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Abstract—This paper reports on a study of the specific features of photo- and thermostimulated exoelectronic
emission in amorphous metal alloys of Fe64Co21B15 composition. The temperature dependences of the exoelec-
tronic emission spectrum were established to adequately reflect the two-stage nature of the transition of an
amorphous alloy to the crystalline state. The exoelectronic emission spectrum is sensitive to variations in the
thermal treatment to which the alloy is subjected. Thermal treatment of an amorphous metal alloy gives rise to
an increase in the exoelectron emission intensity. The growth in the exoelectron emission intensity was found
to be the highest for alloys in the initial stage of crystallization. © 2001 MAIK “Nauka/Interperiodica”.
Photo- and thermostimulated exoelectronic emis-
sion (PTSEE) is one of the most sensitive methods of
reliable identification of the initial stages in the struc-
tural modification of a solid undergoing a phase transi-
tion [1, 2]. The small escape depth of exoelectrons
makes the PTSEE method sensitive even to very slight
changes in the surface structure of a solid. Although
many aspects of the mechanisms of PTSEE in solids are
presently well understood, information on its features
upon the transition of a solid from a structurally disor-
dered to an ordered state is scarce. Amorphous metal
alloys (AMAs) are the most convenient model subjects
for studying this transition [3, 4]. This paper investi-
gates various features of PTSEE in AMAs of
Fe64Co21B15 composition obtained through rapid
quenching from melt that have considerable application
potential [5, 6].

To properly understand the mechanisms underlying
the PTSEE in the samples under study and to correctly
interpret the results obtained, measurement of the exo-
electronic emission spectra should be complemented
by simultaneous study of the AMA structure using
other appropriate methods. Therefore, spectral studies
of the PTSEE were run in parallel with x-ray diffracto-
metry and differential thermal analysis (DTA) of the
structure, as well as with monitoring the variation in
electrical resistance in the course of phase transforma-
tions in the solid sample.

The PTSEE was studied on samples 25–30 µm thick
and 10 mm wide. In the initial stage, the alloys were
diffractometrically amorphous. The samples were
heated in a chamber in a vacuum of 10–4 Pa. Photostim-
ulation was effected by an optical arrangement based
on a MUM-4 monochromator. The wavelength of the
exciting radiation was chosen equal to 310 nm. The
sample temperature could be varied from 290 to
1063-7834/01/4312- $21.00 © 22205
1000 K. The PTSEE spectra were measured at constant
heating rates ranging from 5 to 60 K/min. The DTA was
carried out in air on a Paulik derivatograph at constant
heating rates ranging from 2 to 20 K/min. The crystal-
line phases formed during alloy heating were analyzed
with FeKα radiation on a DRON-3.0 diffractometer.
The variation of the sample resistance under heating
was monitored with a digital voltmeter using a four-
point method with simultaneous PTSEE spectral mea-
surements.

For the chosen photostimulation conditions and
constant heating rates ranging from 5 to 20–25 K/min,
the temperature dependences of the PTSEE response
exhibited two characteristic peaks. The first peak
obtained on the Fe64Co21B15 alloy at these heating rates
is positioned in the temperature range from 670 to 820 K;
the second peak, in the range from 850 to 900 K. Figure
1 displays the characteristic dependence of the ratio of
the exoelectronic emission photocurrent I to its maxi-
mum value Imax on the heating rate for the alloy under
study. The position of the second peak corresponds to
the onset of an irreversible drop in alloy electrical resis-
tance, which, after heating of the samples to 1000 K
and subsequent cooling to room temperature, decreases
by a factor of 2 to 2.5. The drop in electrical resistance
during heating from 800 to 850 K indicates the irrevers-
ibility of the crystallization process taking place
throughout the alloy volume [7].

The presence of two maxima in the temperature
response of the PTSEE may be connected with differ-
ent crystallization stages of the alloys under study. As
follows from x-ray diffraction measurements, the first
maximum in the PTSEE response is due to the forma-
tion of the α-Fe, α-Co, and β-Co crystalline phases [4].
The second maximum in the PTSEE response corre-
sponds to the completion of the α-Fe crystallization and
001 MAIK “Nauka/Interperiodica”
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to the formation of new phases, namely, iron and cobalt
compounds with other components (Fe2B, Fe3B, CoB).
The DTA data for the Fe64Co21B15 alloy exhibit four
exothermic peaks at 653, 753, 853, and 973 K, appear-
ing as the alloy is heated to 1000 K. The first two peaks
can be assigned to the crystallization of the alloy, and
the last two are shown by thermogravimetric measure-
ments to be due to oxidation processes occurring on the
sample surface [4].

As the heating rate is increased, the temperature
interval between the two maxima in the PTSEE
response of the alloys under study decreases until, at
heating rates above 60 K/min, the two maxima merge
(Fig. 2). This permits one to conclude that the tempera-
ture interval separating the two stages of alloy crystal-
lization becomes narrower for sample heating at a
higher constant rate.

An interesting feature in the PTSEE of the
Fe64Co21B15 alloy is that repeated heating (within the
temperature range studied) of samples in which the
crystallization has come to an end does not produce any
maxima in the PTSEE curves. This suggests that the
structure of the alloy under study has practically com-
pletely changed in the given temperature range, with no
noticeable structural changes occurring during a
repeated heating run.

The PTSEE data were used to estimate the activa-
tion energy of exoelectronic emission under the
assumption that the intensity of the escaping exoelec-
tron flux is proportional to the rate of variation of the
emitting-center concentration. The exoelectron emis-
sion activation energy was estimated using chemical
kinetic equations [8]. The calculations yield 1–1.5 eV
for the activation energy of our alloy in the first crystal-
lization stage and 2.6–3.0 eV for the second stage. The
experiment shows the reaction to be first-order, which

1.00

0.75

0.50

0.25

373 573 773 973

1.5

1.0

0.5

1

2

I/
I m

ax

R
/R

29
3 

K

T, K

Fig. 1. Temperature dependences of (1) the ratio of the exo-
electron emission photocurrent I to its maximum value Imax
and (2) the reduced electrical resistance of an Fe64Co21B15
amorphous metal alloy.
PHY
agrees with the results of investigating AMA crystalli-
zation obtained in [3].

To find how the PTSEE features are related to the
crystallization processes, we measured PTSEE spectra
of the alloys at a constant heating rate at positions both
below and above the position of the first peak and stud-
ied the temperature dependence of the PTSEE intensity
under various sample heating conditions (Fig. 3). The
PTSEE intensity of the alloy samples subjected to iso-
thermal treatment at a temperature below the position
of the first peak increases. If we assume that when the
heating time is increased the PTSEE intensity is deter-
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Fig. 2. Temperature dependences of the ratio of the exoelec-
tron emission photocurrent I to its maximum value Imax for
an Fe64Co21B15 alloy obtained at various constant heating
rates: (1) 5, (2) 10, (3) 15, (4) 20, (5) 40, and (6) 60 K/min.
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Fig. 3. Kinetic and isothermal dependences of the PTSEE
spectra of an Fe64Co21B15 alloy: (1) for a sample heated
from 293 to 623 K at a rate of 20 K/min and (2, 3) under iso-
thermal sample treatment at 623 and 823 K, respectively.
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mined by the rate of crystallization, this intensity, as
follows from the rate equation for a first-order reaction,
should decrease at a fixed temperature. The experimen-
tally observed growth in the PTSEE intensity with
increasing isothermal heating time is characteristic of
topochemical reactions [9]. The rate of a topochemical
reaction first increases with increasing isothermal heat-
ing time because of the initial growth of crystal nuclei
and subsequently decreases when the nuclei start to
coalesce.

To better understand the specific features of exo-
electronic emission in the alloys under study, we mea-
sured the PTSEE response as a function of the wave-
length of stimulating radiation both before thermal
treatment of the Fe64Co21B15 alloy and after it. The ther-
mal treatment was carried out in the following regimes:

(1) The sample was heated in vacuum to a tempera-
ture of 970 K, which is in considerable excess of its
crystallization temperature. After subsequent cooling to
room temperature, the PTSEE spectrum was measured
as a function of the stimulating radiation wavelength
(Fig. 4).

(2) The sample was heated in vacuum to 690 K,
which corresponds to the initial stage of alloy crystalli-
zation; it was then cooled to room temperature. After
cooling, the PTSEE response was measured as a func-
tion of the stimulating radiation wavelength (Fig. 5).

(3) The alloy was subjected to isothermal heating in
air at 470 K for 100 and 200 h, after which it was cooled
to room temperature. As in the first two cases, a PTSEE
spectrum was obtained after sample cooling (Fig. 5). In
all three cases, after thermal treatment, the samples
were maintained isothermally at room temperature for
24 h and then a PTSEE spectrum was again measured.

After thermal treatment of the alloy, the exoelectron
emission intensity increased in comparison to that for
the original sample throughout the radiation wave-
length range studied, irrespective of the actual treat-
ment conditions chosen. The growth in the exoelectron
emission intensity was larger, the longer the alloy iso-
thermal heating time. The increase in the exoelectron
emission intensity induced by the thermal treatment
was the largest in the second regime, i.e., after the alloy
passed through the initial crystallization stage. After the
sample had been kept at room temperature for 24 h, the
exoelectron emission intensity decreased, irrespective
of the thermal treatment regime it had been subjected to.

These results can be interpreted as follows. The
growth in the exoelectron emission intensity is caused
by a change in the alloy surface work function. It may
be conjectured that the change in the exoelectron work
function observed in the first two regimes of the alloy
thermal treatment can be caused by the increased inter-
nal stresses due to crystallization in the sample. A
decrease in the exoelectron work function with increas-
ing internal stresses in a metal was observed earlier in
[1]. The growth in the exoelectron emission intensity
after isothermal treatment at 470 K in air may be caused
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      20
by surface oxidation. When a sample is kept at room
temperature, the internal stresses created in the course
of crystallization relax and, as a consequence, the
PTSEE intensity decreases. The change ∆E in the exo-
electron work function can be estimated from the rela-
tion

where c is the velocity of light and λm is the mean wave-
length of the stimulating radiation at the same exoelec-
tron emission intensity for the original and thermally
treated samples. When a Fe64Co21B15 sample is heated
to 970 K at λm = 300 nm, the change ∆λ is equal to
20 nm, which corresponds to a decrease in E of 0.25 eV

∆E "c/λm
2( )∆λ ,=

1.0

0.8

0.6

0.4

0.2

260 280 300 320 340
λ, nm

I,
 a

rb
. u

ni
ts

1
2

Fig. 4. Spectral response of the exoelectron emission pho-
tocurrent I of an Fe64Co21B15 alloy: (1) starting sample and
(2) a sample subjected to thermal treatment in vacuum at
970 K.
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Fig. 5. Spectral response of the exoelectron emission pho-
tocurrent I of an Fe64Co21B15 alloy: (1) starting sample;
(2) a sample subjected to thermal treatment in vacuum at
690 K; (3) a sample subjected to further isothermal treat-
ment at room temperature for 24 h; and (4, 5) samples sub-
jected to isothermal treatment at 473 K in air for 100 and
200 h, respectively.
01



2208 VEKSLER et al.
as compared to the value for the untreated sample.
Heating to 690 K for λm = 280 nm reduces E by 0.60 eV,
and isothermal treatment in air at 470 K for 200 h
reduces E by 0.20 eV.

The above studies permit the following conclusions
to be drawn on the PTSEE in the Fe64Co21B15 amor-
phous metal alloy observed to occur upon its transition
to the crystalline state:

(1) The temperature dependences of the PTSEE
response reflect a two-stage pattern in the structural
changes taking place in the heated AMA sample under
study. These stages are most clearly defined at low sam-
ple heating rates. By analyzing the PTSEE spectrum,
one can determine the activation energy for each crys-
tallization stage.

(2) The PTSEE spectrum is very sensitive to isother-
mal treatment temperatures and variations in the AMA
heating regimes. At the same time, repeated heating of
samples that have already crystallized, within the tem-
perature range studied, and changing the heating
regimes does not produce any peaks in the temperature
dependences of the exoelectron emission intensity.

(3) Thermal treatment of the AMAs studied
increases the exoelectron emission intensity, which is
associated with the structural changes that the AMAs
undergo in this treatment. The PTSEE intensity
PH
increase is the largest for the AMAs that went through
the initial crystallization stage.
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Abstract—Direct evidence of the existence of broken Abrikosov vortices is obtained from measurements of
the distribution and values of residual magnetic fields in ceramic yttrium HTSC samples after the switching off
of a transport current. In this case, the intergrain magnetic induction averaged over the sample volume has the
same direction as the field that was in the sample before the current was switched off. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The critical current Ic in type II superconductors is
determined by the pinning of quantized vortices; in
ceramic HTSC samples, it also depends on the magni-
tude of the intergrain magnetic induction Bj [1]. It was
reported in [2] that after switching off of a transport
current, the magnetic field in weak bonds was in the
opposite direction to the field produced by the current;
that is, inversion of the sign takes place for the Bj distri-
bution. As a result, when repeatedly measured, the crit-
ical current Ic had a higher value. In [3], the increase in
Ic is explained by the fact that the process of penetration
of the Josephson vortex rings into the samples is
affected by the remanent circular magnetic fields HREM
that are created by the stray fields of the broken Abri-
kosov vortices. In order to document the existence of
broken Abrikosov vortices, we investigated the field
HREM and its distribution outside ceramic yttrium
HTSC samples.

2. EXPERIMENT AND DISCUSSION

We investigated HTSC ceramic samples of
YBa2Cu3Ox, whose superconducting properties were
studied earlier [3].

To produce a circular transverse magnetic field Ht,
an electric current It was passed through samples kept
at room temperature. The samples were cooled to T =
77 K in this field, after which the current It was
switched off and the distribution of the remanent mag-

netic field  was measured outside the samples
(which were kept in liquid nitrogen) using a standard
magnetometer [4]. The sensitivity of the measuring sys-
tem was 0.01 Oe. It was established that the field Ht did
not change during the transition from the normal to the
superconducting state; that is, the field distribution out-
side the HTSC samples coincided with that predicted

HREM
out
1063-7834/01/4312- $21.00 © 22209
for a superconducting cylinder with a current flowing
near the surface [5].

Figure 1 presents the distribution of the circular

magnetic field  in the cross-sectional plane
recorded outside a cylindrical yttrium HTSC sample
4.5 mm in diameter and 35 mm in length after switch-
ing off of the current It = 10 A; this current was passed
perpendicular to the plane of the figure. The critical
temperature of the sample was Tc ≅  90 K, and the criti-
cal current was Ic = 5.89 A at 77 K. The magnetic field
of the Earth was not screened. The measurements were
taken at discrete points in angular ϕ = 30° intervals. A
Hall cell (the crystal dimensions were 1.5 × 2 mm) was
placed near the cylindrical sample surface. The sample

HREM
out

+
It

1 Oe

Fig. 1. Experimental distribution of the parallel and perpen-
dicular components of the residual circular magnetic field
outside a cylindrical sample (crosshatched) after switching
off of the current It.
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was in a vertical position. The field values and its distri-
bution remained almost unchanged over the sample
height. The measurements revealed no magnetic-field
component parallel to the axis of the cylindrical sam-
ple. No residual magnetic field was detected at the cyl-

inder end faces. Figure 2 shows the  field distri-
bution in the cross section of a sample with cross-sec-
tional dimensions 5 × 5 mm 35 mm in length. The
measurements were taken under the same conditions as
for the cylindrical sample.

As can be seen from Figs. 1 and 2, the  field
distribution is similar to the field distribution for a mag-

net, with  = 0, for any closed contour L pass-

ing outside the sample if I = 0. The results obtained are
evidence in favor of the suggestion [3] that the
increased values of the repeatedly measured critical
current are due to the circular transverse magnetic field

 [3] created by the intrinsic magnetic field Ht of
the current and remains in the sample after the current
It is switched off.

The capturing of a circular magnetic field by a
ceramic HTSC sample can occur as follows. If a super-
conductor in the normal state carries a direct current,
the circulation of the circular magnetic field Hi of the
current I is equal to [6]

HREM
out

HREM
out

HREM
out dl

L∫°

HREM
in

Hidl
L

∫° 4π/c( )I ,=

+
It

1 Oe

Fig. 2. Experimental distribution of the parallel and perpen-
dicular components of the circular residual magnetic field
outside a sample with a square cross section after switching
off of the current It.
PH
where I =  is the full current flowing through the

cross section S0 enclosed by loop L, c is the velocity of
light in vacuum, and J is the current density. After the
current I is switched off, the field Hi = 0. In ceramic
HTSC samples, the field Hi behaves in a completely
different way. When the sample passes over to the
superconducting state, the configuration of this circular
field has the form of rings that are formed from quan-
tized magnetic Abrikosov vortices [3]. The unbroken
vortex rings penetrate the grains, intergrain bonds, and
nonhomogeneities. After the current It is switched off at
77 K, the vortex rings are pinned within the grains into
which they had already penetrated at T ≅  Tc, when the
lower critical magnetic field for the grains was Hc1g ≅  0.
Since the magnetic field Hv of an unbroken vortex tor-
oid is completely inside the vortex [7], it cannot be
detected outside the superconductor. The field will
appear outside the superconductor if vortices are bro-
ken. In ordinary low-temperature superconductors, the
vortices are attracted to nonhomogeneities with a force
fp equal to the energy gradient. For a nonhomogeneity

with diameter d, we have [8]  fp ~ ξd, where Hc is the
thermodynamic critical magnetic field and ξ is the
coherence length. This force is large: it is equal to the
Lorentz force that acts on the vortex when the current
passing through the sample is comparable with the crit-
ical current at which a Cooper pair is broken [8]. From
the relation E1/E0 = 3/π2ln[λL(0)/ξ0(0)] derived in [9],
one can estimate the energy gain for a pure supercon-
ductor at T = 0, where the sum E1 + E0 is equal to the
vortex energy E per unit length. Here, the term E0 =
(Φ0/4πλL)2ln(λL/ξ) allows for the change in the energy
of electrons in a magnetic field and their kinetic energy

(superconduction current) and E1 = ( ξ2/8π) is the
energy necessary to transfer electrons from the super-
conducting to the normal state inside the vortex core;
that is, it is equal to the condensation energy. In this
case, Φ0 = hc/2e is the magnetic flux quantum, h is
Planck’s constant, c is the velocity of light in vacuum,
e is the electron charge, λL is the London penetration
depth of a magnetic field, λL(0) is the London depth of
the magnetic field penetration at T = 0, and ξ0(0) is the
coherence length for a pure superconductor at T = 0. If
a vortex passes through a cavity of dimensions d ≥ ξ,
then the excess energy E1 is absent. The total energy Eb

of such a vortex is less than the energy E for a vortex
that does not cross a cavity. For YBa2Cu3Ox, in which
the Ginzburg–Landau parameter is κ = λL/ξ ≅  50, we
have E1/E0 ~ 8%. In the ceramic yttrium HTSCs under
study, there are a lot of nonsuperconducting inclusions
even with dimensions d @ λL [10]. In this case, putting
λL ≅  50ξ, we find that the energy gain is even higher for
vortices crossing such inclusions. Being attracted to
pores and nonsuperconducting inclusions and crossing
them, the vortex rings break. The magnetic fields Hv

JdS0∫°

Hc
2

Hc
2
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inside the vortices dissipate in the regions of the ring
breakage. The corresponding lines of magnetic induc-
tion remain continuous but are curved in a complicated
way. These lines of the stray magnetic field, being
trapped within the intergrain space outside the pinned
vortex parts, penetrate to a depth λL into the grains and
partially go out of the sample.

The conclusion that the vortex lines are broken by
nonhomogeneities is supported by the following three
arguments. First, the conditions under which this
occurs, as well as the fact that in ceramic HTSCs there
are broken vortex lines which consist of vortex seg-
ments separated from each other by nonhomogeneities,
were established by analyzing the operation of dc
superconducting thin-film transformers [11]. In these
transformers, when the width of the insulating layer
between the primary and secondary films is larger than
λL, the magnetic coupling between the vortices present
in these films is broken. The vortices created by the
same field in the primary and secondary films move
independently, sliding with respect to each other; that
is, the vortex lines are broken. Second, the vortex lines
are singular lines in the velocity distribution of Cooper
pairs rotating around a certain axis. A vortex line is
characterized by a quantized value of circulation of the

velocity vs of superconducting electrons  =

πk"/m (k = 1) [8] along the closed path C enclosing
their rotation axis (m is the mass of superconducting
electrons). This means [12] that the vortex line is either
closed or terminates at the boundary between the super-
conducting region and a nonsuperconducting nonho-
mogeneity, being continuous in the pure superconduct-
ing region. Finally, third, as was noted in [8], the vortex
section that is attracted to a nonhomogeneity disap-
pears, because it and its virtual image annihilate each
other; that is, the vortex breaks.

In a broken vortex ring, the axial lines of the mag-
netic induction Hv , as well as those near them, remain
the same as in the unbroken one. The distinction from
the unbroken ring is in that there is no rotation of Coo-
per pairs in the nonsuperconducting inclusions and the
magnetic induction lines can deviate from one another.
The broken vortex rings take a fine-saw-like form due
to the chaotic distribution of nonhomogeneities in the
ceramic HTSC samples.

The configuration of the magnetic field of the sam-
ples with a rectangular cross section (Fig. 2) suggests
that broken vortex rings are also present in this case.
The possible existence of vortex rings in samples of
such geometry was discussed in [13].

In order to verify the mechanism of creation of
residual magnetic fields considered above, we per-
formed a model experiment in which cylindrical mag-
nets 0.035 m in diameter and 0.01 m in height were
used as broken vortex lines. The magnetic field strength
at the end faces was 500 Oe. Twenty such magnets were
vertically mounted on a horizontal nonmagnetic disk

vsdl
C∫°
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0.22 m in diameter. The disk was attached to a rod
joined to a reducing gear of an electric motor. Magnets
of alternating polarity were arranged in a circle of
radius 0.1 m at an equal distance from one another. A
Hall cell with a magnetic sensitivity of 135 µV/T,
placed at a certain distance from the disk edge, was
used to determine the distribution of the circular mag-
netic field produced by the magnets in the disk plane.
For this purpose, the electric motor was switched on
and the disk was rotated slowly and uniformly. Figure 3
presents the Hall cell response (ordinate) as a function
of the disk rotation angle. The Hall cell was placed at a
distance of 0.235 m from the disk center. Figure 3 pre-
sents, in fact, the distribution of the circular magnetic
field recorded by the Hall cell over a rotation period of
the disk. The result obtained is analogous to that pre-
sented in Fig. 1, thereby verifying the suggestion that
the residual circular magnetic fields are produced by
broken quantized vortices in the ceramic yttrium HTSC
samples. The circulation of the magnetic field in the
model experiment was equal to zero irrespective of the
distance of the Hall cell from the disk edge and regard-
less of the fact that the form of the distribution and the
magnetic field magnitude were changed. When the Hall
cell was placed near the disk edge, the signal value ver-
sus the disk rotation angle curve displayed maxima and
minima and went through zero values. When the Hall
cell was placed far from the disk edge, the number of
maxima and minima decreased until the curve took the
form shown in Fig. 3. Further increase in the distance
between the Hall cell and the disk edge resulted in a
decrease in the signal amplitude and in the conversion
of the curve into a straight line.

3. CONCLUSIONS

Thus, the field  detected outside the ceramic
HTSC samples is shown to be produced by broken vor-

HREM
out
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Fig. 3. Hall cell response U as a function of the disk rotation
angle ϕ.
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tices. Inside the sample, the averaged magnetic flux
remains in a net of weak bonds; its value Φ ≤ nΦ0 has
the same sign as the flux of the unbroken vortex rings.
Here, n is the number of broken vortex rings in the sam-

ple. The field  is weak, which suggests that only
an insignificant part of the magnetic field Hv inside the
broken vortices dissipates and that most of this field
remains in the sample.

Therefore, after the transport current is switched off
in the sample, no inversion of the Bj sign occurs in the
intergrain space. This follows from Stock’s theorem
and is supported by the character of the distribution of
the residual magnetic field outside the sample, which is
presented in Figs. 1 and 2.
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Abstract—This paper reports on a self-consistent, full-potential LMTO calculation of the band structure of the
medium-Tc superconductor MgB2 and of the isostructural hexagonal phases of CaGa2, ZrBe2, HfBe2, AgB2, and
AuB2. The factors responsible for the superconducting properties of magnesium diboride are considered. The
results obtained are compared with previous calculations and available experimental data. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The discovery of superconductivity in magnesium
diboride [1] has focused considerable attention on its
electronic structure. MgB2 was the first compound
found to occupy an intermediate place between low-
and high-temperature superconductors in the magni-
tude of its Tc (~40 K). To stress this point, MgB2 is
referred to in the current literature as a medium-Tc

superconductor (MTSC). An important feature of
MgB2 is its quasi-two-dimensional structure (AlB2-

type, space group –P6/mmm), which consists of
hexagonal Mg layers and plane graphitelike boron net-
works stacked in the order…MgBMgB… [2–6].

As shown in studies on the isotope effect [7], tunnel-
ing [8], photoelectron [9], and vibrational spectroscopy
[10], as well as on the band structure [11–17] and from
phonon spectrum [18–20] calculations, the supercon-
ductivity in MgB2 should be associated with strong
electron–phonon coupling, the relatively high density
of electronic states of the 2D-like σ(px, y) boron bands
at the Fermi level [N(EF)] and the existence of px, y hole
states at the Γ point in the Brillouin zone (BZ).

The above assumptions formed a basis for analyzing
the superconducting characteristics of some solid solu-
tions based on the MTSC phase (which were obtained
by incorporating various electron or hole dopants into
the magnesium or boron sublattices [14–17]), as well as
of a number of related AlB2-like stable and metastable
diborides of Na, Li [13, 17], Be [14], Ca [16], and Al
[15–17]. The band structure of 3d (Sc, Ti,…, Mn), 4d
(Y, Zr,..., Ru), and 5d (La, Hf,…, Os) metal diborides
was studied in [21, 22].

More than a hundred binary compounds with an
AlB2-type structure are presently known. In addition to

D6h
1
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the above diborides, this group contains various MX2
phases, where Be, Si, Ga, Hg, Zn, Cd, Al, Cu, Ag, and
Au can act as X elements forming graphitelike net-
works [2, 4]. The crystal structure parameters (the c/a
ratio) of these phases vary within a wide range from
0.59 to 1.22. Because the main part in the electron–
phonon interactions in the MgB2 MTSC is played by
the electronic and hole states and vibrational modes of
boron atoms (in the networks) [18–20], it becomes
obvious that possible nonboride analogs of MgB2
should include light sp atoms as X elements.

We carried out a comparative analysis of the band
structure of the MgB2 MTSC (c/a = 1.142) and of the
isostructural MX2 phases where the graphitelike net-
works are formed of beryllium and gallium, namely,
ZrBe2, HfBe2 (c/a = 0.85–0.84), and CaGa2 (c/a =
1.00). Moreover, we considered the hypothetical
diborides of Ag and Au. Although their existence (in
equilibrium conditions) is questionable [2–6], these
metals (as well as Cu), when added to MgB2, may act
as hole dopants. The radii of Ag and Au (1.13–1.37) are
markedly larger than that of Mg2+ (0.74 Å); i.e., their
incorporation into magnesium diboride is expected to
increase the unit-cell volume and soften the phonon
modes. Both above factors are considered [12–17] con-
ducive to the possible improvement of the MTSC char-
acteristics of MgB2.

2. MODEL AND METHOD OF CALCULATION

Boron atoms in MgB2 occupy the central position in
Mg trigonal prisms, which share faces to form a three-
dimensional arrangement [2–6]. The coordination
numbers and coordination polyhedra of the Mg atoms
are 20 and [MgB12Mg8], and those of the boron atoms
001 MAIK “Nauka/Interperiodica”
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Table 1.  Structural parameters of hexagonal MX2 phases

Phase a c c/a X–X M–X V

MgB2 3.084 3.522 1.142 1.781 2.504 29.010

CaGa2 4.320 4.320 1.000 2.494 3.299 69.820

AgB2 3.000 3.240 1.080 1.732 2.372 25.253

AuB2 3.134 3.513 1.121 1.809 2.522 29.882

ZrBe2 3.820 3.250 0.850 2.205 2.739 27.878

HfBe2 3.788 3.168 0.836 2.187 2.700 27.177

Note: The lattice parameters a, c, c/a and the closest X–X and M–X atomic distances are given in Å, and the unit-cell volume V is given
in Å3 [2–6].

Table 2.  Total density of states at the Fermi level N(EF) and the contributions of individual states (states/eV per unit cell) in
hexagonal MX2 phases

Phase
N(EF)

total Ms Mp Md Mf Xs Xp Xd

MgB2 0.719 0.040 0.083 0.138 – 0.007 0.448 –

CaGa2 1.486 0.028 0.177 0.696 – 0.012 0.546 0.027

AgB2 2.000 0.032 0.066 0.570 – 0.057 1.333 –

AuB2 2.153 0.144 0.068 0.655 – 0.069 1.258 –

ZrBe2 1.680 0.002 0.112 1.091 – 0.002 0.473 –

HfBe2 1.660 0.004 0.118 1.011 0.025 0.003 0.499 –
are 9 and [BMg6B3], respectively. The atom positions in
the unit cell are as follows: the 1Mg(a) atom is at
(0,0,0) and the 2B(d) atoms are at (1/3,2/3,1/2) and
(2/3,1/3,1/2). The unit-cell parameters of MgB2 and of
the isostructural MX2 phases (CaGa2, ZrBe2, HfBe2,
AgB2, AuB2) are given in Table 1. Their band structure
was calculated using the self-consistent, full-potential,
linear, muffin-tin orbital method (FLMTO) [23, 24] in
terms of the density-functional theory with inclusion of
relativistic effects in accordance with the scheme in
[25] with the exchange correlation potential proposed
in [26].

The atomic interactions in MX2 were also analyzed
using the tight-binding method in Hückel parametriza-
tion, which was used to estimate the crystal-orbital
overlap population (a counterpart of the occupation
(index) of pair atomic bonds that is well known in the
quantum chemistry of molecules [27]).

3. DISCUSSION OF RESULTS

The results of the calculations made for MgB2,
CaGa2, ZrBe2, HfBe2, AgB2, and AuB2 are presented in
Figs. 1 and 2 and Table 2. We shall discuss them in
comparison with the band structure of the MTSC
MgB2.
PH
3.1. Magnesium Diboride

The energy bands and density-of-states functions of
MgB2 are displayed in Figs. 1 and 2. The valence-band
energy spectrum of MgB2 is seen to derive primarily
from the B 2p states, which form two distinct groups of
energy bands of the σ(2px, y) and π(pz) types with essen-
tially different dispersion relations E(k).

The dispersion E(k) of the B 2px, y bands is the larg-
est in the kx, y (Γ–K) direction. These bands reflect the
boron-state distribution in the graphitelike network
planes, are of the 2D type, and form plane sections in
the kz (Γ–A) direction. The B 2px, y bands contribute to
the valence-band density of states (DOS) and form a
resonant DOS peak (~2 eV below EF, Fig. 2) associated
with the van Hove singularity (VHS) at the M point of
the BZ. These bands contribute noticeably to N(EF) and
are responsible for the metal-like properties of the
diboride. The B 2px, y bands within the Γ–A section lie
above EF and form cylindrical elements of the hole-type
Fermi surface.

The B 2pz-like states are responsible for the weak
interlayer coupling. These (3D-type) bands have maxi-
mum dispersion in the kz (Γ–A) direction. The B s states
are admixed to the B 2p-like bands near the valence
band edge and in the conduction band (Fig. 2). A simi-
lar band structure was also obtained in other calcula-
tions [11–17] and can account for the MTSC properties
of MgB2 (for more details, see [11–13]).
YSICS OF THE SOLID STATE      Vol. 43      No. 12      2001
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Fig. 1. Energy bands of MgB2, CaGa2, AgB2, AuB2, ZrBe2, and HfBe2.
Thus, the band spectrum of the MTSC MgB2 has the
following characteristic elements related to its super-
conducting properties and to the intra- and interlayer
interactions: (1) the position of the degenerate 2D-like
σ(px, y) bands relative to the BZ Γ point (the presence of
hole states); (2) the energy splitting between the bond-
ing and antibonding σ(px, y) bands (dependent on the
intralayer B–B interactions); (3) the π-band dispersion
in the Γ–A direction and the energy position of the
crossing of the bonding and antibonding B 2pz bands
(at the K point of the BZ; dependent on the interlayer
Mg–B coupling); (4) the position of the VHSs of the
quasi-two-dimensional σ bands relative to the Fermi
level; and (5) the total density of states at the Fermi
level and its partial composition. The above features of
OF THE SOLID STATE      Vol. 43      No. 12      20
the band structure will be analyzed in the discussion of
the other AlB2-like phases.

3.2. CaGa2

The energy bands of this phase (Fig. 1, see also [28])
differ strongly from those of the MTSC MgB2. The
σ(px, y) and π(pz) bands of the calcium gallide cross at
the BZ Γ point and lie below EF. The σ holes are
present in low concentration near the A point. As a
result, the topologies of the Fermi surface of MgB2 and
CaGa2 are different: the cylinders (for MgB2, in the Γ–
A direction [11, 12]) degenerate into cones in CaGa2.
Note that a similar structure of the σ(px, y) bands was
01
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obtained for isoelectronic and isostructural BeB2
[15,16], which is not an MTSC [29].

The intra- (Ga–Ga) and interlayer (Ga–Ca) interac-
tions in CaGa2 are weaker than the respective interac-
tions in MgB2. This is seen from the decrease in both
the splitting between the bonding and antibonding
σ(px, y) bands and in the dispersion of the π band (in the
Γ–A direction). The VHS of the σ band is shifted
toward EF, which may be due to the increasing unit-cell
volume [V(CaGa2)/V(MgB2) = 2.4]. Similar shifts were
shown to exist [14] for hypothetical CaB2 and in model
calculations of magnesium diboride with an extended
lattice [17]. The main contribution to the density of
states at the Fermi level (~61%) comes from the cal-
cium states.

3.3. ZrBe2 and HfBe2

The structure of the valence band top of the beryl-
lides is determined by the strong hybrid coupling
between the (Zr, Hf) d and (Be) sp states (Figs. 1, 2).
The Be σ bands exhibit noticeable dispersion in the Γ–
A direction, and there are no hole states. The spectra of
the Zr and Hf beryllides are similar (in the pattern of
distribution of the energy bands, their composition, and
filling) to those for the isostructural (and isoelectronic)
diborides of Sc and Y [14, 16]. The latter are known to
exhibit no superconductivity down to T < 1.4 K [4].

3.4. AgB2 and AuB2

The energy bands of these hypothetical diborides
are the closest (among the phases considered here) to
those of the MTSC MgB2 (Fig. 1). The main differ-
ences in them are associated with the substantially
smaller dispersion of the σ and π bands. The latter fea-
ture [as well as the lower energy position of the cross-
ing point of the bonding and antibonding B 2pz bands
(at the K point of the BZ)] implies extremely weak
interlayer coupling and is, apparently, one of the factors
of instability (under normal conditions) of these
diborides. On the other hand, the existence of a band of
filled (Ag, Au) d states brings about an energy separa-
tion between the σ bands and the upper of them
becomes localized near EF (Figs. 1, 2). This entails a
sharp increase (about threefold compared to MgB2) in
the density of B 2p states at the Fermi level (Table 2).
This feature may be considered as conducive to the for-
mation of superconducting properties in diborides.

In conclusion, consider the other bonding types (X–
X, M–X, and M–M) using the crystal-orbital overlap
population numbers (Table 3). For MgB2, the in-plane
B–B interactions in the graphitelike networks are dom-
inant. This is in agreement with the calculated bond
energies [30] (Ebond FLMTO calculation using the
method from [21]), which indicates a dominant contri-
bution from the B–B interactions [B–B (68%), B–Mg
(23%), and Mg–Mg (9%)] to the total cohesion energy
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      20
in MgB2. A similar bonding type is also characteristic
of CaGa2 (Table 3).

A radically different bonding system is realized in
beryllides, where interactions of all types (e.g., for
ZrBe2, the Zr–Zr, Zr–Be, and Be–Be bonds) are compa-
rable in strength (Table 2). Finally, similar calculations
made for the hypothetical diborides of Ag and Au per-
mit one to relate their instability both to the decrease in
the M–B interlayer coupling (relative to MgB2) and to
the strong weakening of the B–B bonds in the net-
works. This undersaturation of the B–B bonds is
accounted for by the substantially smaller electron den-
sity transfer from (Ag, Au) to B compared to the
Mg  B transfer in magnesium diboride.

4. CONCLUSIONS

Thus, our calculations show that the band structure
of the nonboride AlB2-like phases, which involve sp
elements making up graphitelike networks, differs
strongly from that of MgB2; therefore, a search for new
MTSC phases among the former compounds (as well as
among the d metal diborides, see [14, 16]) does not
hold obvious promise. The main MTSC candidates
among the AlB2-like structures are probably the
diborides of Group I and II elements, their solid solu-
tions, or superstructures. As follows from calculations
of the hypothetical Ag and Au diborides, the presence
of these elements, e.g., as impurities (or in atomic lay-
ers) in solid solutions (or superstructures), can modify
the MTSC properties of the magnesium diboride
through an increase in the density of states at the Fermi
level of the system.
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Abstract—A model for describing hopping thermopower is proposed. Within the model, the majority and com-
pensating impurities form a simple cubic lattice in a crystal matrix. The thermopower associated with hole
(electron) hopping over hydrogen-like impurities is calculated with inclusion of their excited states. The results
of calculations are compared with available experimental data on the low-temperature thermopower of Ge : Ga
and the specific heat of Si : P in the dielectric region of the insulator–metal transition. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The differential thermopower α is equal to the ratio
of the potential difference to the temperature difference
across two points of a semiconductor sample when
measured without loading. In the case when a higher
electric potential corresponds to a lower temperature,
the thermopower α is positive. In the short-circuit
mode, the thermoelectric current inside a semiconduc-
tor flows from a hot point to a cold point; i.e., it is
caused by the migration of positively charged particles
[1–4].

The thermopower due to hopping transfer of elec-
trons (holes) over hydrogen-like impurities in covalent
crystalline semiconductors [5–9] has been less well
understood compared to the thermopower associated
with the hopping motion of small-radius polarons in the
lattice of ionic crystals and glasses containing transi-
tion metal ions [10–14]. This can be explained in part
by the fact that hopping conduction in crystalline semi-
conductors occurs over shallow-level impurities (Ge : Ga)
at liquid-helium temperatures [8] and only over deep-
level impurities (InP : Mn) at liquid-nitrogen tempera-
tures [15].

In the case when a lattice site of an ionic crystal is
occupied by one electron, the thermopower associated
with hopping transfer of small-radius polarons is
defined as [10, 11]

(1)

where kB is the Boltzmann constant, q is the magnitude
of the elementary charge, C = np/Ns is the ratio of the
number np of polarons to the number Ns of lattice sites

per unit volume,  is the vibrational entropy corre-
sponding to the ions surrounding a polaron (a crystal

αpol
kB

q
-----– β1 C–

C
------------ 

 ln
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kB
------+

 
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q
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lattice site with a trapped electron), β is the degeneracy
factor including the orbital and spin degeneracy of the
polaron,  = kBln[β(1 – C)/C] is the configurational

entropy, and  +  is the entropy carried by the
polaron.

Note that, for the most part, relationship (1) ade-
quately describes experimental data on the ther-
mopower of polarons in glasses [13] at moderate tem-
peratures. In the subsequent treatment, this relationship
will be used only in order to establish an analogy
between the thermopower of polarons and the ther-
mopower caused by charge carrier hopping over impu-
rities in covalent semiconductors when the thermal
energy kBT exceeds the width W of the impurity energy
band.

In many cases, it can be stated that the models
describing incoherent hopping of small-radius polarons
over lattice sites in ionic crystals are similar to those for
hopping of electrons and holes over impurities (point
lattice defects) in covalent crystals. In particular,
Heikes [10] and Tuller and Nowick [11] assumed that
incoherent migration of small-radius polarons over
crystal lattice sites requires the formation of a barrier to
hopping, i.e., the equalization of the energies of atomic
configurations surrounding an electron between two
lattice sites. In our recent work [16], the same assump-
tion was used as the basis for calculating the hopping
electrical conduction through hydrogen-like impurities
forming a simple cubic lattice in a temperature-homo-
geneous (isothermal) crystal.

The aim of the present work was to generalize the
model describing the hopping transfer of electrons
(holes) over impurity lattice sites [16] to the case of
covalent crystalline semiconductors with due regard for
the temperature gradient, excited states, and finite
degree of compensation of the impurity energy band.

Sc*

St* Sc*
001 MAIK “Nauka/Interperiodica”
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2. HOPPING CURRENT IN THE PRESENCE 
OF A TEMPERATURE GRADIENT

For definiteness, we consider the hopping of holes
over hydrogen-like acceptors that can occur only in the
charge states 0 and –1. Compensating donors are com-
pletely ionized (i.e., they reside in a charge state +1)
and do not participate in hopping conduction. The vol-
ume concentration of the majority dopant impurity is
designated as N.

Let us assume that acceptors with the concentration
N = N0 + N–1 and donors with the concentration KN
form a simple cubic lattice with the translation period
Rh = [(1 + K)N]–1/3 in a crystal matrix. Here, K is the
degree of compensation (0 < K < 1). In this case, accep-
tors and donors occupy lattice sites in a random man-
ner. Hence, each of the impurity atoms has six nearest
neighbors (the first coordination sphere of the impurity
lattice). The crystal matrix is treated as a continuous
medium with the permittivity ε = εrε0, where ε0 is the
permittivity of free space. The electroneutrality equa-
tion for the impurity lattice and matrix has the form
N−1 = KN.

Now, we suppose that an external source produces a
temperature gradient along the OX axis (the higher tem-
peratures correspond to larger x) in a homogeneous
crystal sample. In turn, this induces a thermoelectric
field with the strength Ei = –dϕ/dx, where ϕ(x) is the
electric potential along the OX axis.

The orientation of the coordinate system is chosen
in such a way that the edge of a cubic unit cell in the
impurity lattice is aligned parallel to the OX axis (i.e., it
is parallel to the temperature gradient). Moreover, we
assume that hole hopping occurs only between the
nearest acceptors. This implies that the length of hole
hopping from an acceptor in the charge state 0 to an
acceptor in the charge state –1 is equal to Rh.

For the impurity lattice, the average probability that
a neutral acceptor occupies an arbitrary site with the
coordinate x is defined as fN0(x)/N and the average
probability that an ionized acceptor is located at an
arbitrary site with the coordinate (x + Rh) is given by
fN0(x + Rh)/N. Here, f = 1/(1 + K) is the correlation fac-
tor (the fraction of dopant atoms located at sites of the
impurity lattice). Similarly, the probability that the
nearest neighbor of a neutral acceptor (in the charge
state 0) with the coordinate x + Rh is an ionized acceptor
(in the charge state –1) with the coordinate x is equal to
fN–1(x)/N. The surface concentrations of neutral accep-
tors in the impurity lattice planes, which are perpen-
dicular to the OX axis and pass through sites with the
coordinates x and x + Rh, are defined as RhN0(x) and
RhN0(x + Rh), respectively.

The temperature gradient and the induced thermo-
electric field bring about a change in the concentration
of acceptors in the charge states 0 and –1 and a change
in the frequency of hole hoppings along the OX axis.
The difference between the mean number of holes hop-
PH
ping over acceptors along the OX axis and in the oppo-
site direction determines the hopping current density
J0, –1 = Jh, that is,

(2)

where Γ(x; x + Rh) and Γ(x + Rh; x) are the average fre-
quencies (dependent on the coordinate x and the dis-
tance Rh between sites of the impurity lattice) of hole
hoppings along the OX axis and in the opposite direc-
tion, respectively, and N0(x) + N–1(x) = N.

In the absence of a temperature gradient, we have
the equilibrium frequencies of hole hoppings in both
directions, Γ(x; x + Rh) = Γ(x + Rh; x) = Γh/2, and the
concentration of neutral acceptors N0(x) = N0(x + Rh),
so that the current density Jh is equal to zero.

For a weak thermoelectric field, we can write the
following relationships:

It follows from expression (2) that, in the linear approx-
imation, the current density of holes hopping from
acceptors in the charge state 0 to acceptors in the charge
state –1 is represented by the formula

(3)

where Nh(x) = N0(x)N–1(x)/N is the effective concentra-

tion of holes hopping between acceptors, Dh = f Γh/2
is the diffusion coefficient of holes in the impurity lat-
tice, and dJh /dx = 0.

Expression (3) can be transformed taking into
account that the frequency of hole hoppings Γ and the
concentration of neutral acceptors N0 = N – N–1 are
functions of the electric potential ϕ(x), the Fermi level
EF(x), and the temperature T(x) and that they depend on
the coordinate x only through these quantities. We
choose ϕ and T as independent variables for Γ, i.e., Γ =
Γ(ϕ, T), and EF and T for N0, i.e., N0(EF, T). As a result,
we obtain

(4)

Here, the energy barriers to the migration of holes over
acceptors are taken to be independent of the tempera-
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ture gradient responsible for the phonon and hole fluxes
in the crystal.

Upon substitution of relationships (4) into expres-
sion (3), we obtain the thermoelectric current density

(5)

where Mh = f ∂Γ/∂ϕ > 0 is the drift mobility of holes
hopping over acceptors.

It should be noted that the parameters of the crystal,
impurity atoms, and hopping holes in formula (5) are
calculated under the assumption of a local thermody-
namic equilibrium.

For an isothermal sample (dT/dx = 0) in an external
electric field E = –dϕ/dx, relationship (5) can be recast
into the following expression for the dc density of holes
hopping over acceptors [16]:

where σh = qNhMh = qK(1 – K)NMh is the hopping elec-
trical conductivity.

3. THERMOPOWER OF HOLES HOPPING
OVER HYDROGEN-LIKE ACCEPTORS

Let us examine a lightly doped semiconductor with
a classic impurity band in the case when the energy
spread of impurity levels is considerably larger than the
quantum resonant broadening of these levels [6]. As an
example, we consider crystalline p-Ge with the concen-
tration of gallium atoms N = 3 × 1016 cm–3 and the
degree of their compensation K = 0.35 in the tempera-
ture range T = 0–10 K. At K = 0.35, the gallium concen-
tration in germanium Nc, which corresponds to the
insulator–metal transition, is equal to 1.85 × 1017 cm–3

[17].
It is assumed that the density of distribution of

acceptor energy levels Ea in the band gap of the crystal
can be described by the Gaussian [18]:

(6)

where  > 0 is the average thermal ionization energy
(reckoned from the valence band top of the undoped
crystal) of a neutral acceptor and W is the root-mean-
square fluctuation of the ionization energy of the neu-
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tral acceptor (the energy of affinity of a valence band
hole with respect to a negatively charged acceptor).

According to the model proposed in [16], the effec-
tive width W of the acceptor band with inclusion of the
Coulomb interaction of an ionized acceptor with ions
involved in the first and second coordination spheres of
the impurity lattice can be written as

(7)

Note that the inclusion of the interaction between
each of the acceptors in the charge state –1 and ions
involved only in the first coordination sphere of a sim-
ple cubic impurity lattice leads to an effective width W
that is smaller than the width determined from formula

(7) by a factor of .

We will first analyze the thermopower of holes hop-
ping in the acceptor band at low temperatures when
only the ground states of neutral acceptors are realized
and then, at high temperatures, taking into account the
excited states of these acceptors.

(A) For an isothermal crystal, the electroneutrality
equation with allowance made for the distribution of
ionization energies of neutral acceptor ground states
[see relationship (6)] has the form

(8)

where  f0 = 1 – f–1 = 1/{1 + exp[(EF – Ea)/kBT]} is
the probability that an acceptor with an ionization
energy Ea > 0 occurs in a neutral charge state (i.e., it is
filled with a hole), EF > 0 is the Fermi level reckoned
from the valence band top (in the band gap of a p-type
crystal), βa is the degeneracy factor of an energy level

(βa = 4 for Ge : Ga),  = N–1/N = (1 – ) = K is the
average (over the impurity lattice) probability that a
randomly chosen acceptor is ionized, and kBT is the
thermal energy.

The average ionization energy  of the neutral
acceptor without regard for the shift and the distribution
of energy states of the valence band top in the crystal is
represented by the relationship [19]

(9)

Here, Ia is the ionization energy of a single (isolated)
acceptor, Rh = [(1 + K)N]–1/3 is the minimum distance
between ions in the impurity lattice, and λ is the screen-
ing length (radius) of an electrostatic field of an ion
[20]:
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(10)

According to [16, 20], the increase in the parameter

(11)

with an increase in the amplitude of electrostatic poten-
tial fluctuations W reflects the fact that the hopping
mobility Mh of holes decreases more rapidly compared
to their diffusion coefficient Dh. This is explained by the
fact that the actual trajectory of a hole diffusing over
acceptors, on average, passes through lower barriers as
compared to the barriers that are produced by an exter-
nal electric field and are responsible for the drift mobil-
ity Mh of this hole (cf. the interpretation of the diffusion
of atoms in disordered systems [21]).

Now, we assume that the energy location of the cen-

ter of the acceptor band with respect to the valence
band top does not depend on the temperature and can be
determined using formulas (9)–(11) in the case of a
broad acceptor band (W @ kBT). Then, the screening
length squared can be written as λ2 =

εW exp(η2)/(q2N) [20], where η is determined
from the electroneutrality equation (8) in the form 2K =
1 + erf(η).

Since, in the linear transfer theory [1–4], the quanti-
ties outside the sign of differentiation with respect to x
are treated as equilibrium parameters (independent of
x), it follows from relationships (8) and (11) that

(12)

Hence, expression (5) with due regard for relation-
ship (12) takes the form

(13)

where αh is the differential thermopower of holes hop-
ping over acceptors.

From formulas (13) and (5) with allowance made
for the expression ∂N–1/∂T = –∂N0/∂T, we obtain the
thermopower at Jh = 0:

(14)
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PH
where αh1 =  and αh2 = .

In order to elucidate the meaning of αh1 and αh2, we
express these quantities in terms of equilibrium param-
eters of the acceptor band and the crystal matrix.

The thermodynamic relationship for the differential
of the electrochemical potential of holes (EF – qϕ) in
the acceptor band at a constant pressure and Jh = 0 has
the form [12]

(15)

where Sh is the entropy of a hole in the acceptor band
and EF is the Fermi level (EF > 0).

From relationship (15), we obtain the differential
thermopower

(16)

Here, by analogy with formula (1), the entropy Sh per
hole is equal to the sum of the configurational Sc and
thermal (vibrational) St entropies.

Next, we establish the correspondence between the
kinetic and thermodynamic approaches to the calcula-
tion of the thermopower αh of holes hopping over
acceptors, i.e., the correspondence between formulas
(14) and (16).

Using formulas (8) and (11) and the expression
∂f0/∂T = (EF – Ea)f0 f–1/(kBT2), we rewrite the first term
in relationship (14) in the following form:

(17)

where

At high temperatures (kBT @ W), when, according to
formula (6), the density of distribution of acceptor

energy levels g  δ(E – ) can be approximated by

the Dirac delta function, we have Qa = . In this case,
from the electroneutrality equation (8) at K = 0.35 and

βa = 4, we obtain the Fermi level EF =  – kBT ln[(1 –
K)/(βaK)]. It is evident that the Fermi level shifts deep
into the band gap with an increase in the temperature.
Hence, it follows from expression (17) that αh1 = (EF –
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)/(qT) = (kB/q)ln[βaK/(1 – K)]; i.e., αh1 for a narrow
acceptor band takes a form similar to the first term on
the left-hand side of formula (1) for the thermopower of
small-radius polarons.

At low temperatures (W @ kBT), when f0 f–1 
kBTδ(Ea – EF + kBTlnβa), from relationship (17), we
obtain the expression Qa = EF – kBT lnβa [19], so that
αh1 = (kB/q)lnβa at T  0.

Therefore, by analogy with formula (1), the temper-
ature behavior of αh1 defined by relationship (17)
allows us to conclude that qαh1 = Sc. Consequently, the
term αh1 in expression (14) for the thermopower of
holes is determined by the configurational entropy Sc of
hole distribution over acceptors in the impurity lattice.

Let us demonstrate that the thermal entropy St

[which, by comparing expressions (16) and (14), can be
related to αh2] is determined by the specific heat Ch per
hole in the acceptor band at a constant pressure.

As follows from the temperature dependence of the
average energy for a neutral acceptor,

and from Eq. (8), the specific heat (per hole in the
acceptor band) can be represented in the form

(18)

By using the expression d /dT = ∂ /∂T +

(∂ /∂EF)(dEF/dT) = 0 and relationship (18), we obtain
the specific heat of a hole in the acceptor band:

(19)

From formula (19), we determine the thermal
entropy St of the hole and the corresponding ther-
mopower, that is,

(20)

At low temperatures (W @ kBT), from expression
(19), we have Ch = γT, where γ is a constant. Making
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allowance for the approximation Ch = γT in relationship
(20), we obtain αh2 = Ch/q.

(B) Now, we elucidate how the excited states of neu-
tral acceptors affect the hopping thermopower.

The ionization energy of a neutral hydrogen-like
acceptor in the lth excited state is defined as Ea /l2. The
degeneracy multiplicity of the energy level Ea/l2 is
expressed as βal2, where βa = 4 is the degeneracy mul-
tiplicity of the ground energy level Ea (l = 1) of the
acceptor. According to [2, 4, 6], the probability of an
acceptor occurring in the charge state 0 and the excited
state l ≤ lt is determined by the formula

(21)

where βa(lt) = βa exp[(1 – l2)Ea/l2kBT] is the
effective degeneracy factor of the acceptor level Ea.

It should be noted that the parameter lt in formula
(21) is chosen such that the Bohr radius aH(lt) =

q2/(8πε ) of the excited state of a hole on the accep-
tor does not exceed the mean distance between impu-
rity dopant atoms [22]. In further calculations of the
thermopower, we will restrict ourselves to the case of
the ground state and three excited states (lt = 4), because
the Bohr radius becomes larger than the Rh parameter of
the impurity lattice even at lt = 5.

When lt excited states are taken into account,
according to relationship (21), the probability that the
acceptor is not ionized is represented as

and the electroneutrality equation (8) takes the form

(22)

where the Fermi level EF > 0 depends on the number lt

of realized excited states of each neutral acceptor.
With due regard for expression (22), relationship

(17) for the configurational thermopower of holes can
be rearranged to give

(23)
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where

The temperature dependence of the average energy
of the neutral acceptor,

determines the specific heat per hole in the acceptor
band:

(24)

where dEF(lt)/dT = – /∂T/( /∂EF).
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Fig. 1. Calculated temperature dependences of (1) the
Fermi level [formulas (8) and (22)] and (2) the specific heat
per hole in the acceptor band of Ge : Ga [formulas (19) and
(24)] with inclusion of the ground state (dashed lines) and
the ground and three excited states (solid lines) of neutral
gallium atoms in germanium at N = 3 × 1016 cm–3 and K =
0.35.
PH
Therefore, the thermopower that corresponds to the
thermal entropy with inclusion of the excited states of
neutral acceptors [see formula (21)] can be written as

(25)

In the case when only the ground state of the neutral
acceptor (lt = 1) is taken into account, formulas (22)–
(25) are transformed to relationships (8) and (17)–(20).

4. COMPARISON OF THEORETICAL
AND EXPERIMENTAL DATA FOR Ge : Ga

Figure 1 shows the temperature dependences of the
Fermi level EF calculated using the electroneutrality
equations (8) and (22) and the temperature depen-
dences of the specific heat Ch determined from formu-
las (19) and (24) with and without inclusion of the
excited states of neutral acceptors. As can be seen from
Fig. 1, the effect of excited states on EF and Ch for Ge : Ga
(N = 3 × 1016 cm–3 and K = 0.35) manifests itself only
at T > 6 K.

The temperature dependences of the hopping ther-
mopower αh calculated by formulas (17), (20), (23),
and (25) for Ge : Ga (εr = 15.4 and Ia = 11.32 meV [23])
are displayed in Fig. 2. It is seen from Fig. 2 that the
inclusion of the excited states of neutral acceptors (the
fitting parameter is lt = 4) enables us to explain the
increase in the hopping thermopower with an increase
in temperature. It is evident that the configurational
component makes the main contribution to the hopping
thermopower of Ge : Ga in the temperature range cov-
ered: αh1 @ αh2.

A drastic increase in the experimental values of the
thermopower α at T > 9 K can be associated with the
appearance of holes in the valence band and the hole–
phonon drag [24].

5. DISCUSSION

5.1. We consider the thermopower associated with
electron hopping among hydrogen-like donors in the
charge states 0 and +1 with the concentration N = N0 +
N+1 in the case when completely ionized acceptors with
the concentration KN act as compensating impurities.
The electroneutrality equation for a crystal without
regard for excited states of neutral donors has the form

where 1 –  f+1 =  f0 = {1 + βdexp[–(EF + Ed)/kBT]}–1 is
the probability that a donor with an ionization energy
Ed > 0 occurs in a neutral charge state (i.e., it is filled
with an electron); EF < 0 is the Fermi level reckoned
from the conduction band bottom (in the band gap of an
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n-type crystal); βd is the degeneracy factor of a donor
energy level; and g is the density of distribution of
energy levels in the donor band, which is defined by
formulas (6) and (7).

According to relationships (3) and (13), the thermo-
electric current density of electrons hopping over
donors is represented by the expression

(26)

where Nh = K(1 – K)N is the effective concentration of
electrons hopping among donors in the charge states 0
and +1. These electrons are characterized by the drift

mobility Mh = –f ∂Γ/∂ϕ > 0 and the diffusion coeffi-

cients Dh = f Γh/2.

After transformations similar to those represented
by expressions (14)–(20), from relationship (26) at
J0, +1 = 0, we obtain the differential thermopower of
electrons in the donor band:

where

(27)

The calculations with the use of relationships (27)
for Si : P (εr = 11.5, Id = 45.59 meV [23], and βd = 1/2)
demonstrate that the dependence of Ch on T at low tem-
peratures (W @ kBT) exhibits a nearly linear behavior.
For example, at N = 3.5 × 1017 cm–3 and K = 0.01, from
relationships (27), we have Ch/T ≈ 1.4 µJ K–2 mol–1.
This agrees with the experimental data on the electronic
specific heat of Si : P samples in the dielectric region
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with respect to the insulator–metal transition [25, 26]
(N < Nc = 3.5 × 1018 cm–3 according to the data on Nc

taken from [27]).

The specific heats Ch calculated from relationships
(27) are also in agreement with the results obtained by
the Monte Carlo simulation of thermal excitations of
electrons within the donor band in a semiconductor at
the degree of compensation K = 0.5 [28]. In particular,
at N = 3.5 × 1017 cm–3 and T ≈ 2.6 K, the specific heat
Ch per neutral donor in Si is approximately equal to
4 µeV/K [28] (cf. Fig. 1).

5.2. It is known that, in a doped crystalline semicon-
ductor, acceptors of the same sort at low temperatures
can reside in three charge states: +1, 0, and –1 [29, 30].
The total concentration of acceptors is taken as N =
N+1 + N0 + N–1. The electroneutrality equation has the
form N–1 = N+1 + KN, where KN is the concentration of
donors that compensate for acceptors and reside in the
charge state +1. Hence, the acceptor energy levels form
two energy bands A0 and A+ in the band gap [29].1

These are the so-called bottom (b) and top (t) Hubbard
bands. In this case, apart from the hopping of holes
from acceptors in the charge state 0 to acceptors in the
charge state –1, hole hopping from acceptors in the
charge state +1 to acceptors in the charge state 0

1 Note that both the A+ band and excited states of hydrogen-like
acceptors can simultaneously manifest themselves in the case of
hopping conduction in lightly compensated doped semiconduc-
tors [30].
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Fig. 2. Temperature dependences of the hopping ther-
mopower αh calculated according to formulas (17), (23)
and (20), (25) for Ge : Ga (N = 3 × 1016 cm–3, K = 0.35): (1)
αh1, (2) αh2, (3) αh = αh1 + αh2 (without regard for excited
states), and (4) αh with inclusion of three excited states of
neutral Ga atoms. Points are the experimental thermopow-
ers α taken from [7, 8]. The sample volume is 13 × 2.5 ×
0.5 mm3.
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becomes possible. For an isothermal sample in an
external electric field E, the current density J+1, 0 of
holes in the A+ band is represented in the form [31]

(28)

where N+1, 0 = N+1N0/N is the concentration of holes
hopping among acceptors in the charge states +1 and 0,

M+1, 0 = f ∂Γ+1, 0/∂ϕ > 0 is the drift mobility of holes

in the A+ band, D+1, 0 = f Γht/2 is the diffusion coeffi-
cient of holes in the A+ band, Γht/2 is the equilibrium
frequency of hole hoppings in the A+ band in the same
direction along the OX axis,  f  = 1/(1 + K), and Rh =
[(1 + K)N]–1/3.

Without regard for the excited states of holes, the
probability of an acceptor with an energy Ek occurring
in one of the three charge states k = –1, 0, and +1 is
determined by the relationship [2, 32]

(29)

where E–1 – E0 = Eb > 0 and E0 – E+1 = Et > 0 are the
acceptor energy levels forming the A0 and A+ bands,
respectively; EF > 0 is the Fermi level in the band gap
of a p-type crystal; and β0/β–1 = β+1/β0 = 4 are the
degeneracy factors of the Eb and Et levels for Ge : Ga,
respectively.

The densities of distributions gb and gt of the energy

levels Eb and Et with respect to  and , which cor-
respond to the centers of the A0 and A+ bands, can be
written, by analogy with formula (6), in the following
form:

(30)

where the subscript b refers to the A0 band, the subscript
t denotes the A+ band located at a shorter distance from
the valence band, and Wb = Wt ≥ W.

The average (over the crystal) concentration of
acceptors in the charge state k (k = –1, 0, and +1) with
allowance made for expressions (29) and (30) can be
expressed by the formula

(31)

By analogy with the derivation of formula (14),
from relationships (28)–(31), we obtain the ther-
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PH
mopower related to the configurational entropy Sc of
holes hopping in the A0 and A+ bands, that is,

(32)

where

According to [7, 8], the energy gap ε2 =  – 
between the A0 and A+ bands in Ge : Ga (N = 3 ×
1016 cm–3 and K = 0.35) is taken equal to 2 meV. Then,
the calculation with the use of relationships (32) at
Wb = Wt = W and T ≤ 10 K yields the configurational
component of the thermopower of holes in the A0 band
αb1 ≈ 0.1 mV/K, which is larger in magnitude than the
configurational component αt1 for the A+ band by a fac-
tor of approximately 1.5. The thermopower component
αb(t)2, which corresponds to the thermal entropy in each
of the bands, is considerably less than the configura-
tional component αb(t)1.

2 Hence, the thermopowers of
holes in the A0 and A+ bands can be represented as αb =
αb1 + αb2 ≈ αb1 and αt = αt1 + αt2 ≈ αt1.

The total thermopower with the inclusion of hole
hopping in the A0 and A+ bands is determined from the
relationship [1–4]

(33)

where σb and σt are the electrical conductivities in the
A0 and A+ acceptor bands, respectively.

It follows from relationship (33) that the total ther-
mopower αh cannot exceed the largest thermopower
component (αb or αt) at an arbitrary ratio between the
σb and σt hopping electrical conductivities.

Thus, the inclusion of the A+ acceptor band (in addi-
tion to the A0 band) does not lead to better agreement
between the calculated and experimental thermopowers
[7, 8].

5.3. To this point, the question as to the observed
decrease in the thermopower α of Ge : Ga at T ≤ 2 K to
vanishingly small and experimentally unobservable
values [7, 8] remains open. In the local thermodynamic

2 The validity of the inequality αh1 @ αh2 in the case of a single A0

band without regard for the excited states of neutral acceptors is
evident from Fig. 2.
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equilibrium approximation for samples of an infinite
size, relationship (17) gives a finite thermopower αh1 =
(kB/q)lnβa ≈ 0.12 mV/K at T  0. Since the mecha-
nisms of scattering of a nonequilibrium phonon flux at
T < 2 in samples of a finite size have not been clearly
understood, we restrict ourselves to qualitative consid-
erations.

As is known [33, 34], holes are dragged only by
phonons whose energy corresponds to the difference
between the levels of two acceptors (the potential well
of elastic strain can trap a hole from a neutral acceptor
and carry it to an ionized acceptor). A decrease in the
temperature leads to a decrease in the number of these
phonons, and, as a consequence, the thermopower
decreases to zero. In this case, the hopping electrical
conductivity exhibits a finite value, because the change
in the frequency of hole hoppings over acceptors along
the sample is caused by an external electric field.

Zvyagin [9] assumed that the electron–phonon
interaction ceases at temperatures at which the mean
free path of phonons exceeds the sample size.

It should also be noted that the thermal conductivity
of liquid helium at T < 1 K is so high that vapor bubbles
have no time to be formed in the bulk of the liquid,
whereas the heat is rapidly removed toward the liquid
surface [35]. The use of partially superfluid helium as a
thermostat (when phonons leave the sample after their
first collision with the sample surface) leads to a radical
change in the boundary conditions on the surface [36].
Hence, the inequality α(T = 1.5 K) ! α(T = 2.5 K) [7,
8] can be dictated by the conditions of heat removal into
the cryogenic medium rather than by the properties of
the p-Ge sample itself. It is quite possible that the
observed decrease in the thermopower α at T ≤ 2 K to
experimentally unobservable values is caused by both
diffusion processes and a rapid escape of nonequilib-
rium phonons from the sample (13 × 2.5 × 0.5 mm3)
owing to the unique properties of liquid helium at tem-
peratures below the λ point (T < 2.17 K).

6. CONCLUSION

Thus, we obtained the relationship for the ther-
mopower associated with phonon-assisted motion of
holes over hydrogen-like acceptors. This relationship
was derived within the lattice approximation on the
basis of the hopping current density equation. It was
demonstrated that the expression derived for the ther-
mopower of hopping holes provides a satisfactory
explanation of the plateau (in the range 2–8 K) occur-
ring in the experimental temperature dependence of the
thermopower for Ge : Ga at an intermediate degree of
compensation [7, 8]. The increase in thermopower with
an increase in temperature was interpreted in terms of
the contribution from excited states of hopping holes to
the thermopower. It was shown that the lattice approach
can be applied to the description of the specific heat of
electrons hopping over hydrogen-like donors in Si : P.
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Abstract—The nucleation of III nitride semiconductors in heteroepitaxy is theoretically investigated using
GaN nucleation on the AlN surface as an example. It is inferred that the mechanism of this process is determined
by the temperature at the initial stage of the layer formation (T). At low temperatures (T < 500°C), liquid gallium
droplets appear and the chemical reaction between the Ga and N atoms results in the formation of GaN nuclei.
At substrate temperatures T > 650°C, there arise only GaN nuclei. It is revealed that the GaN nucleation is gov-
erned by the generalized diffusion coefficient of GaN, which is a combination of the diffusion coefficients for
gallium and nitrogen atoms. It is shown that the generalized diffusion coefficient of GaN on the crystal surface
increases by seven orders of magnitude as the growth temperature increases from 600 to 800°C. This is accom-
panied by a change in the growth mechanism of the III nitride semiconductor epitaxial layers. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, gallium nitride epitaxial films have
found wide application in microwave electronics. How-
ever, the development of high-efficient gallium nitride
elements has been hampered by two factors: (1) the
absence of a perfect substrate material and (2) problems
associated with the incorporation of nitrogen atoms
into a growing layer. Single crystals (GaAs, ZnO,
MgO, MgAl2O3 and, especially, SiC, Al2O3, and Si) are
extensively used as substrates for the heteroepitaxial
growth of GaN. A substantial mismatch between the
parameters of a GaN epitaxial wurtzite layer and
6H-SiC (~4%), Al2O3 (~15%) [1], and Si (22.3%) [2]
substrates and a large difference between the adsorp-
tion energies of Ga and N atoms (the adsorption energy
for nitrogen atoms is 1.5 times higher than that of III−V
semiconductors [3]) considerably impede the epitaxial
growth of III nitride semiconductor films. As is known,
the early stages of formation of these films (nucleation
and the subsequent evolution of islands) are of crucial
importance in preparing qualitative epitaxial layers of
III nitride semiconductors. Recent attempts have been
made to optimize the conditions of the formation of a
GaN buffer layer on a sapphire substrate due to chemi-
cal gas-transport reactions [or metal–organic chemical
vapor deposition (MOCVD)] through changing the
conditions of GaN nucleation [4] and to improve the
kinetic transport of reactants to substrates [5]. Chen
et al. [6] revealed that the nucleation during GaN epit-
axy on different GaN and AlN buffer layers grown on
GaAs substrates proceeds by different mechanisms.
Moreover, King et al. [7] proved that the growth of epi-
1063-7834/01/4312- $21.00 © 22229
taxial layers of GaN on AlN (and AlN on GaN) in
molecular beam epitaxy (MBE) with an NH3 gas source
occurs through the Stranski–Krastanov mechanism at
low substrate temperatures (Tsub < 800°C) and the
Frank–van der Merve mechanism at high substrate tem-
peratures (Tsub > 800°C).

However, the mechanisms of III nitride semicon-
ductor nucleation and the specific features of film
growth are still not clearly understood. In the present
paper, we propose a model that describes the initial
stages of growth of a gallium nitride film in heteroepit-
axy. This approach is based on the theory of nucleation
and growth of thin films, which was described in detail
in [8, 9]. According to this theory, the growth of crystal
films occurs in several stages: nucleation, evolution of
new-phase islands, interaction of islands with one
another, and interaction of islands with the flux of
atoms arriving at the surface (the Ostwald ripening
stage). Different islands can also move as a unit over
the substrate surface, coalesce, and participate in other
interactions [8, 9].

2. THEORETICAL ANALYSIS

The growth of gallium nitride films will be treated
within the modern theory of first-order phase transi-
tions. We consider the nucleation stage by using the
example of MBE and MOCVD growth of GaN films on
a sapphire substrate covered with an AlN buffer layer.
In the former case (molecular-beam epitaxial growth),
GaN is prepared through the evaporation of gallium and
001 MAIK “Nauka/Interperiodica”
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nitrogen. Nitrogen is formed by the decomposition of
ammonia, and then the following reaction proceeds:

(1)

where the subscripts g and s refer to the gaseous and
solid reaction products, respectively.

In the latter case, the growth of GaN occurs through
the reaction

(2)

In our consideration, we disregard the effect of elastic
stresses on all stages of GaN layer growth.

Gallium nitride is a stoichiometric compound.
According to the theory developed earlier in [10], the
formation of GaN islands can occur in accordance with
the following scenarios.

(1) The rate of the chemical reaction considerably
exceeds the rate of formation of new-phase islands. In
this case, the formation of molecules of the chemical
compound precedes the nucleation of islands from
these molecules.

(2) If the rate of island nucleation is substantially
higher than the rate of formation of the chemical com-
pound on a substrate, heterophase fluctuations bring
about the formation of islands consisting of a mixture
of the compounds involved and then the chemical reac-
tion proceeds inside these islands with the formation of
a stoichiometric compound.

(3) The rate of the chemical reaction is comparable
to the rate of island formation, the rate of the chemical
reaction exhibits a nonlinear behavior, and the reaction
product acts as a catalyst of the chemical reaction. In
this case, self-sustained oscillations of the number of
nuclei and their self-organization become possible.

The formation of GaN nuclei according to scheme (1)
is a result of the first-order phase transition between the
gaseous and solid phases. The GaN nucleation accord-
ing to scheme (2) should occur in several stages [11].
The steady fluxes of multicomponent islands (of sto-
ichiometric composition) arising on the substrate sur-
face can be described by the following relationships [8–
10]:

(3)

for nuclei in the form of a flat disk of height h and

(4)

for nuclei in the form of a spherical segment.
Here,

Ga g( ) N g( ) GaNs,+

2Ga g( ) 2NH3 g( )
2GaN s( ) 3H2 g( )

.+ +

Is' ξ( ) α s' ξ 1+( ) ξ 1+( )1/2 a/ ξ 1+( )ln–[ ]expln=

Is'' ξ( ) α s'' ξ 1+( ) ξ 1+( ) b/ ξ 1+( )2ln–[ ] .expln=

α s' A1sN0
2Ds

0, α s'' A2sN0
2Ds

0,= =

A1s v s/h( )1/2, v s ν iwi,
i 1=

n
s

∑= =
PH
where v s is the molecular volume of the chemical com-
pound, wi is the atomic volume of the ith component, νi

is the stoichiometric coefficient of the ith component,
N0 ~ 1/B2 is the number of adsorption sites on the sub-
strate surface (B is the lattice parameter of the sub-

strate), a = (σst/kBT)2v sπ/h, b = 4π(σ/kBT)3 (2 +
cosθ)(1 – cosθ)2/3, σ is the nucleus–natural vapor
interfacial tension, σst = σh is the surface tension per
unit length of a disk, h is equal to one monolayer,

(5)

is the generalized diffusion coefficient (which charac-
terizes the motion of the boundary of a growing island
during crystallization of the multicomponent com-
pound), Ci0 stands for the equilibrium concentrations of
adatoms on the substrate,

is the reduced stoichiometric coefficient of the ith com-
ponent, and Dai is the diffusion coefficient of the ith
component. In order to estimate the diffusion coeffi-
cient Dai, we assume that the substrate has a simple
square lattice. As a result, we obtain

(6)

where kB is the Boltzmann constant, γit is the frequency
of tangential vibrations of the ith atom on the substrate
surface (for convenience, this frequency is taken equal
to the frequency of normal vibrations), and l0i is the
length of diffusion hopping of atoms.

The supersaturation ξ for a multicomponent system
can be written as

(7)

where  =  is the equilibrium constant for
the chemical reaction of formation of a nucleus of the
compound with composition s and  is the concentra-
tion of the ith component on the substrate.

In the course of GaN nucleation, the formation of
both GaN nuclei and liquid Ga droplets can occur on
the substrate surface. The probability of a particular
phase forming is determined by the nucleation rates or,
more specifically, by the steady fluxes (3) and (4). Let
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Fig. 1. Temperature dependences of (a) the surface diffusion coefficients DaGa for Ga atoms and DaN for N atoms, (b) the products
of the equilibrium concentrations C0Ga and C0N of Ga and N atoms into their surface diffusion coefficients DaGa and DaN,

(c) the lifetimes τGa and τN of Ga and N atoms, and (d) the generalized diffusion coefficient  of GaN.DGaN
0

0

us evaluate the fluxes of formation of disk-shaped GaN
nuclei and cupola-shaped liquid Ga droplets.

The generalized diffusion coefficient  [for-
mula (5)] for GaN can be represented in the form

(8)

This expression can be rewritten as

(9)

The diffusion coefficients of Ga and N atoms on the
GaN surface can be estimated from the data obtained by
Neugebauer et al. [12]. According to [12], the activa-
tion energy EdGa of Ga atoms is equal to 0.2 eV and the
activation energy EdN of N atoms is 1.5 eV. For the sim-
plest estimates, we assumed that the diffusion hopping
lengths of Ga and N atoms are approximately equal to
the lattice parameter of the substrate; i.e., lN ~ lGa ~ B.
As can be seen from Fig. 1a, the diffusion coefficients
of Ga and N atoms increase with an increase in the sub-
strate temperature. In order to determine the general-
ized diffusion coefficient of GaN, it is necessary to cal-

DGaN
0

DGaN
0 DaGaDaNC0GaC0N
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-------------------------------------------------------------------.=
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culate the equilibrium concentrations of Ga (C0Ga) and
N (C0N) atoms. These concentrations can be estimated
as follows. The concentration of the ith component on
the substrate surface can be calculated by the formula

(10)

where Ji is the flux of atoms incident on the substrate
and τi is the lifetime of the ith component on the sub-
strate:

(11)

Here, γi is the frequency of normal vibrations of atoms
on the substrate surface and Eai is the activation energy
of adsorption. It should be noted that the vibrational
frequency is generally taken to be approximately equal
to ~1013 s–1 [8–10]. To calculate the equilibrium con-
centrations C0i of adatoms on the substrate, we need to
determine the equilibrium evaporation and condensa-
tion fluxes J0i . Then, the concentrations C0i can be
obtained from relationship (10). In the general case, the
equilibrium fluxes J0i can be evaluated by the formula
[8–10]

(12)

Ci Jiτ i/N0,=

τ i γi
1– Eai/kBT( )exp .=

J0i nsiγGaN(Ga) Eav i
/kBT–( ),exp=
01
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where Eav is the evaporation energy, γGaN(Ga) is the fre-
quency of vibrations of Ga and N atoms on the GaN
surface (or the frequency of vibrations of Ga atoms on
the liquid gallium surface), and nsi ~ 1/B2 is the number
density of the ith atom on the GaN surface (or on the
liquid gallium surface). For estimates, we assume that
γGaN(Ga) ~ 1013 s–1. Formula (12) can only be used for
approximate estimates. In a more general case, it is nec-
essary to determine the desorption fluxes. The values of
J0i and C0i can be estimated from the data obtained by
Koleske et al. [13]. Finally, from relationships (8)–(12),
we calculate the temperature dependence of the gener-

alized diffusion coefficient  (Fig. 1d). The results
of our calculations demonstrate that, as the temperature
increases from 600 to 800°C, the equilibrium concen-
tration of Ga atoms increases by three orders of magni-
tude, whereas the equilibrium concentration of N atoms
increases by eight orders of magnitude. As a conse-
quence of this behavior of the equilibrium concentra-
tions with an increase in the temperature, the products
of the diffusion coefficients for Ga and N atoms into
their equilibrium concentrations become comparable in
magnitude at T > 800°C (Fig. 1b). This results in a dras-

tic increase in the diffusion coefficient  in this
temperature range, which should affect the growth
mechanism of III nitride semiconductors. King et al.
[7] experimentally observed a change-over from the
Stranski–Krastanov mechanism of growth of the GaN
and AlN epitaxial layers to the Frank–van der Merve
mechanism with an increase in the growth temperature
above 800°C.

In order to determine the lifetimes of Ga and N atoms
on the AlN surface, we evaluate the activation energies of
adsorption Eai for Ga and N atoms. According to [10], the
activation energy Eai can be represented as

where E0i and Eav are the activation energies of forma-
tion and evaporation of an adatom, respectively.

As is known [9], the evaporation energy is defined as
Eav = ZEi/2, where Z is the configuration number (for
GaN, Z = 6). The energy of formation is given by E0i =
2Ei (in simple models for the (100) surfaces) [10]. By
using the data obtained in [13] for the energies of evap-
oration of Ga and N atoms from the GaN surface, we
obtained EaGa ~ 0.84 eV and EaN ~ 2 eV. The lifetimes
of adatoms on the GaN surface decrease with an
increase in the epitaxy temperature. Note that the life-
time of N atoms is five orders of magnitude longer than
that of Ga atoms (Fig. 1c). Thus, the estimates demon-
strate that, at substrate temperatures T < 700°C, the
GaN nucleation is limited by the diffusion of N atoms,
whereas at T > 850°C, the nucleation process is con-
trolled by the diffusion of Ga atoms.

Now, we calculate the fluxes of GaN and liquid gal-
lium nuclei. The surface tension δ is estimated at

DGaN
0

DGaN
0

Eai Eav E0i,–=
PH
~2 J m–2 for GaN [12] and at ~0.7 J m–2 for liquid gal-
lium. The wetting angle for liquid gallium is taken as
θ ~ π/6. When estimating the supersaturation in the
MOCVD growth, it is assumed that all molecules of the
organometallic compound are transformed into Ga
atoms, whereas the fraction of N atoms produced by
ammonia decomposition is approximately 4%. In this
case, the mean fluxes of Ga and N atoms are as follows:
JGa ~ 1018 m–2 s–1 and JN ~ 1019 m–2 s–1 [1]. The concen-
trations of adatoms on the GaN surface can be deter-
mined from formula (10). Substitution of these concen-
trations into relationship (7) gives a supersaturation
large enough to persist for a very short time, because, in
this case, islands rapidly absorb the material and,
hence, the supersaturation should decrease.

Let us consider the conditions of the formation of
GaN and Ga nuclei at low temperatures (T = 480°C is
the temperature of formation of a buffer layer on the
AlN/sapphire substrate). For liquid gallium, we have
b = 3, α'' ~ 4 × 1018 m–2 s–1, ξ ~ 0.8, and IGa ~ 1014 m–2 s–1.
For this flux of Ga nuclei and the number density of Ga
atoms on the surface nGa = JGaτGa = 1010 m–2, the time it
takes for Ga atoms to be involved in the phase transition
is tf ~ nGa/IGa ~ 10–4 s. Consequently, excessive supersat-
uration disappears for a time tf and the supersaturation
ξ reaches its normal value of ~0.1–0.2. For GaN nuclei,
we have α' ~ 3 × 1012 m–2 s–1 and a ~ 40. Hence, it fol-
lows that the flux IGaN of GaN nuclei at the same super-
saturation ξ is virtually equal to zero. Therefore, at low
temperatures, liquid gallium alone nucleates, after
which the chemical reaction between Ga nuclei and N
proceeds to form GaN. It is evident that, at these tem-
peratures, the GaN layer is disordered and contains a
large amount of gallium inclusions and dislocations.

At higher temperatures (T > 650°C), the generalized

diffusion coefficient  increases drastically and the
coefficient a in the relationship for the work of nucle-
ation decreases to ~15 at T ~ 650°C. As a result, the flux
IGaN of GaN nuclei becomes nonzero and equal to
~1014 m–2 s–1 whereas the flux of liquid gallium drop-
lets vanishes. This can be explained by the fact that, at
this temperature, the supersaturation with respect to
gallium becomes zero due to equalization of the con-
centration of Ga atoms produced by external sources
and the equilibrium gallium concentration.

At T > 800°C, no formation of GaN islands occurs,
because the supersaturation becomes zero at the fluxes
JGa ~ 1018 m–2 s–1 and JN ~ 1019 m–2 s–1 and the Ga and
N flux densities taken from [13].

3. CONCLUSION

Thus, the anomalously high adsorption energy for
nitrogen atoms leads to (1) considerable differences (by
six or eight orders of magnitude) between the diffusion
coefficients of nitrogen and gallium atoms on the crys-

DGaN
0
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tal surface over the entire range of growth tempera-
tures; (2) an anomalously large difference between the
equilibrium concentrations of nitrogen and gallium
(indium) atoms; and (3) an increase in the generalized

diffusion coefficient  with an increase in the tem-
perature, which affects both the nucleation conditions
of III nitride semiconductors and the mechanism of
their growth.

The nucleation of liquid gallium droplets at low
temperatures (T < 600°C) can be explained by the con-
siderable work of formation of GaN nuclei.
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Abstract—The influence of germanium content on lithium diffusion in Si1 – xGex solid solutions is investigated
at temperatures from 300 to 500°C. It is found that the diffusion coefficient and the solubility of lithium abruptly
decrease with a decrease in the temperature and an increase in the germanium content. As the diffusion temper-
ature increases, the decrease in the lithium diffusion coefficient slows down with a change in the solid solution
composition due to the effect of lattice elastic strains induced by germanium isovalent impurities. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It is known that lithium is the only shallow-level
impurity used for producing highly compensated
i-regions of silicon ionizing-radiation detectors [1]. The
compensation is accomplished through electric drift of
lithium ions from a thin surface layer. This layer is pre-
liminary saturated with lithium at temperatures from
500 to 600°C for ~5 min with subsequent rapid cooling.
The electric drift is carried out at temperatures from 65
to 100°C.

The available data on the lithium diffusion coeffi-
cient DLi for silicon and other semiconductors are char-
acterized by a very large spread about the mean DLi
value (several orders of magnitude) [2]. This circum-
stance is primarily due to the fact that lithium diffusing
over interstices efficiently interacts with grown-in
background impurities and defects, as well as with
those introduced during thermal and other treatments of
the material.

Saidov et al. [3] demonstrated that the counting rate
of nuclear radiation detectors based on single crystals
of the Si1 – xGex alloy is three times higher than that of
silicon detectors. However, a number of problems asso-
ciated with the low-temperature diffusion of lithium in
the Si1 – xGex alloy remain unresolved. It is known that
the incorporation of germanium isovalent impurities
into the silicon lattice leads to distortions of the crystal
structure, which, in turn, can substantially affect the
diffusion and solubility of impurities. For example, the
diffusion coefficient of phosphorus in the Si1 – xGex

alloys increases with an increase in germanium con-
tent [4].

In the case of lithium, whose diffusion occurs
through the interstitial mechanism, local strains
induced in the lattice of Si1 – xGex single crystals can
1063-7834/01/4312- $21.00 © 2234
also substantially affect this process. However, data on
the low-temperature diffusion of lithium in this mate-
rial are unavailable.

In the present work, we investigated the influence of
germanium content on lithium diffusion in single crys-
tals of Si1 – xGex solid solutions at temperatures from
300 to 500°C.

2. EXPERIMENTAL TECHNIQUE

The diffusion of lithium was performed in an
SUOL-44 furnace by immersing the samples in a lith-
ium-saturated gallium melt for 1 h. Owing to the low
temperature of the melt, gallium did not occur in the
bulk of the crystal, whereas fast-diffusing lithium
impurities penetrated into the crystal bulk to several
micrometers during this time.

As is known, lithium diffusion strongly depends on
the crystal prehistory. For this reason, in order to pro-
vide a more reliable interpretation of the results, all the
samples to be studied were prepared in the form of
wafers cut out from the same variband single crystal,
Si1 – xGex, with a variable composition from x = 0 to
35 at. % and a concentration gradient of approximately
0.7 at. % per millimeter. The wafers were approxi-
mately 300 µm thick. We assumed that the germanium
content in each of the wafers was equal to the mean
value. It should be noted that, due to the variband prop-
erties, the change in the germanium content in the
wafers was approximately equal to 0.21 at. %. Since all
the wafers were taken from the same crystal, which was
apparently grown in the same technological process,
the growing conditions of all the samples were identi-
cal. Therefore, the parameters of the samples, except
for the germanium content, were also identical.
2001 MAIK “Nauka/Interperiodica”
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Single crystals of the Si1 – xGex solid solutions were
grown by electron-beam crucibleless melting [5]. The
single-crystal samples of the Si1 – xGex solid solutions
with a germanium content in the range 0 < x < 35 exhib-
ited a p-type conductivity.

The electrical conductivity of semiconductors is
determined by the relationship σ = enµ, where n is the
electron concentration and µ is the electron mobility.
For the electron concentration at room temperature, we
can write the equality n = NLi. Consequently, we obtain
σ = eNLiµ. Therefore, the distribution σ(l) over the sam-
ple depth l can be used for determining the lithium con-
centration profile NLi(l).

The distribution σ(l) for the samples was deter-
mined using a single-point probe technique [6]. When
calculating the concentration profile NLi(l), the depen-
dence of the carrier mobility on the composition of the
silicon–germanium alloy was taken into account [7, 8].

3. RESULTS AND DISCUSSION

It is known that, at comparable temperatures of dif-
fusion, the diffusion coefficient and the solubility of
lithium in germanium are higher than those in silicon.
However, Figs. 1 and 2 demonstrate an anomalous
behavior of these parameters at diffusion temperatures
of 325 and 400°C. The diffusion coefficient (Fig. 1) and
the limiting solubility (Fig. 2) of lithium drastically
decrease with an increase in germanium content. The
decrease in the lithium diffusion coefficient with a
change in the composition of the solid solution is more
pronounced at low diffusion temperatures. As was men-
tioned above, the diffusion through the vacancy mech-
anism is accompanied by an increase in the phosphorus
diffusion coefficient with an increase in the content x.
We assume that this behavior is associated with the
generation of vacancies in the field of lattice elastic
strains.

In the case of interstitial diffusion, the incorporation
of germanium atoms into the lattice induces elastic
strains, which, apparently, disturb the periodicity of the
interstitial potential of the lattice and prevent hopping
of lithium atoms over interstices at diffusion tempera-
tures up to 500°C. The increase in the diffusion coeffi-
cient, which is observed at x > 0.20 is caused by an
increase in the elasticity of the alloy lattice with an
increase in germanium content.

As is known, the solubility of impurities (xLi) in
semiconductors is determined by the quantity 
(the enthalpy of transition of impurity atoms in the solid
solution), the change in the vibrational entropy ∆Svib
[2], and the contribution from the Coulomb interaction
with charge carriers [9, 10], that is,

(1)

Here, Q(T) is the Coulomb component in expression (1)
taken from [9, 10].

∆HLi
α

xLi( )ln –∆HLi
α /T ∆Svib Q T( ).++=
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Analysis of the concentration dependence of the
lithium solubility with the use of expression (1)
revealed that an increase in the lithium solubility is
determined by the change in the  quantity. How-
ever, at a diffusion temperature of 500°C and above, the
thermal energy of lithium atoms in the alloy lattice
becomes comparable to the potential barriers formed
through lattice elastic strains due to the presence of ger-
manium isovalent impurities. As a result, the behavior
of lithium atoms in the alloy lattice ceases to be anom-
alous. Since the kT value at a temperature of 500°C is
approximately equal to 0.044 eV, the potential barriers
created by germanium atoms should be of the order of
several hundredths of electron-volts.

4. CONCLUSION

Thus, the anomalous behavior of the diffusion coef-
ficient and the solubility of lithium in the Si1 – xGex

alloys was revealed at low temperatures. The assump-
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Fig. 1. Dependences of the lithium diffusion coefficient on
the germanium content in silicon–germanium solid solu-
tions.

Fig. 2. Dependences of the limiting solubility of lithium on
the germanium content in silicon–germanium solid solu-
tions.
1



 

2236

        

ATABAEV 

 

et al

 

.

  
tion was made that this behavior is associated with the
disturbance of the periodicity of the interstitial poten-
tial in the lattice due to local elastic strains generated by
germanium isovalent impurity atoms.
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Abstract—The kinetics of photoluminescence due to tunneling radiative recombination of photoexcited elec-
trons and holes localized at a crystallite–matrix interface is theoretically treated within the framework of a model
concept according to which the structure of porous silicon is treated as a random set of nanometer-sized silicon
crystallites embedded into the SiO2 matrix. The developed theory predicts a relatively slow (stretched exponen-
tial) decay of photoluminescence intensity that results from averaging of the intensity in each of the photolumi-
nescence events over the mutual arrangement of electrons and holes (localized on the surface of a particular crys-
tallite) and over the crystallite sizes. The proposed approach provides an adequate quantitative description of
low-temperature experimental data on the photoluminescence kinetics at a fixed radiant energy and the time evo-
lution of the photoluminescence spectra of porous silicon. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent progress in nanoelectronics has been
achieved in many respects owing to the advent, devel-
opment, and application of different-type devices based
on elements fabricated from disordered silicon materi-
als [1], including porous silicon and amorphous silicon
[2]. However, the use of materials based on disordered
silicon is hindered by the lack of a clear understanding
of the mechanisms responsible for photoluminescence,
photoconduction, and other phenomena that render dis-
ordered silicon attractive from the practical standpoint.
These phenomena are associated with fast (on a milli-
second scale and even faster) processes of radiative
recombination (see, for example, the review by Bisi
et al. [1] and references therein) and slow processes
caused by fatigue effects in materials [3, 4].

Systems based on disordered silicon exhibit features
inherent in disordered media, for example, the non-
Debye behavior of photoluminescence decay [1, 2]. As
is known (see, for example, [5]), the non-Debye
response can be adequately described by the most gen-
eral models of disordered media. Dunstan and Boul-
itrop [6] demonstrated that, within the model of tunnel-
ing recombination of electrons and holes localized in
states of the conduction band and valence band tails, the
kinetics of photoluminescence in amorphous hydroge-
nated silicon is described by a very slowly decreasing
function.

Kuskovsky et al. [7] experimentally revealed a sim-
ilar slow decay of donor–acceptor photoluminescence
in highly doped compensated semiconductors of the
ZnSe : N type. These authors developed the fluctuation
theory for this phenomenon and proved that the time
1063-7834/01/4312- $21.00 © 22237
decay of photoluminescence at a fixed energy obeys
even a slower law than the Kohlrausch stretched expo-
nential. Since the physical types of disorders in amor-
phous silicon and the aforementioned highly doped
semiconductors are similar to each other, the results of
the fluctuation theory proposed in [7] can be applied to
quantitative interpretation of experimental data on the
photoluminescence kinetics in amorphous silicon.

On the other hand, unlike the case of amorphous sil-
icon, the experimental dependences of the photolumi-
nescence on the time t in the case of porous silicon (see,
for example, [1]) can be described by the Kohlrausch
empirical function exp[–(t/τK)β], where τK is the char-
acteristic time and β is the Kohlrausch exponent (0 <
β ≤ 1). The distinction between these two cases is a nat-
ural consequence of differences in the structural disor-
der of amorphous hydrogenated silicon and porous sil-
icon. According to modern concepts [1], the structure
of porous silicon involves well-defined structured units
that consist of crystalline silicon and have characteristic
sizes on the nanometer scale. The structural units of
porous silicon are usually simulated by either quantum
wires [4, 8] or spherical crystallites (the so-called quan-
tum dots) surrounded by silicon oxide layers. However,
at present, preference is given to the latter model [1].

The quantum confinement effect can manifest itself
in a shift of the photoluminescence spectrum of porous
silicon toward the short-wavelength range with a
decrease in the mean size of silicon crystallites [1].
Hence, it is believed [9–11] that the photogeneration of
an electron–hole pair occurs inside a particular silicon
crystallite, after which the electron and the hole are local-
ized in traps arranged within the interface between this
001 MAIK “Nauka/Interperiodica”
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crystallite and the surrounding silicon oxide, and then
they undergo recombination through tunneling and (or)
activation mechanisms with emission of a light photon.
From this inference, it follows that the quasi-two-dimen-
sional trap arrangement (confined to crystallite surfaces)
should lead to a more rapid decay of photoluminescence
in porous silicon as compared to the photoluminescence
kinetics in amorphous hydrogenated silicon in which the
long-term time asymptotics of the photoluminescence is
determined by the presence of electrons and holes that
can be infinitely distant from each other.

As far as we know, a unified theoretical approach to
the description of all available experimental data on
photoluminescence kinetics and stationary photolumi-
nescence has never been developed. However, with
knowledge of the basic principles of the radiative
recombination mechanism in porous silicon, it is possi-
ble to obtain important information on the characteris-
tic parameters of a material through analysis of the
spectra and time relaxation of photoluminescence.

Investigation into the time evolution of the photolu-
minescence spectra of porous silicon seems more infor-
mative. Unfortunately, there exist few research works
dealing with the modeling of these phenomena in
porous silicon. Special mention should be made of the
work by Pavesi [12], who explained the stretched expo-
nential time decay of photoluminescence in porous sil-
icon within the model of hopping diffusion of photoex-
cited excitons between different crystallites. However,
it is hard to agree with the inference drawn in [12] that
a strictly exponential decay of photoluminescence
should occur in the absence of hopping diffusion
(which, in essence, follows from the highly improbable
assumption that the recombination time is independent
of the crystallite size in the structure wherein this size
is a random quantity). At the same time, the electric
fields induced by the possible disturbance of local elec-
troneutrality at the crystallite–silicon oxide interface
can easily destroy an exciton in the case of its diffusion
between crystallites; hence, the assumption of hopping
diffusion in porous silicon is incorrect. Moreover, the
conclusion made by Pavesi [12] that the Monte Carlo
calculation of the time decay of photoluminescence in
terms of this model results in the Kohlrausch function
is declarative in character, because the key features of
the computational procedure are omitted in his paper.

Unfortunately, reliable theoretical data on radiative
recombination in porous silicon are unavailable. In the
present work, we made an attempt to fill this gap. The
purpose of this work was to elaborate a consistent the-
ory that would provide an adequate quantitative
description of experimental data on the photolumines-
cence kinetics in porous silicon. We restricted our con-
sideration to the limit of absolute zero temperature (the
generalization of the theory to the case of finite temper-
atures and a theoretical analysis of the stationary pho-
toluminescence will be given in a separate work). In this
paper, we demonstrated that the experimentally
PH
observed kinetics of photoluminescence in porous sili-
con is similar to the Kohlrausch kinetics and agrees with
the aforementioned concepts regarding the mechanism
of radiative recombination of photoexcited electrons
and holes localized in random positions at a crystallite–
silicon oxide interface. Moreover, we proved the self-
consistency of the developed theory by way of quantita-
tive interpretation of the time evolution in the experi-
mental photoluminescence spectra of porous silicon.

2. THEORETICAL ANALYSIS 
OF THE RADIATIVE RECOMBINATION 

KINETICS IN POROUS SILICON

As in [1, 9], we assume that the structure of porous
silicon can be treated as an infinite set of randomly
arranged crystalline silicon spheres surrounded by sili-
con oxide layers. In this case, the silicon–silicon dioxide
interfaces, which are deficient in oxygen (SiOx, x < 2
[1]), can contain traps for electrons and holes [9]. For
definiteness, these traps are assumed to be impurities of
the donor and acceptor types that can be filled through
photogeneration of electron–hole pairs in a crystallite
upon its photoexcitation. An electron trapped on a donor
and a hole trapped on an acceptor form the so-called dis-
tant pair (according to the terminology used by Sakurai
et al. [11]) and can subsequently recombine by tunnel-
ing through the crystallite material with the emission of
a light photon. (Apart from this sufficiently slow pro-
cess, ultrafast luminescence was also observed in porous
silicon [13, 14], which could be brought about by the
annihilation of photoexcited excitons inside a particular
crystallite without trapping of electrons and holes.)

By analogy with the case of amorphous hydroge-
nated silicon [2] (and highly doped semiconductors [7,
15]), the time of tunneling recombination for an elec-
tron–hole pair is determined by the relationship

(1)

where r is the “arm” of the electron–hole pair (the dis-
tance between the electron and the hole localized on the
crystallite surface), R0 is the maximum (among the par-
ticles in the electron–hole pair) localization length, and
Wmax is a constant. The contribution from the relevant
electron–hole pair to the photoluminescence kinetics is
described by the function [15]

(2)

where Qr(t) = exp[–W(r)t] is the instantaneous proba-
bility that the recombination event has not yet occurred.

It is clear that the energy of a photon emitted upon
recombination should depend on r. Indeed, on the one
hand, as was shown earlier by Thomas et al. [15], the
inclusion of the Coulomb interaction between a
charged donor and a charged acceptor (which serve as
traps of a photoexcited electron and a photoexcited hole
and are separated by a finite distance r) leads to an
increase in the energy of the emitted photon by EDA(r) =

W 1– r( ) Wmax
1– 2r/R0( ),exp=

Ir t( ) dQr t( )/dt– W r( ) –W r( )t[ ] ,exp= =
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e2/(εr), where e is the elementary charge and ε is the
effective permittivity of the medium. On the other hand,
the energy of the emitted photon should carry informa-
tion on the band gap in the crystal (and on the energies
of the donor and acceptor levels from which, according
to [15], the electron and the hole recombine). By virtue
of the quantum confinement effect, the band gap Eg for
the crystallite under investigation should be dependent
on the crystallite diameter L. From general consider-
ations, it can be expected that Eg(L) ~ L–2 (see, for
example, [8] and references therein). However, reason-
ing from an analysis of the experimental data on photo-
luminescence in porous silicon, the dependence Eg(L)
is generally represented in the form [1]

(3)

where Eg is the band gap in a macroscopic crystal and
c1 and c2 are constants. Rama-Krishna and Friesner [16]
performed numerical pseudopotential calculations of
the electron energies in semiconductor nanoclusters
and obtained the dependence Eg(L) in a form similar to
expression (3). It should be noted that the contribution
EDA(r) to the energy of the light photon is similar in
form to the contribution ~L–1 in expression (3).

The resultant instantaneous photoluminescence
intensity for a system of spherical nanoclusters can be
obtained by the averaging of function (2) [taking into
account expressions (1) and (3)] over (a) the sizes of
nanospheres with an appropriate distribution function
and (b) the geometrical arrangement of donors and
acceptors that serve as traps of photoexcited electrons
and holes on the surface of a particular nanosphere. Let
us now make the simple assumption that the nano-
sphere surface contains no more than one donor–accep-
tor pair. For example, setting L = 5 nm (the characteris-
tic diameter of crystallites in porous silicon samples
used in the photoluminescence experiments [1]) and the
concentration ~1018 cm–3 for charged oxygen centers in
the SiOx structure [17], we find that the number of
donor–acceptor pairs at the crystallite–SiOx interface is
close to unity. Finally, under the assumption that the
size distribution of nanospheres has a Gaussian shape
(see, for example, [18]), we have 

(4)
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where L0 is the mean diameter of crystallites in a porous
silicon sample, ∆ is the variance of the Gaussian distri-
bution, and r = Lcos(θ/2) is the distance between the
localized electron and the localized hole in terms of the
azimuthal angle θ and the crystallite diameter L. When
deriving relationship (4), the normalization constant
was taken equal to a value that could be obtained from
the Gaussian distribution by integrating it between infi-
nite limits. This is justified in the case of a sufficiently
narrow distribution, which, in actual fact, reflects the
experimental pattern in porous silicon (see below).

After introduction of the dimensionless quantities
ξ0 = L0R0 and ∆0 = ∆/R0 and integration over θ, relation-
ship (4) with allowance made for expression (3) takes
the form

(5)

where

Formula (5) is the principal result obtained in our
work. Before proceeding to the description of experi-
mental data on the photoluminescence decay in porous
silicon and the time evolution of the photolumines-
cence spectra with the use of the derived formula, we
dwell briefly on the qualitative analysis of its features.
The distinctive feature of this formula is that the Gaus-
sian size distribution function in the integrand accounts
for the time spectrum of radiative recombination in the
given system. Relationship (5) closely resembles the
electric relaxation function obtained for disordered
conductors in our earlier work [19]. As was shown
in [19], the electric relaxation function reproduces the
behavior of the Kohlrausch function with a high accu-
racy. Therefore, the behavior predicted by expression (5)
for the time decay of photoluminescence in porous sil-
icon should also be reproduced by a dependence simi-
lar to the Kohlrausch function (in this case, the wider
the Gaussian distribution, the broader the range in
which this dependence holds [19]). Recent experi-
ments [1, 9] also demonstrated that the time decay of
photoluminescence in porous silicon obeys the Kohl-
rausch empirical law.
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3. ANALYSIS OF EXPERIMENTAL DATA

In order to describe quantitatively the experimental
data on the photoluminescence kinetics in porous sili-
con (Figs. 1, 3), it is necessary to specify the numerical
parameters in relationship (5). Certain of these param-
eters are known from independent measurements. In
particular, data processing of optical absorption mea-
surements in porous silicon samples gives the follow-
ing parameters: Eg = 1.17 eV, c1 = 18.4 eV Å, and c2 =
202 eV Å2 [1]. The mean size of crystallites L0 and the
variance of the size distribution can be considered to be
known (for example, according to electron microscopic
observations [1, 9], the characteristic values of L0 for
luminescent porous silicon samples fall in the range 5–
7 nm). As regards the Wmax constant, its value can easily
be estimated from the rate of photoluminescence decay
(see Fig. 1): Wmax ~ 106 s–1 (note that the Wmax constant
of the same order of magnitude determines the photolu-
minescence decay in doped semiconductors GaP [15]).
The effective permittivity ε can be obtained from the
experimental effective refractive index of porous sili-
con [1]: ε ~ 2–6. Since the possible values of localiza-
tion length R0 are unknown, this parameter is deter-
mined by fitting the theoretical results to the experi-
mental data on the photoluminescence in porous
silicon.

The applicability of formula (5) to the quantitative
description of experimental data on the photolumines-
cence kinetics in porous silicon is illustrated in Fig. 1.
For this purpose, the theoretical curve plotted using this
formula is compared with the experimental data
obtained in [12] for the radiant energy E = 1.86 eV at a
temperature of 11 K (Fig. 1). The calculations were per-
formed with the following parameters: L0 = 75 Å, ∆ =
12 Å, ε = 3.1, R0 = 2.6 Å, and Wmax = 106 s–1 (the other
parameters are given above).

–6
10

lnI

Time, ms
0 5 15 20 25

–4

–2

0

Fig. 1. Experimental (points) and theoretical (solid line)
time decays of the photoluminescence intensity I in porous
silicon. The experimental data at T = 11 K are taken from
[12]. The theoretical curve is plotted using formula (5) with
the parameters given in the text.
PH
Relationship (5) makes it possible to trace the time
evolution of the photoluminescence spectra of porous sil-
icon. The theoretical spectra calculated from formula (5)
with the same parameters but at different times of pho-
toluminescence decay are displayed in Fig. 2. Since
experimental data on the photoluminescence spectra at
temperatures close to absolute zero are unavailable, the
time evolution of the peak energy in the photolumines-
cence spectra depicted in Fig. 2 and the experimental
data taken from [12] are shown in Fig. 3. Note that the
time dependence of the width of the theoretical spectra
depicted in Fig. 2 is in qualitative agreement with that
obtained experimentally in [12]; however, the theoreti-
cal width at the given parameters turns out to be less
than the experimental width.

Thus, the proposed approach provides an adequate
quantitative description of the photoluminescence
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Fig. 2. Time evolution of the photoluminescence spectra
according to the calculations from formula (5) with the
same parameters as for the theoretical curve shown in Fig. 1
(I is the photoluminescence intensity). Time t, ms: (1) 1,
(2) 5, (3) 10, and (4) 15.
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Fig. 3. (1) Time evolution of the peak energy in the photo-
luminescence spectra shown in Fig. 2 and (2) the experi-
mental data at T = 11 K [12].
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kinetics and the time evolution of the photolumines-
cence spectra of porous silicon with actual parameters.

4. CONCLUSION
The fluctuation approach proposed in the present

work enabled us, within a unified context, to describe
quantitatively the main features of nonstationary photo-
luminescence in disordered structures (such as porous
silicon) at low temperatures. The origin of these fea-
tures (nonexponential photoluminescence decay simi-
lar to the Kohlrausch empirical law, the shape of the
photoluminescence spectra of porous silicon, and the
red shift of the peak energy in the photoluminescence
spectra with time) was interpreted within the concept of
tunneling radiative recombination of a photoexcited
electron and a photoexcited hole trapped on the surface
of each crystallite whose size distribution has a Gauss-
ian shape. The theoretical parameters accounting for
the characteristics of porous silicon have a clear physi-
cal meaning, and their numerical values can be
obtained from experimental data on the photolumines-
cence kinetics.

The developed theory can be extended to a larger
number of donor–acceptor recombination channels. In
this case, the theoretical spectra should be slightly
broadened, which is essential to achieve quantitative
agreement with the experimental spectral characteris-
tics of the photoluminescence in porous silicon.

The results obtained suggest that the proposed
approach can provide a basis for the development of a
consistent theory of optical phenomena in disordered
materials of the porous silicon type.
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Abstract—The electron paramagnetic resonance (EPR) spectra of Ni2+ ions substituting for Zn2+ ions in
Zn(BF4)2 · 6H2O crystals are studied over a wide range of temperatures under uniform compression. Measure-
ments are performed in the X- and Q-bands. The parameter D, which characterizes the initial splitting, under-
goes considerable variations with changes in temperature and pressure, whereas the g factor remains virtually
unchanged. An increase in the temperature is accompanied by a nonlinear increase in D. Under uniform com-
pression, the initial splitting varies linearly and the parameter D changes its sign at 3.5 kbar, which indicates
inversion of the spin levels. The coincidence of the EPR lines associated with different transitions leads to the
appearance of line-profile dips in the spectra due to cross-relaxation inside the spin system. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Crystals of Zn(BF4)2 · 6H2O belong to the family of
isomorphic crystals in which the metal ion can be
replaced by Co, Ni, Fe, Mn, and Mg ions and Cl can
substitute for B. Investigation of crystals with a per-
chlorate-type structure, for example, Zn(BF4)2 · 6H2O
and Zn(ClO4)2 · 6H2O crystals, which contain paramag-
netic bivalent impurity ions of the iron group, is of con-
siderable interest for several reasons. First, these crys-
tals undergo a series of phase transitions induced by
weak orientation interaction forces [1]. Second, their
structure contains bivalent impurity ions arranged in
the form of chains weakly linked to each other [2]; this
could be responsible for the unusual properties of these
compounds. Third, these crystals are readily compress-
ible and can serve as model objects in investigations at
high pressures [3].

Analysis of the phase diagrams constructed for
these materials and investigations into the microscopic
properties of different phases, including electron para-
magnetic resonance (EPR) study of temperature varia-
tions in the ground state of paramagnetic ions under an
external pressure, can provide new information neces-
sary for better understanding the nature and mecha-
nisms of phase transitions in these crystals.

The EPR spectra of Mn2+ and Ni2+ ions in fluorobo-
rate compounds were studied earlier in [4–8]. In these
works, the phase transition was found to be in the tem-
perature range 180–190 K. This transition manifested
itself in temperature dependences for both ions. Some
specific features of the EPR spectra for the Mn2+ ion at
1063-7834/01/4312- $21.00 © 22242
a high pressure were investigated in our recent work
[3].

In the present paper, we report the results of an EPR
study of the Ni2+ (3d8) ion in the Zn(BF4)2 · 6H2O crys-
tal at 4.2 K and in the temperature range 77–320 K and
the data obtained at a high pressure with the purpose of
elucidating the specific features of the temperature and
pressure dependences of the EPR spectrum.

2. EXPERIMENTAL TECHNIQUE, SAMPLES, 
AND CRYSTAL STRUCTURE

The EPR spectra were measured on superhetero-
dyne EPR spectrometers operating in 3-cm and 8-mm
bands with special leucosapphire cavities, which made
it possible to carry out investigations under high hydro-
static pressures over a wide range of temperatures.
Hydrostatic pressure was produced in a high-pressure
piston–cylinder-type chamber fabricated from a non-
magnetic material (beryllium bronze). The sample to be
studied was placed in a leucosapphire cavity, which, in
turn, was enclosed in the high-pressure chamber. A
mixture of dehydrated transformer oil and kerosene
taken in equal amounts served as the pressure-transfer-
ring medium. Special care was taken to provide a
hydrostatic pressure. For this purpose, the sapphire cav-
ity was covered with a thin Teflon cap filled with dehy-
drated gasoline, which could remain liquid up to
20 kbar. The cavity was connected to a heterodyne
channel of the spectrometer through a thin coaxial. The
pressure over the entire temperature range was mea-
sured with a manganin transducer simultaneously with
the temperature measurement using a calibrated copper
001 MAIK “Nauka/Interperiodica”
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resistance thermometer. In order to maintain the
required temperature, a nichrome heater was placed on
the surface of the high-pressure chamber and the con-
struction, as a whole, was insulated by a thin vacuum
spacing. The electronic system ensured stabilization of
the temperature with an accuracy of 0.1 K and its grad-
ual variation.

The Zn(BF4)2 · 6H2O single crystals with a 1% Ni2+

impurity were grown from a water solution by using
two techniques: (1) a slow decrease in temperature in a
thermostat and (2) evaporation of the solution at room
temperature. In both cases, crystals grew in the form of
hexahedral prisms with a clearly pronounced faceting,
which permitted their easy orientation. The crystals
were not hygroscopic under standard atmospheric con-
ditions.

Zinc fluoroborate, like perchlorate, has a
pseudohexagonal structure (P63mc) that exhibits three-
component orthorhombic twinning (Pmn21) [2]. A
schematic drawing of the structure (a = 7.62, b = 13.2,
c = 5.30, and Z = 2) is presented in [2, 4].

The bivalent metal impurity ion is surrounded by six
H2O molecules forming an octahedron slightly dis-
torted along the c axis. The water octahedron, in turn, is
surrounded by six BF4 tetrahedra, which also form an
octahedral structure. Two water octahedra in a unit cell
are rotated relative to each other through 60° around the
c axis.

3. TEMPERATURE DEPENDENCE 
OF THE EPR SPECTRUM OF THE Ni2+ ION

The EPR spectrum of the Ni2+ ion at a normal pres-
sure can be described by the axial spin Hamiltonian
over the entire temperature range with sufficient accu-
racy:

(1)

Here, g is the tensor of the spectroscopic splitting, β is
the Bohr magneton, H is the magnetic induction vector,

 is the spin operator, and D is the parameter charac-
terizing the splitting of energy levels in an axially sym-
metric crystal field. For all the temperatures used in the
experiment and an arbitrary direction of the external
magnetic field, the EPR spectrum of Ni2+ consists of
three absorption lines (electron spin S = 1). Two of
these lines correspond to the allowed transitions
between the states 〈+1|  〈0| and 〈–1|  〈0|, and
the third line is attributed to the forbidden transition
〈+1|  〈–1|. The spin Hamiltonian parameters for
three temperatures are listed in the table. The sign of the
parameter D was determined from the intensity ratio of
the low-field and high-field lines at liquid-helium tem-
perature. At D < 0, the low-field line is more intense. In
the entire temperature range covered, except for the
low-temperature range in which the weak anisotropy is
observed, the g factor is isotropic and varies only
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slightly. The parameter of the initial splitting D changes
substantially. The temperature dependence of the spin
Hamiltonian parameter D (Fig. 1) has two linear por-
tions, which intersect each other at 196 K. In the low-
temperature range 77–196 K, the slope of the linear
portion ∆D/∆T is equal to –2.44 × 10–3 cm–1/K. The
slope of the high-temperature portion in the range 196–
320 K is ∆D/∆T = –1.34 × 10–3 cm–1/K. A similar
dependence is observed for the EPR spectra of the Mn2+

and Ni2+ ions in Zn(BF4)2 · 6H2O and ZnSiF6 · 6H2O
crystals [3, 6, 9]. These variations can be explained by
the second-order phase transition, which is accompa-
nied by a change in the thermal expansion coefficient.
It is quite possible that the nature of this transition is
identical for the ZnSiF6 · 6H2O and Zn(BF4)2 · 6H2O
crystals.

4. PRESSURE DEPENDENCE 
OF THE EPR SPECTRUM OF THE Ni2+ ION

The EPR spectrum of the Ni2+ : Zn(BF4)2 · 6H2O ion
was studied at a high hydrostatic pressure and T = 77 K.
This spectrum can be described by the spin Hamilto-
nian (1). The g factor is independent of pressure within
the limits of experimental error. The parameter D,
which characterizes the deviation of the crystal field
from the cubic symmetry, turned out to be very sensi-
tive to uniform compression. Figure 2 shows the exper-
imental pressure dependences of the spin Hamiltonian
parameter D at liquid-nitrogen temperatures, which can
be described by the expression

D –0.196 0.06P+( ) cm 1– ,=

Temperature dependence of the spin Hamiltonian parameters

T, K g|| g⊥

 

D

 

, 10

 

–4

 

 cm

 

–1

 

4.2 2.23 

 

±

 

 0.002 2.19 

 

±

 

 0.002 –1350 

 

±

 

 4

77 2.23 

 

±

 

 0.005 2.23 

 

±

 

 0.005 –1908 

 

±

 

 4

295 2.22 

 

±

 

 0.005 2.22 

 

±

 

 0.005 –6314 

 

±

 

 30

 

0.2

50

|

 

D

 

|, 
cm

 

–
1

 

T

 

, K

0.3

0.4

0.5

0.6

0.7

100 150 200 250 300

 

Fig. 1.

 

 Temperature dependence of the spin Hamiltonian
parameter 

 

D

 

.

01



2244 KRYGIN et al.

                   
where P is measured in kbar.

An interesting feature of this dependence is that the
parameter D becomes zero at P = 3.5 kbar. This means
that the local electric field reaches cubic symmetry in a
site occupied by a bivalent nickel impurity ion. As the
pressure increases above P = 3.5 kbar, the parameter D
changes its sign and the singlet ground state is
observed.

A more noticeable effect should be observed upon
excitation of the triplet Γ5, which is related to the
ground orbital singlet Γ2 through the spin–orbit interac-
tion. It follows from the theoretical treatment [10] that

D 4λ2δ/∆0∆1,=

–0.2

0

D
, c
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Fig. 2. Pressure dependences of the spin Hamiltonian
parameter D. Open and closed circles correspond to ZnSiF6 ·
6H2O and Zn(BF4)2 · 6H2O, respectively.
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Fig. 3. (a) Coincidence of the allowed and forbidden transi-
tions in the 3-cm band and (b) the integral curve.
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1 for the [Ni(H2O)6] complex in
solution, which was determined from the optical
absorption spectrum, is approximately equal to
8400 cm–1, and the parameter λ is –270 cm–1 [10].
Hence, it follows that δ = 242D cm–1. From the afore-
mentioned experimental data, we obtain ∂δ/δP =
14 cm–1/kbar; i.e., at 10 kbar, the splitting of excited
levels is 140 cm–1. This should affect the optical absorp-
tion spectra and can lead to a change in the color of
crystals containing the Ni2+ impurity.

Vasyukov et al. [11, 12] demonstrated that, in the
case of slight variation in the cubic potential when the
crystal lattice is distorted along the threefold axis, the
parameter D can be expanded in powers of (β – β0). The
quantity (β – β0) is a measure of distortion of the molec-
ular complex of water. Here, β0 is the angle between the
direction toward the nearest ligand and the C3 axis of a
regular octahedron and β is the same angle for the dis-
torted octahedron. The expansion reduced to the first
term has the following form:

For all the studied crystals with a trigonal distortion,
∂D/∂β has a negative value [11, 12]. Therefore, the sign
of the parameter D depends on the sign of (β – β0). In
our case, at normal pressure, we have the parameter
D < 0 and, consequently, (β – β0) > 0. This means that
the octahedron is oblate along the C3 axis. At pressure
P > 3.5 kbar, the parameter D changes its sign and the
octahedron is elongated along the C3 axis. Despite the
fact that the crystals we considered have a lower sym-
metry, the deviations from trigonal symmetry are insig-
nificant [2]. Hence, we can use the above inferences in
our consideration.

A comparison shows that our data closely coincide
with the pressure dependences of the parameter D for
ZnSiF6 · 6H2O and MgSiF6 · 6H2O crystals [13, 14]
(Fig. 2). This coincidence can be explained by the fact
that the water complexes of these crystals exhibit virtu-
ally the same compressibility, even though the SiF6 and
BF4 anions forming the second coordination shell differ
from each other and the crystals are described by differ-
ent space groups:  for ZnSiF6 · 6H2O and Pmn21 for
Zn(BF4)2 · 6H2O. The elastic properties of these com-
plexes are formed by the nearest environment of the
bivalent metal impurity (in our case, six H2O mole-
cules) and through the hydrogen bonding between the
metal atoms and the anion environment. According to
our results and the data obtained in [3] for the pressure
dependences of the Mn2+ ion, the hydrogen bonding is
similar in all the aforementioned crystals.

D β β0–( )∂D/∂β.=

R
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5. EFFECT OF THE COINCIDENCE
OF TRANSITIONS

The strong dependence of the parameter D on the
temperature and pressure suggests an arrangement of
spin levels that is actually impossible under standard
conditions. Let us now consider two variants of the
arrangement of spin levels that lead to interesting
effects.

5.1. Coincidence of the allowed and forbidden
transitions. The situation when both transitions coin-
cide with each other is illustrated in Figs. 3–5. At a fre-
quency of 9 GHz, the narrow line attributed to the for-
bidden transition with an opposite phase is observed
against the background of the broad absorption line of
the allowed transition, which corresponds to the emis-
sion curve. In the antiderivative of the EPR signal
(Fig. 3), the narrow line has the shape of a dip. A simi-
lar pattern is observed at a frequency of 35 GHz
(Fig. 4). In the latter case, the coincidence of the
allowed and forbidden transitions occurs at room tem-
perature; however, the effect is substantially smaller in
magnitude.

5.2. Coincidence of two allowed transitions. A
similar pattern is also observed for the coincidence of
two allowed transitions. Figure 5 depicts the absorption
line in the case of exact coincidence between two lines
of the fine structure when the direction of an external
magnetic field corresponds to the magic angle θ =
54.4°. A similar situation can arise under uniform com-
pression. At P = 3.5 kbar (Fig. 2), the parameter D is
zero, the lines associated with the allowed transitions
coincide with each other, and a dip is observed in the
region of overlapping of the EPR lines.

This phenomenon can be explained in terms of
cross-relaxation in a three-level system. Specifically, if
there are two pairs of nearly equidistant levels, the
spin–spin interaction results in the following processes
[15]: the first ion absorbs the energy hν1 and the second
ion emits the energy hν2. For the exact coincidence of
the frequencies, the reemission processes have the

(+1)

dI
/d

B

(–1)

(0)

f = 35.242 Gc/s

T = 290 K

3 4 5 6 7 8 9 10
B, kG

Fig. 4. Coincidence of the allowed and forbidden transitions
in the 8-mm band.
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highest probability, which leads to a decrease in the
intensity of the absorption line. Since the lines of the
allowed spectrum of the Ni2+ ion are nonuniformly
broadened, the transition energies coincide only in a
narrow frequency range, as is the case in the two-pho-
ton transition observed at a high power supplied to the
sample [16].

Rather strong spin–spin interactions between the
Ni2+ ions can be judged from the clearly distinguishable
additional lines in the spectrum, which are attributed to
the ion pairs located along the c axis. The distinction of
the observed phenomenon from the conventional cross-
relaxation lies in the fact that these transitions occur
between the levels attributed to a single spin system.
Theoretical treatment of this phenomenon, as applied to
a MgO cubic crystal, was performed in [17].
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Abstract—It is demonstrated on model examples that inclusion of the interaction between pileups of grain
boundary dislocations formed in the vicinity of triple grain-boundary junctions leads to a multifold increase in
the capacity of these pileups. © 2001 MAIK “Nauka/Interperiodica”.
1. The pileups of grain boundary dislocations
formed in the vicinity of triple grain-boundary junc-
tions at the initial stage of plastic deformation of fine-
grained materials are responsible for important physi-
cal processes, such as the development of cavitation
under creep conditions, formation of cracks at high
loading rates [1], restructuring of a triple junction under
stresses typical of superplasticity [2], and inelastic
relaxation of a material after unloading [3]. The density
of edge dislocations ρ0(x) in an isolated one-sided
pileup, which is distributed over the interval x0 ≤ x ≤ xx
under the shear stress τ acting in the dislocation glide
plane, is determined by the standard equation [4]

(1)

where µ is the shear modulus, ν is the Poisson ratio, and
b is the strength of grain boundary dislocations; the
principal value of the integral is considered. If the dis-
locations are emitted by a source located at a point with
the coordinate x = L/2 and the threshold stress τc ~ µb/l,
the length of the pileup is determined by the condition
of blocking of the source by the reverse field of the
emitted dislocations:

(2)

From relationships (1) and (2), it follows [4] that

(3)

(4)
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In this case, the number of dislocations in the pileup is
given by

(5)

Relationship (3) for the dislocation density is used for
analyzing the formation of a crack in a triple junction
[1], whereas expression (5) is applied to the description
of the inelastic relaxation of a superplastic material [3].
However, for a triple junction in the general case (shear
stresses act at each boundary of the triple junction), the
grain boundary dislocations can be formed at all three
boundaries and their interaction substantially modifies
expressions (3)–(5). For an arbitrary triple junction, the
problem reduces to a complex system of three integral
equations. In order to obtain a preliminary estimate of
the effect of the interaction between pileups of grain
boundary dislocations, we consider two model exam-
ples admitting exact analytical solution.

2. Let us assume that, in addition to the already
introduced pileup, there exists a second pileup of dislo-
cations of opposite sign in the vicinity of the triple junc-
tion x = 0 in the interval –xs ≤ x ≤ –x0. This pileup is
formed by a source located at the point x = –L/2. The
region |x | ≤ x0 is an obstacle to the motion of disloca-
tions and can be considered a kernel of a triple junction
that has a crystal structure different from the structure
of the boundaries. Since the densities of dislocations
are identical in the two pileups according to the symme-
try considerations, we obtain the equation for the dislo-
cation density,

(6)

N0 ρ0 x( ) xd

x0

xs

∫
τ xs x0–( )

2bµ0
-----------------------.= =

ρ1 x '( )dx '
x ' x–

----------------------

x0

xs
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ρ1 x '( )dx '

x ' x+
----------------------

x0

xs

∫+ τ
µ0b
--------–=
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and the condition of the source blocking:

(7)

After replacing the independent variable x2 = y [5],
expression (6) reduces to an equation of type (1) and
has the solution

(8)

From condition (7), we obtain the relationship

(9)

Consequently, the number of dislocations in the pileup
is represented as

(10)

where xs is determined from relationship (9), q =

/xs, and K and E are the complete elliptic inte-
grals of the first and second kinds, respectively [6].

3. Under the assumption that L is the length of the
grain boundary, a triple junction, which is an obstacle
to the propagation of dislocations, should be located at
points x = L and x = 0. In this case, the source at the
point x = L/2 forms both the pileup in the interval x0 ≤
x ≤ xs and the pileup of dislocations of the opposite sign
in the interval L – xs ≤ x ≤ L – x0. The interaction of
these pileups can either decrease or increase the effect
of the mutual attraction of the pileups considered in the
first example (see Section 2) and, consequently, can
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Capacities of the interacting pileups of grain boundary dis-
locations in terms of the capacity of an isolated pileup.
PH
affect the concentration of stresses in the region of the
triple junction |x | ≤ x0. In order to estimate this effect,
we consider the second model example.

It is assumed that the obstacles to the motion of dis-
locations lie along a straight line at points xi = ±nL
(n = 0, 1, 2, …) and that sources with identical thresh-
old stresses are located at points xm = ±mL/2 (m = 1, 3,
5, …). Hence, the density of dislocations in any pileup
satisfies the equation

which, in view of the relationship  =

, takes the form

(11)

The condition of the source blocking is determined by
the following equation:

(12)

After replacing the independent variable cos(2πx/L) =
y, expression (11), as in the first example, reduces to an
equation of type (1) with the solution

(13)

It follows from Eq. (12) that

(14)

Finally, the number of dislocations in the pileup is
determined by the expression

(15)

where ν0 = cos(2πx0/L), νs = cos(2πxs/L), n = ,

t = , and Π is the elliptic integral of

the third kind.
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4. Under the condition L @ x0 (x0 ~ 5b), the depen-
dence of the capacity of an isolated one-sided grain
boundary dislocation pileup on the boundary length L
exhibits a nearly linear behavior. The linearity of the
dependence of N0 on τ breaks down only near the
threshold stress τc. The figure shows the dependences
N1/N0 and N2/N0. For weak stresses, the effect of the
interaction between two pileups is especially signifi-
cant at small L. When both parameters L and τ increase,
the role of the interaction between these pileups is less
pronounced. However, in this case, too, the number of
dislocations involved in interacting pileups is five or six
times larger than that in an isolated pileup. The screen-
ing effect of a chain of dislocation pileups is also more
evident compared to that of a two-sided pileup under
weak stresses (the screening effect causes an approxi-
mate twofold decrease in the capacity of interacting
pileups; however, this capacity is still four times higher
than the capacity of an isolated pileup). As the stress
increases, the effect of the screening is leveled and the
capacity of a chain of pileups and that of the two-sided
pileup become close to each other.

The dislocation densities represented by expres-
sions (8) and (13) bring about a substantial increase in
the concentration of stresses at the triple junction point
as compared to a one-sided pileup described by rela-
tionship (3). Note that especially favorable conditions
for the formation of a crack are observed at high strain
rates.

The simple and sufficiently accurate estimates of
expressions (10) and (15) lead to the principal terms of
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      200
the expansions with respect to the small parameter
x0/L ! 1:

Thus, the consideration of the processes occurring
in triple grain-boundary junctions during plastic defor-
mation should be based on a more thorough description
of the interacting pileups of grain boundary disloca-
tions than is usually used for noninteracting pileups.
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Abstract—This paper reports on a laser interferometric study of the effect of a dc magnetic field (MF) on the
rate of plastic deformation (creep)  of NaNO2 ferroelectric crystals under compression. It is established that
the application of a dc MF to a loaded specimen results in an increase in the creep rate and that removal of the
MF brings about a decrease in . Subjecting an unloaded specimen to a dc MF beforehand also affects its strain
rate under the subsequent loading. The observed magnetoplastic effect is most clearly pronounced within a cer-
tain  interval, and the magnitude of this effect for the NaNO2 ferroelectric is several times larger than that for
LiF crystals. © 2001 MAIK “Nauka/Interperiodica”.
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ε̇
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1. INTRODUCTION

The magnetoplastic effect (MPE) was originally
observed in nonmagnetic crystals (NaCl) on a micro-
scopic scale in the form of dislocation motion in
unloaded specimens placed in a pulsed [1] or dc [2]
magnetic field. However, in [1], the observed effect was
assigned not to the magnetic field itself but rather to the
induced vortex electric field acting on the dislocations.

It was subsequently established that the MPE not
only consists of an increased mobility of single disloca-
tions [3, 4] but also becomes manifest on the macro-
scopic level by lowering the yield point [5, 6], reducing
the microhardness [7], and changing the acoustic
parameters (internal friction) [8]. The magnetic field
has been observed to affect the plasticity of a number of
nonmagnetic materials, more specifically, of ionic crys-
tals [1–8], polymers [9–11], semiconductors [12, 13],
molecular crystals [14, 15], and diamagnetic metals
[16–18]. (For a more extensive list of references to the
MPE, see review [19].) According to [6], the nature of
the MPE is usually associated with spin conversion in
impurity centers, which gives rise to a rearrangement of
their electronic structure and the corresponding weak-
ening of their interaction with dislocations.

The experiments carried out thus far suggest that
practically any nonmagnetic material can exhibit the
MPE under certain conditions. We have chosen, as a
subject for the study, NaNO2 ferroelectric crystals,
which contain polarized regions (domains) and, as
shown previously in [20], exhibit a specific polariza-
tion-induced electroplastic effect. These crystals were
used to study the influence of a magnetic field on the
plastic-strain rate under a constant compressive stress,
and it was established that the magnetic field stimu-
lates, under certain conditions, a substantial increase in
this rate.
1063-7834/01/4312- $21.00 © 22250
2. EXPERIMENTAL

The NaNO2 single crystals used in the work were
grown by the Kyropoulos method from melt and
annealed at 500 K for 48 h. The specimens were 2 × 3 ×
6-mm rectangular parallelepipeds cut with a thread
saw. The crystallographic orientation of the specimens
was chosen such that they could be plastically
deformed along the well-known slip systems
{110}〈111〉  and (001)[100] [21].

The specimens were deformed by a constant com-
pressive stress σ at room temperature. The course of the
deformation with time was monitored using laser inter-
ferometry [22], a method that permits one to measure
the relative strain rate  under small variations of the
specimen length l0. One beat in an interferogram corre-
sponds to a strain increment of 0.3 µm, and  = λν/2l0,
where λ = 0.6 µm is the laser wavelength and ν is the
beat frequency. As a result, the inelastic strain rate can
be measured over a base length of ∆l = 0.3 µm to within
~1%, thus permitting one to detect weak effects, which
would otherwise be washed out in the traditional
strain–time creep curves.

The deformation experiments, both in the presence
of a dc magnetic field and without it, were performed
on a setup whose components, located within the region
of the magnetic field, were made of nonmagnetic mate-
rials. To study the influence of a magnetic field with
induction B = 0.2 T (generated by a permanent magnet)
on specimen deformation, a strained specimen was
placed between the magnet poles. The magnetic field
was oriented perpendicular to the specimen axis. Par-
ticular attention was focused on the possible change in
strain rate upon both application and removal of the dc
magnetic field (MF). The magnitude of  was mea-
sured at the same increments of the strain before and
after the field was varied.

ε̇

ε̇

ε̇
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Experimental study on the creep rate of a specimen
was also performed after its exposure to a magnetic
field in the unloaded state. The exposure time was
10 min, and the creep rate was measured 5 s after the
loading, immediately following the removal of the dc MF.

For comparison, similar experiments were also car-
ried out on 5 × 5 × 10-mm LiF single crystals subjected
to slip over the {110}〈110〉  systems.

3. RESULTS OF THE STUDY AND DISCUSSION

Figure 1 presents interferograms in which the oscil-
lation frequency reflects the variation of the creep rate
of a loaded NaNO2 specimen at the instant of applica-
tion (arrow up) and removal (arrow down) of a mag-
netic field. This interferogram clearly demonstrates the
manifestation of a repeating MPE in the NaNO2 crys-
tals; this effect consists in a sharp increase in the creep
rate under a magnetic field and in a decrease in  when
the field is removed.

Figure 2 illustrates the dependence of  on time t for
NaNO2 and LiF crystals, including the instants of appli-
cation and removal of a dc MF. One clearly sees the
manifestation of the above-mentioned MPE, with the
NaNO2 crystal response to the magnetic field being
noticeably stronger than the LiF response. A similar
enhancement of the creep rate was also observed to
occur after the exposure of unloaded specimens to a
magnetic field.

In the case of creep, the MPE can be quantitatively
characterized by the ratio of the creep rates obtained
with and without the field, i.e., by the quantity / .
Because the creep rate for σ = const decreases with
time, the /  ratio was measured for various values

of . Figure 3 displays the dependences of /  on
the creep rate at which the MPE was measured on a
loaded specimen or on a specimen after its exposure to
a dc MF in an unloaded state. One does not see any
noticeable effect of the magnetic field on the NaNO2

crystals at small strain rates (  < 5 × 10–7 s–1). At the

same time, even a small further increase in  results in
the onset and sharp growth of the MPE up to values

ε̇

ε̇

ε̇ f ε̇0

ε̇ f ε̇0

ε̇0 ε̇ f ε̇0

ε̇0

ε̇0

30 s

Fig. 1. An interferogram displaying the variation of the creep
rate along the (001)[100] slip plane of a loaded NaNO2 spec-
imen under application (↑ ) and removal (↓ ) of a magnetic
field; B = 0.2 T and σ= 8.6 MPa.
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Fig. 2. Creep rate vs. time plots including the instants of
application (↑ ) and removal (↓ ) of a magnetic field:
(a) NaNO2 (slip plane system {110}〈111〉) , σ = 8.5 MPa;
and (b) LiF, σ = 7 MPa.

0
0

NaNO2

, 10–5 s–1

1
2
3
4
5
6

0.5 1 2 3 4 5

5

. ε f
/

. ε 0

LiF

Fig. 3. Dependence of the /  ratio on the creep rate at
which the MPE was measured in (1–3) NaNO2 and (4–6)
LiF crystals. The data were obtained under (1, 2, 4) applica-
tion or (5) removal of a dc magnetic field (B = 0.2 T), as well
as (3, 6) after 10-min exposure to a field. The slip planes in
the NaNO2 crystals: (1, 3) {110}〈111〉  and (2) (001)[100].
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/  ≈ 7. This MPE level remains nearly unchanged

up to  ≈ 1 × 10–5 s–1, after which it falls off rapidly
and practically disappears at ε0 ≈ 4 × 10–5 s–1. The

/  relation for the LiF crystals behaves in the same
way; however, the maximum value of this ratio does not
exceed 1.6.

Interestingly, in the earlier experiments carried out
on NaCl and LiF crystals under constant rates of strain
[6] or loading [19], the maximum values of /  in
weak magnetic fields likewise did not exceed 2 even for
specimens containing a large amount of divalent impu-
rities, which enhances the MPE [19]. In this case, the
MPE in LiF crystals was observed for B = 0.2 T only for

 < 2 × 10–5 s–1 [6].

4. CONCLUSIONS

Thus, the experimental data obtained in this work
indicate a manifestation of the MPE in ferroelectric
crystals. In this case, the MPE reveals itself in an
NaNO2 crystals as a substantial increase in the plastic
strain rate of a loaded specimen upon the application of
a magnetic field or after subjection of the specimen to
it. In these conditions, the MPE is observed only within
the strain rate interval  ≈ (0.1–3) × 10–5 s–1. The results
obtained can be interpreted qualitatively within a model
that takes into account thermally activated and magnet-
ically stimulated depinning of dislocations from vari-
ous pinning centers, primarily the impurity centers
present in the crystals [6, 19]. One should, naturally,
also take into account the specific features of the struc-
ture of the dislocations themselves and of the pinning
centers for each crystal considered. In particular, the
formation of a polarization electric charge on disloca-
tions may play a considerable role in ferroelectrics
[23], but clarification of the part played by this charge
in the MPE would require additional studies.
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Abstract—Single-crystal films of the Ba0.87Bi0.13Al3.96Fe8.04O19 hexagonal ferrite were prepared by liquid-
phase epitaxy on single-crystal plates of the nonmagnetic material SrGa12O19, whose crystal structure is similar
to that of the film grown on it. A Mössbauer study of the films revealed that the magnetic moments of the iron
ions in the bulk of a film are perpendicular to the film growth plane, whereas the moments of the ions residing
in a surface layer ~300-nm thick are canted away from the normal of the film by 30° ± 5°. © 2001 MAIK
“Nauka/Interperiodica”.
Widespread application of magnetic materials in the
form of epitaxial films of hexagonal ferrites in various
areas of microelectronics requires not only investiga-
tion of the characteristics of the films themselves but
also our understanding of the properties of the surface
and of their relationships with the bulk characteristics.
The fact is that the method used to prepare the films,
namely, liquid-phase epitaxy (LPE) on substrates from
a supercooled solution in a melt, brings about the for-
mation of transition layers on the film–substrate and
film–air interfaces. Indeed, it has been experimentally
shown [1] that the magnetic structure of the surface
layer adjoining the film–air interface differs from that
of the bulk of the film. It has been established [2] that
the differences in magnetic structure increase as one
approaches the film surface. On the garnet-ferrite-film–
substrate and the film–air interfaces, transition layers
were detected [3–5] that differed in chemical composi-
tion from the bulk of the film, with these differences
increasing as one moves closer to the film interfaces.
However, the nature of the differences between the
magnetic structures of the surface and of the bulk was
not discussed in [1, 2]. It should be pointed out that the
fact that a surface transition layer differing in magnetic
structure from the bulk exists on the surface of macro-
scopic crystals was first demonstrated experimentally
in [6, 7] using antiferromagnets with a weak ferromag-
netic moment as an example. Such a transition layer
was later shown to be present in hexagonal ferrites as
well [8–10].

Thus, the crystallization process and the formation
of surface properties in thin films of such complex
oxide compounds as ferrites require further investiga-
tion. This work was aimed at studying the magnetic
properties of the bulk and of the surface layer in films
of Ba–M-type hexagonal ferrites.

Single-crystal films of the hexagonal ferrite were
LPE-grown from a Ba0.87Bi0.13Al3.96Fe8.04O19 batch.
The films were prepared on (0001) single-crystal sub-
1063-7834/01/4312- $21.00 © 22253
strates of nonmagnetic SrGa12O19. This orientation of
the substrate was chosen to obtain a film with its mag-
netization perpendicular to its growth plane. The films
were grown without substrate rotation at a melt temper-
ature ~1040°C for 10 min. The 57Fe isotopic content in
the films was equal to its natural abundance ratio. The
film thickness was ~3 µm.

We studied the crystalline and magnetic structures
of the films using x-ray diffraction and simultaneous
gamma, x-ray, and electron Mössbauer spectroscopy
(SGXEMS) [11]. Mössbauer spectroscopy provides
direct information both on the phase state of the sub-
stance under study and on the orientation of the mag-
netic moment in a sample. The SGXEMS method per-
mits one to simultaneously obtain Mössbauer spectra in
γ rays, x-ray characteristic radiation, and conversion
and Auger electrons (CAE). The spectra thus obtained
can be used to derive information on the properties of
the bulk, of layers a few micrometers thick, and of sur-
face layers ~300 nm thick of the sample under study.

The Mössbauer spectra of the
Ba0.87Bi0.13Al3.96Fe8.04O19 films were measured on a
SGXEMS-based computer-controlled system [12]. The
wave vector of the γ radiation was oriented perpendic-
ular to the surface of the films studied. The SrGa12O19
substrates were ~500-µm thick and, therefore, opaque
to the 14.4 keV Mössbauer radiation. To measure
Mössbauer spectra with detection of γ rays in the film
transmission mode, the substrates were ground off to a
thickness ~100 µm.

Figure 1 shows room-temperature Mössbauer spec-
tra of our films. They are seen to consist of several Zee-
man sextuplets, which are due to iron ions occupying
inequivalent sites. A least squares computer analysis of
the spectral data showed them to be spectra of the hex-
agonal ferrite. The experimental spectra were used to
derive the hyperfine-interaction parameters. The values
of the effective fields Heff at the iron-nucleus sites in the
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Mössbauer spectra of an epitaxial film of the Ba0.87Bi0.13Al3.96Fe8.04O19 hexagonal ferrite obtained at 300 K by detecting
(a) γ-rays passing through the sample and (b) conversion and Auger electrons escaping out of a surface layer ~300-nm thick.
300-nm thick surface layer and in the bulk of the film
were found to coincide to within experimental error.
The effective fields are listed in the table together with
the corresponding figures for bulk crystals of the hex-
agonal ferrites. As seen from the table, the effective
fields in the films under study, in which the number of
diamagnetic Al ions per formula unit is x = 3.96, are
substantially lower than those in the unsubstituted Ba–
M ferrites, even though doping the Sr–M ferrites with
Al ions to a value of x = 1.8 does not produce a notice-
able decrease in Heff [10].

The spectra obtained with γ rays (Fig. 1a) do not
have the second and fifth sextuplet lines corresponding
to ∆m = 0 transitions, which indicates that the magnetic
moments of the iron ions in the bulk of the film are par-
allel to the wave vector of the γ-ray beam. The CAE
spectrum contains weak lines corresponding to the sec-
PH
ond and fifth lines of the Zeeman sextuplets. This
implies that the magnetic moments of the iron ions
residing in the ~300-nm-thick surface layer are canted
away from the film surface normal.

The experimental spectral-line intensity ratio can be
used to calculate the angle θ defining the orientation of
the magnetic moment in the crystal relative to the γ-
radiation wave vector. This can be done using the rela-
tion (see, e.g., [13])

(1)

θ
4A1,6 3A2,5–
4A1,6 3A2,5+
-------------------------------- 

 
1/2

arccos=

=  
3/2( )A2,5/A1,6

1 3/4( )A2,5/A1,6+
------------------------------------------- 

 
1/2

,arcsin
YSICS OF THE SOLID STATE      Vol. 43      No. 12      2001



        

EPITAXIAL FILMS OF Ba–

 

M

 

 TYPE HEXAGONAL FERRITES 2255

                                                           
Effective magnetic fields Heff for iron ions in the bulk of an M-type hexaferrite (MAlxFe12 – xO19) at room temperature

Sublattice SrFe12O19 [10] SrAl1.8Fe10.2O19 [10] BaFe12O19 [9]
This work, 

Ba0.87Bi0.13Al3.96Fe8.04O19 
film

12k 413 ± 1 415 ± 1 416 ± 1 325 ± 5

4f1 498 ± 1 482 ± 2 493 ± 1 390 ± 7

4f2 519 ± 2 518 ± 2 520 ± 3 471 ± 7

2a 510 ± 2 510 ± 2 508 ± 3 457 ± 7

2b 405 ± 4 405 ± 4 403 ± 5 312 ± 8
where A1, 6 are the intensities of the first and sixth lines
and A2, 5 are the intensities of the second and fifth lines.
The line intensity calculations made using Eq. (1) for a
spectrum obtained with the detection of γ rays and CAE
yielded 0 and ~30° ± 5° for the angle θ, respectively.
This implies that the magnetic moments of the iron ions
in the bulk of the film are oriented perpendicular to the
film plane and parallel to the crystallographic axis C.

It is known that the diamagnetic cations Al, Ga, Cr,
or Mn substituting for Fe3+ ions are distributed uni-
formly over all the sublattices of an M-type hexaferrite
[14]. The exception is the 2b sublattice, where the iron
ions remain unsubstituted up to x = 4–6. Therefore,
M-type hexaferrites doped with such substituting ions
do not exhibit a sharp change in their magnetic proper-
ties with increasing concentration of diamagnetic sub-
stituting ions, as is the case with iron ions replaced by
ions of Sc, In, and Zn [9, 14]. The collinearity of the
magnetic structure in hexaferrites with Al, Ga, Cr, and
Mn substituting ions breaks down at room temperature
for x ≥ 3 (see [10] and references therein). Magnetic
ordering in such ferrites fails at x ≥ 6–8.

We did not observe any violation of collinearity in
the orientation of the magnetic moment with the C axis
in the bulk of the films studied. It may be conjectured
that the concentrations of diamagnetic cations substi-
tuting for iron ions are not high enough for a noncol-
linear structure to form in the bulk of a film.

The ~300-nm thick surface layer of the films under
study exhibits a different scenario; namely, the mag-
netic moments in this layer are canted away from the C
crystallographic axis. The onset of this misorientation
of moments can be interpreted in the following way. As
shown experimentally, a transition surface layer in
which the orientation of the magnetic moment differs
from that in the bulk of the sample exists in weakly fer-
romagnetic crystals [6, 7] and hexagonal ferrites [8–
10]. This transition layer is formed due to the exchange
interactions being reduced near the surface. Another
factor capable of influencing the orientation of the mag-
netic moment in the surface layer is the slight change in
the composition as one approaches the surface of films
prepared through liquid-phase epitaxy. The fact is that,
when the substrate with the film is taken out of the melt
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      20
solution, a change in the temperature conditions in
which the film surface layer forms may affect its prop-
erties. This work was not aimed at investigating the sur-
face layer composition. However, studies of YIG films
[3–5] have provided experimental evidence of changes
in the surface layer composition.

Thus, we have used the method of simultaneous
gamma, x-ray, and electron Mössbauer spectroscopy to
study the magnetic properties of the bulk and a
~300-nm-thick surface layer of films of
Ba0.87Bi0.13Al3.96Fe8.04O19 hexagonal ferrites prepared
through liquid-phase epitaxy. It has been established
that the magnetic moments of the iron ions located in
the bulk are oriented perpendicular to the film surface
and parallel to the C crystallographic axis, whereas
those of the iron ions in the surface layer are canted
away from the moments in the bulk of the films at an
angle of 30° ± 5°. This difference is probably due both
to the presence of the surface and to a change in the cat-
ion distribution in the surface layer observed as one
goes over from the bulk to the surface of the film. 
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Abstract—E(k) dispersion curves for the charge carriers in the LaMnO3-like perovskites were calculated for
the basic types of canted antiferromagnetic ordering of the Mn sublattice in the framework of the tight-binding
approximation. The E(k) spectrum of the antiferromagnetic structures was calculated for the first time taking
into account the degeneracy of the Mn eg level and the Jahn–Teller distortion of the cubic perovskite structure.
This calculation involved diagonalization of the 8 × 8 Hamiltonian matrix. Analytical expressions for the E(k)
function at separate points and symmetry lines of the Brillouin zone were derived. The calculations showed that
the properties of the La1 – xCaxMnO3 system do not have electron–hole symmetry. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

At the present time, doped R1 – xLxMnO3 manganites
(R = La, Pr, Nd, Sm; L = Ca, Ba, Sr) are objects of
intense experimental and theoretical investigations, in
which particular attention is given to their unique phys-
ical properties (colossal magnetoresistance, metal–
insulator phase transitions, charge ordering, etc.) [1].
Now, it is evident that, in order to correctly describe the
phase diagrams and the transport properties of manga-
nites, the degree of freedom associated with the double
orbital degeneracy of the Mn eg level should be taken
into account in addition to the spin and the charge
degrees of freedom [2, 3].

The anomalous electric conductivity of manganites
in the vicinity of the Curie point is explained in terms
of the Zener–Anderson–Hasegawa double-exchange
(DE) model [4–6]. This model allows one to calculate
the energy band spectrum E(k) and the kinetic energy
of the charge carriers for different magnetic phases of
the perovskite crystalline structure. In the DE model,
the hopping integral tij between the manganese ions
depends on the angle θ between the magnetic moments
of the nearest neighbor Mn4+ ions, tij = tcos(θij/2). In
order to calculate the E(k) spectrum of a certain mag-
netic structure (only the manganese sublattice is usu-
ally considered in manganites), it is necessary to spec-
ify the angles θij and solve the corresponding secular
equation. The order of this equation is equal to the
product of the number of atomic orbitals and the num-
ber of magnetically nonequivalent manganese ions.

The electronic band structure of the basic magnetic
structures of manganites (without regard for the orbital
1063-7834/01/4312- $21.00 © 22257
degeneracy [7] of the eg level) is well known. With
allowance for the double degeneracy of this level, the
electronic band structure has been calculated only for
the ferromagnetic (FM) state of the manganese sublat-
tice [8]. Unfortunately, the results obtained for the FM
case are often used [2, 9] to calculate the kinetic energy
of charge carriers in antiferromagnetic (AF) structures
and to construct phase diagrams for doped manganites.
Such calculations are not justified, because they ignore
the increase in the number of nonequivalent atoms in
the unit cell (which leads to a higher order secular equa-
tion) as one goes from the FM to the AF case. Thus, it
is necessary to calculate E(k) for different AF struc-
tures with allowance for the eg-level degeneracy, the
Jahn–Teller (JT) lattice distortions, and the possible
charge ordering in order to carry out a correct theoreti-
cal analysis of the total energy and the orbital, charge,
and spin ordering in the oxides under study.

2. CALCULATION METHOD

This study is dedicated to calculating an E(k) spec-
trum that takes into account the orbital degeneracy of
the eg electrons in manganites for different types of
magnetic (canted antiferromagnetic) ordering in the
system. We assume, as in the majority of recent papers,
that the spin of a charge carrier is always oriented along
the local manganese ion spin formed by the three t2g

electrons. Several basic types of magnetic ordering of
the manganese sublattice in perovskites have been
observed experimentally: type A is AF ordering of the
neighboring (100) FM planes, which is observed in the
001 MAIK “Nauka/Interperiodica”
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LaMnO3 compound (θij = θz = π); type G is AF ordering
of the nearest neighbors (CaMnO3, θij = π); type C is
AF ordering in the (100) plane (θij = θxy = π); and type
F is FM ordering (θij = 0). In the case of canted ferro-
magnetic ordering, the angle θij ≠ π. In A, G, and C
magnetic ordering, the perovskite unit cell contains two
nonequivalent manganese atoms. In order to calculate
the energy spectrum in the tight-binding approximation
with allowance for the degeneracy of the eg level, one
should diagonalize the Hamiltonian matrix constructed
in terms of eight basis Bloch functions. In the case
when both angles θxy and θz are simultaneously non-
zero, one should use at least twelve combinations of
Bloch functions. It is clear that the energy spectrum of
AF structures (especially, of the G type) cannot be
approximated (as was done in [2]) by the spectrum of
the FM state with two hopping integrals dependent on
θxy and θz.

In the framework of the infinitively strong intra-
atomic Hund exchange approximation (where the intra-
atomic energy is much greater than the hopping inte-
gral, JS @ t), we can limit our consideration to 4 × 4
matrices and obtain analytical expressions for the dis-
persion relations. However, we will consider the gen-
eral case, where JS is comparable to t [JS ≈ (3–5)t]. The
Hamiltonian of the system is taken to be the double-
exchange Hamiltonian:

(1)

where

i and j are the atom indices, α and β are the atomic
orbitals |z2〉  and |x2 – y2〉 , εiασ is the energy of the degen-
erate d level of the α-type Mn3+ ion (α = 1, 2), σ is the
spin index, θij is the angle between the local magnetic
moments S (S =3/2) of the neighboring Mn4+ ions, and

 is the hopping integral between the degenerate
orbitals of nearest neighbors. The value of the hopping
integral depends on the hopping direction; in the Carte-
sian coordinate system x, y, and z, the hopping integral

HDE εiασdiασ
+ diασ

iασ
∑=

+ tijαβ
σσ' θij

2
----- 

  diασ
+ d jβσ'

U
2
---- niσni σ– ,

iσ
∑+

ijαβσ 'σ
∑
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2
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2
----- 

  , σcos σ'=
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2
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  , σ σ',≠sin±








=

tijαβ
σσ'
PH
is expressed in the matrix form as follows:

(2)

Here,

The Hamiltonian matrix for the canted antiferro-
magnetic structures is conveniently written as

(3)

where the matrices H1 and H2 describe the interaction
between orbitals of the same type, while the matrix H12
describes the interaction between degenerate orbitals of
different types. The explicit form of the matrices Hi for
different magnetic structures is given by the formulas
presented in [7]. For example, for the G-type structure,
we have

(4)

where t1(k) = t(coskx + cosky) – 2tcoskz, t2(k) =

t(coskx + cosky), t = , and ∆ = Ed – Ep. Here,

 = Edi + U〈n–σ〉  is the energy of the manganese ion
eg levels, Ep is the energy of the oxygen p level, and t is
the effective transfer integral between the orbitals of the
nearest neighbor manganese ions calculated in the sec-

tijαβ tij
αβ≡ t
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4
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ond-order perturbation theory with respect to the
Koster–Slater transfer integral Vpdσ between the manga-
nese eg orbital and the p orbital of its nearest neighbor
oxygen ion. The parameter t for manganites is positive,
because, according to numerical calculations using the
cluster method [10], the Ep level lies below the Edi lev-
els. Since only the transfer between the |z2〉-type orbit-
als is possible along the z axis, the matrix H12(k)
depends only on the perpendicular component of the
wave vector k⊥  and has the form

(5)

where

For the A-type structure, we obtain

(6)

where  + ti(k⊥ ) = %, t1(kz) = –2tcoskz, t2(kz) ≡ 0,

t1(k⊥ ) = t(coskx + cosky), and t2(k⊥ ) = t(coskx +

cosky).

In Eqs. (4)–(6), it is assumed that index 1 corre-
sponds to the d orbital of the |z2〉  type and index 2 cor-
responds to the |x2 – y2〉  orbital. It follows from Eq. (6)
that the matrix H2(k) is diagonal for the A-type struc-
ture. It is obvious that in this case, the matrix H12(k) is
also diagonal, Hmn(k⊥ ) = t12(k⊥ )δmn (m, n = 1–4).
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 
 
 
 
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2
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Hi k( )

=  

% JS– 0 ti kz( ) θ
2
---cos ti kz( ) θ

2
---sin

0 % J S 1+( )+ ti kz( ) θ
2
---sin– ti kz( ) θ

2
---cos

ti kz( ) θ
2
---cos ti kz( ) θ

2
---sin– % JS– 0

ti kz( ) θ
2
---sin ti kz( ) θ

2
---cos 0 % J S 1+( )+

 
 
 
 
 
 
 
 
 
 
 
 

,

Edi'
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For the C-type structure, we have

(7)

where  + ti(kz) = . The matrix H12(k) = H12(k⊥ ) is
identical to the corresponding matrix for the G-type
structure.

3. RESULTS AND DISCUSSION

The dispersion curves for different canted antiferro-
magnetic structures were calculated using Eqs. (3)–(7)
both with and without regard for the static JT distor-
tions of the perfect cubic perovskite structure. Because
of these distortions, the transfer integral has different
values along different directions and the Ed1 and Ed2
levels are split. The distance dependence of the transfer
integrals (the parameter Vpdσ), which was determined in
accordance with Harrison’s suggested methods [11],
virtually does not affect the calculated dispersion
curves. The most important effect of the JT distortions
is the eg-level splitting. When a certain critical value of
this splitting is attained, an insulating band gap appears
in the lower degenerate band of the A-type (LaMnO3)
magnetic structure. If the JT effect is not taken into
account and, therefore, the eg level is degenerate, then
the A structure will always be a metal (even without
doping): this contradicts numerous experimental data.
For the G structure, the band gap arises for consider-
ably smaller amounts of the JT distortions. For perfect
structures (θ = π), all bands are twofold degenerate. In
this case, one can easily derive analytical expressions
for the E(k) dispersion relation for some separate points
and symmetry lines in the Brillouin zone (BZ). In the
general case, it is easier to carry out numerical diago-
nalization for the eighth-order secular equation for
arbitrary values of the angle θ and the wave vector k in
the BZ of an orthorhombic lattice. Because the orthor-
hombic distortions are small and only the manganese
sublattice can be considered, we carried out all calcula-
tions for the BZ of the cubic lattice in the standard nota-
tion used in [8].

It is convenient to perform numerical calculations of
E(k) in units of t. Specific values of this parameter for
LaMnO3 lie within the range from a value of 0.1–
0.15 eV [12] (obtained in the framework of the band
formalism of the density functional) to a value of
≈0.30 eV [10] (found for the [La4Mn2O11]4– cluster in

Hi k( )

=  

% JS– 0 ti k⊥( ) θ
2
---cos ti k⊥( ) θ

2
---sin

0 % J S 1+( )+ ti k⊥( ) θ
2
---sin– ti k⊥( ) θ

2
---cos

ti k⊥( ) θ
2
---cos ti k⊥( ) θ

2
---sin– % JS– 0

ti k⊥( ) θ
2
---sin ti k⊥( ) θ

2
---cos 0 % J S 1+( )+

 
 
 
 
 
 
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,

Edi' %
1
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the framework of the density-functional formalism).
According to cluster calculations, the eg-level splitting
in the crystalline field is Ed1 – Ed2 = 0.3–0.5 eV [10],
while it follows from the optical data [13] that Ed1 –
Ed2 = 1 eV. The parameter J ≈ 0.25 eV was obtained as
a result of calculating the Mn3+ ion electronic band
structure in the Hartree–Fock approximation using the
well-known RAINE program complex [14]. This
parameter was determined for S = 3/2 from the equation
J(2S + 1) = Etot[Mn3(S = 2)] – Etot[Mn3+(S = 1)] ≈
0.97 eV, where Etot is the total energy of the Mn3+ ion
in the corresponding spin state. The atomic evaluation
almost coincides with the value obtained in the band
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Fig. 1. Energy spectrum of the A-type antiferromagnetic
structure for the main symmetry directions in the Brillouin
zone calculated for the parameters θ = π, J = 1.67t, Ed1 = 5t,
and Ed2 = 0. All bands (A, B, C, D) are twofold degenerate.
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Fig. 2. Energy spectrum of the canted A-type antiferromag-
netic structure calculated for θ = 0.8π, J = 1.67t, Ed1 = 5t,

and Ed2 = 0. Bands A, B and E, F correspond to the |x2 – y2〉
orbitals and almost coincide in given symmetry direction.
Therefore, only six bands are distinguished in this figure.
PH
calculations [12], where the energy difference is
approximately equal to 0.9 eV.

Figure 1 presents the spectrum of the A-type AF
structure calculated for the following values of param-
eters: θ = π, J = 1.67t, Ed1 = 5t, Ed2 = 0, and S = 3/2. This
spectrum has the same shape as the spectrum calculated
in [12] in the vicinity of the Fermi level within the local
density approximation (LDA). There are two electrons
per unit cell in the A-type structure at hand. These elec-
trons completely fill the lower twofold-degenerate A
band formed by the type 2 orbitals. When the JT distor-
tions are not taking into account, this band overlaps
with the upper band B (of type 1); therefore, the com-
pound is a metal. A band gap arises in the spectrum
only in the case when the JT distortions are sufficiently
large for the amount of splitting of the d level to exceed
a certain critical value Ed1 – Ed2 ≥ 5t. An analogous sit-
uation was also considered in [12]. The value of the
indirect band gap is Eg ≈ t ≈ 0.1–0.3 eV, while the direct
band gap is 2.5t. The bottom of the upper empty band
is located at the Γ(0, 0, 0) point, while the top of the
lower band is on the M(1/2, 1/2, 0)–R(1/2, 1/2, 1/2) line.
This leads to the appearance of a peak in the density of
states near the corresponding energy. As the splitting of
the degenerate level is increased, the B and C bands (of
type 2), having different spin directions, can overlap.

The spectrum of the canted A-type antiferromag-
netic structure calculated for the angle θ = 0.8π is pre-
sented in Fig. 2. It should be noted that the A and B, as
well as E and F, bands of type 2 remain twofold degen-
erate along the BZ symmetry directions in Fig. 2. Only
the bands of type 1 (C, D, G, H) are split. Complete
band splitting occurs at arbitrary no-symmetry points
of the BZ. However, according to the calculations, this
splitting is insignificant. For example, the splitting of
the lower band in the Γ–X direction is approximately
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Fig. 3. Energy spectrum of the canted G-type antiferromag-
netic structure calculated for the same values of parameters
as in Fig. 2. For this magnetic structure, the bands are
degenerate only at separate points of the Brillouin zone. The
spectrum of the C-type antiferromagnetic structure is simi-
lar in shape to this one.
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equal to 0.05t; it is not shown in Fig. 2. However, over-
lapping of the C, D (type 1) and E, F (type 2) bands
with different spin directions is noticeable in Fig. 2.

The calculated spectrum of the canted G structure
for the same values of parameters as those in Fig. 2 is
presented in Fig. 3. Here, the degeneracy occurs only at
separate points on symmetry lines of the BZ. The
essential feature of this spectrum is very strong narrow-
ing of the lower bands of the G structure. It is clear
from Figs. 2 and 3 that, for the same parameters, the
total width of these bands (empty for CaMnO3) is
approximately 4 times smaller than the corresponding
value for the spectrum of the A structure.

The spectrum of the canted C structure was calcu-
lated in an analogous manner. Since this spectrum is
similar in form and location to the G-structure spec-
trum, we do not present it in this paper. The C-structure
spectrum for symmetry lines of the BZ can be easily
calculated analytically for θ = π.

4. CONCLUSIONS

Thus, as follows from the standard DE model, the
behavior of the La1 – xCaxMnO3-type systems for small
x and for x ≈ 1 should be similar (electron–hole symme-
try). The experiments show that the p-type and n-type
compounds behave in an absolutely different manner.
Thus, for x < 0.5, a metallic FM state usually occurs,
while for x > 0.5, we have an insulating phase. The
results of this study allow one to give a qualitative
explanation of the experiment. It follows from the
numerical calculations that the mobility of charge car-
riers (electrons) in a doped CaMnO3 (the G structure)
will be lower than the mobility of holes in a doped
LaMnO3 (the A-type structure). Therefore, there is no
electron–hole symmetry in the properties of
La1 − xCaxMnO3. Such a symmetry will occur if, in the
initial electron spectrum, the shape of isoenergetic sur-
faces for holes in the vicinity of the top of the valence
band is identical to the shape of the isoenergetic sur-
faces for electrons in the vicinity of the bottom of the
conduction band. The calculations carried out in this
work show that such a situation is impossible for all
basic types of the magnetic structures considered. The
electron–hole symmetry has also not been observed
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      200
experimentally (e.g., in numerous phase diagrams of
manganites, see [1]).

The results of calculations of the magnetic phase
diagram for manganites on the basis of the electronic
band structure calculated in this paper will be published
at a later date.
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Abstract—This paper discusses the phenomena observed in the vicinity of the morphotropic phase boundary
in Pb(Ti1 – xZrx)O3 (PZT) solid solutions. The location of the boundary between the stable tetragonal ferroelec-
tric phase and the stable rhombohedral ferroelectric phase is calculated, and an analytical expression for deter-
mining the concentration range of the possible coexistence of these phases is derived. According to the numer-
ical estimates, the concentration range can be as much as 20 mol % lead zirconate. However, reliable experi-
mental data in support of these estimates are as yet unavailable. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Polycrystalline Pb(Ti1 – xZrx)O3 (PZT) solid solu-
tions, which are also referred to as PZT piezoelectric
ceramics, have attracted considerable attention of
many researchers [1]. PZT ceramic materials are of
great practical importance owing to their extensive
use in hydroacoustic devices, microphones, force
sensors, acceleration transducers, etc. The reason for
this is that the most important properties inherent in
these materials are revealed in the composition
regions adjacent to the morphotropic phase boundary
(MPB), i.e., the regions lying along the nearly verti-
cal interface in the phase diagram of the solid solu-
tions. In the phase diagram of the Pb(Ti1 – xZrx)O3 sys-
tem, the morphotropic phase boundary corresponds
to the composition x = xMPB = 0.52, which separates
the region of the stable tetragonal ferroelectric phase
(the T phase) from the region of the stable rhombohe-
dral ferroelectric phase (the R phase). In this situa-
tion, the morphotropic phase boundary corresponds
not to the conventional phase transition observed
under variations in temperature (which is a controlla-
ble parameter in our case) but to the phase transition
induced by changes in the concentration of compo-
nents (in the studied sample, this parameter remains
constant and, hence, cannot be controlled). However,
as was shown earlier in [2], the phase transition under
investigation can also be controlled through various
external factors.

In Pb(Ti1 – xZrx)O3 solid solutions, the phase transi-
tion from the T phase to the R phase can only be con-
sidered a first-order transition. This implies that, under
hypothetical conditions when the concentration of
components in the sample can be varied at a constant
temperature, there should occur a concentration hyster-
esis in the phase transition range. However, since the
1063-7834/01/4312- $21.00 © 22262
concentration of components in the sample remains vir-
tually unchanged, the morphotropic phase boundary in
the phase diagram of PZT solid solutions represents a
certain extended region of the possible coexistence of
the T and R phases. Under the assumption that the ther-
modynamic potentials of the T and R phases (which are
designated as GT and GR, respectively) are equal to each
other at a concentration x = xe, the T phase is stable and
the R phase is metastable at x < xe and, conversely, the
T phase is metastable and the R phase is stable at x > xe.
Note that the stable and metastable phases can coexist
over a rather wide range of concentrations. This range
is specified by the boundaries of the metastable phase
regions.

The concentration range of the possible coexist-
ence of the T and R phases in PZT piezoelectric
ceramics has been a subject of much controversy (see,
for example, [3–9]). In the present work, an attempt
was made to calculate this range in terms of thermo-
dynamics.

2. CALCULATION TECHNIQUE

In our calculations, we use an expansion of the ther-
modynamic potential G into a power series in the form
proposed by Kholodenko [10], that is,

(1)
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This expansion of the thermodynamic potential is some-
what different from the form used by Devonshire [11]:

(1a)

These forms of the expansion are equivalent to each
other and are related by the expressions

(1b)

The condition for stability of the tetragonal ferro-
electric phase can be written in the form [10]

(2a)

whereas the rhombohedral ferroelectric phase is stable
under the condition

(2b)

where P0 is the spontaneous polarization.

As is seen from the figure, the morphotropic phase
boundary can exist under conditions when the coeffi-
cient B2 is positive at x = 0, decreases, passes through
zero at x = x0, and becomes negative [12]. In this case,

the terms C2  and (C3/3)  should be relatively
small. Hence, conditions (2a) and (2b) are satisfied in
the vicinity of the point x = x0. It should be noted that,
as follows from relationship (1b), the condition B2 = 0
for the Devonshire form of the expansion of the thermo-
dynamic potential G [described by relationship (1a)]
corresponds to the condition β2 = β1. This is in close
agreement with the result obtained in more recent ther-
modynamic works dealing with the Devonshire expan-
sion of the thermodynamic potential G (see, for exam-
ple, [13]).

For simplicity, it is reasonable to assume that the B2
coefficient depends linearly on the concentration of the
components:

(3)

where B2(0) corresponds to the B2 coefficient at x = 0.
It can easily be shown that, under the conditions C2 > 0
and C3 < 0, the concentration range of the possible
coexistence of the T and R phases is bounded by the
points x = xR and x = xT and includes the point x = x0
(i.e., xR < x0 < xT).
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Now, we determine the concentration x = xe at which
the thermodynamic potentials of the T and R phases are
equal to each other. According to Kholodenko [10], the
thermodynamic potentials of the T and R phases can be
represented by the relationships

(4a)

(4b)

At x = xe, the equality GT = GR holds throughout the
entire morphotropic phase boundary. For simplicity, we
consider only the portion of the morphotropic phase
boundary that corresponds to the line of its intersection
with the line at A = 0.

The spontaneous polarizations of the T and R phases
can be written as

(5a)

(5b)

However, taking into account that

(5c)
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the spontaneous polarizations of the T and R phases for
the line at A = 0 can be represented in the following
form:

(6)

By substituting the spontaneous polarizations  and

 into the equality GR = GT under the assumption
that A = 0, we obtain

(7)

Next, from expression (3) under the assumption that
x = xe, we derive the cubic equation

(8)

This equation can easily be solved to give the relation-
ship

(9)

Consequently, we obtain

(10)

Now, we use inequalities (2a) and (2b) to determine
the concentration range of the possible coexistence of
the T and R phases. It is evident that the T phase exists
at x < xT (see figure). In further considerations, we also
restrict ourselves to the simple case of the line at A = 0
when relationships (6) are satisfied. At x = xT, we have

the equality B2 + C2  = 0. Substitution of relation-
ships (3) and (6) into this equality leads to the expres-
sion

(11a)

Since the R phase can exist at x > xR, we obtain the
following expression in a similar manner:

(11b)
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Therefore, the concentration range of the possible
coexistence of the T and R phases is determined from
the formula

(12)

Note that the derived expressions are valid for both
the vertical and tilt phase boundaries; however, we are
interested here in the morphotropic (nearly vertical)
phase boundary.

3. RESULTS AND DISCUSSION

All the coefficients in the expansion of the thermo-
dynamic potential G are independent of the tempera-
ture (except for the coefficient A) and the concentration
x (except for B2). Hence, we can perform our calcula-
tions with the coefficients obtained by Haun et al. [14]
for PbTiO3. After recalculation of these coefficients
according to formulas (1b), we obtained the following
values: B1 = –14.5 × 10–8 m5/(C F), B2(0) = 22.0 ×
10−8 m5/(C F), C1 = 7.8 × 10–8 m9/(C4 F), C2 = –1.7 ×
10–8 m9/(C4 F), and C3 = –16 × 10–8 m9/(C4 F). Accord-
ing to the data obtained in [14], the concentration x0 is
equal to 0.35. This value substantially differs from the
experimentally found concentration that corresponds to
the morphotropic phase boundary (as was already men-
tioned, xMPB = 0.52).

From expressions (10)–(12), we have xe = 0.23, xT =
0.30, xR = 0.10, and ξ = 0.20.

Thus, the calculated concentration range of the pos-
sible coexistence of the T and R phases is rather wide
and equal to 20 mol % lead zirconate. Unfortunately,
the results of the above numerical calculations are not
reliable, because the initial coefficients reported in [14]
cannot be considered trustworthy. For example, the cal-
culation gives xe = 0.23, which is considerably less than
the values of x0 = 0.35 taken from [14] and xMPB = 0.52.

It seems likely that the main source of error in [14]
is associated with the assumption that the ferroelectric
phase transition from the cubic phase to the R phase is
a second-order phase transition. It is clear that the
errors in determination of the magnitude and sign of the
B1 coefficient (which is negative upon first-order phase
transitions and positive upon second-order transitions)
entail errors in determination of all the other coeffi-
cients in the expansion of the G potential.

According to Clarke and Glazer [15] and Roleder
[16], the tricritical point is observed in the
Pb(Ti1 − xZrx)O3 system at a value of (1 – x) = 0.06–0.07.
In this system, the ferroelectric phase transition from
the cubic phase to the R phase with an increase in the
value of (1 – x) exhibits certain indications of a second-
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order phase transition: the spontaneous polarization
jump is absent and the Curie–Weiss temperature (Θ)
becomes equal to a temperature corresponding to the
maximum permittivity (Tmax). However, the spontane-
ous polarization jump is also absent upon the first-order
phase transition provided this transition is smeared
(i.e., in relaxor ferroelectrics). As the degree of smear-
ing of the phase transition increases, the Curie–Weiss
temperature Θ [which is usually determined from the
dependence 1/ε(T)] approaches the Tmax temperature,
reaches its value, and can even exceed Tmax at a high
degree of smearing [17]. This can be explained by the
fact that the linear dependence 1/ε(T) becomes qua-
dratic at a certain degree of smearing of the phase tran-
sition, which is frequently ignored by researchers. It
should be noted that a certain degree of smearing of the
ferroelectric phase transition is also observed in the
Pb(Ti,Zr)O3 system [1]. Handerek and Ujma [18] dem-
onstrated that the temperature hysteresis of the ferro-
electric phase transition in the concentration range
close to (1 – x) = 0.06 becomes more pronounced with
an increase in the value of (1 – x). This phenomenon
cannot be observed for a second-order transition
between the ferroelectric phases. Therefore, these find-
ings also cast doubt on the validity of the assumption
made in [14] that the ferroelectric phase transition from
the cubic phase to the R phase is a second-order phase
transition.

Let us now consider, in greater detail, the specific
features observed in the concentration range of the pos-
sible coexistence of the T and R phases. As follows
from the definition given above, it is in this range of
concentrations that the T and R phases can exist and
coexist in stable and metastable states. The metastable
phases can be stabilized both under internal mechanical
stresses and in response to local electric fields. In prin-
ciple, no phase coexistence can occur in the absence of
these stabilizing factors. In this situation, only the sta-
ble phases exist and the ceramic material occurs in a
single-phase state, except for a narrow range of concen-
trations in the vicinity of xe. However, the single-phase
ceramic material whose composition corresponds to the
concentration range of the possible coexistence of the T
and R phases does not necessarily remain single-phase
through time. It should be kept in mind that the PZT
ceramic material is fairly sensitive to environmental
influences (as was predicted in my earlier works [19–
21]) and undergoes transformations with time.

There is considerable experimental evidence that
the phase composition and the mean concentration of
components in the coexisting T and R phases change
under the action of strong external electric fields and
mechanical stresses (see, for example, [22–25]). (A
plausible explanation for the observed change in the
content of components in the T and R phases was given
in [26].) A change in the phase composition of the sur-
face layer of samples was observed even in the course
of grinding [27]. Kakegawa et al. [6, 28] revealed that
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      200
the concentration of the T and R phases substantially
varies with time even during conventional storage of
polarized samples. From the aforesaid, it is clear that
the concentration range of the possible phase coexist-
ence in PZT ceramic materials (and in other piezoelec-
tric ceramics that correspond to solid solutions with a
morphotropic phase boundary) is of great practical
importance. This range can, in essence, be identified
with the region of the morphotropic phase boundary.
The above calculation in terms of thermodynamics has
made it possible to obtain analytical expressions for
determining the concentration range of the possible
coexistence of the T and R phases and the concentration
xe, which separates the region of the stable T phase from
the region of the stable R phase. Unfortunately, the
numerical estimates obtained for these important char-
acteristics of solid solutions in the Pb(Ti1 – xZrx)O3 sys-
tem are not reliable, because the exact values of coeffi-
cients in the power series expansion of the thermody-
namic potential for these solid solutions are as yet
unknown. In this respect, the determination of these
coefficients is an urgent problem.

Moreover, it remains unclear whether the coexist-
ence of the T and R phases in grains of piezoelectric
ceramics is favorable for increasing the permittivity and
other piezoelectric characteristics of real piezoelectric
elements. There exist different interpretations of this
problem. However, analysis of these variants does not
enter into the scope of the present paper and will be per-
formed in a separate work.
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Abstract—Trilayer epitaxial heterostructures including metal oxide electrodes (SrRuO3, 200 nm) and a sand-
wiched dielectric layer (Ba0.25Sr0.75TiO3, 700 nm) were grown by laser ablation on (001)LaAlO3 substrates.
The maximum permittivity of the Ba0.25Sr0.75TiO3 layer (ε'/ε0 ≈ 3700) was obtained at TM = 160 K and an exter-
nal electric field E ≈ 106 V/m. The ε'(T) dependence for the Ba0.25Sr0.75TiO3 layer in the paraelectric phase is
well fitted by the Curie–Weiss relation, with the Curie constant and the Weiss temperature differing only insig-
nificantly from the corresponding bulk values. The change in the permittivity of the Ba0.25Sr0.75TiO3 layer
induced by the application of a ±2.5 V bias voltage to the electrodes reached as high as 85%. The electric-field
dependence of the polarization retained clearly pronounced saturated hysteresis loops up to temperatures 10–
15 K above TM. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

There is a wealth of published information on the
dielectric parameters of single crystals and bulk
ceramic samples of BaTiO3 (BTO) and SrTiO3 (STO),
as well as of their solid solutions [1–3]. The large mag-
nitudes of the real part of the permittivity ε' of the
paraelectric phase and of the remanent polarization Pr

at temperatures below the Curie point TC make
Ba1 − xSrxTiO3 a promising material for use in RAM and
ferroelectric memory cells [4]. The essentially nonlin-
ear response of ε' to an external electric field E and the
strong dependence of Pr on temperature permit one to
use Ba1 – xSrxTiO3 in tunable microwave devices (filters,
phase shifters, and delay lines [5]) and IR sensors [6].

Microelectronics and microwave technology appli-
cations require thin Ba1 – xSrxTiO3 films that alternate
with conducting layers to be used as electrodes. How-
ever, the properties of thin Ba1 – xSrxTiO3 films incorpo-
rated in a multilayer epitaxial heterostructure are sub-
stantially inferior to those of bulk samples. In particu-
lar, these films are characterized by small Pr and ε',
combined with a weak dependence of ε' on E and a
large loss tangent . The main reasons for the deg-
radation of the Ba1 – xSrxTiO3 thin films are believed to
be (1) deviations from stoichiometry in the bulk of the
film due to an uncontrollable loss of volatile compo-
nents in the course of deposition and growth, (2) the
high density of structural defects caused by the low
mobility of the particles adsorbed on the surface of the
growing ferroelectric layer, (3) the strong internal elec-
tric field originating from the difference between the
work function of the electrode material and the electron
affinity of the ferroelectric layer, (4) the formation of a

δtan
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layer with a distorted microstructure and a low ε' at the
ferroelectric–electrode interface, and (5) the high
mechanical stresses caused by the lattice misfit and dif-
ferences in the thermal linear expansion coefficients
between Ba1 – xSrxTiO3 and the substrate material.

We established earlier that when thin films of the
SrRuO3 metal oxide (SRO) are used as electrodes,
the strontium titanate layer in the SRO/STO/SRO
epitaxial heterostructure possesses a high-perfection
structure and the interfaces affect its parameters only
insignificantly [7]. This work demonstrates the pos-
sibility of forming an SRO/Ba0.25Sr0.75TiO3/SRO
(SRO/BSTO/SRO) heterostructure with a c-oriented
intermediate layer (the c axis is perpendicular to the
substrate plane) and studies the dielectric parameters of
this layer in the para- and ferroelectric phases.

2. EXPERIMENT

The SRO/BSTO/SRO trilayer heterostructures were
grown by laser ablation (COMPex-100 KrF excimer
laser, λ = 248 nm, τ = 30 ns) on a (001)LaAlO3 (LAO)
sublattice. The laser radiation density on the surface of
the SRO and BSTO ceramic targets during their abla-
tion was 1.5 J/cm2, and the oxygen pressure in the
growth chamber was maintained at 0.4 mbar. The top
and bottom 200-nm-thick metal oxide electrodes were
grown at TS = 740°C; the intermediate ferroelectric
layer, at TS = 825°C.

The phase composition and structure of the layers in
the trilayer heterostructures grown were studied using
x-ray diffraction (Philips X’pert MRD, ω/2θ and φ
scanning, rocking curves). To determine the BSTO
layer lattice parameters in the substrate plane (a||) and
001 MAIK “Nauka/Interperiodica”
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along its normal (a⊥ ), the ω/2θ scans were made with
the substrate fixed such that either (101)LAO or
(001)LAO was normal to the plane containing the inci-
dent and reflected x-ray beams. To estimate the average
grain size dE and the effective unit-cell strain in the fer-
roelectric layer, the first four Bragg peaks due to BSTO
were measured with a (220)Ge and a plane graphite
monochromator in the first and second orders, respec-
tively.

The surface morphology of the ferroelectric films
grown on SRO/LAO was studied with an atomic force
microscope (AFM) (NanoScope-IIIa, tapping mode).
The images were obtained in both the height- and
phase-relief modes.

The method employed to prepare plane-parallel
capacitors based on the grown SRO/BSTO/SRO het-
erostructures was described in [7].

The capacitance C and the dielectric loss tangent
 of our capacitor structures were measured with an

hp 4263A LCR meter (ac measuring voltage VAC =
50 mV, f = 1–100 kHz). The C and  were measured
with a dc bias Vb (up to ±2.5 V) applied to the elec-
trodes, as well as without it. The real (ε') and imaginary
(ε'') parts of the permittivity of the ferroelectric layer
were calculated using the relations ε' = Cd/S and ε'' =
ε' , where d = 700 nm is the ferroelectric layer
thickness and S = 400 µm2 is the area of the top elec-
trode in the capacitor structure (the SRO layer grown on
LAO served as a common electrode for the
SRO/BSTO/SRO film capacitors). The voltage Vb was
assumed positive when the plus was applied to the top
electrode.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

The available data on the growth of multilayer sys-
tems including thin STO, BTO, (Ba,Sr)TiO3, and SRO
layers [7–9] suggest the absence of a detectable chem-
ical interaction between BSTO and the metal oxide at
the TS temperatures covered in this work. The lattice
parameters of bulk BSTO and SRO crystals (aBSTO =
3.925 Å [10], aSRO = 3.923 Å [11]), as well as the
thermal linear expansion coefficients β (βBSTO ≈ 11 ×
10–6 K–1, calculated as a weighted mean of the corre-
sponding parameters of the STO and BTO, βSRO ≈ 11 ×
10–6 K–1 [12]) are similar in magnitude. The above fac-
tors favor the formation of sharp SRO/BSTO interfaces
in the metal oxide–ferroelectric–metal oxide trilayer

heterostructure. Because  @ d, the contribution of
edge effects to the capacitance and  of the
SRO/BSTO/SRO plane-parallel capacitor structures
formed is small. We shall first discuss the data obtained
by us on the structure of the films thus grown; after, the
temperature and field dependences of the dielectric
parameters will be discussed.

δtan

δtan

δtan

S
δtan
PH
3.1. The Microstructure and Morphology
of the BSTO Film Surface

The x-ray diffractograms indicate the BSTO layer to
be in epitaxial relation to the SRO/LAO surface
(Figs. 1a, 1b). Because the BSTO and SRO lattice
parameters differ very little, the x-ray reflections from
the top and bottom electrodes made of strontium ruth-
enate overlap with the much stronger reflections due to
the ferroelectric layer. The overlap of the SRO and
BSTO reflections in the x-ray diffractograms obtained
with the (220)Ge monochromator resulted in a distor-
tion of the (00n)BSTO peaks on the larger 2θ angle
side. The x-ray φ scans of the (111)BSTO and
(111)SRO reflections had four equidistant peaks each
(the corresponding data are given in [13]). The unit-cell
parameter of the BSTO layer in the direction perpen-
dicular to the substrate plane, a⊥  = 3.945 Å, was derived
from the value of 2θ for the (004)BSTO reflection in the
x-ray scan displayed in Fig. 1a. The unit-cell parameter
of the ferroelectric layer in the substrate plane, a|| =
3.924 Å, was calculated from the relation 1/d(n0n) =
[(n/a⊥ )2 + (n/a||)2]1/2. To determine the interplanar dis-
tance d(303), we used the value of 2θ for the (303)BSTO
peak in the x-ray scan shown in Fig. 1b. The consider-
able difference between the measured unit-cell param-
eters a⊥  and a|| of the BSTO layer is accounted for by
the compressive mechanical stresses acting in the sub-
strate plane. The effective unit cell parameter of the

BSTO layer, aeff = (a⊥ )
1/3

 = 3.931 Å, is substantially
larger than that for the corresponding bulk crystals [10].
One of the main reasons for the usually increased aeff in
(Ba,Sr)TiO3 epitaxial films is their high oxygen
vacancy density [14]. The low mobility of the particles
adsorbed on the surface of a growing film gives rise to
defect formation on the cation sublattice of the BSTO
layer, which, in turn, is accompanied by oxygen loss.

The inset to Fig. 1b displays a rocking curve
(CuKα1, ω/2θ) for the x-ray (200)BSTO reflection. The
rocking-curve width at half maximum is several times
smaller than that reported in [9] for (Ba,Sr)TiO3 epitax-
ial films. The half-width obtained (≈0.26°) is, however,
25% larger than the corresponding figures for a BSTO
layer grown on SRO/LSATO [15]. In contrast to LAO,
LSATO [(LaAlO3)0.3 + (Sr2TaAlO6)0.7] does not
undergo phase transformations within the 20–825°C
range and its lattice is better matched to those of SRO
and BSTO.

Atomic-force microscope images of the free surface
of BSTO films grown on SRO/LAO indicate them to
consist of crystallites 30–100 nm in size (Fig. 2). Note
that the micrographs obtained for the BSTO layer in the
height- and phase-relief modes were practically identi-
cal. The images of the ferroelectric layer surface clearly
reveal a system of characteristic depressions decorating
the crystallite boundaries. Decoration of crystallite
boundaries in a ferroelectric film minimizes the free
energy of the vapor phase–growing film–substrate sys-

a||
2
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tem. The thin layers near the crystallite boundaries pos-
sess excess free energy. The crystallites are distinctly
oriented relative to the normal to the substrate plane,
and their azimuthal orientation, as follows from the φ
scans obtained for the (111)BSTO reflection, does not
exceed 0.1°. The phase-relief micrographs of the sur-
face of the Ba0.75Sr0.25TiO3 films, which were in the fer-
roelectric phase at 300 K, revealed features attesting to
a complex structure of the crystallites [13].

In order to estimate the effective size of the crystallites
dE and the relative deformation of the unit cell ∆a⊥ /a⊥  in
a BSTO layer grown on (001)SRO || (001)LAO, we used
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Fig. 1. (a) X-ray diffractogram (CuKα, ω/2θ scan) of a
SRO/BSTO/SRO/LAO heterostructure obtained for the case
where the plane containing the incident and reflected x-ray
beams is perpendicular to (001)LAO: (1) (001)BSTO peak;
(2, 3) CuKβ peaks due to the BSTO layer and the substrate,
respectively; the inset shows the dependence of the x-ray
peak half-width ϕ on θ in an ω/2θ scan; the (00n)BSTO
peaks were measured with monochromatic x-ray radiation.
(b) X-ray diffractogram for the same heterostructure
obtained for the case where the plane containing the inci-
dent and reflected x-ray beams is orthogonal to (101)LAO:
(1) (303)LAO peak, (2, 3) CuKβ peaks due to the BSTO
layer and the substrate, respectively; the inset shows a rock-
ing curve (CuKα1, ω/2θ) obtained for the (200)BSTO peak
of the (001)SRO || (001)BSTO || (001)SRO || (001)LAO het-
erostructure.

(a)

(b)
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the dependence of the (00n)BSTO peak half-width ϕ on
θ in the x-ray (ω/2θ) scan of the SRO/BSTO/SRO het-
erostructure (the first four peaks of the BSTO layer
were measured with high-precision x-ray optics). The
data on the ϕ vs. θ dependence are given in the inset to
Fig. 1a. The procedure employed to determine dE and
∆a⊥ /a⊥  is described in [13, 16]. The x-ray data show
that dE and ∆a⊥ /a⊥  for the grown BSTO films are 38 nm
and 4 × 10–4, respectively. The observed difference
between the estimates of the crystallite dimensions
derived from x-ray data and obtained with AFM
appears only natural, considering that the crystallite
size may increase with increasing film thickness. The
competing grain growth becomes particularly clearly
pronounced for ferroelectric layer thicknesses of less
than 200 nm. The value of ∆a⊥ /a⊥  obtained for the
BSTO layer is in accordance with the corresponding
data available in the literature on c- and a-oriented
(Ba,Sr)TiO3 thin epitaxial layers (in the latter case, the
c axis is parallel to the substrate plane) [13, 15]. The
main factors responsible for the variation of interplanar
distances in a BSTO layer are nonuniform mechanical
stresses and randomly located structural defects, prima-
rily oxygen vacancies.

The compressive in-plane mechanical stresses favor
the orientation of the polar axis of the BSTO film along
the normal to the substrate plane. In the case of a
trilayer SRO/BSTO/SRO heterostructure grown on
(001)LAO, the pattern of mechanical stresses in the
BSTO layer is governed by both the differences in the
lattice parameters between BSTO, SRO, and LAO and
the difference between the BSTO and LAO thermal lin-

200

500

0

400

nm

nm

Fig. 2. Atomic-force microscope image of the free surface
of a BSTO layer grown on (001)SRO || (001))LAO. The
image was obtained in the height-relief mode. The crystal-
lite boundaries in the ferroelectric layer are decorated by
characteristic depressions. The phase-relief mode images
did not reveal any features which would imply a complex
structure of the crystallites.
01



2270 BOŒKOV, CLAESON
ear expansion coefficients. The unit-cell parameter of
the pseudocubic LAO (a1 = 3.79 Å) is substantially
smaller than those of BSTO and SRO, which favors
generation of compressive in-plane mechanical stresses
in the ferroelectric layer. The difference between the
thermal linear expansion coefficients of the BSTO and
LAO (β = 9.2 × 10–6 K–1 [17]) is conducive to the for-
mation of in-plane tensile mechanical stresses in the
substrate.

3.2. Temperature Dependence 
of the BSTO Layer Polarization

Systematic data on the temperature dependence of
the remanent polarization in (Ba,Sr)TiO3 epitaxial films
are practically nonexistent. The values quoted in [6, 18]
for Pr in thin (Ba,Sr)TiO3 ceramic layers are substan-
tially lower than those for bulk crystals. Deviations
from stoichiometry, size effects, depolarization electric
fields, and mechanical stresses can considerably affect
the electric-field dependence of the polarization in a
(Ba,Sr)TiO3 film.

Figure 3 presents the polarization of a BSTO layer
P(E) as a function of the electric field measured at a fre-
quency of  f = 50 kHz at different temperatures. For T >
250 K, P increased practically linearly with E; the
insignificant decrease in dP/dE at electric field
strengths E > 5 × 106 V/m was due to dielectric satura-
tion. For 250 > T > 200 K, the measured P(E) relation
PH
did not exhibit any hysteresis; however, sharp varia-
tions of dP/dE were observed to occur as E was reduced
from –2 × 106 to –4 × 106 V/m. The peak in the
dP(E)/dE relation observed in the above-mentioned
electric-field range is due to substantial dielectric non-
linearity of the BSTO paraelectric phase in weak elec-
tric fields at temperatures close to TC.

The P(E) curves measured for T < 175 K clearly
reveal saturated hysteresis loops. The loops were
shifted toward negative electric fields relative to the E =
0 point, and the absolute values of P for positive E were
substantially smaller than those obtained at the corre-
sponding negative values of E. The presence of rema-
nent polarization in the BSTO layer above TC for bulk
crystals (TC ≈ 150 K [3]) implies that, in the bulk of the
BSTO layer, there are microregions (apparently, iso-
lated crystallites) that transfer to the ferroelectric phase
at a higher temperature. The presence of remanent
polarization in thin BTO films was detected at temper-
atures exceeding the TC for single-crystal barium titan-
ate by nearly 200 K [19].

The noticeable asymmetry of the hysteresis loops
observed in the measured electric-field dependences of
the polarization in the BSTO ferroelectric layer is a
consequence of depolarization effects [20, 21]. As
already mentioned, the grown BSTO layers were
clearly c oriented; i.e., the polarization vector was per-
pendicular to the substrate plane (inset to Fig. 3). In
these conditions, the polarization in a thin ferroelectric
SRO
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Fig. 3. Plots of polarization P vs. electric field E measured on a BSTO layer at different temperatures T: (1) 250, (2) 200, (3) 140,
(4) 100, and (5) 40 K. The P(E) curves remained practically unchanged under variation of the frequency in the 10–100 kHz range.
The inset shows a schematic of the plane-parallel SRO/BSTO/SRO capacitor structure used to study the dielectric parameters of the
BSTO layer.
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layer depends substantially on the degree of compensa-
tion of the polarization charge by the charge of the
opposite sign on the electrode at the interface. Because
of the relatively high concentration of structural defects
(oxygen vacancies), the conductivity of the top elec-
trode in the SRO/(Ba,Sr)TiO3/SRO trilayer heterostruc-
ture is, as a rule, considerably lower than that of the
electrode grown on the surface of a single-crystal sub-
strate [7, 8]. The charge induced at the upper boundary
of the ferroelectric by its spontaneous polarization is
incompletely compensated by the charge of opposite
sign on the metal oxide electrode and generates a depo-
larization electric field ED in the BSTO layer. This field
is directed from the top to the bottom electrode, i.e., in
opposition to the spontaneous polarization vector PS.
When a positive bias is applied to the top electrode, the
electron concentration in the metal oxide film near the
corresponding interface decreases, which weakens the
polarization charge compensation, thereby increasing
the depolarization field in the ferroelectric layer. If Vb is
of the opposite polarity, the electron concentration in
the SRO top electrode near the electrode–ferroelectric
interface increases and the effect of the depolarization
electric field weakens. The substantially larger polar-
ization in the BSTO layer for E < 0 than in the E > 0
case (Fig. 3) can be explained as being due to the lower
depolarization field strength at a negative bias. At tem-
peratures below the phase transition point, the BSTO
layer consists of ferroelectric domains separated by
180° domain walls. The separation of the BSTO layer
into domains weakens the effect of the depolarization
field on the polarization while not suppressing it com-
pletely, because the electron concentrations in the top
and bottom SRO layers are different [21]. The domain
structure in the BSTO layers studied here differs con-
siderably from that in a-oriented (Ba,Sr)TiO3 ferroelec-
tric layers acted upon by in-plane tensile mechanical
stresses [13].

The hysteresis loops observed in the P(E) curves
were used to determine the temperature dependences of
the remanent polarization Pr and the coercive field EC in
a BSTO layer (Fig. 4). Within the 160–80 K range, we
observed an approximately linear growth of the rema-
nent polarization in the ferroelectric layer with decreas-
ing temperature; however, for T < 80 K, the dependence
of Pr on T became weaker and revealed a clear indica-
tion of saturation. The pattern of the measured Pr(T)
relation agrees well with the data obtained for a c-ori-
ented BSTO layer in the SRO/BSTO/SRO/LSATO
heterostructure [13]. At the same time, the absolute val-
ues of remanent polarization in a BSTO layer grown on
SRO/LSATO and possessing a more perfect structure
are, on the average, 20% larger than those for the ferro-
electric layer studied in this work. Similar to Pr, the
magnitude of EC in the BSTO layer increased with
decreasing temperature; however, there was no sign of
saturation for T < 80 K. Comparison with the data pre-
sented in [6, 18] permits one to conclude that both the
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      200
Pr and the maximum values of dPr/dT in epitaxial
BSTO films are considerably higher and EC is a few
times smaller than their respective values for ceramic
(Ba,Sr)TiO3 films.

3.3. Temperature and Field Dependences of ε'
of the BSTO Layer

The temperature behavior of ε' of the BSTO layer
depended strongly on the magnitude and polarity of the
bias voltage applied to the metal oxide electrodes. To
understand the ε'(E, T) dynamics better, a family of
ε'(T) curves for various fixed values of Vb were mea-
sured in the range from –2.5 to +2.5 V (Fig. 5). The
weak response of ε' to an electric field observed at T =
300 K is only natural, as the phase transition in bulk
crystals of this solid solution occurs at a substantially
lower temperature [3]. The dependence of ε' on the
electric field became stronger with decreasing temper-
ature. The maximum value  ≈ 3700ε0 was obtained
at TM ≈ 160 K and Vb = –0.7 V. The approximately two-
fold increase in ε'(160 K) observed as Vb is reduced
from 0 to –0.7 V (Fig. 5) indicates the presence of an
internal electric field in the BSTO layer.

The internal electric field in a dielectric layer placed
between two metal electrodes is associated, as a rule,
with the difference between the work function W of the
electrode material and the electron affinity χ of the
sandwiched dielectric material [22, 23]. Surface states
may affect the height of the potential barrier at the inter-

εM'

Fig. 4. Temperature dependences of (1) remanent polariza-
tion Pr and (2) coercive field EC of the BSTO layer in a
SRO/BSTO/SRO heterostructure (f = 50 kHz). Inset (a)
shows the temperature dependence of EM for the BSTO
layer in a (001)SRO || (001)BSTO || (001)SRO heterostruc-
ture ( f = 100 kHz). The electric field due to incomplete
compensation of the polarization charge by electrons at the
interface in the top layer of the metal oxide penetrates into
adjacent crystallites in the BSTO layer that have no sponta-
neous polarization (see inset (b)).
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2272 BOŒKOV, CLAESON
face ϕb = W – χ while not changing its type. In the case
of a nonlinear dielectric, the internal electric field shifts
the position of the maximum in the C(E) relation for the
capacitor structure with respect to the E = 0 point. In the
case where both electrodes are of the same metal and

f = 100 kHz
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Fig. 5. Dependence of the real part ε' of the permittivity of
the BSTO layer on temperature T (10–400 K) and bias volt-
age Vb (–2.5 to +2.5 V) applied to the metal-oxide elec-
trodes. The maximum value ε' ≈ 3700ε0 was obtained at
TM = 160 K and Vb = –0.7 V. Vb: (1) –2.5, (2) –2, (3) –1.7,
(4) –1.5, (5) –1.3, (6) –1.0, (7) –0.7, (8) –0.5, (9) –0.3,
(10) 0, (11) 0.5, (12) 1.0, (13) 1.5, (14) 2.0, and (15) 2.5 V.
PH
the intermediate layer is in the paraelectric phase, the
internal electric field strength is, as a rule, low and
depends only weakly on temperature.

As follows from the data presented in Fig. 6, the
maximum in the ε'(E) relation for the BSTO layer is
shifted toward negative values of E, the magnitude of
this shift (EM) with respect to E = 0 increasing strongly
with decreasing temperature within the 300–165-K
range [inset a to Fig. 4]. At these temperatures, most of
the BSTO layer volume is in the paraelectric phase. The
increase in EM with decreasing temperature in the above
temperature range can be traced to the formation of
spontaneous polarization in individual crystallites in
the bulk of the BSTO layer. The quantity of such crys-
tallites and their spontaneous polarization increase with
decreasing temperature. The depolarization electric
field caused by the incomplete compensation of the
polarization charge by electrons in the top SRO elec-
trode also penetrates into the adjoining crystallites of
the intermediate layer, where PS = 0 (inset b to Fig. 4).
This is the main reason for the emergence of an electric
field directed from the top to the bottom electrode in the
BSTO layer, which is primarily in the paraelectric
phase at T > 160 K. The internal electric field started to
increase at temperatures slightly below room tempera-
ture (inset a to Fig. 4). This shows that microscopic
inclusions of the ferroelectric phase in the BSTO films
under study started to nucleate at temperatures exceed-
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Fig. 6. Dependence of the real part ε' of the permittivity of the BSTO layer on electric field E = Vb/d measured at T > TM. The tem-
peratures are specified on the curves; f  = 100 kHz. Inset: ε'(E) curves obtained for T < TM.
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δtan
ing TM (at which the phase transformation occurred in
the bulk of the film) by approximately 100 K.

The ε'(E) curves measured at temperatures above
180 K were anhysteretic. A weakly pronounced hyster-
esis was observed in the field dependence of ε' obtained
at T = 165 K (Fig. 6). As the temperature was lowered
still further (T < 165 K), the asymmetry of the ε'(E)
relation increased and the hysteresis became more
clearly seen (inset to Fig. 6). Both the onset of hystere-
sis in the ε'(E) relation and the maximum in the ε'(T)
dependence (at Vb = –0.7 V) are evidence of the nucle-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      20
ation of the ferroelectric phase at T ≈ 160 K in the
BSTO layer (or, at least, in most of its volume).

For T > 200 K and Vb = –0.7 V, the ε'(T) relation can
be well fitted by the Curie–Weiss law:

(1)

with the Weiss temperature T0 = 160 K and the Curie
constant C0 = 0.62 × 105 K. The values T0 = 150 K and
C0 = 0.8 × 105 K were derived in [3] from data on the
temperature dependence of ε' for bulk ceramic BSTO

ε0/ε' C0
1– T T0–( )=
01
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samples. The small difference between C0 and T0
obtained on bulk samples and their respective values
for a BSTO layer can be partially accounted for by the
fact that the external field E = –0.7 V/d compensates the
internal electric field only within a narrow temperature
range near TM; note also that this compensation is only
partial because of structural defects present in the bulk
of the ferroelectric layer and of the roughness of the fer-
roelectric–electrode interface in the SRO/BSTO/SRO
trilayer heterostructure. The increase in TM in the BSTO
layer compared to the bulk crystal data can be likewise
due to the increase in the effective lattice parameter of
the BSTO layer [24].

As follows from the data presented in Fig. 7a, the
real part of the permittivity decreased and the maxi-
mum in the ε'(T)/ε0 dependence measured at 100 kHz
became more diffuse and shifted toward higher temper-
atures when Vb increased from –0.7 to +2.5 V. The
decrease in ε' in an electric field is due to dielectric sat-
uration, and the shift of the maximum in the ε'(T)
dependence toward higher temperatures agrees well
with the data on the effect of an electric field on the
phase transition temperature in bulk BaTiO3 crystals
[25].

According to [26], the ε'(T) dependence for a ferro-
electric in the vicinity of a (second-order) phase transi-
tion can be extrapolated for T < TC using the relation

(2)

As follows from the data in Fig. 7a, the experimental
ε0/ε'(T) relation obtained at Vb = –0.7 V and T < TM can

be well fitted by Eq. (2) with a coefficient –1.1 .
Possible reasons for the decrease in this coefficient for
an epitaxial BSTO layer were analyzed in [15].

When the BSTO layer was in the paraelectric phase,
ε' virtually did not depend on frequency (f = 1–
100 kHz) (Fig. 7a). The largest difference, of approxi-
mately 7%, between the values of ε' at 1 and 100 kHz
was observed near TM. It is only natural to relate the dis-
persion of ε' found for T < TM to relaxation of the ferro-
electric domain walls. Adjacent ferroelectric domains
in the BSTO layer, in which the spontaneous polariza-
tion vectors are oppositely directed, are separated by
180° domain walls. The contribution of oscillations of
the 180° domain walls (DWs) to the permittivity of bulk
BTO crystals was analyzed in [27, 28]. According to
[28], DW displacement should give rise to relaxation-
type features in the ε'(f) relation. The resonant fre-
quency at which the contribution of DWs to ε' is maxi-
mum depends on their effective mass, which is deter-
mined by the domain size and the magnitude of PS.

Unlike the 90° DWs, 180° walls are not displaced by
moderate electric fields [29]. The low mobility of the
180° DWs compared to 90° DWs is assigned to the
small thickness of the former and to the fairly high bar-

ε0/ε' 2C0
1– T T0–( ).–=

C0
1–
PH
rier interfering with the wall displacement in the direc-
tion perpendicular to the polarization vector [29].

3.4. Dielectric Loss Tangent and ε'' 
for a BSTO Layer

Similar to ε', the maximum values of ε'' and 
for the BSTO layer were obtained at a constant bias of
–0.7 V (Fig. 7b and the inset to it). The maxima in the
measured ε''(T) and (T) relations were, however,
shifted by 10–15 K toward lower temperatures relative
to TM. These maxima are related to the oscillations of
the ferroelectric DWs acted upon by the applied ac volt-
age VAC. At Vb = 0, the presence of an internal electric
field, whose strength is substantially higher than VAC/d,
accounts for the weak effect of measuring voltage on
the DW structure in the BSTO layer. This is the reason
for the presence of the diffuse maximum in the mea-
sured (T) and ε''(T) curves (curves 4 in Fig. 7b and
the inset to it). When Eint is compensated by an external
electric field (Vb = –0.7 V) and the coercive field is low
(T ≈ TM, Fig. 4), the measuring ac voltage considerably
affects the ferroelectric domain structure in the BSTO
layer, which manifests itself in a sharp increase in 
and ε''. With the electrodes biased positively, the exter-
nal and internal electric fields were added, which
reduces the DW contribution to  (curve 5 in
Fig. 7b).

Unlike ε', the  and ε'' of the BSTO layer
decreased in magnitude within the 10–300-K range
with a frequency decrease from 100 to 1 kHz (Fig. 7b).
In terms of the Debye approximation, the observed
variations of ε' and ε'' with decreasing frequency imply
that the characteristic relaxation time of the process
associated with DW motion in the BSTO layer is
shorter than 1/2πf. A comprehensive analysis of the
contribution of relaxation processes to ε' and ε'' for the
(Ba,Sr)TiO3 layer can be found in [13].

The growth of  observed to occur at f = 1 kHz
with increasing temperature for T > 250 K is caused by
the fairly high conductivity σ of the BSTO layer in the
direction perpendicular to the substrate plane. The con-
tribution of σ to  in the ferroelectric layer can be
written as  = (ε'' + σ/ω)/ε'. As shown in [30], the
dependence of the BSTO layer conductivity on temper-
ature and electric field is associated with carrier ejec-
tion from the traps connected with oxygen vacancies.

4. CONCLUSIONS

The results obtained in this work can be summed up
as follows. When using lanthanum aluminate as the
substrate, the polar axis in the Ba0.25Sr0.75TiO3 ferro-
electric layer sandwiched between two SrRuO3 metal-
oxide epitaxial films is oriented perpendicular to

δtan
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δtan
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(001)LaAlO3. The nucleation of single ferroelectric
domains in the bulk of the c-oriented Ba0.25Sr0.75TiO3
layer in the SrRuO3/Ba0.25Sr0.75TiO3/SrRuO3 epitaxial
heterostructure begins at temperatures a few tens of
degrees above the Curie temperature for bulk single
crystals. The formation of microscopic inclusions of
the ferroelectric phase in the Ba0.25Sr0.75TiO3 layer is
accompanied by an increase in the internal electric field
in adjacent crystallites having no spontaneous polariza-
tion. Due to a uniform distribution of the dielectric
parameters and a high perfection of the microstructure
of the grown Ba0.25Sr0.75TiO3 layers, it is possible to
compensate the internal electric field to a considerable
extent by applying an external bias. Under maximum
compensation of the internal electric field, the temper-
ature dependence of the permittivity of the
Ba0.25Sr0.75TiO3 layer can be well fitted by the Curie–
Weiss relation.
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MAGNETISM 
AND FERROELECTRICITY
Effect of an Organic Dye on the Ferroelectric Phase Transition
in KH2PO4 (KDP)
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Abstract—This paper reports on the first measurement of the dielectric permittivity and heat capacity of a KDP
crystal doped by Chicago Sky Blue organic dye within a temperature interval including the ferroelectric phase
transition at Tc = 122 K. Similar measurements were made on a pure KDP crystal under the same conditions for
the sake of comparison. The heat capacities of the pure and doped crystals were shown to differ substantially
within an interval 1 K wide in the vicinity of Tc, where an anomaly in the heat capacity of the doped crystal was
observed to wash out without producing any change in the temperature position of its maximum. The doping
reduces the permittivity in the polar phase markedly. The observed effects are associated with the influence of
nonisomorphic defects on the ferroelectric phase transition in a piezoelectric crystal. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION
It is known that at Tc ≈ 122 K, the KH2PO4 crystal

(KDP) undergoes a phase transition from the tetragonal
 to the orthorhombic (mm2) phase, which gives

rise to the generation of spontaneous polarization
directed along the c axis of the tetragonal phase. Most
of the properties of KDP near the phase transition are
satisfactorily described in terms of Landau’s theory
with a thermodynamic potential of the type

(1)

where Φ0 is the part of the thermodynamic potential not
associated with the transition, P is the polarization
along the c axis, E is the external electric field, α =
4.0 × 10–3 K–1, β = –1.3 × 10–11 esu, γ = 3 × 10–19 esu,
and ζ = 3 × 10–17 esu. The magnitudes of the coeffi-
cients suggest that these crystals undergo a first-order
phase transition very close to the tricritical point; the
value of the critical electric field Ec lies in the interval
from 100 to 300 V/cm [1].

The closeness of the phase transition in KDP to the
tricritical point, combined with the piezoelectric activ-
ity of the crystal for T > Tc, results in a substantial nar-
rowing of the region wherein critical fluctuations affect
the phase transition [2]. This makes the KDP crystal a
promising subject for use in studying the effect of
impurities on structural phase transitions, because it
obviates the need for separating the fluctuation and
defect-induced contributions to the measured proper-
ties.
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It has recently been shown that the molecules of
Chicago Sky Blue (CSB) and Amaranth organic dyes
are capable of entering the KDP crystal lattice and color
the pyramidal growth sectors selectively, which implies
a peculiar effect of “recognition” of certain faces of a
growing crystal by large organic molecules [3, 4]. Inter-
estingly, such molecules are nonisomorphic to the KDP
molecules; hence, their anisotropic incorporation into a
piezoelectric inorganic host matrix should give rise to
considerable local strains and the associated electric
polarization in the crystal. Thus, the molecules of
organic dyes make it possible to study the influence of
strong defects [5] on phase transitions in KDP.

2. EXPERIMENTAL TECHNIQUE
This communication reports on a comparative study

of the temperature dependences of the permittivity and
heat capacity of a KDP crystal doped with a CSB dye
(KDP + CSB), whose molecular structure is given in
[3], and of nominally pure KDP. In both cases, the sam-
ples were cut from pyramidal growth sectors of the
crystals.

The KDP + CSB crystal was seed grown from a
solution containing 1.7 × 10–2 mg CSB/g KDP in accor-
dance with the method described in [6]. The solution
was prepared at 33°C. The CSB molecules started to
incorporate into the pyramidal sectors of the growing
crystal at 27.7°C. After the crystal grew to a size of
≈5 × 5 × 6 cm, cracks formed on its surface.

The CSB concentration in the crystal was deduced
by comparing (with an HP 8452A spectrophotometer)
the absorption spectrum of the aqueous solution of a
sample cut from the crystal with the absorption spectra
of solutions with known KDP and dye concentrations.
001 MAIK “Nauka/Interperiodica”
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Comparison of the spectra permits the conclusion that
the colored sectors of the crystal contain 1.4–2 dye
molecules per 105 KDP molecules.

The permittivity was measured under cooling from
room to liquid-nitrogen temperature at a cooling rate of
0.25 K/min far from Tc and at 0.1 K/min in the vicinity
of Tc. The samples used were 8 × 5 × 1 mm plates with
the plate plane oriented perpendicular to the polar axis.
Silver paste was applied to the faces parallel to this
plane.

The heat capacity of two samples (pure and colored
KDP) was measured in the 82- to 162-K temperature
interval using adiabatic calorimetry. The samples were
cylinders, 8 mm in diameter and 12 mm high, prepared
without any regard for the relative orientation to the
crystallographic axes. The measurements were carried
out under constant heating power in steps ranging from
1 K (far from Tc) to 0.02 K (near Tc) with an accuracy
of 0.5%.

3. EXPERIMENTAL RESULTS

Figure 1 shows the temperature dependences of the
permittivity of the pure and colored KDP crystals
obtained at 10 kHz. For T > T0 + 4K, the values of εc of
the colored crystal lie systematically slightly above
those for the pure crystal; by contrast, in the polar
phase, εc of the colored crystal is considerably smaller
than that of the pure crystal. The relations plotted in
Fig. 1 are in qualitative agreement with those obtained
in [7] for εc of KDP crystals differing in quality.

The temperature dependences of the heat capacity
of the pure and colored KDP crystals are presented in
Fig. 2. The heat capacity of both crystals is seen to be
the same, except in a narrow interval in the vicinity of
the phase transition. A comparison of our data for pure
KDP with the results quoted in [8, 9] revealed that the
heat capacity of our crystal is in full agreement with
data from previous measurements. Because the heat
capacity quoted in the above-mentioned papers is given
in cal/mol K, our data are also presented in these units.

As seen from Fig. 2, the heat capacity reaches a
maximum at T = 122.00 ± 0.03 K for both the pure and
colored crystals; in the latter case, the maximum heat
capacity is equal to 61.4 cal/mol K and the phase tran-
sition is slightly diffuse. The heat capacity of the pure
crystal reached very high peak values (~103 cal/mol K),
which corresponds to latent heat liberation in a first-
order phase transition; therefore, within a 0.1-K wide
interval immediately above the peak position, the heat
capacity of the pure crystal was not determined; for the
colored crystal, there is no such limitation.

Comparison of the results in Fig. 2 with the data on
the behavior of the KDP heat capacity in an external
electric field [1] shows that the temperature dependence
of the heat capacity of the colored crystal is similar to
that of KDP in an external electric field higher than the
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      20
critical level, the only difference being that the maxi-
mum of the heat capacity is not shifted toward high
temperatures.

4. DISCUSSION OF RESULTS

To perform a quantitative analysis of the data
obtained, the temperature dependence of the back-
ground heat capacity, Clat, was constructed within a
broad temperature region in the form

(2)

where D is the Debye function, E is the Einstein func-
tion, Θ0 = 197 K, Θ1 = 319 K, Θ2 = 1210 K, C0 =
9.72 cal/mol K, C1 = 12.22 cal/mol K, and C2 =

Clat C0D
Θ0

T
------ 
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Fig. 1. Temperature dependences of the dielectric permittiv-
ity of (1) pure and (2) colored KDP crystals.
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Fig. 2. Temperature dependences of the heat capacity of (1)
pure and (2) colored KDP crystals.
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24.93 cal/mol K. The background heat capacity was
derived using experimental data from [8].

Figure 3 plots the temperature dependence of the
heat capacity of the colored crystal after subtraction of
the background heat capacity given by Eq. (2). Pre-
sented in the same figure are the values of the heat
capacity calculated assuming Landau’s thermodynamic
potential in the form of (1) [curve a] to be applicable to
the description of the behavior of KDP in the vicinity of
the phase transition. We believe that the subtracted
background heat capacity corresponds to the term Φ0 in
Eq. (1); E was varied from 1.0 to 7.0 esu, and Tc was
varied within the interval 121.60–122.00 K, because,
according to [5], the phase transition temperature in a
crystal with defects should be shifted toward low tem-
peratures. The best fit to the experimental data was
obtained at E = 5.7 esu (1.71 kV/cm) and Tc = 121.68 K.
We readily see that above Tc, the experimental data cor-
respond to a phase transition in an external electric
field; in other words, the effect of the CSB impurity on
the ferroelectric phase transition in KDP is similar to
that of polarized defects [5].

However, examination of Fig. 2 also suggests that
the area bounded by the heat capacity curve of the pure
crystal is larger than that of the colored one. Because
the spontaneous polarization is related to the heat
capacity through

(3)

this implies that the spontaneous polarization of the
colored crystal in the polar phase is smaller than that of
the pure crystal. As seen from the corresponding tem-
perature dependences of Ps shown in Fig. 4, the phase
transition in the colored crystal is diffuse and its Ps is

Ps
2
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----------------- Td

∞

T

∫ ,=
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Fig. 3. Temperature dependences of the excess heat capac-
ity of the colored KDP crystal. Curves a and b were con-
structed using Eq. (1): (a) E ↑↑  Ps and (b) E ↑↓  Ps.
PH
noticeably smaller (by approximately 8%). The latter is
obviously at odds with the conventional effect of a bias
field on the spontaneous polarization of a crystal. How-
ever, the situation considered in [10] was that of a
uniaxial ferroelectric crystal undergoing a phase transi-
tion in an external electric field and residing in a meta-
stable state characterized by a polarization directed
opposite to the field. Figure 3 presents the values of the
heat capacity calculated for this situation (curve b) for
the same parameters of the thermodynamic potential
(1) as those used for curve a. We readily see that within
the 118- to 121-K interval, curve b satisfactorily fits the
experimental data.

This apparently means that the bias electric field
associated with defects can be oriented opposite to,
rather than along, the direction of spontaneous polar-
ization in the polar phase, thus realizing the metastable
state predicted in [10], which turns out to be sufficiently
stable due to the presence of strong polar defects.

Note that the diffuseness of the phase transition in a
colored crystal is also accompanied by features in the
temperature dependence of the permittivity εc. The
degree of diffuseness is characterized by the value of E
derived from thermal measurements and can be esti-
mated from Fig. 5, which plots the temperature depen-

dence of the inverse permittivity  of the colored
crystal together with the corresponding relation calcu-
lated from the thermodynamic potential (1) for the val-
ues of E and T0 extracted from heat capacity data. One
readily sees that for T ≥ Tc, the values obtained are in
satisfactory agreement with the experiment. For T < Tc,
no such agreement exists; this is accounted for by a
large domain contribution to the dielectric permittivity
of KDP. One also sees that incorporation of the impu-
rity markedly reduces the domain contribution to εc

(Fig. 1). This effect was also observed earlier in studies

εc
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Fig. 4. Polarization of (1) pure and (2) colored KDP crystals
as calculated from Eq. (3) using the experimental heat
capacity data.
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on KDP crystals with defects [7] and was assigned to
the pinning of domain walls by impurity inclusions.

The data obtained permit some assumptions con-
cerning the mechanism of the effect of the CSB impu-
rity on the phase transition in KDP to be made.

The incorporation of large organic dye molecules
into the structure of the KDP crystal was discussed in
[3, 4], where the important role of the stereochemical
affinity between the impurity and the host matrix was
considered. In our case, direct comparison of the

parameters of the CSB molecule and its  terminal
groups, which are believed to be capable of occupying

the  positions in KDP, would be difficult due to the
lack of accurate information on the interatomic dis-
tances in the dye molecule. It may, however, be conjec-
tured that these rigid molecules locally distort the lat-
tice in the nonpolar phase to produce local strains and
the corresponding polarization due to the piezoelectric
effect. Because of the long-range character of the elas-
tic and Coulomb forces, the presence of strained polar-
ized regions becomes manifest, for T > Tc, as a macro-

SO3
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PO4
–

0
120
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–1

T, K
121 122 123 124

0.0002

0.0004

0.0006

0.0008

0.0010

Fig. 5. Temperature dependence of inverse permittivity 

of the KDP + CSB crystal. The thin line plots the relation
calculated using Eq. (1).

εc
1–
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scopic electric field bias; below Tc, these regions may
become appropriately oriented domains. In these con-
ditions, the impurity reduces the average spontaneous
polarization in the polar phase if one assumes that the
magnitude of Ps near the impurity molecule is deter-
mined by the local lattice distortion arising in the non-
polar phase and reaches its normal value only at suffi-
ciently large distances from this region. Such a situa-
tion can be considered to be a manifestation of the
macroscopic bias electric field being directed opposite
to the spontaneous polarization and reducing its aver-
age value; this is exactly what is observed in our exper-
iment.
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Abstract—The ferrobielastic properties (ferroic properties of the second order) earlier theoretically predicted
for lead germanate uniaxial ferroelectric crystals are justified experimentally. It is demonstrated that single-
domain samples are formed upon cooling to temperatures below the Curie point under uniaxial mechanical
stresses corresponding to a combination of mechanical stresses σ11σ13 or σ22σ23. The macroscopic mechanism
of this phenomenon is considered. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that a second-order ferroic is con-
sidered to be a crystal that can exist in two or more ori-
entational states and transform from one state into
another under the action of a combination of two forces
(fields) applied in certain crystallographic directions [1,
2]. In terms of symmetry, the second-order ferroic
properties can manifest themselves in first-order ferroic
crystals. Earlier [3–7], we investigated the ferroelastic–
ferroelectric properties of ferroelectric materials. The
symmetry analysis demonstrated that the majority of
ferroelectric phase transitions should also be ferro-
bielastic phase transitions; consequently, the domains
in these ferroelectric–ferrobielastic materials should be
switched by an electric field and under the action of a
combination of two simultaneously applied mechanical
stresses. Uniaxial ferroelectrics that do not exhibit fer-
roelastic properties can serve as objects of investigation
into the ferrobielastic properties of ferroelectric crys-
tals. The most suitable objects are the Pb5Ge3O11 lead
germanate crystals, in which, unlike other uniaxial fer-
roelectrics, the domain structure can be observed
directly through a polarizing microscope.

The ferroelectric phase transition   3 in a lead
germanate crystal can lead to the formation of two ori-
entational states S1 and S2, which represent 180°
domains differing in the sign of optical activity. By
symmetry, this transition should be ferroelastic–ferro-
electric and ferrobielastic simultaneously, because new
components of the tensor of piezoelectric coefficients d
and components of the tensor of elastic compliance
coefficients s spontaneously appear upon the transition.
The tensors of the spontaneous piezoelectric and elastic
coefficients for the orientational state S1 have the fol-
lowing form:

6
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(1)

(2)

The relevant tensors for the orientational state S2 can
be obtained by multiplying tensors (1) and (2) by –1.

By using these tensors and writing the expansion of
the thermodynamic potential Φ for each of the
domains, we determine the difference in energies ∆Φ
that appears under the action of external electric fields
and mechanical stresses:

(3)

where P3 are the components of the spontaneous polar-
ization vector, dikl are the spontaneous piezoelectric

coefficients, and  are the spontaneous coefficients
of the elastic compliance measured in a constant elec-
tric field E.

It follows from expression (3) that when the crystal
is subjected to an electric field E3 and mechanical stress
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through any combination of the electric field and
mechanical stress E1σ23, E1σ13, E2σ23, E2σ13, E3σ11,
E3σ22, and E3σ33, or a combination of two mechanical
stresses σ11σ23, σ11σ13, σ22σ23, σ22σ13, σ23σ12, and
σ13σ12, there arises a difference between the energies of
the two orientational states S1 and S2. Note that, upon
transition to the lowest-energy state, the crystal should
become single-domain on the macroscopic level.

In this work, we experimentally investigated the
possibility of forming a single-domain state in lead ger-
manate crystals due to their ferrobielastic properties
through combinations of mechanical stresses σ11σ13
and σ22σ23.

2. EXPERIMENTAL PROCEDURE

In his experiments on ferrobielastic switching in
quartz crystals, Aizu [1] used uniaxial mechanical
stresses applied along the [011] direction at an angle of
45° to the Z axis, because, in this case, the stress tensor
of the crystal contains nonzero components σ22, σ23,
σ32, and σ33 and it is this combination of the stresses σ22
and σ23 that provides domain switching.

In the present work, we used the same principle of
obtaining combinations of two mechanical stresses to
investigate the ferrobielastic properties of lead ger-
manate. Let us consider this principle in more detail.

It is assumed that a crystal is subjected to homoge-
neous mechanical stress along the direction specified
by an arbitrary unit vector l. Let σ be the magnitude of
this mechanical stress. The stress tensor components of
the crystal can be represented in the form [8]

(4)

where li and lj are the components of vector l. Hence,
the stress tensor takes the form

(5)

By varying the direction of application of the uniaxial
mechanical stress σ, we can change the form of the stress
tensor, thus producing different stress combinations.

We investigated the ferrobielastic properties of a
lead germanate crystal subjected to the mechanical
stress combinations σ11σ13 and σ22σ23. In this case, the
uniaxial mechanical stresses σ should be directed at an
angle α to the Z axis in the XZ and YZ planes, respec-
tively, and their magnitudes can be determined from the
following relationships:

(6)

(7)

σij lil jσ i j, 1 2 3, ,=( ),=

σij( )
l1
2σ l1l2σ l1l3σ

l2l1σ l2
2σ l2l3σ

l3l1σ l3l2σ l3
2σ 

 
 
 
 
 

= .

σ11σ13 α αsin3cos( )σ2,=

σ22σ23 α αsin3cos( )σ2.=
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Under these conditions, the maximum effect is
achieved when α = 60° and σ11σ13 = σ22σ23 ≈ 0.325σ2.

In our experiments, we used lead germanate single
crystals grown by the Czochralski method. Plates
~3 mm thick were cut out normally to the ferroelectric
axis Z of the crystal. For observations of 180° domains
through a polarizing microscope, the plates were pol-
ished and cut into rectangular bars with facets per-
pendicular to the X and Y crystallographic directions
(X- and Y-cuts, respectively). In order to obtain the fac-
ets perpendicular to the direction of uniaxial mechani-
cal compression producing the required combinations
of mechanical stresses σ11σ13 or σ22σ23, we worked out
the oblique X- and Y-cuts in such a way that the normals
to their surfaces made angles of 60° with the Z axis, as
determined above. Earlier experiments on ferrobielas-
tic domain switching in quartz crystals demonstrated
that, at room temperature, the uniaxial mechanical
compressive stresses required for domain switching are
rather strong (~5 × 108 Pa [1, 9]). For this reason, we
studied the ferrobielastic properties of Pb5Ge3O11 crys-
tals upon their cooling to temperatures below the Curie
point (450 K).

A specially designed holder made it possible to
apply uniaxial mechanical compressive stresses and
electric fields to the sample and to carry out its heating
and cooling to a required temperature at a given rate.
Before each experiment, the sample fastened in the
crystal holder was annealed at T ~ 600 K. Then, the
sample was subjected to an electric field or uniaxial
compressive stress (~5 × 107 Pa) and cooled to a tem-
perature below the Curie point. After cooling to room
temperature, the external actions were eliminated, the
sample was withdrawn from the crystal holder, and its
domain structure was examined with a polarizing
microscope.

Thin lead foil tightly rolled onto the sample facets
with transformer oil was used as an electrode. If
needed, the foil could be easily removed without injur-
ing the polished crystal surface.

3. RESULTS AND DISCUSSION

Upon cooling the samples of Pb5Ge3O11 crystals
through the Curie point without applying external
actions, there arises a polydomain structure character-
istic of the majority of ferroelectrics. This structure
consists of a large number of very small antiparallel
domains. According to Shur et al. [10], the width of
these domains for lead germanate crystals is approxi-
mately equal to (2–3) × 10–6 m. Such small domains are
optically indistinguishable through a polarizing micro-
scope. After applying the electric field E3 during the
cooling, the examination of the Z-cut at room tempera-
ture indicates that a single-domain structure is formed
in the crystal due to its ferroelectric properties.
Depending on the direction of the applied electric field
without variation in the sample orientation, the lead
01
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germanate crystal can appear to be light or dark, pro-
vided the angle between the polarization planes of the
analyzer and polarizer is γ = 90° ± ρd, where d is the
sample thickness and ρ is the specific optical rotation.
This behavior is a result of the different signs of ρ for
domains with different orientations of vector Ps.

(a)

(b)

(c)
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Y(X, Z)
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2
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2

Z

X(Y)

α

σ

3

Fig. 1. Different geometries of experiments with lead ger-
manate single-crystal samples: (a) application of uniaxial
compressive stresses σ22 (σ11 or σ33), (b) oblique cuts for
producing equivalent combinations of mechanical stresses
σ11σ13 (σ22σ23), and (c) X- or Y-cuts at an angle α to the
direction of compression. Designations: (1) crystal, (2) com-
pressing surfaces, and (3) Teflon spacers.
PH
Optical observations of the X-, Y-, and Z-cuts of
samples subjected to uniaxial mechanical compressive
stresses σ11, σ22, and σ33 (the geometry of the experi-
ment is shown in Fig. 1a) demonstrated that, after cool-
ing through the Curie point, these samples had a poly-
domain structure at room temperature. This indicates
that the domain structure of lead germanate is unaf-
fected by the applied mechanical stresses.

A different situation occurs with oblique cuts (their
preparation was described above). Examination of the
samples with oblique cuts (the geometry shown in
Fig. 1b) through a polarizing microscope revealed that,
after cooling below the phase transition point, the sam-
ples at T = 20°C are in a single-domain state. This sug-
gests that the effect of the mechanical stress combina-
tions σ11σ13 and σ22σ23 is equivalent to the action of the
electric field along the ferroelectric axis Z. The same
inference follows from the phenomenological consider-
ation and counts in favor of the ferrobielastic properties
of lead germanate crystals.

The drawback of the above geometry of the experi-
ment is that the change in sign of mechanical stress
combinations becomes impossible in the absence of
mechanical tensile stresses. For this reason, samples
with X- and Y-cuts were also used in our experiments.
In order to obtain the required combinations of
mechanical stresses σ11σ13 or σ22σ23, the samples were
adjusted in the crystal holder in such a manner that the
Z axis made an angle of 60° with the direction of appli-
cation of the uniaxial mechanical stresses (the geome-
try of the experiment is shown in Fig. 1c). Moreover,
possible inhomogeneous mechanical stresses were sup-
pressed with Teflon spacers 2 mm thick mounted
between the compressing surfaces of the crystal holder.
This technique made it possible to change over from the
angle α to –α, thus reversing the sign of the mechanical
stress combinations to obtain –σ11σ13 and –σ22σ23 with-
out applying mechanical tensile stress to the sample.
The experiments demonstrated that, even with a
slightly simplified technique, the change from the angle
α to –α during cooling of the crystal to a temperature
below the Curie point results in the formation of a sin-
gle-domain state but with the opposite direction of Ps

(observations were carried out for a constant orienta-
tion of the crystal with respect to the microscope).

These observations of the formation of a single-
domain structure were also confirmed by measuring the
piezoelectric response of lead germanate crystals in the
direction of the polar axis. The piezoelectric response
was examined using a superposition of the mechanical
compressive stress σ33 and its subsequent rapid removal
with the measurement of the electric charge thus
induced (the static method of measuring the piezoelec-
tric modulus). For the Pb5Ge3O11 crystals, which were
cooled below the Curie point without external actions
or under the action of mechanical stresses σ11, σ22, and
σ33, the piezoelectric response was found to be insignif-
icant. This indicates a certain unipolarity of the crys-
YSICS OF THE SOLID STATE      Vol. 43      No. 12      2001
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tals, which can be caused by growth defects. At the
same time, the samples cooled in an electric field E3 or
under the action of mechanical stress combinations
σ11σ13 and σ22σ23 exhibited a substantial piezoelectric
response (exceeding the response in the preceding case
by more than one order of magnitude). In the latter
case, the response sign reversed with the change in sign
of the external action applied above the Curie point.

The experiments performed revealed that, at a tem-
perature far below the Curie point, no ferrobielastic
domain switching occurs in the Pb5Ge3O1 samples in
the case when the mechanical stress combinations
σ11σ13 and σ22σ23 are less than or equal to 8 × 1014 Pa2.
However, already at a temperature of 448 K (2 K below
Tc), prolonged (~60 min) action of the mechanical
stress combinations σ11σ13 = σ22σ23 = 18 × 1014 Pa2

brings about the formation of large single-domain
regions in the form of strips, which is not characteristic
of conventional ferroelectric domains in Pb5Ge3O11.

As a first approximation, the macroscopic mecha-
nism of ferrobielastic switching in Pb5Ge3O11 crystals
can be represented in the following form. One of the
mechanical stresses entering into the combination
σ11σ13 or σ22σ23 gives rise to strains in the crystal that
have different signs for different 180° domains in
accordance with the signs of the elastic compliance
coefficients. The second component of the mechanical
stress induces switching of these domains, as is the case
in ferroelastics. It seems likely that the domain switch-
ing through the mechanical stress combinations σ11σ23,
σ22σ13, σ23σ12, and σ13σ12 should occur in a similar
manner.

4. CONCLUSION
The above results have demonstrated that the

Pb5Ge3O11 ferroelectric crystals possess ferrobielastic
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      20
properties which, in particular, can be used for the for-
mation of a single-domain structure in lead germanate
single crystals without application of an electric field.
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Abstract—It is shown that a system of classical particles considered in a molecular dynamics model with Pak–
Doyama pairwise interatomic potential adequately describes not only the various structural states of iron (melt,
bcc crystal, metal glass) but also the complex self-organization processes occurring in first- and second-order
phase transitions (crystallization and vitrification, respectively). When the temperature is varied at a constant
rate of 6.6 × 1011 K/s, crystallization sets in from both the amorphous and the liquid state; at a rate of 1.9 ×
1012 K/s, crystallization is observed only in the amorphous state; and when heated at a rate of 4.4 × 1012 K/s, the
model amorphous iron transfers to the liquid state without crystallization. The energy of homogeneous forma-
tion of a crystal nucleus in the bulk of the amorphous phase of iron is calculated to be ~0.71 eV under the
assumption that there is a spectrum of activation energies. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known [1] that vitrification of pure metals
requires ultrafast quenching rates (~1010–1013 K/s) and
that the thermal stability of the films thus obtained
depends substantially on their thickness. For instance,
an iron film 25 Å thick prepared through condensation
from the vapor phase on a substrate cooled by liquid
helium to ~4.2 K crystallizes at 50–60 K under heating
performed at a constant rate of ~5 K/min, while a
150-Å-thick film cannot be obtained in the amorphous
state at all [2, 3]. Thus, the limiting cooling rates
needed for amorphization can be experimentally
attained only in thin films in the initial stages of their
formation. Investigation of the structure of such films
and of their crystallization and melting under heating is
a very complex technical problem.

The study of such systems becomes considerably
simpler and the possibilities of gaining information on
the structure and its transformations on the atomic level
broaden considerably when one invokes computer sim-
ulation. Simulations that make use of the molecular
dynamics (MD) approach are based on describing the
successive motion of atoms in a condensed medium.
However, problems also arise here. One of them is
associated with the large volume of calculations
involved in computer experiments and, as a conse-
quence, with the limited time interval within which the
model system is studied. To reduce the real time of the
computer experiment, we made use of a well-opti-
mized, highly efficient algorithm developed earlier [4].

Another problem is connected with finding an ade-
quate potential to describe the interaction among atoms
of the condensed phase. In the case of iron, the pairwise
1063-7834/01/4312- $21.00 © 2284
Pak–Doyama potential [5] proved efficient; this poten-
tial was used in the present study.

The computer experiment was aimed at investigat-
ing phase transitions between liquid, amorphous, and
crystalline iron occurring under ultrafast temperature
variation within the interval of 6.6 × 1011 to 4.4 ×
1012 K/s.

The results obtained in this work are not restricted to
the illustration of first- and second-order phase transi-
tions or to calculations of some thermodynamic param-
eters. The information obtained on the coordinates of
atoms in all stages of their motion in the formation of a
new phase provides a basis for the development of a
quantitative theory of the nucleation and growth of a
new phase and the refinement of macroscopic parame-
ters, which are inherent in the classical theory of nucle-
ation [6].

2. COMPUTER SIMULATION TECHIQUE

The Pak–Doyama empirical pairwise potential is a
fourth-degree polynomial [5]:

(1)

where r is in Å. The potential cutoff radius (the distance
at which the potential and its first derivative vanish
smoothly) is rc = 3.44 Å. The parameters of this poten-
tial were determined from data on the elastic properties
of α-Fe. The simulation of liquid and amorphous iron
made with this potential provides good agreement
between the calculations and the experimental struc-
tural characteristics [7–9].

φ r( ) 0.188917 r 1.82709–( )4–=

+ 1.70192 r 2.50849–( )2 0.198294 eV,–
2001 MAIK “Nauka/Interperiodica”
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We first constructed an MD model of liquid iron at
T = 1823 K with a real density of 7030 kg/m3 [10]. A
bcc lattice was taken as the starting structure. The
model contained 2000 atoms in the main cube with
periodic boundary conditions. At the initial instant of
time, the atoms were imparted velocities according to
the Maxwell distribution. The scheme of the MD calcu-
lations consisted in numerical integration of the equa-
tions of motion with a time step ∆t = 1.523 × 10–15 s
using Verlet’s algorithm in the velocity form [11]. The
time taken to calculate one step with a Celeron-366 pro-
cessor was 0.13 s. The melting and relaxation of the
system were carried out at the temperature indicated
above over 2000 time steps (isothermal conditions).
After this, the temperature limitation was removed and
thermal equilibrium was established over 4000 time
steps at a constant internal energy (adiabatic condi-
tions). Because the density and temperature of the sys-
tem correspond to liquid iron, the starting configura-
tion, despite the atoms residing at bcc lattice sites, is
extremely unstable and the crystal melts in about
10 atomic oscillations (~600∆t).

The amorphous state was attained through instanta-
neous quenching [using the static-relaxation (SR)
method] of the model melt upon having preliminarily
increased its density to 7800 kg/m3. (Because of the
lack of relevant experimental data, the density was cho-
sen from the information available on α-Fe [12], with a
1% correction introduced to account for the amorphiza-
tion.)

Next, the system was successively heated at three
different rates, 6.6 × 1011, 1.9 × 1012, and 4.4 × 1012 K/s
(the first, second, and third experiments), until com-
plete melting was observed. The cyclic heating proce-
dure consisted in a stepwise increase in temperature of
∆T = 20 K (Ti = i∆T, where Ti is the environmental tem-
perature in the ith cycle), maintaining this temperature
in the system for a time 1000∆t, and subsequent anneal-
ing under adiabatic conditions for 19000∆t, 6000∆t,
and 2000∆t in the first, second, and third experiments,
respectively. Thus, one cycle lasted 20000∆t, 7000∆t,
and 3000∆t or 3.046 × 10–11, 1.066 × 10–11, and 0.457 ×
10–11 s, respectively. The thermodynamic characteris-
tics of the system (the temperature T, potential energy
U, and the product of pressure multiplied by volume
PV) were averaged over the last 16000∆t, 3000∆t, and
1000∆t in each cycle for the respective temperature
variation rates. Note that the temperature T of the sys-
tem residing under adiabatic conditions and the envi-
ronmental temperature Ti , strictly speaking, do not
coincide. After each cycle, the system was transferred,
using the SR method with a constant step of 0.005 Å, to
the state with T = 0 K to allow the atoms to occupy
equilibrium positions in local potential wells. This pro-
cedure permitted one to determine the degree of struc-
tural relaxation of the model. For statically relaxed
models, we also calculated the potential energy U0 and
the product of the pressure by multiplied volume P0V.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      200
In the first two experiments, the melted system was
heated 200 K higher and cooled (quenched) according
to the same scheme, with the environmental tempera-
ture varied in accordance with the relation Ti = (2imax –
i)∆T, where imax is the number of the last heating cycle.

3. RESULTS AND THEIR DISCUSSION
When studied under the conditions of heating at a

constant rate of 6.6 × 1011 K/s, the time dependences of
T, U, and PV, as well as of U0 and P0V, underwent a
jump characteristic of a first-order phase transition
within the temperature interval 1100–1160 K (Fig. 1).

To establish the structural changes associated with
the phase transition, we calculated the atomic radial
pair distribution functions (ARPDF) and carried out a
statistical–geometric analysis based on the Voronoœ
polyhedra (VP), including the calculation of the angu-
lar correlation functions (ACF) describing the distribu-
tion of angles between the straight lines passing
through the polyhedron center and its two nearest
neighbor atoms. The positions of the ARPDF and ACF
peaks (Figs. 2, 3, respectively) indicate the formation of
a bcc crystalline phase. This is further supported by an

Fig. 1. Time evolution of (a) temperature, (b) potential
energy, and (c) product of the pressure multiplied by vol-
ume at the running temperature (U, PV) and after static
relaxation (U0, P0V) of the model iron under heating and

cooling at a rate of 6.6 × 1011 K/s (the process starts from
the amorphous state). Figures 1, 2, and 3 refer to environ-
mental temperatures of 1100, 1120, and 1180 K, respec-
tively. The vertical dashed line separates the heating and
cooling runs.
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analysis of the VP-type distribution. Recall that a VP
can be described by a set of numbers nq equal to the
number of faces with q sides (n3–n4–n5–…) [13]. After
crystallization, the coordination around ~90% of the
atoms of the model is characterized by the (0-6-0-8) VP
(the cuboctahedron, i.e., the Wigner–Seitz cell of a bcc
lattice). Further increase in temperature gives rise to
additional ordering of the crystal structure, which
ceases at T ≈ 1300 K. After this, the fraction of the
(0-6-0-8) VP atoms can be as high as ~97%. The model
iron melted in the temperature interval 2040–2100 K.
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Fig. 2. Atomic radial pair distribution functions in statically
relaxed models calculated for environmental temperatures
(K) of (1) 1100, (2) 1120, and (3) 1180.

Heat capacity at constant volume for the various structural
states of the model iron 

Experiment 
no. System phase

cV/kB

heating cooling

1 Amorphous 3.01 ± 0.02 –

bcc 3.60 ± 0.04 3.19 ± 0.05

Melt 4.27 ± 0.02

2 Amorphous 3.01 ± 0.02 3.16 ± 0.04

bcc 3.67 ± 0.04 –

Melt 4.29 ± 0.02

3 Amorphous 3.01 ± 0.02 –

Melt 4.39 ± 0.02 –
PH
In the course of the melt cooling run at the same rate,
crystallization into a bcc lattice occurred at 1200–
1160 K (Fig. 1).

Increasing the heating rate of the original amor-
phous-iron model from 6.6 × 1011 to 1.9 × 1012 K/s
raises the crystallization temperature (1200–1240 K)
by ~100 K and the melting point (2100–2160 K) by
~60 K (Fig. 4). Figure 5 shows the distribution of atoms
(after their static relaxation) within an arbitrarily cho-
sen 2.6-Å-thick layer before and after crystallization.

Subsequent cooling of the melt at the same rate did
not bring about crystallization; instead, the melt under-
went a glass transition. This was indicated by a jump in
the heat capacity characteristic of a second-order phase
transition (table), which can be determined from the
slope of the straight lines approximating the evolution
of the potential energy of the system with time
(Fig. 4b):

(2)

where kB is the Boltzmann constant; dT ≈ αdt for the
heating and dT ≈ –αdt for the cooling (α is the temper-
ature variation rate). Note that Eq. (2) is applicable only
above the Debye temperature; for iron, it is valid for
T > 700 K [9].

As seen from the table, the heat capacity of the melt
noticeably exceeds that of the crystalline phase. The
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Fig. 3. Angular correlation functions for statically relaxed
models calculated for environmental temperatures (K) of
(1) 1100, (2) 1120, and (3) 1180. In (3), the vertical dashed
lines show the distribution of angles in an ideal bcc lattice
(right-hand scale).
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system does not return to the crystalline phase under
cooling, and we assign the change in the slope of the
time dependence of the potential energy, which is
observed around ~900 K and corresponds to a stepwise
decrease in the heat capacity cV , to the glass transition
in the model system. Similar to the heat capacity, the
quantity V(∂P/∂T)V also undergoes a jump at the glass
transition point (Fig. 4c).

However, during cooling, a crystal nucleus of ~120–
130 atoms was formed in the amorphous structure
(Fig. 6); its formation started at T ≈ 940 K with ~30 atoms
and became virtually complete at T ≈ 780 K (Fig. 7).
Note that, when crystallization set in throughout the
volume of the model iron under heating, more than
~90% of the atoms were (0-6-0-8) VP coordinated.

When the heating rate is further increased to 4.4 ×
1012 K/s, amorphous iron transforms into a liquid with-
out passing through the crystalline state, with both cV

and V(∂P/∂T)V undergoing a jump (Figs. 8b, 8c). The
time dependences of U0 and P0V pass through a mini-
mum (T ≈ 900–1020 K) without any jumps characteris-

–0.11
0 60

T,
 K

t, 10–11 s
180

1

1

2

2

PV
P0V

U
U0

(c)

0.07

0.25

0.43

0.61

–1.42

–1.28

–1.14

–1.00
0

600

1200

1800

2400
P

V
, P

0V
; e

V
/a

to
m

U
, U

0;
 e

V
/a

to
m

1

1

1

2

2

2

(b)

(a)

120 240

0.52

0.34

0.16

–0.02

Fig. 4. The evolution of (a) temperature, (b) potential
energy, and (c) the product of the pressure multiplied by
volume at the running temperature (U, PV) and after static
relaxation (U0, P0V) of the model iron under heating and

cooling at a rate of 1.9 × 1012 K/s (the process starts from
the amorphous state). Figures 1 and 2 refer to environmental
temperatures of 1200 and 1240 K, respectively. The vertical
dashed line separates the heating and cooling runs.
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tic of first-order phase transitions (Figs. 8b, 8c). The
presence of a minimum in the time dependences of U0
and P0V indicates a change in the atom motion from the
activated to the activation-free mechanism, the latter
being characteristic of atomic diffusion in a liquid.

As follows from an analysis of the data in the table,
the values of the heat capacity of the original amor-
phous phase produced by instantaneous melt quench-
ing, which were calculated for different heating rates
(the first, second, and third experiments), coincide well
with one another, while being slightly smaller than that
of the amorphous phase obtained by cooling the melt at
a rate of 1.9 × 1012 K/s. This difference can be assigned
to the fact that heating of the original nonequilibrium
amorphous phase gives rise to intense structural relax-
ation, which is indicated by a decrease in the potential
energy U0 of statically relaxed models (Figs. 1b, 4b,
8b), whereas amorphization by melt quenching at a rate
of 1.9 × 1012 K/s virtually does not entail any structural
relaxation (Fig. 4b). Correcting the temperature depen-
dence of the potential energy U in the case of heating of
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Fig. 5. Atom distribution after static relaxation in an arbi-
trarily chosen layer 2.6-Å-thick (heating at a rate 1.9 ×
1012 K/s): (a) amorphous state, environmental temperature
of 1200 K; and (b) crystalline state, environmental temper-
ature of 1240 K. The seven gradations in the atom gray scale
code, from black to light gray, identify the variation of the Z
coordinate from 19 to 21.6 Å with a step ∆Z = 2.6/7 ≈ 0.37 Å.
The vacant sites in the crystalline phase are encircled in (b).
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the original amorphous iron model to the magnitude of
the thermal effect associated with structural relaxation,
which can be estimated from the change in the potential
energy U0 (Figs. 1b, 4b, 8b for the first, second, and
third experiments, respectively), increases the heat
capacity to the value that is observed for the amorphous
phase produced by melt quenching at a rate of 1.9 ×
1012 K/s.

The results obtained permitted us to estimate the sta-
bility of the iron amorphous state and to determine the
activation energy for homogeneous nucleation of a
crystal in the volume of the amorphous phase.

Metal glass (MG) produced by ultrafast quenching
of a liquid forms a set of unstable (defect) atomic con-
figurations characteristic of the given MG type, which
relax through rearrangement with increasing tempera-
ture. The process of rearrangement of the structure,
which was termed structural relaxation, is character-
ized by a continuous spectrum of activation energies,
whose maximum value corresponds to the energy of
formation of a crystalline nucleus.

In this case, the annealing process can be studied
using a model involving an activation energy spectrum
[14]. Processes involving relaxation centers with dis-
tributed activation energies are conventionally analyzed
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Fig. 6. Atom arrangement in the crystalline nucleus
(121 atom) frozen by cooling at a rate of 1.9 × 1012 K/s.
PH
using the rate equation for the reaction:

(3)

where n(E, t) is the spectral density of relaxation cen-
ters with an activation energy E and ν is of the order of
the Debye frequency (~1013 s–1). By integrating this
equation in the case of heating from 0 K at a constant
rate α (T = αt), one can follow the variation of the spec-
tral density of states with time:

(4)

where n0(E) is the energy spectrum of the relaxation
centers created in the course of metal glass formation.

According to the principle of superposition, the total
concentration of the relaxation centers can be written as

(5)

where

(6)
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Fig. 7. Variation of the number of atoms with (0-6-0-8) VP
in the course of cooling at a rate of 1.9 × 1012 K/s. The fig-
ures specify the environmental temperature. The points are
spaced at 100 K within the 2300–1000 and 400–0 K inter-
vals, and at 20 K in the 1000–400-K interval. At 940 K,
30 atoms out of 37 are located in one nucleus.
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The quantity Θ(E, t) is called the characteristic function
of linear heating. If the n0(E) function is smooth
enough, i.e., if it varies with E much more slowly than
the exponential function Θ(E, t), the annealing process
is determined by the exponential term. In the course of
annealing, the Θ(E, t) curve shifts along the E axis
practically without changing its stepwise shape; that is,
it rises sharply from zero to unity near the inflection
point [15]. The characteristic activation energy E0 cor-
responding to the inflection point on the Θ(E, t) curve
and, hence, to the maximum rate of the thermally acti-
vated processes can be derived from the condition

(7)

The activation energy E0 corresponding to this point can
be represented as a function of temperature in the form

(8)

∂2Θ E t,( )
∂E2

----------------------- 0.=

T
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---=
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Fig. 8. Time evolution of (a) temperature, (b) potential
energy, and (c) the product of the pressure multiplied by
volume at the running temperature (U, PV) and after static
relaxation (U0, P0V) of the model iron under heating at a

rate of 4.4 × 1012 K/s (the process starts from the amor-
phous state).
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where

(9)

is the integral exponent. As seen from the definition of
the characteristic energy E0, practically all atomic con-
figurations with activation energies E ≤ E0 will have
relaxed by the time t.

The calculation performed in terms of the described
model has shown that the activation energy of homoge-
neous formation of a crystalline nucleus in the volume
of the iron amorphous phase is 0.72 eV in the first
experiment (6.6 × 1011 K/s, 1120 K) and 0.7 eV in the
second experiment (1.9 × 1012 K/s, 1220 K).
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Abstract—The static and dynamic properties of cubic Rb2KInF6 crystals with elpasolite structure are calcu-
lated using a nonempirical method. Calculations are performed within a microscopic ionic-crystal model taking
into account the deformation and polarization of ions. The deformation parameters of ions are determined by
minimizing the total energy of the crystal. The calculated equilibrium lattice parameters agree satisfactorily
with the experimental data. It is found that in the cubic phase there are vibrational modes that are unstable
everywhere in the Brillouin zone. The eigenvectors of the unstablest mode at the center of the Brillouin zone of
the cubic phase are associated with the displacements of F ions and correspond to rotations of InF6 octahedra.
Condensation of this mode leads to a tetragonal distortion of the structure. In order to describe the Fm3m 
I4/m phase transition, an effective Hamiltonian is constructed under the assumption that the soft mode whose
eigenvector corresponds to octahedron rotation is local and coupled with homogeneous elastic strains. The
parameters of the effective Hamiltonian are determined using the calculated crystal energy for the distorted
structures due to soft-mode condensation. The thermodynamic properties of the system with this model Hamil-
tonian are investigated using the Monte Carlo method. The phase transition temperature is calculated to be
550 K, which is twice its experimental value (283 K). The tetragonal phase remains stable down to T = 0 K; the
effective Hamiltonian used in this paper thus fails to describe the second phase transition (to the monoclinic
phase). Thus, the transition to the tetragonal phase occurs for the most part through octahedron rotations;
however, additional degrees of freedom, first of all, the displacements of Rb ions, should be included into the
effective Hamiltonian in order to describe the transition to the monoclinic phase. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Halides with the elpasolite structure A2BB3+X6
undergo a wide variety of structural phase transitions
associated with lattice instability in the high-symmetry
cubic phase. In the lower temperature phases, these
compounds show either homogeneous nonpolar distor-
tions of the lattice or distortions that are accompanied
by a change in the unit-cell volume of the crystal. In
most crystals of this family, structural distortions are
associated either with rotations of the octahedra B3+X6
or with a combination of octahedron rotations and
A-atom displacements.

Instability of the crystal lattice against normal vibra-
tions involving octahedron rotations is likely a charac-
teristic feature of perovskite-like compounds. In most
halides and some oxides with perovskite structure, this
instability leads to structural phase transitions to a
lower symmetry phase, which are accompanied by an
increase in the unit-cell volume in comparison with that
of the initial cubic phase.

The problem of instability of the perovskite struc-
ture against distortions corresponding either to the fer-
roelectric lattice vibration mode or to octahedron rota-
tions has been discussed in experimental and theoreti-
1063-7834/01/4312- $21.00 © 22290
cal studies for several decades. In recent years, many
papers have been published in which, using the density-
functional method, the electronic band structure and
lattice vibration frequencies were calculated and the
statistical mechanics of phase transitions for some per-
ovskites were considered. Those calculations have
given some insight into the source of crystal lattice
instability and the nature of ferroelectricity and antifer-
roelectricity in oxides with perovskite structure (see,
e.g., [1–4]).

For crystals with elpasolite structure, scarcely any
calculations of the crystal lattice vibration spectrum
exist. At the same time, these crystals have been
intensely studied experimentally using various methods
and, at the present time, there do exist data on the struc-
tures of the low-symmetry phases, physical properties,
and the effect of phase transitions on them for many of
these crystals (see, e.g., the recent review [5]).

The Rb2KInF6 crystal belongs to the elpasolite fam-
ily; its high-symmetry phase has a cubic crystal struc-
ture with one molecule per unit cell (Fig. 1) and belongs
to the space group Fm3m. As the temperature
decreases, Rb2KInF6 undergoes two subsequent struc-
tural phase transitions: one to a tetragonal phase (space
001 MAIK “Nauka/Interperiodica”
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group I4/m) with the same unit-cell volume as that in
the cubic phase (at Tc1= 283 K) and another to a mono-
clinic phase (space group P121/n1) with two molecules
per unit cell (at Tc2= 264 K). Structural studies of the
low-symmetry phases of the isomorphic compound
Rb2KScF6 have revealed [5] that the distortions of the
cubic structure in the tetragonal phase are associated,
for the most part, with ScF6 octahedron rotations,
which are homogeneous over the entire crystal. The
distortions in the lower temperature monoclinic phase
are associated with inhomogeneous rotations of ScF6

octahedra and with displacements of Rb ions from their
equilibrium positions in the tetragonal phase. It should
be noted that in the series of isomorphic compounds
Rb2KMF6 (M = Ga, Sc, In, Lu), the phase transition
temperature from the cubic phase increases with the
size of the trivalent ion M.

Earlier, we calculated the entire lattice vibration
spectra of the Rb2KScF6 crystal in the unstable cubic
and tetragonal phases and the stable monoclinic phase
[6] within the Gordon–Kim model generalized by
Ivanov and Maksimov [7] to the case of deformable and
polarizable ions. Using an effective Hamiltonian in
which the coupling constants were calculated without
fitting parameters, we described the Fm3m  I4/m
phase transition in this compound [8]. The calculated
phase transition temperature and the physical proper-
ties in the vicinity of the phase transition point were
found to agree well with the experimental data.

The objective of this paper is to calculate the equi-
librium volume, the entire lattice vibration spectrum,
and the high-frequency dielectric constant of Rb2KInF6

in the cubic phase from first principles and to determine
the parameters of the effective Hamiltonian that
describes the Fm3m  I4/m phase transition in this
compound. We also investigate the thermodynamic
properties of the phase transition using the Monte Carlo
(MC) method.

In Section 2, we describe the model and the method
for calculating the total energy, the frequencies of nor-
mal lattice vibrations, the dynamic charges, and the
high-frequency dielectric constant. The results from
calculations of the lattice dynamics of the Rb2KInF6

crystal are presented in Section 3. In Section 4, we dis-
cuss the effective Hamiltonian, which includes the min-
imum number of degrees of freedom (more specifically,
the local mode corresponding to InF6 octahedron rota-
tions) and homogeneous elastic strains and calculate
the parameters of the model Hamiltonian. Some details
of the investigation of the thermodynamic behavior of
the system with this model Hamiltonian (using the
Monte Carlo algorithm), as well as the results of calcu-
lations and their discussion, are presented in Section 5.
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      200
2. MODEL AND CALCULATION TECHNIQUE

In order to calculate the lattice vibration spectrum of
the RbKInF6 crystal, we use the ionic-crystal model
proposed by Ivanov and Maksimov [7]. In this model,
the ionic crystal consists of overlapping individual
spherically symmetric polarizable ions. The total elec-
tronic density of the crystal is written as

where summation is carried out over all ions of the
crystal. In the density-functional theory, the total crys-
tal energy including only pairwise interaction has the
form

(1)

where Zi is the charge of the ith ion,

(2)

the energy E{ρ} is calculated using the density-func-
tional method and the local approximation to the
kinetic and exchange-correlation energies, and

 is the self-energy of the ion. The electronic
density of an individual ion and its self-energy are cal-

ρ r( ) ρi r Ri–( ),
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Fig. 1. Crystalline structure of Rb2KInF6 in the cubic phase.
One molecule and a unit cell of the fcc K lattice are shown.
The six Rb ions of the other three molecules are situated at
1/4 and 3/4 lengths of the three other cube body diagonals.
The remaining In ions are located at the midpoints of the
cube edges. Each In ion is surrounded by six F ions.
1
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Table 1.  Calculated and experimental [11] atomic coordinates and lattice parameters

Atom Position Occupancy
a0 = 8.84 Å aexp = 9.10 Å

x/a0 y/a0 z/a0 x/aexp y/aexp z/aexp

Rb 8c 1 0.25 0.25 0.25 0.25 0.25 0.25

K 4b 1 0.50 0.50 0.50 0.50 0.50 0.50

In 4a 1 0.0 0.0 0.0 0.0 0.0 0.0

F 24e 1 0.23 0.0 0.0 0.222 0.0 0.0
culated using the crystal potential as approximated by a
charged sphere (the Watson sphere):

where RW is the radius of the Watson sphere. The radii

 for individual ions are found by minimizing the
total energy of the crystal. When calculating the lattice
dynamics, the terms describing the changes in energy
due to the displacements of ions from their equilibrium
positions should be included in the crystal energy in
Eq. (2). The dynamic matrix which includes the elec-
tronic polarization of the ions and the ionic deformation
caused by the crystal field for crystals of arbitrary sym-
metry in the model used here is written out in [9]. In
calculating the lattice vibration frequencies of
Rb2KInF6 and when classifying the vibrational modes
by their symmetry, we use the results of [9].

The Coulomb interaction contribution to the
dynamic matrix is calculated using the Ewald method.
The ionic parameters are determined using the algo-
rithm developed by Liberman et al. [10]. The pairwise
interaction energy in Eq. (2) and the ionic polarizability
are calculated using the technique developed by Ivanov
and Maksimov [7], with the kinetic energy taken in the
Thomas–Fermi approximation and with the exchange-
correlation energy calculated in the Hedin–Lundqvist

V r( )
Zi

ion/RW r RW<

Zi
ion/r   r RW,>




=

RW
i

Table 2.  Ionic polarizabilities, high-frequency dielectric
constants, and dynamic charges

Atom
ε∞ = 1.86

α, Å3 Zxx Zyy Zzz

Rb 1.39 1.24 1.24 1.24

K 0.74 1.17 1.17 1.17

In 0.37 3.02 3.02 3.02

F1 0.82 –1.03 –1.03 –1.28

F2 0.82 –1.03 –1.28 –1.03

F3 0.82 –1.28 –1.03 –1.03
PH
approximation. In calculating the derivatives involved
in the dynamic matrix, the dependences of the energy
on the distances R and the Watson sphere potentials V
are approximated by Chebyshev polynomials.

3. LATTICE VIBRATION SPECTRUM
In this section, we present the results of calculations

of the equilibrium volume, the dielectric constant, the
dynamic charges, and the lattice vibration spectra of the
Rb2KInF6 crystal in the cubic phase.

The equilibrium lattice parameter and the positions
of the atoms in a unit cell were determined by minimiz-
ing the total crystal energy as a function of volume. The
calculated lattice parameter and coordinates of the ions,
as well as their experimental values, are presented in
Table 1. It is seen that the calculated values coincide
with the experimental values to within 4%. The radii of
the Watson spheres for Rb+, K+, In3+, and F– ions found
by minimizing the total energy are 2.125, 2.5625, 3.5,
and 2.625 a.u., respectively. The calculated values of
the polarizabilities of the ions, high-frequency dielec-
tric constant, and dynamic ionic charges of the crystal
under study are listed in Table 2.

The calculated dispersion curves of the lattice vibra-
tion frequencies of Rb2KInF6 in the cubic phase are
shown in Fig. 2, and Table 3 lists the limiting vibration
frequencies (at q = 0) and the frequencies of some
Raman-active vibration modes measured in [11]. It can
be seen that the calculated limiting frequencies of
Raman-active modes are 10–20% lower than the exper-
imental values.

It is also seen from Fig. 2 and Table 3 that there are
imaginary vibration frequencies, which is indicative of
structural instability of the cubic phase of the crystal. It
should be emphasized that unstable modes arise every-
where in the Brillouin zone (BZ) and that their frequen-
cies at symmetry points of the BZ are comparable in
absolute value. Since the experimentally observed
phase transitions in the Rb2KInF6 crystal are associated
with instability of vibrational modes at the center and at
the boundary point X of the BZ, we will discuss only
the vibrational modes at these points. At the center of
the BZ, three modes become unstable in the cubic
structure. The strongest instability (for which the
square of the normal-mode frequency is negative and
YSICS OF THE SOLID STATE      Vol. 43      No. 12      2001
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Fig. 2. Dispersion curves of the vibrational modes of the Rb2KInF6 crystal in the cubic phase. Negative values correspond to imag-
inary frequencies.
has a maximum absolute value) is associated with the
threefold degenerate T1g mode, in which only four F
atoms are displaced from their equilibrium positions [9,
12]. As a result of these displacements, the InF6 octahe-
dron is rotated as a whole. Another (ferroelectric)
unstable mode is the transverse polar mode T1u, in
which all atoms in a unit cell are displaced from their
equilibrium positions in the cubic phase. However, to
our knowledge, ferroelectric phase transitions have not
been observed experimentally in halide crystals with
elpasolite structure. Finally, the third unstable mode is
the threefold degenerate T2g mode. One of the eigenvec-
tors of this mode corresponds to rotation of the InF6

octahedron about a cube body diagonal and to simulta-
neous displacements of the Rb atoms situated on this
diagonal toward each other. It should be noted that in
the vibration spectrum of the crystal under study, there
is also a stable mode of the same symmetry, T2g

(Table 3).

At point X on the BZ boundary, the strongest lattice

instability is associated with the nondegenerate 
mode, in which the displacements of the four F ions
(F3y = –F4y = F5z = –F6z) also correspond to rotation of
the InF6 octahedron as a whole. However, the rotations
are inhomogeneous over the crystal and condensation
of this mode leads to doubling of the unit-cell volume.

X2
+
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As indicated in the introduction, when the temperature
is decreased, the crystal first undergoes the transition to
the tetragonal phase, which is associated with conden-
sation of the soft T1g mode at the center of the BZ.

Table 3.  Limiting q = 0 vibration frequencies (cm–1) in the
cubic phase

ωi

Cubic phase

degene-
racy

vibrational 
mode frequency [11]

ω1 3 T1g 74i
ω2T 2 T1u 44i
ω3 3 T2g 39i 80
ω4 3 T1u 0
ω2L 1 T1u 71
ω5 3 T2u 74
ω6T 2 T1u 125
ω7 3 T2g 142 210
ω6L 1 T1u 149
ω8T 2 T1u 149
ω8L 1 T1u 167
ω9 2 Eg 340 380
ω11 1 A1g 365 510
ω10T 2 T1u 352
ω10L 1 T1u 386
01
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4. DERIVATION OF THE EFFECTIVE 
HAMILTONIAN AND CALCULATION

OF ITS PARAMETERS

The effective model Hamiltonian in the local-mode
approximation [13] has been used in several publica-
tions to describe ferroelectric and structural phase tran-
sitions in the diatomic compound GeTe [14] and oxides
with perovskite structure [1–4]. When deriving the
model Hamiltonian, we used the scheme proposed in
[3, 4, 14].

In the threefold degenerate T1g vibrational mode at
q = 0 and the nondegenerate vibrational modes along
the lines going through the center of the BZ and one of
the points X, Y, or Z on the BZ boundary, only F ions are

displaced and their displacements  in these modes
are subject to the relations

(3)

These F-ion displacements lead to rotation of the InF6
octahedron. We derive the model Hamiltonian in the
local-mode approximation and take into account only
the modes in Eq. (3); the other modes are assumed to be
insignificant in the structural transition from the cubic
to the tetragonal phase. Thus, for Rb2KInF6, a local
mode is assumed to have the form

(4)

where α = x, y, z;  is the oscillation amplitude of the
kth F ion given by Eq. (3); ξαk are the eigenvectors of a
lattice vibrational mode; and a0 = 16.71 a.u. is the lat-
tice parameter in the cubic phase. The vectors ξ are pre-
sented in Table 4.

v k
E

T1g: 

v 1y
F– v 2y

F v 5z
F v 6z

F–= = =

v 1x
F– v 2x

F v– 3z
F v 4z

F= = =
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F– v 4y
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F v 6x

F= = =
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
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X3: v 1y
F– v 2y

F v 5z
F v– 6z

F ,= = =

Y3: v 1x
F– v 2x

F v– 3z
F v 4z

F ,= = =
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F– v 4y

F v– 5x
F v 6x

F .= = =

Sα
1
a0
----- ξαkv k

F,
k

∑=

v k
F

PH
Under the symmetry operations of the high-symme-
try cubic phase, the local mode (Sx, Sy, Sz) is trans-
formed as a pseudovector. Thus, in order to construct
the effective Hamiltonian that describes the structural
phase transition Fm3m  I4/m, we proceed as fol-
lows. The three-component local mode (pseudovector)
is placed at sites of an fcc lattice. For the sake of sim-
plicity, anharmonicity is taken into account in the effec-
tive Hamiltonian only through the single-site potential,
which contains all second- and fourth-order terms and
some anisotropic terms of the sixth order. Pairwise
interaction between the local modes at different sites is
included only for the nearest and next-to-nearest neigh-
bor sites. The interaction between the local mode and
spatially homogeneous elastic strains is also allowed
for. Thus, taking into account the transformation prop-
erties of the local mode and the fcc lattice under cubic-
symmetry operations, the microscopic model Hamilto-
nian is written as [8]

(5)

H Hi
anh Hi
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Table 4.  Eigenvectors of the threefold degenerate vibrational mode T1g

Compo-
nents Rb1 Rb2 F1 F2 F3 F4 F5 F6 K In

ξx 000 000 000 000 000 000

ξy 000 000 000 000 000 000

ξz 000 000 000 000 000 000

0–
1
2
---0 0

1
2
---0 00

1
2
--- 00–

1
2
---

–
1
2
---00

1
2
---00 00–

1
2
--- 00

1
2
---

0–
1
2
---0 0

1
2
---0 –

1
2
---00

1
2
---00
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 

d 1± 1± 0, ,( )=

∑

+ a2 Sz Ri

a0d
2

--------+ 
 

d
1± 0 1±, ,

0 1± 1±, , 
 =

∑

+ a3 d y⋅( ) d z⋅( )Sx Ri

a0d
2

--------+ 
 

d 0 1± 1±, ,( )=

∑

+ a3 d x⋅( ) d z⋅( )Sy Ri

a0d
2

--------+ 
 

d 1± 0 1±, ,( )=

∑

+ Six b1 Sx Ri a0d+( )







d 1± 0 0, ,( )=

∑

+ b2 Sx Ri a0d+( )

d
0 1± 0, ,
0 0 1±, , 

 =

∑

+ Siy b1 Sy Ri a0d+( )







d 0 1± 0, ,( )=

∑

+ b2 Sy Ri a0d+( )

d
1± 0 0, ,

0 0 1±, , 
 =

∑

+ Siz b1 Sz Ri a0d+( )







d 0 0 1±, ,( )=

∑

+ b2 Sz Ri a0d+( )

d
1± 0 0, ,

0 1± 0, , 
 =

∑ ,
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The elastic strains ei are written in Voigt notation as

In order to find the numerical values of the coeffi-
cients in the effective Hamiltonian (5), we used the
results of calculations of the lattice vibration spectrum
and the total crystal energy for some low-symmetry
phases whose distortions involve F-ion displacements.

The elastic constants C11, C12, and C44 are deter-
mined from the calculated small-q dependences of the
frequencies of longitudinal and transverse acoustic
modes for three symmetry directions: [001], [110], and
[111]. The following values are obtained for the elastic
constants Cij = cijΩ (where Ω is the unit-cell volume)
for the Rb2KInF6 crystal: C11 = 53.6 eV, C12 = 11.7 eV,
and C44 = 9.5 eV. Unfortunately, experimental values of
the elastic constants of this crystal are unavailable and
we can only compare the calculated constants Cij with
their experimental values for the isomorphic compound
Rb2NaHoF6, which has approximately the same chem-
ical composition as the crystal under study: C11 =
59.5 eV, C12 = 18.9 eV, and C44 = 19.2 eV [15]. It is seen
that these values and the respective constants calculated
for the Rb2KInF6 crystal are of the same order of mag-
nitude.

The coefficients of the second-order terms in Eq. (5)
are determined from the total energies Ei of the dis-
torted phases. Table 5 presents the relations between
linear combinations of the coefficients in Eq. (5) and
the distortion energies ∆Ei = Ei – E0 – Eanh (where E0 =
–356596 eV), as well as the values of ∆Ei (in eV) cal-
culated from first principles. In this table, EΓ is the
energy of the tetragonally distorted phase in which the
rotations of InF6 octahedra are homogeneous over the
crystal and correspond to condensation of one compo-

HSe g1




i
∑ e1 e2 e3+ +( ) Six

2 Siy
2 Siz

2+ +( )=

+ g2 e1 e2 2e3–+( ) Six
2 Siy

2 2Siz
2–+( )

+ 3 e1 e2–( ) Six
2 Siy

2–( )

+ g3 e4SiySiz e5SixSiz e6SixSiy++( )




,

Hee C11 e1
2 e2

2 e3
2+ +( ) C12 e1e2 e2e3 e3e1+ +( )+=

+ C44 e4
2 e5

2 e6
2+ +( ).

e1 u11, e2 u22, e3 u33,= = =

e4 2u23, e5 2u13, e6 2u12,= = =

uij ∂ui/∂x j ∂u j/∂xi+( )/2.=
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nent of the T1g mode at q = 0; EX is the energy of the tet-
ragonally distorted phase with a doubled unit-cell vol-

ume, resulting from condensation of the soft mode 
at the BZ boundary; and ∆EL is the difference between
the energies of the cubic and the distorted phase in
which the octahedra are rotated about a cube body diag-
onal, which corresponds to the following distribution of
the local mode Sα(R):

where |S | is the amplitude of the local mode, qL =

(111), and R is a translation vector of the cubic

phase. The amplitude of this local mode is found by
minimizing the total energy EL of the distorted phase. It
should be noted that, although this distorted phase can-
not result from the condensation of any one phonon
mode, the crystal under study has an unstable mode at
point L on the BZ boundary in which the displacements
of the ions lead to rotation of the octahedron and to a
small distortion in it [9]. We also calculated the total
energy Ezx of the distorted phase in which the InF6 octa-
hedron is rotated about the [001] axis and the unit cell

X2
+

Sx R( ) Sy R( ) Sz R( ) S iqLR–( ),exp= = =

π
a0
-----

Table 5.  Expressions for the distortion energies ∆Ei = Ei –
E0 – Eanh of some phases and their values (eV)

∆EΓ 4a1 + 8a2 + 2b1 + 4b2 + A –26.906

∆EX 4a1 – 8a2 + 2b1 + 4b2 + A –26.169

∆EL –24a3 – 6b1 – 12b2 + 3A 18.412

∆Ezx –4a1 + 2b1 + 4b2 + A 16.557

Table 6.  Calculated phase transition temperatures (K) and
the parameters of the effective Hamiltonian (eV)

Tc 550 750 450 350

Single-site parameters

A 3.087 –15.482 23.490 5.339

B 1.400 × 103 1.577 × 103 1.188 × 103 1.286 × 103

C 2.246 × 103 2.145 × 103 2.415 × 103 2.767 × 103

D –0.732 × 103 –5.568 × 103 5.567 × 103 16.198 × 103

Intersite parameters

a1 –5.386 –3.928 –7.785 –4.969

a2 –0.046 –0.027 –0.073 0.060

a3 0.628 0.514 0.849 0.014

b –1.346 –0.982 –1.948 –1.243

Coupling constants with homogeneous strains

g1 39.878 66.420 43.430 29.854

g2 –15.915 –15.939 –20.672 –18.701
PH
is doubled along the [100] axis, which corresponds to
an Sα(R) distribution of the form

where qX = (100). This distorted structure cannot be

due to the condensation of a phonon mode. Since the
other homogeneously distorted structures in which the
unit cell is doubled and the octahedra are rotated do not
lead to new relations between linear combinations of
the coefficients, we failed to divide the combination
4a1 + 2b1 + 4b2 + A into individual terms. For this rea-
son, we assumed that the constants b1 and b2, which
characterize the interaction with the next-to-nearest
neighbors in Eq. (5), have the same value and are four
times less than the interaction constant with the nearest
neighbors a1; that is, b1 = b2 = b = a1/4. This assumption
is consistent with our calculations of the thermody-
namic properties of the system with Hamiltonian (5)
(see below), according to which these properties (cal-
culated with the value of a1 determined previously) are
scarcely affected by the values of b1 and b2; at least, for
three values of b/a1 = 1/4, 1/2, and 3/4, the results of
numerical simulations differ from one another only
slightly.

The coefficients B, C, and D of the anharmonic
terms in the single-site potential are determined from
the dependences of the total energy of the clamped
crystal (whose lattice parameter is the same as that in
the cubic phase, a0 = 16.71 a.u.) on the rotation angle of
the InF6 octahedron about the [001] (Sx = Sy = 0, Sz =
|S |), [110] (Sx = Sy = |S |, Sz = 0), and [111] axes (Sx = Sy =
Sz = |S |). These dependences are shown in Fig. 3, and
the values of the coefficients B, C, and D determined
using the least square method are listed in Table 6.

Now, we discuss the coupling coefficients between
the local mode and homogeneous elastic strains. Since
shear strains do not arise in the tetragonal phase during
the Fm3m  I4/m phase transition, we did not deter-
mine the coefficient g3 in Eq. (5). The coefficients g1

and g2 are found as follows. The total energy of the
unclamped crystal is calculated as a function of the
rotation angle of the octahedron about the [001] axis
and, for a fixed value of the angle, is minimized with
respect to the unit-cell parameters and the radii of the
Watson spheres of the ions. The angular dependence of
the energy is shown in Fig. 3. Then, we subtract the
total energy of the clamped crystal, and this energy dif-
ference and the elastic constants determined before are
used to fit the coefficients g1 and g2 using the least
square method (Fig. 3). The values of these coefficients
are listed in Table 6.

Sz R( ) S iqXR–( ), Sxexp Sy 0,= = =

2π
a0
------
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Fig. 3. Total crystal energy (E0 = –13110.141187 a.u.) as a function of the octahedron rotation angle for (a) the unclamped crystal
and (b) the clamped crystal with unit-cell parameters of the cubic phase. Solid curves are calculations, and dots represent the ener-
gies obtained from the effective Hamiltonian, whose parameters are fitted using the least square method.

(a) (b)
5. INVESTIGATION OF THERMODYNAMIC 
PROPERTIES AND DISCUSSION OF RESULTS

The effective Hamiltonian derived above is simple
but contains many parameters, which hampers calcula-
tion of the free energy and other thermodynamic quan-
tities using analytical methods, for example, within the
self-consistent-field approximation. Therefore, we
investigated the thermodynamic properties of the sys-
tem with the effective Hamiltonian (5) using the numer-
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      20
ical Monte Carlo (MC) method, namely, its classical
version with the Metropolis algorithm [16] for an fcc
L × L × L lattice with periodic boundary conditions.
The three-component pseudovector (Sx, Sy , Sz) was
placed at each lattice site, and the lattice was subjected
to homogeneous strains e1, e2, and e3. We investigated
two cases using the MC method: a clamped crystal (i.e.,
without elastic strains, e1 = e2 = e3 = 0) and an
unclamped crystal with strains e1, e2, and e3 (their cal-
01



2298 ZINENKO, ZAMKOVA
culation was included in the MC algorithm). In the
former case, in each cycle of the MC procedure, we var-
ied the pseudovector components Six, Siy, and Siz in a
random fashion successively at each lattice site and ver-
ified the possibility of each variation. It should be noted
here that our calculations of the total energy of distorted
phases and numerical simulations of the effective
Hamiltonian showed that the energies of distorted
phases with unequal pseudovector components Sx ≠
Sy ≠ Sz were significantly higher than those in the case
of equal pseudovector components. Therefore, in order
to reduce the computer time required for the MC proce-
dure, we chose only those pseudovectors with the fol-
lowing components: Sz, Sx = Sy = 0; Sz = ±Sx, Sy = 0; and
Sz = ±Sx = ±Sy.
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Fig. 4. Temperature dependences, calculated using the MC
method, of (a) the order parameter (1 is Sz, 2 is Sx, Sy),
(b) the internal energy, and (c) the heat capacity (in arbitrary
units).
PH
Since the energy increases sharply in the range
above |S | ~ 0.07, as seen from Fig. 3, we restricted our
calculations to the range [–0.1, 0.1] for the values of the
components Sα and their variations. For each value of
the temperature, we performed 50000 steps of the MC
procedure and the thermodynamic quantities were cal-
culated by averaging over the last 10000 steps in the
ordinary way [16].

In the case of the unclamped crystal, after each cycle
of the MC procedure described above, we tried to vary
each component of the strain tensor. The values of trial
variations were chosen randomly and lied in the range
[–0.05, 0.05]. For each component, we performed
1000 trials and averaged over them. The averaged
strains and the configuration of pseudovectors calcu-
lated in a given cycle of the MC procedure were taken
as the initial ones for the next cycle.

The calculations were carried out for both high
(~1000 K) and low (~50 K) initial temperatures. When
the MC procedure was started from high temperatures,
we simultaneously treated two initial configurations,

corresponding to the high-symmetry cubic phase (  =

 =  = 0) and to the tetragonally distorted phase

(  = 0.08,  =  = 0). When starting from low tem-
peratures, a configuration corresponding to the tetrago-
nal phase was taken as the initial one. The calculation
was carried out for the dimension L = 10 (4000 pseudo-
vectors). In order to check the results, we also per-
formed calculations for several temperatures for a
larger lattice (L = 20, 32000 pseudovectors). The
results obtained for the 20 × 20 × 20 lattice differ little
from those obtained for the 10 × 10 × 10 lattice; thus, in
what follows, we will discuss only the calculations per-
formed for L = 10.

The calculated temperature dependences of the

pseudovector components , , and  and of the
internal energy E – E0 (E0 is the total energy of the crys-
tal in the cubic phase) are shown in Fig. 4. The phase
transition temperature was determined as that corre-
sponding to the inflection point in the temperature
dependence of the internal energy (Fig. 4b) and to the
peak in the temperature dependence of the heat capac-
ity CV calculated using a standard method [16]
(Fig. 4c).

At Tc = 550 K, the unclamped crystal undergoes a
second-order phase transition to a distorted phase with

pseudovectors  = S and  =  = 0. Such a tetrago-
nal phase, having the same unit-cell volume as the
cubic phase and belonging to the space group I4/m, was
observed experimentally in Rb2KInF6 crystals below
283 K [5]. The calculation accuracy of the phase transi-
tion temperature is determined by that of the vibration
frequencies and of the total energy of the distorted
phases. In the approach employed by us, these quanti-
ties are calculated to within an accuracy of ~5%. In the

Sx
i

Sy
i Sz

i

Sz
i Sx

i Sy
i

Sx
i Sy

i Sz
i

Sz
i Sx

i Sy
i

YSICS OF THE SOLID STATE      Vol. 43      No. 12      2001



LATTICE DYNAMICS AND STATISTICAL MECHANICS 2299
case of the clamped crystal (zero strains), the phase
transition temperature obtained from the MC calcula-
tion data is Tc = 560 K, which is ten degrees higher than
that for the unclamped crystal.

Figure 5 presents the elastic strains e1 = e2 and e3 in
the tetragonal phase measured experimentally and from
MC calculations. The quantitative agreement between
the calculated and experimental values is fairly reason-
able, if one takes into account that the values of ei are
very small and that the method according to which we
calculated the total crystal energy, vibration frequen-
cies, and the parameters of the model Hamiltonian is
poorly accurate.

The phase transition temperature Tc obtained from
the MC calculations is nearly twice as large as its exper-
imental value. This discrepancy can be mainly due to
the calculated total crystal energy and lattice vibration
spectrum, which are not sufficiently accurate in com-
parison with the first-principles energy-band calcula-
tions.

On the other hand, our calculations revealed that the
value of the phase transition temperature is very sensi-
tive to the details of the crystal structure in both the
high-symmetry cubic phase and the distorted phases.
The parameters of the effective Hamiltonian (5) listed
in the second column of Table 6 were calculated from
the energies of the distorted phases by minimizing the
total crystal energy in both the cubic and distorted
phases. We also calculated the parameters of the effec-
tive Hamiltonian (by following the scheme described
above) and performed MC calculations with these
parameters for slightly varied crystal structures. The
results of these calculations are presented in the last
three columns of Table 6: The third column lists the
parameters of the Hamiltonian and the calculated phase
transition temperature for the case where the F–In dis-
tance (between the fluorine and indium ions) in the
cubic phase is 0.222a0 (a0 = 17.08 a.u. is the lattice
parameter in the cubic phase), the fourth column lists
the same quantities calculated for a F–In distance equal
to 0.24a0 (a0 = 16.41 a.u.), and the last column of
Table 6 lists the same quantities calculated for the case
where the F–In distance (0.23a0, a0 = 16.71 a.u.) corre-
sponds to the minimum of the total energy but, in addi-
tion to the F-ion displacements, the Rb ions in the tet-
ragonally distorted phase are also displaced along the
cube body diagonal without breaking the tetragonal
symmetry. The amount of Rb-ion displacement was
taken to be equal to one-third the F-ion displacement. It
can be seen from Table 6 that small variations (≈4%) of
the ion positions in the crystal structure give rise to sig-
nificant changes in Tc. However, it should be empha-
sized once again that the values of the transition tem-
perature from the cubic to the tetragonal phase listed in
the last three columns of Table 6 do not correspond to a
minimum of the total crystal energy.

According to our MC calculations, the tetragonal
phase remains stable down to zero temperature and the
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      200
other pseudovector components (Sx, Sy) do not appear,
which contradicts the experimental observations,
according to which another structural phase transition
(to the monoclinic phase with unit-cell doubling)
occurs in Rb2KInF6 crystals at Tc2 = 264 K. Structural
studies of the monoclinic phase of the isomorphic
Rb2KScF6 compound revealed [5] that this phase tran-
sition is accompanied by the appearance of another
pseudovector component below Tc2; this component is
inhomogeneous over the crystal and involves displace-
ments of the Rb ions from their equilibrium positions.
This suggests that the Rb-ion displacements play a sig-
nificant part in the stabilization of the monoclinic phase
in this crystal and that, therefore, in order to describe
the second structural phase transition, not only octahe-
dron rotations but also the vibrational modes that corre-
spond to these degrees of freedom should be included
into the model Hamiltonian.

6. CONCLUSIONS

Thus, in this paper, we calculated the entire spec-
trum of crystal lattice vibrations and constructed a non-
empirical effective Hamiltonian to describe the struc-
tural phase transition Fm3m  I4/m in the Rb2KInF6
crystal. The parameters of the Hamiltonian were deter-
mined by calculating the total energy in an ionic-crystal
model taking into account the deformation and polar-
ization of ions. The model Hamiltonian was used in
numerical calculations in accordance with the MC
method, from which we determined the phase transition
temperature from the cubic to the tetragonal phase, Tc =
550 K. This calculated temperature is twice as large as
the corresponding experimental value. This discrep-
ancy could be mainly due to the insufficiently accurate
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Fig. 5. Temperature dependences of the strain tensor com-
ponents ei in the tetragonal phase: (1) MC calculations and
(2) experiment [17].
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method used in the calculations. However, according to
our calculations, the phase transition temperature is
very sensitive to the details of the crystal structure;
therefore, the discrepancy between the calculated and
experimental values of Tc could be due to the imperfec-
tion of the crystals used in the experimental studies.

Nevertheless, from the results obtained in this paper,
it is reasonable to infer that the phase transition
Fm3m  I4/m in the Rb2KInF6 crystal is basically
associated with spatially homogeneous rotations of the
InF6 octahedra, whereas the other degrees of freedom
affect the mechanism and thermodynamics of this
phase transition only slightly.
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Abstract—The heat capacity of (NH4)2KGaF6 elpasolite is measured in the temperature range from 80 to 350 K.
A sequence of three phase transitions at T1 = 288.5 K, T2 = 250 K, and T3 = 244.5 K is revealed, and the ther-
modynamic characteristics of these transitions are determined. The influence of hydrostatic pressure on the
phase transition temperature is investigated. The results obtained are discussed within the model of orienta-

tional ordering of  and  ionic groups. © 2001 MAIK “Nauka/Interperiodica”.NH4
+ GaF6

3–
1. INTRODUCTION

Crystals of the elpasolite and cryolite family of the
general formula B+M3+F6 (in a cryolite structure,
A+ ≡ B+) have a high-temperature cubic phase and
belong to a wide class of ordered perovskites with the

space group  (Z = 4). Compounds of this family
with atomic cations A+ and B+ = Na+, K+, Rb+, or Cs+

(  > ) can undergo structural phase transitions

upon cooling due to lattice instability with respect to
rotational distortions of the crystal framework which
consists of vortex-shared octahedra B+F6 and M3+F6 [1–
3]. The phase transitions occur through the condensa-
tion of soft librational modes of octahedral ionic
groups.

The presence of  ammonium ions in the struc-
ture substantially affects the mechanism of the phase
transitions. In elpasolite and cryolite crystal cells, these
ions can occupy two nonequivalent positions, namely,
4b (inside a halide octahedron) and 8c (in a hole
between octahedra) positions with coordination num-
bers of 6 and 12, respectively. In the (NH4)3M3+F6 cry-
olite structure, ammonium ions occupy both positions.
For an elpasolite structure, there are two variants: (1)
ammonium tetrahedra can be located only in holes
between octahedra in the (NH4)2B+M3+F6 compounds
and (2) ammonium tetrahedra can occupy only halide

octahedra in the NH4M3+F6 compounds.

Among ammonium compounds, the (NH4)3M3+F6
cryolites are the best understood. For these compounds,
the heat capacity has been carefully measured and the
thermodynamic parameters of phase transitions have
been reliably determined in a number of works [4–10].
Moreover, the effect of hydrostatic pressure was ana-
lyzed in our recent works [9, 10]. The character of the
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reorientational motion of hydrogen and fluorine was
investigated earlier by NMR spectroscopy [4, 11].

In the (NH4)3M3+F6 cryolites, as in compounds with
atomic cations [2], the phase transition temperature and
the sequence of formation of distorted phases essen-
tially depend on the size of the trivalent cation. Earlier,
two successive phase transitions were revealed in an
ammonium-containing cryolite with M3+ = Al3+ [4, 12]
and one transition from a cubic phase to a triclinic
phase was observed in compounds with M3+ = Cr3+,
Ga3+, V3+, and Fe3+ [6–8, 13, 14]. It was found that, for
compounds with larger-sized trivalent ions (M3+ = Sc3+

and In3+), the low-temperature triclinic phase is formed
upon three phase transitions [8–11, 15].

For the aforementioned cryolites, the total entropy
change due to the transition from the cubic to the tri-
clinic phase varies in a narrow range (2.33–2.99)R from
crystal to crystal and does not depend on the sequence
of phase transitions. The large entropy clearly indicates
that ordering processes proceed in the structure. In [7,
8], it was assumed that the phase transitions are associ-
ated with orientational ordering of both tetrahedral
ammonium and octahedral fluorine ionic groups. Of the
above two types of ammonium ions that occupy differ-
ent crystallographic positions (8c and 4b), only in the
latter case, tetrahedral ions in the cubic phase are disor-
dered over two equivalent orientations according to the
symmetry of the occupied position. Fluorine octahedra
remain rigid and regular when fluorine atoms in the
cubic phase are distributed over the 24e or 192l posi-
tions. In the former case, they occupy a special position
on the cell edge. In the latter case, they are distributed
over eight positions; i.e., each octahedron is character-
ized by eight equivalent orientations. Consequently, the
entropy change that corresponds to complete ordering
of the ionic groups is equal to Rln2 + Rln8 = Rln16 =
2.77R. This value is in reasonable agreement with the
experimental data for ammonium-containing cryolites.
001 MAIK “Nauka/Interperiodica”



 

2302

        

FLEROV 

 

et al

 

.

                                                   
In the case when ammonium cryolites undergo suc-
cessive phase transitions, the structural ordering pro-
cesses occur in two stages [9]. The phase transition
from the cubic phase to the monoclinic phase is associ-
ated with a partial ordering of octahedra (∆S = Rln4),
which results in a forced ordering of ammonium tetra-
hedra (∆S = Rln2). The octahedra are completely
ordered upon the second phase transition between two
monoclinic modifications (∆S = Rln2). The third phase
transition (to the triclinic phase) is accompanied by an
insignificant change in the entropy and is, most likely,
a first-order transition between two completely
ordered, distorted modifications [9, 16]. The model
under consideration is consistent with the NMR data
obtained by Sasaki et al. [11] for the (NH4)3InF6 cryo-
lite. For cryolites with successive phase transitions, the
spin-lattice relaxation times of protons (T1H) and fluo-
rine nuclei (T1F) exhibit an anomalous behavior upon
phase transition from the cubic phase. However, upon
the second phase transition, only the T1F time changes
considerably.

It should be noted that, in ammonium elpasolites, an

 ion occupies only one of the two possible crystal-
lographic positions (4b or 8c). This slightly simplifies
the problem of elucidating the role of ammonium ions
in structural phase transitions and their influence on the
motion of fluorine octahedra.

If the model proposed in [8, 9, 16] provides an ade-
quate description of the ordering of structural units

upon phase transitions, the NH4M3+F6 elpasolites,
like (NH4)3M3+F6 cryolites, can undergo phase transi-
tions with ordering of the ammonium tetrahedra and
fluorine octahedra. As regards the (NH4)2B+M3+F6 elpa-
solites, only the fluorine octahedra can be disordered in
their cubic structure. In these two cases, the maximum
entropy change can be equal to Rln16 and Rln8, respec-
tively.
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Fig. 1. DSC curve for the (NH4)2KGaF6 elpasolite (DSM-
2M instrument).
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In the present work, we carefully investigated the
heat capacity and the p–T phase diagram for the
(NH4)2KGaF6 compound over a wide range of temper-
atures and pressures. The aim of this work was to deter-
mine the thermodynamic parameters of phase transi-
tions and to elucidate how the substitution of an atomic
cation for ammonium in the crystallographic position
4b in the (NH4)2NH4GaF6 cryolite structure affects the
thermodynamic properties.

2. SAMPLE PREPARATION 
AND PRELIMINARY INVESTIGATIONS

The (NH4)2KGaF6 compound was prepared using
two methods. In the first method, we synthesized this
compound from a solution. A solution of Ga(OH)3 in
concentrated hydrofluoric acid was evaporated to the
onset of crystallization. Then, a saturated solution of an
equimolar mixture in hydrofluoric acid on a 2NH4HF2 +
KHF2 + Ga(OH)3 basis was added to the Ga(OH)3 solu-
tion. The resultant solution was allowed to stand in a
crystallizer at a temperature of 70°C until fine crystals
were formed and was then cooled to room temperature
at a rate of 0.5 K/h. As a result, we obtained crystals
approximately 0.5 mm3 in volume.

In the second method, the (NH4)2KGaF6 compound
was prepared by hydrothermal synthesis. A 35% aque-
ous solution of HF (in an amount of 20% of the total
weight of the initial components) was added to a
2NH4HF2 + KHF2 + GaF3 · 3H2O mixture in a Teflon
vessel. The vessel with the prepared mixture was placed
in a high-pressure nickel bomb. The hermetically
sealed bomb was held for 48 h at 230°C and then was
slowly cooled for 72 h to room temperature. In this
manner, we obtained octahedral crystals 30–50 mm3 in
volume.

Analysis of the x-ray diffraction patterns showed
that impurities of the initial components and foreign
phases are absent in the samples. At room temperature,
the (NH4)2KGaF6 compound has a cubic symmetry

( , Z = 4) with the unit cell parameter a0 =
8.866 Å. According to the chemical formula, ammo-
nium ions occupy the 8c positions in the unit cell. No
indications of composition disordering of ammonium
and potassium ions over the 8c and 4a positions were
found.

Two (NH4)2KGaF6 samples prepared using different
methods were studied by differential scanning calorim-
etry (DSC) on a DSM-2M instrument in the tempera-
ture range 150–320 K. The experimental data obtained
for the sample grown by hydrothermal synthesis are
shown in Fig. 1. It can be seen that the heat capacity
exhibits two anomalies proportional to the DSM signals
at temperatures T1 ≈ 290 K and T2 ≈ 250 K. Moreover,
a small deviation from a smooth decrease in the DSM
signal is observed below T2 in the range of T3 ≈ 245 K.
In order to make certain that the third anomaly is not
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accidental and does not depend on the sample prepara-
tion procedure, we performed calorimetric measure-
ments with the same instrument for the sample synthe-
sized from the solution. The results of both experiments
turned out to be identical: the temperatures of each of
the three anomalies in the heat capacity coincided to
within 1–2 K, i.e., within the accuracy ensured by the
DSM-2M instrument. The enthalpy change upon the
phase transition at the T1 temperature was found to be
∆H1 = 150 ± 25 J/mol. Since the difference between the
temperatures T2 and T3 was small, we succeeded only in
determining the total enthalpy change upon two succes-
sive transitions: ∆H2 + ∆H3 = 3500 ± 550 J/mol.

The preliminary polarization-optical investigation
of the (NH4)2KGaF6 samples prepared by hydrothermal
synthesis revealed that twins with a structure typical of
tetragonal distortion are formed at temperatures below
T1. Below the T2 temperature, the pattern of twinning
changes and the symmetry becomes lower (most prob-
ably, monoclinic). Unfortunately, reliable data on the
phase transition at the T3 temperature are unavailable.
Detailed results of optical and structural investigations
will be published in a separate paper.

3. HEAT CAPACITY MEASUREMENTS

In order to refine the thermodynamic parameters of
the phase transitions under investigation and to reveal
possible phase transitions with a small enthalpy (i.e.,
transitions that cannot be recorded using the DSC
method because of its relatively low sensitivity to ther-
mal effects), the temperature dependence of the heat
capacity was carefully measured using an adiabatic cal-
orimeter in the temperature range 80–350 K.

For this purpose, a sample (1.46 g) was placed in an
indium cell, which was then hermetically sealed in a
helium atmosphere. The heat capacity of the cell was
determined in a separate experiment. The measure-
ments were carried out upon discrete and continuous
heating. In their immediate vicinity, the phase transi-
tions were investigated by the quasi-static thermogram
method during heating and cooling at mean rates
|dT/dt | ≈ 2.5 × 10–2 K/min.

The temperature dependences of the heat capacity
of the (NH4)2KGaF6 compound over the entire temper-
ature range studied and, in greater detail, at tempera-
tures near 250 K are displayed in Figs. 2a and 2b,
respectively.

It can be seen from Fig. 2 that the heat capacity
exhibits three anomalies, as is the case in the experi-
ments performed with the DSM-2M instrument. The
refined temperatures of the phase transitions are as fol-
lows: T1 = 288.5 ± 0.5 K, T2 = 249.3 ± 0.1 K, and T3 =
244.6 ± 0.5 K. The behavior of the heat capacity in the
vicinity of the T1 temperature is characteristic of sec-
ond-order phase transitions. Thermographic investiga-
tions (quasi-static thermogram method) demonstrated
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      20
that the anomalies observed in the heat capacity at T2
and T3 are associated with the first-order phase transfor-
mations, which are characterized by the temperature
hystereses δT2 = 1.24 ± 0.05 K and δT3 = 2.06 ± 0.2 K.

The integrated thermodynamic characteristics of the
phase transitions were obtained in the processing of the
anomalous component of the heat capacity ∆Cp(T) =
Cp(T) – Clat(T). The lattice component of the heat
capacity Clat(T) was determined by approximating the
experimental data outside the phase transition range (T
< 150 K and T > 300 K) with the use of the Debye and
Einstein functions. The temperature dependence of the
lattice heat capacity is shown by the dashed line in
Fig. 2a. The spread of experimental points about the
smoothed dependence in these temperature ranges did
not exceed 0.7%. The change in the entropy with tem-
perature was calculated by integrating of the ∆Cp(T)/T
function. The temperature dependence of the excess
entropy is depicted in Fig. 3.

The total entropy change for the three phase transi-
tions is equal to 16.0 ± 1.5 J/mol K. The entropy change
due to the first phase transition is rather small: ∆S1 =
(0.12 ± 0.01)R; this value is characteristic of displacive-
type transitions. Since the temperatures of the two other
transitions are very close to each other, the entropy
change attributed to each of these transitions cannot be
distinguished. The total entropy change for these tran-
sitions is ∆S2 + ∆S3 = 1.8R. This value slightly exceeds
the entropy change (1.68R) determined by the DSM
method.
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4. PHASE DIAGRAM

The effect of hydrostatic pressure on the phase tran-
sition temperatures was studied with the same sample
as was used in the heat capacity measurements. The
phase transition temperature and its change with a vari-
ation in pressure were determined from a differential
thermal analysis (DTA). A copper–germanium thermo-
couple served as the sensitive element. A quartz refer-
ence sample was placed on one junction of the thermo-
couple, and a small copper cell with the studied com-
pound was placed on the other junction of the
thermocouple. The high sensitivity of the thermocouple
made it possible to measure reliably even the phase
transition at T1 with a small anomaly in the heat capac-
ity (∆Cp/Clat ≈ 6%). A pressure as high as 0.6 GPa was
produced in a cylinder–piston-type chamber connected
to a booster. A mixture of silicone oil and pentane was
used as the pressure transferring medium. The pressure
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Fig. 4. The p–T phase diagram for the (NH4)2KGaF6 elpa-
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in the chamber was measured on a manganin resistance
pressure gauge, and the temperature was measured
using a copper–constantan thermocouple. The errors of
measurements were equal to ±10–3 GPa and ±0.3 K,
respectively. The reliability of the results was checked
by measuring the shift in the phase transition tempera-
tures with an increase and a decrease in the hydrostatic
pressure.

Figure 4 shows the p–T phase diagram of the
(NH4)2KGaF6 elpasolite. It is seen that the stability loss
temperature of the cubic phase decreases with an
increase in the pressure. It is worth noting that the
dependence T1(p) is obviously nonlinear. The shift in
the phase transition temperature dT1/dp is equal to
−18.5 K/GPa at p = 0 and reaches a value of –30 K/GPa
at p = 0.5 GPa. The temperatures of the two other struc-
tural transformations also decrease but considerably
more slowly: dT2/dp = –(2.3 ± 0.3) K/GPa and dT3/dp =
–(1.4 ± 0.4) K/GPa. It is evident that a further increase
in the pressure can lead to the disappearance of the first
distorted phase. According to the estimates, this can
occur at p = 1.0–1.2 GPa.

5. DISCUSSION

The substitution of the K+ cation for the ammonium
ion in the 4b position leads to quite a different pattern
of phase transitions as compared to that observed in the
(NH4)2NH4GaF6 cryolite. Let us consider the
(NH4)2KGaF6 elpasolite structure in the framework of
the model proposed for cryolites in [7–9]. Within this
model, fluorine octahedra alone, most probably, fulfill
the function of “critical” ions; i.e., they play an active
part in the phase transitions. Now, we attempt to either
validate or disprove this assumption. In the
(NH4)2KGaF6 elpasolite, the entropy change upon the
phase transition from the cubic phase is small (∆S1 =
0.1R) and comparable to the quantity ∆S ≈ 0.2R. This
entropy change is characteristic of a large number of
halide elpasolites (including fluoro-elpasolites) with
atomic cations, which undergo phase transitions to the
tetragonal phase [2]. According to [2], the entropy
change of 0.2R is attributed to the rotation of fluorine
octahedra through a small angle about one of the four-
fold axes of the cubic cell. As was noted above, the pre-
liminary optical investigations also demonstrated that
the first distorted phase in the (NH4)2KGaF6 elpasolite
has a tetragonal symmetry. Therefore, if the transfor-
mation at T1 in the (NH4)2KGaF6 elpasolite is also asso-
ciated with rotations of the octahedra, we can state with
assurance that disordering of the fluorine atoms (or flu-
orine octahedra) is absent in the cubic phase. To put it
differently, the change in the character of octahedron
motion upon phase transitions at T2 and T3 can contrib-
ute to the mechanism of structural transformations only
through further octahedron rotations with small entropy
changes ∆S. On the other hand, close examination of
YSICS OF THE SOLID STATE      Vol. 43      No. 12      2001
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the structure shows that, under the assumption of octa-

hedron disordering in the  phase, the rotation of
orientationally disordered octahedra through a small
angle cannot provide for the formation of a tetragonal
structure with rigid octahedra. Consequently, the con-
siderable entropy change (∆S2 + ∆S3) most likely corre-
sponds to the ordering of other structural units.

As far as we know, only fragmentary data are avail-
able on the properties of crystals belonging to the
(NH4)2B+M3+F6 elpasolite family, namely,
(NH4)2KAlF6 [17], (NH4)2NaFeF6 [18], and
(NH4)2NaInF6 [19].

Hirokawa and Furukawa [17] investigated the
(NH4)2KAlF6 elpasolite by the DTA technique and
revealed two phase transitions at T1 = 250 K and T2 =
186 K. Unfortunately, they did not determine the rele-
vant entropy changes. However, the ratio of areas under
the DTA signal anomalies (proportional to the entropy
change) indicates that [∆S2 = ∆H2/T2] @ [∆S1 =
∆H1/T1]. In other words, the entropy ratio for the
(NH4)2KAlF6 elpasolite is identical to that for the
(NH4)2KGaF6 elpasolite. The inference made in [17]
coincides with our opinion that the phase transition at
T1 is a displacive-type transformation and is most likely
associated with rotations of fluorine octahedra through
a small angle. Reasoning from the NMR data,
Hirokawa and Furukawa [17] argued that the second
phase transition, which is accompanied by a substantial
entropy change, is most probably due to the ordering of
ammonium ions. Unlike the (NH4)3M3+F6 (M3+ = Al
and Ga) cryolites, in which the spin-lattice relaxation
times of fluorine ions and protons change significantly
upon phase transitions [4, 8, 11], the (NH4)2KAlF6
elpasolite is characterized by a considerable change
only in the T1H time at the T2 temperature [17].

In the high-temperature cubic phase, the N–H bonds
are dynamically disordered and equiprobably directed
to three fluorine ions of the same face of an (AlF6)3–

octahedron. In an intermediate phase, ammonium tetra-
hedra remain disordered but three orientations of each
N–H bond become nonequivalent due to the lowering
of the symmetry. The correlation time of anion reorien-
tation is very long. This suggests a low probability of
dynamic disordering of fluorine octahedra in the inter-
mediate phase. In the low-temperature phase, hydrogen
atoms are predominantly bonded to one of three fluo-
rine ions. All the aforementioned features are con-
firmed by the data on the relaxation times of hydrogen
and aluminum and the temperature dependence of the
second moment of the H and F NMR spectra [17].

The assumption that the ammonium ions in the 8c
positions can be orientationally disordered is confirmed
by the unusually large temperature parameter of hydro-
gen atoms in the cubic phase of (NH4)2NaInF6 [19],
which is appreciably larger than the temperature
parameters of the other atoms.

Fm3m
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      200
If this disordering of ammonium ions actually
occurs in the cubic phase, their complete ordering in the
low-temperature phase should be attended by the
entropy change ∆S = 2Rln3 = Rln9 = 18.3 J/mol K. This
value exceeds the entropy change observed in the
experiment for the (NH4)2KGaF6 elpasolite : Σ∆Si =
16 J/mol K.

6. CONCLUSION

It was demonstrated that the phase transition from
the cubic phase in the (NH4)2KGaF6 and (NH4)2KAlF6
elpasolites is accompanied by a small entropy change.
This disagrees with the existing elegant model of struc-
tural transformations, which is based only on the orien-
tational ordering of the  (in the 4b position) and
M3+  ionic groups [7, 8]. The determination of the
actual positions of fluorine and hydrogen atoms calls
for further structural investigations. Moreover, when
constructing a model of phase transitions in ammonium
compounds, the possible softening of rotational vibra-
tional modes of fluorine octahedra should be taken into
account.
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Abstract—This paper reports on a Raman study of the cubic-to-monoclinic phase transition in (NH4)3ScF6 cry-
olite. We observed sharp anomalies in the frequencies and half-widths of the Raman lines corresponding to
internal vibrations of the  ions and to lattice vibrations; no soft lattice mode condensation was revealed.
It is concluded that the phase transition studied is related primarily to the orientational ordering of these ions.
© 2001 MAIK “Nauka/Interperiodica”.

ScF6
3+
1. INTRODUCTION

Cryolites are a family of perovskite-like crystals
(Fm3m space group of the undistorted structure, Z = 4).
They appear to be promising subjects for investigation
both as having application potential and as model
media for use in studying phase transition (PT) mecha-
nisms [1]. Investigation of the phase transitions occur-
ring in fluorine compounds of this family is usually
complicated by their fairly high temperatures; the pres-
ence of ammonium ions in the structure reduces the
phase transition temperatures [2], thus making them
particularly attractive for investigation.

It is presently established that in most ammonium-
containing cryolites, phase transitions are associated

with orientational motion of the  and 
molecular ions and that the sequence of the phase trans-
formations, their temperatures, and mechanisms vary
substantially depending on the radius of the trivalent
cation [2]. In the (NH4)3ScF6 cryolite, phase transitions
were observed to occur in the order Fm3m (Z = 4) 

P121/n1 (Z = 2)  I12/m1 (Z = 16)   (Z = 16),
with the transition points T1 = 330, T2 = 293, and T3 =
243 K, respectively [2, 3]. The cubic symmetry of the
high-temperature phase (shown in Fig. 1) assumes that
at least one of the ammonium ion sublattices [denoted
by (NH)4I in Fig. 1] is orientationally disordered (the
corresponding ion local symmetry is Oh); it thus
appears logical to assume that the observed sequence of
the phase transitions (or, at any rate, the first of them) is
associated with the ordering of these ions. At the same
time, it was pointed out in [2, 3] that the entropy change

MeF6
+ NH4

+

     

          I1                    
1063-7834/01/4312- $21.00 © 22307
at the first PT is too large to be accounted for by the

ordering of the  ions alone and the possibility of

simultaneous orientational ordering of the  sub-
lattice occurring in this transition was suggested. The
present work is aimed at establishing the part played by
the molecular ions in the mechanism of this transition.
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2. EXPERIMENT

The compound was prepared by reacting equivalent
amounts of NH4F with Sc2O3 in HF (10%). Faceted sin-
gle crystals were grown through slow controlled evap-
oration of a neutral saturated aqueous solution at 305 K
over 8 months. The crystals were thin rectangular plates
with well-developed faces (typically measuring 5 × 5 ×
0.5 mm); they did not contain defects or inclusions vis-
ible under a microscope and were used in spectral mea-
surements without any additional processing. The spec-
tra were obtained on Jobin Ivon U-1000 and T-64000
Raman spectrometers with CCD detector arrays and a
set of microattachments. In the latter spectrometer, the
high–frequency spectra of the broad bands of internal
ion vibrations were measured in a single-monochroma-
tor arrangement, while in the region below 1000 cm–1,
triple-monochromator arrangement with dispersion
subtraction was employed to suppress the elastic-scat-
tering wing as much as possible; the low-frequency cut-
off was at 8 cm–1. The spectral slit width was varied
from 5 cm–1 (at high frequencies) to 1 cm–1, the spectral
range of the CCD array cell used in the triple mono-
chromator arrangement was 650/1024 cm–1, and the
signal accumulation time was up to 600 s. The excita-
tion was provided by polarized 514.5-nm radiation
from a 200-mW Ar+ laser. The phase transition occur-
ring at T1 = 330 K is essentially first-order, and it is
accompanied by considerable spontaneous sample
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Fig. 2. Spectra of internal ammonium ion vibrations of the
(NH4)3ScF6 crystal.
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deformation; in this connection, special measures were
taken to preclude local heating and defect formation at
the laser focal point. The sample temperature deter-
mined during spectral measurements was stabilized to
within 0.2 K.

3. RESULTS AND DISCUSSION

Because of the earlier conjecture of the ammonium
sublattice being possibly involved in the mechanism of
the phase transition under study, we first studied the
high-frequency part of the Raman spectrum (1200–
4500 cm

 

–1

 

), which includes the internal vibrations of
these ions. Figure 2 shows the evolution of these spec-
tra with temperature. We readily see that the spectra
vary very little in this region; there are no sharp changes
in the region of the (first-order) phase transition, and
the background, which is apparently associated with
the increasing contribution of the well-known strong
anharmonicity of the  ion vibrations, grows
steadily. The large linewidths, particularly in the 2800–
3500 cm

 

–1

 

 interval (of the order of hundreds of wave-
numbers), which corresponds to the internal valence
vibrations of this ion [4], may originate both from
strong anharmonicity and from orientational disorder
on the ammonium sublattices. The considerable anhar-
monicity of these modes is also indicated by the inten-
sities of the broad, double-phonon bands near 2500 and
3700 cm

 

–1

 

, which grow with temperature.
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vibrations and (d) the ammonium sublattice phonon vibration.
                   
The second spectral region studied by us (8–
650 cm–1 in Fig. 3) includes internal vibrational modes
of the ScF6 molecular ions and lattice vibrations. The
octahedral site symmetry in the cubic phase coincides
with the free-ion symmetry; thus the selection rules
also coincide: the Raman-active free-ion vibration fre-
quencies are ν1(A1g) = 498 cm–1, ν2(Eg) = 390 cm–1, and
ν5(F2g) = 230 cm–1 (the frequencies and notation were
taken from [4]). The frequencies obtained for the cubic
phase are 510, 385, and 240 cm–1 (values contained for
360 K), which indicates weak distortion of the ions by
the lattice. At the same time, the lines are strongly
broadened. For comparison, Fig. 3 also shows an unpo-
larized room-temperature spectrum of the isomorphous
cubic phase of Rb2KScF6; one readily sees that the half-
widths of the corresponding spectral lines in the crystal
under study are a few times larger.

According to the selection rules for the cubic phase
(see [5] for a comprehensive analysis), its Raman spec-
trum should contain one lattice-phonon line corre-
sponding to the translational vibration of one of the
ammonium sublattices (with Td local ion symmetry).
This line can be identified with the weak, strongly
broadened band peaking near 150 cm–1 (360 K). The
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      20
          

shift of its frequency compared to the spectrum of
Rb2KScF6 correlates well with the change in the ion
mass. Moreover, one also observes a broad wing of the
central peak, which is evidently associated with the
strong disorder in the cubic-phase structure.

Lowering the temperature down to the transition
point to the monoclinic phase brings about consider-
able changes in this part of the spectrum. The widths of
all lines decrease strongly, which is accompanied by an
increase in their frequency (Fig. 4). A new line, seen
clearly in Fig. 3, appears against the background of the
low-frequency wing.

All these changes occur in a jump, within a 1–2 K
interval, with no further modification of the spectrum
being observed within the region of existence of the
monoclinic phase. This correlates well with the first-
order nature of this phase transition, although no
noticeable hysteresis effects were revealed.

The strong broadening of the lines corresponding to

the internal vibrations of the  ions and to the
(NH)4II sublattice vibration in the cubic phase implies
that they are also disordered. It is apparently the heavier

 ions that also primarily govern the nature of the

ScF6
3+

ScF6
3+
01
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broad low-frequency wing. The strong narrowing and
the spectral-line shift to a higher frequency support the
conjecture that the transition from the cubic to the mon-
oclinic phase is associated with the ordering processes

while the main ordering structural unit is the 
ions and, therefore, their internal modes are the most

strongly modified. The ordering of the  sublattice
makes the potential relief of the structure as a whole
more pronounced, and, as a result, the ammonium
group vibrations are also modified, although to a lesser
extent, whereas the internal vibrations of the ammo-
nium ions remain strongly broadened. The extremely
strong broadening of these modes makes it difficult to
determine which of the ammonium sublattices is more
disordered, however, the substantial change in the
parameters of the lattice-phonon line at 150 cm–1 sug-
gests that the (NH)4II sublattice plays no less a part than
the (NH)4I sublattice in this transition. Judging from the
appreciable widths of the internal vibrations of both
ammonium sublattices, these sublattices also remain
disordered in the monoclinic phase and their ordering
may turn out to be a dominant factor in the mechanisms
of lower temperature phase transitions.

ScF6
3+

ScF6
3+
PH
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Abstract—The spectrum of plasma oscillations and the frequency of the dielectric relaxation of electrons in
a quasi-one-dimensional ring are calculated. The plasmon spectrum is revealed to be equidistant. It is shown
that, in contrast to the three-dimensional case, the dielectric relaxation is dispersive and, therefore, the distri-
bution of carriers in quasi-one-dimensional rings can be studied by means of dielectric relaxation spectroscopy.
© 2001 MAIK “Nauka/Interperiodica”.
The advancements made in the technology of quasi-
one-dimensional rings [1, 2] have opened up fresh
opportunities for the study and use of mesoscopic con-
ductive systems. It should be noted that most of the
investigations of such objects have been devoted to
quantum phenomena (see, for example, [3, 4]). How-
ever, in [5–8], attention was drawn to the interesting
classical properties of quasi-one-dimensional rings. In
particular, it was shown that they possess electrody-
namic nonlinearity not associated with the nonlinear
properties of the material from which the rings are
made but with their geometric configuration (geometric
nonlinearity).

In the present paper, plasma properties of a quasi-
one-dimensional ring are studied in the limiting cases
of high and low frequencies corresponding to plasma
oscillations and dielectric relaxation, respectively.

Let us consider a quasi-one-dimensional flat ring of
radius R and width d ! R. The potential V(r, ζ, ϕ, t) of
the self-consistent field produced by the oscillating
electrons in the ring is described by Poisson’s equation,

(1)

where (r, ζ, ϕ) are the cylindrical coordinates whose
origin is at the center of the ring and ∆(r – R) is similar
to a delta function: it is equal to 1/d within a narrow
interval (R – d/2, R + d/2) and to zero outside of this
interval. The linear charge density in the ring ρ(ϕ, t)
satisfies the continuity equation

(2)

∂2V

r2∂
---------

1
r
--- V∂

r∂
------ ∂2V

ζ2∂
---------

1

r2
----∂2V

ϕ2∂
---------+ + +

=  –4πρ ϕ t,( )δ ζ( )∆ r R–( ),

ρ∂
t∂

------
1
R
--- J∂

ϕ∂
------+ 0,=
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where the current in the ring J(ϕ, t) is

(3)

Here, N is the number of electrons in the ring and
v(ϕ, t) is the velocity of the electrons in the self-consis-
tent field.

1. For high frequencies (ωτ @ 1, where τ is the mean
free time), the velocity v(ϕ, t) satisfies the equation of
motion

(4)

This equation assumes no collisions to occur over the
period of plasma oscillations.

Taking the temporal Fourier transform and eliminat-
ing the variables ρ, J, and v  yields an equation for the
Fourier component (r, ζ, ϕ, ω):

(5)

We perform Hankel transformation with respect to r
and Fourier transformation over ζ and ϕ:

(6)

By substituting Eq. (6) into Eq. (5), we can find

(k, q, ω). Taking the inverse Hankel and Fourier

J
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transforms and assuming that r = R and ζ = 0, we obtain
a dispersion relation for the plasmons in the form

(7)

where Qν(x) is a Legendre function of the second kind.
Taking into account the behavior of this function at
x  1 + 0 [9], we obtain the following formula for the
plasmon spectrum in the quasi-one-dimensional ring
(R @ d):

(8)

It follows from Eq. (8) that the plasmon spectrum is
equidistant. At d  0, the frequency diverges, which
is typical of one-dimensional systems (as is known, this
is also the case with a long thin rod); for this reason, it
is necessary to introduce a small, but finite, width of the
quasi-one-dimensional ring.

At R ~ 10–4 cm, d ~ 10–5 cm, m ~ 0.1me, and N ~ 103

(which corresponds to a two-dimensional electron con-
centration ns ~ 1011 cm–2), we have ω1 ~ 1012 s–1 for the
fundamental plasmon frequency.

2. For low frequencies (ωτ ! 1), Eq. (4) is replaced
by an equation for viscous motion,

(9)

where µ = eτ/m is the electron mobility.
Carrying out the transformations as above, the

dielectric-relaxation frequency is found to be

(10)

It follows from Eq. (8) and Eq. (10) that, in the case of
the quasi-one-dimensional ring, the dielectric-relax-
ation frequency ωc at ωτ ! 1 is connected to the fre-
quency of plasma oscillations ωn at ωτ @ 1 through the
same formula as that in the bulk material:

(11)
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n2eNµ
πR3
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d
---.ln=

ωc ωn
2τ .=
PH
This means that we have an infinite spectrum of
relaxation times (frequencies) instead of one Maxwell
relaxation time. The physical meaning of this situation
is obvious: an arbitrary initial deviation of the concen-
tration of carriers in the ring from a homogeneous dis-
tribution can be expanded in terms of the eigenfunc-
tions of the ring (Bessel functions), and different spatial
(Bessel) harmonics will correspond to different relax-
ation times. The relaxation frequency increases as n2

with increasing harmonic mode number n. Thus, in
contrast to the three-dimensional case, the dielectric
relaxation is dispersive. Hence, the distribution of car-
riers in rings can be studied by means of dielectric-
relaxation spectroscopy.
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Abstract—The percolation process in a two-dimensional inhomogeneous lattice is studied by the Monte Carlo
method. The inhomogeneous lattice is simulated by a random distribution of inhomogeneities differing in size
and number. The influence of inhomogeneities on the parameters (critical concentration, average number of
sites in finite clusters, percolation probability, critical exponents, and fractal dimension of an infinite cluster)
characterizing the percolation in the system is analyzed. It is demonstrated that all these parameters essentially
depend on the linear size of inhomogeneities and their relative area. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Percolation processes were first considered by
Broadbent and Hammersley [1]. These processes can
occur in different physical systems. The percolation
model was successfully applied to the description of
disordered systems (for example, porous media) and
related phenomena. Among these are rock fracture,
fragmentation [2] and gelation [3, 4], conduction in a
random resistance grating [5] and strongly inhomoge-
neous media [6], and propagation of forest fires [7, 8]
and epidemics [9, 10]. This approach made it possible
to describe the electronic properties of doped semicon-
ductors [11].

Relying on the percolation theory, Kopelman et al.
[12, 13] developed a cluster formalism for describing
the electronic excitation energy transfer in inhomoge-
neous systems. This model is based on mathematical
functions, such as the percolation probability P∞ and
the average number IAV of sites in a cluster. The depen-
dence of these quantities on the concentration C of sites
through which the energy migrates is determined by the
scaling relationships [14]

(1)

(2)

IAV C/Cc 1–∝ γ– ,

P∞ C/Cc 1– β,∝
1063-7834/01/4312- $21.00 © 22313
where Cc is the critical concentration of sites and β and
γ are the critical exponents, which depend only on the
space dimension. Investigations into the transfer of
electronic excitation energy in mixed molecular crys-
tals [15, 16] and solid solutions of organic compounds
in low-molecular vitrifying solvents [17] have demon-
strated that the critical exponents determined experi-
mentally coincide with those obtained within the perco-
lation theory for two-dimensional and three-dimen-
sional spaces, respectively (see table). However, recent
studies [18–20] of similar processes in porous matrices
revealed a discrepancy between the experimental and
theoretical critical exponents. Saha et al. [21] also
noted that the matrix affects the topology of the energy
transfer. In [18–20, 22], this effect was explained in
terms of the inhomogeneous properties of porous
glasses used as matrices. A microscopic inhomogeneity
of porous glass brings about a change in the effective
topology of the space in which percolation processes
occur. In turn, this can affect the formation and growth
of clusters from incorporated molecules.

In this work, we performed the Monte Carlo com-
puter simulation of the percolation process on a square
lattice with inhomogeneities differing in size and rela-
tive area in order to elucidate the possible effect of
these inhomogeneities on the critical concentration Cc,
the average number IAV of sites in a cluster, the percola-
Critical exponents for mixed molecular crystals and solid solutions of organic compounds

Critical
exponents

Percolation theory Isotopically 
mixed molecular 

crystals

Chemically 
mixed molecular 

crystals

Solid solution
of benzaldehyde 

in ethanol

Ethanol solution
of benzaldehyde
in porous glass2D 3D

β 0.14 0.41 0.13 0.13 0.41 0.25

γ 2.1 1.6 2.1 2.09 1.7 1.95
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tion probability P∞, and the fractal dimension df of an
infinite cluster.

2. COMPUTATIONAL TECHNIQUE

We will solve the site percolation problem, because
it is the most important from the viewpoint of energy
migration in heterogeneous systems. Let us consider a
lattice formed by a set of sites and bonds. It is assumed
that C is the fraction of sites painted black in a random
manner (the sampling was performed by the Monte
Carlo method). Any two nearest-neighbor black sites
are considered to be connected to each other. An aggre-
gate of black sites connected to one another either
directly or through chains of connected black sites is
referred to as a cluster. Within the cluster formalism,
the dynamics of the initiation of percolation with an
increase in C is as follows. At C = 0, black clusters are
absent in the system. At C ! 1, black clusters consist of
a small number of sites: single sites, pairs, triads, etc.
However, as the percolation threshold is approached,
particular clusters merge together and their average size
increases. The average number of sites in finite clusters
is defined by the expression

(3)

where im is the number of clusters containing m sites.
The analytical dependence of IAV on the fraction C is
unknown. Numerical calculations showed that, at
C  Cc – 0, the quantity IAV goes to infinity [see rela-
tionship (1)]. At C = Cc, an infinite cluster extending
over the whole space arises for the first time. The con-
centration Cc at which an infinite cluster of black sites
is formed corresponds to the percolation threshold.
According to [23, 24], the percolation probability is
defined as the ratio between the number of sites form-
ing an infinite cluster and the total number of sites in the
lattice. In practice, we deal with systems of a finite size.
In the numerical simulation, the number of sites con-
tained in the maximum cluster (mmax) is calculated and
the percolation probability is estimated from the
formula

(4)

where L is the linear size of the lattice. Extensive simu-
lation and theoretical considerations show that, near
C  Cc + 0, the percolation probability decreases as
the power law (2).

All the results presented in this work were obtained
from simulations of the percolation process on a 200 ×
200 lattice. Despite the currently available methods of
computer reconstruction of Vycor porous glasses (see,
for example, [25]), the inhomogeneous system was ini-

IAV

imm2

m

∑
imm

m

∑
-------------------,=

Pmax

mmax

L L×
-------------,=
PH
tially simulated by introducing square inhomogeneities
of a specified size into the lattice, as was done by
Bujan-Nunez et al. [26]. For this purpose, a new lattice
with a cell size equal to the linear size of inhomogene-
ities was constructed on the primary lattice. In the
course of Monte Carlo simulation, some of the cells in
the new lattice were chosen as inhomogeneities and all
the primary lattice sites lying within the chosen inho-
mogeneities were eliminated from consideration. Note
that the computer experiments were performed with
inhomogeneous lattice configurations for which the
percolation could occur in two mutually perpendicular
directions simultaneously. Figure 1 displays variants of
the model matrices with inhomogeneities differing in
linear size and relative area.

3. RESULTS AND DISCUSSION

First and foremost, we analyzed how the inhomoge-
neity of the matrix affects the critical concentration. In
each case, the value of Cc was determined by two meth-
ods. According to Hoshen et al. [27], the critical concen-
tration can be determined from the position of the max-
imum in the dependence of the reduced average number

 of sites in clusters on the site concentration C:

(5)

A similar dependence for a clear lattice is depicted in
Fig. 2. Note that, in this case, the accuracy of determin-
ing the critical concentration is not very high. As can be
seen from Fig. 2, the dependence obtained by averaging
over 200 realizations exhibits a rather smeared maxi-
mum, even though the concentration in the course of
the experiment was changed with the step ∆C = 0.001.
For this reason, the critical concentration for each real-
ization was taken as the concentration corresponding to
the onset of the percolation between opposite sides of
the lattice. This approach made it possible to determine
the average critical concentration and the frequency of
occurrence of a particular critical concentration during
the simulation of the percolation in the system. Figure 3
displays a histogram that allows one to judge the prob-
ability of an infinite cluster forming at a given concen-
tration of black sites. The critical concentration deter-
mined from these data agrees closely with the value
obtained using other methods for a square lattice [7, 11,
14, 24]. The introduction of inhomogeneities into the
lattice considerably affects the critical concentration:
its value increases substantially (Fig. 4). The strongest
effect is observed for the smallest inhomogeneities. The
increase in the critical concentration in the inhomoge-
neous matrix can be explained in the following way. In
a homogeneous lattice, the shortest path between any
two points is a straight line (without regard for the lat-
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Sobs = 10%

l0 = 1 l = 5 l0 = 20

Sobs = 20%

l0 = 1 l = 5 l0 = 20

Sobs = 38%

l0 = 5 l0 = 20

Fig. 1. Variants of matrices with inhomogeneities differing in linear size and relative area.

l0 = 1
tice structure on minimum scales). In an inhomoge-
neous matrix, the shortest path can substantially deviate
from a straight line. It is clear that the larger the number
of inhomogeneities (or the larger the relative area of
inhomogeneities) in the matrix, the longer the shortest
path between any two points. Upon introduction of
inhomogeneities into the lattice, the total number of
accessible sites decreases, whereas the number of black
sites required for connecting any two points in the sys-
SICS OF THE SOLID STATE      Vol. 43      No. 12      20
tem increases. Consequently, the critical concentration
in the inhomogeneous matrix should increase. Recall
that, in this case, the critical concentration is equal to
the ratio of the number of black sites (this number cor-
responds to the onset of percolation) to the total number
of sites in the system. This effect becomes less pro-
nounced with an increase in the linear size of inhomo-
geneities, because, at the same relative area, the larger-
sized inhomogeneities turn out to be localized in certain
01
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lattice regions. As a result, part of the matrix behaves as
a homogeneous lattice. The larger the linear size of
inhomogeneities, the greater the fraction of the homo-
geneous part.

As is known, the behavior of different quantities in
the vicinity of the percolation threshold is adequately
described by the critical exponents. The critical expo-
nents depend only on the space dimension [14]. How-
ever, for each space dimension, there exists a great
number of different problems. According to modern
concepts, the critical exponents for all problems in a
space of the same dimension are identical to one
another. The physical reasons for the universality of
critical exponents likely lie in the fact that the expo-
nents are determined by the structure of clusters in the
vicinity of the percolation threshold. In this case, the
geometric properties of clusters play the dominant role,
because they manifest themselves at large distances (of
the order of the correlation radius). These distances in
the vicinity of the percolation threshold are consider-
ably larger than the lattice spacing (in the case of lattice
problems). Therefore, the cluster geometry does not
depend on the type of lattice used in solving a particular
problem. Moreover, a particular problem can be speci-
fied not on a periodic lattice but on sites randomly
arranged in space; this circumstance will not affect the
structure of large-sized clusters. However, the cluster
geometry is substantially affected by the space dimen-
sion. For these reasons, the critical exponents depend
on the dimension of a particular problem rather than on
its type.

Therefore, unlike the percolation thresholds, which
depend on the type of problem involved, the critical
exponents exhibit a certain universality. This leads us to
an important conclusion: if the results of a physical
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experiment are treated within the percolation theory
and the microscopic structure is not quite clear, it is
necessary, first of all, to compare the critical exponents
with the theory, because they depend only on the space
dimension.

The dependence of the average number of sites in a
cluster on the reduced concentration C/Cc of occupied
sites is plotted on the log–log scale in Fig. 5. As is
clearly seen, this dependence over a wide range of con-
centrations is well described by the power law pre-
dicted by formula (1). The deviation from the power
dependence near the critical concentration is caused by
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the finite sizes of the lattice. In fact, as follows from for-
mula (1), this quantity should increase to infinity at the
critical point, which, in principle, is impossible in sys-
tems of a finite size. The critical exponent γ determined
from this dependence coincides with the value obtained
by the same method in [27] and is slightly less than the
exponents derived from other techniques [14]. Figure 6
displays the dependences of the critical exponent γ
(determined in a similar manner) on the linear size of
inhomogeneities at different values of their relative
areas. It can be seen that the critical exponent for inho-
mogeneities with l0 = 1 coincides with the exponent for
the homogeneous lattice. As the linear size increases,
the critical exponent first increases (to l0 = 10) and then
decreases. An increase in the relative area of inhomoge-
neities in the matrix leads to an increase in the critical
exponent γ. The introduction of inhomogeneities into
the lattice brings about separation of sites belonging to
the same cluster. The critical exponent γ characterizes
the cluster growth with an increase in the concentration.
The larger the size of inhomogeneities and the larger
the relative inhomogeneity area, the higher the concen-
tration at which sites begin to coalesce into clusters and
small-sized clusters merge into large-sized clusters. To
state this differently, an increase in the average cluster
size with an increase in the concentration is more pro-
nounced than that in the system with an homogeneous
matrix; in fact, this corresponds to an increase in the
critical exponent γ. It is worth noting that all the lattices
studied are characterized by a linear dependence simi-
lar to that depicted in Fig. 5. The observed decrease in
the exponent γ for matrices with inhomogeneities of
size l0 = 20 can be explained by the finite sizes of the
lattices. As can be seen from Fig. 1, an increase in the
inhomogeneity size brings about the transformation of
the inhomogeneous matrix into the matrix with a spa-
tially confined structure. This is especially pronounced
for lattices with the maximum relative inhomogeneity
area used in the computer experiment. Numerical sim-
ulation revealed that, for matrices at l0 = 20 and Sobs =
38%, an increase in the lattice size to 400 × 400 is
accompanied by an increase in the critical exponent γ
to 2.94 (for a 200 × 200 lattice, γ = 2.50). Note that an
increase in the inhomogeneity size to 40 results in a fur-
ther decrease in the exponent γ.

A more intricate situation arises with dependence of
the percolation probability on the concentration of
occupied sites. According to formula (2), this depen-
dence on the log–log scale should be represented by a
straight line whose slope corresponds to the critical
exponent β. Unfortunately, the treatment of our results
for the square lattice demonstrated that this dependence
does not exhibit a linear behavior with the appropriate
slope over the entire range of concentrations (C > Cc).
Furthermore, analysis of the available data on this prob-
lem also showed some disagreement regarding the
range of applicability of relationship (2). In particular,
Hoshen et al. [28] observed the scaling dependence (2)
for a 4000 × 4000 triangular lattice only in the (C – Cc)
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      20
concentration range from 10–4 to 2 × 10–2. At higher
concentrations, the dependence deviated from linear
behavior. In our simulation, the results obtained in this
concentration range strongly depend on the finite sizes
of the lattice, as is the case with the average number of
sites in clusters. Moreover, Hoshen et al. [27] observed
a linear dependence for a 400 × 400 square lattice in the
concentration range from 2 × 10–3 to 7 × 10–2, even
though the slope corresponded to β = 0.19. Therefore,
relationship (2) is valid only in a very narrow concen-
tration range in the vicinity of the percolation thresh-
old. However, reasoning from the results of investiga-
tions into the transfer of electronic excitation energy in

1

0
–3.0

logIAV

log |1 – C/Cc|

2

3

4

C/Cc = 0.94 (C = 0.55)

γ = 2.1

–2.5 –2.0 –1.5 –1.0 –0.5 0

Fig. 5. Dependence of logIAV on  for the

square lattice.

1 C/Cc–log

2.0
0

γ

l0
5 10 15 20

2.2

2.4

2.6

2.8

3.0
Sobs = 10%
Sobs = 20%
Sobs = 30%
Sobs = 38%

Fig. 6. Dependences of the critical exponent γ on the linear
inhomogeneity size l0 in lattices at different relative inho-
mogeneity areas Sobs.
01



2318 BAGNICH, KONASH
mixed molecular crystals, Kopelman [13] made the
inference that the concentration range of applicability
of the critical exponents for energy migration is consid-
erably wider than that for any other critical phenome-
non in physics. From the viewpoint of the energy trans-
fer, it is important that the dependence of the probabil-
ity of trapping an exciton (which is governed by the
percolation probability in the range of concentrations
higher than the critical concentration [12]) on the
reduced concentration C/Cc of activator molecules in
the inhomogeneous matrix is steeper than that in the
homogeneous matrix [20]. In terms of the critical expo-
nents, this corresponds to a decrease in the exponent β.

Figure 7 depicts the dependences of the percolation
probability on the reduced concentration for the lattices
with different inhomogeneity fractions. It is clearly
seen that the introduction of inhomogeneities into the
lattice is attended by a more rapid increase in the per-
colation probability with an increase in the concentra-
tion. The observed effect becomes less pronounced
with an increase in the linear size of inhomogeneities.
However, our investigations showed that, in any case,
the presence of inhomogeneities in the matrix leads to
a change in this dependence.

The fractal dimension df is a principal characteristic
of the infinite cluster at the critical point. Mandelbrot
[29, 30] was the first to introduce the notion of a fractal.
Subsequently, he specified the tentative concept [31]
and defined the fractal as a structure consisting of parts
that, in some sense, are similar to a unity [32]. How-
ever, until presently, there has been no rigorous and
complete definition of fractals. An infinite cluster at the
critical point exhibits a statistical self-similarity [24].
The fractal geometry of the infinite cluster and its sta-
tistical self-similarity are interrelated. This interrelation
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Fig. 7. Dependences of Pmax on the reduced concentration
C/Cc for lattices with inhomogeneities of the linear size l0 = 1
at different inhomogeneity fractions in the matrix.
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leads to the following relationship between the mass
and the linear size of the cluster:

(6)

Stanley [33] and Sokolov [34] showed that the frac-
tal dimension in virtually all physical problems is
defined as the exponent in relationship (6). At present,
the fractal dimension is determined using different
methods [35]. One of them is the embedded square
method proposed in [24]. In essence, this method is as
follows. In the object under study, a central point is cho-
sen in a random manner and a series of embedded
squares are arranged around this point. The number of
sites in each square is counted, and the dependence of
the object mass (the number of sites) on the linear
square size is constructed. This dependence is used for
calculating the fractal dimension. Forrest and Witten
[36] proposed to bring the central point into coinci-
dence with the center of gyration of the studied object
in order to improve the reproducibility of the results. In
our work, we also determined the fractal dimension of
the infinite cluster by using the embedded square
method. To accomplish this, among all the possible
realizations, we chose clusters whose centers of gyra-
tion were close to the center of the studied lattice and
whose radii of gyration [24] were close to L/2. It should
be noted that the introduction of this criterion did not
affect the statistics obtained for the critical concentra-
tion (Fig. 3). The results presented below were obtained
by averaging over 300 different clusters. For lattices
with large-sized inhomogeneities, additional averaging
was performed over 20 configurations of inhomogene-
ity distribution in these lattices.

The dependence of the cluster mass (the number of
sites) on the square size is plotted on the log–log scale
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Fig. 8. Dependence of logM on logl for the square lattice
free of inhomogeneities.
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in Fig. 8. It is easy to see that the dependence exhibits
a linear behavior beginning with square sizes of the
order of 20 × 20. The fractal dimension determined
from the slope of this dependence is equal to 1.8. This
value is slightly less than the exact dimension df =
91/48, which was calculated in [7, 14] in terms of the
scaling theory. This difference can arise for two rea-
sons. First, as was shown in [35], the fractal dimension
determined by the embedded square method is underes-
timated compared to that obtained by other methods.
Second, the underestimated value of df can be dictated
by finite sizes of the lattice. It is obvious that the perco-
lation cluster on a finite lattice is only a part of an infi-
nite cluster on the infinite lattice for which the exact
dimension was deduced. Consequently, particular sites
that are not involved in the percolation cluster on the
lattice of size L, in actual fact, belong to the infinite
cluster, because they are connected to it through bonds
lying outside the fragment under consideration. In any
case, our prime concern is with the influence of the
inhomogeneous properties of the lattice on the fractal
dimension rather than in its absolute value. This influ-
ence is illustrated by the data shown in Fig. 9. As can be
seen, no change in the fractal dimension is observed for
lattices with the linear inhomogeneity size l0 = 1. The
value of df decreases for lattices with larger-sized inho-
mogeneities only in the case when their fraction in the
system is sufficiently high. The effect is enhanced with
an increase in the inhomogeneity size. This behavior
can easily be explained with due regard for the fact that
the percolation cluster is a strongly porous object.
Therefore, when the size of inhomogeneities and their
relative area are small, the probability that inhomoge-
neities occupy these pores is high. As the size of inho-
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Fig. 9. Dependence of the fractal dimension of a percolation
cluster on the inhomogeneity fraction Sobs in the matrix at
different linear sizes l0 of inhomogeneities.
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mogeneities and their fraction in the matrix increase,
they begin to affect the geometry of the percolation
cluster and this effect manifests itself in a decrease in its
fractal dimension.

4. CONCLUSION

Thus, the results obtained in this work confirm the
assumption made earlier (on the basis of available data
on the energy transfer in disordered systems, specifi-
cally, in matrices with different structures on the micro-
scopic level) that the inhomogeneous properties of
matrices substantially affect the percolation process.
The introduction of inhomogeneities into the lattice
results primarily in an increase in the critical concentra-
tion. This effect is enhanced with an increase in the
fraction of inhomogeneities in the matrix and a
decrease in their linear size. The incorporation of inho-
mogeneities into the lattice affects both the concentra-
tion dependence of the mean number of sites in clusters
and the percolation probability. In turn, this leads to a
change in the critical exponents and the fractal dimen-
sion of the percolation cluster. These changes become
more pronounced with an increase in the size of inho-
mogeneities and their relative area. Since the properties
of the percolation cluster are also characterized by
other dimensions, it can be assumed that the inhomoge-
neous properties of the lattices under investigation
affect these dimensions.
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Abstract—Impact ionization of exciton states in epitaxial GaN films and GaN/AlGaN quantum-well structures
was studied. The study was done using an optical method based on the observation of exciton photolumines-
cence quenching under application of an electric field. It was established that electron scattering on impurities
dominates over that from acoustic phonons in electron relaxation in energy and momentum. The mean free path
of the hot electrons was estimated. The hot-electron mean free path in GaN/AlGaN quantum wells was found
to be an order of magnitude larger than that in epitaxial GaN films, which is due to the electron scattering prob-
ability being lower in the two-dimensional case. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The nitrides of Group III elements, which are wide-
bandgap semiconductor materials, have been recently
receiving considerable attention as having potential
application for modern optoelectronic devices operat-
ing in the visible and UV region [1]. However, many of
the fundamental properties of these materials have not
been studied in large enough detail. In particular, the
effect of an external electric field on the optical proper-
ties of nitrides has thus far been poorly investigated.
Until very recently, only a few publications had dealt
with the exciton states of the Group-III nitrides in an
external electric field [2, 3]. At the same time, such
studies appear to be of considerable importance. The
radiative recombination via exciton states occurring in
these materials coexists in optoelectronic devices with
an electric current flowing through the structure.
Accordingly, proper understanding of the processes
involved in the interaction of charged carriers with
excitons in these materials is essential to the physics of
semiconductor devices.

This study deals with the phenomenon of impact
ionization (or delocalization) of excitons in gallium
nitride. The study made use of the optical method based
on observation of the quenching of exciton photolumi-
nescence through the application of an electric field.
The quenching occurs as a result of the destruction of
excitons or exciton–impurity centers by hot carriers,
whose energy is increased to the corresponding level by
the electric field. The number of such high-energy elec-
trons depends substantially on the mechanisms respon-
sible for the electron relaxation in energy and quasi-
momentum. Therefore, studying the quenching effect
1063-7834/01/4312- $21.00 © 2321
as a function of the applied electric field may yield
information on these mechanisms. The optical method
has an advantage in that it permits investigation of the
impact ionization of weakly bound states and of states
with different ionization energies. The studies were
performed on epitaxial GaN films grown by various
techniques (ELOG–MOVPE, MOVPE, and MBE). The
impact ionization phenomenon was also investigated
on MBE-grown GaN/AlGaN quantum-well structures.
It was established that electron scattering from impuri-
ties in our samples dominates over that from acoustic
phonons in hot electron relaxation.

2. EXPERIMENT

The samples studied were nominally undoped epi-
taxial n-type GaN films grown on sapphire substrates.
The ELOG sample used in the present investigation
was grown by metal-organic vapor-phase epitaxy
(MOVPE) in two stages at atmospheric pressure [4]. A

mask in the form of a -oriented SixNy grating
with strips 3–5 µm wide and a 10-µm period was
deposited on the surface of a preliminarily grown GaN
film. Next, the growth of the GaN film was resumed and
continued to the level where the mask was completely
buried. The growth of GaN films and GaN/AlGaN
quantum-well structures by molecular-beam epitaxy
(MBE) was effected using solid sources of Group III
elements and ammonia as the source of nitrogen. The
GaN buffer layer 250 Å thick grown at 500°C was
annealed at 900°C, after which an epitaxial GaN layer
was grown at 800°C (the growth procedure is described
in more detail in [5]). The GaN/AlGaN quantum-well
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structures consisted of Al0.09Ga0.91N barriers and GaN
quantum wells a few monolayers thick (1 ML =
2.59 Å).

Aluminum Ohmic contacts representing two paral-
lel strips a few millimeters long and separated by a gap
0.2–0.3 mm wide were deposited on the sample surface
through vacuum evaporation (Fig. 1). The photolumi-

Fig. 1. Schematic of the experiment.
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Fig. 2. Current–voltage characteristics of two samples:
(a) an epitaxial GaN film and (b) a GaN/AlGaN quantum
well 17 MLs wide.
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nescence was excited by the λ = 325-nm line of a
helium–cadmium laser. The laser beam was focused to
a spot approximately 0.5 mm in diameter that com-
pletely overlapped the electrode gap. The sample was
cooled by immersing it in liquid helium. A dc voltage
was applied across the structure, with a current of a few
milliampers flowing through the sample, which could
heat the sample. To ensure the best cooling conditions,
liquid helium was pumped out by a fore pump and the
measurements were carried out at a temperature (T =
2 K) below the λ point, i.e., the temperature below
which liquid helium becomes superfluid. In this case,
helium wets the sample well and there is no vapor layer
between the sample and the cooling agent. If liquid
helium is used as a cooling agent above the λ point (T =
4.2 K), the vapor layer present hampers heat removal
from the sample noticeably, so that even a small current
may bring about substantial heating of the sample. It
was established in the experiments that the sample
heating is very small and does not affect the photolumi-
nescence spectra noticeably. In particular, the quench-
ing of the GaN/AlGaN quantum-well exciton photolu-
minescence was studied at two temperatures, T = 2 and
4.2 K. The plots of the luminescence intensity vs.
applied voltage obtained at the two temperatures are
practically identical, which implies that there is indeed
a field effect.

The current flowing through the sample under
applied voltage was measured, and I–V characteristics
of the samples were constructed. Two of them are dis-
played in Fig. 2. The I–V characteristics of some sam-
ples were sufficiently linear. Other samples, however,
exhibited a nonlinear section at a low bias, which
straightened out at higher voltages. On the whole, we
can consider the electric field in a sample to be uniform
to a considerable extent, at least at not-too-low
voltages.

3. RESULTS

The intense line of the exciton bound to a neutral
donor in the region of the An = 1 exciton resonance was
dominant in the luminescence spectra of our samples.
The substantially weaker free-exciton line (FE) was
also clearly seen in the spectra. The spectra of some
samples exhibited two bound-exciton (BE) lines with
different binding energies (BE1 and BE2). The BE1
line can be assigned to the exciton bound to a neutral
donor, while we associate the BE2 line with residual
magnesium doping [5], which occurs in some samples
because of the specific features of the preparation tech-
nology employed [6, 7]. Figure 3 displays typical GaN
exciton photoluminescence spectra.

When an external voltage was applied to the struc-
ture, quenching of the exciton photoluminescence was
observed to occur. The behavior of the photolumines-
cence under an electric field depends on the binding
energy of the corresponding exciton state, as can be
YSICS OF THE SOLID STATE      Vol. 43      No. 12      2001
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seen from Fig. 4, which plots the emission line intensity
vs. electric field.

One readily sees that the line with the lowest bind-
ing energy (BE in Fig. 4a and BE1 in Fig. 4b) suffers
the strongest quenching. Simultaneously, at relatively
low fields, one observes an intensity enhancement of
the emission line corresponding to the state with a
higher binding energy. In a stronger electric field, the
intensity enhancement is replaced by saturation (for the
FE line) or quenching (for the BE2 line).

This effect can be interpreted within the impact ion-
ization model. Hot electrons with a kinetic energy close
to the binding energy of the exciton bound to an impu-
rity center (or close to the free-exciton binding energy)
destroy the exciton state, which entails quenching of
the corresponding emission line. In a relatively weak
electric field, this effect can play a noticeable part only
for states with a low binding energy. Dissociation of
complexes with the lowest binding energy increases the
concentration of free excitons, which can undergo radi-
ative recombination or become trapped by deeper cen-
ters, thus contributing to the intensity enhancement of
the corresponding emission lines. In stronger electric
fields, electrons can acquire an energy large enough for
them to be capable of breaking up complexes with
higher binding energies and the intensities of the corre-
sponding emission lines decrease. Actually, in the
region of the electric fields covered, we observed only
the quenching of bound-exciton lines with different
binding energies (from 4.5 to 12 meV). As for the free-
exciton line, we observed only its saturation. To destroy
such a strongly bound electron–hole state (its binding
energy is approximately 28 meV), much higher electric
fields are needed.

A similar effect was also seen to occur in the
GaN/AlGaN quantum-well structures. The photolumi-
nescence spectra of these structures consist of a strong
localized-exciton line and of a fairly weak phonon rep-
lica of it. The exciton localization energy, as estimated
from the Stokes shift of the luminescence line, is
approximately 20 meV [8]. Application of an external
electric field to the sample was observed to result in
substantial photoluminescence quenching (Fig. 5),
which is due, as in the case of GaN epitaxial films, to
exciton delocalization by the field-accelerated elec-
trons.

4. ANALYSIS OF THE EXPERIMENTAL DATA

The number of excitons N in a system obeys the
equation

(1)

where G is the generation rate. The decay probability
(1/τ) of an exciton (or an exciton–impurity complex)
being in electric field E is determined by the probability

dN
dt
------- –

N
τ
---- G,+=
PHYSICS OF THE SOLID STATE      Vol. 43      No. 12      200
of impact ionization W(E) and the probability of decay
(1/τ0) due to other radiative and nonradiative processes:

(2)

Because the luminescence intensity I(E) ~ N(E), we
obtain the following expression for its steady-state
value:

(3)

The impact ionization probability W(E) is given by the
integral

(4)

1
τ
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τ0
---- W E( ).+=
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Fig. 4. Relative exciton emission line intensity vs. applied
electric field. (a) MOVPE sample with the only bound-exci-
ton line with a binding energy εb = 6.5 meV and (b) MBE
sample with two bound-exciton lines, with binding energies
εb = 4.5 and 12 meV.
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where We(ε) is the probability of ionization of one exci-
ton, ρ(ε) is the density of states of the conduction-band
electrons, and f(ε) is the electron energy distribution
function. The integration is performed over all energies
in excess of the ionization energy εi; We(ε) and ρ(ε) are
power-law functions of energy, while f(ε) depends
exponentially on ε at high energies. The energies signif-
icant to the integral in Eq. (4) are those close to the ion-
ization threshold εi, and the magnitude of the integral is
exponentially small. The exponent determines the
dependence of W on the electric field E. We will not
concern ourselves with the preexponential factor,
which is justified in cases where the exponent is large
in absolute value. The small value of the exponential is
associated with the small number of electrons with
energies high enough to ionize the bound state, and our
problem consists in calculating this number and, thus,
determining the total ionization probability. A rigorous
mathematical treatment of the problem is given in [9];
here, we shall restrict ourselves to an analysis applica-
ble to both three- and two-dimensional semiconduc-
tors.

The electron momentum distribution function fp
obeys the kinetic equation

(5)

where p is the momentum of an electron, εp = p2/2m is
its energy, and m is its effective mass, q is the wave vec-
tor of a phonon, ωq is its frequency (ωq = sq, s is the
sound velocity), Nq = exp("ωq/kT – 1)–1 is the Planckian
distribution function for phonons, τim(εp) is the relax-
ation time due to electron elastic scattering from lattice
defects and impurities, and Cq is the electron–phonon
coupling constant. The electron energy distribution
function f(ε) is obtained from f(p) by averaging over
all directions of the momentum p. We take into account
only the interaction with acoustic or piezoacoustic
phonons, because the optical-phonon frequencies in
GaN are much higher than the exciton-state ionization
energies. As follows from the laws of energy and
momentum conservation in electron–phonon colli-
sions, only sufficiently high phonon energies are signif-
icant; therefore, the number of phonons at low temper-
atures is exponentially small, Nq ≈ exp(–"ωq/kT), and
one can neglect this value compared to unity. The elec-
tron relaxation associated with the exciton ionization
process is disregarded in Eq. (5), because it is insignif-
icant compared to the relaxation rate due to the interac-
tion of electrons with phonons and impurities.

We transfer now all terms in Eq. (5) to the right-
hand side, apply a minus sign, and transform the differ-

eE
∂ f p

∂p
---------

1
τ im εp( )
----------------- f p f εp( )–( ) 2π

"
------ Cq

2

q

∑++

× f p Nq 1+( ) f p "q– Nq–( )[ δ εp εp "q–– "ωq–( )
+ f pNq f p "q+ Nq 1+( )–( )δ εp εp "q+– "ωq+( ) ] 0,=
PH
ential equation (5) into an integral one:

(6)

In the elastic approximation, the electron relaxation
time due to phonons can be written as

(7)

The electron mean free path is given by the relations

(8)

We assume the electric field to be sufficiently strong,

(9)

As follows from Eq. (6), the electron distribution func-
tion at high energies is determined by that at medium
thermal energies. We assume that at these energies
there exist efficient momentum and energy relaxation
mechanisms, such that the distribution function is an
equilibrium one. Applying the saddle-point method to
the integration of Eq. (6), we obtain

(10)

where Ap depends more weakly than exponentially on
the momentum and θ is the angle between the momen-
tum and the electric field. The function given by
Eq. (10) is needle-shaped, extended along the electric-
field direction, and falls off rapidly in other directions.
Averaging this function over the angles yields the
Townsend–Shockley ionization relation:

(11)

The case of electron scattering dominated by elastic
processes, τim(εp) ! τph(εp), requires special consider-
ation. It was shown that the electric-field dependence
follows different patterns for different electric fields [9].
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0.5
are met, the Townsend–Shockley dependence is valid:

(12)

For kT !  ! eE , the distribution
function is a solution to the hot-electron problem,
which yields the Davydov–Wolf ionization relation:

(13)

(14)

When the electric field increases, one may expect a
crossover from Eq. (12) to relation (13). Note that the
Davydov–Wolf relation was not observed experimen-
tally. The reason for this probably lies in the fact that an
increase in the electric field can give rise to tunneling
ionization in addition to impact ionization [10].

Let us analyze the experimental data using the
Townsend–Shockley relation, Eq. (12), which we shall
recast in the form W(E) = W0exp(–E0/E), with E0 being
a characteristic parameter, and see what information
can be extracted from this analysis.

Figure 6 presents the dependence of the GaN photo-
luminescence intensity on applied electric field plotted
as ln[I/(I0 – I)] vs. E–1. The experimental points in Fig. 6
are fitted by a straight line for a certain value of param-
eter E0. The values of E0 obtained using this procedure
for the GaN samples studied are given in the table.
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In pure crystals, the dominant mechanism of elec-
tron relaxation at low temperatures should be scattering
from piezoacoustic phonons. Estimates made using
Eqs. (7), (8), and (11) and the parameters for GaN [11]
yield E0 = 160 V/cm for εi = 6 meV. This is substantially
less than the value E0 = 600 V/cm obtained in our
experiment. Furthermore, in the case of electron scat-
tering from piezoacoustic phonons, the parameter E0
should be proportional to the square root of the ioniza-
tion energy. However, the data obtained for the MBE
samples suggest that E0 ~ εi. These two facts show that
the electron relaxation occurs through their scattering
not only from piezoacoustic phonons but also from
impurity centers, which plays an essential part in our
samples. Using Eq. (12), the effective mean free path of
hot electrons can be estimated in this case from the
expression

(15)

The figures obtained in this estimation are listed in the
last column of the table. First, the ELOG and MBE
samples are seen to yield similar values of the parame-
ter leff. Second, we can compare these results with the

leff 3εi /eE0.=

Experimentally determined values of the parameter E0 and of
the electron mean free path for different GaN samples

Sample, line εi, meV E0, V/cm leff , 10–5 cm

ELOG, line BE1 6.5 600 2

MBE, line BE1 4.5 400 2

MBE, line BE2 12.0 1000 2

MOVPE, line BE 6.0 1500 0.7
01
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data obtained for CdS crystals [12]. In pure CdS, leff =
10–4 cm for εi = 4 meV. For CdS crystals of a poorer
quality, the corresponding value decreased to 5 ×
10−6 cm. Thus, the mean free path leff = 2 × 10–5 cm
obtained in our experiments on three-dimensional GaN
samples is not much shorter than that measured in the
best cadmium sulfide crystals.

Now, we analyze the data obtained for the
GaN/AlGaN quantum-well structures. Figure 7 pre-
sents the electric-field dependences of the lumines-
cence intensity for two samples with quantum wells
(QW) 17 and 8 monolayers wide, respectively. The
quenching effect in the wider QW is seen to be much
stronger. The main reason for this is that the exciton
lifetime decreases substantially with decreasing QW
width [13]. According to Eq. (3), a decrease in τ0 results
in a reduced effect of W(E) on the luminescence
intensity.
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Fig. 7. Luminescence intensity of a GaN/AlGaN quantum
well vs. applied electric field plotted for samples with dif-
ferent quantum-well widths.
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The linear section of the ln[I/(I0 – I)] vs. E–1 plot
yields for the E0 parameter values of 350 and 480 V/cm
for the QWs 17 and 8 MLs wide, respectively. Accept-
ing εi = 20 meV for the exciton localization energy, the
mean free paths of hot electrons are obtained to be leff =
1 × 10–4cm for the 17-ML QW and 0.7 × 10–4 cm for the
8-ML QW. These values are substantially larger than
those for the bulk GaN. When calculating the electron
mean free path in a quantum well, one should take into
account that, in a scattering event, the electron momen-
tum cannot change in the direction perpendicular to the
well plane by more than "/d, where d is the well thick-
ness. Therefore, in the two-dimensional case, the elec-
tron scattering probability decreases and the mean free

paths increase by a factor of d/". The presence
of this factor accounts for the observed difference
between the mean free paths of hot electrons in GaN
films and GaN/AlGaN quantum wells.

A study was also made of the temperature depen-
dence of the impact ionization coefficient in QWs at
temperatures ranging from 2 to 60 K. The quenching
effect decreases with increasing temperature (Fig. 8).
This can be explained, as with the dependence on the
QW width, as being due to the decreased exciton life-
time with increasing temperature. At the same time,
analysis of the experimental data using the Townsend–
Shockley relation for W(E) did not reveal any tempera-
ture dependence of the parameter E0, which agrees with
theory. Thus, the decrease in the impact ionization
effect observed in this experiment is completely due to
the variation of τ0 with temperature.

To sum up, we note that, in contrast to a perfect crys-
tal lattice, where electron scattering from piezoacoustic
phonons is the dominant mechanism of electron
momentum relaxation, this relaxation in undoped GaN
epitaxial layers grown by the MOVPE, ELOG, and
MBE methods is the result of scattering from impuri-
ties. This is evidence of a certain imperfection in the
presently available GaN samples. The mean free paths
of hot electrons in GaN/AlGaN quantum wells were
found to be an order of magnitude larger than those in
GaN films, because the electron scattering probability
is lower in the two-dimensional case.
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Abstract—The energy of dynamic image forces acting on a charged particle moving normally to the semicon-
ductor–vacuum interface or in a vacuum gap between two semiconductors is calculated in the framework of the
perturbation theory. The dielectric approach allows for spatial and time dispersions of the dielectric functions
of electrodes. It is shown that the quantum-mechanical character of the screening should be taken into account.
In particular, the dynamic corrections to the static image forces appear to be less than those in the quasi-classical
model. The perturbation method used in this work is applicable in wider ranges of external electrostatic fields
and particle energies. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The term “image forces” refers to the polarization
forces arising in the vicinity of an interface between
different media. Within the dielectric formalism [1–4],
these forces can be treated in general terms with due
regard for the spatial (k) and time (ω) dispersions of the
permittivity εi(k, ω) [5]. In the classical model, this
approach is the most general because it allows for qua-
siparticle excitations in the problem under consider-
ation (for example, in the case of metals [6]). However,
a number of quantum-mechanical effects, in particular,
the dissipation associated with the generation of real
plasmons [7, 8], excitations of an electron–hole
medium [8], or recoil phenomena [7], are beyond the
scope of the dielectric approach. It seems likely that, in
this case, the Hamiltonian formalism [7] is more ade-
quate.

When calculating the image forces or the potential
energy W, the main problem is adequate description of
the interface as an inhomogeneity of the system and the
reflection of quasiparticles from the interface [4, 9, 10].
The two simplest approximations, namely, the infinite
barrier model (i.e., the abrupt interface model) and the
model of specular reflection of quasiparticles, allow
one to solve analytically the problem in the static limit,
so that the final expression for W involves the bulk
dielectric functions εi(k, ω = 0). The other approxima-
tions make allowance for the fact that the interface and
scattering of quasiparticles by it can be slightly diffuse;
however, in the majority of cases, they lead to numeri-
cal results that insignificantly differ for the quantities of
interest [11].

At the same time, the infinite barrier and specular
reflection models make it possible to investigate a more
interesting case of moving charges [3, 7, 8, 11–24]. It
was found that, for a metal–vacuum interface, the spa-
1063-7834/01/4312- $21.00 © 22328
tial dispersion of the permittivity (screening) [1, 2, 11,
15], quantum-mechanical recoil [7], and finiteness of
the velocity of a projectile [11]—individually and in
combination—result in saturation of the W energy at
the interface and elimination of the classical diver-
gence.

The static theory of image forces for an abrupt vac-
uum–semiconductor interface was developed in the
specular reflection approximation in our earlier works
[1, 2, 16]. The theory generalized to trilayer structures
with due regard for dynamic corrections will be pre-
sented below.

Huang et al. [17] also studied the image forces in
metal–vacuum–semiconductor structures. However,
these authors considered only the static case in the
framework of the Inkson semiclassical model [18] for
the dielectric function of a semiconductor. In the
present work, we prove that, when solving problems of
this type, it is necessary to account for the quantum-
mechanical nature of charge carriers in screening
media. Within the dielectric approach, this can be done,
for example, by introducing the appropriate corrections
into the dielectric function of a semiconductor [19]. It
should be noted that, owing to the large permittivities of
metals, quantum corrections in the case of metal elec-
trodes turn out to be insignificant.

In this work, we restricted our consideration to the
case of a vacuum region, even though the image poten-
tial profile W(r) (where r is the coordinate reckoned
from the interface) could also be obtained in the bulk of
the semiconductor (r < 0) within the same approach [1,
16]. Generally speaking, the behavior of W inside an
electrode is important, for example, in forming surface
barriers, and can affect the resulting tunneling currents.
However, the screening properties of semiconductors
(and, especially, metals) are such that the image poten-
001 MAIK “Nauka/Interperiodica”
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tial profile inside a semiconductor reaches a bulk value
extremely quickly. As was shown earlier in [17], even
the replacement of the exact profile W(r < 0) by this
value weakly affects the tunneling characteristics. The
vacuum portion of the dependence W(r > 0) depends, to
a considerably larger measure, on the parameters of the
problem and makes the main contribution to the surface
barrier. Hereafter, we will not dwell on this problem,
because the investigation of tunneling in semiconductor
structures is beyond the scope of the present work. Note
also that knowledge of the W(r > 0) profiles near the
semiconductor surface is necessary not only for the
understanding of electron tunneling but also for ade-
quate description of the charged-particle scattering by
this surface and analysis of a number of problems in
chemical kinetics.

2. THEORY

Let us consider the configuration represented sche-
matically in Fig. 1: a plane-parallel trilayer sandwich
with interelectrode spacing 2l and charge q moving nor-
mally to the interface along the z axis according to the
law z0(t)(where t is the time). The temporal dispersion
of the permittivities εi is taken into account in all three
media, whereas the spatial dispersion is allowed for
only in the outer layers (i = 1 and 3).

The potential energy W of image forces, i.e., the
energy of the external charge q in the field with poten-
tial Vind of the polarization charges induced in the elec-
trodes, is defined by the relationship

(1)

In the infinite barrier model with specular reflection
from the interface, the appearance of Vind is associated
with the formation of the charged planes (x, y, z = ),
which coincide with the interfaces [11]. In this case, we
completely ignore the “spill” of electrons into the gap
between electrodes [10], band bending effects [20], and
the possible formation of surface states in the vicinity
of the semiconductor [21]. Thus, the outer electrodes
are considered homogeneous up to the corresponding
interface.

For an arbitrary law z0(t) of the charge motion in the
gap, the general equation for W[z0(t)] was derived in
our earlier works [3, 14]. For nonrelativistic velocities
v  ! c (where c is the velocity of light), we developed
the general technique of calculating the dynamic (non-
adiabatic) corrections ∆W[z0(t)] to the energy Wst[z0(t)]
of static image forces in terms of the perturbation the-
ory; i.e., it is assumed that the corrections are small
compared to the energy of static image forces. Cer-
tainly, the expansions used can appear incorrect, for
example, when the contributions from all the instants
t ' < t are accumulated for a sufficiently long trajectory
of a particle. Specifically, if the spatial dispersion is
absent, then, at long distances from the interface, the

W z0 t( )( ) 1
2
---qV ind x y 0= = z0 t( ) t, ,[ ] .=

l+−
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energy W of the charge, which is emitted from a metal
into vacuum at a constant rate [11] or under uniform
acceleration [22], involves oscillating terms compara-
ble in magnitude to the corresponding asymptotic val-
ues in the classical model:

(2)

These terms arise from the excitation of real surface
plasmons [11]. However, the inclusion of the plasmon
damping leads to a substantial decrease in the oscilla-
tion amplitude [23], which appreciably extends the
range of applicability of the technique. In any case, the
validity of the perturbation solution can be a posteriori
verified after calculating ∆W and Wst.

We will restrict our analysis to the consideration of
the nondissipative permittivities εi, which, in this case,
are the even functions of ω. It is self-evident that we
cannot lay claim to the description of the absorption or
generation of real plasmons or polar phonons (these
processes can be adequately described within the
Hamiltonian formalism [7]). Consequently, ∆W takes
only real values. The numerical calculations given
below demonstrate that, for our purposes, it is sufficient
to introduce only the first dynamic correction.

For simplicity, let us consider a vacuum gap with
ε2 ≡ 1. In the given approximation, the energy of static
image forces and the dynamic correction have the form [3]

(3)

Wcl
met z0 t( )[ ] q2
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q2
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Fig. 1. Charge q moving according to the law z0(t) across an
interlayer of width 2l in the trilayer system. The temporal
dispersion of the permittivities εi is taken into account for
all three layers, and the spatial dispersion is allowed only
for the outer layers (i = 1, 3).
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(4)

Hereafter, in order to simplify the form of equations,
z(t) will be written instead of z0(t); dots and primes
indicate the differentiation with respect to time and fre-
quency, respectively; k|| = |k|||; the wave vector k|| is the
component (aligned parallel to the interface) of the
three-dimensional wave vector k = (k||, kz);

(5)

and

(6)

are the so-called surface dielectric functions in the
specular reflection model.

3. PERMITTIVITY OF SEMICONDUCTORS

The permittivity εL(k, ω) for isotropic metals was
obtained by Lindhard [24] in the framework of the elec-
tron gas model with inclusion of the quantum interfer-
ence of electron waves at the Fermi surface. The well-
known difference between the static limit εL(k, ω = 0)
and the Thomas–Fermi semiclassical screening func-
tion

(7)

resides in the presence of a weak quantum-mechanical
singularity at k = 2kF (where k is the Thomas–Fermi
wave vector and kF is the Fermi momentum of electrons
in the metal) in εL(k, 0). This singularity leads, in par-
ticular, to Friedel oscillations of the electron density
and Kohn anomalies in the phonon spectra. At the same
time, there is another, frequently overlooked, conse-
quence of the quantum nature of the charge screening:

∆W z t( )[ ]

=  
q2

4
----- k ||

2k ||l–( )exp

1 α1 k || 0,( )α3 k || 0,( ) 4k ||l–( )exp–[ ] 2
---------------------------------------------------------------------------------------d

0

∞

∫

× k || ż̇ k ||ż
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PH
the short-wavelength asymptotics of εL(k, 0) has
the form

(8)

The fact that expression (8) tends to unity more rapidly
compared to the screening function (7) results in a
change in the screening of the Coulomb field at short
distances.

In intrinsic semiconductors, potential charge carri-
ers are bound and the band gap determines their screen-
ing ability. A large number of theoretical investigations
of the permittivity εsemi(k, 0) in semiconductors have
been performed in the random phase approximation
[25] within the nearly free electron gas model with due
regard for the reflection of electron waves from the
Bragg planes [26]. Subsequently, Sharma and Auluck
[27] complemented the Penn model [26] and intro-
duced the temporal dispersion. On the other hand, there
exists another approach proposed by Resta [28], who
solved the linearized variant of the Thomas–Fermi
equation for a semiconductor treated as a medium with
a finite length of partial screening. All the expressions
obtained for the permittivity εsemi(k, ω) in the afore-
mentioned theories are either nonanalytic or cumber-
some, even though they were not derived from first
principles. It should be noted that the dielectric
approach based on the quasi-free electron gas model
disregards the possible interband transitions of core (d
or f ) electrons, which are of crucial importance, for
example, in Cu [8]. At the same time, the fast electron
probing of semiconductors, such as Si, revealed well-
defined plasma oscillations of valence electrons [8, 29].
In any case, the appropriate description of an electron
gas (liquid) in the optical range of frequencies ω
remains open to question [13].

Inkson [30] proposed a simple interpolation formula
for the permittivity εsemi(k, ω), which satisfies the set of
basic requirements for the true dielectric function of an
intrinsic semiconductor; that is,

(9)

where ωp is the plasma frequency of a hypothetical free
electron gas with a density identical to that of valence
electrons. In the case of strong ionicity (ε0  ∞),
expression (9) tends to the hydrodynamic limit that
describes conducting media. It is worth noting that
expression (9), to within the designations, is often
used for describing the dielectric function of polar sol-
vents [9].

Unfortunately, despite all of these advantages, the
function εI(k, ω) does not meet the quantum-mechani-
cal limit (8), even though bound electrons at |k|  ∞
cease to differ from free electrons. In order to improve
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the behavior of εI(k, ω) at large k, we propose the fol-
lowing relationship:

(10)

which, at ω = 0, coincides with the Schulze–Unger
static function [16, 19]. Hereafter, function (10) will be
also termed the Schulze–Unger function. Both the
εI(k, ω) and εSU(k, ω) functions will be used for calcu-
lating the energy of image forces near the semiconduc-
tor–vacuum interface.

4. THE SEMICONDUCTOR–VACUUM 
INTERFACE

First, we consider a semiconductor–vacuum inter-
face. The equations for this case can be easily obtained
from Eqs. (3) and (4) for the vacuum gap by introduc-
ing the distance (t) = l ± z(t) to the left (right) inter-
face and passing to the limit l  ∞. By virtue of the
exponential multipliers, all the terms including αi and

 for the distant electrode vanish in the equations.
Consequently, in this section, we can omit all the indi-
ces indicating a particular interface. As a result, the
equations become considerably simpler, that is,

(11)

(12)

Now, we analyze the two simplest and, at the same
time, most important cases: the motion of a charge with
a constant velocity v  at a right angle to the interface and
the uniformly accelerated motion of a particle under the
action of an external field F. All the questions regarding
self-consistency problems remain beyond the scope of
the present paper.

Within the Inkson approximation (9), we can obtain
the far and near asymptotics of Eqs. (11) and (12). Spe-
cifically, for the uniformly accelerated motion, when

κr  ! 1, we have

(13)
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It is evident that the static contribution (13) is identical
for the uniform and uniformly accelerated motions. At

κr  @ 1, we obtain

(15)

(16)

Here,

(17)

m is the mass of a particle, and γ = 1.7810… is the Euler
constant. From the aforesaid, it follows that the energy
of static image forces and the dynamic correction reach
saturation at the interface due to the spatial dispersion
of the permittivity. On the other hand, the usual asymp-
totics of classical static image forces takes place at long
distances. As the ionicity increases, the picture
becomes similar to the metallic limit described by the
hydrodynamic model [3, 12].

It should be noted that the signs of dynamic correc-
tions for the uniformly accelerated motion are different
at long and short distances. The general analysis of dif-
ferent laws of particle motion is given in [3].

The striking, at first glance, similarity between the
screening properties (and, hence, the image forces) of
media with free and bound charge carriers is in contra-
diction to the classical viewpoint, which has been wide-
spread to date (see, for example, [31]). According to
this viewpoint, bulk screening in an intrinsic semicon-
ductor brings about a decrease in the effective screened
charge by a factor of ε0 (where ε0 is a constant) at any
distance. On the other hand, in the quasi-classical
approximation [17, 18, 30], the screened potential has
the form

(18)

where R is the distance to the charge; from whence the
classical formula Vcl(R) = q/ε0R follows at R @ κ –1.
However, in the immediate vicinity of the charge, we

∆W r( )
q3κ2Fε0 ε0 1–( )

8mωp
2

---------------------------------------– 3
2ε0
-------- 1–





≈

+ ε0 1–( )
ε0 1+

ε
--------------

κr

ε0 ε0 1–( )
--------------------------- 5ε0

2 14
3
------ε0–+log

– 3
ε0

2 1–( ) 5ε0 3–( )
ε0

---------------------------------------- 1

ε0

--------




.tan
1–

–

ε0

ε0 1–
-------------

W st r( )
q2α0

4r
----------- 1

1
κr
-----

ε0 ε0 1–( )
ε0 1+

---------------------------– ,–≈

∆W r( )
q3α0

2F

4mωp
2 r2

-------------------.≈

α0

ε0 1–
ε0 1+
--------------,=

V semicl R( ) q
ε0R
-------- 1 ε0 1–( )+ κR

ε0

ε0 1–
-------------– 

 exp ,=
1



2332 VOŒTENKO, GABOVICH
have the potential Vsemicl(R  0) ≈ q/R; i.e., it coin-
cides with the Thomas–Fermi near asymptotics. This is
not surprising because εsemi(k  ∞, ω = 0) tends to
unity rather than to ε0. At the same time, at high ionic-
ity, the Thomas–Fermi dependence VTF(R) =
(q/R)exp(–κR) for the screening by free electrons can
be obtained from the semiclassical formula (18) for
semiconductors.

Deng et al. [32] studied the impurity states in the
GaAs–Ga1 – xAlxAs spherical quantum dots and took
into account the spatial dispersion of ε in the coordinate
representation. They used the Hermanson model [33]
for the dielectric function:

(19)

where R0 is the screening length. It is easy to see that,

in this case, the asymptotics of the potential  = q/ε(R)
about the point charge is identical to that of the poten-
tial Vsemicl(R) [relationship (18)].

Returning to our problem, we note that all the quan-
titative estimates based on formulas (13)–(16) can be
confirmed by numerical calculations, which are not
presented here for brevity.

As a model semiconductor, we chose Si with the fol-
lowing parameters: ε0 = 11.94, κ = 2.08 × 108 cm–1, kF =
1.81 × 108 cm–1, and ωp = 2.6 × 1016 s–1. The value of κ
corresponds to the hypothetical value when all valence
electrons participate in the screening [16]. In what fol-
lows, a free electron with the corresponding values of q
and m will be treated as a moving particle. Figure 2
shows the profiles of the static image energy Wst in vac-
uum near the interface with Si in the framework of the

ε 1– R( ) ε0
1– 1 ε0

1––( ) R/R0–( ),exp+=

Ṽ

–10
0

W
st
, e

V

ζ = κ r
2 4

1
2
3
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–6

–4

–2

0

Si : ε0 = 11.94
κ = 2.08 × 108 cm–1

Fig. 2. Profiles of Wst(r) near the Si–vacuum interface
within the (1) Schulze–Unger, (2) Inkson, and (3) classical
models.
PH
Inkson and Schulze–Unger models and in the frame-
work of the classical model represented by the formula

(20)

A drastic discrepancy between the curves plotted with
and without regard for the dependence εsemi(κ, ω) is
observed over the entire range of distances important in
the physics and chemistry of surfaces. It becomes clear
that the quantum effects in the screening [relationship
(8)] substantially affect the dependence Wst(r) in the
vicinity of the interface: the nonphysical feature
[dWst /dr]r → 0 vanishes and the Schulze–Unger profile is
more flattened than the Inkson profile. For example, the

surface energy (0) is nearly one-half the energy

(0), which indicates that the Inkson model leads to
overestimation of this energy.

The inclusion of the quantum effects is even more
important in calculating the dynamic corrections ∆W(r)
and the corresponding total profiles of the image energy
W(r). The point is that the dynamic correction in our
case is appreciably smaller than that in the Inkson
model; thus, the range of applicability of our computa-
tional scheme [3, 12, 14] is considerably wider. This
inference is illustrated in Fig. 3 with the profiles of
Wst(r) and W(r) for the considered laws of charge
motion and different models. In the case of uniform
motion, we have the velocity v  = (2E0/m)1/2, where E0

is the kinetic energy of the particle. Consequently,
allowance made for the quantum character of the
screening in ε(κ, ω) renders our approach valid virtu-
ally over the entire real range of external fields and
energies of emitted (incident) particles, whereas the
Inkson model results in an excess dynamic renormal-
ization of W(r). Moreover, since the effective parameter

of expansion is /  ∝  |∆W/Wst | (where ω∗  is the
characteristic frequency), the image forces are more
strongly affected by the behavior of ε(k, ω) at low fre-
quencies ω than by the behavior of ε(k, ω) at frequen-
cies corresponding to the optical range. Therefore, the
interband transitions that cannot be described by the
semiempirical interpolation formulas (9) and (10) are
virtually immaterial [8, 13, 29].

However, this analysis holds true for intrinsic semi-
conductors with high frequencies ωp. If the semicon-
ductor is extrinsic with a low density of charge carriers,
the corresponding frequency ωpi can be several orders
of magnitude lower than the frequency ωp for valence
electrons. In this case, the dynamic effects can play a
significant role and the computational scheme used will
be valid only at low fields and velocities [3].

Wcl
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5. THE VACUUM GAP 
BETWEEN SEMICONDUCTORS

Similar calculations were carried out for the energy
of image forces in the vacuum gap between two semi-
conductors (Fig. 1). We will restrict our consideration
to the symmetric structure with ε1(k, ω) = ε3(k, ω),
because, otherwise, the theory would involve additional
parameters that do not lead to any conceptually new
effects.

Within the Inkson model, we succeeded in deriving
asymptotic approximations of the profiles over the

entire gap thickness for thin layers with  ! 1δ
ε0

ε0 1–
-------------

–10

W
st
, W

, e
V
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, e
V
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2

(b)
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Fig. 3. Energies W of dynamic image forces and their static
components Wst  within different models of the Si semicon-
ductor for (a) uniformly accelerated motion of a charge in
the external field F = 5 × 108 V/cm and (b) uniform motion
of a charge with the kinetic energy E0 = 10 eV.
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(where δ ≡ κl). In particular,

(21)

and, for example, for the uniformly accelerated motion,

(22)

where ξ = z/l (so that –1 ≤ ξ ≤ 1) and f(ε0) is a certain
cumbersome smooth function.

All the inferences made in the previous section
about the necessity of accounting for the quantum
nature of the screening refer equally to the gap between
the semiconductors. The profiles of Wst(ξ) for different
models of ε(k, ω) are displayed in Fig. 4. It is easy to
see that, as the interlayer width 2l decreases, a strong
difference between the Inkson and Schulze–Unger
dependences is observed not only near the interface but
across the whole width of the gap as well. In turn, this
considerably affects the tunneling characteristics of
similar junctions.

Finally, let us compare the energies W of dynamic
image forces and their static components Wst for differ-
ent models of ε(k, ω) and the uniformly accelerated
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Fig. 4. Dependences Wst(z) in the vacuum gap between Si
layers within the (1) Schulze–Unger, (2) Inkson, and
(3) classical models.
1



2334 VOŒTENKO, GABOVICH
(Fig. 5) and uniform (Fig. 6) laws of motion. As before,
the nonadiabatic corrections in the framework of the
more precise Schulze–Unger approximation appear to
be sufficiently small, whereas the Inkson approxima-
tion ceases to work well at strong fields F or high
kinetic energies of the particle.

What has been said regarding extrinsic semiconduc-
tors also remains true. In this respect, we note that the
experimental results obtained by Guéret et al. [34] can
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Fig. 5. Energies W of dynamic image forces and their static
components Wst  in the vacuum gap between Si layers (2l =
5 Å) for uniformly accelerated motion of a charge in differ-
ent external fields F within the (a) Inkson and (b) Schulze–
Unger models.
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Fig. 6. The same as in Fig. 5 for uniform motion of a charge
at different kinetic energies E0.
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PH
be considered evidence that the dynamic corrections
are not small. On the other hand, these results can be a
consequence of a decrease in the tunneling barrier
(associated with the static image forces) at small l [see
expression (21)]. Therefore, it remains unclear whether
the dynamic character of the image forces actually
manifests itself in the experimental data described in
[34].

Thus, the calculations performed demonstrate that
the quantum character of the screening in semiconduc-
tors at large k should be adequately taken into account
in order to calculate correctly the energy of the dynamic
image forces near the semiconductor–vacuum inter-
face. The dynamic corrections turned out to be suffi-
ciently small at reasonable velocities of external charge
motion. This justifies the use of the perturbation tech-
nique developed in our earlier works. It was found that
the image energies W(z) near the vacuum–metal and
vacuum–intrinsic semiconductor interfaces do not dif-
fer qualitatively. In this case, it is of importance that the
screening parameters κ and ωp for semiconductors are
of the same order of magnitude as those for metals [29].
Therefore, unlike the opinion of Krupski [35], the range
of applicability of the specular reflection and infinite
barrier model for semiconductors is identical to that for
metals.

Although the dynamic corrections ∆W are not cru-
cial for intrinsic semiconductors, they can appear to be
important for the analysis of interfaces with plasma-
like media at low densities of charge carriers. In this
case, the ωp frequencies are low and the dynamic con-
tribution is not a small correction. Therefore, methods
more perfect [7] than the perturbation approach should
be applied. It is quite possible that the dynamic phe-
nomena were actually observed in semiconductor het-
erostructures [34].
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Abstract—The interaction of electrons with acoustic phonons is considered in a nanotube with chiral symme-
try placed in a magnetic field parallel to the nanotube axis. It is shown that in such a system, the electronic
energy spectrum is not invariant under electron wavevector reversal and, therefore, the electron–phonon inter-
action is different for identical phonons with oppositely directed wavevectors. This phenomenon leads to the
occurrence of an electromotive force during spatially homogeneous heating of an electron gas and to the pres-
ence of a term quadratic in current in the current–voltage characteristic of a nanotube. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Considerable recent attention of theorists and exper-
imentalists has been focused on low-dimensional struc-
tures in which the invariance under space inversion and
the fundamental invariance under time reversal are
simultaneously broken. Such systems are of interest,
because the electronic energy spectrum in them is
asymmetric:

(1)

where k is the wavevector of an electron. Due to this
asymmetry, the electronic properties of these structures
become different in opposite directions, which leads to
many fundamentally new physical phenomena [1–11].
For example, the electrons interact differently with any
elementary excitations (photons, acoustic phonons,
etc.) having oppositely directed wavevectors [5–7]. In
turn, the asymmetry of the electron–phonon interaction
gives rise to new thermodynamic effects; these effects
were predicted theoretically in [8–10] and observed
experimentally quite recently in two-dimensional struc-
tures with an asymmetric quantizing potential [11]. It is
also of interest to study systems that are different from
two-dimensional structures, i.e., systems in which the
electronic energy spectrum exhibits asymmetry of
Eq. (1) and the phenomena associated with this asym-
metry take place. One of such low-dimensional solid-
state systems may be a nanotube with chiral symmetry.

The physical properties of nanotubes with chiral
symmetry (which are approximately a nanometer in
diameter and in which the atomic arrangement has heli-
cal symmetry) became the subject of intense investiga-
tions after the first report on the fabrication of carbon
nanotubes was published [12]. These are graphite lay-
ers rolled into tubes; the manner of rolling is character-
ized by two crystallographic parameters (n, m) which

ε k( ) ε k–( ),≠
1063-7834/01/4312- $21.00 © 22336
determine the diameter of the nanotube and its chirality
[13–15]. The nanotube has no inversion center because
of the helical symmetry of its crystalline structure. In
the presence of a magnetic field, the invariance under
time reversal is also broken. Therefore, carbon nano-
tubes with chiral symmetry, when placed in a magnetic
field, must exhibit anomalous kinetic effects like those
indicated above. In this paper, we theoretically investi-
gate the effects associated with the specific features of
electron–phonon interaction in such structures.

2. ASYMMETRY OF THE ELECTRONIC ENERGY 
SPECTRUM IN THE PRESENCE 

OF A MAGNETIC FIELD

We use a model [16, 17] in which a nanotube with
chiral symmetry is considered as being composed of
identical atoms (or atomic unit cells) arranged with a
period b along a helical line (figure). It is assumed that
the diameter of the helix is D @ b and its pitch is d ! D;
therefore, the length of one turn of the helix is

where

is the number of atoms on one turn. The nanotube is
placed in a magnetic field H directed along the axis of
the helix. If the magnetic field is fairly weak, it will
affect the magnitude of the wave function of an electron
in an individual atom insignificantly and only the phase
of the wave function will be varied in going from one
atom to another. In this case, in the tight-binding

π2D2 d2+ N0b,=

N0 @ 1
001 MAIK “Nauka/Interperiodica”
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approximation, the Hamiltonian of an electron in the
nanotube is given by

(2)

where |n〉  is the electronic state in which the electron is
near an atom with index n (the atoms are enumerated
along the helical line, n = …, –1, 0, 1, …) and 〈n|*|n〉  =
ε0 is the energy of an electron in an isolated atom. The
matrix elements of the Hamiltonian that determine the
transition amplitude of an electron from atom n to its
four nearest neighbors n ± 1 and n ± N0 have the form

Here, –A(ln, m) is the real overlap integral of the wave
functions of atoms n and m in a zero magnetic field (it
depends on the distance ln, m between these atoms) and
the phase shifts due to the magnetic field are given by

(3)

(4)

where AH(r) is the vector potential of the magnetic field
and e is the magnitude of the electronic charge. Integra-
tion in Eq. (3) is performed over the linear segment con-
necting atoms n and n ± N0 in adjacent turns, and inte-
gration in Eq. (4) is performed over the linear segment
connecting atoms n and n ± 1. Taking the vector poten-
tial in the axially symmetrical gauge

,

we obtain from the general equations (3) and (4)

where

is the number of quanta hc/e in the magnetic flux
through the nanotube cross section.

First, let us consider the case where there are no
phonons in the nanotube and, therefore, the interatomic
distances ln, m are time-independent; that is, ln, n ± 1 = b

*̂ n| 〉 n * n〈 〉 n〈 | n| 〉 n * n 1+〈 〉 n 1+〈 |+(
n

∑=

+ n| 〉 n * n 1–〈 〉 n 1–〈 | n| 〉+ n * n N0+〈 〉

× n N0+〈 | n| 〉+ n * n N0–〈 〉 n N0–〈 | ) ,

n * n 1±〈 〉 A ln n 1±,( ) iϕn 1±( ),exp–=

n * n N0±〈 〉 A ln n N0±,( ) iϕn N0±( ).exp–=

ϕn N0±
e

"c
------ AH r '( ) r ',d

n

n N0±

∫=

ϕn 1±
e

"c
------ AH r '( ) r ',d

n

n 1±

∫=

AH
1
2
--- H r×[ ]=

ϕn N0± 0,=

ϕn 1± 2πν H( )
N0

------------,±=

ν H( ) πD2eH
4ch

------------------=
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and  = d at any instant. In this case, the Hamil-
tonian (2) takes the form

(5)

The eigenfunctions of this Hamiltonian are

(6)

where the probability amplitude of an electron being
near atom n is

(7)

k is the wavenumber of the electron characterizing its
motion along the helical line, N is the total number of
atoms in the nanotube, and the energy of an electron in
the nanotube is

(8)

It follows from Eq. (8) that the energy spectrum of elec-
trons in the nanotube is a periodic function of the mag-
netic field. If the magnetic field is such that

then we have an asymmetric energy spectrum as in
Eq. (1).

Before proceeding to an analysis of the effects asso-
ciated with the asymmetric spectrum in Eq. (1), we
adapt our model to the specific case of carbon nano-
tubes with a weak chirality of the (n, 1) type, where
n @ 1. In such nanotubes, the interatomic distances are
b ≈ d and, hence, for the overlap integrals of the atomic

ln n, N0±

*0
ˆ n| 〉ε0 n〈 | n| 〉– A b( ) iϕn 1+( ) n 1+〈 |exp(

n

∑=

– n| 〉A b( ) iϕn 1–( ) n 1–〈 | n| 〉A d( )–exp n N0+〈 |
– n| 〉A d( ) n N0–〈 | ) .

ψk Cn k( ) n| 〉 ,
n

∑=

Cn k( ) 1

N
-------- inkb( ) iε k( )t/"–[ ] ,expexp=

ε k( ) ε0= 2A b( ) kb 2πν H( )
N0

------------+ 
 cos–

– 2A d( ) N0kb( ).cos

ν H( )
N0

------------ z z 0 1 2 3 …, , , ,=( ),≠

b

dn + N0

n – 1 n n +1

n – N0

Fragment of the nanotube composed of atoms arranged
along a helical line (schematic).
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wave functions, we have A(b) ≈ A(d). Therefore, in our
calculations in what follows, we put

where a ~ 10–8 cm is the characteristic spatial period of
the crystalline structure of the nanotube and A(a) ~ 1 eV
is the typical value of an overlap integral. In what fol-
lows, we restrict our analysis to the case of weak mag-
netic fields for which

(9)

and the electrons are assumed to be in states close to the
minimum of the energy band in Eq. (8) situated at the
point k = 0 in the absence of a magnetic field. Taking the
energy at the minimum as zero, the electronic energy
spectrum in Eq. (8) near this minimum in the presence
of a magnetic field can be written as

(10)

where the shift of the bottom of the conduction band
due to the magnetic field is

and the effective electronic mass equals

3. SPATIAL ASYMMETRY
OF ELECTRON–PHONON INTERACTION

In the nanotube under study, acoustic waves propa-
gating along the helical line are characterized by the
wavenumber q. Let us consider the interaction of elec-
trons with longitudinal acoustic phonons (which cause
the atoms to be displaced from their equilibrium posi-
tions along the helical line) and transverse acoustic
phonons (with atomic displacements perpendicular to
the helical line) in the case of an asymmetric energy
spectrum (1).

In a longitudinal acoustic wave, the coordinate xn of
atom n along the helical line is given by

(11)

where the atomic displacement from the equilibrium
position is

b d a, A b( ) A d( ) A a( ),= = = =

ν H( )
N0

------------ ! 1

εk

"
2 k kH–( )2

2m
---------------------------,=

kH
2π

aN0
3

---------ν H( )–=

m
"

2

2A a( )N0
2a2

---------------------------.=

xn na x̃n,+=

x̃n uql
inqla( )exp iω ql( )– t[ ] ,exp

ql

∑=
PH
ql is the wavenumber of a longitudinal phonon, the
amplitude of atomic displacements is given by

the phonon frequency is

v l is the velocity of the longitudinal acoustic wave, and
M is the atomic mass. We substitute Eq. (11) into the
overlap integrals and, taking into account that the
change in the interatomic distance in the acoustic wave
is much smaller than the crystalline-structure period a,

we expand the overlap integrals of atomic wave func-
tions A(ln, m) in a power series in this small parameter
and obtain up to first-order terms from Eq. (2):

(12)

Here,  is the interaction Hamiltonian between an
electron and a longitudinal phonon with wavenumber
ql, which is given by

(13)

where the matrix elements are

and the deformation-potential constant for the nano-
tube is

The probability of a phonon with ql being absorbed by
electrons is given by the well-known quantum-mechan-
ical relation

(14)

where fBE(q) is the Bose–Einstein distribution function
for a phonon with wavenumber q, fFD(ε) is the Fermi–
Dirac distribution function for an electron with energy

uql

"
2ω ql( )NM
--------------------------

1/2
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ω ql( ) v l ql ,=
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------------------------ ! 1,
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n *ql
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iω ql( )– t[ ] inqla( )expexp=

× iϕn 1+( ) iqla( )exp 1–[ ] ,exp

n *ql
n 1–〈 〉 Ξ /a( )uql

iω ql( )– t[ ] inqla( )expexp=
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f BE ql( )

"
2

-----------------  ψk'〈 |*̂ql ψk| 〉
2

k'

∑
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ε, and  is the matrix element of the elec-
tron–phonon interaction corresponding to the transition
of an electron from state k to state k' due to absorption
of a phonon with ql. Inserting the explicit expressions
(6) and (7) for the wave function and Eq. (13) for the
electron–phonon interaction Hamiltonian into this
matrix element, we obtain

(15)

Substituting Eq. (10) into Eqs. (14) and (15), we find
the longitudinal-phonon absorption probability per unit
time per unit length of the helical line to the first order
in the magnetic-field strength:

(16)

where

(17)

is the probability of phonon absorption in a zero mag-
netic field.

In a similar way, the probability that a longitudinal
phonon with wavenumber ql will be emitted is found
to be

(18)

where

(19)

is the phonon emission probability in a zero magnetic
field.

The interaction of electrons with transverse acoustic
phonons is treated in the same manner as in the case of
longitudinal phonons, the only difference being that
one should take into account the fact that transverse
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phonons change the distance between atoms situated in
different turns of the helix. In a transverse acoustic
wave, the coordinate zn of atom n along the axis of the
helix is given by

(20)

where the atomic displacement from the equilibrium
position is

qt is the wavenumber of a transverse phonon, the ampli-
tude of atomic displacements is given by

the transverse-phonon frequency is

and v t is the velocity of the transverse acoustic wave.
We substitute Eq. (20) into the overlap integrals, and,
taking into account that the change in the interatomic
distance in the acoustic wave is much smaller than the
pitch of the helix,

we expand the overlap integrals of atomic wave func-
tions A(ln, m) in a power series in this small parameter
and obtain up to first-order terms from Eq. (2):

(21)

Here,  is the interaction Hamiltonian between an
electron and a transverse phonon with wavevector qt,
which is given by

(22)

where the matrix elements are
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The probability of a transverse phonon being absorbed
by electrons is

(23)

where the matrix element of the electron–phonon inter-
action, corresponding to the transition of an electron
from state k to state k' due to absorption of a phonon
with qt, is

(24)

Substituting Eq. (10) into Eqs. (23) and (24), we find
the transverse-phonon absorption probability per unit
time per unit length of the helical line to the first order
in the magnetic-field strength:

(25)

where

(26)

is the transverse-phonon absorption probability in a
zero magnetic field.

In a similar way, the transverse-phonon emission
probability is found to be

(27)

where

(28)

is the transverse-phonon emission probability in a zero
magnetic field.

From Eq. (16), (18), (25), and (27), it is immediately
obvious that the electron–phonon interaction is spa-
tially asymmetric: the interaction probabilities between
an electron and identical phonons with oppositely
directed wavevectors are different.
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4. THE OCCURRENCE OF AN ELECTROMOTIVE 
FORCE DURING SPATIALLY HOMOGENEOUS 

HEATING OF AN ELECTRON GAS

Now, we discuss the interaction between the elec-
tron and phonon subsystems during spatially homoge-
neous heating. In this case, the subsystems are in a non-
equilibrium state. The energy distribution of phonons is
described by the Bose–Einstein function

where T is the temperature of the crystal lattice,
whereas the energy distribution of electrons is
described by the Fermi–Dirac function

where Te is the electronic temperature. At Te < T, heat
transfer occurs from the phonon subsystem to the elec-
tronic subsystem and phonons are absorbed by elec-
trons. At Te > T, conversely, heat is transferred from
electrons to the phonon subsystem, which is accompa-
nied by phonon emission. Since the electron–phonon
interaction probability is different for phonons with
oppositely directed wavevectors, the heat transfer is
accompanied by a change in the total momentum of the
electronic subsystem, which gives rise to the occur-
rence of an electromotive force (emf) at Te ≠ T. This
phenomenon is a manifestation of the universal law [7]
stating that an emf is induced in any electronic system
with an asymmetric energy spectrum, as in Eq. (1),
when subjected to an isotropic perturbation. In the case
under consideration, the isotropic perturbation is spa-
tially homogeneous heating.

Now, we consider the relatively low temperatures at
which umklapp scattering due to electron–phonon
interaction is negligible (the wave vectors remain
within the first Brillouin zone). In this case, the average
force exerted on an electron by the phonon subsystem is

(29)

where nL is the electron concentration per unit length of
the helical line. Therefore, the electric field of extrane-
ous forces is

(30)
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and the emf induced in the nanotube is

(31)

where L = Na is the length of the helical line. It follows
from Eqs. (29)–(31) that the emf of interest can be writ-
ten as

(32)

Using Eqs. (16)–(19) and (25)–(28) for the electron–
phonon interaction probabilities, we find that

therefore, the emf given by Eq. (32) is basically due to
the interaction with transverse phonons. We will
neglect the interaction of electrons with longitudinal
phonons in Eq. (32) and substitute this expression into
Eqs. (25)–(28). By transforming the sum over phonon
states into an integral over the phonon wavenumber,
one can obtain from Eq. (32)

(33)

We will treat the electron–phonon interaction as a
quasi-elastic process, which is justified if

and, in addition, we will assume that the electron gas is
highly heated,
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Under these conditions, Eq. (33) takes a simple form,

(34)

The integral in Eq. (34) can be easily expressed as ele-
mentary functions, and we obtain a final expression for
the emf,

(35)

In the case of a degenerate electron gas, we have

and, therefore, the emf in Eq. (35) is a linear function of
temperature:

(36)

If the electron gas is nondegenerate, that is,

then the emf in Eq. (35) varies as the square root of the
temperature:

(37)

For carbon nanotubes of diameter D ~ 10–9 m, magnetic
fields H ~ 104 G, and electronic temperatures Te ~ 102 K,
we obtain from Eq. (37)

5. THE EFFECT OF ASYMMETRIC
ELECTRON–PHONON INTERACTION

ON THE CURRENT–VOLTAGE 
CHARACTERISTIC 

OF THE NANOTUBE

The electronic subsystem can be easily heated with
respect to the crystal lattice, and an emf % can be
induced by Joule heating. Therefore, an electric current
J flowing through a carbon nanotube placed in an exter-
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nal magnetic field will induce an emf %, which will
cause a change in the current–voltage characteristic of
the nanotube. In order to analyze the effect of the elec-
tron–phonon interaction on the current–voltage charac-
teristic, one must derive a relation between J and %.

The energy per unit time, J2R, is transferred from
the power source to the electron subsystem and then to
the crystal lattice through phonon emission. Therefore,
the energy balance equation for the electron and
phonon subsystems has the form

(38)

where R is the electrical resistance of the nanotube.
From the analysis performed above, it follows that the
electrons interact predominantly with transverse
phonons and, therefore, their interaction with longitudi-
nal phonons can be neglected in Eq. (38). Substituting
Eq. (38) into Eqs. (25)–(28) for the electron–trans-
verse-phonon interaction probabilities and transform-
ing the sum over phonon states into an integral over the
phonon wavenumber, we obtain

(39)

It is seen that the integral in Eq. (39) is the same as that
in Eq. (33). Therefore, by combining Eqs. (33) and
(39), one easily obtains the relation between % and J:

(40)

where
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and the emf given by Eq. (40). Therefore, the current–
voltage characteristic U(J) of the nanotube is given by

(41)

It follows from Eq. (41) that, due to the spatial asym-
metry of the electron–phonon interaction, a term qua-
dratic in the current appears in the current–voltage
characteristic. For N0 ≈ 5, nL ~ 104 cm–1, J ~ 10 nA, and
H ~ 105 G, the term quadratic in the current in Eq. (41)
for the voltage is equal to a few tenths of percent of the
ohmic term.

6. CONCLUSIONS

Thus, we have shown that the electronic energy
spectrum of a nanotube with chiral symmetry becomes
asymmetric when the nanotube is placed in a magnetic
field directed along its axis. Due to this asymmetry, the
electrons interact differently with identical phonons
moving in opposite directions. In turn, because of the
spatially asymmetric electron–phonon interaction, the
energy transfer from the electronic subsystem to the
crystal lattice through phonon emission is accompanied
by a change in the electronic-subsystem momentum
and, therefore, an emf is developed. In particular, the
emf can be generated when the electronic subsystem is
heated by passing an electric current through the nano-
tube. The induced emf leads to the appearance of a term
quadratic in current in the current–voltage characteris-
tic of the nanotube, because the electronic-subsystem
heating is independent of the direction of the current.
The value of this quadratic term and the corresponding
rectifying effect in the nanotube are controlled by the
magnetic field; this is promising for the use of nano-
tubes as elements of functional electronics.
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Abstract—The attenuation and velocity of ultrasonic waves (at a frequency of ~4 MHz) along the 〈111〉  and
〈100〉  directions in solid C60 single-crystal samples are measured in the temperature range 100–300 K. The tem-
perature dependences of the complete set of elastic constants for C60 fullerite are determined from the experi-
mental data. It is shown that the specific features in the behavior of the elastic moduli near the orientational
phase transition temperature are associated with different contributions of the relaxation processes to the effec-
tive elastic moduli. The activation volume and deformation potentials for the ground and excited states of the
C60 low-temperature phase are evaluated from the results obtained in this work and the data available in the
literature. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The elastic moduli, thermodynamic potential, spe-
cific heat, Grüneisen constant, and other parameters are
the fundamental characteristics of a solid. The determi-
nation of their magnitudes and temperature depen-
dences is essential to the understanding of the specific
features in the physical properties of solid C60. More-
over, measurement of the elastic constants can serve as
an experimental test of the validity of theories describ-
ing intermolecular interaction in fullerite. At present,
all elastic constants for the face-centered cubic phase of
C60 at room temperature are known [1–3]. However, the
available data on the temperature dependences of the
elastic constants are contradictory. These contradic-
tions can be explained by the fact that the aforemen-
tioned dependences were determined from measure-
ments of only one of the elastic constants. It was found
that anomalies in the temperature dependences of the
elastic moduli of solid C60 are observed in two temper-
ature ranges: near the orientational phase transition
temperature Tc = 260 K and at temperatures in the range
from 100 to 220 K (the frequency-dependent range).
Moreover, the anomalies observed in the elastic moduli
are accompanied by the appearance of the correspond-
ing peaks of the internal friction.

It was shown that the anomalies at Tc are associated
with the phase transition. However, Shi et al. [4]
revealed that the Young’s modulus drastically increases
(by approximately 8%) at Tc, whereas Hoen et al. [5]
observed a “softening” of the Young’s modulus in the
same temperature range. A similar result was obtained
by Schranz et al. [6]. In this respect, interesting results
were obtained in measuring the velocities of both lon-
gitudinal and transverse waves in the megahertz fre-
quency range in compact C60 samples [7, 8]. It is worth
noting that the longitudinal velocity of sound was
found to decrease in the phase transition range, whereas
1063-7834/01/4312- $21.00 © 22344
only a slight change in the slope of the temperature
dependence was observed for the transverse velocity of
sound. In [6], the negative jump in the modulus at Tc
was attributed to an additional inelastic deformation
due to the order parameter relaxation in an elastic field
of the acoustic wave. Yan et al. [9] assumed that the dif-
ference in behavior of the elastic moduli near the orien-
tational phase transition temperature can be associated
with the quality of the C60 crystals used in the experi-
ments, because measurements with polycrystalline
films have revealed that the height of the internal fric-
tion peak and the drop in the Young’s modulus in the
range of Tc increase with a decrease in the grain size.

The anomalies in the behavior of the elastic proper-
ties and the sound attenuation at temperatures below Tc
(the internal friction peak and the corresponding step in
the temperature dependence of the modulus, whose
temperatures depend on the frequency of measure-
ments [4–7]) are rather consistently described within
the concept of orientational relaxation of molecules.
This can be explained by the fact that the rotational
degrees of freedom of C60 molecules persist below the
orientational phase transition temperature [10]. As a
result of thermal excitation, molecules in the low-tem-
perature phase can occur in different energy states—the
so-called pentagonal (ground) and hexagonal (excited)
orientational configurations [11]. This situation was
described in the framework of a phenomenological
model of double-well orientational potential [11–14],
according to which molecules can be in two energy
states that differ from each other by the quantity ∆U ≈
12 meV and are separated by the potential barrier U0 ≈
0.3 eV. The deformation field of an acoustic wave stim-
ulates transitions between these energy states. In turn,
this causes an additional crystal deformation and leads
001 MAIK “Nauka/Interperiodica”
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to the attenuation Q–1 and a change in the effective elas-
tic modulus ∆C/C of the relaxation type, that is,

(1)

(2)

where τ = τ0exp(U0/kT) is the effective relaxation time,
ω is the circular frequency, and R is the relaxation
depth. The activation parameters (U0 ≈ 0.3 eV and τ0 ~
10–13–10–14 s) determined from acoustic measurements
[4, 6, 7] are in agreement with the results obtained by
other techniques [10, 12, 15, 16].

Note that the temperature dependence of the effec-
tive relaxation time τ in the framework of the double-
well potential model is represented by a more complex
relationship,

(3)

Here, ν0 = (νhνp)1/2 and νh and νp are the frequencies of
attempts in the hexagonal and pentagonal configura-
tions, respectively. Hence,

(4)

where ∆U* = ∆U + kTln(νh/νp). Therefore, both τ0 and
the effective difference ∆U* between the energy levels
can depend on the temperature (even without regard for
the possible temperature dependences of ∆U, νh, and νp

[14]). However, since the experimental estimates
obtained for ∆U at various temperatures by using dif-
ferent methods differ by no more than 30% [6, 11–13,
16] (i.e., νh and νp cannot differ by more than a factor
of 1.5) and the value of  in the temper-
ature range 80–260 K also changes by a factor of
approximately 1.5, a simplified relationship for τ can be
used in the majority of cases.

It should be noted that the lack of information on the
temperature dependence of all the elastic moduli for
solid C60 does not allow one to judge the adequacy of
the model for the phenomenon under consideration.

The aim of this work was to determine the tempera-
ture dependences of the complete set of elastic moduli
for solid C60 in the temperature range 100–300 K and to
analyze the obtained results in the framework of exist-
ing theoretical concepts.

2. EXPERIMENTAL TECHNIQUE

The single crystals of solid C60 used for measuring
the elastic properties were grown according to the pro-
cedure described in our earlier work [2]. In order to
obtain samples of larger sizes, the growth time was
increased to 24 h. As a result, we succeeded in growing
crystals weighing as much as 200–250 mg. Among the
grown crystals, the most perfect crystals (i.e., contain-

Q 1– Rωτ/ 1 ω2τ2+( ),=

∆C/C R/ 1 ω2τ2+( ),=

τ U0/kT( )exp / 2ν0[=

× ∆U/2kT( ) νh/ν p( )/2ln+( )cosh ] .

τ0 1/ 2ν0 ∆U/2kT( ) νh/ν p( )/2ln+( )cosh[ ]=

=  1/ 2ν0 ∆U*/2kT( )cosh( ),

∆U/2kT( )cosh
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ing no twins and inclusions of other phases) were cho-
sen for preparing the samples used in our measure-
ments. The samples were produced in the form of plates
≈6 × 8 mm in size and 1–3 mm in thickness. The planes
of the plates were parallel to the crystallographic planes
(111) and (100). One of the sample planes was the
growth plane, and the other plane was mechanically
ground parallel to the first plane with a parallelism of
≈1 µm/cm. In some samples with the (111) orientation,
the second plane was also the growth plane.

The elastic characteristics were determined by the
acoustical method. The velocity and attenuation of
sound (propagated along the 〈111〉  and 〈100〉  direc-
tions) in the sample were measured in the temperature
range 100–300 K by the high-frequency resonance
method [17] with the use of longitudinal or transverse
ultrasonic vibrations at a frequency of ~4 MHz. The
samples were cooled and heated at a rate of ≈1 K/min.
The measurements were carried out using lithium nio-
bate piezoelectric transducers with a frequency of
5 MHz. Particular attention was given to the choice of
the adhesive used to cement the piezoelectric transduc-
ers to the sample, because solid C60 has a high thermal
expansion coefficient. In the case of longitudinal vibra-
tions, the GKZh-94 adhesive (monoethylsiloxane)
turned out to be the most suitable. This adhesive
enabled us to perform measurements without breaking
acoustic contact over the entire temperature range cov-
ered (down to 80–100 K). A silicone vacuum paste
could be used as a cement in the range from room tem-
perature to 180–200 K. For transverse waves, we failed
to choose a cement that would provide measurements
over the entire temperature range. For this reason, dif-
ferent cements were used in different temperature
ranges: an epoxy resin or picein in the range from room
temperature to 260 K (the phase transition tempera-
ture), silicone paste in the range from 270–280 to 180–
200 K, and GKZh-94 in the range from 150 to 80–100 K.
As a rule, when the minimum cooling temperature of
the sample was no lower than the temperature permis-
sible for each type of cement, the acoustical parameters
(the attenuation and velocity of sound) measured upon
cooling and heating coincided with each other [except
in the range near the Tc temperature in which a temper-
ature hysteresis of 3–5 K was observed (Fig. 1)]. Oth-
erwise (if the acoustic contact was retained), the trans-
ducers most likely deformed the sample, because a con-
siderable hysteresis (an increase in the attenuation of
sound and a decrease in its velocity) occurred upon
heating beginning with temperatures near 200 K. Note
that the hysteresis was more pronounced for transverse
vibrations. After holding at room temperature, the mea-
sured quantities relaxed to their initial values within a
few hours. The accuracy of determination was equal to
approximately 2% for the absolute velocity of sound
and 0.0025 ± 0.0001 K–1 for the relative change in the
velocity in measuring the temperature dependences.
The velocity of sound in the same samples at room tem-
perature was additionally controlled by the echo pulse
01
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technique [2, 3]. The velocities obtained with the use of
both techniques at room temperature, to within the
experimental error, coincided with those determined
earlier for solid C60 [1–3].

3. RESULTS

The experimental temperature dependences of the
attenuation Q–1 and the velocity VL of the longitudinal
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Fig. 1. Temperature dependences of the attenuation and the
resonance frequency of a composite transducer near the ori-
entational phase transition temperature upon (1) cooling
and (2) heating of the sample. Longitudinal waves propa-
gate along the 〈111〉  direction.
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Fig. 2. Temperature dependence of the attenuation of the
longitudinal ultrasonic wave propagating along the 〈111〉
direction in a solid C60 sample upon cooling.
PH
ultrasonic wave along the 〈111〉  direction in a solid C60
sample are displayed in Figs. 2 and 3. The Q–1(T)
dependence is characterized by two peaks of the inter-
nal friction (a narrow asymmetric peak in the range of
260 K and a broad peak at 212 K). The VL(T) depen-
dence shows specific features: a sharper increase (step)
in the velocity with a decrease in the temperature in the
range 200–225 K and a nonmonotonic anomaly in the
range of the orientational phase transition (the velocity
jumpwise increases by approximately 1% at ≈259 K,
exhibits a dip by ≈1.5% with a minimum near 255–
256 K, and steeply increases to temperatures of 235–
240 K). For other modes of ultrasonic vibrations (the
longitudinal mode along the 〈100〉  direction and the
transverse mode along the 〈111〉  direction), the behav-
ior of Q–1(T) is qualitatively similar, whereas the V(T)
dependences differ noticeably (Figs. 4, 5). The velocity
VL of the longitudinal wave along the 〈100〉  direction
(Fig. 4), as for the wave along the 〈111〉  direction, step-
wise increases in the temperature range 200–225 K.
However, this velocity jumpwise increases (by approx-
imately 2–3%) in the range of the Tc temperature and
then increases more smoothly. For the transverse wave
(Fig. 5), the VT anomaly in the range 200–225 K is
appreciably less pronounced and the velocity jump at Tc
is substantially larger (5–6%).

Figure 6 shows the temperature dependences of the
elastic moduli (C11 + 2C12 + 4C44)/3, C11, and (C11 –
C12 + C33)/3. These dependences were obtained from
the temperature dependences of the velocities of the
corresponding ultrasonic waves with the use of the
standard relationship C = ρV2, where ρ is the density, C
is the modulus, and V is the velocity of sound. In order
to calculate the other elastic constants, which can also
serve for describing crystals with cubic symmetry, the
experimental data in Fig. 6 in the temperature range
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Fig. 3. Temperature dependence of the velocity of the lon-
gitudinal ultrasonic wave propagating along the 〈111〉  direc-
tion upon cooling.
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100–300 K were approximated by nonlinear depen-
dences (solid lines in Fig. 6). By using these depen-
dences and the standard relationships between different
elastic moduli, we constructed the temperature depen-
dences of the elastic constants C12, C44, and C ' = (C11 –
C12)/2 (Fig. 7) and the bulk modulus K = (C11 + 2C12)/3
(Fig. 8).

4. DISCUSSION

It can be seen from Figs. 6–8 that the most signifi-
cant differences in the temperature dependences of the
elastic constants manifest themselves in the tempera-
ture range 200–230 K (the different relative heights of
the step in the temperature dependences of the moduli)
and in the orientational transition range. Note that both
a jumpwise increase in the moduli and their softening
can be observed in the latter range.

As was noted above, it is assumed that, at tempera-
tures of 200–230 K, the anomalies in the effective elas-
tic moduli measured at megahertz frequencies stem
from the relaxation contribution (2) due to the reorien-
tation of C60 molecules in the elastic field of the acous-
tic wave. In the case when the behavior of the “unre-
laxed” elastic modulus C (∞) is approximated by a linear
temperature dependence, the temperature dependences
of ∆C/C = (C (∞) – C)/C are adequately described (to
temperatures in the range of 240 K) using expression
(2) with the parameters E0 = 0.29 eV and τ0 ≈ 0.5 ×
10−14 s (see, for example, Fig. 8) and the attenuation
peak is represented by relationship (1). The specific
features in the behavior of the elastic moduli at temper-
atures near Tc can be explained (as in the case of low-
frequency vibrations [6]) by the contribution from the
order parameter relaxation in the acoustic wave field to
the effective moduli. According to [6], the additional
contribution to the free energy due to the interaction
between the order parameter η and the strain ε can be
expressed as aη2ε + bη2ε2. This leads to the appearance
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Fig. 4. Temperature dependence of the velocity of the lon-
gitudinal ultrasonic wave propagating along the 〈100〉  direc-
tion upon cooling.
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of additional terms in the relationship between the elas-
tic modulus C and the frequency and temperature:

(5)

where τη is the characteristic relaxation time of the
order parameter, η0 is the equilibrium order parameter
at a given temperature, C (∞) is the elastic modulus
above Tc, and ∆Cη(T) is the modulus relaxation ampli-
tude proportional to a2 and dependent on η0. It follows
from formula (5) that, as the temperature decreases

C ω T,( )

=  C ∞( ) ω T,( ) ∆Cη T( )/ 1 ω2τη
2+( ) bη0

2 T( ),+–
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Fig. 5. Temperature dependence of the velocity of the trans-
verse ultrasonic wave propagating along the 〈111〉  direction
upon cooling.
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below Tc, the elastic modulus should, on the one hand,
increase owing to a jump in the order parameter [the
third term in formula (5)] and, on the other hand,
decrease as a consequence of the contribution from the
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Fig. 7. Temperature dependences of the elastic moduli C12,
C44, and (C11 – C12)/2 calculated from the data presented in
Fig. 6. Dashed lines correspond to the linear extrapolation
of the temperature dependences below 180 K to the range
up to the orientational phase transition temperature.
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Fig. 8. (1) Temperature dependence of the bulk modulus K
calculated from the data presented in Fig. 6. (2) Linear
extrapolation of the low-temperature portion of the temper-
ature dependence to the range up to the orientational phase
transition temperature. (3) Temperature dependence calcu-
lated with inclusion of the relaxation contribution from the
reorientation of C60 molecules according to formula (2).
PH
relaxation component. This decrease depends on the
frequency of measurements, because the relaxation
time τη at temperatures close to Tc sharply increases and
the relaxation contribution becomes insignificant.
Therefore, the relaxation contribution at a given fre-
quency of measurements nonmonotonically depends
on the temperature and decreases at temperatures far
from and close to the transition temperature. In this
case, the location of an extremum at a given frequency
of measurements is determined by the temperature
dependences ∆Cη(T) and τη(T). Furthermore, since the
relaxation contribution caused by the molecular reori-
entation leads to a decrease in the modulus, the behav-
ior of the elastic modulus near the transition tempera-
ture is governed by the competition of three factors: (a)
an increase in the modulus due to a jump in the order
parameter, (b) a decrease in the modulus owing to
molecular reorientation, and (c) a nonmonotonic tem-
perature-dependent decrease associated with the order
parameter relaxation. Depending on the relative contri-
butions of these factors (and the frequency of measure-
ments), the temperature dependence of the modulus can
be qualitatively different in character, which is actually
observed in the experiments.

This situation is clearly illustrated in Figs. 7 and 8 in
the temperature dependences of the elastic moduli K,
C44, and C ' = (C11 – C12)/2 (all the other elastic moduli
can be expressed in terms of these three moduli). For
the bulk modulus, the modulus jump in the absence of
relaxation contributions is approximately 13%, the
maximum relaxation depth associated with the molec-
ular reorientation is equal to approximately 10%, and
the order parameter relaxation depth is approximately
5%. For the C44 modulus, the jump is approximately
11% and the relaxation depths for both processes are
equal to approximately 6%. For the C ' modulus, the
jump at temperatures close to Tc is of the order of 30%
and the total contribution from the relaxation processes
does not exceed 3% (i.e., in essence, it is within the
experimental error of the C ' measurement). Now, we
consider the theoretical estimates available in the liter-
ature for all these contributions to the elastic moduli.

The relaxation depth Ror, which is related to the
reorientation of C60 molecules in the acoustic wave
field, was estimated by Natsik and Podol’skiœ [14] for
the bulk modulus within the model of double-well ori-
entational energy potential. In this model, the time
change in the concentration of the hexagonal (Nh) and
pentagonal (Np = N0 – Nh, where N0 is the total number
of orientational states per unit volume) states is given
by the kinetic equation

(6)

where τh, b = τ0exp(Uh, p/kT) stands for the relaxation
times, Uh = U0 – ∆U/2 – Vhεll, Up = U0 + ∆U/2 – Vpεll,
Vh, p is the deformation potential, and εll = ε11 + ε22 + ε33
is the volume strain. By changing over to the relative

∂Nh/∂t Nh/τh N0 Nh–( )/τ p,+–=
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concentrations of excited states n = Nh/N0, within the
approximation linear in εll, we obtain

(7)

where τor = τ0exp(U0/kT)/(2 ), n0 =
1/(1 + exp(∆U/kT)), and V∆ = Vp – Vh. The thermody-
namic analysis of the elastic and thermal properties of
fullerite in terms of the two-level model with inclusion
of the orientational transitions [14] demonstrated that
the effective complex elastic modulus K at megahertz
frequencies can be represented in the form

(8)

where K(∞) is the adiabatic bulk modulus, A =
γ(V∆/kT)n0(1 – n0), γ = –(∂/∂εll(∂F/∂n)T, ε)T, n ≡
−(∂/∂n(∂F/∂εll)T, n)T, ε, and F is the free energy density.
The quantity γ can also be written as γ = αK (0) [14, 16],
where K (0) is the isothermal elastic modulus and α is the
relative dilatation of the crystal upon transition from the
ground state to the excited state. Therefore, in the case
of the bulk modulus, the relaxation depth Ror, which is
related to the reorientation of C60 molecules, can be
expressed by the formula

(9)

These relationships make it possible to calculate the
value of Ror from the estimate α ≈ –10–2 derived in [16,
18] and the estimate V∆ ≈ –0.8 eV obtained by David
and Ibberson [19], who proved that the relative densi-
ties of the ground and excited states at a temperature of
150 K and a pressure of 190 MPa are identical. At
230 K, we obtain Ror ≈ 0.1, which is in agreement with
the experimental value. The γ quantity can also be rep-
resented as γ = V∆/v 0 (where v 0 is the volume involved
in an elementary act of the transition from the ground
state to the excited state under pressure). Consequently,
we have the estimate v 0 ≈ 10–27 m3, which is equal in
order of magnitude to the volume occupied by one C60
molecule. This confirms the validity of the phenomeno-
logical single-particle model of double-well potential
[11–13]. By using the pressure dependence of the tem-
perature Tg of the orientational glass transition [20], it
is also possible to evaluate the magnitudes of the defor-
mation potentials Vp and Vh [14]. From the quantity
dTg/dP = 60 GPa [20], we obtain Vp ≈ 2 eV and, corre-
spondingly, Vh ≈ 2.8 eV. (A similar estimate was made
by Natsik and Podol’skiœ [14]; however, they took Vh

equal to 2 eV, because it was implicitly assumed that
Vp > Vh.)

Unfortunately, the relaxation contribution from the
order parameter fluctuations (in the deformation field
of an acoustic wave) to the elastic moduli was not cal-
culated theoretically. Schranz et al. [6] made merely the
qualitatively assessment that this contribution can
occur in the case of longitudinal acoustic waves [see
relationship (5)]. This assessment was based on the

τor∂n/∂t n+ n0 V∆εll/kT( )+ n0 1 n0–( ),=

∆U/2kT( )cosh

K K ∞( )= A/ 1 iωτor–( ),–

Ror α V∆/kT( ) K 0( )/K ∞( )( )n0 1 n0–( ).=
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results obtained by Lamoen and Mishel [21], who
proved that the free energy includes the terms account-
ing for the interaction between the order parameter and
the crystal dilatation. Therefore, the order parameter
relaxation can contribute to the bulk modulus and the
experimental temperature dependence of the bulk mod-
ulus qualitatively agrees with the theoretical curve pre-
dicted in this case (see the discussion at the beginning
of this section).

The jump in the elastic moduli upon orientational
transition in solid C60 was calculated by Burgos et al.
[18] in the framework of a simplified phenomenologi-
cal model, which disregards the possible orientational
transitions in the low-temperature phase of fullerite.
According to these calculations, all the elastic constants
at the Tc temperature should increase by approximately
30%. Our experimental data correlate in order of mag-
nitude with these estimates.

As regards the relaxation contributions to the shear
moduli (for example, the C44 modulus) observed in the
experiment, the possible effect of shear strains on the
frequency of transitions between orientational states or
on the order parameter in solid C60 has not yet been ana-
lyzed theoretically. Natsik and Podol’skiœ [14] assumed
that the relation between the probability of orienta-
tional transitions and shear components can be found
from a consideration of the torsional strains in the
framework of the nonsymmetric theory of elasticity
[22]. This is due to the fact that the rotation axis of a
particular molecule in the low-temperature phase of
fullerite is polar [23, 24] and that the terms proportional
to the nonsymmetric part of the strain tensor and to the
spatial derivatives of the rotation vector can appear in
the expression for the energy barrier to the transition of
molecules between orientational states. Another impor-
tant factor is the formation of orientational domains
(crystal regions with an isomorphic structure) in the
low-temperature phase of solid C60 [13, 25]. The occur-
rence of these domains implies that the direction and
the sign of polarity of the rotation axis of a particular
molecule remain unchanged upon translation through
the lattice spacing in a statistically significant volume.
Under these conditions, the equations of motion take
the form characteristic of a micropolar medium [22,
26], which can result in a relaxation-type contribution
to the shear wave velocity. According to estimates, the
effects comparable in order of magnitude with those
experimentally observed can manifest themselves only
at very high frequencies (~1012 Hz). However, it turns
out that, under the same conditions (the occurrence of
the polar axis and the formation of domains with an iso-
morphic structure), the terms related to the symmetric
part of the shear strain can be written in the expression
for the deformation potential (this problem will be con-
sidered in more detail in a separate work). In this case,
the relaxation contribution to the shear moduli appears
already within the classical theory of elasticity.
01
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In our opinion, the problem of the possible coupling
of the shear strains to the order parameter fluctuations
can be solved by consistently considering the polarity
of the rotation axes of C60 molecules and the orienta-
tional excitations in the structure of the low-tempera-
ture phase of fullerite.
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