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We study within the light-cone path integral approach [3] the effect of the induced gluon radiation on high-pT
hadrons in high-energy heavy-ion collisions. The induced gluon spectrum is represented in a new form which
is convenient for numerical simulations. For the first time, computations are performed with a realistic param-
eterization of the dipole cross section. The results are in reasonable agreement with the suppression of high-pT

hadrons in Au + Au collisions at  = 200 GeV observed at RHIC. © 2004 MAIK “Nauka/Interperiodica”.
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1. One of the most interesting results obtained at
RHIC is the suppression of high-pT hadrons in Au + Au
collisions (for a review of the data, see [1]). It is widely
believed that parton energy loss due to the induced
gluon radiation caused by multiple scattering in the
quark-gluon plasma (QGP) produced in the initial stage
of nucleus-nucleus collisions plays a major role in this
phenomenon (usually called jet quenching) [2–7] (for a
review, see [8]). The most general approach to the
induced gluon emission is the light-cone path integral
(LCPI) approach developed in [3] (see also [8–10]). It
accurately treats the mass and finite-size effects and
applies at arbitrary strength of the Landau–Pomeran-
chuk–Migdal (LPM) effect [11, 12]. Other available
approaches have limited domains of applicability and
can only be used either in the regime of strong (the
BDMPS formalism [2, 5]) or weak (the GLV formalism
[6]) LPM suppression (the GLV approach [6], in addi-
tion, is restricted to the emission of soft gluons). For
this reason, they cannot be used for an accurate analysis
of jet quenching for RHIC (and LHC) conditions.

The LCPI approach expresses the gluon spectrum
through the solution of a two-dimensional Schrödinger
equation with an imaginary potential in the impact
parameter plane. The imaginary potential is propor-
tional to the cross section of interaction of the  sys-
tem (for q  gq transition) with a particle in the
medium, σ3(ρ) (here ρ is the transverse distance
between the quark and gluon, the antiquark is located at
the center of mass of the qg-system). The σ3(ρ) can be
written as σ3(ρ) = C(ρ)ρ2. The factor C(ρ) has a smooth
(logarithmic) dependence on ρ for ρ ! 1/µD (hereafter,
µD is the Debye screening mass). If one replaces C(ρ)
by C(ρeff), where ρeff is the typical value of ρ, the

¶ This article was submitted by the author in English.

qqg
0021-3640/04/8010- $26.00 © 0617
Hamiltonian takes the oscillator form. This approxima-
tion, which greatly simplifies the calculations, was
employed in several analyses [4, 7, 13] (it was also used
in the BDMPS approach [2, 5]). However, the oscillator
approximation turns out to be too crude and unsatisfac-
tory. First of all, for RHIC and LHC conditions, the
dominating ρ scale is not small enough and the results
depend strongly on the choice of ρeff. Another reason
why the oscillator approximation is unsatisfactory is
more serious. In the high energy limit the gluon forma-
tion length, Lf, becomes larger than the quark path
length in the QGP and finite-size effects become impor-
tant. In this regime, ρeff ! 1/µD and one might naively
expect that the oscillator approximation should work
very well. However, one can show [14] that, in this
regime, the dominating N = 1 rescattering contribution
(and any odd rescattering) evaluated in the oscillator
approximation simply vanishes. For RHIC and LHC
conditions, the finite-size effects play a very important
role and the oscillator approximation can lead to uncon-
trolled errors. For this reason, one has to use an accu-
rate parameterization of the three-body cross section. It
requires numerical calculations for solving the
Schrödinger equation.

In the present paper, we represent the induced gluon
spectrum in a new form that is convenient for numerical
computations. We, for the first time, calculate the
induced gluon emission and the nuclear modification
factor for RHIC conditions using a realistic imaginary
potential.

2. We consider a quark with energy E produced in a
medium at z = 0 (we chose the z-axis along the quark
2004 MAIK “Nauka/Interperiodica”
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momentum). The induced gluon spectrum in the gluon
fractional longitudinal momentum x reads [3]

(1)

Here, K is the Green’s function for the Hamiltonian
(acting in the transverse plane)

(2)

(3)

and

(4)

is the Green’s function for the Hamiltonian (2) with
v(r, z) = 0. In (2), the Schrödinger mass is M(x) =

Ex(1 – x), Lf = 2Ex(1 – x)/[ x2 + (1 – x)] is the
gluon formation length, mq and mg are the quark and
gluon masses that play the role of the infrared cutoffs at
x ~ 1 and x ~ 0 (in the QGP, mq, g are given by the quark
and gluon quasiparticle masses). In (3), n(z) is the num-
ber density of QGP, and σ3 is the above mentioned
cross section of the color singlet  system with a
particle in the medium. Summation over triplet (quark)
and octet (gluon) color states is implicit in (3). The σ3
may depend on z (through the Debye screening mass);
however, below, we will use z-independent µD. The ver-
tex factor g(x), entering (1), reads

(5)

where P(x) = GF[1 + (1 – x)2]/x is the splitting function
for the q  gq transition (CF is the quark Casimir fac-
tor). Note that we neglect the spin-flip q  qg transi-
tion, which gives a small contribution to the quark
energy loss.

The three-body cross section entering potential (3)
can be written as [15, 3]

(6)

where
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dP
dx
------- 2Re z1 z2g x( ) K z2 r2 z1 r1,,( )[d

z1

∞

∫d

0

∞

∫=

– Kv z2 r2 z1 r1,,( ) ] r1 r2 0= = .

H
1

2M x( )
---------------- ∂

∂r
------ 

 
2

v r z,( ) 1
L f

-----,+ +–=

v r z,( ) i
n z( )σ3 ρ( )

2
-------------------------,–=

Kv z2 r2 z1 r1,,( ) M x( )
2πi z2 z1–( )
----------------------------=

×
iM x( ) r2 r1–( )2

2 z2 z1–( )
---------------------------------------

i z2 z1–( )
L f

---------------------–exp

mq
2 mg

2

qqg

g x( )
α sP x( )
2M2 x( )
------------------ ∂

∂r1
-------- ∂

∂r2
--------,=

σ3 ρ( ) 9
8
--- σqq ρ( ) σqq 1 x–( )ρ( )+[ ] 1

8
---σqq xρ( ),–=

σqq ρ( ) α s
2
CTCF q

1 iqr( )exp–[ ]
q2 µD

2+( )2
-------------------------------------d∫=
is the dipole cross section for the color singlet  pair
(CT is the color Casimir for the thermal parton (quark or
gluon)).

Spectrum (1) can be rewritten as (L is the quark path
length in the medium)

(8)

(9)

Cross section /dx (9) can be viewed as an effec-
tive Bethe–Heitler cross section, which accounts for the
LPM and finite-size effects. One can represent (9) as

(10)

where the function F is the solution to the radial
Schrödinger equation for the azimuthal quantum num-
ber m = 1

(11)

The boundary condition for F(ξ, ρ) reads F(ξ = 0, ρ) =

σ3(ρ)eK1(eρ), where e = [ x2 + (1 – x)2]1/2, and
K1 is the Bessel function. In deriving (10), we used the
relations [9]

The time variable ξ in (10), in terms of the variables z
and z1 of Eq. (9), is given by ξ = z – z1; i.e., contrary to
the Schrödinger equation for the Green’s functions
entering (1), (10) represents the spectrum through the
solution to the Schrödinger equation, which describes
the evolution of the  system back in time. It allows

qq
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RADIATIVE PARTON ENERGY LOSS 619
one to have a smooth boundary condition, which is con-
venient for the numerical calculations.

3. The jet quenching is usually characterized by the
nuclear modification factor (we consider the central
rapidity region y ~ 0 and suppress the explicit y-depen-
dence)

(12)

where dσAA/dyd  and dσpp/dyd  are the inclusive
cross section for A + A and p + p collisions, and Nbin is
the number of the binary nucleon-nucleon collisions.
The effect of the parton energy loss on the high-pT had-
ron production in the A + A collisions can approxi-
mately be described in terms of effective hard partonic
cross sections, which account for the induced gluon
emission [16]. Using the power-low parameterization
for the cross section of the quark production in p + p

collisions ∝ 1/ , one can obtain

(13)

(14)

where P0 is the probability of quark propagation with-
out induced gluon emission, dI(x, pT)/dx is the probabil-
ity distribution in the quark energy loss for a quark with

E = pT, and (z, pT/z) is the quark fragmentation func-
tion. Note that, since n(pT) @ 1, the z-integrands in (13),
(14) are sharply peaked at z ≈  (  is the value of z at

which (z, pT/z) has a maximum). For this
reason, (13), to quite good accuracy, can be approxi-
mated as
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We take the P0 and the spectrum in the radiated energy
entering (13) in the form

(16)

(17)

where xmin ≈ mg/E, and it is assumed that the spectrum
equals zero at x ≤ xmin. Formula (17) corresponds to the
leading order term of the series in L/Lrad (here Lrad is the
radiation length corresponding to the energy loss ∆E ~
E) of the spectrum derived in [17] for the photon emis-
sion and, strictly speaking, is only valid for ∆E ! E.
However, even for the more broad domain ∆E & E
(which is interesting from the point of view of jet
quenching at RHIC), (17) reproduces the energy loss
spectrum evaluated assuming independent gluon radia-
tion to a reasonable accuracy. An accurate calculation
of the nuclear modification factor accounting for the
higher order terms in L/Lrad in the approximation of
independent gluon emission [16] does not make sense,
because this approximation itself does not have any the-
oretical justification. Note that our spectrum is auto-
matically normalized to unity.

The effective exponent n(pT) for the quark produc-
tion entering (13) is close to that for hadron production,
nh(pT). The small difference between these quantities
(stemming from the pT dependence of the integral (14))
is given by n(pT) – nh(pT) = dlnJ(pT)/dlnpT. For Au + Au

collisions at  = 200 GeV, we use nh(pT) = npT/(pT +
b) with n = 9.99 and b = 1.219 corresponding to the

parameterization dσ/dyd  = A/(pT + b)n obtained in
[18] for the π0 production in the p + p collisions. The
above procedure allows one to avoid the uncertainties
of the pQCD calculations of the partonic cross sections.

4. To fix the mq, g and µD we use the results of the
analysis of the lattice calculations within the quasipar-
ticle model [19]. For the relevant range of temperature
of the plasma T ~ (1–3)Tc (Tc ≈ 170 MeV is the temper-
ature of the deconfinement phase transition), analysis
[19] gives, for the quark and gluon quasiparticle
masses, mq ≈ 0.3 and mg ≈ 0.4 GeV. With the above

value of mg from the perturbative relation µD ≈ mg,
one obtains µD ≈ 0.57 GeV. To study the infrared sensi-
tivity of our results, we also perform computations for
mg = 0.75 GeV (with µD = 0.57 GeV). This value of the
infrared cutoff for gluon emission in parton-nucleon
interaction was obtained from the analysis of the low-x
proton structure function within the dipole BFKL equa-
tion [15, 20]. It seems to be reasonable for gluon emis-
sion in the developed mixed phase and for fast gluons
with Lf * L. This value agrees well with the natural
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infrared cutoff for gluon emission in the vacuum mg ~
1/Rc, where Rc ≈ 0.27 fm is the gluon correlation radius
in the QCD vacuum [21]. The above two values of mg

give reasonable lower and upper limits of the infrared
cutoff for the induced gluon emission for RHIC and
LHC conditions.

We perform numerical calculations for fixed and
running αs. In the first case, we take αs = 0.5 for the
gluon emission from light quarks and gluons, and αs =
0.4 for the case of c-quark. For the running αs, we use
the parameterization (with ΛQCD = 0.3 GeV) frozen at
αs = 0.7 at low momenta. This parameterization is con-
sistent with the integral of αs(Q) in the interval 0 < Q <
2 GeV obtained from the analysis of the heavy quark
energy loss (in vacuum) [22]. Previously, this parame-
terization was used to successfully describe the HERA
data on the low-x proton structure function within the
dipole BFKL approach [15, 20]. To incorporate the run-
ning αs in our formalism, we include αs in the integrand
on the right-hand side of (10) and take for virtuality
Q2 = aM(x)/ξ. The parameter a was adjusted to repro-
duce the N = 1 rescattering contribution evaluated in the
ordinary diagrammatic approach [23]. It gives a ≈ 1.85.
For the dipole cross section (7), we take Q2 = q2.

We assume the Bjorken [24] longitudinal expansion

of the QGP with T3τ = τ0, which gives n(z) ∝  1/z for
z > τ0. We use the initial conditions suggested in [25]:
T0 = 446 MeV and τ0 = 0.147 fm for RHIC, and T0 =
897 MeV and τ0 = 0.073 fm for LHC. For RHIC, the
above conditions were obtained from the charged parti-

T0
3

Fig. 1. The induced gluon spectrum (solid line) for q 
gq transition versus the gluon momentum k for RHIC con-
ditions for E = 5, 10, and 20 GeV; L = 6 fm was obtained
using (8), (10) with αs = 0.5 for mq = 0.3 GeV (a, b) and
mq = 1.5 GeV (c, d); mg = 0.4 GeV (left) and 0.75 GeV
(right). The Bethe–Heitler spectrum is shown by the dashed
line.
cle pseudorapidity density dN/dy ≈ 1260 measured by
the PHOBOS experiment [26] in Au + Au collisions at

 = 200 GeV, assuming an isentropic expansion and
rapid thermolization at τ0 ~ 1/3T0. The LHC parameters

correspond to dN/dy ≈ 5625 at  = 5.5 TeV, which
was estimated in [27]. The above initial conditions for
RHIC (translated into τ0 = 0.6 fm) agrees with those
used in the successful hydrodynamic description of
Au + Au collisions at RHIC [28]. Note that, since the

dominating ρ-scale in (9) ∝  for z ! Lf , our results
are not very sensitive to τ0 (for a given entropy). The
maximum parton path length in the hot QCD medium
is restricted by the lifetime of the QGP (and mixed)
phase,1 τmax. We take τmax ~ RA ~ 6 fm. This seems to be
a reasonable value for the central heavy-ion collisions,
since, due to the transverse expansion, the hot QCD
matter should cool quickly at τ * RA [24].

In Fig. 1, we show the induced gluon spectrum for
the q  gq transition for RHIC conditions for the
quark path length L = 6 fm obtained with mq = 0.3 and
mq = 1.5 GeV for mg = 0.4 and mg = 0.75 GeV. In Fig. 1,
we also show the Bethe–Heitler spectrum (dashed line).
One sees that the LPM and finite-size effects strongly
suppress the gluon emission. The gluon emission from
the c-quark is suppressed in comparison with the light
quark due to its larger, mass which leads to decreasing
of the dominating ρ scale (note that the spectrum is not
sensitive to the light quark mass, except for x ~ 1). One
can see from Fig. 1 that, although the Bethe–Heitler
spectrum differs strongly for two values of mg, the dif-
ference becomes relatively small for the spectrum,
which accounts for the LPM and finite-size effects. It is
connected with the fact that, due to the multiple scatter-
ing and finite-size effects, the dominating 1/ρ-scale
becomes larger than mg; namely, this in-medium scale
plays the role of the infrared cutoff at high energies [4]
(however, of course, for not very high pT, the value of
mg is still important). We do not show the spectra for
running αs. They are similar in form (but somewhat
suppressed at moderate fractional momenta). The LPM
suppression for LHC is considerably stronger than for
RHIC, but the spectra are similar in form, and we do not
show them as well.

In Fig. 2, we plot the quark energy loss ∆E =

E /dx evaluated for fixed (solid line) and run-

ning (dashed line) αs for RHIC and LHC conditions for
L = 6 fm with mg = 0.4 GeV (thick lines) and mg =
0.75 GeV (thin lines). The results for αs = 0.5 agree
roughly with those for running αs for E & 10 GeV, but,
at higher energies, the energy dependence is steeper for

1 For our choice of the initial conditions, the lifetime of QGP is
~3 fm for RHIC. However, in the interval τ ~ 3–6 fm, the density
of the mixed phase is practically the same as that for the pure
QGP phase.

s
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z

xx Pdd
xmin

1∫
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RADIATIVE PARTON ENERGY LOSS 621
fixed αs. This says that the typical ρ-scale becomes
smaller with increasing energy. It is also seen from the
decrease of the relative difference between the curves
for mg = 0.4 and 0.75 GeV.

In Fig. 3a, we compare the nuclear modification fac-
tor (13) for T0 = 446 MeV calculated using the NLO
KKP fragmentation functions [29] for running αs with
that obtained at RHIC [1] for central Au + Au collisions

at  = 200 GeV. For illustration of the dependence on
T0, in Fig. 3b, we also present the results for T0 =
375 MeV. The theoretical curves were obtained for L =
4.9 fm. It is the typical parton path length in the QGP
(and mixed) phase for τmax = 6 fm. We present the
results for mg = 0.4 and 0.75 GeV. For pT & 15, the
results for αs = 0.5 are close to that for running αs and

s

Fig. 2. The energy dependence of the quark energy loss for
(a) RHIC and (b) LHC for L = 6 fm as obtained with αs =
0.5 (solid line) and running αs (dashed line), mg = 0.4 GeV
(thick lines) and mg = 0.75 GeV (thin lines), mq = 0.3 GeV.
JETP LETTERS      Vol. 80      No. 10      2004
we do not plot them. The results for the quark (solid
line) and gluon (dashed line) jets are shown separately

(note that, for  = 200 GeV, the quark and gluon con-
tributions are comparable). The suppression is some-
what stronger for gluon jets. One can see from Fig. 3a
that the theoretical RAA for mg = 0.4 is in reasonable
agreement with the experimental one. One should bear
in mind, however, that our calculations neglect the col-
lisional energy loss [30]. For pT ~ 5–15 GeV, the colli-
sional energy loss may increase the total energy loss by
~30–40%. In this case (if one takes the initial condi-
tions [25]) the value mg = 0.75 GeV would be more
preferable for agreement with the RHIC data. As men-
tioned previously, this value is reasonable for the mixed

phase and for gluons with Lf * L. Since, for  =
200 GeV, the medium spends about half of its time in
the mixed phase, the effective infrared cutoff may be
larger than the gluon quasiparticle mass in the QGP. For
this reason, the collisional energy loss may be included
without using an unrealistic infrared cutoff for the
induced energy loss. The possible remaining small dis-
agreement with the data may be avoided by taking a
somewhat smaller value of T0 (or αs). In any case, it is
clear that, for such a complicated phenomenon, it is
hardly possible to expect perfect agreement with exper-
iment and the agreement found in the present paper is
surprisingly good.

The above estimate for the collisional energy loss
was obtained for the pQCD plasma. Presently, there are
some indications [31] that the medium produced at
RHIC may be a strongly coupled QGP. The radiative
energy loss should not be very sensitive to the dynamics

s

s

Fig. 3. The nuclear modification factor (13) for central Au + Au collisions at  = 200 GeV for quark (solid line) and gluon (dashed
line) jets obtained with mg = (thick lines) 0.4 and (thin lines) 0.75 GeV for running αs. The experimental points (from [1]) are for

the following: circle—Au + Au  π0 + X (0–10% central) [PHENIX Collaboration], square—Au + Au  h± + X (0–10%
central) [PHENIX Collaboration], star—Au + Au  h± + X (0–5% central) [STAR Collaboration].

s
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of the QGP (for the same number density of the QGP).
However, it may be important for the collisional energy
loss. Unfortunately, the corresponding calculations
have not been performed yet. It is interesting that our
results give support for the scenario with strongly cou-
pled QGP. Indeed, this scenario requires αs * 0.5 [31]
for the thermal partons. The RAA is sensitive to the radi-
ation of soft gluons with an energy of about a few µD.
One can expect that, for such gluons, αs should be close
to that for thermal partons. We obtained agreement with
the data with αs, which is frozen at a value of 0.7 at low
momenta. If αs is frozen at a value below 0.4–0.5, the
theoretical RAA strongly disagrees with that observed at
RHIC.

5. In summary, we have represented, within the
LCPI approach [3], the induced gluon spectrum in a
new form convenient for numerical calculations and
carried out computations of the induced gluon emission
from fast partons in the expanding QGP for RHIC and
LHC conditions. The calculations, for the first time,
have been performed with a realistic parameterization
of the dipole cross section. The theoretical nuclear
modification factor calculated for the initial conditions
obtained from the charged particle rapidity density
observed at RHIC [25] and the hydrodynamic simula-
tion of the RHIC data [28] are in reasonable agreement
with that observed at RHIC.
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On the Dynamic Properties of “Elastic” Interactions
between Wave Solitons Consisting 
of a Few Field Oscillation Cycles
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By the numerical simulation of the dynamics of the optical circularly polarized field in the Kerr-type medium,
it has been shown that the binary collisions between wave solitons consisting of a few field oscillation cycles
with respect to their energy characteristics exhibit the properties of the collisions of Schrödinger solitons. The
corresponding spectral characteristics change according to the conservation of the soliton-like structure of the
envelop. In dependence on the absolute difference of the field phases, there are three different interaction
regimes: the passage of one structure through another, their repulsion, and the exact replication of one initial
wave structure by another. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 41.20.Jb; 42.65.Re; 42.65.Tg
The transition of envelop solitons described by the
nonlinear Schrödinger equation and its modifications
[1, 2] to wave solitons containing a few field oscillation
cycles is an interesting and important step in the theory
of nonlinear wave phenomena [3, 4]. A newly found
class of solitary solutions of the wave equation with
Kerr-type nonlinearity that describes the propagation of
electromagnetic pulses of a circularly polarized field
with a soliton-structure envelop includes a few oscilla-
tions down to one [5]. This analysis seems to also be
important for applications in view of the considerable
advances in laser technology in the generation of
ultrashort light pulses as short as a few optical-oscilla-
tion periods. Such pulses have a number of wide poten-
tialities for their scientific and engineering applica-
tions, among which we point to possible superdense
information packing with the use of such ultrashort
pulses and the corresponding ultrafast communication
[6–8]. The problem of the complete integrability of the
initial nonlinear wave equation is certainly of funda-
mental importance for the general theory of nonlinear
waves, but it seems to be hardly solvable. In this
respect, it is natural to use a technique showing good
performance such as the numerical-simulation analysis
of binary collisions of wave solitons that are the exact
solutions of the nonlinear wave equation of the corre-
sponding Hamiltonian system. In this work, we per-
formed the direct numerical simulation of the nonlinear
dynamics of the optical field in a medium with Kerr
nonlinearity. It has been shown that, in the class of cir-
cularly polarized fields, wave solitons consisting of a
few oscillations in binary collisions hold the properties
of collisions of Schrödinger solitons regarding the
structure of their envelop. At the same time, their fre-
0021-3640/04/8010- $26.00 © 20623
quency content can change, but the soliton-like struc-
ture is conserved. Free fields, i.e., the nonsoliton part of
the spectrum, are not emitted during collisions and the
total energy of the solitons is thereby conserved.

For extensive analysis of the nonlinear wave prob-
lem describing the dynamics of the field as a whole,
without scale separation into the slow envelop and
high-frequency content, it is convenient to use the
reduced form of the wave equation in the so-called
reflectionless approximation, implying that the changes
in the field distributions are small in the characteristic
wavelengths. In this case, the vector wave equation
with nonlinearity of the electron type, which allows sol-
itary solutions in the form of wave solitons, can be rep-
resented in the form [5]

(1)

As is easily seen, Eq. (1) allows scale invariance and
thereby can be written in a dimensionless form. Here,
z is the coordinate along the propagation direction, τ =

t – /c is the retarded time, εo is the static dielectric
constant of the medium, and c is the speed of light in
vacuum. In particular, this equation describes the prop-
agation of ultrashort pulses in a quartz optic fiber in the
anomalous-dispersion region [3] if the pulse spectrum
is sufficiently far from the zero-dispersion point, as
well as in an ionized gas, where plasma dispersion pre-
vails over the gas dispersion associated with neutral
particles [9].

∂2E
∂z∂τ
----------- E

∂2

∂τ2
-------- E2E( )+ + 0.=

zεo
1/2
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Equation (1) belongs to the class of Hamiltonian
systems with the Hamiltonian

(2)

We emphasize that Eq. (1) allows the existence of other
integrals of motion, in particular, the zero mean field
[5]. However, Eq. (2) is useful for simulation due to the
known high sensitivity of the Hamiltonian to the accu-
racy of the numerical calculation. This property will be
used for increased control over the numerical experi-
ment. A remarkable property of this equation is the
existence of localized soliton-like solutions for the cir-
cularly polarized field that are stable under small per-
turbations. For the case of high-frequency content (long
pulses consisting of numerous field oscillation cycles),
they are smoothly transformed to well-known
Schrödinger solitons. In particular, this circumstance
makes it possible to hope that wave solitons consisting
of a few oscillations will inherit certain properties of
Schrödinger solitons. The conservation of the soliton
structures of two solitons in their elastic collision is
among such important properties. We treat the conser-
vation of the soliton structure of the wave field as the
conservation of only the soliton-like structure of the
envelop, implying that its spectral content can change
significantly due to the nonlinear character of the inter-
action. The wave solitons of Eq. (1) can be represented
as a two-parameter family of solutions of the form [5]

(3)

(4)

Here, ω is the characteristic carrier frequency, γ is the
parameter determining the group velocity of the soli-
ton, ϕo is the constant phase of the field, and its envelop
a(τ – γz) satisfies the ordinary differential equation,
which can be represented in the following quadrature
for the normalized quantities ξ = ω(τ – γz) and u =
a/(γ)1/2 in the class of localized functions:

(5)

Here, F(u2) = u2[(3/2)(1 + δ2) – (4 – 5u2)/4(1 – u2)2], the
maximum amplitude um of the soliton is determined by

the real root of the cubic equation F( ) = δ2 (except

one limiting solution for which  = 2/3 at δ2 = 1/8),
and ξo is the integration constant corresponding to the
position of the field-envelop maximum. As seen in
Eq. (5), its solution depends only on the parameter δ2 =
1/γω2 – 1, which is expressed in terms of ω and γ and

H E τ'd

∞–

τ

∫ 
 
 

2
1
2
--- E E⋅( )2– τ .d

∞–

+∞

∫=

E z τ,( ) a τ γz–( ) ex ϕ z τ,( )cos ey ϕ z τ,( )sin+[ ] ,=

ϕ z τ,( ) ω τ γz+( )=
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2 γ a2–( )2
----------------------------------- τ γz–( )d ϕo.+∫

1 3u2–

u δ2 F u2( )–
-------------------------------- ud

um

u

∫ ξ ξ o–( ).±=

um
2

um
2

lies in the interval 0 ≤ δ2 ≤ 1/8. Using the smallness of
the parameter δ2, one can represent the amplitude of the

wave soliton in the form um . δ . For

small amplitudes  ! 1/3, which correspond to
extremely small δ values, it is easy to see that solu-
tions (5) have the form of the sech function and corre-
spond to the Schrödinger envelop solitons. Note that,
for extremely short durations, despite the broad signal
spectrum comparable with the average frequency, it is
convenient to treat ω as the characteristic carrier fre-
quency, which is the carrier frequency in the small-
amplitude limit. An important feature of the wave soli-
tons under consideration is the semibounded spectrum
of their admissible solutions; i.e., the existence of the
boundary solution corresponding to the limiting soliton
with the maximum possible pulse duration and, corre-
spondingly, with the maximum possible amplitude.
With an increase in δ, the amplitude of the soliton
increases, and, its duration, which is determined from
the half-width of the intensity, decreases, reaching the
minimum possible value τs = 2.3ω–1, which is smaller
than half the oscillation period at δ2 = 1/8. It is worth
noting that wave solitons consisting of a few oscilla-
tions have strong frequency modulation, which pre-
vents the unambiguous introduction of a certain phase
velocity for such structure formations. This property
distinguishes them from previously known wave soli-
tons [10, 11], for which the carrier frequency and car-
rier wave vector are strictly defined. The appropriately
fitted frequency chirp is apparently responsible for the
stability of the wave structures under consideration,
which can be easily formed by specifying the appropri-
ate initial, localized field distributions even for the lin-
early polarized field, as well as for more general equa-
tions including, e.g., high-frequency dispersion [3, 4,
9], where they may be only approximate, weakly damp-
ing, soliton-like solutions.

Since Eqs. (1) are “one-directional,” to analyze the
binary-collision dynamics, we arrange solitons (3) in
the order of decreasing their group velocities. In addi-
tion, they are arranged such that they do not overlap in
space. The initial conditions are naturally specified in
the form of the wave structures given by Eqs. (3)–(5),
which are the exact solutions of initial Eq. (1). We dis-
tinguish two fundamentally different cases of interact-
ing solitons. First, interacting solitons have close fre-
quencies. In this case, the results can be compared with
the results for Schrödinger solitons. The second case,
where the characteristic frequencies noticeably differ
from each other, has no corresponding analogue.

In the first run of numerical experiments, the ω val-
ues are taken identical for colliding solitons. The ampli-
tudes of the solitons, as well as the absolute phase dif-
ference of their frequency content, are taken as the
varying parameters. For a fixed distance between the
solitons, the absolute phase difference is given as ∆ϕ =
ϕo1 – ϕo2, where ϕo1 and ϕo2 are the constant phases of

2 1 8δ2/3+( )
um

2
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the first and second solitons, respectively [see Eq. (4)].
The performed numerical calculations clearly reveal
three different regimes of the dynamic interaction
between wave solitons, which can be summarized as
follows.

If the amplitudes of the colliding solitons differ
from each other by more than 40% (the numerical val-
ues presented hereinafter are approximate and can gen-
erally change in dependence on the interval of the soli-
ton parameters; in particular, the indicated value corre-
sponds to ω ~ 1 and a ~ 0.2), and only the following
interaction regime is always observed: the solitons pass
through each other with the complete conservation of
their wave structure, including their frequency con-
tents. A typical pattern of the regime of passing one
wave structure through another is given in Fig. 1.

If the amplitudes of the colliding solitons differ
from each other by less than 40%, three different
regimes of their interaction are possible in dependence
on the phase difference. Figures 1–4 show the typical
scenarios of these regimes. In the phase-difference
interval −π/8 < ∆ϕ < π/8, which depends slightly on the
amplitudes of the colliding solitons in the general case,
the solitons pass through each other without changes
(see Fig. 1), as in the case of a noticeable difference
between their amplitudes, although their interaction
can be long and complex. For close amplitudes, their
relative velocity is low, and, therefore, they pass
through each other for a long time, likely with a certain
energy exchange in some time intervals. In this case,
according to the spectral analysis, their frequency con-
tents are virtually unchanged after the interaction. This

Fig. 1. Regime of passing the solitons consisting of a few
oscillations through each other with the complete conserva-
tion of their wave structure, including the frequency con-
tents, for the parameters ω = 1 (characteristic oscillation
period ≈2π, as1 = 0.24, τs1 = 9.2 (δ1 = 0.17), as2 = 0.26,
τs2 = 8 (δ2 = 0.19), and ∆ϕ = 0, where asi and τsi are the
amplitude and duration of the ith (first or second) soliton,
which are also marked by the respective numbers in the
figure.
JETP LETTERS      Vol. 80      No. 10      2004
means that the wave structures remain completely iden-
tical in the asymptotic regions, at least disregarding a
certain delay with respect to the unperturbed motion.
This delay is determined by nonlinear interaction, and
it decreases with an increase in the amplitude differ-
ence.

If the phase difference lies in the interval π/8 < ∆ϕ <
5π/4, the soliton with the larger amplitude overtakes the
slower soliton but does not pass through the latter soli-
ton and is located behind it, as is shown in Fig. 2. In a
certain interaction period, this coupled pair exchanges

Fig. 2. Regime of the replication of one initial wave struc-
ture by another for the parameters ω = 1, as1 = 0.24, τs1 =
9.2 (δ1 = 0.17), as2 = 0.26, τs2 = 8 (δ2 = 0.19), and ∆ϕ =
0.5π. The inset shows the spectral powers of the (the solid
line before and the dashed line after the interaction) first and
(the dashed line before and the solid line after the interac-
tion) second solitons S(Ω).

Fig. 3. Regime of the repulsion of a wave soliton pair from
each other for the parameters ω = 1, as1 = 0.24, τs1 = 9.2
(δ1 = 0.17), as2 = 0.26, τs2 = 8 (δ2 = 0.19), and ∆ϕ = 1.5π.
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energy with the complete replication of one soliton by
another. Then, the solitons begin to propagate indepen-
dently, also exchanging velocities; i.e., the enhanced
second soliton, which was initially slower, takes the
velocity of the first soliton and moves away from it. In
this case, the complete copying of the spectral content
of the wave field occurs. Figure 2 shows (inset) the
spectral powers of the wave solitons S(Ω) before and
after interaction. As seen, they are completely identical
to each other within the numerical-calculation errors.
Note that, in the two regimes described above, a new
wave structure was not produced; i.e., the wave solitons
remain asymptotically the same after the interaction,
including their high-frequency content.

As seen in Fig. 3, in the phase-difference interval
5π/4 < ∆ϕ < 7π/4, the repulsive regime is observed.
This means that, after a certain transient period, when
the solitons interact with each other approaching each
other but remaining sufficiently separated in space, the

Fig. 4. Spectral powers of the (a) first and (b) second wave
solitons S(Ω) (solid line) before and (dashed line) after the
interaction. For the parameters indicated in Fig. 3.

Fig. 5. Regime of the interaction between the wave solitons
with different carrier frequencies ω = 0.8 and 1.4 for the
parameters as1 = 0.29, τs1 = 11.5 (δ1 = 0.16), as2 = 0.22, and
τs2 = 6.67 (δ2 = 0.18).
solitons scatter from each other. In this case, the param-
eters, primarily the high-frequency content, of the wave
solitons change. This regime only conditionally can be
called elastic in application to the wave field, because
the wave structures before and after interaction are not
strictly the same, although these differences are small
for a small difference between the soliton amplitudes
when this interaction regime is observed. Figure 4
shows the typical pattern of change in the spectral con-
tents of the solitons (solid lines) before and (dashed
lines) after the interaction. We emphasize that the spec-
tral content changes so that the wave structures after the
interaction remain solitons according to the solution
given by Eqs. (3) and (4). In this case, the spectrum of
the first reflected soliton is shifted toward the blue part,
whereas the spectrum of the second soliton, which
acquires additional “momentum” in the direction of its
propagation, is shifted toward the opposite, red part.

In the second run of the calculations, the parameters
ω for two colliding solitons are taken different from
each other. In this case, as for the case of a noticeable
amplitude difference, only one interaction regime is
observed: solitons pass through each other, remaining
asymptotically unchanged. This regime is observed up
to a phase difference of about 5% for ω ~ 1. Figure 5
shows the typical scenario for the parameters ω = 0.8
and 1.4, as1 = 0.29, τs1 = 11.5 (δ1 = 0.16) and as2 = 0.22,
τs2 = 6.67 (δ2 = 0.18). In this case, the solitons pass
through each other virtually without interaction and
change in their spectral content. It is also seen that,
owing to a noticeable difference in the group velocities,
the effective interaction, i.e., the overlapping of the
wave packets, occurs only in a short propagation path
(7 & z & 25), whereas the long-term interaction (z ~
700) between the wave solitons occurs in the above
cases (see Figs. 1–3). It should be noted that the gener-
ation of nonsoliton components is absent in all the soli-
ton-interaction regimes; i.e., the total energy of the
wave structures remains unchanged.

Thus, the performed numerical experiments on the
binary collisions between wave solitons provide the
following conclusions expressing certain dynamic
properties of vector wave equation (1) in the class of
circularly polarized fields. First, the soliton-like struc-
ture of the wave fields is not broken in collisions; i.e.,
the wave solitons hold their soliton stricture after colli-
sions. Second, free fields, i.e., the nonsoliton part of the
spectrum, are not emitted during collisions and the total
energy accumulated in the solitons is thereby con-
served. These conclusions are naturally not exact state-
ments, because they are based only on the numerical-
simulation results. Nevertheless, they can be useful for
both theoretical investigation and practical use of short-
duration wave solitons, similarly to the role of the
Schrödinger envelop solitons.

This work was supported by the Russian Foundation
for Basic Research, project no. 04-02-16420.
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A New Class of MO2 Dioxide Nanotubes (M = Si, Ge, Sn, Pb) 
Composed of “Square” Lattices of Atoms: 

Their Structure and Energy Characteristics
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New dioxide nanotubes are described. These nanotubes are rolled up of a “square” lattice of atoms differing
from the conventional hexagonal lattice isoelectronic to graphite. The dependence of the strain energy on the
nanotube diameter D departs from a 1/D2 behavior, and the optimum shape at the same diameter corresponds
to “zigzag” tubelenes. Two-layer nanotubes consisting of an MO2 layer bonded to a carbon nanotube (CNT) are
characterized by a considerably lower strain energy, which points to the possibility of using CNTs as a template
for the synthesis of such MO2 nanotubes. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.46.+w; 68.65.–k
The discovery of dichalcogenide (Mo, W)S2 nano-
tubes, which was reported in 1992, in which atoms
were arranged on three cylindrical surfaces promoted
studies of noncarbon nanotubes [1]. Recently, a group
of French researchers has determined the structure of a
complex fullerenoid oxide consisting of spherical Al–
O–SrBi–O–Bi–O polyhedra built into each other [2],
and Bromley et al. [3, 4] have considered hypothetic
hollow (SiO2)N clusters (N = 6–12, 24). The structures
of such a complex composition represent a new area for
studying the unique physical and chemical properties
of not only spheroidal but also tubular nanoclusters.

In this communication, the author draws attention to
the possibility of the existence of a new class of energy-
stable three-cylinder nanotubes composed of MO2
oxides (M = Si, Ge, Sn, Pb), which, because of their
dielectric, mechanical, and piezoelectric properties, can
be used as protective dielectric sheaths of nanowires
and also as elements of nanophotonic devices.

It is known that the MO4 tetrahedron with an M
atom at the center and oxygen atoms at the vertices is
the basic element of all MO2 structures (crystalline,
amorphous, and polytypic). Such dioxides are dielec-
trics and semiconductors and can exist in nature (for
example, the mineral cassiterite SnO2). As distinct from
the dioxide structures studied previously, consider a
three-atomic layer in which the tetrahedra are arranged
in such a way that the oxygen and silicon atoms are
located only in the three planes of this layer (Fig. 1).
Calculations performed showed the stability of such
MO2 layers. The basic structural features of the MO2
nanotubes will be demonstrated by calculations of nan-
otubes rolled up of silicon and tin dioxides (calcula-
tions of nanotubes composed of Ge or Pb dioxides dem-
onstrate similar features).
0021-3640/04/8010- $26.00 © 20628
Classification of the nanotubes. The structure of
the nanotubes will be described in the framework of a
model that represents a strip of a planar lattice of atoms
rolled up analogously to nanotubes obtained from a
layer with a hexagonal lattice [1, 5–7]. Thus, a single-
layer (n, m) nanotube will be determined as a layer of a
rectangular network of SiO2 atoms rolled up into a cyl-
inder (Fig. 1). The Si atoms are located in its basic

Fig. 1. Schematic diagram of a nonrolled rectangular lattice
of MO2 nanotubes (M = Si, Ge, Sn, Pb). A nanotube can be
formed by connecting points O and A and also B and B'.
Vectors OA and OB determine, respectively, the chiral vec-
tor Ch and the translation vector T of the nanotube. The
rectangle OAB'B determines the unit cell with the number of
atoms N for the particular nanotube. The figure corresponds
to Ch = (6, 2), T = (–2, 6), and N = 120. A fragment of the
modeled SiO2 layer (5 × 6 cells) is shown on the left side.
The oxygen atoms arranged along a1 (O(s)) come out of the
layer of Si atoms forward, and those arranged along a2
(O(d)) come out of the layer of Si atoms backward.
004 MAIK “Nauka/Interperiodica”
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plane, and the oxygen atoms that come out of the plane
forward (O(s)) or backward (O(d)) are located on lines
parallel to the a1 or a2 unit vectors, respectively. In this
perfect model, the tube diameter is tightly related to the
lattice constant (a, the distance between the nearest Si
atoms) and to the numbers (n, m) (chiral vector Ch) sim-
ilarly into the model for carbon nanotubes [8]:

(1a)

 
(n and m are integer numbers); (1b)

(1c)

(1d)

The chiral angle θ determines the helical symmetry
of the nanotube. The translation vector T, determined as
a unit vector of the nanotube under consideration, is
parallel to its axis and normal to the Ch vector in the
nonrolled rectangular lattice in Fig. 1.

Similarly to dichalcogenide tubes [4], the MO2 nan-
otubes are formed from three cylinders: the O(s) atoms
are located on the outer cylinder and the O(d) atoms are
located on the inner cylinder with respect to the median
cylinder with silicon atoms (Fig. 2). Because nanotubes
differing in diameter and structure differ in curvature,
the distances between these cylinders somewhat vary
and the diameters of the middle cylinder somewhat dif-
fer from the diameter (Eq. (1a)) of the perfect model.
The MO2 nanotubes can be divided by the main sym-
metry differences into nonchiral (n, 0) and (0, n) tubes
and chiral (n, m) tubes (Table 1). These tubes differ
from the previously studied nanotubes composed of
hexagonal layers [5–8]: in their case, the (n, 0) tubes do
not coincide with the (0, n) tubes, the (n, m) tubes do
not coincide with the (m, n) tubes, and the (n, n) tubes
are chiral. For the SiO2 and SnO2 materials under con-
sideration, the layer deformation is significant (com-
pare with diboride nanotubes [7]), which leads to a
dependence of the strain energy on the tube diameter
differing from a 1/D2 behavior (Table 2).

Note that mixed nanotubes can also exist that can be
obtained from layers with a changed arrangement of the

Dt L/π, L Ch a n2 m2+ ,= = =

Ch na1 ma2 n m,( )≡+=

θcos Ch a2/ Ch a2⋅ m/ n2 m2+( );= =

T ma1 na2 m n,–( ).≡+–=
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O(s) and O(d) atoms by layers or even with a disordered
arrangement of MO4 tetrahedra in a layer. These layers
can form nonchiral nanotubes that have a polygonal
(triangular, square, etc., see Fig. 3) rather than a circular
shape in the cross-section. In this case, these nanotubes
must have strips of atoms alternating according to the
DNh (N = 2, 3, 4, etc.) symmetry with a change in the
arrangement of the rows. These tubes will be consid-
ered in more detail in the subsequent paper.

Fig. 2. Models of SiO2 nanotubes: (a) (12, 0) and (b) (0, 12)
(the fragments were calculated by the PM3 method) and
(c) (8, 8) tubes “capped” by half of the (SiO2)72 fullerene
(the fragment was calculated by the MM+ method.
Table 1.  Types of MO2 nanotubes

Type θ Ch Note

s-Line 0° (n, 0) O(s)–Si bonds along generating lines

d-Line 90° (0, n) O(d)–Si bonds along generating lines

Chiral cog 45° (n, n) Special position

Chiral 0° < θ < 45° (n, m < n)
General position

45° < θ < 90° (n, m > n)

Mixed (triangular, square, 
etc.)

0°, 90°; (n, 0), (0, n); Displacement of lines of O(s)–Si
and O(d)–Si bonds0° < θ < 90° (n, m)
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Table 2.  Main energy characteristics of MO2 nanotubes

SiO2 MM + E Kcal N (number
of atoms) MM + E/N Kcal PM3

E Kcal
PM3

E/N Kcal

layer (7 × 7) –90.44 208 –0.43481 28050 134.86

n, m

0.12 1667.2 228 7.312 30830.8 135.22

7.0 84.126 252 0.632

8.0 75.14 152 0.494

9.0 68.389 171 0.400

10.0 75.05 190 0.395 27673.6 145.65

11.0 87.55 209 0.419

12.0 99.9 228 0.438 33042.8 144.92

13.0 112 247 0.453

14.0 128.62 266 0.484

15.0 146.96 285 0.516

16.0 166.267 304 0.547

17.0 186.51 323 0.577

18.0 207.51 342 0.607

19.0 261.676 361 0.725

20.0 231.98 380 0.610

22.0 177.7 418 0.425

24.0 128.9 456 0.283

2.0 106.12 475 0.223

5.5 535.38 160 3.346 21940 137.125

6.6 410.85 192 2.140 26452 137.32

7.7 309.7 224 1.383

8.8 231.446 256 0.904 38461.5 150.24

9.9 167.4 288 0.581

10.10 120.39 320 0.376

12.12 22.98 384 0.060

C10.10@

(17, 17) –807.673 1004 –0.804

C10.10@

(23, 0) –458.933 897 –0.512

C10.10@

(24, 0) –444.356 916 –0.485

SnO2

layer (8 × 8) –405.98 348 –1.167

n, m

2.0; 2.0 × 3 –72.29 228 –0.317

0.25 –446.08 475 –0.939

25.0 –64.64 475 –0.136

18.18 –496.338 522 –0.951

Note: The strain energies (Estrain) were obtained by the MM+ method; the total energies of the nanotubes (E) were obtained by the PM3
method. The value Estrain = 0 relates to the energy of an unstrained planar graphite sheet (graphene).
JETP LETTERS      Vol. 80      No. 10      2004
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Energy characteristics of MO2 nanotubes. The
optimum geometry was calculated for tube fragments
of the same length (six unit cells for nonchiral (n, 0) and
(0, n) tubes and six cells for the fragment of the layer
used to construct a (n, n) tube; hydrogen atoms were
placed at the fragment ends) using the molecular
dynamics method with the MM+ parametrization and
the semiempirical quantum chemical PM3 method,
which were used previously, for example, for calcula-
tions of the structure of carbon and diboride fullerenes
[7, 8] and (SiO2)N clusters (N = 6–12) [4]. Note that the
calculations of the total energy (E) and Estrain for carbon
nanotubes and fullerenes using the same program give
values close to the results of pseudopotential calcula-
tions for single-wall nanotubes (SWNT) and fullerenes
[8]. For a fragment of 7 × 7 cells of the SiO2 layer, the
PM3 calculation gives the bulk energy E equal to
−18.9 eV/SiO2, which is rather close to the value of
−19.2 eV/SiO2 experimentally measured for α-quartz [9],
whereas the DFT calculation gives E = –22.4 eV/SiO2
[10].

The effects of atomic relaxation lead to corrugation
of the cylindrical BN (or MgB2) surface, which leads in
its turn to a more stable surface configuration [6, 7]. For
the MO2 nanotubes, the atomic relaxation effects are
also exhibited, because the fragment of the MO2 layer
has the optimum shape of a “saddle” rather than plane,
as distinct from the graphite layer. Therefore, the chiral
tubes of a zigzag (n, n) type turn out to be more stable
(see Table 2). The (n, 0) tubes have a minimum strain
energy at a certain diameter Do (in the case of SiO2, Do
(Si cylinder) = 10.88 Å for the (10, 0) tube). This dis-
tinguishes these tubes from single-wall nanotubes with
a hexagonal lattice, where Estrain(D) ~ 1/D2 [5]. On the
other hand, the strain energy Estrain(D) ~ 1/D2 for (n, n)
nanotubes (D(8, 8) = 9.95 Å, see Fig. 2). With increas-
ing diameter, the Si–Si distance and the configuration
of SiO4 tetrahedra in the limit of a large diameter tend
to the value calculated for the SiO2 layer a = Si–Si ≈
2.9 Å (Si–O = 1.675 Å). The tube parameters are
selected from the geometry of the central cell of the cal-
culated fragment: for example, in the case of SnO2, the
layer parameters are a = Sn–Sn ≈ 3.37 Å, Sn–O ≈
2.06 Å, and, for the (12, 0) nanotube, the Sn–O and Sn–
Sn distances and the O–Sn–O angle are –2.068, 3.378,
and 93.9° by a circle and 3.641, 2.063, and 109.1° by a
generating line.

The deformation energy is minimal for nanotubes
where the M atom and four O atoms nearest to it form a
configuration closest to tetrahedral. Thus, the zigzag
nanotubes are most stable, followed by the (9, 0)–(12, 0)
nanotubes with the inner cylinder of O(d) atoms located
in lines parallel to the tube axis (see Table 2). Hence,
preferable growth of zigzag-type tubelenes should be
expected in the course of the synthesis of MO2 nano-
tubes, as well as for BN nanotubes [6].
JETP LETTERS      Vol. 80      No. 10      2004
How can such nanotubes be obtained? The simplest
method is to use known nanotubes, for example, carbon
ones as templates, as has been done for the formation of
nanotubes from boron nitride [6]. Therefore, we mod-
eled a “double” nanotube (Fig. 4) consisting of a single-
layer CNT molecularly connected with an SiO2 nano-
tube bonded to it and found that the double nanotube
possesses a considerably lower strain energy than the
SWNT (Table 2), thus, obtaining evidence for the pos-

Fig. 3. Models of a “triangular” SnO2 (2, 0; 2, 0 × 3) nano-
tube (on the left) and a “square” SiO2 (2, 0; 1, 0 × 4) nano-
tube (on the right).

Fig. 4. Models of a double C(10, 10)@SiO2(17, 17) nano-
tube.
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sibility of this synthesis. The same result can be accom-
plished through the use of Si nanowires [11] or nanop-
orous materials [12]. Note that the presence of oxygen
at the nanotube ends gives a more energy-stable config-
uration of the nanotube fragment than the presence of
hydrogen. Therefore, it might be suggested that the
presence of oxygen during the synthesis of the dioxide
nanotubes under consideration would favor their
growth.

Why are the MO2 nanotubes considered above
attractive for physical and chemical investigations and
for practical applications? First of all, because of their
dielectric properties. Because of the occurrence of a
rotational symmetry axis, the MO2 (n ≠ 0, m ≠ 0) nano-
tubes must exhibit piezoelectric properties (as, for
example, for quartz crystals). These materials can pos-
sess unusual optical properties, so it will be possible to
use them as photonic structures. They can also serve as
springs and mechanoelectrical elements in microma-
chines and as building blocks for new nanomaterials. It
will be possible to obtain the proposed nanotube struc-
tures by the known methods for obtaining nanotubes [1,
5, 6], in particular, by using carbon nanotubes as tem-
plates.

This work was performed within the State Scientific
and Technical Programs “Atomic Clusters and
Fullerenes” and “Low-Dimensional Quantum Struc-
tures.” The author is grateful to E.G. Gal’pern and,
especially, I.V. Stankevich for discussions of the results
and to S.V. Lisenkov for indicating works [1–3] that
were previously unknown to the author.
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The resonance features of the third-harmonic generation have been observed in 1D coupled microcavities con-
sisting of three Bragg reflectors and two identical half-wave layers of mesoporous silicon. The third-harmonic
intensity increases by a factor of about 103 in the resonance of fundamental radiation with each of the modes
of coupled microcavities. It has been shown that the resonance positions in the angular spectra of the third-har-
monic intensity depend on the coupling between microcavities that is determined by the transmission of the
intermediate Bragg reflector. In the framework of the transfer-matrix method with nonlinear sources, it has been
shown that the basic mechanism of the enhancement of the third-harmonic generation in coupled microcavities
based on porous silicon is the constructive interference of the partial third-harmonic waves that are generated
by near-surface layers. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Ky; 42.70.Qs; 78.67.–n; 78.67.Pt
The nonlinear optics of microstructures with a pho-
tonic band gap is one of the fields of modern optics [1].
The simplest object of this class is a Bragg reflector
consisting of layers with a thickness of about optical
wavelength and periodically alternating refractive indi-
ces. The reflection spectrum of the Bragg reflector con-
tains a frequency band that is characterized by a high
reflectance and corresponds to the photonic band gap.
A microcavity is obtained by doubling the optical
thickness of one of the central layers of the Bragg
reflector (1D photonic crystal) and has the resonance
state of the electromagnetic field, i.e., a mode whose
frequency coincides with the center of the photonic
band gap. If the optical thicknesses of several layers in
the Bragg reflector are changed, the coupled microcav-
ities with several eigenmodes are formed [2]. The sim-
plest coupled microcavity has two identical microcav-
ity layers separated by the intermediate Bragg reflector.
Interchange of electromagnetic-field energy between
the microcavities, which is determined by the reflec-
tance of the intermediate reflector; removes the degen-
eration of modes and leads to their frequency–angular
splitting, which is a measure of the coupling between
the microcavities [3]. The reflection spectrum of such
coupled microcavities has two dips in the photonic
band gap, which correspond to resonances of incident
light with the modes of coupled microcavities [4].

In coupled microcavities, the enhancement of cubic
nonlinear optical processes, such as third-harmonic
generation, can be observed. The mechanism of such an
enhancement, as in the case of the recently observed
0021-3640/04/8010- $26.00 © 20633
effect of the enhancement of second-harmonic genera-
tion [5], is an increase in the energy density of the fun-
damental field within the microcavities due to the spa-
tial localization of the fundamental radiation in reso-
nance with one of the modes of the coupled
microcavities. This mechanism is predominant in the
case of single microcavities [6], where the contribution
to the third-harmonic field from the microcavity layer is
much larger than the contributions from the Bragg-
reflector layers [7]. In coupled microcavities, an addi-
tional mechanism of the enhancement of the third-har-
monic generation is possible. It is the constructive
interference of the third-harmonic waves from micro-
cavity-layer areas. In this case, the intensity of the third
harmonic is maximal in the frequency–angular position
shifted from the maximum localization of the funda-
mental field in a sample.

In this work, we present the observation of the reso-
nance enhancement of the optical third-harmonic gen-
eration in 1D coupled microcavities based on mesopo-
rous silicon upon the angular tuning of fundamental
radiation near their split modes. It is shown that the
angular spectrum of the third-harmonic intensity
depends on the coupling of microcavities (the reflec-
tance of the intermediate Bragg reflector). The square
susceptibility of mesoporous silicon is low, because the
initial silicon crystal is centrosymmetric. This excludes
the cascade third-harmonic generation in coupled
microcavities and enables one to attribute the detected
radiation to the direct generation via the cubic suscep-

tibility  of mesoporous silicon. A mechanism of theχ̂ 3( )
004 MAIK “Nauka/Interperiodica”
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enhancement of the third-harmonic generation in the
region of the eigenmodes of microcavities is proposed.
It is the constructive interference of contributions to the
third-harmonic fields from the upper layers. The mea-

Fig. 1. Reflectance spectra for s-polarized radiation from
samples of the series of coupled microcavities with N =
(a) 9, (b) 7, (c) 5, (d) 3, and (e) 1 for an angle of incidence
of 40°. The insets schematically show the structure of cou-
pled microcavities. The white layers correspond to porous
silicon with a refractive index of nL. Microcavity layers are
denoted as MC.
sured angular spectra of the third-harmonic intensity
are approximated using the transfer-matrix method
with nonlinear sources in the given fundamental-field
approximation.

Coupled microcavities are obtained by electrochem-
ical etching of wafers of highly doped p-type silicon
(001) with an electrical resistivity of ρ ~ 6 mΩ cm in a
solution of hydrofluoric acid and ethanol using technol-
ogy similar to that described in [8]. Samples consist of
three distributed reflectors separated by half-wave
microcavity layers (insets in Fig. 1). The outer reflec-
tors of the microcavities consist of four pairs of quarter-
wave layers (the optical length is equal to λ0/4) of
mesoporous silicon. The wavelength λ0 is the center of
the photonic band gap upon the normal light incidence.
Porous-silicon layers with a high refractive index of
nH . 1.78 and a low refractive index of nL . 1.42 are
formed by etching with a current density of 6.2 and
20.7 mA/cm2, respectively. The effective porosities of
the layers that are estimated using the reflection spectra
of single mesoporous-silicon layers are equal to fH .
0.64 and fL . 0.77 for the high- and low-refractive-
index layers, respectively. Cavity layers have a refrac-
tive index of nMC = nL. A set of coupled microcavities
consists of five samples in which the number N of quar-
ter-wave layers in the intermediate reflector varies from
one to nine with a step of two layers.

Figure 1 shows the reflection spectra of coupled
microcavities with λ0 . 850 nm. The spectra demon-
strate the photonic band gap in the wavelength range
from 700 to 950 nm with reflectance up to 0.97. When
the number of layers in the intermediate reflector
changes, the spectral positions of the eigenmodes of the
microcavities vary monotonically. With a decrease in N
from nine to one, i.e., with an increase in the coupling
between microcavities, the spectral splitting ∆ of the
modes increases from 25 to 115 nm. The dependence of
∆ on the intermediate-reflector reflectance R0, which is
determined by the number N of layers, is described by
the expression [4]

(1)

where α is the length dimension constant determined
by the structure of the microcavities and θMC is the
refraction angle in the cavity layers. For large R0 values,
the spectral splitting of modes becomes a root function,
i.e., ∆ ∝  (1 – R0)1/2.

Experiments on the angular spectroscopy of the
third harmonic were conducted with the radiation of a
YAG:Nd3+ laser generating 1064-nm pulses with a
duration of 15 ns and a pulse energy of about 1 mJ. Fun-
damental radiation polarized in the sample plane
(s polarization) is directed at an angle of incidence of θ
to the normal of the sample. A goniometer ensures the
consistent rotation of the sample and detecting system
in the incidence-angle range from 15° to 80°. Radiation

∆
λ0

2

αnMC θMCcos
-------------------------------- 1 R0 θMC( )– ,arcsin=
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reflected in the specular direction passes through a set
of UV filters with a total thickness of 12 mm, a dia-
phragm with an angular aperture of 2.5°, and a Glan
prism, which separates the s polarized component of
the third-harmonic radiation. The third-harmonic signal
is detected by a photomultiplier connected with the
electronic gated detection system. The angular spec-
trum of the fundamental-radiation reflectance is mea-
sured with the same alignment.

Figure 2 shows the angular spectra of (a) the funda-
mental-radiation reflectance R and (b) the third-
harmonic intensity I3ω of coupled microcavities with
N = 3. The angular dependence I3ω(θ) exhibits two res-
onance peaks for the angles of incidence θ2 . 47° and
θ3 . 69°, as well as an increase at small angles of inci-
dence, which is indicated as θ1. The third-harmonic
intensities at maxima are approximately equal to each
other and are higher than I3ω in the remaining part of the
spectrum by a factor of about 550. The reflectance
reaches maxima at the angles of incidence of 24° and
63°, which correspond to the resonance of the incident
radiation with each mode of the coupled microcavities.
For used refractive indices of porous silicon layers, the
range of variation in the angle of incidence θ lies com-
pletely within the photonic band gap. The shift of the
angular position of the third-harmonic resonances from
the modes of the microcavities is observed for all the
samples of coupled microcavities. For the sample with
N = 3, the angular position θ3 of the right third-har-
monic resonance is shifted by 6° from the right dip of
the reflectance that corresponds to the long-wavelength
mode of microcavities and is denoted as θ0. The I3ω
peak at θ = θ3 is located between the dips in the reflec-
tion spectrum at a distance of 16° from θ0. Such devia-
tion of the positions of the third-harmonic resonances
from the modes of coupled microcavities was found for
all the samples of the series. In particular, two peaks at
θ1 . 25° and θ3 . 56° are observed in the angular spec-
trum of the third-harmonic intensity of the coupled
microcavities with N = 7 (Fig. 3). The amplitude of the
right resonance is sevenfold larger than that of the left
resonance. In this case, I3ω for the left and right reso-
nances increases with respect to the remaining part of the
spectrum by a factor of 200 and 1500, respectively. The
peaks of I3ω are located on the outer sides of the dips in
the angular spectrum of the fundamental-radiation
reflectance. The angular positions θ1 and θ3 are shifted
from the reflectance minima by 4.5° and 9°, respectively.

The fundamental-field amplitude in coupled micro-
cavities reaches a maximum for the angles of incidence
that correspond to the minima in the reflectance spec-
tra; i.e., when the fundamental radiation is in resonance
with the modes of the microcavities. If the fundamen-
tal-field localization inside the microcavities were the
only mechanism of enhancement of the third-harmonic
generation, the angular positions of the peaks in the
third-harmonic intensity would coincide with the posi-
JETP LETTERS      Vol. 80      No. 10      2004
tions of the microcavity modes. However, the third-har-
monic resonances in the experiment do not coincide
with the modes of the coupled microcavities, but they
correlate with the change in their angular position with
an increase in the coupling between microcavities. For
this reason, to interpret the origin of enhancement of
the third-harmonic generation, it is also necessary to
analyze the behavior of the relative phases of the third-
harmonic fields from individual layers of microcavities
in the resonance region. The experimental angular spec-
tra and third-harmonic intensity were simultaneously
approximated using the transfer-matrix method with
nonlinear sources [7, 9]. The electromagnetic funda-
mental field in each jth layer of coupled microcavities is
a superposition of two plane waves propagating in the
positive and negative directions of the z axis coinciding
with the normal to the microcavities:

(2)
E j

ω z t,( ) E j
+ +ikz j,

ω z ikx j,
ω x iωt–( )+[ ]exp=

+ E j
– ikz j,

ω– z ikx j,
ω x iωt–( )+[ ] .exp

Fig. 2. Angular spectra of the (a) reflectance and (b) third-
harmonic intensity of coupled microcavities with N = 3 and
λ0 . 1200 nm. The arrows show the angles of incidence θ1,
θ2, and θ3 at which the intensity reaches maxima. The solid
lines are the approximations with the identical set of fitting
parameters for the whole series of coupled microcavities.
The dashed line is the approximation made only for the
sample with N = 3.

Fig. 3. Angular spectra of the (a) reflectance and (b) third-
harmonic intensity of coupled microcavities with N = 7 and
λ0 . 1200 nm. The solid lines are the approximations.
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Here, ω is the fundamental-radiation frequency,  =
|kj |cosθj,  = |kj |sinθj, where kj is the wave vector
and θj is the angle of the fundamental-wave refraction
in the jth layer that is measured from the normal to the
surface. The amplitudes of the  and  waves are
related to the amplitude of the fundamental wave,
which is incident on the sample, by the product of the
transfer matrices [10] expressing the boundary condi-
tions for the fundamental waves at each interface of the
multilayer structure of coupled microcavities. The
dipole cubic polarization at the third-harmonic fre-
quency that is induced in the jth layers is given by the
convolution of the nonzero components of the dipole
cubic susceptibility  of the layer with the funda-
mental field:

(3)

Cubic polarization (3) includes terms of two types. The
terms of type I are obtained by the convolution of three
fundamental waves propagating in the same direction,
and the z component of their wave vector is equal to

 = . The terms of type II are induced by three
fundamental waves, and the z component of the wave
vector of one of these waves is opposite to the projec-
tions of the wave vectors of two other waves. Therefore,

 =  for them. The propagation of the inhomoge-
neous third-harmonic waves induced by cubic polariza-
tion is determined by the effective dielectric constant

 calculated from the expression  = .

For the waves of type I,  = 3kω, j = ,

where ej is the dielectric constant of the jth layer at the

fundamental frequency. Then,  = ej(ω) and the inho-
mogeneous wave propagates in the medium collinearly
to the fundamental wave at an angle of θI = θj. Similar
calculations for the inhomogeneous wave of type II

give the expression  = ej(ω)(1 + 8sin2θj)/9. The
angle between the propagation direction of the inhomo-
geneous wave of type II and the z axis differs from θj

and it is equal to θII = . It is convenient
to group the components of the cubic-polarization vec-

tor  =  +  +  as

(4)

kz j,
ω

kx j,
ω

E j
+ E j

–

χ̂ 3( ) j,

P j
3ω χ̂ 3( ) j,  E j

+ ikz j,
ω z( )exp E j

– ikz j,
ω z–( )exp+( )3

= …

=  P j
I+ ikz j,

s I, z( )exp P j
I– ikz j,

s I, z–( )exp+

+ P j
II+ ikz j,

s II, z( )exp P j
II– ikz j,

s II, z–( ).exp+

kz j,
s I, 3kz j,

ω

kz j,
s II, kz j,

ω

e j
I II, k j

s I II, , 3ω
c

------- e j
I II,

k j
s I, 3ω

c
------- e j ω( )

e j
I

e j
II

3kx
ω/kz

ω( )arctan

P j
I II, Px j,

I II, Py j,
I II, Pz j,

I II,

P|| j,
I II, Px j,

I II, θI II,( )sin Pz j,
I II, θI II,( ),cos+=

P⊥ j,
I II, Px j,

I II, θI II,( ) Pz j,
I II, θI II,( ),sin–cos=

Py j,
I II, .
The y axis lies in the layer surface plane, it is perpendic-
ular to the plane of incidence, and the x axis is parallel
to the plane of incidence. The components P|| and P⊥  in
Eqs. (4) are polarized across and along the cubic-polar-
ization wave vector, respectively, and they determine the
generation of the p polarized third-harmonic wave. The
Py component is responsible for the generation of the s
polarized third-harmonic wave. The amplitude of the
coupled wave of the third harmonic is given as [11]

(5)

Then, these expressions for the coupled waves are sub-
stituted into the modified transfer matrices that express
the boundary conditions for the third-harmonic waves
at the interface of the layers and take into account the
interference between the homogeneous and inhomoge-
neous waves [9], which makes it possible to determine
the partial field  of the third harmonic from the jth
nonlinear layer at the exit from the multilayer structure.
The total field of the third harmonic is determined by
summing the fields  at the exit from the sample tak-
ing their phases into account, and the third-harmonic

intensity is determined as I3ω = . Each meso-
porous-silicon layer within the microcavities is treated
as isotropic in its plane. Then, owing to the symmetry,
the cubic polarization generating the s polarized radia-
tion of the third harmonic in the presence of the s polar-
ized fundamental radiation is determined only by the

component  [7]. The refractive indices of porous-
silicon layers at a frequency of 3ω, whose initial values
are calculated using the effective-medium model, are
adjustable parameters for the approximation of the
experimental spectra R(θ) and I3ω(θ). The refractive
indices at the fundamental frequency and the optical
thicknesses of the layers are obtained from the calibra-
tion of single porous-silicon layers. In addition, a small
linear depth modulation of the optical thicknesses is
introduced such that the optical thickness of the deepest
layer differs from the value for the first layer by about
5%. This modulation expresses the depth dependence
of the silicon etching rate [12]. Since the number of fit-
ting parameters is large, the joint approximation of the
angular spectra of the reflection and the third-harmonic
intensity was conducted with identical values of the fit-
ting parameters for all the samples of coupled micro-
cavities. The quality of the approximation was deter-
mined by the minimum of the standard deviation for the
entire series of the spectra. This approximation shows
good agreement between the model and experimental
angular distributions. The model distributions shown in
Figs. 2 and 3 for samples with N = 3 and 7, respectively,
corroborate the existence of the characteristic features
in the angular spectra of the third-harmonic generation.

E3ω j,
s( ) I II, 4π

e j
I II,

e j 3ω( )–
-------------------------------- Py j,

I II, P⊥ j,
I II,+( )=

–
4π

e j 3ω( )
-----------------P|| j,

I II, .

E3ω
j( )

E3ω
j( )

E3ω
j( )

j∑ 2

χ̂yyyy
3( )
JETP LETTERS      Vol. 80      No. 10      2004



OPTICAL THIRD-HARMONIC GENERATION 637
The third-harmonic resonances at θ1 and θ3 are located
on the outer sides of the dips in the angular spectrum of
the reflection, and the angular position of the third-har-
monic resonance at θ2 lies between the microcavity
modes. For the sample with N = 7, the resonances at θ2
and θ3 cannot be separated in the experiment, because
the splitting of the modes is small and the Q factor of
the microcavities is insufficient. Deviations of the
model dependences from the experimental data, e.g.,
the shift of the third-harmonic resonance at θ1 for the
sample with N = 3, and the significant, almost twofold,
difference in the amplitudes of the resonance at θ1 for
the sample with N = 7 are associated with the chosen
approximation procedure, where the identical values of
the fitting parameters are used for all the samples. Only
the approximation of the angular spectrum of the third
harmonic for the sample with N = 3 (Fig. 2, dashed line)
provides significantly better agreement between the
model distribution and the experimental data.

The origin of the third-harmonic resonances can be
illustrated in the polar diagrams of the complex ampli-

tudes  ≡  of the partial third-harmonic fields
from each jth layer of coupled microcavities. Figure 4
shows the partial contributions to the third-harmonic
field for the sample with N = 3 as calculated in the
reflectance minimum at θ = θ0 and in the third-har-
monic maximum at θ = θ3. In the exact resonance of the
fundamental radiation with a mode of the microcavi-
ties, the phases of the partial fields of the third harmonic
from the neighboring layers are opposite to each other.
Thus, their destructive interference occurs, and the
amplitude of the total field of the third harmonic at the
exit from the microcavities is small. In a certain angular
vicinity of the fundamental–mode resonance, where the
fundamental field is still strongly localized but the dis-
tribution of the partial-field phases is asymmetric, the
partial contributions from neighboring layers do not
compensate for each other. At the minimum phase
detuning between the partial fields , their construc-
tive interference occurs and the third-harmonic inten-

sity reaches a maximum. In this case,  is maximal
for the porous-silicon layers near the sample surfaces.

Thus, an increase in the intensity of the third optical
harmonic has been found upon the tuning of the funda-
mental radiation to the frequency–angular vicinity of
the eigenmodes of 1D coupled microcavities based on
porous silicon. In the framework of the transfer-matrix
method with nonlinear sources, it has been shown that
the constructive interference between the partial fields
of the third harmonic from the upper layers of the
microcavities is the basic enhancement mechanism.
Such relations between the phases of the third-har-
monic waves from the layers of coupled microcavities
are determined by the effective dispersion relation at
the fundamental-field frequency and mean that the
quasi-phase-matching conditions are fulfilled upon the
third-harmonic generation in coupled microcavities.
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Fig. 4. Partial contributions of individual layers of coupled
microcavities to the third-harmonic field as calculated for
the angles of incidence corresponding to the (solid circles)
mode of coupled microcavities and (open circles) third-har-
monic generation resonance. The shaded circles are the con-
tributions from the cavity layers at θ = θ0. The ovals are the
polar-diagram domains, where the phases of the partial
fields of the third harmonic are concentrated.



  

JETP Letters, Vol. 80, No. 10, 2004, pp. 638–641. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 80, No. 10, 2004, pp. 743–747.
Original Russian Text Copyright © 2004 by Iskhakov, Seredkin, Stolyar, Frolov, Yakovchuk.

                                                             
Effects of Exchange Interaction in Bilayer DyxCo1 – x/NiFe Films 
in the Vicinity of Compensation Compositions 

of Amorphous DyCo Alloys
R. S. Iskhakov1, *, V. A. Seredkin1, S. V. Stolyar1, 2, 

G. I. Frolov1, and V. Yu. Yakovchuk1

1 Kirenskiœ Institute of Physics, Siberian Division, Russian Academy of Sciences, Krasnoyarsk, 660036 Russia
2 Krasnoyarsk State University, Krasnoyarsk, 660041 Russia

* e-mail: rauf@iph.krasn.ru
Received September 6, 2004; in final form, October 11, 2004

The displacement field of the hysteresis loop due to exchange anisotropy in planar DyCo/NiFe systems is stud-
ied experimentally as a function of the concentration of the rare-earth element. The bilayer DyCo/NiFe film
system is characterized by an orthogonal arrangement of the effective magnetizations of separate layers under
the condition that the amorphous DyCo layer is prepared in the region of magnetic compensation. An analysis
of the dependence of the displacement field on the Dy concentration has led to an understanding of the physical
mechanism of the formation of the exchange anisotropy in these planar systems. © 2004 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 75.47.Np; 78.55.Qr; 78.67.Pt
At present, studies of the effects of the exchange
interaction at the boundary between two different mag-
netic ordered systems are experiencing a kind of renais-
sance (see, e.g., [1–3]). This fact is, in many respects,
due to the development of the technology of obtaining
new varieties of composites. Thus, the formation of
multilayer films from layers of soft and hard ferromag-
nets has significantly improved the characteristics of
planar permanent magnets [4]. The phenomenon of so-
called exchange anisotropy [5] caused by the effects of
the exchange interaction at the boundary between a fer-
romagnet and an antiferromagnet, which manifest
themselves in a hysteresis loop shift with respect to the
origin of the coordinates, turned out to be useful in spin-
tronics and for the development of numerous sensors
[6]. The phenomenological description of these effects
is rather simple and is based on the suggestion that the
magnetic moments at the boundary of the different
phases are collinear: JM1M2 = JM1M2cos(M1^M2). In
this light, the result obtained in [7] seems especially
remarkable. In this work, exchange anisotropy was
observed in bilayer TbFe/NiFe and DyCo/NiFe film
systems characterized by the orthogonal arrangement
of the effective magnetizations of separate layers under
the condition that the amorphous REE–TM layer was
synthesized in the region of magnetic compensation. In
these planar systems, the ratio of the displacement field
HE of the hysteresis loop to the coercive field Hc (char-
acterizing this field) attains 1200%, whereas this ratio
equals ~200% in the widely used NiFe/NiFeMn sys-
tem. Such large values of the HE/Hc ratio suggest that
0021-3640/04/8010- $26.00 © 20638
planar (TbFe, DyCo)/NiFe systems can be used in
numerous applications (see, e.g., [8]), naturally, under
the condition that the physical mechanism of the forma-
tion of the exchange anisotropy in these systems is
understood.

In our works [9–11], a model of the microhet-
erophase structure of amorphous DyCo alloys was sug-
gested based on the results of measuring the dynamic
(and static) magnetic characteristics of these composite
systems. The features of the magnetic microstructure of
these alloys in the compensation region following from
this model allowed a number of experimental results on
ferromagnetic resonance (FMR) and spin-wave reso-
nance (SWR). In order to detect these features, we
(i) obtained three-layer NiFe/DyCo/NiFe film struc-
tures with magnetic anisotropy and an orthogonal ori-
entation of the effective magnetizations of the layers,
(ii) studied the FMR and SWR spectra of such struc-
tures, and (iii) found that the spin system of amorphous
DyCo alloys in the concentration region of the mag-
netic compensation can be presented as two subsystems
such that the magnetization of the TM sublattice domi-
nates in one of them (magnetic nanophase Φ1) and the
magnetization of the REE sublattice dominates in the
other (magnetic nanophase Φ2).

The goal of this work is to demonstrate that the
effects of the hysteresis loop shift in planar DyCo/NiFe
systems can be explained using this model within the
framework of conventional notions.

Actually, the model proposed reflects the main prop-
erty of the structure of amorphous alloys, namely, their
004 MAIK “Nauka/Interperiodica”
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natural fluctuation (topological and compositional) het-
erogeneity. It is known that chemical (phase) nanoscale
heterogeneities exist in amorphous alloys. The magni-
tude of the concentration fluctuations on these scales
can reach several atomic percent of the average concen-
tration. Therefore, the magnetic microstructure of
amorphous ferrimagnetics in the concentration region
xi ± ∆x(r) ! xcomp, xi ± ∆x(r) @ xcomp will significantly
differ from the magnetic microstructure in the concen-
tration region xi – ∆x < xcomp < xi + ∆x. The magnetic
compensation point xcomp itself will be determined in

this case by the condition 〈M〉  =  +  = 0,
where p and q are the volume fractions of the Φ1 and Φ2

nanophases and  and  are their effective
magnetizations at xi – ∆x and xi + ∆x, respectively.

To accomplish this goal, we carried out investiga-
tions on the quasistatic magnetization reversal of planar
DyxCo1 – x/NiFe structures at various concentrations xi

of the RE element. It was found that the features of the
concentration dependences of the displacement field HE

of the hysteresis loop not only were well described
within the framework of the model proposed above but
also allowed the value of some parameters of this
model to be estimated.

SAMPLE PREPARATION 
AND EXPERIMENTAL PROCEDURE

Bilayer exchange-coupled Ni80Fe20/DyxCo1 – x films
were obtained by thermal evaporation in a vacuum of
3 × 10–6 Torr by successively sputtering the NiFe and
DyCo layers from independent evaporators with a ring
cathode onto cover-glass substrates. The thickness of
the permalloy layer in the planar system was varied
from 40 to 300 nm, and the thickness of the DyCo layer,
from 10 to 80 nm. Single-layer DyxCo1 – x films 70 nm
thick were used as reference samples. The amorphous
state of DyCo was monitored by electron microscopy,
and the thickness and chemical composition of the lay-
ers, by x-ray spectroscopic analysis. The following
experimental techniques were used: magneto-optical
Kerr effect measurements in fields up to 15 kOe, a
torque magnetometer in fields up to 12 kOe, and a loop
meter with fields up to 250 Oe (applied in the film plane)
at the frequency f = 50 Hz. The main magnetic charac-
teristics of the reference DyxCo1 – x films were studied in
the Dy concentration region from 17 to 30 at. % (see
Fig. 1). The dependences measured indicate that the
compensation composition, in our case, is the Dy22Co78
alloy. The measurement results also show that the effec-
tive magnetization in these films is orthogonal to the
plane. This is indicated by the absence of a magneto-
optical signal in fields up to 15 kOe at fields oriented in
the film plane, the detection of the hysteresis loop with
the use of the polar Kerr effect (caused by the normal
magnetization component), and the inversion of the

pMeff
Φ1( ) qMeff

Φ2( )

Meff
Φ1( ) Meff

Φ2( )
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form of the hysteresis loop (see Fig. 1). Measurements
on the torque magnetometer allowed the uniaxial
anisotropy constant to be evaluated. It was found to be
5 × 10–5–10–6 erg/cm3 for DyCo films in the concentra-
tion region 17–30 at. % Dy, which substantially

exceeded the values of 2π  presented in Fig. 1. The
main magnetic characteristics of the bilayer film struc-
tures were also measured as functions of the REE con-
centration, the thickness of the NiFe layer, and the tem-
perature [12]. Below, as reference values, we will
present the results of measuring the hysteresis loop
shift field for two series of planar structure samples:
substrate/ferrimagnetic DyxCo1 – x layer (70 nm)/ferro-
magnetic NiFe layer (150 nm) and substrate/ferromag-
netic NiFe layer (150 nm)/ferrimagnetic DyxCo1 – x
layer (70 nm). The ferrimagnetic layer of amorphous
DyCo was synthesized with a perpendicular magnetic
anisotropy (see Fig. 1), and the ferromagnetic NiFe
layer was manufactured with a magnetization in the
sample plane oriented along the uniaxial anisotropy
(the field Hk = 7–8 Oe). This magnetization was formed
by applying a constant external magnetic field H0 =
50 Oe in the film plane.

RESULTS AND DISCUSSION

Experimental dependences of the displacement field
HE of the hysteresis loop on the REE concentration in
the planar DyCo/NiFe structure and schematic dia-
grams of the distribution of the Φ1 and Φ2 nanophases
in the DyCo layer are presented in Fig. 2. The analo-
gous dependence HE(x) and analogous schematic dia-
grams for the planar NiFe/DyCo structure are presented

Ms
2

Fig. 1. Concentration dependence of the effective saturation
magnetization Ms and the coercive force Hc of amorphous
ferrimagnetic DyxCo1 – x films. The inversion of the form of
the magneto-optical signal loop points to the orthogonal ori-
entation of the effective magnetization.

H
c
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in Fig. 3. (The coercive field Hc of the NiFe layer at a
selected thickness of 150 nm was 2 Oe and did not
depend on either the Dy concentration or the sequence
of the layer sputtering.) Let us discuss the similarity
and distinction of the presented experimental depen-
dences HE(x).

In the presented figures, it is evident that the HE(x)
curves are described by different functions, depending
on the sequence in which the layers are sputtered:
HE(x  –  xcomp) is an antisymmetric function for the
DyxCo1 – x/NiFe films (see Fig. 2), and HE(x – xcomp) is a
symmetric function for the NiFe/DyxCo1 – x films (see
Fig. 3). However, the singular points of these functions
(coordinates of zeros and extremum points) are inde-
pendent of the sequence of layer sputtering. It is evident
that the hysteresis loop shift along the field axis is
absent (HE = 0) at x = xcomp, x ≤ 16 at. % Dy, x ≥ 27 at. %
Dy in both cases. It is also seen that the displacement
fields HE reach maximum values in these planar struc-
tures at x ≈ 19 at. % for precompensation DyCo compo-
sitions and at x ≈ 24 at. % for postcompensation DyCo
compositions.

The results of our experiment are naturally inter-
preted within the framework of the model of the struc-
ture of amorphous DyCo alloys in the region of mag-
netic compensation proposed in [10] and described at
the beginning of this article and also within the frame-
work of the schematic diagrams presented in Figs. 2
and 3. (The arrows here indicate the possible orienta-
tion of the magnetization of the 3d metals.) Actually, in
the range of the REE–TM concentrations x ≤ 16 at. %

Fig. 2. Hysteresis loops and concentration dependence of
the displacement field HE(x) in exchange-coupled
DyCo/NiFe film structures. The schematic diagram pre-
sents the orientations of the magnetization vectors of the 3d
metals of the structures under consideration. In the DyCo
layer, the Φ2 phase (MCo < MDy) is hatched and the Φ1
phase (MCo > MDy) is not.
(x ≥ 27 at. %), the magnetic structure of amorphous
DyCo is unambiguously attributed to the magnetic Φ1

(Φ2) nanophase. Hence, the magnetic moments of the
Co sublattice and the Dy sublattice are collinear with
the axis perpendicular to the DyCo layer anisotropy,
and the effective magnetization vectors of the DyCo
and NiFe vectors are mutually orthogonal, which
means that magnetic coupling is absent here. A differ-
ent situation occurs in the concentration region xi – ∆x
< xcomp < xi + ∆x. Here, the magnetic structure of the
DyCo layer is formed by the randomly mixed Φ1 and
Φ2 nanophases. If the Φ1 phase belongs to the matrix,
the Φ2 phase is the impurity phase (if Φ2 is the matrix
phase, Φ1 is the impurity phase). An exception is the
compensation point xcomp, where the volume fractions
of the Φ1 and Φ2 nanophases are approximately equal.

For all the concentrations xi in this region, the effec-
tive magnetization of the matrix Φi phase in the DyCo
layer is aligned with the perpendicular anisotropy field
(MCo and MDy are collinear with this axis, which is
detected by the polar Kerr effect). In this case, the mag-
netization MCo in the impurity Φj phase must have an
in-plane component because of the strong exchange
interaction of the transition elements in the impurity
and matrix phases, and the effective magnetization of
the Φj nanophase gains the possibility of orienting itself
along the external field. In our opinion, it is the
exchange interaction of MCo in the DyCo layer of the
impurity Φj phase with the magnetization of the NiFe
layer that leads to the exchange anisotropy of NiFe. The

Fig. 3. Hysteresis loops and concentration dependence of
the displacement field HE(x) in exchange-coupled
NiFe/DyCo film structures. The schematic diagram pre-
sents the orientations of the magnetization vectors of the 3d
metals of the structures under consideration. In the DyCo
layer, the Φ2 phase (MCo < MDy) is hatched and the Φ1
phase (MCo > MDy) is not.
JETP LETTERS      Vol. 80      No. 10      2004
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magnitude of this exchange anisotropy, which is char-
acterized by the value of HE, will be determined by the
product of MCo in the impurity Φj phase and the area of
its contact with the NiFe layer. It is evident from the
data presented in Figs. 2 and 3 that this product reaches
optimum values at 19 at. % Dy and 24 at. % Dy. At
19 at. % < x < xcomp (xcomp < x < 24 at. %), the area of
the impurity Φj phase contact with the NiFe layer con-
tinues to grow, but the decrease in HE indicates that the
projection of the magnetization of the Co sublattice
onto the plane of the NiFe layer decreases. Finally, at
xcomp, it follows from the experimental result HE = 0 that
the mean value of the projection of the magnetization of
the Co sublattices onto the plane of the NiFe layer
equals zero, which points to the collinearity of MCo and
MDy with the axis of perpendicular anisotropy.

As the concentration xi increases (16 at. % < xi <
xcomp), the morphology of the impurity phase changes:
disperse inclusions appear, the number of these dis-
perse inclusions increases, percolation over the dis-
perse inclusions arises, the volume of the formed infi-
nite cluster increases, etc. Therefore, it is natural to
associate the singular points of the HE(x) dependence
with the characteristics of this morphological series. In
our opinion, the maximum values of HE correspond to
the establishment of percolation over disperse inclu-
sions. Thus, the singular points of the HE(x) depen-
dences gain an appropriate description within the
framework of the proposed model. Also, note that the
HE(x) dependences allow the amplitudes of the concen-
tration fluctuations in DyCo to be evaluated. For exam-
ple, |∆x| ≥ 4 at. % Dy in the precompensation amor-
phous DyCo alloy, and |x| ≥ 3 at. % Dy in the postcom-
pensation amorphous DyCo alloy (see Figs. 2, 3).

Let us show now that the form of these dependences
(antisymmetric or symmetric with respect to xcomp) is
naturally interpreted within the framework of the pro-
posed model. Consider the antisymmetric dependence
HE(x – xcomp) presented in Fig. 2 and obtained for planar
DyxCo1 – x/NiFe systems. First, the DyxCo1 – x layer in
which the effective magnetization of the main phase is
oriented along the perpendicular magnetic anisotropy
axis is formed in these planar systems, and the effective
magnetization of the impurity phase is oriented in the
layer plane. Upon the synthesis of the NiFe layer, a con-
stant field is switched on, and the effective magnetiza-
tion of the impurity phase in the DyxCo1 – x layer is ori-
ented along the direction of this field and, hence, along
the anisotropy axis formed in NiFe. However, the impu-
rity phase is characterized by the inequality MCo < MDy
in the region x < xcomp and by the inequality MCo > MDy
in the region x > xcomp. The latter means that the magne-
tization vectors of the Co sublattice and the NiFe layer
are anticollinear in the region x < xcomp, whereas these
vectors are unidirectional in the region x > xcomp (see the
scheme in Fig. 2). It is due to this fact that the displace-
ment field HE changes its sign at the concentration tran-
JETP LETTERS      Vol. 80      No. 10      2004
sition through xcomp. The situation is different for the
planar NiFe/DyxCo1 – x system. First, the NiFe layer is
formed, in which the external field not only forms
uniaxial anisotropy but also determines the direction of
the layer magnetization. Next, the field is switched off,
and the DyxCo1 – x layer is synthesized. In this case,
only the “exchange field” from the magnetization of the
NiFe layer exerts an orienting action on the magnetic
moments of the Co sublattice of the impurity phase.
Therefore, regardless of the composition of the
DyxCo1 – x layer, the magnetization MCo of the impurity
phase and the magnetization of the NiFe layer have the
same direction. The latter means that the displacement
field HE will not change its sign when the concentration
passes through xcomp, which is confirmed by the experi-
mental results (see Fig. 3).

Thus, the physical mechanism of the formation of
the exchange anisotropy in bilayer DyCo(TbFe)/NiFe
film systems with the orthogonal arrangement of the
effective magnetizations of separate layers has been
understood in the course of the performed studies. The
REE concentrations in the ferrimagnetic layers have
been found at which the maximum exchange anisot-
ropy acts on the ferromagnetic layers.

This work was supported by the Russian Foundation
for Basic Research, project no. 04-02-16099-a.
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The magnetic-field-induced linear polarization of the triplet bound-exciton emission has been studied by means
of time-resolved spectroscopy in uniaxial GaSe crystals under unpolarized pumping conditions. It is found that
the magnetic-field dependence of the linear-polarization degree of the exciton luminescence varies during the
lifetime of the excited state. The degree of polarization significantly increases with increasing the delay of the
emission measurement. For delay times t > 1 µs, the exciton emission in the applied magnetic field is virtually
completely polarized. A theoretical description is proposed for the observed time variation of the magnetic-
field-induced polarization of the triplet bound-exciton emission. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.35.Ji; 78.20.Ls; 78.47.+p; 78.55.Hx
The method of polarized luminescence has been
widely used in investigations of the properties of elec-
tronic states in various atomic systems, including exci-
ton spectroscopy [1, 2]. When light propagates along
the principal (optical) axis of a uniaxial crystal, all the
polarization states are equivalent and the polarized
luminescence appears only if the crystal is subjected to
an external anisotropic action (polarized excitation, an
external magnetic field, etc.). In particular, a magnetic
field applied perpendicularly to the optical axis of the
crystal reduces the symmetry of the system and may
induce polarized luminescence from the crystal even
under unpolarized pumping conditions.

In the case of exciton luminescence, this phenome-
non (not attributed to exciton thermalization between
various Zeeman sublevels) was observed in hexagonal
GaSe crystals [3]. Under continuous excitation condi-
tions for a crystal [3], the degree of radiation polariza-
tion is averaged over the lifetime of the excited state. In
this case, the degree of polarization and its dependence
on the magnetic field at various times remain unknown.

The aim of this study was to use time-resolved spec-
troscopy for determining the degree of linear polariza-
tion of the exciton emission in a GaSe crystal as a func-
tion of the transverse magnetic field at various moments
of the exciton lifetime.

EXPERIMENTAL METHOD

The experiments were performed on Bridgman-
grown GaSe crystals that were not doped intentionally.
The samples were cleaved from the ingot by cleavage
along the crystal planes perpendicular to the optical
axis c. The exciton luminescence was excited by the
radiation of a pulsed copper-vapor laser with a pulse
duration of τp = 20 ns. The excitation density was about
0021-3640/04/8010- $26.00 © 20642
200 W/cm2. The exciting photons with the energy
hνexc = 2.140 eV (exceeding the bandgap width Eg of
the crystal) were incident at a small angle relative to the
normal to the sample surface. The emitted light (exci-
ton luminescence) was detected along the normal, that
is, in the direction parallel to the optical axis of the
crystal. The luminescence spectra were recorded using
a grating spectrometer equipped with a photon count-
ing system with a time resolution of ~30 ns. In order to
study the emission at various moments of the exciton
lifetime, the detection gate pulse of the photon counting
system was delayed relative to the excitation pulse.
During the experiment, the sample, immersed in liquid
helium, was at a temperature of 2 K. The external mag-
netic field was generated by a superconducting coil and
oriented perpendicularly to the optical axis c.

EXPERIMENTAL RESULTS 
AND DISCUSSION

Figure 1 shows the typical spectrum of emission
from GaSe in the region of the fundamental absorption
edge, which was measured within the first 30 ns after
the excitation laser pulse. The shortest-wavelength
emission component, which peaked at hν = 2.108 eV, is
due to the radiative recombination of free direct exci-
tons. The emission lines α and β with the maxima at
2.096 and 2.089 eV, respectively, represent the emis-
sion due to triplet excitons bound to ionized centers
(or isoelectronic traps) [4]. The long-wavelength line β
is followed by an intense acoustic wing. In a transverse
magnetic field with an induction of B ≥ 2 T (B ⊥  c,
B ⊥  kphoton: Voigt geometry), the resonance absorption
lines of the bound excitons exhibit splitting into triplets.
The extreme components in each triplet are linearly
polarized with E || B, while the central component has
004 MAIK “Nauka/Interperiodica”
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the linear polarization E ⊥  B. The position of the cen-
tral component in each triplet is virtually independent
of the magnetic field, while the extreme components
are shifted in opposite directions. In the fields with B <
2 T, the splitting is not revealed because of the relatively
large widths of the α and β lines. Since the character of
the magnetooptical effects for the α and β emission
lines is the same, the consideration below will be
restricted to the behavior of the β line.

Figure 2 presents the degree of linear polarization
Plin(B) of the bound-exciton emission line β measured
as a function of the magnetic induction B under the con-
ditions of continuous excitation of the sample crystal at
hνexc = 2.54 eV > Eg. The Plin(B) value was calculated as

(1)

where I||(B) and I⊥ (B) are the intensities of the exciton
emission components polarized with E || B and E ⊥  B,
respectively. As can be seen, a substantial magnetic-
field-induced variation in Plin(B) [as well as in the com-
ponent intensities I||(B) and I⊥ (B)] is observed in the
interval of magnetic fields from 0 to 0.2 T. As the field
increases further, the Plin(B) value remains virtually
unchanged. Under the conditions of the stationary exci-
tation of the crystal, the maximum degree of linear
polarization of the exciton emission in the applied mag-
netic field in Fig. 2 is ~0.2.

It was established that, under the conditions of exci-
tation by short light pulses, the degree of linear polariza-
tion of the exciton emission as a function of the magnetic
field varies significantly with the time t during the life-
time of the excited state. This is illustrated in Fig. 3,
which shows the degree of linear polarization of the exci-
ton emission, Plin(B, t) = [I||(B, t) – I⊥ (B, t)]/[I||(B, t) +
I⊥ (B, t)], as measured for various delay times t between
the termination of the excitation pulse and the arrival of
the detection gate pulse. The time interval for the mea-
surement of the luminescence (the detection gate
width) was ∆t = 30 ns. As can be seen from Fig. 3, the
magnetic-field dependence of the degree of linear
polarization of the exciton emission observed for small
delay times (t ≤ 0.2 µs) is nonmonotonic: at a fixed t,
Plin(B, t) first increases with B, reaches a maximum, and
then decreases with increasing of the field (see curves
for t = 0.1 and 0.2 µs). As the delay time t increases, the
behavior of Plin(B, t) changes. The rate of the initial
buildup of the degree of polarization in the magnetic
field increases sharply but, reaching almost the maxi-
mum level in a relatively small field, the Plin(B, t) value
virtually ceases to change (Fig. 3, t = 0.5 µs) or changes
rather weakly (t = 1 µs) when the field increases further.
The maximum degree of linear polarization reached in
the applied field monotonically increases with the delay
time from Plin(B, t) ≈ <0.15 for t = 0.1 µs to Plin(B, t) ≈
1 for t = 1 µs. In other words, the maximum value of
Plin(B, t) increases with the time during which the

Plin B( )
I || B( ) I ⊥ B( )–
I || B( ) I ⊥ B( )+
---------------------------------,=
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Fig. 1. Emission spectrum of a GaSe crystal at T = 2 K.

Fig. 2. Degree of linear polarization Plin(B) of the triplet
bound β exciton emission versus the magnetic induction B
obtained under the conditions of the continuous excitation
of luminescence (B ⊥  c, B ⊥  kphoton geometry; T = 2 K):
(1) the experimental data and (2) theoretical dependence for
the Boltzmann distribution of triplet excitons over Zeeman
sublevels.
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bound excitons are exposed to the magnetic field and
reaches, virtually, a 100% level for sufficiently large
delay times t.

In order to explain the observed evolution of the
Plin(B, t) curve with the delay time, let us consider the
structure of the energy levels of the triplet bound exci-
tons in GaSe. In these crystals, the orbitally nondegen-
erate state Γ4 of excitons bound at ionized centers (or
isoelectronic traps), as well as the ground state of a free
direct exciton [5], split into two states, singlet and trip-
let. For the free exciton, this singlet–triplet splitting
amounts to ∆1 ≈ 2 meV. The triplet excitons are charac-
terized by the total spin S = 1 and the spin projections
Sz = 0, ±1 onto the optical axis c. Transitions to the
states with Sz = ±1 are allowed for the E ⊥  c polariza-
tion, while the state with Sz = 0 is optically inactive [5].
Owing to the anisotropy of the crystal, the state with
Sz = 0 is split from the states with Sz = ±1 by the energy
∆ [6].

The transverse magnetic field (B ⊥  c) produces mix-
ing of the states with Sz = ±1 and the state with Sz = 0,
which makes the latter state optically active and results

Fig. 3. Magnetic-field dependences of the degree of linear
polarization Plin(B, t) of the triplet bound β exciton emis-
sion observed at various moments t of the excited state life-
time (indicated in the figure) (B ⊥  c, B ⊥  kphoton geometry;
T = 2 K): the points present the experimental data and the
curves show the results of the theoretical calculation.
in the splitting of the exciton emission line into triplet.
The energies of the triplet exciton states in a magnetic
field, calculated using perturbation theory, are given by
the expression [3]

(2)

where Ω(B) = g⊥ µ0B, g⊥  ≡ gxx = gyy is the transverse
component of the exciton g factor, and µ0 is the Bohr
magneton. The optical transitions from states 1 and 2
are allowed for the E || B polarization, and from state 3,
for the E ⊥  B polarization. The radiative lifetimes of the
excitons in states 1–3 are τir(B) = Ci(B)τr (i = 1, 2, 3),
where C1, 2(B) = 2{1 ± ∆/[∆2 + Ω2(B)]0.5}–1, C3(B) = 1,
and τr is the radiative lifetime of the initial states with
Sz = ±1. The intensities of the radiative transitions from
states 1–3 are determined by the transition probability
and the population of the corresponding state, which, in
turn, depends on the total lifetime of the excitons. The
total lifetimes of the excitons in states 1–3 are τi(B) =

[ (B) + ]–1 (i = 1, 2, 3), where τ0 is the nonradia-
tive lifetime (assumed to be independent of the spin
state of a triplet bound exciton).

When the crystal is excited by unpolarized light
with hνexc > Eg, the intensities of the emissions due to
the excitons in states 1–3 can be expressed as

(3)

where I0 is proportional to the rate of the exciton pro-
duction (which is the same for i = 1, 2, 3). The intensi-
ties of the π and σ emission components [I||(B, t) and
I⊥ (B, t), respectively] are related to Ii(B, t) as

(4)

The curves of Plin(B, t) calculated using relations (4) are
depicted by the solid lines in Fig. 3. As can be seen,
these theoretical curves satisfactorily describe the
experimentally observed features in the behavior of the
magnetic-field-induced linear polarization of the exci-
ton emission during the lifetime of the excited states.
The curves in Fig. 3 were calculated for the following
parameters of triplet bound β excitons: g⊥  = 3.7 [4]; τr =
115 × 10–9 s; τ0 = 7 × 10–6 s; ∆ = 0.04 meV (these values
virtually coincide with the data obtained in experiments
on the anticrossing of the spin sublevels of bound β
excitons in a longitudinal magnetic field [7]).

The above considerations can be, in principle, gener-
alized so as to take into account the thermalization of
excitons caused by their spin relaxation. The effect of
spin relaxation on the population of various Zeeman sub-
levels of triplet excitons was studied in [8, 9]. Figure 2
(dashed line) shows the curve of Plin(B) for completely
thermalized excitons (corresponding to the Boltzmann
distribution of excitons over Zeeman sublevels). As can
be seen, this Plin(B) value is quite small as compared to

E1 2,  = E0 0.5 ∆ ∆2 Ω2 B( )+[ ] 0.5
+−{ } , E3–  = E0,

τ ir
1– τ0

1–

Ii B t,( ) I0τ ir
1– B( ) t

τ i B( )
------------– ,exp=

I || B t,( ) = I1 B t,( ) I2 B t,( ), I ⊥ B t,( )+  = I3 B t,( ).
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the experimentally observed degree of linear polariza-
tion, which justifies the neglect of the spin relaxation of
excitons in deriving formula (3).

In conclusion, we have demonstrated that the maxi-
mum degree of the magnetic-field-induced linear polar-
ization of the triplet bound-exciton emission varies
depending on the time of the exciton exposure to the
applied magnetic field (rather than remains constant
during the lifetime of the exciton states), increasing
from nearly zero up to ~100%. An analysis of the time
variation of the magnetic-field-induced polarized lumi-
nescence of the triplet excitons emission makes it pos-
sible to determine the radiative and nonradiative life-
times of various spin states of the triplet excitons and
their dependence on the external magnetic field, as well
as the parameters of the fine structure of these exciton
states.
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The electron energy distributions arising in small-size metal absorbers of microwave radiation detectors oper-
ating at ultralow temperatures have been calculated using the kinetic equation. It is shown that the electron dis-
tributions are nonequilibrium, significantly different from the Fermi distribution, and are determined by the
ratio of the rates of electron–electron and electron–phonon relaxation and by the effect of the measuring ele-
ment (superconductor–insulator–normal metal junction) on the absorber. The response of such a bolometer is
calculated and compared to the experimental data. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 85.35.–p
In recent years, much attention has been devoted to
theoretical and experimental investigations of nonequi-
librium processes induced in a normal metal by electro-
magnetic radiation with a frequency much lower than
that of the interband transitions. Direct experimental
observation of such processes has become possible
after the creation of lasers generating ultrashort (femto-
second) output radiation pulses. The results of direct
measurements of the laser-induced emission current
showed that, immediately after the laser pulse, the elec-
tron energy distribution function in the metal has a sub-
stantially nonequilibrium shape different from that of
the Fermi function [1].

A different experimental arrangement is possible
with the use of low-temperature bolometers based on
the Andreev reflection of electrons [2, 3], where a thin,
narrow, and short normal-metal stripe is confined
between superconducting electrodes or low-transpar-
ency tunneling barriers. The element is kept at an
ultralow temperature (on the order of ~0.1 K) and
exposed to a continuous electromagnetic signal, mostly
in the terahertz or infrared range. The resulting devia-
tions in the electron energy distribution function from
the equilibrium one in the normal metal absorber are
manifested by a change in the current–voltage charac-
teristic of an additional superconductor–insulator–nor-
mal metal (SIN) junction [2, 3].

The aim of this study was to develop a theory
describing the absorption of electromagnetic radiation
in the submillimeter wavelength range in a normal
metal at ultralow temperatures and to apply this theory
to calculation of the response characteristics of an
Andreev-type bolometer.
0021-3640/04/8010- $26.00 © 0646
A kinetic equation for the electron distribution func-
tion f(k) in a metal absorber of the Andreev-type
bolometer can be written as

(1)

where k is the electron wavevector. The first and second
terms on the right-hand side of Eq. (1) reflect the elec-
tron–electron (e–e) and electron–phonon (e–p) colli-
sions, respectively; the third term describes the absorp-
tion of photons by electrons in the absorber with the
momentum transfer to ions in the metal [4, 5]; and the
fourth term takes into account the effect of the measur-
ing element (SIN junction) on the absorber.

The right-hand side of Eq. (1) does not contain dif-
fusion terms, since the geometric dimensions of the
absorber in the typical experimental situation [2, 3] are
small as compared to the characteristic lengths of the
energy relaxation. In what follows, we will also ignore
the effects associated with the loss of quasiparticles in
the bolometer electrodes.

Let us assume that, prior to the onset of the radiation
action, the distribution functions of the electrons f(k)
and phonons g(q) were described by the equilibrium

Fermi function fF(k) = 1/  +  and the

equilibrium Bose function gB(q) = 1/  – ,

respectively, where µ is the chemical potential, kB is the
Boltzmann constant, and T is the absolute temperature
of the absorber. The electrons are assumed to obey the

df k( )
dt
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quadratic dispersion law, ε(k) = "2k2/2m, the while
phonons obey the linear law ε(q) = "v sq (q is the
phonon wavevector, m is the electron mass, and v s is the
speed of sound in the metal); the latter dispersion law
implies that only acoustic phonons are taken into con-
sideration. The above assumptions are quite natural for
copper, the typical absorber material [2].

The phonon subsystem of the absorber will be con-
sidered as a thermostat, so that the phonon distribution
remains in equilibrium after the onset of the electro-
magnetic radiation action on the absorber. This
assumption is justified by the small thickness of the
absorber film [2, 3], the low working temperatures, the
relatively small signal frequency (on the order of
1 THz), and the small Kapitza resistance at the film
boundary [6], which allows the phonon subsystem to be
considered as common for the film–substrate system. In
this respect, the case under consideration differs from
that studied in [7] within the framework of a model of
the “phonon bubble” appearing under the action of an
x-ray photon in a metal (or superconducting) absorber.

Owing to the energy continuously pumped to the
electron subsystem of the normal metal film as a result
of the absorption of electromagnetic radiation, the elec-
trons in the absorber must acquire a quasi-stationary
energy distribution described by the function f(k). This
function is determined by the balance between the
energy absorbed by the electron subsystem and the
energy transferred by the electrons to the phonon ther-
mostat and to the measuring element (SIN junction).
The function f(k) can be found by equating the right-
hand side of Eq. (1) to zero.

In what follows, we proceed from the standard form
of the electron–electron and electron–phonon collision
terms [5, 8]. The electron–photon–ion interaction in
kinetic equation (1) will be adopted in the form pro-
posed in [4]. Passing in the conventional way [8] from
summation to integration with respect to momentum in
the aforementioned collision terms, we arrive [5] at a
system involving two two-dimensional integrals and
one six-dimensional integral. The integrals can be
restricted to two-dimensional by assuming the signal to
be unpolarized and averaging over all the polarization
directions.

Further simplification of the collision integrals is
possible due to the smallness of the electromagnetic
signals acting on the Andreev-type bolometers intended
for radio-astronomy observations. For this reason, the
unknown electron distribution function can be repre-
sented as f(k) = fF(k) + δf(k), where δf(k) is a small non-
equilibrium correction to the equilibrium Fermi func-
tion fF(k). Moreover, taking into account the ultralow
working temperatures of the absorbers in the bolome-
ters under consideration (~0.1 K [2, 3]), it is possible to
replace (in most of the calculations carried out below)
the equilibrium Fermi functions fF(ε) entering into
the collision integrals by the Heaviside step function
Θ(µ–ε).
JETP LETTERS      Vol. 80      No. 10      2004
In the terahertz frequency range of electromagnetic
signals, the photon energy "ω (ω is the signal fre-
quency) is about 50 K, which is much higher than the
absorber temperature but significantly lower than the
characteristic energy parameters "νsqD and µ (qD is the
Debye momentum). Taking this circumstance into
account, the linearized electron–electron and electron–
phonon collision integrals can be transformed as

(2)

(3)

where z = ε/"ω is the normalized energy variable,

ϕ(z) = δf((ε – µ)/"ω),  = πµ3/4"(kBTD)2, αe–p =

21ξ(3), ν = "ω/µ,  ≅  1.47 µ/32" , αe–e ≅
9.84, t = kBT/µ, aB is the Bohr radius, TD is the Debye
temperature, and ξ(3) ≅  1.2 is the Riemann zeta func-
tion.

In view of the considerations used in deriving the
linearized electron–electron collision term (2) and the
electron–phonon collision term (3), the term describing
the electron–photon–ion interaction (source function)
[4, 5] can be written as

(4)

where Va is the absorber volume, ε0 is the permittivity
of free space, and E is the electric field strength in the
wave. When deriving Eq. (4), we ignored the insignifi-
cant dependence of the source function on the direction
of the electromagnetic wave propagation, since elastic
scattering on impurities produces unavoidable isotro-
pization of the source. The energy dependence of the
source function has the characteristic stepwise shape.

Using our previous results [9], it can be shown that
the term describing the effect of a measuring element
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(SIN junction) on the electron distribution function in
Eq. (1) has the form

(5)

where  = e2RNVaN(εF), V is the voltage across the SIN

junction, Ns(ε) = {Θ(ε – ∆) + Θ(–ε – ∆)}|ε|/  is
the normalized density of states of the superconductor,
∆ is the gap in the superconductor excitation spectrum,
N(εF) is the density of states at the Fermi level, and RN
is the normal resistance of the SIN junction.

It can be readily verified that, in the absence of the

measuring-element-related term (  = 0) or for

zero voltage across the SIN junction (V = 0), a solution
of kinetic equation (1) determined by relations (2)–(4)
is antisymmetric: ϕ(z) = –ϕ(–z). In this case, the elec-
tron–electron collision term converts into an expression
previously obtained in [10, 11], and the electron–
phonon collision term (3) reduces to a result reported in
[7]. It should be noted that the electron–phonon colli-
sion term introduced in [11] is valid for energies much
higher than the Debye energy and, hence, is inapplica-
ble in the case under consideration. It was pointed out
in [12] that the nonintegral electron–electron and elec-
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Fig. 1. Nonequilibrium electron energy distribution formed
in the absorber under the action of electromagnetic radia-
tion: (1) distribution function numerically calculated in the

limit  ! ,  for the parameters ντe–p/τe–e =

0.023, ( αe–et
2 + αe–pt3)τe–pν–3 = 1.3 × 10–6, an

absorber temperature of 0.1 K, a signal frequency of
1012 Hz, and a signal power of 10–13 W; (2) distribution
function calculated for the same limit in the τ approxima-
tion; (3) distribution function calculated in the opposite

limit (  @ , ) when the electron distribution in

the absorber is determined by the distribution of the quasi-
particle excitations in the superconductor of the SIN junc-
tion (for a SIN junction voltage corresponding to eV/"ω =
0.05 and a relative superconducting gap of ∆/"ω = 0.058).

τSIN
1– τe–p

1– τe–e
1–

τe–e
1– τe–p

1–

τSIN
1– τe–p

1– τe–e
1–
tron–phonon collision terms (τ-terms) can be well
approximated by quadratic and cubic polynomials,
respectively.

It should be noted that the presence of integrals
(entering together with the τ-terms) in the linearized
electron–electron collision term (2) and electron–
phonon collision term (3) is attributed to the nonlocal
character of the source term (4) with respect to the
energy. The need for introducing integral terms into the
linearized Boltzmann equation with a nonlocal source
was also pointed out in [12].

Upon substituting the linearized collision integrals
(2)–(5) into the stationary kinetic equation (1), we
obtain a Volterra integral equation of the second kind,
which has to be considered on the interval z ∈  [–1, 1],
where this equation is inhomogeneous. Physically, this
implies the impossibility of sequential absorption of
several photons in the case of a weak signal described
by the linearized equation.

Numerical solution of the integral equation deter-
mined by relations (1)–(5) on the interval z ∈  [–1, 1]
reduces to constructing the corresponding recurrence
relation proceeding from the boundaries. The results of
the numerical calculations of the electron distribution
function are presented in Fig. 1, where curve 1 corre-
sponds to the case of a weak effect of the SIN junction

on the absorber, that is, to the condition  ! ,

. In this case, the parameters of the integral equa-
tion, calculated based on the experimental data [2, 3],

were as follows: ντe–p/τe–e = 0.023; ( αe–et2 +

αe−pt3)τe–pν–3 = 1.3 × 10–6; absorber temperature,
0.1 K; signal frequency, 1012 Hz; and signal power,
10−13 W. As can be seen, this electron distribution func-
tion is close to the power dependence (ε – µ)–4 for ener-
gies z that are not too low—namely, for those higher than

[( αe−et2 + αe−pt3)τe–p]1/3ν–1. This behavior was
predicted [7] for the case where only the electron–
phonon interaction is taken into account. The results of
our numerical analysis showed that the power depen-
dence of the electron distribution on the energy with an
exponent close to –4 is valid in a broad range of the
ratios of the characteristic relaxation times of the elec-
tron–electron and electron–phonon interactions. For an
energy close to that of the absorbed radiation quantum,
the power dependence changes from (ε − µ)–3 for the
strong electron–phonon interaction to (ε – µ)–2 for the
strong electron–electron interaction.

Curve 2 in Fig. 1 shows the results of numerical
solution of the kinetic equation in the same limit

 ! ,  but with neglect of the integrals in the
collision terms given by relations (2) and (3), that is, in
the τ approximation. A comparison between curves 1
and 2 shows that the inclusion of the integral terms into
the kinetic equation leads to a significant increase in the
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electron distribution function in the region of low
energies.

In this opposite limit,  @ , , the electron
distribution function in the region of energies |ε| > ∆ is
determined by the effect of a superconductor of the
SIN junction on the absorber and is proportional to

(ε + eV). The results of numerical calculations in
this case are presented by curve 3 in Fig. 1. It should be

noted that the condition  @ ,  can be satis-
fied only for extremely small values of RN (below
0.1 Ω) in the SIN junction.

It should be emphasized that the calculated electron
distribution function in all cases has proved to be non-
equilibrium and substantially different in shape from
the Fermi function.

The response η = I/P of the Andreev-type bolometer
is determined by the electron energy distribution in the
absorber at |ε| > ∆. The current I through the measuring
element (SIN junction) is calculated using the stan-
dards formula obtained in the tunneling theory: I =

(eRN)–1 [f (ε – eV) – fs(ε)]Ns(ε), where f (ε) is the

solution to Eq. (1) and fs(ε) is the distribution function
for quasiparticles in the superconductor. The power P
absorbed in a quasi-stationary regime is determined by
source function (4), which yields P =

N(εF)Va("ω)2. When the distribution function is
determined by the effect of the SIN junction on the

absorber (  @ , ), which is represented by
curve 3 in Fig. 1, both the analytical estimates and
direct numerical calculations show that the response is
described by the relations

(6)

In the experiments reported in [2, 3], the voltage
across the SIN junction was slightly below the super-
conducting energy gap, which, in turn, was much
smaller than the typical energy quantum: eV & ∆ ! "ω.
Therefore, the detector response is much lower than
that in the “photon counter limit” e/"ω [13], in which
case each absorbed energy quantum "ω induces the
tunneling of an electron e through the junction. The
suppression factor (β ≅  2eV/"ω ! 1) in the above
expression for the detector response appears due to the
relatively high signal frequency ("ω @ ∆), which leads
to a significant current of hole excitations in the junc-
tion. A similar (but half as small) suppression factor
appears in the usual detectors based on the quasiparticle
nonlinearity [13] and restricts their high-frequency
applications. Under the conditions of low frequencies

("ω & ∆) and  @ , , the detector response
reaches the photon counter limit e/"ω.

τSIN
1– τe–p

1– τe–e
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-------, β 2eV
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For bolometric detectors, the response (in the bias
voltage set regime) is restricted to a value of η & e/kBT
[2, 14], whereby each thermalized electron tunneling
with the energy kBT via the measuring junction trans-
fers the charge e. At a sufficiently low temperature of
the absorber (kBT ! "ω), the “bolometric” response
limit e/kBT is much higher than the photon counter limit
e/"ω. For the small-size low-temperature microwave
detectors under consideration, the complete thermaliza-
tion is impossible. Figure 2 shows the results of numer-
ical calculations of the bolometric detector response as
a function of the SIN junction resistance RN for the
material parameters of the absorber corresponding to
the experiment described in [2]. As can be seen, the
response is determined by relation (6) at small RN (β =
0.1) and tends to zero as RN  ∞. Thus, there is an
optimum resistance (Ropt) of the SIN junction for which
the bolometer response exhibits a maximum. Accord-
ing to Fig. 2, the maximum response is observed for
RN ≈ 103 Ω . The maximum calculated value of the
bolometer response is close to the recent experimental
data [15].

It was also of interest to study the detector response
as a function of the ratio of the characteristic times of
the electron–electron and electron–phonon relaxation.
Figure 3 shows the response of a bolometer with RN =
Ropt = 103 Ω as a function of the normalized electron–
electron relaxation rate, τSIN/τe–e at a fixed total relax-
ation rate (τSIN/τe–e + τSIN/τe–p = const). As can be seen,
an increase in the τSIN/τe–e ratio leads to an increase in
the response, which is explained by the effective multi-
plication of quasiparticles as a result of the electron–
electron collisions [10]. Although the number of elec-
trons upon electron–phonon collisions in the absorber
does not increase, these interactions convert high-
energy excitations to the region of the superconducting
gap that increases the response above the photon
counter limit (6) even at τSIN/τe–e = 0.

Fig. 2. Bolometer response vs. the SIN junction resistance
(for a SIN junction voltage corresponding to eV/"ω = 0.05
and a relative superconducting gap of ∆/"ω = 0.058; the
response is normalized to (1 THz) = e/"ω ≈ 241.3 A/W;

ω = 2π × 1012 s–1).

η fc

RN

η/
η f

c
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Figure 4 presents the results of numerical calcula-
tions of the frequency dependence of the detector
response. These data show that the response decreases
with increasing the signal frequency. The calculated
curve is close to the experimental frequency depen-
dence of the ω–1 type observed in [15].

In summary, the calculations of the electron energy
distribution function in a metal absorber of the
Andreev-type bolometer [2, 3] under the action of elec-
tromagnetic radiation in the terahertz range showed that
the electron distribution is substantially nonequilib-
rium. In the case of a weak effect of the measuring ele-

ment (SIN junction) on the absorber (that is, for  !

, ), the distribution function is well approxi-

τSIN
1–

τe–p
1– τe–e

1–

Fig. 3. Bolometer response vs. the ratio of the characteristic
times of the electron–electron relaxation (τSIN/τe–e) and
electron–phonon relaxation (τSIN/τe–p) at a fixed total relax-
ation rate (τSIN/τe–e + τSIN/τe–p = 6550. The measuring SIN
junction has a nearly optimum resistance of RN = 1000 Ω;

the response is normalized to (1 THz) = βe/"ω ≈

24.13 A/W; β = 0.1; ω = 2π × 1012 s–1.

βηfc

Fig. 4. Frequency dependence of the bolometer response
numerically calculated for τSIN/τe–e = 150, τSIN/τe–p =
6400, and RN = 1000 Ω . The frequency ν is normalized to

ν0 = 1 THz; the response is normalized to (1 THz) =

e/"ω ≈ 241.3 A/W.

η fc

η/
η f

c

τSIN/τe–e

η f
c)
mated by the power dependence (ε – µ)N with the expo-

nent N ≈ –4; in the opposite limit  @ , , the
distribution function in the region of energies |ε| > ∆ is
determined by the effect of the SIN junction on the

absorber and is proportional to (ε + eV).

The detector response calculated using the obtained
electron distribution function falls between the photon
counter limit βe/"ω [β ! 1 is the suppression factor
given by formula (6)] and the bolometric response limit
e/kBT and is close to the experimental data reported in
[15]. The calculated response decreases with increasing
signal frequency as described by a function close to the
experimental dependence of the ω–1 type [15]. Based on
the obtained results, we suggest using metals with
strong electron–electron interactions as the absorber
materials.

We are grateful to N. Arnold and P. Krutitskiœ for
fruitful discussions. This study was supported by the
International Science and Technology Foundation
(grant no. 11-95) and the Ministry of Education of the
Russian Federation.
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The effect of a system of ferromagnetic particles on the field-dependent critical current of a Josephson junction
is experimentally studied for junctions of different geometries. For edge junctions, the effect of commensura-
bility between the periodic magnetic field of the particles and the Josephson vortex lattice is observed. The
effect manifests itself in additional maxima of the field-dependent critical current. For overlap junctions, giant
(greater than sixfold) variations of the maximum critical current are observed depending on the magnetic state
of the particles. The changes in the “Fraunhofer” pattern of the overlaped Josephson junctions are attributed to
the formation of Abrikosov vortices due to the effect of uniformly magnetized particles. The effects revealed in
the experiments can be used to analyze the inhomogeneous magnetic field of a system of submicron particles
and to control the transport properties of Josephson junctions. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 68.37.Rt; 74.50.+r; 75.75.+a
A lattice of ferromagnetic nanoparticles is a unique
source of an inhomogeneous magnetic field with an
amplitude of about the saturation magnetic moment of
the ferromagnet and with a scale of variation that is
determined by the lattice period. For typical transition
metals (Fe, Ni, and Co), the magnetic moment is Ms ~
1000 G. The modern lithographic techniques allow one
to vary the particle lattice period d over a wide range
from 10 to 1000 nm. In addition, the magnetic field of
the particles can be varied by magnetizing or demagne-
tizing the whole lattice or some of its parts. This prop-
erty of ferromagnetic nanoparticle lattices opens up
new possibilities for controlling the properties of super-
conductors. Studies of ferromagnetic nanoparticles–
superconductor hybrid systems revealed a number of
interesting phenomena manifested in the oscillatory
dependence of the resistance (or the critical current) of
the superconductor on the external magnetic field [1].
Specific features appear in the characteristics of the
superconductor when the particle lattice with a period d
is commensurable with the Abrikosov vortex lattice,
whose period da is determined by the external magnetic
field (da ~ (Φ0/H)0.5, where Φ0 is the magnetic flux
quantum and H is the magnetic field strength). The
observation of the commensurability effects in these
systems is complicated by the presence of defects in
real superconducting films, which leads to distortions
of the Abrikosov vortex lattice. To reduce the influence
of these distortions, experiments are carried out at a
temperature very close to the superconducting transi-
tion temperature Tc: τ = (Tc – T)/Tc ~ 0.01. This hampers
0021-3640/04/8010- $26.00 © 20651
the use of a ferromagnetic particle lattice for control-
ling the pinning of Abrikosov vortices.

In this context, we propose to study the effect of the
inhomogeneous magnetic field of a system of ferro-
magnetic particles on “weak” superconductors, i.e.,
Josephson junctions. One can expect that the effects of
the commensurability between the periodic magnetic
field of the particles and the Josephson vortex lattice
will also be observed in such a system and that they will
manifest themselves as additional maxima arising in
the dependence of the Josephson critical current on the
external field [2, 3]. Owing to the weak pinning of
Josephson vortices, this system is preferable over
“strong” superconductors. In this paper, we present the
results of the first observation of the commensurability
effect in Josephson junctions with ferromagnetic parti-
cles. Figure 1 shows two types of Josephson junctions
with ferromagnetic particles: (a) the edge junction and
(b) the overlap junction. We assume that the depen-
dence of the supercurrent through a junction on the

Fig. 1. Schematic diagram of (a) edge and (b) overlap
Josephson junctions with ferromagnetic particles.
004 MAIK “Nauka/Interperiodica”
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phase difference between the wave functions of the two
superconducting electrodes has a simple harmonic
form j = jcsin(ϕ). The appearance of the phase differ-
ence in the Josephson junction is possible due to the
penetration of the scattering fields from the ferromag-
netic particles into the junction region. Estimates show
that the magnetic field induced by uniformly magne-
tized particles, when averaged over the junction area, is
proportional to the particle thickness and inversely pro-
portional to the junction size in the corresponding
direction. In the case of the edge junction (Fig. 1a), the
z component of the magnetic field induced by the parti-
cles is inversely proportional to the size of the junction
along the Z axis. This size is small (~100 nm in our
case), and the mean magnetic field in the junction is
about the mean magnetic moment of the particle lattice.
The calculation of the phase difference induced by the
particles in the edge junction confirms this assumption
[3]. In the case of the overlap junction (Fig. 1b), the y
component of the magnetic field is inversely propor-
tional to the junction size along the Y axis (~10 µm).
Hence, the mean field induced by the particles proves to
be approximately one hundredth of that in the previous
case. If we ignore this edge effect, the only possibility
for a phase difference to appear in the overlap junction
due to the effect of ferromagnetic particles is the forma-
tion of Abrikosov vortices in the superconductor. The
effect of Abrikosov vortices on the field-dependent crit-
ical current of the Josephson junction was discussed in
[4, 5]. Below, we present the results of an experimental
study of the effect produced by a system of ferromag-
netic particles on the dependence of the critical current
Ic on the external magnetic field for edge and overlap
Josephson junctions.

1. EDGE JUNCTIONS

For the experimental study of the effect of particles
on the critical current of the Josephson junction, we
fabricated Nb/SiNx/Nb edge junctions with a chain of
Co ferromagnetic particles positioned in the immediate
vicinity of the junction region. Figure 2a shows an SEM

(a) (b)

Fig. 2. SEM image of the system under study: (a) edge and
(b) overlap junctions with ferromagnetic particles (the
dashed line indicates the junction region).
image of the system under study. The method of fabri-
cation and the properties of the edge junctions based on
Nb films are described in [6]. The ferromagnetic parti-
cles were obtained by electron lithography [7] and had
lateral dimensions of 300 × 600 nm and a thickness of
25 nm. The magnetic state of the particles was moni-
tored by a Solver scanning probe microscope. It is well
known [8] that the ground state of such large particles
is a vortex state. Investigations have shown that a uni-
formly magnetized (along the long axis) state is meta-
stable in zero external field if the particle thickness does
not exceed some critical value, which is equal to 27 nm
in our case. Thus, particles with the aforementioned
dimensions can be in both vortex and uniformly mag-
netized states. In the first case, the magnetic field pro-
duced by a particle is absent or very small, whereas the
field produced by a uniformly magnetized particle in
the junction region is about 100 Oe according to our
estimates. This situation is optimal for our purposes,
because we can control the magnetic field in the junc-
tion by preliminarily magnetizing or demagnetizing the
system of particles with the use of an external field
applied in the easy (along the long particle axis) or hard
(along the short particle axis) magnetization direction.

The dependence Ic(H) was measured by the standard
four-probe method at a temperature of T = 4.2 K (the
critical temperature of the superconducting transition in
the niobium electrodes was about 9 K). The external
magnetic field was perpendicular to the surface of the
superconducting electrodes. Figure 3 shows the results
of measuring Ic(H) in two different cases: when the
chain of particles is uniformly magnetized (Fig. 3a) and
when the particles are in the vortex state (Fig. 3b). The
magnetic state was prepared by magnetizing the system
in different directions at room temperature and was
monitored by the scanning probe microscope (the mag-
netic force images are shown in the insets). In the case
of the uniformly magnetized chain, additional maxima
are observed. Their positions are determined by the
period of the chain of particles and satisfy the relation

(1)

where n is the number of a maximum, ∆H is the period
of the critical current oscillations in the Josephson junc-
tion without the particles, W is the width of the junc-
tion, and d is the distance between the particles. This
result confirms the theoretical predictions of [2, 3] and
can be explained as follows. For a short Josephson
junction, the critical current is determined by the
expression

(2)

where l is the effective thickness of the junction, ϕp(x)
is the phase difference induced by the particles, and

Hn n∆H W /d( ),=

Ic jcl
2πiHlx

Φ0
------------------ 

  iϕ p x( )( ) xdexpexp

0

W

∫ ,=
JETP LETTERS      Vol. 80      No. 10      2004



        

PROPERTIES OF JOSEPHSON JUNCTIONS 653

                                                                       
ϕp(x + d) = ϕp(x). It follows from Eq. (2) that the posi-
tions of the maxima of the critical current are deter-
mined by the condition of commensurability between
the spatial wave of the Josephson current, Φ0/lH, and
the periodic distribution of the phase difference
induced by the particles, d. One can say that the short
Josephson junction is a Fourier analyzer of the inhomo-
geneous magnetic field produced by the particles. In
our experiment, the Josephson penetration depth is λJ ~
3 µm while W ~ 8 µm, and, strictly speaking, the con-
dition of the smallness of the junction is not satisfied.
However, the commensurability effects, which lead to
the appearance of additional maxima, occur in this case
as well. If the particles are demagnetized (i.e., in the
vortex state), additional maxima are absent (Fig. 3b)
and the dependence Ic(H) is close to that observed for
the junction without the particles. This result indicates
that the process of the hybrid system fabrication did not
damage the junction.
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Fig. 3. Dependence Ic(H) for an edge junction with (a) a homo-
geneously magnetized chain of particles and (b) particles in
the vortex state.
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2. OVERLAP JUNCTIONS

For our experiments, a series of Nb/Al/AlOx/Nb
overlap junctions were fabricated using the technology
described in [9]. The junctions were characterized by
the following parameters: the thickness of both the
lower electrode and the leads was about 100 nm, the
thickness of the upper electrode was about 30 nm, the
thickness of the Al/AlOx interlayer between the elec-
trodes of the Josephson junction was about 12 nm, and
the lateral dimensions of the junction were 20 × 15 µm.
On the upper electrode of the junction, a Co particle lat-
tice was fabricated with characteristic dimensions of
300 × 600 nm and a thickness of 27 nm. The dimen-
sions of the particle cell were 1 × 1.5 µm. Figure 2b
shows the SEM image of the system under study. A part
of the particle lattice lies on the lead, but this is unim-
portant for our measurements. The measurements of
the critical current were performed at a temperature of
4.2 K, and the magnetic field was applied in the junc-
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Fig. 4. Dependence Ic(H) for an overlap junction when the
particles are (a) in the vortex state (the dependences Ic(H)
for the junction without the particles and with particles in
the vortex state coincide with each other) and (b) magne-
tized.
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tion plane, along the supercurrent in the electrodes. Fig-
ure 4 shows the results obtained by measuring the
dependence of the critical current on the external mag-
netic field for different magnetization states of the par-
ticle lattice. When the particles are in the vortex state,
the dependence Ic(H) has the same form as that
obtained for the junction without the particles (Fig. 4a).
A qualitatively different situation is observed when
most of the particles in the lattice are uniformly magne-
tized (Fig. 4b). First, the central peak of the Fraunhofer
pattern is split into two and displaced with respect to
the zero magnetic field, while its amplitude is smaller
by a factor of more than six as compared to the previous
case. Second, the behavior of the critical current
becomes nonmonotonic in high magnetic fields. How-
ever, the positions of the maxima do not satisfy the
commensurability condition, i.e., Eq. (1). Note that,
after the particles are demagnetized to the vortex state,
the critical current and the whole Fraunhofer pattern are
restored. Thus, we observe a strong dependence of
Ic(H) of the overlap Josephson junction on the magnetic
state of the particles.

As discussed above, the considerable effect of the
particles on the overlap junction may be attributed to
the penetration of the Abrikosov vortices that are
induced by the particles into the upper electrode.
Experimental studies of the effect of single Abrikosov
vortices were performed earlier (see, e.g., [5]). How-
ever, in our case, the magnetic particles may induce
Abrikosov vortices of different signs, the effect of
which on the properties of Josephson junctions has
never been studied. The mechanism of the vortex–anti-
vortex pair formation under the action of a particle
magnetized along the surface of a superconductor was
studied in [10]. For the formation of Abrikosov vorti-
ces, the magnetic field of the particle must exceed the
upper critical field Hc2, because the freezing of the sam-

ple occurs in the field of the particle: H > Hc2 ~ Φ0τ/ ,
where ξ0 is the coherence length at zero temperature. In
this case, the scale of variation of the wave function, ξ =

ξ0/ , should be smaller than the distance between the
positive and negative magnetic poles, which is about
the particle size a: ξ > a. When these two conditions are
satisfied simultaneously, they lead to the relation H >
Φ0/a2. The latter condition is satisfied for our particles,
which allows us to attribute the changes observed in the
Fraunhofer pattern of an overlap Josephson junction to
the formation of Abrikosov vortices in the upper elec-
trode under the effect of uniformly magnetized particles.

Thus, we have studied the effect of a lattice of ferro-
magnetic particles on the field dependence of the criti-
cal current in Josephson junctions of different struc-
tures. Unlike in the previous publications [11], where
the effect of the modulation of the critical current den-
sity jc was investigated, we studied the effect of the
“phase” modulation of the Josephson current under the
effect of the inhomogeneous magnetic field produced

ξ0
2

τ

by a system of ferromagnetic particles. For edge junc-
tions, we present the results of the first observation of
the commensurability effects, which manifest them-
selves in the presence of additional maxima in the
dependence Ic(H). In principle, this allows one to use a
Josephson junction as a Fourier analyzer for the inho-
mogeneous magnetic field of a system of submicron-
size particles. For overlap junctions, we revealed the
substantial effect of the magnetic state of the particles
on the dependence Ic(H), which manifests itself as the
suppression of the critical current in the absence of the
magnetic field and a noticeable change in the Fraun-
hofer pattern. Estimates show that the changes
observed in the experiment may be attributed to the for-
mation of Abrikosov vortices in the upper electrode
under the effect of homogeneously magnetized parti-
cles. This fact can be used to control the transport prop-
erties of such junctions.

We are grateful to A.S. Mel’nikov and A.V. Samokh-
valov for useful discussions. This work was supported by
the Russian Foundation for Basic Research (project nos.
03-02-16774 and 02-02-16764) and the Russian Acad-
emy of Sciences (Program “Quantum Macrophysics”).
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Superconducting Transition Temperature in Hafnium
under Pressures up to 64 GPa
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The superconducting transition temperature Tc of hafnium is measured as a function of pressure up to 64 GPa.
The character of the pressure dependence of Tc observed at α–ω–β transitions in Hf is found to be similar to
that observed for Zr. In the regions of α and β phases, Tc increases with pressure with the slopes dTc/dP = 0.05
and 0.16 K/GPa, respectively. At the α–ω transition, Tc(P) exhibits a tendency to a decrease, while at the ω–β
transition, Tc increases stepwise from 5.8 to 8.0 K. The α–ω transition occurs at pressures between 31.2 and
35.9 GPa, and the ω–β transition, at a pressure of 62 ± 2 GPa. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 64.70.Kb; 74.62.–c; 74.62.Fj
1. INTRODUCTION

Under normal conditions, the group IV transition
metals Ti, Zr, and Hf have a hexagonal close-packed
structure (the hcp α phase), whereas, under pressure, all
three elements undergo polymorphic transitions [1].
Titanium first transforms to the hexagonal ω phase and
then, under P ≤ 116 GPa, to the γ and δ phases with
orthorhombic structures [2, 3]. The α–ω–β series of
structural transitions including the bcc β phase was first
observed for Zr [4] and later, for Hf [5]. For Zr, the
pressure corresponding to the ω–β transition lies within
30 [6] to 33 GPa [4]; for Hf, this pressure was found to
be P = 71 GPa [5]. A correct description of the α–ω–β
transition series was obtained as a result of theoretical
calculations of the structural stability under pressure
[7–9], which attributed the structural changes to the s−d
electron transfer and the corresponding increase in the
d band population. The measurements of the supercon-
ducting transition temperature Tc under pressures up to
48 GPa revealed a stepwise increase in Tc at the ω–β
transition in zirconium [10]. Akahama et al. [6] noted
the closeness of the temperature Tc and the specific vol-
ume of bcc niobium under atmospheric pressure to the
respective values obtained for β-Zr under P = 30 GPa.
These facts were explained by an increase in the d band
population to a value typical of the group V elements.

Later, structural measurements and measurements
of Tc under pressure were carried out for a number of
Zr–Ti [11, 12] and Zr–Hf [13] binary alloys. In all the
alloys studied, Tc also increased stepwise at the ω–β
transition. The isobaric dependences of Tc on the alloy
composition, which were obtained from high-pressure
experimental data, had a dome like shape similar to that
of the corresponding curves obtained for group IV–V
alloys at atmospheric pressure [14].
0021-3640/04/8010- $26.00 © 20655
In the framework of the concept of interband elec-
tron transfer under pressure, the similarity between the
behaviors of Zr and Hf structures under pressure sug-
gests that the pressure dependence of Tc for Hf should
be similar to that previously observed for Zr. However,
the dependence of Tc on pressure up to the ω–β transi-
tion has never been studied experimentally for Hf. In
this paper, we describe the measurements of the depen-
dence of Tc on pressure up to 64 GPa for hafnium. In the
experimental dependence Tc(P), we reveal anomalies
and attribute them to the α–ω–β structural transitions.

2. EXPERIMENT

The metallic Hf used in the experiment was pre-
pared by the zone melting of an iodide Hf bar in vac-
uum. The purity of the initial metal was no lower than
99.95 at. % with allowance for interstitial impurities.
The samples were made by grinding chips of the initial
metal to a thickness of ~0.02 mm.

High pressures were obtained using a diamond anvil
system made of nonmagnetic materials [15]. The mea-
suring cell is shown in Fig. 1 (the scales are approxi-
mately retained). The measuring coil was mounted
symmetrically around the anvils, and the reference coil
lay in the same plane with the measuring one, at a dis-
tance of about 1 mm. The secondary coils were con-
nected against each other. The diameter of the working
area of the anvils was about 0.4 mm. The sample and
the reference ruby crystals were placed between the
anvils in the opening of a metal gasket 0.12 mm in
diameter. The pressure medium was a 4 : 1 methanol–
ethanol mixture. The pressure was determined by the
displacement of the ruby luminescence line with an
accuracy of ±0.05 GPa after low-temperature measure-
004 MAIK “Nauka/Interperiodica”
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ment cycles with the subsequent heating of the press to
room temperature.

The superconducting transitions were detected as
anomalies in the temperature dependence of magnetic
susceptibility χ(T), which was measured with a
5.2-kHz alternating current as the sample was heated
from the minimum temperature. The minimum temper-
ature equal to 1.3 K was achieved by the vacuum pump-
ing of helium from the cryostat containing the high-
pressure system. The temperature was measured with
an accuracy of ±0.2 K by a (Cu–Fe)–Cu thermocouple.

Fig. 1. Pressure cell of the diamond anvil system: (1) dia-
mond anvils, (2) reference coil, (3) measuring coil, (4) cyl-
inder of the press, (5) sapphire supports, (6) supporting
rings, and (7) piston of the press.

Fig. 2. Magnetic susceptibility curves χ(T) measured by
heating the sample under the different pressures indicated in
the plot. The straight lines illustrate the graphical determi-
nation of Tc.
The Tc values were determined as the intersection
points of the tangent to the steeply dropping part of the
χ(T) curve and the extension of its high-temperature
horizontal part.

3. RESULTS

Figure 2 shows typical magnetic susceptibility
curves χ(T) measured by heating the sample in different
pressure intervals, and Fig. 3 represents the experimen-
tal data as the dependence Tc(P).

At atmospheric pressure, Hf has Tc = 0.128 K [1],
which is far below the limit of our measurements. For
the first time, the anomaly arising in the χ(T) curve at
the beginning of the superconducting transition was
observed at a pressure of 31.2 GPa. At the next pressure
value of 35.9 GPa, the superconducting transition also
occurred near the lower boundary of the measurement
range. In the pressure interval P = 40–60.2 GPa, both
the beginning and the end of the superconducting tran-
sition could be detected in the χ(T) curves. For all the
pressures within this interval, the superconducting tran-
sition was spread in temperature over ~1 K. In the pres-
sure interval from 35.9 to 60.2 GPa, the transition
points determined as indicated above proved to lie on a
single straight line within the measurement accuracy
(Fig. 3), and the slope of this line was dTc/dP = 0.16 ±
0.01 K/GPa. According to the x-ray structural data [5],
the α–ω transition in Hf occurs within 38 ± 8 GPa.
Hence, the linear dependence in the interval of 35.9–
60.2 GPa reflects the behavior of the superconducting
transition temperature in ω-Hf. The point determined at
31.2 GPa lies far from this dependence and, presum-
ably, represents the higher temperature of the supercon-
ducting transition in α-Hf. In this case, for α-Hf, the
slope is dTc/dP ≈ 0.05 K/GPa. According to Fig. 3, the

Fig. 3. Pressure dependence of the superconducting transi-
tion temperature for Hf. The different kinds of points refer
to different phase states of Hf (see the body of the paper).

T
c
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α–ω structural transformation occurs in Hf between
31.2 and 35.9 GPa. Thus, the pressure and the interval
of the α–ω transition that we observed in Hf are notice-
ably smaller than those obtained from structure studies
[5], but the narrow interval of this transition agrees well
with the data obtained for Zr [4, 6, 10] and for Zr–Ti
and Zr–Hf alloys [11–13].

Under higher pressures, the anomaly of χ(T)
changes. The two-step shape of the jump in χ(T), which
is observed at P = 61.5 GPa in Fig. 2 at Tc = 7.55 and
8.65 K, is an indication of a two-phase ω + β state of
the sample under these conditions. The next measure-
ment at P = 64.0 GPa revealed an abrupt jump of χ(T)
at Tc = 8.0 K within an interval smaller than 0.5 K. The
latter value of Tc lies far above the linear dependence
dTc(P) obtained for ω-Hf and indicates a transition to a
new single-phase state of Hf, i.e., to the β phase. The
fracture of the pressure cell did not allow us to study the
behavior of Tc in the β-Hf stability region.

4. CONCLUSIONS

The α–ω–β structural transitions in Hf are accompa-
nied by changes in Tc, which are similar to those
observed in Zr and in Zr–Ti and Zr–Hf alloys. In the
regions of stability of the α and ω phases of Hf, the
superconducting transition temperatures increase with
pressure. The α–ω transition is presumably accompa-
nied by a small decrease in Tc, whereas the ω–β transi-
tion is accompanied by a stepwise increase in Tc from
5.8 to 8.0 K.

This work was supported by the Russian Foundation
for Basic Research (project no. 03-02-17005) and the
Branch of General Physics and Astronomy, Russian
Academy of Sciences (Program “Thermal Physics and
Mechanics of Intense Pulsed Actions”).
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Spin–Fluid Approach in the Theory of a Classical Fluid
A. V. Mikheenkov*, A. F. Barabanov*, and L. A. Maksimov**

* Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow region, 142190 Russia
e-mail: mikheenkov@gazeta.ru

** Russian Research Centre Kurchatov Institute, pl. Kurchatova 1, Moscow, 123182 Russia
Received September 14, 2004; in final form, October 28, 2004

The simplest model of a two-dimensional fluid is proposed. It is based on the frustrated Heisenberg model that
allows qualitative description of the behavior of a pair correlation function for different forms of a two-step
potential U(r). The tendency toward the formation of a quasi-bound state is demonstrated for a potential with a
local minimum at its repulsive part. It is shown that the fluid can undergo a phase transition upon changing tem-
perature in the case of the two-step potential. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.20.Gy; 75.10.Jm
The determination of a pair correlation function
(PCF) is an important problem in the theory of fluids.
Of particular interest is the determination of a PCF in
the case of a potential with a nonmonotonic repulsive
part. In this case, the PCF was calculated, e.g., by
molecular dynamics simulation [1]. It is believed that
such calculations give a considerable insight into the
theory of phase transitions even in the 1D and 2D sys-
tems, e.g., in water under pressure. The typical forms of
the potential in fluid models discussed in the literature
[1–3] are shown in Figs. 1a and 1b. Both potentials
refer to the class of core-softened potentials, and it is
precisely this fact that allows the phase transitions in
fluids to be studied using such potentials.

In this work, the simplest lattice model based on the
frustrated antiferromagnetic 2D Heisenberg model of a
two-dimensional fluid is suggested to qualitatively
describe the behavior of the PCF in relation to the form
of a two-step potential U(r) (Figs. 1c, 1d). This model
is the development of the well-known lattice-gas model
[4] that is equivalent to the Ising model and is exactly
soluble only for a one-step potential. In contrast to the
Ising model, the approach suggested in this work is not
static and, moreover, it is applicable to the more com-
plicated potentials.

Figure 1c corresponds to the repulsive potential. The
potential shown in Fig. 1d has a minimum at short dis-
tances that corresponds to a weak attraction between
particles and their covalent bonding.

Let us consider a two-dimensional fluid with the
average density ρ0 and represent the density operator in

the form  = ρ0 + ∆  at each point i, where ∆  = γ

and the operator  is the spin-projection operator for
spin 1/2.

Therefore, we assume that the density fluctuation at
each point i is described by the spin wave function; i.e.,

ρ̂ ρ̂ ρ̂ Ŝi
z

Ŝi
z

0021-3640/04/8010- $26.00 © 20658
the density fluctuation for Ψ =  or  is posi-

tive or negative, respectively. We are interested in the
density–density correlation function 〈∆ ∆ 〉 . Since
the coefficient γ cannot be calculated within the frame-
work of the suggested approach, the correlation func-
tion 〈∆ ∆ 〉  will be determined to an accuracy of a
proportional factor.

In the lattice model, the points i are defined on a
square lattice. The sites i of this lattice correspond to

1

0 
 
  0

1 
 
 

ρ̂i ρ̂ j

ρ̂i ρ̂ j

Fig. 1. (a, b) Typical forms of a step potential in the works
on the theory of fluids; (c) a two-step potential in the frus-
trated Heisenberg model with the frustration parameter p =
0.3 (the spin-exchange constants for the first and second
nearest neighbors are J1 = 0.7, J2 = 0.3); (d) a two-step
potential in the frustrated Heisenberg model with the frus-
tration parameter p = 1.5 (J1 = –0.5, J2 = 1.5).
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the “probe” points on the plane, so that the lattice con-
stant l should be chosen so as to describe in reasonable
detail the significant potential-variation region. Below,
we employ the least detailed description of the poten-

tial; i.e., l > a, l > b, and 2l > c (see Fig. 1).

For the system where the density fluctuations can
move, the Hamiltonian can be introduced as

(1)

Here, the longitudinal terms correspond to the fluctua-
tion interactions for the nearest J1 and next-to-nearest
J2 neighbors in the probe lattice (g and d are the vectors
of the first and second neighbors). For the potentials
drawn in Figs. 1c and 1d and with the above-mentioned
choice of l, the interaction with more distant neighbors
is zero.

To characterize the relative heights of the potential
steps J1 and J2, we use the variable p (frustration param-
eter) that is adopted in the magnetic problems: p =
J2/(J1 + J2), J1 = (1 – p)J, J2 = pJ, and, in what follows,
J = 1.

The transverse terms in the Hamiltonian describe
the fluctuation motion. Below, we consider a particular
case, where the coefficients of the longitudinal terms
and the corresponding transverse terms are identical.
Note that the on-site fluctuation repulsion in the model
considered is infinite due to the constraints in the spin
wave-function space.

Thus, the problem of calculating the fluctuation part
of the PCF is reduced to the evaluation of the spin cor-

relation functions ci, j = ci – j = 〈 〉 .

It is essential that, to describe the fluid, the spin
problem for a frustrated 2D Heisenberg antiferromag-
net should be analyzed within the framework of the
approach in which the average values of both the longi-
tudinal and transverse spin components are zero at each
site, i.e., within the spin-fluid approach.

For potentials more complicated than the two-step
potential, the lattice constant l should be reduced and
the model should be generalized to the case of interac-
tion with a large number of nearest neighbors (so that
J1, J2, J3, …, Jn adequately describe the potential region
corresponding to the first coordination spheres in the
fluid). Note that, generally speaking, the probe-lattice
sites have no relation to the most probable positions of
the particles in the fluid. These positions, in principle,

2

Ĥ
1
2
---J1 Si

zSi g+
z 1

2
--- Si

+Si g+
– Si

–Si g+
++( )+

 
 
 

i g,
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+
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2
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2
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∑
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are determined after the calculation of the radial distri-
bution function and correspond to its maxima.

It should be emphasized that the information
obtained on the PCF is, generally speaking, sufficient
for determining the angle-averaged PCF h(r) and,
hence, for determining the isothermal compressibility.

We now briefly describe the computational proce-
dure for the spin correlation functions cij in our model
[5]. The equation of motion for the Green’s function

 = 〈 〉 ω has the form

(2)

where Jg = J1 and Jd = J2. At the second step, the
Green’s function on the right-hand side of Eq. (2) is
obtained in the form

(3)

For the three-site terms on the right-hand side of
Eq. (3), we use the approximation

(4)

Here, g1 + g2 ≠ 0; the trivial term with g1 + g2 = 0 is
found exactly; and α are the vertex corrections, whose
choice is discussed in detail in [5]. In this approach, the
damping of the Green’s function is absent; i.e., this
approach corresponds to the mean-field approximation
in the spin-fluid model. Note that, beyond the mean-
field approximation and with allowance for the damp-
ing, this problem encounters considerable difficulties
[6] (similarly to the case of a traditional two-sublattice
state [7]).

In the k space, the Green’s function Gz takes the
form

(5)

where

Gnm
z Sn

z Sm
z

ω Sn
z Sm

z〈 | 〉 ω iεzβγ J f Sn f+
β Sn

γ Sm
z〈 | 〉 ω,

f g d,=

∑=

ωiεzβγ J f Sn f+
β Sn

γ Sm
z〈 | 〉 ω

f g d,=

∑

=  2J1cg δnm δn g m,+–( )
g

∑–

– 2J2cd δnm δn d m,+–( )
d

∑

+ iεzβγ J f 1
J f 2

f1 g1 d1,=
f2 g2 d2,=

∑

× iεβjlSn f1 f2+ +
j Sn f1+

l Sn
γ iεγjlSn f1+

β Sn f2+
j Sn

l+ Sm
z〈 | 〉 ω.

Sn g1 g2+ +
j Sn g1+

l Sn
γ αgcg δjlSn

γ δlγSn g1 g2+ +
j+( )≈

+ αg1 g2+ cg1 g2+ δjγSn g1+
l .

Gk ω,
z Sk

z S k–
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F k( )
ω2 ω2 k( )–
--------------------------,= =
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The quantities K1–K6 in the expression for the spectrum
are

where  = αrcr are the correlation functions including
the vertex corrections; αr, zg, and zd are the numbers of
the nearest and next-to-nearest neighbors in the probe
lattice (in our case, zg = zd = 4); and

ω2 k( ) 2 γ1K1 γ2K2+( )[=

– γ3K3 γ4K4–( ) γ5K5 γ6K6+( )– ] .

K1 J1J2Kgd J1
2c̃gzg zg 1–( )

zg

4
---- Kgg,+ + +=

K2 J1J2Kgd J2
2c̃dzd zd 1–( )

zd

4
---- Kdd,+ + +=

K3 J1
2c̃gzg

2; K4 J2
2c̃dzd

2
,= =

K5 J1J2c̃gzgzd,=

K6 J1J2c̃dzgzd,=

Kgg = c̃r; Kdd = c̃r; Kgd = c̃r,
r g d+=

∑
r d1 d2+=

d1 d2–≠

∑
r g1 g2+=

g1 g2–≠

∑

c̃r

γg k( ) 1
zg

---- e ikg–

g

∑ 1
2
--- kx( )cos ky( )cos+( ),= =

γd k( ) 1
zd

---- e ikd–

d

∑ kx( )cos  * ky( )cos .= =

Fig. 2. Spin correlation function (proportional to the pair
density–density correlation function) vs. the distance R
between the lattice sites (in the units of the lattice constant l)
for T = 0.5J and p = 0.3. The form of the potential is shown
in the inset.
The functions F(k) and ω2(k) include correlation func-
tions cr for the first five coordination spheres. Express-

ing them in terms of the Green’s function 

one obtains the system of self-consistent equations that
can be solved numerically:

After determining  from these expressions, one can
find the correlation function cr for any r.

Below, we present the results obtained for cij for two
potential types: the first corresponds to the net repul-
sion (Fig. 1c; J1 > J2 > 0 and p = 0.3) and the second
corresponds to the potential with a local minimum at
short distances (Fig. 1d; J1 < 0, J2 > 0, and p = 1.5).
Unless otherwise indicated, all the further results are
presented for the temperature T = 0.5J. Physically, the
second case corresponds to the situation where the par-
ticles tend to form covalent bonds upon their approach-
ing each other. The correlation functions c(r) (r is the
probe-lattice site) for the first case are given in Fig. 2.
Their behavior corresponds to the standard h(r) depen-
dence; at short distances (in our case, for the first two
nearest neighbors in the probe lattice), c1 = c(g) < 0 and
c2 = c(d) < 0; and the positive values of the next corre-
lation functions c3 = c(2g) and c4 = c(g + d) describe the
first maximum of the function h(r). In the second case
(Fig. 3), c1 changes sign and becomes positive, though
small, while c3 remains positive. This fact can be
treated as the splitting of the first maximum of h(r),
indicating a tendency to the formation of a quasi-bound
state by two particles when going from the potential in
Fig. 1c to the potential in Fig. 1d.

Note that a similar situation occurring in the two-
dimensional case with a fixed two-step core-softened
potential of the form shown in Fig. 1a (both steps are
negative) and the variable density was discussed in [1,
2]. The problem was solved by the molecular dynamics
methods. With an increase in the density, the transition
was observed from “open” structures to “dense” struc-
tures in which particles could penetrate into the soft
core. For the dense structure, the first peak of h(r) splits
into two peaks and the intensity of the near peak
increases with the density. The possibility of transition

Gq
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z Sq
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in the fluid for the core-softened (one-step) potential
was also discussed in [3] using the thermodynamic per-
turbation theory.

We now demonstrate what happens if the height J2
of the second step in the two-step potential decreases
relative to J1, e.g., if one goes from the case shown in
Fig. 1c (p = 0.3) to p = 0.1. The comparison of Figs. 2
and 4 shows that a change in h(r) mainly leads to a
noticeable leftward shift of the first maximum. In addi-
tion, the oscillations in c(r) become more pronounced.

Let us consider the influence of temperature on the
behavior of c(r) in a fixed potential (i.e., frustration in
our case). In Fig. 5, the correlation functions are drawn
for several temperatures and p = 0.6 (the corresponding
potential is shown in the inset). One can see that, as the
temperature increases from T = 0.25 to T = 0.75, the

Fig. 3. Same as in Fig. 2, but for p = 1.5.
JETP LETTERS      Vol. 80      No. 10      2004
absolute values of c2 and c1 decrease and increase,
respectively. This behavior corresponds to the increase
in the population of the second step. No self-consistent
solution exists in the temperature interval T . 0.75–1.0.
However, the solution again appears at T * 1.0, but its
character is qualitatively different from the low-tem-
perature behavior. Namely, c1 and c2 change drastically:
the relative populations of the first and second steps
change stepwise, evidencing the liquid–liquid phase
transition. The question of the phase-transition kind
(first or second) cannot be answered within our approx-
imation, because, to do this, one should abandon the
self-consistent approach that preserves the Hamiltonian
SU(2) symmetry.

Among the alternative methods of studying the 2D
square frustrated Heisenberg model, we point to the

Fig. 4. Same as in Fig. 2, but for p = 0.1.
Fig. 5. (a) Temperature dependence of the first five spin correlation functions for p = 0.6 (J1 = 0.4, J2 = 0.6). In the phase-transition
region (at T close to 0.8 J), no self-consistent solution exists. The form of the potential is shown in the inset. (b) The spin correlation
function vs. the distance between the sites R for p = 0.6 and several temperatures.
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calculation of the perturbation series for the suscepti-
bility of finite-size clusters, the quantum Monte-Carlo
method, and the methods of exact cluster diagonaliza-
tion (for detail, see, e.g., review [8]). However, in the
frustration regime at finite temperatures, none of these
methods can reliably distinguish the states with sponta-
neous symmetry breaking (the box phase, the columnar
dimerized spin-fluid phase, and the plated phase) and
the spin-fluid state considered in this work. Moreover,
it is difficult to find the spin correlation functions within
the framework of a unified approach using the above-
mentioned alternative methods over broad frustration
and temperature intervals and to study a model with
longer-range interactions.

The development of our approach is of interest pri-
marily in the following directions. Since it is based on
the isotropic Heisenberg model, the kinetic energy of
the density fluctuations (transverse terms) and the
potential energy (longitudinal terms) are determined by
the same constant J. The spin-fluid consideration of the
frustrated anisotropic Heisenberg model would be
more realistic. To our knowledge, such an approach is
lacking as yet within the framework of spin-fluid theo-
ries. One more line of investigation is a more accurate
analysis of the effect of the potential form (addition of
the third step) on the phase transition and on the possi-
bility of forming a quasi-molecular state. The second
open problem is the analysis of the change in the short-
range order upon the transition, i.e., the investigation of
not only square but also other lattices.

Within our approach, it is impossible to analyze the
effect of a change in pressure and density on the behav-
ior of c(r). We note, however, that the two-dimensional
molecular dynamics simulation [2] indicates that an
increase in temperature is qualitatively equal to an
increase in pressure.

Thus, a lattice spin–fluid approach to the classical
fluid has been suggested in this work. It is based on the
Heisenberg model and provides a description of the
behavior of the total correlation function with a change
in the temperature and the potential form.

We are grateful to V.N. Ryzhov and V.V. Brazhkin
for discussion of the results. This work was supported
by the Russian Foundation for Basic Research.
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The properties of high-energy ion beams (beamlets) observed in the boundary layer of the plasma sheet of the
Earth’s magnetotail during short time intervals (1–2 min) have been considered. Beamlets are induced by non-
linear impulse accelerating processes occurring in the current sheet of the far regions of the geomagnetic tail.
Then, moving toward the Earth along the magnetic field lines, they are detected in the magnetotail (in the
plasma sheet boundary layer) and in the high-latitude part of the auroral zone in the form of short bursts of high-
energy ions (with energies of several tens of keVs). The size of the localization region of the beamlets in the
magnetotail and auroral zone has been determined by the epoch-superposition method, and it has been shown
that beamlets are concentrated in a narrow region near the plasma sheet boundary, whose latitude size is no
more than 0.8°. This conclusion corroborates the theoretical prediction that the nonadiabatic resonant acceler-
ation of ions occurs in a spatially localized region near the separatrix separating the open magnetic field lines
and closed field lines, which contain the hot and isotropic plasmas of the plasma sheet. Based on the CLUSTER
multisatellite measurements, the spatial structure of beamlets is analyzed and it has been found that the Alfvén
wave arises due to the excitation of fire-hose instability at the instant of the exit of the ion beam from the current
sheet to the high-latitude region of the far tail of the Earth’s magnetosphere. The longitudinal (along the mag-
netic field) and transverse sizes of a beamlet are estimated. It has been found that the beamlet is a dynamic
plasma structure whose longitudinal size is several hundred times larger than its transverse size. © 2004 MAIK
“Nauka/Interperiodica”.

PACS numbers: 94.30.Ej; 94.30.Gm
INTRODUCTION

The geomagnetic tail of the Earth’s magnetosphere
has attracted the attention of researches since its dis-
covery in the late 1960s as one of the complex and
interesting objects in space physics. It is formed on the
night side of the Earth due to the elongation of the mag-
netic field lines of the Earth by the solar wind plasma
flow, which moves continuously from the Sun (Fig. 1).
From the plasma physics point of view, the geomag-
netic tail is a vast self-consistent magneto-plasma con-
figuration (β ≈ 1), where energy coming in the mag-
netosphere from the solar wind is accumulated. This
energy is then released either explosively, causing mag-
netic substorms, or by small portions through the accel-
eration of particles. Charged particles entering the mag-
netosphere, predominantly from the ionosphere and
solar wind (primarily from the solar wind excluding
disturbed periods), are accelerated in the current sheet
of the magnetotail to very high velocities (about several
thousands of kilometers per second). The mystery of
such an unusually effective acceleration of the plasma
0021-3640/04/8010- $26.00 © 0663
in the Earth’s magnetotail has stimulated numerous the-
oretical and experimental investigations for several
decades. In the late 1980s, it was understood that the
ion acceleration in the current sheet must occur near the
separatrix separating the closed magnetic field lines
that intersect the current sheet, which are filled with the
hot plasma of the plasma sheet from the open field lines
of the high-latitude part of the tail (one of the ends of
the latter lines are connected with the ionosphere and
the other ends are in the solar wind) [1–3]. The ion
fluxes accelerated in the separatrix region, then, move
toward the Earth within a narrow region located along
the boundary separating the plasma sheet from the
comparatively empty (at least, without the hot plasma)
high-latitude region of the tail (Fig. 2). This transition
region separates the two half-spaces with the different
topologies of the magnetic field and different plasma
regimes; i.e., it is a near-separatrix layer, and it is called
the plasma sheet boundary layer (PSBL). Thus, the
PSBL, as a mirror, reflects the complex nonlinear accel-
eration processes that occur in the far tail and cannot be
2004 MAIK “Nauka/Interperiodica”
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Fig. 2. Trajectories of particles in the (X, Z) plane that move from the mantle source and interact with the current sheet. In the depen-
dence of the local conditions in the interaction region, particles can either undergo strong scattering and be captured within the cur-
rent sheet or leave the current sheet and move along the Speiser orbits toward the Earth. These particles form beamlets observed in
the plasma sheet boundary layer.

Fig. 1. Magnetosphere structure and the orbits of the Interball-1, Interball-2, and CLUSTER satellites.
measured in situ. Moreover, this region is a channel
through which energy released in the far regions of the
tail enters the inner magnetosphere. It was previously
thought that the source of the ion acceleration in the
current sheet is the large-scale reconnection described
by the well-known Petschek model; hence, the acceler-
ated plasma fluxes that are generated by it and then col-
limated in the PSBL should also be large-scale [4, 5]. In
view of this circumstance, it was also thought that the
appearance of the accelerated plasma fluxes at the
plasma sheet boundary was associated with the devel-
opment of substorms; i.e., the PSBL exists only during
active periods [6]. More recently, owing to numerous
observations carried out in the tail by the ISEE-1 and
ISEE-2 satellites, it has been understood that the PSBL
is a continuously existing part of the tail, because it is
observed during long quiet periods.

In many theoretical works [7, 8], it was shown that
the ions in the current sheet do not have smooth adia-
batic trajectories. They chaotically move along much
more complex nonadiabatic trajectories, because their
motion cannot be described by the leading center
approximation that is broken in this case. Such particles
can undergo strong stochastic scattering when inter-
secting the current sheet, and their motion sometimes
can be completely chaotic [9–11]. The behavior of a
particle after its interaction with the current sheet is
determined by the so-called adiabaticity parameter K =

, where Rcurv is the local curvature radius of
the magnetic field lines and ρmax is the maximum Lar-
mor radius of the particle.

In the dependence of the K value, particles can
either undergo strong scattering and be captured in the
current sheet or leave the current sheet, moving in the
PSBL along open (so-called Speiser) orbits (Fig. 2).
More recently, the analytical theory [10] was corrobo-
rated by the numerical simulation based on the large-

Rcurv/ρmax
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scale kinetic model of the ion motion in the current
sheet [12]. It was shown in [12] that the accelerated ion
fluxes moving in the PSBL are not large-scale struc-
tures and are rather a set of many spatially separated ion
beams whose velocity increases with the altitude of
their observation over the neutral sheet. These ion
beams were called beamlets. More recently, the numer-
ical simulation results were corroborated by numerous
experimental observations [13–16]. Thus, the complex
structure of the PSBL represents the nonlinear self-con-
sistent magneto-plasma configuration of the magneto-
tail, which is in stable equilibrium due to the balance
between the plasma inflow from the plasma mantle
source and the losses of particles due to their nonadia-
batic motion in the tail. The quasi-equilibrium oscilla-
tions of the system that arise due to the instantaneous
disbalancement between the inflow of particles and
their losses occur with a period of 1–5 min [17]. This
period corresponds to the characteristic time scales of
the observation of beamlets in the PSBL [13–15]. How-
ever, experimental evidence explaining the short time
of beamlet observations has not yet been obtained. In
other words, it is not clear whether beamlets are spatial
or temporal structures. In early works devoted to the
kinetic simulation of the processes of the nonadiabatic
acceleration of ions in the stationary model of the tail,
it was supposed that beamlets are spatially localized
long-lived structures [12]. In this case, the short obser-
vation time of beamlets is associated with the motion of
the plasma sheet boundary with respect to a satellite
(the so-called flapping of the plasma sheet). Owing to
this flapping, the satellite detects a beamlet only for a
short time. At the same time, the time of beamlet gen-
eration in the source can be limited to several minutes.
More recent works devoted to the simulation of the self-
consistent configuration of the geomagnetic tail [17,
18] show that the finite lifetime of the source can sig-
nificantly affect their observable manifestations.

The particles from transient plasma structures that
move toward the Earth in the PSBL must finally precip-
itate in the auroral zone. The remaining part of the
plasma is reflected from the regions of the strong mag-
netic field near the Earth, returns to the tail, and is later
isotropized (Fig. 2). Numerous investigations were
devoted to various structures observed at the plasma
sheet boundary in the auroral zone. Among such struc-
tures are primarily velocity dispersed ion structures
(VDISs) and time-dispersed ion structures (TDISs).
The former structures are typical spatial structures [19]
and are observed for several tens of minutes. The latter
structures are time-of-flight structures with a source
located in the equatorial plane comparatively close to
the Earth (7–40 RE, where RE is the Earth’s radius). The
appearance of these structures in the auroral zone is
usually associated with the development of a substorm
[20, 21]. There is one more mysterious and interesting
type of structure, the observation of which will be dis-
cussed in this work. We consider structures of this type
separately from the above structures, because they are
JETP LETTERS      Vol. 80      No. 10      2004
observed during absolutely quiet periods in contrast to
TDISs and they are short (no longer than several min-
utes) in contrast to VDISs and have no virtually internal
dispersion. It was shown in [22] that such undispersed
structures, which were detected near the high-latitude
boundary of the plasma sheet in the auroral zone, are
beamlets precipitating from the tail. In this work, we
perform a comparative statistical analysis of the dura-
tion of the beamlets observed in the tail and auroral
zone in the framework of the international multisatellite
project Interball. Moreover, we attempt to separate the
time and spacial effects in the observation of the beam-
lets. In addition, we present new data of observation of
beamlets by the satellites of the European project
CLUSTER. These satellites conduct measurements
simultaneously at four points spaced by distances of
about 2000 km. These latest data with high time resolu-
tion (compared to the Interball satellite measurements)
allow the determination of new properties of beamlets
that were unknown previously.

2. EXPERIMENTAL DATA

The Interball-1 satellite was launched on August 3,
1995, for studying the boundary layers of the Earth’s
magnetosphere, including the PSBL, which are very
important and interesting from the plasma physics
point of view. Owing to its orbit, the satellite was
present in the high-latitude regions of the tail and in the
PSBL for a long time. In this respect, the Interball-1
had an undeniable advantage for studying the PSBL
over other satellites performing measurements in the
tail. In each passage through the tail, the Interball-1 sat-
ellite intersected its high-latitude part, the PSBL, and
the plasma sheet (Fig. 1). In this work, we analyze 42
intersections of the PSBL by the Interball-1 satellite at
a distance of X ~ –25 RE. We use the data obtained with
the Russian instruments: the magnetic field obtained
with the MIF magnetometer and the plasma parameters
obtained by the CORALL ion spectrometer.

The measurements in the auroral zone were carried
out by the Interball-2 satellite. The plasma data were
obtained by the Russian–French ion spectrometer ION.
We analyzed 52 intersections of the high-latitude
boundary of the plasma sheet by the Interball-2 satellite
under quiet geomagnetic conditions at altitudes of
about 3 RE.

The project CLUSTER involving four satellites
(Fig. 1) started in summer 2000. Each year from July to
October, their orbits pass through the magnetotail and
intersect the plasma sheet from the north to the south.
During this period, the distances in this satellite quartet
vary from 1500 to 3000 km. In this work, we use the
measurements from the HIA (hot plasma analyzer) ion
spectrometer and the measurements of the magnetic
field from the FGM magnetometer with a resolution
of 4 s.
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3. EXPERIMENTAL OBSERVATION
OF BEAMLETS BY THE INTERBALL-1

AND INTERBALL-2 SATELLITES

3.1. Observations of Beamlets in the Magnetotail

On the spectrograms measured in the PSBL of the
magnetotail, beamlets are manifested as short bursts of
high-energy ions (with an energy of several tens of
keVs) with a duration of 1–2 min. Velocity dispersion
is not usually observed in an individual event. All the
observations of beamlets in the PSBL are accompanied
by a decrease in the magnetic field magnitude (diamag-
netic effect). The velocity distributions of the beamlets
have the shape of Peru beans [14, 23–25]. On spectro-
grams, they can be either isolated from the plasma sheet
or observed at the boundary with the plasma sheet.
Unfortunately, measurements conducted only at one
point are insufficient for definitely concluding whether
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Fig. 3. Beamlet observed by the Interball-1 satellite in the
high-latitude part of the magnetotail on November 25,
1996. The Interball-1 position: X = –28 RE, YGSM = 1.4 RE,
and ZGSM = 2.6 RE. The upper panel shows the characteris-
tic shape of the velocity distribution function of ions in the
beamlet as measured at the time marked by the arrow in the
upper part. The distribution function was measured for
2 min and is plotted in the system of the ion velocity com-
ponents V⊥  (km/s) and V|| (km/s) perpendicular and parallel
to the magnetic field, respectively. The lower panel shows
the ion spectrogram plotted in the time–energy (eV) system.
The count rate is shown by the gray tones according to the
scale shown in the right part of the figure. (From top to bot-
tom) The spectrogram measured by the detector faces the
tail (the arrow indicates the beamlet) the spectrogram mea-
sured by the detector faces the Sun and the time dependence
of the , , and BX magnetic field components.BZGSM

BYGSM
 beamlets are structures isolated from the plasma sheet
or they are connected with the plasma sheet and occur
at its boundary. Figure 3 shows a typical example of a
beamlet observed in the tail by the Interball-1 satellite.
The satellite flew from the high-latitude region toward
the plasma sheet. When the satellite was in the high-lat-
itude region (it is seen from the data on the magnetic
field that reaches a high value of 30 nT in this region),
on the spectrogram recorded by the detector faces
against the Sun, a short ion beam (beamlet) with an
energy of about 10 keV and a duration of about 1 min
is observed and it is accompanied by a local decrease in
the magnetic field magnitude. As seen in the distribu-
tion function, the beamlet moves to the Earth with high
velocity predominantly along the magnetic field.
Unfortunately, the CORALL instrument had a blind
angle along the rotation axis (Sun–Earth line). For this
reason, the distribution function has a gap in the angu-
lar sector corresponding to the velocity directed along
the magnetic field.
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Fig. 4. (Dashed lines) Beamlet observed by the Interball-2
satellite near the high-latitude boundary of the plasma sheet
in the auroral zone on August 26, 1997. The Interball-2
position: an invariant latitude of 73.5°, a radial distance
from the Earth of 2.65 RE, and a local time of 2.00. (From
top to bottom) The ion spectrogram in the time–energy sys-
tem and the electron spectrogram.
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3.2. Observation of Beamlets in the High-Latitude Part 
of the Auroral Zone

Figure 4 shows the Interball-2 observation of the
undispersed structure of precipitating ions in the
auroral zone near the high-latitude boundary of the
plasma sheet at 21:02–21:09 on August 26, 1997. The
duration of this event was equal to 7 min, which was
uniquely long for such a structure. This event was
observed under absolutely quiet geomagnetic condi-
tions. An interesting feature of such events is the simul-
taneous observation of comparatively cold electrons
(E ~ 300–400 eV), which noticeably differ from the
plasma sheet electrons, whose energies are usually
higher than 1 keV. This is one more piece of evidence
that the phenomena under consideration are observed in
the boundary layer beyond the plasma sheet. Such
events are the traces of beamlets precipitating in the
high-latitude region of the auroral zone from the mag-
netotail [22].

4. STATISTICAL ANALYSIS 
OF BEAMLETS OBSERVED IN THE TAIL

AND AURORAL REGION

The detection of the beamlet in only one point is
insufficient for separating the time and spatial effects
forming the resulting observable pattern; i.e., it is
impossible to estimate the actual duration and spatial
size of the beamlet. In addition, nothing can be said
about the spatial size of the region where beamlets are
located. Nevertheless, having extensive measurements,
one can attempt to solve these problems by statistical
methods. For the statistical analysis of the spatial distri-
butions of beamlets in the tail and in the high-latitude
part of the auroral zone, we first take intervals when the
Interball-1 and Interball-2 satellites intersect these
magnetosphere regions in the midnight sector (|YGSM| ≤
7 RE for the tail and 21.00 h < MLT < 03.00 h for the
auroral zone) and in the quiet geomagnetic intervals
(AE < 100 nT). We remember that the GSM coordinate
system includes the X axis directed to the Sun (along
the Earth–Sun line), the Z axis directed along the axis
of the Earth’s magnetic dipole, and Y axis complement-
ing the right-handed coordinate system (Fig. 1). As a
result, 42 intersections of the PSBL in the magnetotail
and 52 intersections of the high-latitude boundary of
the plasma sheet in the auroral zone were selected.

Figure 5 shows the spectrogram obtained by the
epoch-superposition method applied to all the selected
intersections of the PSBL in the tail. The spectrogram
is plotted in the ∆Z energy coordinates, where ∆Z is the
distance between the satellite and the plasma sheet
boundary (along the ZGSM direction). The plasma sheet
boundary was determined separately for each intersec-
tion of the PSBL according to the following criteria:
(i) ion temperature Ti > 1 keV and (ii) approximately
identical count rates in all five polar channels of the
CORALL instrument (the differences must be no more
JETP LETTERS      Vol. 80      No. 10      2004
than 30%). Thus determining the plasma sheet bound-
ary in each specific passage, we assign dZ = 0 to it. As
a result, the region dZ > 0 is the high-latitude part of the
tail and the region dZ < 0 is the inner part of the plasma
sheet. The spectrogram from the high-latitude region
clearly demonstrates beamlets moving from the tail.
Thus, the size of the region (along the ZGSM direction)
where beamlets are observed is statistically estimated
as 0.5 RE (or 0.5° of the invariant latitude).

A similar method was applied to the intersections of
the auroral zone by the Interball-2 satellite. According
to the auroral data, the latitude size of the region where
beamlets are observed is equal to about 0.8°. Thus, we
obtained similar results for the size of the beamlet
localization region in the tail and auroral zone of the
magnetosphere. Thus, we found that beamlets are
observed within a very narrow latitude region near the
plasma sheet boundary. As is seen in Fig. 5, the proba-
bility of their observation decreases when the distance
from the plasma sheet boundary increases.

Although we have data on the observation of beam-
lets at two points (in the tail and auroral zone), it is
unfortunately impossible to detect the same beamlet in
both regions of the magnetosphere and thereby to sep-
arate the time and spacial effects in its observation. The
only method that can be applied is the statistical com-
parison of the beamlet observation durations in the tail
and auroral zone. Figure 6 shows the probability of the
observation of beamlets in the (a) auroral zone and
(b) tail as a function of the event duration. It is seen that
the distributions in both magnetosphere regions are
similar to each other: the mean duration of the beamlet
observations in the tail and auroral zone is equal to
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about 1 min, and the distribution tail is well approxi-
mated by the power law F(τ) ~ τ–0.5, where τ is the
beamlet observation duration. We remind that the con-
ditions of the beamlet detection are different in the tail
and auroral zone: the velocities of the Interball-1 and
Interball-2 satellites, as well as the velocities of the
plasma convection, are different. The similarity of the
beamlet distributions in both cases seems to be evi-
dence that a time scale of 1–1.5 min is the actual dura-
tion of beamlets; i.e., it is the characteristic time of the
impulse acceleration of particles in the far tail. How-
ever, a contradiction with the absence of velocity dis-
persion in a beamlet arises in this case. According to the
experimental data, the spread of the longitudinal veloc-
ities of ions in the beamlet is equal to 200–500 km/s.
Nevertheless, all the ions are observed almost simulta-
neously near the Earth. If the acceleration source
worked in the impulse mode (i.e., the particles were
simultaneously accelerated to different energies) for the
absence of dispersion (at least, to within the time reso-
lution of the instrument), this source would be close to
the beamlet detection point (according to our estimates,
at a distance of no more than 4 RE). Otherwise, higher
energy ions would be observed noticeably earlier than
lower energy ions. Since both theory and experiment
indicate that beamlets are generated in the far regions of
the tail (at distances of about 100 RE from the Earth),
the absence of dispersion can be explained only by
assuming that the generation of beamlets is not instan-
taneous; i.e., the source operates at least for 10–15 min.
In this case, beamlets are spatial structures with a lim-
ited lifetime rather than purely temporal structures
(short-lived plasma bursts). Observations of beamlets
the CLUSTER satellites, which are presented in the
next section, corroborate this assumption.

Fig. 6. Probability of beamlet observation vs. event duration
for beamlets observed in the (a) auroral zone (Interball-2
satellite data) and (b) the tail (Interball-1 satellite data).

F(τ) F(τ)
5. OBSERVATION AND ANALYSIS
OF THE BEAMLET STRUCTURE 

USING CLUSTER SATELLITE DATA

5.1. CLUSTER Satellite Observations of Beamlets
in the Magnetotail

Figure 7 shows the beamlet observed on three
CLUSTER satellites (hereinafter, they are denoted as
Cl-1, Cl-3, Cl-4) on September 21, 2001. Unfortu-
nately, ion measurements are unavailable on the fourth
satellite (Cl-2). This event was observed under abso-
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the O+ ion spectrogram measured on the Cl-4 satellite, the
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spectrogram (without mass resolution) measured on the
Cl-3 satellite, and the ion spectrogram measured on the Cl-1
satellite. Lower panel: the position of the CLUSTER satel-
lites in the time interval under consideration (from top to
bottom, in the XYGSM, XZGSM, and YZGSM planes).
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lutely quiet geomagnetic conditions. In the ion spectro-
grams shown in Fig. 7, as well as in spectrograms
recorded on the Interball-1 satellite (Fig. 3), the beam-
let is observed for a short time, has an energy of about
10 keV, and velocity dispersion is virtually absent. Nev-
ertheless, simultaneous measurements at three points
reveal some features that cannot be observed from one
satellite (Interball-1). On the spectrogram obtained
from the CLUSTER satellites, it is clearly seen that the
beamlet is first observed on the Cl-3 and Cl-4 satellites
for 1.5 min (19:45:30–19:47). The third satellite Cl-1
does not observe the beamlet at that time. Then, the
Cl-1 satellite begins to observe the beamlet at 19:47:30,
whereas the Cl-3 and Cl-4 satellites cease to observe it.
Finally, the Cl-3 and Cl-4 satellites again begin to
observe the beamlet at 19:50, whereas it was not
observed on the Cl-1 satellite. Such features in the
beamlet observation indicate that it has complex geom-
etry, which will be explicitly analyzed in the next sec-
tion. Here, we point to one more phenomenon that is
associated with the origin of the beamlet and has not
been observed previously. On the spectrograms shown
in Fig. 7, it is clearly seen (particularly in the Cl-3 and
Cl-4 satellite data) that the energy of the cold plasma
increases (the lower part of the spectrograms) at the
instant of the beamlet’s pass and the energy of cold ions
is maximal at the beamlet boundary. The cold plasma
that is extracted from the ionosphere and fills the high-
latitude part of the tail is not usually observed by detec-
tors because its energy is lower than the sensitivity
threshold of the instruments. However, when some dis-
turbances, such as Alfvén waves, pass, this plasma can
be accelerated by the varying electric field associated
with the disturbance and it can become observable for
the detectors [26]. In this sense, an increase in the
velocity of the cold plasma can serve as a good indica-
tor of the motion of magnetic tubes occupied by beam-
let ions. We use this phenomenon in the next section
when analyzing the spatial structure of the beamlet.

5.2. Analysis of the Spatial Structure 
of the Beamlet

Let us consider the positions of the CLUSTER sat-
ellites in the time interval 19:40–20:00 under investiga-
tion (the lower panel in Fig. 7). The Cl-1 satellite is
always higher (along ZGSM) than the Cl-3 and Cl-4 sat-
ellites. Since the satellites in this case were in the north-
ern lobe of the tail, this means that the Cl-1 satellite was
farther from the plasma sheet than the Cl-3 and Cl-4
satellites were; the distance between the Cl-1 and Cl-3
satellites was equal to about 0.3 RE (the Cl-3 and Cl-4
satellites have virtually identical ZGSM coordinates).
Moreover, the satellites were separated along the YGSM
direction. The Cl-3 and Cl-4 satellites were maximally
separated in the X direction. Since their observations of
the beamlet are virtually identical, one can assume that
the longitudinal size of the beamlet (along the X direc-
tion) is much larger than the distance between the sat-
JETP LETTERS      Vol. 80      No. 10      2004
ellites (>0.4 RE). Thus, the observed beamlet is spatially
localized (i.e., its size is smaller than the distances
between the satellites) along the directions YGSM and/or
ZGSM. In order to involve the fourth measurement point
(Cl-2 satellite), we use the magnetic field measure-
ments that are available on all four satellites. It turns out
that the variations in the magnetic field components
observed on the Cl-2, Cl-3, and Cl-4 satellites are sim-
ilar to each other, whereas they are different on the Cl-1
satellite. One may assume that the beamlet and the cor-
responding disturbance of the magnetic field first pass
through the Cl-2, Cl-3, and Cl-4 satellites and then
approach the Cl-1 satellite. Introducing a new coordi-
nate system X 'Y'Z', where the X' axis is directed along
the unperturbed magnetic field lines of the high-latitude
part of the magnetotail, the Y' axis passes through the
Cl-2, Cl-3, and Cl-4 satellites, and the Z' axis comple-
ments the right-handed triple, we plot the hodograph of
the magnetic field in the Y'Z' plane for the time interval
corresponding to the beamlet observation (Fig. 8). The
hodographs are virtually symmetric in the Y'Z' plane for
all four satellites, and the variation in the magnetic field
is maximal along the Y' direction. Moreover, the varia-
tions in the magnetic field component BY ' and the veloc-
ity component VY ' of the cold plasma (which was men-
tioned in the preceding section) occur synchronously
and are maximal at the beamlet boundary. Let the
beamlet be coupled with a magnetic disturbance prop-
agating toward the Earth with a velocity of Vprop along
the magnetic field lines (along the X' axis of our coordi-
nate system, Fig. 9). Owing to the freezing of the mag-

Fig. 8. Magnetic field hodographs plotted in the BY '–BZ '
coordinates for the time interval 19:44–19:54. The circles
are the times of the beamlet observation (observation of par-
ticles with energies higher than 5 keV).
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netic field to the cold component of the plasma, varia-
tions in the magnetic field (which, as was shown above,
occur primarily along the Y' direction) must be directly
related to changes in the velocity V⊥ Y ' of the cold
plasma. The relation between BY ' and V⊥ Y ' makes it pos-
sible to determine the disturbance propagation velocity
along the magnetic field as

(1)

(see Fig. 9). Thus, the velocity Vprop is equal to the slope
of the plot of the Cl-1, Cl-3, and Cl-4 satellite data in
the coordinates BY ' /BX ' and V⊥ Y '. The velocity of the dis-
turbance propagation was equal to 570 km/s, and the
Alfvén velocity calculated from a magnetic field mag-
nitude of |B| = 31 nT and a plasma density of nH+ =
nO+ = 0.06 cm–3, which were observed at that time, was
equal to VA = 640 km/s. These two velocities are close
to each other. Therefore, one may assume that the dis-
turbance coupled with the beamlet is an Alfvén wave
propagating toward the Earth.

Knowing the disturbance propagation velocity
along the magnetic field (along the X' axis), one can
transform the time variations to spatial variations as

 = tiVprop (where ti is the times when the beamlet was
observed) and study the beamlet geometry. Figure 10
shows the projections of the magnetic field onto the
(X'Y') plane that were measured in the time interval
19:44–19:54. This time interval was transformed to
spatial coordinates X', where X' = 0 corresponds to the
beginning of the analyzed time interval (19:44). The
magnetic field projections measured on the Cl-1, Cl-3,
and Cl-4 satellites are shown by the gray tones corre-

Vprop
V ⊥ Y'

BY'/BX'
----------------=

Xi'

Fig. 9. Scheme of the magnetic field disturbance (snake)
coupled with the beamlet in the (X'Y') plane. The condition
of freezing of the magnetic field to the cold plasma provides
a formula for determining the disturbance propagation
velocity Vprop along the unperturbed magnetic field direc-
tion in terms of the measured cold-plasma velocity compo-
nent V⊥ Y ' and the magnetic field components BY ' and BX '.

tan θ

tan θ
sponding to the density of high-energy ions (E > 5 keV)
according to the scale shown in the right part of the fig-
ure. Thus, it is seen on which magnetic field lines the
beamlet is located and which magnetic field lines are
empty (these lines are shown by the dashed lines).
Since the Cl-2 satellite did not perform plasma mea-
surements and we could not directly indicate the beam-
let localization by the gray tone, to determine the beam-
let structure, we used additional data on the time depen-
dence of the magnetic field magnitude and the total flux
of electrons with energies 0.1–1 keV, which were avail-
able from all four satellites. Moreover, to correctly
reconstruct the beamlet geometry, we take the distances
between the CLUSTER satellites in the Y' direction
equal to the values that were in the indicated time inter-
val. Thus, Fig. 10 is an instantaneous “photograph” of
the beamlet. This figure clearly shows that the beamlet
is a “snake” propagating in the X'Y' plane. The width of
this snake in the Y' direction is as small as 0.25 RE,
whereas the length of the beamlet structure in the
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Fig. 10. Instantaneous “photograph” of the spatial structure
of the beamlet (in the X'Y' projection). The spatial scale X'
(in RE) in the lower panel corresponds to the time scale in
the upper panel. The upper panel: the time dependence of
the magnetic field magnitude |B| (in nT) according to the
data from four CLUSTER satellites (the satellite numbers
are indicated on the right). The closed rectangles are the
periods of decreasing |B| (diamagnetic effect), which are
initiated by the passage of high-energy ions (beamlet)
through the corresponding satellite. The lower panel: the
projections of the magnetic field in the (X'Y') plane as mea-
sured on four CLUSTER satellites. For the Cl-1, Cl-3, and
Cl-4 satellites (on which the plasma measurements are
available), the magnetic field projections are shown by the
gray tones corresponding to the density of ions with ener-
gies above 5 keV (beamlet) according to the scale shown in
the right part of the figure. With the use of the data on the
beamlet density and on the time dependence of |B|, the pro-
jections of the magnetic field lines that contain beamlet ions
and sequentially pass through all four CLUSTER satellites
are plotted by the solid lines.
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X' direction is no less than 25 RE. Unfortunately, this
event provides no information on the beamlet size in the
Z' direction. As seen in Fig. 10, good agreement
between the magnetic field projections in the time inter-
val 19:46–19:48 was observed only for the Cl-2, Cl-3,
and Cl-4 satellites (through which common magnetic
field lines can be drawn) and only these satellites
detected the beamlet in this time interval (the Cl-1 sat-
ellite did not detect the beamlet, because this satellite
was located higher in Z'). However, in the time interval
19:48–19:51, the magnetic field projections measured
on all four satellites agreed well with each other: the
magnetic field lines containing the beamlet sequentially
pass through all four satellites. This means that the field
tubes containing the beamlet rose up to the Cl-1 level
and the size of the beamlet in the Z' direction exceeds
the distance between the satellites, i.e., is larger than
0.3 RE.

Thus, the beamlet is a plasma structure that is elon-
gated along the magnetic field and whose longitudinal
size is larger than its transverse size by a factor of sev-
eral tens. This experimentally determined fact finally
corroborates the fact that beamlets are generated in the
spatially localized regions of the current sheet of the
magnetotail. Therefore, they are manifestations not of
the large-scale reconnection but of local acceleration
sources acting in various parts of the far current sheet.

A new interesting feature of the beamlet is its bend-
ing. Since a beamlet is a beam of fast ions (in the case
under consideration, the velocity of the ions along the
magnetic field was equal to about 800 km/s) with a pro-
nounced temperature anisotropy (T|| @ T⊥ ), at the time
of the ejection of the beamlet from the current sheet to
the high-latitude region of the tail, fire-hose instability
is developed in the beam and gives rise to the bend of
the magnetic field lines along which the beamlet prop-
agates, i.e., to the excitation of the Alfvén wave. Indeed,
fire-hose instability arises under the condition p|| – p⊥  >

/4π, where p|| and p⊥  are the plasma pressures
along and across the magnetic field, respectively, and
Blobe is the magnetic field magnitude where the ion
beam propagates. Since beamlets are generated in far
regions of the magnetotail (at distances of about 100 RE
from the Earth), where the high-latitude magnetic field
Blobe is quite weak (Blobe ~ 5–8 nT), the condition of fire-
hose instability is easily satisfied. Indeed, in the exam-
ple under consideration, the plasma density in the
beamlet is equal to n = 0.05 cm–3 and the longitudinal
and transverse temperatures are equal to T|| = 8 keV and
T⊥  = 20 eV, respectively. Therefore, p|| = 0.064 nPa,

p⊥  = 0.00016 nPa (p|| – p⊥  = 0.063 nPa), and /4π =

0.05 nPa (for Blobe = 8 nT); i.e., (p|| – p⊥ )/( /4π) ≈
1.5 > 1.0. Thus, when the beamlet enters the high-lati-
tude region of the tail, fire-hose instability arises in the
tail and generates the Alfvén wave, which propagates in
the X'Y' plane. As known from magnetohydrodynamics,

Blobe
2

Blobe
2

Blobe
2
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the plasma is hydrodynamically stable if the magnetic
field increases with the distance from the plasma
boundary [27]. Magnetic field gradients can stabilize
the development of fire-hose instability. In this sense,
one can expect that unstable magnetic disturbances will
be polarized in the XY plane, because the gradients of
all the parameters of the plasma and magnetic field
across the tail (in the ZGSM direction) are at least two
orders of magnitude higher than those in the morning–
evening direction are (i.e., along the YGSM direction).
Thus, the basic component of the Alfvén disturbance
must be directed along the YGSM direction, as was
observed in the experiments.

Thus, the CLUSTER multisatellite measurements
revealed a new feature of beamlets that was not
detected previously. The excitation of the fire-hose
instability on the magnetic field lines along which the
beamlet propagates makes it possible to experimentally
estimate at least the lower bound of the distance from
the Earth to the source of its generation (using the max-
imum value Blobe for which the instability criterion can
still be satisfied). In particular, the instability condition
is still satisfied for Blobe = 8 nT in the example under
consideration. According to the magnetic field mea-
surements made by the Geotail satellite in the far tail,
this field value is observed at distances ≥80 RE [28].

Thus, according to the CLUSTER multipoint mea-
surements, beamlets are spatial structures. The short
time of their observation (1–2 min) is attributed to the
motion of the beamlet with respect to the satellite, and
such motion is possible not only in the vertical plane
(the flapping of the plasma sheet along the Z axis) but
also in the horizontal plane (along the Y axis) due to the
bending of force tubes along which beamlet particles
move. The close times of the detection of beamlets
observed in the tail and auroral zone (Fig. 6) does not
contradict this statement. This can be proved as fol-
lows.

Indeed, the beamlet observation time is ∆t = L/V⊥ ,
where L is the transverse size of the beamlet and V⊥  is
the velocity of the magnetic tubes filled with beamlet
ions across the magnetic field. According to Eq. (1), the
transverse velocity of the tubes is related to the longitu-
dinal velocity of the disturbance propagation (Alfvén
velocity) as

(2)

where VA is the Alfvén velocity, n is the plasma density,
mi is the mass of ions (predominantly H+), and B⊥  is the
magnetic field component that is perpendicular to the
unperturbed magnetic field B and arises upon passing
the beamlet. Let S1 and S2, B1 and B2, and B1⊥  and B2⊥
be the section areas, unperturbed magnetic fields, and
perpendicular components of the magnetic field in the
tail and auroral zone, respectively. Then, from the con-

V ⊥
VAB⊥

B
-------------

B⊥

nmi

-------------,≈=
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dition of the conservation of the energy flux of the wave
connected with the beamlet, we obtain the condition

(3)

The magnetic flux conservation condition yields

(4)

Therefore,

(5)

Let ∆t1 and ∆t2 be the time interval of the beamlet
observation in the tail and auroral zone, respectively.
We verify whether these time intervals can be close, as
was experimentally found in the preceding section
under the assumption that the beamlet is a spatial struc-
ture. Using Eqs. (2)–(5), we obtain

Since the magnetic field is equal to B1 ~ 30 nT and B2 ~
300 nT in the high-latitude part of the tail and auroral
zone, respectively, and the respective plasma densities
are equal to n1 ~ 0.2 cm–3 and n2 ~ 20 cm–3, the ratio of
the time intervals of the beamlet observation is equal to
∆t1/∆t2 ≈ 1.0; i.e., the beamlet observation durations in
both regions of the magnetosphere are indeed very

B1⊥
2 S1 B2⊥

2 S2.=

B1S1 B2S2.=

B1⊥ /B2⊥ B1/B2.=

∆t1

∆t2
-------

S1/V1⊥

S2/V2⊥

--------------------
B2

B1
-----

n1

n2
-----.= =

Fig. 11. Scenario of the generation of beamlets in the cur-
rent sheet of the Earth’s magnetotail. For the processes of
the transformation and dissipation of energy, the current
sheet is not homogeneous, but it is space consisting of inter-
mittent (shaded ovals) regions of intense ion dissipation and
(open ovals) sites of the resonant acceleration of the plasma.
The distribution of these regions is not stationary. It contin-
uously changes: in various parts of the current sheet, new
regions of the resonant acceleration of beamlets flash or old
such regions decay. The magnetosphere regions are (I) the
mantle, (II) high-latitude part of the tail, (III) plasma sheet
boundary layer, and (IV) the plasma sheet.
close to each other due to the composition of the phys-
ical parameters. Thus, the statistical result presented in
the preceding section does not contradict the new
understanding of the beamlet as a spatial structure with
which the Alfvén wave propagating toward the Earth is
connected.

6. CONCLUSIONS

The available satellite measurements have sufficient
time resolution to ensure in situ analysis of a fundamen-
tally important physical phenomenon—the dissipation
of the magnetic energy through localized short-time
plasma injections as bursts. It is important that the mag-
netic field energy is transformed in this case not only to
the chaotic heating of solar wind ions but also to the
ordered (kinetic) energy of ion beams. This phenome-
non has analogues in the solar atmosphere. As was
shown by Parker [29] and other researchers, small-scale
nanoflares, in which the basic energy heats the corona
to millions of degrees, are the most important compo-
nent of solar activity. Our conclusions concerning the
nanoflares in the Earth’s magnetotail are as follows.

(i) High-velocity ion beams (beamlets) are observed
in the PSBL of the magnetotail and near the high-lati-
tude boundary of the plasma sheet in the auroral zone
as short plasma bursts, which are usually dispersionless
and have energies of several tens of keVs and durations
of 1–2 min.

(ii) Both in the tail and in the auroral zone, beamlets
are localized near the plasma sheet boundary in a region
with a latitude size of 0.5°–0.8°.

(iii) A beamlet is a spatial structure that is connected
with an Alfvén wave propagating toward the Earth and
exists for 10–15 min. Analysis of simultaneous obser-
vations of the beamlet at several points provides an esti-
mate of its spatial sizes. The beamlet is elongated along
the magnetic field: its longitudinal size (several tens of
the Earth’s radii) is much larger than the transverse size
(no more than one Earth’s radius). This is one more
piece of evidence that beamlets are generated in the
spatially localized regions of the current sheet of the
magnetotail.

(iv) The multisatellite observations show that the
beamlet is not a straight-line structure extended along
the magnetic field (as was supposed previously) but has
a snake shape formed due to the development of fire-
hose instability, which arises when the beamlet leaves
the current sheet at the site of its generation in the far
tail of the magnetosphere. Using the maximum value of
the magnetic field for which the fire-hose instability
condition is still satisfied, one can estimate the lower
bound of the distance from the Earth to the beamlet
source. For the case under consideration, this distance
exceeds ~80 RE.

On the whole, our results corroborate the model of
the nonadiabatic acceleration of the plasma that leads to
the generation of beamlets during transient processes
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SPATIAL–TEMPORAL ION STRUCTURES IN THE EARTH’S MAGNETOTAIL 673
sporadically occurring in various regions of the tail
even under the quietest conditions. Such short-lived
fast ion beams (beamlets) need not necessarily be asso-
ciated with reconnection (i.e., with the change of the Bz

sign in the current sheet). A pure nonadiabatic mecha-
nism is possible in regions with a weak quasi-stationary
magnetic field Bz > 0. If reconnection is a source of
beamlets, it must certainly be localized in space. Such
properties of reconnection occurring in the magnetotail
have been actively discussed for the last decade [30–
33]. In any case, the pattern of the transformation and
dissipation of energy in the hot plasma of the magneto-
tail is associated with multisite (intermittent) events
(Fig. 11) that flash in various parts of the current sheet
[34, 35]. Such a pattern is very far from the recently
dominating concepts of the globality and quasi-station-
arity of such processes.
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