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Abstract—The coupled inhomogeneous density and temperature oscillations in liquids and gases are described
with the help of dynamical equations of motion for fluctuations. It is proved that stationary points are asymp-
totically stable when the preset temperature distribution is inhomogeneous. It is shown that the temperature set-
ting in a gas is a result of the competition between viscosity and heat conduction mechanisms. The phase tra-
jectories in the T–ρ plane are constructed in the inhomogeneous case by numerically solving the derived equa-
tions. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A general approach to the description of the fluctu-
ating behavior in time and space of any statistically
independent parameters of physical subsystems was
outlined in [1]. The mathematical model of fluctuation
dynamics was described in a particular case of temper-
ature T and density ρ fluctuations. It was shown that the
fluctuations were strictly periodic with some character-
istic period. The possible inhomogeneity of T and ρ
was not taken into account.
1063-7842/01/4604- $21.00 © 20363
Being a continuation of [1], this paper gives a
description of temperature and density with an allow-
ance for their inhomogeneous distributions.

THE APPROACH DESCRIPTION 
AND RESULTS

We start from the inhomogeneous equations of
motion containing only the terms linear in δT and δρ.
According to [1], the following equations are valid for
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Fig. 1. The phase trajectories (a, b) for the initial distribution (11) with the following parameters: (a, 1) u(0) = v(0) = 0.1; (a, 2) u(0) =
–0.3, v(0) = 0.1; (b) u(0) = v(0) = 1. The time dependences of (c) u and (d) v for the curve (a, 1). The dashed lines in (c) and (d)
mark the coordinates of the stable node at cv = 3/2 [1].
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the ideal gas

(1)

(2)

where

(3)

ν is the kinematic viscosity, χ is the gas temperature
conductivity, t0 is some phenomenological relaxation
time, k1 is a constant, cv is the isochoric heat capacity,
cT is the temperature spreading velocity, cS is the sound
speed in the gas, τ = t/t0 is the dimensionless time, and

(4)
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Fig. 2. The spatial distribution of fluctuations at various time
moments: (a) τ1, (b) τ2, and (c) τ3 (τ1 < τ2 < τ3). The initial
distributions are the same as for the curve 1 in Fig. 1a.
(4')

Concerning velocity cT, it follows from Eq. (2) that
at the times

(5)

where τ1 is a characteristic quantum time scale, specific
temperature waves exist with the dispersion relation
ω = cTq. As seen from Eq. (5), this spectrum is mani-
fested when

(6)

where vT ~  is the average thermal velocity of mol-
ecules in the gas and τ2 is the period of time between
molecular collisions.

If cT ! vT, region (6) is reasonable and the temper-
ature waves may take place. Let us return to Eqs. (1)
and (2). We are interested in the behavior of fluctua-
tions at times

(7)

where  is determined from the following gas-kinetic
approximation

(8)

Equations (1) and (2) now take the form

(9)

(10)

Omitting the terms proportional to k1 and taking the
initial distributions

(11)

where σ is a small width of the Gaussian distribution,
we obtain the numerical solutions to Eqs. (9) and (10)
shown in Figs. 1 and 2. Replacing one of the distribu-
tions (11) by a constant does not qualitatively change
the solutions.

Taking into account the terms k1∆v in Eq. (9) and
k1∆u in Eq. (10), and also when k1 < 0, almost does not
change the graphs in Figs. 1 and 2. If k1 > νt0 and χt0,
some changes occur in the spatial distribution of fluctu-
ations.
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Fig. 3. The phase trajectories (a, b) for the initial distribution (12) with the following parameters: (a, 1) u(0) = v(0) = 0.1; (a, 2) u(0) =
–0.3, v(0) = 0.1; (b) u(0) = v(0) = 1. The time dependences of (c) u and (d) v for the curve (a, 1). The dashed lines in (c) and (d)
mark the coordinates of the stable node at cv = 3/2 [1].
When the initial distributions are more realistic,
e.g., when

(12)

functions u(τ) and v(τ) exhibit qualitatively different
behavior if the peaks in the initial distributions are close
to each other (x0 ≈ 10σ or less). This is illustrated in
Fig. 3 (see also the spatial distribution shown in Fig. 4).
Increasing the number of the peaks in the initial distri-
bution (12) up to five does not bring qualitative modifi-
cations. When x0 ! 10σ, both three and five peaks can
be considered as independent from each other, as single
perturbations with distributions like (11). A block
scheme of the program numerically integrating Eqs. (9)
and (10) is given in Fig. 5.

Let us solve analytically Eqs. (9) and (10) in the
approximation linear with respect to u and v. Putting
k1 = Ψ1 = Ψ2 = 0, we obtain

(13)
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(14)

where α = νt0 and β = χt0. Finding u as the function of
v from Eq. (14) and substituting the result into Eq. (13),
we arrive at

(15)

where the dot means differentiating with respect to the
dimensionless time τ and cp = cv + 1 is the isobaric heat
capacity.

We solve Eq. (15) in the one-dimensional case,
when ∆ = ∂2/∂x2, by means of the Fourier transforma-
tion. For

(16)

we derive from Eq. (15) the following equation
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where
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Equation (17) has the following solution

(19)

where

(20)

After some transformations, Eq. (20) takes the form

(21)

Finally, solution (16) is written as follows:
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This solution is obtained by using Eq. (19) with
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Fig. 4. The spatial distribution of fluctuations at various time
moments: (a) τ1, (b) τ2, and (c) τ3 (τ1 < τ2 < τ3). The initial
distributions are the same as for the curve 1 in Fig. 3a.
C1 = 0 and C2 = C(p, 0), where

(23)

The integral in expression (22) can be calculated
with the help of the saddle point method. Let us con-
sider the function

(24)

Differentiating with respect to ρ and equating the result
to zero, we have
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Fig. 5. The block scheme of the program calculating the
phase trajectories: (1) initial data input, (2) calculation of
the distribution function, (3) output of u, v, and t (I is logical
yes), (4) stop (II is logical no), (5) the calculation of deriva-
tives, (6) determination of (u, v) and (u, v), (7) calcula-
tion of changed distribution function.

u̇ v̇
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Assuming that time t0 is large, we can write

Therefore, the equation f ' = 0 leads to the following
saddle point

(25)

With this p0, the function f(p) in Eq. (24) takes the
following form: 

(26)

The second derivative at the saddle point is as follows

(27)

Hence, when α > β, Eq. (22) takes the form
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denominators contain the small terms proportional to
the isobaric heat capacity cp. When these terms are
omitted, the classical result is obtained [2–4]. The table
contains the values of χ and ν for substances of three
types.

CONCLUSION
The above analytical and numerical analysis

revealed the following results.
(i) In inhomogeneous liquids and gases, the system

comes with time to an asymptotically stable stationary
point. 

(ii) In such media, where ∇ρ and ∇ T exist, there are
no fluctuating points. The parameters do not oscillate
around the saddle point, as it is described in [1] for a
homogeneous medium. 

(iii) The viscosity strongly affects the way the tem-
perature sets in a medium.
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some substances under normal conditions
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Abstract—New quantization rules for classical systems are obtained using the Titchmarsh expansion. These
rules generalize the conventional ones and are reduced to them when a transition to Cartesian coordinates exists.
An equation generalizing the Schrödinger equation to arbitrary natural systems is found. The principle of
minimal constraint (strong equivalence principle) makes it possible to extend this equation to any curved
spaces. © 2001 MAIK “Nauka/Interperiodica”.
In [1], Steklov formulates the basic tasks of mathe-
matical physics as follows: 

After appropriate generalization, in terms of
pure analysis, the physical problem of body
cooling results in two problems of major impor-
tance: (A) the problem of integrating a linear dif-
ferential equation with appropriate boundary
conditions (finding eigenfunctions or fundamen-
tal functions as well as eigenvalues or character-
istic values) and (B) the problem of expanding
arbitrary functions into convergent series in
terms of eigenfunctions.

In physical literature, most attention is customarily
given to problem A, whereas problem B is not practi-
cally discussed. For instance, an explicit form of the
expansion in terms of eigenfunctions for the problem of
a hydrogen atom is presented only in [2, 3], although
problem B is of no less importance than problem A for
perturbation theory.

There exist three methods to solve problem B. The
first is provided by the general spectral theory of linear
self-adjoint operators in the Hilbert space (see, e.g.,
[4, 5]). The second is offered by methods of the theory
of integral equations, the beginning of which was made
by Weyl. Another (albeit rather close) approach to
expansion theorems was proposed by Titchmarsh [6].
In this work, the expansions are proved on the basis of
the residue theory and contour integration. Thus, this
method makes it possible to avoid invoking both the
theory of integral equations and the general theory of
linear operators. The last fact is of particular impor-
tance, since physicists do not usually distinguish self-
adjoint and symmetric operators. This simultaneously
leads to two problems: first, the domain of an operator
in the Hilbert space remains ambiguous that prevents
using methods of the spectral theory; second, all func-
tions, for which analytical operations involved in the
operator expression make sense, are included in the
1063-7842/01/4604- $21.00 © 20368
domain of the operator irrespective of the fact whether
these functions (and the result of applying the operator
to them) are included in the Hilbert space [7]. A rigor-
ous consideration of the latter case requires introducing
a concept of the framed Hilbert space [8].

Besides that, the physics guides often state that each
self-adjoint operator possesses a complete orthogonal
system (basis set) of eigenvectors. This is the case for
compact self-adjoint operators, but the Hamiltonian is
never compact. Other general criteria for existence of
the basis can hardly be formulated, however, the
Hamiltonian sometimes has the basis (harmonic oscil-
lator). This particular case is presumably the only inter-
esting example in which the above-mentioned principle
is valid; generally, operators have continuous spectrum
as well. As a result of such intuitive operations, gener-
ally speaking, the expansion formula in the well-known
problem of hydrogen atom [2, 3] turns out to be incor-
rect.

The Titchmarsh approach makes it possible to avoid
all of the above-mentioned difficulties by developing
an expansion in terms of normalized eigenfunctions
using only the methods of mathematical analysis.
Moreover, as it will be clear from what follows, this
technique is quite accessible. Since the Titchmarsh
method is poorly known, we present the main points of
his theory that are needed for developing the expansion
in the quantum-mechanical problem of hydrogen atom.

On the basis of these results, the new quantization
rules for classical systems are obtained. These rules
generalize the conventional ones and turn to them in the
case when a transition to Cartesian coordinates exists.

The term “quantization” appeared in physical liter-
ature in the twentieth and from the very beginning has
had two meanings. First, this is discretization of the
range of a physical variable; second, the construction of

the Hamiltonian ( , , t) from the c-number Hamil-
tonian function H(p, q, t) for a classical mechanical sys-

Ĥ p̂ q̂
001 MAIK “Nauka/Interperiodica”



        

HYDROGEN ATOM IN QUANTUM MECHANICS 369

                                                                                                                                                                             
tem, where  and  are the operators corresponding to
classical canonical variables. In this paper, the term
“quantization” is used in the latter meaning.

The traditional Weyl–Heisenberg quantization
method is applied only to classical systems with a plane
phase space and only in Cartesian coordinates [14]. In
the general case, the quantization problem is nontrivial
and ambiguous.

THE TITCHMARSH METHOD

Consider a function y = y(x) satisfying the equation

(1)

and some boundary conditions [6], where q(x) is the
given function of x that is defined on an interval (a, b).

In applications, the function q(x) often has a singu-
larity either at one or at both interval boundaries, or the
interval extends to infinity either in one or in both direc-
tions. These are so-called singular problems.

Let us consider the case in which the interval is the
real semiaxis (0, ∞) and the function q(x) is continuous
in each finite interval. We assume that ϕ(x) = ϕ(x, λ)
and θ(x) = θ(x, λ) are solutions of (1) with the Wron-
skian Wx(ϕ, θ) = W0(ϕ, θ) = 1. Then, for arbitrary real
λ, Eq. (1) has the solution

(2)

from L2(0, ∞). The function m(λ) is referred to as the
Weyl–Titchmarsh function, which is considered to have
the following properties: m(λ) is an analytic function of
λ that is regular in the upper half-plane and Imm(λ) < 0
[6]. In this case, if two linearly independent solutions
ϕ1(x, λ) and ϕ2(x, λ) with the Wronskian ω(λ) = W[ϕ1,
ϕ2] ≠ 0 are known, the required result is obtained by
dividing by ω(λ). Let f(y) ∈  L2(0, ∞) and

(3)

where ϕ and ψ are the above-defined functions.

Then, for any x, the function Φ(x, λ) is analytic with
respect to λ and is regular either at Imm(λ) > 0 or
Imm(λ) < 0. In this case, when ϕ1(x, λ) and ϕ2(x, λ)
with the Wronskian ω(λ) = W[ϕ1, ϕ2] are known, the

p̂ q̂
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corresponding expression for Φ(x, λ) has the form

(3a)

The function Φ(x, λ) is evidently expressed in terms
of the Green function G(x, y, λ)

(4)

by the following relation:

(5)

The general form of the Titchmarsh expansion is
given by

(6)

It can be proved [6] that
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formula (9) takes the form

(11)

Further,

(12)

This is the so-called Parseval equality. In the case of the
interval (0, ∞), the spectrum may be defined as the set
of points λ forming the complement of the set of points
in the neighborhood of which the function k(λ) is con-
stant. If m(λ) is a meromorphic function, the spectrum
coincides with the set of its poles (point spectrum). The
interval where k(λ) increases at each point belongs to
continuous spectrum.

Let us consider a point spectrum, i.e., the only sin-
gularities of m(λ) are the poles at λ0, λ1, … and r0,
r1, … are the corresponding residues. Then, the func-
tions

(13)

form the orthonormal system [6].

HYDROGEN ATOM

Consider

(14)

where l is a positive integer or zero.

The corresponding Eq. (1) has the form

(15)

Here, r is the dimensionless variable that is equal to the
ratio of corresponding dimensional variable to a0 =
"2/mc2 and λ = ε = 2E"2/mc4. Equation (15) results
from the equation for the radial wave function R(r) of
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Using the Laplace method [9] to find the solution,
we obtain

(17)

f x( ) 1
π
--- ϕ x λ,( )g λ( ) k λ( ).d

∞–

+∞

∫=

f x( ){ } 2 xd

0

∞

∫ 1
π
--- g λ( ){ } 2 k λ( ).d

∞–

+∞

∫=

ψn x( ) rnϕ x λn,( )=

q r( ) l l 1+( )
r2

-----------------
2
r
---, 0 r ∞,< <–=

d2y

dr2
-------- ε 2

r
--- l l 1+( )

r2
-----------------–+

 
 
 

y+ 0.=

Y''
2l
r
-----Y'– s2 2

r
---+ 

  Y+ 0.=

ϕ1 r ε,( ) r l– z is+( )k l– 1– z is–( ) k– l– 1– erzdz,

C

∫°=
where C is the closed contour enclosing the points is
and –is, arg(z + is) and arg(z – is) vary from –π to π in
tracing the contour, k = i/s, and

(18)

where the loop encloses the point is and does not con-
tain –is. Here arg(z – is) varies from –π to π and arg(z +
is) varies from π to π for s from the first quadrant.
According to Whittaker and Watson [9], we have

(19)

Evaluating ω(ε) = r –2lW[I1, I2], where I1 and I2
denote the integrals in (17) and (18), we obtain

(20)

Consider the function

(21)

This function has poles at the zeros of the function
ω(ε), i.e., at the points

(22)

or

(23)

where nr is the radial quantum number and n is the prin-
cipal quantum number.

Then,

(24)

At ε = εn we have

(25)

where  are the associated Legendre polynomials.

ϕ2 x ε,( ) = r l– z is+( )k l– 1– z is–( ) k– l– 1– erz z,d

∞–

is+( )

∫

ϕ2 r ε,( ) = 
2πieiπk

Γ k l 1+ +( )
---------------------------- 2is( ) l– 1– W

k l– 1
2
---–

2isr–( ).

ω ε( ) 2πi 2is( ) 2l– 1– 1 e2iπk–( )–
Γ l k– 1+( )

-------------------------------------------------------------Γ l– k–( ).=

Φ x ε,( )

=  
ϕ2 r( )
ω ε( )
------------- ϕ1 z( ) f z( ) z

ϕ1 r( )
ω ε( )
------------- ϕ2 z( ) f z( ) z.d

r

∞

∫+d

0

r

∫

kn nr l 1; nr+ + 0 1 2 …, , ,= =

ε εn
1

nr l 1+ +( )2
----------------------------–

1

n2
-----,–= = =

ω' εn( )
8π2 nr( )!

nr 2l + 1+( )!
--------------------------------

nr l 1+ +( )2l 4+

22l 3+
------------------------------------.–=

ϕ1 r εn,( ) ϕ2 r εn,( )=

=  rl 1+ e
r
n
---– 2πi nr( )!

n l+( )![ ]2
------------------------Ln + l

2l + 1 2r
n
----- 

  ,

Lp
m
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Therefore, the residue of Φ(x, ε) at ε = εn

(26)

The sum of such terms yields the part of the expan-
sion which corresponds to negative points of the spec-
trum [6]. From (26), we find the orthonormal system of
functions that is the basis for the expansion:

(27)

where Rnl are the radial functions of the discrete spec-
trum in the problem of hydrogen atom [2, 3].

Let us represent ϕ1(r, ε) in the form

(28)

where in the first integral arg(z + is) varies from –π to π
and arg(z – is), from –π to –π; in the second integral
arg(z + is) varies from π to π and arg(z – is), from –π to
π. Hence, the second term in (28) coincides with
ϕ2(x, ε).

It should be noted that at ε = εn, the first integral in
(28) has no singularity and vanishes. Therefore, it is
impossible to find the wave functions of a continuous
spectrum by substituting the complex values of ε into
the functions of discrete spectrum [2, 10]. Note that the
normalization integral, e.g., in [10], is calculated for the
total function (28). Increasing the args in the addend in
(28) by π, we get

(29)

in contrast to relation (25), where ϕ1(r, ε) = ϕ2(r, ε) and,
hence,

(30)

Then, for positive real ε

(31)

22l 2+ nr( )!
n 1+( )![ ]3n2l 4+

--------------------------------------rl 1+ e
r
n
---–

Ln l+
2l 1+ 2r

n
----- 

 

× zl 1+ e
z
n
---–

Ln l+
2l 1+ 2z

n
----- 

  f z( ) z.d

0

∞

∫

ψnl r εn,( ) 2l 1+

nl 2+
----------

nr( )![ ]1/2

n l+( )![ ]3/2
---------------------------=

× rl 1+ e
r
n
---–

Ln l+
2l 1+ 2r

n
----- 

  rRnl,=

ϕ1 r ε,( ) r l– z is+( )k l– 1– z is–( ) k– l– 1– erz zd

∞–

is+–( )

∫=

+ r l– z is+( )k l– 1– z is–( ) k– l– 1– erz z,d

∞–

is+( )

∫

ϕ1 r ε,( ) ϕ2 r ε,( ) e2πikϕ2 r ε,( )+=

ω εe2πi( ) e 2πik– ω ε( ).–=

ϕ2 r ε,( )
ω ε( )

------------------
ϕ2 r εe2πi,( )

ω εe2πi( )
---------------------------–

ϕ1 r ε,( )
ω ε( )

------------------.=
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Therefore,

(32)

where

(32a)

Thus, the part of the expansion that corresponds to
continuous spectrum is given by

(33)

From (33) it follows that normalized eigenfunc-
tions, which are the basis for the expansion, have the
form

(34)

where F(α, β, γ) is the confluent hypergeometric func-
tion.

The function (34) differs from the radial wave func-
tions of continuous spectrum in the problem of hydro-
gen atom [10] by a factor of r.

Finally, the expansion for a function f(r) ∈  L2([0,
∞); dr) has the form

(35)

and the coefficients are given by

(36)

where the bar denotes complex conjugation.
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In the same way one may find [6] that the expansion
for a function g(ϑ , ϕ) ∈  L2(S2; dϑ ; dϕ), where ϑ  and ϕ
are the angular coordinates on the sphere surface, has
the form

(37)

(38)

where Ylm(ϑ , ϕ) are the spherical harmonics [11] and
the coefficients blm are given by

(39)

The function Θlm differs from the traditionally used

by the factor . The conventional expansion has
the form (see, e.g., [3, p. 42])

(40)

where the coefficients of the expansion are given by the
formulas

(41)

An evident difference between the Titchmarsh and
Bethe–Salpeter expansions lies in the fact that in the
former one the Jacobian of the transform is shared sym-
metrically between the expansion functions, whereas in
the latter case it is involved as a whole only in the
expression for the coefficients. Actually, the expansions
(40) and (41) result from the Titchmarsh expansion if
one takes into account that its functions form complete
orthonormal system in the space L2([0, ∞); dr) ⊗  L2(S 2;
dϑ , dϕ) and the standard functions, in L2(R3; dxdydz) =
L2(R3; r 2sinϑdrdϑdϕ). In its turn, this difference leads
to the fact that the solution of the Srödinger equation
ψ(r, ϑ , ϕ) in the spherical coordinates does not have the
meaning of the probability density, whereas the Titch-
marsh functions have, since, e.g., the radial-coordinate

distribution w(r) = r2  = . The last fact is the triv-
ial consequence of the general theorems of the proba-
bility theory about the convertion of the probability
density to curvilinear coordinates [12].

g ϑ ϕ,( ) blmΘlm ϑ ϕ,( ),
m l–=

+l

∑
l 0=

∞
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∫
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π

∫=

ϑsin
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Cnlm = r2 r F r ϑ ϕ, ,( )Rnl r( )Ylm* ϑ ϕ,( ) ϑsin ϑd ϕ ,d

0

2π

∫
0

π

∫d

0

∞

∫

Cslm = r2 r F r ϑ ϕ, ,( )Rsl r( )Ylm* ϑ ϕ,( ) ϑsin ϑd ϕ .d

0

2π

∫
0

π

∫d

0

∞

∫

Rnl
2 ψnl

2

QUANTIZATION OF NATURAL SYSTEMS

The quantization problem is to construct the Hamil-

tonian ( , , t) on the basis of c-number Hamilto-
nian function of a classical problem, which is assumed
to be given. This procedure is nontrivial and ambiguous
especially in curvilinear and generalized coordinates,
since there are a number of ways to choose the form of
the operator  and the sequence of the operators  and

 in ( , , t) [13, 14].

Let us consider a natural mechanical system,
namely, the triple (M, T, V), where M is a smooth man-
ifold (position space), T is the Riemann metric on M
(positive-definite quadratic form, kinetic energy), and
V is a smooth function on M (potential of force field)
[15]. The motion of such a system is smooth mappings

: R1  M that are the extremals of the action func-
tional with the Lagrangian function L = T – V. In the
local coordinates the Lagrangian function is given by

(42)

so that the Hamiltonian function corresponding to (42)
is equal to

(43)

where πi = gik  is the generalized momentum.

The local coordinates qi and πi are canonical on the
cotangent bundle T*M of the smooth manifold M. In
the case of nontrivial values gik ≠ δik, the traditional
quantization procedure becomes essentially ambigu-
ous. However, the above-stated results allow making
this procedure quite certain. Indeed, the conventional
method to solve quantum problems in curvilinear coor-
dinates is as follows. First, the quantization of the clas-
sical system is performed in Cartesian coordinates. As

a result, the kinetic energy T = (  +  + )/2m (in
the Srödinger coordinate representation) is associated

with the operator  = –"2∆/2m is the Laplace–Beltrami
operator, which is defined on the tangent bundle of the
smooth manifold M), and then, the conversion to the
curvilinear coordinates q is performed. As it has been
noted in the previous section, the resulting wave func-
tion ψ(q) = ψ(x(q)) (x is the set of Cartesian coordi-
nates) is not the probability amplitude and, hence, does
not describe any physical states.

Allowing for the Titchmarsh expansion, one can
straightforwardly derive the equation for the probabil-
ity amplitude ( ) on the basis of the above-stated
procedure. It is clear that the Titchmarsh functions

(q) and ψ(q) are related to each other by equation

Ĥ p̂ q̂

p̂ q̂

p̂ Ĥ p̂ q̂

q̂

L
1
2
---gikq̇

iq̇k V q( ),–=

H
1
2
---gikπiπk V q( ),+=

q̇k

px
2 py

2 pz
2

T̂

ψ̃ q̇

ψ̃
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(q) = g1/4ψ(x(q)), where g = det|gik|. In doing so, we
arrive at the equation for (q)

(44)

or

(45)

where  = g1/4∆g–1/4.

The symmetry (self-adjointness) of the operator 
with respect to the scalar product ( , ) =

(q) (q)dq (the bar denotes complex conjugation

and dq = dq1… dqn) is evident from the equation

sequence ( , ) = (∆ϕ, ψ) = (ϕ, ∆ψ) = ( , ). Let
us introduce the operators of generalized-momentum
projections

satisfying the commutation relations [ , qi] = –i"
and [πi, πk] = 0. In this case the adjoint operator

so that the kinetic-energy operator T = –"2ππ*/2m.

The commutation relations [ , qi] = –i" , [πi,
πk] = 0, and [qi, qk] = 0 are algebraically identical to the
customary Heisenberg commutation relations. How-
ever, the operators  and qk define the representation
that is unitarily nonequivalent to the Schrödinger repre-
sentation. The Neumann–Stone unicity theorems [16]
are invalid in this case, since the operators  are not
symmetric.

The generalized momentum operator corresponding
to the radial coordinate (radial momentum operator)
has the form  = ∂/∂r + (n – 1)/2r, where n is the
dimension of the manifold M with the domain of defi-
nition D( ) = {y ∈  L2((0, ∞), dr); (ψ' + (n – 1)/2r) ∈
L2((0, ∞), dr)}. This result coincides with rela-
tion (7.8.2) in [17], where the form of the radial
momentum operator is postulated. It is of interest that
only for n = 3 does the squared radial momentum oper-
ator coincide with the r-dependent term in the Laplace–
Beltrami operator multiplied by (–"2).

Equation (45) involves opportunities for generaliza-
tions. Indeed, from the standpoint of the theory of man-

ψ̃
ψ̃

g 1/4– ∂
∂qi
-------g1/4

 
  gik g1/4 ∂

∂qk
--------g 1/4–

 
  ψ̃

+
2m

"
2

------- E V q( )–[ ] ψ̃ 0=

∆̃ψ̃ q( ) 2m

"
2

------- E V q( )–[ ] ψ̃ q( )+ 0,=

∆̃

∆̃
ϕ̃ ψ̃

ψ̃∫ ψ̃

∆̃ϕ̃ ψ̃ ϕ̃ ∆̃ψ̃

π̂i i"g 1/4– ∂
∂qi
-------g1/4,–=

π̂l δl
i

π̂i* +i"g+1/4 ∂
∂qi
-------g 1/4– ,=

π̂l δl
i

π̂i

π̂i

π̂r

π̂r
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ifolds even the plane space is by no means simple, i.e.,
it has much more rich structure compared to the ordi-
nary differentiable manifold, since the affine connec-
tion is defined on it. In the Cartesian coordinate system
this connection does not manifest itself, since the Cris-
toffel symbols are equal to zero. However, if the physi-
cal laws are formulated in plane space in term of curvi-
linear coordinates, the connection becomes observable.
The Cristoffel symbols rather than Riemann tensor
appear in most of laws represented in such a way.
Hence, the equations have the same form irrespective
of the fact whether the manifold is plane or curved.
Thus, it is natural to assume that the form of the
Schrödinger equation (45) for the curved manifolds in
which there are no global Cartesian coordinates sys-
tem, is the same as in the curvilinear coordinates in
plane manifold. This postulate is an analog of the prin-
ciple of minimal constraint in the general relativity
[18].

Moreover, using the methods developed by Gon-
charov (see, e.g., [19, 20]), it is possible to generalize
Eq. (45) to manifolds with nontrivial topology.

The problem of quantization of natural systems
(quantization of a classical system defined on a curved
configurational space) was announced even in the first
Schrödinger paper, however, the solution was repre-
sented only in Cartesian coordinates.

A wide discussion of quantum theory on the Rie-
mann manifolds in mathematical papers began as soon
as the modern quantum mechanics was developed [21,
22]. The expression for the generalized integral found
in this paper coincides with those obtained in the WKB
approximation in [23]. The exact Schrödinger operator
has the form –"2/2m(∆ – αR), where ∆ is the Laplace–
Beltrami operator, R is the scalar curvature, and α =
1/3. The value of the constant α essentially depends on
the chosen quantization procedure: in the Liu–Qian
method [24] α = 1/8; Underhill [25] found α = 1/2; and
in the approach of geometric quantization [26], α = 1/6.
Woodhouse [27], Wu [28], and Emmrich [29] obtained
a value of α = 0.

All of the mentioned Schrödinger operators in the
plane space in curvilinear coordinates are reduced to
the Laplace–Beltrami operator (R = 0). At the same
time, as it is clear from the Titchmarsh results and
Eq. (44), in this case there is nonzero correction to the
Laplacian, which turns to zero only in Cartesian coor-
dinate system. Note that, unlike this paper, where
Eq. (44) has been simply derived from the physical
meaning of the wave function as a probability ampli-
tude, all of the above-mentioned papers are purely
mathematical and rather complicated.
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Abstract—The use of trochoidal and hypocycloidal spectrometers that are applied in modern experimental
techniques for studying processes of electron scattering by atoms, ions, and surfaces is considered in some
detail. The angular range of the collection of scattered electrons is determined by the operation mode of the
spectrometer and depends on the collision energy. To analyze the structure of the measured energy dependence
S(E), an analytical formalism reflecting both resonance and nonresonance features of low-energy scattering was
used. A theoretical analysis of elastic scattering of slow (to 2 eV) electrons by Ca atoms permitted the interpre-
tation of the observed structure of S(E) as a manifestation of the 2D shape resonance. A comparison of
the theoretical values of the S(E) function with the total and differential scattering cross sections was per-
formed. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Of special interest in electron–atom collisions is the
range of low energies, at which resonances can arise.
However, there are certain difficulties in studying scat-
tering of slow electrons (to 5 eV), such as those related
to the divergence of the electron beam under the effect
of the space charge or the dependence of the transmis-
sion of the analyzer on the energy of scattered elec-
trons. These difficulties can partially be eliminated by
using a longitudinal uniform magnetic field and a tro-
choidal electron spectrometer (TES) and almost fully
eliminated by the use of a spectrometer modification
that was called hypocycloidal.

A hypocycloidal electron spectrometer (HES)
makes it possible to measure the energy dependence
S(E) of electron scattering into an angular range that
depends on the energy E. This function reflects various
features of a concrete experimental setup, regimes of its
operation, and the information on the processes of col-
lisions themselves. Therefore, it is very important to
study its analytic form, for this permits one to separate
the dynamic features of scattering (related to phases)
from kinematic ones (related to angles).

For the first time, the S(E) function was measured in
[1, 2] and numerically calculated in [2–4] for the case
of elastic scattering of slow electrons by Ca atoms.
However, neither its analytic form nor its behavior as
determined by its constituent parts have been studied in
detail in [2–4].

In recent years, the spectrometers of the new type
(TES and HES) are also used for experiments on the
elastic backscattering of electrons by ions [5–7] and by
thin films [8–10] (see also the review [11]); therefore,
the analysis of the S(E) function is of great importance.
1063-7842/01/4604- $21.00 © 20375
The main problem in the theoretical description of elec-
tron–atom scattering at low energies is the allowance
for the polarizability of the electron shells of the atoms
of the target, i.e., taking into account the distortion of
the atomic potential under the effect of an incident elec-
tron. At low energies, when only a few channels are
operative, a sufficiently correct allowance is only pos-
sible in terms of the method of strong coupling of vari-
ous channels. However, in many cases it is difficult to
do this in terms of this method or its modifications even
at low energies. The second possibility of taking into
account the polarizability is based on the optical-poten-
tial approximation (see [3, 4] and references therein).
However the direct calculation of the optical potential
is as difficult as the exact solution of the scattering
problem. Therefore, various approximate methods
(e.g., theory of perturbation in electron–electron inter-
action) or phenomenological models are employed to
determine optical potential. In recent years, there
appeared numerous works on the calculation of elec-
tron–atom collisions using a model optical potential, in
which both complex and real potentials were used
[3, 4]. An important part of a model optical potential is
the polarization potential. For alkaline-earth elements,
its role is large, since the polarizability of these atoms
is relatively large (α ~ 70–270 au).

The scattering of low-energy electrons by Ca atoms
has been considered in a number of theoretical works.
Fabrikant [12] used the method of strong coupling of
two and three states (41S–41P–43P) and obtained an

energy  ≈ 1.76 eV for the 2P resonance. McCurdy
et al. [13] used the self-consistent field method for cal-

culating the energies  and widths Γl of the 2P and 2D
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shape resonances and obtained  = 0.225 eV (Γ1 =

0.162 eV) and  = 2.28 eV (Γ2 = 0.335 eV).

Amus’ya et al. [14, 15] calculated the energy depen-
dence of the integrated cross section of elastic electron
scattering by Ca atoms in a range of E < 4 eV in terms
of the random-phase approximation with exchange.
They obtained two cross-section maxima, which were
caused by p and d waves (they were interpreted as
shape resonances). Their parameters are as follows:

 = 0.27 eV (Γ1 = 0.14 eV) and  = 1.25 eV (Γ2 =
0.78 eV). However, the first maximum was not
observed in experiment in [16]. In terms of the same
approximation, Gribakin et al. [17] investigated the
elastic electron scattering by Ca, Sr, and Ba atoms. In
[3, 4], it was shown that scattering occurred through the
2D shape resonance. The parameters of this resonance

are  = 1.44 eV (Γ2 = 1.4 eV) for Ca, 0.87 eV
(0.88 eV) for Sr, and 0.21 eV (0.03 eV) for Ba.

Kelemen et al. [18, 19] used a complex energy-
dependent optical potential to describe the elastic and
inelastic scattering of electrons by Be, Mg, Ca, and Sr
atoms at energies 0–40 eV. In low-energy scattering, P
and D shape resonances were obtained. The existence
of a P shape resonance in electron–calcium elastic scat-
tering was also predicted earlier [20]. It is these P reso-
nances that were identified with the low-energy fea-
tures revealed in experimentally measured cross sec-
tions [16, 21, 22].

However, in both experimental [23] and theoretical
[24] works, the existence of a stable negative ion Ca– in
the 4s24p2P state was revealed. Later, the existence of
stable negative ions Sr–, Ba–, Ra–, and Yb– was pre-
dicted (see [3, 4, 17] and references therein). Experi-
mental results [25] confirmed the existence of negative
ions Sr–, Ba–, and Yb–. The investigation of the structure
of these ions showed the important role of the (mono-
pole, dipole, and quadrupole) polarizability of the
atomic shell upon the capture of an electron. The polar-
izability effects are also important upon low-energy
scattering of electrons by these atoms; this results in the
formation of only 2D shape resonance, which is possi-
ble due to the existence of negative ions in ns2np2P
states [3, 4].

Thus, along with the traditional theoretical calcula-
tions and experiments concerning scattering, a new
technique based on the use of hypocycloidal spectrom-
eters was introduced into the practice of investigations
of the interaction of slow electrons with atoms, ions,
and surfaces. The energy dependences that are mea-
sured in these experiments differ from the familiar con-
cepts such as the total and differential cross sections. It
is of great importance to theoretically consider these
dependences, calculate and study their constituents
(direct and interference, resonance and nonresonance
contributions) as well as of the role of possible inelastic
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E2
r

E1
r E2

r

E2
r

processes. Therefore, the aim of this work was the
development and application of an analytical formal-
ism for analyzing the S(E) function measured in exper-
iments on the elastic scattering of slow electrons by
atoms using a hypocycloidal electron spectrometer.

BRIEF DESCRIPTION OF A HYPOCYCLOIDAL 
ELECTRON SPECTROMETER

In this section, we consider the main constructive
features of a hypocycloidal electron spectrometer,
modes of its operation, and its application to experi-
ments on low-energy electron scattering. The tro-
choidal electron monochromator was first developed by
Stamatovich and Schultz [26] and later used for study-
ing resonances in molecules, inert gases, and atoms of
Group II metals [16]. A setup with a trochoidal electron
spectrometer was used in [27–29] and modernized and
modified in [1, 2, 30].

In a trochoidal electron monochromator, a com-
bined effect of crossed magnetic and electric fields is
used for the selection of electrons in velocities. In the
region where these fields act simultaneously, the elec-
trons drift along equipotential surfaces of the transverse
electric field. The exit diaphragm of the analyzer,
whose orifice is shifted relative to the entrance orifice,
discriminates particles with a definite longitudinal
component of velocity; this effect is used to determine
the energy distribution of electrons. Because of the
effect of the fringing field of the condenser (in a tro-
choidal electron monochromator, a condenser with flat
plates is used), the displacement of an electron at the
exit from the monochromator depends on the inlet
coordinate of the electron in the region of drift. This
derates the separation and decreases the coefficient of
transmission of the analyzer [27].

In connection with the above-said, attempts were
made to find configurations of fields such that ensure a
minimum deviation of the beam profile from the cyclic
one at the exit from the region of the crossed fields. Cal-
culations of electron trajectories show that this condi-
tion is satisfied by the field of a cylindrical condenser
consisting of two coaxial cylinders whose radii meet
certain conditions [30]. Thus, a nonuniform electric
field of a cylindrical condenser whose axis is parallel to
the magnetic field should be employed.

A hypocycloidal electron monochromator, in com-
parison with the trochoidal electron monochromator,
has a better resolution at the same exiting current, and
its use as an electron analyzer permits one to obtain a
transmission coefficient close to 100%.

Like the trochoidal electron spectrometer, the hypo-
cycloidal electron spectrometer consists of a hypocyc-
loidal electron monochromator and analyzer separated
by a collision chamber. The scheme of a spectrometer
is shown in Fig. 1 along with the distribution of poten-
tials at its electrodes. Electrons emitted by an oxide
cathode K enter the region of drift of the monochroma-
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
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tor between the diaphragms A2 and A3 through the
entrance slit of electrode A1. The transverse electric
fields in the selector and analyzer are produced by
cylindrical condensers B1, B2, and B3, B4, respectively,
to which a potential difference is applied. Electrons,
being accelerated into the collision chamber A4 to an
energy Ein, intersect there with the atomic beam and
then enter the drift region of the analyzer between the
diaphragms A5 and A6. An auxiliary electrode A7, along
with a Faraday cylinder Π1, serves to detect the primary
beam of electrons and reduce the background of
reflected electrons. The scattered electrons are deviated
into the exit slit of the analyzer and are detected by a
multichannel electron photomultiplier. The spectrome-
ter is placed in a uniform magnetic field produced by a
pair of Helmholtz coils [30].

In the drift region of the analyzer, the electrons are
deviated at a distance D [29]

(1)

where Er and B are the strengths of the electric and
magnetic fields, L is the length of the analyzer, Θ is the
scattering angle, Wr = Ein – En, En is the energy lost by
electrons for excitation, and UA is the potential of the
analyzer.

Hence, in the case of elastic scattering (Wr = Ein), the
scattering angle is equal to

(2)

Take also into account that if the analyzer has an exit
window of width ∆D = D2 – D1, then an electron will
pass into the outlet of the analyzer if it is scattered into
an angular range ∆Θ = Θ1(D2) – Θ2(D1) and it is this
circumstance that determines the experimental con-
stants  and b. In order to investigate the backscatter-
ing of electrons by metal ions and thin films, all the
components of the HES are used in the same form as in
the case of scattering by atoms. However, the mutual
arrangement of the analyzer (B3, B4) and the collision
chamber (A4) is different in this case [9].

The spectrometer can operate in the regimes of
energy dependence of elastically or inelastically scat-
tered electrons, constant residual energy, inelastically
scattered electrons, or incident-electron-energy loss. In
the regime of energy dependence [1–4], the potential of
the analyzer UA relative to the cathode was maintained
constant and the energy of incident electrons Ein was
varied. An analysis of the transmission function of the
analyzer performed as in the case of the threshold spec-
trum shows that it achieves the maximum magnitude at
such an excess over the threshold of the process stud-
ied, at which the potential of the collision chamber
equal to Ein is close to the potential of the analyzer UA.

D
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With increasing energy, the angular acceptance is
sharply shifted to the region of smaller angles and the
optical efficiency falls sharply.

The current of elastically scattered electrons within
the angular range Θ1 – Θ2 is expressed by the following
formula (below, the electron energy will be designated
merely E):

(3)

where i0 is the incident-electron current, N is the con-
centration of target atoms, d characterizes the spatial
dimensions of the collision region, and dσ/dΩ is the
differential scattering cross section.

For the case of a pointlike introduction of the elec-
tron beam into the collision region, the angular accep-
tance of the analyzer Θ1 – Θ2 depends on the electron
energy as follows:

(4)

The constants  and b can be obtained from the
experimental conditions (see Eqs. (1), (2)):  =
0.482 eV, b = 0.508 eV [1, 2], which corresponds to
UA = 0.55 V. Note that in the case of the limiting scat-
tering angles (Θ1 = 0, Θ2 = π), the value of S(E) coin-
cides with the total scattering cross section σ(E).

Figure 2 displays the experimental function S(E)
(curve 1) [1, 2] of the elastic scattering of electrons by
Ca atoms and the angles given by Eq. (4) (curves 7, 8).
Its rise at E ≤ 0.5 eV is due to the sharp change in the
energy dependence of the transmission function of the
analyzer, and its falloff toward 2.0 eV represents a
threshold feature, which is due to the existence of the
4p state of Ca atoms. As is seen, the angular acceptance

ip i0NdS E( ), S E( ) dσ
dΩ
------- Ω,d
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Fig. 1. Schematic of a hypocycloidal electron spectrometer
and the distribution of potentials on its electrodes.

z



378 REMETA et al.
of the analyzer in this region changes from 76.9°–90°
at E = 0.508 eV to 28.5°–29.5° at E = 1.8 eV.

THEORETICAL ANALYSIS OF KINEMATIC 
AND DYNAMIC FEATURES OF ELASTIC 

SCATTERING OF SLOW ELECTRONS

1. General Formalism

Using the partial-wave expansion in amplitudes [31]
and its connection with the differential cross section,
we obtain from Eq. (3) the following expression for the
S(E) function through the direct (Sd) and interference
(Si) contributions:

(5)

Here,  is the real part; ηl is related to the imaginary
part ηl(E) = exp(–2 (E)) of the partial phase of scat-

tering δl(E) = (E) + i (E) of the electron in the field
of optical potential; σel, l(E) is the partial cross section
of the elastic scattering of electrons

(6)
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Fig. 2. Energy dependence of elastic scattering of electrons
by Ca atoms and the angular acceptance: (1) experimental
S(E) curve; (2)–(6) theoretical Sk(E) functions for k = 1–5,
respectively (k is the number of partial waves that are taken
into account); and (7) and (8) the angular dependences
Θ2(E) and Θ1(E), respectively.
k2 = 2E (in au); and σt(σt, l) and σr(σr, l) are the total
(partial) cross sections of the total scattering and reac-
tion, respectively.

The functions Ql, l'(E) in Eq. (5) are related to Leg-
endre polynomials Pl(x) (see Appendix):

(7)

In the case of real partial phases δl(E) (for energies
below the threshold for inelastic processes), Eq. (5)
goes into

(8)

Here, σl(E) is the partial cross section of elastic scatter-
ing. To obtain estimates (which are given below), it is
expedient to use formula (8) in the approximate form
(with the Si(E) term expressed through partial cross
sections):

(9)

Thus, a hypocycloidal electron spectrometer can be
considered as a device that discriminates the role of
various partial waves upon the interaction of electrons
with atoms and ions.

2. Nonresonance Low-Energy Electron 
Scattering 

For the nonresonance low-energy scattering of elec-
trons by a potential with an asymptotics –α/2r4 (α is the
dipole static polarizability of atoms), the partial phases
δl(E) can be written as follows [31]:
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Here, a is the scattering length. At small k, restricting
ourselves to two waves (l = 0, 1) and small order in k
(for l = 0), we have

(11)

hence,

(12)

Substituting Eqs. (11) and (12) into Eq. (9), we
obtain for S(E) at small energies (expressions for Q00,
Q11, and Q01 are given in the Appendix)

(13)

If  and b in Eq. (4) are such that the energy of the
Ramsauer minimum is E0 ≥ b, then we have for the
vicinity of E0

(14)

For the electron energy E0 (i.e., at E = E0 ≥ b), we
obtain from Eq. (14)

(15)

We see that S(E0) has a maximum at E0 = b. This can
be used to find the scattering length or the polarizability
from the equality [31]
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A comparison of Eqs. (14) and (15) shows that, for
given  and b, the function S(E) has a minimum at E0
(analogous to the minimum in the total cross section)
and increases at E > E0.

3. Resonance Scattering of Electrons

Let us consider the case where there exists a reso-
nance in a certain partial wave. In this case, the partial
scattering phase in the resonance energy range has the
form [31]

(17)

where  is the nonresonance (background) part of the

phase shift and (E) is the resonance phase shift due

to resonance at an energy  with a width Γl

(18)

The resonance partial cross section has the form

(19)

where the reduced width and the parameter of the shape
resonance (index of the line profile) are

(20)

respectively. Expressions (17)–(20) for the resonance
energy range should be used in Eqs. (8) and (9). Let
there be a resonance in the nth partial wave. Then, sep-
arating terms with the characteristics of this wave in
(9), we obtain the following expression for S(E)
through the resonance (R) and nonresonance (NR)
parts

(21)

where, in turn, these parts are separated into direct (d)
and interference (i) contributions
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For example, at l = 0–3 and resonance in the d wave
(n = 2), the resonance part has the form

(23)

where  =  – δj.

At E ! , ε2 ≈ – /(Γ2/2), and Γ2 ! 1, we have

(24)

For E @ , ε2 ≈ E/(Γ2/2), and Γ2 ! 1, we obtain

(25)

In Eqs. (24) and (25),

In the resonance, E = , ε2 = 0,

and

(26)

If Γl is not small, then εl = (E – )/(Γl/2) in the res-
onance region and, e.g., for l = 2, we have

(27)

Thus, we can conclude that resonance leads to irreg-
ular behavior of the function SR(E) (and, consequently,
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phase is  ∈  (0, π/2), then ql = –  ≤ 0 and εl ≥ 0

(at E ≥ ) or εl ≤ 0 (at E ≤ ). The quantity ql + εl is

negative at E < , can have an arbitrary sign or equal

zero at E > , and depends on the relationship
between |ql| and |εl|. It is of interest to find the energy at
which ql + εl = 0. This means that |ql| = |εl| and, thus,

Considering  to be constant, we obtain for the res-
onance region that the partial cross section is σl = 0 at

Elmin =  + . Therefore, the magnitude of σl

increases at E < Elmin, reaches a maximum

at E = , and then decreases to zero at Elmin, whereas
the small increase in δl(E) at E < Elmin is described by
the formula

The case where  ∈  (π/2, π) is considered analo-

gously (here, we obtain that Elmin < ). In the reso-
nance region, SR(E) can be estimated from Eq. (27). At
E = Elmin, we have SR = 0 and, then, S(E) = SNR. At

Elmin > , i.e., in the region of the monotonically

decreasing Qij(E), we obtain Qij(Elmin) < Qij( ) and

SNR(Elmin) < S( ). A similar relationship will also be

fulfilled at Elmin <  although in this case Qij(Elmin) >

Qij( ), but SNR(Elmin) < S( ). Therefore, the function
S(E) possibly reaches a minimum at Elmin, since the res-

onance cross section is zero, while at  it will be max-
imum. In the absence of resonances, S(E) will be mono-
tonically dependent on the energy in the range of the

monotonic behavior of Qij(E). Note that at E < , the
functions Qij(E) can have singularities in their behavior
(zeros and extrema, see the Appendix); therefore, we
should take into account this behavior of Qij(E) and its
effect on S(E). Thus, the singularities in the behavior of
S(E) originate from both the existence of resonances in
some waves and the singularities in the behavior of the
Qij(E) functions.

In the beginning of the energy scale (E = b), the
magnitude of S(b) in experiments of this type will have
finite values, as follows from the boundedness of
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Qij(E). With increasing energy, the Qll'(E) functions fall
off up to zero; therefore, S(E) also drops.

If the background phase (E) is small, which is the
case upon the elastic scattering of slow electrons by the
atoms of alkaline-earth elements [3, 4], it follows from
Eq. (19) that σl has the Breit–Wigner form:

(28)

At E = , the partial cross section reaches the uni-
tary bound

At E ! , the cross section has a finite magnitude

At E @ , we have εl = 2E/Γl, and the cross section
decreases with increasing energy E. Such a behavior of
σl affects the behavior of SR(E). For example, for d res-

onance at E =  and ε2 = 0, we have from Eq. (23) that

(29)

At E ! , we have ε2 = 2 /Γ, and formula (24)

is valid. At E @ , the function SR(E), just as σ2(E)
and Qij(E), falls off with increasing energy. The func-
tion SR(E) in Eq. (29) depends on the behavior of the
functions Q22, 02, 12, 23 in the energy range considered. At
large energies, both SR and SNR are known to decrease
to zero. Thus, we can separate the irregularities in the
behavior of the function S(E) = SNR(E) + SR(E) gener-
ated due to the existence of resonance in a certain wave
(dynamic singularities in SR(E)) from those caused by
the energy-dependent behavior of the functions Qij(E)
(kinematic singularities in both SNR(E) and SR(E)).

ELASTIC SCATTERING OF SLOW ELECTRONS 
BY CALCIUM ATOMS

The above formalism was applied to theoretically
calculate the S(E) function and its parts for the case of
the elastic scattering of slow electrons by Ca atoms.
The values of the parameters  and b correspond to the
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technique used in one of our experiments performed on
a hypocycloidal electron spectrometer [2, 29] and its
theoretical interpretation performed both numerically
[2–4] and analytically [32–34].

The partial (l = 0–4) phases were found from the
phase equation with an optical potential in which the
polarization potential took into account the dipole (αd =
148.86 au) and quadrupole (αq = 335.9 au) polarizabil-
ities; in addition, we used a local exchange potential
(see [3, 4] and the references therein). The adjustable
parameter rq = 5.94 au in the polarization potential was
found from the requirement for the existence of a stable
ion Ca– with an electron configuration 4s24p2P0 with an
electron-affinity energy EA = –0.043 ± 0.007 eV. The
calculation of phases showed the presence of a 2D
shape resonance (l = 2) with the following parameters:

the energy  = 0.87 eV and the width Γ2 = 0.98 eV.
The phase of the d wave passes through the value π/2
and, on the whole, changes by π while going from low
to high energies [3, 4, 31]. The Ramsauer–Townsend
minimum in σ0(E) lies near the scattering threshold at
an energy of 0.012 eV and cannot affect S(E).

E2
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Fig. 3. (a) Resonance (SR) and (b) nonresonance (SNR) parts
of the S(E) function: (1) direct components (SRd in (a) and
SNRd in (b)); (2) interference components (SRi in (a) and
SNRi in (b)); and (3) total functions (SR in (a) and SNR in (b)).
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In order to reveal the dependence of the S(E) func-
tion on the number of partial waves k that are taken into
account, we calculated functions Sk(E). In Fig. 2, they
are given along with the experimental curve. It is seen
that the S1 (s wave) and S2 (s and p waves) functions
reveal a monotonic behavior, whereas beginning from
S3 (s, p, and d waves), the Sk functions have a minimum
(E ≈ 0.8 eV) and a maximum (E ≈ 1.2 eV). Note that
beginning from the allowance for the d wave, there is
not only a qualitative but also a quantitative agreement
with the experimental curve normalized to S5 at E =
1.3 eV.

The magnitudes of the direct Sd(E), interference
Si(E), and total S(E) functions (see Eq. (5)) depending

SR, SNR, S(E), au
6

5

4

3

2

1

0

1

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
E, eV

2

3

4

Fig. 4. Energy dependences of the elastic scattering of elec-
trons by calcium atoms: (1) experimental S(E) curve;
(2)−(4) theoretical curves; (2) resonance function SR;
(3) nonresonance function SNR; and (4) total function S(E).
on the number of partial waves are demonstrated in the
table. It can be seen that the interference terms are rel-
atively large, especially for small energies correspond-
ing to large angles Θ1 and Θ2 ~ 64°–67°. Both the inter-
ference and direct contributions exhibit nonmonotonic
behavior (they have minima at 0.8 and 0.9 eV and max-
ima at 1.2 and 1.1 eV, respectively, beginning from the
allowance for the d wave).

Owing to resonance, we can represent the S(E) func-
tion in the form (21) and (22), i.e., single out the reso-
nance (contribution of the d wave) and the nonreso-
nance parts of S(E) and divide these parts into direct
and interference components. These functions are
shown in Fig. 3; it is seen that the resonance parts and
components (Fig. 3a) exhibit a nonmonotonic behavior
(a minimum SR(E) ≈ 0 at E ≈ 0.75 eV and a maximum
at E ≈ 1.2–1.4 eV), whereas the nonresonance parts
change monotonically (Fig. 3b). Note the intersection
of the direct and interference nonresonance terms at
E ≈ 1 eV.

A comparison of the SR(E) and SNR(E) functions and
the total and experimental S(E) functions is displayed
in Fig. 4; it is seen that it is the SR component that deter-
mines (due to its nonmonotonic behavior) the total
behavior of the S(E) function; this qualitatively agrees
with the experiment. As to the behavior of SR, SRd, and
SRi (see also Fig. 3a), we can note that when going from
0.7 to 0.8 eV, the angles Θ1 and Θ2 pass through a value
of 54.7° when the Legendre polynomial P2(cosΘ) is
zero and the functions Qi2(E) are small.

Figure 5 illustrates the behavior of the total (σ(E))
and differential (dσ/dΘ) cross sections (calculated
using five partial waves) in comparison with the theo-
retical and experimental functions S(E). The differen-
tial cross section was estimated for an average angle
Direct Sdk, interference Sik and total Sk (k = 1–5 is the number of included partial waves) functions (in arb. units) of elastic
scattering by Ca atoms

E, eV
l = 0 l = 0, 1 l = 0, 1, 2 l = 0, 1, 2, 3 l = 0, 1, 2, 3, 4

S1 Sd2 Si2 S2 Sd3 Si3 S3 Sd4 Si4 S4 Sd5 Si5 S5

0.60 0.79 1.88 1.85 3.72 2.25 2.24 4.48 2.31 3.18 5.49 2.32 3.35 5.67
0.70 0.50 1.65 1.50 3.15 1.67 1.47 3.14 1.72 2.00 3.72 1.73 2.25 3.97
0.80 0.36 1.45 1.25 2.70 1.49 1.43 2.92 1.52 1.71 3.23 1.53 1.89 3.42
0.90 0.28 1.28 1.05 2.33 1.47 1.76 3.23 1.48 1.91 3.40 1.49 2.02 3.52
1.00 0.22 1.13 0.89 2.02 1.50 2.16 3.66 1.51 2.24 3.75 1.52 2.32 3.83
1.10 0.18 1.00 0.77 1.77 1.51 2.41 3.92 1.51 2.47 3.98 1.52 2.52 4.04
1.20 0.15 0.89 0.66 1.55 1.47 2.47 3.94 1.47 2.51 3.98 1.48 2.55 4.03
1.30 0.13 0.79 0.58 1.37 1.40 2.38 3.78 1.40 2.40 3.80 1.40 2.44 3.84
1.40 0.11 0.71 0.51 1.22 1.30 2.20 3.50 1.30 2.21 3.51 1.30 2.24 3.54
1.50 0.10 0.64 0.45 1.09 1.19 1.99 3.18 1.20 1.99 3.18 1.20 2.00 3.20
1.60 0.08 0.58 0.40 0.97 1.08 1.76 2.84 1.09 1.75 2.85 1.09 1.76 2.86
1.70 0.07 0.52 0.35 0.88 0.98 1.54 2.52 0.99 1.53 2.52 0.99 1.53 2.53
1.80 0.06 0.47 0.32 0.79 0.88 1.34 2.22 0.90 1.32 2.22 0.90 1.32 2.22
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Fig. 5. Energy dependences and the total and differential cross sections of elastic scattering: (1) experimental S(E) dependence;
(2) theoretical S(E) dependence; (3) total cross section σ(E); and (4) differential cross section dσ/dΘ.
Θ(E) = [Θ1(E) + Θ2(E)]/2. As was said above, the S(E)
function exhibits features of both the total and differen-
tial cross sections, which is confirmed by the figure.
Under the experimental conditions used in [1, 2] and
for the features characteristic of the resonance interac-
tion of slow electrons with Ca atoms, the S(E) function
is closer to the distorted (in the region of the maximum)
total cross section. This can be seen from the figure: the
shape of the S(E) curve qualitatively coincides with the
behavior of the total cross section at energies above
1.3 eV, while in the region of the minimum S(E) the dif-
ferential cross section also is minimum. This feature is
a manifestation of the above-mentioned passage of the
angles through the value equal to 54.7°. It is also inter-
esting that the minimum in S(E) is almost coincident
with the maximum of the total cross section σ(E),
although is slightly (by 0.2 eV) shifted toward the range
of smaller energies.

The calculations performed showed that the features
observed in the experimental S(E) function are deter-
mined by the 2D shape resonance. This resonance man-
ifests itself both in the direct and interference parts of
this function.

CONCLUSION

This paper gives a brief qualitative review of exper-
imental techniques (with intersecting electron and
atomic beams) with the use of a trochoidal electron
spectrometer and its modification, a hypocycloidal
electron spectrometer, which are applicable for the
investigation of the process of the elastic scattering of
slow electrons by atoms.

For the interpretation of experiments on the elastic
scattering of slow electrons by atoms into an angular
range depending on the electron energy, which is deter-
mined by the various regimes of operation of the (tro-
choidal or hypocycloidal) electron spectrometer, we
developed a general analytical formalism. In the case of
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
electron scattering into the angular range Θ1(E) – Θ2(E)
given by Eqs. (4), this formalism permitted us to ana-
lyze the nonresonance and resonance (shape reso-
nance) scattering of slow electrons by an atom, when
the kinematic features of scattering (which are con-
nected with the scattering angles through specially
introduced functions Qij(E)) can be separated from
dynamic features (linked with phases, partial cross sec-
tions, and optical potential).

A detailed theoretical analysis of the elastic scatter-
ing of slow electrons (performed on the basis of five
partial waves) by a Ca atom under experimental condi-
tions used in [1, 2] showed that the nonmonotonic
behavior of the S(E) energy dependence is due to the
existence of a 2D shape resonance, which manifests
itself in both the direct and interference parts of S(E).
This analysis indicates not only qualitative but even
good quantitative agreement with experiment. The
minimum of S(E) lies in the region of the resonance,
and the angular range Θ1(E) – Θ2(E) contains the angle
54.7° (at E ≈ 0.72–0.76 eV). The position of the mini-
mum (0.8 eV) of the measured and calculated S(E)
function is close to the position of the maximum
(1.0 eV) of the total cross section of elastic scattering,
which is also a consequence of the presence of a reso-
nance in the d wave. The behavior of the S(E) function
is partly similar to the energy dependence of the total
and differential cross sections.

Generalizing what was said above, we may con-
clude that the use of the trochoidal and hypocycloidal
electron spectra in scattering experiments permits one
to reveal the resonance character of the interaction of
electrons with atoms.
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APPENDIX

For the first five partial waves (l = 0–4), we can obtain
the following general expressions for the Qij(E) func-
tions (see Eq. (7)):

where, under the conditions used in [1, 2, 29] for the
angles given by Eq. (4), we have x1 = (1 – b/E)1/2, and
x2 = (1 – /E)1/2.
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Abstract—A coaxial microwave plasmatron operating at a frequency of 10 GHz is investigated. The micro-
wave field distribution in the plasma jet of the plasmatron is studied using a vibrating string as a small pertur-
bation source. The phase structure of the microwave field inside the plasma is found to differ from that on the
outer side of the plasma jet boundary. A slow surface electromagnetic wave propagating along the plasma jet is
observed. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Sources of a dense low-temperature plasma (plas-
matrons) are widely used in physical experiments and
engineering. In these devices, a cold working gas is
blown through the discharge region. In the 1970s, it
was shown that a cw 3-cm-wavelength microwave
source could be used to produce a steady-state flow of
a strongly nonequilibrium cold plasma at atmospheric
pressure [1, 2]. The electrodynamic structure of such a
plasmatron is a coaxial-to-waveguide junction. The
working gas (argon) is introduced into the plasmatron
through a hollow inner conductor of the coaxial line. A
laminar plasma jet is a continuation of the inner con-
ductor. The spectral and electric parameters of the
plasma jet in various modes of plasmatron operation
were studied in [1, 2]. In those papers, it was shown that
at a magnetron wavelength of 3 cm and a power of up
to 10 W, a laminar flow of high-brightness microwave
discharge plasma is formed by the free outflow of argon
into atmospheric air at a rate of 0.2–0.6 l/min. The
plasma jet diameter is less than 1 mm, and the jet length
attains 10 mm. The plasma electron temperature is
~104 K, the gas temperature at the plasma jet axis is
600–1000 K, and the plasma electron density is higher
than 1014 cm–3. In view of the unique parameters of
such a plasmatron, it was suggested to use it as a light
source for spectral analysis and as a plasma gas heater
for the automated soldering of multilayer printed cir-
cuit boards. It should be noted that nonequilibrium
steady-state plasma sources still attract great interest
(see, e.g., [3, 4]).

The authors of [1, 2] believe that plasma is produced
due to the high electric field strength in the jet. How-
ever, the data on the structure of electromagnetic fields
in the microwave plasmatron under consideration are
still lacking. This is explained, first of all, by the fact
that the diameter of the plasma jet is significantly
1063-7842/01/4604- $21.00 © 20386
smaller than the wavelength of the electromagnetic
field producing the discharge. The longitudinal size of
the plasma jet is significantly smaller than this wave-
length, whereas the transverse size of the jet is one and
one-half orders of magnitude smaller than the wave-
length. An additional difficulty is that the discharge is
produced in free air, in which case there are only few
methods for studying microwave fields. We note that
the electrical plasma parameters in a microwave plas-
matron under consideration meet the conditions for the
propagation of a surface electromagnetic wave. The
unique parameters of the plasma jet are expected to be
caused by a slow surface wave propagating in a plasma-
tron.

The goal of this study is to investigate the micro-
wave field parameters both inside and outside the
plasma jet and examine the possibility of the existence
of an intense surface electromagnetic wave propagating
along the plasma jet.

SURFACE WAVE FEATURES 
IN A SMALL-RADIUS PLASMA CYLINDER

Surface electromagnetic waves play an important
role in various electromagnetic processes in bounded
plasmas. The propagation of these waves was studied in
detail, e.g., in [5, 6]. In those papers, the waveguide
properties of a bounded cold isotropic plasma were also
studied. Several specific cases in which the dispersion
relations could be solved analytically were thoroughly
investigated. An analysis of the dispersion relation of a
microwave plasmatron plasma jet, which has a shape of
a finite-length cylinder and is characterized by certain
specific parameters, requires applying numerical meth-
ods.

We consider an infinitely long plasma cylinder of
radius a (with permittivity ε1) surrounded by air
001 MAIK “Nauka/Interperiodica”
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(ε2 = 1). We assume the plasma to be cold and uniform
and take into account particle collisions. The propaga-
tion of a surface electromagnetic wave in such a struc-
ture can be described by the following dispersion rela-
tion [5]:

(1)

where ωp =  is the plasma frequency; ω is
the circular frequency of the surface electromagnetic

wave; χα = ;  = εαω2/c2; α = 1, 2 (the z-axis
is directed along the plasma cylinder); qz is the longitu-
dinal wavenumber; I0(χ1a) and I1(χ1a) are the modified
Bessel functions of the first kind; K0(χ2a) and K1(χ2a)
are the modified Bessel functions of the second kind; ν
is the effective collision frequency; Ne is the plasma
electron density; e and m are the electron charge and
mass, respectively; and c is the speed of light in
vacuum.

The phase velocity of the electromagnetic wave is

(2)

Figure 1 shows the normalized phase velocity of the

electromagnetic wave v/c as a function of /ω2. The
curves are obtained by numerically solving Eq. (1) for
plasma cylinders with a/λ = 0.01 (solid curves) and 3
(dashed curves) (where λ = 2πc/ω). The wave phase
velocities are calculated for ν/ω = 0 (no collisions;
curves 1, 1'), 2 × 10–1 (curves 2, 2'), and 1 (curves 3, 3').

It is seen that for both plasma cylinders, the condi-
tion for the propagation of a surface electromagnetic
wave in the absence of collisions (ν/ω = 0) corresponds
to the well known inequality

(3)

For a thin plasma cylinder (curve 1), the wave phase
velocity is considerably less than for a wide plasma cyl-
inder (curve 1'). Under actual plasma conditions
(ν/ω ≠ 0), collisions substantially hinder the excitation
of a slow surface electromagnetic wave in a wide
plasma cylinder (curves 2', 3'). This case is an analogue
to a semibounded plasma in plane geometry. At ν/ω = 1
for this cylinder (curve 3'), the wave phase velocity is

close to the speed of light at all values of /ω2 for
which surface waves exist.

In contrast, for a thin plasma cylinder at the same
values of ν/ω (curves 2 and 3), the surface wave is

slowed within a wide range of /ω2. Even at ν/ω = 1,
the normalized phase velocity can be as low as
v/c ≈ 0.1.

For a surface electromagnetic wave in a thin cylin-

der and /ω2 = 80–300, the relative skin depth is
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D/a ≈ 1–0.3 and the normalized attenuation length is

l/λ ≈ 0.1–1. Therefore, for medium values of /ω2

within this range, the skin layer in a thin plasma cylin-
der can be ignored and the wave propagation can be
examined on a short plasma segment of length L ≤ λ/2.
This conclusion is consistent with the results of many
experiments with microwave plasmas.

EXPERIMENTAL TECHNIQUE

The design of a microwave plasmatron under con-
sideration and its power supply circuit are described in
detail in [1, 2]. To measure the microwave fields in the
plasmatron jet, a directional coupler was introduced in
the microwave waveguide connecting the magnetron
with the plasma source. The coupler recorded both the
reference and information signals. For comparison, a
metal conductor was substituted for the plasma jet and
the fields excited along the conductor were studied. The
electric component of the microwave field in free space
near the nozzle (both inside and outside the plasma jet)
was examined by perturbing the field with a small test
body. A steel string 0.3 mm in diameter and 180 mm in
length was used for this purpose. String vibrations were
excited using an electromagnet supplied from an audio
frequency oscillator. The same signal was used to syn-
chronize the horizontal sweep of an oscilloscope. The
oscilloscope was used to record the signal from a detec-
tor placed in the metering arm of the directional cou-
pler. The reference signal from the plasmatron nozzle
outlet was applied to this arm of the coupler. The ampli-
tude and phase of this signal were constant. The signal
reflected by the vibrating string was also applied to the
metering arm of the directional coupler. Parameters of
this signal depended on the electric field to be mea-
sured.
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Fig. 1. Calculated dependences of the normalized electro-

magnetic wave phase velocity v/c on the ratio /ω2 for
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The amplitude of the signal reflected from a test
body and recorded by the receiver is proportional to the
strength of the microwave electric field at the site of the
test body. The reference signal applied to the detector
was summed with the signal from the test body with
allowance for the phase difference between these sig-
nals. Therefore, the video signal on the oscilloscope
screen indicated not only the change in the field
strength amplitude along the test body trajectory, but
also a possible change in phase. Thus, the amplitude–
phase structure of the field under study was observed
on the oscilloscope screen. The amplitude of vibrations
of the metal string was up to 10 mm. The microwave
signal reflected from the test body was amplitude mod-
ulated at the string vibration frequency. This signal was
viewed on the oscilloscope screen, while the reference
signal was cut off by a transfer capacitance at the oscil-
loscope input. The metering circuit used for field mea-
surements in the near field of emitters in free space is
described in more detail in [7].

RESULTS AND DISCUSSION

A plasma jet generated in the plasmatron under
study had the shape of a slightly tapered cylinder with
a diameter of 0.5–0.8 mm (depending on the power
supply mode). The plasma jet length depended on the
microwave power of the generator and the argon flow
rate. In our experiments, the plasma jet length attained
3–8 mm.

Microwave measurements showed that the major
fraction of the power supplied to the discharge (more
than 90%) was expended on generating and maintain-
ing the discharge. Only a small fraction of the supplied
power (less than 2–3%) was emitted into free space by
the plasma antenna, and 7–8% of the supplied power
was reflected from the plasmatron nozzle back to the
magnetron. When the plasma jet was replaced with a
copper wire of the same length, the power emitted into
free space increased by two orders of magnitude, pro-

E2, arb. units 
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Fig. 2. Electric field profile (1) in the absence and (2) in the
presence of a discharge.
vided that the power supplied from the magnetron
remained almost unchanged. This fact confirms the
conclusion that the major fraction of power is absorbed
in the plasma jet. The dependence of the emitted power
on the emitter length was almost the same for both the
plasma jet under conditions of a stable discharge and a
metal wire simulating the plasma jet.

In the absence of a microwave discharge and metal
antenna, the electromagnetic field virtually did not
extend beyond the plasmatron nozzle (the electromag-
netic field outside the nozzle could be detected only
within a distance comparable to the diameter of the
outer nozzle electrode). Figure 2 shows the profile of
the electric field squared (E2) across the plasma jet at a
distance z = 0.5 mm from the nozzle (curve 1). After
igniting a microwave discharge, a sharp increase in the
electromagnetic field was observed both near the noz-
zle and at a considerable distance from the nozzle out-
let. The transverse profile of the electric field squared in
the presence of a microwave discharge with diameter of
0.7 mm at a distance z = 3 mm is also shown in Fig. 2
(curve 2). It should be noted that the amplification of
curve 1 is 25 times greater than that for curve 2. We also
note that a jump in the electric field was observed at the
point where the test body emerged from the plasma.

The amplitude–phase structure of the microwave
field in several cross sections of the plasma jet are
shown in Fig. 3. A plasma jet length of L = 5 mm was
obtained at the magnetron power P = 7 W and argon
flow rate V = 0.6 l/min. As is seen from Fig. 3, the field
phase at the beginning of the plasma jet differs by 180°
from that at the end of the jet. In all cross sections, the
field inside the plasma jet is far greater than the field on
the outer side of the plasma boundary. A jump in the
field strength was universally observed at the plasma
boundary. A slight asymmetry of the field profile at the
plasma jet boundary at the beginning of the jet is caused
by a slightly asymmetric arrangement of the inner elec-
trode of the coaxial line. The field profile asymmetry
disappears as the distance from the plasmatron nozzle
increases. In all experiments, the maximum value of the
field in the discharge was attained near the nozzle. The
phase of the maximum field coincided with the phase of
the reference signal.

These specific features manifest themselves most
clearly when measuring the field distribution along the
plasma jet axis. Figure 4 shows the amplitude–phase
structure of the microwave field along the plasma jet
axis (curves 1), the longitudinal profile of the maxi-
mum field value on the outer side of the plasma bound-
ary (curves 2), and the amplitude–phase structure of the
field along a copper wire substituted for the plasma jet
(curves 3). The curves shown in Fig. 4a were obtained
for a plasma jet and metal wire 3 mm in length and an
argon flow rate of 0.05 l/min. The curves shown in
Fig. 4b were obtained for a plasma jet and metal wire
7 mm in length and an argon flow rate of 0.7 l/min. In
both cases, the generator power was P = 8 W.
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
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The amplitude–phase structure of the field mea-
sured in experiments with a plasma jet differ both quan-
titatively and qualitatively from those obtained in
experiments with a metal wire of the same length. The
field strength near the surface of the metal wire can be
either greater or less than the field strength inside the
plasma jet, depending on the jet length. The field on the
outer side of the plasma boundary is always much
smaller than that on the surface of a metal wire or inside
the plasma. This is because the microwave energy is
mainly concentrated in the plasma and is spent on
maintaining the plasma flow.

The difference in the phase structures of the fields
should also be taken into account. For a metal wire with

Fig. 3. Electric field profile in several cross sections of the
plasma jet for P = 7 W, V = 0.6 l/min, and L = 5 mm.
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a very low resistivity, the wave reflected from the free
end of the wire affects strongly the field distribution.
The field phase near the nozzle outlet (z = 0) depends
strongly on the wire length L (Figs. 4, curves 3). It
should be noted that the amplitude–phase measure-
ments of the field distribution along a copper wire that
was longer than the wavelength of the electromagnetic
field in vacuum allowed us to reliably determine the
wavelength and phase shift of the excited field near the
nozzle outlet for various wire lengths.

On the other hand, the electromagnetic field in the
plasma was maximum near the nozzle independent of
the power supply mode and the plasma jet length. This
fact indicates that the reflected wave is absent and the
microwave power losses in the plasma are significant
(i.e., the plasma jet is well matched with the microwave
waveguide).

It was suggested in the literature (see, e.g., [8]) that
variations in the microwave field outside the plasma
flow reflect the structure of the microwave field inside
the flow. Our experiments demonstrate that this is not
universally true.

The measurement of the standing wave distribution
along a metal wire simulating the plasma jet allowed us
to determine the wavelength of the propagating wave
(λ = 31 mm). It is seen in Fig. 4a that the wavelength
inside the plasma is approximately half as long as the
wavelength of the wave propagating along a metal wire.
Therefore, the phase velocity of the wave in the plasma
jet is approximately half as high as the phase velocity
of the wave propagating along a metal wire. The latter
may be a surface electromagnetic wave propagating
along the plasma jet with the electron density far
exceeding the critical value (in our case, Ne = 1.2 ×
1012 cm–3). It is seen in Fig. 1 that, for the charged par-
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Fig. 4. Amplitude–phase structure of the electromagnetic
field for (a) the plasma jet length L = 3 mm and argon flow
rate V = 0.05 l/min and (b) L = 7 mm and V = 0.7 l/min.



390 KIRICHENKO et al.
ticle density in the plasmatron jet Ne = 1014–4 ×
1014 cm–3 [2] and ν ≈ ω, the normalized phase velocity
v/c of the surface electromagnetic wave falls within a
range from 0.5 to 0.7. Taking into account that the
model under consideration (a uniform plasma cylinder
with a sharp boundary) is rather rough, these results can
be regarded as agreeing well with the experimental
data.

CONCLUSION
Our study has shown that a vibrating string can be

used to measure the microwave field in a plasmatron
jet. This method allows one to determine the specific
features of the microwave field distribution both inside
and outside the plasma jet.

The phase structure of the microwave field inside
the plasma is found to differ from the phase structure of
the field on the outer side of the plasma jet boundary.
Our experiments confirm that the major fraction of
electromagnetic energy is absorbed by the plasma jet.
A high-amplitude slow surface electromagnetic wave
propagating along the plasma jet is observed. It is rea-
sonable to suggest that this surface wave is the cause of
the unique geometric and electric parameters of the
plasmatron jet.
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Abstract—The relaxation of the electron temperature Te in helium and neon afterglow at elevated pressures is
studied theoretically and experimentally. It is shown that the processes in which fast electrons are produced are
accompanied by the heating of thermal electrons. The high-energy part of the electron energy distribution func-
tion is studied in the intermediate regime (between the local and nonlocal regimes) of its formation. It is shown
that, in this case, the calculated effective energy transferred from the fast electrons to the thermal electrons
depends substantially on the wall potential of the discharge tube. Comparison of these calculations with exper-
iments testifies to the reliability of the probe technique for measuring Te in an afterglow at elevated pressures.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, much attention has been paid to
studies of plasmas that are characterized by active pro-
cesses leading to the generation of fast electrons.
Among such processes are chemoionization reactions

(1)

and collisions of the second kind between the excited
atoms and slow electrons,

A* + e  A + e. (2)

Here, A* and A are the atoms in the excited and ground

states, respectively; A+ and  are the atomic and
molecular ions; and e is the fast electron (with energy
much higher than the mean energy of the bulk elec-
trons) that is produced in reactions (1) or (2). Although
various excited states may be involved in reactions (1)
and (2), the main attention in studying an electric-dis-
charge afterglow plasma is paid to the elements that have
metastable states (inert gases, mercury, etc.). This choice
is motivated by the fact that, because of the relatively
high density of metastable particles in the plasma, the
active reactions (1) and (2) with the participation of these
particles may substantially affect the optical and elec-
tron-kinetic characteristics of the plasma.

Reactions (1) and (2) and their role in the formation
of the electron energy distribution function (EEDF) in
inert-gas afterglow plasmas have thoroughly been stud-
ied at low pressures, in which case diffusion toward the
wall of the gas-discharge tube plays a decisive role in the
balance of excited and charged particles (pR ≤ 1 torr cm,
where p is the neutral gas pressure and R is the radius

A* A*
A+ A e+ +

A2
+ e+




+

A2
+
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of the gas-discharge tube). The results of these studies
are generalized in [1]. The EEDF was experimentally
measured using the conventional Langmuir probe tech-
nique modified for time-resolved measurements. It was
revealed that the electron energy distribution is formed
in the nonlocal regime; i.e., the EEDF at a given point
is determined by the plasma parameters throughout the
entire discharge [2, 3]. It was shown that, under these
conditions, the EEDF consists of two characteristic
components and, for its theoretical description, can be
represented as the sum

f(ε) = fes(ε) + fef(ε), (3)

where fes(ε) is the EEDF of the bulk electrons, which
obey the Maxwellian distribution, because of the dom-
inant role of electron–electron collisions in the thermal
energy range; and fef(ε) is the EEDF of the nonequilib-
rium fast electrons produced in reactions (1) or (2).

It was shown that the high-energy part of the EEDF
affects the electron temperature Te of the bulk electrons,
the processes of step excitation, and the diffusion of
charged particles. The average energy of fast electrons

 may be on the order of the energy with which they

are produced (  ~ 10 eV). The heating of thermal
electrons by fast electrons depends substantially on
both the degree of ionization in the plasma and the rates
of diffusion of charge particles toward the wall. In this
case, the value of Te can be several times higher than the
temperature of heavy particles.

The influence of reactions (1) and (2) on the after-
glow at elevated pressures is not as well studied. The
reason is that, to date, there have been no reliable exper-
imental methods for measuring the EEDF at such pres-
sures. As the parameter pR increases, the regime of

εef

εef
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EEDF formation changes. The role of diffusion
decreases in comparison with the processes occurring
in the plasma volume. When theoretically describing
the electron energy distribution, one can use the local
model, which significantly simplifies the analysis. On
the other hand, as the gas pressure increases, the role of
various plasmochemical processes occurring in the
plasma volume (the conversion of atomic ions and
excited atoms into molecular ions and excited mole-
cules, dissociative recombination, etc.) increases.
These processes, in turn, affect the temperature Te and
must be incorporated in the theoretical analysis.

In an inert-gas afterglow plasma, conditions can
arise such that the high-energy part of the EEDF is
formed in the nonlocal regime, whereas for the low-
energy electrons, the criterion of the local EEDF for-
mation is satisfied. However, studies devoted to the
peculiarities of the electron energy balance under con-
ditions when the nonlocal regime of the EEDF forma-
tion changes to the local regime are still lacking.

In this paper, we analyze the influence of the reac-
tions in which fast electrons are produced on the relax-
ation of the electron temperature in an afterglow
plasma in the intermediate regime (between the nonlo-
cal and local regimes) of EEDF formation. The relevant
studies were conducted in helium and neon. First, the
problem of the relaxation of the electron temperature is
important for applications, because these gases are fre-
quently used as buffer media in high-power gas lasers
[4]. The mechanism for creating the inversion in those
devices depends substantially on charged-particle
recombination, which, in turn, depends strongly on the
temperature of bulk electrons. Second, afterglow dis-
charges are often used to study various elementary pro-
cesses (recombination, collisions of electrons with
excited atoms, etc.) occurring in a plasma [5]. For the
most part, in the literature, estimates for the heating of
thermal electrons by fast electrons are only presented.
For this reason, the problem of constructing a simpli-
fied model of the EEDF formation such that Te can be
determined from the energy balance equation [6] is
important. Here, we present the results of the compari-
son of the experimental values of Te and the measured
distribution of fast electrons with theoretical predic-
tions for the intermediate case between the nonlocal
and local regimes of EEDF formation, which is the
most difficult for analysis.

Until now, the measurements of Te at elevated pres-
sures were performed using microwave techniques,
which only provide information about the volume-
averaged plasma parameters. This is a rather compli-
cated technical problem [5]. In [7], the probe technique
was developed for EEDF measurements in a helium
afterglow at elevated pressures (20 and 40 torr). Under
these conditions, the probe could not be used as a con-
ventional Langmuir probe (because, in this case, a @ λ,
where a is the probe radius and λ(ε) is the electron
mean free path) and the experimental procedure was
based on the measurements of f(eV) ~ i'/V (the EEDF
was proportional to the first derivative of the probe cur-
rent i' with respect to the probe potential relative to the
plasma V). It was shown that, in the thermal energy
range, the EEDF was Maxwellian. It was also found
that, the value of Te was higher than the atom tempera-
ture Ta at times t ≤ 500 µs after switching off the dis-
charge. However, the problem of the mechanism for
heating thermal electrons was not addressed and sys-
tematic measurements of Te were not performed. For
this reason, one of the aims of this paper is to assess the
reliability of the Te measurements from the first deriva-
tive of the probe current in an afterglow discharge at
elevated pressures by comparing them with the results
of calculations.

EXPERIMENTAL SETUP

Experiments were carried out in a cylindrical glass
tube with an inner radius of R = 0.6 cm and a length of
L = 22 cm. A repetitive electric discharge in the tube
was produced with a pulsed power source. The EEDF
and the electric field inside the tube were measured by
movable electric probes of radius a = 0.045 mm and
length l = 2.5 mm. The electric circuit for the measure-
ments of the I–V characteristic is described in detail in
[8]. Under these experimental conditions, the probe
radius was on the order of or larger than the electron
mean free path λ(ε). Therefore, to measure the EEDF in
the thermal energy range, we used the method proposed
in [9] and developed in [7] for non-Langmuir probes at
a @ λ(ε), which makes it possible to determine the
EEDF from the first derivative of the probe current. The
electron temperature was deduced from the experimen-
tal dependences of ln(i'/V) on V. To avoid the systematic
error of this method in determining Te at a ~ λ(ε), as
well as in measuring the high-energy part of the EEDF
from the second derivative of the I–V characteristic of
the probe, we introduced corrections to the electron
current following from the general probe theory [7].

Measurements of the density of excited atoms at the
discharge-tube axis were performed using the absorption
technique. We used a cell branch in which a low-current
RF discharge was ignited as the probing light source.
The presence of this discharge had no influence on the
plasma parameters in the main tube. Optical signals were
recorded with a gated photon-counting detector.

The electron density was determined from the
plasma conductivity. For this purpose, an additional
voltage pulse was applied at a certain instant during the
afterglow in order to produce a weak longitudinal elec-
tric field [10].

To study the reactions involving metastable helium
and neon atoms, it is necessary to satisfy stringent
requirements of the concentration of impurity gases.
The electron produced in the Penning reaction with the
participation of metastable atoms and impurities may
have an uncontrollable influence on the plasma proper-
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
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ties. For this influence to be neglected, the impurity
density must be lower than the density of excited atoms
(~1011 cm–3). With this purpose, before spectrally pure
inert gases were injected into the cell, they were addi-
tionally cleaned and passed through activated carbon
cooled to cryogenic temperatures. To maintain the high
purity of inert gases in the discharge tube, getter elec-
trodes were used.

ANALYSIS OF THE PROCESSES AFFECTING 
THE RELAXATION OF THE ELECTRON 

TEMPERATURE

To specify the problem, all subsequent estimates are
made for the typical regimes under study: the gas pres-
sure is p = 20 torr and the electron density ne in the
afterglow varies from 2.3 × 1012 to 2 × 1011 cm–3 for
helium and from 2 × 1011 to 109 cm–3 for neon.

Analysis showed that, among the processes leading
to the energy loss of thermal electrons, we may neglect
diffusion cooling and electron–ion collisions, whereas
elastic electron–atom collisions play a decisive role.
The time behavior of Te was determined from the
energy balance equation which, under conditions of
interest, takes the form

(4)

where δ = 2m/M is the fraction of energy transferred
from electrons to atoms in elastic collisions; m and M
are the electron and atom masses, respectively; 〈ν ea(Te)〉
is the frequency of elastic electron–ion collisions aver-
aged over the Maxwellian distribution; Ta is the neutral
gas temperature; the second term on the right-hand side
of Eq. (4) describes the change in the electron energy
after the transition of an atom from kth state (with
energy Ek and population Nk) to the nth state (with
energy En); βkn(Te) is the rate constant of the transition
k  n; ∆En = En – Ek is the energy gap between the
levels; the last term on the right-hand side of Eq. (4)
describes the heating of thermal electrons by fast elec-
trons; and Ii and εef are the production rate and effective
energy of the fast electrons, respectively.

Let us consider each term in more detail. For a
helium afterglow, the rate constants of elementary pro-
cesses were taken from [5] (unless otherwise speci-
fied). To calculate 〈ν ea(Te)〉 , we used the data on the
cross sections for elastic electron–atom collisions from
[11]. The estimate of gas heating shows that, under our
conditions, when the mean value of the current during
the discharge is Id ~ 1.5 mA, the difference between the
gas temperatures at the axis and on the wall is 4 K. For
this reason, we neglected variations in the gas tempera-
ture in the afterglow and assumed Ta = 300 K.

3
2
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dTe

dt
--------- δ νea Te( )〈 〉 Te Ta–( )–=

+ Nk ∆Eknβkn Te( )
n k≠
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Among inelastic collisions with thermal electrons,
we analyzed the processes with the participation of
excited atoms and atomic and molecular ions. Accord-
ing to the bottleneck approximation [12], the change in
the energy Hrec due to impact–radiative recombination
(summed over the upper levels) has the form

Hrec= ERα rec(Te)neN+, (5)

where ER is the energy of the level separating the
energy spectrum of an atom into the regions in which
collisional or radiative kinetics is dominant, αrec(Te) is
the three-body recombination coefficient, and N+ is the
density of positive atomic ions.

The impact processes are dominant above ER,
whereas the radiative quenching of excited states is
dominant below ER. The value ER was calculated by the
formulas of a modified diffusion model [12]. The above
process is of importance in the early phase (t < 100 µs)
of a helium afterglow. The density of He+ ions was cal-
culated from the corresponding balance equation tak-
ing into account the ion loss due to three-body recom-
bination, ambipolar diffusion and conversion into
molecular ions, and the ion production in chemoioniza-
tion reactions.

In neon, the decrease in the charged-particle density
is determined by dissociative recombination from the

ground vibrational state of  molecular ions. Esti-
mates of the increase in Te due to the loss of low-energy
electrons in this reaction show that this process can be
neglected in comparison with heating by fast electrons.

Under the conditions of interest, the molecular ions
are produced in highly excited vibrational states whose
energy differs from the dissociation energy Di by the
value ~Ta due to either the conversion of atomic ions
(the characteristic conversion time is τc ~ 40 µs) or
reaction (1). The relaxation of the vibrationally excited
states occurs in collisions with both atoms and elec-
trons. The question of the rate of vibrational relaxation
of molecular helium or neon ions in their collisions
with the parent gas atoms still remains open [13, 14].
Thus, in [13], the vibrational relaxation constant is esti-

mated to be  < 10–14 cm3/s (the transition v = 1 

v = 0) for helium and  = 5 × 10–15 cm2/s for neon.
In [14], it is believed that these processes proceed more

rapidly (  ≈ 10–13 cm3/s). The value of the relaxation

constant of vibrationally excited  ions by electron

impact at Te ~ 300 K is equal to  ≈ 10–7 cm3/s [15],

whereas the corresponding constant for neon is  ≈
1.3 × 10–7 cm3/s [13]. Calculations show that, in the
early phase of a helium afterglow (t < 50 µs), the relax-
ation of vibrationally excited molecular ions is deter-
mined by their collisions with electrons and contributes
nearly 10% to the total heating of thermal electrons.

Ne2
+
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1 0,

ka
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ka
1 0,

He2
+

ke
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Varying the value of the atom-impact relaxation rate

constants within the range  = 10–14–10–13 cm3/s
slightly affects the relaxation of Te at times t > 50 µs.
For a neon afterglow, the dominant process is the atom-
impact relaxation of molecular ions. For the degree of ion-
ization of a neon plasma under our experimental condi-
tions, the processes with the participation of molecular
ions can be neglected in the energy balance equation.

Analysis show that, among the deexcitation pro-
cesses, the mixing of metastable He(21S) and He(23S)
states (∆E = 0.8 eV) may contribute appreciably in Te

(nearly 5–10%) in the early phase (t < 50 µs) of a
helium afterglow. For a neon plasma, excitation from
the lower metastable state Ne(3P2)  Ne(3P1) plays a
significant role. The constant of this process is equal to
β21 = 1.25 × 10–7exp(–∆E21/Te), where ∆E21 = 0.052 eV
[16, 17].

An inert-gas afterglow at intermediate and high
pressures is characterized by a relatively high density
of metastable atoms and, for helium, by a high density

of atoms and He2(a3 ) molecules. The fast electrons
are produced at a rate of I11 = βeNine in collisions of the

second kind and at a rate of Ich = NiNk in
chemoionization reactions, where Ni and Nk are the
metastable particle densities and βe and βik are the con-
stants for collisions of the second kind and for
chemoionization, respectively. The energy spectrum
width for the fast electrons produced in reaction (2) is
equal to ~Te, and that for the fast electrons produced
reaction (1) is on the order of 1 eV, which is substan-
tially lower than the initial electron energy value. Con-
sequently, when theoretically analyzing the high-
energy part of the EEDF, we may assume that, under
our conditions, the sources of fast electrons are
monoenergetic. In this case, the effective energy con-
tributed by the fast electrons with the initial energy ε' to
the system of slow electrons is equal to [18]

(6)

where νee(ε) and νea(ε) are the frequencies of the elec-
tron–electron and elastic electron–atom collisions,

k(ε) = (ν* + νee + δνea)τdf . (7)

Here, ν* is the frequency of inelastic collisions, τdf(ε) =
Λ2/De(ε) is the time of free electron diffusion toward
the tube wall, Λ is the diffusion length, and De(ε) =
2ε/3νea(ε) is the electron diffusion coefficient.

In our calculations, we assumed that the initial
energy of fast electrons produced in reaction (1) is
equal to ε' = 14.6 eV for helium and ε' = 11.7 eV for

ka
1 0,
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βikik∑

εef
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εk ε( )
------------

ε

ε'
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ε,dexp

0

ε'

∫=
neon; in reaction (2), these energies are ε' = 19.8 and
16.6 eV, respectively.

For a helium afterglow, calculations yield k(ε') ≈ 3
and νee(ε') < δνea(ε'). The values of k(ε) increase at ε <
ε'. This allows us to conclude that fef(ε) in this regime is
formed locally (k @ 1) and the exponent in the inte-
grand of expression (6) for calculating εef can be set to
be unity. In the local model, the effective energy is
determined by the initial energy of fast electrons and
the degree of ionization of the gas and is independent
of the rate of free diffusion of electrons toward the tube
wall. For a helium afterglow, the effective energy is in
the range 4 < εef < 12 eV, depending on the afterglow
phase.

The main source of fast electrons in a neon after-
glow is chemoionization reactions. Estimates show that
k(ε') ≈ 0.3 and k(1 eV) ≈ 0.3–5. Thus, under these con-
ditions, we have an intermediate case between the local
and nonlocal regimes of the formation of fef(ε). Calcu-
lation of the effective energy with the use of expression (6)
yields values in the range 0.015 < εef < 0.25 eV, depend-
ing on the neon afterglow phase. This indicates that
most of the fast electrons are lost on the wall of the dis-
charge tube. Calculation of εef according to the local
model gives values higher by a factor of 20–80. Such a
substantial difference is related to the fact that, in the
local model, only the relaxation of the energy of fast
electrons in the volume, which leads to electron or gas
heating, is taken into account.

The question of the character of electron diffusion is
important for describing nonlocal features of the EEDF.
The fast electrons move toward the tube wall in the
regime of free diffusion only when their kinetic energy
exceeds the wall potential eϕw . If their kinetic energy is
less than eϕw, they cannot reach the wall and the time
of their free diffusion is formally infinite. In this case,
when calculating εef from expression (6), we divide the
integration interval into two subintervals: 0 < ε ≤ eϕw,
in which the local model is valid (k(ε)  ∞), and
eϕw ≤ ε ≤ ε', in which expression (6) can be used with
k(ε) defined by formula (7). Therefore, in order to cal-
culate the effective energy, it is necessary to know the
wall potential, which is a priori unknown.

The problem of the wall potential under afterglow
conditions with allowance for the fast-electron sources
was considered in [19–21]. The quantity ϕw is the sum
of the ambipolar and wall potential drops (ϕes and ϕeh)
and is determined from the condition that the electron
and ion fluxes (Γe and Γi) toward the wall are equal to
each other. The flux Γe consists of the fluxes of thermal
and fast electrons (Γes and Γef). For the nonlocal case
(k(ε') ! 1), we may assume that all the fast electrons
escape onto the wall. Thus, their influence may be esti-
mated using the parameter P = Γef/Γi ≈ τda/ , where

 and  are the radius-averaged source of fast elec-
trons and the average electron density, respectively;

I ne

I ne
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τda = Λ2/Da is the ambipolar diffusion time; Da = Di(1 +
Te/Ti) is the ambipolar diffusion coefficient; and Di is
the ion diffusion coefficient. For P ! 1, the fast elec-
trons contribute insignificantly to the total electron flux
toward the wall and the value of ϕw is determined by
thermal electrons and is equal to ~(6–10)Te. For P > 1,
in order for the electron and ion fluxes toward the wall
to neutralize each other, ϕeh should increase to such
high values that a fraction of fast electrons is locked in
the volume and a continuous EEDF is formed. Previ-
ously, the regime with a potential jump near the wall
was observed in a xenon afterglow plasma at low pres-
sures (k(ε') ! 1) [20] at times t > 200 µs after the end
of the current pulse.

From the above estimate of the parameter P, it fol-
lows that, at elevated pressures, when k(ε') ≤ 1 and the
ambipolar diffusion rate is reduced, the probability of
the occurrence of the regime with a potential jump
increases. In fact, calculations show that, in a neon
afterglow, as early as 50 µs after the end of the current
pulse, we have P ≈ 10 and, consequently, the regime
with a potential jump near the wall is realized. To
experimentally verify the regime of the formation of
fef(ε), we measured the high-energy part of the EEDF at
the axis and compared it with that calculated by for-
mula [20]

(8)

where  and ( ) are the averaged (over the cross
section of the tube) electron–electron collision fre-
quency and the averaged rate of production of fast elec-
trons in chemoionization reactions with the initial
energy  = 11.7 eV, respectively.

To determine ϕw, we use the fact that Γi is equal to
Γef . The ambipolar ion flux per unit length of the tube
is determined by the radial profile of the density of slow
electrons ne(r) and is equal to

(9)

In calculations, we took into account the deflection
of the ni(r) profile from the Bessel distribution J0(µr/R)
[22], where µ = 2.4 is the first root of the zero-order
Bessel function. This deflection is caused by the intense

dissociative recombination of electrons and 
molecular ions. In the initial afterglow phase (t ≤
100 µs), the recombination rate at the tube axis was 10–
20 times higher than the decay rate of the main diffu-
sion mode. The profile formed due to recombination
decreases less slowly in the center of the tube and drops
more rapidly at the periphery as compared to the main
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diffusion mode. In our case, such a profile increases the
flux toward the wall in comparison with the purely dif-
fusive distribution by a factor of up to 1.5 [22].

Since the dominant mechanism for the loss of fast
electrons is related to diffusion toward the tube wall,
their distribution was assumed to be close to J0(µr/R)
when calculating Γef . Note that, although the distribu-
tion function at ε > eϕw is nonlocal, we use the kinetic
energy as its argument, which, in the case of an after-
glow plasma under consideration, almost coincides
with the total energy, because of the small value of the
radial ambipolar field. The latter is determined by the
temperature of slow electrons and is on the order of
kTe/e, which is substantially less than /e. In agree-
ment with formula (8), the flux Γef is determined by the
averaged (over fef(ε)) rate at which fast electrons escape
from the plasma volume [20]:

(10)

where J1(2.4) = 0.52.

This expression is the upper estimate and may
exceed the actual value by 30–40%. The reasons are,
first, that we neglect the difference between the total
and kinetic energies (due to slowing down the electrons
by the ambipolar field) and second, that the source of
fast electrons is located near the axis and the radial dis-
tribution of fast electrons can be narrower than
J0(µr/R), which increases the diffusion time. However,
the previous measurements of the radial dependence
under consideration [20, 21] confirm that the value
µ = 2.4 used by us is a close approximate.

Figure 1 shows the results of measurements of fef(ε)
in a neon afterglow at the tube axis at τ = 100 µs. The
EEDF was determined from the second derivative of
the probe current, because the solution of model prob-
lems showed [7] that this method ensured a smaller
error in comparison with the first-derivative method.
However, the method used yields underestimated (by a
factor of 2–3 at low energies) values of the EEDF in
comparison with the actual EEDF. Here, we also
present the results of two calculations of the EEDF that
were made with different values of ϕw . In the first case
(curve 2), ϕw = ϕes = 5Te ≈ 0.3 eV. In this case, a deple-
tion of the EEDF in the range 0.5 ≤ ε ≤ 11 eV due to
electron diffusion toward the wall is observed in the
relaxation stage. In the second case (curve 3), the value
of ϕw was determined by solving the set of equations
for Te together with the equality Γef = Γi, which gave
ϕw = 9.5 eV. In this case, most of the fast electrons are
locked in the volume by the wall potential jump and the
number of fast electrons increases substantially. Com-
parison shows that calculations with allowance for the
wall potential jump correlate with the measured high-
energy part of the EEDF. Under the assumption that the

ε2'

Γ ef 2πRJ1 µ( ) De ε( ) f ef ε( ) ε ε,d

eϕw
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wall potential is determined by the flux Γes (curve 2),
the calculated EEDF has a qualitatively different form,
which confirms that, under these conditions, the regime
with a wall potential jump is realized.

RESULTS FROM STUDIES OF ELECTRON 
TEMPERATURE RELAXATION IN HELIUM 

AND NEON AFTERGLOWS

For a helium afterglow, Eq. (4) together with the

balance equations for the density of He2(a3 ) meta-
stable molecules, atomic ions, molecular ions in the

ground  and vibrationally excited  states, sup-
plemented with the plasma quasineutrality condition

ne = [He+] + [ ] + [ ] and the measured values
of the metastable-atom densities, form a closed set for
calculating Te. Numerical calculations were performed
for the tube axis. The initial electron density was
deduced from the plasma conductivity at the end of the
discharge pulse. Since the dominant mechanism for the
charged-particles loss in the active discharge phase is
ambipolar diffusion, the radial electron distribution is
close to J0(µr/R). For a pulsed current of Id = 90 mA,
we have ne(0) = 2.3 × 1012 cm–3. Estimates show that,
by the end of the active discharge phase, the molecular-
ion density is about 20% of ne. The initial value of

[ ] is determined by the decay of these molecules
in the active discharge phase. Under our experimental

conditions, [ ] decreases by nearly one-half during
the current pulse. Note that varying the initial condi-
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Fig. 1. EEDF in a neon afterglow: (1) experimental result
and the results of calculations for the wall potential ϕw =
(2) 0.3 and (3) 9.5 eV.
tions for [ ], [ ], or [He2(a3 )] by 50% has lit-
tle effect on the relaxation of Te at times t ≥ 30 µs.

Figure 2a shows the results of calculations of ne(t)

and [He2(a3 )(t)]; for comparison, the experimental
values of the electron density at the axis ne(0, t) are also
shown. Since we determine the density (t) averaged
over the cross section from the plasma conductivity, the
density values at the axis ne(0, t) fall into the range from

(t)/0.43 to (t)/0.8 shown by bars. As is seen in the
figure, the results of calculations of ne(t) in the initial
afterglow phase agree with the experimental values
obtained, assuming that the electron density profile is
determined by recombination, which correlates with
the above estimates. In the later afterglow phase, ne(t)
coincides with the values calculated assuming a Bessel
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Fig. 2. Plasma parameters in a helium afterglow: (a) densi-
ties of the excited and charged particles (the circles show the
measured values of [He(23S)], the dashed line shows the

results of calculations of [He2(a3 )], and the solid line

shows the results of calculations of ne at the axis; the mea-
sured values of the electron density are also shown), and
(b) the electron temperature (the circles and the solid line cor-
respond to the experiment and calculations, respectively).
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distribution of charged particles, which is reached for a
time τda ~ 103 µs. Hence, the fact that the theoretical
description of the relaxation of charged particles agrees
well with the experimental results allows us to con-
clude that the model used is correct.

Figure 2b shows the results of calculations and
experimental measurements of Te. The temperature Te

was determined from the first derivative of the probe
current. It is seen from the figure that, in the time inter-
val under study (t ≤ 103 µs), Te is substantially higher
than Ta. Since the characteristic time of Te relaxation
due to elastic collisions is estimated as [δ〈νea(Te)〉]–1 <
0.5 µs, the observed difference can be attributed to
heating by fast electrons. An analysis shows that, in our
case, thermal electrons are mainly heated due to
impacts of the second kind with atoms and molecules
in metastable states. The theoretical results agree with
the experiment.

The accuracy of the experimental measurements of
Te was tested by special measurements in a non-self-
sustained discharge. For this purpose, at t = 400 µs, a
weak electric field was created in the afterglow by
applying an additional voltage pulse. In this case, Te is
mainly determined by the value of the electric field E.
Figure 3 compares the measured value of Te with the
calculated dependence Te(E/p). Calculations carried out
with allowance for heating by the electric field differs
from the experiment by 8%. If additional heating by
fast electrons is taken into consideration, then the cal-
culations and experiment coincide within an error of
about 4%. This confirms the reliability of the probe
method used to determine Te at elevated pressures.

For a neon afterglow, the measured electron densi-
ties and the densities of the atoms in the most populated
excited states N* are shown in Fig. 4a. Since all neces-
sary values of ne and N* are known from the experiment
and the relaxation time is equal to [δ〈νea(Te)〉]–1 ~ 3 µs,
the temperature Te and the fluxes of charged particles
onto the wall were calculated using the quasistatic
approximation (dTe/dt = 0).

The temperature Te was determined from the first
derivative of the EEDF. The cross section for elastic
collisions for neon in the thermal energy range is five
times smaller than that for helium. For this reason,
according to the solution of model problems [7], this
method leads to an underestimate of Te by 10% under
our experimental conditions (a ~ λ(ε)). The obtained
results were corrected for this systematical error. As
seen from the measurement results presented in Fig. 4b,
the difference between Te and Ta in the early afterglow
phase (t ≤ 100 µs) can attain 200 K.

In the thermal energy range, where the electron dis-
tribution is Maxwellian, the energy relaxation rate is
determined by δνea and by the rate ν* at which the
excited states are mixed. Estimates yield the value
k(0.1) ~ (0.3–1). In the energy range corresponding to
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
the nonequilibrium formation of the EEDF (Te ! ε ≤ ε'),
the efficiency of energy transfer in the mixing pro-
cesses decreases with energy as ∆E21/ε and k(ε) is
determined by δνea and νee . Hence, in neon, an interme-
diate regime (between the local and nonlocal regimes)
of the EEDF formation is realized. The high-energy
part of the EEDF is mainly formed in the nonlocal
regime. In the region where thermal electrons are con-
centrated in the initial afterglow phase, the local regime
of EEDF formation takes place.

When calculating Te, we compared the limiting
cases of the local and nonlocal models. The comparison
showed a significant difference in the calculated effec-
tive energies for the local (εl) and nonlocal (εnl) models.
Thus, for t = 50 µs, we have εl = 4.2 eV and εnl =
0.26 eV; the difference is more than one order of mag-
nitude. As time increases, this difference increases even
more and, at t = 500 µs, reaches almost two orders of
magnitude: εl = 1.3 eV and εnl = 0.015 eV. This differ-
ence significantly affects the calculated Te values. Cal-
culations by the local model, according to which we
used εl and the values of ne and N* at the axis, give a
temperature difference Te – Ta that is several times
greater than the experimental value in the initial after-
glow phase (Fig. 4b, m). In contrast, calculations by the
nonlocal model without allowance for the wall poten-
tial jump, according to which we used εnl and the
radius-averaged values of ne and N*, cannot explain the
experimentally observed difference between Te and Ta

(Fig. 4b, d).

As was mentioned above, under these conditions,
the regime with a potential jump of ϕw ~ 9–10 eV near
the wall takes place. This circumstance substantially
increases the value of the effective energy calculated by
the nonlocal model. The results of calculations of Te by
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Fig. 3. Electron temperature in a non-self-sustained dis-
charge in helium: the circles and the solid line correspond to
the experiment and calculations, respectively.
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solving the set of equations for Te together with the
equation for determining ϕw are presented in Fig. 4b (r

and .). In one case (r), we used the value of ne at the
axis, which corresponded to the local regime in the for-
mation of the energy distribution of thermal electrons.
In the second case (.), we used the radius-averaged
value of ne, which corresponded to the nonlocal regime
of formation of the energy distribution of thermal elec-
trons in the later afterglow phase. The corridor between
these curves corresponds to an uncertainty in the results
of calculations in this intermediate regime of EEDF for-
mation. As is seen, the experimental values lie inside this
corridor between the calculated values of Te. In order to
calculate the temperature more accurately, it is necessary
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Fig. 4. Plasma parameters in a neon afterglow. (a) The mea-
sured densities of the excited and charged particles: (j) ne,

(d) [Ne(3P2)], (m) [Ne(3P1)], (.) [Ne(3P0)], and

(r) [Ne(1P1)]; (b) the electron temperature: the experimen-
tal results (j) and the temperature Te at the tube axis calcu-
lated by (m) the local model and (d), (r), (.) the nonlocal
model for ϕw = (d) 0.3, (r) 9.5 eV (the value of ne at the axis
is used), and (.) 9.5 eV (the radius-averaged value of ne is
used).
to know the radial dependences of the ambipolar potential
and the densities of excited atoms and electrons.

CONCLUSION

It is shown that, at elevated pressures, the processes
in which fast electrons are produced substantially affect
the rate of electron temperature relaxation. The relax-
ation time is much longer than the characteristic time of
electron energy loss due to elastic collisions with
atoms. It is found that the wall potential has a strong
effect on the electron temperature in the intermediate
regime (between the local and nonlocal regimes) of
EEDF formation. The increase in the probability of the
appearance of a potential jump near the wall at elevated
pressures is related to the fact that the ion ambipolar
flux toward the wall decreases as compared to that in a
low-pressure plasma.

ACKNOWLEDGMENTS

This work was supported in part by the Russian
Foundation for Basic Research, project no. 00-02-
17662.

REFERENCES

1. N. B. Kolokolov, A. A. Kudrjavtsev, and A. B. Blagoev,
Phys. Scr. 50, 371 (1994).

2. L. D. Tsendin and Yu. B. Golubovskiœ, Zh. Tekh. Fiz. 47,
1839 (1977) [Sov. Phys. Tech. Phys. 22, 1066 (1977)].

3. N. B. Kolokolov, A. A. Kudryavtsev, and V. A. Ro-
manenko, Zh. Tekh. Fiz. 56, 1737 (1986) [Sov. Phys.
Tech. Phys. 31, 1033 (1986)].

4. L. I. Gudzenko and S. I. Yakovlenko, Plasma Lasers
(Atomizdat, Moscow, 1978).

5. R. Deloche, R. Monchicourt, M. Cheret, et al., Phys.
Rev. A 13, 1140 (1976).

6. R. R. Arslanbekov and A. A. Kudryavtsev, Phys. Rev. E
58, 6539 (1998).

7. N. A. Gorbunov, N. B. Kolokolov, and A. A. Kudryav-
tsev, Fiz. Plazmy 15, 1513 (1989) [Sov. J. Plasma Phys.
15, 881 (1989)].

8. N. A. Gorbunov, N. B. Kolokolov, and A. A. Kudryav-
tsev, Zh. Tekh. Fiz. 58, 1817 (1988) [Sov. Phys. Tech.
Phys. 33, 1104 (1988)].

9. Yu. B. Golubovskiœ, V. M. Zakharova, V. N. Pasunkin,
and L. D. Tsendin, Fiz. Plazmy 7, 620 (1981) [Sov. J.
Plasma Phys. 7, 340 (1981)].

10. G. N. Gerasimov, R. I. Lyagushchenko, and G. P. Star-
tsev, Opt. Spektrosk. 30, 606 (1971).

11. L. G. H. Huxley and R. W. Crompton, The Diffusion and
Drift of Electrons in Gases (Wiley, New York, 1974; Mir,
Moscow, 1977).

12. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kine-
tics of Nonequilibrium Low-Temperature Plasmas (Nauka,
Moscow, 1982; Consultants Bureau, New York, 1987).

13. V. A. Ivanov, in Plasma Chemistry, Ed. by B. M. Smir-
nov (Énergoatomiztat, Moscow, 1987), Vol. 13, p. 74.
TECHNICAL PHYSICS      Vol. 46      No. 4      2001



RELAXATION OF THE ELECTRON TEMPERATURE 399
14. G. V. Karachevtsev and V. L. Tal’roze, in Plasma Chem-
istry, Ed. by B. M. Smirnov (Énergoatomiztat, Moscow,
1987), Vol. 14, p. 255.

15. A. A. Bol’shakov and Yu. É. Skoblo, Opt. Spektrosk. 68,
1248 (1990) [Opt. Spectrosc. 68, 732 (1990)].

16. N. Pilosof and A. Blagoev, J. Phys. B 21, 639 (1988).

17. V. A. Ivanov, Opt. Spektrosk. 84, 709 (1998) [Opt. Spec-
trosc. 84, 635 (1998)].

18. A. B. Blagoev, Yu. M. Kagan, N. B. Kolokolov, and
R. I. Lyagushchenko, Zh. Tekh. Fiz. 44, 339 (1974)
[Sov. Phys. Tech. Phys. 19, 215 (1974)].
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
19. V. I. Demidov and N. B. Kolokolov, Zh. Tekh. Fiz. 50,
564 (1980) [Sov. Phys. Tech. Phys. 25, 338 (1980)].

20. V. I. Demidov, N. B. Kolokolov, and O. G. Toronov, Fiz.
Plazmy 12, 702 (1986) [Sov. J. Plasma Phys. 12, 402
(1986)].

21. N. B. Kolokolov, A. A. Kudryavtsev, and V. A. Ro-
manenko, Zh. Tekh. Fiz. 58, 2098 (1988) [Sov. Phys.
Tech. Phys. 33, 1274 (1988)].

22. E. P. Gray and D. E. Kerr, Ann. Phys. 17, 276 (1962).

Translated by N. Larionova



  

Technical Physics, Vol. 46, No. 4, 2001, pp. 400–403. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 71, No. 4, 2001, pp. 36–39.
Original Russian Text Copyright © 2001 by Donin, Ivanov, Yakovin.

                                           

GAS DISCHARGES, PLASMA

                     
Dispersion Relation for the Lowest Mode of the Ion-Acoustic 
Instability in a High-Current Ion Laser

V. I. Donin, V. A. Ivanov, and D. V. Yakovin
Institute of Automation and Electrometry, Siberian Division, Russian Academy of Sciences, 

pr. Acad. Koptyuga 1, Novosibirsk, 630090 Russia
e-mail: donin@iae.nsk.su

Received May 22, 2000

Abstract—The lowest frequency mode of the ion-acoustic instability in a high-current low-pressure wall-con-
fined discharge, which serves as an active medium of cw ion gas lasers, is studied experimentally. The disper-
sion relation for this mode is obtained using the spectral correlation analysis of spontaneous plasma emission.
The dependences obtained are compared with the available theoretical models of ion-acoustic instability in low-
pressure discharges. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In a nonisothermal plasma of a high-current low-
pressure discharge in a cylindrical tube, along with
high-frequency ion-acoustic oscillations at frequencies
ω & Ωi (where Ωi is the ion plasma frequency), low-fre-
quency oscillations at frequencies ω & 10–2Ωi can also
be excited [1–7]. According to [7], these oscillations
are excited by the longitudinal discharge current. The
threshold current for this instability depends on the gas
pressure, discharge diameter, and gas density distribu-
tion along the discharge. Increase in the current above
the threshold value may result in the destruction of the
discharge tube wall [3] and other undesirable effects,
such as the limitation on the output power of a cw ion
laser [6].

The low-frequency spectra of argon plasma oscilla-
tions in discharge tubes 5–30 mm in diameter consist of
separate narrow peaks within the range 0.1 & f & 2 MHz
(where f = ω/2π). The number of peaks increases as the
current increases above the threshold value. The results
of [7, 8] indicate that the observed frequencies are the
lower normal modes of long-wavelength ion-acoustic
oscillations in a wall-confined plasma. However, the
dispersion relation for these oscillations, which is of
importance for understanding and identifying them,
was not measured. In this study, which is a continuation
of [7, 8], we investigate the frequency and wave-vector
spectra of the lowest oscillation mode. The dispersion
relation for this mode is determined using the spectral
correlation analysis of spontaneous emission from two
plasma regions spatially separated along the discharge
axis. An important feature of our experimental scheme
is the absence of any frequency filters limiting the cor-
relator passband.
1063-7842/01/4604- $21.00 © 20400
EXPERIMENTAL SETUP AND RESULTS

A diagram of the experimental facility for measur-
ing the dispersion relation for plasma oscillations is
shown in Fig. 1. Argon plasma is produced by a contin-
uous high-current discharge in a 1-m-long tube with a
16-mm-diameter channel. The tube with a cold arc
cathode, which incorporates a self-heated refractory
bush, consists of aluminum sections covered with an
oxide film and cooled with water [6]. To withdraw
plasma emission, two sections of the discharge tube
have 4 × 16-mm slit windows oriented perpendicularly
to the discharge axis. These sections are placed near the
cathode, where the oscillations are most intense
(Fig. 2a). The distance between the windows is 15 cm.
For a filling argon pressure of 0.2–0.4 torr (the dis-
charge pressure is much lower, particularly in the cath-
ode region), the threshold discharge current is I = 300–
400 A. The discharge plasma parameters were as fol-

1

2
3

4
5

6 7 8

9
5

4
3

2

Fig. 1. Schematic of the experimental facility for measuring
the spectral and dispersion parameters of oscillations in a
high-current plasma: (1) discharge tube, (2) lenses, (3) light
filters, (4) diaphragms, (5) photomultipliers, (6) spectrum
analyzer, (7) correlator, (8) analog-to-digital converter, and
(9) PC.
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lows [6]: the electron density was ne . 1014 cm–3, the
electron temperature was Te . 5 eV, and the ion temper-
ature was Ti . 2 eV. The plasma contained .10% dou-
bly-charged ions at the discharge axis.

A typical spectrum of the developed oscillations in
an argon plasma is shown in Fig. 2b. Under our experi-
mental conditions (see below), the spectrum consisted
of no more than two peaks; i.e., the measurements were
carried out near the threshold. Due to the spatial mode
structure of oscillations [8], it was possible to adjust the
optical tract to select the lowest mode with a frequency
of 205 kHz and bandwidth of .80 kHz. Spontaneous
plasma emission was collected by lenses with focal
lengths of 8 mm and, after passing through 1-mm-
diameter diaphragms and blue-green light filters, was
recorded by two photomultipliers, which operated in a
photon-counting mode. The signals from the photomul-
tipliers were fed to the spectrum analyzer with a fre-
quency bandwidth of 0.01–110 MHz and to a high-
speed correlator. The correlator with a maximum clock
rate of 160 MHz [9] measured the autocorrelation and
cross-correlation functions of the electric signals from
two windows. The sampling time was τ0 = 0.5–1.0 µs.

A, arb. units
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(a)

(b)

20 40 60 80 z, cm
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5
0 200 400 600 800 f, kHz

Fig. 2. (a) Profile of the oscillation amplitude A along the
discharge axis and (b) the spectrum of low-frequency oscil-
lations.
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The analyzer output data were recorded by an analog-
to-digital converter with a response time no longer than
30 µs and a personal computer.

The recorded emission consists mainly of blue-green
lines of the excited argon ions with the density . Whenni*
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Fig. 3. (a) Autocorrelation and (b) cross-correlation func-
tions of plasma oscillations; τ0 = (a) 0.8 and (b) 0.6 µs.
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Fig. 4. (a) Modulus and (b) phase angle of the cross-spectral
density S(f).
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the excess over the threshold current is not large, the
density of ions in the ground state contains a small
oscillating term, ni(t) =  + (t), where ni is a con-
stant term. Under our experimental conditions, we have

(t) ~ ni(t), at least for frequencies in the range f < βi

(where βi is the ionization rate) [6]. The oscillation
cross-correlation function measured at the points z' and
z' + d at the discharge axis (z > 0) is

(1)

where τ is the delay time and T is the averaging time.

Figure 3 presents the normalized autocorrelation
and cross-correlation functions measured at the dis-
charge current I = 380 A. The shift ∆τ . 12 µs between
the maxima of the autocorrelation and cross-correlation
functions indicates that the oscillation propagates along
the discharge from the cathode to the anode. The group
velocity of oscillations, which was estimated from the
shift of the maximum as d/∆τ for different values of I
and τ0, appeared to be (1.23 ± 0.25) × 106 cm/s.

The dispersion relation for the oscillations was
determined from the measured correlation functions
using spectral analysis [10]. According to the Wiener–
Khinchin theorem, the correlation function is related to
the spectral density of a stationary random process by
the Fourier transformation. The cross-spectral density
S(ω) for the two local processes (t, z') and (t, z' + d)
is defined as the Fourier transform of expression (1).

ni ñi

ni*

C τ( ) ni
2 1

T
--- ñi τ z',( )ñi t τ z' d+,+( ) t,d

0

T

∫T ∞→
lim+=

ñi ñi
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Fig. 5. Oscillation frequency f vs. kz; (1) our experimental
results; the closest calculated dependences (the mode num-
bers are designated as in the sources): (2) mode (1,1) [8],
(3) mode (0,1) [12], (4) mode (1,2) [12], and (5) mode (0,1)
[13].
The dependence (t, z) can be represented by a wave
packet propagating along the discharge axis

(2)

where N(ω) is a slowly varying real function and kz(ω)
is the longitudinal component of the wave vector k as a
function of frequency.

The phase angle θ(ω) of the complex function S(ω)
(Fig. 4) is related to the delay time corresponding to the
propagation of the wave packet from z' to z' + d. The
local dispersion relation for expression (2) is kz(ω) =
θ(ω)/d, where θ(ω) is determined from the experiment.
The dispersion relation for the lowest oscillation mode
obtained from the statistical analysis of experimental
data is shown in Fig. 5. The phase velocity is equal to
(1.15 ± 0.15) × 106 cm/s, which is much higher than the

ion-acoustic velocity cs =  = 3.46 × 105 cm/s
(where Mi is the ion mass) in the plasma under study.
Under our conditions, taking into account Ti can
increase cs by a factor of no more than 1.5. The group
velocity was estimated as dω/dk = (1.25 ± 0.28) ×
106 cm/s. The measurements of the spatial radial struc-
ture of oscillations [11] showed that, under these con-
ditions, kz . |k| = 2π/λ (where λ is the oscillation wave-
length).

DISCUSSION OF THE RESULTS

The dispersion relations for ion-acoustic waves in a
bounded low-pressure plasma were first derived in
[12], in which the lowest order radial and azimuthal
modes were found in the hydrodynamic approximation
with allowance for the ion loss at the wall. Later, in
[13], the dispersion relations were modified, taking into
account volumetric particle collisions, particle drift,
and the influence of the external longitudinal magnetic
field. At low frequencies, the results obtained in [12]
and [13] differ insignificantly (Fig. 5). However, they
fail to describe the appearance of the lowest boundary
frequencies observed in the experiment. The approxi-
mate model [8] explain the existence of these frequen-
cies. The limitation on the lowest frequency also fol-
lows from the consideration of a plasma waveguide
[14, 15].
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Abstract—Different scenarios of the spatiotemporal evolution of the parameters of the diffusive decay of a
pulsed electronegative gas plasma in the absence of plasma chemical processes are studied. It is shown that non-
linear diffusion in a plasma with negative ions occurs in several stages. The rate of electron density decay
increases with time and, in the beginning of the second stage, almost all the electrons escape from the discharge
volume. On the other hand, the ion density profile is smoothed out due to ion–ion ambipolar diffusion and the
flow of negative ions toward the wall is absent in the first stage of decay. In the second stage, the main diffusion
mode is first established and then the ion–ion (electronless) plasma decays exponentially with a characteristic
time determined by ion–ion ambipolar diffusion. © 2001 MAIK “Nauka/Interperiodica”.
The evolution of inhomogeneities of the electron
and ion densities in a multicomponent plasma is
described by nonlinear equations [1]. Therefore,
attempts to reduce the problem to the determination of
a set of effective coefficients of ambipolar diffusion for
every charged component (as is usually done in the case
of a simple plasma) may lead to fundamental errors [1].
It was shown in [1, 2] that the spreading of inhomoge-
neities in a multicomponent plasma may occur in sev-
eral stages and is accompanied by the formation of
propagating jumps of the ion density. In the simplest
case in which no current flows through the system, the
mechanism for this phenomenon in electronegative
gases is as follows [1–3]. In view of plasma quasineu-
trality, the most mobile particles (i.e., electrons) must
be confined in a plasma and an ambipolar charge-sepa-
ration field arises, which is determined by the electron
temperature Te and the electron density gradient. In a
gas-discharge plasma, Te is considerably higher than
the ion temperature (T ! Te); hence, the field compo-
nents of the ion flows substantially exceed the diffusion
components and the negative ions are drawn into the
discharge volume by the field. As a result, the plasma is
divided into regions with different ion compositions
and highly inhomogeneous spatial distributions of
charged particle densities are formed over the discharge
cross section [3]. Under steady-state conditions, the
external region (region 1) of an electron–ion plasma is
composed of electrons and positive ions (np ~ ne @ nn),
while almost all the negative ions (nn ~ np > ne) are con-
centrated in the internal region (region 0). The presence
of two regions with different spatial distributions and
charged particle compositions results in the decay of
electronegative gas plasma in two stages (electron–ion
1063-7842/01/4604- $21.00 © 20404
and ion–ion stages). In addition, the transition to an
ion–ion plasma occurs with a sharpening [4]; i.e.,
almost all electrons escape from the discharge volume
within a finite amount of time.

Since plasma decay in the presence of negative ions
is of great practical importance [5–8], it deserves
detailed investigation. In this paper, we consider the
spatiotemporal evolution of the densities and flows of
charged particles during diffusive decay in an elec-
tronegative gas plasma in the absence of bulk plasma
chemical processes. Such a situation is typical of low-
pressure plasmas, in which plasma decay is mainly
governed by diffusion. The fact that the rates of many
important plasma chemical processes depend strongly
on Te and these processes stop during the afterglow also
support this model.

In the case of plane-parallel cold absorbing walls
located at x = ±L, the set of equations describing the
plasma evolution after switching off the discharge has
the form [1, 2]

(1)

Here, Γ is the particle flux; subscripts j = e, n, and p
refer to electrons and negative and positive ions,
respectively; and D and b are the diffusion and mobility
coefficients.

The self-consistent (ambipolar) field has the form

(2)

Here, the prime stands for the spatial derivative. At the
center (x = 0), the derivatives are zero (symmetry con-
ditions). The boundary conditions at the wall (x = L) in

∂n j

∂t
--------

∂
∂x
------Γ j–

∂
∂x
------ D j

∂n j

∂x
-------- b jn jE± 

  .= =

E Dpnp' Dnnn' Dene'––( )/ bpnp + bnnn bene+( ).=
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a plasma with negative ions require more detailed con-
sideration, because the drift component of the flow may
be higher than the diffusion component and may have
the opposite sign (unlike for positive ions). For this rea-
son, zero boundary conditions for the densities,

(3)

which are usually used when considering the diffusive
decay of an ordinary (two-component) plasma, may
result in negative values of Γn(L, t) (the flow is directed
from the wall), because field (2) under conditions (3)
tends to infinity as x  L and the drift flux of negative
ions bnnn(x, t)E does not vanish as x  L. This is
equivalent to the presence of negative ion emission at
the wall and can result in the nonphysical growth of the
total number of negative ions. This can be easily ascer-
tained by considering the model profiles nj(x, t) =

cos(πx/(2L)) for each particle species [9]. These
profiles meet the symmetry conditions at the center and
the zero conditions at the wall and reduce set (1) to a set
of ordinary first-order differential equations for
unknown functions (t). If  . , be @ bn . bp, and
De @ Dn . Dp, then calculating the right-hand sides of
the set of equations obtained, we can see that /dt > 0
and the integral density of negative ions grows with
time. The boundary conditions of the form

(4)

do not have the above drawbacks. They automatically
meet the quasineutrality condition and provide both the
nonnegative flux of each component and vanishingly
small values of nj(L, t) at high positive values of the con-
stant C0. Although in the limit C0  ∞, conditions (4)
transform into conditions (3), the above example shows
that conditions (3) cannot generally be used. They are
degenerate in the sense that the sign of C0 may be either
positive or negative when transiting from conditions (4)
to conditions (3). However, a negative flux results in the
nonphysical growth of the density of negative ions due
to their emission from the walls. If the fluxes of all the
components are not negative when using boundary con-
ditions (3), the solutions to set (1) with conditions (3)
and (4) coincide. The higher C0, the higher accuracy of
the coincidence. Therefore, in practice, conditions (4)
were used only when conditions (3) resulted in solu-
tions with high negative fluxes Γn(L, t).

The calculated density profiles of a steady-state
low-pressure discharge plasma were used as initial con-
ditions. In this case, both the electrons and negative
ions obey the Boltzmann distribution in region 0; i.e.,
the flux Γn in the central region can be set at zero. A flat
electron profile appears at low pressures [1] when the
efficiency of transport processes in the active phase is
much higher than that of plasmochemical processes
(ionization, attachment, detachment, etc.). In this case,
the rate of electron transport is TeTi times higher than

n j L t,( ) 0, j e n p,, ,= =

ñ j t( )

ñ j ñe ñn

dñn

Γ j L t,( ) C0n j L t,( ), j e n p, ,= =
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that of the ion transport, which results in a flat ne profile
in the central region. As the pressure decreases further
(we will consider the pressure range that is of greatest
practical interest nowadays), ion diffusion comes into
play. In this case, negative ions are trapped and the dif-
fusion coefficient of positive ions is equal to 2Dp. It fol-
lows that the initial profile of negative ions is parabolic
and the initial profile of electrons is flat [3]. In this case,
even a small addition of electrons to the flat ne profile is
sufficient for the Boltzmann potential for electrons to
be established. In essence, the potential is determined
by the Boltzmann equilibrium for negative ions, while
the Boltzmann equilibrium for electrons determines
only a small inessential addition to the flat ne profile.

0.5 1.0
x

t = 0

0.0125

0.025

0.0325

ne

ln(ne/ne0)
0

–4

–8

0.01 0.03 t0 t

Fig. 1. Evolution of the electron density profile during
plasma decay at a high electron temperature (k = 33). Here
and in the other figures, the ratio of the initial densities is
nn0/ne0 = 6.

Fig. 2. Time dependence of the central electron density
ne0(t) (solid line) and calculations by formula (7) (dotted
line) and formula (6) with x0(τ) obtained from numerical
simulations (dash-dot line).



406 BOGDANOV et al.
The typical initial distribution that was used in calcula-
tions is shown in Figs. 1 and 3.

The time during which Te relaxes after switching off
the external energy source is known to be much less
than the plasma decay time (see, e.g., [10]). On the
other hand, the steady-state value of Te may be much
higher than the gas temperature [1]. Therefore, we have
considered both moderate (k ~ 1) and large (k @ 1) val-
ues of the parameter k = Te/T.

The results of calculations show that the density
profiles evolve in different ways depending on the value
of k and the ratio of the ion mobilities g = bp/bn. In the
simplest case k @ 1, the electron temperature remains
high even after switching off the discharge. In practice,
this can be achieved when the power supply is not
switched off completely. The typical results of calcula-

tions for k = 33 and the mobility ratios g = 1/  and2

nn
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t = 0
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............................................

Fig. 3. Evolution of the negative ion density profile for k =
33. Here and in the other figures, the time intervals between
the curves are constant.

Fig. 4. Profile of the effective diffusion coefficient of posi-
tive ions (k = 33).
be/bn = 250 are shown in Figs. 1–5. In the figures, the
coordinates are in units of L and time is in units of τn =
L2/Dn, which is the characteristic time of free diffusion
of negative ions.

A specific feature of the decay mode at large k is that
the electron density profile in region 0 remains almost
flat (as in the active phase). As is seen from Fig. 1, in
the course of evolution, only the width x0 of this region
increases; i.e., the ion profile broadens and an unneu-
tralized outflow of negative ions (Γn(t) > 0) appears.
This flow violates the initial Boltzmann distribution of
negative ions so that, in this case (unlike a steady-state
discharge), the ion density profiles cannot be deter-
mined from this distribution. However, since be @ bn,
electric field (2) still has the form E = Te ne (deter-
mined by the Boltzmann equilibrium for electrons)
until nebe > nnbn + npbp, which is valid for the first stage
of decay. Then, from the condition Γn(t) > 0, the ine-
quality  < ne/(knn) follows, which results in the
almost flat electron profile nn > ne at large k and ne . ne0.

The change in the central electron density ne0(t ) at
k @ 1 is shown in Fig. 2. It is seen that over a relatively
long time, density decreases exponentially and then
drops abruptly at a certain instant t0. The reason for this
almost exactly exponential dependence, which is
hardly expected for the solution of a rather complicated
set of nonlinear equations (1), is as follows. For a flat
electron density profile, the rate ∂ne/∂t does not depend
on the coordinate at x < x0. Hence, the linear depen-
dence of the electron flux Γe on the coordinate follows
from balance equation (1) [11]. At the same time, in the
external region (x > x0), where ordinary electron–ion
ambipolar diffusion with the coefficient Dap = (k +1)Dp

takes place, the ne(x) profile is close to linear. As a
result, the electron density ne0 (Fig. 2) satisfies the
equation

(5)

From here, it follows that

(6)

where x0(τ) is the current position of the boundary
between regions 0 and 1. As x0 varies over a wide range,
the product x0(τ)(1 – x0(τ)) in the denominator of the
integrand in Eq. (6) changes only slightly. Hence, the
integral itself, which is less sensitive to variations in
this product, can be approximated by 4/L2 for 0.1 < x0 <
0.9. Substituting this value in Eq. (6), we obtain that the

ne'

ne' nn'

Γ e x0( )
∂ne0

∂t
----------x0 Dapne0/ L x0–( ).–= =

ne t( ) ne0 Dap
dτ

x0 τ( ) L x0 τ( )–( )
----------------------------------------

0

t

∫– ,exp=
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dependence ne(t) has an extended initial exponential
part

(7)

shown by a dotted line in Fig. 2 (here, τap = L2/Dap is the
characteristic time of electron–ion ambipolar diffu-
sion). As the distance from the wall decreases
(x0  > 0.9), the denominator in Eq. (6) increases drasti-
cally, the decay starts to sharpen, and almost all of the
electrons leave the discharge volume at a certain time t0
(Fig. 2). Substituting the values obtained from the
numerically solving set (1) into Eq. (6), we obtain the
dependence shown by the dash-dot line in Fig. 2. The
time t0 corresponds to the disappearing of the external
region (x0  1). Ambipolar field (2) in this external
sheath, which consists of only electrons and positive
ions, always has the form E = Te /ne. For k > 1, the
field traps the negative ions in the discharge volume,
thus preventing them from escaping to the walls [1]. At
t < t0 (the first stage of decay of an electron–ion
plasma), this sheath provides a peculiar surface tension
for negative ions and the density profiles evolve at the
almost constant total number of negative ions 〈nn〉  =
〈nn0〉 . It should be emphasized that the absence of a neg-
ative ion flux toward the wall in the first stage of decay
is a distinguishing feature of the afterglow in a plasma
with negative ions. At t < t0, only electrons and positive
ions arrive at the walls, their fluxes being equal to each
other (Fig. 9). Hence, attempts to characterize the
escape of charged particles by introducing effective dif-
fusion coefficients of the plasma components (the same
over the entire discharge volume) seem to be worthless.
For example, such a coefficient for negative ions would
be equal to zero at t < t0.

As the boundary x0(t) shifts toward the wall, the
main parts of the ion density profiles (x < x0(t)), where
the ion density is higher than the electron density,
broaden (Fig. 3). In region 0, where nn(x, t), np(x, t) >
ne(x, t), these parts of the profiles evolve due to ion–ion
ambipolar diffusion with the coefficient Dpn =
2DpDn/(Dp + Dn) = 2g/(1 + g) (Fig. 4). Hence, the sign
of the ambipolar field in region 0 (unlike the active
stage of discharge and region 1, where the ambipolar
field is always directed outward) depends on the mobil-
ity ratio g between the positive and negative ions. If
g < 1, the field is directed outward; i.e., it decelerates
electrons as it does in the external region. For g > 1,
which corresponds to more mobile positive ions, the
ion–ion ambipolar field is directed inward; i.e., it is
opposite to the field in region 1. As was shown above,
at k @ 1, the electron profile is almost flat. In this case,
if g < 1, then the electron profile in region 0 is slightly
convex. For g > 1, the electron profile in region 0 is slightly
concave. At moderate electron temperatures (k ~ 1), these
features are more pronounced (see below).

ne t( ) ne0 4
1

τap

------– 
  ,exp≈

ne'
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When describing diffusion analytically with the
help of moving boundaries, we obtain rather cumber-
some expressions that are difficult to analyze (see, e.g.,
[12]). This process can be approximately described by
a simple self-similar solution for heat propagation in an
infinite media [12]

(8)

This solution describes the evolution of the central
part of the profile nn(x, t) well. However, it is violated
near the point x0(t) where the negative ion density is
low, nn(x, t) ! nn(0, t). At the same time, evolution in

nn x t,( ) 1/ 2 πDpnt( )( )=

× nn0 ξ( ) x ξ–( )2/ 4Dpnt( )–[ ]exp{ } ξ .d

x00–

x00

∫

0.6

0.01 0.03 0.05
t

0.8

1.0
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0.5

ne

1.0 x

t = 0

0.006
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0.06

Fig. 5. Time dependences of the boundary coordinate x0(t)
determined from the positions of the point where the elec-
tron and negative ion densities are equal to each other (solid
line) and the point where one type of diffusion changes
sharply to another (see Fig. 4) (dashed line).

Fig. 6. Evolution of the electron density profile at a low
electron temperature (k = 3).
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region (x > x0(t)), where negative ions are almost
absent, is governed by ordinary electron–ion ambipolar
diffusion with the coefficient Dap = (k + 1)Dp. Note that,
for k @ 1, the boundary between regions 0 and 1 is
sharp (Fig. 4).

To determine the sharpening time t0, i.e., the time
during which the electrons rapidly escape from the dis-
charge volume (Fig. 2), it is necessary to know the posi-
tion of the boundary as a function of time, x0(t). In [11],
the motion of this boundary was interpreted as the
propagation of the ion density front. Simulations [11]
showed that this front often propagates at a constant
velocity. However, in Fig. 4, this motion is evidently
nonuniform. The dependences x0(t) for this case are
shown in Fig. 5. The dependences were obtained two
different ways: from the positions of the point where
the electron and negative ion densities are equal to each
other and the point where one type of diffusion changes

0.5

np

1.0 
x

t = 0

0.05

0.1

0.15

0.05

ln 〈np〉

0.1 tt0

1 p

n

Fig. 7. Evolution of the positive ion density profile during
decay for k = 3.

Fig. 8. Time dependences of the integral densities of elec-
trons and positive and negative ions for k = 3 (solid lines).
The dashed line shows the calculations by formula (9).
abruptly to another (Fig. 4). It is seen that the above
example does not confirm the conclusion drawn in [11]
because, according to our results, the time dependence
x0(t) is closer to quadratic than to linear. Special simu-
lations in which k varied over a wide range showed that
the interval within which the dependence x0(t) was
almost linear appeared only when k decreased to 3–5.
The duration of this interval depends on both the initial
density ratio nn0/ne0 and the initial position of the
boundary x00 = x0(0). We have found no universal
dependence describing the change of the boundary
position x0(t). In the case at hand, in our opinion, there is
little sense in interpreting the change in x0(t) as a sharp
front propagation by analogy with the results of [2].

A rapid decrease in the electron temperature to low
values (i.e., the case of small temperature ratios, k ~ 1–
5) is more typical of a decaying plasma. Since the ini-
tial electron profile is bent at the boundary between
regions 0 and 1, the smoothing of this sharp bend is the
most rapid process in such regimes. In this case, if neg-
ative ions are more mobile (i.e., g ≤ 1), then, as is seen
from Fig. 6, the initially flat profile ne(x) rapidly
becomes cosine and similar to the np(x) profile (Fig. 7).
As above, the electron density decreases rapidly with
time and the broadening of the main parts of the ion
density profiles proceeds at the constant total number
of negative ions, 〈nn 〉  = 〈nn0〉 . For small k, the decay of
the integral density of positive ions 〈np 〉  in the first stage
is described by the usual exponential law (Fig. 8)

(9)

with a time constant

(10)

which is determined by ambipolar electron–ion diffu-
sion. Since the width of the main part of the ion profile
x0(t) changes during decay, τap is determined by a cer-
tain averaged diffusion length 〈x0〉 that varies within the
range x00 ≤ 〈x0〉  ≤ L. For the time dependence 〈ne〉(t) =
〈np〉(t) – 〈nn0〉 , it follows from Eq. (9) that the ne decay
sharpens and the electrons disappear at the instant

(11)

which agrees with the results obtained in [4]. When the
initial thickness x00 of region 0 is not small, we can take
〈x0〉  = L, as in [4]. In the opposite case (for narrow ini-
tial profiles), we can take the averaged value 〈x0〉  =
(x00 + L)/2 as the estimate of 〈x0〉 in Eq. (10).

At t > t0 (ion–ion decay stage), when the electrons
and, accordingly, the external sheath (region 1) are
absent, negative ions can escape to the walls. In this
case, plasma decay is governed by ion–ion ambipolar
diffusion toward the stationary boundaries (walls) with
the coefficient Dpn = 2DpDn/(Dp + Dn) and the solution
has a standard form. Since, by the time t0, the ion pro-

np〈 〉 t( ) np〈 〉 0 t/τap–( )exp=

τap 4 x0〈 〉 2/ π2Dap( ),=

t0
1

τap

------
nn0〈 〉
np0〈 〉

-------------,ln≈
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files are not cosine yet, the main diffusion mode is
established in a time of ~tpn = 4L2/π2Dpn. Then an ordi-
nary decay at the main diffusion mode occurs,

(12)

The time dependence of the negative ion flux toward
the wall is shown in Fig. 9. It is seen that, at t < t0, we
have Γn(L, t) = 0, while at t > t0, the main diffusion
mode is established and the plasma decays according to
the exponential law (12).

As was mentioned above, for g > 1, the ambipolar
field in region 0 is directed outward; i.e., it decelerates
positive ions and carries negative ions and electrons
away to the walls. It is well known that in a quasineutral
plasma, the electron flow caused by the density gradi-
ent is always balanced by the drift flow in the self-con-
sistent ambipolar field (due to the high electron mobil-
ity, these flows are almost equal in magnitude and
opposite in direction). Hence, for g > 1, the electron
density in region 0 should increase (rather than
decrease, as usual) from the center to the periphery.
Since the densities of all the charged particles in region 1
always decrease toward the wall, a nonmonotonic pro-
file of the electron density is formed there. As was men-
tioned above, for k @ 1, this effect is feebly marked;
however, at moderate electron temperatures, the situa-
tion changes drastically. Figure 10 shows the calculated
evolution of the electron profile (analogous to those
presented in Figs. 1 and 6) for g = 10. It is seen that,
during the decay of a plasma with less mobile negative
ions, a pronounced nonmonotonic electron density pro-
file is formed; i.e., we meet a phenomenon that has no
analogy in a simple plasma. The evolution of the profile
of ambipolar field over the discharge cross section is
shown in Fig. 11, which additionally illustrates this
phenomenon. It is seen that the field is also nonmono-
tonic and changes its sign when crossing the boundary
between regions 0 and 1.

Spatiotemporal behavior of the positive and nega-
tive ions at g > 1 is similar to that considered above. In
the first stage, the electron density decreases rapidly
with time. The broadening of the main parts of the ion
density profiles proceed at the constant total number of
negative ions, 〈nn 〉 = 〈nn0 〉 . In this stage, the change in
the integral density of the positive ions 〈np〉 is described
by exponential law (9) and expressions (10) and (11)
are valid.

The above analysis has shown that two stages can be
distinguished in the spatiotemporal evolution of the
charged particle densities during the diffusive decay of
an electronegative gas plasma [1–4].

1. In the first stage, the ambipolar field produced by
the electrons locks the negative ions in a plasma, while
an ion flow toward the walls is almost absent. In this
stage, the ion profiles only broaden due to ion–ion
ambipolar diffusion, which accelerates the less mobile
ion component. Since, in this case, the value and sign
of the ambipolar field are determined by the ions, the

nn np t/t pn–( ).exp∼=
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Fig. 10. Evolution of the density profiles of electrons and
less mobile negative ions (g = 10) during decay at a low
electron temperature (k = 3).

Fig. 11. Evolution of the profile of the ambipolar field over
the discharge cross section for less mobile negative ions
(g = 10).
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electron profile changes drastically during decay. If the
mobility of negative ions is lower than that of positive
ions, then the ambipolar field accelerates electrons and
a nonmonotonic electron profile is formed in order to
sustain plasma quasineutrality. Such an electron profile
cannot in principal be formed during diffusion in an
ordinary plasma. In this stage, the number of electrons
and positive ions decreases and the transition to an ion–
ion (electronless) plasma occurs with sharpening; i.e.,
almost all the electrons escape from the volume in a
finite time.

2. In the second stage (ion–ion decay), electrons are
almost absent and the ions leave the plasma due to ion–
ion ambipolar diffusion toward the wall, where they are
neutralized. First, the main diffusion mode is estab-
lished. Then, the ion densities decay by an exponential
law with a characteristic time determined by ion–ion
ambipolar diffusion.

Therefore, an analysis of the evolution of the plasma
parameters in an electronegative gas afterglow has con-
firmed the model proposed in [1–4], which predicts the
sharpening of the electron density decay and the forma-
tion of an ion–ion plasma in the second stage of decay.
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Abstract—Silicon distribution before and after thermal annealing in thin doped GaAs layers grown by molec-
ular beam epitaxy on (100)-, (111)A-, (111)B-oriented substrates is studied by X-ray diffraction and SIMS. The
surface morphology of the epitaxial films inside and outside an ion etch crater that arises during SIMS mea-
surements is studied by atomic force microscopy. Distinctions in the surface relief inside the crater for different
orientations have been revealed. Observed differences in the doping profiles are explained by features of the
surface relief developing in the course of ion etching in SIMS measurements and by enhanced Si diffusion via
growth defects. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Until now, silicon has remained the principal mate-
rial for doping III–V epitaxial films (EF) grown by
molecular beam epitaxy (MBE). Depending on growth
conditions and the substrate orientation, it can, as an
amphoteric impurity, occupy sites in the gallium sublat-
tice (SiGa) or in the arsenic sublattice (SiAs). In the case
of growth of gallium arsenide, the (100) substrate sili-
con occupies sites mostly in the gallium sublattice pro-
ducing n-type EF. On substrates with (111)A orienta-
tion, depending on the growth conditions, that is, on the
substrate temperature and the ratio γ of the flows of
arsenic and gallium (γ = PAs/PGa, where PAs and PGa are
the partial pressures of arsenic and gallium, respec-
tively in the growth zone) both compensated and n- or
p-doped EF can be obtained [1–5]. However, the
structural perfection of these epitaxial films varies
widely [6].

The abruptness of the interface between the sub-
strate and the epitaxial layer and distribution of impuri-
ties in EF are of great importance in fabrication of the
devices. While the behavior of silicon in the gallium
sublattice SiGa of GaAs(100) in the course of growth
and thermal annealing has been studied in detail
[7−13], there is practically no data for EFs of silicon-
doped GaAs grown on the substrates with (111)A and
(111)B orientations.

The aim of the present work is to study the structural
perfection of the GaAs EFs grown on (100)-, (111)A-,
and (111)B-oriented substrates and the silicon distribu-
1063-7842/01/4604- $21.00 © 20411
tion of these EFs during growth and after thermal
annealing.

EXPERIMENTAL

The structures for this study were grown by MBE on
the semi-insulating (100)-, (111)A-, and (111)B-ori-
ented substrates at γ = 28 and a growth temperature
TG = 600°C. EFs grown on (111)A and (111)B sub-
strates at this value of γ are close to compensation and
have mirrorlike surfaces [3], because Si atoms occupy
both As and Ga sites in the GaAs lattice. The samples
were grown on the three substrates in different orienta-
tions under one process in order to provide identical
technological conditions. The substrates were glued
with indium to a molybdenum sample holder. After
growing a buffer layer of thickness ~0.5 µm, three sili-
con-doped layers ~320 Å thick were grown separated
by undoped 640 Å-thick layers. The thickness of the
uppermost undoped layer (cap layer) was 1280 Å. The
structure of the samples under study is shown schemat-
ically in Fig. 1. The temperature of the silicon source
during growth of the doped layers was set at such a
value as to obtain the concentration of the condition
electrons of ne ≅  1018 cm–3 GaAs(100) EF.

The study of the EF crystal structure was carried out
in an automatic X-ray spectrometer having a double-
crystal dispersionless scheme with high-perfection Ge
crystals in the reflecting positions (400) and (111) as
crystal monochromators and using CuKα1 radiation.
The sizes of the output slits of the monochromator and
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic cross section of the samples under study.
1–3-silicon-doped regions.

10000

1000

100

10

1
10000

1000

100

10

1

(a)

(b)

(c)
10000

1000

100

10

1
–600 –400 –200 0 200 400

arcsec

Intensity, pulse/s

Fig. 2. The diffraction rocking curves of the epitaxial films
grown on the substrates with the orientations (100) (a),
(111)A (b), (111)B (c). Solid curves are DRC before anneal-
ing; dashed curves are DRC after annealing.
the input slit of the scintillation detector were 0.2 ×
0.5 mm and 1 × 2 mm, respectively. The measurements
were carried out over an angle range Θ ~ 1100′′  in steps
of 5′′  outside the region of strong diffraction maxima
and 0.5′′  in the region of the GaAs substrate peak. The
acquisition time at a point was 60 s. The intensity vari-
ation of the incident radiation over the time of measure-
ment did not exceed 1.5%. The intrinsic noise of the
detector did not exceed 0.2 pulse/s. The reproducibility
of the results in repeat measurements was no worse
than 3%.

The depth profiles of the silicon concentration
NSi(x) were measured using a CAMECA IMS-4F sec-
ondary ion mass spectrometer. As the primary beam,

 oxygen ions of energy Ep = 5 keV were used. The
scanned area was 250 × 250 µm and secondary silicon
ions were collected from the central part of the scanned
area 60 × 60 µm in size with a mass resolution of 5000.
The measurements of the sample surface roughness
inside and outside the crater after ion etching with
SIMS were carried out in an (AFM) P7-SPMLS-MDT
atomic force microscope (manufactured by HT-MDT)
in a temping mode regime. The scanning area was
~10000 × 10000 nm. The subsequent sample annealing
for the study of the Si redistribution was carried out in
the growth chamber of the MBE setup in the arsenic
flow at a temperature of Ta = 750°C for 1 h and at an
arsenic pressure of PAs ≅  10–5 torr.

RESULTS AND DISCUSSION

The measured diffraction rocking curves (DRC) for
all samples under study are presented in Fig. 2 before
and after annealing at Ta = 750°C for 1 h. As seen in
Fig. 2a, the sample grown on the GaAs(100) substrate
after annealing has a lower DRC peak halfwidth (W)
(15′′  before annealing to 13′′  after annealing) and the
decay of the DRC tails is observed. This indicates that
annealing improves the EF crystal structure [7].

A somewhat different situation is observed for EFs
grown on GaAs(111)A substrates. As seen from
Fig. 2b, DRC is not significantly different in this case.
The DRC halfwidths are 24′′  before and 28′′  after the
annealing.

A situation quite different from the (100) and
(111)A orientations is found for the case of the (111)B
orientation. As seen in Fig. 2c, the DRC for the EF on
the (111)B substrate looks distinctly different. Beside
the main peak with W ≈ 33′′ , wide tails of large inten-
sity are observed on each side of the peak in the angle
range from ±100′′  to ±300′′ . These features of the DRC
can be related both to the X-ray scattering by lattice
imperfections and to the possible formation of an addi-
tional coherent region. Thus, the experimental data on
the structural perfection of the samples under study
demonstrate the strong dependence of these properties
on the orientation of the substrate.

O2
+
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Consider now the measurement results of the silicon
content NSi(x) for the samples discussed above before
(Fig. 3) and after (Fig. 4) annealing. The silicon doped-
layers are denoted by numbers 1–3 beginning from the
surface. It is seen that in the near-surface region the sil-
icon content is high and, in annealed samples, this
region is larger and the Si content is higher. The modi-
fications of the NSi(x) curves for different orientations
are different. Before annealing, NSi(1) ≥ NSi(2) ≥ NSi(3)
for all three samples, which is characteristic of the dop-
ing profile measured by SIMS. It is related to the pecu-
liarities of the techniques, in particular, to the so-called
mixing effect [12–14]. (Hereafter, NSi(1), NSi(2), NSi(3)
are the maximum silicon concentrations in the doped
regions 1–3, respectively, according to Fig. 1). As seen
in Fig. 4, the situation is different for the annealed sam-
ples, namely, NSi(1) < NSi(2) < NSi(3) for (100) and
(111)A orientations and NSi(1) > NSi(2) > NSi(3) for
(111)B orientation.
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Fig. 3. Profiles of silicon distribution over the depth NSi(x)
obtained by SIMS for the samples grown on (100)-, (111)A-,
and (111)B-oriented substrates before annealing.
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In Table 1, values of the full width at half maximum
(FWHM) for the peaks in the NSi(x) curves (Figs. 3 and
4) are given for the as-grown and annealed samples.
The FWHM values of the corresponding doped layers
(according to Fig. 1) before annealing are denoted as
∆00(1, 2, 3), ∆0A(1, 2, 3), and ∆0B(1, 2, 3); and after the
annealing, as ∆a0(1, 2, 3), ∆aA(1, 2, 3), and ∆aB(1, 2, 3)
for the orientations (100), (111)A, and (111)B, respec-
tively. These data show that, for the orientations (100)
and (111)B, relationships between the FWHM values
for the peaks 1–3 before annealing are ∆00(1) < ∆00(2) <
∆00(3) and ∆0B(1) < ∆0B(2) < ∆0B(3) and for the (111)A
orientation ∆0A(1) ≈ ∆0A(2) ≈ ∆0A(3). It should be noted
as well that for the (111)B orientation FWHM values
are essentially larger than for the (100) and (111)A ori-
entations.

Consider the (100) and (111)B orientations before
annealing. Broader doping profiles of the layers 2 and
3 compared with layer 1 (the increase of ∆) in this
instance can be explained by, the mixing effect that
occurs in the SIMS method and/or by the surface relief
development in the course of ion etching. Besides, the
broadening of the deeper layers of the doping profiles,
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Fig. 4. The same as in Fig. 3 after annealing.
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Table 1

Layer no.

Orientation

(100) (111)A (111)B

1 2 3 1 2 3 1 2 3

Designations of the FWHM (before annealing) ∆00(1) ∆00(2) ∆00(3) ∆0A(1) ∆0A(2) ∆0A(3) ∆0B(1) ∆0B(2) ∆0B(3)

FWHM values in Å (before annealing) 350 364 376 350 350 350 475 575 650

Designations of the FWHM (after annealing at T = 750°C) ∆a0(1) ∆a0(2) ∆a0(3) ∆aA(1) ∆aA(2) ∆aA(3) ∆aB(1) ∆aB(2) ∆aB(3)

FWHM values in Å (after annealing at T = 750°C) 440 440 420 374 385 385 – – 660

Table 2

Orientation

(100) (111)A (111)B

outside the crater inside the crater outside the crater inside the crater outside the crater inside the crater

Rmax, nm 20 27 23 140 139 160

Rmean, nm 4.9 10.79 7.8 58 79 74

Ra, nm 0.9 3.47 1.7 30 14 17

Rq, nm 1.29 4.3 2.27 36 19 21
∆(2) and ∆(3), can be the result of Si diffusion during
growth since layers 2 and 3 are exposed to T = TG for
longer than layer 1. Similar results were obtained in
[12] for the δ-doped layers. However, in our case,
annealing the grown structures at Ta = 750°C for 60 min
caused no significant broadening of the profiles. There-
fore, the variations of ∆ in the unannealed samples for
the (100) and (111)B orientations are most likely
related to the development of surface relief during
NSi(x) measurements by SIMS. Table 2 gives the
parameters Rmax, Rmean, Ra, and Rq obtained from AFM
measurements (Rmax is the maximal deviation from the
mean value, Rmean is the mean value, Ra is the surface
roughness, and Rq is the root-mean-square deviation).
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Fig. 5. The initial surface of the epitaxial layer imaged by
atomic-force microscopy. The sample is grown on a (100)-
oriented substrate.
Note the considerable difference of FWHM values for
the (100) and the (111)B; in particular, ∆00 < ∆0B for all
layers (Table 1). Comparison of the data for these sam-
ples (Tables 1 and 2) suggests that the difference in the
FWHM values is most likely related to both the initial
roughness and the surface relief development in the
course of ion etching. For the (100) orientation, Ra ≅
0.9; and for the (111)B, Ra ≅  14. In addition, as men-
tioned above, the DRC data for the (111)B orientation
(Fig. 2) are essentially different from the data for the
(100) and (111)B orientations. Apparently, these
growth conditions are not optimum for the (111)B ori-
entation. Since DRCs characterize the structural per-
fection of EFs, it can be supposed that the EFs grown
on the (111)B-oriented substrates are highly imperfect
and the silicon distribution is strongly smeared even
before annealing.

In distinction to the (100) and (111)B orientations,
the FWHM values before annealing are essentially con-
stant (Table 1) in the (111)A orientation, although vari-
ations of Rmax, Ra, Rq inside crater are considerably
larger compared with data for the (100) orientation.
This result can be explained by different surface relief
developments for different orientations in the course of
ion etching in SIMS measurements. In Figs. 5 and 6,
the surfaces outside (Fig. 5) and inside (Fig. 6) the ion
etch crater samples with (100) and (111)A orientations
acquired by the atomic-force microscopy. Since there is
no cardinal difference between images of the surfaces
outside the crater for the three samples under study,
only one image is presented here. As seen in Fig. 6, the
surface relief for the (111)A orientation after ion etch-
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
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Fig. 6. The surface inside the ion etch crater imaged by atomic-force microscopy. The sample is grown on the (111)A-oriented sub-
strate. At the bottom is an enlarged view of the ion-etched surface.
ing has a periodic structure of alternating ridges and
hollows with a swing of ~120 Å. Note that for the (100)
and (111)B orientations, this surface relief is not
observed after ion etching.

A similar relief of the GaAs surface in the ion etch
crater produced in SIMS measurements, also in the
(111)A orientation, was observed in [15] and called rip-
ples. The authors studied in detail the conditions for
emergence, the parameters of the ripple-type irregular-
ities and their variations with the energy and angle of

incidence of the primary ion beam ( ).

Like in [15], ripples were observed in the crater only
on (111)A samples. Since the angle of incidence and
the energy of the primary beam were the same in our
SIMS measurements, the occurrence of ripples is prob-
ably related to specific features of the interaction of the
primary ion beam with the GaAs(111)A surface.
Apparently, the yield of Si ions in the SIMS analysis in
this case is averaged over the width (amplitude) of the
ripples (~120 Å in our study), which weakens the
dependence of the broadening of the profiles on depth.

O2
–
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Consider the data for the samples after annealing.
As seen in Fig. 4, in addition to the changing shape of
the NSi(x) curves, annealing affects the FWHM values.
In particular, for the (100) orientation, variations of the
FWHM values for the silicon-doped regions 1–3 before
and after the annealing are as high as ∆a0(1) – ∆00(1) ≅
90 Å, whereas for the (111)A orientation, these varia-
tions are insignificant and comprise ∆aA(3) – ∆0A(3) ≅
30 Å. The increase of FWHM for the (100) orientation
can be explained by Si diffusion during annealing, and
the observed minor increase of the FWHM value for the
(111)A orientation can be explained by both diffusion
and, as already noted above, by ripple-type irregulari-
ties emerging during SIMS measurements, as well as
by the details of the exit of the secondary ions from
such a surface. For the sample with the (111)B orienta-
tion, the FWHM variation after the annealing could not
be determined (except peak 3), because of the signifi-
cant modification of the NSi(x) curves. As seen in
Fig. 4, the Si redistribution in this case is substantial.
Apparently, in this case enhanced Si diffusion occurs
via defects. Both AFM and X-ray diffraction data show
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that the EFs on the (111)B substrates are the most
imperfect; this the Si distribution profiles should be
considerably smeared in this case.

Finally, consider the variation of NSi(x) in the near-
surface region. The presence of background silicon in
the thin near-surface region for the silicon-doped deep
GaAs epitaxial layers was observed in many studies
[8, 11, 12]. In some studies, this region is not consid-
ered at all, but the authors of [11] consider that the high
Si content in the initially undoped region does not
really mean high silicon concentration at the GaAs lat-
tice sites and rather comes from Si inclusions at the
growth defects, which was observed by the authors
under microscope. In our case, these inclusions were
clearly seen during SIMS analysis in the ion image
regime as fluorescent spots in the analyzed region. The
substantial withdrawal of silicon to the surface after
annealing for the sample grown on the (111)B-oriented
substrate can be explained by enhanced Si diffusion via
growth defects, because this surface is the most imper-
fect under the given growth conditions.

CONCLUSIONS

Thus, from the results of the performed study, the
following conclusions can be made.

The structural perfection and the surface roughness
of epitaxial films grown on (100)-, (111)A-, and
(111)B-oriented substrates at the same γ value is differ-
ent. In particular, at γ = 28, the structural perfection is
highest for the (100) orientation and lowest for the
(111)B orientation (W(100) < W(111)B, Ra(100) ! Ra(111)B).

In the surface study by AFM, it has been found that
during ion etching in SIMS measurements, the relief of
the GaAs surface with the (111)A orientation, in con-
trast to the (100) and (111)B orientations, develops in
the form of ripple-type irregularities. It is shown that
such a peculiarity of the relief development can deteri-
orate the depth resolution of the SIMS method, partic-
ularly in measurements of the impurity distribution
profile in thin and ultrathin layers.

The observed increase of the silicon content in the
near-surface region in annealed samples, in our opin-
ion, is related to enhanced Si diffusion via defects.
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SOLID-STATE ELECTRONICS
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Abstract—Numerical simulation of the non-steady-state kinetics for the solid solutions MBE-grown from
silane and germane with vapor sources was carried out. The smearing of the germanium distribution at the
interfaces in the Si1 – xGex/Si structures was studied both in the absence of the atomic fluxes in the reactor and
in their presence (the “hot-wire” method). It is shown that the use of an additional hot source enhances the
growth. Moreover, at gas pressures exceeding 10–3 torr (provided that the gas flow remains molecular) and at
growth temperatures Tgr < 600°C, such conditions can minimize the width of the transition regions at the inter-
faces. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In the last decade, the extensive study of silicon- and
germanium-based heteroepitaxial structures has
advanced to their application in the active elements of
various semiconductor devices. Large-scale production
of the device-grade heterostructures needs more feasi-
ble normal- and low-pressure vapor-phase epitaxial
techniques, which use Si and Ge hydrides and hydro-
chlorides [1, 2]. The vapor-phase epitaxial methods
produce the highly uniform large-area films and offer
higher throughput, since several substrates simulta-
neously can be placed in the growth chamber. More-
over, film growth in the rarefied hydrogen environment
stabilizes the film properties. Finally, a reduction of the
Si and Ge surface diffusion rate due to surface bond sat-
uration by hydride decomposition products lowers the
breakdown probability for two-dimensional growth,
thus providing good interface planarity in strained
nanostructures. The application of this technique for
the growth of complex semiconductor structures, how-
ever, has been retarded by extremely low growth rates
at reduced process temperatures and by difficulties in
obtaining abrupt (within a monolayer) interfaces
required to form subnanometer heterostructures.

To tackle the first problem, it has been suggested to
use both molecular and atomic fluxes of the material in
vapor-source MBE equipment. The atomic fluxes can
be formed by using an additional heated element
(a tungsten wire [3–5] or a sublimating silicon bar
[6, 7]) placed in the reactor. The effect of the additional
atomic fluxes on the rate of atom incorporation into a
growing Si1 – xGex layer in the hot-wire method of
vapor-phase MBE was analyzed in [8, 9]. The aim of
this study was to see how the additional hot source in
the reactor affects mixing of the alloy composition at
the interfaces of the Si/Si1 – xGex structure and, by cor-
1063-7842/01/4604- $21.00 © 20417
relating the profiles of the structures grown under dif-
ferent conditions, to find optimal regimes for obtaining
strained heterostructures with extremely abrupt inter-
faces.

To do this, we numerically solved a system of
kinetic equations that relate the concentrations Θi of the
Ge, Si, and H atoms and SiH3 and GeH3 molecules
adsorbed by the growing surface to the atomic and
molecular flows coming to the substrate. Earlier [8–13],
we considered the kinetics of hydride decomposition at
the surface of an epitaxial film and its effect on the
steady-state growth of Si1 – xGex layers. Therefore, the
form of the equations used will be excluded from con-
sideration. Note only that the validity of the kinetic
equations and the surface chemical reactions has been
checked by contrasting calculations with the steady-
state characteristics of the real growth process. This
allowed us to derive the hydride molecule decomposi-
tion times required for subsequent simulation [8, 9].

NUMERICAL SIMULATION 
OF THE NON-STEADY-STATE GROWTH 

KINETICS AND ANALYSIS OF THE TRANSITION 
REGIONS

Hydride pyrolysis and the formation of the transi-
tion regions at the interfaces will be studied as follows.
Consider the growth of a Si1 – xGex layer in a vapor-
source MBE reactor where an extremely sharp pulse (of
width t1 – t0) of germane molecules is imposed on a
steady silane flow. The applicability of such a model is
based on the possibility of instantaneous flow switch-
ing in the modern reactors. However, the component
distribution in the growing Si1 – xGex layer is almost
always far from rectangular (Fig. 1). The simulation of
the component distribution was carried out for two
001 MAIK “Nauka/Interperiodica”
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cases: (1) atomic flows in the system are absent (g = 0)
and (2) atomic flows in the reactor are significant (the
hot-wire technique) (g ≠ 0). Hereafter, the process
parameter values are taken close to those most fre-
quently used in the experiment: Tgr = 500°C, x = 0.35,
k = rGe/rSi = 1,  = 1 × 10–5 torr, and  = 3.45 ×
10–5 torr. Here, Tgr is the substrate temperature, rGe(Si)
are the rate constants for crystallization of Ge(Si)
atoms adsorbed by the surface, and  are the
hydride partial pressures in the reactor. In the general
case, the r values depend on the surface coverage by
hydride decomposition products, which was included
in the calculations. The characteristic values of rSi for
different growth temperatures and gas pressures are
presented in [8].

The introduction of an additional hot source (Fig. 1,
dashed curve) does not change the composition of the
alloy but markedly increases the growth rate and alters
the thickness of individual layers of the heterostructure
compared with the case g = 0 (solid curve). As follows
from Fig. 1, the germanium distribution in the structure
is highly asymmetric. This is presumably due to the dif-
ferent roles played by mechanisms involved in the for-
mation of the transition regions at the interfaces. We
exclude from consideration the segregation effects,
caused particularly by the difference in the coefficients
of incorporation of silicon and germanium atoms into a
growing layer. The segregation becomes of great
importance at higher growth temperatures. At the lower
boundary of the layer (t ≥ t0), the interface smearing is
determined by the rate of germanium accumulation on
the surface of the growing film. Near the upper bound-
ary (t ≥ t1), the smearing is determined by relaxation
processes related to the finite rate of hydride pyrolysis

PGeH4
PSiH4

PGeH4 SiH4( )

x
100

10–1

10–2

0 0.4 0.8 1.2 1.6
z, nm

a b

L'

L

t0 t1

Fig. 1. Germanium distribution in the Si0.65Ge0.35 layer of
the Si/Si0.65Ge0.35/Si heterostructure when a pulse (of
width t0 – t1) of germane molecules is switched on.

 = 1 × 10–5 torr, g = (a) 0 and (b) 0.037,  =

3.45 × 10–5 torr, Tgr = 500°C, x = 0.35, and k = 1.

PGeH4
PSiH4
on the surface and to the finite rate of atom incorpora-
tion into the growing layer.

From time dependences of the surface concentra-
tions of GeH3 and SiH3 hydride radicals and Si, Ge, and
H atoms, as well as of the film growth rate (Figs. 2a–
2f), one can gain a better understanding of the pro-
cesses occurring on the growing surface at the instant
the germane pulse is applied to the reactor. In this study,
we do not consider specific paths of molecule decom-
position on the film surface. All the intermediate chem-
ical reactions with the formation of Si(Ge)H2 and
Si(Ge)H radicals were combined into the overall reac-
tion characterized by the effective times of complete
Si(Ge)H3 decomposition. These times were evaluated
[8, 9] using steady-state dependences of the growing
layer composition and the growth rate on basic epitaxy
parameters. Figure 2 shows that, with the appearance of
germane molecules in the reactor, the concentration of
both GeH3 molecules (Fig. 2c) and germanium atoms
(Fig. 2a) on the surface of the growing film abruptly
increases, while the surface concentrations of the other
components sharply drops (Figs. 2b, 2d, and 2e). In
particular, germanium atoms on the silicon surface con-
siderably reduce its coverage by hydrogen (Fig. 2e),
since the energy of hydrogen desorption from Ge is
lower than from Si [1, 8]. The difference between the
hydride decomposition rates and the hydrogen desorp-
tion rate, as well as between the Si–Si and Si–Ge bond
energies [Ebond(Si–Si) > Ebond(Si–Ge)], explains the
nonmonotonic behavior of the surface concentration of
Si adatoms and of the growth rate at the instants the ger-
mane molecular flow is switched on and off. The
extremely low surface coverage by SiH3 molecules dur-
ing the Si1 – xGex growth stems from the fact approxi-
mately order of magnitude larger decomposition rate
compare with GeH3.

Below, we will consider the transition processes
only near the upper boundary of the layer. Let the width
of the diffusion smearing of the profile at the interface
be L' at a level of 0.1x and L at a level of 0.01x. Typical
dependences of these values on the germane pressure in
the reactor for g = 0 and g = 0.037 are shown in Fig. 3b
(the corresponding values of the silane pressure can be
determined from curve 1 in Fig. 3a). For the parameter
values chosen and in a rather wide range of the gas
pressures at g = 0, the value of L' is equal to 2 Å and L
is about 7–9 Å. The solid solution growth rate therewith
remains very small (of the order of one angstrom per
minute, solid curve 2 in Fig. 3a), although it seems that
just such rates may be more suitable for the growth of,
for instance, Si1Ge1 heterostructures where the quality
of individual monolayers within the unit cell is the key
issue. However, extremely low growth rates make this
method impractical for growing the structures under
industrial conditions.

The way out without going to higher growth temper-
atures and higher hydride pressures is to use the hot-
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
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Fig. 2. Time dependences of the Si0.65Ge0.35 growth rate and the surface concentrations Q at Tgr = 500°C, k = 1,  = 3.45 ×

10−5 torr, and  = 1 × 10–5 torr; g = 0 (solid curves) and 0.037 (dashed curves).
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wire method (dashed curve 2 in Fig. 3a), that is, to com-
bine molecular and atomic flows in the reactor (dashed
curve 2 in Fig. 3b). With this method, the growth rate
can easily be increased several times, while the smear-
ing of the composition profile also grows. In the most
common range of pressures (0.1–1 mtorr), the smearing
is as large as 10–20 Å (dashed curve 2 in Fig. 3b) even
though the germanium distribution in the Si1 – xGex

layer may become more abrupt at the initial portion of
germanium concentration decay (dashed curve 1 in
Fig. 3b). Calculations show that the interface is the
most abrupt (L ≈ 1 Å) at sufficiently high pressures and
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
high growth rates, where the atomic beams from the hot
source make a major contribution to the growth. In this
case, the process becomes akin to traditional MBE with
solid sources of Si and Ge.

In Fig. 4b, L is plotted against the efficiency g of the
hot source for two gas pressures in the reactor. At the
higher pressure (solid curve), the atomic fluxes from
the hot wire dominate in the growth process, while, at
the lower pressure (dashed curve), the molecular fluxes
prevail and the growth process is controlled mainly by
hydride pyrolysis on the substrate. For better under-
standing of the different behavior of curves 1 and 2 in



420 ORLOV et al.
Fig. 4b, Fig. 4c shows the corresponding dependences
of the surface concentrations of the atoms and mole-
cules on the hot source efficiency. As g increases, all the
surface components rapidly saturate and the main rea-
son for the different behavior of the curves in Fig. 4b is
the competition between different mass transfer mech-
anisms (growth from atomic or molecular fluxes). The
initial increase of curve 1 and the increase of curve 2 in
the whole range of g are related to a monotonic rise in
the growth rate when the molecular-beam growth
mechanism is essential (Fig. 4a). The subsequent sharp
decrease in the L value, followed by an approach to the
steady-state value of the diffusion interface smearing
(within 1–2 Å) (curve 1 in Fig. 4b), is related to a
change in the mass transfer mechanism. In this range of
g, the atomic fluxes of Si and Ge from the hot source are
of primary importance in the growth process.

In closing, let us to discuss characteristic depen-
dences of the transition layer width L' on the growth
temperature and gas pressure in the reactor (Fig. 5).
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Fig. 3. (a) Dependences of the (1) silane pressure in the
reactor and (2) Si0.65Ge0.35 growth rate on the germane
pressure; (b) characteristic values (1) L' and (2) L of compo-
nent mixing at the upper interface vs. germane pressure at
x = 0.35, Tgr = 500°C, and k = 1; g = 0 (solid curves) and
0.037 (dashed curves).
The L' values considerably diverge in the presence and
absence of the hot source in the reactor. The L' value
increases with an increase in the gas pressure (and,
hence, in the growth rate). If the decomposition times
for molecules adsorbed on the film surface are the
same, the transition region is the thicker, the higher is
Vgr . For the same reason, the interfaces become diffuse
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are the case of extremely low gas pressures (Fig. 5,
curves 3), where the atomic fluxes from the hot source
are insignificant, and the case of high gas pressures and
growth temperatures Tgr < 600°C (Fig. 5, curves 1). It is
clear that the transition region at the interfaces may
become very thin only in the latter case, where low
growth temperatures (Tgr < 600°C) and atomic fluxes
from the “hot wire” (g ≠ 0) control the formation of the
solid solution layer.

CONCLUSION

Note basic reasons that specify the component pro-
file smearing at the interfaces when the process param-
eters are changed. One is a decrease in the lifetime of
molecules adsorbed on the surface with increasing sub-
strate temperature. Another is associated with a change
in the roles of the atomic and molecular fluxes in mass
transfer toward the growing surface. At high pressures,
the latter has a more profound effect on the transition
layer width. The hot-wire method increases the growth
rate (provided that the flow of gases remains molecu-

L'

2

1

0
500 600 700 800

T, °C

1

2

3

Fig. 5. L' as a function of the growth temperature.
/  = 5;  = (1) 1 × 10–3, (2) 1 × 10–4, and

(3) 1 × 10–5 torr. Open symbols, g = 0; closed circles, g =
0.1 (hot-wire method).

PSiH4
PGeH4

PSiH4
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lar). At gas pressures exceeding 10–3 torr and at growth
temperatures below 600°C, it may be optimal for the
minimization of the transition regions near the inter-
faces.
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Abstract—Temporal parameters of the current pulses generated by a Gunn diode operating in domain mode in
relation to the supply voltage and load resistance are numerically simulated. The results of the numerical and
analytical studies are compared. The validity range of the analytical formulas is ascertained in detail. In the con-
text of the considered model, the minimum pulse duration and the time of domain formation are obtained at
zero load and for a supply voltage exceeding the critical value by a factor of 1.25. © 2001 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

A number of attractive features of electrical current
short pulses generated by a Gunn diode make it prom-
ising for application in high-speed electronic and opto-
electronic devices [1–4]. For example, a Gunn diode
enables one to obtain high amplitude ultrashort pulses
of current (tens of amperes) with a duration ranging
between tens and hundreds of picoseconds at a low-
resistance load.

From practical point of view, it is important to know
the dependences of the amplitude, the shape and the
temporal characteristics of the pulses on the load (in
external circuit) and supply voltage, as well as the oper-
ating conditions that yield the minimum duration of the
pulses generated. There are numerous studies concern-
ing Gunn diode transients. The most detailed analysis
of the domain dynamics were carried out in [2, 5, 6],
and a brief overview of the previous results related to
this problem was presented in [7]. However, these stud-
ies are not free of drawbacks and are subject to refine-
ment. By way of example, in the often sited publica-
tions [5, 6], the transient time of domain formation is
specified as the time of settling of a steady-state voltage
at a domain, whereas the time of establishment of a
steady-state current through the sample is practically
important. For the supply voltage considerably exceed-
ing the Gunn effect threshold, the latter time can be
considerably shorter than the former due to the satura-
tion of the current at a high domain voltage. An addi-
tional point to clarify is the validity range of analytical
formulas derived in [2, 5] for the time of domain forma-
tion in relation to the load resistance and the supply
voltage.

In this paper, we report the results of studying the
temporal parameters of pulses: the total width τw, the
rise time τr, the decay time τd in the steady-oscillation
mode, and the time of establishment of a steady-state
1063-7842/01/4604- $21.00 © 20422
current τs in the single-pulse mode in relation to the
supply voltage and the resistive load. All the calcula-
tions are accomplished for a Gunn diode model with
parameters representing those of an actual diode. The
supply voltage and the load vary in the ranges corre-
sponding to the absence of impact ionization in an
actual sample.

MODEL REPRESENTATION 
AND CALCULATION TECHNIQUE

We numerically simulated the dynamics of charge
and current in n-GaAs samples with the following
parameters: length l = 100 µm, µ0 = 0.8 m2/(V s), D =
200 cm2/s, Vs = 0.85 × 105 m/s, and E0 = 4 × 105 V/m.
The set of phenomenological parameters given above
corresponds to the diode characteristics used in [3]. The
calculations were made in terms of the local-field one-
dimensional model [4] including the equation for the
total electric current

(1)

where n0(x) = nd f(x) stands for the equilibrium concen-
tration of electrons, D is the diffusion coefficient, and ε
is the permittivity. The equation for the external
circuit is

(2)

εε00
∂E
∂t
------ V E( )∂E
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∂2E
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---------–+ 
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+ q V E( )n0 x( ) D
dn0
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where S is the area of the sample, U0 is the supply volt-
age, and Rn is the load resistance.

The field dependence of the electron velocity
(velocity–field characteristic) is approximated by the
well-known expression [8]

(3)

where E0 is a normalizing field, Vs is the saturation rate,
U0 is the supply voltage, and µ0 is the weak-field
mobility.

Strictly speaking, the local field model that treats the
electron velocity as an instantaneous function of field is
not adequate for the analysis of transients lasting for
tens of picoseconds. However, its application to the
case under consideration is justified by the fact that we
are interested in the relative variations in the pulse
durations with the load resistance and the supply volt-
age rather than in the absolute duration of pulses. For
the same reason, the model of the sample (Fig. 1) does
not account for contact inhomogeneities and the bound-
ary conditions are given by

(4)

(5)

where Ut denotes the threshold voltage of the Gunn
effect and L is the length of the sample.

The domain formation was initiated by a stepwise,
change (amounting to about 10%) in the equilibrium
concentration of the near-cathode electrons, the so-
called “notching.” Variation of the notch depth within
the 5–10% range affected only slightly on the results of
calculations. Moreover, the calculated duration of
pulses is very close to that experimentally observed [3].
It is convenient to search for a numerical solution of
Eqs. (1) and (2) in terms of the dimensionless variables:
X = x/l0, T = t/τ0, V1 = V/V0, and E1 = E/E0, where the
unit velocity V0 = µ0E0, the unit time τ0 = (εε0)/(qndµ0),
and the unit length l0 = V0τ0. On rearrangement, the
system of Eqs. (1) and (2) becomes

(6)

(7)

where Xmax is the dimensionless diode length, f =

(n(x))/nd is the diode doping profile, c = (Dτ)/  is the
dimensionless diffusion-length squared, R0 =
L/(en0µ0S) is the low field resistance of the sample, and
J1 = J/(qn0V0) is the normalized current density.

The system in question was approximated with an
absolutely stable and conservative implicit difference
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scheme obtained by an integro-interpolation technique
[9, 10]. For a grid x = ih, t – jτ, we have

(8)

In order to find the field  at the (j + 1)th time
layer, the system of nonlinear difference Eqs. (8) is
reduced to the following iterative scheme (s is the num-
ber of iteration):

(9)

Here, A, B, and C coefficients are determined from (8)
and can be written as

The system of linear Eqs. (9) is solved for  by
the sweep method [10] with the boundary and initial
conditions (4) and (5), respectively. We assume that, at

zero iteration step,  is equal to  and after two iter-

ations,  is equal to . The mesh width was
chosen from conditions for ensuring computation con-
vergence, reasonable calculation time, and amounts τ =
0.2 and h = 0.5.

RESULTS AND DISCUSSION

Steady-State Self-Oscillation Mode

The duration of the domain pulse of current versus
the notch amplitude for different resistive loads is
shown in Fig. 2. It is evident that the notch amplitude
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Fig. 1. Doping profile in the Gunn diode.
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optimal for our calculation amounts approximately to
10%, which corresponds to the flat portion of the
curves. The influence of the load resistance was studied
with the bias voltage maintained at the threshold level

τw, ps
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Fig. 2. Pulse duration in the steady-state self-oscillation
mode versus the depth of a notch in the doping profile for
different resistive loads U given by (10); m = 1.
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Fig. 3. Temporal parameters of pulse versus the resistive
load Rn and voltage given by (10) (a) for m = 1 and (1) τd,

(2) τr, (3) τw, and (4) τw = τ0w(1 + Rn/Rt)
1/2; (b) for m = 1.5

(curves 1–4) and constant supply voltage U = 2.5Ut: (1') τd,
(2') τr, and (3') τw.
(or larger than the threshold by a given factor of m); i.e.,
we have

(10)

where

is the resistance of the sample at the threshold voltage
Et = Ut/L.

The temporal parameters of the current pulse in the
steady-state self-oscillation mode (for the second and
subsequent domain cycles) versus the resistive load are
shown in Figs. 3a and 3b for m = 1 and 1.5, respectively.
In addition, for the sake of comparison, we also show
the results of analytical approximation [4]:

fitted to numerical curve 3 at Rn = 0. Here, τ0w stands for
the pulse width at Rn = 0.

The pulse temporal parameters against the load
resistance Rn at constant supply voltage U = 2.5Ut are
plotted in Fig. 3b. It can be seen that, at constant voltage
maintained at a threshold (or by a factor of m larger), all
the parameters increase steadily with load. This follows
from an increase in the domain charging discharging
time constant proportional to the domain capacity and
the load resistance [2]. The monotonic character of the
curves in this case is attributed to the fact that, whatever
Rn is, the conditions for domain formation are the same,
specifically, when the sample voltage equals mUt.
Therefore, the initial capacitance of the domains
remains constant. A comparison of Figs. 3a and 3b
shows that the analytical and numerical curves coincide
at the threshold voltage and that further increase in the
diode voltage draws them apart. At constant supply
voltage (Fig. 3b), the temporal parameters of the pulse
generally exhibit a weak dependence on the low-resis-
tance load but rise steeply for greater Rn. The latter phe-
nomenon is due to the load–diode voltage redistribu-
tion, resulting in the drop of the diode bias below the
threshold and the cessation of generation.

The temporal parameters of pulses in relation to the
supply voltage in the steady-state self-oscillation mode
for Rn = 0.01Rt and Rn = 0.5Rt are shown in Figs. 4a and
4b, respectively. In the latter case, the rise and decay
times increase steadily with voltage, while the total
pulse width first decreases somewhat and then
increases steadily. When analyzing the transient pro-
cess, it is important to bear in mind that the build-up
conditions for the first and the following domains are
different. In particular, the first domain emerges in
homogeneous samples (within the model assumed),
while every successive domain is affected by the pre-

U mUt 1
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Rt
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ceding one. The larger the bias voltage, the more pro-
nounced the influence of a preceding domain; i.e., for
most of the oscillation period, two domains coexist. As
was mentioned in [6], the domain outgoing into the
anode serves as a resistive load for the dipole layer
under formation. This resistive load increases with the
bias voltage, thus extending both the decay time and the
total pulse width.

Evolution of current pulses was simulated for vari-
ous supply voltages (Fig. 5). It is evident that the cur-
rent-pulse shape depends on the law of the voltage
build-up. The curves shown in Fig. 5a correspond to
voltage increasing exponentially with time constant at
50 ps; Fig. 5b corresponds to a stepwise increase in the
voltage.

Single-Pulse Mode 

As was mentioned above, it is convenient to charac-
terize the Gunn diode transients using the time of estab-
lishing the steady-state current τs. Let us define it as the
time period lasting from switching on the power supply
up to the moment when the diode current exceeds satu-
ration by 0.1 of the difference between the threshold
and saturation currents. For all calculations, a stepwise
rise of the supply voltage is assumed. The transient
time τs calculated as a function of the load resistance is
plotted in Fig. 4c, with m = 1. The time of domain for-
mation analytically estimated by expression (4.7.28)
given in [2] and the formula from [4], which is men-
tioned above, is also shown for comparison. These two
curves indicate that there is good agreement between
the numerical and analytical results, especially for the
large notch values. The last feature follows from the
fact that expression (4.7.28) in [2] was derived disre-
garding the low-signal stage of the domain growth.

The time of the current transient as a function of the
supply voltage for Rn = 0.01Rt is presented in Fig. 4a.
The corresponding analytical estimation (4.7.28) [2] is
also shown. It can be seen that, at high voltages, the
analytical curve does not even qualitatively agree with
the numerical one; the latter predicts an increase in all
the characteristic temporal parameters of pulse with
voltage for both the first and the successive domains.
Therefore, the analytical expression from [2] for the
time constant of domain formation is valid only at low
diode voltage, since this expression is based on the
assumption of V(Er) = µ0Er which is valid only for the
residual field Er below the threshold. In this connection,
we should note the that the interpretation [6] of the ana-
lytically predicted acceleration of the domain forma-
tion with voltage in [2, 5] is generally incorrect. This
interpretation is based on the assumption that at high
voltages, the domain capacitance is charged with a
larger current; hence, the domain has an increased
capacitance for a shorter time. The above consideration
is inappropriate since it does not account for a high-
field leveling-off of the carrier velocity. The accelera-
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
tion of the domain formation with voltage manifests
itself only in a decrease in the decay time τc from the
threshold to the saturation value (Fig. 5b). In this case,
the assumption V(Er) = µ0Er is correct and the analyti-
cal formula for the voltage dependence of the pulse
decay time is qualitatively adequate (Fig. 4a). Quanti-
tative discrepancies stem, firstly, from the saturation of
current (analytically, it is the time of voltage settling
that is considered) and, secondly, from the fact that the
domain acquires basically different shape in a strong
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Fig. 4. Temporal parameters of pulse versus the supply volt-
age for different resistances of (a) Rn = 0.01Rt and (b) 0.5Rt:
(1) τw, (2) τr, (3) τd, (4) τs, (5) τc, and (6) analytically esti-
mated time of domain formation; (c) transient time versus
load resistance at m = 1 for depth of the doping notch dn/n0:
(1) 0.02, (2) 0.1, and (3) 0.4; (4) corresponds to analytically
estimated time of domain formation.
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field during the formation of the transient rather than a
steady-state domain; the latter circumstance is disre-
garded in analytical treatment for simplicity.

From the above discussion, it is easy to explain
qualitatively the shape of the current pulse during the
domain formation transient and also the dependence of
the transient time on the supply voltage. When slightly
above the threshold, the supply voltage validates the
assumptions made in analytical theory [5] and the the-
ory is applicable. At higher voltages, the domain forma-
tion can be divided into two stages. In the first stage, the
field in the sample is above the threshold and the diode
current is small. During domain formation, the outside
domain field decreases and the diode current increases
(Fig. 5b). As a result of the leveling off of the velocity–
field characteristic, the difference in electron velocities
inside and outside the domain decreases with the volt-
age (Fig. 5b). In the second stage, when the diode cur-
rent and the residual field Er in the diode drop below the
threshold, theory [5] is valid and the decay time of cur-
rent decreases with voltage due to a decrease in the
domain capacitance. For comparatively low supply
voltages, a decrease in the domain capacitance prevails,
while at higher voltages, an increase in the rise time due
to the carrier velocity saturation is dominant. There-
fore, the time of formation is shortest when these two
effects are counterbalanced.

CONCLUSION

The dynamics of a dipole domain in a Gunn diode
connected to a resistive load is studied. The calculation
shows that, for a constant voltage maintained at the
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Fig. 5. Shape of diode current pulses resulting from supply
voltage with different rise times: (a) exponential rise with
time constant 50 ps for m: (1) 1 and (2) 1.5; (b) stepwise rise
for m: (1) 1, (2) 1.5, and (3) 2; (4) τc, (5) τs.
threshold level, the duration of current pulses steadily
grows with the load and can be approximated as

where τ0w is the pulse duration for Rn = 0.
For a constant supply voltage, the parameters of a

pulse vary with the load resistance only slightly; how-
ever, as Rn/Rt increases above 1.5, the pulse duration
increases, and then up to break down of oscillations. In
the general case, voltage dependences of the temporal
parameters of pulse are nonmonotonic. As voltage
increases, the pulse duration first slightly decreases,
attains a minimum at U/Ut = 1.25, and then begins to
increase. The analytical estimation of the time of
domain formation proved to be correct only for fields
close to the threshold value. In contrast to analytical
predictions, neither the domain formation time nor the
transient time of the current decrease with voltage;
rather, both of them increase. Only the decay time of
current decreases with voltage: it decreases from the
threshold to the saturation value. Our calculation indi-
cates that the minimum transient time (within the
model assumed) is attained at the supply voltage
exceeding the threshold by a factor of 1.25 and with
zero load resistance. The results obtained hold much
promise for the design of high-power Gunn generators
of picosecond pulses.
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Abstract—The range of rearrangement of the natural domain structure of epitaxial garnet ferrite films in mag-
netic fields produced by conventional recording magnetic media was calculated using numerical methods. Max-
imum and minimum periods of the recording medium signalograms that could be imaged using the film domain
rearrangement were obtained as functions of the recording medium and film parameters. © 2001 MAIK
“Nauka/Interperiodica”.
Magneto-optic methods of information processing
have many applications. This makes the problem of
studying the behavior of the domain structure (DS) of
epitaxial garnet ferrite films (EGFF) in spatially non-
uniform magnetic fields fairly topical. Domain struc-
ture rearrangement in magnetic fields produced by con-
ventional recording magnetic media (RMM) is of spe-
cial interest. The period of nonuniformity of these
fields is comparable with the natural period of the
domain structure of EGFF, whereas the field amplitude
does not exceed the field of collapse of the natural DS.
Rearrangement of DS can be implemented by changing
the natural DS period [1–3] or by domain width modu-
lation [4, 5].

Calculations of the statistical parameters and condi-
tions for stability of strip DS induced by a spatially
nonuniform field of RMM were performed in [1–3].
However, only thick EGFF were studied in these
papers. The natural period d0 of narrow stripe domains
formed in such EGFF is smaller than the film thickness
h. Such films can be used to image signalograms with
large stray fields. Topographizing of signalograms from
weakly magnetized RMM should be performed using
thin films even though the total Faraday rotation is
decreased, because the amplitude of the stray field of
the periodic signal decays exponentially upon increas-
ing the spatial frequency and distance to RMM. How-
ever, if the film thickness is less than the characteristic
length λ of EGFF material, the natural DS period
becomes approximately equal to the film thickness. In
this case, the results obtained in [1, 2] are invalid. Thus,
it seems reasonable that the imaging of signalograms
with small stray fields should be performed using thin
films with the DS period much larger than the film
1063-7842/01/4604- $21.00 © 20427
thickness. The calculations given below are valid for
any value of x0 = d0/h.

In the approximation of high uniaxial anisotropy
(quality factor Q @ 1), a natural strip or labyrinth DS
with linear domain boundaries (DB) is formed in the
film. The magnetization vector is parallel to the DB
plane. The exchange energy and the energy of anisot-
ropy can be included in the DB energy. Let the consid-
eration be restricted to the case of one-to-one corre-
spondence. In this case, the period of the DS induced by
the RMM field is exactly the same as the signalogram
period [1], and the sinusoidal instability effects are
absent (i.e., the DB are linear). Development of sinuso-
idal instability of the DB results in the formation of a
DS combining uniformly magnetized areas with laby-
rinth patterns. In a sense, this case meets the conditions
for analog representation of the signalogram field by
the domain width modulation [5].

Let us consider a two-layer system consisting of an
RMM and an indicator EGFF separated from one
another by a gap a. The recording medium is the source
of a spatially nonuniform magnetic field. Assuming
that the residual magnetization distribution in the
RMM with longitudinal magnetization is described by
the harmonic function with a period d, the system
energy density can be written in a conventional form [1]

(1)

where λ0 = λ/h, k = t/h, a0 = a/h, x = p/h, ν =
(π/4)(Mt/Ms); t and Mt are the thickness and the residual
magnetization of RMM, respectively; p and Ms are the
induced DS period (equal to the RMM field period) and
the EGFF saturation magnetization, respectively. Func-
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tions F(x) and G(x) are determined as follows:

(2)

The first two terms in Eq. (1) are the DB energy den-
sity and the magnetostatic energy density, respectively.
The last term describes the interaction between EGFF
and RMM.

The equilibrium period p0 of the induced DS of
EGFF is subject to the condition for minimum W and
should satisfy the following equation (q = p0/h)

(3)

where

(4)

Parameter λ0 involved in Eq. (3) can be expressed in
terms of the natural period d0 of EGFF DS. If ν = 0, we
obtain from Eq. (3) that (x0 = d0/h)
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Fig. 1. Equilibrium period of the induced DS normalized to
the natural period d0 as a function of x0 and ν.
from which it follows, in particular, that the natural DS
period in thin films (πλ0 > 1) is of the order of thickness
h [1]:

Thus, Eqs. (3) and (5) determine the equilibrium
period of the induced DS of EGFF as a function of the
natural DS period and the system parameters ν, l, and
a0. In the least understood range p0/h > 1 and x0 > 1, this
equation can be solved numerically. The dependence of
p0/d0 on x0 and ν for k = 1 and a0 = 0.2 is shown in
Fig. 1. It can be seen that p0 significantly exceeds d0 at
large values of ν and is virtually independent of x0.

Analysis of Eq. (1) shows that the energy branch of
the EGFF–RMM system is below the energy branch of
the separate EGFF. Therefore, there is a range of
parameters x and ν (k and a0 being fixed) within which

(6)

so that the induced DS rather than natural DS is energy-
optimal within this range.

Expression (6) can be regarded as the amplitude–
frequency characteristic of the system, because it
relates the frequency characteristics of EGFF (x0) and
RMM (x) to their amplitude characteristics (ν). Solving
this inequality for x, we obtain the limits of rearrange-
ment of the induced DS of EGFF exposed to the RMM
field as a function of x0 and ν:

(7)

This equation has two roots corresponding to the
minimum (pmin) and maximum (pmax) periods of RMM
signalograms that can be imaged using the EGFF DS
rearrangement. A stable strip structure representing the
spatial distribution of the field should exist within this
range of periods.

The results of the numerical solution of Eq. (7) are
shown in Fig. 2. It can be seen that the induced DS rear-
rangement range is extended with increasing amplitude
of the RMM stray field, provided that the EGFF mag-
netization is constant. As seen from Fig. 2, the range of
periods significantly larger than the natural DS period
(i.e., low spatial frequency range) is included in the
rearrangement range. The properties of the film also
affect the rearrangement range. The imaging range is
extended with increasing x0. It should be noted that pmin
depends on x0, ν, and k much differently than pmax. The
period pmin is a monotonically decreasing function of
both x0 and ν and depends only slightly on k, whereas
pmax is virtually independent of the EGFF properties
(x0) and depends on k and ν in the following manner:
pmax ≅  α(k)ν, where α(k) is a monotonically increasing
function of k.

x0 πλ0 c–( ), cexp 1.3.= =

W x ν,( ) W x0 ν 0=,( ),≤

F x( )
ν
2
---G x( )– x2 x0F x0( ) + π3λ0

x0
----- x– π3λ0–  = 0.
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On solving Eq. (7) for ν, we obtain the amplitude
sensitivity threshold νmin for EGFF:

(8)

Within the range 1 < x0 < 10, Eq. (8) can be approx-
imated as νmin ≅  0.35(γ – 1), where γ = x/x0 > 1. If the
EGFF DS period is equal to the RMM field period,
γ = 1 and νmin = 0. Thus, the condition (6) for the occur-
rence of the induced DS can be recast as:

(9)

The spatial frequency characteristics of EGFF used
as transducers in imaging devices were determined
experimentally using special reference signalograms
stored on magnetic tape. The signalograms consisted of
a series of sinusoidally magnetized areas (signal pack-
ages modulated onto the harmonic carrier). The spatial
frequency of all packages constituting the given sig-
nalogram was constant, whereas the residual magneti-
zation of a package was half as high as that of the pre-
ceding package. Such signalograms were recorded
using a high-frequency bias-current pulse series modu-
lated in amplitude such that the amplitude of each sub-
sequent pulse was half as high as that of the preceding
pulse (Fig. 3). The package-shaping device provided an
11-bit record of signal amplitude, discrete frequency
adjustment, high-frequency bias-current optimization,
and nonlinear distortion monitoring. Tapes with various
magnetic coatings (including two-layer tapes) were
used for recording. Reference standards of nonuniform
magnetic fields with spatial frequencies falling within a
range of 1000 to 5 mm–1 inclusive were obtained. Max-
imum residual magnetization of the obtained standards
did not exceed 0.7 of the RMM saturation magnetiza-
tion.

Signal package imaging was based on the Faraday
effect in reflected polarized light. Packages meeting
condition (9) were distinctly seen against the back-
ground of the natural DS of EGFF as strip domains with
a period equal to the signalogram period. Packages that
did not meet condition (9) could not rearrange DS and,
therefore, could not be observed. The number N of
observed packages is related to νmin by the equation

(10)

where νmax corresponds to the package with the maxi-
mum residual magnetization (this value is constant for
a given EGFF–RMM system).

As follows from Eq. (10), N increases with decreas-
ing γ and reaches its maximum for γ  1. This is
illustrated in Fig. 4, in which a film segment with an
induced magnetization jump (natural period) in the
RMM field is shown (signal was recorded as shown in
Fig. 3). In the region A, γ = 1.2 and the number of

νmin
2

xG x( )
--------------- π3λ0

1
x
--- 1

x0
-----– 

  xF x( ) x0F x0( )–+ .=

pmin p pmax, ν νmin.>< <

2N νmax= /νmin,
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observed packages N = 5, whereas in the region B, γ =
0.5 and N = 2. The dynamic range of the natural DS
rearrangement also depends on N:

(11)D 20 2N .log=

dmin/d0
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Fig. 2. (a) Minimum and (b) maximum periods of the
induced DS normalized to the natural period of the film d0
as a function of x0 and ν.
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Fig. 3. Signal package recording signal oscillogram.
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A

B

Fig. 4. Control signalogram imaging using EGFF with a local gradient of saturation magnetization. In region A, magnetization
is less than in region B. The spatial period is 50 µm.
The dependence of D on x for given x0 and νmax is
shown in Fig. 5. As seen from Fig. 5, there is a singu-
larity in D for γ  1. The dynamic range of EGFF
was evaluated by calculating the number N of packages
discerned during imaging. In the region A of the film
(Fig. 4) the dynamic range D was 24 dB; in the region
B, 18 dB. The majority of EGFF with perpendicular
anisotropy used in imaging devices have a dynamic
range D of approximately 30–35 dB. A decrease in the
dynamic range is observed at high spatial frequencies,

D
100

75

50

25

0

1 2 3

1 3 5 7 9 11 13 15 x

Fig. 5. Dependence of the dynamic range D on x: νmax = 7;
x0 = (1) 3, (2) 5, and (3) 7.
which correlates well with the calculations made
above.

Thus, the analysis of magnetostatic interactions in
the system EGFF–RMM showed that (a) the dynamic
range D is maximum for γ  1, the sensitivity is also
maximum for γ  1 (νmin  0), (b) the induced DS
rearrangement range depends mainly on the ratio
between the tape and film magnetizations, (c) it is expe-
dient to use films with the period d0 far exceeding the
film thickness h for imaging high-spatial-frequency
signalograms, and (d) imaging of large spatial periods
requires the parameter k of EGFF to be increased.
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Abstract—The spectral distribution of nonequilibrium emission from electron bands of partially dissociated
CO2 in a supersonic jet was studied. A detailed model of kinetic and energy-exchange processes in a vibra-
tionally nonequilibrium recombining CO2 flow is elaborated. Within this model, the basic kinetic equation for
the distribution of CO2 excited state populations was solved in a ladder approximation. It is shown that inverse
population for the 3B2  X1Σ transition (λ = 400 nm) is a possibility. The effect of mixture and flow param-
eters on the population inversion for electron vibrational transitions in CO2 was analyzed. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The development of new high-intensity radiation
sources, such as high-power gas lasers, necessitates
advanced techniques for simulating nonequilibrium
processes in a high-temperature gas and in a plasma. Of
special interest are supersonic jets of a high-tempera-
ture gas, where a variety of complex nonequilibrium
phenomena may occur. Among these are the quenching
of internal degrees of freedom and recombination of
dissociated components. Gas-dynamic vibrational tran-
sition lasers and recombination electron vibrational
transition lasers are well-known applications of these
effects [1, 2]. While the kinetics of vibrational states
has been studied thoroughly, recombination population
of excited electron states calls for in-depth analysis.

Gas-dynamic recombination lasers (GDRLs) utilize
thermal pumping. Like other visible-light lasers, their
basic advantage is the simplicity of producing the
inverted medium. The working medium in GDRLs is
created as follows. In a supersonic jet of dissociated
molecular gases, partial freezing of the vibrational and
electron degrees of freedom of the particles takes place.
Even for slight recombination and low radiation cool-
ing of several levels, this effect disturbs the equilibrium
distributions of the molecules and causes nonequilib-
rium emission from dissociated gas jets. Under certain
conditions, inverse population for electron vibrational
transitions may be observed.

The possibility of creating a GDRL was first studied
in [3]. Later, early versions of these devices were
implemented [4–7]. A theoretical model of a CO2
GDRL was suggested in [8, 9]. However, reliable data
for mechanisms and rates of kinetic processes that lead
to inversion in lasing media containing molecular gases
were lacking. Up to now, this has retarded the fabrica-
tion of visible-light GDRLs.
1063-7842/01/4604- $21.00 © 20431
The most complete information on energy exchange
in a jet of a recombining gas is gained from a solution
to the basic kinetic equation (BKE) for the populations
of all microscopic states in a given molecular system.
The ladder approach to solving the BKE for systems of
multiatomic molecules is known [10, 11], which was
extended in [12, 13] and applied to describe energy
exchange in recombining CO2 jets [14]. In this work,
the ladder approach is used to describe recombination
emission from supersonic jets of high-enthalpy gases.
We applied it to see whether population inversion for
electron vibrational transitions in CO2 is possible under
supersonic flow conditions. Also, we tried to develop a
model of kinetic and energy-exchange processes in a
recombination CO2 laser. Finally, our goal was to esti-
mate the effect of the most crucial factors (mixture and
flow parameters) on the population inversion for CO2
electron vibrational transitions. The basis for our study
was experimental data for the spectral distribution of
nonequilibrium emission from supersonic jets of disso-
ciated CO2.

EXPERIMENT

Our experimental setup combines a shock tube
50 mm in diameter and a 45-mm-wide two-dimen-
sional (planar) chamber (for details, see [15]). We stud-
ied shock-heated (T0 = 3000–4500 K) jets of a
20% CO2 + 80% Ar mixture under a slowing-down
pressure P0 varying from 0.4 to 3.5 MPa. The jets were
expanded through a planar sonic nozzle of half-width
h∗  = 1 mm into a vacuum chamber kept at 103–104 Pa.
Experimental conditions were such that the degree of
CO2 dissociation (30 to 50% before the nozzle inlet)
was frozen in the supersonic jet, so that the concentra-
tion distribution for the mixture components was
001 MAIK “Nauka/Interperiodica”
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totally defined by gas-dynamic parameters of the jet.
The energy distribution in molecules of recombining
CO2 was determined by emission and absorption mea-

surements in the (1B2  X1 ) band at wavelengths
λ1 = 285 ± 7 nm, λ2 = 353 ± 3.5 nm, and λ3 = 488 ± 1.5
nm; in the vibrational bands of CO2 (2.7 and 4.3 µm);
and in the CO band (4.7 µm).

Tentative estimations of the excitation temperatures
 for various vibrational transitions of the excited
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Fig. 1. Vibrational temperatures T12, T23, and Tv vs. slow-
ing-down temperature T0. T12 refers to levels with energies
of 7.15 and 6.63 eV (s, experiment; dot-and-dash lines, cal-
culation) and T23, to levels with energies of 6.63 and
5.86 eV (+, experiment; continuous lines, calculation) of the
state CO2(1B2); Tv, vibrational temperature of the CO2
ground state (e, experiment; dashed line, calculation);
Tv(CO), vibrational temperature of the CO band (∗ , experi-
ment). ×, translational temperature of the flow.
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Fig. 2. Measured and calculated electron temperatures for
various vibrational levels of the state 1B2 at the flow axis
(x = 8h∗ ) vs. slowing-down temperature T0 (symbols,
experiment; line, calculation). Dash-and-dot and dashed
lines show T0 and T∗ .
electron state 1B2 were made under the assumption that
the vibrational energy within a term is distributed
smoothly. Then, we can make use of the formal rela-
tionship

Ii/Ij = I0i/I0j exp((Ei – Ej)/k ). (1)

Here, Ii, Ij and I0i, I0jare the measured and equilibrium
(at Tref = 1600 K) emission intensities at wavelengths of
λi and λj; Ei and Ej are the respective excitation energies
found from special tests that were carried out under
thermally equilibrium conditions (E1 = 7.15 eV, E2 =
6.63 eV, and E3 = 5.86 eV).

Figure 1 compares the estimated temperatures of
various vibrational transitions for the 1B2 term with the
measured vibrational temperature for the CO2 ground
state. It is remarkable that the vibrational temperatures
for the excited electron states are mush higher than that
for the ground state. Moreover, the relative populations
of the most excited levels significantly grow with the
flow temperature and dissociated particle concentra-
tion. This means that a highly nonuniform distribution
of the populations of the highly excited states (HES),
with  >  > T0, exists in the flow.

Another approach to treating experimental data is to
estimate the integral temperature of population (rela-
tive to the CO2 molecules in the ground state) for the
1B2 state. For this purpose, we employ another formal
relationship:

(2)

from which Te, 1, Te, 2, and Te, 3 were found (Fig. 2). The
temperatures Te, i markedly exceed the vibrational tem-
peratures of the ground state and are close to each other.
In addition, a change in Te, i is linearly related to that in
the thermodynamic flow temperatures and the values of
Te, i lie between the slowing-down temperature T0 and
the critical flow temperature T∗ .

For quantitative characterization of the data
obtained and comprehensive description of nonequilib-
rium processes in supersonic flows of a recombining
gas, we elaborated a kinetic model for relaxation and
chemical processes in an expanding gas flow.

KINETIC MODEL OF RECOMBINATION 
IN A DISSOCIATED CO2 JET

A supersonic flow involving dissociated carbon
dioxide obeys two, gas-dynamic and kinetic, sets of
equations. The former are the energy and momentum
equations (in the Euler form) supplemented by the gas
equation. For a steady-state isoentropic flow of a per-
fect reactive gas out of a cylindrical source, this set (in

Tij*

T12* T23*

Ii/I0i

Ei

Tei
------–

Ei

T ref
--------– 

  ,exp=
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the quasi-one-dimensional approximation) looks as
follows:

ρuS = ρ∗ u∗ s∗ , (3)

Tρ1 – γ = Τ∗ , (4)

(5)

(6)

Here, T is the translational temperature; Τ∗ , ρ∗ , s∗ , and
u∗  are, respectively, critical temperature, critical den-
sity, critical cross-section area, and critical velocity of
the flow; γ is the effective adiabatic exponent; and H is
the gas mixture enthalpy with regard for the energy
accumulated by internal degrees of freedom of the gas.

Boundary conditions are the following. (1) A gas
mixture (working gas CO2 and inert diluent Ar) is
heated to slowing-down temperature T0 and pressure P0
in a shock tube; it is assumed that the residence time of
the mixture in the tube is sufficient for the equilibrium
dissociated state to set in. (2) It is also assumed that the
chemical composition of the mixture in the subsonic
flow remains frozen and also that the distribution of
mixture components (CO2, CO) over internal degrees
of freedom is equilibrium and has the critical tempera-
ture Τ∗  in the critical cross section.

In computation, the gas-dynamic equations are
solved at each step of integration to obtain local macro-
scopic flow parameters T and P, which are input param-
eters for the BKE. The reverse effect of kinetics on gas
dynamics is taken into account through the energy
equation including the internal energy of the gas.

The equations of chemical kinetics comprehen-
sively describe the HES population in CO2 molecules
of the jet in the ladder approximation [12] with consid-
eration for the CO vibrational temperature. As in [12],
the CO2 spectrum is represented as a set of discrete lev-
els that have a population Ai and some statistical
weight. The energy of each level is Ei = Eel + Ev, where
Eel is the energy of an electron term and Ev is the vibra-
tional energy reckoned from the lower level of this elec-
tron term. Dissociation is considered as a stochastic
motion of reacting molecules along the energy scale up
to the dissociation threshold E0 and above, where they
spontaneously decompose. Only transitions between
adjacent levels are considered. The energy gap between
the levels (a step of the energy ladder), ∆E = Ei – Ei – 1,
is defined as the mean portion of the energy transferred
in collisions and is a parameter of the model. For such
levels, the BKE can be written in the form

(7)

ρ
*
1 γ–

u2 2H+ u*
2 2H*,+=

P ρRT .=

dAi

dt
-------- W+ W– Wdiss i( ) Wbm i( )+ + +=

+ Wel i( ) W rec i( ).+
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
Here, W+ = ka(i)MAi – 1 + kda(i + 1)MAi + 1 and W– =
kda(i)MAi + ka(i + 1)MAi are the respective operators of
the rates of collisional activation and deactivation of the
ith level (V–T relaxation), where ka and kda are the
respective rate constants; M is the total particle concen-
tration in the system; Wdiss(i) = kdiss(i)Ai is the rate of
spontaneous decomposition (dissociation) of the given
level with the corresponding constant kdiss; Wbm(i) is the
rate of bimolecular reactions with the participation of
the ith level; Wel(i) is the rate of transition to other
excited terms of a molecule (V–E relaxation); Wrec(i) =
krec(i)BC is the rate of recombination population of the
ith level with the corresponding constant krec (B and C
are the concentrations of recombining particles).

The continuous population distribution function
f(Ei),

(8)

(Q is the vibrational statistical sum and ρ(Ei) is the
Whitten–Rabinovitch density function of energy states
[16]), and the population Ai of a discrete level are
related as

(9)

where A0 is the zero-level population.

The rates ka and kda of the direct and reverse pro-
cesses are related to each other by the detailed-balanc-
ing equation through f(Ei). The rate kdiss(Ei) of sponta-
neous decomposition is given by [17]

(10)

here, Ei > E0; ν* is the mean geometric frequency of
molecular vibration; and s and r are the numbers of
vibrational and rotational degrees of freedom of a mol-
ecule, respectively.

In this model, the thermal dissociation rate constant
kdiss is the sum of the microscopic rate constants kdiss(i)
for spontaneous decomposition of individual levels:

(11)

The microscopic rate constants of recombination
that fills above-threshold levels (Ei > E0) and the corre-
sponding microscopic decomposition rate constants are
related to each other through the principle of detailed
balancing:

(12)

where Kp(T) is the dissociation rate constant.
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Let us consider specific energy-exchange processes
included in Eq. (7).

(1) Relaxation processes described by the operators
W+ and W– cover vibrational relaxation within the states
X1Σ, 1B2, and 3B2:

CO2(i) + M  CO2(i + 1) + M. (I)

(2) Processes described by the operator Wel are 
V–E relaxation between electron states:

CO2(X1Σ, i)  CO2(1B2, i), (II)

CO2(X1Σ, i)  CO2(3B2, i), (III)

CO2(3B2, i)  CO2(1B2, i); (IV)

collisional quenching CO2(1B2):

CO2(1B2, i) + M  CO2(X1Σ) + M; (V)

collisionless transitions between electron states:

CO2(1B2, i)  CO2(X1Σ, j) + hν. (VI)

(3) Processes described by the operators Wdiss and
Wrec are decomposition and recombination in CO2 (two
paths):

(VII)

[the dissociation threshold D(1B2) = 7.42 eV];

CO2(3B2)  CO + O(3P) (VIII)

[the dissociation threshold D(3B2) = 5.45 eV].
(4) Process described by the operator Wbm is the

exchange reaction

CO2(1B2, i) + O(3P)  CO + O2. (IX)

We also considered the processes for which the rate
constants are well known: collisional excitation and
quenching of atomic oxygen (O),

O(3P) + M  O(1D) + M, (X)

and dissociation of molecular oxygen (O2),

O2 + M  2O(3P) + M. (XI)

Now let us discuss the rate constants at length. For
reaction (I), the rate constant for the deactivation of the
CO2 first vibrational level is well known: kI(1) = 1.65 ×
10–15Texp(–29T–1/3) cm3/s [18]; for higher vibrational
levels, we used the Landau–Teller formula and
expressed the constants kI(n) in the form kI(n) = ankI(1),
where a is a variable factor defined below. According to
[19], kV = 5.0 × 10–13 cm3/s if M = Ar.

The values of the rate constants for E–V exchange
[(II)–(IV)] were the following: kII = 106 s–1 [20] for the
allowed transition (X1Σ  1B2) and kIV = 104 s–1 (our
estimate) for the forbidden transition (X1S  3B2).
The rate constant kIV for the transition 1B2  3B2 will

CO2 X1Σ i,( ) CO O D1( ),+

CO2 B1
2 i,( ) CO O D1( )+

     

     

                                                              
be discussed later. Note that the associated values for
SO2 [11] were close to those given above. Reaction VI
is insignificant, because its rate constant is small: kVI =
102–104 s–1 [19].

The rate constants kdiss(i) of unimolecular decompo-
sition [reactions (VII) and (VIII)] were taken in accor-
dance with the above reasoning. It was also assumed
that recombination activates the kth level with the
energy Ek = Ei + Tv(CO), where Tv(CO) is the vibra-
tional temperature of CO. Accordingly, the recombina-
tion rate constants krec(k) = krec(Ei + Ti(CO)) have the
form

(13)

where Kp(T) is the dissociation–recombination rate
constant taken from [19] [cf. Eq. (12)]. In addition,
from [20], we took the rate constants for reaction (IX):

(14)

(15)

(energies of activation in kJ/mol). Here, the contribu-
tion of vibrational excitation to overcoming the reac-
tion barrier (with a variable efficiency factor γ ≈ 0.5) is
taken into account.

RESULTS

Earlier [12], our model was tested on results of
shock-tube experiments. Note that macroscopic rate
constants of dissociation (11) and recombination (12)
thus computed agree with data in [21, 22].

From the solution to the BKE for the populations of
electron excited and vibrational excited states in a
steady-state supersonic recombining CO2 jet, we
gained additional information about their distribution
functions (DFs), mechanisms behind population inver-
sion between various electron states in CO2

 
, as well as

about factors that have an effect on the amount of inver-
sion.

Supersonic flow of partially dissociated CO

 

2

 

 is
attended by a sharp decrease in the collision frequency
in the gas. Therefore, the energy of the excited vibra-
tional and electron degrees of freedom of CO

 

2

 

 becomes
partially frozen. On relaxation freezing, the recombina-
tion of dissociation products, which leads to the HES
occupation, and radiation cooling of individual levels
are imposed. Because of this, the equilibrium particle
distribution is disturbed and inverse population may
arise, showing up in the form of nonequilibrium emis-
sion from the dissociated CO

 

2

 

 jet.
One basic issue addressed in this work was the study

of mechanisms underlying inverse population, that is,

krec k( )
1

K p T( )
-------------- f i( )

Σ f i( )
------------kdiss i( ),=

kIX i( ) 4.5 1010 297.2 γEi–( )
RT

--------------------------------– 
   cm3/s,exp×=

k IX– i( ) = 8.4 1011 264.4 γEi–( )
RT

--------------------------------– 
   cm3/sexp×
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the separation of primary elementary events that are
responsible for the effect and its amount. A set of
energy-exchange and chemical processes that must be
included into consideration is rather wide; therefore,
the variable parameters of the model were appropri-
ately adjusted to check the model for adequacy to
experimental data. The model was tested based on the
large body of our data for the HES distribution in the
optically active term CO2(1B2).

In Fig. 1, the calculated plots of the temperatures for
the states of the optically active term CO2(1B2) against
T0 are compared with the experiment. One can see that
the vibrational distribution within the term is mainly
due to vibrational relaxation within the term 1B2 and
V−E exchange with the triplet 3B2, for which recombi-
nation is the most effective [reaction (VIII)]. Since the
rates of both processes are pressure-dependent, the
Tij(T0) curves are split into bands according to P0. The
calculations were performed for P0 = 3 and 10 atm (the
upper and lower boundaries of the bands, respectively).
A rise in the pressure accelerates vibrational relaxation,
smoothing out the vibrational DF within the term and
decreasing the difference in the temperatures of the
transitions.

The analysis of the vibrational distribution within
the states 1B2 and 3B2 showed that the experimentally
found relation  >  for the temperatures of the
transitions may be accounted for under the assumption
of fast V–E relaxation CO2(3B2, 0, 0, v3)  CO2(1B2,
v1, v2, v3), which fills the vibrational excited states of
the CO2(1B2) term. The rate constant for this reaction
was estimated at

kIV ≈ 5 × 108 s–1. (16)

The calculation of the vibrational temperature Tv for
the CO2 ground state (at P0 = 3 and 10 atm) allowed us
to determine the variable parameters of the model: a
ladder step ∆E was set equal to 2000 K = Θ1 in accor-
dance with [13], where Θ1 is a vibrational quantum for
the symmetric mode of a CO2 molecule, and the param-
eter a involved in the rate constant for reaction (I) var-
ied between 1.0 for T = 2000 K and 0.5 for T = 4000 K.

Figure 2 compares the measured electron tempera-
ture of the state 1B2 with the results of the model. It was
found that the temperature values in Fig. 2 are the result
of competition between three processes: collisional
deactivation, recombination, and spin conversion for
the HES of the 1B2 term. The temperature of the excited
electron state 1B2 and, hence, that of 3B2, is governed
largely by the rate of collisional quenching according to
reaction (V) and by the rate of V–E relaxation, reactions
(II) and (IV).

Thus, our model well describes the actual distribu-
tion of recombination emission from a vibrationally
nonequilibrium jet of dissociated CO2. Further, the

T12* T23*
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model was applied to tackle the problem of population
inversion for individual states in supersonic expanding
flows.

We considered jets that initially contained 20 to
80% of CO2 in Ar. The flow parameters were T0 =
2600–4600 K and P0 = 4–30 atm. Population inversion
was shown to take place between the ground state and
the state 3B2 (for which, as was noted, recombination is
the most effective) in a wide range of the flow parame-
ters. The inversion effect was also observed between
the lower vibrational excited levels of the term 3B2 with
energies of ≈4.5 eV and the vibrational levels of the
ground state with energies ≈1.5 eV; that is, generation
in the forbidden band (3B2  X1Σ) at λ = 400 nm is a
possibility.

Figure 3 shows a surface depicting the transforma-
tion of the distributions for the lower excited (3B2) state
of CO2 flowing through a slotted sound nozzle of height
1 mm at T0 = 2400 K and P0 = 10 atm. For each time
instant t, the distribution is shown as a function Fp(E, t)
normalized to the equilibrium (Boltzmann) DF Fe(E,
T∗ ) at a temperature T∗ :

(17)

Thus, the normalized distribution demonstrates a
depletion of the DF with the flow coordinate.

From Fig. 3, it is seen that, as the flow expands,
there exists a highly nonuniform distribution within the
electron excited term CO2(3B2). In the given coordi-
nates, its slope defines the vibrational temperature for a
selected energy level at each time instant. Also, in the
immediate vicinity of the nozzle, the populations of
several levels are above-critical because of recombina-
tion population of states that are near the decay thresh-
old. As the flow expands further, the rate of recombina-
tion due to triple collisions drops in comparison with
the rate of HES deactivation due to binary collisions.
Therefore, the space distribution of the populations of
the vibrational states in the CO2(3B2) term is dome-

Fp E t,( ) F E t,( )
Fe E T*,( )
-----------------------.=

1010

1
10–10

10–20

10–30

D(3B2)
D(1B2)

E 5
0

10
x/h*

Ḟ

Fig. 3. Transformation of the vibrational distribution of the
lower excitation for the CO2(3B2) state at T = 2400 K and
P0 = 10 atm.



436 EREMIN et al.
shaped (Fig. 3). The position of the population peak
was shown to depend on the flow parameters and espe-
cially on the slowing-down temperature T0: the higher
T0, the nearer the peak to the nozzle.

Next, our computing technique was applied to ana-
lyze the effect of the flow and mixture parameters on
the inversion between the states 3B2 and X1Σ.

For this transition, the gain α(0) at the center of a
Doppler profile is given by [8]

α(0) ~ [CO2(3B2)]T–2. (18)

It follows that the gain increases when the popula-
tion of the excited state grows or the translational tem-
perature drops. The existence of the optimum T0 values
is explained by two opposing tendencies. On the one

∆N, mol/m3
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–0.075
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3
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–0.100

Fig. 4. Population inversion ∆N along the planar slotted
nozzle for the initial 20% CO2 + Ar mixture. P0 = 10 atm;
T0 = (1) 4400, (2) 3800, and (3) 2700–3400 K.

∆N/M
0.02

0

–0.02

–0.04
0 2 4 6 8 10 12

x/h*

1
2
3

1

3

(a)

(b)

Fig. 5. Population inversion ∆N normalized to the total par-
ticle concentration M in the system along the nozzle coordi-
nate: (a) 25% CO + 25% O + Ar and (b) 50% CO2 + Ar for
T0 = 4400 K. P0 = (1) 10, (2) 8, and (3) 5 atm.
hand, as T0 increases, the flow temperature rises. On the
other hand, the amount of the CO2(3B2) excited states
decreases with decreasing T0.

Quantitative analysis of the gain for the transition
3B2  X1Σ is beyond the scope of this article. We will
concentrate on the population inversion ∆N for these
states. Note only that ∆N and α(0) vary in a similar way.
Specifically, an increase in P0 enhances the recombina-
tion rate, causing ∆N to grow. However, at low T0, a rise
in pressure does not lead to inversion because of a low
degree of CO2 dissociation. In Fig. 4, ∆N is plotted
against the distance to the slotted nozzle for various T0
and P0 = 10 atm in the case of the 20% CO2 + Ar mix-
ture. At T0 < 3400 K, the effect is absent at any pressure.

From the computations, it directly follows the
recombination character of inversion for this transition.
In Fig. 5, the inversion ∆N normalized to the total par-
ticle concentration in the system is plotted against coor-
dinate along the nozzle axis for various pressures and
mixture compositions at T0 = 4400 K. No inversion is
observed (Fig. 5b), because recombination is impossi-
ble. This means that relaxation freezing in molecules of
an expanding CO2 jet cannot result in inversion at elec-
tron transitions.

The computations also show that there is an opti-
mum composition of the CO + O + CO2 + Ar mixture
at the nozzle inlet that increases the inversion for this
transition. A CO + O + Ar mixture would be the most
appropriate for an inversion increase. High CO2 con-
centrations raise the translational temperature because
of an increase in the specific heat of the mixture and the
marked effect of exothermic reactions. It is, however,
difficult to get rid of CO2 in practice. The inversion
depends on both the recombination rate and the rate of
vibrational relaxation. If the latter rate exceeds the rates
of other processes, both the populations of all excited
levels and the inversion ∆N decrease. Therefore, if the
relative fraction of CO and O increases at a given pres-
sure and, accordingly, the rate of vibrational relaxation
in CO2 exceeds that in Ar, ∆N first grows because of an
increase in the recombination rate and then drops due
to vibrational cooling of the mixture. The optimum
composition of the mixture is (20–25)% CO + (20–
25)% O + Ar.

It was found by the calculations that recombination,
which is responsible for inversion in the UV range,
takes places near the nozzle outlet, where the flow is
still dense. Therefore, the degree of recombination and,
hence, the inversion may readily be controlled by vary-
ing the nozzle shape. If the nozzle has a short expand-
ing region where the translational temperature suffi-
ciently drops and then the cross section of the nozzle
(and, hence, the density of the recombining flow)
remains constant, inversion may occur within a suffi-
ciently large portion of the flow. Figure 6 demonstrates
calculated ∆N(x/h∗ ) curves for the flow leaving the
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
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1-mm-high nozzle at T0 = 4400 K and P0 = 10 atm. The
length L of the expanding region was taken equal to
(1−4)h∗  (the case L = ∞ for the planar nozzle is also
shown for comparison).

Finally, we studied the effect of an inert diluent on
the inversion for the 3B2  X1Σ. It was reported [19]
that the rate of collisional quenching of the 1B2 state
[reaction (V)] greatly differs for various inert gases
[e.g., kV(M = He) ≈ 5 × 10–13 cm3/s and kV(M = O2) ≈
3 × 10–10 cm3/s] and the population of this state is
strongly related to that of the 3B2 state. Therefore, if a
gas that is inefficient in quenching CO2(1B2) is used as
a diluent, the inversion is high.

Thus, our model was applied for the description of
nonequilibrium DFs of multiatomic molecules in
supersonic recombining jets. It is promising in search-
ing for new types of recombination lasers. The opti-
mum conditions for UV generation owing to the
3B2  X1Σ transition in a recombining CO2 jet (for
any pressure) are T0 ≈ 4000 K and CO : O : Ar = 1 : 1 : 2.

CONCLUSION

The solution (in the ladder approximation) of the
BKE for the distribution of the excited state popula-
tions in a supersonic recombining jet of CO2 allowed us
to elaborate a detailed model of kinetic processes
responsible for the electron and vibrational excited
states of CO2 molecules in a supersonic flow. Inverse
population at the transition 3B2  X1Σ between 3B2
levels with energies of ≈4.5 eV and those of the ground
state with energies ≈1.5 eV is shown to be a possibility.
The effect of the mixture and flow parameters on the
population inversion at electron vibrational transitions
in CO2 was studied.
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Fig. 6. Calculated ∆N for the flow from the 1-mm-high
sonic nozzle at T0 = 4400 K and P0 = 10 atm. The divergent
region of the nozzle has the length L = (1–4)h∗ . L = ∞ refers
to a flow freely expanding from the planar slotted nozzle.
Numbers denote the values of L.
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Abstract—For the first time, the overheating temperature ∆Tp–n of the active region in green light-emitting
diodes based on Group III nitrides has been determined as a function of the forward current amplitude I. It has
been shown that in contrast to light-emitting diodes, in which the current–voltage characteristics are adequately
described by known theories of rectification in p–n junctions and ∆Tp–n ∝  I, in the structures under study, the
dependence ∆Tp–n(I) in the current range of 2 × 10–3–3 × 10–2 A is quadratic in current. At higher currents, the
variation of ∆Tp–n with I in the green light-emitting diodes based on Group III nitrides becomes linear, which
is the same as in the light-emitting diodes based on known infrared and red III–V structures. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Recent advances in the technology of gas epitaxy
from metalloorganic compounds (MOCVD) for com-
mercial production of heterostructures based on
Group III nitrides made possible the fabrication of
highly efficient light-emitting diodes (LED) covering
practically the entire range of color emission (including
white light). This progress, mainly due to the physical
and technological research made at Nichia Chemical
Industries [1], opens new prospects for the develop-
ment of optical devices for recording and displaying
information and for the fabrication of light-signaling
equipment in which the use of LEDs drastically
changed the design technology [2, 3].

At the same time, more stringent requirements have
been set to the stability, reliability, and degradation
characteristics of the LEDs as the basic elements of this
equipment. Therefore, studies have recently been car-
ried out on the injection and thermal degradation mech-
anisms of LEDs in Group III nitrides encompassing
accelerated pulsed [4, 5] and long-term dc [6] tests in a
wide range of ambient temperatures T. However, the
overheating temperature ∆Tp–n of the active LED region
under operating conditions, which is a key parameter
providing an integrated estimation of these characteris-
tics, and the mechanisms involved were not examined,
although it is known that ∆Tp–n affects not only the
internal generation–recombination processes in a LED
but also the stability, reliability, and service life of the
device as a whole [7]. For example, a 10 K rise of the
p–n-junction temperature reduces its service life by a
factor of two [8].
1063-7842/01/4604- $21.00 © 20438
In view of the above, examination of the thermal
processes and the mechanisms determining the temper-
ature ∆Tp–n and experimental determination of this
parameter in LEDs heated by a passing current are of
theoretical and practical importance.

EXPERIMENTAL TECHNIQUE 
AND RESULTS

The green LEDs under study were
InGaN/AlGaN/GaN heterostructures with the active
layer consisting of the InxGa1– xN isolated quantum well
(x = 0.43, bandgap Eg ≈ 2.5 eV) with a thickness of 2–
4 nm. The epitaxial structures were grown by MOCVD
in laboratories of the Nichia Chemical Industries [1, 5].

The overheating temperature of the LED active
region was determined by comparing dc and pulsed
current–voltage characteristics (IVC) in the current
range I = 10–5–10–1 A, which is approximately the nom-
inal operating regime. To exclude heating of the struc-
tures by pulsed current, the on–off time ratio Q and the
pulse duration ti were kept in the ranges Q > 100 and
ti < 10–6 s, respectively [7].

In Fig. 1, IVCs measured under dc and pulsed con-
ditions are shown. It is seen that, under pulsed condi-
tions, IVCs shift to higher voltages U. With increasing
I, the measured voltage difference ∆Up–n rises in both
the dc, Us, and the pulsed, Up, modes of U. This is evi-
dence of the nonlinearity of the function ∆Up–n(I)
caused, first of all, by the injection-thermal nonlinearity
of the band gap Eg and by other factors, the analysis of
which is itself interesting. In order to determine the
001 MAIK “Nauka/Interperiodica”
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temperature to which the LED active region ∆Tp–n =
Tp−n – TE is heated by the passing current above the
ambient temperature TE, where Tp–n is the p–n-junction
temperature, the device was precalibrated by determin-
ing a temperature-dependent parameter under a step-
wise change of TE. Then, the voltage temperature coef-
ficient γ of the p–n junction was calculated using the
expression

γ = ∆Up–n∆ . (1)

This coefficient was derived from IVCs measured
for different TE values at fixed I in the given ranges of
temperature (T = 300–400 K) and current (I = 10–4–
10−1 A). The obtained γ(I) plots in Fig. 2 are monoton-
ically increasing functions. It is easily seen that γ
increases only slightly in the range I < 10–3 A and more
significantly in the range I = 10–2–10–1 A, so that its
variation over the range I > 5 × 10–3 A is close to linear.

Using the obtained values of γ and the measured val-
ues of the voltage drop across the p–n junction ∆Up–n in
the dc and pulsed modes, the overheating temperature
of the LED active region was determined:

∆Tp–n = ∆Up–nγ–1
. (2)

The results are shown in Fig. 3. It is seen that up to
I ~ 2 × 10–3 A, within the experimental error, ∆Tp–n is
equal to zero. With a further increase in I, first superlin-
ear and then approximately linear growth of ∆Tp–n = f(I)
is observed.

DISCUSSION

Analysis of the ∆Tp–n(I ) dependence will be made
using data from [6, 9] in which variations of electro-
physical parameters of similar LEDs in the course of
prolonged operation were studied. In [10], the ionized
impurity distribution profiles in InGaN/AlGaN/GaN
structures in fairly wide compensated regions of
GaAlN were observed (thickness ~10 nm each),
extending to the left and right of the active quantum
well layer (Fig. 4a). An estimate in [9] of the electron
free path λ = 20–30 nm indicates that for electrons
reaching the compensated regions the probability of
scattering on the host lattice atoms, i.e., of transferring
their energy to phonons without having to overcome the
region of varying potential (the total thickness of the
two compensated regions and of the quantum well), is
greater. This is further evidence that all thermal pro-
cesses take place in this thin (~30 nm) region of the
LED. Consequently, the overheating of the active LED
region is mainly due to processes in the electronic sub-
system where the kinetic energy of electrons is
increased owing to the electric energy supplied to the
system. This energy is then transferred to the lattice as
the injected (usually hot) electrons interact first with
long-wavelength and then with all acoustic phonons
[11, 12].

TE
1–
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At U = 0, the width of the space-charge layer is com-
parable to the sum of the thicknesses of the two com-
pensated regions and the quantum well width (Fig. 4b).
Also, in the current range I = 1 × 10–5–2 × 10–3 A, the
temperature ∆Tp–n within the experimental error is
close to zero, because the power supplied to the LED is
insignificant.

As the voltage applied to the structure becomes
close to the built-in potential ϕk ≅  Eg/e, the relative con-
tribution of the potential drop over the compensated
layer (in p and n regions) compared with the voltage
drop over the quantum well diminishes, so that at U =
ϕk ≅  Eg/e all the voltage applied to the structure will
drop across the quantum well (Fig. 4c). In this situa-
tion, ∆Tp–n tends to increase with I and can be deter-
mined experimentally (Fig. 3). In this process, U
changes from 2.5 to 3.2 V (in this range, taking into
account the voltage drop across two compensated
regions, U ≅  Eg/e).

In the current range I = 2 × 10–3–2 × 10–2 A, where
the p–n junction differential resistance, R = dU/dI, is
essentially constant, the power P supplied to the LED
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Fig. 1. Forward dc (1) and pulsed (2) current–voltage char-
acteristics of green LEDs based on Group III nitrides.
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Fig. 2. Dependence of the voltage temperature coefficient of
green LEDs on the direct current amplitude.
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increases as the square of current P = I2R. In this case,
the growth of ∆Tp–n ~ P with I is quadratic. With a fur-
ther increase in current, the resistance R smoothly
decreases, causing gradual straightening of the nonlin-
ear ∆Tp–n = f(I ) dependence. This is related to the large
nonideality factor of IVCs (β > 6) in LEDs based on
wide bandgap semiconductors, particularly Group III
nitrides [9, 13, 14]. This IVC, which does not lend itself
to description by known theories, is unusual also in that
it is not rectified under reverse bias [13]. Probably,
incomplete knowledge of the compensated region, a
large impurity ionization energy, short charge carrier
lifetimes, and low mobilities preclude application of
the existing theories of p–n junctions to wide bandgap
semiconductor heterostructures. Low mobilities drasti-
cally reduce the diffusion length LD, invalidating the
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Fig. 3. Dependence of the overheating temperature of the
active region (InGaN) in green LEDs on the direct current
amplitude.

Fig. 4. Schematic of the layer structure of green LED (a) and
the energy diagrams (b–d) of n-GaAlN/i-GaInN/p-GaAlN
heterostructure with an active region in the form of
single quantum well. (b) U = 0; (c) U = ϕk; (d) U > ϕk;
1—n-GaAlN; 2, 4—i-GaAlN (compensated regions);
3—i-GaInN (active layer); 5—p-GaAlN.
condition LD > Le (Le being the Debye screening
length), which is the cornerstone of practically all
known rectification theories. Therefore, the depen-
dence ∆Tp–n(I ) in the LEDs under study substantially
differs from similar dependences for red LEDs based
on GaAs/GaAlAs structures [15] and infrared LEDs
based on GaInAsSb [11], which have IVCs with
extensive exponential portions related to diffusion or
recombination components of the current through the
p–n junction. At the same time, a qualitative similarity
is observed of ∆Tp–n curves of the LEDs based on
Group III nitrides of this work and blue LEDs [13].
Quantitatively, the heating of green LEDs at maximum
currents is lower by a factor of approximately two,
which is possibly due to lower electric fields in them.

At U > Eg/e, the entire voltage applied to the struc-
ture is split into three approximately equal portions
between the two compensated regions and the quantum
well, because the n- and p-emitter regions are heavily
doped. A third of the applied voltage drops across the
quantum well, although its thickness is only a fraction
of that of any of the component-compensated regions.
The reason for this is that the potential barrier at the
quantum well arising from a jump in potential (band
discontinuity) at the GaAlN/GaInN interface (Fig. 4d)
is not initially reduced. This causes a nearly linear rise
of ∆Tp–n = f(I ), which is due to R decreasing as I–m with
m ≤ 1.

An essential feature of this portion of the depen-
dence ∆Tp–n is the constancy of the voltage drop across
the quantum well itself (at U > Eg/e). This fact contrib-
utes to maintaining ∆Tp–n = f(I ) essentially linearly up
to the thermal breakdown of the device.

CONCLUSION

In this study, the dependence of the overheating
temperature of the active region in green LEDs based
on Group III nitrides on dc forward current amplitude
has been revealed and described for the first time. It has
been shown that, in contrast to those LEDs whose IVCs
can be described by the known theories of rectification
in p–n junctions, in the structures studied the depen-
dence ∆Tp–n(I ) in the current range 2 × 10–3–2 × 10–2 A
is quadratic in current and gradually changes to linear
as in other LEDs with cubic lattices.
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Abstract—When a high-power laser beam is focused in a nonlinear Kerr medium, beam self-diffraction by
induced inhomogeneities of the refractive index is observed. A method for calculating the field amplitude and
phase in the focal region with regard for self-diffraction by self-induced inhomogeneities is developed. Com-
puter analysis of saturable Kerr media showed that the optical-field region with the least cross section of the
focal pattern is followed by that of chaotically radiating “splashes” and long filaments. The latter radiate out-
ward from the region of the caustic waist over long distances. They represent bright spatial solitons, which
channel a significant portion of the primary beam energy. No less than 8–12 clear-cut solitons traveling in the
positive z direction and moving apart in the transverse (x, y) plane are observed in the cross section. The field
amplitude oscillates along each of the solitons. Various parameters of the saturable Kerr medium are taken into
account. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Optical spatial solitons propagating in nonlinear
media, including Kerr media with saturable nonlinear-
ity, have extensively been studied in the past eight years
[1–8]. By a spatial soliton, we usually mean a steady-
state self-channeled light beam in which diffraction
divergence is compensated for by the effect of self-
focusing in a medium where a nonlinear correction to
the refractive index saturates. In studies of such objects,
emphasis is usually on the properties of the solitons [9]
and on interaction between solitons that cross [2, 10–
13] or propagate cocurrently [14].

At the same time, of great interest remains the fine
structure of electromagnetic field in the focusing region
of laser beams with various wave fronts. A vast major-
ity of works in this area have addressed focusing of
radiation in linear media [15–22]. Caustic structures
that appear in the focal region have thoroughly been
studied over the past 35 years for various types of aber-
ration in the converging beam [23, 24]. Most of these
studies have calculated the caustics in a scalar approxi-
mation; however, a number of recent works have con-
sidered the vector fields [20–22]. Note that there are
virtually no published data for caustic structures form-
ing in nonlinear media when sharply focused high-
power radiation experiences diffraction by induced
inhomogeneities of the refractive index in the caustic
region. A diffraction catastrophe in the form of an intri-
cate astroid was observed in a nonlinear medium upon
the evolution of an elliptic Gaussian beam with a 2 : 1
side ratio and a tapered field distribution over the aper-
1063-7842/01/4604- $21.00 © 20442
ture [25]. However, in this case, the field in the focal
region arises directly from the effect of self-focusing
rather than from “sharp” focusing, where a converging
prefocused beam enters the medium. The filamentary
field configuration due to sharp focusing by a conical
lens, an axicon, has been calculated in [26]. For beams
focused in nonlinear media by other means and having
other types of aberration, information is lacking. There-
fore, the purpose of this work was to study the caustic
field forming in a nonlinear Kerr medium when a con-
verging laser beam is subjected to a complex aberra-
tion.

Focusing of a high-power laser beam in a nonlinear
medium is accompanied by wave front distortions and
self-diffraction of the radiation by Kerr inhomogene-
ities of the refractive index. These inhomogeneities are
determined by the three-dimensional speckle pattern of
the caustic field. Wave propagation through a caustic
region in a nonlinear medium was first theoretically
studied in [27], where a nonlinear correction ∆n to the
refractive index was unsaturable. In this work, we show
that the saturation of ∆n leads to a qualitatively new
result: multiple spatial solitons appear near the diffrac-
tion caustic (or catastrophe).

NUMERICAL TECHNIQUE AND BASIC 
METHODS OF COMPUTER-AIDED SIMULATION

A method for calculating the wave amplitude and
phase in the focal region with regard for self-diffraction
by self-induced inhomogeneous is described in [27]. In
001 MAIK “Nauka/Interperiodica”
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computations, we transferred the field from layer to
layer using the Fresnel–Kirchhoff integral. The contri-
butions from pure diffraction and from the self-induced
inhomogeneities within a small space region ∆z
between two adjacent layers were calculated sepa-
rately. This technique, known as the beam propagation
method (BPM), is widely used in analysis of wave
propagation in inhomogeneous and nonlinear media
[28, 29]. However, there exist various modifications of
the BPM, as well as other finite-difference methods, for
simulating wave propagation in nonlinear media
[30−32].

Below, we consider the BPM modification applied.
A nonlinear term ∆n(x, y, z) added to the refractive
index n0(x, y, z) of the medium to allow for the effect of
a high field E(x, y, zi) describes an effective phase
screen induced on a ∆z-thick thin layer. The complex
transmission function of this screen is

exp(i2π(n0(x, y, zi) – 1 + ∆n(x, y, zi))∆z/λ),

where λ is the wavelength. Initially, the medium is
assumed to be homogeneous and nonlinear; then, n0(x,
y, z) = n0 = const. Let the phase screen be placed in the
plane z = zi. Then, the complex transmission function of
the screen modulates the amplitude and phase distribu-
tion of the wave E(x, y, zi) = A(x, y, zi)exp(iϕ(x, y, zi)) in
this plane. As a result, the complex amplitude of the
field in the plane z = zi + 0 can be written as

In the plane z = zi + ∆z, the field E(x, y, zi + 0) is then
calculated in terms of the Fresnel–Kirchhoff integral:

(1a)

where

(1b)

Here, k = 2π/λ is the wave number; ux and uy are the cir-
cular spatial frequencies in the x and y directions,
respectively; and g(ux, uy) is the Fourier spectrum of the
complex amplitude E(x, y, zi + 0). The spatial frequen-
cies ux and uy are related to the direction cosines of the
partial wave number k = k(cosα, cosβ, cosγ): ux =
kcosα and uy = kcosβ. The Fresnel–Kirchhoff integral
[(1a) and (1b)] here is written in the so-called Rayleigh
representation [16, 33], which takes into account the
effect of inhomogeneous waves that decay in the
z direction and propagate from the layer z = zi to the

E x y zi, , 0+( ) A x y zi, ,( ) iϕ x y zi, ,( )( )exp=

× i2π n0 1– ∆n x y zi, ,( )+( )∆z/λ( ).exp

E x y zi, , ∆z+( )

=  g ux uy,( ) i∆z k
2

ux
2– uy

2––( )exp

Ω
∫∫
× i uxx + uyy( )–( )duxduy,exp

g ux uy,( ) E x y zi, , 0+( )

Σ
∫∫=

× i uxx uyy–( )( ) x y.ddexp
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layer z = zi + ∆z at spatial frequencies  +  > k2. In
the calculations, we, however, took into account the
secondary radiation scattered only within an angular
range of ±35.5° relative to the z axis. Larger angle for-
ward scattering and backscattering were neglected. To
simplify the analysis, we used a scalar approximation
without considering vector effects, such as rotation of
the polarization plane in the radiation scattered by
inhomogeneities of the refractive index.

The process of radiation transfer from a layer i to a
layer i + 1 was iterated in the caustic region over a
length of about 9 mm. We set ∆z = 6.25 µm. The satu-
rable Kerr medium was simulated by the following
refractive index vs. field amplitude relationship:

(2)

Here, |E | is the magnitude of the complex field ampli-
tude at a point x, y, z; |Es| is the saturating field magni-
tude; n2 is a nonlinearity parameter of the medium; and
n0 is the refractive index of the unperturbed medium.
Here, |E |2 has the meaning of radiation intensity. For-
mula (2) for the refractive index is valid not only for
purely Kerr fluids but also for gases with local regions
of a partially ionized plasma and laser-induced sparks.
In particular, formula (2) was used in [26] to character-
ize a laser-induced spark channel produced in air as a
result of focusing with an axicon. Therefore, by a non-
linear Kerr medium, we henceforth will also mean a gas
under conditions of laser-induced ionization and break-
down.

The calculations were performed for various param-
eters of the nonlinear saturable medium. For the sake of
simplicity, n0 was taken equal to 1. The parameter
n2|Es|2 was 0.003 or 0.006. The high-power radiation
entered the nonlinear medium at z = z0 = 135.5 mm,
which is the distance between the exit aperture of the
focusing system and the medium. It was assumed that
the nonlinear medium occupies the half-space z > z0
and the region 0 < z < z0 is the free space.

The complex field amplitude distribution in the
plane (x2, y2) at z = 0 over the exit aperture of the focus-
ing element is E(x2, y2, 0) = A0(x2, y2)exp(iϕ(x2, y2, 0)).
Here, A0(x2, y2) is the distribution of the scalar field
amplitude over the aperture at z = 0, and ϕ(x2, y2, 0) is
the phase function of the converging spherical wave
distorted by aberrations.

Then, the complex amplitude distribution in the
entrance plane of the medium, z = z0, has the form [33]

(3)

ux
2 uy

2

n n0 ∆n+ n0

n2 E 2

1 E 2/ Es
2( )+

-----------------------------------.+= =

E x y z = z0, ,( )
i

λz0
--------

i2πz0

λ
-------------– 

 exp=

× iπ x2 + y
2( )

λz0
---------------------------– 

  J x y z0, ,( ),exp
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Fig. 1. Intensity distribution of the diffraction catastrophe field in the longitudinal planes xOz and yOz for field realization 1.
Horizontal and vertical dimensions are 9.06 mm and 164 µm, respectively.
where the diffraction integral J(x, y, z0) is given by

(4)

Here, x and y are the Cartesian coordinates in the
entrance plane z = z0 and

is the phase distortion of the wave front at z = 0 relative
to the reference sphere whose center lies in the plane
z = z0. The integral J is calculated in the plane (x2, y2)
at z = 0 over the exit aperture S of the focusing element.

We consider the situation when A0(x2, y2) = A0 =
const and the converging wave front is distorted by
spherical aberration and astigmatism. In a linear

J A0 x2 y2,( ) i∆ϕ x2 y2,( )( )exp

S

∫∫=

× i2π x2
x

λz0
-------- y2

y
λz0
--------+ 

 
 
  dx2 y2.dexp

∆ϕ x2 y2,( ) 2π
λ

------ z0 z0
2 x2

2– y2
2––[ ] ϕ x2 y2 0, ,( )–=
medium, these conditions produce a stable field pat-
tern—diffraction catastrophe—in the focal region [34].
The phase function has the form

(5)

Here, a is the factor of third-order spherical aberration
and c is the effective factor of astigmatism. The first
term in brackets in formula (5) describes the reference

(ideal) spherical wave front of radius  centered at a

point (0, 0, ), while the second and third terms
describe distortions of the phase front relative to the
reference sphere. In order to compare our results with
those in [27, 34], we used a = 1.20 × 10–6 mm–3, c =

9.96 × 106 mm–1,  = 141.70 mm, and λ = 0.6328 µm.
The diameter of the effective beam aperture at the exit
from the focusing element was taken to be 20 mm. The

ϕ x2 y2 0, ,( )
2π
λ

------ F̃[ F̃
2

x2
2– y2

2––=

+ a x2
2 y2

2+( )2
c y2

2 x2
2–( ) ] .+

F̃

F̃

F̃
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1 2 3

4 5 6

Fig. 2. Distribution of the diffraction catastrophe field intensity over different xOy cross sections. The cross sections are taken for
z < 139 mm before the caustic waist: z = (1) 135.5, (2) 136.125, (3) 136.75, (4) 137.375, (5) 138.0, and (6) 138.625 mm. Field real-
ization 1. The size of the xOy quadrant is 164 × 164 µm. The Ox axis is vertical, the Oy axis is horizontal, and the origin is at the
upper left corner of the quadrant.

1 2 3

4 5 6

7 8 9

Fig. 3. Same as in Fig. 2, but the cross sections are taken at z > 139 mm in the region where multiple solitons appear and exist: z =
(1) 139.25, (2) 139.875, (3) 140.5, (4) 141.125, (5) 141.75, (6) 142.375, (7) 143.0, (8) 143.625, and (9) 144.25 mm.
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
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Fig. 4. Projections of the lines traced by the maximums of speckle elements in transverse planes onto the longitudinal planes
(a) xOz and (b) yOz. Field realization 1. The vertical dimension is 139.4 µm.
intensity of the focused radiation was varied: the

parameter n2  took the values 1 × 10–10 and 2 × 10–10.
At certain points in the entrance plane of the nonlinear
medium, the parameter n2|E|2 was as high as 1 × 10–3.

RESULTS AND DISCUSSION

The computer-aided simulation of the saturable
Kerr media revealed the following. Near the caustic
waist of the focused beam, the tubular–cellular field
pattern has the form of short curvilinear filaments.
These filaments represent spatial solitons, which
appear, interact, split, or merge together. Sometimes,
they break down after passing through this region.
Beyond the region with the minimal cross section of the
focal pattern, the optical field has the form of chaoti-
cally outgoing splashes and long filaments, as shown in
Fig. 1. The filaments, which radiate from the caustic
waist over long distances, are bright spatial solitons.
They channel a significant part of the primary beam
energy. The optical field illustrated in Fig. 1 was

obtained at n2|Es|2 = 0.003 and n2  = 2 × 10–10.

The field intensity distribution in transverse cross
sections zi = z0 + i∆z of the diffraction catastrophe is
shown in Figs. 2 and 3. In each cross section z = zi, we,
following [27], found speckle elements whose peak

A0
2

A0
2

intensity exceeded a certain threshold. The Cartesian
coordinates of the intensity peaks of these speckle ele-
ments and the field amplitude in them were memorized
for subsequent processing. By peak coordinates, we
mean the coordinates of the field peaks in the transverse
plane. Figures 2 and 3 show that the number of speckle
elements strongly depends on coordinate zi. Indeed, as
the caustic waist is approached, the number of closely
spaced speckle elements, which, in essence, are the
cross sections of microscopic waveguides or short soli-
tons, first increases (fragments 3–5 in Fig. 2), reaches a
maximum at the waist (fragment 6 in Fig. 2), and then
decreases with increasing z (fragments 1–4 in Fig. 3).
Accordingly, the number of spatial solitons first
increases, which is associated with their interaction or
splitting. Only beyond the narrowest caustic region
does the number of solitons drop to a certain level
(fragments 6–9 in Fig. 3). Each of the fragments in
Figs. 2 and 3 is an xOy quadrant (i.e., a quarter) of the
cross section. From fragments 4–9 in Fig. 3, it follows
that the entire cross section contains eight clear-cut
solitons, which do not collapse and do not disappear
with increasing z. In other situations (n2|Es|2 = 0.003

and n2  = 1 × 10–10), we observed 9–12 distinct soli-
tons in the cross section, which propagated in the posi-
tive z direction and also moved apart in the transverse
(x, y) plane.

A0
2
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(a)
I

(b)

0 2 4 6 8 z, mm

Fig. 5. z dependence of the field amplitudes at the maxima of speckle elements in the transverse planes for field realizations (a) 1 and

(b) 2 at n2|Es|2 = 0.006 and n2  = 1 × 10–10. A0
2

To characterize the variation of the number of soli-
tons in the region of their interaction, the term “peak of
the local field” in place of our “speckle element with
the peak intensity above a threshold level” was pro-
posed [13]. In terms of [13], the number of local field
peaks in the region of soliton interaction may greatly
increase or decrease depending on which process pre-
vails: splitting of single solitons or soliton pairs into
two or three solitons, respectively, or merging of soliton
pairs into more intense single solitons. The latter pro-
cess may be accompanied by a decay of single solitons
if lossless energy channeling through the soliton
waveguide becomes impossible for some reasons.
These results are in evident agreement with theoretical
findings reported in [13].

The speckle element maxima in the transverse plane
trace trajectories in the three-dimensional space, which
are curvilinear and piecewise finite in general. Figures
4a and 4b show the projections of these trajectories on
the planes yOz and xOz in the form of the loci of xi, zi

and yi, zi, respectively. Here, xi, yi, zi are the Cartesian
coordinates of the maxima of all speckle elements in
transverse planes (x, y) equally spaced with zi = z0 +
i∆z. It is seen that, beyond the waist region, the maxima
describe linearly radiating trajectories similar to those
of the bright radiating solitons. Extrapolation of these
trajectories in the z direction allows one to accurately
locate the waist region, which acts as a source of mul-
tiple solitons. This region coincides with the one where
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
periodic intensity oscillation in the soliton channels
appears.

Figure 5a shows the z dependence of the field ampli-
tude at the maxima of the speckle elements. Beyond the
region of the least cross section of the focal pattern for
the radiating solitons, the field amplitude oscillates
along their major axes. Figure 1 displays oscillation of
the soliton cross section. It appears as the solitons
extend in the positive z direction and show up as corru-
gated “soliton tubes.” Such effects have repeatedly
been observed both directly in soliton channels and in
more particular cases. For example, intensity oscilla-
tion in soliton channels was calculated in [1, 2]. Cross-
size oscillation (“breathing”) of a soliton was reported
in [1]. Intensity oscillation in the channel that appears
as a result of focusing a laser beam with an axicon in a
nonlinear medium was studied in [26].

The period and depth of the field amplitude oscilla-
tion in the soliton channel vary with the parameters of
the Kerr medium (Fig. 5b). Pronounced amplitude
oscillation in the soliton channels allows the region of
soliton initiation to be clearly located. It is remarkable
that the clear-cut multiple solitons arise only after the
waist rather than before it.

Among various effects typical of radiating solitons,
of interest is a slight rotation of a low-intensity soliton
about a more intense bright soliton in the transverse
plane (x, y) [11, 35]. Fragments 1–3 (Fig. 6) show that
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α

β

Fig. 6. Rotation of the low-intensity soliton β about the high-intensity soliton α in the transverse plane. The interaction is illustrated
for z > 141 mm: (1) 141.125, (2) 141.75, (3) 142.375, (4) 143.0, (5) 143.625, and (6) 144.21 mm. Field realization 3 (n2|Es|2 = 0.003

and n2  = 1 × 10–10). The size of the xOy quadrant is 164 × 164 µm. The Ox axis is vertical, the Oy axis is horizontal, and the

origin is at the upper left corner of the quadrant.

A0
2

the lower intensity soliton–satellite β first partially and
then completely separates from the intense soliton α.
The soliton β rotates about α until their center distance
becomes too long as they travel in the positive z direc-
tion. In this area of the three-dimensional space, the tra-
jectory of the former (β) is curved, while the latter (α)
travels almost rectilinearly.

We have thus shown that multiple bright spatial soli-
tons appear when a high-power laser beam subjected to
specific complicated aberrations is focused in the satu-
rable Kerr medium. However, it can be shown that spa-
tial radiating solitons will also form in a nonlinear
medium when aberrations are of other types.
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Abstract—The temperature characteristics of surface acoustic waves (SAW) propagating in LGS and LGN
crystals are numerically analyzed. The optimal orientations that correspond to the zero value of the first-order
temperature coefficient of delay (TCD) for SAW propagating in these crystals are considered. The second-order
TCD for SAW is calculated for a wide range of operating temperatures. It is shown that the temperature depen-
dences of the material constants of LGS and LGN crystals are strongly nonlinear. The characteristics of SAW
propagating in a structure that consists of an isotropic layer overlying an LGS or LGN piezoelectric crystal are
numerically calculated. It is shown that, in the presence of a thin aluminum layer of a certain thickness on the
crystal surface, in some cases it is possible to extend the operating temperature range within which the TCD for
SAW is equal to zero. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The interest shown lately in studying the properties
of surface acoustic waves (SAW) propagating in LGS
and LGN crystals is caused by the fact that these crys-
tals possess some orientations characterized by higher
values of the coefficient of electromechanical coupling
(K2) of SAW, as compared to the case of the much stud-
ied quartz crystals. At the same time, the LGS and LGN
crystals are known to exhibit some temperature-stable
properties [1, 2]. Certain cuts of these crystals and
some directions in them [1] are characterized by a zero
value of the first-order temperature coefficient of delay
(TCD(1)) for SAW at room temperature (t0 = 25°C).

One of the main characteristics in the SAW tech-
nique is the sensitivity of the temperature-stable direc-
tion in the crystal to changes in the environment tem-
perature. As a rule, the absolute value of the tempera-
ture coefficient of delay for SAW widely varies when
the operating temperature t departs from the room tem-
perature t0. It is of interest to study the behavior of
TCD(1) for SAW propagating in LGS and LGN crystals
in a wide temperature range. For the temperature-stable
directions of these crystals, it is also necessary to ana-
lyze the behavior of the second-order temperature coef-
ficient of delay (TCD(2)).

When a piezoelectric crystal is coated with a thin
metal film of a finite thickness h, the general properties
of SAW change. The velocity V of SAW and their TCD
can either decrease or increase, depending on the prop-
erties of the substrate material and the film material. In
some cases, a metal film deposited on the substrate sur-
face can improve the thermal stability of the SAW
propagation in such a structure [3, 4].

In this paper, we study the cuts of LGS and LGN
crystals and the directions in them that are character-
1063-7842/01/4604- $21.00 © 20450
ized by a zero first-order temperature coefficient of
delay, TCD(1), for SAW. We analyze the second-order
temperature coefficient of delay, TCD(2), for SAW in
these cuts with allowance for the second-order temper-
ature coefficients of the elastic, piezoelectric, and

dielectric constants (T , T , and T ) and the

second-order temperature expansion coefficient ( )
at room temperature. We consider the changes that
occur in TCD(1) and TCD(2) when the operating temper-
ature varies from  –100 to +120°C.

We analyze the variation of the relative delay time
∆τ/τ0 = (τ – τ0)/τ0 (where τ and τ0 are the delay times of
SAW) in a wide range of operating temperatures t. We
show that the temperature dependences of the material
constants of LGS and LGN crystals are strongly non-
linear, and, therefore, even in calculating the TCD(1) for
SAW in a wide temperature range, it is necessary to
take into account the second-order temperature coeffi-
cients of the material constants of these crystals.

We also demonstrate the effect of a thin metal coat-
ing of a finite thickness on the characteristics of SAW
(the SAW velocity and the TCD).

TEMPERATURE COEFFICIENT 
OF DELAY FOR SAW

The dependence of all components of the crystal mate-
rial constants on the operating temperature near room
temperature can be represented in the form [5]

Cij
2( ) eij

2( ) εij
2( )

α ij
2( )

Cij t( ) = Cij t0( ) 1 TCij
1( ) t t0–( ) TCij

2( ) t t0–( )2 …+ + +( ),

eij t( ) eij t0( ) 1 Teij
1( ) t t0–( ) Teij

2( ) t t0–( )2 …+ + +( ),=
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(1)

Here, T , T , T , T , T , T , Tρ(1),
Tρ(2), α(1), and α(2) are the first- and second-order tem-
perature coefficients of the elastic, piezoelectric, and
dielectric constants; the first- and second-order temper-
ature coefficients of density; and the first- and second-
order thermal expansion coefficients, respectively; i, j =
1–6; L is the length of the sample; t0 = 25°C is the room
temperature; and t is the operating temperature. In cal-
culating the temperature coefficients of delay, TCD(1)

and TCD(2), for SAW, it is necessary to take into
account the temperature dependences of the material
constants Cij, eij, and εij of the piezoelectric crystal and
the temperature dependence of its density ρ. In addi-
tion, the length L of the working part of the crystal also
varies when the operating temperature is varied.

To calculate the first-order coefficient TCD(1) for
SAW near room temperature, one usually takes into
account the values of the first-order temperature coeffi-
cients of the elastic, piezoelectric, and dielectric con-
stants and density and the first-order coefficients of
thermal expansion [5]. However, as one can see from
Eqs. (1), when the operating temperature widely differs
from room temperature, the factor (t – t0) can take rela-
tively large values. In addition, the second-order tem-
perature coefficients of the material constants can also
be large. In this case, in calculating TCD(1) for SAW in
a wide temperature range, it is necessary to take into
account the values of the second-order (and higher
order) temperature coefficients of the material con-
stants.

The temperature coefficient of the crystal density
Tρ(1) can be calculated by the formula [6]

(2)

where , , and  are the linear thermal expan-
sion coefficients of the crystal in the X1, X2, and X3
directions of the working coordinate system, respec-
tively [2].

To calculate the dependence of the delay time τ of
SAW on the temperature t, one can use the Taylor
expansion near room temperature:

(3)

εij t( ) = εij t0( ) 1 Tεij
1( ) t t0–( ) Tεij

2( ) t t0–( )2 …+ + +( ),

ρ t( ) ρ t0( ) 1 Tρ 1( ) t t0–( ) Tρ 2( ) t t0–( )2 …+ + +( ),=

L t( ) L t0( ) 1 α L
1( ) t t0–( ) α L

2( ) t t0–( )2 …+ + +( ).=

Cij
1( ) eij

1( ) εij
1( ) Cij

2( ) eij
2( ) εij

2( )

Tρ 1( ) α11
1( ) α22

1( ) α33
1( )+ +( ),–=

α11
1( ) α22

1( ) α33
1( )

τ τ0 t0( ) τd
dt
-----

t0

t t0–( ) 1
2
---d2τ

dt2
--------

t0

t t0–( )2+ +=

=  τ0 1 TCD 1( ) t t0–( ) TCD 2( ) t t0–( )2 …+ + +[ ] ,
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where

is the first-order temperature coefficient of delay;

is the second-order temperature coefficient of delay;
and τ and τ0 are the SAW delay times at the operating
and room temperatures, respectively.

According to [7], the coefficient TCD(1) for SAW
can be calculated by the formula

(4)

where TCV(1) is the first-order temperature coefficient
of velocity for SAW. This coefficient is determined by
the expression [5]

(5)

where V(t0) is the SAW velocity at the room tempera-
ture t0 and V is the SAW velocity at the operating tem-
perature t.

When the higher orders in Eq. (3) are neglected, the
relative variation of the SAW delay time, ∆τ/τ0 = (τ –
τ0)/τ0, can be represented in the form

(6)

In the general case, we can use the general equation
for calculating the dependence of the relative delay
time of SAW on the temperature t:

(7)

where

is the general TCD of SAW at any temperature t.
We note [7] that the relative variation of the SAW

frequency f is expressed as

(8)

Thus, using Eqs. (1)–(8), one can calculate all tem-
perature characteristics of SAW: TCD(1), TCD(2), ∆τ/τ0,
and ∆f/f0. To do this, it is necessary first to calculate the
velocity V of SAW (by numerical computer calculation
[2]) for different operating temperatures and for a given
crystal cut and a given direction of the SAW propaga-
tion (the crystal cut and the propagation direction in the
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crystal can be defined by three Euler angles, φ, Θ, and
ψ [5]).

ANALYSIS OF THE TEMPERATURE-STABLE 
ORIENTATIONS IN LGS AND LGN CRYSTALS

A number of recent publications [8–10] report on
the numerical calculations of the temperature charac-
teristics of SAW for the promising orientations of LGS

Fig. 1. Theoretical and experimental dependences of ∆f/f0
on temperature for the (0, 140°, 24°) LGS crystal: (×) exper-
iment and (- - -) calculation.
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Fig. 2. Temperature dependences of TCD(1) calculated with
allowance for the (1) first-order and (2) second-order tem-
perature coefficients of material constants for (a) the
(0, 140°, 22.5°) LGS crystal and (b) the (0, 138.5°, 23°)
LGN crystal.
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and LGN crystals. However, the calculated values of
TCD(1) and TCD(2) of SAW noticeably differ from the
experimental data [10]. This discrepancy is caused by
the fact that different sources provide different values
of the first- and second-order temperature coefficients
of the material constants. In one of the cited papers [9],
a numerical analysis of the main properties of SAW in
an LGS crystal is performed for three different variants
of the material constants. Another paper [10] presents
the refined values of the first- and second-order temper-
ature coefficients of material constants and describes
the theoretical calculations and the experimental mea-
surements of the quantity ∆f/f0 for an LGS crystal with
the (0, 140°, 24°) orientation in a wide temperature
range, from –20 to +80°C (Fig. 1). One can see that the
dependences ∆f/f0(t) calculated with the use of the LGS
material constants taken from [8] (curve 1) and [10]
(curve 2) are different. However, the experimental val-
ues (indicated by crosses on curve 2) coincide with the
theoretical ones obtained by using the refined values of
the material constants of LGS.

This result offers the following conclusion: using
the material constants for an LGS crystal from [10], one
can perform a preliminary numerical calculation of the
temperature characteristics (TCD(1) and TCD(2)) of
SAW for any orientation of the crystal in a wide tem-
perature range, and this calculation will coincide with
the experimental data with fair accuracy.

As an example, in Fig. 2a we present the calculated
temperature dependences of TCD(1) that were obtained
with allowance for the first-order temperature coeffi-
cients of material constants only (curve 1) and with
allowance for the first- and second-order temperature
coefficients of material constants (curve 2) for an LGS
crystal with the (0, 140°, 22.5°) orientation. One can
see that the inclusion of the second-order temperature
coefficients of material constants noticeably changes
the form of the temperature dependence of TCD(1). For
example, using only the first-order temperature coeffi-
cients of material constants in our calculations
(curve 1), we obtain that the value of TCD(1) is practi-
cally temperature independent and is close to zero. In
the second case (curve 2), in the temperature interval
from –100 to +120°C, the value of TCD(1) varies from –
20 × 10−6 1/°C to +10 × 10–6 1/°C and becomes zero at
t ≈ 35°C.

We note that, for a widely used ST, X-cut quartz [9],
the inclusion of the second-order temperature coeffi-
cients of material constants in the calculation of the
temperature characteristics of SAW hardly affects the
behavior of the temperature dependences of TCD(1) and
∆τ/τ0. When the temperature varies from –100 to
+120°C, the value of TCD(1) varies from –8 × 10–6 to
6 × 10–6 1/°C. The value of ∆τ/τ0 in the given tempera-
ture range is about 0.0005, and the temperature depen-
dence of ∆τ/τ0 has the form of a parabola. The corre-
sponding value of TCD(2) is ≈31.9 × 10–9 1/°C2. By con-
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
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trast, in an LGS crystal, the temperature dependences
of the material constants are strongly nonlinear.

The experimental temperature dependences of the
bulk wave velocity in an LGN crystal, as well as the
material constants and the first- and second-order tem-
perature coefficients of the material constants, are taken
from [11]. Figure 2b shows the temperature depen-
dences of the coefficient TCD(1) of SAW for an LGN
crystal with the (0, 138.5°, 23°) orientation. One can
see that the temperature dependence of TCD(1) is linear
when the second-order temperature coefficients of
material constants are neglected (curve 1), and it is non-
linear when these coefficients are taken into account.
Moreover, in the first case, as the temperature varies
from –100 to +120°C, TCD(1) varies from –1 × 10–6 to
+0.4 × 10–6 1/°C, whereas, in the second case, TCD(1)

varies from +1.5 × 10–6 to –1 × 10–6 1/°C. The main
characteristics of SAW for the given orientation at
room temperature are as follows: the SAW velocity V =
2.6407 km/s, the coefficient of electromechanical cou-
pling [5] K2 = 0.414%, TCD(1) = –0.09 × 10–6 1/°C,
TCD(2) = –9.5 × 10–9 1/°C2, the angle between the phase
and group velocities [2] PFA = 4.8°, and the anisotropy
coefficient [5] γ = –2.47.

Thus, we can conclude that the temperature depen-
dences of the material constants of LGS and LGN crys-
tals are strongly nonlinear, and, therefore, in calculat-
ing TCD(1) for SAW in a relatively wide range of oper-
ating temperatures, it is necessary to take into account
the second-order terms in Eqs. (1), unlike the case of
piezoelectric quartz.

EFFECT OF A THIN METAL FILM OF A FINITE 
THICKNESS ON THE TEMPERATURE 
COEFFICIENT OF DELAY FOR SAW

When the surface of a piezoelectric crystal is cov-
ered with a thin isotropic metal film of a finite thick-
ness, it is appropriate to consider the problem of the
SAW propagation in a layered structure consisting of
an isotropic layer and a piezoelectric substrate. In this
case, we have a system of two wave equations of
motion [5] one of which relates to the film material and
the other relates to the substrate material. In addition,
ten boundary conditions must be satisfied for two linear
combinations of partial waves, one of these combina-
tions relating to the substrate and the other to the upper
layer. These boundary conditions are as follows [5]: the
continuity of the stresses T31, T32, and T33 at the layer–
substrate interface and the zero values of these stresses
at the surface of the upper layer X3 = h; the continuity
of the displacements u1, u2, and u3 at the interface; and
the zero value of the potential ϕ at the film–substrate
boundary in the case of a metallized isotropic film.

In calculating the temperature dependences of the
velocity Vs and the coefficient TCDs for SAW propagat-
ing in a layered structure, it is necessary to take into
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
account the following facts: (a) the dependence of the
material constants Cij, eij, and εij of the anisotropic sub-
strate on temperature (Eqs. (1)); (b) the thermal expan-
sion of the crystal (see Eqs. (1)); (c) the dependences of
the crystal density ρ (Eq. (2)) and the layer density ρs

on temperature; (d) the dependence of the Lame elastic
constants of the isotropic layer on temperature [7];
(e) the thermal expansion of the film [7]; (f) the
changes in the film thickness h with varying tempera-
ture [7]; and (g) the presence of the initial thermal inter-
nal stresses in the layered structure due to the difference
in the coefficients of thermal expansion of the film and
substrate materials [12].

The temperature coefficient of delay for SAW in a
layered structure can be calculated by the formula [7]

(9)

where τs and τ0 are the delay times of SAW in the lay-
ered structure at the operating and room temperatures,

respectively;  is the temperature coefficient of

velocity for SAW in the layered structure; and  is
the coefficient of thermal expansion of the crystal in the
propagation direction.

If the film thickness h is much less than the substrate
thickness H, one can assume that, as the operating tem-
perature varies, the substrate length varies in one or
another direction and the film length varies simulta-
neously. However, we note that the film thickness h will
also vary in this case [7]. Moreover, if the thermal
expansion coefficients of the film and substrate materi-
als are widely different, a change in the operating tem-
perature will cause thermal internal stresses in the
structure [12], and these stresses will also contribute to
the characteristics of SAW. We do not consider such a
case in this paper.

In the presence of a film of finite thickness, the
velocity V of SAW and the coefficient TCD(1) will vary
in one or another direction, depending on the film
thickness and the properties of the layer and substrate
materials. According to [13], for certain combinations
of the substrate and film materials and for certain val-
ues of the film thickness, one can obtain a zero TCD(1)

for the SAW propagation along some direction in the
crystal and a simultaneous increase in the coefficient of
electromechanical coupling of SAW (K2) in this direc-
tion. Alternatively, it is possible to use the film in order
to increase the operating temperature range within
which the TCD of SAW will remain almost invariable.

Figure 3 shows the dependences of the velocity V
and the coefficient TCD(1) of SAW on the ratio h/λ (λ is
the wavelength of SAW) in the presence of an alumi-
num thin film on the surface of an LGS crystal with the
(0, 140°, 22.5°) orientation. One can see that both the
velocity and the coefficient TCD(1) linearly increase
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Fig. 3. Dependences of the velocity Vs and the coefficient
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Fig. 5. Temperature dependences of (1) the velocity V and
(2) the coefficient TCD(1) for SAW propagating in the Al
(h/λ = 0.003) + (10°, 150°, 37°) LGN layered structure.
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with increasing film thickness. For h/λ = 0.01, we have
TCD(1) = 4 × 10–6 1/°C.

Figure 4 presents the temperature dependences of
TCD(1) and TCD(2) for SAW in the following layered
structures: an aluminum layer (h/λ = 0.005) and an
LGS crystal with the (0, 140°, 22.5°) orientation
(curves 1, 3); an aluminum layer (h/λ = 0.005) and an
LGN crystal with the (0, 138.5°, 23°) orientation
(curves 2, 4). One can see that, as the operating temper-
ature varies from –100 to +100°C, the value of TCD(1)

for the LGS crystal (curve 1) varies from –15 × 10–6 to
+13 × 10–6 1/°C and becomes zero at a temperature of
10°C. In this case, the presence of the aluminum film
on the crystal surface leads to a decrease in the temper-
ature at which TCD(1) becomes zero. At the same time,
the value of TCD(2) (curve 3) varies insignificantly and
is about +70 × 10–9 1/°C2. For an LGN crystal, the
value of TCD(1) (curve 2) varies from +8 × 10–6 to –2 ×
10–6 1/°C and becomes zero at a temperature of 50°C.
The corresponding value of TCD(2) (curve 4) varies
from –30 × 10–9 to –10 × 10–9 1/°C2.

Figure 5 shows the temperature dependences of the
velocity V and the coefficient TCD(1) for SAW in the
presence of a thin aluminum film (h/λ = 0.003) on the
surface of an LGN crystal with the (10°, 150°, 37°) ori-
entation. The dependence of the SAW velocity
(curve 1) on temperature has the form of a parabola.
The dependence of TCD(1) (curve 2) on temperature is
linear. We note that, for the given orientation of the
LGN crystal without an aluminum film on its surface,
the main characteristics of SAW at t0 = 25°C are as fol-
lows: the SAW velocity V = 2.721 km/s, the coefficient
of electromechanical coupling K2 = 0.418%, TCD(1) =
–2.4 × 10–6 1/°C, TCD(2) = 123 × 10–9 1/°C2, the angle
between the phase and group velocities PFA = –6.9°,
and the anisotropy coefficient γ = –0.9. From Fig. 5, one
can see that, at room temperature, in the presence of the
aluminum film (h/λ = 0.003), the temperature coeffi-

cient of delay for SAW becomes lower:  = –0.4 ×
10–6 1/°C. In addition, the numerical calculation shows
that the second-order temperature coefficient of delay
for SAW propagating in the layered structure is also

lower:  ≈ 11 × 10–9 1/°C2. Thus, the presence of
a thin aluminum film of a given thickness (h/λ = 0.003)
on the surface of an LGN crystal with the (10°, 150°,
37°) orientation provides a temperature stabilization of
this crystal cut.

CONCLUSION

As a result of the numerical analysis of the temper-
ature characteristics of SAW propagating in LGS and
LGN crystals, we have shown that the temperature
dependences of the material constants of these crystals
are strongly nonlinear, unlike the case of a quartz crys-
tal. For some orientations of LGS and LGN crystals, we

TCDs
1( )

TCDs
2( )
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calculated the values of the first- and second-order tem-
perature coefficients of delay (TCD(1) and TCD(2)) for
SAW in a wide temperature range.

For a layered structure formed by a metal film and
an underlying piezoelectric crystal, we demonstrated
the changes that occur in the velocity of SAW and in the
temperature coefficient of delay with varying thickness
of the metal film and with varying operating tempera-
ture. It was shown that, in the presence of a thin alumi-
num layer of certain thickness on the surface of an LGN
crystal, it is possible to achieve a better thermal stabil-
ity of SAW in some propagation directions.
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Abstract—Dispersion and energy characteristics of slow volume electromagnetic waves in tangentially mag-
netized ferromagnetic films are computed in a rigorous manner. For a wave that experiences anomalous disper-
sion and propagates with the external magnetostatic field, distinguishing features of the energy-flux velocity
and the ratio of the electric to the magnetic energy density as functions of the wave number are noted. A marked
contrast between these results and those obtained within the magnetostatic approximation is revealed for a wide
range of wave numbers. © 2001 MAIK “Nauka/Interperiodica”.
It is common practice to rely on the magnetostatic
approximation (MSA) when evaluating the main prop-
erties (such as dispersion and group velocity) of slow
electromagnetic propagation in thin ferromagnetic
films. The slow waves that can be treated within the
MSA are called magnetostatic waves [1, 2].

The MSA provides a useful framework for comput-
ing the dispersion diagrams of slow waves in a single
layer and even in thin-film ferrite/dielectric multilayers
for different directions of the external magnetic field, as
evidenced by experiments (see, e.g., [3]). Also,
attempts are being made to apply this approach to
energy-related properties: energy density, power-flux
density, and energy-flow velocity [4–7]. However, the
results may be in contradiction to rigorous electromag-
netic theory in some real cases. For example, a rigorous
analysis of normally magnetized metal/ferrite/dielec-
tric structures indicates that the energy-flux density of
a slow wave is aligned with the wave vector [8],
whereas the MSA implies that the energy-flux densities
in the ferrite and the dielectric have opposite directions
[7].

This paper presents a theoretical investigation into
the dispersion and energy characteristics of slow elec-
tromagnetic waves in tangentially magnetized ferro-
magnetic films. The results are contrasted with the
MSA data. We address the simplest case: the structure
under study is a ferromagnetic layer bounded by two
metallic films and exposed to a uniform external mag-
netostatic field. In this context, the complete system of
Maxwell’s equations yields a dispersion relation writ-
ten in an analytic form for different alignments of the
magnetostatic field, and validity conditions can be for-
mulated for the MSA [9].

The structure is sketched in Fig. 1. The thickness of
the ferromagnetic layer is denoted by d. The external
magnetostatic field H0 is aligned with the Z-axis, and
1063-7842/01/4604- $21.00 © 20456
the ferromagnetic layer is magnetized to saturation.
The plane electromagnetic waves propagate in the
Z direction.

Under the stated conditions, the volume electromag-
netic waves obey the dispersion relation [9, 10]

(1)

where k is the wave number; k0 = ω/c, with ω = 2πf
being the angular frequency and c being the speed of
light in free space; ε is the relative permittivity of the
medium; ky = nπ/d, with n being the mode number; and
µ and µa are the variables that determine the rf perme-
ability tensor. Furthermore, µ = [ωH(ωH + ωM) –

ω2]/(  – ω2) and µa = ωMω/(  – ω2), where ωH =
γH0 and ωM = 4πγM0, with M0 and γ being the satura-
tion magnetization and the magnetomechanical ratio,
respectively [2].

ky
2– µky

2 1 µ+( )k2 µ2 µ µa
2–+( )k0

2ε–+[ ]

=  k4 2µk2k0
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Fig. 1. Schematic diagram of the structure under study.
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Dispersion relation (1) is built around a polynomial
in f of the sixth degree. The solution to the relation con-
sists of three branches. Two of them represent fast elec-
tromagnetic waves (with k ~ k0), whereas the third one
corresponds to a slow wave, which is a magnetostatic
wave if k @ k0 [1, 2].

Relation (1) allows us to determine the group veloc-
ity Vg of the wave. In the general case, group velocity
is expressed as

(2)

and is regarded as the velocity of a wave packet (i.e., a
group of waves) [11, 12]. Equation (2) applies to isotro-
pic dispersive media with gentle dispersion curves for
both normal and anomalous dispersion [13] provided
that the spectrum of the wave packet is not too wide. If
the media “are free from absorption and such phenom-
ena as the rotation of the plane of polarization [12],” the
group velocity can be compared to the energy-flux
velocity VE, i.e., Vg = VE. In particular, this equality is
true of arbitrary profile guiding structures filled with a
low-loss isotropic dielectric, as demonstrated in [14].
The two velocities may differ for anisotropic gyromag-
netic dispersive media that exhibit rotation of the polar-
ization plane if the external magnetostatic field is
applied in certain directions [12].

Figure 2 refers to a slow volume electromagnetic
wave with n = 1. It shows dispersion curves and the
dependences of the component of Vg on the normalized

wave number K = k/k0 , with K evaluating the extent
to which the wave is slowed down. The computation
was based on relation (1) for yttrium–iron garnet
(4πγM0 = 1780 G) with H0 = 890 Oe and ε = 16.
Figure 2a indicates that the wave is affected by anoma-
lous dispersion. For this reason, it is called a magneto-
static backward volume wave. We found that, over the
entire range of K, both the dispersion curves and the
group-velocity diagrams in Fig. 2 behave in exactly the
same fashion as those obtained within the MSA for the
values of d in hand.

The complete system of Maxwell’s equations writ-
ten for anisotropic gyromagnetic media yields the field
amplitudes of waves in the structure:

(3)

Vg ∇ kω k( )=

ε

e0x
1

kkyµa

------------- µ ky
2 k2+( ) µ2 µa

2–( )k0
2ε–[ ] A kyycos{=

+ µk2 µ2 µa
2–( )k0

2ε–[ ]G } ,

e0z A kyy,sin=

h0z i
µ ky

2 k2+( ) µ2 µa
2–( )k0

2ε–
kk0µa

------------------------------------------------------------A kyy,sin=
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where

and A is an arbitrary constant.

The time and the space averages of the energy-flux
density P and the electromagnetic energy density W are

e0y = i
k
ky

---- A kyy G+cos( ), h0x–  = i
k0ε
ky
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h0y = 
1

µakyk0
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Fig. 2. (a) Dispersion curves and (b) velocity characteristics
of a backward slow volume electromagnetic wave. In
Fig. 2b, the solid curves refer to the group velocity com-
puted with the rigorous and the MSA approach (they yield
the same results) and the dashed curves represent the
energy-flux velocity computed within the MSA.
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computed from the formulas

(4)

(5)

where  is the permittivity tensor (it is a scalar quan-
tity in this context), V is the volume-to-area ratio of the
ferromagnetic structure, and * denotes complex conju-
gation [15]. Formulas (4) and (5) apply to lossless
anisotropic dispersive media.

Using (3) and (4), one can show that P has a unique
nonzero component, namely, Pz.

Figures 3a and 3b, respectively, depict computed
values of We/Wh and those of the z-component of VE =

P
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Fig. 3. Energy characteristics of a backward slow volume
electromagnetic wave: (a) the energy-density ratio We/Wh
and (b) the energy-flux velocity as functions of the normal-
ized wave number. The solid curves refer to the rigorous
approach, whereas the dashed ones are computed within the
MSA.
P/W as functions of K for backward slow volume elec-
tromagnetic waves, where We and Wh are the average
energy densities for the electric and magnetic fields
respectively. The solid curves refer to the rigorous
approach based on formulas (1) and (3)–(5), whereas
the dashed curves are obtained within the MSA. We see
that the rigorous density curves have a pronounced
peak (Fig. 3a), which shifts toward larger K (K > 30) as
d decreases (d < 50 µm). In contrast, all of the MSA
density curves go to infinity for small K at any d. With
a given d, the two types of density curves are the same
only if K is large enough (K > 100). Qualitative agree-
ment between them is reached at a certain threshold K
value, which lies where the rigorous curve reaches its
maximum.

The rigorous velocity curves (Fig. 3b) also have pro-
nounced peaks. With a given d, the peaking region is
the same as that for the density curve (Fig. 3a). The
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Fig. 4. (a) Dispersion curves and (b) group velocity charac-
teristics of a forward slow volume electromagnetic wave.
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presence of a peak in the velocity curves implies that VE

switches to the opposite direction, although the disper-
sion remains anomalous. This fact is important,
because the analysis of magnetostatic backward vol-
ume waves in various ferromagnetic structures yields
that VE is always opposite in direction to the phase
velocity (see dashed curves in Fig. 3b) [2, 4]. Note that
the peculiarities of the rigorous velocity curves stem
from the features of the We–K and Wh–K characteristics
only: the behavior of the dispersion curves (Fig. 2a) has
no effect on the velocity curves.

Now, let us revert to Fig. 2. As expected, the respec-
tive MSA curves for Vg and VE coincide within the fre-
quency ranges where the dispersion curve levels out (at
K < 100 or K > 2000). If 100 < K < 2000, then Vg and
VE differ due to significant dispersion. In contrast, the
rigorous approach yields that the difference exists even
for K < 100, as evidenced by the pronounced peak in
the behavior of the energy-flux velocity (compare the
solid curves in Fig. 2b with those in Fig. 3b). The dis-
crepancy between the two types of velocity characteris-
tic for longitudinal magnetization can be explained by
the fact that the slow electromagnetic wave experiences
a rotation of the polarization plane as it propagates in a
ferromagnetic medium [10]. This factor was high-
lighted, e.g., in [12].

Finally, we consider the case where the wave travels
normally to H0 (transverse magnetization). Figure 4a
demonstrates that the slow volume electromagnetic
wave possesses weak normal dispersion, with which
the group and phase velocities have the same direction
[2] (see also Fig. 4b). There is no rotation of the polar-
ization plane under this type of magnetization [10].
Figure 4b suggests that Vg = VE for any K, with the
group velocity being computed from formula (2). Also
notice that the MSA dispersion curve is a straight line
for any d (see the dashed line in Fig. 4a). For this curve,
Vg = VE = 0.

In summary, the MSA is inapplicable to the energy
characteristics of backward slow volume electromag-
netic waves in longitudinally magnetized ferromag-
netic films, since the results directly contradict the rig-
orous approach. If K < 100, a deviation arises in the
behavior of both the energy-density ratio and the
energy-flux velocity. For the latter quantity, the MSA
yields incorrect values even with K > 100, in complete
contrast to what is commonly anticipated [2].

The findings presented here may be useful for both
unraveling wave phenomena in anisotropic multilayers
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
and computing the characteristics of microwave
devices utilizing spin waves.
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Abstract—Compression of a rectangular chirp-pulse waveform by a chain of nondissipative ring-type resona-
tors is studied theoretically. A three-resonator chain is shown to be capable of compressing a microwave pulse
by a factor of 8 with an almost 80% efficiency. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Efficiency of single-resonator microwave pulse
compressors diminishes with increasing compression
ratio [1–3]. For example, at a compression ratio of 5,
the efficiency is 80%. To increase the compression, it
was proposed to use a system of resonators [4]. In this
paper, we study pulse compressors in the form of a
chain of ring-type resonators, one possible design of
which is illustrated in Fig. 1.

EQUATION OF THE COMPRESSOR 
AND ITS CHARACTERISTICS

Transformation of a microwave pulse

E = Re{En(t)exp(iωgt)}

by a chain of N nondissipative resonators is described
by the system of equations

(1)

where Ωn = (1 + i/2Qn) – ωg is the mismatch
between the complex eigenfrequency of the nth resona-

dEn

dt
--------- iΩnEn–

dEn 1–

dt
--------------- iΩn*En 1– 1 n N≤ ≤( ),–=

ωn'
1063-7842/01/4604- $21.00 © 20460
tor and the carrier frequency of the input pulse, ωg; Qn

is the radiation Q factor of the nth resonator; En is the
complex amplitude of the pulse at the output of the nth
resonator; and E0 and EN are the complex amplitudes of
the pulse at the input and output of the pulse compres-
sor, respectively.

In our calculations, we consider a pulse with a rect-
angular envelope of duration T with the phase modula-
tion specified by the three-parameter function

where H is the Heaviside function, µ is the pulse fre-
quency-versus-delay slope, and tp and ∆ϕ are the
instant and magnitude of the phase step.

Since the compressor is intended to operate with lin-
ear particle accelerators, we will characterize its perfor-
mance by the pulse compression ratio

(2)

E0 t( ) i
µt2

2
------- ∆ϕH t tp–( )+

 
 
 

,exp=

s
T
τ
---,=
E0 EN

1
N – 1

N

Fig. 1. Microwave pulse compressor in the form of a chain of ring-type resonators.
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efficiency

(3)

and power gain

Pg = sη,

where τ = L/vgr, L is the length of the accelerating
structure, and vgr is the group velocity of the wave in
the structure.

In the framework of the problem stated above, the
efficiency is a function η(α, δ, ∆ϕ, βn, γn) of dimension-
less parameters

METHOD OF NUMERICAL 
ANALYSIS

Equations (1) were solved by Runge–Kutta integra-
tion. The maximum of efficiency (3) at a given com-
pression ratio (2) was searched for by the modified

η

EN
2 td

T τ–

T

∫

E0
2 td

0

T

∫
-------------------------,=

α µT2

2
---------, δ

t p

T
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Fig. 2. Characteristics of optimized pulse compressors. Effi-
ciency η (solid lines) and power gain (dashed lines) Pg ver-
sus compression ratio s.
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Hooke–Jeeves method [5], which performed well in
simulations of various microwave devices [6, 7].

For pulse compressors considered in this work, the
optimization time on a Pentium-166 MHz computer did
not exceed 1.5 min, which corresponded to calculating
the goal function 15000 times. The major difficulty
stemmed from multiextremal behavior of efficiency
(3), which may also be significant in the practical
implementation of the pulse compressor.
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output pulse versus dimensionless time for version A in
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Table 1.  Parameters of optimized pulse compressors for versions A, B, C, D, and E in Fig. 2 

Version α δ ∆ϕ β1 γ1 β2 γ2 β3 γ3

A 24.2 – – 8.65 1.86 16.0 2.67 27.0 4.15

B 20.3 0.909 1.46 5.51 1.54 13.1 2.27 24.3 5.11

C 9.15 0.858 1.89 0.63 1.24 8.71 2.86 – –

D 17.1 0.921 1.02 1.35 1.82 8.69 2.98 16.8 5.67

E 18.2 – – 1.26 1.93 8.37 2.88 16.6 4.24

Table 2.  Regions of robustness of optimized pulse-compressor parameters for versions A, B, C, D, and E in Fig. 2

Version α, % δ, % ∆ϕ, % β1, % γ1, % β2, % γ2, % β3, % γ3, %

A +2 – – +7 +38 +4 +24 +3 +19
–2 – – –7 –29 –4 –21 –3 –17

B +2 +3 +25 +11 +38 +4 +24 +4 +19
–2 –3 –24 –11 –31 –4 –21 –4 –16

C +4 +2 +15 +85 +36 +7 +19 – –
–4 –(<1) –15 –84 –30 –7 –17 – –

D +3 +4 +39 +50 +42 +7 +22 +6 +17
–3 –4 –40 –55 –31 –7 –19 –6 –15

E +3 – – +58 +45 +8 +23 +5 +17
–3 – – –60 –33 –8 –20 –5 –15
RESULTS OF SIMULATIONS

Figure 2 plots the efficiency and power gain versus
compression ratio for the following optimized systems:
(1) single-resonator compressor with a phase-reversal
pulse; (2) three-resonator compressor with a chirp (lin-
early swept) pulse; (3) two-resonator compressor with
a chirp phase-reversal pulse; and (4) three-resonator
compressor with a chirp phase-reversal pulse.

Figures 3 and 4 show the power Pout and phase ϕout

of the output pulse versus dimensionless time for ver-
sions A and B in Fig. 2.

Table 1 lists parameters of the input pulse and reso-
nators for five versions A, B, C, D, and E illustrated in
Fig. 2. Table 2 summarizes ranges of parameters within
which the efficiency falls by no greater than 1%. The most
critical parameters are the frequency-versus-delay slope
and the instant of the phase reversal in the input pulse.

CONCLUSION

Robustness of the optimum parameters of resona-
tors in the pulse compressor diminishes with increasing
number of resonators. Therefore, when implementing
the compressor in practice, one should presumably
restrict the design to two or three resonators. It is likely
that the efficiency can be increased by applying a more
complicated phase modulation rule to the input pulse.
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Abstract—Self-organization of a beam of free electrons injected by an optical cathode is discussed. It is shown
that exchange interaction may cause beam self-polarization in a vacuum and sustain beam polarization in the
material. © 2001 MAIK “Nauka/Interperiodica”.
(1) The effect of optical orientation of electron spins
in semiconductors is widely used in atomic and molec-
ular physics, condensed-matter physics [1], nuclear
physics, and elementary-particle physics [2]. Genera-
tion of spin-oriented carriers by absorption of circularly
polarized light was first suggested in [3, 4]. The optical
orientation phenomenon has been studied in detail [5];
yet, there is no consensus on mechanisms behind high
polarization of the beam [6, 7].

The basic mechanism of generation of polarized
electrons is photoemission in GaAs thin strained epi-
taxial layers. Under biaxial strain, the p3/2 multiplet in
the valence band is split into two pairs of sublevels in
such a way that the state of one pair turns out to be
below the Fermi energy (light holes), while that of the
other pair lies above the Fermi energy (heavy holes).
This results in changes in the occupancy of these sub-
levels. A circularly polarized photon causes the transi-
tion to the s state of the conduction band with a prefer-
ential orientation of the spin projection onto the
selected axis of symmetry. Thus, the illumination of
cubic GaAs crystals by light with clockwise circular
polarization generates a high density of polarized elec-
trons. The use of special surface-activating Cs + O (or
Cs + F) films, together with band bending, may
increase the fraction of polarized photoelectrons to 83–
90%.

Theoretically, this phenomenon is studied by simu-
lating classical electron outdiffusion. Quantum trans-
port [6, 7] and collective quantum events are usually
rejected, but spin relaxation mechanisms are taken into
account. These mechanisms merit detailed consider-
ation just because spin polarization is a possibility.
With regard for such a high degree of electron beam
polarization observed in experiments, there obviously
should be a mechanism (or mechanisms) that is respon-
sible for spin coorientation. In this case, the coupling
constant must far exceed the constants of interactions
that cause spin breakdown. For example, any possible
self-polarization mechanism must stand up to severe
competition with the Bir–Aronov–Pikus mechanism of
spin relaxation [8], which has the interaction constant
1063-7842/01/4604- $21.00 © 20463
proportional to the exchange splitting of the exciton
state energy, about 50 µeV. In this case, the spin relax-
ation time is about a hundredth of the spin breakdown
time in spin–orbital interaction by the Elliott–Jassett
mechanism [9], which is much shorter than the electron
lifetime. Therefore, the Bir–Aronov–Pikus mechanism
effectively destroys the spin. Another breakdown
mechanism, which is related to spin splitting of the
conduction band, is the D’yakonov–Perel’ mechanism
[10]. This splitting is akin to the case when the effective
magnetic field whose direction depends on the momen-
tum direction acts on the spin. For spin–orbital interac-
tion, the characteristic energy of band splitting is "Ω =
(32/21)1/2α(T 3/Eg)1/2. Here, Eg is the energy gap, α is a
factor proportional to the orbital quantum number, and
T is temperature in terms of energy. This mechanism
becomes essential at large electron energies.

In this work, we consider a possible mechanism of
spin polarization in an electron beam. This mechanism
continues to act when the electrons propagate in a vac-
uum. Such an interaction, which causes spin ordering,
is of Coulomb exchange type, i.e., is similar to electron
interaction in the conduction band, and the effect of
spin polarization is analogous to free electron ferro-
magnetism. In this case, the exchange interaction con-
stant greatly exceeds those of any of the relaxation
mechanisms mentioned above.

(2) With regard for interaction of the electron beam
with all bonded electrons of impurity atoms, the
Heisenberg parameter can be calculated within the
exchange perturbation theory (EPT) [11], which has
specially been developed for analysis of magnetic sys-
tems. In terms of the EPT, the first-order correction to
the energy is given by [11]

(1)

where  is the operator that describes Coulomb elec-
tron–electron interaction, Φ is the ordinary product of
the coordinate parts of the single-electron wave func-
tions, and Ψ is the coordinate part of a wave function
antisymmetrized with respect to electron permutations.

E 1( ) Φ r1 r2,( ) V̂ Ψ r1 r2,( )〈 〉 ,=

V̂
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For beam electrons, the waves are plane; then, the
correction to the energy can be rewritten as E(1) = K ± A
or

(2)

where

Here, 1/Ω2 is a factor normalizing to the total number
of particles in the beam.

The exchange contribution we are interested in
(which is responsible for spin correlation in the beam)
is

where q = |k1 – k2|, δ is the Dirac delta function, and n is
the electron concentration in the beam. It is evident that
q ≥ 2π"/L, where L is the film thickness. Only in this
sense must the delta function be perceived.

Now, we average the exchange interaction over the
energy spread of electrons generated by a radiation the
spectral line of which has the Lorentz-type width. Since
the frequency interval ∆ω related to the spectral line
width is proportional to the momentum spread, "∆ω .
"2kq/m, one can write

(3)

where α = "kτ/m and τ –1 is the spectral line width. The
value of α coincides with the diffusion mean free path
by the order of magnitude.

Hence, 〈A〉  depends on the intensity of incident light
causing the valence-to-conduction band electron transi-
tion. Let n ~ α–3 ~ ndop = 3 × 1018 cm–3; then,

and the Heisenberg parameter j = 2A, where A is taken
in view of the averaging. Thus, the constant of interac-
tion responsible for spin coorientation is relatively
large, and spin correlation may survive even for a
heated cathode.

(3) Let the unit vector m indicate the spontaneous
moment direction. The energy of the particles depends
on spin orientation about m and, therefore, can be
expressed as [12]

ε(p, s) = ε0(p) – b(p)  · m. (4)

E 1( ) K
A
2
---– 2Aŝ1 ŝ2,⋅–=

K
e2

r1 r2–
------------------d3r1d3r2,∫=

A
i k1r1 k2r2 k1r2– k2r1–+( )( )exp

r1 r2–
---------------------------------------------------------------------------------d3r1d3r2

e2

Ω2
------.∫=

A q( )
e2n2/3

2π
-------------σ q( ),=

A〈 〉 A q( ) α
1 αq( )2+
----------------------- qd∫ e2

2π
------n2/3α ,= =

A〈 〉 1
2π
------ e2

aB

-----
aB

α
----- 

  1
π
---EB 10 2–× 10 14–  erg,∼ ∼=

ŝ

According to this formula, the energy of an electron
with the spin projection parallel to m is ε0 – b; accord-
ingly, the equilibrium distribution function is n(ε0 –
b) = n↑. For the opposite spin projection, we have ε0 + b
and n(ε0 + b) = n↓, respectively. At appropriate spin ori-
entations, the eigenvalues n↑ and n↓ are those of the
operator

(5)

which is the equilibrium density matrix. The spontane-
ous spin coorientation of degree  ~ b/εF for degener-
ate gas and  ~ b/T for nondegenerate gas is provided
by the Boltzmann factor due to a shift of the light and
heavy hole states relative to the Fermi level. For the
three-dimensional case, the Fermi level is given by

εF± = εF (1 ± )2/3. (6)

Replacing ±1 by the operator

whose eigenvalues are ±1 at the appropriate spin coori-
entation, we obtain

(7)

Exchange interaction also makes a contribution to
the effective energy per particle; the corresponding
operator has the form

Thus, the Fermi distribution function can be written
in the form of the density matrix for the spin variable:

(8)

Since  < 1, (7) can be expanded as

Then, operator (8) can be expressed as

(9)

where  is the Fermi distribution function without
corrections to the kinetic energy and the Fermi energy

and  is an analog of the Landau function [9]:

(10)

In GaAs, the conduction band lies above the Fermi
energy; hence, the distribution function for the elec-

n̂0 p ŝ,( )
1
2
--- n↑ n↓+( ) n↑ n↓–( )ŝ m,⋅+=

σ
σ

σ

p̂
1
2
--- 1 4ŝ s'ˆ⋅+( ),=

εF± εF 1 σ
2
--- 2σŝ s'ˆ⋅+ + 

  2/3

.=

ε̂exc j ŝ s'ˆ .⋅–=

n̂F
1

ε j ŝ s'ˆ⋅– εF±–( )/T[ ]exp 1+
---------------------------------------------------------------------.=

σ

εF± εF 1 σ
3
---

4
3
---σŝ s'ˆ⋅+ + 

  .=

n̂F nF
0 f̂

∂nF
0

∂ε
--------,= =

nF
0

f̂

f̂
1

Sp n̂0 p ŝ,( )d3 p∫
------------------------------------- ∆

2
--- 2∆ j+( )ŝ s'ˆ⋅+ .=
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trons is the Boltzmann function:
n↑ – n↓ = n0exp(–b/T) – n0exp(b/T), (11)

where n0 =  and µ is the chemical potential of clas-
sical perfect gas.

In this case,

(12)

Due to exchange effects, there is a certain relation-
ship between (4) and (10). It can be established if we
consider [9] how the electron energy changes when the
vector m rotates through an angle δθ. We have δm =
[δq × m] and, according to (4),

δε = –b[m × ]δq, (13)

where brackets mean vector product.
However, a change in m causes a change in the dis-

tribution function (5),

(14)

and in the energy,

(15)

Equating (13) and (15) at an arbitrary δθ, we come
to the expression for conduction-band electrons:

Substituting (11) and (12) into this expression and
taking the trace yields

(16)

or

(17)

Eventually, we arrive at transcendental equation
(17), which has a nonzero solution (b ≠ 0) if the coeffi-
cient T/(∆ + j/2) is less than unity. Thus, both deforma-
tion splitting ∆ and exchange interaction j favor sponta-
neous spin coorientation; at (∆ + j/2) > T, the second-
order transition takes place in the system that sets

e
µ ε–

T
------------

Sp n̂0 p ŝ,( )d3 p∫
=  n0 b/T–( )exp n0 b/T( )exp+ 2cosh

b
T
---.=

ŝ

δn̂0 p ŝ,( )
1
2
--- n↑ n↓–( ) m ŝ×[ ]δq,=

δε Trs' f̂ δn̂0 p' s'ˆ,( )d3 p'∫=

=  Trs'
1
2
--- f̂ n↑ n↓–( ) m s'ˆ×[ ]δqd3 p'.∫

b m ŝ×[ ]– =

=  

Trs'
1
2
--- ∆

2
--- 2D j+( )ŝs'ˆ+ 

  n↑ n↓–( ) m s'ˆ×[ ]d3 p∫
Sp n̂0 p ŝ,( )d3 p∫

--------------------------------------------------------------------------------------------------------------.

b m ŝ×[ ]–
b/T( )sinh
b/T( )cosh

-------------------------1
2
--- 2∆ j+( )–=

b b/T( )2∆ j+
2

---------------,
2b

2∆ j+
---------------tanh

b
T
---,tanh= =

b
T
--- T

∆ j/2+
----------------- b

T
---, σ T

∆ j/2+
-----------------tanh σ.tanh= =
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polarization with σ  1. The values of ∆ and j are
of the same order of magnitude: ∆1 = 50 meV = 8 ×
10−13 erg (for GaAs) and ∆2 = 25 meV = 4 × 10–13 erg
(for GaAsP) [13]. For both materials, j = (10–25) ×
10−14 erg. One can conclude that the exchange interac-
tion is a significant factor in inducing spontaneous
polarization in the electron beam. Such an effect might
be interpreted as ferromagnetic enhancement of the
spin polarization in the beam. The mechanisms respon-
sible for spin polarization breakdown that were men-
tioned above cannot have a severe impact on a self-
polarized system, because their interaction constants
are two orders of magnitude lower than the constants of
spin structure ordering. Such is an explanation of most
available experimental data for spin-polarized beams.
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Abstract—It is suggested to study the ion–optical properties of sectorial electrostatic charged-particle analyz-
ers with the matrizant technique. The matrizants can effectively be used in investigating beam dynamics in sec-
torial electrostatic fields with consideration for edge effects within rectangular and smooth field models. © 2001
MAIK “Nauka/Interperiodica”.
Many modern techniques for investigating solids
and plasmas are based on the examination of the mass
and energy spectra of charged particles. Electrostatic
and magnetic analyzers are common investigation
facilities in this field. In studying the ion–optical prop-
erties of charged particle analyzers, matrix techniques
for solving equations of beam motion in electric and
magnetic fields of various configurations have found
wide acceptance. For example, a matrix technique is
used in the well-known TRANSPORT numerical code
[1]. Its refined version makes it possible to analyze
beam transport in accelerating static and magnetic
arrangements with starting equations of motion
approximated up to the third order. This code lacks an
element like an electrostatic toroidal sectorial capacitor
and, hence, cannot be applied to designing double-
focusing mass analyzers, where this element is present.

In this work, we derived an analytical expression for
the third-order matrizant of the sectorial electrostatic
field of a toroidal capacitor with consideration for edge
effects using the method of matrizants [2, 3]. The spe-
cific case of this matrizant is the transfer matrix in ray
optics. The resulting matrix P(3) can be used for both
numerical (using the shuttle-sum method [4]) and ana-
lytical (using the method of matrizants within a rectan-
gular field model) determination of third-order aberra-
tion coefficients for phase variables. Information on
these aberration coefficients is contained in the upper
four rows of the matrizant derived by analytically or
numerically solving a set of differential equations of
motion for charged particles. The use of conservative
methods for matrizant computation (at each step of
computation, the phase volume remains unchanged)
would refine conditions for charged particle transport
through ion–optical systems.

Let us introduce a natural coordinate system x, y, s
related to an arbitrary plane curve that is uniquely
defined by the radius of curvature ρ. Such a system
completely coincides with Brown’s system [5]. A Car-
tesian system , ,  with the origin at the startingx̃ ỹ z̃
1063-7842/01/4604- $21.00 © 20466
point of an axial particle and the natural coordinate sys-
tem with the origin at the center of curvature of the ref-
erence-particle path are related as

Consider nonrelativistic motion of the particles.
Since the Lame coefficients for our coordinate system
are h1 = 1, h2 = 1, and h3 = 1 + x/ρ, trajectory equations
can be written as [6]

(1)

where a prime means differentiation with respect to s;
T is the absolute value of the increment of the trajectory
length when all the coordinates increase simulta-
neously; and ϑ , m, and q are the velocity, mass, and
charge of a particle, respectively.

Let us define ϑ2 as a function of the potential incre-
ment at any point relative to the potential at points of
the central path:

(2)

where ϑ  is the velocity of a particle of mass m = m0 that
has a momentum spread µ = ∆p/p0; ∆Ux is the potential
difference between a point M(x, y, s) of the ion trajec-
tory and points on the axis x = 0, y = 0; and U0 is the
accelerating voltage of an ion source.

x̃ x ρ+( ) s/ρ( ) ρ, ỹ–cos y,= =

z̃ x ρ+( ) s/ρ( ).sin=

x''
GT '
ϑ

---------x'
h3

ρ
-----–+

q T '( )2

mϑ 2
---------------Ex,=

y''
GT '
ϑ

---------y'+
q T '( )2

mϑ 2
---------------Ey,=

G
d
ds
----- ϑ

T '
----- 

  q
mh3
---------

T 'Es

ϑ
---------- 2ϑ x'

T 'h3ρ
--------------– ;+= =

T ' h3
2 x '2 y '2+ + ;=

ϑ 2 p0
2

m0
2

------ 1 µ2+( )
∆Ux

U0
----------– 

  ,=
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With regard for the symmetry condition, third-order
expansions in series for the potential V(x, y, s) and
strength E(x, y, z) of the electric field near the axial path
are given by

(3)

Taking into account that the electric potential V
must meet the Laplace equation ∆V = 0 and that the
relationship

must be satisfied for a toroidal capacitor, we come to
expressions for the potential components near the axial
path up to the third order:

(4)

where h = 1/ρ, g = 1/ae, and ae is the radius of curvature
of the toroidal capacitor electrodes.

We did not consider the case of small electrode
deformations, which may affect the toroidal capacitor
potential [8]. The electrostatic field strength can be
expressed as

(5)

For the rectangular field model,

(6)

where u+(t) is the step function [9] that satisfies the
conditions

V x y z, ,( ) V10 s( )x
1
2
---V20 s( )x2 1

6
---V30 s( )x3+ +=

+
1
24
------V40 s( )x4 1

2
---V02 s( )y2 1

2
---V12 s( )xy2 1

4
---V22 s( )x2y2,+ + +

Ex s( ) V10 s( ) V20 s( )x
1
2
---V30 s( )x2 1

6
---V40 s( )x3+ + +=

+
1
2
---V12 s( )y2 1

2
---V22 s( )xy2,+

Ey s( ) V02 s( )y V12 s( )xy
1
2
---V22 s( )x2y,+ +=

Es s( )
1

h3
3

----- V10' s( )x
1
2
---V20' s( )x2 1

3!
-----V30' s( )x3+ +

=

+
1
2
---V02' s( )y2 1

2
---V12' s( )xy2


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Ex x 0 s, ,( ) E0 s( ) ρ
ρ x+
------------

ae

ae x+
-------------- [7]=

V10 s( ) E0 s( ), V20 s( ) E0 s( ) g– h–( ),= =

V30 s( ) E0 s( ) g2 hg h2+ +( ),=

V40 s( ) 6E0 s( ) g3– hg2– h2g– h3–( ),=

V02 s( ) = E0 s( )g, V12 s( ) = E0 s( ) 2g2– hg–( ) E0' s( ),–

V22 s( ) E0 s( ) 6g3 4hg2 2h2g+ +( ) E0' s( ) g 5h+( ),+=

E0 τ( ) E0Θ τ( ).=

)

Θ τ( ) u+ τ s0–( ) u+ s τ–( ),–=

d
dt
-----u+ t( ) δ+ t( ),=
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For the smooth field model,

(7)

The points s1 and s2 specify the boundaries of scat-
tered fields. The smooth model is a fairly good approx-
imation of the actual longitudinal field distribution. In
particular, it includes the effect of scattered fields on
beam dynamics in a specific ion–optical system.

To solve the trajectory equations, we apply the
method of embedding in the phase moment space [2].

Let the third-order phase moments be defined as  =
{x, x', y, y', x2, xx', x'2, y2, yy', y'2, xy, x'y, xy', x'y', x3, x2x',
xx'2, x'3, xy2, xyy', xy'2, x'y2, x'yy', xy'2, y3, y2y', yy'2, y'3,
yx2, yxx', yx'2, y'x2, y'xx', y'x'2}.

In matrix form, trajectory equations (1) can be writ-
ten as

(8)

On rearrangement, we obtain the matrix P(3):

ϕ τ( )δ+ τ t–( ) τd

a 0+

b

∫
0 t a, t b≥<
ϕ t 0+( ) a t b,<≤




=

ϕ τ( )δ+
r( ) τ t–( ) τd

a 0+

b

∫
0 t a, t b≥<

1–( )rϕ r( ) t 0+( ) a t b.<≤



=

Θ τ( ) = 

1 s1 τ≤ s2<
0 τ s0, τ s><

1

1 eC0 C1τ C2τ
2 C3τ

3+ + + +
--------------------------------------------------------------------- s0 τ s1<≤

1 1

1 eC4 C5τ C6τ
2 C7τ

3+ + + +
---------------------------------------------------------------------– s0 τ s.≤ ≤

Q̂
3( )

d
ds
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3( )
( ) P 3( ) s( )Q̃̂

3( )
.=

P 3( )

P1.1 0 P1.3 P1.4 0 P1.6 P1.7 0 0

0 P2.2 0 0 P2.5 0 0 P2.8 P2.9

0 0 P3.3 0 0 P3.6 P3.7 0 0

0 0 0 P4.4 0 0 P4.7 0 0

0 0 0 0 P5.5 0 0 P5.8 P5.9

0 0 0 0 0 P6.6 0 0 0

0 0 0 0 0 0 P7.7 0 0

0 0 0 0 0 0 0 P8.8 0

0 0 0 0 0 0 0 0 P9.9 
 
 
 
 
 
 
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,= =

P3.7

0 0 0 0 0 0

h
2
---e2 h3 n2 7

2
---n– 3+ 

 + 0 h– 0 0 0

0 0 0 he2 h3 2n2 7n– 6+( )+ 0 2h– 
 
 
 
 
 
 

,=

P4.4
0 2 0

f– 0 1

0 2 f– 0 
 
 
 
 

, P5.5

0 1 1 0

f– 0 0 1

k– 0 0 1

0 k– f– 0 
 
 
 
 
 
 

,= =
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P4.7

0 0 0 0 0 0

he2 h3 2n2 5n– 2+( )+ 0 0 0 2h 0

0 2he2 h3 4n2 10n– 4+( )+ 2he1 0 0 4h
 
 
 
 
 
 
 

,=

P5.8

0 0 0 0

0 0 0 0

h
2
---e2 h3 n2 7

2
---n– 3+ 

 + 0 h– 0

0
h
2
---e2 h3 n2 7

2
---n– 3+ 

 + 0 h–
 
 
 
 
 
 
 
 
 
 
 

,=

P5.9

0 0 0 0 0 0

he2 h3 2n2 5n– 2+( )+ 0 0 he1 2h 0

h3 n2 1+( )– he1 h 0 0 0

0 he2 h3 2n2 – 5n 2+( )+ 0 h3 n2 1+( )– 2he1 3h
 
 
 
 
 
 
 
 
 

,=
(9)

P6.6

0 3 0 0

k– 0 2 0

0 2k– 0 1

0 0 3k– 0 
 
 
 
 
 
 

,=

P7.7

0 2 0 1 0 0

f– 0 1 0 1 0

0 2 f– 0 0 0 1

k– 0 0 0 2 0

0 k– 0 f– 0 1

0 0 k– 0 2 f– 0
 
 
 
 
 
 
 
 
 
 
 

,=

P8.8

0 3 0 0

f– 0 2 0

0 2 f– 0 1

0 0 3 f– 0 
 
 
 
 
 
 

,=

P9.9

0 2 0 1 0 0

k– 0 1 0 1 0

0 2k– 0 0 0 1

f– 0 0 0 2 0

0 f– 0 k– 0 1

0 0 f– 0 2k– 0
 
 
 
 
 
 
 
 
 
 
 
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Here, k = nh2, n = 2 – , f = , e1 = , and e2 =

.

The solution to Eq. (8) is represented through the
matrizant in the form

(10)

The matrizant X(P(3), s/s0), as the matrix P(3) of coef-
ficients, has a block–triangular structure,

g
h
--- g

h
---

E0' s( )
E0

-------------)

E2'' s( )
E0

-------------)

Q̃̂ X P 3( ) s/s0,( )Q̃̂0.=

X P 3( ) s/s0,( )

=  

X1.1 0 X1.3 X1.4 0 X1.6 X1.7 0 0

0 X2.2 0 0 X2.5 0 0 X2.8 X2.9

0 0 X3.3 0 0 X3.6 X3.7 0 0

0 0 0 X4.4 0 0 X4.7 0 0

0 0 0 0 X5.5 0 0 X5.8 X5.9

0 0 0 0 0 X6.6 0 0 0

0 0 0 0 0 0 X7.7 0 0

0 0 0 0 0 0 0 X8.8 0

0 0 0 0 0 0 0 0 X9.9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,
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and satisfies the differential equation

(11)

where I is the unit matrix.

Let ri, j be elements of the block matrix X1.1 and qi, j

be elements of the block matrix X 2.2; i, j = 1, 2. Then,
for diagonal matrix blocks Xk, k (k = 2, 4, 5, …, 9), ana-
lytical solutions to Eq. (11) within the rectangular
model are easy to obtain by straightforward algebraic
manipulation. For example, for the x2 row of the matrix
block X 3.3 ,

(12)

we get  = ,  = 2r11r12, and  = .
For the off-diagonal blocks Xi, k (k > j), the general for-
mula [7]

(13)

is valid.
For the rectangular model, the integrals in (13) can

be taken by quadratures; hence, elements of the matri-
zant X(P(3), s/s0) will have an analytical form. For
matrix (6), solutions to the equations

(14)

(15)

can be written as

(16)

(17)

X ' P 3( ) s/s0,( ) P 3( )X P 3( ) s/s0,( ),=

X P 3( ) s0/s0,( ) I ,=

x2 = r11x0 r12x0'+( )2
 = r11

2 x0
2 2r11r12x0x0' r12

2 x0'
2
,+ +

X1.1
3.3 r11

2 X1.2
3.3 X1.3

3.3 r12
2

Xi k, s/s0( ) Xi j, s/τ( )Pi j, τ( )X j k, τ /s0( ) τd

s0

s

∫
j 1 i+=

k

∑=

dX1.1 s/s0( )
ds

------------------------- P1.1 s( )X1.1 s/s0( ), X1.1 s0/s0( ) I ,= =

dX2.2 s/s0( )
ds

------------------------- P2.2 s( )X2.2 s/s0( ), X2.2 s0/s0( ) I= =

X1.1 r11 r12

r21 r22 
 
 

=

=  
k s s0–( )( )cos

1

k
------ k s s0–( )( )sin

k k s s0–( )( )sin– k s s0–( )( )cos 
 
 
 
 

,

X2.2 q11 q12

q21 q22 
 
 

=

=  
f s s0–( )( )cos

1

f
------- f s s0–( )( )sin

f f s s0–( )( )sin– f s s0–( )( )cos 
 
 
 
 

.

Then, for a cylindrical capacitor,

(18)

Now we will obtain the second-order aberration

coefficients  = {x, x', x2, xx', x'2} with respect to
phase variables. To do this, it is first necessary to find
elements of the matrix block X1.3(s/s0) =

(s/τ)P1.3(τ)X 3.3(τ/s0)dτ, where X1.1(s/τ), P1.3(τ),

and X 3.3(τ/s0) are determined from (16), (9), and (12),
respectively.

The second-order transfer matrix for the phase vari-

ables  can be written as

The second-order transfer matrix for the phase vari-

ables  in the Cartesian system can be written as

(19)

where

are coordinate-transforming matrices, which are easily
found from the boundary conditions

X2.2 q11 q12

q21 q22 
 
  1 s s0–( )

0 1 
 
 

.= =

Q̂x x',
2( )

X1.1

s0

s∫

Q̂x x',
2( )

M
Q̂x x',

2( ) s/s0( ) X1.1 s/s0( ) X1.3 s/s0( )

0 X3.3 s/s0( )
 
 
 
 
 

.=

Q̂x a,
2( )

R 2( ) s/s0( ) M
Q̂x a,

2( ) s/s0( ) A x y s, ,( ) x̃ ỹ z̃, ,( )→
2( )= =

× M
Q̂x x',

2( ) s/s0( )A x̃ ỹ z̃, ,( ) x y s, ,( )→
2( ) ,

A x y s, ,( ) x̃ ỹ z̃, ,( )→
2( )

1 0 0 0 0

0 1 0 h– 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1 
 
 
 
 
 
 
 
 

,=

A x̃ ỹ z̃, ,( ) x y s, ,( )→
2( )

1 0 0 0 0

0 1 0 h 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1 
 
 
 
 
 
 
 
 

=

a
d x̃
dz̃
------

x'
1 hx+
---------------, b

dỹ
dz̃
------

y'
1 hx+
---------------.= = = =
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Thus, the second-order aberration coefficients for
the rectangular field model have the form

where S = sin( (s – s0)), C = cos( (s – s0)), and
ζ = 1 if Eq. (6) is true. If ζ is set equal to zero [i.e., E'(s)
= 0 and E"(s) = 0], we arrive at the equations [7, 9] that
are widely used in designing ion–optical systems when
the actual field is replaced by an idealized one equiva-
lent in rotation to take into account scattered fields.

To derive the third-order transfer matrix for the

phase variables , we use the Cauchy formula

(20)

In Cartesian coordinates, the third-order transfer

matrix for the phase variables  will have the
form

(21)

x̃ x̃2〈 | 〉 R1.5
2( ) h

3n
------ 2– n 2n2–+( )(= =

+ 1 2n– n2+( )C 1 n n2+ +( )C2 ),+

x̃ x̃a〈 | 〉 R1.6
2( ) 1

3n3/2
----------- 2 1 n n2+ +( )SC(= =

+ –2 n 2n2–+( )S ) ζ 1

n
-------S 

  ,+

x̃ a2〈 | 〉 R1.7
2( ) 1

3hn2
----------- 1 2n– n2+( )(–= =

+ 2– n 2n2–+( )C 1 n n2+ +( )C2 ),+

a x̃2〈 | 〉 R2.5
2( ) h3

3 n–
---------------- –2 n 2n2–+( )SC(= =

+ –1 2n n2–+( )S ) ζ h2 nSC( ),+

a x̃a〈 | 〉  = R2.6
2( ) = 

h
3n
------ 2– n 2n2–+( ) –2 n 2n2–+( )C+(

+ –2 4n 4n2+ +( )C2 ) ζ h C S2 C2–+( )( ),+

a a2〈 | 〉 R2.7
2( ) 1

3n3/2
----------- 2 n– 2n2+( )SC(= =

+ –2 n 2n2–+( )S ) ζ h

n
-------SC– 

  ,+

k k

Q̂x x' y y' δ, , , ,
3( )

Q̂ X P s/s0,( )Q̂0 X P s/τ,( )Ψ τ( ) τ .d

s0

s

∫+=

Q̂x̃ a ỹ b δ, , , ,
3( )

R 3( ) s/s0( ) A x y s, ,( ) x̃ ỹ z̃, ,( )→
3( )=

× M
Q̂x x' y y' δ, , , ,

3( ) s/s0( )A x̃ ỹ z̃, ,( ) x y s, ,( )→
3( ) ,
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where

is the extended transfer matrix in the  space.

The matrix block Ψ is determined by the method of

embedding in the space of phase moments  = {δ,
xδ, x'δ, δ2, …, δ3}.

Within the rectangular field model, the third-order
aberration coefficients are given by

(22)

where i is the serial number of a phase variable.

Thus, for the rectangular longitudinal distribution of
the field of a toroidal sectorial capacitor, we derived
analytical expressions for all matrizant elements and,
hence, all third-order aberration coefficients. The
expressions were obtained with consideration for edge
effects. For a smooth longitudinal field distribution, the
matrix P(3) of coefficients was found to compute the
matrizant with the numerical shuttle-sum method with
consideration for the edge effects.

REFERENCES

1. D. C. Carey, K. L. Brown, and F. Rothacher, Third-Order
TRANSPORT with MAD Input. A. Computer Program
for Designing Charged Particle Beam Transport Sys-
tems. SLAC-R-530. Fermilab-Pub-98-310 (1998).

2. A. D. Dymnikov and R. Hellbord, Nucl. Instrum. Meth-
ods Phys. Res. A 330, 323 (1993).

3. A. D. Dymnikov et al., Nucl. Instrum. Methods Phys.
Res. A 403, 195 (1998).

4. A. D. Dymnikov, Nucl. Instrum. Methods Phys. Res. A
363, 435 (1995).

5. K. L. Brown et al., Rev. Sci. Instrum. 35, 481 (1964).

6. M. Szilagyi, Electron and Ion Optics (Plenum, New
York, 1988; Mir, Moscow, 1990).

7. A. A. Sysoev and G. A. Samsonov, Theory and Compu-
tation of Static Field Mass-Spectrometer, Preprint MIFI
(Moscow, 1972), Vols. 1, 2.

8. M. I. Yavor, Nucl. Instrum. Methods Phys. Res. A 298
(1–3), 223 (1998).

9. H. Hinterberger and L. A. Kenig, Advances in Mass
Spectrometry, Ed. by J. D. Waldron (Pergamon, London,
1959; Inostrannaya Literatura, Moscow, 1963).

Translated by V. Isaakyan

M
Q̂x x' y y' δ, , , ,

3( ) s/s0( )

=  X P 3( ) s/s0,( ), X P 3( ) s/τ,( )Ψ 3( ) τ( ) τd

s0

s

∫ 
 
 

Q̂x x' y y' δ, , , ,
3( )

Q̂
3( )

x̃ Q̂x̃ a ỹ b δ, , , ,
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3( )〈 | 〉 R2 i,

3( ),= =

ỹ Q̂x̃ a ỹ b δ, , , ,
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Abstract—The characteristic features of the relaxation of the energy and momentum distribution functions of
the electrons in a plasma produced by a low-voltage beam discharge in helium are investigated. It is established
that, contrary to widely held opinion, the energy of an intense electron beam may relax due to the wave excita-
tion. The critical currents corresponding to a jumplike transition from one relaxation mechanism to another are
measured. The density of metastable helium atoms is determined from the comparative analysis of theoretical
and experimental results on the structure of the energy spectrum of the electrons of an intense beam. An intense
electron beam is found to become more isotropic in the course of its interaction with Langmuir waves in a col-
lisionless plasma. The cross section for quasi-elastic collisions between the electrons and Langmuir plasmons
is estimated. The wave nature of the beam–plasma mechanism for the relaxation of the anisotropic electron
energy distribution function is demonstrated, and the mechanism itself is shown to come into play when the
discharge current exceeds a certain critical level. The experimental threshold criterion for the energy relaxation
of an intense monoenergetic beam is obtained for the first time. It is shown that the relaxation occurs in two
stages: the isotropization stage, in which the beam energy decreases insignificantly, is followed by the stage in
which the beam relaxes to a state with a plateau-like energy distribution function. The threshold criterion for
the relaxation of the anisotropic electron energy distribution function is universal in character regardless of the
cause of anisotropy. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This paper is aimed at studying the dynamics of an
electron beam in a plasma produced by a low-voltage
beam discharge (LVBD) in helium. By the LVBD, we
mean a discharge in which the electrons obey a non-
equilibrium distribution function and are usually repre-
sented by two different groups: a group of slow (ther-
mal) plasma electrons and a group of fast (nonequilib-
rium) beam electrons.

Low-voltage discharges in alkali-metal vapors have
been investigated in great detail [1]. The physical prop-
erties of such discharges are shown to be governed by
the relaxation of low-density electron beams in dis-
charge plasmas [2–6]. There are two mechanisms for
the relaxation of the electron distribution function
(EDF): a collisional mechanism and a beam–plasma
mechanism. The first mechanism was investigated for
discharge plasmas in which the neutral gas pressure is

sufficiently high, lea ! d, where lea = 1/Na  is the
mean free path of the beam electrons, d is the length of

the discharge gap, Na is the atom density, and  is the
corresponding transport cross section. Under these con-
ditions, the distribution function f(z, J) of fast elec-
trons is almost spherically symmetric (here, z is the dis-
tance from the cathode). Traditionally, the beam in such
a plasma is assumed to relax due to binary collisions,
while the relaxation of the beam by the waves that it
itself excites in a discharge plasma is neglected.
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The beam–plasma relaxation mechanism was stud-
ied under the conditions prevailing in Knudsen dis-
charges, for which lea > d and the distribution function
f(z, J) is anisotropic. The beam relaxes because it
excites Langmuir waves [2–4, 7]. In this case, a sub-
stantial amount of the beam energy is converted into
wave energy and the thermal plasma electrons are
heated via the collisional damping of the excited waves.

LVBDs in noble gases have been less studied. These
discharges differ markedly from beam discharges in
alkali-metal vapors [8, 9]. Thus, in noble gases, in
which the excitation and ionization potentials are both
high, low-voltage discharges are characterized by the
presence of an intense monoenergetic electron beam. In
such discharges, the gas is ionized and the plasma cur-
rent is transported by fast electrons rather than by ther-
mal electrons, as is the case with discharges in alkali-
metal vapors. Another distinctive feature of noble gases

is that the transport cross section  for the scattering
of thermal plasma electrons by the gas particles is very
small; as a result, the collisional damping rate of Lang-
muir waves is slow. These circumstances govern the
formation and relaxation of the anisotropic electron
distribution functions over momenta and energies in the
plasma of beam discharges in noble gases.

Knowledge of the regular features of the dynamics
of electron beams in plasmas is important for develop-
ing a new class of devices in plasma electronics, specif-
ically controlled general-purpose stabilizers [10, 11],

σea
t

001 MAIK “Nauka/Interperiodica”



        

DYNAMICS OF ELECTRON BEAMS IN PLASMAS 473

                                                                                             
high-power sources of electromagnetic radiation, con-
trolled key cell elements [1, 5, 12, 13], plasmochemical
reactors [9, 14], and new types of energy sources capa-
ble of operating under extreme conditions (in a sur-
rounding medium with high radiation levels and tem-
peratures above 1000 K) [15].

A comprehensive study of the anisotropic EDF in
the plasma of LVBDs in noble gases has shown that the
model of an LVBD plasma can be used as a universal
model of a low-temperature electrode plasma [6, 16].

2. EXPERIMENTAL DEVICE 
AND MEASUREMENT TECHNIQUE

The experiments were carried out in a device with
flat circular electrodes [17]. A 0.15-cm-thick porous
tungsten plate impregnated with barium–calcium alu-
minate served as a cathode, whose temperature was
measured by W–Re microthermocouples and was con-
trolled by a stabilizing unit to lie in the range 1000–
1800 K (to ±10 K accuracy). The interelectrode gap
was designed so as to ensure the symmetry of the dis-
charge plasma about the device axis. The plasma col-
umn was such that its side boundary was a 1.1-cm-
diameter conducting cylindrical surface held at the
cathode potential. The distance between the electrodes
varied from 0.1 to 2 cm. After the heat and vacuum
treatment of the device, a residual working pressure of
10–9 torr was ensured. The pressure of chemically pure
helium was controlled by a needle inlet valve in the
range 10−1–101 torr.

In order to measure the EDF, a 30-µm-thick single-
sided flat probe made of tantalum foil in the form of a
disk 0.05 cm in diameter was introduced into the
plasma through the side boundary. A 0.02-cm-diameter
tantalum wire was welded to the probe. All of the con-
ducting elements (including the conducting surface of
the probe) were protected by an insulating Alundum
coating. The probe installed at a three-coordinate
micrometer system was moved at steps of ±0.1 mm
along the discharge axis inside the interelectrode gap.
The probe was oriented at angles from 0 to 180° to the
device axis to within an error of ±1°. The error in the
initial orientation of the probe did not exceed ±30′. The
coordinates of the probe and its orientation were con-
trolled by an eyepiece micrometer.

The single-sided flat probe method [18, 19] was
used to measure the Legendre coefficients fj and to
reconstruct the total EDF. The method implies that the
second derivative  of the probe current is recon-
structed from the potential measured in the plasma by
the probe oriented at different angles to the device axis.

IU"
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The EDF f(eU, α) is related to the quantity  by

(1)

where

Θ is the angle between the electron velocity vector and
the polar axis z directed from the cathode to the anode
along the symmetry axis of the discharge; ε, e, and m
are the energy, charge, and mass of an electron, respec-
tively; α is the angle between the normal to the noncon-
ducting probe surface and the discharge axis; U is the
retarding potential of the probe with respect to the
plasma; and S is the area of the conducting surface of
the probe.

The isotropization of the momentum distribution
function of the beam electrons and the relaxation of
their energy were studied separately by constructing
polar diagrams of the directed motion of electrons with
different energies and by analyzing the spatial relax-
ation of the quantity .

The second derivative  of the probe current was
recorded by modulating the probe potential by a dou-
ble-frequency differentiating signal of the form

U = U0(1 + cosω1t)cosω2t. (2)

The influence of plasma oscillations and instrumen-
tal distortions were taken into account by the method of
[18], which was also used to choose the optimum
amplitude U0: U0 = 0.1 V. The frequencies were set to
ω1 = 103 Hz and ω2 = 105 Hz. The plasma potential was
determined by the zero of the second derivative of the
probe current. The anisotropic part f0(ϑ) of the EDF and
the electron density n were calculated from the
formulas

(3)

where ϑ  = (2eU/m)1/2. The inaccuracy of the measure-
ments of  was thoroughly analyzed in [19] and was
found to stem primarily from unstable discharge condi-
tions. A special technological treatment of the experi-
mental device and the method for optimizing the dis-
charges modes ensured that the signal-to-noise ratio
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was about 200 and the degree to which the discharge
parameters were stable was ±5%.

3. COLLISIONAL MECHANISM 
FOR THE RELAXATION OF THE EDF 

(SUBCRITICAL CURRENT)

We begin by considering the results of investiga-
tions of the electron distribution in a collision-domi-
nated (lea ! d) LVBD plasma at low discharge currents
for which the wave processes are unimportant and the
electron beam relaxes primarily due to the binary colli-
sions.

3.1. The Structure and the Main Parameters 
of the LVBD Plasma

First, note that the gas-discharge gap between the
electrodes can be divided into three regions: the space-
charge anode and cathode regions and an extended
quasineutral plasma region between them. The current j
flowing through the electrode region gives rise to a so-
called Langmuir sheath, whose length L0 satisfies the
relationship

(4)

where
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Fig. 1. Axial profiles of the parameters of the plasma of an
LVBD in helium at a pressure of pHe = 2 torr for d = 1.2 cm,

Tc = 0.1 eV, and js = (d) 0.14 and (×) 0.84 A cm–2: (a) the
potential ϕ and the mean energies 〈ε t〉  and 〈ε0〉  of the slow
and fast electrons and (b) the densities nt and n0 of the slow
and fast electrons.
is the Debye length, Te is the plasma electron tempera-
ture, n is the electron density, and ϕ0 is the voltage drop
across the Langmuir sheath.

Across the quasineutral region, the plasma potential
changes insignificantly (∆ϕ ≈ Te/e ! ϕ0), in which case
the potential has a slightly pronounced minimum
between the potential barriers ϕc and ϕa near the cath-
ode and anode, respectively. For the range of plasma
parameters under investigation, with helium at the pres-
sure pHe ≈ 10–1–5 torr, an interelectrode distance of
d ≈ 1 cm, and a cathode temperature of Tc ≈ 0.1 eV, the
potential drop near the cathode and anode is equal to
ϕc ≈ 25–30 V and ϕa ≈ 1–2 V, respectively.

Figure 1a shows representative profiles of the poten-
tial in the plasma of an LVBD in helium. Over a broad
parameter range, the situation is seen to be typical of a
weakly ionized plasma: charged particles collide only
in a quasineutral plasma region of length L0 ! lea. The
shape of the profiles of the measured quantity  shows
[20] that there are two different electron groups in the
plasma: slow electrons with energies 〈ε t〉  ≈ 1–2 eV and
fast electrons with energies 〈ε0〉  ≈ 30 eV. The beam is
formed as a result of electron acceleration at the poten-
tial barrier near the cathode. Since the initial electron
energy spread is small, ∆ε0 ! ε0, the beam can be
assumed to be monoenergetic. Because of elastic scat-
tering by helium atoms, the momentum distribution
function of fast electrons relaxes (becomes isotropic) at
a distance z ≈ lea from the cathode. A distinguishing fea-
ture of LVBDs in noble gases is that, due to the binary
collisions of the beam electrons with thermal plasma
electrons and helium atoms, the beam energy relaxes
only slightly. Thus, in the discharge modes under inves-
tigation, the corresponding energy relaxation lengths

were found to be  @ d and  @ d [20]. We can
conclude that, over most of the interelectrode gap, the
discharge plasma properties are governed by the beam.
The current density j0 of fast electrons is determined by
their diffusion toward the anode: j0(z) = –eD0(dn0/dz),
where n0 is the density of the fast electrons. Since the
anode potential drop ϕa is considerably less than the
beam electron energy, ((eϕa)/ε0 ! 1, ε0 = eϕc), the beam
electrons freely reach the anode surface.

The group of thermal electrons results from inelastic
processes of the excitation and ionization of helium
atoms. Since the excitation and ionization energies of
helium atoms are fairly high (the ionization energy is
Eion ≈ 24.6 eV, and the excitation energy of the lowest
metastable state He(23S1) is Em ≈ 19.8 eV), these inelas-
tic processes are governed exclusively by the group of
fast electrons, which also carry the bulk of the dis-
charge current. The total electron current density is
equal to the density of the currents carried by the fast
(j0) and thermal (jt) electrons. Since the potential barrier
at the anode acts to reduce the flow of thermal electrons
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toward the anode, we have jt(d) + j0(d) = js, where js is
the emission current from the cathode [1]

The characteristic spatial profiles of the densities n0
and nt of the fast and slow electrons are displayed in
Fig. 1b. We can see that, for the current density js ≈
0.8 A cm–2, the plasma density is markedly nonuni-
form: the onset of the density gradient dnt /dz in the
cathode sheath is associated with the ambipolar diffu-
sion of the produced ions toward the cathode. The rate
at which the ions are produced is approximately pro-
portional to the beam current. Consequently, plasma
density variations are no longer important for low cur-
rent densities (js ≈ 0.1 A cm–2).

The above characteristic features of LVBDs in noble
gases are associated with the presence of an intense
monoenergetic electron beam; thus, we will focus most
of our attention on the group of fast electrons. Note
that, near the cathode, the structure of the spectrum of
the fast electrons almost always reflects inelastic pro-
cesses in the plasma. Detailed measurements of the
EDF of the beam in the cathode sheath made it possible
to investigate the effect of inelastic processes on the
formation of the EDF and to determine the density of
the excited helium atoms in the 23S1 metastable state.

In the next section, the generation of fast electrons
in the plasma of an LVBD in helium will be considered
in more detail.

3.2. Elementary Processes Involving Metastable 
Helium Atoms

In the kinetics of a low-temperature plasma of an
LVBD in helium, an important role is played by reac-
tions involving helium atoms in the 23S1 metastable
state [21]. The rates of these reactions were calculated
for the EDF measured in a discharge mode with pHe = 1
torr and js ≈ 0.3 A cm–2. The calculations were carried
out for the following processes of the population and
quenching of the metastable helium atoms.

The population reactions include excitation by
direct electron impact [22]

He + e  He(23S1) + e, (5)

collisional–radiative recombination [23]

He+ + 2e  He(23S1) + e, (6)

dissociative recombination [23]

 + e  He(23S1) + He, (7)
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and the Phelps reaction [24]

He(21S0) + e  He(23S1) + e. (8)

The quenching reactions include the processes of
Penning ionization and associative ionization [25]

(9)

step ionization by electron impact [26]

He(23S1) + e  He+ + 2e, (10)

superelastic collisions [26]

He(23S1) + e  He + e, (11)

triplet–singlet transitions [24]

He(23S1) + e  He(21S0) + e, (12)

and diffusion toward the walls [17].
The calculated rates of the population and quench-

ing processes are listed in Table 1. One can see that, in
the discharge mode at hand, He(23S1) metastable atoms
are produced primarily through excitation from the
ground state by direct electron impact and are
quenched predominantly through step ionization and
binary interactions, which are accompanied by the gen-
eration of fast electrons. An analysis of the time-inde-
pendent diffusion equation under the assumption that
the spatial distribution of metastable helium atoms in a
discharge plasma follows the distribution of the density
of fast electrons revealed that the dominant role in the
quenching of metastable atoms is played by diffusion
processes. The density of He(23S1) metastable atoms at
the discharge axis is estimated as Nm ≈ 7 × 1012 cm–3. In
a collision-dominated plasma of an LVBD in helium at
a subcritical current, the contribution of step ionization
reactions to the total ionization rate is about 40% [17].

Hence, in the discharge mode under investigation,
He(23S1) metastable atoms play an important role in
both plasma kinetics and the ion content of the LVBD
plasma, in which case the elementary reactions (9)–
(11) should cause the appearance of the following elec-

He 23S1( ) He 23S1( )
He+ He e+ +

He2
+ e,+

+

Table 1.  Rates of different reactions changing the density of
metastable helium atoms

Reactions Γ × 1017, cm–3 s–1

(5) 6

(6) 0.01

(7) 0.001

(8) 0.5 × 10–14 Nm

(9) 1.8 × 10–25 

(10) 0.8 × 10–13 Nm

(11) 0.02 × 10–13 Nm

(12) 0.8 × 10–13 Nm

Nm
2
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tron groups in the energy spectrum: reactions (9) pro-
duce electrons with energies of ε ≈ 14–17 eV, reac-
tion (10) produces electrons with energies of ε1 ≈ ε0 –
∆ε (where ∆ε = Eion – Em ≈ 4.8 eV), and reaction (11)
produces electrons with energies of ε2 ≈ 20–21 eV.

3.3. Spatial Relaxation of an Electron Beam

Let us consider in more detail the results of both an
experimental investigation of the EDF in a collision-
dominated LVBD plasma and an analysis of the mech-
anisms for beam relaxation in a discharge plasma at a
low discharge current density.

Figure 2a illustrates the spatial relaxation of the
quantity  for two orientations of the planar probe: the
solid curves refer to a probe whose absorbing surface
faces the cathode, and the dashed curves refer to a
probe whose absorbing surface faces the anode. For
thermal electrons, the values of  are lowered by a
factor of ten. The results presented in Fig. 2a are char-
acteristic of low discharge currents such that the beam
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energy relaxes only due to the binary collisions of the
beam electrons with thermal plasma electrons and
helium atoms. We can see that, at a distance z < 3 mm
from the cathode, the quantity  gradually becomes
positive and, at a distance z > 3 mm farther from the
cathode, the profiles calculated for different orienta-
tions of the probe essentially coincide. The polar dia-
grams of the directed motion of beam electrons at dif-
ferent distances z from the cathode (Fig. 2b) provide
strong evidence for the isotropization of the EDF. After
the isotropization stage, a weakly anisotropic beam
travels throughout the entire interelectrode gap, keep-
ing its energy almost unchanged. The beam loses fast
electrons as a result of inelastic collisions, and the elec-
tron–electron and electron–atom elastic collisions act
to increase the energy spread of the beam and to
slightly lower the mean beam energy. Figure 3 illus-
trates the character of the spatial relaxation of the iso-
tropic part F0(ε, z) of the distribution function of an
electron beam emitted by the cathode, the energy
spread ∆ε0 of the beam, and the mean beam energy 〈ε0〉 .
For comparison, the results obtained using the colli-
sional relaxation theory [27] are also shown. The
spread ∆ε0 of the initial beam energy is seen to increase
as the beam electrons diffuse toward the anode (the
half-widths of the corresponding profiles become
larger). This effect is described by the collisional relax-
ation theory. The mean beam energy 〈ε0〉  decreases
fairly gradually. The energy ∆〈ε0〉  lost by the beam
when it traverses the interelectrode gap is fairly low
specifically; it is on the order of ∆〈ε0〉  ≈ 0.3 eV.

Inelastic collisions markedly reduce the density of
the beam propagating along the interelectrode gap. The
ionization of He(23S1) metastable atoms by the beam
electrons and the quenching of metastables in collisions
with thermal plasma electrons give rise to electron
groups with energies of ε1 ≈ 24.4 eV and ε2 ≈ 20–21 eV,
respectively. Figure 4 depicts the EDF measured exper-
imentally in the cathode sheath (at the distance z =
0.15d from the cathode) and clearly shows that the
energy spectrum of fast electrons actually contains the
related electron groups F1 and F2. The spatial relax-
ation of the electron groups F1 and F2 in the experimen-
tally measured EDF is illustrated in Figs. 5a and 5b. We
can see that, along the discharge axis, the profiles of the
distribution functions F1 and F2 of the electron groups
change more gradually than the profile of the isotropic
part F0 of the initial electron beam (cf. Fig. 3). The elec-
tron energy spread for each of these groups (∆〈ε1〉  and
∆〈ε2〉) is substantially larger than ∆〈ε0〉 . Presumably,
this is explained by the fact that the energies ε1 and ε2
are lower than ε0 and accordingly the cross sections for
the excitation of helium atoms by the electrons from
these groups are also lower. Consequently, the diffusion

lengths  and  are longer than . As a result,
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the lifetime of the electrons of the initial beam is shorter
than the lifetimes of the electrons from the remaining
groups in the EDF. This analysis explains why the
energy spread ∆〈ε0〉  is small in comparison with ∆〈ε1〉
and ∆〈ε2〉 .

In this paper, it is proposed to determine the density
Nm of metastable helium atoms by comparing the cal-
culated energy spectrum of fast electrons [27] with the
experimental spectrum. In fact, the functions F1 and F2
are proportional to Nm. Consequently, the most reliable
value of the density Nm in an LVBD plasma is such that
the calculated total EDF F = F0 + F1 + F2 is close to the
EDF obtained by probe measurements. Figure 6 com-
pares the experimental and theoretical EDFs near the
energy ε0. When the density of metastable helium
atoms is equal to Nm = 1013 cm–3, the theoretical profile
is seen to agree well with the experimental one, so that
this density value is what is desired.

The densities of fast electrons from different groups,
n0, n1, and n2, were determined from relationships (3)
by integrating the experimental EDF over the energies.
The axial profiles of the densities of fast electrons are
displayed in Fig. 5c. We can see that the density n0

decreases almost exponentially: n0(z) ≈ exp(–z/ ). As
for the remaining groups, the inelastic collisions of fast
electrons with helium atoms do not lead to such a sharp
decrease in the corresponding electron densities. Con-
sequently, we can assume that n1(z), n2(z), F1(z, ε), and

Lhy
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Fig. 3. Isotropic part F0 of the EDF at different points on the
symmetry axis of the discharge: ξ = z/d = (1) 0.25, (2) 0.5,
and (3) = 0.75. The profiles are calculated for a discharge
mode with the parameters pHe = 2 torr, d = 1.2 cm, ε0 =

29 eV, Te = 1.5 eV, Ta = Tc = 0.1 eV, nt/Na = 5 × 10–5, Nm =

1013 cm–3, and js = 0.32 A cm–2. The solid curves are for
theoretical results, and the experimental data are illustrated
by open circles.
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F2(z, ε) are approximately proportional to Nm. By this
assumption, the proposed method of comparing the
related experimental and theoretical electron energy
distribution functions yields more reliable estimates for
the density Nm. Note that, for the discharge modes
under investigation, the ratio of the densities of the sec-
ondary electrons from two different groups is essen-
tially independent of Nm and is approximately equal to
n1/n2 ≈ 10.
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Fig. 4. Profiles of the distribution functions (1) F0, (2) F1,
and (3) F2 of different electron groups in the EDF measured
experimentally in the cathode sheath of an LVBD with the
parameters pHe = 2 torr, d = 1.2 cm, ε0 = 29 eV, Te = 1.5 eV,

and js = 0.1 A cm–2.
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trons produced by the ionization of He(23S1) metastable
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Hence, we can conclude that, in a collision-domi-
nated plasma of an LVBD in helium, the ionization of
metastable atoms by the beam electrons emitted by the
cathode has a much greater effect on the formation of

F, arb. units
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0
22 24 26 28 30 ε, eV

Fig. 6. Total EDF over the range of beam energies under
consideration, F = F0 + F1 + F2, at the distance z = 0.25d
from the cathode for the same discharge parameters as in
Fig. 3. The solid curve gives the theoretical results obtained
for Nm = 1013 cm–3, and the experimental data are illus-
trated by the dashed curve.
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axis and (b) polar diagrams of the directed motion of beam
electrons in a collision-dominated LVBD plasma at a criti-
cal discharge current for pHe = 2 torr, d = 1.2 cm, l0 =

0.25 cm, Tc = 0.1 eV, js = 0.8 A cm–2, and Ua = 29 V at the
distances z = (1) 1, (2) 2, (3) 3, (4) 4, (5) 5, (6) 6, and
(7) 8 mm from the cathode.
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the electron energy spectrum than superelastic colli-
sions.

4. BEAM–PLASMA MECHANISM 
FOR THE RELAXATION OF THE EDF

4.1. Collision-Dominated Plasma 
(Supercritical Current)

In a collision-dominated plasma of an LVBD, the
initial EDF is weakly anisotropic at distances of z > l0
from the cathode. For this reason, the relaxation of
electron beams in such discharge plasmas was investi-
gated theoretically without allowance for the processes
of wave excitation. However, based on the results of the
above experiments, we will show that, even if the beam
anisotropy is comparatively weak, the beam energy in
discharges with supercritical currents relaxes primarily
by the beam–plasma mechanism, which is more effi-
cient than the collisional mechanism.

The dynamics of the spatial relaxation of an electron
beam depends substantially on the discharge current
density [28]. Figure 7 presents the axial profiles of 
and the polar diagrams of the directed motion of beam
electrons for a current density of  ≈ 0.8 A/cm2. As
before, the isotropization of the EDF occurs at a dis-
tance z ≈ 3 mm from the cathode. However, at larger
distances, the beam relaxation differs radically from
that by the collisional mechanism (Fig. 2). After the
isotropization stage, the beam does not reach the anode.
At the distance z ≈ 4 mm, the energy spread ∆ε of the
beam begins to increase sharply. Then, the beam rap-
idly loses its energy, and the EDF is essentially sym-
metric (Fig. 7b) and relaxes toward a state with a pla-
teau-like distribution function. Figure 8 illustrates the
dependence of the energy spread ∆ε calculated as a
function of the discharge current density js from the iso-
tropic part f0(z, ε) of the EDF at a distance z = 0.75d
from the cathode. The figure provides clear evidence
for the existence of the critical discharge current den-
sity  = 0.8 A/cm2: when the discharge current
increases above the critical level, the energy spread of
the beam begins to increase abruptly and the beam
itself is decelerated. The critical current density calcu-
lated theoretically in [27] for the density nt ≈ 1012 cm–3

of thermal plasma electrons and for pHe = 2 torr, ε0 =
30 eV, and Te = 1 eV is equal to  ≈ 0.79 A cm–2. Such
a close agreement between the theoretical and experi-
mental critical current densities implies that it is
because of the quasineutral relaxation of the beam by
the beam-driven Langmuir waves that the beam–
plasma mechanism begins to play a more important
role than the collisional mechanism.

For j0 > , a more efficient mechanism for the
beam energy relaxation—the beam–plasma mecha-
nism—comes into play in a jumplike manner. Presum-

IU"

js*

js*

j0*

j0*
TECHNICAL PHYSICS      Vol. 46      No. 4      2001



DYNAMICS OF ELECTRON BEAMS IN PLASMAS 479
ably, this is explained by the fact that, when the dis-
charge current increases above the critical level, the
intensity of the beam-driven Langmuir waves begins to
increase sharply. This is accompanied by the efficient
energy relaxation of the distribution function of fast
electrons, because the beam energy is converted into
wave energy.

An analysis of the mechanisms responsible for the
heating of thermal plasma electrons in the collisional
mode of an LVBD [29] showed that, even when the crit-
ical current is reached, the heating of thermal electrons
by binary Coulomb collisions still dominates over the
heating due to collisional wave damping.

4.2. Collisionless Plasma

In a collisionless discharge plasma, both momentum
and energy distribution functions of the electron beam
do not relax due to binary collisions. Under such con-
ditions, the EDF is highly anisotropic and the beam is
unstable against Langmuir waves [30–32] and the
instability is threshold in character: Langmuir waves
grow only when the discharge current exceeds the crit-
ical level. Up until now, the growth rates, the critical
currents, and the relaxation dynamics of the EDF have
been studied theoretically only for low-density (n0 !
nt) beams with a velocity spread satisfying the condi-
tion [33, 34]

(∆ϑ0/ϑ) ≥ (n0/nt)1/3. (13)

In a collisionless plasma of an LVBD in helium, the
density of fast electrons is, as a rule, on the order of the
density of slow electrons, n0 ≤ nt, whereas the velocity
spread of the beam satisfies the condition (∆ϑ0/ϑ0) !
(n0/nt)1/3, which is opposite to condition (13). This indi-
cates the validity of the approximation of an intense
monoenergetic beam [32], which cannot be described
by quasilinear theory [33, 34]. Presumably, this cir-
cumstance may explain why there are only a few theo-
retical papers on this topic and the main results on the
anisotropic EDFs in collisionless plasmas were
obtained experimentally [8, 20, 35–38].

From relationship (1), we can readily see that, for an

isotropic EDF, the quantity  should be independent
of the orientation of the planar probe in a plasma. For

an anisotropic EDF, the quantity  takes on not only
positive but also negative values. Figure 9 illustrates
how the anisotropy of the model EDF influences both

the axial profiles of (α = 0) calculated from formula (1)
and the polar diagrams of the directed electron motion.
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Fig. 8. Energy spread ∆ε of the beam electrons vs. the dis-
charge current density js at the point z = 0.75d for the same
discharge parameters as in Fig. 7.
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Here, the model EDF is taken to be a function describ-
ing a beam of fast electrons in a Maxwellian plasma:

(14)

where the degree of anisotropy β, the mean energy ε0,
the characteristic half-width γ2 of the EDF in energy
space, and the electron density γ1 are all determined by
the parameters of the fast electron beam.

A comparative analysis of the  profiles and the
polar diagrams shows that, in the isotropization stage,
the regions in which the function  is negative disap-
pear and the function itself becomes less peaked, while
the mean beam energy remains unchanged.

The experimental results obtained for a collisionless
discharge plasma at a subcritical current are illustrated
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electrons in a collisionless LVBD plasma at a subcritical
discharge current for pHe = 0.5 torr, l0 = 1 cm, d = 0.6 cm,
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in Fig. 10, which displays the axial profiles of  and
the polar diagrams of the directed electron motion. The
solid curves (α = 0) correspond to a planar probe whose
absorbing surface faces the cathode, and dashed curves
(α = π) refer to the probe whose absorbing surface faces
the anode. One can see that, for α = 0, the function 
takes on rather large negative values across the entire
interelectrode gap. The shape of the polar diagrams
indicates that the EDF is highly anisotropic and the
beam relaxation in the discharge plasma is insignifi-
cant. With increasing discharge current, the quantity I''
reaches a certain critical value above which the mecha-
nisms for beam relaxation are switched on in a jump-
like fashion. The corresponding discharge mode with
I'' = 0.5 A is illustrated in Figs. 11a and 11b. We can see
that, at distances 0 < z < 2 mm from the cathode, the
maximum negative magnitudes of (α = 0) decrease
(in absolute value) to zero, while the mean energy of
the beam electrons and their energy spread change
insignificantly. A comparison between the polar dia-
grams in Fig. 11b allows us to describe the propagation
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Fig. 11. (a) Evolution of the  profile along the discharge

axis and (b) polar diagrams of the directed motion of beam
electrons in a collisionless LVBD plasma at a supercritical
discharge current for pHe = 0.5 torr, l0 = 1 cm, d = 0.6 cm,

js = 0.5 A cm–2, nt = 2.8 × 1011 cm–3, and n0 = 6 × 1010 cm–3

at distances of z = (1) 0.5, (2) 1, (3) 1.5, (4) 2, (5) 2.5, (6) 3,
and (7) 3.5 mm from the cathode.
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of an intense electron beam in a collisionless plasma as
follows. First, the momentum distribution function of
the beam electrons becomes more isotropic. At dis-
tances farther from the cathode, the beam with a weakly
anisotropic EDF rapidly loses its energy and does not
reach the anode. The axial profiles of  are practically
independent of the orientation of the probe and acquire
a plateau-like shape. A simultaneous analysis of the
shapes of the axial profiles of  and the polar dia-
grams shows that, even in the absence of binary colli-
sions in a discharge plasma with I > I", the isotropiza-
tion of the beam electrons at distances z < 2 mm from
the cathode is accompanied by insignificant energy
losses (ε < 2 eV). The EDF of a weakly anisotropic
beam relaxes at larger distances from the cathode
(2 < z < 3 mm). Note that, in a collisionless plasma, the
distance li over which an intense electron beam
becomes almost isotropic is longer than the distance lε
over which the beam spreads out. Since the isotropiza-
tion and relaxation processes occur on spatial scales
shorter than the electron mean free path l0, they can be
explained only in terms of the interaction between the
beam electrons and Langmuir waves.

Let us estimate first the volume energy density of
Langmuir waves W required for a monoenergetic elec-
tron beam to become anisotropic at the indicated dis-
tance in a collisionless plasma and second the effective
cross section σe – pl for the interaction between the beam
electrons and Langmuir waves. To do this, we assume
that the electron–wave interactions are analogous to
quasi-elastic collisions between particles and that the
Langmuir plasmons have the same energy "ω0. We also
use the following relationship between the effective
collision frequency νeff = ϑ0/li and the energy density W
of isotropic Langmuir waves [30]:

(15)

IU"

IU"

νeff
π
4
---ω0

ϑ ph

ϑ 0
------- W

ntmϑ 0
2

---------------,=
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where ω0 = , ϑ0 = , and ϑph is the
wave phase velocity.

The values of ϑph ≈ ϑ0 and W calculated for σe – pl =
"ω0/Wli are listed in Table 2. We can see that, for
pHe = 0.5 torr, the wave energy density is equal to
W ≈ 1.2 erg cm–3 (cf. nt εt ≈ 0.5 erg cm–3 and n0ε0 ≈
2.4 erg cm–3) and the effective cross section for the elec-
tron–plasmon interaction is equal to σe – pl ≈ 10–16 cm–2.

Table 2 compares the threshold current Ihd for the
onset of a hydrodynamic instability [30] and the exper-
imentally measured critical current I*. Table 2 also pre-
sents the isotropization length li (the isotropization
stage is analogous to the hydrodynamic stage [32]) and
the length lε over which the beam relaxes to a state with
a plateau-like EDF (the relaxation stage is analogous to
the kinetic stage). In addition, Table 2 gives the energy
densities ntεt and n0ε0 of the thermal and fast electrons,
respectively. The results listed in Table 2 were calcu-
lated for different discharge modes. We can see that, at
a constant pressure of helium gas, an increase in the
discharge current leads to an increase in the density nt

4πnte
2( )/m 2ε0/m

Lε, mm
10

5

0 0.5 1.0 1.5 λ, mm

Fig. 12. Total energy relaxation length Lε = li + lε of the EDF
vs. the wavelength λ of Langmuir oscillations in an LVBD
plasma for pHe = (d) 0.25, (s) 0.5, (n) 1, and (×) 2.5 torr. In
the discharge mode marked by the cross, the beam relax-
ation by Langmuir waves is followed by the relaxation by
binary collisions, so that the relaxation length Lε sharply
increases.
Table 2

PHe,
torr nt, cm–3 n0, cm–3 Is, A I*, A Ihd, A l0, cm li, cm lε, cm nt εt,

erg cm–3
n0ε0,

erg cm–3
W,

erg cm–3
σe – pl,
cm–2 l0/λ

0.9 6.6 × 1010 5.8 × 109 0.16 0.059 * – 0.11 0.23 – – 4.4

9.2 × 1010 7.3 × 109 0.2 0.18 0.076 0.56 0.4 0.2 0.15 0.3 0.12 4 × 10–16 5.1

1.7 × 1011 1.0 × 1010 0.3 0.12 0.3 0.1 0.27 0.4 0.34 2 × 10–16 7

0.6 4.6 × 1010 3.4 × 109 0.08 0.037 – – 0.074 0.16 – – 4.6

5.3 × 1010 5.0 × 109 0.1 0.09 0.049 0.83 0.6 0.1 0.085 0.24 0.057 4 × 10–16 5.5

2.8 × 1011 4.0 × 1010 0.8 0.35 0.27 0.03 0.44 1.9 0.71 2 × 10–16 12

0.5 6.7 × 1010 9 × 109 0.1
0.25

0.015
1.0

– – 0.074 0.43 – – 4.9

3 × 1011 6 × 1010 0.5 0.57 0.2 0.1 0.48 2.4 1.2 1 × 10–16 15.1

* No relaxation by waves.
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of the thermal plasma electrons, a decrease in the wave-

length λ =  of Langmuir waves, and an increase

in the parameter l0/λ. A comparative analysis of the
experimental data shows that the critical regime of the
beam–plasma relaxation of the EDF occurs only when
the electron mean free path is longer than five wave-
lengths of Langmuir oscillations. Consequently, the
condition l0/λ ≥ 5 can serve as a threshold criterion for
the energy relaxation of an electron beam in a collision-
less plasma.

Figure 12 shows the dependence of the total energy
relaxation length Lε = li + lε of the beam on the wave-
length λ of Langmuir oscillations. We can see that, over
a broad parameter range, the quantity Lε is well approx-
imated by the linear dependence Lε ≈ 5λ. When the dis-
tance between the electrodes is d < Lε ≈ 5λ, the beam
experiences no energy relaxation.

This result was overwhelmingly confirmed by
investigations of plasma objects in which the anisot-
ropy of the EDF was induced by different causes. In
particular, in the study of the kinetic instability of a
low-temperature decaying plasma [39], the threshold
criterion for the relaxation of the EDF was obtained in

the form nt ≥ 1.7 × 108ε0 . Hence, the experimen-
tally established criterion for the energy relaxation of
an anisotropic EDF is independent of the cause of
anisotropy and thus is universal in character.

5. CONCLUSION

The relaxation dynamics of the energy and momen-
tum distribution functions of electrons has been studied
by probe measurements.

It has been shown for the first time that, in a colli-
sion-dominated plasma, the energy of an intense elec-
tron beam may relax due to the excitation of waves. The
critical currents corresponding to a jumplike transition
from one relaxation mechanism to another have been
measured. The role of metastable helium atoms in the
formation of the distribution function of fast electrons
has been investigated, and the density of metastables
has been determined.

The phenomenon of the isotropization of an electron
beam in the course of its interaction with Langmuir
waves in a collisionless plasma has been revealed, and
the cross section for quasi-elastic collisions of the beam
electrons with Langmuir plasmons has been estimated.
The wave nature of the mechanisms for the relaxation
of an intense electron beam has been demonstrated. It
is shown that the mechanisms themselves come into
play when the critical discharge current is reached. It is
established that the beam energy relaxes over the dis-
tance Lε ≈ 5λ and that the relaxation process occurs in
two stages. First, as the beam travels the distance li

from the cathode, the electron momentum distribution

2πϑ 0

ω0
------------

σea
t NA

2

function becomes essentially isotropic, in which case
the beam energy decreases only slightly (the isotropiza-
tion stage). Second, over the distance lε farther from the
cathode, the beam relaxes to a state with a plateau-like
EDF (the energy relaxation stage).

The experimentally established criterion for the
energy relaxation of an anisotropic EDF is independent
of the cause of anisotropy and thus is universal in char-
acter. Although the experiments have been conducted
in a plasma of an LVBD in helium, all of the results
obtained are not exclusively valid for helium and can be
used for a comparative analysis of the role of collisional
and collective interactions in anisotropic plasmas of
discharges in other noble gases.
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Abstract—Theoretical estimates and experimental investigations were carried out on the process of molding a
mixture of metal particles and a dielectric (air) into briquettes with the use of short pulses of high density cur-
rent. Four groups of specimens were studied consisting of metal fragments and the dielectric in various propor-
tions. In the experiments and the current and voltage oscillograms, the electrical resistance and the temperature
of the specimens before and after passing the current were measured and their ultimate strength was deter-
mined. It has been found that the processes affecting the distribution of the current over the specimen cross sec-
tion and the specimen inductance during the current pulse play an important role in molding briquettes of suf-
ficient strength for transportation and processing. © 2001 MAIK “Nauka/Interperiodica”.
Composite materials, in particular, those compris-
ing metals and dielectrics, find ever-growing use in
technology. A number of fabrication processes have
been proposed in which the required result is achieved
by passing a high density electric current through a
mixture of metal particles and a dielectric (the electric
pulse strengthening of consumable extruded elec-
trodes, the fabrication of porous articles from granules
and powders, and the electric-arc melting of coke-ore
mixtures at the initial stage [1–3]). However, while the
phenomena and processes occurring in solid conduc-
tors through which an electric current of such a density
and duration is passed cause irreversible changes in the
conductor and have been studied in detail [4, 5], studies
are only beginning of the more general case, in which a
high density current is passed through a medium
composed of a mixture of a conductor and a dielectric
[1, 6, 7].

A high-density electric current passing through a
solid conductor can either strengthen it by healing
pores and microcracks and reducing the grain size, or
bring about its destruction as a result of defect accumu-
lation, disintegration, and dispersion. In a mixture of
conducting and dielectric particles, a new effect is pos-
sible: the linking of separate conducting fragments and,
as a result, strengthening of the material and increasing
its conductivity. Still higher current densities can
destroy the thin links between the fragments and reduce
the conductor strength and conductivity, produce
cracks, and even disperse the initial fragments.

In the present investigation, we study the processes
taking place when a pulsed current of high density is
1063-7842/01/4604- $21.00 © 20484
passed through a conducting mixture consisting of
loose metal particles with air filling the space between
them when such processes lead to the molding of bri-
quettes possessing sufficient strength for transportation
and processing.

The electrical conduction in the mixture is spatially
nonuniform, and its electrical resistance is mainly that
of the links between the metal particles. Therefore,
using short electric current pulses, the energy can be
delivered mainly to the links between the metal parti-
cles. If this energy is sufficient, the links will be
welded, resulting in the formation of a strong briquette.
The accompanying heating of the material bulk may be
insignificant. Such a process, on the one hand, saves
energy and, on the other hand, makes the briquetting of
materials that oxidize on heating (for example, titanium
alloys) possible.

The material studied was metal cuttings compacted
in a dielectric mold. This material was chosen for a
number of reasons: it is simple to produce, it is cheap,
and its starting parameters can easily be varied over a
wide range for studies of the electric pulse briquetting
process.

The cuttings are first compacted and then, maintain-
ing the pressure, a pulse of electric current of high den-
sity is passed through them, thus binding the cuttings
into a briquette. Compacting even with pressures of up
3–4 t/cm2 does not give mechanical strength to the cut-
tings, which disintegrate into the initial fragments after
the pressure is released. Strong specimens are formed
only as a result of passing an electric current through a
material preliminarily compacted to a certain density
001 MAIK “Nauka/Interperiodica”
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[8–11]. This process can be useful, in particular, in met-
allurgy [12, 13] where cuttings are the basic source of
secondary raw material, and its utilization using con-
ventional technologies meets considerable difficulties.
In addition, this process can serve as a basis for produc-
ing new materials for filters and getters, for noise
absorption and attenuation of radio waves, and so on.
Thus, the present study is of interest for both electro-
physics and technology.

To calculate the dependence of the specimen
strength on the magnitude and duration of the electrical
current passed through the specimen, a simplified
model similar to that in [6] will be used. Let us repre-
sent the heterogeneous composite material as a three-
dimensional grid of resistors (with the links between
the conducting fragments as the resistors and the frag-
ments themselves as connecting wires) immersed in a
continuous medium of density γc and specific electrical
resistance ρc. The grid of resistors consists of N =
(H/h)(γc/γm)1/3 layers connected in series, each having
M = (S/s)(γc/γm)2/3 parallel connections (H is the speci-
men length; h, the mean thickness of the conductor
fragments; S, the cross sectional area of the specimen;
s, the mean area of the conductor fragments per link;
and γm, the metal density). Let us assume that the link
resistance is the resistance of a current constriction
region r = ρm/a, where a is the diameter of the metal
links [14] and ρm is the metal resistivity. Then, the aver-
age link size a0 can be calculated using measured spe-
cific resistances of the compacted cuttings ρc and of the
metal ρm. We assume, for simplicity, that the link sizes
are uniformly distributed from 0 to 2a0.

To exclude heating of the specimen due to heat con-
duction, the current pulse must be short. Short current
pulses give rise to the skin effect; the shorter the current
pulse, the smaller the skin layer thickness. When the
skin layer thickness becomes comparable with the size
of metal particles, the model becomes inapplicable.
Thus, the current pulse duration τ is defined by the ine-
quality

(1)

where µ is the magnetic permeability of the specimen,
c is the specific heat of the metal, and k is the thermal
conductivity of the metal.

The link will weld when its temperature exceeds
half that of the metal melting point (at released energy
density e1), because of higher ductility of the metal
under applied pressure and the electrostatic attraction
of the material developing in the link area with addi-
tional pressure arising due to thermal expansion of the
metal. If the energy released in the link is sufficient for
melting the metal (at released energy density e2), the
link will be destroyed as a result of magnetohydrody-
namic instability.

30µµ0h2
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The energy density released in a link drops with link
size; therefore, if the considered model is valid, then
the passing current will melt and destroy small-size
links (a < a2); larger links (a2 < a < a1) will become duc-
tile, then weld, and give strength to the specimen; and
still larger links (a > a1) will remain essentially
unchanged. The sizes a1, 2 can be calculated if the
energy released in a link as a result of passing the cur-
rent is equated to the energy necessary for adequate
heating or melting of the link. After transformations,
we have

where U(t) is the voltage applied to the specimen and H
is the specimen length.

The strength Q of an obtained specimen (that is, the
maximum breaking load) depends on two factors: com-
paction and the electrical welding of the links. As a
result of the latter, the specimen acquires strength
defined by the force Qi of the resistance to breaking. As
an estimate of this force, one can use the total strength
of all welded links in the conductor cross section,
which is obtained by multiplying the number of links
(M) by their area (a2), and by the ultimate strength q of
the link (the considered link is similar to that obtained
in spot or projection welding, whose strength may
achieve 90% of the metal strength. In the calculations,
we assumed q ~ 0.5 of the ultimate strength of the
metal). Taking into account the scatter in the link sizes
[f(a) is the distribution function of the link sizes; f(a) =
1/2a0 at a < 2a0 and f(a) = 0 outside this range], we
obtain

The summation of the strength values is performed
over all welded links from the smallest a2 to the largest
aM. As for aM, it is either the largest link a1 that can be
welded (if a1 < 2a0) or the largest link 2a0 that exists in
the specimen (if a1 > 2a0).

As is known [12, 15], at high compaction pressures
(300–900 MN/m2, depending on the kind of material
and properties of the cuttings) yielding densities of γc >
0.5γm, strong briquettes can be molded. In this case, the
electrical current treatment can additionally increase
the briquette strength. In specimens welded under
lower compaction pressures, residual elastic stresses
will exist due to the elasticity of the cuttings, which
reduce the conductor strength. Hence, the force arising
in the specimen as a result of compaction can be
expressed roughly as Qc ~ 0.5PS(γc/γm – 0.5), where P

a1 2,
h2

e1 2, H2γm
1/3γc

2/3
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is the compaction force and S is the specimen cross sec-
tional area. Thus,

Q = Qc + Qi. (2)

According to this model, it should be expected that,
at a small amplitude of the current pulse, strong speci-
mens cannot be molded. As the current is increased, the
size and strength of the welded links increase as well;
when their total strength exceeds the residual elastic
stress, formation of a briquette starts. With further
growth of the current, the briquette strength rises as
long as the condition a1 < 2a0 is met; subsequently, the
briquette becomes less strong, because the size of the
welded links do not grow any longer, although larger
links will be destroyed.

The calculations performed on the basis of the
model developed allowed us to estimate the necessary
parameters of the experimental facility. The experimen-
tal setup consisted of a hand-operated press providing a
compaction force of up to 2 t, a porcelain mold, and a
pulsed electric current source (a capacitor bank of C =
15 mF, Umax = 5 kV, and Emax = 200 kJ) that supplied
current pulses with a duration of 250 µs and an ampli-
tude up to 500 kA at a low-ohmic load (~0.001 Ω).

The first experiments [8, 9] confirmed the possibil-
ity of molding strong specimens, namely, briquettes of
cuttings of various metals and of alloys of different sort
and quality, as well as the possibility of applying this
process in metallurgy.

In the present study, four groups of specimens con-
sisting of titanium cuttings were investigated. The cut-
tings of a 3M titanium alloy consisted of strips of vari-
ous sizes with the following average parameters: l ~
30 mm, b ~ 5 mm, and h ~ 1 mm. The groups differed
in density to which the initial material was compacted.
Specimens in group 12 had a density of 0.5 g/cm3 (12%
Ti and the rest air), which was close to the bulk density
of the cuttings. Specimens in the other groups had the
following densities: group 16, 0.75 g/cm3 (16% Ti);
group 18, 0.8 g/cm3 (18% Ti); and group 25, 1.1 g/cm3

(25% Ti). The specimens were 50 mm in diameter and
100–140 mm in length. The magnitude of the current
passed through the specimens was controlled by the
capacitor bank voltage Ub. The experiments were car-
ried out at the capacitor bank voltages of 250, 300, 500,
1000, 1500, …, 4000 V. In each of the experiments, we
recorded oscillograms of the voltage across the speci-
mens and the current passed through them; the electri-
cal resistance of the specimens was measured before
and after the passage of current, and the specimen tem-
perature was measured in the latter case. The speci-
mens underwent breaking tests to measure the maxi-
mum breaking load.

Breaking tests of the specimens were carried out
under static axial loads using an RD-0.5 tensile-testing
machine. Specially designed clamps were used to pre-
vent the crushing of the briquettes when mounting them
into the grips of the tensile-testing machine. The
machine grips could be used in breaking tests at loads
up to 500 N. Stronger specimens slipped out of the
grips. Breaking of the specimen occurred outside the
grips, although no centralizers were used. The results of
the experiments are tabulated.

In the first subdivisions of the table, columns refer-
ring to different specimen groups with calculated val-
ues of the breaking loads are given. The calculations
were made using a specially developed estimation
model. Given in the next columns are the breaking load
data from the tensile-testing machine and the ultimate
strength values. It is seen from the table that there is a
threshold in the process of mechanical strengthening of
the specimens by the electric current. If the capacitor
bank is charged at a low voltage (and, consequently, the
currents are low), molding of the briquettes does not
occur; at higher voltages, the briquettes acquire some
strength; at still higher voltage, the strength of bri-
quettes rises sharply and then grows slowly over a wide
current range. A reduction of strength, according to the
calculations, must take place at current values (the
capacitor bank voltages) that are larger than those used
in the experiment. In the experiment, this reduction was
not observed except for a run at 4000 V with a specimen
from group 12, for which both the calculation and the
experiment indicated the reduction of strength.

The strength tests of the specimens show that the
pulsed electric current treatment can yield strong bri-
quettes of various densities. The calculation gives cor-
rect results for the initial strengthening stage; however,
the calculated strength values are overestimated, appar-
ently due to the fact that they are obtained by summa-
tion over all welded points, whereas, in the tests, these
points are not loaded simultaneously.

The energy needed for molding strong briquettes is
larger for composite mixtures of higher density.

The electric resistance of the specimens after the
current treatment drops considerably (to half the initial
value) both in strong briquettes and in specimens that
disintegrated after release of the pressure. No depen-
dence of the final resistance on the capacitor bank volt-
age and the current pulse amplitude is observed.

Results of the measurements of the volume-aver-
aged temperature of the specimens are presented in
Fig. 1. The temperature was measured by a thermocou-
ple 2 min after termination of the current pulse; then, its
value two minutes back in time was retraced. From the
graphs, it is seen that, in the experiments described, the
specimens of low density are heated only by 400°C,
and denser specimens, by no more than 200°C. This is
in good agreement with the amount of energy supplied
to the load as deduced from the current oscillograms, as
well as with the outward appearance of the specimens.
These data also agree with the results of studies in
which chemical analysis of the briquette metal was car-
ried out [7, 8]. The results obtained conform to the pro-
cess model proposed.
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Figures 2–4 illustrate typical oscillograms of the
current I and the voltage U for a specimen from group 12.
Shown in the same figures are the values of R0 = U0/I
and the voltage U0, which reflects processes occurring
inside the specimen and is defined as U0 = U – LoutdI/dt,
where Lout is the fraction of the specimen inductance
related to generation of the magnetic field outside the

1
2 3

4

T, °C
400

200

0 1 2 3 4
U, kV

Fig. 1. Dependence of the specimen temperature T on the
capacitor bank voltage Ub for different groups of specimens.
The specimen density: (1) 0.5 (12% of the metal), (2) 0.75
(16% of the metal), (3) 0.8 (18% of the metal), and
(4) 1.1 g/cm3 (25% of the metal).
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specimen (Lout was calculated by the specimen dimen-
sions and the oscillograms of the current and voltage
recorded for a metal tube of the same dimensions). The
resistances of the compacted specimens before and
after passing the current, Rb and Ra, respectively, are
also given.

The form of the current oscillograms depends on the
complex impedance of the discharge circuit. The volt-

R0, Ω
Rb = 0.074 Ω
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100 200 300

240

200

120

80

40

0

Ra = 0.015 Ω

U; U0, V
U0

U

I

R0

t, µs

Fig. 2. Typical current and voltage oscillograms and varia-
tions of R0 and U0 with time for a group-12 specimen. Ub =
500 V; the specimen has zero strength and disintegrates
when out of mold.
Results of breaking tests of specimens under static axial load

Ub, V E, kJ

Sample 12
(γc = 0.5 g/cm3, W = 170 g,

P = 700 kN/m2)

Sample 16
(γc = 0.75 g/cm3, W = 200 g,

P = 1400 kN/m2)

Sample 18
(γc = 0.8 g/cm3, W = 250 g,

P = 1800 kN/m2)

Sample 25
(γc = 1.1 g/cm3, W = 250 g,

P = 6000 kN/m2)

strength of specimens strength of specimens strength of specimens strength of specimens

calcu-
lation, N

experiment calcu-
lation, N

experiment calcu-
lation, N

experiment calcu-
lation, N

experiment

N kN/m2 N kN/m2 N kN/m2 N kN/m2

250 0.48 –140 *

300 0.68 –5 **

500 1.9 110 35 16 –88 * –1260 *

1000 7.5 400 30 14 1290 170 77 –750 15 7 –170 **

1500 17 190 86 1480 350 160 550 420 190 –134 5 2

2000 30 410 180 82 2010 450 200 2030 540 240 5200 360 160

2500 47 1500 310 140 3890 >1140 >510 8100 940 430

3000 68 1250 110 50 1520 >450 >200

3500 92 1370 >260 >120

4000 120 6 **

  * Strong specimen is not formed (cuttings can be removed).
** Specimen formed partially, not the entire volume (separate fragments and cuttings can be removed).
     W is the briquette weight.
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age oscillograms are of greater interest as they are more
sensitive to the processes occurring in the specimen.

With the capacitor bank charged to a low voltage of
250–500 V (see Fig. 2), the voltage oscillograms are
identical to the current oscillograms, and the specimen
resistance R0 is practically constant over the current
pulse duration.

As the capacitor bank voltage is increased (to 1000–
1500 V), the character of oscillograms of the voltage
across the specimen changes (Fig. 3). After a steep rise
to 500–600 V, the voltage ceases to increase, although
the current continues to grow; that is, the voltage curve
forms a plateau followed by a steep voltage drop. At
higher capacitor bank voltages (1000–4000 V), the
height and extent of the voltage plateau are practically
unchanged, but the amplitude of the voltage backswing
drastically increases (Fig. 4). The specimen resistance
R0 does not stay constant, remaining appreciably less
than the initial resistance Rb while the current is passed,
and at the end of the first half-period of the current
pulse, it becomes close to the final specimen resistance
Ra measured after passing the current.

The oscillograms for the material compacted to a
higher density have approximately the same form. The
only difference is that the voltage backswing amplitude
decreases with increasing specimen density.

The character of the oscillograms changes at the
same value of the capacitor bank voltage at which the
specimens begin to acquire mechanical strength. Thus,
the experimental results confirm the initial assumption
concerning processes giving mechanical strength to the
specimens and allow us to develop them still further.

A short time (hardly a few microseconds) after
applying the voltage to a specimen, the breakdown of
thin oxide films occurs both at the periphery of the
existing a-spots and probably beyond. As a result, the

Rb = 0.032 Ω
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Fig. 3. Same as in Fig. 2. Ub = 1500 V; the breaking load is
190 N.
specimen resistance drops. The entire observed process
then develops in a conducting system.

If the voltage applied to a specimen is low, the
energy released in the links is sufficient for destroying
only a limited number of small-size links and for soft-
ening and strengthening of a small number of larger
links. This does not result in an appreciable change of
the specimen resistance or noticeable strengthening of
the specimen. After the current is terminated, the oxide
film is partially restored, eliminating some of the links,
and the specimen resistance rises (Rb > Ra > R0).

If the voltage across a layer of metal and the current
through each link (the linking a-spot) exceed certain
values, then the destruction of some of the link, fol-
lowed by an increase in the current through other links,
causes an avalanche-like destruction of the small links.
As a result, the current passing through the conductor is
redistributed among the large links, and their conduc-
tivity becomes higher as they soften and spread over
larger area. Now, the current no longer passes through
a continuous medium, but a considerable part of it
flows through separate channels. At this point, the spec-
imen inductance rises appreciably and the growing
inductance of the current channel being formed limits
the rate of the current redistribution process.

To conclude, in forming briquettes from a mixture
of loose metal particles and a dielectric by compaction
with the application of high-density short current
pulses, the current redistribution processes are impor-
tant.

The study was supported by the Russian Foundation
for Technological Development (contract no. 149/97 of
April 12, 1998) and the Federal Grant-in-Aid Program
(project KO854).
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Fig. 4. Same as in Fig. 2. Ub = 2500 V; the breaking load is
310 N.
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Abstract—The concentration profile of arsenic in silicon was found to have two peaks at large depths. An
implantation model is suggested. A comparison with results for other species is made. It is shown that mecha-
nisms behind low- and high-temperature migrations of defect–vacancy pairs are similar to each other (Ddv is
about 10–12 cm2/s). © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The behavior of implanted ions in semiconductor
materials according to ion current density and ion
energy, temperature of the material, and chemical prop-
erties of interacting substances is of great theoretical
and applied importance. In this work, we studied
arsenic implantation (40 keV, 40 µA/cm2) into a silicon
target at a high temperature (850°C).

EXPERIMENT

Irradiation was carried out in an ILU-3 ion-beam
accelerator [1]. During irradiation, the target (single-
crystal silicon) was heated with a special high-temper-
ature ion collector. The implantation dose was 2 ×
1017 ion/cm2. The ion distribution in the target was
studied by X-ray diffraction analysis combined with
layer-by-layer etching. The profile measured is
depicted in the figure. It differs from the conventional
profiles by the presence of two “deep-seating” maxima.

THEORETICAL MODEL

To explain impurity drift to a depth that is much
greater than the ion range at implantation, we invoked
the modified Beloshitsky model [2, 3]. In this model, it
is assumed that diffusion transfer is accompanied by
impurity capture by vacancies. Note that, in the pres-
ence of a source, the purely diffusion equation does not
yield a peak beyond the ion range. Importantly, the
model is nonequilibrium: diffusion proceeds in parallel
with defect generation and annihilation. These pro-
cesses are described by the set of coupled equations

(1)

(2)

∂na/∂t Da∂
2na/∂x2 nanvkcap ncndkact+–=

+ j0 Rp x– x0+( )2/2∆Rp
2–( )/ 2π∆Rp,exp

∂nc/∂t nanvkcap ncndkact,–=
1063-7842/01/4604- $21.00 © 20490
(3)

(4)

Here, Θ(x) is a unit step; N is the density of silicon

∂nd/∂t Ddv∂2nd/∂x2 ncndkact nvndkann––=

+ j0NσdΘ Rp  x–  + x0( ),

∂nv /∂t Ddv∂2nv /∂x2 nanvkcap nvndkann––=

+ j0NσdΘ Rp x– x0+( ),

x0 v bt, N– 5.04 1022 cm 3– ,×= =

σd 3.52 10 16–  cm2.×=

60

40

20

0 0.2 0.4 x, µm

na + nc, 1020 at./cm3

Figure.
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nuclei; σd is the tentative cross section of defect forma-
tion; Rp and ∆Rp is the projected ion range and ion
struggling, respectively; and Da, Ddv, kcap, kact, and kann
are free model parameters that have the obvious mean-
ing of diffusion coefficients of impurity and defects and
rate constants for impurity capture by vacancies, impu-
rity activation by interstitials, and vacancy–interstitial
annihilation.

The boundary condition for the impurity concentra-
tion was set equal to zero; in other words, the impurity
was believed to evaporate from the surface, following
the experimental observation. It was assumed that the
flux of interstitials causes the material boundary to shift
with a rate vb (Stefan-type problem). For interstitials
and vacancies, the initial conditions and those at the
opposite boundary were also zero. It should be noted
that, within our model, an experimental profile can be
described by only two sets of free parameters. System
(1)–(4) with the above initial and boundary conditions
was numerically solved by the finite difference method.
The free parameters were adjusted by the least squares
technique so as to provide the best fit to experimental
profiles. The associated data are summarized in
Tables 1 and 2.

CONCLUSION
Comparison with Results for Other Species

In [4], concentration profiles of molecular and
atomic hydrogen implanted (600 eV, 2.5 µA/cm2) at
40 K were studied using the 1H(15N, αγ)15C resonance
reaction. We obtained similar diffusion coefficients for
Frenkel pairs (0.107 × 10–11 cm2/s). Noteworthy, how-
ever, is the much higher quasi-chemical activity of
molecular hydrogen (compared with atomic hydrogen)

Table 1

Da, cm2/s × 10–11 Ddv, cm2/s × 10–11

0.199 0.1070

53.630 0.1037
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
in reactions of impurity capture, Frenkel pair annihila-
tion, and impurity activation (by a factor of 76.21,
83387.1, and 12.194, respectively). We also determined
the diffusion coefficients for molecular and free hydro-
gen in Si (2.522 × 10–11 and 1.512 × 10–11 cm2/s,
respectively). The low- and high-temperature diffusion
coefficients for Frenkel pairs in Si nearly coincide
(Table 1, column 2). These values are close to 0.101 ×
10−11 cm2/s, which was obtained by us from data [5] for
deuterium implantation (27 keV, 400 µA/cm2) into dia-
mond-like carbon films at room temperature. The diffu-
sion coefficients of deuterium in C (2.612 × 10–11 cm2/s)
and molecular hydrogen in Si are also close to each
other. The similarity of C and Si properties was
reported in [2].
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kcap, cm3/s × 10–23 kact, cm3/s × 10–23 kann, cm3/s × 10–23

3.005 13.315 3.852

19.582 6.743 1.872
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Abstract—An ion-optical scheme for a portable magnetic double-focusing mass spectrometer that makes it
possible to analyze several components simultaneously over a wide mass range (the mass-spectrograph operat-
ing mode) is proposed. This scheme effectively solves the research and technological problems involving the
analysis of rapidly varying compositions. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The level of mass-spectrometric investigations
using portable instruments equally depends both on the
main characteristics of analyzers (sensitivity and
resolving power) and on their weight, dimensions,
power consumption, the rate of operation, and their
reliability under the field operation conditions. These
instruments can be most effectively used in ecological
monitoring of the environment and in the production
process monitoring in industry. A design of the instru-
ment must provide for the full automation of the mea-
surement process and for real-time analysis. Static
mass spectrometers to a large extent meet the require-
ments to a portable design [1–4]. First of all, these are
mass spectrometers with homogeneous prismatic or
sector fields created by permanent magnets. With a
small-size magnet, the former type provides for a rather
high resolution due to a high dispersing power of the
mass analyzer [5], while the latter type ensures a good
resolution due to obeying the conditions of angle and
energy focusing in the mutually perpendicular (as a
rule) magnetic and electric fields. The Mattauch–Her-
zog scheme [6], which is among the most popular ones,
allows for the simultaneous analysis of substances over
a wide mass range in the mass-spectrograph operating
mode. This mode has many advantages over the regime
used in sector-type mass spectrometers and makes it
possible to improve the sensitivity of analyzer and/or
its operation speed.

DECIDING ON A MASS-SPECTROMETER 
SCHEME

This paper is concerned with realizing a mass spec-
trometer scheme that, on the one hand, should possess
all advantages of the devices described previously
[3, 4] meeting the portability requirements and, on the
other hand, make it possible to simultaneously analyze
substances over a wide mass range (as in the case of the
instruments implementing the Mattauch–Herzog
scheme), being superior to the latter by possessing a
markedly smaller angle of the sector magnet. The com-
1063-7842/01/4604- $21.00 © 20492
bination of these features in one instrument does not
impair its resolving power and allows a wide range of
components to be measured.

The scheme discussed in [4] is presented in Fig. 1.
It comprises source 1, cylindrical capacitor 2, and sec-
tor magnet 3, where the field boundary facing the
capacitor is selected at right angles to the principal opti-
cal axis of the instrument for the sake of the ease of
computation and design. The properties of the scheme
were investigated by numerically calculating its param-
eters over a wide range of their values. This allowed us
to choose an appropriate shape of the exit boundary for
the magnetic system: its shape offers the simultaneous
ion focusing on a detector over the whole range of mass
numbers at a low weight and low dimensions of the
mass analyzer.

The optimum values of the angle βopt for the magnet
exit boundary vs. the magnet sector angle γ are pre-
sented in Fig. 2a. For any angle γ chosen, the maximum
resolving power is obtained when a certain relationship
among γ and β(γ)opt is obeyed. This relationship
depends on the ratio r0/rm, where r0 and rm are the radii
of particle trajectories in the electric and magnetic
fields, respectively. For r0/rm = 0.4, the values of βopt
fall on boundary 1, and for r0/rm = 1.5, they fall on
boundary 2. (The chosen values of r0/rm are boundary
ones within the region under consideration, being
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Fig. 1. Mass spectrometer scheme presented in [4].
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defined by the relationship among the values of the
magnet dispersing power and the aberration of the elec-
trostatic analyzer that provides a required resolving
power of the instrument within these boundaries at its
small size and light weight.) For r0/rm ranging between
0.4 and 1.5, βopt varies through the range of values
between these boundaries.

The maximum resolving power (M/∆M)max of the
scheme expressed in terms of the relative units of its
maximum value {(M/∆M)max}max vs. the magnet sector
angle γ for the magnet exit boundaries at various values
of the inclination angle β = (1) βopt, (2) 0, and (3) (π –
γ)/2 are presented in Fig. 2b. (All the points in the
curves are provided by double angle and energy focus-
ing of the first order with an allowance for the finite
width of a source exit slit.)

As is seen from Fig. 3, when the magnet straight-
line exit boundary chosen passes through the intersec-
tion point of the principal optical axis and a magnet exit
window (0–0'), the value of angle β shown in Fig 2a,
curve 3, meets the condition β = (π – γ)/2 and, at
r0/rm = 1.5, the scheme resolving power (see Fig 2b,
curve 3) peaks at the values of γ at which the angle β is
close to βopt. As is also seen from Fig 2b, at normal inci-
dence of an ion beam on the magnet entrance boundary,
the Mattauch–Herzog scheme (γ = π/2, β = π/4) ranks
below the ones with a markedly smaller value of γ
(where the focusing properties of the magnet exit
boundary are used) in the value of the resolving power.

However, at such a magnet exit boundary, we are
forced to significantly cut down the range of mass num-
bers being measured within the most attractive region
with low values of γ, because we need to form a uni-
form field at the magnet entrance and, at the same time,
to position the lines of scheme focuses beyond the mag-
netic field limits. This is due to the need for decreasing
the size of the magnet exit windows (0–0') shown in
Fig. 3. To keep a wide range of mass numbers being
measured, the magnet exit boundary has been posi-
tioned in the actual device as shown in Fig. 3. Then, for
particles of different mass numbers mi, the values of βi

and γi (depending on the mass number) meet the condi-
tion βi ≤ (π – γi)/2.

A comparison between β(γi) and βopt(γi) shown in
Fig. 2a reveals that, for the chosen configuration of the
fields with the united linear exit boundary of a magnetic
system, the maximum resolving power of the mass
spectrometer can be provided only for γ < 75° when the
condition given by β(γi) = βopt(γi) is met. This condition
cannot be met over the whole range of mass numbers
being measured, and the requirements on the resolving
power of the portable instrument are conventionally
defined by the requirements for the analysis of ions of
the maximum mass number being measured; therefore,
we will restrict ourselves to the condition given by
β(γmax) = βopt(γmax). However, in this case, for the design
having a small sector angle γ, choosing a curved mag-
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
net exit boundary allows us to obtain a higher resolving
power for ions with the maximum mass number and to
keep the resolving power of particles with lower mass
numbers at a level necessary for their resolution. The
overall scheme configuration of the proposed mass
spectrometer is presented in Fig. 4, where Rmax is the
radius of an ion trajectory for ions with the maximum
mass number being measured; R0 and Φ are the mean
radius and the sector angle of a cylindrical capacitor,
respectively; r is the radius of curvature for a magnet
exit boundary; d1 is the distance from the ion source to
the electrostatic capacitor; and d2 is the distance from
the capacitor to the magnet. The values of R0 and Rmax

are chosen based on the requirements to the range of
mass numbers measured and to the resolving power of
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,
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Fig. 2. Characteristics of the scheme presented in [4]: (a) the
optimum angles βopt of the magnet exit boundary providing
the maximum resolving power of the scheme (1, 2) and the
angles β (3) of the exit boundary (coinciding with the chord
of an ion trajectory in the magnet) vs. magnet sector angle γ
(the angles are expressed in degrees); (b) the relative resolv-
ing power vs. magnet sector angle γ at various values of
magnet-exit-boundary angle β = (1) βopt, (2) 0, and (3) (π –
γ)/2.
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the instrument; γmax is taken so as to meet the require-
ments to the resolving power, instrument dimensions,
and its weight; and r is determined by the optimum
resolving power for small and large mass numbers. The
limits of the ranges of the values of d1 and d2 are chosen
with consideration for the requirements on the portable
instrument size, and the value of Φ is taken with con-
sideration for the optimum relationship between it and
γm. The values of d1, d2, and Φ are determined from a
numerical calculation of the ion-optical scheme provid-
ing the maximum resolving power. The parameters of
the scheme under consideration are taken from the
ranges defined by

(1)

CALCULATION OF THE PARAMETERS

The parameters of the mass spectrometer are calcu-
lated successively in several steps. First of all, the mass
spectrometer is numerically calculated within the
approximation of the scheme with a straight-line exit
window of a magnet at β = 0 for ions of the maximum
mass numbers in the range being measured. On the one
hand, the individual requirements to the instrument
dimensions and weight for gaining the resolving power
needed are considered in the computation; on the other
hand, the special features of the emittance (that is, spa-
tial, angular, and energy distributions of beam parti-
cles) for an ion source used in the instrument are taken
into account. In the process of the calculation with the
use of the procedure presented in [3, 4], the values of
parameters can be taken in the wide ranges given by
γmax = π/4–π/3, d1/Rmax = 0.0–1.0, d2/Rmax = 0.0–1.0,
Φ = π/6–π/3, and R0/Rmax = 0.3–2.0. The calculation
gives us a set of the values of d1, Rmax, d2, Φ, R0, and
γmax that offer the maximum resolving power for the

π/3 γmax π/4,≥ ≥

Rmax
2 /R0( ) 3γmax/2( ) r Rmax,≥ ≥tan

Rmax/3 d1 0, Rmax/2 d2 0,≥ ≥≥ ≥
γmax/2 π/8 Φ γmax/2 π/8 π/18.–+≥ ≥+

1

Φ

d1

R
Ri

R0

2

3
Rmax

fi

F

4
fmax

γmax

γi

d2

Fig. 4. The proposed ion-optical scheme: (1) ion source,
(2) cylindrical capacitor, (3) magnet pole tips, and (4) detec-
tor; F is the focal line.
prescribed conditions of the instrument scheme. Next,
the shape of the window exit boundary for an actual
magnet is selected in accord with relationships (1) on
retention of the parameters chosen in the numerical cal-
culation. The given computing procedure for the porta-
ble mass-spectrometer parameters provides for the
simultaneous analysis of several components in com-
plicated mixtures.

EXPERIMENTAL

Using the computing procedure described above
and the well-known output characteristics of an elec-
tron-impact ionization source (at a 0.1-mm-wide exit
slit, the angular spread is ±2° and the energy spread is
±2%), we obtained the values of the ion-optical param-
eters (d1 = 18 mm, R0 = 125 mm, Φ = 42°, d2 = 21 mm,
γmax = 52°, Rmax = 90 mm, and r = 90 mm) and con-
structed a prototype mass spectrometer. With the use of
this setup, various components in a wide range of
masses (from methane to chlorobenzene) were ana-
lyzed. The resolving power of this instrument for the
maximum mass number of the range measured was 145
on the base level for a numerical calculation and 134 on
a 3% level for experiments. For the separation of
heavier ions with mass numbers up to 500 and above,
the resolving power of the instrument can be improved
by restricting the mass analyzer entrance aperture or
the ion source emittance [4].

CONCLUSION

A portable mass spectrometer ion-optical scheme
offering advantages over the well-known ones is pre-
sented. First, the sector angle and, therefore, the mass-
analyzer magnet weight are well below those in the
Mattauch–Gerzog scheme. Second, in contrast to the
devices with small angles of a magnetic analyzer, our
scheme makes it possible to perform simultaneous mul-
ticomponent chemical analysis without sacrificing the
instrument characteristics.
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Abstract—The results of the first experiments related to oriented CdTe film growth on a nonorienting substrate
(glass) cooled to negative Celsius temperatures under extremely nonequilibrium conditions are reported. Tech-
nological, electron-diffraction, and X-ray investigation results are presented. A condensation diagram charac-
terized by two regions within which the growth rate of films is anomalously low is obtained. The films grown
at these rates are shown to possess a nearly perfect crystalline texture. The formation processes of the oriented
films on an amorphous substrate under the above conditions are adequately interpreted in the context of a het-
eroepitaxy soliton model. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

As a rule, oriented films are obtained at elevated
temperatures (in order to achieve the required mobility
of particles) under conditions that are close to equilib-
rium. However, recently, exceptions to this rule have
been observed. In particular, we unexpectedly obtained
highly oriented films during condensation of cadmium
telluride on a cooled mica substrate under extremely
nonequilibrium conditions [1, 2]. Afterwards, we man-
aged to obtain fairly well oriented films by the same
method even on an amorphous substrate. In what fol-
lows, the first results of studying this phenomenon are
reported.

EXPERIMENTAL TECHNIQUE

The specimens under investigation were prepared in
a vacuum chamber (with residual pressure of 10–3 Pa)
by the quasiclosed volume method on a glass substrate
cooled by liquid nitrogen [1]. The reactor-evaporator
temperature was equal to 900 K. The substrate temper-
ature was measured with a copper–constantan thermo-
couple. To control overheating of the substrate surface,
we applied the technique from [2]. The deposition rate
was evaluated from experimental data on film thickness
and growth time.

Thickness measurements were performed using an
MII-4 interferometer. To investigate the structure, we
used an ÉMR-100 electron-diffraction camera and a
DRON-4 X-ray diffractometer using CuKα radiation at
room temperature. Surface morphology investigations
were carried out using a PÉM-100 electron micro-
scope.
1063-7842/01/4604- $21.00 © 20495
EXPERIMENTAL RESULTS

We studied the formation of CdTe films under
extremely nonequilibrium conditions during CdTe con-
densation on a glass substrate. The investigations
involved technological experiments, surface morphol-
ogy studies with an electron microscope, and X-ray and
electron diffraction studies. The main results are pre-
sented in Figs. 1–4.

A typical film surface in the final growth stage is
shown in Fig. 1, which demonstrates layer-by-layer and
normal formation. One can distinctly see nuclei (dis-
perse particles of a new layer) on the surface of an
already formed continuous layer of the film.

Fig. 1. A fragment of a typical CdTe-film surface in the final
growth stage. The substrate temperature Ts = 210 K. Magni-
fication is ×70 000.
001 MAIK “Nauka/Interperiodica”



 

496

        

BELYAEV

 

 

 

et al

 

.

                                                               
10–1

10–2

10–3

300 200 100

I II

2 4 6 8 10

T, K
ν,

 µ
m

/s

10–3/T, K–1

Fig. 2. The condensation diagram of CdTe films on a glass
substrate under extremely nonequilibrium conditions.
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Fig. 3. Electron diffraction patterns of CdTe h-thick films
grown under extremely nonequilibrium conditions on a
glass substrate at the temperatures (a, b) Ts = 210 and
(c) 250 K; h = (a, c) 0.8 and (b) 0.1 µm.
Figure 2 is a condensation diagram that shows two
regions of anomalously low condensation rates. The
film growth rate decreased by several orders of magni-
tude in these regions. The thick films (with a thickness
greater than 0.8 µm) grown under these conditions were
distinguished by good crystal quality. This can be seen
from Fig. 3a, where a typical electron diffraction pat-
tern of a 0.8-µm-thick film is shown. In the earlier
growth stage, the same film had lower crystal perfec-
tion. In Fig. 3b, this is confirmed by the typical elec-
tron-diffraction pattern of a 0.1-µm-thick film. In addi-
tion, the earlier stage of film growth was characterized
by a very high rate of layer formation. We failed to
obtain an island film directly on a glass substrate under
all conditions covered by the condensation diagram in
Fig. 2.

We note that the films grown outside the modes of
anomalous condensation rate had polycrystalline struc-
ture even if these films were thick. This is evident from
Fig. 3c, in which a typical electron-diffraction pattern
of a 0.8-µm-thick film grown at the substrate tempera-
ture of Ts = 250 K is shown.

The structural distinction between oriented films
grown in different regions of the anomalous condensa-
tion rate is illustrated in Fig. 4. The portions of typical
X-ray diffraction patterns from the films grown at the
substrate temperatures of Ts = 140 and 210 K are shown
in Figs. 4a and 4b, respectively. Their comparison indi-
cates that the films have different crystallographic
growth directions.

DISCUSSION

Formation of an oriented layer on an orienting sub-
strate under highly nonequilibrium conditions consists
of nucleation, condensation, incorporation, coales-
cence, and merging into a continuous layer. Nucleation
and incorporation are the characteristic features of the
above process [1, 2]. For such supersaturation levels,
the former occurs in a vapor phase, whereas the latter
results from the motion of disperse particles of a new
phase due to a soliton mechanism of mass transport at
low temperatures [3]. The combined effect of these fac-
tors leads to the correlated orientation of disperse par-
ticles and to a low rate of layer formation.

Emergence of solitons is caused by a certain relation
between lattice constants of a disperse particle a(Tr)
and a substrate b(Ts). In the case of their closeness, the
needed relation between them can be attained by vary-
ing the substrate temperature Ts in view of its distinc-
tion from the disperse particle temperature Tr .

Theoretically, the necessary condition for the origi-
nation of solitons was derived only for a one-dimen-
sional model. The corresponding specific expression
TECHNICAL PHYSICS      Vol. 46      No. 4      2001
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with allowance for the temperature dependence of the
lattice parameters a(Tr) and b(Ts) is written as [2]

(1)

where f and λ are the parameters characterizing the
interaction forces between atoms of a disperse particle
and a substrate and those between the substrate atoms,
respectively. At the onset of film formation on an amor-
phous substrate, the origination of solitons is impossi-
ble due to the absence of a regular crystal lattice on the
substrate surface. However, in the case of normal layer-
by-layer growth, all film layers (except for the first
layer) are already formed on even highly defective
crystalline substrates (we recall that, under the above
conditions, layers are produced by the condensation of
disperse particles rather than individual atoms). Then,
at certain substrate temperatures Ts satisfying the con-
ditions (1), the origination of solitons is quite possible.
In view of their features [4], solitons enhance the
mobility of disperse particles and delay the dissipation
of their excess energy for a finite period of time, which
results in a smaller accommodation coefficient and in
the formation of oriented layers.

In our case, the experimental conditions completely
correspond to the aforesaid. The oriented films were
grown only at the strictly specified substrate tempera-

a Tr( ) b Ts( )–
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-------------------------------- 2/π( )3/2 f /λa Tr( )…,>
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Fig. 4. A portion of an electron diffraction pattern of CdTe
1-µm-thick films grown at the substrate temperatures of Ts =
(a) 140 and (b) 210 K.
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tures (when conditions (1) were satisfied). When the
oriented layers were formed, the integral growth rate
abruptly dropped. In Fig. 2, the soliton energy was
slowly dissipated and the temperature of disperse parti-
cles remained high for a finite time. It follows that the
accommodation coefficient was small. The crystal per-
fection of a film became better as its thickness
increased. In Fig. 3, the film grew layer-by-layer, and
the healing of preceding layer defects occurred with
each new layer. The initial stage of film growth was
characterized by a high rate (when solitons could not
yet emerge). In two temperature ranges (I and II) of the
oriented growth, our films had two different crystallo-
graphic directions of the layer growth: in Figs. 2 and 4,
the constants a(Tr) and b(Ts) were different in the con-
tact plane of lattices in diverse temperature ranges.

CONCLUSIONS

(1) Under extremely nonequilibrium conditions of
the condensation of films on an amorphous cooled sub-
strate, there are regimes that give rise to the formation
of oriented layers.

(2) Formation of oriented films on an amorphous
substrate under the above conditions is well described
in the framework of a heteroepitaxy soliton model.
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Abstract—Capacitance voltage and current voltage characteristics of BSTO ferroelectric films containing a
manganese dioxide impurity (~ 1.5–2 mol %) are compared to those of impurity-free samples. It is shown that
in Mn-doped samples  drops to 10–3, and the dependence of  on the applied voltage changes as well.
IVCs of these samples are strictly ohmic and do not show a nonlinearity at high voltages. A mechanism
is proposed of the effect of Mn on the charge state of the defects comprising oxygen vacancies in BSTO films.
© 2001 MAIK “Nauka/Interperiodica”.

δtan δtan
† Studies of the effect of various impurities on RF and
microwave dielectric characteristics of BaxSr1 – xTiO3
(BSTO) films started in the 1970s [1] in a number of
institutions in this country [2, 3] and abroad [4, 5].
These studies dealt mainly with such impurities as Zr
and Sn [2–5] and Zn, Ca, and Mg [1, 6]. In recent years,
physicotechnological studies of ferroelectric films
(FEF) for radioelectronic applications were resumed.
For example, BSTO ceramics with additions of manga-
nese oxide was experimented on [7], but no noticeable
improvement of the dielectric characteristics was
achieved. A decrease of less than 0.01 in the dielectric
loss tangent ( ) was observed only for considerable
additions of manganese oxide powder (up to 50 mol %).
In this case, the dielectric permeability decreased con-
siderably and the FEF capacitor became practically
untunable.

In [3], single crystals of SrTiO3 (STO) synthesized
in a gas plasma with various amounts of manganese
dioxide (~0.1 mol %) added to the molten mixture were
studied. It was found that the dielectric permeability of
the starting undoped SrTiO3 crystals in FEF capacitors
after application of an electric field up to ~105 V m–1

and return to a zero field was lower by a factor of 1.5–2;
i.e., a strong hysteresis was observed, η = C0 – C(0)/C0.
The hysteresis displayed by capacitance voltage char-
acteristics (CVC) was ascribed to the remanent field
due to the space charge resulting from the deficit of
oxygen [8, 9].

Alongside deviations of the cation composition and
the deformational strain [10], the FEF characteristics
are strongly influenced by the state of the oxygen sub-
lattice. Oxygen vacancies in FEF give rise to electrical

† Deceased.

δtan
1063-7842/01/4604- $21.00 © 20498
conduction (leakage currents), accelerate aging, and
increase the dielectric losses [11]. It is found that crys-
tals doped with manganese reduce the initial capaci-
tance of planar capacitors [4] and hysteresis in CVC
and .

The initial capacitance decreases with increasing
manganese content, from 5320 pF in undoped samples
to 1140 pF in samples containing ~0.1 mol % Mn. With
increasing manganese content, the tunability K =
(C(0)/C(500 V)) drops appreciably: from 19 for undoped
samples to 4.2 for samples containing 0.1 mol % manga-
nese (at T = 4.2 K). It should noted that there is practi-
cally no hysteresis in the C(U) curves for samples
doped with manganese.

In [5], the effect of small additions of manganese
oxide or manganese carbonate on characteristics of
BSTO films produced by laser sputtering of a ceramic
target was studied. For films containing 1% manganese
impurity, very good characteristics have been obtained.
BSTO/LAO structures measured at f = 10 GHz and T =
300 K had a tunability of 56% or ~1.5–1.6. The starting
dielectric permeability was ε = 1800 and  ≈ 0.006.
The underlying physical mechanisms are outside the
scope of this report.

Processes causing considerable changes of the
dielectric characteristics of piezocapacitors containing
manganese impurities are related to the compensation
of the positively charged oxygen vacancies. But it
remains unclear how this mechanism operates and what
the reason is for the substantial difference in manga-
nese concentrations required to produce noticeable
changes of the dielectric characteristics in crystals and
films.

To study these problems, technological processes of
the ion-plasma sputtering of BSTO targets containing

δtan

δtan
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Fig. 1. Capacitance–voltage characteristics and plots of  versus applied voltage measured on BSTO/α-Al2O3 planar capacitors:
(a) without impurities; (b) containing ~2 mol % manganese oxide.

δtan
0, 1.0, 1.75, and 2.0 wt % MnO2 impurity at the ratio
Ba/Sr ≈ 1 were carried out and films were grown. The
composition and structure were analyzed using X-ray
diffraction, medium energy ion backscattering
(MEIBS) [10], and Raman scattering. Planar capacitors
with copper plates were fabricated using ferroelectric
films grown on LAO substrates, sapphire, and polycor
(polycrystalline Al2O3). Measurements of the dielectric
characteristics of the capacitors were carried out at a
frequency of 1 MHz. Figure 1 presents a comparison of
the dielectric characteristics of the films with and with-

out manganese impurity grown on -α-sapphire.
The technological process was carried out in the fol-

1012[ ]
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lowing manner: the target was BaxSr1 – xTiO3 of compo-
sition x = 0.55; the sputtering ambient was oxygen; the
substrate temperature was ~650°C; and the film growth
rate ~0.1 µm/h. Some films were annealed in oxygen ex
situ at 900°C (Fig. 1a). As a result of annealing, 
dropped significantly by a factor of 2.5–3, but the tun-
ability became less (by 30–50%). At voltages above
100 V,  of planar FEF capacitors dropped to ~5 ×
10–4. CVCs of all annealed samples displayed larger
hysteresis.

In BSTO films containing manganese impurities
(Fig. 1b), hysteresis is more pronounced (reaching
~5%) and the behavior of  with bias voltage is sig-
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Fig. 2. Capacitance–voltage characteristics and plots of  versus applied voltage measured on BSTO/LAO planar capacitors:
(a) without impurities; (b) containing ~2 mol % manganese oxide.

δtan
nificantly different. In undoped films, there was no low-
ering of losses in electric fields up to 105 V/cm; in some
samples,  increased considerably at 3 × 104 V/cm
after a drastic drop. Most of the films containing 1.5–
2.0% manganese had  below 5 × 10–4 at radio fre-
quencies.

A different behavior is seen in BSTO films grown
on LAO substrates (Fig. 2). Annealing had no notice-
able effect on CVCs and the behavior of (T), but
the manganese impurity is significantly reduced ε. The
dependence (U) undergoes changes. Bias voltage
causes an increase in , which is probably an indi-
cation that the loss mechanism does not involve
charged defects [12].

In studies of BSTO : Mn films, the use of various
methods for determining Mn content meets consider-
able difficulties, because of the similarity between Ti

δtan

δtan

δtan

δtan
δtan
(z = 22) and Mn (z = 25). Use of the characteristic
X-ray radiation can only indicate the presence of man-
ganese. RS spectra did not reveal any differences
between BSTO films with the same Ba/Sr ratio grown
on various substrates and the doped films. X-ray
diffraction analysis of FEFs grown on polycor has
shown the presence in the samples of the Ba0.5Sr0.5
(Mn0.33, Ti0.67)O3–2.84 phase with a lattice parameter of
~0.395 nm, which is close in structure to the major
BaSrTiO3 phase.

Thus, the measurements and analytical studies have
shown that manganese ions can partially substitute for
titanium in the crystal lattice. It is known that titanium
in BaSrTiO3 has a valency of (+4), but can also be
found at a valency of (+3) [13]. In barium titanate films,

a modified phase of Ba( )O3 can form, which
has an imperfect tetragonal structure. The defect phase

Ti0.48
+3 Ti0.52

+4
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can be identified by splitting of the (200) and (002)
reflections in X-ray patterns and represents a tetragonal
distortion of the perovskite cell. A manganese ion is
comparable in size to a titanium ion and has a close
value of electronegativity (~1.5) [14]; however, it is an
ion that can have different valencies.

If it is assumed that Mn+2 occupies the position of
Ti+4 forming a substitutional defect, then its charge
state can be represented by the following model

(Fig. 3): (BaxSr1 – x)2+ .

Oxygen vacancies might introduce shallow acceptor
levels in the band gap of barium strontium titanate. Ion-
ization of these levels activates the conduction process.
Partial substitution of manganese for titanium ions
compensates the positive charge of oxygen vacancies,
which also affects the sample conductivity. This is con-
firmed by IVCs of the capacitors. The measurements of
IVCs were made at direct current employing registra-
tion of the voltage drop across a reference resistor
located in the electrometer input unit.

Shown in Fig. 4 are IVCs of three FEF capacitors
measured at room temperature. The capacitors were
formed on various substrates: polycor, sapphire, and
lanthanium aluminate. The dependences for pure and
doped samples have important differences related, pos-
sibly, to the concentration ratios and sufficiency of the
doping level in crystals and films for compensation of
the vacancies. A mere 0.01 mol % of manganese impu-
rity produces considerable changes in the dielectric
characteristics of a single crystal, whereas as much as 1
mol % of the manganese oxide will be needed to pro-
duce the same changes in BSTO films.

It is important whether a Mn atom occupies a lattice
site, as shown in Fig. 3, or whether it is in an interstitial
position at the block boundary or in the intergranular
space. There being no intergranular phase in single
crystals, the impurity atoms in the melt from which the
crystal is grown have a greater chance of being incor-
porated in the crystal lattice.

In films with a high degree of structural perfection
and homogeneity, the content of the interblock phase is
considerably less than in polycrystalline films. An
example of such structures is provided by samples
grown under identical regimes on LAO and polycor
substrates; their CVCs and IVCs are shown in Figs. 2
and 4.

IVCs of undoped samples have distinct nonlinear
portions beginning at a voltage of ~80 V. Similar non-
linearity of IVCs has been observed in conductivity
studies of STO single crystals not intentionally doped
[15] and was explained by the Frenkel–Poole hopping
conduction mechanism. Apparently, in undoped BSTO
films as well, an activation-type electrical conduction
takes place, which involves oxygen vacancies. The
presence of linear portions in the IVCs suggests that
samples grown on lanthane aluminate have lower con-
ductivity.

Ti1 y–
4+ MnTi[ ] y

2–O3 z–
2– VO[ ] z

2+
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In IVCs of Mn-containing films (~2 mol %) practi-
cally no nonlinear portions are observed; so, in this
case, it can be assumed that the centers responsible for
the activation mechanism of electrical conduction are
compensated by the Mn impurity. The lowest conduc-
tivity is found in BSTO/polycor structures.

1 2 3 4 5

Fig. 3. Model of compensation of the oxygen vacancy
[VO]2+ with a substitutional point defect [Mn Ti]

2– yielding

(BaxSr1 – x)
2+ . 1, Ba(Sr)–A;

2, O X; 3, Ti B; 4, MnTi—substitutional defect; 5, oxygen
vacancy.

Ti1 y–
4+

MnTi[ ]
y
2–

O3 z–
2–

VO[ ]
z
2+

Pure BSTO films
387 (alumina)
225 (LAO)
381 (α -sapphire)

(a)

(b)

BSTO: Mn (~2 mol %)
312 (alumina)
313 (LAO)
314 (α -sapphire)

102101

10–1

100

101

10–1

100

101

Current I, 10–13 A

Current I, 10–13 A

Bias voltage U, V

Fig. 4. Current-voltage characteristics of FEF capacitors
based on (a) impurity-free BSTO films and (b) BSTO films
containing ~2 mol % manganese oxide.
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Features of the dependence (U) for
BSTO/polycor, BSTO/LAO, and BSTO/α-Al2O3 struc-
tures indicate different defect formation mechanisms.
Lowering of the dielectric loss factor with bias voltage
is, possibly, evidence of excess positive space charge in
the FEFs. Electron injection occurring as a result of
voltage applied to the plates compensates the charge
and lowers . In doped BSTO/LAO films, in con-
trast,  increases with U. Possibly, the doping level
of BSTO/LAO films (~2 mol %) is above the optimum;
i.e., the concentration of the donor impurity N(MnTi) is
larger than N[VO].

In doped BSTO/polycor and BSTO/α-Al2O3 struc-
tures, the charge due to oxygen vacancies is compen-
sated at low bias voltages. In electric fields of ~3 ×
104 V/cm, the space charge is compensated and, more-
over, the injected electrons produce a charge of oppo-
site sign (–), which increases the tangent of dielectric
loss angle.

Thus, the analysis of the CVCs and IVCs of planar
capacitors made from EFEs of various compositions
can be used to study features of defect formation in per-
ovskite films and interfaces. Knowledge of the pro-
cesses of formation and compensation of the space
charge helps to improve the technology of forming tun-
able device structures based on ferroelectric films.
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Abstract—Condensation of a 5% SiH4 + 95% Ar mixture in pulsed supersonic jets was studied. The sequence
of process steps was determined from time characteristics of the jet that were recorded by pulse molecular-beam
mass spectrometry. It is shown that pulsed jet condensation of the silane–argon mixture causes selective heating
of the components, the heating process being dependent on the density of the mixture in the settling chamber
of a nozzle. © 2001 MAIK “Nauka/Interperiodica”.
In this work, we continue discussion about new
experimental findings on clustering and developed con-
densation in pulsed supersonic nonequilibrium jets of
pure gases and their mixtures [1, 2]. Free jets of silane
and silane-containing mixtures have been shown to be
a promising source for the deposition of amorphous
and polycrystalline silicon films [3]. Experiments with
the LÉMPUS complex of gas-dynamic stations at the
Novosibirsk State University, which provides
extremely high densities of a jet freely expanding into
a vacuum in the pulsed regime, have shed new light on
condensation mechanisms.

In the experiments, we recorded the point in time T
at which the leading edge of a gas pulse arrives at the
detector of a mass spectrometer (Fig. 1) and the half-
1063-7842/01/4604- $21.00 © 0503
width D of the pulse (Fig. 2). The stagnation pressure
P0 of a 5% SiH4 + 95% Ar mixture was varied between
0 and 700 kPa. Experimental conditions and equipment
were similar to those used in [1, 2]. We traced varia-
tions of T and D with P0 for monomers of argon
(m/e = 40) and silane components (m/e = 31 and 33),
for hydrogen (m/e = 1), as well as for di-, tri-, and tet-
ramers of Ar and SiH4 (m/e = 63, 80, 94, 111, and 160).
The data obtained, which are in close agreement with
those for the intensities of mass peaks [1], may provide
a deeper insight into condensation mechanisms and
conditions.

From the dependences of T and D on pressure
(Figs. 1, 2), one can separate out several process stages.
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Fig. 1.
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At P0 < 20 kPa, the data for SiH4 and argon monomers
(m/e = 31 and 40, respectively) coincide; that is, SiH4,
being a minor impurity in argon, expands as a mono-
atomic carrier gas. In this pressure range, the pulse
half-width is nearly constant and the time of pulse
arrival gradually decreases. This is explained by an
increased number of collisions in the supersonic flow,
which results in the formation of the undisturbed flow
core and increases the limiting Mach number.

When P0 increases to 50 kPa, D for the monomers
begins to rise. Its increment for the silane components
is almost three times greater than for argon. Also, silane
dimers (m/e = 63 for Si2  is shown in the figures) are
recorded. Hence, silane condensation starts in this
range. The velocities of the Ar and SiH4 monomers
continue to increase, judging from the T vs. P0 depen-
dence. Therefore, the pulses broaden due to the tail of
slowed-down particles.

As P0 grows to 100 kPa, T for the silane monomers
substantially increases; in addition, argon clusters and
argon–silane complexes appear in the mass spectra.
The time of arrival and the pulse half-width saturate for
all the recorded masses (except m/e = 31). It appears that,
in this pressure range, the growth of silane clusters and
also mixed clusters, initiated by silane nuclei, prevails.

Starting from P0 ≈ 100 kPa, the pulse half-width for
the Ar monomer slowly grows. Then, from P0 >
200 kPa, this growth becomes sharp. For silane (m/e =

H7
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Fig. 2.
31), D increases starting from P0 ≈ 180 kPa. It can be
assumed that large Ar clusters begin to grow at P0 >
100 kPa. At P0 > 200 kPa, skimmer interactions in the
condensing gas [2] seem to become significant. This
assumption is substantiated by a slower increase in the
intensities of masses m/e = 31 and m/e = 40 (Fig. 2).

Hydrogen ions H+ (m/e = 1) and  ions (m/e = 33)
also appear at P0 > 100 kPa (their intensities grow by
nearly the same amount with increasing P0). The half-
widths of these signals approach the limit that coin-
cides with the saturation level for m/e = 31, and the time
of arrival T monotonically increases with P0 but starting
from pressures corresponding to small clusters rather

than to the monomers. The H+ and  ions appear
presumably as a result of dissociative ionization of the
clusters. First, small silane clusters ionize; then, as P0
rises, large mixed clusters ionize in the ionizer of the
mass spectrometer. In addition, if skimmer interactions

are intense, the H+ and  peaks may broaden owing
to the breakdown of large clusters in the skimmer.
A reason for the increase in D for the silane and argon
monomers may be electron-impact-induced breakdown
of the large clusters in the detector of the mass spec-
trometer, since these clusters have lower velocities in
the jet compared with the monomers because of the slip
effect [4]. However, a severalfold decrease in the veloc-
ities of the clusters, as well as a great difference in the
stability of the silane, argon, and mixed clusters at var-
ious process stages, seems to be unrealistic. Most
likely, such an increase in D for the monomers, which
is different for the argon and silane ones, means that
they undergo selective heating due to the release of
condensation heat in the pulsed jet of the mixture.
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