called Einstein–Podol-

sky–Rosen pair |ψ〉 = (|01〉  – |10〉)/  is a classical
example of an entangled state [1].

One of the quantum-computer schemes under con-
sideration is based on interacting electron spins in
solid-state quantum dots [2]. Spin systems have an
important property: the entanglement of a state is easily
controlled by varying an external field [3] or the param-
eters of the system [4] and can be large [5]. An increase
in temperature, which is usually harmful for the nan-
odevices under development, generally reduces entan-
glement. The inverse effect is, however, possible for
certain external-field magnitudes; i.e., a rise in temper-
ature increases entanglement [6].

Therefore, despite difficulties in realization, spin
systems are among the promising systems for realiza-
tion of quantum computations. In addition to their use
in quantum informatics, investigations of entanglement
are of independent importance, in particular because
they provide a deeper insight into the nature of irrevers-
ibility [7].

Since spin models are simple, entanglement can be
studied in the Ising model [8], XY model [5], isotropic
and anisotropic Heisenberg models [6, 9], in longitudi-
nal [3] and transverse [8] magnetic fields (magnetic
entanglement) or in the absence of any magnetic field
[10], in the ground state [11], and with an increase in
temperature (thermal entanglement) [3, 6]. The asymp-
totic values of concurrence were found for an infinite
antiferromagnetic chain and a square lattice [11].

2
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However, the effect of interaction anisotropy on
entanglement in the Heisenberg model is still poorly
studied, although analytical results have been obtained
for two and three qubits [6, 9]. In this work, a sufficiently
large spin system (up to 16 spins) is considered. General
properties are found, and the phase diagram is con-
structed.

The Hamiltonian of an antiferromagnetic XXZ chain
has the form

(1)

where S = 1/2s, σx, y, z are the Pauli matrices and SL + 1 =
S1. All quantities are measured in the exchange energy
unit J, and interaction anisotropy is determined by the
parameter ∆.

There are several parameters characterizing the
entanglement of the system under consideration: von
Neumann entropy [12], the entanglement of formation
and distillable entanglement, and the concurrence of a
pair of qubits and the fidelity of a multiqubit state to the
Greenberger–Horn–Zeilinger state [13]. The last two
measures are most often used to study spin systems.

In this work, we explored entangled states of spin
chains by calculating the concurrence of adjacent
qubits. The concurrence of two qubits in an entangled
state with the environment is expressed as [14]

(2)

Here, the eigenvalues λi of the matrix R = ρ(σy ⊗
σy)ρ*(σy ⊗  σy), where ρ is the reduced density matrix of
these two qubits and ρ* is obtained from ρ by time inver-
sion, are numbered in decreasing order. Concurrence C
determines the entanglement of formation E(C) [14],

(3)

Ĥ Si
xSi 1+

x Si
ySi 1+

y ∆Si
zSi 1+

z+ +( ) H Si
z,

i 1=

L

∑–
i 1=

L

∑=

C max λ1 λ2– λ3– λ4 0,–( ).=

E x( ) x x( )2log– 1 x–( ) 1 x–( ),2log–=
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where x = (1 + )/2. For a pure state, x is the
coefficient of the corresponding Schmidt decomposi-
tion [12].

For an anisotropic XXZ Heisenberg chain in the
absence of a magnetic field, exact solutions were
obtained by the Bethe-ansatz method [13] and method
of inverse scattering problem [10]. In this work, we use
the numerical method of the exact diagonalization of
the Hamiltonian matrix. All energy levels and eigen-
states of spin chains were determined, the total density
matrix  was then calculated, and Tr  over the states
of sites i = 3, 4, …, L was calculated according to
Eq. (2).

Figure 1 shows entanglement E calculated for a six-
site chain as a function of the external field and anisot-
ropy parameter ∆. First, it is worth noting that, with an
increase in ∆, entanglement in the field becomes signif-
icantly different from its value E0 in the absence of the
field. Moreover, its maximum value is larger than that
for the isotropic case.

Figure 2 shows entanglement E0 for chains of vari-
ous lengths. With an increase in L, this quantity tends to

the known asymptotic value  = E(C . 0.386) .

0.236 (see [11]). Entanglement E0 reaches a maximum
for the isotropic case. The anisotropy effect is approxi-
mated by the formula C . C0 – C1(∆ – 1)2 presented in
[10] with the coefficients C0 . 0.386 and C1 . 0.047
(for the six-site chain).

Figure 3 shows the maximum entanglement Emax as
a function of the anisotropy degree. This quantity is vir-
tually saturated for ∆ ≥ 3.0.

We emphasize that the range of magnetic fields for
which the concurrence of the states of adjacent spins is
nonzero extends when anisotropy increases. This
dependence presents the general relation between

1 C2–

ρ̂ ρ̂

E∞
0

Fig. 1. Entanglement E(C) of the states of adjacent spins in
a six-site chain for T = 0 as a function of the external field
H and anisotropy parameter ∆ varying from –1.0 to 3.0.
Entanglement is zero for ∆ < –1.0. With an increase in
anisotropy, the maximum entanglement Emax, as well as the
limiting field value for which states in adjacent sites are
consistent (C ≠ 0), increases. Value E0 is entanglement in
the absence of the field.
entanglement and interaction. Let us explain this
behavior. The boundary of the nonzero-entanglement
region corresponds to a phase transition where all spins
of the chain are aligned along the field (spontaneous
magnetization of a ferromagnetic material). The step
nearest to the transition in the entanglement plot (see
Fig. 5) corresponds to the set of states |Ψ〉 =

(|01…1〉  + eiφ|10…1〉  + … + eiφ(N – 1)|11…0〉) with
1

N
--------

Fig. 2. Entanglement E0 (for H = 0) of the states of adjacent
spins in a chain consisting of N = 4, …, 16 sites for ∆ = 1.0.
A tendency to an asymptotic value of 0.236 [11] is seen.

Fig. 3. Maximum achievable entanglement Emax of the
states of adjacent spins in a ten-site chain as a function of
the anisotropy degree.
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the total-spin projection  = N/2 – 1, where φ is
the phase parameter. It is easy to determine the corre-
sponding entanglement. The reduced density matrix of
two adjacent spins of the chain has the form

, (4)

and Eq. (2) yields C = 2/N.
The minimum-energy level in this set corresponds

to φ = π:

(5)

For |H| > H*, where 

(6)

state |111…1〉  becomes energetically preferable and
concurrence vanishes (see Figs. 1 and 4).

Similar formulas for (d = 2) square and (d = 3) cubic
lattices yield C = 2d/N and |H*|/J = d(1 + ∆).

For ∆  ∞, the model given by Eq. (1) is trans-
formed to the Ising model whose ground state is not
entangled in the absence of the transverse field [8]. In
view of this circumstance, let us analyze the behavior of
entanglement for large ∆ values.

First, when approaching the Ising limit, entangle-
ment decreases in a wide range of applied field magni-

Si
z

i∑

ρ 1
N
----

N 2– 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0 
 
 
 
 
 

=

E1
min H

N
2
---- 1– 

 – ∆ N
4
---- 1– 

  1.–+=

H*/J 1 ∆,+=

Fig. 4. Magnetic field–anisotropy phase diagram describing
a domain with a nonzero concurrence of the states of adja-
cent spins: C > 0 for |H| < 1 + ∆.
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tudes. Entanglement can be estimated in the simplest
perturbation theory in the parameter 1/∆. We consider a
change in the ground state with zero total spin projection:

(7)

where

(8)

(9)

under the action of the transverse-interaction operator,
which can be represented as

Taking the first order of perturbation theory, we ignore
states obtained from |Ψ0〉  by applying perturbation
more than once. In this case, in the truncated basis
{|Ψ0〉 , |φi〉}, the Hamiltonian matrix takes the form

(10)

Ψ| 〉  . a Ψ0| 〉 bi φi| 〉 ,
i 1=

L

∑+

Ψ0| 〉 01…0i1i 1+ …01| 〉 ,=

φi| 〉 01…1i0i 1+ …01| 〉=

J /2 σi
+σi 1+

– σi 1+
+ σi

–+( ),
i 1=

L

∑

σi
+ 0 0

1 0 
 
 

i

, σi
– 0 1

0 0 
 
 

i

.= =

Ĥ J∆

0 1/2∆ 1/2∆ … 1/2∆
1/2∆ 1 0 … 0

… … … … …
1/2∆ 0 0 … 1 

 
 
 
 
 

.=

Fig. 5. Entanglement E(C) of formation of adjacent spins in
a ten-site chain as a function of the external field H for T =
0 and anisotropy parameter ∆ = 1, …, 20. With an increase
in ∆, the peak is shifted to the right (more precisely, a single
peak splits into two peaks: the peak is symmetric for H < 0),
and the maximum value of E(C) increases slightly.
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The ground level becomes lower by –JL/4∆, and the
ratio of the coefficients of the wave-function expansion
is bi/a = –1/2∆. As a result, the concurrence of adjacent
spins of the chain is approximately equal to 1/∆.

However, we emphasize that the above reasoning is
invalid near the transition point (H . ∆), where energy
levels corresponding to various total-spin projections
overlap each other. In this case, the transverse part of
interaction cannot be treated as weak and the system is
far from the Ising model. For such a field, concurrence
remains large for any anisotropy parameter. Figure 5
shows a substantially nonmonotonic concurrence plot
uniting these two features.

Calculations for longer chains (L = 14) reveal the
same behavior. With an increase in the chain length, the
number of steps corresponding to different total-spin
projections increases and the dependence becomes
smoother, but the same feature remains.

Figure 6 shows the effect of temperature on concur-
rence. With an increase in temperature, the entangle-
ment plot is smeared and decreases. Entanglement
decreases locally between the second and third steps,
which are characterized by close E(C) values (cf. the
result from [3] for L = 6 and ∆ = 1.0).

Conclusions. New results for the entanglement of a
spin chain have been presented for the anisotropic
Heisenberg model. Since real magnetic systems usually
have an anisotropy axis, these results can be used to
develop and analyze quantum algorithms based on spin
systems, and the phase diagram enables one to predict
working parameters.

Fig. 6. Entanglement of adjacent spins in a ten-site chain as
a function of the external field H for ∆ = 3.0 and temperature
T = (thick line) 0, (a) 0.025, (b) 0.1, and (c) 0.25.
The calculations showed that interaction anisotropy
considerably changes the concurrence of adjacent spins
of the antiferromagnetic XXZ chain, increasing its max-
imum value in the presence of the field and extending
the magnetic-field range where nonzero concurrence is
possible. The limiting field is related to the anisotropy
parameter by simple linear relation (6).

Thus, the available data on entanglement in various
spin models make it possible to choose the external
conditions or system parameters best for entanglement.
Examination of inhomogeneous spin systems with
impurities (as in [4]), open boundary conditions and a
nonuniform external field, which correspond to realis-
tic conditions of creating quantum dots, is one of the
expected directions of further investigations in this
field.
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The electrophysical properties of quasi-one-dimensional conductors with a charge-density wave change quali-
tatively upon a decrease in their transverse sizes. The temperature and electric-field dependences of the conduc-
tivities of thin samples are governed by the laws expected for one-dimensional electron systems. The results of
studying these effects and the present-day knowledge of their origin are presented. © 2004 MAIK
“Nauka/Interperiodica”.
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Introduction. At present, the physics of one-dimen-
sional electron systems is a rapidly progressing field of
solid-state physics. The physical properties of one-
dimensional electron systems differ substantially from
the properties of bulk systems. The distinctions arise
primarily due to the electron–electron interactions,
which are invariably essential in the one-dimensional
electron systems and cannot be treated perturbatively.
In what follows, by one-dimensional conductors are
meant the structures formed by atomic chains, and by
quasi-one-dimensional conductors are meant crystals
comprised of a large number of such chains.

Historically, the first idea of the unusual properties
of one-dimensional metals was proposed by Peierls,
who pointed out that the spatially inhomogeneous state
with periodic atomic displacements and electron-den-
sity modulation in crystal lattice, the so-called state
with a charge-density wave (CDW), is energetically
favorable [1]. Experimentally, the Peierls transition
with the formation of a CDW was discovered in 1976
in a quasi-one-dimensional NbSe3 conductor, i.e., more
than 20 years after it had been predicted. It should be
noted that the Peierls transition is accompanied by the
formation of a three-dimensionally ordered CDW,
while the transition is clearly seen only in sufficiently
large (by today’s standards) crystals of quasi-one-
dimensional conductors with transverse sizes no less
than several tens of nanometers. At present, the physics
of quasi-one-dimensional conductors is rather well
explored. Quasi-one-dimensional conductors possess a
number of unusual properties associated with the pres-
ence of CDWs: the collective conduction caused by
CDW sliding in the above-threshold electric fields, the
generation of a narrow-band noise upon this sliding, a
0021-3640/04/8006- $26.00 © 20445
large low-frequency dielectric constant (up to 108) that
arises due to the contribution of the pinned CDW, etc.
[3].

The construction of the theory of low-energy excita-
tions in a one-dimensional electron liquid was another
important achievement in the physics of one-dimen-
sional systems [4]. The excitation parameters were
determined using the Luttinger model, and a broad
class of one-dimensional many-particle quantum sys-
tems, for which the solution was found, has received,
after Haldane [5], the name of Luttinger liquid class.
Intensive studies of the physics of one-dimensional
electron systems started in the 1900s, after it had
become clear that such systems can be prepared exper-
imentally, while the anticipated phenomena are highly
unusual and interesting. The existence of collective
charge and spin elementary-excitation modes, the
absence of single-particle excitations (quasiparticles),
the appearance of spin–charge separation (i.e., disper-
sion laws for the charge and spin modes are dissimilar),
etc., were predicted for one-dimensional electron sys-
tems [4].

In the one-dimensional systems, impurities form
energy barriers that can be overcome through tunneling
[6]. The density of tunneling states in a Luttinger liquid
is a power-law function of energy distance from the
Fermi level, and the exponent depends on the electron–
electron interaction strength and also on whether elec-
trons tunnel to the end or middle of the one-dimen-
sional chain. For this reason, the current–voltage char-
acteristics (CVCs) and the temperature dependences of
the conductivity of a one-dimensional chain with a
Luttinger liquid and a single impurity are determined
by power-law energy dependences that are specific of
004 MAIK “Nauka/Interperiodica”
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the density of tunneling states of one-dimensional sys-
tems [6].

Experimental studies in this field are being carried
out for various structures, including carbon nanotubes
[7], semiconductor nanowires [8, 9], and many other
objects (see, e.g., [10]).

Until recently, the physics of quasi-one-dimensional
conductors and physics of one-dimensional electron
systems were developed almost independently of each
other. The investigations discussed in this review are
devoted to phenomena that were originally observed in
thin samples of quasi-one-dimensional conductors. It
turns out that phenomena very similar to those expected
for one-dimensional electron systems arise in these
physical objects under certain conditions. The reason
for such behavior remains to be clarified.

Subject of investigation. Quasi-one-dimensional
conductors are suitable objects for a search for the one-
dimensionality effects, because the low-dimensionality
effects are inherent in these materials. They have a
chain structure, allowing their use in the fabrication of
thin samples by various splitting, layering, and other
methods.

Below the Peierls-transition temperature, quasi-
one-dimensional conductors with a CDW have several
characteristic lengths that govern many physical prop-
erties of these materials. These are the CDW phase- and
amplitude-correlation lengths. The phase-correlation
length appears due to breaking the CDW long-range
order by impurities. In pure samples, it is equal to tens
of microns along the chains and is on the order of one
micron in the transverse direction. In samples with
sizes smaller than the CDW phase-correlation length, a
multitude of size effects arises [11]. The amplitude-cor-
relation length is determined by the parameters of the

Fig. 1. Evolution of the temperature dependence of the con-
ductivity of quasi-one-dimensional NbSe3 and TaS3 con-
ductors upon their thinning. Arrows indicate the Peierls-
transition temperatures. Data from [13].

e

dc

b

a

material and characterizes the distances at which the
amplitude of the CDW order parameter changes. Esti-
mates show that the amplitude-correlation length in
quasi-one-dimensional conductors with a CDW is
equal to 3–10 nm along the chain and is approximately
an order of magnitude smaller in the transverse direc-
tion. It has been established in previous studies that,
upon a decrease in the transverse sizes of the samples
to the submicron level, the threshold field for the onset
of nonlinear conduction increases by several orders of
magnitude, the Peierls transition becomes diffuse and
shifts to low temperatures, the threshold behavior
smears, the breaking of the CDW metastable state
accelerated, etc. [11]. These phenomena can all be con-
sidered as precursors of the CDW breaking and the
transition of a quasi-one-dimensional conductor to
some new state.

The assumption that the transition from quasi-one-
dimensionality (bulk samples) to one-dimensionality
(single chain) should inevitably occur upon a decrease
in the sample sizes served as the basis for a search for
the one-dimensionality effects in the quasi-one-dimen-
sional conductors. The studies discussed below were
carried out for quasi-one-dimensional conductors of the
MX3 (M = Nb, Ta; X = S, Se) family, primarily for
NbSe3. This material was not chosen accidentally.
Despite the occurrence of two Peierls transitions at
temperatures TP1 = 145 K and TP2 = 59 K in NbSe3, it
retains metallic properties at very low temperatures.
For this reason, the one-dimensionality effects should
be accompanied by a qualitative change in the character
of conduction. Moreover, the charge-carrier concentra-
tion in NbSe3 at T < TP2 is exceedingly low: n = 2 ×
10−18 cm–3 [12]. Thus, at T < TP2, NbSe3 is a metal with
an unprecedently low electron concentration, so that
the appearance of one-dimensionality effects as a con-
sequence of the size effects can be expected even for
comparatively large transverse sizes of the samples.

Electrical conductivity of thin NbSe3 samples
and one-dimensionality effects. NbSe3 samples pre-
pared by plasmochemical etching. In [13], the electro-
physical properties of NbSe3 samples were studied as a
function of their transverse sizes. The studies were car-
ried out with NbSe3 samples obtained by splitting high-
quality crystals and their additional thinning by plas-
mochemical etching in an SF6 plasma, and also with
TaS3 samples prepared by splitting without any addi-
tional processing. It was found that the character of
temperature dependence of the electrical conductivity
qualitatively changed with a decrease in the sample
transverse sizes (Fig. 1). As the thickness of NbSe3
crystals decreased, the metallic behavior of R(T) show-
ing two maxima corresponding to two phase transitions
with CDW formation (curve a in Fig. 1) graded into
dielectric behavior with dR/dT < 0 (curve c). In the thin-
nest samples (with the resistance per unit length R/L ~
103 Ω/µm, which corresponds to the cross-sectional
JETP LETTERS      Vol. 80      No. 6      2004
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area of less than 3000 nm2), the conductivity was
described by the law R(T) ∝  T–α (α ≈ 3) over a change
in R by three to four orders of magnitude. According to
this law, R(0) = ∞ (dielectrization). Moreover, it turned
out that the CVCs of the majority of thin samples also
qualitatively changed, became nonlinear, and obeyed
the same power law I ∝  Vβ (β ≈ 3) in the nonlinearity
region (Fig. 2). The power-law temperature and elec-
tric-field dependences of this type are precisely those
which are expected for the conductivity of a one-
dimensional electron gas [4, 6]. However, the predicted
relationship β = α + 1 was not fulfilled in those experi-
ments.

The electrophysical properties of the TaS3 samples
also changed upon a decrease in their transverse sizes,
but these changes were less pronounced and observed
mainly in the temperature range T > TP, where metallic
conduction disappeared and the dielectric behavior pre-
vailed (Fig. 1, curves e, d).

Structures with a constriction. Analogous behavior
was observed for the NbSe3 structures prepared by
etching with a focused ion beam. The structures studied
in [14] are shown in Fig. 3. These structures were pre-
pared using high-quality NbSe3 samples placed on a
substrate with the preliminary applied contacts. There-
upon, two types of structures were obtained from these
samples by etching by a focused ion beam. The struc-
ture of the first type had constriction (Fig. 3a). It turns
out that the size effect arises in the constriction as well:
as the constriction width decreased to about 100 nm,
the character of the temperature dependence of conduc-
tivity changed qualitatively and a dielectric state resem-
bling the aforementioned state with α ≈ 1–3 and β ≈ 3
appeared.

One-dimensional behavior in bulk NbSe3 samples. It
was also established [14] that the same power-law tem-
perature and electric-field dependences of conductivity
can arise in the structures of the other type, e.g., in bulk
NbSe3 samples after cutting them in the transverse
direction by a focused ion beam (right side of Fig. 3b),
followed by healing with platinum (left side of Fig. 3b).
It was shown that, after this procedure, which suppos-
edly results in the introduction of the Ga ions to medi-
ate the Pt deposition, the properties of the sample
changed at distances on the order of 10 µm from the cut
in the direction of the highest-conductivity axis. The
temperature set of CVCs for such samples is shown in
Fig. 4. In the same figure, the solid lines correspond to
the CVCs calculated from the equation

(1)

which describes the CVC shape and its temperature
evolution for a Luttinger liquid [15] with α = 6, β = 4,
and γ = 0.1. One can see that Eq. (1) fully describes the
CVC shape and its temperature evolution over the
entire temperature range used. It is worth noting that
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the exponents α and β in these samples, as a rule, were
appreciably larger than in thin NbSe3 samples exhibit-
ing a dielectric behavior. For instance, 2.9 ≤ α ≤ 3.4 for

Fig. 2. Current–voltage characteristics of a thin sample of
NbSe3 for various temperatures. Data from [13].

3 µ

1 µ

(a)

(b)

Fig. 3. Structures prepared using a focused ion beam. Data
from [14].
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three of the ten studied samples, whereas, for the
remaining seven samples, 5.5 ≤ α ≤ 6.5.

The results presented above gave grounds to assume
that the observed unusual properties of the thin samples
of quasi-one-dimensional conductors may arise as a
result of the introduction of additional impurities and
defects during the course of the technological proce-
dures used for curtailing the transverse sizes. For this
reason, care was taken to reduce the number of defects
during the fabrication of thin samples. In particular, the
ultrasonic [16] and electric-field [17] methods of split-
ting quasi-one-dimensional conductors were developed
and subsequently used for the preparation of even thin-
ner NbSe3 samples.

Fig. 4. Current–voltage characteristics of the NbSe3 sample
with a platinum-healed area (see Fig. 3b). Numerals indi-
cate the measurement temperatures in Kelvins. Solid lines
are the theoretical CVCs given by Eq. (1). Data from [14].

Fig. 5. Temperature dependences of the conductivity of thin
TaS3 samples. Arrows indicate the Peierls transitions in the
crystals with standard sizes. Data from [18].
Sample “aging.” In some experiments [16, 18], the
properties of the thinnest NbSe3 samples gradually
changed in time on the order of 103 h. In particular, it
was found that holding in air led to a smooth increase
in the sample resistance (aging). With time, initially
thin samples with metallic conduction can undergo
transition to the dielectric state. A comparison of the
sample geometric sizes measured using atomic-force
and electron microscopes with sizes determined from
the conductivity data showed the presence of a dielec-
tric layer with a thickness of several nanometers at the
surfaces of the samples prepared by ultrasonic grinding
and subsequent fabrication of the contacts by electron-
beam lithography [16]. It was also shown in [16] that,
at least at the initial aging stage, the changes in the con-
duction of the NbSe3 samples are analogous to those
arising upon the formation of a constriction in the sam-
ple. Since no transition to a new stable conducting state
upon sample aging was observed experimentally in [16,
18], the conclusion was drawn that the aging effect
mainly results in the narrowing of the conduction chan-
nel and in the chain breakup with the appearance of a
contribution from the transverse conduction. It was also
shown that sample heating to a temperature of 120–
140°C substantially accelerates the aging process [16].

Electrophysical properties of quasi-one-dimen-
sional conductors with nanometer transverse sizes.
Further investigations [18] have shown that the conduc-
tivity of even thinner NbSe3 and TaS3 samples prepared
by splitting in an electric field (R/L ~ 2 × 105 Ω/µm,
which corresponds to s ~ 10 nm2) does not obey the
power-law dependence. To reduce effects caused by
aging, the total time of holding in air prior to the fabri-
cation of the contacts did not exceed 1 h in these exper-

Fig. 6. Temperature dependences of the conductivity of thin
NbSe3 samples. Arrows indicate the Peierls transitions in
the crystals with standard sizes. Data from [18].
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iments, while the measurements started within a day
after the sample preparation. In Figs. 5 and 6, the sets
of temperature dependences are shown for such sam-
ples. One can see that these dependences obey quite
satisfactorily the law

(2)

with γ = 1/2. This equation describes the variable-range
hopping conduction [19] (the Mott’s law with γ = 1/(1 +
D), where D is the space dimensionality) for a one-
dimensional case (D = 1) and hopping conduction with
the Coulomb electron–electron interaction (Efros–Shk-
lovskiœ law) [19].

Anomalous behavior of NbSe3 below TP2. Recent
results on the electrical conductivity of NbSe3 samples
prepared by ultrasonic splitting [20] proved to be quite
interesting. In those experiments, the contacts were
applied using electron-beam lithography. The sample
surface layer was removed by short-term immersion
into hydrofluoric acid, and the contacts were fabricated
by evaporating gold onto a titanium thin film that is
necessary for better adhesion. It turned out that the
dielectrization of the electronic spectra of such samples
occurs only at temperatures below TP2 = 59 K, whereas,
at higher temperatures, the traces of a metallic state and
the presence of both CDWs are retained in the samples.
Thus, the electronic spectra of these samples undergo
dielectrization on the background of both CDWs. The
low-temperature dependences of the resistances of the
NbSe3 samples prepared by the procedure [20] are
shown in Fig. 7. One can see that these dependences are
satisfactorily described by the power laws R ∝  T–α. The
dependence of α on the parameter R/L is shown in the

R
T0

T
-----

γ

– 
 exp∝

Fig. 7. Temperature dependences of the conductivity of thin
NbSe3 samples at temperatures below TP2. In the inset, the
exponent α is shown as a function of the parameter R/L.
Data from [20].
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inset. The typical value of α equals 1–3 and increases
with decreasing the sample thickness.

The set of CVCs of one of the NbSe3 samples,
whose electronic spectrum undergoes dielectrization
only at T < TP2, are shown in the inset in Fig. 8 [20].
Contrary to the previously studied samples, these
CVCs are almost linear at temperatures above 50 K
(Figs. 2, 4). Upon a decrease in temperature, the nonlin-
earity rapidly increases. It was found that all CVCs of
these samples could be described by a single universal
curve with currents and voltages scaled according to
Eq. (1). The results of such scaling are shown in Fig. 8:
all measured CVCs constructed on the I/Tα + 1 vs. eV/T
scale fall on a universal curve described by Eq. (1) with
parameters α = 2.15, β = 4.2, and 1/γ = 77. Note that the
relation β = α + 1 does not hold for these samples.

Influence of impurities on the conductivity of quasi-
one-dimensional conductors. Experimental data. The
results presented above require a detailed analysis of
the experiments devoted to the study of the influence of
impurities on the electrophysical properties of quasi-
one-dimensional conductors. Most of these studies
were carried out shortly after the discovery of the
Peierls transition. Inasmuch as these investigations
were mainly devoted to the influence of impurities on
the CDW pinning, they did not analyze in detail the
temperature dependence of linear conductivity. A
change in the R(T) dependence in NbSe3 at low temper-
atures and the appearance of the dependence with
dR/dT < 0 in the samples with impurities was observed
in a number of works. In the NbSe3 samples with the
0.1% Ti and 5% Ta contents, the resistance increased at
low temperatures [21]. The most pronounced increase
was observed for the Ti impurities: the resistance had a
minimum at about 40 K and doubled as T  0. The

Fig. 8. Current–voltage characteristics of the NbSe3 sample

at various temperatures, as functions of I/Tα + 1 on eV/T.
Solid line is the result of curve-fitting procedure using
Eq. (1) with parameters α = 2.15, β = 4.2, and 1/γ = 77. The
original CVCs are shown in the inset. Data from [20].



450 ZAŒTSEV-ZOTOV
influence of V, Mn, Cr, Gd, Pd, Fe, Co, and Ni impuri-
ties on the temperature dependence of the linear NbSe3
conductivity was studied in [22]. It was found that the
conductivity of the NbSe3 samples containing Cr and
Pd at a level of 3–5% was qualitatively different from
the conductivity of pure NbSe3. For instance, the intro-
duction of 5% Cr leads to the dielectric behavior with a
sharp increase in the resistance upon lowering temper-
ature below 700 K, while the introduction of 3% Pd, on
the contrary, eliminates any traces of the Peierls transi-
tions and gives rise to the metallic conduction down to
liquid helium temperature. No phenomena similar to
those observed in thin NbSe3 samples (transition to
dR/dT < 0 at T = 50–200 K and disappearance of con-
duction at T  0) have been observed so far. Note that
the appearance of the temperature dependences with
dR/dT > 0, by itself, is not indicative of the dielectriza-
tion of the electronic spectrum: similar behavior is also
well known for metals, e.g., in the case of weak local-
ization or in the presence of magnetic impurities. The
clearly defined tendency to the disappearance of con-
duction at T  0 in the samples studied is a basic dis-
tinction of the phenomena discussed in this review.

Impurities can also penetrate into crystal through
contacts. In [23], this was demonstrated by the example
of CDW pinning by indium impurities. Indium atoms
were introduced into bulk NbSe3 samples by the diffu-
sion through the contacts upon heating to 120°C and
diffused at macroscopic distances on the order of the
sample lengths (1 mm). Since indium contacts were
also used in the experiments in [13, 18], it is not
improbable that the aging effect is due, in part, to the
diffusion of indium atoms. Note also that in [20], where
the contacts to the samples were fabricated using gold
evaporated onto the titanium sublayer, the dielectriza-
tion of electronic spectrum of NbSe3 was observed only
below TP2.

Experimental. Concluding remarks. Thus, the
dielectrization of the electronic spectrum is observed in
bulk crystals of quasi-one-dimensional NbSe3 conduc-
tors after treating them with a Ga ion beam (dielectriza-
tion temperature 100–150 K), in thin NbSe3 crystals
with R300/L * 103–104 Ω/cm (dielectrization tempera-
ture 120–200 K), and in NbSe3 crystals with the
removed surface layer at R300/L * 104 Ω/cm (dielectri-
zation temperature ~TP2). The corresponding tempera-
ture dependences of conductivity are divided into two
main types: those obeying Eq. (1), which describes the
conductivity of a broad class of one-dimensional elec-
tron systems, including Luttinger liquid, and the depen-
dences obeying Eq. (2), which describes both the vari-
able-range hopping conduction in the one-dimensional
case (Mott’s law) and the hopping conduction with the
Coulomb interaction between the current carriers
(Efros–Shklovskiœ law).

Current notion of the possible reasons for the
dielectrization of electronic spectrum. Thus, a great
body of data indicating that the character of tempera-
ture and field dependences of conductivity can qualita-
tively change in quasi-one-dimensional conductors and
they can undergo transition to the dielectric state under
certain conditions has been accumulated to date. The
properties of the corresponding dielectric state are
described by the laws that are expected for one-dimen-
sional electron systems. As now, no unified viewpoint
has been drawn up on the origin of this phenomenon. In
what follows, the possible reasons for the dielectriza-
tion of electronic spectrum are considered, and the pos-
sible scenarios for the one-dimensional behavior are
briefly discussed.

Dielectrization of the surface layer. The dielectriza-
tion of thin samples may arise because the condition for
the CDW formation near the surface is different from
the conditions for its formation in the bulk. Although an
assumption about the dielectrization of surface layer
was conjectured in a number of experimental works
[13, 24], no theoretical analysis of this question has
come to our notice. When it is assumed that the surface
dielectrization involves the surface unit cells and their
nearest neighbors, one can estimate the area of a sample
whose properties are determined by the surface dielec-
trization. The unit-cell area of NbSe3 is 1.5 nm2 [3]. The
cross section of a typical sample has the rectangular
shape with a thickness-to-width ratio on the order of
five. Then, the cross-sectional area of an NbSe3 sample
consisting of four unit cells in the transverse direction
and twenty cells in the longitudinal direction (each unit
cell comprises three metallic chains) equals 120 nm2,
which corresponds to the ratio R/L = 1.7 × 104 Ω/µm.
This value is comparable to the experimentally
observed values R/L = 103–104 Ω/µm corresponding to
the onset of the dielectrization of the electronic spec-
trum.

Impurities in the surface layer. It is also pertinent to
analyze the possible existence of an excessive impurity
concentration in the near-surface layer of quasi-one-
dimensional conductors. Although this assumption
seems to be quite natural, it has not been experimen-
tally justified so far. The point is that the excessive
impurity concentration in the near-surface layer should
give rise to surface pinning and make an additional con-
tribution to the increase in the threshold field ET upon a
decrease in the cross-sectional area s of the samples.
There has been much discussion on surface pinning in
relation to the results of studying the size effect,
namely, the ET(s) dependence in NbSe3 [11, 24–27].
Recent investigations of the ET(s) dependence in NbSe3

samples up to R/L ≈ 104 Ω/µm [28] have shown that
these samples demonstrate an ET ∝ (R/L)2/3 depen-
dence, which is fully described within the framework of
the theory of weak CDW pinning by bulk impurities
(one-dimensional CDW pinning) without invoking any
considerations concerning the surface pinning, for
which ET ∝ (R/L)1/2.
JETP LETTERS      Vol. 80      No. 6      2004
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The analysis of the pinning types [11, 24–28] should
be supplemented by the case of interest to us, namely,
by a weak pinning to the surface-layer impurities that
additionally contribute to the impurities homoge-
neously distributed over the sample bulk. For a weak
pinning, the threshold field is determined by the expres-
sion given by the Fukuyama–Lee–Rice model [3, 11]:

(3)

where ρe, ni, and K are, respectively, the electron and
impurity concentrations and the CDW elastic modulus.
If the transverse sizes of a sample are much smaller
than the phase-correlation length in the transverse
direction, pinning is one-dimensional; i.e., D = 1, ρe ∝
s, ni ∝  s (impurities are distributed over the sample vol-
ume), and K ∝  s, yielding ET ∝  s2/3 (see also [28]).
However, if most impurities are distributed over the

sample surface, then ni ∝  , giving ET ∝  1/s. There-

fore, the contribution (∝ ) from the surface impuri-
ties in thin samples should inevitably exceed the contri-
bution (∝ s) from the bulk concentration and give rise to
the ET ∝  1/s dependence, which, however, was not
observed in the experiments in [28]. For this reason, it
is beyond reason to believe that the dielectrization of
the electronic spectrum of thin NbSe3 samples is the
result of the increase in the concentration of impurities
located in the near-surface layer of such samples. Note
also that the maximal values of the exponent α in the
samples prepared using the ion-beam treatment
(Fig. 3b) are almost twice as large as in the thin sam-
ples, indicating that there are certain distinctions
between the origins of the dielectrization of electronic
spectrum in the thin and impurity samples.

Coulomb blockade. In [20], it was pointed out that
there is a certain analogy between the properties of thin
quasi-one-dimensional conductors and the properties
of multilayer carbom nanotubes, where electron gas
cannot be considered one-dimensional but the temper-
ature and electric-field dependences of conductivity
show a power-law behavior [29]. Such a behavior arises
in a “metal–tunneling junction–nanowire” system due
to the Coulomb blockade in a tunneling junction with a
high resistance [29–31]. The corresponding exponent is
given by the expression

(4)

where Z is the impedance of a nanowire through which
the tunneling junction is connected to an external elec-
tric circuit and RQ = 2π"/e2 is quantum resistivity [30,
31]. Estimates made in [20] showed that, for a nanowire
of width w = 50 nm separated from a conducting sub-
strate by a 1-µm-thick silica layer (dielectric constant
3.9), the expected value of exponent β is 4.2, which is
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close to the experimental data. Moreover, this approach

predicts that α ∝  , which correlates well with the
observed behavior (inset in Fig. 7). Although this
model accounts for the majority of observed features in
the behavior of thin NbSe3 samples, its applicability is
not unconditional. First, this model was developed for
a single tunneling junction, whereas the transition from
the linear CVC portion to the nonlinearity increase in
the conductivity occurs at eV ≈ 80kBT, which corre-
sponds to the presence of 80 identical tunneling junc-
tions. Second, it is still unclear why the dielectrization
onset was locked to TP2 in [20] and was not in [13, 18].
Note that an equation analogous to Eq. (4) can be
obtained by the generalization of the model of tunnel-
ing in one-dimensional electron gas [6] to the case of a
multimode quantum wire [32].

Impurity-induced stabilization of Luttinger liquid in
quasi-one-dimensional metals. A crucial question is
whether the dependences observed in quasi-one-
dimensional conductors are manifestations of the one-
dimensionality effects or not. According to the gener-
ally accepted notion of Luttinger liquid, pure samples
with more than ten chains can be regarded as bulk sam-
ples, so that the one-dimensionality effects in them
should be negligible. The reason for such a behavior is
that quasi-one-dimensional conductors are unstable
against the transition to the three-dimensional elec-
tronic spectrum even if the probability of electron hop-
ping between the chains is exceedingly low. From the
viewpoint of the physics of quasi-one-dimensional con-
ductors with a CDW, samples with a cross-sectional
area less than 103 nm2 (thousand chains) are exceed-
ingly thin, so that the CDW fluctuations in them are so
large that they destroy three–dimensional ordering.
Such a fluctuation-induced CDW breaking manifests
itself by smearing the phase transition, its shift to lower
temperatures, spontaneous CDW-phase slip, accelera-
tion of the metastable-state relaxation, and by other size
effects [11].

The three-dimensional CDW order can be broken by
the introduction of impurities with a sufficiently high
concentration; of interest is the nature of the resulting
state. In this context, recent theoretical work by Arte-
menko, who has shown that the introduction of impuri-
ties into a quasi-one-dimensional metal stabilizes Lut-
tinger liquid is noteworthy [33]. Note that this result
differs substantially from the widespread opinion that
certain features of the Luttinger liquid can be observed
in quasi-one-dimensional conductors only at tempera-
tures higher than the Peierls-transition temperature,
while Fermi liquid is always the ground state of a quasi-
one-dimensional metal (cf., e.g., [4]). The physical
mechanism suggested in [33] for the impurity-induced
stabilization of Luttinger liquid in a quasi-one-dimen-
sional system is associated with the appearance of size-
quantization levels in the chain segments between
impurities. Since the impurities in Luttinger liquid form
barriers, the energy spectrum of the electron motion

1/s
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between impurities becomes quantized. The character-
istic size-quantization energy is ωl ∝  vF/l, where l is the
separation between the neighboring impurities in the
chain. If such one-dimensional chains compose a crys-
tal in which the hopping integral between the chains is
smaller than ωl, then, as shown in [33], Luttinger liquid
will remain the ground state of such a quasi-one-dimen-
sional metal. According to the estimates made in [33],
the conditions for the appearance of a Luttinger liquid
in a quasi-one-dimensional conductor of the NbSe3
type are fulfilled for the dimensionless impurity con-
centration ci @ 10–2. In this case, the dielectrization of
the electronic spectrum should arise at temperatures
T & 100 K, in good agreement with the experimental
data. Thus, calculations within the framework of the
model of Luttinger liquid [33] suggest that one-dimen-
sional behavior in quasi-one-dimensional conductors is
possible.

Characteristic decay length of Friedel oscillations.
Although the cause for the dielectrization of electronic
spectrum in NbSe3 remains to be understood, it is clear
that impurities play a crucial role in this process. Elec-
tron scattering by impurities produces Friedel oscilla-
tions of electron density. One-dimensional electron
systems are distinguished by the slow decease in the
amplitude of Friedel oscillations. For instance, in the
case of one-dimensional electron gas with long-range
Coulomb potential, the electron-density correlation
function contains both the component with wavenum-
ber 2kF corresponding to the CDW periodicity and the
4kF component corresponding to Wigner crystal [34]:

The decay of the 4kF correlations is exceedingly slow.

In Luttinger liquid, the oscillation amplitudes corre-
sponding to the wavenumbers 2kF and 4kF decrease
with the distance x from impurity as x–(1 + g)/2 and x–2g,
respectively [35], where g is a dimensionless coupling
constant, i.e., slightly faster than in the case of Wigner
crystallization, but still appreciably slower than in a
three-dimensional metal. The relation between the 2kF

and 4kF components depends on the electron–electron
interaction parameter.

Slowly decreasing Friedel oscillations are also
essential in the quasi-one-dimensional case. One-
dimensional relations for the decay of Friedel oscilla-
tions are retained up to lengths on the order of

where δk ≈ t⊥ /vF is the amplitude of Fermi-surface cor-
rugation caused by the interchain electronic transitions
(t⊥  is the hopping integral) and vF is the electron veloc-

ρ x( )ρ 0( )〈 〉 A1 2kFx( ) c xln–( )expcos=

+ A2 4kFx( ) 4c xln–( ).expcos

L
2π
δk
------,=
ity at the Fermi surface. Since t⊥  ~ TP, EF = "qvF/4,
where q = 2kF is the CDW wavenumber, one has

where λ = 2π/q is the CDW wavelength. By substitut-
ing the values EF ≈ 1 eV, TP ≈ 100 K, and λ ≈ 1 nm char-
acteristic of quasi-one-dimensional conductors, one
obtains the value L ≈ 400 nm that corresponds to a rel-
atively low dimensionless impurity concentration ci ~
10–3. Friedel oscillations are the efficient scatterers of
electrons at the Fermi surface of a quasi-one-dimen-
sional metal. The overlap between the Friedel oscilla-
tions related to the neighboring impurities can produce
a state analogous to the CDW or Wigner crystal and
provide conditions for the dielectrization of the elec-
tronic spectrum.

Wigner electronic crystallization. The dielectriza-
tion scenario for Wigner electronic crystallization
below TP2 was discussed in [20]. As was mentioned
above, the charge-carrier concentration ne in NbSe3
below the temperature TP2 is exceedingly low (on the
order of 10–18 cm–3) [12]. Because of this, the Fermi
energy at T < TP2 may become appreciably lower than
the energy of Coulomb interaction, setting prerequi-
sites for the Wigner crystallization. The Wigner crystal
phase can adjust to the impurities to reduce the pinning
energy, much as happens in quasi-one-dimensional
crystals with a CDW. If the localization length is
greater than the average distance between impurities,
the tunnel density of states of such a system obeys the
power law [36]. The corresponding exponent β depends
on the localization length and can vary from three to
six, which is close to the observed values.

Influence of impurities on the conduction in one-
and quasi-one-dimensional electron systems. In the
one-dimensional case, a single impurity gives rise to
the power-law dependences of the conductivity on tem-
perature and electric field [6, 37]. In the presence of
many impurities, one can expect electron localization
[38] and the dependences described by Eq. (2) with D
= 1 [39, 40]. On the whole, as was mentioned above, the
observed dependences of conductivity on temperature
and electric field correspond to the dependences
expected for one-dimensional electron systems.

The linear conductivity of quasi-one-dimensional
conductors with a CDW is due to the quasiparticle
(electron and hole) thermal excitation through the
Peierls gap, rendering these conductors akin to standard
semiconductors. The introduction of impurities into a
quasi-one-dimensional conductor gives rise to pinning
centers and distorts the CDW. In turn, the CDW distor-
tion results in a shift of chemical potential, i.e., in the
appearance of a potential relief for the quasiparticle
motion. The scale of potential relief is given by the
product ETL||, where ET is the threshold field for nonlin-
ear conduction and L|| is the CDW-phase correlation

L 4λ
EF

TP

------,=
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length. Due to the size effects, this product increases as
(ni/s)1/3 with an increase in the impurity concentration
and decrease in the sample transverse sizes [11].
Whereas the value of ETL|| is on the order of 1 meV at
T = 120 K for the rated pure TaS3 samples with s ~
1 µm2, this value increases by an order of magnitude
and becomes comparable to kT for samples with s =
10−3 µm. For even smaller s values, the spatial inhomo-
geneity of the potential must be taken into account in
the entire temperature range at T < TP = 220 K. This
approach can explain the appearance of hopping con-
duction at T < TP, but it fails to explain the dielectriza-
tion in TaS3 at T > TP and in NbSe3. Note that hopping
conduction in the bulk crystals of quasi-one-dimen-
sional conductors with CDW was observed in the
region of linear conduction of Fe0.25Nb0.75Se3 [41]
(T < 140 K) and in the regions of linear [42] and non-
linear [43] conduction of rhombic TaS3 with a high
impurity concentration (threshold field ~10 V/cm).
However, in all these cases, γ = 1/4, whereas γ = 1/2 in
thin films (Figs. 5, 6). The power-law dependences of
the conductivity on temperature and electric field were
not predicted for quasi-one-dimensional conductors
with CDW.

Interaction between impurities. The models of one-
and quasi-one-dimensional systems described above
presume a random impurity distribution. However,
impurities in quasi-one-dimensional conductors inter-
act with each other and can form superstructures. In
[22], atomic-force microscopic study of the surface of
doped NbSe3 revealed a concentration-dependent
impurity ordering. The period and symmetry of this
ordering depended on the impurity concentration. In
particular, the period of this structure could attain ten
lattice parameters. The inter-impurity interaction
effects caused by slowly decaying Friedel oscillations
in a quasi-one-dimensional metal were considered the-
oretically in [44]. It was shown that, depending on the
impurity concentration and valency, various types of
ordered impurity arrangement can arise in a quasi-one-
dimensional metal. In the presence of impurity super-
structures, the influence of Friedel oscillations can be
more pronounced and they can have an appreciable
effect on the conductivity of a quasi-one-dimensional
conductor.

Outlook for lines of investigation. Up to now, the
size effects have been the main object of experimental
studies. The analysis presented in this review shows
that there is a need for a more detailed study of the
impurity effect on the conductivity of samples of quasi-
one-dimensional conductors with standard sizes,
including quasi-one-dimensional TaSe3 metal, which
has the chain structure but does not undergo the Peierls
transition [45]. Preliminary results [46] suggest that
thin samples of this material can behave like NbSe3.
Inasmuch as the one-dimensional transition implies the
disappearance of quasiparticles and appearance of a
JETP LETTERS      Vol. 80      No. 6      2004
pseudogap, of interest is the problem of the conduction
type (collective or single-particle) and the lifetimes of
quasiparticles and metastable CDW states in samples of
different sizes and different impurity contents. The
result of these studies will be helpful in elucidating the
nature of the observed dielectrization of the electronic
spectrum in quasi-one-dimensional conductors.

Conclusions. Thus, quasi-one-dimensional conduc-
tors with nanometer transverse sizes possess properties
that are predicted for one-dimensional electron sys-
tems. Such behavior cannot be explained on the basis of
the laws known for three-dimensional electron systems.
At the same time, the observed phenomena can be
described by a number of alternative methods using dif-
ferent models of electron systems. There are grounds to
believe that the dielectrization is associated with the
one-dimensionality effects arising as a result of the
impurity-induced stabilization of Luttinger liquid [33].
If this is so, we will obtain an object that is highly suit-
able for experimental studies of the physics of one-
dimensional structures.
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In the article “Search for the Emission of π0 Mesons from the Neutron-Induced Fission of 235U Nuclei” there
is misprint:

P. 172, left column, 9th line from the top: 239Pu should be reads instead 252Cf.
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