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Abstract—This paper reports on a study of the specific features of photo- and thermostimulated exoelectronic
emission in amorphous metal alloys of Fez,Co,1B15 composition. The temperature dependences of the exoel ec-
tronic emission spectrum were established to adequately reflect the two-stage nature of the transition of an
amorphous aloy to the crystalline state. The exoelectronic emission spectrum is sensitive to variations in the
thermal treatment to which the alloy is subjected. Thermal treatment of an amorphous metal alloy givesriseto
an increase in the exoelectron emission intensity. The growth in the exoelectron emission intensity was found
to be the highest for alloysin theinitial stage of crystallization. © 2001 MAIK “ Nauka/Interperiodica” .

Photo- and thermostimulated exoelectronic emis-
sion (PTSEE) is one of the most sensitive methods of
reliable identification of the initial stages in the struc-
tural modification of a solid undergoing a phase transi-
tion [1, 2]. The small escape depth of exoelectrons
makes the PTSEE method sensitive even to very slight
changes in the surface structure of a solid. Although
many aspects of the mechanisms of PTSEE in solidsare
presently well understood, information on its features
upon the transition of a solid from a structurally disor-
dered to an ordered state is scarce. Amorphous metal
aloys (AMAS) are the most convenient model subjects
for studying this transition [3, 4]. This paper investi-
gates various features of PTSEE in AMAs of
Fe;,Co,,B5 composition obtained through rapid
guenching from melt that have considerable application
potentia [5, 6].

To properly understand the mechanisms underlying
the PTSEE in the samples under study and to correctly
interpret the results obtained, measurement of the exo-
electronic emission spectra should be complemented
by simultaneous study of the AMA structure using
other appropriate methods. Therefore, spectral studies
of the PTSEE wererunin parallel with x-ray diffracto-
metry and differential thermal analysis (DTA) of the
structure, as well as with monitoring the variation in
electrical resistance in the course of phase transforma-
tionsin the solid sample.

The PTSEE was studied on samples 25-30 um thick
and 10 mm wide. In the initial stage, the alloys were
diffractometrically amorphous. The samples were
heated in achamber in avacuum of 10~ Pa. Photostim-
ulation was effected by an optical arrangement based
on a MUM-4 monochromator. The wavelength of the
exciting radiation was chosen equal to 310 nm. The
sample temperature could be varied from 290 to

1000 K. The PTSEE spectrawere measured at constant
heating rates ranging from 5 to 60 K/min. The DTA was
carried out in air on a Paulik derivatograph at constant
heating rates ranging from 2 to 20 K/min. The crystal-
line phases formed during alloy heating were analyzed
with FeK, radiation on a DRON-3.0 diffractometer.
The variation of the sample resistance under heating
was monitored with a digital voltmeter using a four-
point method with simultaneous PTSEE spectral mea-
surements.

For the chosen photostimulation conditions and
constant heating rates ranging from 5 to 20-25 K/min,
the temperature dependences of the PTSEE response
exhibited two characteristic peaks. The first peak
obtained on the Fe;,Co,,B ;5 aloy at these heating rates
ispositionedin thetemperaturerangefrom 670to 820K
the second peak, in the range from 850 to 900 K. Figure
1 displays the characteristic dependence of the ratio of
the exoelectronic emission photocurrent | to its maxi-
mum value |, on the heating rate for the alloy under
study. The position of the second peak corresponds to
the onset of anirreversibledropin alloy electrical resis-
tance, which, after heating of the samples to 1000 K
and subsequent cooling to room temperature, decreases
by afactor of 2 to 2.5. The drop in electrical resistance
during heating from 800 to 850 K indicatestheirrevers-
ibility of the crystalization process taking place
throughout the alloy volume [7].

The presence of two maxima in the temperature
response of the PTSEE may be connected with differ-
ent crystallization stages of the alloys under study. As
follows from x-ray diffraction measurements, the first
maximum in the PTSEE response is due to the forma-
tion of the a-Fe, a-Co, and 3-Co crystalline phases[4].
The second maximum in the PTSEE response corre-
spondsto the completion of the a-Fecrystallization and
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Fig. 1. Temperature dependences of (1) theratio of the exo-
€lectron emission photocurrent | to its maximum value |

and (2) the reduced electrical resistance of an FegyC0,1B15
amorphous metal alloy.

to the formation of new phases, namely, iron and cobalt
compounds with other components (Fe,B, Fe;B, CoB).
The DTA data for the Fe;,Co,,B5 aloy exhibit four
exothermic peaks at 653, 753, 853, and 973 K, appear-
ing asthe alloy isheated to 1000 K. Thefirst two peaks
can be assigned to the crystallization of the alloy, and
the last two are shown by thermogravimetric measure-
mentsto be due to oxidation processes occurring on the
sample surface [4].

As the heating rate is increased, the temperature
interval between the two maxima in the PTSEE
response of the aloys under study decreases until, at
heating rates above 60 K/min, the two maxima merge
(Fig. 2). This permits one to conclude that the tempera-
ture interval separating the two stages of alloy crystal-
lization becomes narrower for sample heating a a
higher constant rate.

An interesting feature in the PTSEE of the
Fe;,Co,,B;5 dloy is that repeated heating (within the
temperature range studied) of samples in which the
crystallization has cometo an end does not produce any
maxima in the PTSEE curves. This suggests that the
structure of the alloy under study has practically com-
pletely changed in the given temperature range, with no
noticeable structural changes occurring during a
repeated heating run.

The PTSEE data were used to estimate the activa-
tion energy of exoelectronic emission under the
assumption that the intensity of the escaping exoelec-
tron flux is proportiona to the rate of variation of the
emitting-center concentration. The exoelectron emis-
sion activation energy was estimated using chemical
kinetic equations [8]. The calculations yield 1-1.5 eV
for the activation energy of our alloy in thefirst crystal-
lization stage and 2.6—3.0 eV for the second stage. The
experiment shows the reaction to be first-order, which
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Fig. 2. Temperature dependences of theratio of the exoelec-
tron emission photocurrent | to its maximum value |5, for
an Feg,Co,1B 15 aloy obtained at various constant heating
rates: (1) 5, (2) 10, (3) 15, (4) 20, (5) 40, and (6) 60 K/min.

agrees with the results of investigating AMA crystalli-
zation obtained in [3].

To find how the PTSEE features are related to the
crystallization processes, we measured PTSEE spectra
of the alloys at a constant heating rate at positions both
below and above the position of thefirst peak and stud-
ied the temperature dependence of the PTSEE intensity
under various sample heating conditions (Fig. 3). The
PTSEE intensity of the alloy samples subjected to iso-
thermal treatment at a temperature below the position
of the first peak increases. If we assume that when the
heating time is increased the PTSEE intensity is deter-

I % 10*, counts/s

1 1
673 873
T,.K
Fig. 3. Kinetic and isothermal dependences of the PTSEE
spectra of an FegyCo,1B45 alloy: (1) for a sample heated
from 29310 623K at arate of 20 K/min and (2, 3) under iso-
thermal sample treatment at 623 and 823 K, respectively.
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mined by the rate of crystallization, this intensity, as
follows from the rate equation for afirst-order reaction,
should decrease at afixed temperature. The experimen-
tally observed growth in the PTSEE intensity with
increasing isothermal heating time is characteristic of
topochemical reactions [9]. The rate of atopochemical
reaction first increases with increasing isothermal heat-
ing time because of the initial growth of crystal nuclei
and subsequently decreases when the nuclei start to
coalesce.

To better understand the specific features of exo-
electronic emission in the aloys under study, we mea-
sured the PTSEE response as a function of the wave-
length of stimulating radiation both before thermal
treatment of the Fe;,Co,,B 5 aloy and after it. The ther-
mal treatment was carried out in the following regimes:

(1) The sample was heated in vacuum to atempera-
ture of 970 K, which is in considerable excess of its
crystallization temperature. After subseguent cooling to
room temperature, the PTSEE spectrum was measured
as a function of the stimulating radiation wavelength
(Fig. 4).

(2) The sample was heated in vacuum to 690 K,
which corresponds to theinitial stage of alloy crystalli-
zation; it was then cooled to room temperature. After
cooling, the PTSEE response was measured as a func-
tion of the stimulating radiation wavelength (Fig. 5).

(3) The alloy was subjected to isothermal heating in
ar at 470K for 100 and 200 h, after which it was cooled
to room temperature. Asin thefirst two cases, aPTSEE
spectrum was obtained after sample cooling (Fig. 5). In
al three cases, after thermal treatment, the samples
were maintained isothermally at room temperature for
24 h and then a PTSEE spectrum was again measured.

After thermal treatment of the alloy, the exoelectron
emission intensity increased in comparison to that for
the original sample throughout the radiation wave-
length range studied, irrespective of the actual treat-
ment conditions chosen. The growth in the exoelectron
emission intensity was larger, the longer the aloy iso-
thermal heating time. The increase in the exoelectron
emission intensity induced by the thermal treatment
wasthe largest in the second regime, i.e., after the alloy
passed through theinitial crystallization stage. After the
sample had been kept at room temperature for 24 h, the
exoelectron emission intensity decreased, irrespective
of thethermal treatment regime it had been subjected to.

These results can be interpreted as follows. The
growth in the exoelectron emission intensity is caused
by a change in the alloy surface work function. It may
be conjectured that the change in the exoelectron work
function observed in the first two regimes of the alloy
thermal treatment can be caused by the increased inter-
nal stresses due to crystalization in the sample. A
decrease in the exoel ectron work function with increas-
ing internal stressesin a metal was observed earlier in
[1]. The growth in the exoelectron emission intensity
after isothermal treatment at 470 K in air may be caused
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Fig. 4. Spectral response of the exoelectron emission pho-
tocurrent | of an FegyCo,1B45 aloy: (1) starting sample and

(2) a sample subjected to thermal treatment in vacuum at
970 K.
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Fig. 5. Spectral response of the exoelectron emission pho-
tocurrent | of an FegyCo,1B15 dloy: (1) starting sample;
(2) a sample subjected to thermal treatment in vacuum at
690 K; (3) a sample subjected to further isothermal treat-
ment at room temperature for 24 h; and (4, 5) samples sub-
jected to isothermal treatment at 473 K in air for 100 and
200 h, respectively.

by surface oxidation. When a sample is kept at room
temperature, the internal stresses created in the course
of crystallization relax and, as a conseguence, the
PTSEE intensity decreases. The change AE in the exo-
electron work function can be estimated from the rela-
tion

AE = (KCINZ)AN,

wherecisthevelocity of light and A, isthe mean wave-
length of the stimulating radiation at the same exoelec-
tron emission intensity for the original and thermally
treated samples. When a Fe;,Co,,B,5 sample is heated
to 970 K at A,, = 300 nm, the change A\ is equal to
20 nm, which correspondsto adecreasein E of 0.25 eV

2001



2208

as compared to the value for the untreated sample.
Heatingto 690K for A, =280 nm reduces E by 0.60 eV,
and isothermal treatment in air at 470 K for 200 h
reduces E by 0.20 eV.

The above studies permit the following conclusions
to be drawn on the PTSEE in the Fey,Co,B,5 amor-
phous metal alloy observed to occur upon itstransition
to the crystalline state:

(1) The temperature dependences of the PTSEE
response reflect a two-stage pattern in the structural
changes taking place in the heated AMA sample under
study. These stagesare most clearly defined at |ow sam-
ple heating rates. By analyzing the PTSEE spectrum,
one can determine the activation energy for each crys-
tallization stage.

(2) The PTSEE spectrum isvery sensitive to isother-
mal treatment temperatures and variationsin the AMA
heating regimes. At the same time, repeated heating of
samples that have already crystallized, within the tem-
perature range studied, and changing the heating
regimes does not produce any peaksin the temperature
dependences of the exoelectron emission intensity.

(3) Therma treatment of the AMAs studied
increases the exoelectron emission intensity, which is
associated with the structural changes that the AMASs
undergo in this treatment. The PTSEE intensity
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increase is the largest for the AMAS that went through
theinitial crystallization stage.
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Abstract—Direct evidence of the existence of broken Abrikosov vortices is obtained from measurements of
the distribution and values of residual magnetic fieldsin ceramic yttrium HTSC samples after the switching off
of atransport current. In this case, the intergrain magnetic induction averaged over the sample volume has the
same direction as the field that was in the sample before the current was switched off. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

The critical current | in type Il superconductors is
determined by the pinning of quantized vortices; in
ceramic HTSC samples, it also depends on the magni-
tude of the intergrain magnetic induction B, [1]. It was
reported in [2] that after switching off of a transport
current, the magnetic field in weak bonds was in the
opposite direction to the field produced by the current;
that is, inversion of the sign takes place for the B; distri-
bution. As aresult, when repeatedly measured, the crit-
ical current I, had a higher value. In [3], theincreasein
| isexplained by the fact that the process of penetration
of the Josephson vortex rings into the samples is
affected by the remanent circular magnetic fields Hggy
that are created by the stray fields of the broken Abri-
kosov vortices. In order to document the existence of
broken Abrikosov vortices, we investigated the field
Hrem a@nd its distribution outside ceramic yttrium
HTSC samples.

2. EXPERIMENT AND DISCUSSION

We investigated HTSC ceramic samples of
Y Ba,Cu;0,, whose superconducting properties were
studied earlier [3].

To produce a circular transverse magnetic field H,,
an electric current |, was passed through samples kept
at room temperature. The samples were cooledto T =
77 K in this field, after which the current I, was
switched off and the distribution of the remanent mag-

netic field Hpgy Was measured outside the samples
(which were kept in liquid nitrogen) using a standard
magnetometer [4]. The sensitivity of the measuring sys-
temwas 0.01 Oe. It was established that thefield H, did
not change during the transition from the normal to the
superconducting state; that is, the field distribution out-
side the HTSC samples coincided with that predicted

for a superconducting cylinder with a current flowing
near the surface [5].

Figure 1 presents the distribution of the circular

magnetic field Hpgy in the cross-sectional plane

recorded outside a cylindrical yttrium HTSC sample
4.5 mm in diameter and 35 mm in length after switch-
ing off of the current |, = 10 A; this current was passed
perpendicular to the plane of the figure. The critical
temperature of the samplewas T, 090 K, and the criti-
cal current was |, = 5.89 A at 77 K. The magnetic field
of the Earth was not screened. The measurements were
taken at discrete pointsin angular ¢ = 30° intervals. A
Hall cell (the crystal dimensions were 1.5 x 2 mm) was
placed near the cylindrical sample surface. The sample

Fig. 1. Experimental distribution of the parallel and perpen-
dicular components of the residua circular magnetic field
outside a cylindrical sample (crosshatched) after switching
off of the current I;.
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Fig. 2. Experimental distribution of the parallel and perpen-
dicular components of the circular residual magnetic field
outside a sample with a square cross section after switching
off of the current .

wasin avertical position. Thefield valuesand itsdistri-
bution remained almost unchanged over the sample
height. The measurements revealed no magnetic-field
component parallel to the axis of the cylindrical sam-
ple. No residual magnetic field was detected at the cyl-

inder end faces. Figure 2 shows the Has,, field distri-

bution in the cross section of a sample with cross-sec-
tional dimensions 5 x 5 mm 35 mm in length. The
measurements were taken under the same conditions as
for the cylindrical sample.

As can be seen from Figs. 1 and 2, the H3%,, field
distribution issimilar to thefield distribution for amag-

net, with § Hegydl =0, for any closed contour L pass-

ing outside the sampleif | = 0. The results obtained are
evidence in favor of the suggestion [3] that the
increased values of the repeatedly measured critical
current are due to the circular transverse magnetic field

HLQEM [3] created by the intrinsic magnetic field H; of

the current and remains in the sample after the current
I, is switched off.

The capturing of a circular magnetic field by a
ceramic HTSC sample can occur asfollows. If asuper-
conductor in the normal state carries a direct current,
the circulation of the circular magnetic field H; of the
current | is equal to [6]

fHdl = (amo)t,
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wherel = $JdS; isthefull current flowing through the

cross section §, enclosed by loop L, c isthe velocity of
light in vacuum, and J is the current density. After the
current | is switched off, the field H; = 0. In ceramic
HTSC samples, the field H; behaves in a completely
different way. When the sample passes over to the
superconducting state, the configuration of thiscircular
field has the form of rings that are formed from quan-
tized magnetic Abrikosov vortices [3]. The unbroken
vortex rings penetrate the grains, intergrain bonds, and
nonhomogeneities. After the current I, is switched off at
77 K, the vortex rings are pinned within the grainsinto
which they had already penetrated at T O T,, when the
lower critical magnetic field for the grainswas H, 4 10.
Since the magnetic field H, of an unbroken vortex tor-
oid is completely inside the vortex [7], it cannot be
detected outside the superconductor. The field will
appear outside the superconductor if vortices are bro-
ken. In ordinary low-temperature superconductors, the
vortices are attracted to nonhomogeneities with aforce
f, equal to the energy gradient. For a nonhomogeneity

with diameter d, we have[8] f,~ Hi &d, whereH_ isthe
thermodynamic critical magnetic field and & is the
coherence length. This forceis large: it is equal to the
Lorentz force that acts on the vortex when the current
passing through the sample is comparable with the crit-
ical current at which a Cooper pair is broken [8]. From
the relation E,/E, = 3/T@In[A (0)/&(0)] derived in [9],
one can estimate the energy gain for a pure supercon-
ductor at T = 0, where the sum E; + E; is equal to the
vortex energy E per unit length. Here, the term E, =
(D/41\)?INn(A /) allows for the change in the energy
of electronsin amagnetic field and their kinetic energy
(superconduction current) and E; = (H522/8n) is the
energy necessary to transfer electrons from the super-
conducting to the normal state inside the vortex core;
that is, it is equal to the condensation energy. In this
case, ®, = hc/2e is the magnetic flux quantum, h is
Planck’s constant, c is the velocity of light in vacuum,
e is the electron charge, A, is the London penetration
depth of a magnetic field, A (0) isthe London depth of
the magnetic field penetration at T = 0, and &y(0) isthe
coherence length for a pure superconductor at T = 0. If
a vortex passes through a cavity of dimensionsd = &,
then the excess energy E; is absent. The total energy E,
of such avortex is less than the energy E for a vortex
that does not cross a cavity. For YBa,Cu;0,, in which
the Ginzburg—Landau parameter is Kk = A /¢ 150, we
have E,/E, ~ 8%. In the ceramic yttrium HTSCs under
study, there are alot of honsuperconducting inclusions
even with dimensions d > A, [10]. In this case, putting
AL O50¢, we find that the energy gainis even higher for
vortices crossing such inclusions. Being attracted to
pores and nonsuperconducting inclusions and crossing
them, the vortex rings break. The magnetic fields H,,
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inside the vortices dissipate in the regions of the ring
breakage. The corresponding lines of magnetic induc-
tion remain continuous but are curved in acomplicated
way. These lines of the stray magnetic field, being
trapped within the intergrain space outside the pinned
vortex parts, penetrate to a depth A, into the grains and
partially go out of the sample.

The conclusion that the vortex lines are broken by
nonhomogeneities is supported by the following three
arguments. First, the conditions under which this
occurs, as well as the fact that in ceramic HTSCs there
are broken vortex lines which consist of vortex seg-
ments separated from each other by nonhomogeneities,
were established by analyzing the operation of dc
superconducting thin-film transformers [11]. In these
transformers, when the width of the insulating layer
between the primary and secondary filmsislarger than
AL, the magnetic coupling between the vortices present
in these films is broken. The vortices created by the
same field in the primary and secondary films move
independently, diding with respect to each other; that
is, the vortex lines are broken. Second, the vortex lines
are singular lines in the velocity distribution of Cooper
pairs rotating around a certain axis. A vortex line is
characterized by a quantized value of circulation of the

velocity v, of superconducting electrons CvsdI =

Tkh/m (k = 1) [8] along the closed path C enclosing
their rotation axis (m is the mass of superconducting
electrons). This means[12] that the vortex lineis either
closed or terminates at the boundary between the super-
conducting region and a nonsuperconducting nonho-
mogeneity, being continuous in the pure superconduct-
ing region. Finally, third, aswas noted in [8], the vortex
section that is attracted to a nonhomogeneity disap-
pears, because it and its virtual image annihilate each
other; that is, the vortex breaks.

In a broken vortex ring, the axial lines of the mag-
netic induction H,, as well as those near them, remain
the same as in the unbroken one. The distinction from
the unbroken ring isin that there is no rotation of Coo-
per pairs in the nonsuperconducting inclusions and the
magnetic induction lines can deviate from one another.
The broken vortex rings take a fine-saw-like form due
to the chaotic distribution of nonhomogeneities in the
ceramic HTSC samples.

The configuration of the magnetic field of the sam-
ples with a rectangular cross section (Fig. 2) suggests
that broken vortex rings are also present in this case.
The possible existence of vortex rings in samples of
such geometry was discussed in [13].

In order to verify the mechanism of creation of
residual magnetic fields considered above, we per-
formed a model experiment in which cylindrical mag-
nets 0.035 m in diameter and 0.01 m in height were
used as broken vortex lines. The magnetic field strength
at the end faceswas 500 Oe. Twenty such magnetswere
vertically mounted on a horizontal nonmagnetic disk
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Fig. 3. Hall cell response U asafunction of the disk rotation
angle .

0.22 m in diameter. The disk was attached to a rod
joined to areducing gear of an electric motor. Magnets
of alternating polarity were arranged in a circle of
radius 0.1 m at an equal distance from one another. A
Hall cell with a magnetic sensitivity of 135 uV/T,
placed at a certain distance from the disk edge, was
used to determine the distribution of the circular mag-
netic field produced by the magnets in the disk plane.
For this purpose, the electric motor was switched on
and the disk was rotated dowly and uniformly. Figure 3
presents the Hall cell response (ordinate) as a function
of the disk rotation angle. The Hall cell was placed at a
distance of 0.235 m from the disk center. Figure 3 pre-
sents, in fact, the distribution of the circular magnetic
field recorded by the Hall cell over arotation period of
the disk. The result obtained is analogous to that pre-
sented in Fig. 1, thereby verifying the suggestion that
the residual circular magnetic fields are produced by
broken quantized vorticesin the ceramic yttrium HTSC
samples. The circulation of the magnetic field in the
model experiment was equal to zero irrespective of the
distance of the Hall cell from the disk edge and regard-
less of the fact that the form of the distribution and the
magnetic field magnitude were changed. When the Hall
cell was placed near the disk edge, the signal value ver-
susthe disk rotation angle curve displayed maximaand
minima and went through zero values. When the Hall
cell was placed far from the disk edge, the number of
maxima and minima decreased until the curve took the
form shown in Fig. 3. Further increase in the distance
between the Hall cell and the disk edge resulted in a
decrease in the signal amplitude and in the conversion
of the curve into a straight line.

3. CONCLUSIONS

out

Thus, the field Hyg, detected outside the ceramic
HTSC samplesis shown to be produced by broken vor-
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tices. Inside the sample, the averaged magnetic flux
remains in a net of weak bonds; its value ® < n®, has
the same sign as the flux of the unbroken vortex rings.
Here, nisthe number of broken vortex ringsin the sam-

ple. The field Hpgy isweak, which suggests that only
an insignificant part of the magnetic field H, inside the
broken vortices dissipates and that most of this field
remains in the sample.

Therefore, after the transport current is switched off
in the sample, no inversion of the B; sign occurs in the
intergrain space. This follows from Stock’s theorem
and is supported by the character of the distribution of
the residual magnetic field outside the sample, which is
presented in Figs. 1 and 2.
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Abstract—This paper reports on aself-consistent, full-potential LM TO calculation of the band structure of the
medium-T, superconductor MgB, and of theisostructural hexagonal phases of CaGay, ZrBe,, HfBe,, AgB,, and
AuB,. The factors responsible for the superconducting properties of magnesium diboride are considered. The
results obtained are compared with previous calculations and available experimental data. © 2001 MAIK

“ Nauka/lInterperiodica” .

1. INTRODUCTION

The discovery of superconductivity in magnesium
diboride [1] has focused considerable attention on its
electronic structure. MgB, was the first compound
found to occupy an intermediate place between low-
and high-temperature superconductors in the magni-
tude of its T, (~40 K). To stress this point, MgB, is
referred to in the current literature as a medium-T,
superconductor (MTSC). An important feature of
MgB, is its quasi-two-dimensiona structure (AIB,-

type, space group Déh—PGImmm), which consists of

hexagonal Mg layers and plane graphitelike boron net-
works stacked in the order...MgBMgB... [2-6].

Asshownin studieson theisotope effect [ 7], tunnel-
ing [8], photoelectron [9], and vibrational spectroscopy
[10], aswell as on the band structure [11-17] and from
phonon spectrum [18-20] calculations, the supercon-
ductivity in MgB, should be associated with strong
electron—phonon coupling, the relatively high density
of electronic states of the 2D-like o(p, ,) boron bands
at the Fermi level [N(Eg)] and the existence of p, , hole
states at the I" point in the Brillouin zone (BZ).

The above assumptionsformed abasisfor analyzing
the superconducting characteristics of some solid solu-
tions based on the MTSC phase (which were obtained
by incorporating various electron or hole dopants into
the magnesium or boron sublattices[14-17]), aswell as
of a number of related AIB,-like stable and metastable
diborides of Na, Li [13, 17], Be [14], Ca[16], and Al
[15-17]. The band structure of 3d (Sc, Ti,..., Mn), 4d
(Y, Zr,..., Ru), and 5d (La, Hf,..., Os) meta diborides
was studied in [21, 22].

More than a hundred binary compounds with an
AlIB,-type structure are presently known. In addition to

the above diborides, this group contains various MX,
phases, where Be, Si, Ga, Hg, Zn, Cd, Al, Cu, Ag, and
Au can act as X elements forming graphitelike net-
works [2, 4]. The crystal structure parameters (the c/a
ratio) of these phases vary within a wide range from
0.59 to 1.22. Because the main part in the electron—
phonon interactions in the MgB, MTSC is played by
the electronic and hole states and vibrational modes of
boron atoms (in the networks) [18-20], it becomes
obvious that possible nonboride analogs of MgB,
should include light sp atoms as X elements.

We carried out a comparative analysis of the band
structure of the MgB, MTSC (c/a = 1.142) and of the
isostructural MX, phases where the graphitelike net-
works are formed of beryllium and gallium, namely,
ZrBe,, HfBe, (c/a = 0.85-0.84), and CaGa, (c/a =
1.00). Moreover, we considered the hypothetical
diborides of Ag and Au. Although their existence (in
equilibrium conditions) is questionable [2-6], these
metals (as well as Cu), when added to MgB,, may act
as hole dopants. Theradii of Agand Au (1.13-1.37) are
markedly larger than that of Mg?* (0.74 A); i.e., their
incorporation into magnesium diboride is expected to
increase the unit-cell volume and soften the phonon
modes. Both above factors are considered [12-17] con-
ducive to the possible improvement of the MTSC char-
acteristics of MgB..

2. MODEL AND METHOD OF CALCULATION

Boron atomsin MgB, occupy the central positionin
Mg trigonal prisms, which share faces to form a three-
dimensional arrangement [2-6]. The coordination
numbers and coordination polyhedra of the Mg atoms
are 20 and [MgB;,Mgg], and those of the boron atoms

1063-7834/01/4312-2213%21.00 © 2001 MAIK “Nauka/Interperiodica’
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Table 1. Structural parameters of hexagonal MX, phases

Phase a c c/a X=X M—-X \/

MgB, 3.084 3.522 1.142 1.781 2.504 29.010
CaGa, 4.320 4,320 1.000 2.494 3.299 69.820
AgB, 3.000 3.240 1.080 1.732 2.372 25.253
AuB, 3.134 3.513 1.121 1.809 2.522 29.882
ZrBe, 3.820 3.250 0.850 2.205 2.739 27.878
HfBe, 3.788 3.168 0.836 2.187 2.700 27.177

Note: The |attice parameters a, ¢, c/a and the closest X—X and M—X atomic distances are given in A, and the unit-cell volume V is given

in AS[2-6].

Table 2. Total density of states at the Fermi level N(E) and the contributions of individual states (states/eV per unit cell) in

hexagonal MX, phases

N(Er)
Phase

total Ms Mp Md Mf Xs Xp Xd
MgB, 0.719 0.040 0.083 0.138 - 0.007 0.448 -
CaGay 1.486 0.028 0.177 0.696 - 0.012 0.546 0.027
AgB, 2.000 0.032 0.066 0.570 - 0.057 1.333 -
AuB, 2.153 0.144 0.068 0.655 - 0.069 1.258 -
ZrBe, 1.680 0.002 0.112 1.091 - 0.002 0.473 -
HfBe, 1.660 0.004 0.118 1.011 0.025 0.003 0.499 -

are9 and [BMggB,], respectively. The atom positionsin
the unit cell are as follows: the 1Mg(a) atom is at
(0,0,0) and the 2B(d) atoms are at (1/3,2/3,1/2) and
(2/3,1/3,1/2). The unit-cell parameters of MgB, and of
the isostructural MX, phases (CaGa,, ZrBe,, HfBe,,
AgB,, AuB,) aregivenin Table 1. Their band structure
was calculated using the self-consistent, full-potential,
linear, muffin-tin orbital method (FLMTO) [23, 24] in
terms of the density-functional theory with inclusion of
relativistic effects in accordance with the scheme in
[25] with the exchange correlation potential proposed
in[26].

The atomic interactions in MX, were also analyzed
using the tight-binding method in Hiickel parametriza-
tion, which was used to estimate the crystal-orbital
overlap population (a counterpart of the occupation
(index) of pair atomic bonds that is well known in the
guantum chemistry of molecules [27]).

3. DISCUSSION OF RESULTS

The results of the caculations made for MgB,,
CaGa,, ZrBe,, HfBe,, AgB,, and AuB, are presented in
Figs. 1 and 2 and Table 2. We shall discuss them in
comparison with the band structure of the MTSC
MgB..

PHYSICS OF THE SOLID STATE Vol. 43

3.1. Magnesium Diboride

The energy bands and density-of-states functions of
MgB, are displayed in Figs. 1 and 2. The valence-band
energy spectrum of MgB, is seen to derive primarily
from the B 2p states, which form two distinct groups of
energy bands of the o(2p, ,) and Ti(p,) types with essen-
tially different dispersion relations E(K).

The dispersion E(K) of the B 2p, , bandsisthe larg-
est in the k, , (T—K) direction. These bands reflect the
boron-state distribution in the graphitelike network
planes, are of the 2D type, and form plane sections in
the k, (T-A) direction. The B 2p, , bands contribute to
the valence-band density of states (DOS) and form a
resonant DOS peak (~2 eV below Eg, Fig. 2) associated
with the van Hove singularity (VHS) at the M point of
the BZ. These bands contribute noticeably to N(Eg) and
are responsible for the meta-like properties of the
diboride. The B 2p, , bands within the '-A section lie
above Er and form cylindrical elements of the hole-type
Fermi surface.

The B 2p,like states are responsible for the weak
interlayer coupling. These (3D-type) bands have maxi-
mum dispersion inthek, (F-A) direction. The B sstates
are admixed to the B 2p-like bands near the valence
band edge and in the conduction band (Fig. 2). A simi-
lar band structure was also obtained in other calcula-
tions[11-17] and can account for the MTSC properties
of MgB, (for more details, see [11-13]).
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Fig. 1. Energy bands of MgB,, CaGay, AgB,, AuB,, ZrBe,, and HfBe,.

Thus, the band spectrum of the MTSC MgB,, hasthe
following characteristic elements related to its super-
conducting properties and to the intra- and interlayer
interactions: (1) the position of the degenerate 2D-like
o(py, y) bandsrelativeto the BZ I" point (the presence of
hole states); (2) the energy splitting between the bond-
ing and antibonding o(p, ,) bands (dependent on the
intralayer B—B interactions); (3) the r-band dispersion
in the '-A direction and the energy position of the
crossing of the bonding and antibonding B 2pz bands
(at the K point of the BZ; dependent on the interlayer
Mg-B coupling); (4) the position of the VHSs of the
quasi-two-dimensional ¢ bands relative to the Fermi
level; and (5) the total density of states at the Fermi
level and its partial composition. The above features of

PHYSICS OF THE SOLID STATE Vol. 43 No. 12

the band structure will be analyzed in the discussion of
the other AlB,-like phases.

3.2. CaGa,

Theenergy bands of thisphase (Fig. 1, seeaso [28])
differ strongly from those of the MTSC MgB,. The
o(py,y) and 1(p,) bands of the calcium gallide cross at
the BZ I' point and lie below Er. The o holes are
present in low concentration near the A point. As a
result, the topologies of the Fermi surface of MgB, and
CaGa, are different: the cylinders (for MgB,, inthe M-
A direction [11, 12]) degenerate into cones in CaGa,.
Note that a similar structure of the o(p, ,) bands was
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Fig. 2. Total (1) and local (11, 111) densities of states of (a) MgB,, (b) CaGay, (c) AgB,, and (d) ZrBe,. For each MX, phase, one can

find the density-of-states contributions of (11) M atoms: (1) s, (2) p, (3) d; and (l11) X atoms: (1) s, (2) p, (3) d.
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obtained for isoelectronic and isostructural BeB,
[15,16], which isnhot an MTSC [29].

The intra- (Ga—Ga) and interlayer (Ga—Ca) interac-
tions in CaGa, are weaker than the respective interac-
tions in MgB,. This is seen from the decrease in both
the splitting between the bonding and antibonding
o(py, y) bands and in the dispersion of the thand (in the
F—A direction). The VHS of the o band is shifted
toward Eg, which may be dueto the increasing unit-cell
volume [V(CaGa,)/V(MgB,) = 2.4]. Similar shiftswere
shown to exist [14] for hypothetical CaB, and in model
calculations of magnesium diboride with an extended
lattice [17]. The main contribution to the density of
states at the Fermi level (~61%) comes from the cal-
cium states.

3.3. ZrBe, and HfBe,

The structure of the valence band top of the beryl-
lides is determined by the strong hybrid coupling
between the (Zr, Hf) d and (Be) sp states (Figs. 1, 2).
The Be o bands exhibit noticeable dispersion in the '—
A direction, and there are no hole states. The spectra of
the Zr and Hf beryllides are similar (in the pattern of
distribution of the energy bands, their composition, and
filling) to those for the isostructural (and isoelectronic)
diborides of ScandY [14, 16]. The latter are known to
exhibit no superconductivity downto T < 1.4 K [4].

3.4. AgB, and AuB,

The energy bands of these hypothetical diborides
are the closest (among the phases considered here) to
those of the MTSC MgB, (Fig. 1). The main differ-
ences in them are associated with the substantially
smaller dispersion of the g and Tthands. The latter fea-
ture [as well as the lower energy position of the cross-
ing point of the bonding and antibonding B 2p, bands
(at the K point of the BZ)] implies extremely weak
interlayer coupling and is, apparently, one of the factors
of instability (under normal conditions) of these
diborides. On the other hand, the existence of aband of
filled (Ag, Au) d states brings about an energy separa-
tion between the o bands and the upper of them
becomes localized near E¢ (Figs. 1, 2). This entails a
sharp increase (about threefold compared to MgB,) in
the density of B 2p states at the Fermi level (Table 2).
Thisfeature may be considered as conducive to the for-
mation of superconducting propertiesin diborides.

In conclusion, consider the other bonding types (X—
X, M=X, and M-M) using the crystal-orbital overlap
population numbers (Table 3). For MgB,, the in-plane
B-B interactionsin the graphitelike networks are dom-
inant. This is in agreement with the calculated bond
energies [30] (Eyoq FLMTO calculation using the
method from [21]), which indicates a dominant contri-
bution from the B-B interactions [B-B (68%), B-Mg
(23%), and Mg—-Mg (9%)] to the total cohesion energy

PHYSICS OF THE SOLID STATE Vol. 43 No. 12
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Table 3. Crystal-orbital overlap populations of individual
bonds in hexagonal MX, phases calculated using the tight-
binding method (el ectron/bond)*

Phase XX M-X M-M
MgB, 0.742 0.053 —0.009
CaGay 0.734 0.039 —0.002
AuB, 0.292 0.030 0.022
ZrBe, 0.241 0.102 0.039

* 12-atom M4Xg supercells were used in the calculations.

in MgB,. A similar bonding type is also characteristic
of CaGa, (Table 3).

A radicaly different bonding system is realized in
beryllides, where interactions of al types (e.g., for
ZrBe,, the Zr—Zr, Zr—Be, and Be-Be bonds) are compa-
rablein strength (Table 2). Finally, similar calculations
made for the hypothetical diborides of Ag and Au per-
mit oneto relate their instability both to the decreasein
the M-B interlayer coupling (relative to MgB,) and to
the strong weakening of the B-B bonds in the net-
works. This undersaturation of the B-B bonds is
accounted for by the substantially smaller electron den-
sity transfer from (Ag, Au) to B compared to the
Mg — B transfer in magnesium diboride.

4. CONCLUSIONS

Thus, our calculations show that the band structure
of the nonboride AlB,-like phases, which involve sp
elements making up graphitelike networks, differs
strongly from that of MgB.; therefore, a search for new
MT SC phases among the former compounds (aswell as
among the d metal diborides, see [14, 16]) does not
hold obvious promise. The main MTSC candidates
among the AIB,-like structures are probably the
diborides of Group | and Il elements, their solid solu-
tions, or superstructures. As follows from calculations
of the hypothetical Ag and Au diborides, the presence
of these elements, e.g., asimpurities (or in atomic lay-
ers) in solid solutions (or superstructures), can modify
the MTSC properties of the magnesium diboride
through an increase in the density of states at the Fermi
level of the system.
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Abstract—A model for describing hopping thermopower is proposed. Within the model, the majority and com-
pensating impurities form a simple cubic lattice in a crystal matrix. The thermopower associated with hole
(electron) hopping over hydrogen-likeimpuritiesis cal culated with inclusion of their excited states. The results
of calculations are compared with available experimental data on the low-temperature thermopower of Ge : Ga
and the specific heat of Si : P in the dielectric region of the insulator—-metal transition. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

The differential thermopower a is equal to the ratio
of the potential differenceto the temperature difference
across two points of a semiconductor sample when
measured without loading. In the case when a higher
electric potential corresponds to a lower temperature,
the thermopower a is positive. In the short-circuit
mode, the thermoelectric current inside a semiconduc-
tor flows from a hot point to a cold point; i.e, it is
caused by the migration of positively charged particles
[1-4].

The thermopower due to hopping transfer of elec-
trons (holes) over hydrogen-like impurities in covalent
crystalline semiconductors [5-9] has been less well
understood compared to the thermopower associated
with the hopping motion of small-radius polaronsin the
lattice of ionic crystals and glasses containing transi-
tion metal ions [10-14]. This can be explained in part
by the fact that hopping conduction in crystaline semi-
conductorsoccursover shalow-level impurities(Ge: Ga)
at liquid-helium temperatures [8] and only over deep-
level impurities (InP : Mn) at liquid-nitrogen tempera-
tures[15].

In the case when a lattice site of an ionic crystal is
occupied by one electron, the thermopower associated
with hopping transfer of small-radius polarons is
defined as[10, 11]

kg — U
o EIBEET- Ls s

where kg isthe Boltzmann constant, g is the magnitude
of the elementary charge, C = n/N; is the ratio of the
number n, of polarons to the number N; of lattice sites
per unit volume, S° is the vibrational entropy corre-
sponding to the ions surrounding a polaron (a crysta

lattice site with atrapped electron), 3 isthe degeneracy
factor including the orbital and spin degeneracy of the

polaron, § = kgIn[B(1 — C)/C] is the configurational

entropy, and §° + S is the entropy carried by the
polaron.

Note that, for the most part, relationship (1) ade-
quately describes experimental data on the ther-
mopower of polarons in glasses [13] at moderate tem-
peratures. In the subsequent treatment, this relationship
will be used only in order to establish an analogy
between the thermopower of polarons and the ther-
mopower caused by charge carrier hopping over impu-
rities in covalent semiconductors when the thermal
energy ks T exceeds the width W of the impurity energy
band.

In many cases, it can be stated that the models
describing incoherent hopping of small-radius polarons
over lattice sitesinionic crystalsare similar to those for
hopping of electrons and holes over impurities (point
lattice defects) in covalent crystals. In particular,
Heikes [10] and Tuller and Nowick [11] assumed that
incoherent migration of small-radius polarons over
crystal lattice sites requires the formation of abarrier to
hopping, i.e., the equalization of the energies of atomic
configurations surrounding an electron between two
lattice sites. In our recent work [16], the same assump-
tion was used as the basis for calculating the hopping
electrical conduction through hydrogen-like impurities
forming a simple cubic lattice in a temperature-homo-
geneous (isothermal) crystal.

The aim of the present work was to generalize the
model describing the hopping transfer of electrons
(holes) over impurity lattice sites [16] to the case of
covalent crystalline semiconductors with due regard for
the temperature gradient, excited states, and finite
degree of compensation of the impurity energy band.

1063-7834/01/4312-2219$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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2. HOPPING CURRENT IN THE PRESENCE
OF A TEMPERATURE GRADIENT

For definiteness, we consider the hopping of holes
over hydrogen-like acceptors that can occur only in the
charge states 0 and —1. Compensating donors are com-
pletely ionized (i.e., they reside in a charge state +1)
and do not participate in hopping conduction. The vol-
ume concentration of the majority dopant impurity is
designated as N.

Let us assume that acceptors with the concentration
N = N, + N_; and donors with the concentration KN
form a simple cubic lattice with the translation period

=[(1 + K)N]3 in a crystal matrix. Here, K is the
degree of compensation (0 < K < 1). Inthis case, accep-
tors and donors occupy lattice sites in a random man-
ner. Hence, each of the impurity atoms has six nearest
neighbors (the first coordination sphere of the impurity
lattice). The crystal matrix is treated as a continuous
medium with the permittivity € = €&, where g, is the
permittivity of free space. The electroneutrality equa-
tion for the impurity lattice and matrix has the form
N_; = KN.

Now, we suppose that an external source produces a
temperature gradient along the OX axis (the higher tem-
peratures correspond to larger x) in a homogeneous
crystal sample. In turn, this induces a thermoelectric
field with the strength E; = —d¢/dx, where ¢(X) is the
electric potential along the OX axis.

The orientation of the coordinate system is chosen
in such a way that the edge of a cubic unit cell in the
impurity latticeisaligned parallel to the OX axis(i.e., it
is parald to the temperature gradient). Moreover, we
assume that hole hopping occurs only between the
nearest acceptors. This implies that the length of hole
hopping from an acceptor in the charge state O to an
acceptor in the charge state—1 isequal to R,

For the impurity lattice, the average probability that
a neutral acceptor occupies an arbitrary site with the
coordinate x is defined as fNy(X)/N and the average
probability that an ionized acceptor is located at an
arbitrary site with the coordinate (x + R,) is given by
fNy(X + R,)/N. Here, f = 1/(1 + K) isthe correlation fac-
tor (the fraction of dopant atoms located at sites of the
impurity lattice). Similarly, the probability that the
nearest neighbor of a neutral acceptor (in the charge
state 0) with the coordinate x + R, isan ionized acceptor
(in the charge state —1) with the coordinate x is equal to
fN_;(X)/N. The surface concentrations of neutral accep-
tors in the impurity lattice planes, which are perpen-
dicular to the OX axis and pass through sites with the
coordinates x and x + R;, are defined as R,Ny(X) and
R.No(X + Ry,), respectively.

The temperature gradient and the induced thermo-
electric field bring about a change in the concentration
of acceptorsin the charge states 0 and —1 and a change
in the frequency of hole hoppings along the OX axis.
The difference between the mean number of holes hop-
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ping over acceptors along the OX axis and in the oppo-
site direction determines the hopping current density
‘]0, = Jh! that iS,

AD)

‘1(X F(x; x+R,)

Jy = qR,f [ o(X) =
@

—No(X+Ry) _l( )

F(x+Ry; X)}

where N (x; x+ R) and ' (X + R,;; X) are the average fre-
guencies (dependent on the coordinate x and the dis-
tance R, between sites of the impurity lattice) of hole
hoppings along the OX axis and in the opposite direc-
tion, respectively, and Ny(X) + N_;(X) = N.

In the absence of a temperature gradient, we have
the equilibrium frequencies of hole hoppings in both
directions, '(x; x + R)) =I'(x + R,; X) = I',,/2, and the
concentration of neutral acceptors Ny(X) = Ny(X + Ry),
so that the current density J,, is equal to zero.

For a weak thermoelectric field, we can write the
following relationships:

No(X + Ry)) = No(X) + R,dNg(x)/dx,
N_; (X + R,) = N_;(x) + R, dN_;(x)/dx,
MNx+ Ry X)-T(x; x+R,) =R,dl/dx.

It followsfrom expression (2) that, in the linear approx-
imation, the current density of holes hopping from
acceptorsin the charge state 0 to acceptorsin the charge
state —1 is represented by the formula

2dl d Nofj
RS D“dx'nEN_lﬂ]

where N,,(X) = Ng(X)N_1(X)/N is the effective concentra-

J, = aN, [ (3

tion of holes hopping between acceptors, Dy, = f Rﬁ /2
is the diffusion coefficient of holes in the impurity lat-
tice, and dJ,,/dx = 0.

Expression (3) can be transformed taking into
account that the frequency of hole hoppings I' and the
concentration of neutral acceptors N, = N — N_; are
functions of the electric potential ¢(x), the Fermi level
Ex(X), and the temperature T(x) and that they depend on
the coordinate x only through these quantities. We
choose ¢ and T asindependent variablesfor I',i.e, I =
(¢, T),and Ecand T for Ny, i.e., No(Eg, T). Asaresult,
we obtain

_ @Md¢ , prpdT

T [heUdx  CaTUdx’ @
dN, _ _dN , _ (ONgidE; | (PNgydT
dx dx ~ OEddx " 03T Ddx”

Here, the energy barriers to the migration of holes over
acceptors are taken to be independent of the tempera-
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ture gradient responsible for the phonon and hole fluxes
inthe crystal.

Upon substitution of relationships (4) into expres-
sion (3), we obtain the thermoel ectric current density

_ Odp Do , NordEe
Jy = QNthB—-&—mﬁlnN—_—lD—ax—
®)

_bngo |\ No, 20rdT D

M, OT "N, T,0T0dx o

where M, = fRﬁ or/o¢ > 0 isthe drift mobility of holes
hopping over acceptors.

It should be noted that the parameters of the crystal,
impurity atoms, and hopping holes in formula (5) are
calculated under the assumption of a local thermody-
namic equilibrium.

For an isothermal sample (dT/dx = 0) in an external
eectric field E = —d¢/dx, relationship (5) can be recast
into the following expression for the dc density of holes
hopping over acceptors [16]:

Jp = Jo1

— d N0|:| _ dNo
- th[MhE—Dh&anN—_p} = 0,E-aDyg Y,

where o, = gN,M;, = gK(1 — K)NM,, isthe hopping elec-
trical conductivity.

3. THERMOPOWER OF HOLES HOPPING
OVER HYDROGEN-LIKE ACCEPTORS

Let us examine alightly doped semiconductor with
a classic impurity band in the case when the energy
spread of impurity levelsis considerably larger than the
quantum resonant broadening of these levels[6]. Asan
example, we consider crystalline p-Ge with the concen-
tration of gallium atoms N = 3 x 10% cm= and the
degree of their compensation K = 0.35 in the tempera-
turerange T = 0-10 K. At K = 0.35, the gallium concen-
tration in germanium N, which corresponds to the

insulator—metal transition, is equal to 1.85 x 10" cm™
[17].

It is assumed that the density of distribution of
acceptor energy levels E, in the band gap of the crystal
can be described by the Gaussian [18]:

1 i (Ea_Ea)ZE|
= exp ], 6
g W./21t pm 2W2 O ©

where E, > 0 is the average thermal ionization energy

(reckoned from the valence band top of the undoped
crystal) of a neutral acceptor and W is the root-mean-
square fluctuation of the ionization energy of the neu-
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tral acceptor (the energy of affinity of a valence band
hole with respect to a negatively charged acceptor).

According to the model proposed in [16], the effec-
tive width W of the acceptor band with inclusion of the
Coulomb interaction of an ionized acceptor with ions
involved in the first and second coordination spheres of
the impurity lattice can be written as

2 172
_ g 4240 0 13
W = ame Ol KO [(L+K)N] ™. @)

Note that the inclusion of the interaction between
each of the acceptors in the charge state —1 and ions
involved only in the first coordination sphere of asim-
ple cubic impurity lattice leads to an effective width W
that is smaller than the width determined from formula

(7) by afactor of /2.

We will first analyze the thermopower of holes hop-
ping in the acceptor band at low temperatures when
only the ground states of neutral acceptors are realized
and then, at high temperatures, taking into account the
excited states of these acceptors.

(A) For an isothermal crystal, the electroneutrality
equation with allowance made for the distribution of
ionization energies of neutral acceptor ground states
[seerelationship (6)] hasthe form

+o00

N, = NJ’gf_ldEa = Nf, = N(1-f,) = KN, (8)

where f,=1—f, = {1 + B; exp[(Er — E)/KsT]} is
the probability that an acceptor with an ionization
energy E, > 0 occursin aneutra charge state (i.e., itis
filled with a hole), E- > 0 is the Fermi level reckoned
from the valence band top (in the band gap of a p-type
crystal), B, is the degeneracy factor of an energy level

(Ba=4forGe: Ga), f_; =NL/N=(1- fy)=Kisthe
average (over the impurity lattice) probability that a
randomly chosen acceptor is ionized, and kgT is the
thermal energy.

The average ionization energy Ea of the neutral

acceptor without regard for the shift and the distribution
of energy states of the valence band top in the crystal is
represented by the relationship [19]

oy __ 30
Ea = la 16Te( A+ R,)’ ®)

Here, 1, is the ionization energy of a single (isolated)
acceptor, R, = [(1 + K)N]™3 is the minimum distance
between ionsin theimpurity lattice, and A isthe screen-
ing length (radius) of an electrostatic field of an ion
[20]:
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+o00

2 _g°K(1-K)N

2 _ ON _
AT = SkBTIgfof_ldEa_ e8 kT (20)

According to [16, 20], the increase in the parameter

+o00 -1

= K(l—K){Igfof_ldEa} >1 (12)

—00

gDy,
kg TM,,

&h =

with anincrease in the amplitude of electrostatic poten-
tia fluctuations W reflects the fact that the hopping
mobility My, of holes decreases more rapidly compared
to their diffusion coefficient Dy,. Thisisexplained by the
fact that the actual tragjectory of a hole diffusing over
acceptors, on average, passes through lower barriers as
compared to the barriersthat are produced by an exter-
nal electric field and are responsible for the drift mobil-
ity M,, of thishole (cf. theinterpretation of the diffusion
of atomsin disordered systems[21]).

Now, we assume that the energy location of the cen-

ter of the acceptor band E, with respect to the valence

band top does not depend on the temperature and can be
determined using formulas (9)—(11) in the case of a
broad acceptor band (W > kgT). Then, the screening

length squared can be written as A% =
eW./2Ttexp(nd/(g2N) [20], where n is determined
from the electroneutrality equation (8) intheform 2K =
1+ erf(n).

Since, in the linear transfer theory [1-4], the quanti-
ties outside the sign of differentiation with respect to x
are treated as equilibrium parameters (independent of
X), it follows from relationships (8) and (11) that

Dy o Nopg _ 1
. aEF n N I (12)

Hence, expression (5) with due regard for relation-
ship (12) takes the form

_ Dd [EF dTdl
‘Jh - Ep ¢|:| athD, (13)
where a,, is the differential thermopower of holes hop-
ping over acceptors.

From formulas (13) and (5) with allowance made
for the expression dN_,/0T = —9INy/dT, we obtain the
thermopower at J,, = O:

_ d(Ef/q—9)/dx

h— dT/dx
14
g ksTOO | No  20r0 _ (14
q EIPTI- nN_ TD Opy + Oy,
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_ & kBTaNO EthT 200
gN, T F oT"

In order to elucidate the meaning of a,, and a,,,, we
express these quantities in terms of equilibrium param-
eters of the acceptor band and the crystal matrix.

The thermodynamic relationship for the differential
of the electrochemical potentia of holes (E- — q¢) in
the acceptor band at a constant pressure and J,, = 0 has
the form [12]

—dE; = -S,dT —qdé, (15)

where §, is the entropy of a hole in the acceptor band
and Er isthe Fermi level (E- > 0).

From relationship (15), we obtain the differential
thermopower

_ 19(Ee-09) _ S+

" q oT q

Here, by analogy with formula (1), the entropy S, per

hole is equal to the sum of the configurational S, and
thermal (vibrational) S entropies.

Next, we establish the correspondence between the
kinetic and thermodynamic approaches to the calcula
tion of the thermopower a, of holes hopping over
acceptors, i.e., the correspondence between formulas
(14) and (16).

Using formulas (8) and (11) and the expression
ofy0T = (Er — E.)f, f1/(ksT?), we rewrite the first term
in relationship (14) in the following form:

wherea,,; = and o, =

(16)

+o00

1 Eh
Upy = _|:EF IgEafof-ldEa
T K(1-K
aT| = TKI-K) -
_1
=q—-I——(EF_Qa);
where

+o00

J' gE,f,f_,dE,
o —
J' gf,f_,dE,

At high temperatures (kg T > W), when, according to
formula (6), the density of distribution of acceptor

energy levelsg — &(E — E, ) can be approximated by
the Dirac deltafunction, we have Q, = Ea . Inthis case,
from the electroneutrality equation (8) at K = 0.35 and
B, = 4, we obtain the Fermi level E- = E, —ksTIn[(1 -
K)/(B.K)]. It is evident that the Fermi level shifts deep

into the band gap with an increase in the temperature.
Hence, it follows from expression (17) that a,; = (Er —
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E)/(qT) = (ke/q)IN[B.K/(1 - K)]; i.e., a;, for a narrow
acceptor band takes a form similar to the first term on
the left-hand side of formula (1) for the thermopower of
small-radius polarons.

At low temperatures (W > kgT), when fyf; —
ks TO(E, — Er + kgTINB,), from relationship (17), we
obtain the expression Q, = Ex — kgTIn, [19], so that
Oy = (ke/A)INB,at T— 0.

Therefore, by analogy with formula (1), the temper-
ature behavior of ay; defined by relationship (17)
allows usto conclude that qa,,; = S.. Consequently, the
term a;, in expression (14) for the thermopower of
holesis determined by the configurational entropy S; of
hole distribution over acceptors in the impurity lattice.

Let us demonstrate that the therma entropy S
[which, by comparing expressions (16) and (14), can be
related to a,,,] is determined by the specific heat C,, per
hole in the acceptor band at a constant pressure.

Asfollows from the temperature dependence of the
average energy for a neutral acceptor,

+00

1
En = mIgEadeEa

and from Eq. (8), the specific heat (per hole in the
acceptor band) can be represented in the form

dEh o af,
[I 9,57 dE,

C,=—
(18)

dEF af,
J’ EaaE dE }>O

By using the expression df,/dT = 8f,/0T +
(0 f,/0EL) (dE-/AT) = 0 and relationship (18), we obtain
the specific heat of ahole in the acceptor band:

+00

1 2
C,= —————| (gEif,f_,dE
h (1—K)kBT2|:_t[o a'0'-1Y-a

+o00 2

0
gE, fof 1dEa{]}

(19)
&n
“K(I-K)5

From formula (19), we determine the thermal

entropy S of the hole and the corresponding ther-
mopower, that is,

c
Opp = = = q.r 0dT,. (20)

At low temperatures (W > kgT), from expression
(19), we have C,, = yT, where y is a constant. Making
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allowancefor the approximation C,, = yT in relationship
(20), we obtain a,,, = C,/q.

(B) Now, we elucidate how the excited states of neu-
tral acceptors affect the hopping thermopower.

The ionization energy of a neutral hydrogen-like
acceptor in the Ith excited state is defined as E, /I 2. The
degeneracy multiplicity of the energy level EJ/I?
expressed as 3,12, where 3, = 4 is the degeneracy muI-
tiplicity of the ground energy level E, (I = 1) of the
acceptor. According to [2, 4, 6], the probability of an
acceptor occurring in the charge state 0 and the excited
state | < |, is determined by the formula

B exp[(1=19)E/I°kgT]
Ba(ly) + exp[(Er —E,)/KgT]'

where B,(I)) = Ba :‘zllzexp[(l — 19E/I%kgT] is the
effective degeneracy factor of the acceptor level E,.

It should be noted that the parameter |, in formula
(21) is chosen such that the Bohr radius ay(l;)) =

12 q?/(8TieE, ) of the excited state of ahole on the accep-

tor does not exceed the mean distance between impu-
rity dopant atoms [22]. In further calculations of the
thermopower, we will restrict ourselves to the case of
the ground state and three excited states (I, = 4), because
the Bohr radius becomeslarger than the R, parameter of
the impurity lattice even at |, = 5.

When |, excited states are taken into account,
according to relationship (21), the probability that the
acceptor is not ionized is represented as

le

foll = S foll) = {1+[B.(1)]7
1=1

fo(l) = (21)

—E)/ksT]} " = 1-f4(1)
and the electroneutrality eguation (8) takes the form

x exp[(Er

+o00

K= Igf—l(lt)dEa = fa(1) = 1-F,(I), (22

where the Fermi level E > 0 depends on the number [,
of realized excited states of each neutral acceptor.

With due regard for expression (22), relationship
(17) for the configurational thermopower of holes can
be rearranged to give

1
= E]-]_—|:EF(It)_

JE foll) 213 GE }

En(lh)
K(1-K)

O (1)

(23)
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where

+00 -1

g g
&n(ly) = K(l—K)Ej'gfo(h)f_l(lt)dEA] ,
v U

ya(l) - Baz

' {(1 | )Ea}
=1 I kB

The temperature dependence of the average energy
of the neutral acceptor,

+00 [

Enl) = T [o5: 3 e,
=1

+00

ngE fo(lt)y""( t)

B0

determines the specific heat per hole in the acceptor
band:

dE, (I,
caty = okl

va(l) 9

Tk J 9Fsgr fel0g 0B >0

—o0

where dEL(1,)/dT = -3 T 4(1,) /0T/(8 T o(I,) /OEp).

Fig. 1. Calculated temperature dependences of (1) the
Fermi level [formulas (8) and (22)] and (2) the specific heat
per hole in the acceptor band of Ge : Ga[formulas (19) and
(24)] with inclusion of the ground state (dashed lines) and
the ground and three excited states (solid Ilnes) of neutral
gallium atoms in germanium at N = 3 x 101 cm2 and K =
0.35.
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Therefore, the thermopower that corresponds to the
thermal entropy with inclusion of the excited states of
neutral acceptors [see formula (21)] can be written as

ao(l,) = q[C“('t’
0

In the case when only the ground state of the neutral
acceptor (I, = 1) is taken into account, formulas (22)—
(25) are transformed to relationships (8) and (17)—20).

dT,. (25)

4. COMPARISON OF THEORETICAL
AND EXPERIMENTAL DATA FOR Ge : Ga

Figure 1 shows the temperature dependences of the
Fermi level Er calculated using the electroneutrality
equations (8) and (22) and the temperature depen-
dences of the specific heat C,, determined from formu-
las (19) and (24) with and without inclusion of the
excited states of neutral acceptors. As can be seen from
Fig. 1, the effect of excited stateson E- and C,, for Ge: Ga
(N =3 x 10% cm= and K = 0.35) manifests itself only
aT>6K.

The temperature dependences of the hopping ther-
mopower a,, calculated by formulas (17), (20), (23),
and (25) for Ge: Ga(g, =15.4and,=11.32 meV [23])
are displayed in Fig. 2. It is seen from Fig. 2 that the
inclusion of the excited states of neutral acceptors (the
fitting parameter is |, = 4) enables us to explain the
increase in the hopping thermopower with an increase
in temperature. It is evident that the configurational
component makes the main contribution to the hopping
thermopower of Ge : Gain the temperature range cov-
ered: a;; > A

A drastic increase in the experimental values of the
thermopower a at T > 9 K can be associated with the
appearance of holes in the valence band and the hole—
phonon drag [24].

5. DISCUSSION

5.1. We consider the thermopower associated with
electron hopping among hydrogen-like donors in the
charge states 0 and +1 with the concentration N = N, +
N, in the case when completely ionized acceptors with
the concentration KN act as compensating impurities.
The electroneutrality equation for a crystal without
regard for excited states of neutral donors has the form

+o0

N, = NIgf+1dEd = Nf.; = N(1-f,) = KN,

where 1 — .y = fo = {1+ Byexp[«(E¢ + Eq)/ ks T} is
the probability that a donor with an ionization energy
Ey > 0 occurs in a neutral charge state (i.e., it isfilled
with an electron); E- < 0 is the Fermi level reckoned
from the conduction band bottom (in the band gap of an
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n-type crystal); B4 is the degeneracy factor of a donor
energy level; and g is the density of distribution of
energy levels in the donor band, which is defined by
formulas (6) and (7).

According to relationships (3) and (13), the thermo-
electric current density of electrons hopping over
donorsis represented by the expression

dr d, Norj
Jgu = gN [fRz +D,Sin }
0,+1 q hd hd D\|+1|:|

_ d (Er dT
- cyh[deq ¢D hdx}’
where N, = K(1 — K)N is the effective concentration of

electrons hopping among donors in the charge states O
and +1. These electrons are characterized by the drift

mobility M, = —fR2ar /¢ > 0 and the diffusion coeffi-
cients D, = fRAT7/2.

After transformations similar to those represented
by expressions (14)—20), from relationship (26) at
Jo.+1 =0, we obtain the differential thermopower of
electronsin the donor band:

(26)

EkeTOO Ny . 20rD
= G ¥ e = O N T

where
_ -!-— Eh +o00
Ghz - qICth*!
+00 -1
1l [l
&h = K(l—K)EJgfofﬂdEoD 21, 27
—o0 D

1 ” 2
C, = ———| [gE4f, . dE
h (1—K)kBT2L[, dlol+10Eg

+o00 2
&5 gEfof dEE >0
K(l_K)D_J- d'o'+1 |:| .

The calculations with the use of relationships (27)
for Si: P (g, =115, |4=45.59 meV [23], and 34 = 1/2)
demonstrate that the dependence of C,on T at low tem-
peratures (W > kgT) exhibits a nearly linear behavior.
For example, at N = 3.5 x 10' cm® and K = 0.01, from
relationships (27), we have C,/T = 1.4 pJ K2 mol=.
Thisagreeswith the experimental data on the electronic
specific heat of Si : P samples in the dielectric region
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Fig. 2. Temperature dependences of the hopping ther-
mopower ay, calculated according to formulas (17), (23)
and (20), (25) for Ge: Ga(N=3x 106 cm™ K = 0.35): (1)
On1s (2) apy, (3) ap = apy + ap, (without regard for excited
states), and (4) ap, with inclusion of three excited states of
neutral Ga atoms. Points are the experimental thermopow-
ersa taken from [7, 8]. The sample volume is 13 x 2.5 x
0.5 mm3.

with respect to the insulator—metal transition [25, 26]
(N < N, = 3.5 x 10*® cm™3 according to the data on N,
taken from [27]).

The specific heats C,, calculated from relationships
(27) are also in agreement with the results obtained by
the Monte Carlo simulation of thermal excitations of
electrons within the donor band in a semiconductor at
the degree of compensation K = 0.5 [28]. In particular,
a N=35x10Y cm2 and T = 2.6 K, the specific heat
C,, per neutral donor in Si is approximately equal to
4 ueV/K [28] (cf. Fig. 1).

5.2. Itisknown that, in adoped crystalline semicon-
ductor, acceptors of the same sort at low temperatures
canresidein three charge states: +1, 0, and -1 [29, 30].
The total concentration of acceptors is taken as N =
N,; + Ny + N_;. The electroneutrality equation has the
form N_; = N,; + KN, where KN is the concentration of
donors that compensate for acceptors and reside in the
charge state +1. Hence, the acceptor energy levelsform
two energy bands A° and A* in the band gap [29].
These are the so-called bottom (b) and top (t) Hubbard
bands. In this case, apart from the hopping of holes
from acceptors in the charge state O to acceptors in the
charge state —1, hole hopping from acceptors in the
charge state +1 to acceptors in the charge state O

I Note that both the A" band and excited states of hydrogen-like
acceptors can simultaneously manifest themselves in the case of
hopping conduction in lightly compensated doped semiconduc-
tors[30].
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becomes possible. For an isothermal sample in an
external electric field E, the current density J,,; o of

holes in the A* band is represented in the form [31]

d +
Jio = qN+1|0[M+1,oE—D+1,o&|n%’\|\ll_om}, (28)

where N,; o = N;;No/N is the concentration of holes
hopping among acceptorsin the charge states +1 and O,

Mig o= fRﬁOﬂL o/0¢ > 0 is the drift mobility of holes

inthe A* band, D, o = fR? I",/2 is the diffusion coeffi-
cient of holes in the A* band, I',,/2 is the equilibrium
frequency of hole hoppingsin the A* band in the same
direction along the OX axis, f = /(1 + K), and R, =
[(1+ K)N]25,

Without regard for the excited states of holes, the
probability of an acceptor with an energy E, occurring

in one of the three charge states k = -1, 0, and +1 is
determined by the relationship [2, 32]

_ 0 +1 B_S
f, = ESZIBkexp[

whereE; —E;=E,>0and E,—E,; = E, > 0 are the
acceptor energy levels forming the A° and A* bands,
respectively; E- > 0 is the Fermi level in the band gap
of a p-type crystal; and By/B; = B+/By = 4 are the
degeneracy factors of the E, and E; levels for Ge : Ga,
respectively.

The densities of distributions g, and g; of the energy
levels E,, and E, with respect to E,, and E,, which cor-

respond to the centers of the A° and A* bands, can be
written, by analogy with formula (6), in the following
form:

-1
(k—S)Eq + E,—E.O
oo @

.2
_( Eb(t) - Eb(t))
2We

1
= ex , 30
Ob(t) or Wog p{ } (30)

where the subscript b refersto the A° band, the subscript
t denotes the A* band located at a shorter distance from
the valence band, and W, = W, > W,

The average (over the crystal) concentration of
acceptorsin the charge state k (k = —1, 0, and +1) with
allowance made for expressions (29) and (30) can be
expressed by the formula

+00 +00

N, = NI IgbgtfkdEdet.

—00 —00

(31)

By analogy with the derivation of formula (14),
from relationships (28)—31), we obtain the ther-
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mopower related to the configurational entropy S, of
holes hopping in the A° and A* bands, that is,

_&ksT 0, Ng

Oy, = a aTInN_l’
(32

o — EthT a InN+1

t q 0T Np'

where

+00 +00 +00 +00

&y = I Igbgtf-1(+1)dEdetI Igbgt f odE,dE;

+00 +00 —1

O 0
x EJ J’gbgtf_l(ﬂ)fodEde% >1.

—00 —Co

According to [7, 8], the energy gap €, = E, — E;
between the A° and A* bands in Ge : Ga (N = 3 x
10% cm2 and K = 0.35) istaken equal to 2 meV. Then,
the calculation with the use of relationships (32) at
W, =W, =Wand T < 10 K yields the configurational
component of the thermopower of holesin the A° band
Op; = 0.1 mV/K, which is larger in magnitude than the
configurational component a, for the A* band by afac-
tor of approximately 1.5. The thermopower component
Qpr)2: Which corresponds to the thermal entropy in each
of the bands, is considerably less than the configura-
tional component ab(t)l.z Hence, the thermopowers of
holesin the A° and A* bands can be represented as a, =
Olpy + Olpp = Oy @NA O = Ay + Olp = Oy

The total thermopower with the inclusion of hole
hopping in the A° and A* bands is determined from the
relationship [1-4]

o,a, + o
a, = b“b tt,

3. ¥0, (33)

where 6, and o, are the electrical conductivities in the
A and A* acceptor bands, respectively.

It follows from relationship (33) that the total ther-
mopower o, cannot exceed the largest thermopower
component (o, or a,) a an arbitrary ratio between the
0, and o, hopping electrical conductivities.

Thus, theinclusion of the A* acceptor band (in addi-
tion to the A° band) does not lead to better agreement
between the cal culated and experimental thermopowers
[7,8].

5.3. To this point, the question as to the observed
decreasein the thermopower a of Ge: Gaat T< 2K to
vanishingly small and experimentally unobservable
values[7, 8] remains open. In thelocal thermodynamic

2 The validity of the inequality o > ayp in the case of asingle A?
band without regard for the excited states of neutral acceptorsis
evident from Fig. 2.
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equilibrium approximation for samples of an infinite
size, relationship (17) gives afinite thermopower a,,, =
(kg/q)InB, = 0.12 mV/K a T — 0. Since the mecha-
nisms of scattering of a nonequilibrium phonon flux at
T < 2 in samples of afinite size have not been clearly
understood, we restrict ourselves to qualitative consid-
erations.

As is known [33, 34], holes are dragged only by
phonons whose energy corresponds to the difference
between the levels of two acceptors (the potential well
of elagtic strain can trap a hole from a neutral acceptor
and carry it to an ionized acceptor). A decrease in the
temperature leads to a decrease in the number of these
phonons, and, as a consequence, the thermopower
decreases to zero. In this case, the hopping electrica
conductivity exhibits afinite value, because the change
in the frequency of hole hoppings over acceptors along
the sampleis caused by an external electric field.

Zvyagin [9] assumed that the electron—phonon
interaction ceases at temperatures at which the mean
free path of phonons exceeds the sample size.

It should also be noted that the thermal conductivity
of liquid helium at T < 1 K isso high that vapor bubbles
have no time to be formed in the bulk of the liquid,
whereas the heat is rapidly removed toward the liquid
surface [35]. The use of partialy superfluid helium asa
thermostat (when phonons leave the sample after their
first collision with the sample surface) leadsto aradical
change in the boundary conditions on the surface [36].
Hence, the inequality o(T = 1.5K) < a(T = 2.5K) [7,
8] can bedictated by the conditions of heat removal into
the cryogenic medium rather than by the properties of
the p-Ge sample itself. It is quite possible that the
observed decrease in the thermopower a at T< 2 K to
experimentally unobservable values is caused by both
diffusion processes and a rapid escape of nonequilib-
rium phonons from the sample (13 x 2.5 x 0.5 mm?d)
owing to the unique properties of liquid helium at tem-
peratures below the A point (T < 2.17 K).

6. CONCLUSION

Thus, we obtained the relationship for the ther-
mopower associated with phonon-assisted motion of
holes over hydrogen-like acceptors. This relationship
was derived within the lattice approximation on the
basis of the hopping current density equation. It was
demonstrated that the expression derived for the ther-
mopower of hopping holes provides a satisfactory
explanation of the plateau (in the range 2-8 K) occur-
ring in the experimental temperature dependence of the
thermopower for Ge : Ga at an intermediate degree of
compensation [7, 8]. Theincrease in thermopower with
an increase in temperature was interpreted in terms of
the contribution from excited states of hopping holesto
the thermopower. It was shown that the lattice approach
can be applied to the description of the specific heat of
electrons hopping over hydrogen-like donorsin Si : P,
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Abstract—The nucleation of 111 nitride semiconductors in heteroepitaxy is theoreticaly investigated using
GaN nucleation ontheAIN surface asan example. It isinferred that the mechanism of thisprocessisdetermined
by thetemperature at theinitial stage of thelayer formation (T). At low temperatures (T < 500°C), liquid gallium
dropl ets appear and the chemical reaction between the Gaand N atoms results in the formation of GaN nuclei.
At substrate temperatures T > 650°C, there arise only GaN nuclel. Itisrevealed that the GaN nucleation is gov-
erned by the generalized diffusion coefficient of GaN, which is a combination of the diffusion coefficients for
gallium and nitrogen atoms. It is shown that the generalized diffusion coefficient of GaN on the crystal surface
increases by seven orders of magnitude as the growth temperature increases from 600 to 800°C. Thisis accom-
panied by a change in the growth mechanism of the 11 nitride semiconductor epitaxial layers. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, gallium nitride epitaxial films have
found wide application in microwave el ectronics. How-
ever, the development of high-efficient gallium nitride
elements has been hampered by two factors: (1) the
absence of aperfect substrate material and (2) problems
associated with the incorporation of nitrogen atoms
into a growing layer. Single crystals (GaAs, ZnO,
MgO, MgAl,O; and, especialy, SIC, Al,O;, and Si) are
extensively used as substrates for the heteroepitaxia
growth of GaN. A substantial mismatch between the
parameters of a GaN epitaxial wurtzite layer and
5H-SIC (~4%), Al,O; (~15%) [1], and Si (22.3%) [2]
substrates and a large difference between the adsorp-
tion energies of Gaand N atoms (the adsorption energy
for nitrogen atomsis 1.5 times higher than that of 111-V
semiconductors [3]) considerably impede the epitaxial
growth of 111 nitride semiconductor films. Asisknown,
the early stages of formation of these films (nucleation
and the subsequent evolution of islands) are of crucia
importance in preparing qualitative epitaxial layers of
[11 nitride semiconductors. Recent attempts have been
made to optimize the conditions of the formation of a
GaN buffer layer on a sapphire substrate due to chemi-
cal gas-transport reactions [or metal—organic chemical
vapor deposition (MOCVD)] through changing the
conditions of GaN nucleation [4] and to improve the
Kinetic transport of reactants to substrates [5]. Chen
et al. [6] revealed that the nucleation during GaN epit-
axy on different GaN and AIN buffer layers grown on
GaAs substrates proceeds by different mechanisms.
Moreover, King et al. [7] proved that the growth of epi-

taxial layers of GaN on AIN (and AIN on GaN) in
molecular beam epitaxy (MBE) with an NH; gas source
occurs through the Stranski—Krastanov mechanism at
low substrate temperatures (Ty, < 800°C) and the
Frank—van der Merve mechanism at high substrate tem-
peratures (Tg,, > 800°C).

However, the mechanisms of |11 nitride semicon-
ductor nucleation and the specific features of film
growth are still not clearly understood. In the present
paper, we propose a model that describes the initial
stages of growth of agallium nitride film in heteroepit-
axy. This approach is based on the theory of nucleation
and growth of thin films, which was described in detail
in[8, 9]. According to this theory, the growth of crystal
films occurs in severa stages: nucleation, evolution of
new-phase islands, interaction of islands with one
another, and interaction of islands with the flux of
atoms arriving at the surface (the Ostwald ripening
stage). Different idlands can also move as a unit over
the substrate surface, coalesce, and participate in other
interactions[8, 9].

2. THEORETICAL ANALYSIS

The growth of gallium nitride films will be treated
within the modern theory of first-order phase transi-
tions. We consider the nucleation stage by using the
example of MBE and MOCVD growth of GaN filmson
a sapphire substrate covered with an AIN buffer layer.
In the former case (molecular-beam epitaxial growth),
GaN isprepared through the evaporation of gallium and

1063-7834/01/4312-2229$21.00 © 2001 MAIK “Nauka/ Interperiodica’



2230

nitrogen. Nitrogen is formed by the decomposition of
ammonia, and then the following reaction proceeds:

Gagg) + N(g — GaN, 1)

where the subscripts g and s refer to the gaseous and
solid reaction products, respectively.

In the latter case, the growth of GalN occurs through
the reaction

2Gag + 2NH, = 2GaN g +3H, 1. 2

In our consideration, we disregard the effect of elastic
stresses on all stages of GaN layer growth.

Gallium nitride is a stoichiometric compound.
According to the theory developed earlier in [10], the
formation of GaN islands can occur in accordance with
the following scenarios.

(1) The rate of the chemical reaction considerably
exceeds the rate of formation of new-phase ilands. In
this case, the formation of molecules of the chemical
compound precedes the nucleation of islands from
these molecules.

(2) If the rate of island nucleation is substantially
higher than the rate of formation of the chemical com-
pound on a substrate, heterophase fluctuations bring
about the formation of islands consisting of a mixture
of the compounds involved and then the chemical reac-
tion proceedsinside these islands with the formation of
a stoichiometric compound.

(3) The rate of the chemical reaction is comparable
to the rate of island formation, the rate of the chemical
reaction exhibits a nonlinear behavior, and the reaction
product acts as a catalyst of the chemical reaction. In
this case, self-sustained oscillations of the number of
nuclei and their self-organization become possible.

Theformation of GaN nucle accordingto scheme (1)
isaresult of thefirst-order phase transition between the
gaseous and solid phases. The GaN nucleation accord-
ing to scheme (2) should occur in several stages [11].
The steady fluxes of multicomponent islands (of sto-
ichiometric composition) arising on the substrate sur-
face can be described by the following rel ationships [8—
10]:

1) = oy +1)In"*(& + 1) exp[-a/In(E + 1)] (3)
for nuclei in the form of aflat disk of height h and

15(8) = ay (& +1)In(E + 1)exp[-b/In*(E + 1)]. (4)
for nuclei in the form of a spherical segment.
Here,

' 2~0 " 2~0
as = AlsNODs’ as = AZSNODS7

ns
A = (vdh), ve= Svw,
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where v, isthe molecular volume of the chemical com-
pound, w; is the atomic volume of theith component, v;
is the stoichiometric coefficient of the ith component,
N, ~ 1/B? is the number of adsorption sites on the sub-
strate surface (B is the lattice parameter of the sub-

strate), a = (04/ksT)2vavh, b = 4mo/ksT)3V2(2 +
cosB)(1 — cosB)%/3, o is the nucleus—natural vapor

interfacia tension, o4 = oh is the surface tension per
unit length of adisk, hisequal to one monolayer,

n® -1
DO _ pI2II (5)
s = lDaiCiO

is the generalized diffusion coefficient (which charac-
terizes the motion of the boundary of a growing island
during crystalization of the multicomponent com-
pound), C,, standsfor the equilibrium concentrations of
adatoms on the substrate,

isthe reduced stoichiometric coefficient of theith com-
ponent, and D, is the diffusion coefficient of the ith
component. In order to estimate the diffusion coeffi-
cient D, we assume that the substrate has a simple
square lattice. As aresult, we obtain

4
where kg is the Boltzmann constant, v, is the frequency
of tangential vibrations of the ith atom on the substrate
surface (for convenience, this frequency is taken equal
to the frequency of normal vibrations), and I is the
length of diffusion hopping of atoms.

The supersaturation & for a multicomponent system
can be written as

D, = exp(—Eqi/ksT), (6)

M C'—KS
=i=1 KS , (7)
where K&, = I”: 16?5 is the equilibrium constant for
the chemical reaction of formation of a nucleus of the

compound with composition sand C; isthe concentra-
tion of the ith component on the substrate.

In the course of GaN nucleation, the formation of
both GaN nuclei and liquid Ga droplets can occur on
the substrate surface. The probability of a particular
phase forming is determined by the nucleation rates or,
more specifically, by the steady fluxes (3) and (4). Let
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Fig. 1. Temperature dependences of (a) the surface diffusion coefficients D, for Gaatoms and D4y for N atoms, (b) the products
of the equilibrium concentrations Cyg, and Cyy of Ga and N atoms into their surface diffusion coefficients Dy, and Doy,

(c) thelifetimes tg, and Ty of Gaand N atoms, and (d) the generalized diffusion coefficient D(()BaN of GaN.

us evaluate the fluxes of formation of disk-shaped GaN
nuclei and cupola-shaped liquid Ga droplets.

The generalized diffusion coefficient Dga,\, [for-
mula (5)] for GaN can be represented in the form

DaGaDaN COGaCON

Dy = . 8
e ™ 4(DycaCocaln + DanConlca) ®)
This expression can be rewritten as
DonC
Dy = = (9)
4 %L aNCONIGaD
DaGaCOGaIND

The diffusion coefficients of Ga and N atoms on the
GaN surface can be estimated from the data obtained by
Neugebauer et al. [12]. According to [12], the activa-
tion energy E4g, Of Gaatomsisequal to 0.2 €V and the
activation energy Eyy of N atomsis 1.5 eV. For thesim-
plest estimates, we assumed that the diffusion hopping
lengths of Gaand N atoms are approximately equal to
the lattice parameter of the substrate; i.e., Iy ~ I, ~ B.
As can be seen from Fig. 1a, the diffusion coefficients
of Gaand N atomsincrease with an increase in the sub-
strate temperature. In order to determine the general-
ized diffusion coefficient of GaN, it is hecessary to cal-

PHYSICS OF THE SOLID STATE Vol. 43 No. 12

culate the equilibrium concentrations of Ga (Cgyg,) and
N (Cy) aoms. These concentrations can be estimated
as follows. The concentration of the ith component on
the substrate surface can be calculated by the formula

C, = JT/N,, (10)

where J; is the flux of atoms incident on the substrate
and 1, is the lifetime of the ith component on the sub-
strate:

T, = Vi exp(E,/ksT). (11)

Here, y; is the frequency of normal vibrations of atoms
on the substrate surface and E,; is the activation energy
of adsorption. It should be noted that the vibrational
frequency is generally taken to be approximately equal
to ~10% s [8-10Q]. To calculate the equilibrium con-
centrations C,; of adatoms on the substrate, we need to
determine the equilibrium evaporation and condensa-
tion fluxes Jy. Then, the concentrations C,; can be
obtained from relationship (10). In the general case, the
equilibrium fluxes J;; can be evaluated by the formula
[8-10]

Joi = NgYoanca EXP(—Eay /KsT), (12)
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where E,, is the evaporation energy, Yea(ca) 1S the fre-
guency of vibrations of Ga and N atoms on the GaN
surface (or the frequency of vibrations of Ga atoms on
the liquid gallium surface), and ng ~ 1/B? is the number
density of the ith atom on the GaN surface (or on the
liquid gallium surface). For estimates, we assume that
Yean(ca) ~ 10% s Formula (12) can only be used for
approximate estimates. Inamore general case, itisnec-
essary to determine the desorption fluxes. The values of
Joi and Cg; can be estimated from the data obtained by
Koleskeet al. [13]. Finally, from relationships (8)—12),
we calculate the temperature dependence of the gener-

alized diffusion coefficient DgaN (Fig. 1d). The results

of our calculations demonstrate that, as the temperature
increases from 600 to 800°C, the equilibrium concen-
tration of Ga atoms increases by three orders of magni-
tude, whereasthe equilibrium concentration of N atoms
increases by eight orders of magnitude. As a conse-
guence of this behavior of the equilibrium concentra-
tions with an increase in the temperature, the products
of the diffusion coefficients for Ga and N atoms into
their equilibrium concentrations become comparablein
magnitudeat T >800°C (Fig. 1b). Thisresultsin adras-

tic increase in the diffusion coefficient DgaN in this

temperature range, which should affect the growth
mechanism of 1ll nitride semiconductors. King et al.
[7] experimentally observed a change-over from the
Stranski—Krastanov mechanism of growth of the GaN
and AIN epitaxia layers to the Frank—van der Merve
mechanism with an increase in the growth temperature
above 800°C.

In order to determinethelifetimes of Gaand N atoms
ontheAlN surface, we eval uate the activation energies of
adsorption E,; for Gaand N atoms. According to[10], the
activation energy E,; can be represented as

Eai = Eav - EOia

where Ej; and E,, are the activation energies of forma-
tion and evaporation of an adatom, respectively.

Asisknown [9], the evaporation energy isdefined as
E,, = ZE;/2, where Z is the configuration number (for
GaN, Z = 6). The energy of formation is given by E, =
2E; (in ssimple models for the (100) surfaces) [10]. By
using the data obtained in [13] for the energies of evap-
oration of Ga and N atoms from the GaN surface, we
obtained E, g, ~ 0.84 eV and E,y ~ 2 eV. The lifetimes
of adatoms on the GaN surface decrease with an
increase in the epitaxy temperature. Note that the life-
time of N atomsisfive orders of magnitude longer than
that of Ga atoms (Fig. 1c). Thus, the estimates demon-
drate that, at substrate temperatures T < 700°C, the
GaN nucleation is limited by the diffusion of N atoms,
whereas at T > 850°C, the nucleation process is con-
trolled by the diffusion of Ga atoms.

Now, we calculate the fluxes of GaN and liquid gal-
lium nuclei. The surface tension o is estimated at
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~2Jm 2 for GaN [12] and at ~0.7 Jm2 for liquid gal-
lium. The wetting angle for liquid gallium is taken as
0 ~ 1/6. When estimating the supersaturation in the
MOCVD growth, it isassumed that al molecules of the
organometallic compound are transformed into Ga
atoms, whereas the fraction of N atoms produced by
ammonia decomposition is approximately 4%. In this
case, the mean fluxes of Gaand N atoms are asfollows:
Jea~10¥ m? st and Jy ~ 10 m2 s [1]. The concen-
trations of adatoms on the GaN surface can be deter-
mined from formula (10). Substitution of these concen-
trations into relationship (7) gives a supersaturation
large enough to persist for avery short time, because, in
this case, idands rapidly absorb the material and,
hence, the supersaturation should decrease.

Let us consider the conditions of the formation of
GaN and Ganuclei at low temperatures (T = 480°C is
the temperature of formation of a buffer layer on the
AlN/sapphire substrate). For liquid gallium, we have
b=3,a"~4x10®¥m?s% &~0.8 andlg,~ 10 m?s™.
For thisflux of Ganuclei and the number density of Ga
atoms on the surface ng, = Jg T, = 10° m2, thetimeit
takesfor Gaatomsto beinvolved in the phasetransition
isti ~ Nyl g~ 107 s. Consequently, excessive supersat-
uration disappears for atime t; and the supersaturation
¢ reachesits norma value of ~0.1-0.2. For GaN nuclei,
we haved' ~3 x 102 m2 st and a ~ 40. Hence, it fol-
lows that the flux |5, Of GaN nuclei at the same super-
saturation & isvirtually equal to zero. Therefore, at low
temperatures, liquid gallium aone nucleates, after
which the chemical reaction between Ga nuclei and N
proceeds to form GaN. It is evident that, at these tem-
peratures, the GaN layer is disordered and contains a
large amount of gallium inclusions and dislocations.

At higher temperatures (T > 650°C), the generalized

diffusion coefficient Dga,\, increases drastically and the
coefficient a in the relationship for the work of nucle-
ation decreasesto ~15 at T ~ 650°C. Asaresult, the flux
lcan Of GaN nuclei becomes nonzero and equal to

~10% m~ s whereas the flux of liquid gallium drop-
lets vanishes. This can be explained by the fact that, at
this temperature, the supersaturation with respect to
gallium becomes zero due to equalization of the con-
centration of Ga atoms produced by external sources
and the equilibrium gallium concentration.

At T > 800°C, no formation of GaN islands occurs,
because the supersaturation becomes zero at the fluxes
Jea~10¥ m2 st and Jy ~ 10*° m? s and the Gaand
N flux densities taken from [13].

3. CONCLUSION

Thus, the anomalously high adsorption energy for
nitrogen atomsleadsto (1) considerable differences (by
six or eight orders of magnitude) between the diffusion
coefficients of nitrogen and gallium atoms on the crys-
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tal surface over the entire range of growth tempera-
tures; (2) an anomalously large difference between the
equilibrium concentrations of nitrogen and gallium
(indium) atoms; and (3) an increase in the generalized

diffusion coefficient Dy}, with anincreasein the tem-

perature, which affects both the nucleation conditions
of Il nitride semiconductors and the mechanism of
their growth.

The nucleation of liquid gallium droplets at low
temperatures (T < 600°C) can be explained by the con-
siderable work of formation of GaN nuclei.

ACKNOWLEDGMENTS

This study was supported by the St. Petersburg
Research Center of the Russian Academy of Sciences
and the Foundation for Support of Science and Educa-
tion (St. Petersburg).

REFERENCES

1. S.G. Jain, M. Willander, J. Narayan, and R. V. Overstra-
eten, J. Appl. Phys. 87 (3), 965 (2000).

2. R. D. Vispute, J. Narayan, H. Wu, and K. Jagannadham,
J. Appl. Phys. 77 (9), 4724 (1995).

PHYSICS OF THE SOLID STATE Vol. 43 No. 12

2233

3. Handbook of Chemistry and Physics, Ed. by D. R. Lide
(CRC Press, Boca Raton, 1996), p. 76.
4. X.Zhang, R. R. Li, P.D. Dapkus, and D. H. Rich, Appl.
Phys. Lett. 77 (14), 2213 (2000).
5. R. S Q. Fareed, J. W. Yang, J. Zhang, et al., Appl. Phys.
Lett. 77 (15), 2343 (2000).
6. Z.Li, H. Chen, H. Liu, et al., Jpon. J. Appl. Phys., Part 1
39 (8), 4704 (2000).
7. S.W.King, E. P. Carlson, R. J. Therrien, et al., J. Appl.
Phys. 86 (10), 5584 (1999).
8. S. A. Kukushkin and A. V. Osipov, Usp. Fiz. Nauk 168,
1083 (1998) [Phys. Usp. 41, 983 (1998)].
9. S. A. Kukushkin and V. V. Slezov, Disperse Systems on
Solid Surfaces (Nauka, St. Petersburg, 1996).
10. S. A. Kukushkin and A. V. Osipov, Fiz. Tverd. Tela
(St. Petersburg) 36 (5), 1258 (1994) [Phys. Solid State
36, 687 (1994)].
11. T. K. Harafuji, Y. Hasegawa, A. Ishibashi, et al., Jon. J.
Appl. Phys., Part 1 39 (11), 6180 (2000).
12. J. Neugebauer, T. Zywietz, M. Scheffer, and J. Northrup,
Appl. Surf. Sci. 159-160, 355 (2000).
13. P. P Koleske, A. E. Wickenden, et al., J. Appl. Phys. 84
(4), 1998 (1998).

Trandated by O. Borovik-Romanova

2001



Physics of the Solid State, Vol. 43, No. 12, 2001, pp. 2234-2236. Trandlated from Fizika Tverdogo Tela, \Vol. 43, No. 12, 2001, pp. 2140-2141.

Original Russian Text Copyright © 2001 by Atabaev, Matchanov, Bakhranov.

SEMICONDUCTORS

AND DIELECTRICS

L ow-Temperature Diffusion of Lithium
In Silicon—Ger manium Solid Solutions

|. G. Atabaev, N. A. Matchanov, and E. N. Bakhranov

Physicotechnical Institute of the Physics—Sun Research and Production Association, Academy of Sciences of Uzbekistan,
Tashkent, 700084 Uzbekistan
e-mail: atvi@physic.uzsci.net
Received March 5, 2001

Abstract—The influence of germanium content on lithium diffusionin Si; _,Ge, solid solutionsisinvestigated
at temperaturesfrom 300 to 500°C. It isfound that the diffusion coefficient and the solubility of lithium abruptly
decrease with a decrease in the temperature and an increase in the germanium content. As the diffusion temper-
ature increases, the decrease in the lithium diffusion coefficient slows down with a change in the solid solution
composition dueto the effect of lattice elastic strainsinduced by germanium isovalent impurities. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

It is known that lithium is the only shallow-level
impurity used for producing highly compensated
i-regionsof silicon ionizing-radiation detectors[1]. The
compensation is accomplished through electric drift of
lithiumions from athin surface layer. Thislayer ispre-
liminary saturated with lithium at temperatures from
500 to 600°C for ~5 min with subsequent rapid cooling.
The electric drift is carried out at temperatures from 65
to 100°C.

The available data on the lithium diffusion coeffi-
cient D, for silicon and other semiconductors are char-
acterized by a very large spread about the mean D
value (several orders of magnitude) [2]. This circum-
stanceis primarily due to the fact that lithium diffusing
over interstices efficiently interacts with grown-in
background impurities and defects, as well as with
those introduced during thermal and other treatments of
the material.

Saidov et al. [3] demonstrated that the counting rate
of nuclear radiation detectors based on single crystals
of the Si, _,Ge, aloy is three times higher than that of
silicon detectors. However, anumber of problems asso-
ciated with the low-temperature diffusion of lithium in
the Si; _,Ge_ aloy remain unresolved. It is known that
the incorporation of germanium isovalent impurities
into the silicon lattice leads to distortions of the crystal
structure, which, in turn, can substantially affect the
diffusion and solubility of impurities. For example, the
diffusion coefficient of phosphorus in the Si;_,Ge,
alloys increases with an increase in germanium con-
tent [4].

In the case of lithium, whose diffusion occurs
through the interstitial mechanism, local strains
induced in the lattice of Si;_,Ge, single crystals can

also substantially affect this process. However, data on
the low-temperature diffusion of lithium in this mate-
rial are unavailable.

In the present work, we investigated the influence of
germanium content on lithium diffusion in single crys-
tals of Si;_,Ge, solid solutions at temperatures from
300 to 500°C.

2. EXPERIMENTAL TECHNIQUE

The diffusion of lithium was performed in an
SUOL-44 furnace by immersing the samplesin alith-
ium-saturated gallium melt for 1 h. Owing to the low
temperature of the melt, gallium did not occur in the
bulk of the crystal, whereas fast-diffusing lithium
impurities penetrated into the crystal bulk to several
micrometers during thistime.

Asisknown, lithium diffusion strongly depends on
the crystal prehistory. For this reason, in order to pro-
vide amorereliable interpretation of the results, all the
samples to be studied were prepared in the form of
wafers cut out from the same variband single crystal,
Si;_,Ge,, with a variable composition from x = 0 to
35 at. % and a concentration gradient of approximately
0.7 a. % per millimeter. The wafers were approxi-
mately 300 pm thick. We assumed that the germanium
content in each of the wafers was equal to the mean
value. It should be noted that, due to the variband prop-
erties, the change in the germanium content in the
wafers was approximately equal to 0.21 at. %. Since all
the waferswere taken from the same crystal, which was
apparently grown in the same technological process,
the growing conditions of all the samples were identi-
cal. Therefore, the parameters of the samples, except
for the germanium content, were also identical.
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Single crystals of the Si; _,Ge, solid solutions were
grown by electron-beam crucibleless melting [5]. The
single-crystal samples of the Si; _,Ge, solid solutions
with agermanium content in therange 0 < x < 35 exhib-
ited a p-type conductivity.

The €electrical conductivity of semiconductors is
determined by the relationship o = eny, where nisthe
electron concentration and [ is the electron mobility.
For the electron concentration at room temperature, we
can writethe equality n = N, ;. Consequently, we obtain
o =eN ;1. Therefore, the distribution o(l) over the sam-
ple depth | can be used for determining the lithium con-
centration profile N;(1).

The distribution o(l) for the samples was deter-
mined using a single-point probe technique [6]. When
calculating the concentration profile N;(1), the depen-
dence of the carrier mability on the composition of the
silicon—germanium alloy was taken into account [7, 8].

3. RESULTS AND DISCUSSION

It is known that, at comparable temperatures of dif-
fusion, the diffusion coefficient and the solubility of
lithium in germanium are higher than those in silicon.
However, Figs. 1 and 2 demonstrate an anomalous
behavior of these parameters at diffusion temperatures
of 325 and 400°C. The diffusion coefficient (Fig. 1) and
the limiting solubility (Fig. 2) of lithium drastically
decrease with an increase in germanium content. The
decrease in the lithium diffusion coefficient with a
change in the composition of the solid solution is more
pronounced at low diffusion temperatures. Aswas men-
tioned above, the diffusion through the vacancy mech-
anism is accompanied by an increase in the phosphorus
diffusion coefficient with an increase in the content x.
We assume that this behavior is associated with the
generation of vacancies in the field of lattice elastic
strains.

In the case of interstitial diffusion, the incorporation
of germanium atoms into the lattice induces elastic
strains, which, apparently, disturb the periodicity of the
interstitial potential of the lattice and prevent hopping
of lithium atoms over interstices at diffusion tempera-
tures up to 500°C. The increase in the diffusion coeffi-
cient, which is observed at x > 0.20 is caused by an
increase in the elasticity of the alloy lattice with an
increase in germanium content.

As is known, the solubility of impurities (x;) in
semiconductors is determined by the quantity AH;
(the enthal py of transition of impurity atomsinthe solid
solution), the change in the vibrational entropy AS;,

[2], and the contribution from the Coulomb interaction
with charge carriers[9, 10], that is,

In(x.) = =AHN/T +AS;, + Q(T). 1

Here, Q(T) isthe Coulomb component in expression (1)
taken from [9, 10].
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Fig. 1. Dependences of the lithium diffusion coefficient on
the germanium content in silicon—germanium solid solu-
tions.
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Fig. 2. Dependences of the limiting solubility of lithium on
the germanium content in silicon—germanium solid solu-
tions.

Anaysis of the concentration dependence of the
lithium solubility with the use of expression (1)
revealed that an increase in the lithium solubility is

determined by the change in the AH{, quantity. How-

ever, at adiffusion temperature of 500°C and above, the
thermal energy of lithium atoms in the alloy lattice
becomes comparable to the potential barriers formed
through | attice el astic strains due to the presence of ger-
manium isovalent impurities. As a result, the behavior
of lithium atoms in the aloy lattice ceases to be anom-
alous. Since the KT value at a temperature of 500°C is
approximately equal to 0.044 eV, the potential barriers
created by germanium atoms should be of the order of
several hundredths of electron-volts.

4. CONCLUSION

Thus, the anomal ous behavior of the diffusion coef-
ficient and the solubility of lithium in the Si;_,Ge,
alloys was revealed at low temperatures. The assump-
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tion was made that this behavior is associated with the
disturbance of the periodicity of the interstitial poten-
tial inthelattice duetolocal elastic strains generated by
germanium isovalent impurity atoms.
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Abstract—The kinetics of photoluminescence due to tunneling radiative recombination of photoexcited elec-
tronsand holeslocalized at acrystallite-matrix interfaceistheoretically treated within the framework of amodel
concept according to which the structure of porous silicon is treated as a random set of nanometer-sized silicon
crystallites embedded into the SIO, matrix. The developed theory predicts arelatively slow (stretched exponen-
tial) decay of photoluminescence intensity that results from averaging of the intensity in each of the photolumi-
nescence events over the mutual arrangement of electrons and holes (localized on the surface of aparticular crys-
tallite) and over the crystallite sizes. The proposed approach provides an adequate quantitative description of
low-temperature experimental data on the photoluminescence kinetics at afixed radiant energy and the time evo-
lution of the photoluminescence spectra of porous silicon. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Recent progress in nanoelectronics has been
achieved in many respects owing to the advent, devel-
opment, and application of different-type devices based
on elements fabricated from disordered silicon materi-
als[1], including porous silicon and amorphous silicon
[2]. However, the use of materials based on disordered
silicon is hindered by the lack of a clear understanding
of the mechanisms responsible for photoluminescence,
photoconduction, and other phenomenathat render dis-
ordered silicon attractive from the practical standpoint.
These phenomena are associated with fast (on a milli-
second scale and even faster) processes of radiative
recombination (see, for example, the review by Bis
et al. [1] and references therein) and slow processes
caused by fatigue effects in materials 3, 4].

Systems based on disordered silicon exhibit features
inherent in disordered media, for example, the non-
Debye behavior of photoluminescence decay [1, 2]. As
is known (see, for example, [5]), the non-Debye
response can be adequately described by the most gen-
eral models of disordered media. Dunstan and Boul-
itrop [6] demonstrated that, within the model of tunnel-
ing recombination of electrons and holes localized in
states of the conduction band and valence band tails, the
kinetics of photoluminescence in amorphous hydroge-
nated silicon is described by a very slowly decreasing
function.

Kuskovsky et al. [7] experimentally revealed asim-
ilar sow decay of donor—acceptor photoluminescence
in highly doped compensated semiconductors of the
ZnSe: N type. These authors devel oped the fluctuation
theory for this phenomenon and proved that the time

decay of photoluminescence at a fixed energy obeys
even a slower law than the Kohlrausch stretched expo-
nential. Since the physical types of disorders in amor-
phous silicon and the aforementioned highly doped
semiconductors are similar to each other, the results of
the fluctuation theory proposed in [7] can be applied to
guantitative interpretation of experimental data on the
photoluminescence kinetics in amorphous silicon.

On the other hand, unlike the case of amorphoussil-
icon, the experimental dependences of the photolumi-
nescence on thetimet in the case of poroussilicon (see,
for example, [1]) can be described by the Kohlrausch
empirical function exp[—(t/1«)f], where 1 is the char-
acteristic time and f3 is the Kohlrausch exponent (0 <
B <1). Thedistinction between these two casesisanat-
ural consequence of differences in the structural disor-
der of amorphous hydrogenated silicon and porous sil-
icon. According to modern concepts [1], the structure
of porous silicon involves well-defined structured units
that consist of crystallinesilicon and have characteristic
sizes on the nanometer scale. The structural units of
porous silicon are usually simulated by either quantum
wires|[4, 8] or spherical crystallites (the so-called quan-
tum dots) surrounded by silicon oxide layers. However,
at present, preference is given to the latter model [1].

The quantum confinement effect can manifest itself
in ashift of the photoluminescence spectrum of porous
silicon toward the short-wavelength range with a
decrease in the mean size of silicon crystallites [1].
Hence, it isbelieved [9-11] that the photogeneration of
an electron—hole pair occurs inside a particular silicon
crystallite, after which the electron and the hole arelocal -
ized in traps arranged within the interface between this

1063-7834/01/4312-2237$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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crystallite and the surrounding silicon oxide, and then
they undergo recombination through tunneling and (or)
activation mechanisms with emission of alight photon.
From thisinference, it follows that the quasi-two-dimen-
sional trap arrangement (confined to crystallite surfaces)
should lead to amore rapid decay of photoluminescence
in porous silicon as compared to the photoluminescence
kinetics in amorphous hydrogenated silicon in which the
long-term time asymptotics of the photoluminescenceis
determined by the presence of electrons and holes that
can be infinitely distant from each other.

Asfar aswe know, a unified theoretical approach to
the description of all available experimental data on
photoluminescence kinetics and stationary photolumi-
nescence has never been developed. However, with
knowledge of the basic principles of the radiative
recombination mechanism in porous silicon, it is possi-
ble to obtain important information on the characteris-
tic parameters of a material through analysis of the
spectra and time relaxation of photoluminescence.

Investigation into the time evolution of the photolu-
minescence spectraof porous silicon seems moreinfor-
mative. Unfortunately, there exist few research works
dealing with the modeling of these phenomena in
porous silicon. Specia mention should be made of the
work by Pavesi [12], who explained the stretched expo-
nential time decay of photoluminescence in porous sil-
icon within the model of hopping diffusion of photoex-
cited excitons between different crystallites. However,
it is hard to agree with the inference drawn in [12] that
a dtrictly exponential decay of photoluminescence
should occur in the absence of hopping diffusion
(which, in essence, follows from the highly improbable
assumption that the recombination time is independent
of the crystallite size in the structure wherein this size
is a random quantity). At the same time, the electric
fieldsinduced by the possible disturbance of local elec-
troneutrality at the crystallite—silicon oxide interface
can easily destroy an exciton in the case of itsdiffusion
between crystallites; hence, the assumption of hopping
diffusion in porous silicon is incorrect. Moreover, the
conclusion made by Pavesi [12] that the Monte Carlo
calculation of the time decay of photoluminescence in
terms of this model results in the Kohlrausch function
is declarative in character, because the key features of
the computational procedure are omitted in his paper.

Unfortunately, reliable theoretical data on radiative
recombination in porous silicon are unavailable. In the
present work, we made an attempt to fill this gap. The
purpose of this work was to elaborate a consistent the-
ory that would provide an adequate quantitative
description of experimenta data on the photolumines-
cence kineticsin porous silicon. We restricted our con-
sideration to the limit of absolute zero temperature (the
generalization of the theory to the case of finite temper-
atures and a theoretical analysis of the stationary pho-
toluminescence will be given in aseparate work). In this
paper, we demonstrated that the experimentally
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observed kinetics of photoluminescence in porous sili-
conissimilar to the Kohlrausch kinetics and agreeswith
the aforementioned concepts regarding the mechanism
of radiative recombination of photoexcited electrons
and holes localized in random positions at a crystallite—
silicon oxide interface. Moreover, we proved the self-
consistency of the devel oped theory by way of quantita-
tive interpretation of the time evolution in the experi-
mental photoluminescence spectra of porous silicon.

2. THEORETICAL ANALYSIS
OF THE RADIATIVE RECOMBINATION
KINETICS IN POROUS SILICON

Asin[1, 9], we assume that the structure of porous
silicon can be treated as an infinite set of randomly
arranged crystalline silicon spheres surrounded by sili-
con oxidelayers. Inthiscase, thesilicon—silicon dioxide
interfaces, which are deficient in oxygen (SO,, x < 2
[1]), can contain traps for electrons and holes [9]. For
definiteness, these traps are assumed to be impurities of
the donor and acceptor types that can be filled through
photogeneration of electron—hole pairs in a crystalite
upon its photoexcitation. An electron trapped on adonor
and aholetrapped on an acceptor form the so-called dis-
tant pair (according to the terminology used by Sakurai
et al. [11]) and can subsequently recombine by tunnel-
ing through the crystallite material with the emission of
a light photon. (Apart from this sufficiently ow pro-
cess, ultrafast luminescence was al so observed in porous
silicon [13, 14], which could be brought about by the
annihilation of photoexcited excitons inside a particular
crystallite without trapping of electrons and holes.)

By analogy with the case of amorphous hydroge-
nated silicon [2] (and highly doped semiconductors[7,
15]), the time of tunneling recombination for an elec-
tron—hole pair is determined by the relationship

WH(r) = Wi exp(2r/Ry), @)

wherer isthe “arm” of the electron-hole pair (the dis-
tance between the electron and the hole localized on the
crystallite surface), R, isthe maximum (among the par-
ticlesin the electron—hole pair) localization length, and
W, IS a constant. The contribution from the relevant
electron—hole pair to the photoluminescence kineticsis
described by the function [15]

I(t) = -dQ.(t)/dt = W(r)exp[-W(r)t],  (2)

where Q,(t) = exp[-W(r)t] is the instantaneous proba-
bility that the recombination event has not yet occurred.

It is clear that the energy of a photon emitted upon
recombination should depend on r. Indeed, on the one
hand, as was shown earlier by Thomas et al. [15], the
inclusion of the Coulomb interaction between a
charged donor and a charged acceptor (which serve as
traps of aphotoexcited electron and a photoexcited hole
and are separated by a finite distance r) leads to an
increasein the energy of the emitted photon by Epa(r) =
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€l(er), where e is the elementary charge and € is the
effective permittivity of the medium. On the other hand,
the energy of the emitted photon should carry informa-
tion on the band gap in the crystal (and on the energies
of the donor and acceptor levels from which, according
to[15], the electron and the hole recombine). By virtue
of the quantum confinement effect, the band gap E, for
the crystallite under investigation should be dependent
on the crystallite diameter L. From genera consider-
ations, it can be expected that Ey(L) ~ L™ (see, for
example, [8] and references therein). However, reason-
ing from an analysis of the experimental data on photo-
luminescence in porous silicon, the dependence Egy(L)
is generaly represented in the form [1]

C
E (L) = Eg+%+—Z €)

L%

where E; is the band gap in a macroscopic crystal and
¢, and ¢, are constants. Rama-K rishnaand Friesner [16]
performed numerical pseudopotential calculations of
the electron energies in semiconductor nanoclusters
and obtained the dependence Ey(L) in aform similar to
expression (3). It should be noted that the contribution
Epa(r) to the energy of the light photon is similar in
form to the contribution ~L=* in expression (3).

The resultant instantaneous photoluminescence
intensity for a system of spherical nanoclusters can be
obtained by the averaging of function (2) [taking into
account expressions (1) and (3)] over (a) the sizes of
nanospheres with an appropriate distribution function
and (b) the geometrical arrangement of donors and
acceptors that serve as traps of photoexcited electrons
and holes on the surface of a particular nanosphere. Let
us now make the simple assumption that the nano-
sphere surface contains no more than one donor—accep-
tor pair. For example, setting L = 5 nm (the characteris-
tic diameter of crystallites in porous silicon samples
used in the photoluminescence experiments[1]) and the
concentration ~10% cm3 for charged oxygen centersin
the SIO, structure [17], we find that the number of
donor—acceptor pairs at the crystallite-SiO, interfaceis
close to unity. Finally, under the assumption that the
size distribution of nanospheres has a Gaussian shape
(see, for example, [18]), we have

le(t) = AJ’dL p{ 0) hdesne
x W[L cos%} exp Eg—W[L cos%}ﬂ% (4)
x 6§E —E, (L) - EDA[LCOS%E,
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whereL, isthe mean diameter of crystallitesin aporous
silicon sample, A isthe variance of the Gaussian distri-
bution, and r = Lcos(6/2) is the distance between the
localized electron and the localized hole in terms of the
azimuthal angle 6 and the crystallite diameter L. When
deriving relationship (4), the normalization constant
was taken equal to avalue that could be obtained from
the Gaussian distribution by integrating it between infi-
nite limits. Thisisjustified in the case of a sufficiently
narrow distribution, which, in actual fact, reflects the
experimental pattern in porous silicon (see below).

After introduction of the dimensionless quantities
&o = LoRyand Ay = A/R, and integration over 6, relation-
ship (4) with allowance made for expression (3) takes
the form

(E Eo)

le(t) = 2 e J' —28x(8)

S ©
Wit eXp[ —2EX(E)] Eﬁ(&)zda,

where

X(€) = Eo€/(EE*~E§—E)),

(E, + Eo + J(E, + E)? + 4EE,)/(2E),
E=E-E, E =c/R,,

E, = ¢,/R,, E, = €/(eR,).

Formula (5) is the principal result obtained in our
work. Before proceeding to the description of experi-
mental data on the photoluminescence decay in porous
silicon and the time evolution of the photolumines-
cence spectra with the use of the derived formula, we
dwell briefly on the qualitative analysis of its features.
The distinctive feature of thisformulaisthat the Gaus-
sian size distribution function in the integrand accounts
for the time spectrum of radiative recombination in the
given system. Relationship (5) closely resembles the
electric relaxation function obtained for disordered
conductors in our earlier work [19]. As was shown
in[19], the electric relaxation function reproduces the
behavior of the Kohlrausch function with a high accu-
racy. Therefore, the behavior predicted by expression (5)
for the time decay of photoluminescencein porous sil-
icon should also be reproduced by a dependence simi-
lar to the Kohlrausch function (in this case, the wider
the Gaussian distribution, the broader the range in
which this dependence holds [19]). Recent experi-
ments [1, 9] also demonstrated that the time decay of
photoluminescence in porous silicon obeys the Kohl-
rausch empirical law.

Emin =
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Fig. 1. Experimenta (points) and theoretical (solid line)
time decays of the photoluminescence intensity | in porous
silicon. The experimenta dataat T = 11 K are taken from
[12]. The theoretical curveis plotted using formula (5) with
the parameters given in the text.

3. ANALY SIS OF EXPERIMENTAL DATA

In order to describe quantitatively the experimental
data on the photoluminescence kinetics in porous sili-
con (Figs. 1, 3), itis necessary to specify the numerical
parameters in relationship (5). Certain of these param-
eters are known from independent measurements. In
particular, data processing of optical absorption mea
surements in porous silicon samples gives the follow-
ing parameters. E;=1.17 eV, ¢, = 184 eV A andc, =
202 eV A2[1]. The mean size of crystallites L, and the
variance of the size distribution can be considered to be
known (for example, according to electron microscopic
observations [1, 9], the characteristic values of L, for
luminescent porous silicon samplesfall in the range 5—
7 nm). Asregardsthe W, constant, its value can easily
be estimated from the rate of photoluminescence decay
(seeFig. 1): W, ~ 10° s (note that the Wi, constant
of the same order of magnitude determines the photolu-
minescence decay in doped semiconductors GaP [15]).
The effective permittivity € can be obtained from the
experimental effective refractive index of porous sili-
con [1]: € ~ 2-6. Since the possible values of localiza-
tion length R, are unknown, this parameter is deter-
mined by fitting the theoretical results to the experi-
mental data on the photoluminescence in porous
silicon.

The applicability of formula (5) to the quantitative
description of experimenta data on the photolumines-
cence kinetics in porous silicon isillustrated in Fig. 1.
For this purpose, the theoretical curve plotted using this
formula is compared with the experimental data
obtained in [12] for the radiant energy E=1.86 eV at a
temperatureof 11 K (Fig. 1). The calculationswere per-
formed with the following parameters; L, = 75 A, A =
12A,e=31,R,=26A, and W,,, = 10° s’ (the other
parameters are given above).
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Fig. 2. Time evolution of the photoluminescence spectra
according to the calculations from formula (5) with the
same parameters as for the theoretical curve shown in Fig. 1
(I is the photoluminescence intensity). Time t, ms: (1) 1,
(2) 5, (3) 10, and (4) 15.

Relationship (5) makes it possible to trace the time
evolution of the photoluminescence spectra of poroussil-
icon. The theoretical spectra calculated from formula (5)
with the same parameters but at different times of pho-
toluminescence decay are displayed in Fig. 2. Since
experimental data on the photoluminescence spectra at
temperatures close to absolute zero are unavailable, the
time evolution of the peak energy in the photolumines-
cence spectra depicted in Fig. 2 and the experimental
data taken from [12] are shown in Fig. 3. Note that the
time dependence of the width of the theoretical spectra
depicted in Fig. 2 is in qualitative agreement with that
obtained experimentally in [12]; however, the theoreti-
cal width at the given parameters turns out to be less
than the experimental width.

Thus, the proposed approach provides an adequate
guantitative description of the photoluminescence

Peak energy, eV

1.88
B { -
=2
1.84F }
1.80F
1.76 {
1 1 1 1 1
0 5 10 15 20
Time, ms

Fig. 3. (1) Time evolution of the peak energy in the photo-
luminescence spectra shown in Fig. 2 and (2) the experi-
mental dataat T=11K [12].
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kinetics and the time evolution of the photolumines-
cence spectra of porous silicon with actual parameters.

3.
4. CONCLUSION 4

The fluctuation approach proposed in the present
work enabled us, within a unified context, to describe
guantitatively the main features of nonstationary photo- 5,
luminescence in disordered structures (such as porous
silicon) at low temperatures. The origin of these fea- ¢
tures (nonexponential photoluminescence decay simi-
lar to the Kohlrausch empirical law, the shape of the -
photoluminescence spectra of porous silicon, and the '
red shift of the peak energy in the photoluminescence 8
spectrawith time) wasinterpreted within the concept of '
tunneling radiative recombination of a photoexcited
electron and a photoexcited hole trapped on the surface 9
of each crystallite whose size distribution has a Gauss- '
ian shape. The theoretical parameters accounting for 10
the characteristics of porous silicon have a clear physi- '
ca meaning, and their numerical values can be
obtained from experimental data on the photolumines-  11-
cence kinetics.

The developed theory can be extended to a larger 12
number of donor—acceptor recombination channels. In ~ 13.
this case, the theoretical spectra should be dlightly
broadened, which is essential to achieve quantitative 14.
agreement with the experimental spectral characteris-
tics of the photoluminescence in porous silicon. 15.

The results obtained suggest that the proposed
approach can provide a basis for the development of a 16
consistent theory of optical phenomena in disordered
materials of the porous silicon type. 17.

18.
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Abstract—The electron paramagnetic resonance (EPR) spectra of Ni%* ions substituting for Zn?* ions in
Zn(BF,), - 6H,0 crystals are studied over awide range of temperatures under uniform compression. Measure-
ments are performed in the X- and Q-bands. The parameter D, which characterizes the initial splitting, under-
goes considerable variations with changes in temperature and pressure, whereas the g factor remains virtually
unchanged. An increase in the temperature is accompanied by a nonlinear increase in D. Under uniform com-
pression, the initial splitting varies linearly and the parameter D changes its sign at 3.5 kbar, which indicates
inversion of the spin levels. The coincidence of the EPR lines associated with different transitions leads to the
appearance of line-profile dips in the spectra due to cross-relaxation inside the spin system. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Crystals of Zn(BF,), - 6H,0 belong to the family of
isomorphic crystals in which the metal ion can be
replaced by Co, Ni, Fe, Mn, and Mg ions and Cl can
substitute for B. Investigation of crystals with a per-
chlorate-type structure, for example, Zn(BF,), - 6H,0
and Zn(ClQ,), - 6H,0 crystals, which contain paramag-
netic bivalent impurity ions of theiron group, is of con-
siderable interest for several reasons. Firgt, these crys-
tals undergo a series of phase transitions induced by
weak orientation interaction forces [1]. Second, their
structure contains bivalent impurity ions arranged in
the form of chains weakly linked to each other [2]; this
could be responsible for the unusual properties of these
compounds. Third, these crystals are readily compress-
ible and can serve as model objects in investigations at
high pressures [3].

Analysis of the phase diagrams constructed for
these materials and investigations into the microscopic
properties of different phases, including electron para-
magnetic resonance (EPR) study of temperature varia-
tionsin the ground state of paramagnetic ions under an
external pressure, can provide new information neces-
sary for better understanding the nature and mecha-
nisms of phase transitions in these crystals.

The EPR spectra of Mn?* and Ni?* ions in fluorobo-
rate compounds were studied earlier in [4-8]. In these
works, the phase transition was found to be in the tem-
perature range 180-190 K. This transition manifested
itself in temperature dependences for both ions. Some
specific features of the EPR spectrafor the Mn?* ion at

a high pressure were investigated in our recent work
3].

In the present paper, we report the results of an EPR
study of the Ni2* (3d®) ioninthe Zn(BF,), - 6H,0 crys-
tal at 4.2 K and in the temperature range 77-320 K and
the data obtained at a high pressure with the purpose of
elucidating the specific features of the temperature and
pressure dependences of the EPR spectrum.

2. EXPERIMENTAL TECHNIQUE, SAMPLES,
AND CRYSTAL STRUCTURE

The EPR spectra were measured on superhetero-
dyne EPR spectrometers operating in 3-cm and 8-mm
bands with special leucosapphire cavities, which made
it possibleto carry out investigations under high hydro-
static pressures over a wide range of temperatures.
Hydrostatic pressure was produced in a high-pressure
piston—cylinder-type chamber fabricated from a non-
magnetic material (beryllium bronze). The sampleto be
studied was placed in aleucosapphire cavity, which, in
turn, was enclosed in the high-pressure chamber. A
mixture of dehydrated transformer oil and kerosene
taken in equal amounts served as the pressure-transfer-
ring medium. Special care was taken to provide a
hydrostatic pressure. For this purpose, the sapphire cav-
ity was covered with athin Teflon cap filled with dehy-
drated gasoline, which could remain liquid up to
20 kbar. The cavity was connected to a heterodyne
channel of the spectrometer through athin coaxial. The
pressure over the entire temperature range was mea
sured with a manganin transducer simultaneously with
the temperature measurement using a calibrated copper

1063-7834/01/4312-2242$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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resistance thermometer. In order to maintain the
required temperature, a nichrome heater was placed on
the surface of the high-pressure chamber and the con-
struction, as a whole, was insulated by a thin vacuum
spacing. The electronic system ensured stabilization of
the temperature with an accuracy of 0.1 K and its grad-
ual variation.

The Zn(BF,), - 6H,0 single crystals with a 1% Ni?*
impurity were grown from a water solution by using
two techniques: (1) aslow decrease in temperaturein a
thermostat and (2) evaporation of the solution at room
temperature. In both cases, crystals grew in the form of
hexahedral prisms with a clearly pronounced faceting,
which permitted their easy orientation. The crystas
were not hygroscopic under standard atmospheric con-
ditions.

Zinc fluoroborate, like perchlorate, has a
pseudohexagonal structure (P6;mc) that exhibits three-
component orthorhombic twinning (Pmn2;) [2]. A
schematic drawing of the structure (a = 7.62, b = 13.2,
c=5.30,and Z = 2) ispresented in [ 2, 4].

The bivalent metal impurity ion is surrounded by six
H,O molecules forming an octahedron dlightly dis-
torted along the c axis. Thewater octahedron, inturn, is
surrounded by six BF, tetrahedra, which also form an
octahedral structure. Two water octahedrain a unit cell
arerotated relative to each other through 60° around the
c axis.

3. TEMPERATURE DEPENDENCE
OF THE EPR SPECTRUM OF THE Ni?* ION

The EPR spectrum of the Ni* ion at anormal pres-
sure can be described by the axial spin Hamiltonian
over the entire temperature range with sufficient accu-

racy:
H = BHgS+ D[S —S(S+1)/3]. (1)

Here, g isthe tensor of the spectroscopic splitting, B is
the Bohr magneton, H isthe magnetic induction vector,

S is the spin operator, and D is the parameter charac-
terizing the splitting of energy levelsin an axially sym-
metric crystal field. For al the temperatures used in the
experiment and an arbitrary direction of the externa
magnetic field, the EPR spectrum of Ni?* consists of
three absorption lines (electron spin S = 1). Two of
these lines correspond to the alowed transitions
between the states (31| <~ 0] and [F1| ~— [0|, and
the third line is attributed to the forbidden transition
[+1] = [#1]. The spin Hamiltonian parameters for
threetemperaturesarelisted inthetable. The sign of the
parameter D was determined from the intensity ratio of
the low-field and high-field lines at liquid-helium tem-
perature. At D <0, the low-field lineismoreintense. In
the entire temperature range covered, except for the
low-temperature range in which the weak anisotropy is
observed, the g factor is isotropic and varies only
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Fig. 1. Temperature dependence of the spin Hamiltonian
parameter D.

dlightly. The parameter of theinitial splitting D changes
substantially. The temperature dependence of the spin
Hamiltonian parameter D (Fig. 1) has two linear por-
tions, which intersect each other at 196 K. In the low-
temperature range 77-196 K, the slope of the linear
portion AD/AT is equal to —2.44 x 102 cm /K. The
slope of the high-temperature portion in the range 196—
320 K is AD/AT = -1.34 x 102 cmYK. A similar
dependenceisobserved for the EPR spectraof the Mn?*
and Ni?* ions in Zn(BF,), - 6H,0 and ZnSiF; - 6H,0
crystals [3, 6, 9]. These variations can be explained by
the second-order phase transition, which is accompa-
nied by a change in the thermal expansion coefficient.
It is quite possible that the nature of this transition is
identical for the ZnSiF; - 6H,0 and Zn(BF,), - 6H,0
crystals.

4. PRESSURE DEPENDENCE
OF THE EPR SPECTRUM OF THE Ni?* ION

The EPR spectrum of the Ni%* : Zn(BF,), - 6H,O ion
was studied at ahigh hydrostatic pressureand T=77 K.
This spectrum can be described by the spin Hamilto-
nian (1). The g factor isindependent of pressure within
the limits of experimental error. The parameter D,
which characterizes the deviation of the crystal field
from the cubic symmetry, turned out to be very sensi-
tive to uniform compression. Figure 2 shows the exper-
imental pressure dependences of the spin Hamiltonian
parameter D at liquid-nitrogen temperatures, which can
be described by the expression

D = (-0.196 + 0.06P) cm ™,

Temperature dependence of the spin Hamiltonian parameters

TK g g D, 10%*cm?
4.2 223+0.002 | 219+0.002 | -1350+4
77 2.23+0.005 | 223+£0.005 | —-1908 =4

295 222+0.005 | 222+0.005 | —6314+ 30
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Fig. 3. (8) Coincidence of the allowed and forbidden transi-
tionsin the 3-cm band and (b) the integral curve.

where P ismeasured in kbar.

An interesting feature of this dependence isthat the
parameter D becomes zero at P = 3.5 kbar. This means
that the local electric field reaches cubic symmetry ina
site occupied by a bivalent nickel impurity ion. Asthe
pressure increases above P = 3.5 kbar, the parameter D
changes its sign and the singlet ground state is
observed.

A more noticeable effect should be observed upon
excitation of the triplet I's, which is related to the
ground orbital singlet I, through the spin—orbit interac-
tion. It follows from the theoretical treatment [10] that

D = 4N%8/A,N,,
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where d = Ay —A; and Ay and A, are the energies of the
excited orbital triplet 's with|,=0and |, = %1, respec-
tively.

The value of Ay = A, for the [Ni(H,0)g] complex in
solution, which was determined from the optical
absorption spectrum, is approximately equa to
8400 cm™, and the parameter A is —270 cm™ [10].
Hence, it follows that & = 242D cm™. From the afore-
mentioned experimental data, we obtain 08/0P =
14 cmY/kbar; i.e., at 10 kbar, the splitting of excited
levelsis 140 cm. Thisshould affect the optical absorp-
tion spectra and can lead to a change in the color of
crystals containing the Ni2* impurity.

Vasyukov et al. [11, 12] demonstrated that, in the
case of dlight variation in the cubic potential when the
crystal lattice is distorted along the threefold axis, the
parameter D can be expanded in powersof (B —[3). The
quantity (B —,) isameasure of distortion of the molec-
ular complex of water. Here, 3, isthe angle between the
direction toward the nearest ligand and the C; axis of a
regular octahedron and [ is the same angle for the dis-
torted octahedron. The expansion reduced to the first
term has the following form:

D = (B—-By)oD/op.

For all the studied crystals with a trigonal distortion,
0D/0p hasanegativevalue[11, 12]. Therefore, thesign
of the parameter D depends on the sign of (B — ). In
our case, at normal pressure, we have the parameter
D < 0 and, consequently, (B — ;) > 0. This means that
the octahedron is oblate along the C; axis. At pressure
P > 3.5 kbar, the parameter D changes its sign and the
octahedron is elongated along the C; axis. Despite the
fact that the crystals we considered have a lower sym-
metry, the deviations from trigonal symmetry areinsig-
nificant [2]. Hence, we can use the above inferencesin
our consideration.

A comparison shows that our data closely coincide
with the pressure dependences of the parameter D for
ZnSiFg - 6H,0 and MgSiF; - 6H,0 crystals [13, 14]
(Fig. 2). This coincidence can be explained by the fact
that the water complexes of these crystals exhibit virtu-
ally the same compressihility, even though the SiF; and
BF, anionsforming the second coordination shell differ
from each other and the crystals are described by differ-

ent space groups. R for ZnSiF, - 6H,0 and Pmn2, for
Zn(BF,), - 6H,0. The elastic properties of these com-
plexes are formed by the nearest environment of the
bivalent metal impurity (in our case, six H,O mole-
cules) and through the hydrogen bonding between the
metal atoms and the anion environment. According to
our results and the data obtained in [3] for the pressure
dependences of the Mn?* ion, the hydrogen bonding is
similar in all the aforementioned crystals.
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Fig. 4. Coincidence of the allowed and forbidden transitions
in the 8-mm band.

5. EFFECT OF THE COINCIDENCE
OF TRANSITIONS

The strong dependence of the parameter D on the
temperature and pressure suggests an arrangement of
spin levels that is actually impossible under standard
conditions. Let us now consider two variants of the
arrangement of spin levels that lead to interesting
effects.

5.1. Coincidence of the allowed and forbidden
transitions. The situation when both transitions coin-
cide with each other isillustrated in Figs. 3-5. At afre-
guency of 9 GHz, the narrow line attributed to the for-
bidden transition with an opposite phase is observed
against the background of the broad absorption line of
the allowed transition, which corresponds to the emis-
sion curve. In the antiderivative of the EPR signa
(Fig. 3), the narrow line has the shape of adip. A simi-
lar pattern is observed at a frequency of 35 GHz
(Fig. 4). In the latter case, the coincidence of the
allowed and forbidden transitions occurs at room tem-
perature; however, the effect is substantially smaller in
magnitude.

5.2. Coincidence of two allowed transitions. A
similar pattern is also observed for the coincidence of
two allowed transitions. Figure 5 depicts the absorption
linein the case of exact coincidence between two lines
of the fine structure when the direction of an external
magnetic field corresponds to the magic angle 6 =
54.4°. A similar situation can arise under uniform com-
pression. At P = 3.5 kbar (Fig. 2), the parameter D is
zero, the lines associated with the allowed transitions
coincide with each other, and a dip is observed in the
region of overlapping of the EPR lines.

This phenomenon can be explained in terms of
cross-relaxation in athree-level system. Specificaly, if
there are two pairs of nearly equidistant levels, the
spin—spin interaction results in the following processes
[15]: thefirst ion absorbs the energy hv, and the second
ion emits the energy hv,. For the exact coincidence of
the frequencies, the reemission processes have the
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Fig. 5. Coincidence of two alowed transitions (0 = 54.4°).

highest probability, which leads to a decrease in the
intensity of the absorption line. Since the lines of the
alowed spectrum of the Ni?* ion are nonuniformly
broadened, the transition energies coincide only in a
narrow frequency range, asis the case in the two-pho-
ton transition observed at a high power supplied to the
sample [16].

Rather strong spin—spin interactions between the
Ni?* ions can be judged from the clearly distinguishable
additional linesin the spectrum, which are attributed to
theion pairslocated along the c axis. The distinction of
the observed phenomenon from the conventional cross-
relaxation lies in the fact that these transitions occur
between the levels attributed to a single spin system.
Theoretical treatment of this phenomenon, asapplied to
aMgO cubic crystal, was performed in [17].
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Abstract—It is demonstrated on model examples that inclusion of the interaction between pileups of grain
boundary dislocations formed in the vicinity of triple grain-boundary junctions leads to amultifold increasein
the capacity of these pileups. © 2001 MAIK “ Nauka/Interperiodica”

1. The pileups of grain boundary dislocations
formed in the vicinity of triple grain-boundary junc-
tions at the initia stage of plastic deformation of fine-
grained materials are responsible for important physi-
cal processes, such as the development of cavitation
under creep conditions, formation of cracks at high
loading rates[1], restructuring of atriplejunction under
stresses typical of superplasticity [2], and inelastic
relaxation of amaterial after unloading [3]. The density
of edge dislocations py(x) in an isolated one-sided
pileup, which is distributed over the interval X, < X < X,
under the shear stress T acting in the dislocation glide
plane, is determined by the standard equation [4]

“o)X Ty
X—x_ o’ M7 amiovy’ &)

Xo

where [ isthe shear modulus, v isthe Poisson ratio, and
b is the strength of grain boundary dislocations; the
principal value of the integral is considered. If the dis-
locations are emitted by a source located at a point with
the coordinate x = L/2 and the threshold stress T, ~ pbl/l,
the length of the pileup is determined by the condition
of blocking of the source by the reverse field of the
emitted dislocations:

po(x)dx _
T+ uObJ’ —75 -l 2

Xo

From relationships (1) and (2), it follows [4] that

() = L [ls=X
Po _npobx Xo'

- xqj[IL % (@]

©)

Xs—Xo =

In this case, the number of dislocationsin the pileup is
given by

Xs

No = IDO(X)dX =

Xo

T(Xs—Xo)
T ()

Relationship (3) for the dislocation density is used for
analyzing the formation of a crack in atriple junction
[1], whereas expression (5) is applied to the description
of the inelastic relaxation of a superplastic material [3].
However, for atriplejunction in the general case (shear
stresses act at each boundary of thetriple junction), the
grain boundary dislocations can be formed at al three
boundaries and their interaction substantially modifies
expressions (3)—(5). For an arbitrary triple junction, the
problem reduces to a complex system of three integral
equations. In order to obtain a preliminary estimate of
the effect of the interaction between pileups of grain
boundary dislocations, we consider two model exam-
ples admitting exact analytical solution.

2. Let us assume that, in addition to the aready
introduced pileup, there exists a second pileup of didlo-
cations of oppositesign in thevicinity of thetriplejunc-
tion x = 0 in the interval —x; < X £ —X,. This pileup is
formed by a source located at the point x = —-L/2. The
region |X| < X, is an obstacle to the motion of disloca
tions and can be considered akernel of atriplejunction
that has a crystal structure different from the structure
of the boundaries. Since the densities of dislocations
areidentical inthetwo pileups according to the symme-
try considerations, we obtain the equation for the dislo-
cation density,

“o.(X)dX 1
X'+X Wb ©)

(X)X’

X' =X
Xo Xo
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and the condition of the source blocking:

o (x)dx
X' +L/2

T+ Iloprl(X ), = T (7)

L/2
After replacing the independent variable x* =y [5],
expression (6) reduces to an equation of type (1) and
has the solution

2 2
R T g

From condition (7), we obtain the relationship

2 0 1
X —Xg = %I'Z—X%Ell—%- )

Conseguently, the number of dislocations in the pileup
isrepresented as

TX
N, = K@) -E@),
where X is determined from relationship (9), q =

JXC = x¢ Ix, and K and E are the complete elliptic inte-
grals of the first and second kinds, respectively [6].

3. Under the assumption that L is the length of the
grain boundary, atriple junction, which is an obstacle
to the propagation of dislocations, should be located at
points x = L and x = 0. In this case, the source at the
point x = L/2 forms both the pileup in the interval X, <
X £ X and the pileup of dislocations of the oppositesign
in the interval L — x; < X < L — X, The interaction of
these pileups can either decrease or increase the effect
of the mutual attraction of the pileups considered in the
first example (see Section 2) and, consequently, can

(10)

—-—--log(L/b)=4.5
----log(L/b)=4.25
log(L/b) =4

1 1 1
-3.25 =2.75 -2.25

log (/W)

1
-3.75

Capacities of the interacting pileups of grain boundary dis-
locationsin terms of the capacity of an isolated pileup.
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affect the concentration of stresses in the region of the
triple junction |x| < X,. In order to estimate this effect,
we consider the second model example.

It is assumed that the obstacles to the motion of dis-
locations lie along a straight line at points x;, = +nL
(n=0, 1, 2, ...) and that sources with identical thresh-
old stresses are located at points x,, = +mL/2 (m=1, 3,
5, ...). Hence, the density of dislocationsin any pileup
satisfies the equation

p(x)dx
Z Ix2+x nL

n——ooxo

Cpp(x)dx 1
zIxz—x nL b’

n= —OOXO

which, in view of the relationship Z =

& —na
n=—»o
a cot 183 , takesthe form
21X’
s pa(X )S'nT .
ax' = —. 11
L { cos-——— - coszm( Hob

L L

The condition of the source blocking is determined by
the following equation:

%p (X)sm2r[x
2Tb 72 L .,
— o ax' = 1. (12
% 1+ cos— 3

After replacing the independent variable cos(2rx/L) =
y, expression (11), asin the first example, reduces to an
equation of type (1) with the solution

cos(2rx/L) — cos(21x/L)
P2(x) = npob«/cos(ZTer/L) cos(2mx/L)’ (13)
It follows from Eq. (12) that
™ _ TopngT™0
cos T T cos - (14

Finaly, the number of dislocations in the pileup is
determined by the expression

T[TuL pN1+ vo[ (- :)}OI'I(HIZ, " t)] 15

where vo = cos(2Mmxo/L), Vs = cos(2mx/L), n = V'lo _\:)‘S,
Vs

N, =

2(VO_VS)
(1-v(1+vy)’
the third kind.

t= and N is the elliptic integral of

No. 12 2001



ON THE CAPACITY OF GRAIN BOUNDARY DISLOCATION PILEUPS

4. Under the condition L > X, (X, ~ 5b), the depen-
dence of the capacity of an isolated one-sided grain
boundary dislocation pileup on the boundary length L
exhibits a nearly linear behavior. The linearity of the
dependence of N, on T breaks down only near the
threshold stress t,.. The figure shows the dependences
N,/Ng and N,/N,. For weak stresses, the effect of the
interaction between two pileups is especialy signifi-
cant at small L. When both parametersL and T increase,
the role of the interaction between these pileupsis less
pronounced. However, in this case, too, the number of
didocationsinvolved ininteracting pileupsisfive or six
times larger than that in an isolated pileup. The screen-
ing effect of a chain of dislocation pileupsis also more
evident compared to that of a two-sided pileup under
weak stresses (the screening effect causes an approxi-
mate twofold decrease in the capacity of interacting
pileups; however, this capacity isstill four times higher
than the capacity of an isolated pileup). As the stress
increases, the effect of the screening is leveled and the
capacity of achain of pileups and that of the two-sided
pileup become close to each other.

The dislocation densities represented by expres-
sions (8) and (13) bring about a substantial increase in
the concentration of stresses at the triple junction point
as compared to a one-sided pileup described by rela-
tionship (3). Note that especially favorable conditions
for the formation of a crack are observed at high strain
rates.

The ssimple and sufficiently accurate estimates of
expressions (10) and (15) lead to the principal terms of

PHYSICS OF THE SOLID STATE Vol. 43 No. 12
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the expansions with respect to the small parameter
X/l < 1.

2
TL T L T
MO 1= e 1
2 2 0
LA L
TCHob ° O\t O

Thus, the consideration of the processes occurring
in triple grain-boundary junctions during plastic defor-
mation should be based on amore thorough description
of the interacting pileups of grain boundary disloca-
tions than is usually used for noninteracting pileups.

N, O
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Abstract—This paper reports on alaser interferometric study of the effect of a dc magnetic field (MF) on the
rate of plastic deformation (creep) € of NaNO, ferroelectric crystals under compression. It is established that
the application of adc MF to aloaded specimen results in an increase in the creep rate and that removal of the

MF brings about adecreasein € . Subjecting an unloaded specimen to adc MF beforehand also affectsits strain
rate under the subsequent |oading. The observed magnetopl astic effect is most clearly pronounced within a cer-

tain € interval, and the magnitude of this effect for the NaNO, ferroelectric is several times larger than that for

LiF crystals. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The magnetoplastic effect (MPE) was originaly
observed in nonmagnetic crystals (NaCl) on a micro-
scopic scale in the form of didocation mation in
unloaded specimens placed in a pulsed [1] or dc [2]
magnetic field. However, in[1], the observed effect was
assigned not to the magnetic field itself but rather to the
induced vortex electric field acting on the dislocations.

It was subsequently established that the MPE not
only consists of an increased mobility of singledisloca
tions [3, 4] but also becomes manifest on the macro-
scopic level by lowering theyield point [5, 6], reducing
the microhardness [7], and changing the acoustic
parameters (interna friction) [8]. The magnetic field
has been observed to affect the plasticity of anumber of
nonmagnetic materials, more specificaly, of ionic crys-
tals [1-8], polymers [9-11], semiconductors [12, 13],
molecular crystals [14, 15], and diamagnetic metals
[16-18]. (For a more extensive list of references to the
MPE, see review [19].) According to [6], the nature of
the MPE is usually associated with spin conversion in
impurity centers, which givesriseto arearrangement of
their electronic structure and the corresponding weak-
ening of their interaction with dislocations.

The experiments carried out thus far suggest that
practically any nonmagnetic material can exhibit the
MPE under certain conditions. We have chosen, as a
subject for the study, NaNO, ferroelectric crystals,
which contain polarized regions (domains) and, as
shown previoudy in [20], exhibit a specific polariza-
tion-induced electroplastic effect. These crystals were
used to study the influence of a magnetic field on the
plastic-strain rate under a constant compressive stress,
and it was established that the magnetic field stimu-
|ates, under certain conditions, a substantial increasein
thisrate.

2. EXPERIMENTAL

The NaNO, single crystals used in the work were
grown by the Kyropoulos method from melt and
annealed at 500 K for 48 h. The specimenswere 2 x 3 x
6-mm rectangular parallelepipeds cut with a thread
saw. The crystallographic orientation of the specimens
was chosen such that they could be plasticaly
deformed aong the well-known dip systems
{110} [1110and (001)[100] [21].

The specimens were deformed by a constant com-
pressive stress o at room temperature. The course of the
deformation with time was monitored using laser inter-
ferometry [22], a method that permits one to measure

the relative strain rate € under small variations of the
specimen length |,. One beat in an interferogram corre-

spondsto astrain increment of 0.3 um, and € = Av/2l,,
where A = 0.6 um is the laser wavelength and v is the
beat frequency. As aresult, the inelastic strain rate can
be measured over abase length of Al = 0.3 um to within
~1%, thus permitting one to detect weak effects, which
would otherwise be washed out in the traditional
strain-time creep curves.

The deformation experiments, both in the presence
of a dc magnetic field and without it, were performed
on asetup whose components, located within theregion
of the magnetic field, were made of nonmagnetic mate-
rials. To study the influence of a magnetic field with
induction B=0.2 T (generated by a permanent magnet)
on specimen deformation, a strained specimen was
placed between the magnet poles. The magnetic field
was oriented perpendicular to the specimen axis. Par-
ticular attention was focused on the possible change in
strain rate upon both application and removal of the dc

magnetic field (MF). The magnitude of € was mea

sured at the same increments of the strain before and
after the field was varied.

1063-7834/01/4312-2250$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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s

Fig. 1. Aninterferogram displaying the variation of the creep
rate along the (001)[100] dlip plane of aloaded NaNO, spec-

imen under application (1) and removal (1) of a magnetic
field; B=0.2T and 0= 8.6 MPa.

Experimental study on the creep rate of a specimen
was aso performed after its exposure to a magnetic
field in the unloaded state. The exposure time was
10 min, and the creep rate was measured 5 s after the
loading, immediately following theremoval of thedc MF.

For comparison, similar experiments were also car-
ried out on 5 x 5 x 10-mm LiF single crystals subjected
to dlip over the { 110} (1100ystems.

3. RESULTS OF THE STUDY AND DISCUSSION

Figure 1 presents interferograms in which the oscil-
lation frequency reflects the variation of the creep rate
of aloaded NaNO, specimen at the instant of applica-
tion (arrow up) and removal (arrow down) of a mag-
netic field. Thisinterferogram clearly demonstrates the
manifestation of a repeating MPE in the NaNO, crys-
tals; this effect consists in a sharp increase in the creep
rate under amagnetic field and in adecreasein € when
thefield is removed.

Figure2illustratesthe dependence of € ontimet for
NaNO, and LiF crystals, including the instants of appli-
cation and removal of a dc MF. One clearly sees the
manifestation of the above-mentioned MPE, with the
NaNO, crystal response to the magnetic field being
noticeably stronger than the LiF response. A similar
enhancement of the creep rate was also observed to
occur after the exposure of unloaded specimens to a
magnetic field.

In the case of creep, the MPE can be quantitatively
characterized by the ratio of the creep rates obtained
with and without the field, i.e., by the quantity & /g, .
Because the creep rate for o = const decreases with
time, the €; /€, ratio was measured for various values

of €o. Figure 3 displays the dependences of £,/¢, on

the creep rate at which the MPE was measured on a
loaded specimen or on a specimen after its exposure to
a dc MF in an unloaded state. One does not see any
noticeable effect of the magnetic field on the NaNO,

crystals at small strain rates (g, < 5 x 10~ s7). At the

sametime, even asmall further increasein g, resultsin
the onset and sharp growth of the MPE up to values

PHYSICS OF THE SOLID STATE Vol. 43 No. 12 2001
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Fig. 2. Creep rate vs. time plots including the instants of
application (1) and removal (1) of a magnetic field:
(a) NaNO, (dlip plane system {110} 1110}, 0 = 8.5 MPg;
and (b) LiF, 0 =7 MPa

OIIIIII»I | | | |
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€, 1079 57!

Fig. 3. Dependence of the &;/¢ ratio on the creep rate at
which the MPE was measured in (1-3) NaNO, and (4-6)
LiF crystals. The datawere obtained under (1, 2, 4) applica-
tionor (5) removal of adc magneticfield (B=0.2T), aswell
as (3, 6) after 10-min exposure to afield. The dlip planesin
the NaNO, crystals: (1, 3) {110} [1110and (2) (001)[100].
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€:/€9 = 7. This MPE level remains nearly unchanged
up to &, = 1 x 10°° s, after which it falls off rapidly
and practically disappears at €, = 4 x 10° s. The
€; /€, relation for the LiF crystals behaves in the same

way; however, the maximum val ue of thisratio does not
exceed 1.6.

Interestingly, in the earlier experiments carried out
on NaCl and LiF crystals under constant rates of strain

[6] or loading [19], the maximum values of &;/&, in

weak magnetic fields likewise did not exceed 2 even for
specimens containing alarge amount of divalent impu-
rities, which enhances the MPE [19]. In this case, the
MPEinLiF crystaswasobservedfor B=0.2T only for

€, <2x10°s?[6].

4. CONCLUSIONS

Thus, the experimental data obtained in this work
indicate a manifestation of the MPE in ferroelectric
crystals. In this case, the MPE reveds itself in an
NaNO, crystals as a substantial increase in the plastic
strain rate of aloaded specimen upon the application of
amagnetic field or after subjection of the specimen to
it. In these conditions, the MPE is observed only within
thestrainrateinterval € = (0.1-3) x 10°s™. Theresults
obtained can beinterpreted qualitatively within amodel
that takesinto account thermally activated and magnet-
icaly stimulated depinning of dislocations from vari-
ous pinning centers, primarily the impurity centers
present in the crystals [6, 19]. One should, naturally,
also take into account the specific features of the struc-
ture of the dislocations themselves and of the pinning
centers for each crystal considered. In particular, the
formation of a polarization electric charge on disloca-
tions may play a considerable role in ferroelectrics
[23], but clarification of the part played by this charge
in the MPE would require additional studies.
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Abstract—Single-crystal films of the Bay g7Big 13A15.95F€5,04019 hexagonal ferrite were prepared by liquid-
phase epitaxy on single-crystal plates of the nonmagnetic material SrGa;,0,4, Whose crystal structureissimilar
to that of the film grown on it. A Mdssbauer study of the films revealed that the magnetic moments of theiron
ionsin the bulk of afilm are perpendicular to the film growth plane, whereas the moments of the ions residing
in a surface layer ~300-nm thick are canted away from the normal of the film by 30° £ 5°. © 2001 MAIK

“ Nauka/Interperiodica” .

Widespread application of magnetic materialsin the
form of epitaxial films of hexagonal ferrites in various
areas of microelectronics requires not only investiga-
tion of the characteristics of the films themselves but
also our understanding of the properties of the surface
and of their relationships with the bulk characteristics.
The fact is that the method used to prepare the films,
namely, liquid-phase epitaxy (LPE) on substrates from
a supercooled solution in a melt, brings about the for-
mation of transition layers on the film—substrate and
film—air interfaces. Indeed, it has been experimentally
shown [1] that the magnetic structure of the surface
layer adjoining the film—air interface differs from that
of the bulk of the film. It has been established [2] that
the differences in magnetic structure increase as one
approaches the film surface. On the garnet-ferrite-film-—
substrate and the film—air interfaces, transition layers
were detected [3-5] that differed in chemical composi-
tion from the bulk of the film, with these differences
increasing as one moves closer to the film interfaces.
However, the nature of the differences between the
magnetic structures of the surface and of the bulk was
not discussed in[1, 2]. It should be pointed out that the
fact that a surface transition layer differing in magnetic
structure from the bulk exists on the surface of macro-
scopic crystals was first demonstrated experimentally
in[6, 7] using antiferromagnets with aweak ferromag-
netic moment as an example. Such a transition layer
was later shown to be present in hexagonal ferrites as
well [8-10].

Thus, the crystallization process and the formation
of surface properties in thin films of such complex
oxide compounds as ferrites require further investiga-
tion. This work was aimed at studying the magnetic
properties of the bulk and of the surface layer in films
of Ba-M-type hexagonal ferrites.

Single-crystal films of the hexagonal ferrite were
LPE-grown from a Bayg/Big13Al506F€504019 batch.
The films were prepared on (0001) single-crystal sub-

strates of nonmagnetic SrGa;,0,4. This orientation of
the substrate was chosen to obtain a film with its mag-
netization perpendicular to its growth plane. The films
were grown without substrate rotation at amelt temper-
ature ~1040°C for 10 min. The >’Fe isotopic content in
the films was equal to its natural abundance ratio. The
film thickness was ~3 pm.

We studied the crystalline and magnetic structures
of the films using x-ray diffraction and simultaneous
gamma, x-ray, and electron Mdssbauer spectroscopy
(SGXEMS) [11]. M0Osshauer spectroscopy provides
direct information both on the phase state of the sub-
stance under study and on the orientation of the mag-
netic moment in a sample. The SGXEM S method per-
mits one to simultaneously obtain M dssbauer spectrain
y rays, x-ray characteristic radiation, and conversion
and Auger eectrons (CAE). The spectra thus obtained
can be used to derive information on the properties of
the bulk, of layers afew micrometers thick, and of sur-
face layers ~300 nm thick of the sample under study.

The M 6ssbauer spectra of the
Bay g/Big13Al506F€304019 films were measured on a
SGXEM S-based computer-controlled system [12]. The
wave vector of the y radiation was oriented perpendic-
ular to the surface of the films studied. The SrGa;,044
substrates were ~500-pum thick and, therefore, opague
to the 14.4 keV Mdsshbauer radiation. To measure
M 6sshauer spectra with detection of y raysin the film
transmission mode, the substrates were ground off to a
thickness ~100 pum.

Figure 1 shows room-temperature M dssbauer spec-
traof our films. They are seen to consist of several Zee-
man sextuplets, which are due to iron ions occupying
inequivalent sites. A least squares computer analysis of
the spectral data showed them to be spectra of the hex-
agonal ferrite. The experimental spectra were used to
derive the hyperfine-interaction parameters. The values
of the effective fields Hy; at theiron-nucleus sitesin the
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Fig. 1. Mossbavuer spectra of an epitaxial film of the Bag g7Big 13Al3 ggF€3, 04019 hexagonal ferrite obtained at 300 K by detecting
(a) y-rays passing through the sample and (b) conversion and Auger electrons escaping out of a surface layer ~300-nm thick.

300-nm thick surface layer and in the bulk of the film
were found to coincide to within experimental error.
The effective fields are listed in the table together with
the corresponding figures for bulk crystals of the hex-
agonal ferrites. As seen from the table, the effective
fields in the films under study, in which the number of
diamagnetic Al ions per formula unit is x = 3.96, are
substantially lower than those in the unsubstituted Ba—
M ferrites, even though doping the Sr—M ferrites with
Al ionsto avalue of x = 1.8 does not produce a notice-
able decrease in Hy; [10].

The spectra abtained with y rays (Fig. 1a) do not
have the second and fifth sextuplet lines corresponding
to Am= Q transitions, which indicates that the magnetic
moments of theironionsin the bulk of the film are par-
ald to the wave vector of the y-ray beam. The CAE
spectrum contains weak lines corresponding to the sec-
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ond and fifth lines of the Zeeman sextuplets. This
implies that the magnetic moments of the iron ions
residing in the ~300-nm-thick surface layer are canted
away from the film surface normal.

The experimental spectral-lineintensity ratio can be
used to calculate the angle 6 defining the orientation of
the magnetic moment in the crystal relative to the y-
radiation wave vector. This can be done using the rela-
tion (see, e.q., [13])

A, ¢—3A, 7
0 = arccosioLe =32
LAA, ¢+ 3A,

D (3/2)A2’5/A116 D:UZ
(L + (3/4) Ayl AL

(D)

= arcsin
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Effective magnetic fields Hg; for iron ions in the bulk of an M-type hexaferrite (MAIlFe;, _,O,9) @ room temperature

Sublattice Srie;,019 [10] SrAl; gFe0,019[10] BaFe;;,049 [9] 830_8789(;?'3%\?;22;%04019
ilm
12k 413+ 1 415+ 1 416+ 1 3255
4f, 498+ 1 482+ 2 493+ 1 3907
4f, 519+ 2 518+ 2 520+ 3 471+ 7
2a 510+ 2 510+ 2 508+ 3 457+ 7
2b 405+ 4 405+ 4 4035 312+8

where A, ¢ are the intensities of the first and sixth lines
and A, s are theintensities of the second and fifth lines.
Thelineintensity calculations made using Eg. (1) for a
spectrum obtai ned with the detection of yraysand CAE
yielded 0 and ~30° + 5° for the angle 6, respectively.
Thisimpliesthat the magnetic moments of theironions
in the bulk of the film are oriented perpendicular to the
film plane and parallel to the crystallographic axis C.

It is known that the diamagnetic cations Al, Ga, Cr,
or Mn substituting for Fe** ions are distributed uni-
formly over all the sublattices of an M-type hexaferrite
[14]. The exception is the 2b sublattice, where theiron
ions remain unsubstituted up to x = 4-6. Therefore,
M-type hexaferrites doped with such substituting ions
do not exhibit a sharp change in their magnetic proper-
ties with increasing concentration of diamagnetic sub-
gtituting ions, as is the case with iron ions replaced by
ions of Sc, In, and Zn [9, 14]. The collinearity of the
magnetic structure in hexaferrites with Al, Ga, Cr, and
Mn substituting ions breaks down at room temperature
for x = 3 (see [10] and references therein). Magnetic
ordering in such ferritesfails at x > 6-8.

We did not observe any violation of collinearity in
the orientation of the magnetic moment with the C axis
in the bulk of the films studied. It may be conjectured
that the concentrations of diamagnetic cations substi-
tuting for iron ions are not high enough for a noncol-
linear structure to form in the bulk of afilm.

The ~300-nm thick surface layer of the films under
study exhibits a different scenario; namely, the mag-
netic momentsin thislayer are canted away from the C
crystallographic axis. The onset of this misorientation
of moments can beinterpreted in the following way. As
shown experimentally, a transition surface layer in
which the orientation of the magnetic moment differs
from that in the bulk of the sample existsin weakly fer-
romagnetic crystals [6, 7] and hexagonal ferrites [8—
10]. Thistransition layer isformed due to the exchange
interactions being reduced near the surface. Another
factor capable of influencing the orientation of the mag-
netic moment in the surface layer isthe dight changein
the composition as one approaches the surface of films
prepared through liquid-phase epitaxy. The fact is that,
when the substrate with the film is taken out of the melt
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solution, a change in the temperature conditions in
which the film surface layer forms may affect its prop-
erties. Thiswork was not aimed at investigating the sur-
face layer composition. However, studies of YIG films
[3-5] have provided experimental evidence of changes
in the surface layer composition.

Thus, we have used the method of simultaneous
gamma, X-ray, and electron M dssbauer spectroscopy to
study the magnetic properties of the bulk and a
~300-nm-thick  surface layer of films of
Bay g;Big13Al;96F€5 04019 hexagonal ferrites prepared
through liquid-phase epitaxy. It has been established
that the magnetic moments of the iron ions located in
the bulk are oriented perpendicular to the film surface
and paralld to the C crystallographic axis, whereas
those of the iron ions in the surface layer are canted
away from the moments in the bulk of the films at an
angle of 30° + 5°. This differenceis probably due both
to the presence of the surface and to achangein the cat-
ion distribution in the surface layer observed as one
goes over from the bulk to the surface of the film.
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Abstract—E(k) dispersion curves for the charge carriers in the LaMnOs-like perovskites were calcul ated for

the basic types of canted antiferromagnetic ordering of the Mn sublattice in the framework of the tight-binding
approximation. The E(k) spectrum of the antiferromagnetic structures was calculated for the first time taking

into account the degeneracy of the Mn g,

level and the Jahn—Teller distortion of the cubic perovskite structure.

This calculation involved diagonalization of the 8 x 8 Hamiltonian matrix. Analytical expressions for the E(k)
function at separate points and symmetry lines of the Brillouin zone were derived. The cal cul ations showed that
the properties of the La; _,CaMnO5 system do not have el ectron—hole symmetry. © 2001 MAIK “ Nauka/ I nter-

periodica” .

1. INTRODUCTION

At the present time, doped R, _,L,MnO; manganites
(R=La, Pr, Nd, Sm; L = Ca, Ba, Sr) are objects of
intense experimental and theoretical investigations, in
which particular attention is given to their unique phys-
ical properties (colossal magnetoresistance, metal—
insulator phase transitions, charge ordering, etc.) [1].
Now, it isevident that, in order to correctly describethe
phase diagrams and the transport properties of manga
nites, the degree of freedom associated with the double
orbital degeneracy of the Mn g, level should be taken
into account in addition to the spin and the charge
degrees of freedom [2, 3].

The anomalous electric conductivity of manganites
in the vicinity of the Curie point is explained in terms
of the Zener—Anderson—Hasegawa double-exchange
(DE) model [4—6]. This model allows one to calculate
the energy band spectrum E(k) and the kinetic energy
of the charge carriers for different magnetic phases of
the perovskite crystalline structure. In the DE model,
the hopping integral t; between the manganese ions
depends on the angle 6 between the magnetic moments
of the nearest neighbor Mn** ions, t; = tcos(6;/2). In
order to calculate the E(k) spectrum of a certain mag-
netic structure (only the manganese sublattice is usu-
ally considered in manganites), it is necessary to spec-
ify the angles 6;; and solve the corresponding secular
equation. The order of this equation is equal to the
product of the number of atomic orbitals and the num-
ber of magnetically noneguivalent manganese ions.

The electronic band structure of the basic magnetic
structures of manganites (without regard for the orbital

degeneracy [7] of the g, level) is well known. With
allowance for the double degeneracy of this level, the
electronic band structure has been calculated only for
the ferromagnetic (FM) state of the manganese sublat-
tice [8]. Unfortunately, the results obtained for the FM
case are often used [2, 9] to calcul ate the kinetic energy
of charge carriers in antiferromagnetic (AF) structures
and to construct phase diagrams for doped manganites.
Such calculations are not justified, because they ignore
the increase in the number of nonequivalent atoms in
the unit cell (which leadsto ahigher order secular equa-
tion) as one goes from the FM to the AF case. Thus, it
is necessary to calculate E(k) for different AF struc-
tures with allowance for the g;-level degeneracy, the
Jahn-Teller (JT) lattice distortions, and the possible
charge ordering in order to carry out a correct theoreti-
cal analysis of the total energy and the orbital, charge,
and spin ordering in the oxides under study.

2. CALCULATION METHOD

This study is dedicated to calculating an E(k) spec-
trum that takes into account the orbital degeneracy of
the e, electrons in manganites for different types of
magnetic (canted antiferromagnetic) ordering in the
system. We assume, as in the majority of recent papers,
that the spin of acharge carrier isalways oriented along
the local manganese ion spin formed by the three ty,
electrons. Several basic types of magnetic ordering of
the manganese sublattice in perovskites have been
observed experimentally: type A is AF ordering of the
neighboring (100) FM planes, which is observed in the
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LaMnO; compound (6;; = 8,=11); type G isAF ordering
of the nearest neighbors (CaMnQ;, 6; = m); type C is
AF ordering in the (100) plane (6;; = 8,, = 0); and type
F is FM ordering (8;; = 0). In the case of canted ferro-
magnetic ordering, the angle 6; # . In A, G, and C
magnetic ordering, the perovskite unit cell containstwo
nonegquivalent manganese atoms. In order to calculate
the energy spectrum in the tight-binding approximation
with allowance for the degeneracy of the g, level, one
should diagonalize the Hamiltonian matrix constructed
in terms of eight basis Bloch functions. In the case
when both angles 8,, and 6, are smultaneously non-
zero, one should use at least twelve combinations of
Bloch functions. It is clear that the energy spectrum of
AF structures (especialy, of the G type) cannot be
approximated (as was done in [2]) by the spectrum of
the FM state with two hopping integrals dependent on
8,y and 6,.

In the framework of the infinitively strong intra-
atomic Hund exchange approximation (wheretheintra-
atomic energy is much greater than the hopping inte-
gra, JS > t), we can limit our consideration to 4 x 4
matrices and obtain analytical expressions for the dis-
persion relations. However, we will consider the gen-
eral case, where JSiscomparabletot [JS= (3-5)t]. The
Hamiltonian of the system is taken to be the double-
exchange Hamiltonian:

HDE = Zsiaoditxcdiac
iao (1)
ao U
+ Z lﬁ”DdlqﬁdJBU Eznioni_o,
io

ijaBo'c

deBDzD

where

i and j are the atom indices, a and [3 are the atomic
orbitals |z?Cand [x2 —y?[Jg; . iSthe energy of the degen-
erate d level of the a-type Mn3*ion (a =1, 2), o isthe
spin index, 6; is the angle between the local magnetic
moments S (S=3/2) of the neighboring Mn* ions, and

aa'

tijqp IS the hopping integral between the degenerate
orbitals of nearest neighbors. The value of the hopping
integral depends on the hopping direction; in the Carte-
sian coordinate system x, y, and z, the hopping integral
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is expressed in the matrix form as follows:

O
D 1 _“/ém
tijap =t = —tB 4 4 Balongthex axis;
0=/3 3 0
04 40
g 0
0§ e .
-5 gaong the y axis;
043 30
g 40
U104 .
—-t0 0 along the z axis.
goond
Here,
V2
o, = 10= |20 [20= |K*-y°0 t = —Rd&
Eq—E,

The Hamiltonian matrix for the canted antiferro-
magnetic structures is conveniently written as

ek = 5 R0 Ha(0 D
OHL(K) Ha(k) D

©)

where the matrices H; and H, describe the interaction
between orbitals of the same type, while the matrix H,,
describesthe interaction between degenerate orbital s of
different types. The explicit form of the matrices H; for
different magnetic structures is given by the formulas
presented in [7]. For example, for the G-type structure,
we have

Hi(k)
He ¢ .9 U
OEy—JS 0 tik)cos3  t(k)sing C
O 1 . 0 a] O
B B 0 E4z+J(S+1) —ti(k)smé ti(k)cosz E (4)
A 0 o 0
Qi(k)coss —ti(k)sins  Eg—JS o [
Dt@)sing  ti(k)cos3 0 Ey+dS+DJ

where t,(k) = —% t(cosk, + cosk,) — 2tcosk,, ty(k) =

2

3 _ Vi _
- t(cosk, + cosk,), t = ——Z—‘—’ , and A = E4 — E,,. Here,
Ey = E4 + U s the energy of the manganese ion
&, levels, E, isthe energy of the oxygen p level, and tis
the effective transfer integral between the orbitals of the
nearest neighbor manganese ions calculated in the sec-
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ond-order perturbation theory with respect to the
Koster—Slater transfer integral V4, between the manga-
nese g, orhital and the p orbital of its nearest neighbor
oxygen ion. The parameter t for manganitesis positive,
because, according to numerical calculations using the
cluster method [10], the E; level lies below the Eg lev-
els. Since only the transfer between the |z2(5type orbit-
als is possible along the z axis, the matrix H,,(k)
depends only on the perpendicular component of the
wave vector k; and has the form

Hyo(kp)

. 0 . gU
O w o
_ E 0 0 _tlZ(kD)S'nz to(kp) COSEE
B 0 8 0
glz(ku)cosé _tlz(km)s'né 0 0 E
O 9 5 0
Et12(kD)S|n§ tlz(kD)COSé 0 0 E
®)

where

3
to(kg) = %t(coskx —cosk,).
For the A-type structure, we obtain

Hi(k)

0 .0
0 ti(kz)cosé ti(kz)smé

0 0
z tl(kz) COSE

—ti(kz)sing €-13S 0

ti(kz)cosg 0

SN
|

o

)

0  €+J(S+1) —t(k,)sin

|
o
I o
~
NS

D

Bti(kz)sin € +J(S+1)

2 0

where Ey + ti(kp) = €, ty(k) = —2tcosk,, t,(k,) =0,
tikp) = —% t(cosk, + cosk), and to(kp) = —g t(cosk, +

cosk,).

In Egs. (4)—(6), it is assumed that index 1 corre-
sponds to the d orbital of the |z2[type and index 2 cor-
responds to the [x? — y?[lorbital. It follows from Eq. (6)
that the matrix H,(k) is diagonal for the A-type struc-
ture. It is obvious that in this case, the matrix Hy,(k) is
also diagonal, Hn(kp) = t1o(Kp)Om (M, n = 1-4).
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For the C-type structure, we have
H;(k)

= )
0 ti(kp) cos

1D

SN

|

o

(0]
|| o

tikp)sin

o

ti(ky) cos

(7)

NI N

€+3(5+1) 4k sn

I
OOoOoOoOooooo

(kJoos3 ~t(k)sing  E-Is 0

. 0
Eti(ku)sm'

5 € +J(S+1)

0
ti(kp) cos; 0 0

where E;; +t;(k,) = € . The matrix Hyo(K) =Hys(kp) is
identical to the corresponding matrix for the G-type
structure.

3. RESULTS AND DISCUSSION

The dispersion curves for different canted antiferro-
magnetic structures were calculated using Egs. (3)—(7)
both with and without regard for the static JT distor-
tions of the perfect cubic perovskite structure. Because
of these distortions, the transfer integral has different
values along different directions and the Ey; and Egy,
levels are split. The distance dependence of the transfer
integrals (the parameter V), which was determinedin
accordance with Harrison's suggested methods [11],
virtually does not affect the calculated dispersion
curves. The most important effect of the JT distortions
isthe e;-level splitting. When a certain critical value of
this splitting is attained, an insulating band gap appears
in the lower degenerate band of the A-type (LaMnQO,)
magnetic structure. If the JT effect is not taken into
account and, therefore, the g, level is degenerate, then
the A structure will always be a metal (even without
doping): this contradicts numerous experimental data.
For the G structure, the band gap arises for consider-
ably smaller amounts of the JT distortions. For perfect
structures (6 = 1), al bands are twofold degenerate. In
this case, one can easily derive analytical expressions
for the E(k) dispersion relation for some separate points
and symmetry lines in the Brillouin zone (BZ). In the
general case, it is easier to carry out numerical diago-
nalization for the eighth-order secular equation for
arbitrary values of the angle 8 and the wave vector k in
the BZ of an orthorhombic lattice. Because the orthor-
hombic distortions are small and only the manganese
sublattice can be considered, we carried out all calcula-
tionsfor the BZ of the cubic latticein the standard nota-
tionused in [8].

It isconvenient to perform numerical calculations of
E(K) in units of t. Specific values of this parameter for
LaMnO; lie within the range from a value of 0.1—
0.15eV [12] (obtained in the framework of the band
formalism of the density functional) to a value of
=0.30 eV [10] (found for the [La,Mn,O;]* cluster in
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Fig. 1. Energy spectrum of the A-type antiferromagnetic
structure for the main symmetry directions in the Brillouin
zone calculated for the parameters 6 = 1, J = 1.67t, Eyy = 5t,
and Ey, = 0. All bands (A, B, C, D) are twofold degenerate.

the framework of the density-functional formalism).
According to cluster calculations, the e,-level splitting
in the crystalline field is Ey; — Ey, = 0.3-0.5 €V [10],
while it follows from the optical data [13] that Ey —
Eq, = 1 eV. The parameter J = 0.25 eV was obtained as
a result of calculating the Mn3* ion electronic band
structure in the Hartree—Fock approximation using the
well-known RAINE program complex [14]. This
parameter was determined for S= 3/2 from the equation
J@2S + 1) = Eo{Mn¥S = 2)] - E[Mn*(S = 1)] =
0.97 eV, where E, is the total energy of the Mn** ion
in the corresponding spin state. The atomic evaluation
amost coincides with the value obtained in the band
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Fig. 2. Energy spectrum of the canted A-type antiferromag-
netic structure calculated for 6 = 0.8, J = 1.67t, Eg; = 5t,
and Ey, = 0. Bands A, B and E, F correspond to the [x? — y2[]

orbitals and almost coincide in given symmetry direction.
Therefore, only six bands are distinguished in this figure.
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calculations [12], where the energy difference is
approximately equal to 0.9 eV.

Figure 1 presents the spectrum of the A-type AF
structure calculated for the following values of param-
eters: =11, J=1.67t, E4; =5t, E;,=0,and S=3/2. This
spectrum has the same shape as the spectrum cal culated
in[12] inthevicinity of the Fermi level within thelocal
density approximation (LDA). There are two electrons
per unit cell in the A-type structure at hand. These elec-
trons completely fill the lower twofold-degenerate A
band formed by the type 2 orbitals. When the JT distor-
tions are not taking into account, this band overlaps
with the upper band B (of type 1); therefore, the com-
pound is a metal. A band gap arises in the spectrum
only in the case when the JT distortions are sufficiently
large for the amount of splitting of the d level to exceed
acertain critical value Ey; — Eq2 2 5t. An analogous sit-
uation was aso considered in [12]. The value of the
indirect band gap isE,=t=0.1-0.3 eV, while the direct
band gap is 2.5t. The bottom of the upper empty band
is located at the I'(0, O, 0) point, while the top of the
lower bandisontheM(1/2, 1/2, 0)-R(1/2, 1/2, 1/2) line.
Thisleads to the appearance of apeak in the density of
states near the corresponding energy. Asthe splitting of
the degenerate level isincreased, the B and C bands (of
type 2), having different spin directions, can overlap.

The spectrum of the canted A-type antiferromag-
netic structure calculated for the angle 8 = 0.8tis pre-
sented in Fig. 2. It should be noted that the A and B, as
well as E and F, bands of type 2 remain twofold degen-
erate along the BZ symmetry directionsin Fig. 2. Only
the bands of type 1 (C, D, G, H) are split. Complete
band splitting occurs at arbitrary no-symmetry points
of the BZ. However, according to the calculations, this
splitting is insignificant. For example, the splitting of
the lower band in the =X direction is approximately
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Fig. 3. Energy spectrum of the canted G-type antiferromag-
netic structure calculated for the same values of parameters
as in Fig. 2. For this magnetic structure, the bands are
degenerate only at separate points of the Brillouin zone. The
spectrum of the C-type antiferromagnetic structure is simi-
lar in shape to this one.
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equal to 0.05t; it is not shown in Fig. 2. However, over-
lapping of the C, D (type 1) and E, F (type 2) bands
with different spin directionsis noticeable in Fig. 2.

The calculated spectrum of the canted G structure
for the same values of parameters as those in Fig. 2 is
presented in Fig. 3. Here, the degeneracy occursonly at
separate points on symmetry lines of the BZ. The
essential feature of this spectrum isvery strong narrow-
ing of the lower bands of the G structure. It is clear
from Figs. 2 and 3 that, for the same parameters, the
total width of these bands (empty for CaMnQ,) is
approximately 4 times smaller than the corresponding
value for the spectrum of the A structure.

The spectrum of the canted C structure was calcu-
lated in an analogous manner. Since this spectrum is
similar in form and location to the G-structure spec-
trum, we do not present it in this paper. The C-structure
spectrum for symmetry lines of the BZ can be easily
calculated analytically for 8 = 1t

4. CONCLUSIONS

Thus, as follows from the standard DE model, the
behavior of the La, _,CaMnOs;-type systems for small
x and for x =1 should be similar (electron-hole symme-
try). The experiments show that the p-type and n-type
compounds behave in an absolutely different manner.
Thus, for x < 0.5, a metallic FM state usually occurs,
while for x > 0.5, we have an insulating phase. The
results of this study alow one to give a qualitative
explanation of the experiment. It follows from the
numerical calculations that the mobility of charge car-
riers (electrons) in a doped CaMnO; (the G structure)
will be lower than the mobility of holes in a doped
LaMnO; (the A-type structure). Therefore, there is no
electron—hole symmetry in the properties of
La _,CaMnO;. Such a symmetry will occur if, in the
initial electron spectrum, the shape of isoenergetic sur-
faces for holes in the vicinity of the top of the valence
band is identical to the shape of the isoenergetic sur-
faces for electrons in the vicinity of the bottom of the
conduction band. The calculations carried out in this
work show that such a situation is impossible for all
basic types of the magnetic structures considered. The
electron—hole symmetry has also not been observed
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experimentaly (e.g., in numerous phase diagrams of
manganites, see[1]).

The results of calculations of the magnetic phase
diagram for manganites on the basis of the electronic
band structure cal culated in this paper will be published
at alater date.
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Abstract—This paper discusses the phenomena observed in the vicinity of the morphotropic phase boundary
in Pb(Ti; _,Zr,)O5 (PZT) solid solutions. The location of the boundary between the stable tetragonal ferroelec-
tric phase and the stable rhombohedral ferroelectric phaseis calculated, and an analytical expression for deter-
mining the concentration range of the possible coexistence of these phasesis derived. According to the numer-
ical estimates, the concentration range can be as much as 20 mol % lead zirconate. However, reliable experi-
mental datain support of these estimates are as yet unavailable. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Polycrystalline Pb(Ti, _,Zr)O5; (PZT) solid solu-
tions, which are also referred to as PZT piezoelectric
ceramics, have attracted considerable attention of
many researchers [1]. PZT ceramic materials are of
great practical importance owing to their extensive
use in hydroacoustic devices, microphones, force
sensors, acceleration transducers, etc. The reason for
thisis that the most important properties inherent in
these materials are revealed in the composition
regions adjacent to the morphotropic phase boundary
(MPB), i.e., the regions lying along the nearly verti-
cal interface in the phase diagram of the solid solu-
tions. In the phase diagram of the Pb(Ti, _,Zr, )O3 sys-
tem, the morphotropic phase boundary corresponds
to the composition x = Xypg = 0.52, which separates
the region of the stable tetragonal ferroelectric phase
(the T phase) from the region of the stable rhombohe-
dral ferroelectric phase (the R phase). In this situa-
tion, the morphotropic phase boundary corresponds
not to the conventional phase transition observed
under variationsin temperature (which is a controlla-
ble parameter in our case) but to the phase transition
induced by changes in the concentration of compo-
nents (in the studied sample, this parameter remains
constant and, hence, cannot be controlled). However,
aswas shown earlier in[2], the phase transition under
investigation can also be controlled through various
external factors.

In Pb(Ti; _,Zr,)O5 solid solutions, the phase transi-
tion from the T phase to the R phase can only be con-
sidered afirst-order transition. Thisimplies that, under
hypothetical conditions when the concentration of
components in the sample can be varied at a constant
temperature, there should occur a concentration hyster-
esis in the phase transition range. However, since the

concentration of componentsin the sample remainsvir-
tually unchanged, the morphotropic phase boundary in
the phase diagram of PZT solid solutions represents a
certain extended region of the possible coexistence of
the T and R phases. Under the assumption that the ther-
modynamic potentials of the T and R phases (which are
designated as G; and Gg, respectively) are equal to each
other at aconcentration x = x,, the T phaseis stable and
the R phase is metastable at x < x, and, conversely, the
T phaseis metastable and the R phaseis stable at X > X..
Note that the stable and metastable phases can coexist
over arather wide range of concentrations. This range
is specified by the boundaries of the metastable phase
regions.

The concentration range of the possible coexist-
ence of the T and R phases in PZT piezoelectric
ceramics has been a subject of much controversy (see,
for example, [3-9]). In the present work, an attempt
was made to calculate this range in terms of thermo-
dynamics.

2. CALCULATION TECHNIQUE

In our calculations, we use an expansion of the ther-
modynamic potential G into a power seriesin the form
proposed by Kholodenko [10], that is,

B
G=GﬁAﬁ+§¢+mm%$P?%P?b
C
+ §1P6 + C,[PL(P; + P2) + Py(PZ + PY) (@)

+Py(P%+ P2)] + C;PiPPL.
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This expansion of the thermodynamic potential is some-
what different from the form used by Devonshire [11]:

B
G = GO+aP2+El(P‘X‘+ P)+ P})

+B,(P2P2 + P2P2 + P2P2) + V§1(P§ +PU+PY) (1)

+ Vo[ PR(P% + P2) + P(P; + P2) + Py (P% + P))]
+y3P§P§P§.

These forms of the expansion are equivalent to each
other and are related by the expressions

B; =B;, v1=C;, B, =B;+B,,
Yo = C+C,, vy = C3+2C,.

The condition for stability of the tetragonal ferro-
electric phase can be written in the form [10]

(1b)

B,+C,P: = D, >0, (2a)

whereas the rhombohedral ferrodectric phase is stable
under the condition

1

BZ + §C3P§ = Dz < 0, (2b)

where P, is the spontaneous polarization.

As is seen from the figure, the morphotropic phase
boundary can exist under conditions when the coeffi-
cient B, is positive at x = 0, decreases, passes through
zero at X = X,, and becomes negative [12]. In this case,

the terms C,P; and (C4/3)P; should be relatively
small. Hence, conditions (2a) and (2b) are satisfied in
the vicinity of the point X = X,. It should be noted that,
as follows from relationship (1b), the condition B, = 0
for the Devonshire form of the expansion of the thermo-
dynamic potential G [described by relationship (1a)]
corresponds to the condition 3, = 3;. Thisisin close
agreement with the result obtained in more recent ther-
modynamic works dealing with the Devonshire expan-
sion of the thermodynamic potential G (see, for exam-
ple, [13]).

For simplicity, it is reasonable to assume that the B,
coefficient depends linearly on the concentration of the
components:

Xg— X
B, = B,(0) OX
0

= B,(0)y, ©)

where B,(0) corresponds to the B, coefficient at x = 0.
It can easily be shown that, under the conditionsC, > 0
and C; < 0, the concentration range of the possible
coexistence of the T and R phases is bounded by the
points X = Xz and x = X; and includes the point X = X,
(i.e, Xg < Xo < Xq).
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B,,Dy,D,

Dependences of the coefficients B,, D4, and D, for the
Pb(Ti, _4Zr,)O3 solid solutions on the concentration x.

Now, we determine the concentration X = X, at which
the thermodynamic potentials of the T and R phases are
equal to each other. According to Kholodenko [10], the
thermodynamic potentials of the T and R phases can be
represented by the relationships

B C
Gr = Gy + APg; + —Pgr + =Py,

> 3 (4a)

1 2
G = Go+ APgr+ 5B: + 5B Por

1 2 1 .06

= G+ APgg + %BOPSR + %COPSR'
At X = X,, the equality G; = Gg holds throughout the
entire morphotropic phase boundary. For smplicity, we
consider only the portion of the morphotropic phase
boundary that correspondsto the line of itsintersection
with thelineat A=0.

The spontaneous polarizations of the T and R phases
can be written as

> _ B 1 2
Por = —5 C.73C BI —4AC,, (5a)
2 _ Byg 1 2
However, taking into account that
2 2 1
BO = Bl + éBz, CO = Cl + éCz + §C3, (5C)
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the spontaneous polarizations of the T and R phases for
the line at A = 0 can be represented in the following
form:

2
+ -
, _ B, _ B _ D3R
Phr = & Ph= 2 = ¥
“ ©  c+fc+ic

3 9

By substituting the spontaneous polarizations PST and
P(Z)R into the equality Gg = Gy under the assumption
that A =0, we obtain
B _ By
ci G
Next, from expression (3) under the assumption that
X = X, We derive the cubic equation

B(0)y’ + 3B,BH(0)Y + &

O
+2—78f[l—%=0.
8 "0 ci

This equation can easily be solved to give the relation-
ship

()

BIB,(0)y
®

_ :_3 Bl dquZS
V= S en L ®
Consequently, we obtain

3 B, c? O
Xe = xo{l—— O—:—-10|.
ZBZ(O)ECils 0

Now, we use inequalities (2a) and (2b) to determine
the concentration range of the possible coexistence of
the T and R phases. It is evident that the T phase exists
at x < X (seefigure). In further considerations, we also
restrict ourselvesto the ssmple case of thelineat A=0
when relationships (6) are satisfied. At X = X, we have

the equality B, + C,P5; = 0. Substitution of relation-
ships (3) and (6) into this equality leads to the expres-
sion

(10)

(11d)

Since the R phase can exist at X > Xz, we obtain the
following expression in asimilar manner:

B.Cs

2. 1
3B,(0) L1 + 5C. - 5C

Xg = Xo| 1— (11b)
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Therefore, the concentration range of the possible
coexistence of the T and R phases is determined from
the formula

B, |Gy, c

E = Xp—Xg = — —<
B,(0)| C 2 1
2 ! 3%:1+§C2—§CD

(12

Note that the derived expressions are valid for both
the vertical and tilt phase boundaries; however, we are
interested here in the morphotropic (nearly vertical)
phase boundary.

3. RESULTS AND DISCUSSION

All the coefficients in the expansion of the thermo-
dynamic potential G are independent of the tempera-
ture (except for the coefficient A) and the concentration
X (except for B,). Hence, we can perform our calcula-
tions with the coefficients obtained by Haun et al. [14]
for PbTiO,. After recalculation of these coefficients
according to formulas (1b), we obtained the following
values: B, = —14.5 x 10 m°/(C F), B,(0) = 22.0 x
108 m%(CF), C, = 7.8 x 108 m%(C* F), C, = -1.7 x
108 m%(C*F), and C; = -16 x 108 m%(C* F). Accord-
ing to the data obtained in [14], the concentration X, is
equal to 0.35. This value substantially differs from the
experimentally found concentration that corresponds to
the morphotropic phase boundary (aswas aready men-
tioned, Xypg = 0.52).

From expressions (10)—(12), we have x, = 0.23, X; =
0.30, xg = 0.10, and & = 0.20.

Thus, the cal culated concentration range of the pos-
sible coexistence of the T and R phasesis rather wide
and equal to 20 mol % lead zirconate. Unfortunately,
the results of the above numerical calculations are not
reliable, because theinitia coefficients reported in [14]
cannot be considered trustworthy. For example, the cal-
culation gives x, = 0.23, which is considerably lessthan
the values of x, = 0.35 taken from [14] and Xy;pg = 0.52.

It seems likely that the main source of error in [14]
is associated with the assumption that the ferroelectric
phase transition from the cubic phase to the R phaseis
a second-order phase transition. It is clear that the
errorsin determination of the magnitude and sign of the
B, coefficient (which is negative upon first-order phase
transitions and positive upon second-order transitions)
entail errors in determination of all the other coeffi-
cients in the expansion of the G potential.

According to Clarke and Glazer [15] and Roleder
[16], the tricritical point is observed in the
Pb(Ti, _,Zr,)O5 system at avalue of (1—x) =0.06-0.07.
In this system, the ferroelectric phase transition from
the cubic phase to the R phase with an increase in the
value of (1 —x) exhibits certain indications of a second-
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order phase transition: the spontaneous polarization
jump is absent and the Curie-Weiss temperature (©)
becomes equal to a temperature corresponding to the
maximum permittivity (T,.). However, the spontane-
ous polarization jump is a so absent upon thefirst-order
phase transition provided this transition is smeared
(i.e., in relaxor ferroelectrics). As the degree of smear-
ing of the phase transition increases, the Curie-Weiss
temperature © [which is usualy determined from the
dependence 1/¢(T)] approaches the T, temperature,
reaches its value, and can even exceed T, a a high
degree of smearing [17]. This can be explained by the
fact that the linear dependence 1/¢(T) becomes qua-
dratic at a certain degree of smearing of the phase tran-
sition, which is frequently ignored by researchers. It
should be noted that a certain degree of smearing of the
ferroelectric phase transition is aso observed in the
Pb(Ti,Zr)O, system [1]. Handerek and Ujma[18] dem-
onstrated that the temperature hysteresis of the ferro-
electric phase transition in the concentration range
closeto (1 —x) = 0.06 becomes more pronounced with
an increase in the value of (1 — x). This phenomenon
cannot be observed for a second-order transition
between the ferroel ectric phases. Therefore, these find-
ings aso cast doubt on the validity of the assumption
made in [14] that the ferroel ectric phase transition from
the cubic phase to the R phase is a second-order phase
transition.

Let us now consider, in greater detail, the specific
features observed in the concentration range of the pos-
sible coexistence of the T and R phases. As follows
from the definition given above, it is in this range of
concentrations that the T and R phases can exist and
coexist in stable and metastable states. The metastable
phases can be stabilized both under internal mechanical
stresses and in response to local electric fields. In prin-
ciple, no phase coexistence can occur in the absence of
these stabilizing factors. In this situation, only the sta-
ble phases exist and the ceramic material occursin a
single-phase state, except for anarrow range of concen-
trationsin the vicinity of x.. However, the single-phase
ceramic material whose composition correspondsto the
concentration range of the possible coexistence of the T
and R phases does not necessarily remain single-phase
through time. It should be kept in mind that the PZT
ceramic material is fairly sensitive to environmental
influences (as was predicted in my earlier works [19—
21]) and undergoes transformations with time.

There is considerable experimental evidence that
the phase composition and the mean concentration of
components in the coexisting T and R phases change
under the action of strong external electric fields and
mechanical stresses (see, for example, [22-25]). (A
plausible explanation for the observed change in the
content of componentsin the T and R phases was given
in [26].) A change in the phase composition of the sur-
face layer of samples was observed even in the course
of grinding [27]. Kakegawa et al. [6, 28] revealed that
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the concentration of the T and R phases substantially
varies with time even during conventional storage of
polarized samples. From the aforesaid, it is clear that
the concentration range of the possible phase coexist-
encein PZT ceramic materials (and in other piezoelec-
tric ceramics that correspond to solid solutions with a
morphotropic phase boundary) is of great practical
importance. This range can, in essence, be identified
with the region of the morphotropic phase boundary.
The above calculation in terms of thermodynamics has
made it possible to obtain anaytical expressions for
determining the concentration range of the possible
coexistence of the T and R phases and the concentration
Xe, Which separatesthe region of the stable T phasefrom
the region of the stable R phase. Unfortunately, the
numerical estimates obtained for these important char-
acteristics of solid solutionsin the Pb(Ti; _,Zr,)O5 sys-
tem are not reliable, because the exact values of coeffi-
cients in the power series expansion of the thermody-
namic potential for these solid solutions are as yet
unknown. In this respect, the determination of these
coefficients is an urgent problem.

Moreover, it remains unclear whether the coexist-
ence of the T and R phases in grains of piezoelectric
ceramicsisfavorablefor increasing the permittivity and
other piezoelectric characteristics of real piezoelectric
elements. There exist different interpretations of this
problem. However, analysis of these variants does not
enter into the scope of the present paper and will be per-
formed in a separate work.
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Abstract—Trilayer epitaxial heterostructures including metal oxide electrodes (SrRuO3, 200 nm) and a sand-
wiched dielectric layer (Bag »55rg75TiO3, 700 nm) were grown by laser ablation on (001)LaAlO; substrates.
The maximum permittivity of the Bag -55ry 75 TiO5 layer (€'/ey = 3700) was obtained at Ty, = 160 K and an exter-
nal electric field E = 10% V/m. The £'(T) dependence for the Bag 555 75TiO5 layer in the paraelectric phase is
well fitted by the Curie-Weiss relation, with the Curie constant and the Weiss temperature differing only insig-
nificantly from the corresponding bulk values. The change in the permittivity of the Bag ,5Srg 75TiO3 layer
induced by the application of a+2.5V bias voltage to the electrodes reached as high as 85%. The electric-field
dependence of the polarization retained clearly pronounced saturated hysteresis loops up to temperatures 10—

15 K above Ty;. © 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

There is a wealth of published information on the
dielectric parameters of single crystals and bulk
ceramic samples of BaTiO; (BTO) and SITiO; (STO),
aswell asof their solid solutions[1-3]. The large mag-
nitudes of the real part of the permittivity €' of the
parael ectric phase and of the remanent polarization P,
a temperatures below the Curie point T. make
Ba, _,Sr,TiO; apromising material for usein RAM and
ferroelectric memory cells [4]. The essentially nonlin-
ear response of €' to an external electric field E and the
strong dependence of P, on temperature permit one to
useBa, _,Sr, TiO5 in tunable microwave devices (filters,
phase shifters, and delay lines[5]) and IR sensors[6].

Microelectronics and microwave technology appli-
cations require thin Ba, _,Sr, TiO; films that alternate
with conducting layers to be used as electrodes. How-
ever, the properties of thin Ba, _,Sr, TiO4 filmsincorpo-
rated in a multilayer epitaxial heterostructure are sub-
stantialy inferior to those of bulk samples. In particu-
lar, these films are characterized by small P, and €',
combined with a weak dependence of €' on E and a
large loss tangent tand . The main reasons for the deg-
radation of the Ba, _,Sr, TiO; thin films are believed to
be (1) deviations from stoichiometry in the bulk of the
film due to an uncontrollable loss of volatile compo-
nents in the course of deposition and growth, (2) the
high density of structura defects caused by the low
mobility of the particles adsorbed on the surface of the
growing ferroelectric layer, (3) the strong internal elec-
tric field originating from the difference between the
work function of the electrode material and the electron
affinity of the ferroelectric layer, (4) the formation of a

layer with adistorted microstructure and alow €' at the
ferroelectric—electrode interface, and (5) the high
mechanical stresses caused by the lattice misfit and dif-
ferences in the thermal linear expansion coefficients
between Ba, _,Sr, TiO5 and the substrate material.

We established earlier that when thin films of the
SrRuO; metal oxide (SRO) are used as electrodes,
the strontium titanate layer in the SRO/STO/SRO
epitaxial heterostructure possesses a high-perfection
structure and the interfaces affect its parameters only
insignificantly [7]. This work demonstrates the pos-
sibility of forming an SRO/Bay,5Srg.75TiO0/SRO
(SRO/BSTO/SRO) heterostructure with a c-oriented
intermediate layer (the c axis is perpendicular to the
substrate plane) and studies the dielectric parameters of
this layer in the para- and ferroelectric phases.

2. EXPERIMENT

The SRO/BSTO/SRO trilayer heterostructures were
grown by laser ablation (COMPex-100 KrF excimer
laser, A = 248 nm, T = 30 ns) on a (001)LaAlO; (LAO)
sublattice. The laser radiation density on the surface of
the SRO and BSTO ceramic targets during their abla-
tion was 1.5 Jcm?, and the oxygen pressure in the
growth chamber was maintained at 0.4 mbar. The top
and bottom 200-nm-thick metal oxide electrodes were
grown a Tg = 740°C; the intermediate ferroelectric
layer, at Tg= 825°C.

The phase composition and structure of thelayersin
the trilayer heterostructures grown were studied using
x-ray diffraction (Philips X’pert MRD, w206 and ¢
scanning, rocking curves). To determine the BSTO
layer lattice parameters in the substrate plane (a) and
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along its normal (ay), the w26 scans were made with
the substrate fixed such that either (101)LAO or
(001)LAO was normal to the plane containing the inci-
dent and reflected x-ray beams. To estimate the average
grain size dz and the effective unit-cell strainin the fer-
roelectric layer, thefirst four Bragg peaks dueto BSTO
were measured with a (220)Ge and a plane graphite
monochromator in the first and second orders, respec-
tively.

The surface morphology of the ferroelectric films
grown on SRO/LAO was studied with an atomic force
microscope (AFM) (NanoScope-llla, tapping mode).
The images were obtained in both the height- and
phase-relief modes.

The method employed to prepare plane-parallel
capacitors based on the grown SRO/BSTO/SRO het-
erostructures was described in [7].

The capacitance C and the dielectric loss tangent
tand of our capacitor structureswere measured with an
hp 4263A LCR meter (ac measuring voltage Vac =

50 mV, f=1-100kHz). The C and tand were measured
with a dc bias V,, (up to +2.5 V) applied to the elec-
trodes, aswell aswithout it. Thereal (€') and imaginary
(") parts of the permittivity of the ferroelectric layer
were calculated using the relations €' = Cd/Sand €" =
€'tand, where d = 700 nm is the ferroelectric layer
thickness and S = 400 um? is the area of the top elec-
trodeinthe capacitor structure (the SRO layer grown on
LAO served as a common electrode for the
SRO/BSTO/SRO film capacitors). The voltage V,, was
assumed positive when the plus was applied to the top
electrode.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

The available data on the growth of multilayer sys-
tems including thin STO, BTO, (Ba,Sr)TiO;, and SRO
layers [7-9] suggest the absence of a detectable chem-
ical interaction between BSTO and the metal oxide at
the Tg temperatures covered in this work. The lattice
parameters of bulk BSTO and SRO crystals (agsro =
3.925 A [10], ago = 3.923 A [11]), as well as the
thermal linear expansion coefficients B (Bgsro = 11 X
106 K, caculated as a weighted mean of the corre-
sponding parameters of the STO and BTO, Bgro = 11 X
106 K-1[12]) are similar in magnitude. The above fac-
torsfavor the formation of sharp SRO/BSTO interfaces
in the metal oxide—ferroelectric-metal oxide trilayer

heterostructure. Because /S > d, the contribution of

edge effects to the capacitance and tand of the
SRO/BSTO/SRO plane-paralel capacitor structures
formed issmall. We shall first discuss the data obtained
by us on the structure of the filmsthus grown; after, the
temperature and field dependences of the dielectric
parameters will be discussed.

PHYSICS OF THE SOLID STATE \Vol. 43
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3.1. The Microstructure and Morphology
of the BSTO Film Surface

Thex-ray diffractogramsindicatethe BSTO layer to
be in epitaxial relation to the SRO/LAO surface
(Figs. 1a, 1b). Because the BSTO and SRO lattice
parameters differ very little, the x-ray reflections from
the top and bottom electrodes made of strontium ruth-
enate overlap with the much stronger reflections due to
the ferroelectric layer. The overlap of the SRO and
BSTO reflections in the x-ray diffractograms obtained
with the (220)Ge monochromator resulted in a distor-
tion of the (00N)BSTO peaks on the larger 20 angle
side. The x-ray @ scans of the (111)BSTO and
(111)SRO reflections had four equidistant peaks each
(the corresponding dataare givenin [13]). The unit-cell
parameter of the BSTO layer in the direction perpen-
dicular to the substrate plane, a = 3.945 A, was derived
from the value of 26 for the (004)BSTO reflectioninthe
x-ray scan displayed in Fig. 1a. The unit-cell parameter
of the ferroelectric layer in the substrate plane, a; =
3.924 A, was calculated from the relation 1/d,g, =

[(Wag)? + (n/ay)?]Y2. To determine the interplanar dis-
tance di53), We used the value of 26 for the (303)BSTO
peak in the x-ray scan shown in Fig. 1b. The consider-
able difference between the measured unit-cell param-
eters a;; and g, of the BSTO layer is accounted for by
the compressive mechanical stresses acting in the sub-
strate plane. The effective unit cell parameter of the

BSTO layer, ag = (a-a])"" = 3.931 A, is substantially
larger than that for the corresponding bulk crystals[10].
One of the main reasons for the usually increased ay; in
(Ba,Sr)TiO; epitaxial films is their high oxygen
vacancy density [14]. The low mobility of the particles
adsorbed on the surface of agrowing film givesriseto
defect formation on the cation sublattice of the BSTO
layer, which, in turn, is accompanied by oxygen loss.

The inset to Fig. 1b displays a rocking curve
(CuK,q, w/20) for the x-ray (200)BSTO reflection. The
rocking-curve width at half maximum is severa times
smaller than that reported in[9] for (Ba,Sr) TiO; epitax-
ial films. The half-width obtained (=0.26°) is, however,
25% larger than the corresponding figures for a BSTO
layer grown on SRO/LSATO [15]. In contrast to LAO,
LSATO [(LaAlOs)g5 + (SrTaAlOg)g;] does not
undergo phase transformations within the 20-825°C
range and its lattice is better matched to those of SRO
and BSTO.

Atomic-force microscope images of the free surface
of BSTO films grown on SRO/LAO indicate them to
consist of crystallites 30—100 nm in size (Fig. 2). Note
that the micrographs obtained for the BSTO layer inthe
height- and phase-relief modes were practically identi-
cal. Theimages of theferroelectric layer surface clearly
reveal asystem of characteristic depressions decorating
the crystallite boundaries. Decoration of crystallite
boundaries in a ferroelectric film minimizes the free
energy of the vapor phase—-growing film-substrate sys-
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Fig. 1. (a) X-ray diffractogram (CuK,, w/26 scan) of a
SRO/BSTO/SRO/LAO heterostructure obtained for the case
where the plane containing the incident and reflected x-ray
beamsis perpendicular to (001)LAQO: (1) (001)BSTO pesak;
(2, 3) CuKg peaks due to the BSTO layer and the substrate,

respectively; the inset shows the dependence of the x-ray
peak half-width ¢ on 6 in an w/26 scan; the (00N)BSTO
peaks were measured with monochromatic x-ray radiation.
(b) X-ray diffractogram for the same heterostructure
obtained for the case where the plane containing the inci-
dent and reflected x-ray beams is orthogonal to (101)LAO:
(1) (303)LAO peak, (2, 3) CuKp peaks due to the BSTO

layer and the substrate, respectively; the inset shows arock-
ing curve (CuK1, w/26) obtained for the (200)BSTO peak

of the (001)SRO || (001)BSTO ||(001)SRO || (001)LAO het-
erostructure.

tem. Thethin layers near the crystallite boundaries pos-
sess excess free energy. The crystallites are distinctly
oriented relative to the normal to the substrate plane,
and their azimuthal orientation, as follows from the @
scans obtained for the (111)BSTO reflection, does not
exceed 0.1°. The phase-relief micrographs of the sur-
face of the Ba, 1551 ,5 T1O; films, which were in the fer-
roelectric phase at 300 K, revealed features attesting to
acomplex structure of the crystallites [13].

In order to estimate the effective size of the crystallites
d: and the relative deformation of the unit cell Aa-/a;in

aBSTO layer grown on (001)SRO || (001)LAO, we used
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Fig. 2. Atomic-force microscope image of the free surface
of a BSTO layer grown on (001)SRO || (001))LAO. The
image was obtained in the height-relief mode. The crystal-
lite boundaries in the ferroelectric layer are decorated by
characteristic depressions. The phase-relief mode images
did not reveal any features which would imply a complex
structure of the crystallites.

the dependence of the (00nN)BSTO peak half-width ¢ on
0 in the x-ray (w/20) scan of the SRO/BSTO/SRO het-
erostructure (the first four peaks of the BSTO layer
were measured with high-precision x-ray optics). The
data on the ¢ vs. 8 dependence are given in the inset to
Fig. 1a. The procedure employed to determine dg and
Aar/ag is described in [13, 16]. The x-ray data show
that dz and Aay/a; for the grown BSTO filmsare 38 nm

and 4 x 107, respectively. The observed difference
between the estimates of the crystallite dimensions
derived from x-ray data and obtained with AFM
appears only natural, considering that the crystalite
Size may increase with increasing film thickness. The
competing grain growth becomes particularly clearly
pronounced for ferroelectric layer thicknesses of less
than 200 nm. The value of Aa-/a; obtained for the
BSTO layer is in accordance with the corresponding
data available in the literature on c- and a-oriented
(Ba,Sr)TiO; thin epitaxia layers (in the latter case, the
c axisis paradld to the substrate plane) [13, 15]. The
main factors responsible for the variation of interplanar
distancesin a BSTO layer are nonuniform mechanical
stresses and randomly located structural defects, prima-
rily oxygen vacancies.

The compressive in-plane mechanical stresses favor
the orientation of the polar axis of the BSTO film along
the norma to the substrate plane. In the case of a
trilayer SRO/BSTO/SRO heterostructure grown on
(001)LAO, the pattern of mechanical stresses in the
BSTO layer is governed by both the differences in the
lattice parameters between BSTO, SRO, and LAO and
the difference between the BSTO and LAO thermal lin-
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ear expansion coefficients. The unit-cell parameter of
the pseudocubic LAO (a; = 3.79 A) is substantially
smaller than those of BSTO and SRO, which favors
generation of compressive in-plane mechanical stresses
in the ferroelectric layer. The difference between the
thermal linear expansion coefficients of the BSTO and
LAO (B =9.2 x 105 K-1[17]) is conducive to the for-
mation of in-plane tensile mechanical stresses in the
substrate.

3.2. Temperature Dependence
of the BSTO Layer Polarization

Systematic data on the temperature dependence of
the remanent polarizationin (Ba,Sr) TiO; epitaxial films
arepractically nonexistent. The valuesquotedin 6, 18]
for P, in thin (Ba,Sr)TiO5 ceramic layers are substan-
tidly lower than those for bulk crystals. Deviations
from stoichiometry, size effects, depolarization electric
fields, and mechanical stresses can considerably affect
the electric-field dependence of the polarization in a
(Ba,Sr)TiO; film.

Figure 3 presents the polarization of a BSTO layer
P(E) asafunction of the electric field measured at afre-
guency of f=50kHz at different temperatures. For T >
250 K, P increased practicaly linearly with E; the
insignificant decrease in dP/dE at electric field
strengths E > 5 x 10° VV/m was due to dielectric satura-
tion. For 250 > T > 200 K, the measured P(E) relation

BOIKOV, CLAESON

did not exhibit any hysteresis, however, sharp varia-
tions of dP/dE were observed to occur as E was reduced
from —2 x 100 to —4 x 10° V/m. The peak in the
dP(E)/dE relation observed in the above-mentioned
electric-field range is due to substantial dielectric non-
linearity of the BSTO paraelectric phase in weak elec-
tric fields at temperatures close to T.

The P(E) curves measured for T < 175 K clearly
reveal saturated hysteresis loops. The loops were
shifted toward negative electric fieldsrelativeto the E =
0 point, and the absolute values of P for positive E were
substantially smaller than those obtained at the corre-
sponding negative values of E. The presence of rema-
nent polarization in the BSTO layer above T for bulk
crystals (T = 150 K [3]) impliesthat, in the bulk of the
BSTO layer, there are microregions (apparently, iso-
lated crystallites) that transfer to the ferroel ectric phase
at a higher temperature. The presence of remanent
polarization in thin BTO films was detected at temper-
atures exceeding the T for single-crystal barium titan-
ate by nearly 200 K [19].

The noticeable asymmetry of the hysteresis loops
observed in the measured el ectric-field dependences of
the polarization in the BSTO ferroelectric layer is a
consequence of depolarization effects [20, 21]. As
aready mentioned, the grown BSTO layers were
clearly c oriented; i.e., the polarization vector was per-
pendicular to the substrate plane (inset to Fig. 3). In
these conditions, the polarization in athin ferroelectric

P, 107! C/m?
()
T

E, 10" V/m

Fig. 3. Plots of polarization P vs. electric field E measured on a BSTO layer at different temperatures T: (1) 250, (2) 200, (3) 140,
(4) 100, and (5) 40 K. The P(E) curves remained practically unchanged under variation of the frequency in the 10-100 kHz range.
Theinset shows a schematic of the plane-parallel SRO/BSTO/SRO capacitor structure used to study the dielectric parameters of the

BSTO layer.
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layer depends substantially on the degree of compensa-
tion of the polarization charge by the charge of the
opposite sign on the electrode at the interface. Because
of therelatively high concentration of structural defects
(oxygen vacancies), the conductivity of the top elec-
trode in the SRO/(Ba,Sr) TiO4/SRO trilayer heterostruc-
ture is, as a rule, considerably lower than that of the
electrode grown on the surface of a single-crystal sub-
strate [7, 8]. The charge induced at the upper boundary
of the ferroelectric by its spontaneous polarization is
incompletely compensated by the charge of opposite
sign on the metal oxide electrode and generates adepo-
larization electric field Ep inthe BSTO layer. Thisfield
is directed from the top to the bottom electrode, i.e., in
opposition to the spontaneous polarization vector Pg
When apositive biasis applied to the top electrode, the
electron concentration in the metal oxide film near the
corresponding interface decreases, which weakens the
polarization charge compensation, thereby increasing
thedepolarization field in theferroelectric layer. If V, is
of the opposite polarity, the electron concentration in
the SRO top electrode near the electrode—ferroelectric
interface increases and the effect of the depolarization
electric field weakens. The substantially larger polar-
ization in the BSTO layer for E < 0 than inthe E> 0
case (Fig. 3) can be explained as being due to the lower
depolarization field strength at a negative bias. At tem-
peratures below the phase transition point, the BSTO
layer consists of ferroelectric domains separated by
180° domain walls. The separation of the BSTO layer
into domains weakens the effect of the depolarization
field on the polarization while not suppressing it com-
pletely, because the electron concentrations in the top
and bottom SRO layers are different [21]. The domain
structure in the BSTO layers studied here differs con-
siderably from that in a-oriented (Ba,Sr) TiO, ferroel ec-
tric layers acted upon by in-plane tensile mechanical
stresses [13].

The hysteresis loops observed in the P(E) curves
were used to determine the temperature dependences of
the remanent polarization P, and the coercivefield E in
aBSTO layer (Fig. 4). Within the 160-80 K range, we
observed an approximately linear growth of the rema-
nent polarization in the ferroel ectric layer with decreas-
ing temperature; however, for T < 80 K, the dependence
of P, on T became weaker and revealed a clear indica-
tion of saturation. The pattern of the measured P,(T)
relation agrees well with the data obtained for a c-ori-
ented BSTO layer in the SRO/BSTO/SRO/LSATO
heterostructure [13]. At the same time, the absolute val-
ues of remanent polarizationin aBSTO layer grown on
SRO/LSATO and possessing a more perfect structure
are, on the average, 20% larger than those for the ferro-
electric layer studied in this work. Similar to P,, the
magnitude of E. in the BSTO layer increased with
decreasing temperature; however, there was no sign of
saturation for T < 80 K. Comparison with the data pre-
sented in [6, 18] permits one to conclude that both the
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Fig. 4. Temperature dependences of (1) remanent polariza-
tion P, and (2) coercive field E¢ of the BSTO layer in a

SRO/BSTO/SRO heterostructure (f = 50 kHz). Inset (a)
shows the temperature dependence of Ey, for the BSTO

layer in a(001)SRO || (001)BSTO || (001)SRO heterostruc-
ture (f = 100 kHz). The eectric field due to incomplete
compensation of the polarization charge by electrons at the
interface in the top layer of the metal oxide penetrates into
adjacent crystallitesin the BSTO layer that have no sponta-
neous polarization (see inset (b)).

P, and the maximum values of dP,/dT in epitaxial
BSTO films are considerably higher and E. is a few
times smaller than their respective values for ceramic
(Ba,Sr)TiO; films.

3.3. Temperature and Field Dependences of €'
of the BSTO Layer

The temperature behavior of €' of the BSTO layer
depended strongly on the magnitude and polarity of the
bias voltage applied to the metal oxide electrodes. To
understand the €'(E, T) dynamics better, a family of
€'(T) curves for various fixed values of V, were mea-
sured in the range from -2.5 to +2.5V (Fig. 5). The
weak response of €' to an electric field observed at T =
300 K is only natura, as the phase transition in bulk
crystals of this solid solution occurs at a substantially
lower temperature [3]. The dependence of €' on the
electric field became stronger with decreasing temper-

ature. The maximum value €,, = 3700¢, was obtained

a T,, = 160K and V, =-0.7 V. The approximately two-
fold increase in €'(160 K) observed as V, is reduced
from 0 to -0.7 V (Fig. 5) indicates the presence of an
internal electric field in the BSTO layer.

Theinternal electricfield in adielectric layer placed
between two metal e ectrodes is associated, as a rule,
with the difference between the work function W of the
electrode material and the electron affinity x of the
sandwiched dielectric material [22, 23]. Surface states
may affect the height of the potential barrier at theinter-

2001



2272

4000
3000

W

£ 2000

1000

Fig. 5. Dependence of the real part €' of the permittivity of
the BSTO layer on temperature T (10-400 K) and bias volt-
age Vy, (2.5 to +2.5 V) applied to the metal-oxide elec-

trodes. The maximum value €' = 3700¢, was obtained at
Ty =160 K and Vi, = 0.7 V. V;;: (1) 2.5, (2) -2, (3) -1.7,
(4) 1.5, (5) -1.3, (6) —1.0, (7) -0.7, (8) -0.5, (9) 0.3,
(10) 0, (11) 0.5, (12) 1.0, (13) 1.5, (14) 2.0, and (15) 2.5 V.

face ¢, = W—x while not changing itstype. In the case
of anonlinear dielectric, theinternal electric field shifts
the position of the maximum inthe C(E) relation for the
capacitor structure with respect to the E = 0 point. Inthe
case where both electrodes are of the same metal and
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the intermediate layer is in the paraglectric phase, the
internal electric field strength is, as a rule, low and
depends only weakly on temperature.

As follows from the data presented in Fig. 6, the
maximum in the €'(E) relation for the BSTO layer is
shifted toward negative values of E, the magnitude of
this shift (Ey,) with respect to E = 0 increasing strongly
with decreasing temperature within the 300-165-K
range[inset ato Fig. 4]. At these temperatures, most of
the BSTO layer volumeisin the paragl ectric phase. The
increasein E,, with decreasing temperaturein the above
temperature range can be traced to the formation of
spontaneous polarization in individual crystallites in
the bulk of the BSTO layer. The quantity of such crys-
tallites and their spontaneous pol arization increase with
decreasing temperature. The depolarization electric
field caused by the incomplete compensation of the
polarization charge by electrons in the top SRO elec-
trode also penetrates into the adjoining crystallites of
the intermediate layer, where Ps= 0 (inset b to Fig. 4).
Thisisthe main reason for the emergence of an electric
field directed from the top to the bottom electrodein the
BSTO layer, which is primarily in the paraelectric
phaseat T > 160 K. Theinternal electric field started to
increase at temperatures slightly below room tempera-
ture (inset a to Fig. 4). This shows that microscopic
inclusions of the ferroelectric phase in the BSTO films
under study started to nucleate at temperatures exceed-

4000
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Fig. 6. Dependence of the real part €' of the permittivity of the BSTO layer on electric field E = V},/d measured at T > Ty,. The tem-
peratures are specified on the curves; f = 100 kHz. Inset: €'(E) curves obtained for T < Ty,.
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Fig. 7. (8) Temperature dependences of (1-6) £'/eg and (7) gg/e’ for the BSTO layer in a SRO/BSTO/SRO heterostructure measured
at frequenciesf of (1) 1, (2) 10, and (3-7) 100 kHz and bias V}, of (1-3, 7) -0.7, (4) —0.3, (5) 0, and (6) +2.5V; (8, 9) tangents to
the gp/e'(T) curvesdrawn at T = 350 and 120 K, respectively. (b) Temperature dependences of tand for the BSTO layer in the same
heterostructure measured at f equal to (1, 4, 5) 100, (2) 10, and (3) 1 kHz and various V,,, (1-3) -0.7, (4) 0, and (5) +2.5 V. Inset:
temperature dependences of the imaginary part of the permittivity for the BSTO layer measured at f equal to (1, 4) 100, (2) 10, and

(3) 1 kHz and V}, equal to (1-3) 0.7 and (4) O V.

ing Ty (a which the phase transformation occurred in
the bulk of the film) by approximately 100 K.

The €'(E) curves measured at temperatures above
180 K were anhysteretic. A weakly pronounced hyster-
esiswas observed in the field dependence of €' obtained
a T=165K (Fig. 6). As the temperature was lowered
still further (T < 165 K), the asymmetry of the €'(E)
relation increased and the hysteresis became more
clearly seen (inset to Fig. 6). Both the onset of hystere-
sisin the €'(E) relation and the maximum in the €'(T)
dependence (at V, = 0.7 V) are evidence of the nucle-

PHYSICS OF THE SOLID STATE Vol. 43 No. 12

ation of the ferroelectric phase at T = 160 K in the
BSTO layer (or, at least, in most of its volume).

For T>200K and V,=-0.7V, the €'(T) relation can
be well fitted by the Curie-Weiss law:

/e’ = Cg(T=T,) (1)

with the Weiss temperature T, = 160 K and the Curie
constant C, = 0.62 x 10° K. The values T, = 150 K and
C, = 0.8 x 10° K were derived in [3] from data on the
temperature dependence of €' for bulk ceramic BSTO
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samples. The small difference between C, and T,
obtained on bulk samples and their respective values
for aBSTO layer can be partially accounted for by the
fact that the external field E =—0.7V/d compensatesthe
internal electric field only within a narrow temperature
range near Ty; note also that this compensation is only
partial because of structural defects present in the bulk
of theferroelectric layer and of the roughness of thefer-
roelectric—electrode interface in the SRO/BSTO/SRO
trilayer heterostructure. Theincreasein Ty, inthe BSTO
layer compared to the bulk crystal data can be likewise
due to the increase in the effective lattice parameter of
the BSTO layer [24].

As follows from the data presented in Fig. 7a, the
real part of the permittivity decreased and the maxi-
mum in the €'(T)/e, dependence measured at 100 kHz
became more diffuse and shifted toward higher temper-
atures when V, increased from —0.7 to +2.5 V. The
decreasein €' in an electric field is due to dielectric sat-
uration, and the shift of the maximum in the €'(T)
dependence toward higher temperatures agrees well
with the data on the effect of an electric field on the
phase transition temperature in bulk BaTiO; crystals
[25].

According to [26], the £'(T) dependence for aferro-
electric in the vicinity of a (second-order) phase transi-
tion can be extrapolated for T < T using the relation

go/€ = —2C3 (T =T,). 2

As follows from the data in Fig. 7a, the experimental
€y/€'(T) relation obtained at V,=-0.7V and T < T,, can

be well fitted by Eq. (2) with a coefficient —1.1C;".
Possible reasons for the decrease in this coefficient for
an epitaxial BSTO layer were analyzed in [15].

When the BSTO layer was in the parael ectric phase,
€' virtualy did not depend on frequency (f = 1-
100 kHz) (Fig. 7a). The largest difference, of approxi-
mately 7%, between the values of €' at 1 and 100 kHz
was observed near Ty,. Itisonly natural to relatethedis-
persion of €' found for T < Ty, to relaxation of the ferro-
electric domain walls. Adjacent ferroelectric domains
in the BSTO layer, in which the spontaneous polariza-
tion vectors are oppositely directed, are separated by
180° domain walls. The contribution of oscillations of
the 180° domain walls (DWSs) to the permittivity of bulk
BTO crystals was analyzed in [27, 28]. According to
[28], DW displacement should give rise to relaxation-
type features in the €'(f) relation. The resonant fre-
guency at which the contribution of DWsto €' is maxi-
mum depends on their effective mass, which is deter-
mined by the domain size and the magnitude of Ps,

Unlikethe 90° DWs, 180° wallsare not displaced by
moderate electric fields [29]. The low mobility of the
180° DWs compared to 90° DWs is assigned to the
small thickness of the former and to the fairly high bar-
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rier interfering with the wall displacement in the direc-
tion perpendicular to the polarization vector [29].

3.4. Dielectric Loss Tangent and £"
for aBSTO Layer

Similar to €', the maximum values of €" and tand
for the BSTO layer were obtained at a constant bias of
—0.7V (Fig. 7b and the inset to it). The maximain the
measured €"(T) and tand (T) relations were, however,
shifted by 10-15 K toward lower temperatures relative
to Ty. These maxima are related to the oscillations of
theferroel ectric DWs acted upon by the applied ac volt-
age Vac. At 'V, = 0, the presence of an internal electric
field, whose strength is substantially higher than V,/d,
accounts for the weak effect of measuring voltage on
the DW structure in the BSTO layer. Thisisthe reason
for the presence of the diffuse maximum in the mea
suredtand (T) and €"(T) curves (curves4 in Fig. 7b and
theinset to it). When E;,; is compensated by an external
electric field (V, =—0.7 V) and the coercivefield islow
(T =Ty, Fig. 4), the measuring ac voltage considerably
affects the ferroelectric domain structure in the BSTO
layer, which manifestsitself in asharpincreasein tand
and £". With the electrodes biased positively, the exter-
nal and interna electric fields were added, which
reduces the DW contribution to tand (curve 5 in
Fig. 7b).

Unlike €', the tand and ¢" of the BSTO layer
decreased in magnitude within the 10-300-K range
with afrequency decrease from 100 to 1 kHz (Fig. 7b).
In terms of the Debye approximation, the observed
variations of €' and €" with decreasing frequency imply
that the characteristic relaxation time of the process
associated with DW motion in the BSTO layer is
shorter than 1/2rtf. A comprehensive analysis of the
contribution of relaxation processesto €' and €" for the
(Ba,Sr)TiO; layer can befound in [13].

The growth of tand observed to occur at f = 1 kHz
with increasing temperature for T > 250 K is caused by
the fairly high conductivity o of the BSTO layer in the
direction perpendicular to the substrate plane. The con-
tribution of o to tand in the ferroelectric layer can be

written as tand = (" + o/w)/e'. As shown in [30], the
dependence of the BSTO layer conductivity on temper-
ature and electric field is associated with carrier gjec-
tion from the traps connected with oxygen vacancies.

4. CONCLUSIONS

Theresults obtained in thiswork can be summed up
as follows. When using lanthanum auminate as the
substrate, the polar axis in the Bay,5Sry 751105 ferro-
electric layer sandwiched between two SrRuO; metal-
oxide epitaxia films is oriented perpendicular to
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(001)LaAlOs. The nucleation of single ferroelectric 8.
domains in the bulk of the c-oriented Bay ,5Sr 75TiO;
heterostructure begins at temperatures a few tens of
degrees above the Curie temperature for bulk single 10
crystals. The formation of microscopic inclusions of 11
the ferroelectric phase in the Bay 556751105 layer is
accompanied by anincreaseintheinternal electricfield  12-
in adjacent crystallites having no spontaneous polariza-
tion. Due to a uniform distribution of the dielectric 13-
parameters and a high perfection of the microstructure
of the grown Bay ,sSr, -5 TiO; layers, it is possible to 14
compensate the internal electric field to a considerable 1
extent by applying an external bias. Under maximum 5.
compensation of the internal electric field, the temper- 5
ature dependence of the permittivity of the 16.
Bay 25Srp 75 1105 layer can be well fitted by the Curie— 17
Weiss relation. ‘
18.
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Abstract—This paper reports on the first measurement of the diel ectric permittivity and heat capacity of aKDP
crystal doped by Chicago Sky Blue organic dye within atemperature interval including the ferroel ectric phase
transition at T, = 122 K. Similar measurements were made on a pure KDP crystal under the same conditionsfor
the sake of comparison. The heat capacities of the pure and doped crystals were shown to differ substantially
within aninterval 1 K wideinthevicinity of T, where an anomaly in the heat capacity of the doped crystal was
observed to wash out without producing any change in the temperature position of its maximum. The doping
reduces the permittivity in the polar phase markedly. The observed effects are associated with the influence of
nonisomorphic defects on the ferroelectric phase transition in a piezoelectric crystal. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

It is known that at T, = 122 K, the KH,PO, crystal
(KDP) undergoes a phase transition from the tetragonal

(42m) to the orthorhombic (mm2) phase, which gives
rise to the generation of spontaneous polarization
directed along the c axis of the tetragonal phase. Most
of the properties of KDP near the phase transition are
satisfactorily described in terms of Landau’s theory
with athermodynamic potentia of the type

® = P+ %O((T—TC)PZ

1,.4.,1 @)
+ PP 5y
where @, isthe part of the thermodynamic potential not
associated with the transition, P is the polarization
along the c axis, E is the externa electric field, a =
40x 103K, B=-1.3x10M"esy, y=3 x 107° esu,
and { = 3 x 107Y7 esu. The magnitudes of the coeffi-
cients suggest that these crystals undergo a first-order
phase transition very close to the tricritical point; the
value of the critical eectric field E, lies in the interval
from 100 to 300 V/cm [1].

The closeness of the phase transition in KDP to the
tricritical point, combined with the piezoelectric activ-
ity of the crystal for T > T, results in a substantial nar-
rowing of the region wherein critical fluctuations affect
the phase transition [2]. This makes the KDP crystal a
promising subject for use in studying the effect of
impurities on structural phase transitions, because it
obviates the need for separating the fluctuation and
defect-induced contributions to the measured proper-
ties.

P6+%ZP8—EP,

It has recently been shown that the molecules of
Chicago Sky Blue (CSB) and Amaranth organic dyes
are capabl e of entering the KDP crystal |attice and color
the pyramidal growth sectors selectively, which implies
a peculiar effect of “recognition” of certain faces of a
growing crystal by large organic molecules[3, 4]. Inter-
estingly, such molecules are nonisomorphic to the KDP
molecules; hence, their anisotropic incorporation into a
piezoelectric inorganic host matrix should give rise to
considerable local strains and the associated electric
polarization in the crystal. Thus, the molecules of
organic dyes make it possible to study the influence of
strong defects [5] on phase transitionsin KDP.

2. EXPERIMENTAL TECHNIQUE

This communication reports on acomparative study
of the temperature dependences of the permittivity and
heat capacity of a KDP crystal doped with a CSB dye
(KDP + CSB), whose molecular structure is given in
[3], and of nominally pure KDP. In both cases, the sam-
ples were cut from pyramidal growth sectors of the
crystals.

The KDP + CSB crysta was seed grown from a
solution containing 1.7 x 102 mg CSB/g KDPin accor-
dance with the method described in [6]. The solution
was prepared at 33°C. The CSB molecules started to
incorporate into the pyramidal sectors of the growing
crystal at 27.7°C. After the crystal grew to a size of
=5 x 5 x 6 cm, cracks formed on its surface.

The CSB concentration in the crystal was deduced
by comparing (with an HP 8452A spectrophotometer)
the absorption spectrum of the aqueous solution of a
sample cut from the crystal with the absorption spectra
of solutions with known KDP and dye concentrations.

1063-7834/01/4312-2276%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Comparison of the spectra permits the conclusion that
the colored sectors of the crystal contain 1.4-2 dye
molecules per 10° KDP molecules.

The permittivity was measured under cooling from
room to liquid-nitrogen temperature at acooling rate of
0.25 K/min far from T, and at 0.1 K/min in the vicinity
of T.. The samples used were 8 x 5 x 1 mm plates with
the plate plane oriented perpendicular to the polar axis.
Silver paste was applied to the faces parallel to this
plane.

The heat capacity of two samples (pure and colored
KDP) was measured in the 82- to 162-K temperature
interval using adiabatic calorimetry. The samples were
cylinders, 8 mm in diameter and 12 mm high, prepared
without any regard for the relative orientation to the
crystallographic axes. The measurements were carried
out under constant heating power in steps ranging from
1K (far from T.) to 0.02 K (near T.) with an accuracy
of 0.5%.

3. EXPERIMENTAL RESULTS

Figure 1 shows the temperature dependences of the
permittivity of the pure and colored KDP crystals
obtained at 10 kHz. For T > T, + 4K, the values of ¢, of
the colored crystal lie systematically dlightly above
those for the pure crystal; by contrast, in the polar
phase, €. of the colored crystal is considerably smaller
than that of the pure crystal. The relations plotted in
Fig. 1 are in qualitative agreement with those obtained
in[7] for €. of KDP crystals differing in quality.

The temperature dependences of the heat capacity
of the pure and colored KDP crystals are presented in
Fig. 2. The heat capacity of both crystalsis seen to be
the same, except in a narrow interval in the vicinity of
the phase transition. A comparison of our datafor pure
KDP with the results quoted in [8, 9] revealed that the
heat capacity of our crystal is in full agreement with
data from previous measurements. Because the heat
capacity quoted in the above-mentioned papersis given
in cal/mol K, our data are also presented in these units.

As seen from Fig. 2, the heat capacity reaches a
maximum at T = 122.00 £ 0.03 K for both the pure and
colored crystals; in the latter case, the maximum heat
capacity isequal to 61.4 cal/mol K and the phase tran-
sition is dightly diffuse. The heat capacity of the pure
crystal reached very high peak values (~10° cal/mol K),
which corresponds to latent heat liberation in a first-
order phase transition; therefore, within a 0.1-K wide
interval immediately above the peak position, the heat
capacity of the pure crystal was not determined; for the
colored crystal, there is no such limitation.

Comparison of the resultsin Fig. 2 with the data on
the behavior of the KDP heat capacity in an external
electricfield [1] showsthat the temperature dependence
of the heat capacity of the colored crystal is similar to
that of KDP in an external electric field higher than the
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Fig. 1. Temperature dependences of the dielectric permittiv-
ity of (1) pure and (2) colored KDP crystals.
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Fig. 2. Temperature dependences of the heat capacity of (1)
pure and (2) colored KDP crystals.

critical level, the only difference being that the maxi-
mum of the heat capacity is not shifted toward high
temperatures.

4. DISCUSSION OF RESULTS

To perform a quantitative analysis of the data
obtained, the temperature dependence of the back-
ground heat capacity, C,4, was constructed within a
broad temperature region in the form

_ BLE 0 BSZE
Cu = CDETa+ CEFTH+ CEFTD,

where D is the Debye function, E is the Einstein func-
tion, ©, = 197 K, ©, = 319 K, ©, = 1210 K, C, =
9.72ca/mol K, C; = 1222 cd/mol K, and C, =
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Fig. 3. Temperature dependences of the excess heat capac-
ity of the colored KDP crystal. Curves a and b were con-
structed using Eq. (1): (&) E 11 Pgand (b) E 11 Pg

24.93 ca/mol K. The background heat capacity was
derived using experimental datafrom [8].

Figure 3 plots the temperature dependence of the
heat capacity of the colored crystal after subtraction of
the background heat capacity given by Eq. (2). Pre-
sented in the same figure are the values of the heat
capacity calculated assuming Landau’s thermodynamic
potential in the form of (1) [curve a] to be applicable to
the description of the behavior of KDPinthevicinity of
the phase transition. We believe that the subtracted
background heat capacity correspondsto theterm ®;in
Eqg. (1); E was varied from 1.0 to 7.0 esu, and T, was
varied within the interval 121.60-122.00 K, because,
according to [5], the phase transition temperature in a
crystal with defects should be shifted toward low tem-
peratures. The best fit to the experimental data was
obtained at E=5.7 esu (1.71 kV/cm) and T, = 121.68 K.
We readily seethat above T, the experimental data cor-
respond to a phase transition in an external electric
field; in other words, the effect of the CSB impurity on
the ferroelectric phase transition in KDP is similar to
that of polarized defects [5].

However, examination of Fig. 2 also suggests that
the area bounded by the heat capacity curve of the pure
crystal is larger than that of the colored one. Because
the spontaneous polarization is related to the heat
capacity through

T
— Z C—Cia
P, = /a,f —=dT, ©)

this implies that the spontaneous polarization of the
colored crystal in the polar phase is smaller than that of
the pure crystal. As seen from the corresponding tem-
perature dependences of P shown in Fig. 4, the phase
transition in the colored crystal is diffuse and its Pg is
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Fig. 4. Polarization of (1) pureand (2) colored KDP crystals
as calculated from Eq. (3) using the experimental heat
capacity data.

noticeably smaller (by approximately 8%). Thelatter is
obvioudy at odds with the conventional effect of abias
field on the spontaneous polarization of acrystal. How-
ever, the situation considered in [10] was that of a
uniaxial ferroelectric crystal undergoing a phase transi-
tion in an externa electric field and residing in a meta-
stable state characterized by a polarization directed
opposite to the field. Figure 3 presents the values of the
heat capacity calculated for this situation (curve b) for
the same parameters of the thermodynamic potential
(1) asthose used for curve a. Wereadily see that within
the 118- to 121-K interval, curve b satisfactorily fitsthe
experimental data.

This apparently means that the bias electric field
associated with defects can be oriented opposite to,
rather than along, the direction of spontaneous polar-
ization in the polar phase, thus realizing the metastable
state predicted in[10], which turns out to be sufficiently
stable due to the presence of strong polar defects.

Note that the diffuseness of the phase transitionin a
colored crystal is also accompanied by features in the
temperature dependence of the permittivity €. The
degree of diffusenessis characterized by the value of E
derived from therma measurements and can be esti-
mated from Fig. 5, which plots the temperature depen-

dence of the inverse permittivity €. of the colored
crystal together with the corresponding relation calcu-
lated from the thermodynamic potential (1) for the val-
ues of E and T, extracted from heat capacity data. One
readily sees that for T = T, the values obtained are in
satisfactory agreement with the experiment. For T< T,
no such agreement exists; this is accounted for by a
large domain contribution to the dielectric permittivity
of KDP. One aso sees that incorporation of the impu-
rity markedly reduces the domain contribution to ¢,
(Fig. 1). Thiseffect was also observed earlier in studies
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Fig. 5. Temperature dependence of inverse permittivity sgl

of the KDP + CSB crysta. The thin line plots the relation
calculated using Eq. (1).

on KDP crystals with defects [7] and was assigned to
the pinning of domain walls by impurity inclusions.

The data obtained permit some assumptions con-
cerning the mechanism of the effect of the CSB impu-
rity on the phase transition in KDP to be made.

The incorporation of large organic dye molecules
into the structure of the KDP crystal was discussed in
[3, 4], where the important role of the stereochemical
affinity between the impurity and the host matrix was
considered. In our case, direct comparison of the

parameters of the CSB molecule and its SO; terminal
groups, which are believed to be capable of occupying

the PO, positionsin KDP, would be difficult dueto the

lack of accurate information on the interatomic dis-
tances in the dye molecule. It may, however, be conjec-
tured that these rigid molecules locally distort the lat-
tice in the nonpolar phase to produce local strains and
the corresponding polarization due to the piezoelectric
effect. Because of the long-range character of the elas-
tic and Coulomb forces, the presence of strained polar-
ized regions becomes manifest, for T > T, as a macro-
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scopic electric field bias; below T, these regions may
become appropriately oriented domains. In these con-
ditions, the impurity reduces the average spontaneous
polarization in the polar phase if one assumes that the
magnitude of P, near the impurity molecule is deter-
mined by the local lattice distortion arising in the non-
polar phase and reaches its normal value only at suffi-
ciently large distances from this region. Such a situa-
tion can be considered to be a manifestation of the
macroscopic bias electric field being directed opposite
to the spontaneous polarization and reducing its aver-
age value; thisis exactly what is observed in our exper-
iment.
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Abstract—The ferrobielastic properties (ferroic properties of the second order) earlier theoretically predicted
for lead germanate uniaxial ferroelectric crystals are justified experimentaly. It is demonstrated that single-
domain samples are formed upon cooling to temperatures below the Curie point under uniaxial mechanical
stresses corresponding to a combination of mechanical stresses 011013 OF 0,0,3. The macroscopic mechanism
of this phenomenon is considered. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It is well known that a second-order ferroic is con-
sidered to be acrystal that can exist in two or more ori-
entational states and transform from one state into
another under the action of acombination of two forces
(fields) appliedin certain crystallographic directions[1,
2]. In terms of symmetry, the second-order ferroic
properties can manifest themselvesin first-order ferroic
crystals. Earlier [3—7], we investigated the ferroel astic—
ferroelectric properties of ferroelectric materials. The
symmetry analysis demonstrated that the majority of
ferroelectric phase transitions should also be ferro-
bielastic phase transitions; consequently, the domains
in these ferroel ectric—ferrobielastic material s should be
switched by an electric field and under the action of a
combination of two simultaneously applied mechanical
stresses. Uniaxial ferroelectrics that do not exhibit fer-
roelastic properties can serve as objects of investigation
into the ferrobielastic properties of ferroelectric crys-
tals. The most suitable objects are the Pb;Ge;0,, lead
germanate crystals, in which, unlike other uniaxial fer-
roelectrics, the domain structure can be observed
directly through a polarizing microscope.

The ferroelectric phase transition 6 — 3inalead
germanate crystal can lead to the formation of two ori-
entational states S1 and 2, which represent 180°
domains differing in the sign of optical activity. By
symmetry, this transition should be ferroelastic—ferro-
electric and ferrobielastic simultaneously, because new
components of the tensor of piezoelectric coefficientsd
and components of the tensor of elastic compliance
coefficients s spontaneously appear upon the transition.
Thetensors of the spontaneous piezoel ectric and el astic
coefficients for the orientational state Sl have the fol-
lowing form:

Eo 0 0d14d150E
0o 0 0 dyg—-dy, 00 D
E 15 14 |:|

dy d3y d3z O 0 0O

Eooo Sy —Si O E

00-s 0

i 14 Sog i

% 00 0 O E' @
% 0 2814E

O 00

The relevant tensors for the orientational state 2 can
be obtained by multiplying tensors (1) and (2) by —1.

By using these tensors and writing the expansion of
the thermodynamic potential ® for each of the
domains, we determine the difference in energies A®
that appears under the action of external electric fields
and mechanical stresses:

A® = 2P;E;-4d;53E,05—4d,13E,013—4d115E,0,3
+4d3E,013— 203, E301; — 2d31,E30,, — 2d333E3033

E E E 3
— 481123011053 + 455513011013 + 451153003 @
E E E
—45551305,013 — 8551305301, — 851153013015,
where P; are the components of the spontaneous polar-
ization vector, dy, are the spontaneous piezoelectric
coefficients, and sﬁ-k' are the spontaneous coefficients

of the elastic compliance measured in a constant elec-
tricfield E.

It follows from expression (3) that when the crystal
issubjected to an electric field E; and mechanical stress
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through any combination of the electric field and
mechanical stress E 0,3, E1013, Ex003, E;013, E3074,
E;0,,, and Ez043, Or a combination of two mechanical
Stresses 011073, 011013, 02023, 02013, 02301, and
0,301, there arises a difference between the energies of
the two orientational states S1 and 2. Note that, upon
transition to the lowest-energy state, the crystal should
become single-domain on the macroscopic level.

In this work, we experimentally investigated the
possibility of forming asingle-domain statein lead ger-
manate crystals due to their ferrobielastic properties
through combinations of mechanical stresses 0,03
and 0,,0 3.

2. EXPERIMENTAL PROCEDURE

In his experiments on ferrobielastic switching in
quartz crystals, Aizu [1] used uniaxia mechanical
stresses applied along the [011] direction at an angle of
45° to the Z axis, because, in this case, the stress tensor
of the crystal contains nonzero components O,,, O3,
04y, and 053 and it isthis combination of the stresses o,
and o, that provides domain switching.

In the present work, we used the same principle of
obtaining combinations of two mechanical stresses to
investigate the ferrobielastic properties of lead ger-
manate. L et us consider this principle in more detail.

It is assumed that a crystal is subjected to homoge-
neous mechanical stress along the direction specified
by an arbitrary unit vector |. Let o be the magnitude of
this mechanical stress. The stress tensor components of
the crystal can be represented in the form [8]

o; = lljo (i,j=1273), (4)

where |; and |; are the components of vector |. Hence,
the stress tensor takes the form

O .2 0
0 lio Lo ;o

(o) = B 2 = (5)
1 |:||2|10 |20- |2|30|:|

0 O
Olsl,0 15,0 150 O

By varying the direction of application of the uniaxial
mechanical stress o, we can changetheform of the stress
tensor, thus producing different stress combinations.

We investigated the ferrobielastic properties of a
lead germanate crystal subjected to the mechanical
stress combinations 04,05 and 0,,0,3. In this case, the
uniaxial mechanical stresses o should be directed at an
angle a to the Z axis in the XZ and YZ planes, respec-
tively, and their magnitudes can be determined from the
following relationships:

0,055 = (cos’asina)a?, (6)

0,0, = (cos’asina)a’. 7)
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Under these conditions, the maximum effect is
achieved when a = 60° and 0,,0,5 = 0,,0,3 = 0.32502.

In our experiments, we used lead germanate single
crystals grown by the Czochralski method. Plates
~3 mm thick were cut out normally to the ferroelectric
axis Z of the crystal. For observations of 180° domains
through a polarizing microscope, the plates were pol-
ished and cut into rectangular bars with facets per-
pendicular to the X and Y crystallographic directions
(X- and Y-cuts, respectively). In order to obtain the fac-
ets perpendicul ar to the direction of uniaxial mechani-
cal compression producing the required combinations
of mechanical stresses 0,,0;3 OF 05,03, We worked out
the oblique X- and Y-cutsin such away that the normals
to their surfaces made angles of 60° with the Z axis, as
determined above. Earlier experiments on ferrobielas-
tic domain switching in quartz crystals demonstrated
that, at room temperature, the uniaxial mechanical
compressive stresses required for domain switching are
rather strong (~5 x 108 Pa[1, 9]). For this reason, we
studied the ferrobielastic properties of Pb;Ge;0,, crys-
tals upon their cooling to temperatures bel ow the Curie
point (450 K).

A specially designed holder made it possible to
apply uniaxial mechanical compressive stresses and
electric fields to the sample and to carry out its heating
and cooling to a required temperature at a given rate.
Before each experiment, the sample fastened in the
crystal holder was annealed at T ~ 600 K. Then, the
sample was subjected to an electric field or uniaxia
compressive stress (~5 x 107 Pa) and cooled to a tem-
perature below the Curie point. After cooling to room
temperature, the external actions were eliminated, the
sample was withdrawn from the crystal holder, and its
domain structure was examined with a polarizing
microscope.

Thin lead foil tightly rolled onto the sample facets
with transformer oil was used as an electrode. If
needed, the foil could be easily removed without injur-
ing the polished crystal surface.

3. RESULTS AND DISCUSSION

Upon cooling the samples of Pb;Ge;O,; crystals
through the Curie point without applying external
actions, there arises a polydomain structure character-
istic of the majority of ferroelectrics. This structure
consists of a large number of very small antiparallel
domains. According to Shur et al. [10], the width of
these domains for lead germanate crystals is approxi-
mately equal to (2-3) x 10° m. Such small domainsare
optically indistinguishable through a polarizing micro-
scope. After applying the electric field E; during the
cooling, the examination of the Z-cut at room tempera-
ture indicates that a single-domain structure is formed
in the crysta due to its ferroelectric properties.
Depending on the direction of the applied electric field
without variation in the sample orientation, the lead

2001



2282

Z(Y, X)

(a)

Fig. 1. Different geometries of experiments with lead ger-
manate single-crystal samples: (a) application of uniaxial
compressive stresses 0y, (011 OF O33), (b) oblique cuts for
producing equivalent combinations of mechanical stresses
011013 (022023), and (c) X- or Y-cuts at an angle a to the
direction of compression. Designations: (1) crystal, (2) com-
pressing surfaces, and (3) Teflon spacers.

germanate crystal can appear to be light or dark, pro-
vided the angle between the polarization planes of the
analyzer and polarizer isy = 90° + pd, where d is the
sample thickness and p is the specific optical rotation.
This behavior is aresult of the different signs of p for
domains with different orientations of vector Ps.
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Optical observations of the X-, Y-, and Z-cuts of
samples subjected to uniaxial mechanical compressive
stresses 0,4, 05, and 045 (the geometry of the experi-
ment is shown in Fig. 1a) demonstrated that, after cool-
ing through the Curie point, these samples had a poly-
domain structure at room temperature. This indicates
that the domain structure of lead germanate is unaf-
fected by the applied mechanical stresses.

A different situation occurs with oblique cuts (their
preparation was described above). Examination of the
samples with oblique cuts (the geometry shown in
Fig. 1b) through a polarizing microscope revealed that,
after cooling below the phase transition point, the sam-
plesat T = 20°C arein asingle-domain state. This sug-
gests that the effect of the mechanical stress combina-
tions 0,,0,5 and 0,,0,5 iS equivaent to the action of the
electric field along the ferroelectric axis Z. The same
inference followsfrom the phenomenological consider-
ation and countsin favor of the ferrobielastic properties
of lead germanate crystals.

The drawback of the above geometry of the experi-
ment is that the change in sign of mechanical stress
combinations becomes impossible in the absence of
mechanical tensile stresses. For this reason, samples
with X- and Y-cuts were also used in our experiments.
In order to obtain the required combinations of
mechanical stresses 0;,0,5 Or 0,053, the samples were
adjusted in the crystal holder in such a manner that the
Z axis made an angle of 60° with the direction of appli-
cation of the uniaxial mechanical stresses (the geome-
try of the experiment is shown in Fig. 1c). Moreover,
possi bleinhomogeneous mechanical stresseswere sup-
pressed with Teflon spacers 2 mm thick mounted
between the compressing surfaces of the crystal holder.
Thistechnique madeit possibleto change over fromthe
angle a to—a, thus reversing the sign of the mechanical
stress combinationsto obtain —6,,0;5 and —0,,0,3 With-
out applying mechanical tensile stress to the sample.
The experiments demonstrated that, even with a
slightly simplified technique, the change from the angle
o to —a during cooling of the crystal to a temperature
below the Curie point results in the formation of asin-
gle-domain state but with the opposite direction of Pg
(observations were carried out for a constant orienta-
tion of the crystal with respect to the microscope).

These observations of the formation of a single-
domain structure were also confirmed by measuring the
piezoel ectric response of lead germanate crystalsin the
direction of the polar axis. The piezoelectric response
was examined using a superposition of the mechanical
compressive stress 043 and its subsequent rapid removal
with the measurement of the electric charge thus
induced (the static method of measuring the piezoel ec-
tric modulus). For the Pb;Ge;0,; crystals, which were
cooled below the Curie point without external actions
or under the action of mechanical stresses g, ;, 05, and
043, the piezoel ectric response was found to be insignif-
icant. This indicates a certain unipolarity of the crys-
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tals, which can be caused by growth defects. At the
same time, the samples cooled in an electric field E; or
under the action of mechanical stress combinations
04,013 and 0,,0,5 exhibited a substantial piezoelectric
response (exceeding the response in the preceding case
by more than one order of magnitude). In the latter
case, the response sign reversed with the changein sign
of the external action applied above the Curie point.

The experiments performed revealed that, at a tem-
perature far below the Curie point, no ferrobielastic
domain switching occurs in the PbsGe;O, samples in
the case when the mechanical stress combinations
0,10,3 and 0,05 are less than or equal to 8 x 10%* P22,
However, already at atemperature of 448 K (2 K below
T.), prolonged (~60 min) action of the mechanica
stress combinations 0,,0,5 = 05,0, = 18 x 10% P&
brings about the formation of large single-domain
regionsin the form of strips, which is not characteristic
of conventional ferroelectric domainsin PbsGe;Oy;.

As afirst approximation, the macroscopic mecha-
nism of ferrobielastic switching in PbsGe;0,, crystals
can be represented in the following form. One of the
mechanical stresses entering into the combination
071,013 OF 020,35 gives rise to strains in the crystal that
have different signs for different 180° domains in
accordance with the signs of the elastic compliance
coefficients. The second component of the mechanical
stressinduces switching of these domains, asisthe case
in ferroelastics. It seems likely that the domain switch-
ing through the mechanical stress combinations 0,,0,3,
0,503, 023015, anNd 0,30;, should occur in a similar
manner.

4. CONCLUSION

The above results have demonstrated that the
Pb;Ge;0,, ferroelectric crystals possess ferrobielastic
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properties which, in particular, can be used for the for-
mation of a single-domain structure in lead germanate
single crystals without application of an electric field.
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Abstract—It is shown that a system of classical particles considered in amolecular dynamics model with Pak—
Doyama pairwise interatomic potential adequately describes not only the various structural states of iron (melt,
bcce crystal, metal glass) but also the complex self-organization processes occurring in first- and second-order
phase transitions (crystallization and vitrification, respectively). When the temperature is varied at a constant
rate of 6.6 x 101! K/s, crystallization sets in from both the amorphous and the liquid state; at a rate of 1.9 x
102 K /s, crystallization is observed only in the amorphous state; and when heated at arate of 4.4 x 1012 K/s, the
model amorphous iron transfers to the liquid state without crystallization. The energy of homogeneous forma-
tion of a crystal nucleus in the bulk of the amorphous phase of iron is calculated to be ~0.71 eV under the
assumption that there is a spectrum of activation energies. © 2001 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

It is known [1] that vitrification of pure metas
requires ultrafast quenching rates (~10°-103 K/s) and
that the thermal stability of the films thus obtained
depends substantially on their thickness. For instance,
aniron film 25 A thick prepared through condensation
from the vapor phase on a substrate cooled by liquid
helium to ~4.2 K crystallizes at 50—60 K under heating
performed at a constant rate of ~5 K/min, while a
150-A-thick film cannot be obtained in the amorphous
state at all [2, 3]. Thus, the limiting cooling rates
needed for amorphization can be experimentally
attained only in thin films in the initial stages of their
formation. Investigation of the structure of such films
and of their crystallization and melting under heating is
avery complex technical problem.

The study of such systems becomes considerably
simpler and the possibilities of gaining information on
the structure and its transformations on the atomic level
broaden considerably when one invokes computer sim-
ulation. Simulations that make use of the molecular
dynamics (MD) approach are based on describing the
successive motion of atoms in a condensed medium.
However, problems also arise here. One of them is
associated with the large volume of calculations
involved in computer experiments and, as a conse-
guence, with the limited time interval within which the
model system is studied. To reduce the real time of the
computer experiment, we made use of a well-opti-
mized, highly efficient algorithm developed earlier [4].

Another problem is connected with finding an ade-
guate potential to describe the interaction among atoms
of the condensed phase. In the case of iron, the pairwise

Pak—Doyama potential [5] proved efficient; this poten-
tial was used in the present study.

The computer experiment was aimed at investigat-
ing phase transitions between liquid, amorphous, and
crystalline iron occurring under ultrafast temperature
variation within the interval of 6.6 x 10 to 4.4 x
102 K/s.

Theresults obtained in thiswork are not restricted to
the illustration of first- and second-order phase transi-
tions or to cal culations of some thermodynamic param-
eters. The information obtained on the coordinates of
atomsin all stages of their motion in the formation of a
new phase provides a basis for the development of a
guantitative theory of the nucleation and growth of a
new phase and the refinement of macroscopic parame-
ters, which areinherent in the classical theory of nucle-
ation [6].

2. COMPUTER SIMULATION TECHIQUE

The Pak—Doyama empirical pairwise potential is a
fourth-degree polynomial [5]:

o(r) = —0.188917(r — 1.82709)*

+1.70192(r — 2.50849)° — 0.198294 eV,

wherer isin A. The potential cutoff radius (the distance
at which the potential and its first derivative vanish
smoothly) isr, = 3.44 A. The parameters of this poten-
tial were determined from data on the el astic properties
of a-Fe. The simulation of liquid and amorphous iron
made with this potential provides good agreement
between the calculations and the experimental struc-
tural characteristics[7—9].

(D)
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We first constructed an MD model of liquid iron at
T = 1823 K with aread density of 7030 kg/m?® [10]. A
bce lattice was taken as the starting structure. The
model contained 2000 atoms in the main cube with
periodic boundary conditions. At the initial instant of
time, the atoms were imparted velocities according to
the Maxwell distribution. The scheme of the MD cal cu-
lations consisted in numerical integration of the equa-
tions of motion with a time step At = 1.523 x 107'° s
using Verlet's algorithm in the velocity form [11]. The
timetaken to cal cul ate one step with a Celeron-366 pro-
cessor was 0.13 s. The melting and relaxation of the
system were carried out at the temperature indicated
above over 2000 time steps (isothermal conditions).
After this, the temperature limitation was removed and
thermal equilibrium was established over 4000 time
steps at a constant internal energy (adiabatic condi-
tions). Because the density and temperature of the sys-
tem correspond to liquid iron, the starting configura-
tion, despite the atoms residing at bcc lattice sites, is
extremely unstable and the crysta melts in about
10 atomic oscillations (~600At).

The amorphous state was attained through instanta-
neous quenching [using the static-relaxation (SR)
method] of the model melt upon having preliminarily
increased its density to 7800 kg/m?3. (Because of the
lack of relevant experimental data, the density was cho-
sen from the information available on a-Fe[12], with a
1% correction introduced to account for the amorphiza-
tion.)

Next, the system was successively heated at three
different rates, 6.6 x 1011, 1.9 x 10%2, and 4.4 x 102K /s
(the first, second, and third experiments), until com-
plete melting was observed. The cyclic heating proce-
dure consisted in a stepwise increase in temperature of
AT =20K (T, =iAT, where T, isthe environmental tem-
perature in the ith cycle), maintaining this temperature
in the system for atime 1000At, and subsequent anneal -
ing under adiabatic conditions for 19000At, 6000At,
and 2000At in the first, second, and third experiments,
respectively. Thus, one cycle lasted 20000At, 7000At,
and 3000At or 3.046 x 10711, 1.066 x 1011, and 0.457 x
1011 s, respectively. The thermodynamic characteris-
tics of the system (the temperature T, potential energy
U, and the product of pressure multiplied by volume
PV) were averaged over the last 16000At, 3000At, and
1000At in each cycle for the respective temperature
variation rates. Note that the temperature T of the sys-
tem residing under adiabatic conditions and the envi-
ronmental temperature T,, strictly speaking, do not
coincide. After each cycle, the system was transferred,
using the SR method with a constant step of 0.005 A, to
the state with T = OK to alow the atoms to occupy
equilibrium positionsin local potential wells. This pro-
cedure permitted one to determine the degree of struc-
tural relaxation of the model. For statically relaxed
models, we also calculated the potential energy U, and
the product of the pressure by multiplied volume PyV.
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In the first two experiments, the melted system was
heated 200 K higher and cooled (quenched) according
to the same scheme, with the environmental tempera-
ture varied in accordance with the relation T; = (2. —
i)AT, wherei,, is the number of the last heating cycle.

3. RESULTS AND THEIR DISCUSSION

When studied under the conditions of heating at a
constant rate of 6.6 x 10! K/s, the time dependences of
T, U, and PV, as well as of Uy and PV, underwent a
jump characteristic of a first-order phase transition
within the temperature interval 1100-1160 K (Fig. 1).

To establish the structural changes associated with
the phase transition, we calculated the atomic radial
pair distribution functions (ARPDF) and carried out a
statistical—geometric analysis based on the Voronoi
polyhedra (VP), including the calculation of the angu-
lar correlation functions (ACF) describing the distribu-
tion of angles between the straight lines passing
through the polyhedron center and its two nearest
neighbor atoms. The positions of the ARPDF and ACF
peaks (Figs. 2, 3, respectively) indicate the formation of
abcc crystalline phase. Thisis further supported by an
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Fig. 1. Time evolution of (a) temperature, (b) potential
energy, and (c) product of the pressure multiplied by vol-
ume at the running temperature (U, PV) and after static
relaxation (Ug, PgV) of the model iron under heating and

cooling at arate of 6.6 x 1011 K/s (the process starts from
the amorphous state). Figures 1, 2, and 3 refer to environ-
mental temperatures of 1100, 1120, and 1180 K, respec-
tively. The vertical dashed line separates the heating and
cooling runs.
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Fig. 2. Atomic radial pair distribution functionsin statically
relaxed models calculated for environmental temperatures
(K) of (1) 1100, (2) 1120, and (3) 1180.

analysis of the VP-type distribution. Recall that a VP
can be described by a set of numbers n, equal to the
number of faces with g sides (ng—,—ns—...) [13]. After
crystallization, the coordination around ~90% of the
atoms of the model is characterized by the (0-6-0-8) VP
(the cuboctahedron, i.e., the Wigner—Seitz cell of abcc
lattice). Further increase in temperature gives rise to
additional ordering of the crystal structure, which
ceases at T = 1300 K. After this, the fraction of the
(0-6-0-8) VP atoms can be as high as ~97%. The model
iron melted in the temperature interval 2040-2100 K.

Heat capacity at constant volume for the various structural
states of the model iron

Experiment System phase cv/ke

no. heating cooling

1 Amorphous | 3.01+ 0.02 -
bcc 3.60+0.04 | 3.19+0.05
Melt 4.27 +0.02

2 Amorphous | 3.01+0.02 | 3.16+0.04
bcc 3.67+0.04 -
Melt 4.29+0.02

3 Amorphous | 3.01+0.02 -
Melt 4.39+0.02 -
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Fig. 3. Angular correlation functions for statically relaxed
models calculated for environmental temperatures (K) of
(1) 1100, (2) 1120, and (3) 1180. In (3), the vertical dashed
lines show the distribution of anglesin an idea bcc lattice
(right-hand scale).

In the course of the melt cooling run at the same rate,
crystallization into a bcc lattice occurred at 1200—
1160 K (Fig. 1).

Increasing the heating rate of the original amor-
phous-iron model from 6.6 x 10 to 1.9 x 10* K/s
raises the crystallization temperature (1200-1240 K)
by ~100 K and the melting point (2100-2160 K) by
~60 K (Fig. 4). Figure 5 showsthe distribution of atoms
(after their static relaxation) within an arbitrarily cho-
sen 2.6-A-thick layer before and after crystallization.

Subsequent cooling of the melt at the same rate did
not bring about crystallization; instead, the melt under-
went aglasstransition. Thiswasindicated by ajumpin
the heat capacity characteristic of a second-order phase
transition (table), which can be determined from the
slope of the straight lines approximating the evolution
of the potentia energy of the system with time
(Fig. 4b):

-3, .0@Un
Cy = ékB + EE-.I:DV, 2

where kg is the Boltzmann constant; dT = adt for the
heating and dT = —adt for the cooling (a is the temper-
aturevariation rate). Notethat Eq. (2) isapplicable only
above the Debye temperature; for iron, it is valid for
T>700K [9].

As seen from the table, the heat capacity of the melt
noticeably exceeds that of the crystalline phase. The
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Fig. 4. The evolution of (a) temperature, (b) potential
energy, and (c) the product of the pressure multiplied by
volume at the running temperature (U, PV) and after static
relaxation (Ug, PgV) of the model iron under heating and

cooling at arate of 1.9 x 10'2 K/s (the process starts from
the amorphous state). Figures 1 and 2 refer to environmental
temperatures of 1200 and 1240 K, respectively. The vertical
dashed line separates the heating and cooling runs.

system does not return to the crystalline phase under
cooling, and we assign the change in the slope of the
time dependence of the potential energy, which is
observed around ~900 K and corresponds to a stepwise
decrease in the heat capacity ¢, to the glass transition
in the model system. Similar to the heat capacity, the
guantity V(0P/dT),, also undergoes a jump at the glass
transition point (Fig. 4c).

However, during cooling, acrystal nucleus of ~120—
130 atoms was formed in the amorphous structure
(Fig. 6); itsformation started at T = 940 K with ~30 atoms
and became virtually complete at T = 780 K (Fig. 7).
Note that, when crystallization set in throughout the
volume of the model iron under heating, more than
~90% of the atoms were (0-6-0-8) VP coordinated.

When the heating rate is further increased to 4.4 x
10*? K/s, amorphous iron transformsinto aliquid with-
out passing through the crystalline state, with both ¢,
and V(0P/0T),, undergoing a jump (Figs. 8b, 8c). The
time dependences of U, and P,V pass through a mini-
mum (T = 900-1020 K) without any jumps characteris-
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®Z=19.08A
®Z=19.838A
(b) @Z=20.68A

0Z=2148A

[100]

Fig. 5. Atom distribution after static relaxation in an arbi-
trarily chosen layer 2.6-A-thick (heating at a rate 1.9 x

102 K/s): (a) amorphous state, environmental temperature
of 1200 K; and (b) crystalline state, environmental temper-
ature of 1240 K. The seven gradationsin the atom gray scale
code, from black to light gray, identify the variation of the Z
coordinatefrom 19t0 21.6 A with astep AZ = 2.6/7=0.37 A.
The vacant sites in the crystalline phase are encircled in (b).

tic of first-order phase transitions (Figs. 8b, 8c). The
presence of a minimum in the time dependences of U,
and P,V indicates a change in the atom motion from the
activated to the activation-free mechanism, the latter
being characteristic of atomic diffusionin aliquid.

Asfollows from an analysis of the datain the table,
the values of the heat capacity of the original amor-
phous phase produced by instantaneous melt quench-
ing, which were calculated for different heating rates
(thefirst, second, and third experiments), coincide well
with one another, while being slightly smaller than that
of the amorphous phase obtained by cooling the melt at
arate of 1.9 x 10*? K/s. This difference can be assigned
to the fact that heating of the original nonequilibrium
amorphous phase gives rise to intense structural relax-
ation, which is indicated by a decrease in the potential
energy U, of statically relaxed models (Figs. 1b, 4b,
8b), whereas amorphization by melt quenching at arate
of 1.9 x 102 K/svirtually does not entail any structural
relaxation (Fig. 4b). Correcting the temperature depen-
dence of the potential energy U in the case of heating of
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Fig. 6. Atom arrangement in the crystaline nucleus
(121 atom) frozen by cooling at arate of 1.9 x 1012 K/s.

the original amorphous iron mode! to the magnitude of
the thermal effect associated with structural relaxation,
which can be estimated from the change in the potential
energy U, (Figs. 1b, 4b, 8b for the first, second, and
third experiments, respectively), increases the heat
capacity to the valuethat is observed for the amorphous
phase produced by melt quenching at a rate of 1.9 x
1022 K/s.

Theresults obtained permitted usto estimate the sta-
bility of the iron amorphous state and to determine the
activation energy for homogeneous nucleation of a
crystal in the volume of the amorphous phase.

Metal glass (MG) produced by ultrafast quenching
of aliquid forms a set of unstable (defect) atomic con-
figurations characteristic of the given MG type, which
relax through rearrangement with increasing tempera-
ture. The process of rearrangement of the structure,
which was termed structural relaxation, is character-
ized by a continuous spectrum of activation energies,
whose maximum value corresponds to the energy of
formation of a crystalline nucleus.

In this case, the annealing process can be studied
using amodel involving an activation energy spectrum
[14]. Processes involving relaxation centers with dis-
tributed activation energies are conventionally analyzed
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Fig. 7. Variation of the number of atoms with (0-6-0-8) VP

in the course of cooling at arate of 1.9 x 1012 K/s. Thefig-
ures specify the environmental temperature. The points are
spaced at 100 K within the 2300-1000 and 400-0 K inter-
vals, and at 20 K in the 1000400-K interval. At 940 K,
30 atoms out of 37 are located in one nucleus.

using the rate equation for the reaction:

dn _ 0O EQ

at = VEPOC T 3
where n(E, t) is the spectral density of relaxation cen-
terswith an activation energy E and v is of the order of
the Debye frequency (~10% s?). By integrating this
equation in the case of heating from 0 K at a constant
ratea (T = at), one canfollow the variation of the spec-
tral density of stateswith time:

n(E, t) = ny(E) exp[—v J’ exp E—kBiaEdt}, (@]
0

where nyg(E) is the energy spectrum of the relaxation

centers created in the course of metal glass formation.
According to the principle of superposition, thetotal

concentration of the relaxation centers can bewritten as

o]

N(t) = Ino(E)O(E, t)dE, (5)
where i
O(E t) = exp[—vj’expg—kEaEdt}. (6)
0 B
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Fig. 8. Time evolution of (a) temperature, (b) potential

energy, and (c) the product of the pressure multiplied by

volume at the running temperature (U, PV) and after static
relaxation (Ug, PgV) of the model iron under heating at a

rate of 4.4 x 1012 K/s (the process starts from the amor-
phous state).

The quantity ©(E, t) iscalled the characteristic function
of linear heating. If the ny(E) function is smooth
enough, i.e., if it varies with E much more slowly than
the exponentia function ©(E, t), the annealing process
is determined by the exponential term. In the course of
annealing, the ©(E, t) curve shifts along the E axis
practically without changing its stepwise shape; that is,
it rises sharply from zero to unity near the inflection
point [15]. The characteristic activation energy E, cor-
responding to the inflection point on the ©(E, t) curve
and, hence, to the maximum rate of the thermally acti-
vated processes can be derived from the condition

d°O(E, t) _ 0
=

The activation energy E, corresponding to this point can
be represented as a function of temperature in the form

(7)

_a_ exp(=x)

T >
V X[-Ei(—X)]

E, = XkgT, (8
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where

_Ei(~x) = J’de ©)

isthe integral exponent. As seen from the definition of
the characteristic energy E,, practically all atomic con-
figurations with activation energies E < E, will have
relaxed by thetimet.

The calculation performed in terms of the described
model has shown that the activation energy of homoge-
neous formation of a crystalline nucleus in the volume
of the iron amorphous phase is 0.72 eV in the first
experiment (6.6 x 10! K/s, 1120 K) and 0.7 eV in the
second experiment (1.9 x 10*? K/s, 1220 K).
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Abstract—The static and dynamic properties of cubic Rb,KInFg crystals with elpasolite structure are calcu-
lated using anonempirical method. Cal culations are performed within amicroscopic ionic-crystal model taking
into account the deformation and polarization of ions. The deformation parameters of ions are determined by
minimizing the total energy of the crystal. The calculated equilibrium lattice parameters agree satisfactorily
with the experimental data. It is found that in the cubic phase there are vibrational modes that are unstable
everywherein the Brillouin zone. The eigenvectors of the unstablest mode at the center of the Brillouin zone of
the cubic phase are associated with the displacements of F ions and correspond to rotations of |nFg octahedra.
Condensation of this mode |eads to atetragonal distortion of the structure. In order to describe the Fm3m —
I4/m phase transition, an effective Hamiltonian is constructed under the assumption that the soft mode whose
eigenvector corresponds to octahedron rotation is local and coupled with homogeneous elastic strains. The
parameters of the effective Hamiltonian are determined using the calculated crystal energy for the distorted
structures due to soft-mode condensation. The thermodynamic properties of the system with this model Hamil-
tonian are investigated using the Monte Carlo method. The phase transition temperature is calculated to be
550 K, which istwiceits experimental value (283 K). Thetetragonal phase remains stabledownto T =0K; the
effective Hamiltonian used in this paper thus fails to describe the second phase transition (to the monoclinic
phase). Thus, the transition to the tetragonal phase occurs for the most part through octahedron rotations;
however, additional degrees of freedom, first of all, the displacements of Rb ions, should be included into the
effective Hamiltonian in order to describe the transition to the monoclinic phase. © 2001 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

Halides with the elpasolite structure A,BB**Xg
undergo a wide variety of structural phase transitions
associated with lattice instability in the high-symmetry
cubic phase. In the lower temperature phases, these
compounds show either homogeneous nonpolar distor-
tions of the lattice or distortions that are accompanied
by a change in the unit-cell volume of the crystal. In
most crystals of this family, structural distortions are
associated either with rotations of the octahedra B3*Xq
or with a combination of octahedron rotations and
A-atom displacements.

Instability of the crystal lattice against normal vibra-
tions involving octahedron rotations is likely a charac-
teristic feature of perovskite-like compounds. In most
halides and some oxides with perovskite structure, this
instability leads to structural phase transitions to a
lower symmetry phase, which are accompanied by an
increasein the unit-cell volumein comparison with that
of theinitial cubic phase.

The problem of instability of the perovskite struc-
ture against distortions corresponding either to the fer-
roelectric lattice vibration mode or to octahedron rota-
tions has been discussed in experimental and theoreti-

cal studies for several decades. In recent years, many
papers have been published in which, using the density-
functional method, the €lectronic band structure and
lattice vibration frequencies were calculated and the
statistical mechanics of phase transitions for some per-
ovskites were considered. Those calculations have
given some insight into the source of crystal lattice
instability and the nature of ferroelectricity and antifer-
roelectricity in oxides with perovskite structure (see,
e.g. [1-4]).

For crystals with elpasolite structure, scarcely any
calculations of the crystal lattice vibration spectrum
exist. At the same time, these crystals have been
intensely studied experimentally using various methods
and, at the present time, there do exist data on the struc-
tures of the low-symmetry phases, physical properties,
and the effect of phase transitions on them for many of
these crystals (see, e.g., the recent review [5]).

The Rb,KInFg crystal belongs to the elpasolite fam-
ily; its high-symmetry phase has a cubic crystal struc-
turewith one molecule per unit cell (Fig. 1) and belongs
to the space group Fm3m. As the temperature
decreases, Rb,KInF; undergoes two subsequent struc-
tural phase transitions. one to atetragonal phase (space

1063-7834/01/4312-2290$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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group 14/m) with the same unit-cell volume as that in
the cubic phase (at T.;= 283 K) and another to a mono-
clinic phase (space group P12,/n1) with two molecules
per unit cell (at T,= 264 K). Structural studies of the
low-symmetry phases of the isomorphic compound
Rb,K ScF; have revealed [5] that the distortions of the
cubic structure in the tetragonal phase are associated,
for the most part, with ScFg octahedron rotations,
which are homogeneous over the entire crystal. The
distortions in the lower temperature monoclinic phase
are associated with inhomogeneous rotations of Schg
octahedra and with displacements of Rb ionsfrom their
equilibrium positions in the tetragonal phase. It should
be noted that in the series of isomorphic compounds
Rb,KMF; (M = Ga, S, In, Lu), the phase transition
temperature from the cubic phase increases with the
size of the trivalent ion M.

Earlier, we calculated the entire lattice vibration
spectra of the Rb,KScF; crystal in the unstable cubic
and tetragonal phases and the stable monoclinic phase
[6] within the Gordon—Kim model generalized by
Ivanov and Maksimov [ 7] to the case of deformable and
polarizable ions. Using an effective Hamiltonian in
which the coupling constants were calculated without
fitting parameters, we described the Fm3m — 14/m
phase transition in this compound [8]. The calculated
phase transition temperature and the physical proper-
ties in the vicinity of the phase transition point were
found to agree well with the experimental data.

The objective of this paper is to calculate the equi-
librium volume, the entire lattice vibration spectrum,
and the high-frequency dielectric constant of Rb,KInF
in the cubic phase from first principles and to determine
the parameters of the effective Hamiltonian that
describes the Fm3m — 14/m phase transition in this
compound. We also investigate the thermodynamic
properties of the phasetransition using the Monte Carlo
(MC) method.

In Section 2, we describe the model and the method
for calculating the total energy, the frequencies of nor-
mal lattice vibrations, the dynamic charges, and the
high-frequency dielectric constant. The results from
calculations of the lattice dynamics of the Rb,KInFg
crystal are presented in Section 3. In Section 4, we dis-
cussthe effective Hamiltonian, which includes the min-
imum number of degrees of freedom (more specifically,
the local mode corresponding to InFg octahedron rota-
tions) and homogeneous elastic strains and calculate
the parameters of the model Hamiltonian. Some details
of the investigation of the thermodynamic behavior of
the system with this model Hamiltonian (using the
Monte Carlo algorithm), as well asthe results of calcu-
lations and their discussion, are presented in Section 5.
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Fig. 1. Crystalline structure of Rb,KInFg in the cubic phase.
One molecule and a unit cell of the fcc K lattice are shown.
The six Rb ions of the other three molecules are situated at
1/4 and 3/4 lengths of the three other cube body diagonals.
The remaining In ions are located at the midpoints of the
cube edges. Each Inionis surrounded by six F ions.

2. MODEL AND CALCULATION TECHNIQUE

In order to cal culate the | attice vibration spectrum of
the RbKInFg crystal, we use the ionic-crystal model
proposed by Ivanov and Maksimov [7]. In this model,
the ionic crystal consists of overlapping individual
sphericaly symmetric polarizable ions. The total elec-
tronic density of the crystal iswritten as

p(r) = ZPi(r -Ry),

where summation is carried out over all ions of the
crystal. In the density-functional theory, the total crys-
tal energy including only pairwise interaction has the
form

_1 ZiZ, sl | o
iz]j i (1)
1 i '
+§Z<Dij(RW, R! ,|IRi—Rj]),
i%]
where Z, isthe charge of theithion,
(R R [Ri=R|) = E{p(r=R) )

+p;(r =Ry} —E{p(r —R)} —E{p(r -R;)},

the energy E{p} is calculated using the density-func-
tiona method and the local approximation to the
kinetic and exchange-correlation energies, and
EX'(R),) is the self-energy of the ion. The electronic
density of an individual ion and its self-energy are cal-
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Table 1. Calculated and experimental [11] atomic coordinates and lattice parameters
a,=884A Bep=9.10 A
Atom Position | Occupancy
Xlag ylag Zlag X g Y/aeq Zag
Rb 8c 1 0.25 0.25 0.25 0.25 0.25 0.25
K 4b 1 0.50 0.50 0.50 0.50 0.50 0.50
In 4a 1 0.0 0.0 0.0 0.0 0.0 0.0
F 24e 1 0.23 0.0 0.0 0.222 0.0 0.0

culated using the crystal potential as approximated by a
charged sphere (the Watson sphere):

r <Ry
Z™/r >Ry,

where Ry, is the radius of the Watson sphere. The radii

Ri,\, for individual ions are found by minimizing the

total energy of the crystal. When calculating the lattice
dynamics, the terms describing the changes in energy
due to the displacements of ionsfrom their equilibrium
positions should be included in the crystal energy in
Eq. (2). The dynamic matrix which includes the elec-
tronic polarization of theionsand theionic deformation
caused by the crystal field for crystals of arbitrary sym-
metry in the model used here is written out in [9]. In
calculating the lattice vibration frequencies of
Rb,KInFg and when classifying the vibrational modes
by their symmetry, we use the results of [9].

The Coulomb interaction contribution to the
dynamic matrix is calculated using the Ewald method.
The ionic parameters are determined using the algo-
rithm developed by Liberman et al. [10]. The pairwise
interaction energy in EQ. (2) and theionic polarizability
are calculated using the technique devel oped by Ivanov
and Maksimov [7], with the kinetic energy taken in the
Thomas—Fermi approximation and with the exchange-
correlation energy calculated in the Hedin—Lundqvist

Table 2. lonic polarizabilities, high-frequency dielectric

constants, and dynamic charges

€, =1.86
Atom
a, As Z Z, Z,

Rb 1.39 1.24 1.24 1.24
K 0.74 1.17 1.17 1.17
In 0.37 3.02 3.02 3.02
F 0.82 -1.03 -1.03 -1.28
F, 0.82 -1.03 -1.28 -1.03
Fs 0.82 -1.28 -1.03 -1.03
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approximation. In calculating the derivatives involved
in the dynamic matrix, the dependences of the energy
on the distances R and the Watson sphere potentials V
are approximated by Chebyshev polynomials.

3. LATTICE VIBRATION SPECTRUM

In this section, we present the results of calculations
of the equilibrium volume, the dielectric constant, the
dynamic charges, and the | attice vibration spectraof the
Rb,KInF; crystal in the cubic phase.

The equilibrium lattice parameter and the positions
of theatomsin aunit cell were determined by minimiz-
ing thetotal crystal energy asafunction of volume. The
calculated | attice parameter and coordinates of theions,
as well as their experimental values, are presented in
Table 1. It is seen that the calculated values coincide
with the experimental valuesto within 4%. Theradii of
the Watson spheres for Rb*, K*, In®*, and F~ions found
by minimizing the total energy are 2.125, 2.5625, 3.5,
and 2.625 a.u., respectively. The calculated values of
the polarizabilities of the ions, high-frequency dielec-
tric constant, and dynamic ionic charges of the crystal
under study are listed in Table 2.

The calculated dispersion curves of thelattice vibra-
tion frequencies of Rb,KInFg in the cubic phase are
shown in Fig. 2, and Table 3 lists the limiting vibration
frequencies (at g = 0) and the frequencies of some
Raman-active vibration modes measured in [11]. It can
be seen that the calculated limiting frequencies of
Raman-active modes are 10-20% |lower than the exper-
imental values.

It isalso seen from Fig. 2 and Table 3 that there are
imaginary vibration frequencies, which is indicative of
structural instability of the cubic phase of the crystal. It
should be emphasized that unstable modes arise every-
wherein the Brillouin zone (BZ) and that their frequen-
cies at symmetry points of the BZ are comparable in
absolute value. Since the experimentally observed
phase transitions in the Rb,K I nk crystal are associated
with instability of vibrational modes at the center and at
the boundary point X of the BZ, we will discuss only
the vibrational modes at these points. At the center of
the BZ, three modes become unstable in the cubic
structure. The strongest instability (for which the
square of the normal-mode frequency is negative and
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Fig. 2. Dispersion curves of the vibrational modes of the Rb,KInFg crystal in the cubic phase. Negative val ues correspond to imag-

inary frequencies.

has a maximum absolute value) is associated with the
threefold degenerate T,; mode, in which only four F
atomsare displaced from their equilibrium positions[9,
12]. Asaresult of these displacements, the InF5 octahe-
dron is rotated as a whole. Another (ferroelectric)
unstable mode is the transverse polar mode Ty, in
which all atomsin a unit cell are displaced from their
equilibrium positions in the cubic phase. However, to
our knowledge, ferroelectric phase transitions have not
been observed experimentally in halide crystals with
elpasolite structure. Finally, the third unstable mode is
the threefold degenerate T,, mode. One of the eigenvec-
tors of this mode corresponds to rotation of the InFg
octahedron about a cube body diagonal and to simulta-
neous displacements of the Rb atoms situated on this
diagonal toward each other. It should be noted that in
the vibration spectrum of the crystal under study, there
is also a stable mode of the same symmetry, T,
(Table 3).

At point X on the BZ boundary, the strongest lattice

instability is associated with the nondegenerate X,
mode, in which the displacements of the four F ions
(Fsy = —F4 = Fs, = —F¢,) also correspond to rotation of
the InFg octahedron as awhole. However, the rotations
are inhomogeneous over the crystal and condensation
of this mode leads to doubling of the unit-cell volume.

PHYSICS OF THE SOLID STATE Vol. 43 No. 12

As indicated in the introduction, when the temperature
is decreased, the crystal first undergoes the transition to
the tetragonal phase, which is associated with conden-
sation of the soft T,; mode at the center of the BZ.

Table 3. Limiting g = O vibration frequencies (cm™) in the
cubic phase

Cubic phase

W derga?:nye- Vi br:qzit)ld oenal frequency | [11]
W, 3 Tig 74i
Wyt 2 T 44i
s 3 Tag 39i 80
0w, 3 To, 0
o 1 T 1
s 3 To 74
- 2 To, 125
W, 3 Tag 142 210
W, 1 To, 149
gt 2 To, 149
W, 1 To, 167
W 2 E, 340 380
Wy 1 Agg 365 510
Wyor 2 T 352
Wy 1 Ty 386
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4. DERIVATION OF THE EFFECTIVE
HAMILTONIAN AND CALCULATION
OF ITS PARAMETERS

The effective model Hamiltonian in the local-mode
approximation [13] has been used in several publica-
tionsto describe ferroel ectric and structural phase tran-
sitionsin the diatomic compound GeTe[14] and oxides
with perovskite structure [1-4]. When deriving the
model Hamiltonian, we used the scheme proposed in
[3, 4, 14].

In the threefold degenerate T, vibrational mode at
g = 0 and the nondegenerate vibrational modes along
the lines going through the center of the BZ and one of
the points X, Y, or Z on the BZ boundary, only Fionsare
displaced and their displacements VE in these modes
are subject to the relations

E_Viy = V;y = ng = _ng
Tlg: E_VEX = Vo = _ng = VZZ
D_ng = VZy = Ve = Vey 3
Xs: —vfy = vgy = vgz = —vgz,
Y _le = V2x V3z = V4z’
Z V3y = V4y V5x = V6x

These F-ion displacements lead to rotation of the InFg
octahedron. We derive the model Hamiltonian in the
local-mode approximation and take into account only
the modesin Eqg. (3); the other modes are assumed to be
insignificant in the structural transition from the cubic
to the tetragona phase. Thus, for Rb,KInF;, a local
mode is assumed to have the form

ZINENKO, ZAMKOVA

Under the symmetry operations of the high-symme-
try cubic phase, the local mode (S, S, S) is trans-
formed as a pseudovector. Thus, in order to construct
the effective Hamiltonian that describes the structural
phase transition Fm3m — 14/m, we proceed as fol-
lows. The three-component local mode (pseudovector)
is placed at sites of an fcc lattice. For the sake of sim-
plicity, anharmonicity istaken into account in the effec-
tive Hamiltonian only through the single-site potential,
which contains all second- and fourth-order terms and
some anisotropic terms of the sixth order. Pairwise
interaction between the local modes at different sitesis
included only for the nearest and next-to-nearest neigh-
bor sites. The interaction between the local mode and
spatially homogeneous elastic strains is also allowed
for. Thus, taking into account the transformation prop-
erties of the local mode and the fcc lattice under cubic-
symmetry operations, the microscopic model Hamilto-
nian iswritten as[8]

— Z(Hia\nh+ HI'SS)+ HSe+ Hee,

H™ = B(S+ )+ §) 4 OS5 + S+ £5)
+D(S+ Sy + S,

HE = S[ASﬁal y shk+¥E

d=(0,%£1,£1)

+a, Z a?+a°dm

_ob
",

O|+

i

(d 2)(d 3OS, + 24

+a, Z

1 F - 20
- goZEaka, (4) d=(+10.x1)
k +a (d ¥)(d SR, + aOdD
wherea =x, Y, z vlf isthe oscillation amplitude of the 3d _Fo
kth F ion given by Eq. (3); &, are the elgenvectors of a o
lattice vibrational mode; and a; = 16.71 a.u. isthe lat- at]
tice parameter in the cubic phase. The vectors€ are pre- +3y| AS, +a, Z Syg?i +
sented in Table 4. d=(«L0,+1)
Table 4. Eigenvectors of the threefold degenerate vibrational mode Ty
Compo-
hents Rbl Rb2 F1 F2 F4 F5 F6 K In
g, 000 000 o—%o 0%0 000 000 00% oo-1 | 000 000
1 1 1 1
000 000 —= = —= = 000 000 000 000
&y 500 500 00-3 003
g, 000 000 000 000 | oo | oo | “loo | Zoo 000 000
2 2 2 2
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+a, z SSH? +alOdD
4o ELELG
Lh, 1, +10

ra, Y (@DAH)SR+ 2T

d = (0,1, £1)

a3 @oEmsk: + 20

d=(1,+1,0
ayd
+S, AS, +ay SR+ 5
d = (£1, £1,0)
ad
+ay SZB?i *=0
_#10, 1
0o, +1,+10

va, Y (olty)wm)st?+a°o'D

d = (0, £1,£1)

ra, Y (dDNADSR, +""0dﬂ}

d = (21,0, £1)

+5(b Y S(Ri+ad)

d = (21,0,0)

z SR )

g=*
0 1

+Sy[ by S/(R; +ayd)

d=(0,£1,0)

. S SR+agd)

q=0500G
0o, 0,+10

+5b Y S(R +ad)

d =(0,0,+1)

Z S(Ri+apd) |,

q=0L00
o, +1,0]
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= 3 et e)(Sr S )
+ 0y (&1 + &~ 2)) (S + - 28)

+3(e,-e)(S5- S|
[l
+ g3(e4SySz + e5Ssz + eGSxSy) %

H® = Cy(€f + &+ €)) + Cpo(ere, + 8,6, + 5€))
+ Caal€h + &5+ €).
The elastic strains g are written in Voigt notation as
€ = Uy, € = Up, €3 = Ug,
€ = 2Up, € = 2Uj3, € = 2Upy,
Uij = (0u;/0x; +0u;/ax;)/2.

In order to find the numerical values of the coeffi-
cients in the effective Hamiltonian (5), we used the
results of calculations of the lattice vibration spectrum
and the total crystal energy for some low-symmetry
phases whose distortions involve F-ion displacements.

The elastic constants C;, C;,, and C,, are deter-
mined from the calculated small-q dependences of the
frequencies of longitudinal and transverse acoustic
modes for three symmetry directions. [001], [110], and
[111]. The following values are obtained for the elastic
constants C;; = ¢;Q (where Q is the unit-cell volume)
for the Rb,KInFg crystal: C;; =53.6 eV, C;, =11.7 eV,
and C,, = 9.5 eV. Unfortunately, experimental values of
the elastic constants of this crystal are unavailable and
we can only compare the calculated constants C;; with
their experimental valuesfor the isomorphic compound
Rb,NaHoFg, which has approximately the same chem-
ica composition as the crystal under study: C;; =
59.5eV,C;,=189¢eV,andC,, =19.2 €V [15]. Itisseen
that these val ues and the respective constants cal cul ated
for the Rb,KInF crystal are of the same order of mag-
nitude.

The coefficients of the second-order termsin Eq. (5)
are determined from the total energies E; of the dis-
torted phases. Table 5 presents the relations between
linear combinations of the coefficients in Eg. (5) and
the distortion energies AE; = E; — E; — E,, (Where B, =
—356596 eV), as well as the values of AE; (in eV) cal-
culated from first principles. In this table, E; is the
energy of the tetragonally distorted phase in which the
rotations of Ink4 octahedra are homogeneous over the
crystal and correspond to condensation of one compo-
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Table 5. Expressions for the distortion energies AE; = E; —
Eg — Ean Of Some phases and their values (V)

AE; 4a, + 8a, + 20, + 4b, + A —26.906
AEy | 4a,—8a,+2b; +4b, + A —26.169
AE, —24a; —6b; — 12b, + 3A 18.412
AE, | —4a, +2b, +4b, + A 16.557

Table 6. Calculated phase transition temperatures (K) and
the parameters of the effective Hamiltonian (eV)

Te 550 750 450 350
Single-site parameters
A 3.087 —-15.482 23.490 5.339
B | 1400x10°| 1577x10°|1.188x10°| 1.286x 103
C | 2246x10%| 2145x10%| 2415x103| 2767 x 10°
D |-0.732x10%| -5.568 x 10° | 5,567 x 10° | 16.198 x 103
Intersite parameters
a -5.386 -3.928 —7.785 —4.969
a —0.046 -0.027 -0.073 0.060
a, 0.628 0.514 0.849 0.014
b —1.346 —-0.982 —1.948 -1.243
Coupling constants with homogeneous strains
o 39.878 66.420 43.430 29.854
g, | -15.915 —15.939 —20.672 -18.701

nent of the T;; mode at q = 0; Ex isthe energy of the tet-
ragonally distorted phase with a doubled unit-cell vol-

ume, resulting from condensation of the soft mode X§

at the BZ boundary; and AE, isthe difference between
the energies of the cubic and the distorted phase in
which the octahedraare rotated about a cube body diag-
onal, which correspondsto the foll owing distribution of
the local mode S,(R):

S(R) = S§(R) = S(R) = |Sexp(-iq.R),
where |S| is the amplitude of the local mode, g, =
;no(lll), and R is a trandation vector of the cubic

phase. The amplitude of this local mode is found by
minimizing thetotal energy E, of the distorted phase. It
should be noted that, although this distorted phase can-
not result from the condensation of any one phonon
mode, the crystal under study has an unstable mode at
point L on the BZ boundary in which the displacements
of the ions lead to rotation of the octahedron and to a
small distortion in it [9]. We also calculated the total
energy E,, of the distorted phasein which the InF octa-
hedron is rotated about the [001] axis and the unit cell
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is doubled along the [100] axis, which corresponds to
an §,(R) distribution of the form

S(R) = |Sexp(-igxR), S =S, =0,

whereqy = % (100). Thisdistorted structure cannot be

due to the condensation of a phonon mode. Since the
other homogeneously distorted structures in which the
unit cell is doubled and the octahedra are rotated do not
lead to new relations between linear combinations of
the coefficients, we failed to divide the combination
4a, + 2b, + 4b, + Ainto individua terms. For this rea-
son, we assumed that the constants b, and b,, which
characterize the interaction with the next-to-nearest
neighbors in Eq. (5), have the same value and are four
times |ess than the interaction constant with the nearest
neighborsay; that is, b; =b, = b =a,/4. Thisassumption
is consistent with our calculations of the thermody-
namic properties of the system with Hamiltonian (5)
(see below), according to which these properties (cal-
culated with the value of a; determined previously) are
scarcely affected by the values of b; and b,; at least, for
three values of b/a; = 1/4, 1/2, and 3/4, the results of
numerical simulations differ from one another only
dlightly.

The coefficients B, C, and D of the anharmonic
terms in the single-site potential are determined from
the dependences of the total energy of the clamped
crystal (whose lattice parameter is the same as that in
the cubic phase, a, = 16.71 a.u.) on the rotation angle of
the InFs octahedron about the [001] (S, =S5, =0, S, =
IS, [110] (=S, =S|, §,=0), and [111] axes(§,=§, =
S, = |S]). These dependences are shown in Fig. 3, and
the values of the coefficients B, C, and D determined
using the least square method are listed in Table 6.

Now, we discuss the coupling coefficients between
the local mode and homogeneous elastic strains. Since
shear strains do not arise in the tetragonal phase during
the Fm3m — 14/m phase transition, we did not deter-
mine the coefficient g; in EQ. (5). The coefficients g,
and g, are found as follows. The total energy of the
unclamped crystal is calculated as a function of the
rotation angle of the octahedron about the [001] axis
and, for a fixed value of the angle, is minimized with
respect to the unit-cell parameters and the radii of the
Watson spheres of the ions. The angular dependence of
the energy is shown in Fig. 3. Then, we subtract the
total energy of the clamped crystal, and this energy dif-
ference and the elastic constants determined before are
used to fit the coefficients g, and g, using the least
square method (Fig. 3). The values of these coefficients
arelisted in Table 6.
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Fig. 3. Total crystal energy (Eq = —13110.141187 a.u.) as afunction of the octahedron rotation angle for (a) the unclamped crystal
and (b) the clamped crystal with unit-cell parameters of the cubic phase. Solid curves are calculations, and dots represent the ener-
gies obtained from the effective Hamiltonian, whose parameters are fitted using the least square method.

5. INVESTIGATION OF THERMODYNAMIC
PROPERTIES AND DISCUSSION OF RESULTS

The effective Hamiltonian derived above is smple
but contains many parameters, which hampers calcula
tion of the free energy and other thermodynamic quan-
tities using analytical methods, for example, within the
self-consistent-field approximation. Therefore, we
investigated the thermodynamic properties of the sys-
tem with the effective Hamiltonian (5) using the numer-
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ica Monte Carlo (MC) method, namely, its classical
version with the Metropolis algorithm [16] for an fcc
L x L x L lattice with periodic boundary conditions.
The three-component pseudovector (S, S, S) was
placed at each lattice site, and the | attice was subjected
to homogeneous strains g;, e,, and e;. We investigated
two cases using the MC method: aclamped crystal (i.e.,
without elastic strains, ¢, = e, = e; = 0) and an
unclamped crystal with strains g;, e,, and e; (their cal-

2001



2298
0.12
(a)
- o o ° o N .
0.081 ‘oo,
°
%} = sg.
“
0.04 o] o
L a2 %
)
0 A 1 A 1 AA MM ° ? ]
0.001
K J
ok (b) e
®
- —0.001F S
~ °
I L °
$ S
| —0.003 | °
By B o*
o ®
~0.005F e o *°®
1 1 1 1 1 1 1 ]
- (©) o
B °
2 ® o
g .
5 L )
. °
= °
8+ .
Sl e,
°
L o ®
v A | | | ° 4 |
0 200 400 600 800
T,K

Fig. 4. Temperature dependences, calculated using the MC
method, of (a) the order parameter (1is S, 2is S, §),
(b) theinternal energy, and (c) the heat capacity (in arbitrary
units).

culation was included in the MC algorithm). In the
former case, in each cycle of the M C procedure, we var-
ied the pseudovector components §,, S, and S, in a
random fashion successively at each lattice siteand ver-
ified the possibility of each variation. It should be noted
herethat our calculations of thetotal energy of distorted
phases and numerical simulations of the effective
Hamiltonian showed that the energies of distorted
phases with unequal pseudovector components S, #
§ # S, were significantly higher than those in the case
of equal pseudovector components. Therefore, in order
to reduce the computer time required for the MC proce-
dure, we chose only those pseudovectors with the fol-
lowing components: S, S,=§,=0; S,=+S,§=0; and
S =+§5 =4S,
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Since the energy increases sharply in the range
above |S| ~ 0.07, as seen from Fig. 3, we restricted our
calculationsto therange [-0.1, 0.1] for the values of the
components S, and their variations. For each value of
the temperature, we performed 50000 steps of the MC
procedure and the thermodynamic quantities were cal-
culated by averaging over the last 10000 steps in the
ordinary way [16].

In the case of the unclamped crystal, after each cycle
of the MC procedure described above, we tried to vary
each component of the strain tensor. The values of tria
variations were chosen randomly and lied in the range
[-0.05, 0.05]. For each component, we performed
1000 trials and averaged over them. The averaged
strains and the configuration of pseudovectors calcu-
lated in a given cycle of the MC procedure were taken
asthe initial onesfor the next cycle.

The calculations were carried out for both high
(~1000 K) and low (~50 K) initial temperatures. When
the MC procedure was started from high temperatures,
we simultaneously treated two initial configurations,

corresponding to the high-symmetry cubic phase (S'x =
S{/ = SZ = 0) and to the tetragonally distorted phase

(S, =0.08, S, = S, =0). When starting from low tem-
peratures, a configuration corresponding to the tetrago-
nal phase was taken as the initial one. The calculation
was carried out for the dimension L = 10 (4000 pseudo-
vectors). In order to check the results, we also per-
formed calculations for several temperatures for a
larger lattice (L = 20, 32000 pseudovectors). The
results obtained for the 20 x 20 x 20 lattice differ little
from those obtained for the 10 x 10 x 10 lattice; thus, in
what follows, we will discuss only the calculations per-
formed for L = 10.

The calculated temperature dependences of the

pseudovector components SX S/ and SZ and of the

internal energy E —E, (E,isthetotal energy of the crys-
tal in the cubic phase) are shown in Fig. 4. The phase
transition temperature was determined as that corre-
sponding to the inflection point in the temperature
dependence of the internal energy (Fig. 4b) and to the
peak in the temperature dependence of the heat capac-
ity C, caculated using a standard method [16]
(Fig. 4c).

At T. = 550 K, the unclamped crystal undergoes a
second-order phase transition to a distorted phase with
pseudovectors S, = Sand S, = S, = 0. Such atetrago-
nal phase, having the same unit-cell volume as the
cubic phase and bel onging to the space group 14/m, was
observed experimentally in Rb,KInFg crystals below
283 K [5]. The calculation accuracy of the phase transi-
tion temperature is determined by that of the vibration
frequencies and of the total energy of the distorted
phases. In the approach employed by us, these quanti-
ties are calculated to within an accuracy of ~5%. In the
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case of the clamped crystal (zero strains), the phase
transition temperature obtained from the MC calcula
tion datais T, = 560 K, which isten degrees higher than
that for the unclamped crystal.

Figure 5 presentsthe elastic strainse; = e, and g5 in
thetetragonal phase measured experimentally and from
MC calculations. The quantitative agreement between
the calculated and experimental valuesisfairly reason-
able, if one takes into account that the values of e are
very small and that the method according to which we
calculated the total crystal energy, vibration frequen-
cies, and the parameters of the model Hamiltonian is
poorly accurate.

The phase transition temperature T, obtained from
the MC calculationsisnearly twice aslarge asits exper-
imental value. This discrepancy can be mainly due to
the calculated total crystal energy and lattice vibration
spectrum, which are not sufficiently accurate in com-
parison with the first-principles energy-band calcula-
tions.

On the other hand, our calculations reveal ed that the
value of the phase transition temperature is very sensi-
tive to the details of the crystal structure in both the
high-symmetry cubic phase and the distorted phases.
The parameters of the effective Hamiltonian (5) listed
in the second column of Table 6 were calculated from
the energies of the distorted phases by minimizing the
total crystal energy in both the cubic and distorted
phases. We al so calculated the parameters of the effec-
tive Hamiltonian (by following the scheme described
above) and performed MC caculations with these
parameters for dightly varied crystal structures. The
results of these calculations are presented in the last
three columns of Table 6: The third column lists the
parameters of the Hamiltonian and the cal culated phase
transition temperature for the case where the F—In dis-
tance (between the fluorine and indium ions) in the
cubic phase is 0.222a, (a, = 17.08 a.u. is the lattice
parameter in the cubic phase), the fourth column lists
the same quantities cal culated for a FIn distance equal
to 0.24a, (a, = 16.41 au.), and the last column of
Table 6 lists the same quantities calculated for the case
where the F-In distance (0.23a,, a, = 16.71 a.u.) corre-
sponds to the minimum of the total energy but, in addi-
tion to the F-ion displacements, the Rb ions in the tet-
ragonally distorted phase are also displaced aong the
cube body diagonal without breaking the tetragonal
symmetry. The amount of Rb-ion displacement was
taken to be equal to one-third the F-ion displacement. It
can be seen from Table 6 that small variations (=4%) of
theion positionsin the crystal structure giveriseto sig-
nificant changes in T.. However, it should be empha
sized once again that the values of the transition tem-
perature from the cubic to the tetragonal phaselistedin
the last three columns of Table 6 do not correspond to a
minimum of the total crystal energy.

According to our MC calculations, the tetragonal
phase remains stable down to zero temperature and the
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Fig. 5. Temperature dependences of the strain tensor com-
ponents g in the tetragonal phase: (1) MC calculations and
(2) experiment [17].

other pseudovector components (S, §) do not appear,
which contradicts the experimental observations,
according to which another structural phase transition
(to the monoclinic phase with unit-cell doubling)
occurs in Rb,KInF, crystals at T, = 264 K. Structural
studies of the monoclinic phase of the isomorphic
Rb,K ScF; compound revealed [5] that this phase tran-
sition is accompanied by the appearance of another
pseudovector component below T,; this component is
inhomogeneous over the crystal and involves displace-
ments of the Rb ions from their equilibrium positions.
This suggests that the Rb-ion displacements play asig-
nificant part in the stabilization of the monoclinic phase
in this crystal and that, therefore, in order to describe
the second structural phase transition, not only octahe-
dron rotations but also the vibrational modesthat corre-
spond to these degrees of freedom should be included
into the model Hamiltonian.

6. CONCLUSIONS

Thus, in this paper, we calculated the entire spec-
trum of crystal lattice vibrations and constructed a non-
empirical effective Hamiltonian to describe the struc-
tural phase transition Fm3m — 14/min the Rb,KInFg
crystal. The parameters of the Hamiltonian were deter-
mined by calculating the total energy in anionic-crystal
model taking into account the deformation and polar-
ization of ions. The model Hamiltonian was used in
numerical calculations in accordance with the MC
method, from which we determined the phase transition
temperature from the cubic to the tetragonal phase, T, =
550 K. This calculated temperature is twice as large as
the corresponding experimental value. This discrep-
ancy could be mainly due to the insufficiently accurate
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method used in the calculations. However, according to
our caculations, the phase transition temperature is
very sengtive to the details of the crystal structure;
therefore, the discrepancy between the calculated and
experimental values of T, could be due to the imperfec-
tion of the crystals used in the experimental studies.

Nevertheless, from the results obtained in this paper,
it is reasonable to infer that the phase transition
Fm3m — 14/m in the Rb,KInFg crystal is basically
associated with spatially homogeneous rotations of the
InF; octahedra, whereas the other degrees of freedom
affect the mechanism and thermodynamics of this
phase transition only slightly.
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Abstract—The heat capacity of (NH,),K GaFg elpasolite is measured in the temperature range from 80 to 350 K.
A sequence of three phase transitions at T; = 288.5 K, T, = 250 K, and T; = 244.5 K isrevealed, and the ther-
modynamic characteristics of these transitions are determined. The influence of hydrostatic pressure on the
phase transition temperature is investigated. The results obtained are discussed within the model of orienta-

tional ordering of NHf1 and GaFg_ ionic groups. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Crystals of the elpasolite and cryolite family of the
general formula A, B*M3'F¢ (in a cryolite structure,
A* = B*) have a high-temperature cubic phase and
belong to a wide class of ordered perovskites with the
space group Fm3m (Z = 4). Compounds of this family
with atomic cations A* and B* = Na*, K*, Rb*, or Cs*
(R4 > Ry:) can undergo structural phase transitions

upon cooling due to lattice instability with respect to
rotational distortions of the crystal framework which
consists of vortex-shared octahedra B*Fg and M3*F¢ [ 1-
3]. The phase transitions occur through the condensa-
tion of soft librational modes of octahedra ionic
groups.

The presence of NH, ammonium ions in the struc-

ture substantially affects the mechanism of the phase
transitions. In elpasolite and cryolite crystal cells, these
ions can occupy two nonequivalent positions, namely,
4b (inside a halide octahedron) and 8c (in a hole
between octahedra) positions with coordination num-
bers of 6 and 12, respectively. In the (NH,)sM3*F; cry-
olite structure, ammonium ions occupy both positions.
For an elpasolite structure, there are two variants: (1)
ammonium tetrahedra can be located only in holes
between octahedra in the (NH,),B*M3*F; compounds
and (2) ammonium tetrahedra can occupy only halide

octahedrain the A; NH,M3*Fs compounds.

Among ammonium compounds, the (NH,);M3*F,
cryolites are the best understood. For these compounds,
the heat capacity has been carefully measured and the
thermodynamic parameters of phase transitions have
been reliably determined in a number of works [4-10].
Moreover, the effect of hydrostatic pressure was ana-
lyzed in our recent works [9, 10]. The character of the

reorientational motion of hydrogen and fluorine was
investigated earlier by NMR spectroscopy [4, 11].

In the (NH,)sM3*F; cryolites, asin compounds with
atomic cations|[2], the phase transition temperature and
the sequence of formation of distorted phases essen-
tially depend on the size of the trivalent cation. Earlier,
two successive phase transitions were revealed in an
ammonium-containing cryolite with M3 = Al3* [4, 12]
and one transition from a cubic phase to a triclinic
phase was observed in compounds with M3+ = Cr3*,
Ga*, V*, and Fe* [6-8, 13, 14]. It was found that, for
compounds with larger-sized trivalent ions (M3+ = Sc3*
and In3"), the low-temperature triclinic phaseis formed
upon three phase transitions [8-11, 15].

For the aforementioned cryalites, the total entropy
change due to the transition from the cubic to the tri-
clinic phase variesin anarrow range (2.33-2.99)Rfrom
crystal to crystal and does not depend on the sequence
of phase transitions. The large entropy clearly indicates
that ordering processes proceed in the structure. In [7,
8], it was assumed that the phase transitions are associ-
ated with orientational ordering of both tetrahedral
ammonium and octahedral fluorineionic groups. Of the
above two types of ammonium ions that occupy differ-
ent crystallographic positions (8c and 4b), only in the
latter case, tetrahedral ionsin the cubic phase are disor-
dered over two equivalent orientations according to the
symmetry of the occupied position. Fluorine octahedra
remain rigid and regular when fluorine atoms in the
cubic phase are distributed over the 24e or 192l posi-
tions. Intheformer case, they occupy a special position
on the cell edge. In the latter case, they are distributed
over eight positions; i.e., each octahedron is character-
ized by eight equivalent orientations. Consequently, the
entropy change that corresponds to complete ordering
of theionic groupsis equal to RIn2 + RIn8 = RIn16 =
2.77R. This value is in reasonable agreement with the
experimental data for ammonium-containing cryolites.

1063-7834/01/4312-2301$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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In the case when ammonium cryolites undergo suc-
cessive phase transitions, the structural ordering pro-
cesses occur in two stages [9]. The phase transition
from the cubic phase to the monoclinic phase is associ-
ated with a partial ordering of octahedra (AS = RIn4),
which results in aforced ordering of ammonium tetra-
hedra (AS = RIn2). The octahedra are completely
ordered upon the second phase transition between two
monaclinic modifications (AS= RIn2). Thethird phase
transition (to the triclinic phase) is accompanied by an
insignificant change in the entropy and is, most likely,
a first-order transition between two completely
ordered, distorted modifications [9, 16]. The model
under consideration is consistent with the NMR data
obtained by Sasaki et al. [11] for the (NH,);lnFg cryo-
lite. For cryolites with successive phase transitions, the
spin-lattice relaxation times of protons (T,,) and fluo-
rine nuclei (T,) exhibit an anomalous behavior upon
phase transition from the cubic phase. However, upon
the second phase transition, only the T, time changes
considerably.

It should be noted that, in ammonium elpasolites, an

NH; ion occupies only one of the two possible crystal -
lographic positions (4b or 8c). This dightly simplifies
the problem of elucidating the role of ammonium ions
in structural phase transitions and their influence on the
motion of fluorine octahedra

If the model proposed in [8, 9, 16] provides an ade-
quate description of the ordering of structural units
upon phase transitions, the A; NH,M3F, elpasolites,
like (NH,)sM3F; cryolites, can undergo phase transi-
tions with ordering of the ammonium tetrahedra and
fluorine octahedra. Asregardsthe (NH,),B*M3F; €l pa-
solites, only the fluorine octahedra can be disordered in
their cubic structure. In these two cases, the maximum

entropy change can be equal to RIn16 and RIn8, respec-
tively.

100

—100

DSM signal, arb. units

-200

| | | | | |
180 200 220 240 260 280 300 320
T,K

Fig. 1. DSC curve for the (NH,4),K GaFg €elpasolite (DSM-
2M instrument).

PHYSICS OF THE SOLID STATE Vol. 43

FLEROV et al.

In the present work, we carefully investigated the
heat capacity and the p-T phase diagram for the
(NH,),KGaF5 compound over a wide range of temper-
atures and pressures. The aim of thiswork wasto deter-
mine the thermodynamic parameters of phase transi-
tions and to elucidate how the substitution of an atomic
cation for ammonium in the crystallographic position
4b in the (NH,),NH,GaF; cryalite structure affects the
thermodynamic properties.

2. SAMPLE PREPARATION
AND PRELIMINARY INVESTIGATIONS

The (NH,),KGaF; compound was prepared using
two methods. In the first method, we synthesized this
compound from a solution. A solution of Ga(OH); in
concentrated hydrofluoric acid was evaporated to the
onset of crystallization. Then, a saturated solution of an
equimolar mixturein hydrofluoric acid on a2NH,HF, +
KHF, + Ga(OH); basis was added to the Ga(OH) solu-
tion. The resultant solution was alowed to stand in a
crystallizer at atemperature of 70°C until fine crystals
were formed and was then cooled to room temperature
at arate of 0.5 K/h. As aresult, we obtained crystals
approximately 0.5 mm? in volume.

In the second method, the (NH,),K GaFs compound
was prepared by hydrothermal synthesis. A 35% aque-
ous solution of HF (in an amount of 20% of the total
weight of the initial components) was added to a
2NH/HF, + KHF, + GaF; - 3H,0 mixture in a Teflon
vessel. The vesseal with the prepared mixture was placed
in a high-pressure nickel bomb. The hermeticaly
sealed bomb was held for 48 h at 230°C and then was
slowly cooled for 72 h to room temperature. In this
manner, we obtained octahedral crystals 30-50 mm3in
volume.

Analysis of the x-ray diffraction patterns showed
that impurities of the initial components and foreign
phases are absent in the samples. At room temperature,
the (NH,),KGaF; compound has a cubic symmetry

(Fm3m, Z = 4) with the unit cell parameter a; =
8.866 A. According to the chemical formula, ammo-
nium ions occupy the 8c positions in the unit cell. No
indications of composition disordering of ammonium
and potassium ions over the 8c and 4a positions were
found.

Two (NH,),KGaF; samples prepared using different
methods were studied by differential scanning calorim-
etry (DSC) on a DSM-2M instrument in the tempera-
ture range 150-320 K. The experimental data obtained
for the sample grown by hydrothermal synthesis are
shown in Fig. 1. It can be seen that the heat capacity
exhibitstwo anomalies proportional tothe DSM signals
at temperatures T, = 290 K and T, = 250 K. Moreover,
a small deviation from a smooth decrease in the DSM
signal is observed below T, in the range of T; = 245 K.
In order to make certain that the third anomaly is not
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accidental and does not depend on the sample prepara
tion procedure, we performed calorimetric measure-
ments with the same instrument for the sample synthe-
sized from the solution. The results of both experiments
turned out to be identical: the temperatures of each of
the three anomalies in the heat capacity coincided to
within 1-2 K, i.e., within the accuracy ensured by the
DSM-2M instrument. The enthalpy change upon the
phase transition at the T, temperature was found to be
AH, =150 + 25 Jmol. Since the difference between the
temperatures T, and T, was small, we succeeded only in
determining the total enthal py change upon two succes-
sive transitions: AH, + AH; = 3500 + 550 J/mol.

The preliminary polarization-optical investigation
of the (NH,),K GaF samples prepared by hydrothermal
synthesis revealed that twins with a structure typical of
tetragonal distortion are formed at temperatures below
T,. Below the T, temperature, the pattern of twinning
changes and the symmetry becomes lower (most prob-
ably, monoclinic). Unfortunately, reliable data on the
phase transition at the T, temperature are unavailable.
Detailed results of optical and structural investigations
will be published in a separate paper.

3. HEAT CAPACITY MEASUREMENTS

In order to refine the thermodynamic parameters of
the phase transitions under investigation and to reveal
possible phase transitions with a small enthalpy (i.e.,
transitions that cannot be recorded using the DSC
method because of its relatively low sensitivity to ther-
mal effects), the temperature dependence of the heat
capacity was carefully measured using an adiabatic cal-
orimeter in the temperature range 80-350 K.

For this purpose, asample (1.46 g) was placed in an
indium cell, which was then hermetically sealed in a
helium atmosphere. The heat capacity of the cell was
determined in a separate experiment. The measure-
ments were carried out upon discrete and continuous
heating. In their immediate vicinity, the phase transi-
tions were investigated by the quasi-static thermogram
method during heating and cooling at mean rates
|dT/dt| = 2.5 x 1072 K/min.

The temperature dependences of the heat capacity
of the (NH,),K GaFs compound over the entire temper-
ature range studied and, in greater detail, at tempera-
tures near 250 K are displayed in Figs. 2a and 2b,
respectively.

It can be seen from Fig. 2 that the heat capacity
exhibits three anomalies, as is the case in the experi-
ments performed with the DSM-2M instrument. The
refined temperatures of the phase transitions are as fol-
lows: T, =2885+ 05K, T,=2493+0.1K,and T3 =
244.6 £ 0.5 K. The behavior of the heat capacity in the
vicinity of the T, temperature is characteristic of sec-
ond-order phase transitions. Thermographic investiga-
tions (quasi-static thermogram method) demonstrated
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Fig. 2. Temperature dependences of the heat capacity for
the (NH,),K GaFg elpasolite (a) over a wide range of tem-

peratures and (b) in the temperature range of phase transi-
tions at T, and T3. The dashed line shows the lattice heat

capacity.

that the anomalies observed in the heat capacity at T,
and T are associated with thefirst-order phase transfor-
mations, which are characterized by the temperature
hystereses 8T, = 1.24 + 0.05 K and 6T; =2.06 + 0.2 K.

Theintegrated thermodynamic characteristics of the
phase transitions were obtained in the processing of the
anomalous component of the heat capacity AC,(T) =
Cy(T) — Ciu(T). The lattice component of the heat
capacity C,4(T) was determined by approximating the
experimental data outside the phase transition range (T
< 150K and T > 300 K) with the use of the Debye and
Einstein functions. The temperature dependence of the
lattice heat capacity is shown by the dashed line in
Fig. 2a. The spread of experimental points about the
smoothed dependence in these temperature ranges did
not exceed 0.7%. The change in the entropy with tem-
perature was calculated by integrating of the AC,(T)/T
function. The temperature dependence of the excess
entropy is depicted in Fig. 3.

The total entropy change for the three phase transi-
tionsisequal to 16.0+ 1.5 Jmol K. The entropy change
due to the first phase transition is rather small: AS, =
(0.12 £ 0.01)R; thisvalueischaracteristic of displacive-
typetransitions. Since the temperatures of the two other
transitions are very close to each other, the entropy
change attributed to each of these transitions cannot be
distinguished. The total entropy change for these tran-
sitionsisAS, + AS; = 1.8R. This value slightly exceeds
the entropy change (1.68R) determined by the DSM
method.
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Fig. 4. The p—T phase diagram for the (NH,),KGaFg el pa-
solite.

4. PHASE DIAGRAM

The effect of hydrostatic pressure on the phase tran-
sition temperatures was studied with the same sample
as was used in the heat capacity measurements. The
phase transition temperature and its change with avari-
ation in pressure were determined from a differential
thermal analysis (DTA). A copper—germanium thermo-
couple served as the sensitive element. A quartz refer-
ence sample was placed on one junction of the thermo-
couple, and a small copper cell with the studied com-
pound was placed on the other junction of the
thermocouple. The high sensitivity of the thermocouple
made it possible to measure reliably even the phase
transition at T, with asmall anomaly in the heat capac-
ity (AC,/Ciy = 6%). A pressure as high as 0.6 GPawas
produced in a cylinder—piston-type chamber connected
to abooster. A mixture of silicone oil and pentane was
used as the pressure transferring medium. The pressure
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in the chamber was measured on a manganin resistance
pressure gauge, and the temperature was measured
using a copper—constantan thermocouple. The errors of
measurements were equal to +10° GPa and +0.3 K,
respectively. The reliability of the results was checked
by measuring the shift in the phase transition tempera-
tures with an increase and a decrease in the hydrostatic
pressure.

Figure 4 shows the p-T phase diagram of the
(NH,),KGaF elpasolite. It is seen that the stability l0ss
temperature of the cubic phase decreases with an
increase in the pressure. It is worth noting that the
dependence T,(p) is obviously nonlinear. The shift in
the phase transition temperature dT,/dp is equal to
—-18.5K/GPaat p = 0 and reaches a value of —30 K/GPa
at p = 0.5 GPa. Thetemperatures of the two other struc-
tural transformations also decrease but considerably
moreslowly: dT,/dp =—(2.3+ 0.3) K/GPaand dT4/dp =
—(1.4 £ 0.4) K/GPa. It is evident that afurther increase
in the pressure can lead to the disappearance of thefirst
distorted phase. According to the estimates, this can
occur at p=1.0-1.2 GPa.

5. DISCUSSION

The substitution of the K* cation for the ammonium
ion in the 4b position leads to quite a different pattern
of phase transitions as compared to that observed in the
(NH,),NH,GaFg cryolite. Let us consider the
(NH,),KGaF; elpasolite structure in the framework of
the model proposed for cryalites in [7-9]. Within this
model, fluorine octahedra alone, most probably, fulfill
the function of “critical” ions; i.e., they play an active
part in the phase transitions. Now, we attempt to either
validate or disprove this assumption. In the
(NH,),KGaF; elpasolite, the entropy change upon the
phase transition from the cubic phase is smal (AS, =
0.1R) and comparable to the quantity AS= 0.2R. This
entropy change is characteristic of a large number of
halide elpasolites (including fluoro-elpasolites) with
atomic cations, which undergo phase transitions to the
tetragonal phase [2]. According to [2], the entropy
change of 0.2R is attributed to the rotation of fluorine
octahedra through a small angle about one of the four-
fold axes of the cubic cell. Aswas noted above, the pre-
liminary optical investigations also demonstrated that
the first distorted phase in the (NH,),K GaF; elpasolite
has a tetragonal symmetry. Therefore, if the transfor-
mation at T, in the (NH,),K GaF el pasolite s also asso-
ciated with rotations of the octahedra, we can state with
assurance that disordering of the fluorine atoms (or flu-
orine octahedra) is absent in the cubic phase. To put it
differently, the change in the character of octahedron
motion upon phase transitions at T, and T5 can contrib-
ute to the mechanism of structural transformations only
through further octahedron rotations with small entropy
changes AS. On the other hand, close examination of
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the structure shows that, under the assumption of octa-

hedron disordering in the Fm3m phase, the rotation of
orientationally disordered octahedra through a small
angle cannot provide for the formation of a tetragonal
structure with rigid octahedra. Consequently, the con-
siderable entropy change (AS; + AS;) most likely corre-
sponds to the ordering of other structural units.

Asfar aswe know, only fragmentary data are avail-
able on the properties of crystals belonging to the

(NH,),B*M3*F elpasolite  family, namely,
(NH,).KAIFg [17], (NH,),NaFeF; [18], and
(NH,),NalnF [19].

Hirokawa and Furukawa [17] investigated the
(NH,),KAIFg elpasolite by the DTA technique and
revealed two phase transitionsat T, =250 K and T, =
186 K. Unfortunately, they did not determine the rele-
vant entropy changes. However, theratio of areas under
the DTA signal anomalies (proportional to the entropy
change) indicates that [AS, = AH./T,] > [AS, =
AH,/T;]. In other words, the entropy ratio for the
(NH,),KAIFg elpasolite is identica to that for the
(NH,),KGaFg elpasolite. The inference made in [17]
coincides with our opinion that the phase transition at
T, isadisplacive-type transformation and ismost likely
associated with rotations of fluorine octahedra through
a smal angle. Reasoning from the NMR data,
Hirokawa and Furukawa [17] argued that the second
phase transition, which isaccompanied by a substantial
entropy change, is most probably dueto the ordering of
ammonium ions. Unlike the (NH,);M3Fs (M3 = Al
and Ga) cryalites, in which the spin-lattice relaxation
times of fluorine ions and protons change significantly
upon phase trangitions [4, 8, 11], the (NH,),KAIFg
elpasolite is characterized by a considerable change
only in the T, time at the T, temperature [17].

In the high-temperature cubic phase, the N-H bonds
are dynamically disordered and equiprobably directed
to three fluorine ions of the same face of an (AlFg)*
octahedron. In an intermediate phase, ammonium tetra-
hedra remain disordered but three orientations of each
N-H bond become nonequivalent due to the lowering
of the symmetry. The correlation time of anion reorien-
tation is very long. This suggests a low probability of
dynamic disordering of fluorine octahedra in the inter-
mediate phase. In the low-temperature phase, hydrogen
atoms are predominantly bonded to one of three fluo-
rine ions. All the aforementioned features are con-
firmed by the data on the relaxation times of hydrogen
and aluminum and the temperature dependence of the
second moment of the H and F NMR spectra[17].

The assumption that the ammonium ions in the 8c
positions can be orientationally disordered is confirmed
by the unusually large temperature parameter of hydro-
gen atoms in the cubic phase of (NH,),NalnFg [19],
which is appreciably larger than the temperature
parameters of the other atoms.
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If this disordering of ammonium ions actually
occursin the cubic phase, their complete ordering inthe
low-temperature phase should be attended by the
entropy change AS=2RIn3=RIN9=18.3 ¥moal K. This
value exceeds the entropy change observed in the
experiment for the (NH,),KGaFg elpasolite : ZAS =
16 Jmol K.

6. CONCLUSION

It was demonstrated that the phase transition from
the cubic phase in the (NH,),K GaF; and (NH,),KAIF,
elpasolites is accompanied by a small entropy change.
This disagrees with the existing elegant model of struc-
tural transformations, which is based only on the orien-
tational ordering of the NH; (in the 4b position) and
M3*F ionic groups [7, 8]. The determination of the
actual positions of fluorine and hydrogen atoms calls
for further structural investigations. Moreover, when
constructing amaodel of phasetransitionsin ammonium
compounds, the possible softening of rotationa vibra-
tional modes of fluorine octahedra should be taken into
account.

ACKNOWLEDGMENTS

We are grateful to S.\V. Mé’nikova for performing
the polarization-optical investigations.

Thiswork was supported by the Russian Foundation
for Basic Research (project no. 00-02-16034) and the
International Association of Assistance for the promo-
tion of co-operation with scientists from the New Inde-
pendent States of the former Soviet Union (project
INTAS no. 97-10177).

REFERENCES

1. K. S. Aleksandrov and S. V. Misyul’, Kristallografiya 26
(5), 1074 (1981) [Sov. Phys. Crystallogr. 26, 612
(2981)].

2. 1. N. Flerov, M. V. Gorev, K. S. Aleksandrov, et al.,
Mater. Sci. Eng., R 24 (3), 81 (1998).

3. E.G. Steward and H. P. Rookshy, Acta Crystallogr. 6 (1),
49 (1953).

4. K.Moriya, T. Matsuo, H. Suga, and S. Seki, Bull. Chem.
Soc. Jpn. 52 (11), 3152 (1979).

5. R. A. Vecher, L. M. Volodkovich, G. S. Petrov, and
A. A. Vecher, Thermochim. Acta 87, 377 (1985).

6. K. Kobayashi, T. Matsuo, and H. Suga, Solid State Com-
mun. 53 (8), 719 (1985).

7. K.Moriya, T. Matsuo, H. Suga, and S. Seki, Bull. Chem.
Soc. Jpn. 50 (8), 1920 (1977).

8. A.Tressaud, S. Khairoun, L. Rabardel, et al., Phys. Sta-
tus Solidi A 96, 407 (1986).

9. M.V.Gorev, |.N. Flerov, andA. Tressaud, J. Phys.: Con-
dens. Matter 11, 7493 (1999).

2001



2306 FLEROV et al.

10. I.N. Flerov, M. V. Gorev, and T. V. Ushakova, Fiz. Tverd.  16. M. V. Gorey, |. N. Flerov, S. V. Mél'nikova, et al., 1zv.
Tela (St. Petersburg) 41 (3), 523 (1999) [Phys. Solid Akad. Nauk, Ser. Fiz. 64 (6), 1104 (2000).
State 41, 468 (1999)]. ) )

11. A. Sasaki, Y. Furukawa, and D. Nakamura, Ber. Bunsen- 17. K. Hirokawaand Y. Furukawa, J. Phys. Chem. Solids 49

ges. Phys. Chem. 93, 1142 (1989). (9), 1047 (1988).
12. M. Lorient, R. van der Muhll, A. Tressaud, and J. Raves, 18, J. Pebler, E. Herdiweck, W. Massa, and R. Schmidt,
Solid State Commun. 40, 847 (1981). Sudies in Inorganic Chemistry (Elsevier, Amsterdam,
13. S. Morup and N. Thrane, Solid State Commun. 11 (10), 1983), Vol. 3.
1319 (1972). ' '
14. S. Morup and N. Thrane, Phys. Rev. B 8 (3), 1020 19. A. Rdliff, D. Trinschek, and M. Jansen, Z. Anorg. Allg.
(1973). Chem. 621, 737 (1995).

15. S. V. Md’'nikova, S. V. Misyul’, A. F. Bovina, and
M. L. Afanas ev, Fiz. Tverd. Tela(St. Petersburg) 42 (2), ]
336 (2000) [Phys. Solid State 42, 345 (2000)]. Translated by O. Borovik-Romanova

PHYSICS OF THE SOLID STATE Vol. 43 No. 12 2001



Physics of the Solid State, Vol. 43, No. 12, 2001, pp. 2307-2310. Trandlated from Fizika Tverdogo Tela, \Vol. 43, No. 12, 2001, pp. 2214-2217.
Original Russian Text Copyright © 2001 by Vtyurin, Bulou, Krylov, Afanas’ ev, Shebanin.

LATTICE DYNAMICS

AND PHASE TRANSITIONS

The Cubic-to-Monoclinic Phase Transition in (NH,);ScF,
Cryolite: A Raman Scattering Study

A. N. Vtyurin*, A. Bulou**, A. S. Krylov*, M. L. Afanas ev*, and A. P. Shebanin***
* Kirensky Institute of Physics, Sberian Division, Russian Academy of Sciences,
Akademgorodok, Krasnoyarsk, 660036 Russia
e-mail: vtyurin@iph.krasn.ru
** Université du Maine, Le Mans, Cedex 9, 72085 France

*** |nstitute of Geology, Sberian Division, Russian Academy of Sciences,
ul. Akad. Koptyug 3, Novosibirsk, 630090 Russia

Received May 8, 2001

Abstract—This paper reports on aRaman study of the cubic-to-monoclinic phasetransition in (NH,);ScFg cry-
olite. We observed sharp anomalies in the frequencies and half-widths of the Raman lines corresponding to
internal vibrations of the Sch+ ions and to lattice vibrations; no soft lattice mode condensation was revealed.
It is concluded that the phase transition studied is related primarily to the orientational ordering of these ions.

© 2001 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

Cryolites are a family of perovskite-like crystals
(Fm3m space group of the undistorted structure, Z = 4).
They appear to be promising subjects for investigation
both as having application potential and as model
mediafor use in studying phase transition (PT) mecha
nisms [1]. Investigation of the phase transitions occur-
ring in fluorine compounds of this family is usually
complicated by their fairly high temperatures; the pres-
ence of ammonium ions in the structure reduces the
phase transition temperatures [2], thus making them
particularly attractive for investigation.

It is presently established that in most ammonium-
containing cryolites, phase transitions are associated

with orientational motion of the MeF; and NH,

molecular ions and that the sequence of the phase trans-
formations, their temperatures, and mechanisms vary
substantially depending on the radius of the trivalent
cation [2]. In the (NH,);ScF; cryolite, phase transitions
were observed to occur in the order Fm3m (Z =4) ~—
P12,/n1(Z=2)~—112/ml (Z=16)-— 11 (Z=16),
with the transition points T; = 330, T, = 293, and T5 =
243 K, respectively [2, 3]. The cubic symmetry of the
high-temperature phase (shown in Fig. 1) assumes that
at least one of the ammonium ion sublattices [denoted
by (NH),l in Fig. 1] is orientationally disordered (the
corresponding ion local symmetry is O,); it thus
appearslogical to assume that the observed sequence of
the phase transitions (or, at any rate, thefirst of them) is
associated with the ordering of these ions. At the same
time, it was pointed out in[2, 3] that the entropy change

at the first PT is too large to be accounted for by the
ordering of the NH} ions alone and the possibility of
simultaneous orientational ordering of the Sch+ sub-
lattice occurring in this transition was suggested. The

present work is aimed at establishing the part played by
the molecular ions in the mechanism of this transition.

Fig. 1. Structure of the cubic phase of (NH4)3ScFs.
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2. EXPERIMENT

The compound was prepared by reacting equivalent
amounts of NH,F with Sc,05in HF (10%). Faceted sin-
gle crystals were grown through slow controlled evap-
oration of aneutral saturated aqueous solution at 305 K
over 8 months. The crystalswere thin rectangular plates
with well-devel oped faces (typically measuring 5 x 5 x
0.5 mm); they did not contain defects or inclusionsvis-
ible under amicroscope and were used in spectral mea-
surementswithout any additional processing. The spec-
tra were obtained on Jobin Ivon U-1000 and T-64000
Raman spectrometers with CCD detector arrays and a
set of microattachments. In the latter spectrometer, the
high—frequency spectra of the broad bands of internal
ion vibrations were measured in a single-monochroma:
tor arrangement, while in the region below 1000 cm ™,
triple-monochromator arrangement with dispersion
subtraction was employed to suppress the elastic-scat-
tering wing as much as possible; the low-frequency cut-
off was at 8 cm™. The spectral dit width was varied
from 5 cm (at high frequencies) to 1 cmr™, the spectral
range of the CCD array cell used in the triple mono-
chromator arrangement was 650/1024 cm™, and the
signal accumulation time was up to 600 s. The excita-
tion was provided by polarized 514.5-nm radiation
from a 200-mW Ar* laser. The phase transition occur-
ring a T, = 330 K is essentially first-order, and it is
accompanied by considerable spontaneous sample

350L (NHy4)3ScFg
£ 300+
=
o
(&)
22501
z
o)
.E 200F
g 348 K
g
S 150+
332K
100+ 326K
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Fig. 2. Spectra of internal ammonium ion vibrations of the
(NH_,)3ScFg crystal.
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deformation; in this connection, special measures were
taken to preclude local heating and defect formation at
the laser focal point. The sample temperature deter-
mined during spectral measurements was stabilized to
within 0.2 K.

3. RESULTS AND DISCUSSION

Because of the earlier conjecture of the ammonium
sublattice being possibly involved in the mechanism of
the phase transition under study, we first studied the
high-frequency part of the Raman spectrum (1200-
4500 cm™), which includes the internal vibrations of
these ions. Figure 2 shows the evol ution of these spec-
tra with temperature. We readily see that the spectra
vary very littlein thisregion; there are no sharp changes
in the region of the (first-order) phase transition, and
the background, which is apparently associated with
the increasing contribution of the well-known strong
anharmonicity of the NH, ion vibrations, grows
steadily. Thelarge linewidths, particularly in the 2800
3500 cm* interval (of the order of hundreds of wave-
numbers), which corresponds to the internal valence
vibrations of this ion [4], may originate both from
strong anharmonicity and from orientational disorder
on the ammonium subl attices. The considerable anhar-
monicity of these modes is also indicated by the inten-
sities of the broad, double-phonon bands near 2500 and
3700 cmL, which grow with temperature.
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330 K

328 K
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Fig. 3. Transformation of the low-frequency part of the
(NH,4)3ScFg spectra with temperature. For comparison, a

spectrum of the isomorphous cubic phase of Rb,KScFg is
shown.
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Fig. 4. Temperature dependences of the frequencies and line half-widths (shown by vertical lines) of (a)—(c) the internal ScFgion

vibrations and (d) the ammonium subl attice phonon vibration.

The second spectral region studied by us (8-
650 cm™ in Fig. 3) includes internal vibrational modes
of the ScF; molecular ions and lattice vibrations. The
octahedral site symmetry in the cubic phase coincides
with the free-ion symmetry; thus the selection rules
also coincide: the Raman-active free-ion vibration fre-
quenciesarev;(A;g) =498 cm™, v,(Eg) =390 cm?, and
V5(F,y) = 230 cmr? (the frequencies and notation were
taken from [4]). The frequencies obtained for the cubic
phase are 510, 385, and 240 cm (val ues contained for
360 K), which indicates weak distortion of the ions by
the lattice. At the same time, the lines are strongly
broadened. For comparison, Fig. 3 also shows an unpo-
larized room-temperature spectrum of the isomorphous
cubic phase of Rb,K ScFg; onereadily seesthat the half-
widths of the corresponding spectral linesin the crystal
under study are afew times larger.

According to the selection rules for the cubic phase
(see[5] for acomprehensive analysis), its Raman spec-
trum should contain one lattice-phonon line corre-
sponding to the trandational vibration of one of the
ammonium sublattices (with Ty local ion symmetry).
This line can be identified with the weak, strongly
broadened band peaking near 150 cm (360 K). The
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shift of its frequency compared to the spectrum of
Rb,K ScF4 correlates well with the change in the ion
mass. Moreover, one also observes a broad wing of the
central peak, which is evidently associated with the
strong disorder in the cubic-phase structure.

Lowering the temperature down to the transition
point to the monoclinic phase brings about consider-
able changesin this part of the spectrum. The widths of
all lines decrease strongly, which is accompanied by an
increase in their frequency (Fig. 4). A new line, seen
clearly in Fig. 3, appears against the background of the
low-frequency wing.

All these changes occur in a jump, within a 1-2 K
interval, with no further modification of the spectrum
being observed within the region of existence of the
monoclinic phase. This correlates well with the first-
order nature of this phase transition, although no
noticeabl e hysteresis effects were reveal ed.

The strong broadening of the lines corresponding to

the internal vibrations of the Sch+ ions and to the

(NH),I1 sublattice vibration in the cubic phase implies
that they are also disordered. It isapparently the heavier

Sch+ ions that also primarily govern the nature of the
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broad low-frequency wing. The strong narrowing and
the spectral-line shift to a higher frequency support the
conjecture that the transition from the cubic to the mon-
oclinic phase is associated with the ordering processes

while the main ordering structural unit is the ScFy
ions and, therefore, their internal modes are the most

strongly modified. The ordering of the ScFy’ sublattice

makes the potential relief of the structure as a whole
more pronounced, and, as a result, the ammonium
group vibrations are also modified, although to alesser
extent, whereas the interna vibrations of the ammo-
nium ions remain strongly broadened. The extremely
strong broadening of these modes makes it difficult to
determine which of the ammonium sublattices is more
disordered, however, the substantial change in the
parameters of the lattice-phonon line at 150 cm sug-
geststhat the (NH),I1 sublattice playsno lessapart than
the (NH),l sublatticein thistransition. Judging fromthe
appreciable widths of the internal vibrations of both
ammonium sublattices, these sublattices also remain
disordered in the monoclinic phase and their ordering
may turn out to be adominant factor in the mechanisms
of lower temperature phase transitions.
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Abstract—The spectrum of plasma oscillations and the frequency of the dielectric relaxation of electronsin
a quasi-one-dimensional ring are calculated. The plasmon spectrum is revealed to be equidistant. It is shown
that, in contrast to the three-dimensional case, the dielectric relaxation is dispersive and, therefore, the distri-
bution of carriersin quasi-one-dimensional rings can be studied by means of dielectric relaxation spectroscopy.
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The advancements made in the technology of quasi-
one-dimensional rings [1, 2] have opened up fresh
opportunities for the study and use of mesoscopic con-
ductive systems. It should be noted that most of the
investigations of such objects have been devoted to
quantum phenomena (see, for example, [3, 4]). How-
ever, in [5-9], attention was drawn to the interesting
classical properties of quasi-one-dimensional rings. In
particular, it was shown that they possess electrody-
namic nonlinearity not associated with the nonlinear
properties of the material from which the rings are
made but with their geometric configuration (geometric
nonlinearity).

In the present paper, plasma properties of a quasi-
one-dimensional ring are studied in the limiting cases
of high and low frequencies corresponding to plasma
oscillations and dielectric relaxation, respectively.

Let us consider a quasi-one-dimensional flat ring of
radius R and width d < R. The potential V(r, ¢, ¢, t) of
the self-consistent field produced by the oscillating
electronsin thering is described by Poisson’s equation,

2 2 2
<3_\2/+1<1/+0_\2/+120_\£

o> ror az% r?ad 1)
= —4np( ¢, t)3()A(r —R),

where (r, ¢, ¢) are the cylindrical coordinates whose
originisat the center of thering and A(r —R) issimilar
to a delta function: it is equal to 1/d within a narrow
interval (R—d/2, R + d/2) and to zero outside of this
interval. The linear charge density in the ring p(¢, t)
satisfies the continuity egquation

ap 1dJ

ot "Rap - O &)

where the current in thering J(9, t) is

_ eNv
T 2nR’ 3
Here, N is the number of electrons in the ring and

v(¢, t) isthevelocity of the electronsin the self-consis-
tent field.

1. For high frequencies (wT> 1, where T isthe mean
free time), the velocity v(9, t) satisfies the equation of
motion

dv _ e oV

9t~ mRap “)
This equation assumes no collisions to occur over the
period of plasma oscillations.

Taking thetemporal Fourier transform and eliminat-
ing the variables p, J, and v yields an equation for the

Fourier component V (r, Z, ¢, w):

OV, 10V, 9V 19V
or’ Tror azz Ra¢ -
2e°N

== r—Raz—.

Rgmz( )()a¢2

We perform Hankel transformation with respect to r
and Fourier transformation over  and ¢:

V(1,2,6,0) = Z e
= (6)
dq IQZJ’J (kr)kden(k q 00)

By substituting Eq. (6) into Eg. (5), we can find
Vn(k, g, w). Taking the inverse Hankel and Fourier

1063-7834/01/4312-2311$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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transforms and assuming that r = Rand { = 0, we obtain
adispersion relation for the plasmonsin the form

of = €N 40T (R—p)dp,

mmR° IQ”"D 2Rp U

(7)

neN ET;H__dX
nde ““

where Q,(X) isa Legendre function of the second kind.
Taking into account the behavior of this function at
X —= 1+ 0[9], weobtain thefollowing formulafor the
plasmon spectrum in the quasi-one-dimensional ring
(R>d):

2.2

2 _ e N |
" R
It follows from Eq. (8) that the plasmon spectrum s
equidistant. At d — O, the frequency diverges, which
istypical of one-dimensional systems (asisknown, this
is also the case with along thin rod); for this reason, it
isnecessary to introduce asmall, but finite, width of the
guasi-one-dimensional ring.
AtR~10%cm,d~10°cm, m~0.1m, and N ~ 103
(which corresponds to a two-dimensional electron con-
centration ng~ 10 cm), we have w, ~ 10* s for the
fundamental plasmon frequency.
2. For low frequencies (wT < 1), Eq. (4) isreplaced
by an equation for viscous motion,
pnov

~ “R3p’ €)

where g = et/mis the electron mobility.

Carrying out the transformations as above, the
dielectric-relaxation frequency isfound to be

R _
5 (n=1,23.). 8)

_n eNpI R

¢ onrRdd

It follows from Eg. (8) and Eq. (10) that, in the case of

the quasi-one-dimensional ring, the dielectric-relax-

ation frequency w, a wt < 1 is connected to the fre-

guency of plasma oscillations w, at wt > 1 through the
same formula as that in the bulk material:

(10)

W, = WT. (11)
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This means that we have an infinite spectrum of
relaxation times (frequencies) instead of one Maxwell
relaxation time. The physical meaning of this situation
isobvious. an arbitrary initial deviation of the concen-
tration of carriersin the ring from a homogeneous dis-
tribution can be expanded in terms of the eigenfunc-
tions of thering (Bessel functions), and different spatial
(Bessel) harmonics will correspond to different relax-
ation times. The relaxation frequency increases as n?
with increasing harmonic mode number n. Thus, in
contrast to the three-dimensional case, the dielectric
relaxation is dispersive. Hence, the distribution of car-
riers in rings can be studied by means of dielectric-
relaxation spectroscopy.
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Abstract—The percolation process in atwo-dimensional inhomogeneous latticeis studied by the Monte Carlo
method. The inhomogeneous lattice is simulated by a random distribution of inhomogeneities differing in size
and number. The influence of inhomogeneities on the parameters (critical concentration, average number of
sitesin finite clusters, percolation probability, critical exponents, and fractal dimension of an infinite cluster)
characterizing the percolation in the system is analyzed. It is demonstrated that all these parameters essentially
depend on the linear size of inhomogeneities and their relative area. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Percolation processes were first considered by
Broadbent and Hammersley [1]. These processes can
occur in different physical systems. The percolation
model was successfully applied to the description of
disordered systems (for example, porous media) and
related phenomena. Among these are rock fracture,
fragmentation [2] and gelation [3, 4], conduction in a
random resistance grating [5] and strongly inhomoge-
neous media [6], and propagation of forest fires [7, 8]
and epidemics [9, 10]. This approach made it possible
to describe the el ectronic properties of doped semicon-
ductors[11].

Relying on the percolation theory, Kopelman et al.
[12, 13] developed a cluster formalism for describing
the electronic excitation energy transfer in inhomoge-
neous systems. This model is based on mathematical
functions, such as the percolation probability P,, and
the average number | 5, of sitesin acluster. The depen-
dence of these quantities on the concentration C of sites
through which the energy migratesis determined by the
scaling relationships [14]

I O|CIC,—1]7, 1

P.O|C/C.—1%, 2

where C, isthe critical concentration of sitesand 3 and
y are the critical exponents, which depend only on the
space dimension. Investigations into the transfer of
electronic excitation energy in mixed molecular crys-
tals [15, 16] and solid solutions of organic compounds
in low-molecular vitrifying solvents [17] have demon-
strated that the critical exponents determined experi-
mentally coincide with those obtained within the perco-
lation theory for two-dimensional and three-dimen-
sional spaces, respectively (see table). However, recent
studies [18—20] of similar processesin porous matrices
revealed a discrepancy between the experimental and
theoretical critical exponents. Saha et al. [21] aso
noted that the matrix affects the topology of the energy
transfer. In [18-20, 22], this effect was explained in
terms of the inhomogeneous properties of porous
glasses used as matrices. A microscopic inhomogeneity
of porous glass brings about a change in the effective
topology of the space in which percolation processes
occur. In turn, this can affect the formation and growth
of clusters from incorporated molecules.

In this work, we performed the Monte Carlo com-
puter simulation of the percolation process on a square
|attice with inhomogeneities differing in size and rela-
tive area in order to elucidate the possible effect of
these inhomogeneities on the critical concentration C,,
the average number | 5, of sitesin acluster, the percola-

Critical exponents for mixed molecular crystals and solid solutions of organic compounds

Critical Percolation theory Isotopically Chemically Solid solution | Ethanol solution
exponents mixedmolecular |mixedmolecular | of benzaldehyde | of benzaldehyde
P 2D 3D crystals crystals in ethanol in porous glass

B 0.14 0.41 0.13 0.13 0.41 0.25

% 21 16 2.1 2.09 17 1.95

1063-7834/01/4312-2313%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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tion probability P, and the fractal dimension d; of an
infinite cluster.

2. COMPUTATIONAL TECHNIQUE

We will solve the site percolation problem, because
it is the most important from the viewpoint of energy
migration in heterogeneous systems. Let us consider a
lattice formed by a set of sites and bonds. It is assumed
that C isthe fraction of sites painted black in arandom
manner (the sampling was performed by the Monte
Carlo method). Any two nearest-neighbor black sites
are considered to be connected to each other. An aggre-
gate of black sites connected to one another either
directly or through chains of connected black sites is
referred to as a cluster. Within the cluster formalism,
the dynamics of the initiation of percolation with an
increase in Cisasfollows. At C = 0, black clusters are
absent inthe system. At C < 1, black clusters consist of
a small number of sites: single sites, pairs, triads, etc.
However, as the percolation threshold is approached,
particular clusters mergetogether and their average size
increases. The average number of sitesin finite clusters
is defined by the expression

Zimm2
lay = & , (©)

zimm

m

where i, is the number of clusters containing m sites.
The analytical dependence of I,, on the fraction C is
unknown. Numerical calculations showed that, at
C — C.—0, the quantity |5, goesto infinity [seerela-
tionship (1)]. At C = C,, an infinite cluster extending
over the whole space arises for the first time. The con-
centration C, at which an infinite cluster of black sites
is formed corresponds to the percolation threshold.
According to [23, 24], the percolation probability is
defined as the ratio between the number of sites form-
ing aninfinite cluster and the total number of sitesinthe
lattice. In practice, we deal with systemsof afinitesize.
In the numerical simulation, the number of sites con-
tained in the maximum cluster (m,,,) is calculated and
the percolation probability is estimated from the
formula

mmax
X L’ (4)

where L isthelinear size of the lattice. Extensive simu-
lation and theoretical considerations show that, near
C — C, + 0, the percolation probability decreases as
the power law (2).

All the results presented in this work were obtained
from simulations of the percolation process on a 200 x
200 lattice. Despite the currently available methods of
computer reconstruction of Vycor porous glasses (see,
for example, [25]), the inhomogeneous system was ini-

I:)max =
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tially simulated by introducing square inhomogeneities
of a gpecified size into the lattice, as was done by
Bujan-Nunez et al. [26]. For this purpose, a new lattice
with a cell size equal to the linear size of inhomogene-
ities was constructed on the primary lattice. In the
course of Monte Carlo ssimulation, some of the cellsin
the new lattice were chosen as inhomogeneities and all
the primary lattice sites lying within the chosen inho-
mogeneities were eliminated from consideration. Note
that the computer experiments were performed with
inhomogeneous lattice configurations for which the
percolation could occur in two mutually perpendicular
directions simultaneously. Figure 1 displays variants of
the model matrices with inhomogeneities differing in
linear size and relative area.

3. RESULTS AND DISCUSSION

First and foremost, we analyzed how the inhomoge-
neity of the matrix affects the critical concentration. In
each case, the value of C_ was determined by two meth-
ods. According to Hoshen et al. [ 27], the critical concen-
tration can be determined from the position of the max-
imum in the dependence of the reduced average number

|,y Of sitesin clusters on the site concentration C:

Ly = 22— —— )
iy M

A similar dependence for a clear lattice is depicted in
Fig. 2. Notethat, in this case, the accuracy of determin-
ing the critical concentration isnot very high. As can be
seen from Fig. 2, the dependence obtained by averaging
over 200 realizations exhibits a rather smeared maxi-
mum, even though the concentration in the course of
the experiment was changed with the step AC = 0.001.
For thisreason, the critical concentration for each real-
ization was taken as the concentration corresponding to
the onset of the percolation between opposite sides of
the lattice. This approach made it possible to determine
the average critical concentration and the frequency of
occurrence of a particular critical concentration during
the ssmulation of the percolation in the system. Figure 3
displays a histogram that allows one to judge the prob-
ability of an infinite cluster forming at a given concen-
tration of black sites. The critical concentration deter-
mined from these data agrees closely with the value
obtained using other methods for asquare lattice[7, 11,
14, 24]. The introduction of inhomogeneities into the
lattice considerably affects the critical concentration:
its value increases substantially (Fig. 4). The strongest
effect isobserved for the smallest inhomogeneities. The
increase in the critical concentration in the inhomoge-
neous matrix can be explained in the following way. In
a homogeneous lattice, the shortest path between any
two points is a straight line (without regard for the lat-
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Sobs = 10%
lp=1 =5 lh=20

Fig. 1. Variants of matrices with inhomogeneities differing in linear size and relative area.

tice structure on minimum scales). In an inhomoge-
neous matrix, the shortest path can substantially deviate
fromastraight line. It isclear that the larger the number
of inhomogeneities (or the larger the relative area of
inhomogeneities) in the matrix, the longer the shortest
path between any two points. Upon introduction of
inhomogeneities into the lattice, the total number of
accessi bl e sites decreases, whereas the number of black
sites required for connecting any two pointsin the sys-

PHYSICS OF THE SOLID STATE Vol. 43 No. 12

tem increases. Consequently, the critical concentration
in the inhomogeneous matrix should increase. Recall
that, in this case, the critical concentration is equal to
the ratio of the number of black sites (this number cor-
respondsto the onset of percolation) to the total number
of sites in the system. This effect becomes less pro-
nounced with an increase in the linear size of inhomo-
geneities, because, at the same relative area, the larger-
sized inhomogeneitiesturn out to belocalized in certain
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C

Fig. 2. Dependence of 1,,, on the concentration of occu-

pied sites C for a 200 x 200 sguare lattice. Averaging is per-
formed over 200 readlizations.

lattice regions. Asaresult, part of the matrix behaves as
a homogeneous lattice. The larger the linear size of
inhomogeneities, the greater the fraction of the homo-
geneous part.

As is known, the behavior of different quantitiesin
the vicinity of the percolation threshold is adequately
described by the critical exponents. The critical expo-
nents depend only on the space dimension [14]. How-
ever, for each space dimension, there exists a great
number of different problems. According to modern
concepts, the critical exponents for all problems in a
space of the same dimension are identica to one
another. The physical reasons for the universality of
critical exponents likely lie in the fact that the expo-
nents are determined by the structure of clustersin the
vicinity of the percolation threshold. In this case, the
geometric properties of clusters play the dominant role,
because they manifest themselves at large distances (of
the order of the correlation radius). These distances in
the vicinity of the percolation threshold are consider-
ably larger than the lattice spacing (in the case of lattice
problems). Therefore, the cluster geometry does not
depend on the type of lattice used in solving aparticular
problem. Moreover, a particular problem can be speci-
fied not on a periodic lattice but on sites randomly
arranged in space; this circumstance will not affect the
structure of large-sized clusters. However, the cluster
geometry is substantially affected by the space dimen-
sion. For these reasons, the critical exponents depend
on the dimension of aparticular problem rather than on
itstype.

Therefore, unlike the percolation thresholds, which
depend on the type of problem involved, the critical
exponents exhibit acertain universality. Thisleadsusto
an important conclusion: if the results of a physica
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Fig. 3. Probability of a percolation cluster forming as a
function of the concentration of occupied sites C; for the
percolation process on the square lattice.

experiment are treated within the percolation theory
and the microscopic structure is not quite clear, it is
necessary, first of al, to compare the critical exponents
with the theory, because they depend only on the space
dimension.

The dependence of the average number of sitesin a
cluster on the reduced concentration C/C, of occupied
sites is plotted on the log-og scale in Fig. 5. As is
clearly seen, this dependence over awide range of con-
centrations is well described by the power law pre-
dicted by formula (1). The deviation from the power
dependence near the critical concentration is caused by

—
(=}
T

09+

0.8

0.7

0.6

1 1
0 10 20 30 40
Sobs9 %

0.5

Fig. 4. Dependences of the critical concentration C. on the
inhomogeneity fraction Sy in the matrix at different linear
sizes |y of inhomogeneities.
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thefinite sizes of thelattice. In fact, asfollowsfrom for-
mula (1), this quantity should increase to infinity at the
critical point, which, in principle, isimpossiblein sys-
tems of afinite size. The critical exponent y determined
from this dependence coincides with the value obtained
by the same method in [27] and is slightly less than the
exponents derived from other techniques [14]. Figure 6
displays the dependences of the critical exponent y
(determined in a similar manner) on the linear size of
inhomogeneities at different values of their relative
areas. It can be seen that the critical exponent for inho-
mogeneitieswith |, = 1 coincides with the exponent for
the homogeneous lattice. As the linear size increases,
the critical exponent first increases (to |, = 10) and then
decreases. Anincreasein therelative area of inhomoge-
neities in the matrix leads to an increase in the critical
exponent y. The introduction of inhomogeneities into
the lattice brings about separation of sites belonging to
the same cluster. The critical exponent y characterizes
the cluster growth with anincreasein the concentration.
The larger the size of inhomogeneities and the larger
the relative inhomogeneity area, the higher the concen-
tration at which sites begin to coal esce into clusters and
small-sized clusters merge into large-sized clusters. To
state this differently, an increase in the average cluster
size with an increase in the concentration is more pro-
nounced than that in the system with an homogeneous
matrix; in fact, this corresponds to an increase in the
critical exponent y. It isworth noting that all the lattices
studied are characterized by alinear dependence simi-
lar to that depicted in Fig. 5. The observed decrease in
the exponent y for matrices with inhomogeneities of
size |, = 20 can be explained by the finite sizes of the
lattices. As can be seen from Fig. 1, an increase in the
inhomogeneity size brings about the transformation of
the inhomogeneous matrix into the matrix with a spa-
tialy confined structure. Thisis especially pronounced
for lattices with the maximum relative inhomogeneity
area used in the computer experiment. Numerical sim-
ulation revealed that, for matrices at I, = 20 and S, =
38%, an increase in the lattice size to 400 x 400 is
accompanied by an increase in the critical exponent y
t0 2.94 (for a 200 x 200 lattice, y = 2.50). Note that an
increasein theinhomogeneity sizeto 40 resultsin afur-
ther decrease in the exponent y.

A more intricate situation arises with dependence of
the percolation probability on the concentration of
occupied sites. According to formula (2), this depen-
dence on the log- og scale should be represented by a
straight line whose slope corresponds to the critical
exponent 3. Unfortunately, the treatment of our results
for the square | attice demonstrated that this dependence
does not exhibit alinear behavior with the appropriate
slope over the entire range of concentrations (C > C,).
Furthermore, analysis of the avail able data on this prob-
lem also showed some disagreement regarding the
range of applicability of relationship (2). In particular,
Hoshen et al. [28] observed the scaling dependence (2)
for 24000 x 4000 triangular lattice only inthe (C-C,)
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Fig. 5. Dependence of logla, on log|1-C/C | for the
sguare lattice.
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Fig. 6. Dependences of the critical exponent y on the linear
inhomogeneity size | in lattices at different relative inho-
mogeneity areas Sype.

concentration range from 10 to 2 x 102. At higher
concentrations, the dependence deviated from linear
behavior. In our simulation, the results obtained in this
concentration range strongly depend on the finite sizes
of the lattice, asis the case with the average number of
sitesin clusters. Moreover, Hoshen et al. [27] observed
alinear dependencefor a400 x 400 square latticein the
concentration range from 2 x 103 to 7 x 1072, even
though the slope corresponded to 3 = 0.19. Therefore,
relationship (2) is valid only in a very narrow concen-
tration range in the vicinity of the percolation thresh-
old. However, reasoning from the results of investiga-
tionsinto the transfer of electronic excitation energy in
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Fig. 7. Dependences of P4 0N the reduced concentration
CIC_ for lattices with inhomogeneities of thelinear sizely=1
at different inhomogeneity fractionsin the matrix.

mixed molecular crystals, Kopelman [13] made the
inference that the concentration range of applicability
of the critical exponents for energy migration isconsid-
erably wider than that for any other critical phenome-
non in physics. From the viewpoint of the energy trans-
fer, it isimportant that the dependence of the probabil-
ity of trapping an exciton (which is governed by the
percolation probability in the range of concentrations
higher than the critical concentration [12]) on the
reduced concentration C/C, of activator molecules in
the inhomogeneous matrix is steeper than that in the
homogeneous matrix [20]. In terms of the critical expo-
nents, this corresponds to a decrease in the exponent 3.

Figure 7 depicts the dependences of the percolation
probability on the reduced concentration for the lattices
with different inhomogeneity fractions. It is clearly
seen that the introduction of inhomogeneities into the
lattice is attended by a more rapid increase in the per-
colation probability with an increase in the concentra-
tion. The observed effect becomes less pronounced
with an increase in the linear size of inhomogeneities.
However, our investigations showed that, in any case,
the presence of inhomogeneities in the matrix leads to
achange in this dependence.

Thefractal dimension d; isaprincipal characteristic
of the infinite cluster at the critical point. Mandelbrot
[29, 30] wasthefirst to introduce the notion of afractal.
Subsequently, he specified the tentative concept [31]
and defined the fractal as a structure consisting of parts
that, in some sense, are similar to a unity [32]. How-
ever, until presently, there has been no rigorous and
complete definition of fractals. An infinite cluster at the
critical point exhibits a statistical self-similarity [24].
The fractal geometry of the infinite cluster and its sta-
tistical self-similarity areinterrelated. Thisinterrelation
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Fig. 8. Dependence of logM on logl for the square lattice
free of inhomogeneities.

leads to the following relationship between the mass
and the linear size of the cluster:

M = 1%, (6)

Stanley [33] and Sokolov [34] showed that the frac-
tal dimension in virtualy all physical problems is
defined as the exponent in relationship (6). At present,
the fractal dimension is determined using different
methods [35]. One of them is the embedded square
method proposed in [24]. In essence, this method is as
follows. Inthe object under study, acentral pointischo-
sen in a random manner and a series of embedded
squares are arranged around this point. The number of
sites in each sguare is counted, and the dependence of
the object mass (the number of sites) on the linear
square size is constructed. This dependence is used for
calculating the fractal dimension. Forrest and Witten
[36] proposed to bring the central point into coinci-
dence with the center of gyration of the studied object
in order to improve the reproducibility of theresults. In
our work, we also determined the fractal dimension of
the infinite cluster by using the embedded square
method. To accomplish this, among all the possible
realizations, we chose clusters whose centers of gyra
tion were close to the center of the studied lattice and
whoseradii of gyration [24] were closeto L/2. It should
be noted that the introduction of this criterion did not
affect the statistics obtained for the critical concentra-
tion (Fig. 3). Theresults presented bel ow were obtained
by averaging over 300 different clusters. For lattices
with large-sized inhomogeneities, additional averaging
was performed over 20 configurations of inhomogene-
ity distribution in these | attices.

The dependence of the cluster mass (the number of
sites) on the square size is plotted on the log-og scale
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Fig. 9. Dependence of thefractal dimension of apercolation
cluster on the inhomogeneity fraction Sy in the matrix at

different linear sizes |y of inhomogeneities.

in Fig. 8. It is easy to see that the dependence exhibits
a linear behavior beginning with square sizes of the
order of 20 x 20. The fractal dimension determined
from the slope of this dependence is equal to 1.8. This
value is dightly less than the exact dimension d; =
91/48, which was calculated in [7, 14] in terms of the
scaling theory. This difference can arise for two rea
sons. First, aswas shown in [35], the fractal dimension
determined by the embedded square method is underes-
timated compared to that obtained by other methods.
Second, the underestimated value of d; can be dictated
by finite sizes of thelattice. It is obvious that the perco-
lation cluster on afinite lattice is only a part of an infi-
nite cluster on the infinite lattice for which the exact
dimension was deduced. Consequently, particular sites
that are not involved in the percolation cluster on the
lattice of size L, in actual fact, belong to the infinite
cluster, because they are connected to it through bonds
lying outside the fragment under consideration. In any
case, our prime concern is with the influence of the
inhomogeneous properties of the lattice on the fractal
dimension rather than in its absolute value. This influ-
enceisillustrated by the datashownin Fig. 9. Ascan be
seen, no changein the fractal dimension is observed for
lattices with the linear inhomogeneity size |, = 1. The
value of d; decreases for lattices with larger-sized inho-
mogeneities only in the case when their fraction in the
system is sufficiently high. The effect is enhanced with
an increase in the inhomogeneity size. This behavior
can easily be explained with due regard for the fact that
the percolation cluster is a strongly porous object.
Therefore, when the size of inhomogeneities and their
relative area are small, the probability that inhomoge-
neities occupy these pores is high. As the size of inho-
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mogeneities and their fraction in the matrix increase,
they begin to affect the geometry of the percolation
cluster and thiseffect manifestsitself in adecreaseinits
fractal dimension.

4. CONCLUSION

Thus, the results obtained in this work confirm the
assumption made earlier (on the basis of available data
on the energy transfer in disordered systems, specifi-
cally, in matriceswith different structures on the micro-
scopic level) that the inhomogeneous properties of
matrices substantially affect the percolation process.
The introduction of inhomogeneities into the lattice
results primarily in anincreasein the critical concentra-
tion. This effect is enhanced with an increase in the
fraction of inhomogeneities in the matrix and a
decrease in their linear size. The incorporation of inho-
mogeneities into the lattice affects both the concentra-
tion dependence of the mean number of sitesin clusters
and the percolation probability. In turn, this leads to a
change in the critical exponents and the fractal dimen-
sion of the percolation cluster. These changes become
more pronounced with an increase in the size of inho-
mogeneities and their relative area. Sincethe properties
of the percolation cluster are aso characterized by
other dimensions, it can be assumed that the inhomoge-
neous properties of the lattices under investigation
affect these dimensions.
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Abstract—Impact ionization of exciton statesin epitaxial GaN filmsand GaN/AlGaN quantum-well structures
was studied. The study was done using an optical method based on the observation of exciton photolumines-
cence quenching under application of an electric field. It was established that electron scattering on impurities
dominates over that from acoustic phononsin electron relaxation in energy and momentum. The mean free path
of the hot electrons was estimated. The hot-electron mean free path in GaN/AlGaN quantum wells was found
to be an order of magnitude larger than that in epitaxial GaN films, which is due to the el ectron scattering prob-
ability being lower in the two-dimensional case. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The nitrides of Group |11 elements, which are wide-
bandgap semiconductor materials, have been recently
receiving considerable attention as having potential
application for modern optoel ectronic devices operat-
ing inthevisibleand UV region [1]. However, many of
the fundamental properties of these materials have not
been studied in large enough detail. In particular, the
effect of an external electric field on the optical proper-
ties of nitrides has thus far been poorly investigated.
Until very recently, only a few publications had dealt
with the exciton states of the Group-111 nitrides in an
external electric field [2, 3]. At the same time, such
studies appear to be of considerable importance. The
radiative recombination via exciton states occurring in
these materials coexists in optoel ectronic devices with
an electric current flowing through the structure.
Accordingly, proper understanding of the processes
involved in the interaction of charged carriers with
excitons in these materialsis essential to the physics of
semiconductor devices.

This study deals with the phenomenon of impact
ionization (or delocalization) of excitons in gallium
nitride. The study made use of the optical method based
on observation of the quenching of exciton photolumi-
nescence through the application of an electric field.
The quenching occurs as a result of the destruction of
excitons or exciton-impurity centers by hot carriers,
whose energy isincreased to the corresponding level by
the electric field. The number of such high-energy elec-
trons depends substantially on the mechanisms respon-
sible for the electron relaxation in energy and quasi-
momentum. Therefore, studying the quenching effect

as a function of the applied electric field may yield
information on these mechanisms. The optical method
has an advantage in that it permits investigation of the
impact ionization of weakly bound states and of states
with different ionization energies. The studies were
performed on epitaxial GaN films grown by various
techniques (ELOG-MOV PE, MOV PE, and MBE). The
impact ionization phenomenon was also investigated
on MBE-grown GaN/AlGaN quantum-well structures.
It was established that electron scattering from impuri-
ties in our samples dominates over that from acoustic
phonons in hot electron relaxation.

2. EXPERIMENT

The samples studied were nominally undoped epi-
taxia n-type GaN films grown on sapphire substrates.
The ELOG sample used in the present investigation
was grown by metal-organic vapor-phase epitaxy
(MOVPE) in two stages at atmospheric pressure [4]. A

mask in the form of a [10103oriented Si,N, grating
with strips 3-5 pm wide and a 10-um period was
deposited on the surface of a preliminarily grown GaN
film. Next, the growth of the GaN film was resumed and
continued to the level where the mask was completely
buried. The growth of GaN films and GaN/AlGaN
guantum-well structures by molecular-beam epitaxy
(MBE) was effected using solid sources of Group 11
elements and ammonia as the source of nitrogen. The
GaN buffer layer 250 A thick grown at 500°C was
annealed at 900°C, after which an epitaxial GaN layer
was grown at 800°C (the growth procedure is described
in more detail in [5]). The GaN/AlIGaN quantum-well

1063-7834/01/4312-2321$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Schematic of the experiment.
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Fig. 2. Current-voltage characteristics of two samples:
(a) an epitaxial GaN film and (b) a GaN/AlIGaN quantum
well 17 MLswide.
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Fig. 3. Exciton luminescence spectra of two different GaN
samples. T=2K.

structures consisted of AlygeGagg N barriers and GaN
quantum wells a few monolayers thick (1 ML =
259 A).

Aluminum Ohmic contacts representing two paral-
lel strips afew millimeterslong and separated by a gap
0.2-0.3 mm wide were deposited on the sampl e surface
through vacuum evaporation (Fig. 1). The photolumi-
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nescence was excited by the A = 325-nm line of a
helium—cadmium laser. The laser beam was focused to
a spot approximately 0.5 mm in diameter that com-
pletely overlapped the electrode gap. The sample was
cooled by immersing it in liquid helium. A dc voltage
was applied across the structure, with a current of afew
milliampers flowing through the sample, which could
heat the sample. To ensure the best cooling conditions,
liquid helium was pumped out by a fore pump and the
measurements were carried out at a temperature (T =
2K) below the A point, i.e., the temperature below
which liquid helium becomes superfluid. In this case,
helium wets the sample well and thereis no vapor layer
between the sample and the cooling agent. If liquid
helium isused as acooling agent abovethe A point (T =
4.2 K), the vapor layer present hampers heat removal
from the sample noticeably, so that even asmall current
may bring about substantial heating of the sample. It
was established in the experiments that the sample
heating isvery small and does not affect the photolumi-
nescence spectra noticeably. In particular, the quench-
ing of the GaN/AlGaN gquantum-well exciton photolu-
minescence was studied at two temperatures, T =2 and
4.2 K. The plots of the luminescence intensity vs.
applied voltage obtained at the two temperatures are
practically identical, which implies that thereisindeed
afield effect.

The current flowing through the sample under
applied voltage was measured, and 1-V characteristics
of the samples were constructed. Two of them are dis-
played in Fig. 2. The I-V characteristics of some sam-
ples were sufficiently linear. Other samples, however,
exhibited a nonlinear section at a low bias, which
straightened out at higher voltages. On the whole, we
can consider the electric field in a sample to be uniform
to a considerable extent, at least at not-too-low
voltages.

3. RESULTS

The intense line of the exciton bound to a neutral
donor in the region of the A, - ; exciton resonance was
dominant in the luminescence spectra of our samples.
The substantially weaker free-exciton line (FE) was
also clearly seen in the spectra. The spectra of some
samples exhibited two bound-exciton (BE) lines with
different binding energies (BE1 and BE2). The BE1
line can be assigned to the exciton bound to a neutral
donor, while we associate the BE2 line with residual
magnesium doping [5], which occurs in some samples
because of the specific features of the preparation tech-
nology employed [6, 7]. Figure 3 displays typical GaN
exciton photoluminescence spectra.

When an external voltage was applied to the struc-
ture, quenching of the exciton photoluminescence was
observed to occur. The behavior of the photolumines-
cence under an electric field depends on the binding
energy of the corresponding exciton state, as can be
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seen from Fig. 4, which plotsthe emission lineintensity
vs. electric field.

One readily sees that the line with the lowest bind-
ing energy (BE in Fig. 4a and BEL in Fig. 4b) suffers
the strongest quenching. Simultaneously, at relatively
low fields, one observes an intensity enhancement of
the emission line corresponding to the state with a
higher binding energy. In a stronger electric field, the
intensity enhancement is replaced by saturation (for the
FE line) or quenching (for the BE2 line).

This effect can be interpreted within theimpact ion-
ization model. Hot electronswith akinetic energy close
to the binding energy of the exciton bound to an impu-
rity center (or close to the free-exciton binding energy)
destroy the exciton state, which entails quenching of
the corresponding emission line. In a relatively weak
electric field, this effect can play a noticeable part only
for states with a low binding energy. Dissociation of
complexes with the lowest binding energy increasesthe
concentration of free excitons, which can undergo radi-
ative recombination or become trapped by deeper cen-
ters, thus contributing to the intensity enhancement of
the corresponding emission lines. In stronger electric
fields, electrons can acquire an energy large enough for
them to be capable of breaking up complexes with
higher binding energies and the intensities of the corre-
sponding emission lines decrease. Actudly, in the
region of the electric fields covered, we observed only
the quenching of bound-exciton lines with different
binding energies (from 4.5 to 12 meV). Asfor the free-
exciton line, we observed only its saturation. To destroy
such a strongly bound electron-hole state (its binding
energy is approximately 28 meV), much higher electric
fields are needed.

A similar effect was aso seen to occur in the
GaN/AlGaN quantum-well structures. The photolumi-
nescence spectra of these structures consist of a strong
localized-exciton line and of afairly weak phonon rep-
licaof it. The exciton localization energy, as estimated
from the Stokes shift of the luminescence line, is
approximately 20 meV [8]. Application of an externa
electric field to the sample was observed to result in
substantial photoluminescence quenching (Fig. 5),
which is due, asin the case of GaN epitaxia films, to
exciton delocalization by the field-accelerated elec-
trons.

4. ANALY SIS OF THE EXPERIMENTAL DATA

The number of excitons N in a system obeys the
equation

- = —+G, (1)

where G is the generation rate. The decay probability
(/1) of an exciton (or an exciton—-impurity complex)
beingin electric field E isdetermined by the probability
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Fig. 4. Relative exciton emission line intensity vs. applied
electricfield. () MOV PE sample with the only bound-exci-
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Fig. 5. Photoluminescence spectra of a GaN/AlGaN quan-
tum well vs. applied electric field. Quantum-well width
17 MLs.

of impact ionization W(E) and the probability of decay
(1/1p) dueto other radiative and nonradiative processes:

1_1
1= 2+ W(E). @)

0

Because the luminescence intensity I(E) ~ N(E), we
obtain the following expression for its steady-state
value:

I(E) = 1(0)[1+W(E)Ty ™ (3)

The impact ionization probability W(E) is given by the
integral

W(E) = [We(e)p(e)f(e)de, (4)
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where W(€) isthe probability of ionization of one exci-
ton, p(€) isthe density of states of the conduction-band
electrons, and f(g) is the electron energy distribution
function. The integration is performed over al energies
in excess of the ionization energy €;; W(€) and p(€) are
power-law functions of energy, while f(€) depends
exponentially on € at high energies. The energiessignif-
icant to theintegral in Eq. (4) arethose closeto theion-
ization threshold g;, and the magnitude of theintegral is
exponentially small. The exponent determines the
dependence of W on the éectric field E. We will not
concern ourselves with the preexponentia factor,
which isjustified in cases where the exponent is large
in absolute value. The small value of the exponential is
associated with the small number of electrons with
energies high enough to ionize the bound state, and our
problem consists in calculating this number and, thus,
determining the total ionization probability. A rigorous
mathematical treatment of the problem is givenin [9];
here, we shall restrict ourselves to an analysis applica
ble to both three- and two-dimensional semiconduc-
tors.

The electron momentum distribution function fp
obeys the kinetic equation

of
= L
x[(fp(Nq+1)_ p-#q q)6(8p p—ﬁq ﬁwq)

+(FoNg—fpinq(Ng+1))0(€, — €51 nq )] = 0,

where p is the momentum of an electron, €, = p/2mis
itsenergy, and misits effective mass, g isthe wave vec-
tor of a phonon, wy, is its frequency (w, = sq, sisthe
sound velocity), N, = exp(fwy/KT — 1) isthe Planckian
distribution function for phonons, Tiy(€,) is the relax-
ation time due to electron elastic scattering from lattice
defects and impurities, and C, is the €lectron—phonon
coupling constant. The electron energy distribution
function f(g) is obtained from f(p) by averaging over
all directions of the momentum p. We takeinto account
only the interaction with acoustic or piezoacoustic
phonons, because the optical-phonon frequencies in
GaN are much higher than the exciton-state ionization
energies. As follows from the laws of energy and
momentum conservation in electron—phonon colli-
sions, only sufficiently high phonon energiesare signif-
icant; therefore, the number of phonons at low temper-
atures is exponentially small, N, = exp(-Aw,/KT), and
one can neglect this value compared to unity. The elec-
tron relaxation associated with the exciton ionization
processis disregarded in Eq. (5), because it isinsignif-
icant compared to the relaxation rate due to the interac-
tion of electrons with phonons and impurities.

We transfer now all terms in Eqg. (5) to the right-
hand side, apply a minus sign, and transform the differ-
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ential equati on (5) into an integral one:

_ 1
fy Id‘DE.m( s UCE )+ 5 Z'C‘*'

X [ 1:p—eEt+hq6(£p—eEt_8p—eEt+ﬁq + ﬁ(;.)q)

+ 1:p—eEt—hq Nqé(sp—eEt _sp—eEt—hq _ﬁwq)]

(6)

t
[ 1 1 0ld
x exp| —[dt + 0
|: -! |:i-im(gp—eEt) Tph(i':p—eEt)D O

In the elastic approximation, the electron relaxation
time dueto phonons can be written as

ph(sp) = ﬁ Z|C | 6(8 p—ﬁq)' (7)

The electron mean free path is given by the relations

/28
Iph,im(sp) = Fprph,im(sp)l

1 _ 1 ., 1 ©
1(€)  In(E)  lim(€)
We assume the electric field to be sufficiently strong,
g > eEl(g;) > KT. 9

Asfollows from Eq. (6), the electron distribution func-
tion at high energies is determined by that at medium
thermal energies. We assume that at these energies
there exist efficient momentum and energy relaxation
mechanisms, such that the distribution function is an
equilibrium one. Applying the saddle-point method to
the integration of Eqg. (6), we obtain

f —Aexp{ —Psin®9 — CossIeEI(s)} (20

where A, depends more weakly than exponentially on
the momentum and 6 is the angle between the momen-
tum and the electric field. The function given by
Eqg. (10) is needle-shaped, extended along the electric-
field direction, and falls off rapidly in other directions.
Averaging this function over the angles yields the
Townsend—Shockley ionization relation:

ds

f(g) = exp GIeEI (8 (11)

The case of electron scattering dominated by elastic
Processes, Tim(€p) < Tpn(€p), requires special consider-
ation. It was shown that the electric-field dependence
follows different patternsfor different electric fields[9].

If the inequalities KT < €E ./l 1(&)lim(&;) < s./2mg;
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Fig. 6. Bound-exciton luminescence line intensity vs. electric field plots obtained for two different GaN samples. The experimental
pointsare plotted intheIn[l/(Ig—1)] = f(E‘l) vs. E™ coordinatesto facilitate comparison with theory. Solid lines are linear approx-

imations.

are met, the Townsend—-Shockley dependenceisvalid:

J3de’ E
eE /(e im(eNT

For KT < s,/2me; < eE /I ;(€)lim(€;) , thedistribution

function is a solution to the hot-electron problem,
which yields the Davydov-Wolf ionization relation:

f(e) = AexpE)—I (12)
. 0

€

f(e) = AexpEI—ILD, (13)
04 eE°l(e)] (0
lo(g,) = %"nzmqma(sp—sp_ﬁq). (14)
P q

When the electric field increases, one may expect a
crossover from Eq. (12) to relation (13). Note that the
Davydov—Wolf relation was not observed experimen-
tally. Thereason for this probably liesin the fact that an
increase in the electric field can give rise to tunneling
ionization in addition to impact ionization [10].

Let us analyze the experimental data using the
Townsend—-Shockley relation, Eg. (12), which we shall
recast in the form W(E) = Wyexp(—Ey/E), with E, being
a characteristic parameter, and see what information
can be extracted from this analysis.

Figure 6 presents the dependence of the GaN photo-
luminescence intensity on applied electric field plotted
asIn[l/(I,—1)] vs. E*X. The experimental pointsinFig. 6
arefitted by astraight line for a certain value of param-
eter E,. The values of E, obtained using this procedure
for the GaN samples studied are given in the table.
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In pure crystals, the dominant mechanism of elec-
tron relaxation at low temperatures should be scattering
from piezoacoustic phonons. Estimates made using
Egs. (7), (8), and (11) and the parameters for GaN [11]
yield E, = 160V/cmfor g, = 6 meV. Thisissubstantialy
less than the value E, = 600 V/cm obtained in our
experiment. Furthermore, in the case of electron scat-
tering from piezoacoustic phonons, the parameter E,
should be proportional to the square root of the ioniza-
tion energy. However, the data obtained for the MBE
samples suggest that E, ~ €;. These two facts show that
the electron relaxation occurs through their scattering
not only from piezoacoustic phonons but also from
impurity centers, which plays an essential part in our
samples. Using Eq. (12), the effective mean free path of
hot electrons can be estimated in this case from the
expression

Ieff = ,\/QSI/EEO

The figures obtained in this estimation are listed in the
last column of the table. First, the ELOG and MBE
samples are seen to yield similar values of the parame-
ter 1. Second, we can compare these results with the

(15)

Experimentally determined values of the parameter E, and of
the electron mean free path for different GaN samples

Sample, line g, meV | Eg, Viem |lg, 10°cm
ELOG, line BE1 6.5 600 2
MBE, line BE1 4.5 400 2
MBE, line BE2 12.0 1000 2
MOVPE, line BE 6.0 1500 0.7
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Fig. 7. Luminescence intensity of a GaN/AlGaN quantum
well vs. applied electric field plotted for samples with dif-
ferent quantum-well widths.
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Fig. 8. Luminescence intensity of a GaN/AlIGaN quantum
well vs. applied electric field plotted for various tempera-
tures. Quantum-well width 17 MLs.

data obtained for CdS crystals [12]. In pure CdS, |4 =
10 cm for & = 4 meV. For CdS crystals of a poorer
quality, the corresponding value decreased to 5 x
10°® cm. Thus, the mean free path |4 = 2 x 10 cm
obtained in our experiments on three-dimensional GaN
samples is not much shorter than that measured in the
best cadmium sulfide crystals.

Now, we anayze the data obtained for the
GaN/AlGaN quantum-well structures. Figure 7 pre-
sents the electric-field dependences of the lumines-
cence intensity for two samples with quantum wells
(QW) 17 and 8 monolayers wide, respectively. The
guenching effect in the wider QW is seen to be much
stronger. The main reason for this is that the exciton
lifetime decreases substantially with decreasing QW
width[13]. According to Eq. (3), adecreasein 1, results
in a reduced effect of W(E) on the luminescence
intensity.
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The linear section of the In[l/(1, — 1)] vs. E™ plot
yieldsfor the E, parameter values of 350 and 480 V/cm
for the QWs 17 and 8 MLs wide, respectively. Accept-
ing g = 20 meV for the exciton localization energy, the
mean free paths of hot electrons are obtained to bel 4 =

1x10“cmfor the 17-ML QW and 0.7 x 10* cmfor the
8-ML QW. These values are substantially larger than
those for the bulk GaN. When calculating the electron
mean free path in a quantum well, one should take into
account that, in a scattering event, the electron momen-
tum cannot change in the direction perpendicular to the
well plane by more than #/d, where d is the well thick-
ness. Therefore, in the two-dimensiona case, the elec-
tron scattering probability decreases and the mean free

paths increase by a factor of ,/2me; d/#. The presence

of this factor accounts for the observed difference
between the mean free paths of hot electrons in GaN
films and GaN/AlGaN gquantum wells.

A study was also made of the temperature depen-
dence of the impact ionization coefficient in QWSs at
temperatures ranging from 2 to 60 K. The quenching
effect decreases with increasing temperature (Fig. 8).
This can be explained, as with the dependence on the
QW width, as being due to the decreased exciton life-
time with increasing temperature. At the same time,
analysis of the experimenta data using the Townsend—
Shockley relation for W(E) did not reveal any tempera-
ture dependence of the parameter E,, which agreeswith
theory. Thus, the decrease in the impact ionization
effect observed in this experiment is completely due to
the variation of 1, with temperature.

To sum up, we notethat, in contrast to a perfect crys-
tal lattice, where electron scattering from piezoacoustic
phonons is the dominant mechanism of electron
momentum rel axation, this relaxation in undoped GaN
epitaxia layers grown by the MOVPE, ELOG, and
MBE methods is the result of scattering from impuri-
ties. This is evidence of a certain imperfection in the
presently available GaN samples. The mean free paths
of hot electrons in GaN/AIGaN guantum wells were
found to be an order of magnitude larger than those in
GaN films, because the electron scattering probability
is lower in the two-dimensional case.
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Abstract—The energy of dynamic image forces acting on a charged particle moving normally to the semicon-
ductor—vacuum interface or in avacuum gap between two semiconductorsis calculated in the framework of the
perturbation theory. The dielectric approach allows for spatial and time dispersions of the dielectric functions
of electrodes. It is shown that the quantum-mechanical character of the screening should be taken into account.
In particular, the dynamic correctionsto the static image forces appear to belessthan thosein the quasi-classical
model. The perturbation method used in this work is applicable in wider ranges of external electrostatic fields
and particle energies. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The term “image forces’ refers to the polarization
forces arising in the vicinity of an interface between
different media. Within the dielectric formalism [1-4],
these forces can be treated in general terms with due
regard for the spatial (k) and time (w) dispersions of the
permittivity € (k, w) [5]. In the classical model, this
approach isthe most general because it allows for qua-
siparticle excitations in the problem under consider-
ation (for example, in the case of metals[6]). However,
anumber of quantum-mechanical effects, in particular,
the dissipation associated with the generation of real
plasmons [7, 8], excitations of an electron—hole
medium [8], or recoil phenomena [7], are beyond the
scope of the dielectric approach. It seemslikely that, in
this case, the Hamiltonian formalism [7] is more ade-
quate.

When calculating the image forces or the potential
energy W, the main problem is adequate description of
the interface as an inhomogeneity of the system and the
reflection of quasiparticles from theinterface[4, 9, 10].
The two simplest approximations, namely, the infinite
barrier model (i.e., the abrupt interface model) and the
model of specular reflection of quasiparticles, allow
one to solve analytically the problem in the static limit,
so that the final expression for W involves the bulk
dielectric functions €;(k, w = 0). The other approxima-
tions make allowance for the fact that the interface and
scattering of quasiparticles by it can be dightly diffuse;
however, in the majority of cases, they lead to numeri-
cal resultsthat insignificantly differ for the quantities of
interest [11].

At the same time, the infinite barrier and specular
reflection models make it possible to investigate amore
interesting case of moving charges [3, 7, 8, 11-24]. It
was found that, for a metal—vacuum interface, the spa-

tial dispersion of the permittivity (screening) [1, 2, 11,
15], quantum-mechanical recoil [7], and finiteness of
the velocity of a projectile [11]—individually and in
combination—result in saturation of the W energy at
the interface and elimination of the classical diver-
gence.

The static theory of image forces for an abrupt vac-
uum—semiconductor interface was developed in the
specular reflection approximation in our earlier works
[1, 2, 16]. The theory generalized to trilayer structures
with due regard for dynamic corrections will be pre-
sented below.

Huang et al. [17] aso studied the image forces in
metal—vacuum—semiconductor  structures. However,
these authors considered only the static case in the
framework of the Inkson semiclassical model [18] for
the dielectric function of a semiconductor. In the
present work, we prove that, when solving problems of
this type, it is necessary to account for the quantum-
mechanical nature of charge carriers in screening
media. Within the dielectric approach, this can be done,
for example, by introducing the appropriate corrections
into the dielectric function of a semiconductor [19]. It
should be noted that, owing to the large permittivities of
metals, quantum corrections in the case of metal elec-
trodes turn out to be insignificant.

In this work, we restricted our consideration to the
case of avacuum region, even though the image poten-
tial profile W(r) (where r is the coordinate reckoned
from the interface) could also be obtained in the bulk of
the semiconductor (r < 0) within the same approach [1,
16]. Generally speaking, the behavior of W inside an
electrode is important, for example, in forming surface
barriers, and can affect the resulting tunneling currents.
However, the screening properties of semiconductors
(and, especially, metals) are such that the image poten-
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tial profile inside a semiconductor reaches a bulk value
extremely quickly. As was shown earlier in [17], even
the replacement of the exact profile W(r < 0) by this
value weakly affects the tunneling characteristics. The
vacuum portion of the dependence W(r > 0) depends, to
aconsiderably larger measure, on the parameters of the
problem and makes the main contribution to the surface
barrier. Hereafter, we will not dwell on this problem,
because the investigation of tunneling in semiconductor
structuresisbeyond the scope of the present work. Note
also that knowledge of the W(r > 0) profiles near the
semiconductor surface is necessary not only for the
understanding of electron tunneling but also for ade-
guate description of the charged-particle scattering by
this surface and analysis of a number of problems in
chemical kinetics.

2. THEORY

Let us consider the configuration represented sche-
matically in Fig. 1. a plane-parallel trilayer sandwich
with interelectrode spacing 2| and charge g moving nor-
mally to the interface along the z axis according to the
law zy(t)(wheret is the time). The temporal dispersion
of the permittivities €; is taken into account in all three
media, whereas the spatial dispersion is allowed for
only inthe outer layers (i = 1 and 3).

The potential energy W of image forces, i.e., the
energy of the external charge q in the field with poten-
tial V,,q of the polarization charges induced in the el ec-
trodes, is defined by the relationship

W(z(1) = 3aVilx=y=0,2(0,0. (1)

In the infinite barrier model with specular reflection
from the interface, the appearance of Vi is associated

with the formation of the charged planes (x, y, z= ¥l ),
which coincide with theinterfaces[11]. In this case, we
completely ignore the “spill” of eectrons into the gap
between electrodes [10], band bending effects[20], and
the possible formation of surface states in the vicinity
of the semiconductor [21]. Thus, the outer electrodes
are considered homogeneous up to the corresponding
interface.

For an arbitrary law zy(t) of the charge motion in the
gap, the general equation for W[z,(t)] was derived in
our earlier works [3, 14]. For nonrelativistic velocities
v < ¢ (where c is the velocity of light), we developed
the general technique of calculating the dynamic (non-
adiabatic) corrections AW z,(t)] to the energy W[ Zy(t)]
of static image forces in terms of the perturbation the-
ory; i.e, it is assumed that the corrections are small
compared to the energy of static image forces. Cer-
tainly, the expansions used can appear incorrect, for
example, when the contributions from all the instants
t' <t are accumulated for a sufficiently long trajectory
of a particle. Specificaly, if the spatial dispersion is
absent, then, at long distances from the interface, the
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Fig. 1. Charge g moving according to the law Zy(t) acrossan

interlayer of width 2| in the trilayer system. The temporal
dispersion of the permittivities €; is taken into account for

al three layers, and the spatial dispersion is alowed only
for the outer layers (i = 1, 3).

energy W of the charge, which is emitted from a metal
into vacuum at a constant rate [11] or under uniform
acceleration [22], involves oscillating terms compara-
ble in magnitude to the corresponding asymptotic val-
uesin the classical model:

2

W Tz(0] = i 2

These terms arise from the excitation of rea surface
plasmons [11]. However, the inclusion of the plasmon
damping leads to a substantial decrease in the oscilla-
tion amplitude [23], which appreciably extends the
range of applicability of the technique. In any case, the
validity of the perturbation solution can be a posteriori
verified after calculating AW and W.

We will restrict our analysis to the consideration of
the nondissipative permittivities €;, which, in this case,
are the even functions of . It is self-evident that we
cannot lay claim to the description of the absorption or
generation of real plasmons or polar phonons (these
processes can be adequately described within the
Hamiltonian formalism [7]). Consequently, AW takes
only real values. The numerical calculations given
below demonstrate that, for our purposes, it is sufficient
to introduce only the first dynamic correction.

For simplicity, let us consider a vacuum gap with
& = 1. In the given approximation, the energy of static
imageforces and the dynamic correction havetheform[3]

We[2(1)]

00

_q exp(—2kl)
2{mm1—aﬂmpmaJMND@@04MM

©)

-2k z

x[ay(k, O)e

+ay(ky, 0)e”"
—2a,(k;, 0)as(k, 0) e 1,
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AW[z(1)]

00

_ q_"ZJ,deI exp(—2kil) :
41—y (k) 0)as(ky, 0) exp(—4k)]

kiz

X{k”(2+k”22)e [as(k;, 0)

+ (K, 0)ad(ky, 0)e ] =k (2-k)e

2k”z

(4)

_4k“]

X [al(kn, 0) + a;(ku, 0)0(1(k||1 O)e
—2kiZ2e M aty (ky, 0)at(ky, 0)

+az(ky, 0)a,(ky, 0)1} .

Hereafter, in order to simplify the form of equations,
Z(t) will be written instead of z(t); dots and primes
indicate the differentiation with respect to time and fre-
quency, respectively; k, = [k|; the wave vector k| isthe
component (aligned parallel to the interface) of the
three-dimensional wave vector k = (k;, ky);

€4 (K, W) —€,(w)

ai(ky w) = &g (K ) +&;5(w)

(i=13); (O

and

-1
) = [k”-[k %gi(k, w)} ©

are the so-called surface dielectric functions in the
specular reflection model.

3. PERMITTIVITY OF SEMICONDUCTORS

The permittivity € (k, w) for isotropic metals was
obtained by Lindhard [24] in the framework of the elec-
tron gas model with inclusion of the quantum interfer-
ence of electron waves at the Fermi surface. The well-
known difference between the static limit €, (k, w=0)
and the Thomas—Fermi semiclassical screening func-
tion

2

ere(K) = 1+% (7)

resides in the presence of aweak quantum-mechanical
singularity at k = 2k- (where k is the Thomas—Fermi
wave vector and kg isthe Fermi momentum of electrons
in the meta) in g _(k, 0). This singularity leads, in par-
ticular, to Friedd oscillations of the electron density
and Kohn anomaliesin the phonon spectra. At the same
time, there is another, frequently overlooked, conse-
guence of the quantum nature of the charge screening:
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the short-wavelength asymptotics of ¢, (k, 0) has
the form

4 2k2
lim g (k, 0)=1+——F.
Kl o 3K

The fact that expression (8) tends to unity more rapidly
compared to the screening function (7) results in a
change in the screening of the Coulomb field at short
distances.

In intrinsic semiconductors, potential charge carri-
ersare bound and the band gap determinestheir screen-
ing ability. A large number of theoretical investigations
of the permittivity €gi(k, 0) in semiconductors have
been performed in the random phase approximation
[25] within the nearly free electron gas model with due
regard for the reflection of electron waves from the
Bragg planes [26]. Subsequently, Sharma and Auluck
[27] complemented the Penn model [26] and intro-
duced the temporal dispersion. On the other hand, there
exists another approach proposed by Resta [28], who
solved the linearized variant of the Thomas—Fermi
equation for a semiconductor treated as a medium with
afinite length of partial screening. All the expressions
obtained for the permittivity €4,i(k, w) in the afore-
mentioned theories are either nonanalytic or cumber-
some, even though they were not derived from first
principles. It should be noted that the dielectric
approach based on the quasi-free electron gas model
disregards the possible interband transitions of core (d
or f) electrons, which are of crucial importance, for
example, in Cu [8]. At the same time, the fast electron
probing of semiconductors, such as Si, revealed well-
defined plasma oscillations of valence electrons|[8, 29].
In any case, the appropriate description of an electron
gas (liquid) in the optical range of frequencies w
remains open to question [13].

Inkson [30] proposed asimpleinterpolation formula
for the permittivity €g,i(K, ), which satisfies the set of
basic requirements for the true diel ectric function of an
intrinsic semiconductor; that is,

K, 1+D +k2 wZD_l 9
gk, w) = %—_‘1 K—Z_;)% ©)

(8)

where w, isthe plasmafrequency of ahypothetical free
electron gas with a density identical to that of valence
electrons. In the case of strong ionicity (¢, —= ),
expression (9) tends to the hydrodynamic limit that
describes conducting media. It is worth noting that
expression (9), to within the designations, is often
used for describing the diel ectric function of polar sol-
vents[9].

Unfortunately, despite all of these advantages, the
function g,(k, w) does not meet the quantum-mechani-
cal limit (8), even though bound electrons at |K| —» o
cease to differ from free electrons. In order to improve
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the behavior of g,(k, w) at large k, we propose the fol-
lowing relationship:

2] 271
equ(k, ) = 1+ 1 +k—[11+3k —3 , (10)
&—-1 k’0 4k oop

which, at w = 0, coincides with the Schulze-Unger
static function [16, 19]. Heresafter, function (10) will be
also termed the Schulze-Unger function. Both the
&(k, w)and e, (k, w) functions will be used for calcu-
lating the energy of image forces near the semiconduc-
tor—vacuum interface.

4. THE SEMICONDUCTOR-VACUUM
INTERFACE

First, we consider a semiconductor—vacuum inter-
face. The equations for this case can be easily obtained
from Egs. (3) and (4) for the vacuum gap by introduc-

ing the distance r. (t) = | £ z(t) to the left (right) inter-
face and passing to the limit | — oo. By virtue of the
exponential multipliers, all the terms including a; and

a; for the distant electrode vanish in the equations.

Consequently, in this section, we can omit al the indi-
ces indicating a particular interface. As a result, the
equations become considerably simpler, that is,

00

2

= —%J'dk”(] (k”, 0) exp(—2k||f),
0

Wq(r) (11)

AW(r)

[

: 12
= & [k ~Da"(k, O)exp(-2kp).

Now, we analyze the two simplest and, at the same
time, most important cases: the motion of acharge with
aconstant velocity v at aright angleto theinterface and
the uniformly accel erated motion of a particle under the
action of an external field F. All the questionsregarding
self-consistency problems remain beyond the scope of
the present paper.

Within the Inkson approximation (9), we can obtain
the far and near asymptotics of Egs. (11) and (12). Spe-
cifically, for the uniformly accelerated motion, when

Kr < 1, we have
g—1
2 _ _ -1
W, (r) = g KA/Eo(Eo 1)D & 1t 1
4 S
log =yKr } (13)
qSO(EO—l %

Kr +170

+ —2—(2-1)lo }D

2/80(80—1[ (£a—1) g € 10
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3.2
_ OQKFey(g,—1)0 3
AW(r) = o — -1
8mwy, 0
go+1 Kr 2 14
+(gg—1)log2— + [58 —-=¢g, (14
RO A
5 (e0-1)(58-3) 1 1 }D
NCS Jeo

It is evident that the static contribution (13) isidentical
for the uniform and uniformly accelerated motions. At

Kr > 1, weobtain
€—
(r )~_q Qo [ 1 «/50(50_1)} (15)
W Kr g+1 |
3.2
ooF
AW(r) = 20 (16)
4maopr
Here,
g—1
o = gt 1’ (17)
misthe massof aparticle, andy=1.7810... isthe Euler

constant. From the aforesaid, it follows that the energy
of static image forces and the dynamic correction reach
saturation at the interface due to the spatial dispersion
of the permittivity. On the other hand, the usual asymp-
totics of classical static image forcestakes place at long
distances. As the ionicity increases, the picture
becomes similar to the metallic limit described by the
hydrodynamic model [3, 12].

It should be noted that the signs of dynamic correc-
tions for the uniformly accel erated motion are different
at long and short distances. The general analysis of dif-
ferent laws of particle motionisgivenin [3].

The striking, at first glance, similarity between the
screening properties (and, hence, the image forces) of
media with free and bound charge carriersisin contra-
dictionto theclassical viewpoint, which has been wide-
spread to date (see, for example, [31]). According to
this viewpoint, bulk screening in an intrinsic semicon-
ductor brings about a decrease in the effective screened
charge by afactor of g, (where g, is a constant) at any
distance. On the other hand, in the quasi-classical
approximation [17, 18, 30Q], the screened potential has

the form
R[1+ (€0—1) exp —KR/ },(18)

where Risthe distance to the charge; from whence the
classical formula V4(R) = g/ R follows at R > k.
However, in the immediate vicinity of the charge, we

semlcl (R)
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Fig. 2. Profiles of Wg(r) near the Si—vacuum interface

within the (1) Schulze-Unger, (2) Inkson, and (3) classical
models.

have the potential Vq,q(R — 0) = ¢/R; i.e, it coin-
cides with the Thomas—Fermi near asymptotics. Thisis
not surprising because €4,,;,(k —= o, w = 0) tends to
unity rather than to g,. At the same time, at high ionic-
ity, the Thomas—Fermi dependence Vii(R) =
(/R)exp(—«R) for the screening by free electrons can
be obtained from the semiclassical formula (18) for
semiconductors.

Deng et al. [32] studied the impurity states in the
GaAsGa, _,Al,As spherical quantum dots and took
into account the spatial dispersion of € inthe coordinate
representation. They used the Hermanson model [33]
for the dielectric function:

e'(R) = g +(1-&)exp(-R/Ry), (19
where R, is the screening length. It is easy to see that,

in this case, the asymptotics of the potential V = g/e(R)
about the point charge isidentical to that of the poten-
tid Vi (R) [relationship (18)].

Returning to our problem, we note that al the quan-
titative estimates based on formulas (13)—(16) can be
confirmed by numerical calculations, which are not
presented here for brevity.

Asamodel semiconductor, we chose Si with thefol-
lowing parameters: €,=11.94, k =2.08 x 108 cm ™, k- =
1.81 x 108 cm™, and w, = 2.6 x 10'° s%. The value of k
corresponds to the hypothetical value when all valence
electrons participate in the screening [16]. In what fol-
lows, afree electron with the corresponding values of g
and m will be treated as a moving particle. Figure 2
shows the profiles of the static image energy W, in vac-
uum near the interface with Si in the framework of the
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Inkson and Schulze-Unger models and in the frame-
work of the classical model represented by the formula

2
Wi () = e

(20)
A drastic discrepancy between the curves plotted with
and without regard for the dependence €.i(K, w) is
observed over the entire range of distancesimportant in
the physics and chemistry of surfaces. It becomes clear
that the quantum effects in the screening [relationship
(8)] substantialy affect the dependence Wy(r) in the
vicinity of the interface: the nonphysical feature
[dW/dr], _ , vanishesand the Schulze-Unger profileis
more flattened than the Inkson profile. For example, the

surface energy WS- (0) is nearly one-half the energy

W, (0), which indicates that the Inkson model |eads to
overestimation of this energy.

The inclusion of the quantum effects is even more
important in calculating the dynamic corrections AW(r)
and the corresponding total profiles of theimage energy
W(r). The point is that the dynamic correction in our
case is appreciably smaller than that in the Inkson
model; thus, the range of applicability of our computa:
tional scheme [3, 12, 14] is considerably wider. This
inference is illustrated in Fig. 3 with the profiles of
W, (r) and W(r) for the considered laws of charge
motion and different models. In the case of uniform
motion, we have the velocity v = (2E,/m)Y2, where E,
is the kinetic energy of the particle. Consequently,
allowance made for the quantum character of the
screening in €(k, w) renders our approach valid virtu-
aly over the entire real range of external fields and
energies of emitted (incident) particles, whereas the
Inkson model results in an excess dynamic renormal-
ization of W(r). Moreover, since the effective parameter
of expansion is s /w;, O [AW/W;| (where wis the
characteristic frequency), the image forces are more
strongly affected by the behavior of g(k, w) at low fre-
guencies w than by the behavior of g(k, w) at frequen-
cies corresponding to the optical range. Therefore, the
interband transitions that cannot be described by the
semiempirical interpolation formulas (9) and (10) are
virtually immateria [8, 13, 29].

However, this analysis holds true for intrinsic semi-
conductors with high frequencies w,. If the semicon-
ductor isextrinsic with alow density of charge carriers,
the corresponding frequency w, can be several orders
of magnitude lower than the frequency w, for valence
electrons. In this case, the dynamic effects can play a
significant role and the computational scheme used will
be valid only at low fields and velocities [3].
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5. THE VACUUM GAP
BETWEEN SEMICONDUCTORS

Similar calculations were carried out for the energy
of image forces in the vacuum gap between two semi-
conductors (Fig. 1). We will restrict our consideration
to the symmetric structure with g,(k, w) = &g5(k, w),
because, otherwise, the theory would involve additional
parameters that do not lead to any conceptually new
effects.

Within the Inkson model, we succeeded in deriving
asymptotic approximations of the profiles over the
€o

<1
€o—1

entire gap thickness for thin layers with o

(a)

=21 Inkson = - - ]

>
; -4 Schulze-Unger
= ’ , ’
-6+ 7
/
/
/
/
-81/ oW
i —W
U
|
0 1 2

Fig. 3. Energies W of dynamic image forces and their static
components Wy within different models of the Si semicon-

ductor for (a) uniformly accelerated motion of a charge in

the external field F = 5 x 108 /em and (b) uniform motion
of acharge with the kinetic energy Eq = 10 eV.
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(where & = «). In particular,
2
. _dxUE—1 _& [
W (8) =~ 4= + 8] log 5 |1
g1 n_1.1,_ _
+ == Hogz—ZD 5+5(1-9log(1-8)  (21)

+§1+akgu+zﬂ§

and, for example, for the uniformly accel erated motion,

3 2
aw(E) =LK oo lisrre . (@2
(&) 1mm£ » {4+&1(eo)} (22)

where & = Z/l (so that —1 < & < 1) and f(g,) isacertain
cumbersome smooth function.

All the inferences made in the previous section
about the necessity of accounting for the quantum
nature of the screening refer equally to the gap between
the semiconductors. The profiles of W (&) for different
models of g(k, w) are displayed in Fig. 4. It is easy to
see that, as the interlayer width 2| decreases, a strong
difference between the Inkson and Schulze-Unger
dependencesis observed not only near the interface but
across the whole width of the gap aswell. In turn, this
considerably affects the tunneling characteristics of
similar junctions.

Finally, let us compare the energies W of dynamic
image forces and their static components W for differ-
ent models of g(k, w) and the uniformly accelerated

1
-0.5 0 0.5 1.0
¢=17l

Fig. 4. Dependences W(2) in the vacuum gap between Si

layers within the (1) Schulze-Unger, (2) Inkson, and
(3) classical models.
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Fig. 5. Energies W of dynamic image forces and their static
components Wy in the vacuum gap between Si layers (2| =
5 A) for uniformly accelerated motion of achargein differ-
ent external fields F within the (a) Inkson and (b) Schulze-
Unger models.

>
o
N :
) Inkson W Schulze-Unger
—6it ||
|
-
s Eg=0(Wy)
-8+ =t Eyg=5eV
— Ey=10eV

1 1 1 1 1 1
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&=2l

Fig. 6. Thesameasin Fig. 5 for uniform motion of acharge
at different kinetic energies E,.

(Fig. 5) and uniform (Fig. 6) laws of motion. Asbefore,
the nonadiabatic corrections in the framework of the
more precise Schulze-Unger approximation appear to
be sufficiently small, whereas the Inkson approxima-
tion ceases to work well at strong fields F or high
kinetic energies of the particle.

What has been said regarding extrinsic semiconduc-
tors also remains true. In this respect, we note that the
experimental results obtained by Guéret et al. [34] can
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be considered evidence that the dynamic corrections
are not small. On the other hand, these results can be a
consequence of a decrease in the tunneling barrier
(associated with the static image forces) at small | [see
expression (21)]. Therefore, it remains unclear whether
the dynamic character of the image forces actually
manifests itself in the experimental data described in
[34].

Thus, the calculations performed demonstrate that
the quantum character of the screening in semiconduc-
tors at large k should be adequately taken into account
in order to calculate correctly the energy of thedynamic
image forces near the semiconductor—vacuum inter-
face. The dynamic corrections turned out to be suffi-
ciently small at reasonable velocities of external charge
motion. This justifies the use of the perturbation tech-
nigue developed in our earlier works. It was found that
the image energies W(2) near the vacuum—metal and
vacuum—intrinsic semiconductor interfaces do not dif-
fer qualitatively. Inthiscase, it isof importance that the
screening parameters K and w, for semiconductors are
of the same order of magnitude asthosefor metals[29].
Therefore, unlike the opinion of Krupski [35], therange
of applicability of the specular reflection and infinite
barrier model for semiconductorsisidentical to that for
metals.

Although the dynamic corrections AW are not cru-
cia for intrinsic semiconductors, they can appear to be
important for the analysis of interfaces with plasma-
like media at low densities of charge carriers. In this
case, the wy, frequencies are low and the dynamic con-
tribution is not a small correction. Therefore, methods
more perfect [7] than the perturbation approach should
be applied. It is quite possible that the dynamic phe-
nomena were actually observed in semiconductor het-
erostructures [34].
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Abstract—The interaction of electrons with acoustic phononsis considered in a nanotube with chiral symme-
try placed in a magnetic field parallel to the nanotube axis. It is shown that in such a system, the electronic
energy spectrum is not invariant under electron wavevector reversal and, therefore, the el ectron—phonon inter-
action is different for identical phonons with oppositely directed wavevectors. This phenomenon leads to the
occurrence of an electromotive force during spatially homogeneous heating of an electron gas and to the pres-
ence of a term quadratic in current in the current—voltage characteristic of a nanotube. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Considerable recent attention of theorists and exper-
imentalists has been focused on low-dimensional struc-
turesin which the invariance under space inversion and
the fundamental invariance under time reversal are
simultaneously broken. Such systems are of interest,
because the electronic energy spectrum in them is
asymmetric:

e(k) # e(k), (D)

where k is the wavevector of an electron. Due to this
asymmetry, the electronic properties of these structures
become different in opposite directions, which leads to
many fundamentally new physical phenomena [1-11].
For example, the electrons interact differently with any
elementary excitations (photons, acoustic phonons,
etc.) having oppositely directed wavevectors [5-7]. In
turn, the asymmetry of the electron—phonon interaction
gives rise to new thermodynamic effects; these effects
were predicted theoretically in [8-10] and observed
experimentally quite recently in two-dimensional struc-
tures with an asymmetric quantizing potential [11]. Itis
also of interest to study systemsthat are different from
two-dimensional structures, i.e., systems in which the
electronic energy spectrum exhibits asymmetry of
Eg. (1) and the phenomena associated with this asym-
metry take place. One of such low-dimensional solid-
state systems may be a nanotube with chiral symmetry.

The physical properties of nanotubes with chiral
symmetry (which are approximately a nanometer in
diameter and in which the atomic arrangement has heli-
cal symmetry) became the subject of intense investiga
tions after the first report on the fabrication of carbon
nanotubes was published [12]. These are graphite lay-
ersrolled into tubes; the manner of rolling is character-
ized by two crystallographic parameters (n, m) which

determine the diameter of the nanotube and its chirality
[13-15]. The nanotube has no inversion center because
of the helical symmetry of its crystalline structure. In
the presence of a magnetic field, the invariance under
time reversal is aso broken. Therefore, carbon nano-
tubes with chiral symmetry, when placed in a magnetic
field, must exhibit anomalous kinetic effects like those
indicated above. In this paper, we theoretically investi-
gate the effects associated with the specific features of
electron—phonon interaction in such structures.

2.ASYMMETRY OF THE ELECTRONIC ENERGY
SPECTRUM IN THE PRESENCE
OF A MAGNETIC FIELD

We use a model [16, 17] in which a nanotube with
chiral symmetry is considered as being composed of
identical atoms (or atomic unit cells) arranged with a
period b aong a helical line (figure). It is assumed that
the diameter of the helix isD > b and its pitchisd < D;
therefore, the length of one turn of the helix is

JTED? +d° = Ngb,

where
No>1

is the number of atoms on one turn. The nanotube is
placed in amagnetic field H directed along the axis of
the helix. If the magnetic field is fairly weak, it will
affect the magnitude of the wave function of an electron
inanindividual atominsignificantly and only the phase
of the wave function will be varied in going from one
atom to another. In this case, in the tight-binding

1063-7834/01/4312-2336%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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approximation, the Hamiltonian of an electron in the
nanotube is given by

¥ = S (InCT[3¢[CTB] + InCEh|9¢]n + 170 +

2
+ [nIn| % n— 100 — 1| + [nIh| % n + N

x [+ Ng + [nh|%|n— NJThH— N ),

where |nCis the electronic state in which the electron is
near an atom with index n (the atoms are enumerated
alongthehelical line,n=...,-1,0,1, ...) and [B|F|nCE=
€y isthe energy of an electron in an isolated atom. The
matrix elements of the Hamiltonian that determine the
transition amplitude of an electron from atom n to its
four nearest neighborsn + 1 and n + N, have the form

Ehl%ln 1= _A(ln,ni 1)exp(i¢n1rl)a
Dﬂl%lni NOE| = _A(In,ntNO)eXp(iq)ntNo)-

Here, —A(l,, ) is the real overlap integral of the wave
functions of atoms n and min a zero magnetic field (it
depends on the distance |, ,, between these atoms) and
the phase shifts due to the magnetic field are given by

e + Ny | |
Brsn, = o [ An(rdr ®
Poss = g [ Au(r)ar, (4

whereA(r) isthe vector potential of the magnetic field
and e isthe magnitude of the electronic charge. Integra-
tionin Eq. (3) isperformed over thelinear sesgment con-
necting atoms n and n £ N, in adjacent turns, and inte-
gration in Eq. (4) is performed over the linear segment
connecting atoms n and n + 1. Taking the vector poten-
tial in the axially symmetrical gauge

A = SIHxT],

we obtain from the general equations (3) and (4)
q) n+ Ny = 01

v(H
bper = iznl(\l_o)’

where

niD%eH
4ch

is the number of quanta hc/e in the magnetic flux
through the nanotube cross section.

First, let us consider the case where there are no
phononsin the nanotube and, therefore, the interatomic
distances |,, ,, are time-independent; that is, |, ,.; = b

v(H) =
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Fragment of the nanotube composed of atoms arranged
aong ahelical line (schematic).

and |, ,.n, = dat any instant. In this case, the Hamil-
tonian (2) takesthe form

Ho =y (INCEo[0} — INCA() exp(iy. 1) 0+ 1

©)
—IntA(b) exp(i¢n_1) I — 1| — [nLA(d) [ + N
—nCA(d)h—N{).
The eigenfunctions of this Hamiltonian are
Wi = 3 CK)Ing] (6)

where the probability amplitude of an electron being
near atlomnis

C,(k) = ﬁexp(inkb)exp[—is(k)t/h], 0

k is the wavenumber of the electron characterizing its
motion along the helical line, N is the total number of
atoms in the nanotube, and the energy of an electron in
the nanotube is

H
g(k) = £, —2A(b) coskb + 211\%0)% ©

—2A(d)cos(Ngkb).

It followsfrom Eq. (8) that the energy spectrum of elec-
tronsin the nanotube is a periodic function of the mag-
netic field. If the magnetic field is such that

v(H)

N_O¢Z (Z:o’ 112131)’

then we have an asymmetric energy spectrum as in
Eq. (2).

Before proceeding to an analysis of the effects asso-
ciated with the asymmetric spectrum in Eq. (1), we
adapt our model to the specific case of carbon nano-
tubes with a weak chirality of the (n, 1) type, where
n > 1. In such nanotubes, the interatomic distances are
b = d and, hence, for the overlap integral s of the atomic
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wave functions, we have A(b) = A(d). Therefore, in our
calculations in what follows, we put

b=d=a A(b) = A.d) = Aa),

where a ~ 10 cm is the characteristic spatial period of
the crystalline structure of the nanotubeand A(a) ~ 1 eV
is the typical value of an overlap integral. In what fol-
lows, we restrict our analysis to the case of weak mag-
netic fields for which

v(H) _
N_o <1 9

and the electrons are assumed to bein states close to the
minimum of the energy band in Eqg. (8) situated at the
point k= 0inthe absence of amagneticfield. Taking the
energy at the minimum as zero, the electronic energy
spectrum in Eq. (8) near this minimum in the presence
of amagnetic field can be written as

_ A (k=ky)

>m (20)

k

where the shift of the bottom of the conduction band
due to the magnetic field is

21
Ky = —<SV(H)
" aNg

and the effective electronic mass equals

h2
 2A(a)NZa”

3. SPATIAL ASYMMETRY
OF ELECTRON-PHONON INTERACTION

In the nanotube under study, acoustic waves propa-
gating along the helical line are characterized by the
wavenumber g. Let us consider the interaction of elec-
trons with longitudinal acoustic phonons (which cause
the atoms to be displaced from their equilibrium posi-
tions along the helical line) and transverse acoustic
phonons (with atomic displacements perpendicular to
the helical ling) in the case of an asymmetric energy
spectrum (1).

In alongitudinal acoustic wave, the coordinate x,, of
atom n along the helical line is given by

X, = ha+X,, (11)

where the atomic displacement from the equilibrium
position is

X = > U exp(inga) exp[-iw(a)t],

q
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g is the wavenumber of a longitudinal phonon, the
amplitude of atomic displacementsis given by

% 1/2
Yo = [Zw(ch)NM} ’
the phonon frequency is

w(q) = vilal,

v, isthe velocity of the longitudinal acoustic wave, and
M is the atomic mass. We substitute Eg. (11) into the
overlap integrals and, taking into account that the
change in the interatomic distance in the acoustic wave
is much smaller than the crystalline-structure period a,
|Xn_Xntl| < 1,
a

we expand the overlap integrals of atomic wave func-

tions A(l,, ) in a power series in this small parameter

and obtain up to first-order terms from Eq. (2):
% = %o + z?f?ﬁql.

q

(12)

Here, §€q, is the interaction Hamiltonian between an

electron and a longitudina phonon with wavenumber
g, which is given by

o = Z(|nD]]1|?7€ql|n +1Th + 1] 3
+ [nCIh| ¥, n — 100 - 1)),
where the matrix elements are
Dh|%ql|n +10= (= /a)u, exp[-iw(q)t] exp(ing,a)
x exp(id,.1)[exp(iga)—1],
[h|#,|n—10 = (=/a)u, exp[-iw(q))t] exp(ing,a)
xexp(i¢,_1)[1—exp(-iga)],

and the deformation-potential constant for the nano-
tubeis

= = pdAl)|
dl I=a
The probability of a phonon with g, being absorbed by

electronsisgiven by the well-known guantum-mechan-
ica relation

w,(a) = =05 5 gt f
k.

h k
X fep(8)[1— fro(Er)],

where fge(q) is the Bose-Einstein distribution function
for a phonon with wavenumber q, fep(€) is the Fermi—
Dirac distribution function for an electron with energy

(14)
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€, and W, | #q W, Ois the matrix element of the elec-
tron—phonon interaction corresponding to the transition
of an electron from state k to state k' due to absorption
of a phonon with q. Inserting the explicit expressions
(6) and (7) for the wave function and Eq. (13) for the
electron—phonon interaction Hamiltonian into this
matrix element, we obtain

[RnTEAn 2k 0”
W Ha W D= '0a0 ONOCk(q)NMD

x O +hw(q) —&c)o(k+q —K)

H
[snﬁql +k]a+2n"(N0)g

(15)

smB(a+ ZHV(N:')D}

Substituting Eg. (10) into Egs. (14) and (15), we find
the longitudinal -phonon absorption probability per unit
time per unit length of the helical line to the first order

in the magnetic-field strength:
4mamy
W) = Wao(a) 1~ R hv ()] (19
where
_04=’m 0. @#*rmv, a1t
Waol@) = [ IMNDfFDEQm[ > B .
#2 rmy
x [1_ fFDEEn[TI + @Tg} fee(a)

is the probability of phonon absorption in a zero mag-
netic field.

In a similar way, the probability that a longitudinal
phonon with wavenumber g, will be emitted is found
to be

4tamyv
(1) = Weo(@)[ 15 '|g:| CICEE
where
_04zm 0. v, | ol
W) = B Nt 2 ) (19)

X [1— f,:DE;Lm[% —MTD}[ fee(a) + 1]

is the phonon emission probability in a zero magnetic
field.

Theinteraction of electronswith transverse acoustic
phononsis treated in the same manner asin the case of
longitudinal phonons, the only difference being that
one should take into account the fact that transverse
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phonons change the distance between atoms situated in
different turns of the helix. In a transverse acoustic
wave, the coordinate z, of atom n along the axis of the
helix is given by

z, = na+z, (20)

where the atomic displacement from the equilibrium
positionis

Z, = ) ugexp(inga) exp[—iw(a)t],

A

g, isthewavenumber of atransverse phonon, the ampli-
tude of atomic displacementsis given by

A 12
Yo = [Zoo(qt)NM} ’
the transverse-phonon frequency is

w(q) = Vt|Qt|a

and v, is the velocity of the transverse acoustic wave.
We substitute Eg. (20) into the overlap integrals, and,
taking into account that the change in the interatomic
distance in the acoustic wave is much smaller than the
pitch of the helix,

|Zn_zn11| < 1,
a

we expand the overlap integrals of atomic wave func-
tions A(l, ) in a power series in this small parameter
and obtain up to first-order terms from Eq. (2):

= Ho+ Z .
G

Here, %q[ is the interaction Hamiltonian between an
electron and a transverse phonon with wavevector g,
which is given by

(21)

Ho = Y (NI + N NG
+ [0 F€, In — Ny — NJ ),

where the matrix elements are

B Fan + No= (Z/a)ug exp[-iw(gyt]

x exp(ing.a)[ exp(iNya.a) —1],
[0 ¥ In— NoO= (=/a)ug exp[-i w(gy)t]

x exp(inga)[ 1 —exp(—i Noaa)] -
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The probability of atransverse phonon being absorbed
by electronsis

W,(q) =

% > Z|@k.|§eq,|wktlf

feo(€)[1— fro(&k)],

where the matrix element of the el ectron—phonon inter-
action, corresponding to the transition of an electron
from state k to state k' due to absorption of a phonon
with q;, is

(23)

12

9 2h
Wiy, 0= 1 A2 D

x 8(8+ hea(0) ~£)B(K + G K)

 [sin(Nol i + K] 2) — Sin(Noka)]

Substituting Eq. (10) into Egs. (23) and (24), we find
the transverse-phonon absorption probability per unit
time per unit length of the helical lineto the first order

(24)

in the magnetic-field strength:
41tamv
Wy (4) = W) 1+ t|3t| M. @
where
_ =*mN i rmv, a1h
Wao(0) = UlzvtMNDfFD%[T—7}D o

X|: —fFDEth[th |2t|i| i| se(Gh)

is the transverse-phonon absorption probability in a
zero magnetic field.

In a similar way, the transverse-phonon emission
probability is found to be

4mtamv, g

W(@) = Weo( )| 1+ v (H) |, (2D
where
_D4: mN Dﬁ mv, |qt|
Weo (L) 52, MND FDE2m|: —2—}D o

«[1- fFDE;m[mvt 'qt'} 3| foctan + 1

is the transverse-phonon emission probability in a zero
magnetic field.

From Eq. (16), (18), (25), and (27), itisimmediately
obvious that the electron—phonon interaction is spa-
tially asymmetric: the interaction probabilities between
an electron and identical phonons with oppositely
directed wavevectors are different.
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4. THE OCCURRENCE OF AN ELECTROMOTIVE
FORCE DURING SPATIALLY HOMOGENEOUS
HEATING OF AN ELECTRON GAS

Now, we discuss the interaction between the elec-
tron and phonon subsystems during spatially homoge-
neous heating. In this case, the subsystemsarein anon-
equilibrium state. The energy distribution of phononsis
described by the Bose—Einstein function

golan_ ]

PoeT | ke T U
where T is the temperature of the crystal lattice,
whereas the energy distribution of electrons is
described by the Fermi—Dirac function

foe(@) = | exp

feo(€) = [Eng:k -I-FD"' 1} 1,

where T, is the electronic temperature. At T, < T, heat
transfer occurs from the phonon subsystem to the elec-
tronic subsystem and phonons are absorbed by elec-
trons. At T, > T, conversely, heat is transferred from
electrons to the phonon subsystem, which is accompa-
nied by phonon emission. Since the electron—-phonon
interaction probability is different for phonons with
oppositely directed wavevectors, the heat transfer is
accompanied by achangein the total momentum of the
electronic subsystem, which gives rise to the occur-
rence of an electromotive force (emf) at T, # T. This
phenomenon is a manifestation of the universal law [7]
stating that an emf isinduced in any electronic system
with an asymmetric energy spectrum, as in Eq. (1),
when subjected to an isotropic perturbation. In the case
under consideration, the isotropic perturbation is spa
tially homogeneous heating.

Now, we consider the relatively low temperatures at
which umklapp scattering due to electron—phonon
interaction is negligible (the wave vectors remain
withinthefirst Brillouin zone). In this case, the average
force exerted on an €l ectron by the phonon subsystemis

= 1 alwi(a) (@)
. G (29)
+ n_Lz [ Wa(a) —we(ay)],
G

where n_isthe electron concentration per unit length of
the helical line. Therefore, the electric field of extrane-
ousforcesis

E* = —

F
s (30)
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and the emf induced in the nanotubeis
L/2

I E* dx,
—-L/2

where L = Naisthe length of the helical line. It follows
from Egs. (29)—(31) that the emf of interest can be writ-
ten as

€ = (31)

€ = L5 qlw(a) -wi(q)]
a (32)
+ 1S g lwe(@) ~wa()].
G

Using Egs. (16)—19) and (25)—28) for the electron—
phonon interaction probabilities, we find that

a(qt) We(Q,)
Wa(@) We(q)

therefore, the emf given by Eq. (32) is basically due to
the interaction with transverse phonons. We will
neglect the interaction of electrons with longitudinal
phonons in Eq. (32) and substitute this expression into
Egs. (25)—(28). By transforming the sum over phonon
states into an integral over the phonon wavenumber,
one can obtain from Eq. (32)

0 N2> 1;

@ = D4 ma ' QLNop
I 4 0O MenO

’ 7% rmv 3
x J’thQtﬁ - EQm[ : %} E}
0

XfFDEETn[T—ﬁ-‘ |‘%‘|} [ fee(ay) + 1]

—|1—f Dﬁ th |_qi| 2|:|
FoHm 2 |0

A rmv Z 0
fFDEQm[ t %}EfBE(qt)E

v(H)

(33)

We will treat the electron—phonon interaction as a
guasi-€elastic process, which isjustified if

2
mv,
ke Te

and, in addition, we will assume that the electron gasis
highly heated,

T
— < 1.
T, 1
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Under these conditions, Eq. (33) takes asimple form,

D4—ma] ntNopy,
€= 3 DD\/IenD v(H)

© 2.2
« fdaa] 1~ frol ]
0

Theintegral in EQ. (34) can be easily expressed as ele-
mentary functions, and we obtain afina expression for
the emf,

¢ = o0 Brwens o/

2 2 (34)
90

FD DSmD

(35)
[1 + eXprr kB'FI' E}

In the case of a degenerate electron gas, we have

FD<1

expD kB

and, therefore, the emf in Eq. (35) isalinear function of
temperature:

@ = P e DV

(36)
If the electron gasis hondegenerate, that is,

€ O
expDkB >1

kaTe D €|: |:|
n = ex ,
: ZﬁzT[ Ij(BTeE|

then the emf in Eq. (35) varies as the square root of the
temperature:

€ = h';“"E g‘uoﬁDV(H) 2mmks T, (37)

For carbon nanotubes of diameter D ~ 10° m, magnetic
fieldsH ~ 10* G, and electronic temperatures T, ~ 10° K,
we abtain from Eq. (37)

% 0107 V/em.

5. THE EFFECT OF ASYMMETRIC
ELECTRON-PHONON INTERACTION
ON THE CURRENT-VOLTAGE
CHARACTERISTIC
OF THE NANOTUBE

The electronic subsystem can be easily heated with
respect to the crystal lattice, and an emf € can be
induced by Joule heating. Therefore, an electric current
Jflowing through a carbon nanotube placed in an exter-
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nal magnetic field will induce an emf €, which will
cause a change in the current—voltage characteristic of
the nanotube. In order to analyze the effect of the elec-
tron—phonon interaction on the current—voltage charac-
teristic, one must derive arelation between J and €.

The energy per unit time, J°R, is transferred from
the power source to the electron subsystem and then to
the crystal lattice through phonon emission. Therefore,
the energy balance equation for the electron and
phonon subsystems has the form

FR= LS Aioa(a)[we(a) - wa(a)]
a (38)
+L fioa(a) [we(a) —wa(al,

A

where R is the electrical resistance of the nanotube.
From the analysis performed above, it follows that the
electrons interact predominantly with transverse
phononsand, therefore, their interaction with longitudi-
nal phonons can be neglected in Eq. (38). Substituting
Eg. (38) into Egs. (25)—(28) for the electron-trans-
verse-phonon interaction probabilities and transform-
ing the sum over phonon statesinto an integral over the
phonon wavenumber, we obtain

A=’mN3La;
YR= =i o

. 72 rmv 2
XIthQtﬁ fFDEQm[ t %}E}
0
myv
foDEQ |: : |qt|i| [ fee(d) + 1]

-t 4T

fL mv O
X fFDEQm[ - ZﬂzngE(Qt)El

(39)

Itis seen that theintegral in Eq. (39) isthe same asthat
in Eqg. (33). Therefore, by combining Egs. (33) and
(39), one easily obtains the relation between € and J:

€ = a(H)J, (40)
where
_ 4mmaR
a(H) = henLNOV(H)'

The voltage U across the ends of the nanotube carrying
current J is the sum of the conventional ohmic term JR
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and the emf given by Eq. (40). Therefore, the current—
voltage characteristic U(J) of the nanotube is given by

U@J) = JR+a(H)J. (41)

It follows from Eq. (41) that, due to the spatial asym-
metry of the electron—phonon interaction, a term qua
dratic in the current appears in the current—voltage
characteristic. For Ny=5, n. ~10*cm™, J~10nA, and

H ~ 10° G, the term quadratic in the current in Eq. (41)
for the voltage is equal to afew tenths of percent of the
ohmic term.

6. CONCLUSIONS

Thus, we have shown that the electronic energy
spectrum of a nanotube with chiral symmetry becomes
asymmetric when the nanotube is placed in a magnetic
field directed along its axis. Due to this asymmetry, the
electrons interact differently with identical phonons
moving in opposite directions. In turn, because of the
spatialy asymmetric electron—phonon interaction, the
energy transfer from the electronic subsystem to the
crystal lattice through phonon emission isaccompanied
by a change in the éectronic-subsystem momentum
and, therefore, an emf is developed. In particular, the
emf can be generated when the electronic subsystemis
heated by passing an electric current through the nano-
tube. Theinduced emf |eadsto the appearance of aterm
quadratic in current in the current—voltage characteris-
tic of the nanotube, because the electronic-subsystem
heating is independent of the direction of the current.
The value of this quadratic term and the corresponding
rectifying effect in the nanotube are controlled by the
magnetic field; this is promising for the use of nano-
tubes as elements of functional electronics.

ACKNOWLEDGMENTS

This study was supported by the Russian Founda-
tion for Basic Research (project nos. 00-02-17987, 00-
02-18010), the Ministry of Education of the Russian
Federation (project no. E00-3.4-506), and the INTAS
Foundation (grant no. 99-1661).

REFERENCES

1. A. A. Gorbatsevich, V. V. Kapaev, and Yu. V. Kopaev,
Pisma Zh. Eksp. Teor. Fiz. 57 (9), 565 (1993) [JETP
Lett. 57, 580 (1993)].

2. Yu. A. Aleshchenko, I. D. Voronova, S. P. Grishechkina,
et al., Pisma Zh. Eksp. Teor. Fiz. 58 (5), 377 (1993)
[JETP Lett. 58, 384 (1993)].

3. O. E. Omel’yanovskii, V. |. Tsebro, and V. |. Kadushkin,
Pis'ma Zh. Eksp. Teor. Fiz. 63 (3), 197 (1996) [JETP
Lett. 63, 209 (1996)].

4. A.A. Gorbatsevich, V. V. Kapagev, Yu. V. Kopaev, et al.,
Pisma Zh. Eksp. Teor. Fiz. 68 (5), 380 (1998) [JETP
Lett. 68, 404 (1998)].

No. 12 2001



~

©

10

11

12

FEATURES OF ELECTRON-PHONON INTERACTION IN NANOTUBES

(1997) [JETP Lett. 66, 588 (1997)].

(1998).

O. V. Kibis, Physica B (Amsterdam) 256-258, 449
(1998).

0. V. Kibis, Phys. Lett. A 244, 432 (1998).

O. V. Kibis, Zh. Eksp. Teor. Fiz. 115 (3), 959 (1999)
[JETP 88, 527 (1999)].

. O. V. Kibis, Phys. Low-Dimens. Struct. 9/10, 143
(1999).

. A. G. Pogosov, M. V. Budantsev, O. V. Kibis, et al., Phys.
Rev. B 61 (23), 15603 (2000).

. S. lijima, Nature 354, 56 (1991).

PHYSICS OF THE SOLID STATE Vol. 43 No. 12

O. V. Kibis, Pisma Zh. Eksp. Teor. Fiz. 66 (8), 551

O. V. Kibis, Phys. Lett. A 237, 292 (1998); 244, 574

2001

13.

14.

15.

16.

17.

2343

M. S. Dressdlhaus, G. Dresselhaus, and P. C. Eklund,
Science of Fullerenes and Carbon Nanotubes (Aca
demic, San Diego, 1996).

A. V. Eletskii, Usp. Fiz. Nauk 167 (9), 945 (1997) [Phys.
Usp. 40, 899 (1997)].

L. G. Bulusheva, A. V. Okotrub, D. A. Romanov, and
D. Tomanek, Phys. Low-Dimens. Struct. 3/4, 107
(1998).

D. A. Romanov and O. V. Kibis, Phys. Lett. A 178, 335
(1993).

O. V. Kibis and D. A. Romanov, Fiz. Tverd. Tela

(St. Petersburg) 37 (1), 129 (1995) [Phys. Solid State 37,
69 (1995)].

Trandated by Yu. Epifanov



Physics of the Solid State, Vol. 43, No. 12, 2001, pp. 2344-2350. Translated from Fizika Tverdogo Tela, Vol. 43, No. 12, 2001, pp. 2262—2268.

Original Russian Text Copyright © 2001 by Kobelev, Nikolaev, Sdorov, Soifer.

FULLERENES

AND ATOMIC CLUSTERS

Temperature Dependence of Elastic M oduli for Solid Cg,

N. P. Kobelev, R. K. Nikolaev, N. S. Sidorov, and Ya. M. Soifer
Ingtitute of Solid-State Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia
e-mail: kobelev@issp.ac.ru
Received April 16, 2001

Abstract—The attenuation and velocity of ultrasonic waves (at a frequency of ~4 MHz) along the (1110and
[100Cdirectionsin solid Cgq single-crystal samples are measured in the temperature range 100-300 K. The tem-
perature dependences of the complete set of elastic constants for Cg, fullerite are determined from the experi-
mental data. It is shown that the specific features in the behavior of the elastic moduli near the orientational
phase transition temperature are associated with different contributions of the relaxation processesto the effec-
tive elastic moduli. The activation volume and deformation potentials for the ground and excited states of the
Cgo low-temperature phase are evaluated from the results obtained in this work and the data available in the

literature. © 2001 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

The elastic moduli, thermodynamic potential, spe-
cific heat, Griineisen constant, and other parametersare
the fundamental characteristics of asolid. The determi-
nation of their magnitudes and temperature depen-
dences is essentia to the understanding of the specific
features in the physical properties of solid Cg,. More-
over, measurement of the elastic constants can serve as
an experimental test of the validity of theories describ-
ing intermolecular interaction in fullerite. At present,
all elastic constantsfor the face-centered cubic phase of
Cgp @ room temperature are known [1-3]. However, the
available data on the temperature dependences of the
elastic constants are contradictory. These contradic-
tions can be explained by the fact that the aforemen-
tioned dependences were determined from measure-
ments of only one of the elastic constants. It was found
that anomalies in the temperature dependences of the
elastic moduli of solid Cg, are observed in two temper-
ature ranges. near the orientational phase transition
temperature T, = 260 K and at temperaturesin therange
from 100 to 220 K (the frequency-dependent range).
Moreover, the anomalies observed in the elastic moduli
are accompanied by the appearance of the correspond-
ing peaks of the internal friction.

It was shown that the anomalies at T, are associated
with the phase transition. However, Shi et al. [4]
reveal ed that the Young's modulus drastically increases
(by approximately 8%) at T., whereas Hoen et al. [5]
observed a “softening” of the Young's modulus in the
same temperature range. A similar result was obtained
by Schranz et al. [6]. In this respect, interesting results
were obtained in measuring the velocities of both lon-
gitudina and transverse waves in the megahertz fre-
guency range in compact Cgy samples|[7, 8]. It isworth
noting that the longitudinal velocity of sound was
found to decreasein the phase transition range, whereas

only a dight change in the slope of the temperature
dependence was observed for the transverse velocity of
sound. In [6], the negative jump in the modulus at T,
was attributed to an additional inelastic deformation
due to the order parameter relaxation in an elastic field
of the acoustic wave. Yan et al. [9] assumed that the dif-
ference in behavior of the elastic moduli near the orien-
tational phase transition temperature can be associated
with the quality of the Cg, crystals used in the experi-
ments, because measurements with polycrystaline
films have revealed that the height of the internal fric-
tion peak and the drop in the Young's modulus in the
range of T, increase with a decrease in the grain size.

The anomaliesin the behavior of the elastic proper-
ties and the sound attenuation at temperatures below T,
(theinternal friction peak and the corresponding step in
the temperature dependence of the modulus, whose
temperatures depend on the frequency of measure-
ments [4-7]) are rather consistently described within
the concept of orientational relaxation of molecules.
This can be explained by the fact that the rotational
degrees of freedom of Cg, molecules persist below the
orientational phase transition temperature [10]. As a
result of thermal excitation, molecules in the low-tem-
perature phase can occur in different energy states—the
so-called pentagonal (ground) and hexagonal (excited)
orientational configurations [11]. This situation was
described in the framework of a phenomenological
model of double-well orientational potential [11-14],
according to which molecules can be in two energy
states that differ from each other by the quantity AU =
12 meV and are separated by the potential barrier U, =
0.3 eV. The deformation field of an acoustic wave stim-
ulates transitions between these energy states. In turn,
this causes an additional crystal deformation and leads

1063-7834/01/4312-2344%$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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to the attenuation Q* and achangein the effective elas-
tic modulus AC/C of the relaxation type, that is,

Q™" = RwT/(1+w'Td), Q)

AC/C = R/(1+ w’TY), 2

where T = 1oexp(Uy/KT) is the effective relaxation time,
w is the circular frequency, and R is the relaxation
depth. The activation parameters (U, = 0.3 eV and 14 ~
1013101 s) determined from acoustic measurements
[4, 6, 7] are in agreement with the results obtained by
other techniques [10, 12, 15, 16].

Note that the temperature dependence of the effec-
tive relaxation time t in the framework of the double-
well potential model is represented by a more complex
relationship,

T = exp(Uy/kT)/[2v,
x cosh((AU/2KT) + In(vy/v,)/2)].

Here, vy = (Vpv,)¥2 and vy, and v, are the frequencies of
attempts in the hexagonal and pentagonal configura-
tions, respectively. Hence,

To = 1[2v00080((AU/2KT) +In(v,/v,)/2)]
= 1/(2v,cosh(AU*/2KT)), )

where AU* = AU + KTIn(v,/v,). Therefore, both T, and
the effective difference AU* between the energy levels
can depend on the temperature (even without regard for
the possible temperature dependences of AU, vy, and v,
[14]). However, since the experimental estimates
obtained for AU at various temperatures by using dif-
ferent methods differ by no more than 30% [6, 11-13,
16] (i.e., v, and v, cannot differ by more than a factor

of 1.5) and the value of cosh(AU/2KT) in the temper-
ature range 80260 K also changes by a factor of
approximately 1.5, asimplified relationship for T can be
used in the majority of cases.

It should be noted that the lack of information on the
temperature dependence of all the elastic moduli for
solid Cg, does not alow one to judge the adequacy of
the model for the phenomenon under consideration.

The aim of this work was to determine the tempera-
ture dependences of the complete set of elastic moduli
for solid Cg, in the temperature range 100-300 K and to
analyze the obtained results in the framework of exist-
ing theoretical concepts.

©)

2. EXPERIMENTAL TECHNIQUE

The single crystals of solid Cg, used for measuring
the elastic properties were grown according to the pro-
cedure described in our earlier work [2]. In order to
obtain samples of larger sizes, the growth time was
increased to 24 h. As aresult, we succeeded in growing
crystals weighing as much as 200250 mg. Among the
grown crystals, the most perfect crystals (i.e., contain-
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ing no twins and inclusions of other phases) were cho-
sen for preparing the samples used in our measure-
ments. The sampleswere produced in the form of plates
=6 x 8 mm in size and 1-3 mm in thickness. The planes
of the plateswere parallel to the crystallographic planes
(111) and (100). One of the sample planes was the
growth plane, and the other plane was mechanically
ground parallel to the first plane with a parallelism of
=1 pm/cm. In some samples with the (111) orientation,
the second plane was also the growth plane.

The elagtic characteristics were determined by the
acoustical method. The velocity and attenuation of
sound (propagated along the [1110and [100CIdirec-
tions) in the sample were measured in the temperature
range 100-300 K by the high-frequency resonance
method [17] with the use of longitudinal or transverse
ultrasonic vibrations at a frequency of ~4 MHz. The
samples were cooled and heated at arate of =1 K/min.
The measurements were carried out using lithium nio-
bate piezoelectric transducers with a frequency of
5 MHz. Particular attention was given to the choice of
the adhesive used to cement the piezoel ectric transduc-
ers to the sample, because solid Cy, has a high thermal
expansion coefficient. In the case of longitudinal vibra-
tions, the GKZh-94 adhesive (monoethylsiloxane)
turned out to be the most suitable. This adhesive
enabled us to perform measurements without breaking
acoustic contact over the entire temperature range cov-
ered (down to 80-100 K). A silicone vacuum paste
could be used as a cement in the range from room tem-
perature to 180-200 K. For transverse waves, we failed
to choose a cement that would provide measurements
over the entire temperature range. For this reason, dif-
ferent cements were used in different temperature
ranges. an epoxy resin or picein in the range from room
temperature to 260 K (the phase transition tempera-
ture), silicone paste in the range from 270-280 to 180—
200K, and GKZh-94 in the range from 150 to 80-100 K.
As arule, when the minimum cooling temperature of
the sample was no lower than the temperature permis-
sible for each type of cement, the acoustical parameters
(the attenuation and velocity of sound) measured upon
cooling and heating coincided with each other [except
in the range near the T, temperature in which atemper-
ature hysteresis of 3-5 K was observed (Fig. 1)]. Oth-
erwise (if the acoustic contact was retained), the trans-
ducersmost likely deformed the sampl e, because acon-
siderable hysteresis (an increase in the attenuation of
sound and a decrease in its velocity) occurred upon
heating beginning with temperatures near 200 K. Note
that the hysteresis was more pronounced for transverse
vibrations. After holding at room temperature, the mea-
sured quantities relaxed to their initial values within a
few hours. The accuracy of determination was equal to
approximately 2% for the absolute velocity of sound
and 0.0025 + 0.0001 K for the relative change in the
velocity in measuring the temperature dependences.
Thevelocity of sound in the same samples at room tem-
perature was additionally controlled by the echo pulse
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Fig. 1. Temperature dependences of the attenuation and the
resonance frequency of acomposite transducer near the ori-
entational phase transition temperature upon (1) cooling
and (2) heating of the sample. Longitudinal waves propa-
gate along the (111 direction.

technique[2, 3]. The velocities obtained with the use of
both techniques at room temperature, to within the
experimental error, coincided with those determined
earlier for solid Cg [1-3].

3. RESULTS

The experimental temperature dependences of the
attenuation Q* and the velocity V, of the longitudinal

|
200
T,K

| | | |
100 150 250 300

Fig. 2. Temperature dependence of the attenuation of the
longitudinal ultrasonic wave propagating along the (11100
direction in asolid Cgy sample upon cooling.
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ultrasonic wave along the (111 direction in asolid Cg,
sample are displayed in Figs. 2 and 3. The Q(T)
dependence is characterized by two peaks of the inter-
nal friction (a narrow asymmetric peak in the range of
260 K and a broad peak at 212 K). The V| (T) depen-
dence shows specific features. a sharper increase (step)
in the velocity with a decrease in the temperature in the
range 200-225 K and a nonmonotonic anomaly in the
range of the orientational phase transition (the velocity
jumpwise increases by approximately 1% at =259 K,
exhibits a dip by =1.5% with a minimum near 255—
256 K, and steeply increases to temperatures of 235—
240 K). For other modes of ultrasonic vibrations (the
longitudinal mode along the [1000direction and the
transverse mode along the [1110direction), the behav-
ior of QX(T) is qualitatively similar, whereas the V(T)
dependences differ noticeably (Figs. 4, 5). The velocity
V,_ of the longitudinal wave along the [100Cdirection
(Fig. 4), asfor the wave along the [111[direction, step-
wise increases in the temperature range 200225 K.
However, this velocity jumpwise increases (by approx-
imately 2—3%) in the range of the T, temperature and
then increases more smaoothly. For the transverse wave
(Fig. 5), the V; anomaly in the range 200-225 K is
appreciably less pronounced and the velocity jump at T
is substantially larger (5-6%).

Figure 6 shows the temperature dependences of the
elastic moduli (C;; + 2C;, + 4C,,)/3, Cy4, and (Cy; —
C,, + C33)/3. These dependences were obtained from
the temperature dependences of the velocities of the
corresponding ultrasonic waves with the use of the
standard relationship C = pV?, where p isthe density, C
isthe modulus, and V is the velocity of sound. In order
to calculate the other €astic constants, which can also
serve for describing crystals with cubic symmetry, the
experimental data in Fig. 6 in the temperature range

4.2
4.0F \\
« “,
g
S 3.81
N
3.6
[ ]
M
34 1 1 1 1 1
100 150 200 250 300
T,K

Fig. 3. Temperature dependence of the velocity of the lon-
gitudinal ultrasonic wave propagating along the (111 direc-
tion upon cooling.

No. 12 2001



TEMPERATURE DEPENDENCE OF ELASTIC MODULI FOR SOLID Cgq

3.6
3.5

E 33t

2

3 &
= 3.1+ \'
i M
2'9 1 1 1 1 1
100 150 200 250 300
T,K

Fig. 4. Temperature dependence of the velocity of the lon-
gitudinal ultrasonic wave propagating along the [100Cdirec-
tion upon cooling.

100-300 K were approximated by nonlinear depen-
dences (solid lines in Fig. 6). By using these depen-
dences and the standard rel ationshi ps between different
elastic moduli, we constructed the temperature depen-
dences of the elastic constants C,,, C,y, and C' = (Cy; —
C1»)/2 (Fig. 7) and the bulk modulusK = (Cy; + 2C;,)/3

(Fig. 8).

4. DISCUSSION

It can be seen from Figs. 6-8 that the most signifi-
cant differences in the temperature dependences of the
elastic constants manifest themselves in the tempera-
ture range 200-230 K (the different relative heights of
the step in the temperature dependences of the moduli)
and in the orientational transition range. Note that both
a jumpwise increase in the moduli and their softening
can be observed in the latter range.

Aswas noted above, it is assumed that, at tempera-
tures of 200230 K, the anomaliesin the effective elas-
tic moduli measured at megahertz frequencies stem
from the relaxation contribution (2) due to the reorien-
tation of Cg, moleculesin the elastic field of the acous-
tic wave. In the case when the behavior of the “unre-
laxed” elastic modulus C*) is approximated by alinear
temperature dependence, the temperature dependences
of AC/C = (C™) — C)/C are adequately described (to
temperatures in the range of 240 K) using expression
(2) with the parameters E; = 0.29 eV and 1, = 0.5 %
10 s (see, for example, Fig. 8) and the attenuation
peak is represented by relationship (1). The specific
featuresin the behavior of the elastic moduli at temper-
atures near T, can be explained (as in the case of low-
frequency vibrations [6]) by the contribution from the
order parameter relaxation in the acoustic wave field to
the effective moduli. According to [6], the additional
contribution to the free energy due to the interaction
between the order parameter n and the strain € can be
expressed as an?e + bn%e2. Thisleadsto the appearance
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Fig. 5. Temperature dependence of the velocity of the trans-
verse ultrasonic wave propagating along the (111 Mirection
upon coaling.

of additional termsin the relationship between the elas-
tic modulus C and the frequency and temperature:

C(w,T)

= C"(w, T) —=AC,(T)/(1+ w’T2) + bn5(T), ©
where 1, is the characteristic relaxation time of the
order parameter, n, is the equilibrium order parameter
at a given temperature, C® is the elastic modulus
above T, and AC,(T) is the modulus relaxation ampli-
tude proportional to a? and dependent on n. It follows
from formula (5) that, as the temperature decreases

(Cll + 2C12+ 4C44)/3

Cll

4_I 1 1 1 1

100 150 200 250 300
T,.K

(C1 = Cip+ Cyy)/3

Fig. 6. Temperature dependences of the elastic moduli
CL(lll) = (Cll + 2C12 + 4C44)/3, CL(].OO) = Cll’ and
Cr1(111) = (Cq1 — Cyp + Cyy)/3 obtained from the temperature
dependences of the ultrasonic wave velocities (Figs. 3-5).
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Fig. 7. Temperature dependences of the elastic moduli Cy5,
Cyy, and (C11 — C1,)/2 calculated from the data presented in
Fig. 6. Dashed lines correspond to the linear extrapolation
of the temperature dependences below 180 K to the range
up to the orientational phase transition temperature.
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Fig. 8. (1) Temperature dependence of the bulk modulus K
calculated from the data presented in Fig. 6. (2) Linear
extrapolation of the low-temperature portion of the temper-
ature dependence to the range up to the orientationa phase
transition temperature. (3) Temperature dependence calcu-
lated with inclusion of the relaxation contribution from the
reorientation of Cgg molecules according to formula (2).

below T, the elastic modulus should, on the one hand,
increase owing to a jump in the order parameter [the
third term in formula (5)] and, on the other hand,
decrease as a consequence of the contribution from the
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relaxation component. This decrease depends on the
frequency of measurements, because the relaxation
timeT, at temperatures closeto T, sharply increases and
the relaxation contribution becomes insignificant.
Therefore, the relaxation contribution at a given fre-
guency of measurements nonmonotonically depends
on the temperature and decreases at temperatures far
from and close to the transition temperature. In this
case, the location of an extremum at a given frequency
of measurements is determined by the temperature
dependences AC,,(T) and 1,,(T). Furthermore, since the
relaxation contribution caused by the molecular reori-
entation leads to a decrease in the modulus, the behav-
ior of the elastic modulus near the transition tempera-
tureis governed by the competition of three factors: (a)
an increase in the modulus due to a jump in the order
parameter, (b) a decrease in the modulus owing to
molecular reorientation, and (C) a honmonotonic tem-
perature-dependent decrease associated with the order
parameter relaxation. Depending on the relative contri-
butions of these factors (and the frequency of measure-
ments), the temperature dependence of the modulus can
be qualitatively different in character, which is actually
observed in the experiments.

Thissituationisclearly illustrated in Figs. 7and 8 in
the temperature dependences of the elastic moduli K,
Cys, and C' = (Cy; — Cy,)/2 (all the other elastic moduli
can be expressed in terms of these three moduli). For
the bulk modulus, the modulus jump in the absence of
relaxation contributions is approximately 13%, the
maximum relaxation depth associated with the molec-
ular reorientation is equa to approximately 10%, and
the order parameter relaxation depth is approximately
5%. For the C,, modulus, the jump is approximately
11% and the relaxation depths for both processes are
equal to approximately 6%. For the C' modulus, the
jump at temperatures close to T, is of the order of 30%
and the total contribution from the relaxation processes
does not exceed 3% (i.e, in essence, it is within the
experimental error of the C' measurement). Now, we
consider the theoretical estimates available in the liter-
ature for all these contributions to the elastic moduli.

The relaxation depth R,,, which is related to the
reorientation of Cg, molecules in the acoustic wave
field, was estimated by Natsik and Podol’skii [14] for
the bulk modulus within the model of double-well ori-
entational energy potential. In this model, the time
change in the concentration of the hexagonal (N,) and
pentagonal (N, = Ny — N, where N, isthe total number
of orientational states per unit volume) states is given
by the kinetic equation

INL/Ot = —=Nu/T, + (No— Ny)/T,, (6)

where 1, , = Toexp(Up, ,/KT) stands for the relaxation
times, U, = Uy —AU/2 — Vig, Uy = Ug + AU/2 - Vg,
Vi, p isthe deformation potential, and g, = €;; + €5, + €33
is the volume strain. By changing over to the relative
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concentrations of excited states n = N,/N,, within the
approximation linear in g, we obtain

T, 0n/0t +n = ng+ (Vag /KT)Ng(1=ng),  (7)

where 1, = ToeXp(UykT)/(2cosh(AU/2kT)), ny =
/(1 + exp(AU/KT)), and V, = V, — V. The thermody-
namic analysis of the elastic and thermal properties of
fullerite in terms of the two-level model with inclusion
of the orientational transitions [14] demonstrated that
the effective complex elastic modulus K at megahertz
frequencies can be represented in the form

K=K*-Al(l-iwT,), (8)

where K®) js the adiabatic bulk modulus, A =
Y(VaKN(1 = ng), y = —{(0/0g(0F/on)r o) =
—(0/0n(0F/0g) )1 &» and F is the free energy density.
The quantity y can also be written asy = aK© [14, 16],
where K@ jstheisothermal elastic modulusand a isthe
relative dilatation of the crystal upon transition from the
ground state to the excited state. Therefore, in the case
of the bulk modulus, the relaxation depth R, which is
related to the reorientation of Cg, molecules, can be
expressed by the formula

Ry = a(Vo/KT)(KPIK)ng(1-ng).  (9)

These relationships make it possible to calculate the
value of R, from the estimate a = —107 derived in[16,
18] and the estimate V, = —0.8 €V obtained by David
and Ibberson [19], who proved that the relative densi-
ties of the ground and excited states at atemperature of
150 K and a pressure of 190 MPa are identical. At
230 K, we obtain R, = 0.1, which isin agreement with
the experimental value. The y quantity can also be rep-
resented asy = V,/v, (Where v, is the volume involved
in an elementary act of the transition from the ground
state to the excited state under pressure). Consequently,
we have the estimate v, = 10’ m3, which is equal in
order of magnitude to the volume occupied by one Cqg,
molecule. This confirmsthe validity of the phenomeno-
logical single-particle model of double-well potential
[11-13]. By using the pressure dependence of the tem-
perature T, of the orientational glass transition [20], it
isalso possible to evaluate the magnitudes of the defor-
mation potentials V,, and V,, [14]. From the quantity
dT,/dP = 60 GPa[20], we obtain V, = 2 eV and, corre-
spondingly, V, = 2.8 V. (A similar estimate was made
by Natsik and Podol’skii [14]; however, they took V,,
equal to 2 eV, because it was implicitly assumed that
Vo> Vy)

Unfortunately, the relaxation contribution from the
order parameter fluctuations (in the deformation field
of an acoustic wave) to the elastic moduli was not cal-
culated theoretically. Schranz et al. [6] made merely the
qualitatively assessment that this contribution can
occur in the case of longitudinal acoustic waves [see
relationship (5)]. This assessment was based on the
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results obtained by Lamoen and Mishel [21], who
proved that the free energy includes the terms account-
ing for the interaction between the order parameter and
the crystal dilatation. Therefore, the order parameter
relaxation can contribute to the bulk modulus and the
experimental temperature dependence of the bulk mod-
ulus qualitatively agrees with the theoretical curve pre-
dicted in this case (see the discussion at the beginning
of this section).

The jump in the elastic moduli upon orientational
trangition in solid Cg, was calculated by Burgos et al.
[18] in the framework of a simplified phenomenologi-
cal model, which disregards the possible orientational
transitions in the low-temperature phase of fullerite.
According to these calculations, al the el astic constants
at the T, temperature should increase by approximately
30%. Our experimental data correlate in order of mag-
nitude with these estimates.

As regards the relaxation contributions to the shear
moduli (for example, the C,, modulus) observed in the
experiment, the possible effect of shear strains on the
frequency of transitions between orientational states or
on the order parameter in solid Cg, has not yet been ana-
lyzed theoretically. Natsik and Podol’ skif [14] assumed
that the relation between the probability of orienta-
tiona transitions and shear components can be found
from a consideration of the torsional strains in the
framework of the nonsymmetric theory of elasticity
[22]. Thisis due to the fact that the rotation axis of a
particular molecule in the low-temperature phase of
fulleriteispolar [23, 24] and that the terms proportional
to the nonsymmetric part of the strain tensor and to the
spatial derivatives of the rotation vector can appear in
the expression for the energy barrier to the transition of
mol ecul es between orientational states. Another impor-
tant factor is the formation of orientational domains
(crystal regions with an isomorphic structure) in the
low-temperature phase of solid Cg, [13, 25]. The occur-
rence of these domains implies that the direction and
the sign of polarity of the rotation axis of a particular
molecule remain unchanged upon tranglation through
the lattice spacing in a statistically significant volume.
Under these conditions, the equations of motion take
the form characteristic of a micropolar medium [22,
26], which can result in a relaxation-type contribution
to the shear wave velocity. According to estimates, the
effects comparable in order of magnitude with those
experimentally observed can manifest themselves only
at very high frequencies (~10%*? Hz). However, it turns
out that, under the same conditions (the occurrence of
the polar axis and the formation of domainswith aniso-
morphic structure), the terms related to the symmetric
part of the shear strain can be written in the expression
for the deformation potential (this problem will be con-
sidered in more detail in a separate work). In this case,
the relaxation contribution to the shear moduli appears
already within the classical theory of elagticity.
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In our opinion, the problem of the possible coupling
of the shear strains to the order parameter fluctuations
can be solved by consistently considering the polarity
of the rotation axes of Cg, molecules and the orienta
tiona excitations in the structure of the low-tempera-
ture phase of fullerite.
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