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A doubled effect of a neutron spin rotation in a noncentrosymmetric quartz crystal for the Bragg reflected neu-
trons from the deformed exit crystal side is first observed. The effect arises due to a neutron Schwinger inter-
action with the crystal and depends on the value of the crystal deformation near its back exit face. The electric
field acting on a neutron in the quartz crystal is about ~108 V/cm. This field affects the neutron during the whole
time of its passage through the crystal, both there and back. This time is limited only by the available size of
the crystal (14 and 27 cm in our case) or the neutron absorption length. Observation of such effects gives a real
perspective on the essential improvement of the scheme and sensitivity of the experiment in the search for a
neutron electric dipole moment (EDM) by the crystal-diffraction technique. Moreover, the presented expe-
rimental scheme can be applied for a neutron with an energy close to the P wave resonance to search for the
T-odd part of a neutron–nuclei interaction, for example, because of relatively low requirements of crystal quality.
© 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 14.20.Dh; 61.12.Gz
1. INTRODUCTION

Recently, a new method of the search for the neutron
electric dipole moment (EDM) was proposed [1, 2] and
developed [3, 4]. It is based on the interaction of the dif-
fracted neutron with the interplanar electric field of a
crystal without a center of symmetry. The value of the
electric field can reach 108–109 V/cm. An estimated sen-
sitivity of the method for the available noncentrosym-
metric quartz crystal turned out to be ~10–25 e cm per day
[3, 4]. We note that the sensitivity of any method to
measure the neutron EDM is determined by the product

Eτ , where E is the value of the electric field, τ is the
time of neutron interaction with the field, and N is the
accumulated statistics. For the quartz crystal, the max-
imum value of the electric field is ~2 × 108 V/cm [5, 6],
and τ ≈ 1 ms [3, 7] is restricted by absorption in the
crystal. The future essential progress of this method
could be expected with using other crystals. Now, the
most promising ones seem to be the BSO (Bi12SiO20,
Bi4Si3O12) and PbO crystals. Calculations have shown
that the sensitivity of the method using the BSO or
PbO crystals can be improved by about an order of
magnitude in comparison with that using the quartz
one. Unfortunately, the present scheme of the experi-
ment [4] does not allow one to realize the potential of
the BSO and PbO crystals, so additional investigations
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of the neutron spin effects in a noncentrosymmetric
crystal are needed to develop the new experimental
scheme.

Originally, two different crystal-diffraction schemes
for a neutron EDM search were proposed. The first was
the Laue diffraction method [1–3], and the second was
the Bragg diffraction one [8, 9]. The main advantage of
the Laue diffraction scheme is the possibility of
increasing the time τ that the neutron stays in the crystal
using the Bragg angles θB close to π/2 [2]. This bonus
allows us to reach a time of neutron stay in the quartz
crystal that is close to the time of neutron absorption
τa ≈ 1 ms [3, 7]. A detailed consideration of the Laue
diffraction method has shown that we cannot essen-
tially increase the sensitivity of the method using other
noncentrosymmetric crystals with advanced parame-
ters according to the following factors: we have to use
the crystals with the thickness determined by [4]

(1)

to get the depolarization effect (spin rotation angles
equal to ±π/2 for two kinds of neutron waves propagat-
ing in the crystal); here, Eg is the electric field affecting
the neutron for the exact Bragg condition. Therefore,
the greater value of the field Eg requires a decrease in
the crystal thickness and, accordingly, the time of neu-
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tron passage through the crystal; we cannot increase the
sensitivity using the Bragg angles extremely close to
π/2, because of the very low luminosity of the experi-
ment for such angles [10].

The main advantage of the Bragg diffraction scheme
[8, 11] in comparison with the Laue diffraction one [4]
is that the effect of spin rotation arises due to Schwinger
or EDM interaction with the interplanar electric field
for the neutron passing through the crystal near the
Bragg condition, and one can control the sign and value
of the electric field acting on the registered neutrons by
selecting the neutrons with the different sign and value
of the parameter of deviation from the Bragg condition.
Moreover, the sensitivity of the Bragg diffraction
method is not limited by the given crystal thickness, as
it is for the Laue diffraction one [4]. However, in this
case, the effect due to neutron EDM does not increase
for the Bragg angles close to π/2 as it does for the Laue
diffraction scheme. For the Bragg diffraction, the time
of neutron stay in the crystal, τ, is determined by the
total neutron velocity v, while for the Laue diffraction,
τ is determined by the component along the crystallo-
graphic plane, but this fault in principle can be repaired
by increasing the crystal thickness. The main problem,
which the authors [11] met and solved in a very compli-
cated way, was how to obtain neutrons with the given
deviation parameter.

Here also a very simple solution of this problem is
given.

Fig. 1. Two crystals in parallel position. Neutrons reflected
by the small crystal pass twice through the large crystal. The
deviation parameter ∆ for the large crystal is determined by
the temperature difference ∆T.
2. SPIN ROTATION FOR THE BRAGG– 
REFLECTED NEUTRONS

Let us consider the symmetric Bragg diffraction
case. A neutron falls on the crystal in the direction close
to the Bragg one for the crystallographic plane g. Devi-
ation from the exact Bragg condition is described by the
parameter ∆ = Ek – , where Ek = "2k2/2m and  =

"2|k + g|2/2m are the energies of a neutron in the states
|k〉  and |k + g〉 , respectively.

In this case, the neutron wave function inside the
crystal in the first order of perturbation theory can be
written [12]

(2)

where

(3)

Here, Vg is the g-harmonic of the interaction potential
of the neutron with the crystal. For simplicity, we con-
sider the case a ! 1, so we can use perturbation theory.

The electric field affecting the diffracted neutron
will be equal to [12]

(4)

where Eg is the interplanar electric field for the exact
Bragg condition.

One can see that the sign and value of electric field
(4) are determined by the sign and value of the devia-
tion ∆ from the exact Bragg condition; therefore, to
have the given electric field and thus the effect of neu-
tron spin rotation, we should select from the whole
beam the neutrons with the corresponding deviation
parameter ∆.

The presence of the electric field will lead to an
appearance of the Schwinger magnetic field

(5)

The neutron spin will rotate around HS by the angle

(6)

where Lc is the crystal thickness and v || and v ⊥  are the
components of neutron velocity parallel and perpendic-
ular to the crystallographic plane, correspondingly.

In the experiment in [11], the effect of neutron spin
rotation due to spin–orbit (Schwinger) interaction was
experimentally observed in the Bragg diffraction scheme
for small (~a few Bragg width) deviations from the
Bragg condition, but the measured value was about three
times less than was theoretically predicted. In the exper-
iment in [13], we observed the effect of neutron spin
rotation in neutron optics for large (~103–104 Bragg
width) deviations from the exact Bragg condition. The
measured effect coincided with the theoretical one.
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The main idea of the present work is the following.
We use a small controlled variation of the interplanar
distance ∆d (caused by heating, for example) near the
exit crystal edge. Some part of the neutrons passed
through the crystal will reflect from this small crystal
part. These back-diffracted neutrons have the deviation
parameter for the main part of the crystal determined by
∆d, and thus they propagate under the corresponding
electric field both there and back. Thermal deformation
of the crystal edge is used to create such a variation of
the interplanar distance.

We can use also two separate crystals in parallel
positions for this purpose (see Fig. 1). One can heat (or
cool) the second small crystal. The neutrons passed
through the first crystal with the corresponding Bragg
wavelength will be reflected by the second crystal with
the given deviation parameter for the first (large) crys-
tal. This deviation parameter will directly depend on
the temperature difference between crystals.

The value of the wavelength Bragg width for the
(110) quartz plane (d = 2.45 Å) is ∆λB/λ ≈ 10–5. To shift
the reflex wavelength by one Bragg width, we should
have the same value of ∆d/d. The linear coefficient of
thermal expansion for a quartz crystal is ∆L/L ≈ 10–5 per
degree. Therefore, the deviation ±∆λB corresponds to a
difference in the crystal temperatures of ∆T ≈ ±1°. We
note that the different signs of this temperature differ-
ence will correspond to different signs of the electric
field acting on the neutron.

3. EXPERIMENT

A scheme of the neutron behavior in the crystal is
shown in Fig. 2. Two samples of quartz crystal were
used in this experiment with thicknesses along X axis of
Lc = 14 and 27 cm. The Peltier element was attached to
the back face of the crystal. That allows us to create the
temperature gradient in the crystal along the neutron
trajectory. So, the Bragg condition will vary along the
neutron trajectory and different parts of crystal will
reflect the neutrons with different λ. Therefore, the
reflected beam will contain not only the reflex from the
entrance crystal face (corresponding to Bragg condition
for d) but also the reflection from the back exit face
(corresponding to d ± ∆d) that twice pass through the
crystal there and back. Moreover, the value of the devi-
ation parameter ∆ for this reflection directly depends on
the value of the temperature gradient. In the case of
higher temperature of the back crystal face, the neutron
with Ek –  > 0 will be reflected, while in the case of

its lower temperature, the neutron with Ek –  < 0 will
be reflected.

Examples of the time of flight spectra of the
reflected neutrons for the Bragg angle ~90° are shown
in Fig. 3. One can see formation of the reflex from the
back crystal surface and an increase in its intensity with
the rise of the temperature gradient.

Ekg

Ekg
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The scheme of the experiment for the observation of
neutron spin rotation is similar to that described in [3].

To observe the effect of neutron spin rotation due to
the Schwinger interaction, it is necessary to turn the

Ek

Ek > Ekg

Vg

Ek < Ekg

Ek = Ekg Ekg
(x)

X

Heating

Cooling

Peltier
element

(110)

Quartz

Fig. 2. Passage of the neutron through the crystal. Presence
of the interplanar distance gradient results in the formation
of the reflex near the back face of crystal.

Fig. 3. Dependence of the time of flight (TOF) spectra of the
neutron reflected by the (110) plane of quartz on the temper-
ature gradient applied to the crystal. Bragg angle ~90°, Lc =
27 cm. One can see the reflexes from the front surface and
from the back part of crystal.



578 FEDOROV et al.
crystal in a position for which Bragg angle is different
from 90°, because, in the case of Bragg diffraction, the
Schwinger effect disappears for a 90° Bragg angle:

. (7)

The experiment on the observation of neutron spin
rotation was carried out with the Lc = 14 cm crystal
thickness and Bragg angle ≈86°.

The dependence of the angle of neutron spin rota-
tion around HS on the value of the temperature gradient
is shown in Fig. 4.

We can change the sign of the effect by turning the
crystal by the 180° around HS. One can see that the
experiment confirms that such a crystal rotation indeed
changes the sign of the observed effect. On the right
axis, the effective electric field that is necessary to get
the corresponding spin rotation effect is shown. One
can see that the value of the electric field reaches ~1.3 ×
108 V/cm, which is only 1.5 times less than in the Laue
diffraction case for the exact Bragg condition [5, 6].

ϕ s

4EµLcv ||

c"v ⊥
-----------------------

4EµLc

c"
---------------- θB( ) 0cot= =

θB → π/2

Fig. 4. The dependence of the angle of neutron spin rotation
due to Schwinger interaction on the value of the tempera-
ture gradient. The two upper figures correspond to two crys-
tal positions differing by the angle 180°. One can see a good
coincidence of the theoretical dependence (solid curve in
the bottom plot) with the experimental points.
4. CONCLUSIONS

The doubled effect of spin rotation in a noncen-
trosymmetric quartz crystal for neutrons Bragg
reflected by the deformed part of crystal was first
observed. This effect is caused by the Schwinger inter-
action and depends on the deformation degree of the
crystal near its back surface. For the quartz crystal, the
effective electric field affecting the neutron during the
time of its stay inside the crystal can reach ~1.3 ×
108 V/cm. The sensitivity to neutron EDM is deter-

mined by the product Eτ , where E is the electric
field affecting the neutron, τ is the time of neutron inter-
action with the field, and N is the total statistics accu-
mulated in the experiment. Simple estimation has
shown that, in our case, the depth of neutron penetra-
tion into the crystal and, thus, the time of neutron inter-
action with the electric field can be about four or even
five orders more than in the well-known Shull and
Nathans experiment for the neutron EDM search [14].

In addition, the requirements for the crystal perfec-
tion are relatively low for this scheme. For the case
γB ! wm, the effective electric field affecting the neu-
tron depends on an effective crystal mosaicity wm as E =
E0(γB/wm), where γB is the angular Bragg width, but the
reflex intensity increases as I = I0(wm/γB); therefore, the
sensitivity of measuring the neutron EDM will be

reduced only by a factor . This give us a hope
that such a scheme can be applied to search for the
T-odd part of neutron–nuclei interactions [15] using
neutrons with energies near the P-wave resonance one.
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By improving the resolution of a homemade mutual-inductance measurement technique, a pronounced steplike
structure (with the number of steps n = 4 for all ac fields) has been observed in the temperature dependence of
ac susceptibility in artificially prepared two-dimensional Josephson junction arrays (2D-JJA) of unshunted Nb–
AlOx–Nb junctions with βL(4.2 K) = 30. Using a single-plaquette approximation of the overdamped 2D-JJA
model, we were able to successfully fit our data assuming that the steps are related to the geometric properties
of the plaquette. The number of steps n corresponds to the number of flux quanta that can be screened by the
maximum critical current of the junctions. The steps are predicted to manifest themselves in arrays with the
inductance-related parameter βL(T) matching a “quantization” condition βL(0) = 2π(n + 1). © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 74.25.Ha; 74.50.+r; 74.80.Bj
1. INTRODUCTION

Many unusual and still not completely understood
magnetic properties of Josephson junction arrays
(JJAs) continue to attract the attention of both theoreti-
cians and experimentalists alike (for recent reviews on
the subject, see, e.g., [1–4] and further references
therein). In particular, among the numerous spectacular
phenomena recently discussed and observed in JJAs,
we would like to mention the dynamic temperature
reentrance of ac susceptibility [2] (closely related to the
paramagnetic Meissner effect [3]) and avalanche-like
magnetic field behavior of magnetization [4, 5] (closely
related to self-organized criticality (SOC) [6, 7]). More
specifically, using a highly sensitive SQUID magne-
tometer, magnetic field jumps in the magnetization
curves associated with the entry and exit of avalanches
of tens and hundreds of fluxons were clearly seen in
SIS-type arrays [5]. Additionally, it was shown that the
probability distribution of these processes is in good
agreement with the SOC theory [7]. An avalanche char-
acter of flux motion was observed at temperatures at
which the size of the fluxons did not exceed the size of
the cell, that is, for discrete vortices. On the other hand,
using a similar technique, magnetic flux avalanches
were not observed in SNS-type proximity arrays [8]
despite a sufficiently high value of the inductance
(L)-related critical parameter βL = 2πLIC/Φ0 needed to

¶ This article was submitted by the authors in English.
0021-3640/04/8009- $26.00 © 20580
satisfy the observability conditions of SOC. Instead, the
observed quasihydrodynamic flux motion in the array
was explained by the considerable viscosity character-
izing the vortex motion through the Josephson junc-
tions.

In this paper, we present experimental evidence for
the manifestation of novel geometric effects in the mag-
netic response of high-quality ordered 2D-JJA. By
increasing the resolution of our homemade mutual-
inductance measurement technique, we were able to
observe for the first time a fine, steplike structure (with
the number of steps n = 4 for all ac fields used in our
experiments) in the temperature behavior of ac suscep-
tibility in artificially prepared 2D-JJA of unshunted
Nb–AlOx–Nb junctions. Using a single-plaquette
approximation of the overdamped 2D-JJA model, we
show that the number of steps n corresponds to the
number of flux quanta that can be screened by the max-
imum critical current of the junctions and, as a result,
steps will manifest themselves in arrays with the induc-
tance-related parameter βL(T) matching a “quantiza-
tion” condition βL(0) = 2π(n + 1).

2. EXPERIMENTAL RESULTS

To measure the complex ac susceptibility in our
arrays with high precision, we used a homemade sus-
ceptometer based on the so-called screening method in
the reflection configuration [9–11]. The experimental
004 MAIK “Nauka/Interperiodica”
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system was calibrated using a high-quality niobium
thin film. Previously, we showed that the calibrated out-
put of the complex voltage in this experimental setup
corresponds to the true complex ac susceptibility (for
more details on the experimental technique and setups
used in our study, see [2, 11]).

Measurements were performed as a function of the
temperature T (for 1.5 K < T < 15 K) and the amplitude
of the excitation field hac (for 1 mOe < hac < 10 Oe) nor-
mal to the plane of the array. The frequency of the ac
field in the experiments reported here was fixed at
20 kHz. The unshunted 2D-JJAs used in the present
study are formed by loops of niobium islands (with
TC = 9.25 K) linked through Nb–AlOx–Nb Josephson
junctions and consist of 100 × 150 tunnel junctions.
The unit cell has a square geometry with lattice spacing
a = 46 µm and a single junction area of 5 × 5 µm2. Since
the inductance of each loop is L = µ0a = 64 pH and the
critical current of each junction is IC(4.2 K) = 150 µA,
we have βL(4.2 K) = 30. Recall that the parameter
βL(T) = 2πLIC(T)/Φ0 (where Φ0 is the magnetic flux
quantum) is proportional to the number of flux quanta
that can be screened by the maximum critical current in
the junctions.

It is important to mention that the magnetic field
dependence of the critical current of the array (taken at
T = 4.2 K) on the dc magnetic field Hdc (parallel to the
plane of the sample) exhibited [2, 11] a sharp Fraun-
hofer-like pattern characteristic of a single-junction
response, thus proving a rather strong coherence within
arrays (with negligible distribution of critical currents
and sizes of the individual junctions) and, hence, the
high quality of our samples.

The observed temperature dependence of the real
part of ac susceptibility for different ac fields is shown
in Fig. 1. A pronounced steplike structure is clearly
seen at higher temperatures. The number of steps n
does not depend on ac field amplitude and is equal to
n = 4. As expected [2, 11, 12], for hac > 40 mOe (when
the array is in the mixed state with practically homoge-
neous flux distribution), the steps are accompanied by
the previously observed reentrant behavior with
χ'(T, hac) starting to increase at low temperatures.

3. DISCUSSION

To understand the steplike behavior of the ac sus-
ceptibility observed in unshunted 2D-JJAs, in principle,
one would need to analyze in detail the flux dynamics
in these arrays. However, as we have previously
reported [2, 11, 12], because of the well-defined peri-
odic structure of our arrays with no visible distribution
of junction sizes and critical currents, it is quite reason-
able to assume that the experimental results obtained
from the magnetic properties of our 2D-JJAs could be
understood by analyzing the dynamics of just a single
unit cell (plaquette) of the array. As we shall see, a the-
oretical interpretation of the experimental results pre-
JETP LETTERS      Vol. 80      No. 9      2004
sented here based on a single-loop approximation is in
excellent agreement with the observed behavior. In our
analytical calculations, the unit cell is a loop containing
four identical Josephson junctions and the measure-
ments correspond to the zero-field cooling ac magnetic
susceptibility. If we apply an ac external field Hac(t) =
haccosωt normally to the 2D-JJA, then the total mag-
netic flux Φ(t) threading the four-junction supercon-
ducting loop is given by Φ(t) = Φext(t) + LI(t), where L
is the loop inductance, Φext(t) = SHac(t) is the flux
related to the applied magnetic field (with S . a2 being
the projected area of the loop), and the circulating cur-
rent in the loop reads I(t) = IC(T)sinφ(t). Here, φ(t) is the
gauge-invariant superconducting phase difference
across the ith junction. As is well known, in the case of
four junctions, the flux quantization condition reads
[11, 13]

, (1)

where n is an integer, and, for simplicity, we assume as
usual that φ1 = φ2 = φ3 = φ4 ≡ φ [2, 11].

φ π
2
--- n

Φ
Φ0
------+ 

 =

Fig. 1. Experimental results for temperature dependence of
the real part of the ac susceptibility χ'(T, hac) for different ac
field amplitudes hac = 41.0, 59.6, 67.0, 78.2, and 96.7 mOe.
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To properly treat the magnetic properties of the sys-
tem, let us introduce the following Hamiltonian

, (2)

which describes the tunneling (first term) and inductive
(second term) contributions to the total energy of a sin-
gle plaquette. Here, J(T) = (Φ0/2π)IC(T) is the Joseph-
son coupling energy.

Before turning to the interpretation of the observed
steplike structure of χ'(T, hac), we would like to briefly
comment on the origin of reentrant behavior in our
unshunted arrays (which has been previously discussed
in much detail; see [2, 12]). A comparative study of the
magnetic properties of two-dimensional arrays of both
unshunted and shunted (using a molybdenum shunt
resistor short-circuiting each junction) Nb–AlOx–Nb
junctions revealed [12] that the dynamic reentrance
phenomenon can be explained by properly addressing
the (neglected in our overdamped model) damping
effects associated with the finite value of the Stewart–

McCumber parameter βC(T) = 2πCJ IC(T)/Φ0 (where
CJ is the capacitance and RJ is the quasiparticle resis-
tance of the array). More precisely, the reentrance was
found to take place in the unshunted arrays considered
here (with βC(4.2 K) = 30) and totally disappeared in
shunted arrays (with βC(4.2 K) = 1). It is important to
mention that both arrays had the same value of the βL

parameter, namely, βL(4.2 K) = 30.
Returning to the discussion of the geometrical

effects observed here, we notice that the number of
observed steps n (in our case, n = 4) clearly hints at a
possible connection between the phenomenon
observed here and the flux quantization condition
within a single four-junction plaquette. Indeed, the cur-

* t( ) J T( ) 1 φ t( )cos–[ ] 1
2
---LI2 t( )+=

RJ
2

Fig. 2. Theoretically predicted dependence of the normal-
ized susceptibility χ'(T, hac)/χ0n (for better visual effect, the
curves are normalized differently with χ00 = 2.5χ0, χ03 =

1.5χ0, and χ05 = χ0, where χ0 = S2/VL) on reduced temper-
ature T/TC according to Eqs. (3)–(5) for f = 0.5 and for
“quantized” values of βL(0) = 2π(n + 1) (from top to bot-
tom): n = 0, 3, and 5.
rent I(t) = IC(T)sinφ(t) circulating in the loop passes
through its maximum value whenever φ(t) reaches the

value of (2n + 1) with n = 0, 1, 2, …. As a result, the

maximum number of fluxons threading a single
plaquette (see Eq. (1)) over the period 2π/ω becomes
equal to 〈Φ(t)〉  = (n + 1)Φ0. In turn, the latter equation
is equivalent to the following condition: βL(T) = 2π(n +
1). Since this formula is valid for any temperature, we
can rewrite it as a geometrical “quantization” condition
βL(0) = 2π(n + 1). Recall that, in our array, βL(0) = 31.6
(extrapolated from its experimental value βL(4.2 K) =
30), which is a perfect match for the above “quantiza-
tion” condition predicting n = 4 for the number of steps
in a single plaquette, in excellent agreement with the
observations.

Based on the above discussion, we conclude that, in
order to reproduce the observed temperature steps in
the behavior of ac susceptibility, we need a particular
solution to Eq. (1) for the phase difference in the form

of φn(t) = (2n + 1) + δφ(t), assuming δφ(t) ! 1. After

substituting this ansatz into Eq. (1), we find that

is the ac-field-related frustration parameter. Using this
effective phase difference, we can calculate the ac
response of a single plaquette. Namely, the real part of
susceptibility reads

, (3)

where

(4)

Here, V is the sample volume.
For the explicit temperature dependence of βL(T) =

2πLIC(T)/Φ0, we use the well-known [14, 15] analytical
approximation of the BCS gap parameter (valid for all

temperatures): ∆(T) = ∆(0)tanh , with

∆(0) = 1.76kBTC, which governs the temperature depen-
dence of the Josephson critical current

. (5)

Figure 2 depicts the dependence of the ac susceptibility
on reduced temperature predicted by Eqs. (3)–(5) for
f  = 0.5 and for different “quantized” values of βL(0) =
2π(n + 1). Notice the appearance of three and five steps

π
2
---

π
2
---

φn t( ) . 
π
2
---n

1
4
---βL T( ) 1

4
--- f ωt, fcos+ + 2πShac/Φ0=

χ' T hac,( ) 1
π
--- ωt( ) ωt( )χn t( )cosd

0

π

∫=

χn t( ) 1
V
---

∂2*

∂hac
2

----------
φ φn t( )=

.–=

2.2
TC T–

T
--------------- 

 

IC T( ) IC 0( ) ∆ T( )
∆ 0( )
------------ ∆ T( )

2kBT
------------tanh=
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for n = 3 and n = 5, respectively (as expected, the case
n = 0 corresponds to a smooth temperature behavior
without steps).

In Fig. 3, we present fits (shown by solid lines) of
the observed temperature dependence of the normal-
ized susceptibility χ'(T, hac)/χ0 for different magnetic
fields hac according to Eqs. (3)–(5) using βL(0) = 10π.
As is seen, our simplified model based on a single-
plaquette approximation demonstrates an excellent
agreement with the observations.

In summary, a steplike structure (accompanied by
previously seen low-temperature reentrance phenome-
non) has been observed for the first time in the temper-
ature dependence of ac susceptibility in artificially pre-
pared two-dimensional Josephson junction arrays of
unshunted Nb–AlOx–Nb junctions. The steps are
shown to occur in arrays with the inductance-related

Fig. 3. Fits (solid lines) of the experimental data for hac =
41.0, 59.6, 67.0, 78.2, and 96.7 mOe according to Eqs. (3)–
(5) with βL(0) = 10π.
JETP LETTERS      Vol. 80      No. 9      2004
parameter βL(T) matching the “quantization” condition
βL(0) = 2π(n + 1), where n is the number of steps.
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iments. We are indebted to P. Barbara, C.J. Lobb,
R.S. Newrock, and A. Sanchez for useful discussions. The
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Brazilian Agency FAPESP (grant no. 2003/00296-5).
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The conditions for zero-energy Andreev surface bound states to exist are found for the lattice model of a d-wave
superconductor with arbitrary surface orientation. Both nearest-neighbors and next-nearest-neighbors models
are considered. It is shown that the results are very sensitive to the surface orientation. In particular, for a half-
filled (hl0)-surface, zero-energy Andreev surface states only appear under the condition that h and l are odd
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PACS numbers: 74.25.Jb; 74.45.+c
Significant features of high-temperature supercon-
ductors (HTS) are zero-energy Andreev surface bound
states. The zero-energy states (ZES) form on surfaces
of a d-wave superconductor with orientations different
from (100), due to the sign change of the order param-
eter. In high-temperature superconductors, such states
manifest themselves as the zero-bias conductance peak
in tunneling spectroscopy in the ab-plane [1–26], the
anomalous temperature behavior of the Josephson crit-
ical current [27–30], and the upturn in the temperature
dependence of the magnetic penetration depth [31–33].
At the same time, the problem of ZES at a surface with
arbitrary orientation is still not clear.

The conventional description of Andreev surface
bound states, as well as the majority of inhomogeneous
superconducting problems, is based usually on the con-
tinuous quasiclassical approximation. From this view-
point, the conditions for ZES to exist are quite simple.
ZES are formed due to the changing of order parameter
sign along the quasiclassical trajectory. There are no
ZES for the (100) (i.e., 0°) orientation, and there are
ZES at all values k|| for the (110) (45°) orientation. For
intermediate surface orientations, the sign change does
not take place for all incoming momentum directions,
and the weight of the ZES decreases with deviation
from the 45° orientation.

From the other side, the tight-binding BCS model is
widely used for theoretical description of HTS. This
model gives the same (as the continuous quasiclassical
model) result for ZES at the (100) and (110) orienta-
tions. However, for the intermediate surface orienta-
tions, the question is very complicated. To the best of
my knowledge, only the simplest orientations (100),
(110), (210) [21, 23, 34–37] have been studied. And
even numerical calculations could not give the general

¶ This article was submitted by the author in English.
0021-3640/04/8009- $26.00 © 20584
answer for all surface orientations because of the lattice
specificity.

In this paper, the general analytical criterion for
zero-energy Andreev surface bound states to exist at a
surface of arbitrary orientation is presented. I consider
a two-dimensional tight-binding model on a square lat-
tice. The surface orientation is assumed to be arbitrary
and characterized by the indexes (hl0). Both nearest-
neighbors and next-nearest-neighbors models are con-
sidered. For simplicity, I take the superconducting
order parameter to be spatially constant. This approxi-
mation is reasonable for studying low-energy quasipar-
ticle states. The impenetrable surface is assumed to be
smooth.

The Hamiltonian for a pure singlet superconductor
in the tight-binding model can be written as

(1)

Here, t(x, x) = µ is the chemical potential; t(x, x ± a) =
t(x, x ± b) = t > 0, t(x, x ± a ± b) = t ' ≤ 0 are the hopping
elements; d-wave superconducting pairing is defined
for nearest neighbors ∆(x, x ± a) = –∆(x, x ± b) = ∆.
Here, x are the positions of lattice sites; a, b are the
basic lattice vectors. Then, the Bogoliubov–de Gennes
equations take the form

(2)

We define new coordinates ( , ), rotated with

respect to the crystal axes ( , ), where  is the direc-

* t x x',( )cσ
† x( )cσ x'( )

x x' σ, ,
∑–=

+ ∆ x x',( )c↑
† x( )c↓

† x'( ) h.c.+{ } .
x x',
∑

t x x',( )– ∆ x x',( )
∆* x x',( ) t x x',( )x'

∑ u x'( )
v x'( ) 

 
 

E u x( )
v x( ) 

 
 

.=

x̂ ŷ

â b̂ x̂
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tion normal to the surface and  is the direction along
the surface. The superconductor is situated at x > 0. The
lattice constant is taken to be unity, a = 1. The system is

periodic along the y direction with period  ≡ d–1,
and the crystal momentum component ky of a quasipar-
ticle is conserved. Instead of the usual square Brillouin
zone (BZ) ka ∈  [–π, π], kb ∈  [–π, π], we now use the
surface-adapted Brillouin zone (SABZ) [23, 36] given
by kx ∈  [–π/d, π/d] and ky ∈  [–πd, πd]. Here, d =

1/  is the distance between the nearest chains
(layers) aligned along the surfaces; i.e., all x coordi-
nates have discrete values with period d. The momenta
in the two-coordinate systems are simply related

through rotation of an angle θ = /l.

Let us solve Eq. (2) for a half-space x > 0 and fixed
ky. The general solution is constructed from all the solu-
tions of the uniform problem that do not grow at x 
+∞. Then, the wave function for fixed ky can be written
as

(3)

here, summation should be taken over all solutions kx, α
of the equation

(4)

with Imkx, α > 0. The boundary conditions are

(5)

where N = max(h, l) for the nearest-neighbors model
(t ≠ 0, t ' = 0) or N = h + l for the next-nearest-neighbors
model (t, t ' ≠ 0) [35]. The total number of solutions (4)
with Imkx, α > 0 equals 2N. Some of them correspond to
the intersections of the line ky = const with the Fermi
surface and have a small imaginary part of kx, α; the oth-
ers correspond to the point with (Rekx, α, ky) far from the
Fermi surface. Therefore, we obtain from (5) the sys-
tem of 2N linear equations for constants Cα with E as a
parameter. Then, the equality of the determinant of the
system to zero is the condition for the existence of
bound states with energy E:

(6)

ŷ

h2 l2+

h2 l2+

htanh
1–

u x ky,( )
v x ky,( ) 

 
 

Cα
uα ky( )
v α ky( ) 

 
 

e
ikx α, x

;
α
∑=

E2 ξ2 kx ky,( ) ∆2 kx ky,( ),+=

u jd ky,–( )
v jd ky,–( ) 

 
 

0, j 0 1 … N 1,–, , ,= =

Det

u1 … u2N

v 1 … v 2N

u1e
ikx 1, d

… u2Ne
ikx 2N, d

… … …

v 1e
ikx 1, N 1–( )d

… v 2Ne
ikx 2N, N 1–( )d 

 
 
 
 
 
 
 
 

0.=
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We only consider now the possibility for dispersion-
less states with E = 0 to exist in some region of ky . Then,
all the solutions of (4) have the form (uα(ky), vα(ky))T =
(1, –iρα) with ρα = ±1. From each point of intersection
ky = const with the Fermi surface, we obtain one solu-
tion with ρα = (kx, f , ky)∆(kx, f , ky)) in the qua-
siclassical approximation. And from each point far
from the Fermi surface, we obtain two solutions with
close values of kx and with opposite values of ρα.

Let n and m be numbers of solutions corresponding
to ρα = ±1, respectively. Then, we can obtain after some
straightforward algebra that, in the case of n ≠ m,
Eq. (6) is always true. For n = m, Eq. (6) can be reduced
to

(7)

The wavevectors kx, α corresponding to the same
sign of ρα can only coincide for a few values of ky, for
which different parts or Fermi surfaces intersect with
each other. Therefore, we obtain the simple criterion for
dispersionless zero-energy bound states to exist: n ≠ m.
Since the solutions corresponding to the values of k that
are situated far from the Fermi surface always appear in
pairs with opposite signs of ρα, we can safely take into
account only solutions with k defined by the intersec-
tions of the line ky = const with the Fermi surface.

Let us apply this criterion to the model under con-
sideration. In the quasiclassical approximation, we
need to obtain all intersections of the line ky = const
with the Fermi surface in SABZ and, then, calculate ρ =

(k)∆(k)) for all these points. Let us consider
all values of ky simultaneously and find the positions of
the edges of the regions where zero-energy surface
states exist.

Due to the symmetry of the normal metal quasipar-
ticle energy spectrum and the superconducting gap to
the inversion ξ(k) = ξ(–k), ∆(k) = ∆(–k), we need to
consider only points at the Fermi surface where the sign
of ρ changes. They are the points of the gap sign chang-
ing and the points of v x sign changing.

It is easy to show that points of v x sign changing
cannot modify the parameters n and m. These points are
the tangent points of the Fermi surface and the line ky =
const. On the one side (along the ky axis) from the point
of v x sign changing, there are two solutions with oppo-
site signs of ρα. On the other side from this point, there
are no real solutions, but there are two solutions that
have large imaginary parts of kx and opposite signs of
ρα as well.

Thus, let us consider only points of gap sign chang-
ing. We should take into account the univocal corre-
spondence of the SABZ and the usual first BZ. Then,
there are only four points of gap sign changing in

SABZ, just as in BZ: ( , ) = (±νπ, ±νπ) in the crys-

v f x,(sgn

kx i, kx j,–( )
ρ 1 i j<,–=

∏ kx i, kx j,–( )
ρ +1 i j<,=

∏ 0.=

v f x,(sgn

ka
0 kb

0
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tal axes. Here, the parameter ν takes the value
π−1  for the nearest-neighbors model and

(8)

for the more general case of the next-nearest-neighbors
model. Parameter ν is a relative coordinate of a BZ
point where the gap sign changing takes place and is
correlated with the filling of the band. The maximal and
minimal values of ν are 0 and 1. For the simplest case
of half-filling (µ = 0), we get ν = 1/2. But ν is not
strictly the filling of the band.

Now, we need to obtain the coordinates  of the
gap sign-changing points in SABZ. For the (hl0) orien-
tation,

(9)

then, for -coordinates of four gap sign changing
points,

(10)

Since ky is a crystal momentum, one can move the

 coordinates of these points into the SABZ. Finally,
we obtain the following regions of ky where ZES exist:

(11)

where

(12)

(13)

Here, F[…] is a function that shifts the argument to the
permissible for a SABZ value: F[ky] = ({(1/2) +
(ky/2πd)} – (1/2))2πd; {…} is a fractional part of the
argument. From Eq. (11), we can see that the region of
ky where zero-energy bound states take place always
exists, except for the case of

µ/4t–( )arccos

ν π 1– µ–

2 t t2 t'µ–+( )
------------------------------------

 
 
 

arccos=

ky
0

ky
0 ka

0 l

h2 l2+
-------------------– kb

0 h

h2 l2+
-------------------;+=

ky
0

ky
0 h± l±( )πνd .=

ky
0

ky
0 kmin kmax,( ),∈

kmin min F h l–( )πνd[ ] F h l+( )πνd[ ],{ } ,=

kmax max F h l–( )πνd[ ] F h l+( )πνd[ ],{ } .=

Grey—regions of ZES existence in the (ky, ν) plane. Black
lines are the lines of zero gap. The dashed line corresponds
to half-filling µ = 0. The parameter ν = π–1

for nearest-neighbors model and ν = π–1 (t +

)) for the next-nearest-neighbors model.

µ/4t–( )arccos

µ/2–(arccos

t
2

t'µ–
(14)

It is easy to obtain from Eqs. (11)–(13) the regions
of ZES existence for any case under consideration. In
the figure, results for (210), (310), and (320) surfaces
are shown. It is important to note that regions with ZES
and regions without them are separated by the lines of
zero gap (for these values of ky, the superconducting
gap vanishes for one of the quasiparticle trajectories
forming the state).

For a half-filled (hl0) surface, the result can be for-
mulated in a general form: zero-energy Andreev sur-
face states appear only for the case of odd h and l.
Moreover, it is seen from (14) that, for any surface ori-
entation, one can find a set of values of ν for which
there are no zero energy states. From (14), we have h +
l values of ν (and the same number of band fillings):

(15)

The conditions for a zero-energy Andreev surface
bound state to exist are studied for the lattice model of
a d-wave superconductor. An arbitrary surface orienta-
tion is considered for the nearest-neighbors as well as
for the next-nearest-neighbors model. The result is very
sensitive to the surface orientation and does not change
continuously under surface-to-crystal angle rotation. In
particular, for a half-filled (hl0) surface, zero-energy
Andreev surface states only appear under the condition
that h and l are odd simultaneously.
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cussions. This work was supported by the Russian
Foundation for Basic Research (project no. 02-02-
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Ballistic transport in an open small (100 nm) three-terminal quantum dot has been analyzed. The dot is based
on the high-mobility 2D electron gas of the AlGaAs/GaAs heterojunction. It has been shown that the gate oscil-
lations of the resistance of such a dot arise due to the coherent scattering of electrons on its quasidiscrete levels
and these oscillations are suppressed by a weak magnetic field. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.23.Ad; 73.50.–h
Quantum scattering in systems with a short-range
confining potential is a classical quantum-mechanical
problem. In one-dimensional and spherically symmet-
ric potentials, resonances with respect to the energy of
the incident particles arise at the energies correspond-
ing to quasilevels. Moreover, the approach of a real or
virtual level to the continuum bottom is accompanied
by a sharp change in the scattering phase of low-energy
particles and, hence, by resonance effects [1]. Experi-
mental investigation of quantum scattering is obviously
an interesting problem of the physics of low-dimen-
sional systems. The corresponding experiments have
already been carried out for superlattice structures. In
particular, transport resonances caused by the transfor-
mation of levels to virtual ones at the boundary between
p-GaAs with the Stark AlAs/GaAs superlattice were
recently detected [2]. It appeared to be more difficult to
observe resonance-scattering effects in lateral submi-
cron systems. This is associated with a narrow spacing
between quasilevels and mesoscopic fluctuations of
conductance. In particular, the theoretical models of
devices made of 1D quantum wires predicted regular
large-amplitude oscillations in conductance [3]. How-
ever, the frequent gate oscillations associated with lon-
gitudinal quantization were much weaker in experi-
ments [4]. Such a problem arose in experiments with
lateral multielectron quantum dots, where the oscilla-
tions of conductance in the open state are random and
mesoscopic [5].

Recently, we studied the splitting points of 1D quan-
tum channels in nanostructures created on heterojunc-
tions with a 2D electron gas [6–9]. According to the cal-
culations of 3D electrostatics and 2D transport, these
dots are small (~100 nm) and of a triangular shape, and
they must provide well-resolved high-amplitude oscil-
lations of penetrability, which are caused by the coher-
0021-3640/04/8009- $26.00 © 20588
ent scattering on the quasilevels of the dot [6, 9]. In this
work, this prediction is experimentally verified for a
single quantum dot located between three close anti-
dots [7, 8]. We report the results of new measurements
and calculations that corroborate the interference
nature of observed effects caused by scattering on the
quasilevels of the open dot.

Quantum dots were manufactured on the basis of a
2D electron gas in the AlGaAs/GaAs heterojunction
with a mobility of µ = 3 × 105 cm2/V s and an electron
density of n = 3 × 1011 cm–2. Dots are small triangular
sections of the 2D electron gas between three antidots
located in the vertices of a 400-nm-side triangle. Anti-
dots and isolating cuts to them were produced by elec-
tron lithography and subsequent plasmochemical etch-
ing. The final operation was the deposition of a metallic
TiAu gate. Structural data, along with a numerical sim-
ulation of the 3D electrostatics of such devices, were
presented in [8], where it was shown that the triangular
dot under investigation in the tunneling regime acted as
a single-electron transistor.

The resistances of these devices in the open regime
were measured in a temperature range of 40 mK–1.5 K
by the use of the four-point scheme at a frequency of
7.5 Hz in a current range of 0.1–1 nA. The current I =
Iij was specified, and we measured the ratios Rijkl =
Vkl/Iij, where the reservoir numbers i, j, k, and l vary
from 1 to 3 and Vkl is the voltage. In most samples, the
cuts that form the antidots in the 2D electron gas are
insulators between three reservoirs. For other samples,
contacts 2 and 3 on one Hall bridge led to the common
reservoir (V12 = V13 = V). The total dot conductance
G = I/V was measured in this case.

Figure 1 shows the experimental results for three
and two isolated reservoirs and various cool-downs for
004 MAIK “Nauka/Interperiodica”
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one of the samples. It is seen that qualitatively similar
oscillations in these cases are observed in the gate
dependence of the corresponding inverse resistances

(Vg) (Fig. 1a) and G(Vg) (Fig. 1b) in the absence
of a magnetic field. Oscillations are observed against
the background of two plateaus with conductance val-
ues 2e2/h and 4e2/h. For B = 0, the deep dips near the
first plateau with a characteristic spacing of ∆Vg = 20–
25 meV between them are most regular and repro-
ducible.

The doublet splitting of the peaks is observed in one
case (Fig. 1a, line 2, T = 0.1 K). The fine structure of the
oscillations that is found in the experiment is inconsis-
tent with the previous interpretation of the oscillations
as a result of the addition of one electron to the dot [7].
Single-electron oscillations must have a period of
∆Vg = e/Cg, where e is the elementary charge and Cg is
the gate capacity of the dot. These oscillations have the
form of simple peaks and (very rarely) Fano resonances
(peak–dip) [10]. The structure of the oscillations is
more complex in the case under consideration. More-
over, simple oscillations are replaced by complex oscil-
lations upon a recurrent immersion of the same sample
in a cryostat, when the nature of transport and Cg cannot
significantly change. It is known that the gate capacity
is not a mesoscopic parameter [9, 11]. At the same time,
according to Fig. 1, our oscillations are of a mesoscopic
nature, when the switch of the charge state of impurities
upon a recurrent process of cooling the sample can
change the form of the oscillations and their period.
The observed transformations of the lines upon the
transition to another mesoscopic state can be attributed
to the response of quantum interference to a change in
the potential shape [8, 9], which leads to the shifts of
single-particle quasilevels and to the corresponding
change in scattering on these levels. This explanation is
consistent with our experimental results (Fig. 1) and
calculation of the gate capacity of the dot under inves-
tigation. We obtain Cg = 5.1 × 10–17 F from the solution
of the 3D electrostatic problem.

The agreement between calculations of the capacity
and experiment was tested in the Coulomb-blockade
regime. In this regime, one of the contacts of the dot
was completely closed, and the corresponding reservoir
of the 2D electron gas was a side gate. Conductance as
a function of the voltage on the side gate Vjg exhibits
single-electron peaks with a period of ∆Vjg = 20 mV.
According to the 3D electrostatic calculation, the
capacity of the dot with respect to the side gate is equal
to Cjg = 0.8 × 10–17 F; i.e., the measured ∆Vjg value coin-
cides with e/Cjg [8].

Oscillations of another type were observed in the
open regime (Fig. 1), although ∆Vg accidentally turned
out to be close to ∆Vjg. In particular, if ∆Vg ≈ 25 mV,
then ∆Vg ≈ 8e/Cg; i.e., the occupation of four spin-
degenerate single-particle levels of the dot is required
for the transition to the next oscillation of resistance.

R1213
1–
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Therefore, each such level needs not to necessarily pro-
vide an individual resonance in scattering. This situa-
tion is known for spherically symmetric potentials [1],
and it was previously realized in the experiments with
sufficiently small two-terminal quantum dots [11–13].
In the case under consideration, it can be supposed that
the levels providing unsplit oscillations are doubly

Fig. 1. (a) Inverse resistances (Vg) of the three-termi-

nal quantum dot for the indicated temperatures T and two
mesoscopic states 1 and 2 (lines are shifted along the ordi-
nate axis by 2e2/h); (b) total conductance of the quantum
dot vs. the gate voltage (two terminals from the dot lead to
the common reservoir), and the effect of the magnetic field
B is shown for case 2 (T = 0.04 K); and (c) magnetic-field

dependence of  of the three-terminal dot for Vg values

marked by the asterisks in panel (a).
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degenerate, as in an ideal triangle [13]. The doublet
splitting of the oscillations can be caused by the asym-
metry of the system.

In our measurements, the temperature dependence
of the oscillation amplitude is not too strong in the
range 0.04–1.5 K (Figs. 1a, 1b), due to the small size of
the dot (100 nm). Therefore, we can conclude that the
energy levels manifested in the oscillations are spaced
by more than 0.1 meV. This conclusion is consistent
with the calculation of the number of electrons (20–25)
[8] and the potential-well depth (5–6 meV) in the quan-
tum dot for Vg = 0.

According to both the indirect experimental data
published in [14] and calculations of magnetotransport
[15] in small ring interferometers, the presence of even
a weak magnetic field (B = 0.5 T) both suppresses back-
scattering arising in the contacts between the entrance
channel with the ring and improves the quantization of
conductance. In other words, the peaks of the resistance
of structures in the absence of the magnetic field corre-
spond to states with negative magnetoresistance in
weak magnetic fields [15]. This fact is qualitatively
consistent with our measurements (Figs. 1b, 1c). It is
seen that the field B = 0.4 T suppresses oscillations in G

and  for a lower conductance plateau of 2e2/h.

To corroborate the interference nature of the con-
ductance oscillations, we simulate the electrostatics of
the device and coherent single-particle magnetotrans-
port. Figure 2 shows the results.

The effective potential in the 2D gas is calculated
with the replacement of the random charge distribution
in the delta-doping layers by a more uniform distribu-

R1213
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Fig. 2. Total conductance of the quantum dot vs. the Fermi
energy for slightly different potential profiles 1 and 2 (lines 2
correspond to the less open and more asymmetric dot). The
lines for case 1 (B = 0) are shifted along the ordinate axis by
2e2/h. The temperatures corresponding to the averaging of
conductance over the particle energies and magnetic fields
B are indicated near the lines (T = 0 for case 2).

(2
e2 /h

)

EF
tion. Moreover, the coordinate dependence of the etch-
ing depth within the etching region is disregarded.
Antidots were treated as ideally circular; they had iden-
tical diameters, and cuts were represented by rectangles
of identical width. Under these assumptions, the quan-
tum dot is close in shape to the regular triangle whose
vertices are connected by narrow contacts with the
remaining 2D electron gas. The actual effective poten-
tial Ueff(x, y) is not strictly symmetric due to technolog-
ical tolerances, and asymmetry is primarily manifested
in variations in the penetrability of three entrances to
the dot [8, 16]. Therefore, to simulate the difference
between nominally identical devices, the distances
between the centers of antidots, as well as the total
depth of etching, were slightly varied (within 10 nm).
The electron penetrability of the dot in the absence of
the magnetic field was calculated by the S-matrix
method [6, 9, 15, 17]. Conductance was determined by
the multichannel Landauer formula. The magnetic-field
effect on the transmission of an electron was taken into
account by recursive Green’s functions [18]. For sim-
plicity, the shape of the effective electrostatic potential
was assumed to be independent of the incident-particle
energy EF.

According to the transport calculations, the model
of the triangular quantum dot under investigation pro-
vides for deep dips in conductance against the plateau
background close to 2e2/h. Knowing the EF – Ueff(x, y)
value, we found that the characteristic distance between
dips in conductance, ∆EF, corresponds to a change in
the number of electrons in the quantum dot by about
ten. Thus, the distance between dips of conductance
that is measured using the value obtained for Cg agrees
with the transport-theory value. As a whole, the pattern
of the oscillations is similar to that obtained in measure-
ments (Fig. 1). The difference in the oscillation forms
for two different dot states is qualitatively reproduced.
For case 2, where the dot is less open and symmetric,
the doublet splitting of the conductance peaks at zero
temperature in the absence of the magnetic field is pro-
nounced. Moreover, the splitting value corresponds to a
change in the number of electrons in the dot by two or
three; i.e., it is scattering on a pair of levels between
which other quasidiscrete states are absent.

The calculated response of the conductance of the
three-terminal dots to both an increase in temperature
and the appearance of the magnetic field is qualitatively

similar to the measured response of  and G to
changes in T and B. However, for B = 0.4 T, narrow dips
remain in the 2e2/h-conductance line calculated for
state 2. These dips are absent in the measurements. For
this state and for B = 0, the dips are more pronounced
than those observed in the measurements. However,
they become noticeably less pronounced when one
antidot moves from two others by only 10 nm (state 1).
Therefore, real differences in the widths of entrances to
the dot can be responsible for the decrease in the ampli-

R1213
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tude of interference oscillations. It should be noted that
the magnetic field strongly affects the mode composi-
tion of the ballistic transport. In particular, the basic
contribution to the penetrability of the quantum dot for
B = 0.4 T comes from three higher modes (10, 11, 12)
rather than from the first modes of the wide entry chan-
nel as for B = 0. With a further increase in B, the contri-
bution from these modes decreases, and lower modes
dominate again. As a whole, the calculations of the
magnetotransport properties of the three-terminal dot
under investigation corroborate the idea that single-par-
ticle interference and quantum-size effects play the
decisive role in the formation of the observed oscilla-
tions.

Figure 3 shows the microscopic interference pattern
for the most interesting features of conductance.

Wave functions were calculated by the recursive
Green’s functions method [19]. Figures 3a and 3b cor-
respond to neighboring states of high reflection and
transmission in the absence of a magnetic field (marked
by the asterisk in Fig. 2a). It is assumed that electrons
are incident from the left and they belong to the first
mode of the wide entrance channel. For the case of
strong reflection, the wave function is a standing wave
that arises between the antidot and reservoir. The high
peaks of the probability density are in the entrance con-
striction, and a ballistic electron does not fall to other
constrictions (Fig. 3a). On the contrary, in the com-
plete-penetrability state of the triangular dot, a travel-
ing wave exists in all constrictions, and the high peaks
of the probability density are attributed to the triangular
quantum dot (Fig. 3b). Interference patterns inside the
quantum dot are qualitatively different for these two
states. Therefore, the corresponding EF values are close
to different quasidiscrete levels.

Figure 3c shows the probability-density plot corre-
sponding to a state with EF = 1.7 meV in a weak mag-
netic field of B = 0.4 T, when the penetrability of the tri-
angular dot increases to 0.8. The result of scattering is
presented for the 11th mode of the wide entrance chan-
nel, which makes the largest contribution to the dot
penetrability. Comparison between Figs. 3a and 3c
shows that the suppression of backscattering is caused
by the appearance of significant asymmetry in the inter-
ference pattern for B = 0.4 T. This magnetic field begins
to press the electron flux to the upper antidot, and this
flux hence passes through the quantum dot to the upper
dot contact in Fig. 3c. This behavior is similar to that
for a small ring interferometer [14, 15].

Thus, various experimental facts (conductance
oscillations, as well as strong backscattering and its
suppression by the magnetic field) are consistent with
the model of coherent transport in the small quantum
dot. We have studied a device that is a quantum-scatter-
ing-based transistor triggering under the addition of
several electrons to the dot. Moreover, the above results
demonstrate that it is important to take into account
quantum scattering at the current splitting points exist-
JETP LETTERS      Vol. 80      No. 9      2004
ing in ring interferometers [6, 9, 14] and Y transitions
[20, 21].
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A.S. Medvedev, and L.A. Nenasheva for manufactur-
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Fig. 3. Probability density distribution in the waves incident
on the triangular dot from the left for cases marked by the
asterisk in Fig. 2. Contours are drawn through equal values
in the logarithmic scale. The dashed lines correspond to the
condition EF = Ueff(x, y). The quantum-dot state with (a)

G = 0.06, (b) 2, and (c) 1.6 e2/h for EF = (a) 1.7 (B = 0), (b)
2.7 (B = 0), and (c) 1.7 meV (B = 0.4 T) are shown.
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It has been found that, instead of the expected critical acceleration of the longitudinal spin relaxation near the
Néel temperature in stoichiometric LaMnO3 samples, the relaxation is sharply retarded. This slowing down is
similar to that observed earlier in doped manganites with ferromagnetic ordering. © 2004 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 75.40.–s; 75.47.–m; 76.30.–v
The widespread interest in rare-earth manganites is
caused by their unusual magnetic and transport proper-
ties (for instance, the collosal magnetoresistance) and
their rich phase diagram that includes metal–insulator
transitions and various spin-, orbital-, and charge-
ordering types (see, e.g., reviews [1–3]). The physical
nature of these properties is as yet far from fully under-
stood. In particular, a phase-transition mechanism in
manganites and, specifically, the possible role of micro-
scopic phase separation accompanied by the formation
of metallic ferromagnetic droplets (ferrons) is still the
subject of acute controversy [2, 4]. Important informa-
tion on the magnetic properties and spin dynamics at
the microscopic level can be provided by the study of
electron paramagnetic resonance (EPR) spectra (see,
e.g., [5–10]). In addition to the data on the transverse
spin relaxation time T2, which is extracted from the
EPR line width, measurements of the longitudinal spin
relaxation time T1, whose inverse is known [11] to be
proportional to the spectral density J(ω0) of local-field
fluctuations at the EPR frequency ω0, may be quite
informative. Measurements of the time T1 in mangan-
ites have become possible due to the use of the modu-
lation technique with detection of the longitudinal spin-
magnetization component; this technique was proposed
as early as the 1960s [12] and has recently been modi-
fied [13, 14] for measurements of very fast relaxation

processes with rates  ~ 10–9–10–10 s.

This technique was used to measure the temperature
dependence of T1 in the paramagnetic phase of doped
manganites with the compositions La1 – xCaxMnO3
(0.1 ≤ x ≤ 0.33) [15–17] and La2 – 2xSr1 + 2xMn2O7 (x =
0.4) [18]. These measurements showed that, instead of

T1
1–
0021-3640/04/8009- $26.00 © 20593
the theoretically predicted [19] critical acceleration of
relaxation, it was retarded as the ferromagnetic-transi-
tion temperature (TC) was approached. The absence of
critical acceleration near TC was also established for
some ferrites [20, 21]. In an effort to physically explain
this phenomenon, the possible role of the polarization
of superparamagnetic clusters or ferromagnetic drop-
lets in the presence of a static magnetic field B0 ~ 3 kG,
which is necessary for the observation of EPR, was
pointed out in [15–18] (the possibility of suppressing
critical relaxation acceleration by an external magnetic
field was theoretically analyzed in [22]). However, an
ultimate interpretation of the indicated anomaly is pres-
ently lacking. It is worth noting that, in all cases
described so far, critical relaxation acceleration was
absent in materials with ferromagnetic ordering.

The purpose of this work was to study the tempera-
ture dependence of T1 near the phase transition in the
“parent” (undoped) LaMnO3 manganite that is known
to undergo a transition from the paramagnetic to the
antiferromagnetic state upon cooling [1–3]. Therefore,
it had to reveal whether the anomalous slowing down of
the longitudinal spin relaxation is an exceptional prop-
erty of the ferromagnetic phase transition or whether it
is typical of all manganites, including antiferromag-
netic ones.

Single crystals of LaMnO3 were grown by zone
melting; the details of this procedure are described in
[23]. The single-phase character of the synthesized
crystals was monitored by x-ray structural analysis.
However, the accuracy of this method is insufficient for
the detection of small (about one percent) deviations
from stoichiometry. As is known [24], such deviations
are described by the formula (LaMn)1 – δO3 and give
004 MAIK “Nauka/Interperiodica”
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rise to the appearance of Mn4+ ions (holes) that favor
the additional exchange interaction of the ferromag-
netic sign. Experiments suggest (see, e.g., [25]) that the
narrowing of a broad Lorentzian EPR line, typical of
LaMnO3, or the appearance of a narrower and rapidly
growing component against its background upon cool-
ing down to TN can serve as a sensitive indicator of the
aforementioned deviations. For this reason, among
numerous single crystals with the nominal formula
LaMnO3 that were grown under various technological
conditions (with varied oxygen content in the growth
medium, temperature variation rate, etc.), we selected

Fig. 1. The EPR spectra of LaMnO3 at various tempera-
tures. The narrow line near 3400 G is the reference.

Fig. 2. Temperature dependence of the magnetic suscepti-
bility, as obtained by the double integration of the EPR
spectra (the broken line passes through the experimental
points). Inset: the temperature dependence of the inverse
susceptibility above TN; the straight line corresponds to the
Curie–Weiss law.
two samples in which these effects were absent. All
results presented below were obtained for these sam-
ples, whose spectra and relaxation rates proved to be
identical.

Measurements were made in a wavelength range of
3.2 cm (X band). The EPR spectra were recorded on a
standard ER-200 (Bruker) spectrometer. The longitudi-
nal relaxation time was measured in the same fre-
quency range on an original setup described in [13, 14].
The microwave power modulation and the lock-in
detection of the longitudinal magnetization component
were performed at a frequency of 1.6 MHz. The
“amplitude” version of the method was employed, in
which the in-phase component of the longitudinal
response caused by weak EPR saturation was com-
pared with the unsaturated EPR absorption signal
recorded under the same conditions. The Y2BaCuO5

compound was used as a reference, for which the time
T1 = 10–9 s is independent of temperature in the range
140–300 K studied in this work [14]. Because of the
design features of the coaxial microwave cavity used
(see [14]), the LaMnO3 single crystals were powdered
and the powder was mixed with an Y2BaCuO5 powder,
poured over with paraffin, and uniformly plunged into
a toroidal container.

The typical EPR spectra recorded at different tem-
peratures are shown in Fig. 1. At T > 145 K, the spec-
trum consists of a single line of an approximately
Lorentzian shape with a width that has a shallow mini-
mum near 180 K and increases strongly upon further
cooling. Near 145 K, the EPR line is abruptly weakened
(almost disappears), which indicates the antiferromag-
netic phase transition. All these features are in agree-
ment with the literature data [8, 26].

Figure 2 shows the temperature dependence of the
integrated EPR absorption intensity, i.e., magnetic sus-
ceptibility χEPR obtained by the double integration of
the spectra shown in Fig. 1. The approximation of the
1/χEPR(T) dependence by the Curie–Weiss law with the
parameter θ ≅  30 K is demonstrated in the inset. The
ferromagnetic sign of the Curie–Weiss temperature
does not contradict the antiferromagnetic ordering with
the alternation of oppositely polarized ferromagnetic
planes and reflects the fact that the sum of the ferro-
magnetic exchange integrals 4Jac for four neighbors in
the crystallographic ac plane exceeds the correspond-
ing sum 2Jb of the antiferromagnetic integrals for two
neighbors in adjacent planes [26].

The temperature dependences of the longitudinal
and transverse relaxation times are shown in Fig. 3. The
corresponding values of  were determined from the
EPR line width according to the formula

T2*

T2*( ) 1–
3/2( )∆Bpp,=
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where ∆Bpp is the EPR line width between the deriva-
tive peaks (the asterisk on T2 indicates the possible con-
tribution of inhomogeneous broadening).

One can see in Fig. 3 that T1 and  approximately
coincide at sufficiently high temperatures, which is nat-
ural in the situation of strong exchange narrowing (fast-
motion limit [11]). However, as TN is approached, the
time T1 starts to increase, whereas  shortens. Fitting
the temperature dependence of longitudinal relaxation
to the law

(1)

yields the critical exponent α = 0.5 (solid line in Fig. 3).
Thus, the behavior of longitudinal relaxation near

the antiferromagnetic phase transition in LaMnO3
proved to be qualitatively the same as in doped manga-
nites undergoing ferromagnetic ordering [15–18],
including the critical-exponent value [15].

Attempts to explain this unexpected result within
the framework of the hypotheses used in the ferromag-
netic case require substantial improvements. One is
forced to assume that ferromagnetic (or, at least, ferro-
magnetically correlated) clusters arise in pure LaMnO3,
whose lattice does not contain Mn4+ ions (holes). This
seems to be possible under the assumption that ferro-
magnetic correlations in the ac planes arise upon cool-
ing somewhat earlier than antiferromagnetic correla-
tions between the neighboring planes. Note that the
main contribution to the longitudinal response mea-
sured by the above method comes from those spins that
are saturated more easily, i.e., which have the longest
time T1. It is conceivable that such spins enter into the
ferromagnetically correlated regions in the ac planes
that arise and expand immediately before antiferromag-
netic ordering between the neighboring planes. As
known, the competition between ferro- and antiferro-
magnetic orderings is typical of manganites and is man-
ifested, in particular, in the suppression of antiferro-
magnetism even in a parent material doped with iso-
morphic diamagnetic impurities (e.g., Ga) [27]. Note
that the possible mechanism for the disappearance of
the critical relaxation acceleration in systems with
competing ferro- and antiferromagnetic interactions
was considered theoretically in [28, 29]. However, one
cannot exclude the possibility that the critical relax-
ation acceleration nevertheless occurs in the immediate
vicinity of TN, but the longitudinal response cannot be
detected and T1 cannot be measured because of the
sharp broadening and almost complete disappearance
of the EPR line.

Thus, undoped LaMnO3 manganite has been taken
as an example to demonstrate the absence of the critical
acceleration of the longitudinal spin relaxation in sys-
tems with the antiferromagnetic phase transition. The
observed increase in the time T1 is due to the formation
of the ferromagnetically correlated regions that pre-

T2*

T2*

T1 T /TN 1–( ) α–∝
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cedes antiferromagnetic ordering. To get deeper insight
into the nature of the observed effect, further experi-
mental and theoretical studies are required.

This work was supported by the Russian Foundation
for Basic Research (project no. 02-02-16219) and the
program “Spin-Dependent Effects in Solids and Spin-
tronics” of the Branch of General Physics and Astron-
omy, Russian Academy of Sciences.
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Ultrasonic Study of the Phase Diagram of Methanol
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The phase diagram of methanol is studied by an ultrasonic technique over the temperature range 90–290 K at
pressures up to 1.2 GPa. The pressure and temperature dependence of the velocity of longitudinal ultrasonic
waves and the density of crystalline and liquid phases has been determined. Weak anomalies in the velocity of
ultrasound in the liquid phase of methanol and the corresponding anomalous additional compression of the liq-
uid at 230–250 K and 0.2–0.6 GPa have been found, and they are likely attributable to structural changes in the
liquid phase. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 62.20.Dc; 62.50.+p; 64.70.Kb
1. Methanol is a simple model substance that can be
used to study the nature of intermolecular interactions
in systems with hydrogen bonds. Unlike ice and water,
which are substances with strong tetrahedrally ordered
hydrogen bonds under normal conditions, methanol (as
well as ethanol) is considered to be a classical model
substance with medium-strength hydrogen bonds and a
chain structure in both crystalline and liquid states [1–
5]. Alcohols have been studied to a much lesser extent
than water. Experimental data on the p–T phase dia-
grams and physical properties of alcohols are scanty.
Moreover, data on the structures of both crystalline and
liquid phases are contradictory in many cases [1–6].

Methanol exhibits a complicated behavior under
changes in pressure (p) and temperature (T). The weak-
ening of hydrogen bonds in liquid methanol heated to
high temperatures was unambiguously established. At
the same time, there are various opinions regarding the
effect of pressure on the strength of hydrogen bonds in
methanol [5, 7–9]. Thus, for example, Bai and Yonker
[5] pointed to an increase in the length of hydrogen-
bonded linear chains in liquid methanol with pressure.
However, Jorgensen and Ibrahim [7] found that a vol-
ume decrease occurred due to a change in the distance
between chains, whereas the chain length remained
unchanged in this case. At the same time, Giguere and
Pigeon-Gosselin [9] concluded that the structure of liq-
uid methanol is a three-dimensional network rather
than chains and that the effect of pressure on liquid
methanol can lead to structural disordering.

At atmospheric pressure, as the temperature is
decreased, methanol crystallizes to form a high-tem-
perature β phase at T = 175 K. As the temperature is fur-
ther decreased, a solid-phase transition from the β to α
phase occurs at T = 157 K [10–14]. At low tempera-
tures, the phase diagram of methanol was studied by
differential thermal analysis over a narrow range of
pressures (to 0.3 GPa at 77–293 K) [15]. In the case of
0021-3640/04/8009- $26.00 © 20597
compression at room temperature, methanol crystal-
lizes at p ≈ 3.5 GPa, but the structure of crystalline
methanol at high pressures (p > 3 GPa) was determined
ambiguously [1, 13, 16]. At a high loading rate, liquid
methanol can be in an overcompressed state (that is, liq-
uid below the melting temperature) and can undergo a
glass transition at 5–10 GPa [1, 16, 18]. Relatively
strong hydrogen bonds and a considerable structural
difference between the liquid and solid phases of meth-
anol are likely favorable for the glass transition in liquid
methanol.

The physical properties of methanol, including its
elastic characteristics, are not only of fundamental
interest but also of paramount importance to experi-
mental high-pressure physics. This is due to the fact
that both neat methanol and a 4 : 1 methanol–ethanol
mixture are frequently used as a truly hydrostatic
medium up to p ~10 GPa [19]. The elastic properties of
methanol under pressure (to 6.8 GPa) were studied pre-
viously only at room temperature using stimulated Bril-
louin scattering in diamond anvil cells [20]. To the best
of our knowledge, studies on the elastic properties of
crystalline methanol phases have not yet been per-
formed.

The aim of this work was (i) to study the elastic
properties of methanol at low temperatures and high
pressures with the use of an ultrasonic technique in
combination with direct volumetric measurements and
(ii) to construct the phase diagram of methanol based
on these measurements.

2. The measurements were performed with a low-
temperature ultrasonic piezometer at pressures up to
1.2 GPa over the temperature range 90–290 K in accor-
dance with the procedure described in [21]. After puri-
fication and drying, the test substance was placed in a
cell made as a thin-walled Teflon beaker with a copper
cap. The travel time of a longitudinal ultrasonic wave
(to within 0.001 µs) was directly measured on an orig-
004 MAIK “Nauka/Interperiodica”
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inal Akustomer-1 system, which was developed at the
Institute of High-Pressure Physics, Russian Academy
of Sciences and which is based on MATEK instrumen-
tation. Quartz plates with a carrier frequency of 5 MHz
were used as piezoelectric transducers. In the experi-
ments, changes in the ultrasonic signal paths were also
measured to within 0.01 mm using angular-displace-
ment indicators. The density of samples under pressure
was determined from the change in their length.

Two series of experiments were performed to deter-
mine (i) the pressure dependence of the travel time of a
longitudinal ultrasonic wave and the sample length at a
constant temperature and (ii) the temperature depen-
dence of the above characteristics under natural heating
of a high-pressure chamber at a constant pressure (the
heating rate was 1 K/min). As a result, the pressure and
temperature dependence of the velocity of longitudinal
ultrasonic waves v l(p, T) was found over a range from
atmospheric pressure to 1.2 GPa at temperatures from
90 to 290 K. Anomalies in the changes in the above
characteristics were localized as melting points or β–α
phase-transition points in crystalline methanol. An

Fig. 1. Typical experimental pressure dependence of the
velocity of the longitudinal ultrasonic wave v l, the density
ρ, and the longitudinal elastic modulus L in methanol com-
pressed at temperatures (n) 204, (s) 228, and (h) 293 K.
The vertical dashed lines correspond to the crystallization
of the liquid into the β phase and to the β–α phase transition
at T = 204 K. The dash–dotted lines mark the above phase
transitions at T = 228 K.

v
l

advantage of the ultrasonic technique is the capability
of observing phase transitions accompanied by small
volume changes and of almost continuously monitoring
the parameters to be measured along with the simulta-
neous sufficiently accurate determination of phase-
transition temperatures and pressures. More than 30
experiments were performed, which enabled us to
decrease noticeably the statistical error.

Figure 1 demonstrates the isothermal pressure
dependence of the velocity of the longitudinal ultra-
sonic wave v l, the density of methanol ρ, and the mod-

ulus of elongation L =  for crystalline and liquid
phases. These curves were obtained in the process of
compression of initially liquid methanol. The absence
of direct structure measurements in this study was com-
pensated by published data on structure and Raman
studies [1, 13, 15, 16]. In comparison with our measure-
ments of the travel time of an ultrasonic signal and the
density, this enabled us to reliably identify the phase
transitions observed.

The shear modulus of the liquid phase is equal to
zero, G = 0, and the longitudinal elastic modulus coin-
cides with the bulk modulus, L = B, in accordance with
the well-known equation for the velocity of longitudi-

nal acoustic waves in isotropic media:  = B +
(4/3)G. In Fig. 1, the vertical dashed lines indicate pres-
sures corresponding to the crystallization of the liquid
into the β phase and to the β–α phase transition at
204 K. The crystallization of the liquid phase at T =
204 K occurs with a density change of ≈0.030 g/cm3

(≈3.2%), a change in the velocity of longitudinal ultra-
sonic waves by ≈0.240 km/s (≈12.6%), and an increase
in the longitudinal elastic modulus by ≈0.9 GPa
(≈26%). As the temperature was increased (Fig. 1,
curves for T = 235 K), the points of both phase transi-
tions were naturally shifted toward higher pressures;
the phase transitions occurred with smaller changes in
the measured characteristics; the density (volume)
changes became very small, and the β–α phase transi-
tion was reliably detected only by changes in the longi-
tudinal velocity of ultrasound and the longitudinal elas-
tic modulus. Note that all of the above characteristics in
the α phase increased with pressure more rapidly than
those in the β phase. Thus, for example, at T = 204 K
(Fig. 1), the pressure derivatives of the longitudinal
elastic modulus in the α and β phases are ≈5.4 and ≈7.5,
respectively. Note that the ultrasound velocities, densi-
ties, and bulk compression moduli measured for liquid
methanol at room temperature in this work are consis-
tent with published data [6, 20].

Figure 2 demonstrates the isobaric temperature
dependence of the same parameters as in Fig. 1
obtained by heating crystalline methanol at various
fixed pressures. As an example, we consider the exper-
imental function v l(T) at p = 0.35 GPa. A weak change
in the longitudinal ultrasound velocity at 110 < T <
180 K obviously corresponds to the α phase of metha-

ρv l
2

ρv l
2
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nol. As the temperature further increases from 180 to
185 K, the anomalies of the characteristics correspond
to a transition to the crystalline β phase, which occurs
in a narrow temperature range from 185 to 200 K. The
next anomaly is observed at 200 < T < 213 K and obvi-
ously corresponds to the melting of methanol. Note
that, as the heating pressure is increased, the total vol-
ume change in the α–β and β–liquid phase transitions
decreases. Even at p = 0.6 GPa, the densities of the α
and β phases of methanol are very close, and the tem-
perature dependence of the density does not enable us
to detect a phase transition. However, the temperature
dependence of the velocity of longitudinal ultrasonic
waves reveals the α–β phase transition and demon-
strates the existence of the β phase at these pressures.
The phase transition from the α to the β phase is accom-
panied by a dramatic decrease in the longitudinal mod-
ulus of methanol at an almost unchanged density, which
is indicative of a total decrease in bonding forces in the
crystal lattice of the β phase.

3. The results of isobaric and isothermal experi-
ments allowed us to extend and refine considerably the
p–T phase diagram of methanol, which is shown in
Fig. 3 in comparison with the previously known dia-
gram [22]. Note that the resulting experimental phase
diagram of methanol is consistent with published data
[1, 15, 17, 19], although it is much more complete. Our
measurements demonstrated that the region of the
existence of the β phase of methanol is narrowed with
pressure. However, the α–β phase transition and the
melting of the β phase can be distinguished at least to
1.2 GPa.

The flattening of the melting curve of methanol at
p > 0.75 GPa should be noted. In accordance with the
Clausius–Clapeyron equation, taking into account that
the density of a liquid phase is lower than the density of
the corresponding crystal near the melting curve, such
a behavior can be attributed to a high compressibility of
liquid methanol or to an additional structural compac-
tion of the liquid phase of methanol (at p ~ 0.6–0.7 GPa
near the melting curve) as a result of changing the
short-range liquid structure.

Indeed, in the experiments on heating methanol at
0.1–0.4 GPa, weak anomalies in the ultrasound velocity
and density in the liquid phase were observed over the
temperature range 230–250 K. Figure 4 demonstrates,
on an enlarged scale, the temperature dependence of the
density and bulk compression modulus of liquid meth-
anol at p = 0.35 GPa. Although they are small, the
anomalies exhibit a stable character and repeatability,
and their amplitude is higher than the error of relative
measurements. The points corresponding to the
observed anomalies are marked in the phase diagram of
methanol (Fig. 3). They lie in a narrow region, which
can be hypothetically considered to be a boundary
between two structural types of liquid methanol with
higher and lower molecular packing densities. Note
that this apparent boundary is consistent with the onset
JETP LETTERS      Vol. 80      No. 9      2004
Fig. 2. Temperature dependence of the velocity of the lon-
gitudinal ultrasonic wave v l, the density ρ, and the longitu-
dinal elastic modulus L of methanol heated at fixed pres-
sures (h) 0.22, (s) 0.35, (n) 0.6, and (,) 0.85 GPa.

Fig. 3. Phase diagram of methanol plotted using experimen-
tal data: (d) points corresponding to a transition from the
liquid state to the β phase and the β–α phase transition as
obtained in the methanol compression process; (.) points
corresponding to the α–β phase transition and the melting
of methanol as obtained in the natural heating process; and
(m) points corresponding to anomalies in liquid methanol,
which are grouped in the region marked with dotted lines.
The dashed lines correspond to the interpolation of experi-
mental phase-transition lines. The dashed lines at low pres-
sures connect (*) phase-transition points obtained by Wur-
flinger and Landau [15]. The inset shows phase-transition
points in methanol under pressure, which correspond to the
previously known phase diagram of methanol [22].
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of flattening of the melting curve. This conclusion is
tentative and requires further investigation, although
the occurrence of anomalies in liquid methanol is a reli-
ably established fact.

4. Thus, the p–T phase diagram of methanol over
wide pressure and temperature ranges, as well as the
elastic properties of crystalline and liquid phases, have
been studied in this work using the ultrasonic tech-
nique.

It is of interest to compare the characteristics of liq-
uid methanol and ethanol. Such a comparison is made
in Fig. 5 for room temperature. Previous studies on the
density and elastic properties of liquid methanol and
ethanol under pressure [20] did not reveal differences in
the behaviors of these substances under compression
because of the low experimental accuracy. The results
of a detailed study of ethanol under pressure will be
published elsewhere. The pressure derivatives of the
longitudinal elastic modulus of methanol phases are
lower than those of ethanol. This is indicative of a
weakening of the crystal lattice, and this weakening
increases at p > 0.5 GPa. In this case, it is important that
the density of liquid methanol increases more rapidly
with pressure and becomes higher than the density of
ethanol. As noted previously, the higher compressibil-
ity of methanol can be responsible for the flattening of
the melting curve. Figure 5 provides support for this
point of view.

Fig. 4. Typical temperature dependence of the density and
bulk modulus of liquid methanol measured at p = 0.35 GPa
in the region of an anomaly that was regularly observed
upon heating. The dashed lines are the approximations of
the corresponding functions before and after the anomaly.
As mentioned above, the melted methanol addition-
ally experienced a sharp compaction at 0.2–0.6 GPa
and 230–250 K (Fig. 4). This compaction is likely asso-
ciated with structural changes in the liquid phase. It is
of interest that a small increase in the density of the liq-
uid is accompanied by a decrease in the bulk modulus
(Fig. 4). Such an anomalous behavior was observed
previously in hydrogen-bonded systems, in particular,
in a phase transition between the crystalline H2O
phases ice 1h and ice III [23]. A more prominent exam-
ple of such an anomaly was observed in D2O ices [24].
In this case, the bulk modulus of the high-density amor-
phous (hda) ice, which is the densest phase, was notice-
ably lower than the corresponding bulk moduli of the
low-density amorphous (lda) ice and the crystalline
phases ice 1h and ice 1c.

Based on low-temperature Raman-scattering data, it
is believed that a sharp transition from a quasi-chain
structure of the liquid to a branched network structure
involving several hydrogen bonds per molecule occurs
in the process of compression of liquid methanol near
the melting curve. The measurements of the density and
elastic characteristics of crystalline and liquid alcohols
over sufficiently wide ranges of pressures and tempera-
tures will enable us to test various theoretical models
and to significantly clarify the behavior of hydrogen
bonds in simple alcohols under changes in thermody-
namic parameters.

Fig. 5. Experimental pressure dependence of the velocity of
the longitudinal ultrasonic wave v l, the density ρ, and the
bulk modulus B of (solid line) methanol and (dashed line)
ethanol that are compressed at room temperature.
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The earlier-developed statistical methods for nonequilibrium alloys are applied to stochastically describe phase
separation near the spinodal curve. An important parameter of the theory is the size of local equilibrium regions,
which is estimated using simulations for the different values of this parameter. The simulations based on this
approach reveal significant changes in the type of evolution from nucleation to spinodal decomposition under
variation of concentration and temperature across the spinodal curve. The scale of these changes seems to be
mainly determined by the difference of the properly defined supersaturation parameters. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 05.70.Ln; 64.60.Qb
Studies of microstructural evolution in phase-sepa-
rating alloys attract interest from both fundamental and
applied points of view [1, 2]. Many detailed experimen-
tal [2–6] and theoretical [1] studies of these problems
are available. However, up to now, the theoretical
approaches seem to provide little information about the
microscopical details of evolution [2]. There are two
main kinetic forms of phase separation for an initially
homogeneous system quenched into the two-phase
equilibrium region: nucleation and spinodal decompo-
sition. For definiteness, we consider the disordered
binary alloy AcB1 – c. There are two important curves in
the concentration–temperature plane c, T: the two-
phase equilibrium curve, or the binodal Tb(c), and the
stability limit of the uniform state, or the spinodal Ts(c).
The first curve is determined by the phase-equilibrium
equations, and the second one is determined by the
equation (∂2F/∂c2)T = 0, where F = F(c, T) is the extrap-
olated or calculated expression for the free energy of
the uniform alloy. According to classical ideas [7, 8], in
the metastability region Ts(c) < T < Tb(c), the homoge-
neous phase separation is realized via nucleation and
growth (NG) of isolated precipitates of the new phase,
while at T < Ts(c) the main kinetic mechanism is spin-
odal decomposition (SD) via the development of unsta-
ble concentration waves with growing amplitudes. Tak-
ing into account the fluctuative effects (neglected in the
classical theories) should result in some smearing of the
borderline between these two evolution types in the c,
T plane [1], though in the available experiments [3, 5]
the transition region was found to be rather narrow.
There are some detailed studies of NG at low supersat-
uration, i.e., near Tb(c) [9, 10], as well as those for SD

¶ This article was submitted by the authors in English.
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at high supersaturation, i.e., well below Tc(c) [11, 12].
However, there seems to be “no theoretical approach to
describe the behavior in the transition region from SD
to NG [1].” One can also mention the phenomenologi-
cal treatments of this problem using the “stochastic-
phase field equations,” e.g., [13], but both the applica-
bility region and the methods of calculating the fluctu-
ative terms in these treatments seem to be unclear and
arbitrary.

Recently, the microscopic generalized Gibbs distri-
bution approach (GGDA) [14] has been suggested to
study the diffusional kinetics of nonequilibrium alloys.
Below, we use this approach to describe phase separa-
tion near the spinodal curve.

Let us first present the main equations of GGDA dis-
regarding the fluctuative effects. Various distributions
of atoms are described by the occupation numbers {ni},
where ni is 1 when the site i is occupied by atom A and
0 otherwise. GGDA is based on the master equation for
the probability P to find the number set {ni} = ξ,

(1)

where W(ξ, η) is the η  ξ transition probability per
unit time, for which we use the conventional thermally
activated atomic exchange model [14]. As discussed in
detail in [14], for the usual conditions of phase transfor-
mations, the probability P in (1) can be written in the
following “quasi-equilibrium” form:

(2)

dP ξ( )/dt W ξ η,( )P η( ) W η ξ,( )P ξ( )–[ ] ,
η
∑=

P ni{ } β Ω λ ini v ijnin j

i j>
∑–

i

∑+
 
 
 

.exp=
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Here, β is 1/T; the parameters λi (being, generally, both
time- and space-dependent) can be called the “site
chemical potentials”; the quantities v ij describe inter-
atomic interaction supposed to be pairwise; and the
constant Ω = Ω{λi} is determined by the normalization.

Multiplying equation (1) by the operator ni and sum-
ming over all configurational states, we obtain the
“quasi-equilibrium” kinetic equation [14]:

(3)

Here, the mean site occupation ci corresponds to the
averaging of the operator ni over distribution (2):

(4)

and the “generalized mobility” Mij is a similar average
of some other function of occupation numbers. To
explicitly find the functions λi{cj} and Mij{ck} in
Eqs. (3) and (4), we should use some approximate
method of calculations. For example, in the simplest,
“kinetic mean-field” approximation (KMFA), we
obtain [14]

(5)

(6)

where  is (1 – ci), the factor γij determines the proba-
bility of an intersite atomic exchange, and ui is the
“asymmetrical potential” supposed below to be zero.

For simplicity, we consider disordered cubic alloys
at sufficiently high temperatures T not far from the crit-
ical temperature Tc, say, T * 0.9Tc. Then, the space and
time variations of the local concentration ci = c(Ri, t)
under phase separation are very smooth [8, 10], and
Eqs. (3)–(6) can be rewritten in the continuous form
[12]:

(7)

(8)

where M(c) is γcc'; γ is  with rij = |Ri – Rj |;

Tc = (– /4) is the critical temperature in the MFA

used; and  = / is the mean interac-
tion radius squared. If, to calculate λi{cj} and Mij{ck} in
Eqs. (3) and (4), we use a more refined method than
KMFA (e.g., kinetic cluster methods [14]), basic equa-
tion (7) retains its form but functions λ(c) and M(c) are

dci/dt Mij2 β λ j λ i–( )/2[ ] .sinh
j

∑=

ci ni〈 〉 niP n j{ } ,
n j{ }
∑= =

λ i T ci/ci'( )ln v ijc j,
j

∑+=

Mij γij cici'c jc j' βui βu j+( )exp[ ] 1/2
,=

ci'

dc/dt div M c( )β∇λ c( )[ ] ;=

λ c( ) T c/c'( )ln 4Tc c r0
2/6( )∇ 2c+[ ] ,–=

1
6
--- γijrij

2

j∑
v ijj∑
r0

2 v ijrij
2

j∑ v ijj∑
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given by more complex expressions. This difference is
unessential for what follows.

Let us look at a discrete description dividing the lat-
tice into the cubic cells of size L (L-cells). To this end,
we (i) sum Eq. (7) over all sites j within the cell cen-
tered at Ri (“cell i”), thus obtaining on the left-hand

side /dt, where  is ; (ii) transform the
right-hand side of (7) into surface integrals over six fac-
ets s of cell i; and (iii) integrate the result over a small
time interval δt. Then, (7) takes the “finite difference”
form:

(9)

Here, v a is the volume per site; ns is the unit vector nor-
mal to the facet s directed off the cell i; and the gradient
term ∇λ  is written as the appropriate finite difference.
The mesh size L in (9) should be lower than the smallest
inhomogeneity length, which, in our problem, is the
interphase boundary width, while employing a larger L
is convenient for computations. In our simulations, we
used L * a, where a is the face-centered cubic (FCC)
lattice constant.

Let us now discuss the relation between the quanti-
ties ci or  in (4) or (9) and the concentration distribu-
tion cobs(R, t) observed experimentally. Note that the
GGDA, being a statistical approach based on “ensem-
ble averages” ci = 〈ni〉 , is physically informative and
complete only for a “macroscopically” nonequilibrium
system ([7], Ch. 7) that can be divided into some locally
equilibrated subsystems with the size lle much exceed-
ing the interatomic distance a. Within each subsystem,
the site chemical potential λi in (2) is approximately
constant, and its fluctuations have a relative scale
(a/lle)3/2 ! 1. Therefore, the summation over alloy
states in Eq. (4) should include not all distributions {ni}
but only those with the limited inhomogeneity lengths
l < lle, while the long-wave fluctuations with l * lle
remain to be fixed in the macroscopically nonequilib-
rium state under consideration. Therefore, the “diffu-
sive” term on the right-hand side of Eqs. (7) or (9) cor-
responds just to a “coarse-grained” averaging in (4)
performed at the fixed distribution of these long-wave
fluctuations, and the terms allowing for their dynamics
should also be considered to describe cobs(R, t). These
fluctuative terms were neglected in the previous
GGDA-based treatments of phase transformations [14],
as usually they have little effect on evolution. However,
for the phase separation above and near the spinodal
curve, the presence of such terms is crucial.

We describe these fluctuative terms using the sto-
chastic Langevin-type approach. To this end, we pro-
ceed from the average  =  in Eq. (9) to an
“individual phase trajectory,” that is, to the actual atom

dNi Ni c jj∑

δNi L2/v a( )nsβ M∇λ( )sδt.
s 1=

6

∑=

Ni

Ni c jj∑
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number Ni(t) =  within each L cell. It differs from

the average (t) due to the fluctuations of the atomic
transfer δNfs across each facet s for the time interval δt.
Therefore, instead of Eq. (9), we have

(10)

where the diffusive term δNdi is given by the right-hand

side of Eq. (9) and the fluctuative term δNf i is .

Following Langevin’s idea [15], we treat each fluc-
tuative transfer δNfs as a random quantity with the
Gaussian probability distribution W(δNfs):

(11)

where As is the normalization constant and the disper-
sion Ds is the same as that for the actual fluctuative
transfer δNfs. For example, for the nearest-neighbor
atomic exchange model with γij in (6) equal to γnn, the
KMFA calculation of Ds yields

, (12)

where Nb is the total number of bonds crossed by each
facet s. For the FCC lattice, Nb is 8L2/a2, while the num-
ber of sites NL within an L cell is 4L3/a3.

Let us now discuss which quantities cj should be
used as the arguments for the local chemical potential
λ{cj} and the mobility M{cj} in the “diffusive” term
δNdi in (10). The most “natural” (but naive) prescription
seems to be just to put cj = Nj/NL, that is, to treat the
fluctuations of both the atom number Ni and the chem-
ical potential λi = λi{cj} within each L cell on the same
footing, which is declared, for example, in the “stochas-
tic-phase field” treatments [13]. However, the numeri-
cal realization of this “direct” recipe for the reasonable
L values mentioned above leads to physically unaccept-
able results, namely, to totally chaotic evolution with no
hints of a tendency to thermodynamic equilibrium of
any kind at any T and c.

If one arbitrarily decreases the fluctuation scale Ds

in Eqs. (10)–(12) by one or two orders of magnitude,
the evolution becomes more plausible. However, there
seem to be no arguments for such a drastic reduction of
fluctuations within this “direct” approach.

The physical origin of the failure of such a “direct”
approach is the fundamental difference between the
fluctuations of the “mechanistic” quantities Ni having a
direct and measurable meaning and the fluctuations of
the “thermodynamic” quantities λi describing the
locally equilibrium subsystems. As mentioned, expres-
sion (9) for the diffusive term is obtained by the statis-
tical averaging over all fluctuations of occupations {nj}
except for those with the large wavelengths l exceeding
the length lle of a local equilibrium. Thus, it makes no

n jj∑
Ni

δNi Ni t δt+( ) Ni t( )–≡ δNdi c j{ }= δN fi,+

δN fss∑

W δN fs( ) As δN fs
2 /2Ds–( ),exp=

Ds δN fs
2〈 〉 γ nnδtNb2cs 1 cs–( )= =
sense to include again the short-wave fluctuations in the
diffusive term δNdi that has been already averaged over
these fluctuations. The fluctuation of the parameter λi in
(2) can have a physical meaning only if it takes an
approximately identical value for the whole volume Vle

~ , that is, if it has a wavelength l * lle @ L ~ a. In
other words, the total fluctuative transfer Nfs across each
facet s described by Eqs. (11) and (12) is by no means
small. However, the main short-wave contribution of
these fluctuations to the microstructural evolution is
self-averaging and is described by the diffusional term
δNdi. Only the long-wave fluctuations with l * lle
remain meaningful for this term and should be taken
into account in the calculations.

To describe this physical picture, we suggest the fol-
lowing model. Instead of the full stochastic quantities
Ni(t) and δNf i in Eq. (10), we consider only their long-

wave parts, (t) and , which are determined by a
“coarse-grained” version of Eq. (10):

(13)

Here, the local concentration cj in the diffusional term

δNdi is (t)/NL, while the last term is the sum of

coarse-grained fluctuative transfers  across all fac-

ets s:  = . This transfer  is obtained
from the full stochastic distribution δNfs determined via
Eqs. (11) and (12) by a “filtration of noise” procedure,
that is, by introducing a proper cutoff factor Fc(k) in the
Fourier-component δNfα(k) of the full function δNfs =
δNfα(Rsα), where Rsα stands for the center of the facet s
normal to the main crystal axis α:

(14)

(15)

and Ntot is the total number of L cells. The cutoff factor
Fc(k) is taken in a Gaussian-type form characterized by
the cutoff length lc or by the parameter gc = lc/L:

(16)

Here, we took into account that the set of arguments Rsα

of the function (Rsα) forms a cubic crystal of

L cells, and so the Fourier component (k) should

obey the following relations: (kβ + 2π/L) =

lle
3

Ni
c δN fi

c

Ni
c t δt+( ) Ni

c= t( ) δNdi c j{ } δ N fi
c .+ +

N j
c

δN fs
c

δN fi
c δN fs

c

s∑ δN fs
c

δN fα
c Rsα( ) ikRsα–( )δN fα k( )Fc k( ),exp

k

∑=

δN fα k( ) 1
N tot
-------- ikRsα( )δN fα Rsα( ),exp

Rsα

∑=

Fc k( ) 2gc
2 kα L/2( )sin

2

α
∑– .exp=

δN fα
c

δN fα
c

δN fα
c
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(kβ). For the large  @ 1 used below, cutoff
function (16) is effectively reduced to a Gaussian

exp(−k2 /2).

The cutoff length lc for our problem should evi-
dently have the order of a characteristic length of a local
equilibrium, lle, as the phase separation process can take
place only when a sufficient thermodynamic driving
force (i.e., supersaturation) is present, which implies a
certain extent of the local thermodynamic equilibrium
within a subsystem. At the same time, all fluctuations
with larger wavelengths l * lle can initiate this process
and, thus, should be taken into account. The length lle
should generally depend on the concentration c, tem-
perature T, and the interaction radius r0 in (8). To esti-
mate the lle value, we made computer simulations of
phase separation based on Eqs. (13)–(16) for a number
of values of c, T, r0 while varying the parameter gc = lc/L
in Eq. (16). In accordance with the considerations
above, the decreasing of lc from the values lc > lle to lc <
lle should correspond to the loss of the local equilibrium
assumed in Eqs. (2)–(6) and, thus, to sharp violations of
the basic condition λi . const within subsystems. The
scale of these violations can be characterized, for exam-
ple, by the “degree of nonequilibrium” Im(lc) defined as
the maximum value of the reduced gradient βa|∇λ| max
over the whole system for some characteristic time
interval ∆tc. Then, decreasing lc across lle should result
in a sharp rise of Im(lc). This is illustrated in Fig. 1, and
similar variations have been found for all other models
considered. The point lsr where this sharp rise starts can
be defined, for example, as the maximum curvature
point for the function Im(lc). The local equilibrium
length lle should evidently somewhat exceed the lsr
value. The experience of our simulations seems to show
that employing lc = lle . 2lsr usually provides an appro-
priate description of evolution, while varying lc, say,
between 2lsr and 1.5lsr results mainly in some rescaling
of time and only slight changes in the microstructure; it
is illustrated by a comparison of frames (b) and (e) to
(g) and (h) in Fig. 3 below.

We used equations (11)–(16) with the above-
described choice of lc in (16) to simulate phase separa-
tion for a number of alloy models with different c, T,
and r0 values. Some of our results are presented in
Figs. 2 and 3. They correspond to 2D simulation on the
FCC lattice with 256 × 256 L cells and periodic bound-
ary conditions. The concentration c is 0.4, while the
reduced temperatures T ' = T/Tc are chosen near the
spinodal temperature for this c, namely, ( )MFA = 0.96.

These c and  values are close to those used in exper-
iments [5], where the NG–SD transition was studied for
some highly viscous liquid mixture, and so our results
can be directly compared to this experiment. All simu-
lations included a “preannealing” stage at  = 1.2 for

δN fα
c gc

2

lc
2

Ts'

Ts'

Tan'
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Fig. 1. The inhomogeneity parameter Im described in the

text versus the reduced cutoff length  = lc/a at L = 2a,

∆  = 5, and c = 0.4. Closed and open symbols correspond

to the reduced temperatures T ' = 0.94 and T ' = 0.98, while
circles, triangles, and squares correspond to r0 = a, r0 = 2a,
and r0 = 0.71a, respectively.

lc'

tc'

(a) (b)

(d)(c)

Fig. 2. Temporal evolution of ci = c(Ri) for the alloy model

described in the text at L = 2a, c = 0.4, r0 = a, T ' = 0.98,  =

26, and the following t' = tγnn × 10–4: (a) 2, (b) 5, (c) 10, and
(d) 25. The gray level linearly varies with ci between cmin =
0.3 and cmax = 0.65 from completely bright to completely
dark.

lc'
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the interval ∆  = 0.05, where t' = tγnn × 10–4 is the
reduced time, while the symbol t' in figure captions
shows the time after a rapid quench   T '.

The patterns presented in Figs. 2 and 3 reveal all
main features of phase separation of the NG and the SD
type, respectively, as mentioned, e.g., by Tanaka et al.
[5]. Discussing their observations, these authors note
that “in NG the nuclei… are born and grow almost
independently. The density of droplets in NG is much
lower than in SD. In SD the spatial-concentration fluc-
tuations grow in both amplitude and size and form
droplets, being first gray, become darker with time, and
become larger and larger mainly by coalescence mech-
anism.” All these features are seen in Figs. 2 and 3.

The simulations also reveal a number of other
microstructural details. In particular, for the NG-type

tan'

Tan'

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. (a–f) Same as in Fig. 2 but at T ' = 0.94, cmin = 0.25,
cmax = 0.75, and the following t': (a) 0.5, (b) 1, (c) 2, (d) 5,
(e) 10, and (f) 20. (g, h) Same as in frames (a)–(f) but at

 = 20 and the following t': (g) 0.7 and (h) 7.lc'
evolution shown in Fig. 2 note the following: (i) some
rare coalescence events are present as well; (ii) the pre-
cipitate shape is often nonspherical; and (iii) a concen-
tration-depleted “bright” halo is typically adjacent to
the precipitates. All of these seen in experiments [4, 5].
For the SD-type evolution in Fig. 3, we observe the fol-
lowing: (i) peculiar initial “roelike” arrays of droplets,
which later often coalesce, forming elongated tongue-
like structures, and (ii) many coalescence events occur
via a “bridge” mechanism noted in [12], when the dif-
fusion fluxes first connect the adjacent precipitates by a
thin gray “bridge” that later starts to sharply grow and
thicken with the formation of a pearlike or a dumbbell-
like precipitate. It again agrees with experiments [5, 6].

In our simulations, for the transition region between
NG and SD, in particular, for c = 0.4, T ' = 0.96 just at
the spinodal curve, we obtain a “mixed” type of evolu-
tion: first an NG-type pattern of a small number of
wrong-shaped droplets, which later form roelike and
tonguelike structures characteristic of SD. It seems to
agree with the observations described in [5].

Finally, we comment on the smallness of the tem-
perature width for the NG–SD transition illustrated by
Figs. 2 and 3: ∆T ' . 0.04. It can be explained by the sig-
nificant difference in the reduced supersaturation
parameter for the alloy states c, T considered. This
parameter characterizes a tendency in the NG or the
SD-type evolution and can be defined as [10]

, (17)

where cb(T) and cs(T) are the concentration at the bin-
odal and the spinodal, respectively. For the two states
considered, this parameter takes quite different values,
namely, s1 = 0.42 and s2 = 1.27, even though the tem-
perature difference is small. It is due to the flatness of
the binodal and the spinodal curves, Tb(c) and Ts(c), in
the vicinity of the critical point being considered in this
simulation. It can be still more so for experiments [5],
where the curves Tb(c) and Ts(c) seem to be still flatter
than in our MFA model; it can explain a rather small
value of the NG–SD transition width, ∆T ' . 0.015,
found in [5].
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The band structure and thermal behavior of a coaxial C/BN nanocable (5,5)C@(17,0)BN consisting of a carbon
nanotube and a boron nitride nanotube have been studied using a tight-binding approximation based on density
functional theory. The system is stable up to T ~ 3500–3700 K. As the temperature increases, deformations of
the BN tube begin earlier than those of the carbon tube. The near-Fermi states of the nanocable are formed by
the overlapping π–π* bands of the carbon tube, and the outer BN nanotube (the nanocable sheath) is an insulator
with a bandgap of ~4 eV. The electronic properties of the nanocable (the metallic-type conductivity of the C
tube and the insulating character of the BN tube) are retained over the entire temperature interval. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 61.46.+w; 73.22.+i; 85.35.Kt
The idea of creating a nanocable (a nanoscale con-
ductor covered with an insulating sheath) as a func-
tional element of various electronic nanodevices arose
soon after the synthesis of carbon nanotubes [1] and the
studies of their properties in [2, 3]. Multilayer carbon
nanotubes, where the inner and outer tubes must pos-
sess metallic-type and semiconductor-type conductivi-
ties, respectively, were suggested as the first prototype
nanocable. In spite of their seeming simplicity,
attempts to create such cables, that is, to synthesize suf-
ficiently extended carbon multilayer nanotubes with the
controlled conductivity of coaxial carbon cylinders,
have failed so far.

Certain success in the design of purely carbon nano-
cables was achieved in 2004: the authors of [4]
obtained a bicable (two parallel carbon nanotubes
enclosed in a common sheath) as a product of the coa-
lescence of two bilayer C nanotubes. However, the
problem of controlling the conducting properties of
each C nanotube entering into such a system also
remains open.

Progress in the synthesis of a large group of novel
nanotubes based on a number of inorganic materials
(see reviews [5, 6]) has substantially extended the pos-
sibilities of selecting nanotubes as elements of a nano-
cable. It turned out that boron nitride nanotubes (BN
nanotubes) can serve as the most favorable insulating
cable sheath. Stable dielectric properties are their
unique feature: the bandgap of BN nanotubes remains
sufficiently stable (in the range 4–5 eV) regardless of
their diameter and chirality [5, 6]. Thus, the method of
filling these tubes with a metallic nanowire becomes
0021-3640/04/8009- $26.00 © 20608
the main problem in manufacturing a cable with a BN
nanotube sheath.

The first suggestions on the formation of the desired
nanowire were reduced to the intercalation of metal
atoms (for example, K or Al [7]) into a BN nanotube. In
spite of encouraging predictions, attempts at synthesiz-
ing such heterosystems have not met with real success
[8]. An alternative solution is the synthesis of a nanoca-
ble in situ by the substitution method, in which a carbon
multilayer nanotube is used as a starting system and the
boron nitride sheath is formed upon the substitution of
boron and nitrogen atoms for carbon atoms in the outer
C nanotube. Samples of mixed boron carbon nitride
(B–C–N) tubes with a layer-by-layer gradient of the
C/BN concentration, which ensures a semiconducting
type of the inner B–C–N tubes and an insulating type of
the outer BN nanotube, have been obtained by this
method [9].

The growth of a nanocable from so-called bunker
phases, which represent an assembly of fullerenes
encapsulated in a bunker (nanotube), may become a
radically different method of solving the problem. It is
known that, under certain conditions (for example,
under irradiation with a flux of high-energy particles),
one can stimulate the polymerization of fullerenes
according to the following scheme: fullerenes  pro-
late nanocapsules  nanotube to obtain tubular sys-
tems in which the diameter of the inner tube growing
from fullerene molecules is strictly controlled by the
size of the outer BN tube.

Recent experiments [10] have shown that unique
C/BN heterosystems, namely, carbon nanotubes inside
BN nanotubes, can be obtained by this method. These
004 MAIK “Nauka/Interperiodica”
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Cell sizes and compositions, bandgap for the nanotubes and the nanocable, and effective atomic charges as functions of tem-
perature

System Cell (number of atoms) Bandgap, eV

(5,5) C nanotube 180 (C) Metal

(17,0) BN nanotube 340 (170 B + 170 N) 4.05

(5,5)C@(17,0)BN 520 (180 C + 170 B + 170 N) Metal

Temperature
Atomic charges for (5,5)C@(17,0)BN

Q(C) Q(B) Q(N)

0 K 0 +1.342 –1.342

1000 K –0.006…+0.040 +1.303…+1.436 –1.497…–1.245

3000 K –0.214…+0.124 +1.326…+1.705 –1.922…–1.125
results raise a number of important questions: (i) What
is the band structure of such tubular C/BN heterosys-
tems and how does it correspond to the concept of the
electronic properties of a nanocable? (ii) What are the
structural properties and thermal stability of C/BN sys-
tems? (iii) How do the electronic properties of C/BN
systems change upon thermal treatment?

This work presents the first results of ab initio cal-
culations of the band spectrum and structural and ther-
mal properties of a nanotubular C/BN heterostructure
considered as a prototype nanocable.

It is known that all armchair (n,n)C nanotubes
exhibit metallic conductivity [3]. Therefore, coaxial
tubes were taken as the starting nanocable model: an
armchair (5,5)C nanotube inside a zigzag (17,0)BN
tube (sheath) (a (5,5)C@(17,0)BN nanotube, Fig. 1).
The starting atomic models of the C and BN tubes and
the nanocable were constructed by the standard proce-
dure of rolling a graphite network or a hexagonal boron
nitride network into seamless cylinders [3]. Their diam-
eters were calculated by the known expression D =

(a/π) , where n and m are chiral
indices and a is the C–C or B–N bond length in planar
networks. The diameters of the chosen C and BN nan-
otubes were 0.679 and 1.332 nm, respectively. This cor-
responded to the distance between the walls of the
coaxial tubes in the nanocable, 0.327 nm, which was
close to the van der Waals gap in the synthesized mul-
tilayer nanotubes [2, 3]. The atomic sizes of the tube
and nanocable cells are given in the table, and their
translation parameter equals 2.175 nm.

At the first stage, the full geometry optimization of
the nanocable was performed (at T = 0 K) and its elec-
tronic structure was investigated. Next, we performed a
simulation of the thermal deformation of the nanocable
structure in the range T = 0–4000 K and carried out
band calculations of electronic spectra at various tem-
peratures for the obtained structural forms of the nano-
cable.

The calculations were performed using a self-con-
sistent charge-density-functional-based nonorthogonal

n2 nm m2+ +( )1/2
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tight-binding (SCC-DFTB) scheme [11]. An atomic sp
basis set was used, and the calculations of the Hamilto-
nian and matrix elements were performed within den-
sity functional theory using the local density approxi-
mation. The starting atomic geometry of the nanotubes
was fully optimized with respect to the atomic positions
and the cell length using a gradient scheme. The ther-
mal behavior of the nanocable was simulated by the
molecular dynamics method within the DFTB scheme
(the deMon program package) [12].

In the optimized structure of the perfect nanocable
(T = 0 K), the C-nanotube diameter is 6.88 nm and the
C−C bond lengths are 0.1416 and 0.1414 nm across and

T = 0 K

T = 300 K

T = 1000 K

T = 2000 K

T = 3000 K

T = 3500 K

T = 4000 K

Fig. 1. Structure of the C(5,5)@BN(17,0) nanotube (side
and top views at T = 0 K) and its distortions at various tem-
peratures.
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along the tube axis, respectively. The wall of the boron
nitride tube bloats in such a way that the boron and
nitrogen atoms undergo radial displacements (with
respect to their positions in the BN cylinder) toward (B)
and away from (N) the tube center. The effect is associ-
ated with the electrostatic interaction of atoms; accord-
ing to our DFTB calculations, the charge polarization
between atoms B N is 1.342 e. As a result, the
diameters of the oppositely charged boron and nitrogen
cylinders in the BN nanotube are 1.362 and 1.370 nm,

           

Fig. 2.

 

 Energy bands for (a) (5,5)C nanotube and (b)
(17,0)BN nanotube. Horizontal lines at 0 eV correspond to
the Fermi level.

        
respectively. Note that similar relaxation effects occur
in pure boron nitride nanotubes [13, 14]. Along with
radial deformations, anisotropy of the B–N bond
lengths is observed for the BN tube, namely, 0.1454
and 0.1451 nm across and along the tube axis, respec-
tively.

The results of the molecular-dynamics simulation of
the thermal deformations of the nanocable are illus-
trated in Fig. 1. It is evident that the nanocable structure
under ambient conditions (T = 300 K) remained virtu-
ally unchanged as compared to the perfect structure
(T = 0 K). Deformations become appreciable in the
range 1000–2000 K, and they rapidly progress up to
3500 K. In the range 3500–4000 K, the cable is
destroyed. It is important to emphasize that the inner
carbon tube exhibits higher thermal stability and the
BN sheath of the cable is destroyed first. This is
explained by a number of factors. First, the interatomic
interaction energy for strong covalent C–C bonds is
larger than that for B–N bonds, which are characterized
by a notable ionic component. This determines the
extreme thermomechanical characteristics of C nano-
tubes [14]. Second, rehybridization defects and topo-
logical defects (Stone–Wales type, see [3, 6]) form in
the C nanotube with increasing temperature; the cylin-
drical morphology is retained in this case. Such defects
(when some heteropolar B–N bonds transform into sig-
nificantly less stable homopolar B–B and N–N bonds)
are less typical for BN tubes [15].
Fig. 3. (Solid lines) Total and (dashed lines) 2p and (dotted lines) 2s partial densities of states of (from top to bottom) carbon, nitro-
gen, and boron according to band DFTB calculations for C(5,5)@BN(17,0)-nanocable structures at T = (from left to right) 0, 1000,
and 3000 K.
JETP LETTERS      Vol. 80      No. 9      2004
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The energy bands of the isolated armchair (5,5)C
nanotube and zigzag (17,0)BN nanotube are shown in
Fig. 2. The electronic states of the C nanotube at the
Fermi level (

 

E

 

F

 

) are determined by 

 

π

 

 and 

 

π

 

* band cross-
ing in the direction of the tube axis (

 

Γ

 

  

 

X

 

), leading
to the metallic-type spectrum. On the contrary, the zig-
zag (17,0)BN tube is an insulator with a bandgap of
4.05 eV (direct transition at the 

 

Γ

 

 point). In this case,
the highest occupied and lowest vacant bands are com-
posed of N2

 

p

 

(

 

π

 

) and B2

 

p

 

(

 

π

 

*) states.

The total and partial densities of states (DOSs) of
the nanocable at 

 

T

 

 = 0, 1000, and 3000 K are given in
Fig. 3. It is evident that the band spectrum of the perfect
heterosystem (the (5,5)C@(17,0)BN nanotube) at 

 

T

 

 = 0
is close to a superposition of the spectra of isolated C
and BN tubes: (i) DOSs at 

 

E

 

F

 

 (from –2.5 to +1.5 eV) are
formed exclusively by C2

 

p

 

 states; (ii) a bandgap of
about 4 eV exists between the occupied and vacant
bands of the BN tube; (iii) the highest occupied and
lowest vacant bands of the BN tube are composed of
N2

 

p

 

 and B2

 

p

 

 orbitals. Thus, the interactions between
the states of the coaxial carbon and BN tubes are insig-
nificant, and the C/BN heterostructure corresponds to
the electronic properties required for a nanocable.

As thermal structural deformations grow, the charge
states of atoms and the band spectrum of the nanocable
exhibit a number of changes. Thus, the deviations of the
positions of atoms from their perfect positions in the
cable walls start at 

 

T 

 

= 1000 K and lead to the anisot-
ropy of the charge states of nonequivalent B, C, and N
atoms. This anisotropy reaches appreciable values at
3000 K, namely, up to ~27 and 42% for boron and
nitrogen atoms, respectively. The charge states of the C
atoms also become polarized (see table).

Figure 3 demonstrates that the amorphization of
cable walls favors the characteristic smoothing of the
DOS profile, while the energy positions of the main
energy bands and their sequence in the nanocable spec-
trum remains unchanged. The band structure at the
Fermi level, which is exclusively determined by the
C2p states of the carbon tube, also retains its general
features. The conducting (metallic) properties of the
carbon tube also remain unchanged. Moreover, the
thermal defects forming in the walls (pentagon–hepta-
gon type) lead to a certain increase in the density of
states at the Fermi level (Fig. 3), that is, enhance the
metallic character of the C tube. It is also important to
note that no new bands arise in the bandgap region upon
thermal deformations of the BN tube; thus, the BN nan-
otube retains its dielectric character. The main thermal
effect is the smearing of the N2p and B2p band edges at
the Fermi level in the BN tube and a decrease in the
bandgap (down to ~2.4 eV at T = 3000 K).

Thus, the electronic and structural properties of a
C/BN nanocable—a tubular coaxial heterosystem com-
posed of a carbon nanotube and a boron nitride nano-
JETP LETTERS      Vol. 80      No. 9      2004
         

tube—have been studied by an 

 

ab initio

 

 band structure
DFTB method, and the variations of these properties in
the temperature range 0–4000 K have been examined.
It has been found that the nanocable band structure is
formed by slightly hybridized states localized on atoms
of the outer (BN) and inner (carbon) nanotubes. The
conducting characteristics of the system (metallic for
the carbon nanotube and dielectric for the outer BN
tube serving as the cable sheath) are retained in the
entire temperature range of heterosystem stability (up
to 

 

T 

 

~ 3500–3700 K). The main effect of temperature
increase is a change in the bandgap width of the BN
nanotube as a result of the band-structure modification
upon the thermal deformations of the atomic structure
of the walls. This permits the suggestion that a thermal
treatment of the C/BN nanocable may become a prom-
ising method for controlling its electrophysical charac-
teristics.

This work was supported by the Russian Foundation
for Basic Research (project no. 04-03-32111) and the
Council of the President of the Russian Federation for
Support of Young Russian Scientists and Leading Sci-
entific Schools (project no. NSh-829.2003.3).
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We present angle-resolved photoemission spectra of the γ phase of manganese as well as a theoretical analysis
using a recently developed approach that combines density functional and dynamical mean-field methods
(LDA + DMFT). The comparison of experimental data and theoretical predictions allows us to identify effects
of the Coulomb correlations, namely, the presence of broad and nondispersive Hubbard bands in this system.
© 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.15.Qe; 71.20.Be; 79.60.–i
The electronic theory of metals is based on the con-
cept of quasiparticles, elementary excitations in the
many-electron system that show a one-to-one corre-
spondence with noninteracting electrons. However,
strong electronic correlations can destroy this picture
and result in the formation of so-called Hubbard bands
of an essentially many-body nature [1]. This concept is
crucial for modern theories of strongly correlated elec-
tron systems [2]. The formation of Hubbard bands takes
place, e.g., in many transition metal–oxide compounds,
which thus have to be viewed as Mott insulators or
doped Mott insulators [3]. Transition metals represent
another class of systems where many-body effects are
important (see [4] and references therein). However,
according to common belief, they are moderately cor-
related systems and normal Fermi liquids.

Electronic spectra of transition metals have been
probed intensively by angle-resolved photoemission, a
technique that allows for the determination of the dis-
persion law that describes the dependence of the quasi-
particle energy on quasimomentum. Copper was the
first metal to be investigated thoroughly by this tech-
nique, and the results were in excellent agreement with
band structure calculations [5, 6]. The same technique,
however, showed substantial deviations when applied
to Ni and provided evidence for many-body behavior,
such as the famous 6-eV satellite [7, 8]. The quasiparti-
cle damping in iron can be as large as 30% of the bind-
ing energy [9, 10]. Correlation effects are indeed
important for metals with partially filled 3d bands and
should be taken into account for an adequate descrip-
tion of ARPES spectra. Nevertheless, the main part of
the spectral density in Fe is related to usual quasiparti-
cles, and the spectral weight of the satellite in Ni

¶ This article was submitted by the authors in English.
0021-3640/04/8009- $26.00 © 20612
amounts to only 20% [10]. In the present letter, we pro-
vide evidence for surprisingly strong correlation effects
in the fcc-(γ) phase of manganese, which are much
stronger than in other transition metals.

Investigations of an extended Hubbard model show
that correlation effects are strongest for half-filled
d bands [11]. Normally, the geometrical frustrations in
crystals (such as in the fcc lattice) further enhance elec-
tronic correlations [2], so that one of the best candidates
among the transition metals for the search for strong
correlation effects is the fcc-(γ) phase of manganese. It
is an example of a very strongly frustrated magnetic
system; according to band-structure calculations [12],
the antiferromagnetic ground state of γ-Mn lies
extremely close to the boundary of the nonmagnetic
phase. Moreover, an anomalously low value of the bulk
modulus [13] might be considered as a first experimen-
tal hint of strong electronic correlations.

The physical properties of bulk γ-Mn are hardly
accessible in the experiment, since the γ-phase is only
stable at temperatures between 1368 and 1406 K,
where it shows paramagnetic behavior. Thin films of
γ-Mn, however, can be stabilized by epitaxial growth on
Cu3Au(100) [14], which has an interatomic spacing
(2.65 Å) very close to the interatomic spacing of Mn-
rich alloys (2.60–2.68 Å). Schirmer et al. [14] have
shown that Cu3Au(100) supports layer-by-layer growth
at room temperature up to coverages of 20 monoatomic
layers (ML). A low-energy electron diffraction (LEED)
I(V) analysis revealed that the Mn films adopt the in-
plane spacing of the Cu3Au(100) substrate and a com-
paratively large tetragonal distortion of the fcc lattice.
For the inner layers of a 16-ML Mn film, this distortion
amounts to –6%, whereas the surface–subsurface dis-
tance is very close to the Cu3Au value.
004 MAIK “Nauka/Interperiodica”



        

OBSERVATION OF HUBBARD BANDS 613

                                                                                                       
We have used angle-resolved photoemission at the
undulator beamline TGM-5 and on the TGM-1 beam-
line at BESSY at a combined energy resolution of
250 meV to probe the electronic states in γ-Mn. The
Cu3Au(100) substrate was prepared by repeated cycles
of Ne+ sputtering and annealing, until a very good
LEED pattern with sharp diffraction spots and a low
background intensity confirmed a high degree of struc-
tural order. The base pressure of 2 × 10–10 mbar rose to
7 × 10–10 mbar as Mn was deposited by electron beam
evaporation. To avoid interdiffusion of Cu and Au, the
onset of which was determined to be above room tem-
perature [14], we kept the sample at room temperature
during the Mn deposition and the photoemission mea-
surements. We observe in all experiments LEED pat-
terns of Mn/Cu3Au of the (1 × 1) type and a quality
comparable to those of Fig. 3 in [15].

Angle-resolved photoemission measures the elec-
tron spectral density A(k, E) as a function of the quasi-
momentum k and the energy E multiplied by the Fermi
distribution function f(E) [16]. For a given photon
energy and electron emission angle corresponding to a
certain k in the photoemission initial state, the spectral
density usually has a well-defined maximum as a func-
tion of E that determines the quasiparticle dispersion
E(k) for the occupied part of the electronic bands. Fig-
ure 1 shows experimental data obtained for γ-Mn at a
photon energy of 34 eV. This energy was chosen to fol-
low the [111] direction (Γ–L) as closely as possible
starting out near Γ at 0° and reaching L around a 30°
electron emission angle. The spectra are characterized
by two striking features. These are a weakly dispersive
quasiparticle band near the Fermi level EF and a broad
and almost k-independent maximum at approximately
2.7 eV below EF. These structures lack a significant dis-
persion also in spectra taken at normal electron emission
corresponding to the [100] direction for photon energies

from 14 eV (~0.3 ) to 70 eV (~0.5 ) in Fig. 2.

These data cannot be understood in the framework
of a standard quasiparticle picture, since first principles
calculations of the band structure for different magnetic
phases of γ-Mn show an energy dispersion of more than
1.5 eV [17] (Fig. 4). Instead, the overall shape of the
experimental spectra is very close to that of the Hub-
bard model on the metallic side of the Mott transition
with a quasiparticle band near the Fermi level and a
broad Hubbard band below EF [18].

To test this hypothesis, we have carried out first
principles (LDA + DMFT) calculations [19, 20] of the
electronic structure of γ-Mn that include correlation
effects in a local but fully dynamical approximation for
the electron self-energy Σ, using the full Hamiltonian
LDA + DMFT scheme described in [4] with U values
between 3 and 5 eV and J = 0.9 eV. Carrying out
between 10 to 15 DMFT iterations with about 105 quan-
tum Monte Carlo sweeps [21] allows us to obtain not
only the local Green’s function G(τ) but also highly

ΓX XΓ
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accurate self-energies, which can then be used for the
computation of the k-resolved local Green’s function

(1)

Ĝ k τ,( )

=  
1
β
--- e

iωnτ–
iωn µ Ĥ

LDA
k( )– Σ̂ iωn( )–+( )

1–
,

n

∑

Fig. 1. ARPES spectra of bulklike γ-Mn (17 ML) taken at a
photon energy of 34 eV for different electron emission
angles corresponding approximately to k vectors between
the Γ and the L points in the Brillouin zone; binding ener-
gies are measured with respect to the Fermi energy. This
should be compared to the negative energy parts of the cal-
culated spectra in Fig. 3.

Fig. 2. ARPES spectra taken in normal emission at photon
energies of 14 to 70 eV. The lack of dispersion distinguishes
γ-Mn from other transition metals. The spectra are normal-
ized to the photon flux. Note that the spectral changes from
48 to 52 eV are due to resonant transitions between 3p and
3d states.



 

614

        

BIERMANN et al.
where ωn are the Matsubara frequencies corresponding
to the inverse temperature β ~ 0.002 K–1 and HLDA

denotes an LDA–LMTO [22] spd Hamiltonian cor-

Fig. 3. Spectra calculated within the LDA + DMFT
approach. (a) k-resolved density of states A(k, ω) [arbitrary
units]. The different curves correspond to k-points between
the Γ and the L point and the Γ and the X point, respectively.
(b) Angle-integrated spectral function. The “three-peak
structure” with the two broad Hubbard bands (HB) and a
narrow quasiparticle (QP) Kondo resonance at the Fermi
level (solid line) is typical of strongly correlated systems.
The calculated angle-integrated photoemission spectrum
(dashed line), i.e., the density of states multiplied with the
Fermi function and broadened with the experimental reso-
lution, shows reasonable agreement with the experimental
spectra.
rected for double counting of the Coulomb energy of
the d states in the usual way [20]. Inversion of the spec-
tral representations of the local Green’s function and
the dd block of the k-resolved one by means of a max-
imum entropy scheme [23] yields the density of states
(DOS) ρ(ω) and the spectral function A(k, ω). To our
knowledge, these calculations are the first ones that
determine the k-dependence of the spectral density for
a material with d states from LDA + DMFT with a real-
istic five-band Coulomb vertex.

The results are shown in Fig. 3, displaying the local
density of states (Fig. 3b) and the k-resolved spectral
functions A(k, iω) for k points in the Γ–L and Γ–X
directions, respectively. In the negative energy part
(that is, for the occupied states) of all spectra, two main
peaks carry (for a given k point) the main part of the
spectral weight: a narrow quasiparticle (QP) feature
near the Fermi level and a very broad Hubbard band
(HB) (at about –2.4 eV). These features are shared
between the experimental (Fig. 1) and theoretical
curves. The stronger dispersion of the (still very broad)
low-energy peak in the Γ–X direction can be traced
back to d states that strongly hybridize with the s band
in that region of energy and k space. In the photoemis-
sion spectra, these s-like bands are suppressed due to
matrix element effects. Given that (i) the experiments
are done at a somewhat lower temperature than the cal-
culations, that (ii) we do not take into account matrix
elements when interpreting the photoemission data,
and that (iii) using the maximum entropy scheme for
determining the spectral function, a quantity not
directly measured within the quantum Monte Carlo
simulations, introduces a further approximation, the
theoretical spectra agree reasonably well with the
experimental data (Figs. 1, 2). In Fig. 4, the Kohn–
Sham eigenvalues taken from the LDA calculation are
plotted. The absence of LDA bands in the energy region
near EF carrying most of the spectral weight around the
Γ point is striking and underlines the necessity of a

Fig. 4. Band structure of γ-Mn as calculated within density
functional theory within the local density approximation
(LDA).
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proper many-body treatment as done in LDA + DMFT.
Note that assuming antiferromagnetic order (of the type
detailed below) would slightly shift the LDA bands.
However, the antiferromagnetic LDA band structure
displays a dispersion of more than 2 eV and could thus
not explain the nondispersive photoemission feature.

The calculated (k-integrated and k-resolved) den-
sity of states curves (Fig. 2) demonstrate a characteris-
tic “three-peak structure,” with two broad Hubbard
bands and a narrow quasiparticle Kondo resonance at
the Fermi level, which is typical of strongly correlated
electron systems [2]. The quasiparticle peak at the
Fermi level and the lower Hubbard band are seen in the
present ARPES spectra; in k-unresolved (BIS) mea-
surements [24], a broad peak has been observed at
1.4 eV. To identify this peak with the upper Hubbard
band (located at 1.2 eV in our calculations), one should
prove the dispersionless nature of this peak. We have
checked that all these incoherent features do not depend
on the directions in k space used in our calculations.
For the above reasons, we believe that γ-Mn belongs to
the class of strongly correlated materials and that the
ARPES data can be considered as the first observation
of Hubbard bands in a transition metal.

The energy scale associated with the correlation
effects that lead to the formation of the Hubbard bands
(~U) is much larger than that of the magnetic interac-
tions. Therefore, the observed effects are not very sen-
sitive to long-range magnetic order. We have carried out
the electronic-structure calculations for both the para-
magnetic and the antiferromagnetic structure with the
wave vector Q = (π, 0, 0), which is typical of γ-Mn-
based alloys [25]. The magnetic ordering changes the
electron spectrum little in comparison with the non-
magnetic case. However, in comparison with the results
of standard band theory [12], the correlation effects sta-
bilize the antiferromagnetic structure, thus leading to a
magnetic moment of about 2.9µB.

According to the present results, γ-Mn can be con-
sidered a unique case of a strongly correlated transition
metal. An even larger correlation would transform the
system to a Mott insulator, where every atomic multip-
let forms its own narrow but dispersive Hubbard band
[1, 3]. On the other hand, in most metals, correlations
are small enough for the quasiparticles to be well
defined in the whole energy region, and usual band the-
ory gives a reasonable description of the energy disper-
sion. Note that the correlation strength and bandwidth
have almost the same magnitude for all 3d metals; γ-Mn
is probably an exceptional case among the transition
elements due to the half-filled d band and geometric
frustrations in the fcc structure.

In conclusion, our ARPES data for the γ phase of
manganese and their theoretical analysis by means of
LDA + DMFT, an approach that accounts not only for
band-structure effects on the LDA level but also allows
JETP LETTERS      Vol. 80      No. 9      2004
for a full description of local effects of strong Coulomb
correlations, provide evidence for the formation of
Hubbard bands in metallic manganese. This is a quali-
tatively new aspect in the physics of transition metals.
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