
  

Technical Physics, Vol. 46, No. 7, 2001, pp. 783–788. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 71, No. 7, 2001, pp. 1–6.
Original Russian Text Copyright © 2001 by Aleksandrova, Aleksandrov.

                                      

THEORETICAL AND MATHEMATICAL PHYSICS

       
The Fundamental Solution to Equations of Linear Magnetic 
Hydrodynamics in a Moving Medium

A. A. Aleksandrova* and Yu. N. Aleksandrov**
* Kharkov Military University, Kharkov, 61043 Ukraine

** Kharkov Technical University of Radio Electronics, Kharkov, 61726 Ukraine
e-mail: et@kture.kharkov.ua

Received July 17, 2000

Abstract—The fundamental solution to a system of linear differential equations of magnetic hydrodynamics
in a moving medium is obtained. Using the Fourier–Laplace transform, the Green tensor function is calculated
as a sum of dyadics. In this way, the integral equations of magnetic hydrodynamics can easily be derived. Par-
ticular forms of the fundamental solution that are important in applications are analyzed. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Various problems of magnetic hydrodynamics of
moving media have attracted much attention recently.
The points of interest include the following: the fre-
quency multiplication; the magnetohydrodynamic
wave amplification during its reflection by a moving
boundary; the diagnostics of moving plasma media by
analyzing their interaction with magnetohydrodynamic
waves; and the production, reflection, and refraction of
such waves in the presence of moving magnetosphere
layers, solar wind, etc. Considering a moving medium
leads to substantial mathematical difficulties in the
equations of magnetic hydrodynamics, which combine
the medium velocity U, magnetic field strength B, den-
sity ρ, and entropy.

In this paper, we extend the studies started in [1],
where velocity u initiated only by perturbed wave
motion was considered, and in [2], where an unper-
turbed motion of an inhomogeneity was additionally
taken into account. Those papers are based on the use
of the Green function found for a magnetohydrody-
namic medium without initial motion. Now, we try to
take into consideration the unperturbed motion of an
external medium while calculating this Green function.
Given this function, we can use the standard method of
summing disturbances created by each point of the
source to construct the general solution of a boundary-
value problem as the convolution of the fundamental
solution and the right-hand side of linear magnetohy-
drodynamic differential equations. Applying the
Laplace–Fourier transform, we derive the fundamental
solutions to the equations with constant coefficients
associated with the boundary-value problem. The prob-
lem is stated in a generalized form with boundary and
initial conditions included in the instant sources.
1063-7842/01/4607- $21.00 © 20783
STATEMENT AND SOLUTION 
OF THE PROBLEM

Consider small perturbations in a plasma medium
treated as magnetohydrodynamic with nonzero initial
velocity U1, constant density ρ1, and magnetic field B1.
Then, the classical linear equations of magnetic hydro-
dynamics are valid [1]. The Green function, or the fun-
damental solution, of the boundary-value problem sat-
isfies the following system of differential equations
with the δ-like right-hand side

(1)

where u, b, and  are the deviations of velocity, mag-
netic field, and density from their equilibrium values
U1, B1, and ρ1; Vs1 is the velocity of sound;  and 

are arbitrary constant vectors; and  is an arbitrary
constant. Two vectors in parentheses and brackets mean
scalar and vector products.

We denote the velocity, magnetic field, and density

obeying system (1) by , , and  and write them
in the form [3]

∇ u
∂t
------- U1∇( )u

Vs1

ρ1
-------∇ρ˜ 1

4πρ1
------------ B1rotb[ ]+ + +

=  Su' δ r r'–( )δ t t'–( ),

∂b
∂t
------ rot U1b[ ] rot B1u[ ]+– Sb' δ r r'–( )δ t t'–( ),=

∂ρ̃
∂t
------ ρ1divu div ρ̃U1( )+ + Sρ' δ r r'–( )δ t t'–( ),=

ρ̃

Su' Sb'

Sρ'

Γ̂u Γ̂b Γ̂ρ

Γ̂u r r'– t t'–,( ) Guρ r r'– t t'–,( )Sρ'=

+ Ĝuu r r'– t t'–,( )Su' Ĝub r r'– t t'–,( )Sb' ,+
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(2)

where , , , and  are second-rank ten-
sors; Gρu, Guρ, Gρb and Gbρ are first-rank tensors; and
Gρρ is a zero-rank tensor. Formula (2) is valid because
any tensor can be expanded into a sum of three dyads
[4], formally written as scalar products (a · b) on the
right-hand side of (2).

The solutions , , and  are sought in the form
of the Fourier–Laplace transform with unknown weight
functions (q, p), (q, p), and (q, p) as follows

(3)

Here, q varies within the infinite limits on a line parallel
to the real axis (Req) in the complex plain. Substituting

Γ̂b r r'– t t'–,( ) Gbρ r r'– t t'–,( )Sρ'=

+ Ĝub r r'– t t'–,( )Su' Ĝbb r r'– t t'–,( )Sb' ,+

Γ̂ρ r r'– t t'–,( ) Gρρ r r'– t t'–,( )Sρ'=

+ Gρu r r'– t t'–,( )Su' Gρb r r'– t t'–,( )Sb' ,+

Ĝuu Ĝub Ĝbu Ĝbb

Γ̂u Γ̂b Γ̂ρ

ĝu ĝb ĝρ

Γ̂u r r'– t t'–,( )

Γ̂b r r'– t t'–,( )

Γ̂ρ r r'– t t'–,( ) 
 
 
 
 

1

2π( )4
------------- q iq t t'–( )–[ ]exp

∞
∫d

c

∫=

+ ip r r'–( )

ĝu q p,( )
ĝb q p,( )
ĝρ q p,( ) 

 
 
 
 

dp.
(3) into (1), we get the following equations for the
weight functions

(4)

After some transformations, the equation for 
takes the form

(5)

where  = /4πρ1 is the Alfven speed and s1 =
B1/B1.

Let us introduce the basis 〈e1, e2, e3〉  related to a cho-
sen direction of the unperturbed magnetic field s1 such
that e2 = s1. This explicitly expresses the fact that the
medium is anisotropic with respect to the unperturbed
magnetic field. In the new basis, Eq. (5) takes the
matrix form

(6)

where

U1p( ) q–{ } ĝu Vs1
2 pĝρ

1
4πρ1
------------ B1 pĝb[ ][ ]+ + iSu,–=

U1p( ) q–{ } ĝb U1 pĝb( )– p B1ĝu[ ][ ]+ iSb,–=

U1p( ) q–{ } ĝρ ρ1 pĝu( )+ iSρ.–=

ĝu

ĝu U1p q–( )2 V A1
2 s1p( )2–( ) Vs1

2 V A1
2+( )p pĝu( )–

+ V A1
2 p s1ĝu( ) s1p( ) V A1

2 s1 s1p( ) pĝu( )+

= ε̂u U1p q–( )
Vs1

2 pερ

ρ1
---------------– pε̂b( ) B1 pU1[ ][ ] B1 pε̂b[ ][ ]–{ } ,+

V A1
2 B1

2

Âĝu Ω̂,=
Â

q'2 V A1
2 s1p( )2– Vs1

2 V A1
2+( )p1– Vs1

2 p1 p2– Vs1
2 V A1

2+( )p1 p3–

Vs1
2 p1 p2– q'2 Vs1

2 p2
2– Vs1

2 p2 p3–

Vs1
2 V A1

2+( )p3 p1– Vs1
2 p2 p3– q'2 V A1

2 s1p( )2– Vs1
2 V A1

2+( )p3
2– 

 
 
 
 
 

,=
q' = U1p – q,  = {gu1, gu2, gu3},  = {gb1, gb2, gb3},
p = {p1, p2, p3}, and U1 = {U11, U12, U13}. The solution

Ω̂

εu1q'
Vs1

2 ερ p1

ρ1
-------------------–

1
4πρ1
------------ εb1 p2 εb2 p1–[+

+ pε̂b( ) p1U1B1 U11 p2B1–( ) ]

εu2q'
Vs1

2 ερ p2

ρ1
-------------------–

1
4πρ1
------------ εb2 p2 εb2 p1–[+

+ pε̂b( ) p2U1B1 U12 p2B1–( ) ]

εu3q'
Vs1

2 ερ p3

ρ1
-------------------–

1
4πρ1
------------ εb3 p2 εb2 p3–[+

+ pε̂b( ) p3U1B1 U13 p2B1–( ) ] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,=

ĝu ĝb
to (6) can be represented in the form

where matrix  = ||Aij||i, j = 1, 2, 3 has the following ele-
ments:

(7)

ĝu
1

det Â
----------- Â

cΩ̂,=

Â
c

A11 q'4 q'2 V A1
2 Vs1

2+( ) V A1
2 Vs1

2 p2
2+[ ] p2

2 p3
2+( ),–=

A12 A21 Vs1
2 p1 p2 q'2 V A1

2 s1p( )2–( ),= =

A13 = A31 = q'2 V A1
2 Vs1

2+( ) V A1
2 Vs1

2 s1p( )2–[ ] p1 p3,

A22 = q'2 V A1
2 p2– Vs1

2 p1
2 p3

2+( )–[ ] q'2 V A1
2 s1p( )2–( ),

A23 A32 Vs1
2 p2 p3 q'2 V A1

2 s1p( )2–( ),= =
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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and its determinant is

(8)

For the solution obtained to take the form as in (2),

we expand  into the sum of dyads

Hence, the weight function of the first-rank tensor

 takes the form

and the weight functions of the second-rank tensors

 and  are

The weight functions of the other tensors in (2) are
found in the same way.

For brevity, we write down in detail only the second-

rank tensor :

(9)

Here, the differential operator  contains the fol-

A33 = q'4 q'2 V A1
2 Vs1

2+( ) V A1
2 Vs1

2 s1p( )2+[ ] p2
2 p1

2+( ),–

det Â q pU1–( )2 V A1
2 s1p( )2–[ ] q pU1–( )4[=

– V A1
2 Vs1

2+( ) q pU1–( )2p2 V A1
2 Vs1

2 p2 s1p( )2 ] .+

Ω̂

Ω̂ ε̂u q pU1–( )
Vs1

2 ε̂ρ

ρ1
-------------p

1
4πρ1
------------ s1p( )ε̂b+–=

+
1

4πρ1
------------

0 p1– 0

0 p2– 0

0 p3– 0 
 
 
 
 

ε̂b

+
1

4πρ1q
--------------- p U1B1( ) U1B1 s1p( )–[ ] pε̂b.

Ĝuρ

ĝuρ
Vs1

2

ρ1
------- Â

c
p

det Â
-----------,–=

Ĝuu Ĝub

ĝuu q pU1–( ) Â
c

det Â
-----------,=

ĝub
1

4πρ1
------------ Â

c

det Â
----------- s1p

0 p1 0

0 p2 0

0 p3 0 
 
 
 
 

–







=

0

0

0 





+
1
q
--- p U1B1( ) U1B1 s1p( )–[ ] p







.

Ĝuu

Ĝuu r r'– t t'–,( ) F̂uuI r r'– t t'–,( ),=

F̂uu Fij i, j 1 2 3, ,= ,=

F̂uu
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lowing components:

and the Fourier–Laplace transform as a function of the

F11
∂
∂t
----- U1∇– 

  4

-----=

– V A1
2 Vs1

2+( ) ∂
∂t
----- U1∇– 

  2

– V A1
2 Vs1

2 ∂2

∂x2
2

--------–

× ∂2

∂x2
2

-------- ∂2

∂x3
2

--------+
 
 
  ∂

∂t
----- U1∇– 

  ,

F22
∂
∂t
----- U1∇– 

  2

V A1
2 ∆– Vs1

2 ∂2

∂x1
2

-------- ∂2

∂x3
2

--------+
 
 
 

–=

× ∂
∂t
----- U1∇– 

  2

V A1
2 ∂2

∂x2
2

--------– ∂
∂t
----- U1∇– 

  ,

F33
∂
∂t
----- U1∇– 

  4

-=

– V A1
2 Vs1

2+( ) ∂
∂t
----- U1∇– 

  2

V A1
2 Vs1

2 ∂2

∂x2
2

--------–

× ∂2

∂x2
2

-------- ∂2

∂x1
2

--------+
 
 
  ∂

∂t
----- U1∇– 

  ,

F12 F21 Vs1
2 ∂

∂t
----- U1∇– 

  2

V A1
2 ∂2

∂x2
2

--------–= =

× ∂
∂t
----- U1∇– 

  ∂2

∂x1∂x2
-----------------,

F23 F32 Vs1
2 ∂

∂t
----- U1∇– 

  2

V A1
2 ∂2

∂x2
2

--------–= =

× ∂
∂t
----- U1∇– 

  ∂2

∂x3∂x2
-----------------,

F13 F31
∂
∂t
----- U1∇– 

  2

V A1
2  + Vs1

2( ) Vs1
2 V A1

2 ∂2

∂x2
2

--------–= =

× ∂
∂t
----- U1∇– 

  ∂2

∂x1∂x3
-----------------,
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shift of space and time variables has the form

(10)

It is seen from (10) that the expression for the Green
function involves the integration within infinite limits.
To calculate this integral, we have to avoid the poles on
the integration path. The poles occur at values of p and
q satisfying the dispersion equations

(11)

These poles are associated with free magnetohydro-
dynamic waves in the moving medium. When the
waves are undamped, the poles are on the real axis.
Eqs. (1), as the first-order partial differential equations,
have several linearly independent solutions. The inte-
gral formula (10) gives all of these solutions when var-
ious ways of passing around the poles are fixed. The
given Green function describes the field created by an
instantaneous point source placed at the point r'. We
assume that the field is zero until the moment t = t'
when the source turns on. This assumption provides a
rule of passing around the poles when integrating (10).
Indeed, in order for the Green function to be zero for
t < t', we have to bypass from above all the poles on the
integration path in q. The Mandelstam principle is
thereby fulfilled, according to which the energy flux at
infinity is directed away from the source [5]. This prin-
ciple imposes a constraint on the group velocity. The
Zommerfeld principle demands that only divergent
waves exist and imposes limitations on the wave phase
velocity, which does not generally coincide with the
group velocity. Therefore, the Zommerfeld principle is
not always sufficient, especially when moving media
are considered.

The Green function of the magnetohydrodynamic
equations for the moving media is thus a tensor func-
tion of the observation point r and the source point r';
its spectral components are given in (9).

The dispersion equations (11) for plane monochro-
matic magnetohydrodynamic waves were derived by
equating the denominator in the Fourier–Laplace
expansion for the Green function to zero. The corre-
sponding equations for magnetosonic waves have the
form

(12)

I r r'– t t'–,( ) 1

2π( )4
------------- iq t t'–( )–[ ]exp qd

∞– iσ0+

∞ iσ0+

∫=

× ip r r'–( )[ ]exp
∆ p q,( )δ p q,( )
------------------------------------- p.d∫

∞
∫∫

∆ p q,( ) q U1p–( )4 Vs1
2 V A1

2+( ) q U1p–( )2p2–=

+ V A1
2 Vs1

2 p2 s1p( )2 0,=

δ p q,( ) q U1p–( )2 V A1
2 s1p( )2– 0.= =

ω U1k–( )4 Vs1
2 V A1

2+( ) ω U1k–( )2k2–

+ V A1
2 Vs1

2 k2 s1k( )2 0=
and, for the Alfven waves, they are

(13)

The dispersion relations (12) and (13) contain the
scalar product (U1k) of wave vector k and unperturbed
velocity U1 of the medium. It means that the wave prop-
agation in the moving medium depends on the angle
between the wave vector and the medium velocity. This
expresses the fact that the moving medium is anisotro-
pic with respect to a given direction of the motion
velocity. The presence of the product (s1k) of wave vec-
tor k and unperturbed magnetic field s1 reveals the mag-
netic anisotropy, when the propagation velocity
depends on its direction with respect to the magnetic
field. Thus, we have two axes of anisotropy, associated
with the magnetic field and velocity. This essentially
sophisticates the study of magnetohydrodynamic
waves in moving media.

The dispersion relations (12) and (13) describe three
modes of wave motion induced by different recovering
forces. The magnetic tension results in Alfven waves
(see (13)). The combined action of the magnetic pres-
sure and pressure of the conducting liquid leads to the
formation of two, fast and slow, magnetosonic waves
(see (12)). These waves have a different nature as com-
pared to sonic and electromagnetic waves. This makes
them interesting for studies, especially for studies of
their scattering at various obstacles. While solving the
magnetohydrodynamic boundary-value problem in the
differential form, the local boundary and initial condi-
tions may be satisfied by either single- or several-mode
waves. The integral form avoids this difficult problem
due to the physics of the phenomenon. The appearance
of scattered waves in the medium leads, under the basic
mode action, to formation of induced sources that radi-
ate secondary scattered waves. The interference of the
secondary waves gives the necessary modes. This rep-
resents the extinction principle of magnetic hydrody-
namics [1]. The Green function (9), always implying
the representation of the differential equations in the
integral form, and the extinction principle lead to a new
formalism of solving boundary-value problems by the
method of integral equations of linear magnetic hydro-
dynamics.

As we have discussed, the Green function has an
evident interpretation describing the distribution of
fields or perturbations created by lumped sources. To
calculate the field from some distributed sources, we
have to sum the effects from each elementary part of
them. In this way, the integral equation can be formu-
lated in the class of generalized function as follows.

Let there be in the magnetohydrodynamic space
with parameters B1, U1, VA1, Vs1, and ρ1 a volume inho-
mogeneity V(t) characterized by parameters B2, U2,

ω U1k–( )2 V A1
2 s1k( )2– 0.=
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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VA2, Vs2, and ρ2. Using the characteristic function

Eqs. (1) are extended on the whole space as follows:

(14)

where

The solution of the inhomogeneous system (14)
then has the form

(15)

The integration in (15) is performed over the entire
space occupied by the field and over the infinite time
interval. Formula (15) represents the integral–differen-
tial equations of magnetic hydrodynamics in the form
of a convolution. Due to the convolution properties, we
can take the differential operators out of the integral
and arrive at the integral equations of linear magnetic
hydrodynamics in the moving medium. Specific cases
of these equations were considered in [6].

χ χ r t,( )
1, r V t( )∈
0, r V t( )∉

.




= =

∂u
∂t
------ U1∇( )u

Vs1

ρ1
------- ∇ρ˜ 1

4πρ1
------------ B1rotb[ ]+ + + Wu,=

∂b
∂t
------ rot U1b[ ] rot B1b[ ]+– Wb,=

∂ρ̃
∂t
------ ρ1divu div ρ̃U1( )+ + Wρ,=

Wu χ U1 U2– ∇,( )u Vs1
2 Vs2

2–( )∇ρ˜ -+




=

+
B1

4πρ1
------------

B2

4πρ2
------------– rotb,





,

Wb χ rot B1 B2– u,[ ] rot U1 U2– b,[ ]–{ } ,=

Wρ χ ρ1 ρ2–( )divu divρ̃ U1 U2–( )+{ } .=

u r t,( ) t'd r' Ĝuρ r r'– t t'–,( )Wρ r' t',( ){d∫=

+ Ĝuu r r'– t t'–,( )Wu r' t',( )

+ Ĝub r r'– t t'–,( )Wb r' t',( ) } ,

b r t,( ) t'd r' Ĝbρ r r'– t t'–,( )Wρ r' t',( ){d∫=

+ Ĝbu r r'– t t'–,( )Wu r' t',( )

+ Ĝbb r r'– t t'–,( )Wb r' t',( ) } ,

ρ̃ r t,( ) t'd r' Ĝρρ r r'– t t'–,( )Wρ r' t',( ){d∫=

+ Ĝρu r r'– t t'–,( )Wu r' t',( )

+ Ĝρb r r'– t t'–,( )Wb r' t',( ) } .
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Let us return to the calculated Green function. It fol-
lows from (10) that the denominator of this function
involves the product of ∆(p, q) and δ(p, q) from (11),
representing the dispersion relations for magnetosonic
and Alfven waves. Therefore, the components of the
weight functions ( ) associated with waves of these
two types are coupled. It turns out that, in some prob-
lems of diffraction of magnetohydrodynamic waves at
plane-parallel obstacles or in the case of cylindrical
domains with a specific orientation of the unperturbed
magnetic field, the Alfven and magnetosonic compo-
nents of the weight function become uncoupled. This
was confirmed by paper [3], where the Green function
was calculated in a particular case of a one-dimensional
magnetic field. This effect is related to the Green func-
tion invariance with respect to a choice of the coordi-
nate basis 〈e1, e2, e3〉 , which we associated with the
unperturbed magnetic field. If one of the basis vectors
is fixed and constant, e.g., (e2 = s1), the Green function
is invariant with respect to a surface transversal to e2.
This is related to the known fact that the Green tensor
functions of free space solving Eqs. (1) involving only
del operators are invariant over a choice of coordinate
basis [7]. The Green function (9) then has the form

demonstrating the separation of the Alfven GA and
magnetosonic GM components. In [1], the following
explicit expression for GA was derived when there was
no unperturbed motion of the medium:

where Θ(t) is the Heaviside function.
When the gas pressure is zero, Vs ≡ 0, the Green

function (13) becomes simpler and equals

where

It is seen that parameter Vs does not affect the Alfven
component and the magnetosonic components G22 and

ĝuu

Ĝ r r'– t t'–,( ) GA 0

0 GM 
 
  G11 0 0

0 G22 G23

0 G32 G33 
 
 
 
 

,= =

GA
1

2V A1
------------δ x1 x1'–( )δ x2 x2'–( )Θ t t'–

x3 x3'–
V A1

------------------– 
  ,=

Ĝ r r'–( )
GA 0 0

0 V A1
2 ∆ ω2+( )F 0

0 0 ωF 
 
 
 
 

,=

GA
1

2V A1
------------δ x1 x1'–( )δ x2 x2'–( )

iω x3 x3'––
V A1

---------------------------- 
  ,exp=

F
iω r r'– /V A1–[ ]exp

4πV A1
2 ω2 r r'–

--------------------------------------------------.=
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G33 look like the Green function of macroscopic elec-
trodynamics [8].

The acoustic Green function known in the literature
can easily be obtained as a particular case of the funda-
mental solution (9).

When the magnetic field and unperturbed motion of
the medium are absent (i.e., B ≡ 0 and U1 ≡ 0), the func-
tion I(r – r') takes the form

and is easily calculated with the help of the residue the-
orem as follows:

The components of the differential operator  are
simplified to the form
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Vs1
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Finally, we can write

where  is the unit affinor. This function was obtained
in [9] while deriving integral equations of acoustics of
inhomogeneous liquid. The time dependence is of the
form exp(iωt).
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Abstract—An exact solution to the problem of the transformation of a monochromatic plane wave by a finite
train of equally spaced rectangular pulses of permittivity and conductivity of an infinite medium is considered.
The permittivity pulse train is shifted relative to the conductivity pulse train by an arbitrary time. The problem
is studied analytically in terms of the second-order Volterra integral equation describing the electromagnetic
wave transformation in a medium with time-dependent parameters. The equation is solved using the resolvent
technique. Expressions for the amplitude of the transformed electric field component for any time instant at any
spatial point are derived and analyzed. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The modulation of the parameters of a propagation
medium is an important issue of electromagnetic the-
ory. In this regard, the transformation of an electromag-
netic wave by a medium whose parameters are period-
ically modulated in time is of great interest. Such a
transformation was studied in [1–3]. However, approx-
imate analytical approaches to studying this problem
are usually based on certain assumptions. For example,
the transformation of a plane wave by the harmonic
time variation of the conductivity of a semi-infinite
medium was studied in [4] in terms of perturbation the-
ory. This technique limits the modulation depth to
small values. Furthermore, in this problem, the conduc-
tivity was modulated over an infinite time period.
Therefore, it is of interest to study the wave transforma-
tion in media whose parameters change periodically
over a finite time interval.

In this paper, the problem of the transformation of a
monochromatic electromagnetic wave in an infinite
medium with the permittivity and conductivity modu-
lated in time by a train of equally spaced rectangular
pulses is solved exactly. The repetition period, ampli-
tude, and duration of the pulses may be arbitrary (how-
ever, the permittivity and conductivity pulses are
assumed to have equal durations). Furthermore, the
train of the permittivity pulses may be arbitrarily
shifted relative to the conductivity pulses.

Exact expressions for the transformed electric field
component for any time instant at any spatial point are
derived and analyzed.

ELECTRIC FIELD IN A STEPWISE-PERIODIC 
NONSTEADY MEDIUM

Let the parameters of an infinite medium start to
vary arbitrarily at time t = 0. According to [5], the elec-
1063-7842/01/4607- $21.00 © 20789
tric field in such a medium is described by the Volterra
integral equation of the second kind,

(1)

where E(t, x) is the electric field, K(t, t', x, x') is the ker-
nel of the integral equation, and F(t, x) is the free term.

Integral equation (1) may be solved by the resolvent
technique [6]:

(2)

where R(t, t', x, x') is the resolvent of Eq. (1).
If the permittivity and conductivity change at t = 0

in a stepwise manner (before t = 0, the medium is
assumed to have zero conductivity; i.e., σ = 0), the ker-
nel and resolvent of Eq. (1) are described by the differ-
ence functions [7]

(3)

E t x,( ) F t x,( ) t' x'd

∞–

∞

∫d
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∞
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0
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∫+=
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=  
1
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2
--- 1 a2–( ) ∂
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2v 1
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pd
2πi
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α i∞–

α i∞+

∫–=

×
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v 1
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2 σ1
2––

,
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where α > , Re( ) > 0, a = ,  =

2πσ1/ε1, v 1 = c/  is the permittivity of the unper-
turbed medium (at t < 0), ε1 and σ1 are the permittivity
and conductivity of the perturbed medium, and c is the
speed of light in free space.

Let the permittivity and conductivity of the medium
change in time as (Fig. 1)

(4)

where t1 is the time shift between the permittivity and
conductivity sequences and τ1 is the pulse duration.

Clearly, the perturbation described by formulas (4)
has a period T = t1 + τ1 + τ2, where τ2 is the time interval
over which the parameters take their quiescent values,
and the train contains N pulses.

It can be shown that, on any nth time interval over
which the medium parameters remain constant, the
electric field is expressed by the formulas

(5)

σ1 p2 σ1
2– ε0/ε1 σ1

ε1, ε0

ε t( ) ε0 ε1 ε0+( ) Θ t k 1–( )T–( ){
k 1=

N

∑+=

– Θ t τ1– k 1–( )T–( ) } ,

σ t( ) σ1 Θ t t1– k 1–( )T–( ){
k 1=

N

∑=

– Θ t t1– τ1– k 1–( )T–( ) } ,

En t x,( ) Fn t x,( )=

+ t' x'Rn t t' x x', , ,( )Fn t' x',( ),d
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∞
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t

∫
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+ t' x'Ki t t' x x', , ,( )Ei t' x',( ),d

∞–

∞

∫d

ti 1–

ti

∫
i 1=

n 1–

∑

....

0 t1

σ(t)
σ1

t1+τ1
t1+T

t1+τ1+T
t1+(N–1)T

t1+τ1+(N–1)T t

....

0 T

σ(t)
ε1

τ1 t1+ (N–1)T t

....ε0

2T NT
τ1+ (N–1)Tτ1+T

Fig. 1. Time behavior of the parameters of a medium.
where E0(t, x) is the primary field and Rn(t, t ', x, x') and
Kn(t, t ', x, x') are the resolvent and kernel of integral
equation (1), their structure being independent of index
n of the step in the parameters of the medium.

From the last statement and formulas (3), one can
easily obtain expressions for the kernel and resolvent
on an arbitrary time interval over which the parameters
of the medium remain constant. Specifically, on the
intervals over which the permittivity alone takes a new
value, expressions for the kernel and resolvent take the
form

(6)

At the intervals over which both the permittivity and
conductivity take new values, expressions for the ker-
nel and resolvent are given by the formulas

(7)

At the intervals over which the conductivity alone takes
a new value, expressions for the kernel and resolvent
are as follows:

(8)
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Finally, at the quiescent intervals over which the
parameters of the medium are equal to their original
values, we have

(9)

TRANSFORMATION OF A MONOCHROMATIC 
WAVE BY PULSE-PERIODIC MODULATION 

OF AN INFINITE MEDIUM

Let E0(t, x) be a unit-amplitude monochromatic
plane wave E0(t, x) = ei(ωt – kx), where k = ω/v 0. Substi-
tuting E0(t, x) into formulas (5) results in the equations
for the transformed electric field at the first period of
variations in the medium parameters:

(10)

where
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(13)

Substituting expressions (10)–(13) into formulas (5)
and using the mathematical induction method, we
obtain recurrent relationships for the electric field at
any interval of variations in the permittivity and con-
ductivity, beginning with the second (n = 2, …, N). Spe-
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cifically, at the time interval (n – 1)T < t < t1 + (n – 1)T,
we have

(14)

where

At the time interval t1 + (n – 1)T < t < τ1 + (n – 1)T,
we have

(15)

where

At the time interval τ1 + (n – 1)T < t < t1 + τ1 + (n – 1)T,
we have

(16)
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At the time interval t1 + τ1 + (n – 1)T < t < nT, we
have

(17)

where

As can be seen from formulas (10)–(17), the modu-
lation of the parameters of a infinite medium splits the
primary monochromatic wave into forward and back-
ward monochromatic waves. The modules of the wave-
numbers of the new waves and those of the primary
wave are the same. The amplitudes and frequencies of
these waves are piecewise-constant functions of time.
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If the conductivity is high (  > aω at the time inter-
vals t1 + (n – 1)T < t < τ1 + (n – 1)T at the time intervals
τ1 + (n – 1)T < t < τ1 + (n – 1)T, where n = 1, 2, 3, …),
the frequency becomes imaginary and the new waves
become aperiodic.

Note that, at t1 = 0 and a = 1, expressions (13) coin-
cide with the corresponding expressions in [8], which
describe the transformation of a monochromatic plane
wave caused by a pulsed modulation of the conductiv-
ity of an infinite medium.

It is of interest to study the field at the end of the mod-
ulating train of n conductivity and permittivity pulses
as a function of n. To this end, we will analyze the coef-
ficients An and Bn. We introduce the coefficients that are
independent of n:

Then, expressions for the coefficients En, Pn, Wn, Xn,
An, and Bn can be written as

(18)

(19)

(20)

From expressions (18)–(20), after some algebra, we
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obtain

(21)

where

We introduce new designations for the amplitudes

an = An  and bn = Bn  and assume that

Then, expression (21) can be written in the matrix
form:

(22)

By using the mathematical induction method, for-
mula (22) can be written as

(23)

Since detR = 1, we obtain [9]

(24)

where Un(α) is the Chebyshev nth order polynomial
and I is the identity matrix.

By substituting expression (24) into formula (23),
we obtain expressions for the forward and backward
wave amplitudes on the quiescent portion of an arbi-
trary (n + 1)th period of the parameter variations:

(25)
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We numerically estimated the forward and back-
ward wave amplitudes for a and s values typical of the
InGaAsP semiconductor (a ≈ 1, b ≈ 0.05) [10]. Our cal-
culations showed that the pulse-periodic modulation of
the permittivity and conductivity may cause the magni-
tudes of the forward and backward wave amplitudes to
become higher than the amplitude of the primary wave.
In passive media (σ ≥ 0), this effect can be achieved by
modulating not only the permittivity (Figs. 2, 3), but
also by modulating the conductivity of the medium, as
is shown in Figs. 4 and 5.
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Fig. 2. Amplitude An of the forward wave vs. the square root
of the relative change in the permittivity, a, at s = 0.05, τ = 1,
τd = 2, and τT = 5 for n = (1) 3, (2) 4, and (3) 5.
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Fig. 4. Amplitude An of the forward wave vs. the relative
change in the conductivity, s, at a = 1, τ = 0, τd = 2, and
τT = 5 for n = (1) 3, (2) 4, and (3) 5.
It is seen that the modulation of the conductivity of
a medium causes the amplification of the forward and
backward waves at low s, i.e., when the conductivity is
low or the frequency of the primary signal is high.

Calculations have also shown that the polynomial
on the right-hand side of the second equality in formu-
las (25) vanishes at a certain combination of n, s, τ, τd,
and τT. This means that the backward wave disappears
at certain values of n, s, τ, τd, and τT. Obviously, if at
certain values of n, s, τ, τd, and τT, the forward wave
amplitude exceeds the amplitude of the primary wave
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Fig. 3. Amplitude Bn of the backward wave vs. the square
root of the relative change in the permittivity, a, at s = 0.05,
τ = 1, τd = 2, and τT = 5 for n = (1) 2, (2) 3, and (3) 4.
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Fig. 5. Amplitude Bn of the backward wave vs. the relative
change in the conductivity, s, at a = 1, τ = 0, τd = 2, and
τT = 5 for n = (1) 6, (2) 7, and (3) 8.
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and the backward wave amplitude is zero, then the pri-
mary wave is amplified.

An important feature in the behavior of the forward
and backward wave amplitudes can be revealed by
studying the ratios an + 1/an and bn + 1/bn as functions of n.
Matrix expressions (22) imply

(26)

where Fn = an/bn.

By dividing the upper equality in formulas (26) by
the lower one under the assumption that the backward
wave is nonzero (i.e., excluding the conditions under
which there is no backward wave), we obtain

(27)

It was shown [11] that, when the parameters of the
medium vary synchronously (τ = 0), |F1| > 1 at any n, s,
τd, and τT. According to the conformal mapping theory
[12], homographic function (27) maps the outer region
of a circle of unit radius onto the outer region of a circle
of unit radius. Therefore, if |F1| > 1, then |Fn| > 1 all the
more so. This means that, when the parameters of the
medium vary synchronously, the amplitude of the for-
ward wave is higher than the amplitude of the backward
wave. Based on physical considerations, one can
assume that, when the parameters of the medium are
modulated asynchronously (t1 ≠ 0), the inequality |F1| > 1
is also valid at any n, s, τ, τd, and τT. Indeed, our thor-
ough numerical analysis of expression (27) failed to
find such parameters n, s, τ, τd, and τT that comply with
the condition |F1| ≤ 1. Thus, when the parameters of the
medium are modulated asynchronously, the amplitude
of the forward wave is, as a rule, higher than that of the
backward wave.

CONCLUSION

The transformation of a monochromatic electro-
magnetic wave by a finite-duration pulse-periodic mod-
ulation of the permittivity and conductivity of an infi-
nite medium is considered. The transformed field at any
positive time is shown to be a superposition of the for-

an 1+

an

----------- c11

c12

Fn

------,+=

bn 1+

bn

----------- c22 c21Fn,+=

Fn 1+

c12 c11Fn+
c22 c21Fn+
-------------------------.=
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ward and backward monochromatic waves. The mod-
ules of the wavenumbers of these waves are equal to the
wavenumber of the primary wave, and their amplitudes
are piecewise-constant functions of time. At quiescent
time intervals, the amplitude of the forward wave is
higher than that of the backward wave. At certain val-
ues of the parameters of the medium and the frequency
of the primary wave, the backward wave vanishes. It
was also shown numerically that, at the time intervals
over which the parameters are quiescent, the ampli-
tudes of the forward and backward waves may exceed
the amplitude of the primary wave. In passive media,
when the modulating pulses are short, this situation
may be achieved by modulating the permittivity and/or
the conductivity.
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Abstract—A program for the simulation of electron transport by the Monte Carlo method has been developed.
This program implies the model of single scattering and dielectric approach (to calculate the characteristics of
an inelastic interaction). The escape functions for aluminum, germanium, and gold in the 0.012–20 keV energy
range were calculated. The characteristic lengths determining the electron dynamics (the elastic and inelastic
mean free paths, isotropization length, and integral path) were calculated using the differential cross sections
for both elastic and inelastic interactions for these elements. The analysis of the relations between the charac-
teristic lengths made it possible to determine the applicability range of the analytical expressions for the emis-
sion functions obtained in [1]. The comparison of the results obtained analytically and numerically confirmed
the conclusion of [1] about the form of the analytical approximation of the emission function for electrons of
various energies and showed the validity of the obtained analytical expressions for the escape lengths of elec-
trons. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The development of new materials and technologies
is connected with the creation of structures with an ultr-
asmall active region. The development of diagnostic
techniques making it possible to determine the param-
eters of objects under investigation to a high accuracy
is of particular importance. Nowadays, there is a wide
range of methods for material diagnostics that use X-
rays and electron or ion beams to get various kinds of
information on objects under consideration. Among
these techniques, methods based on electron emission
are of particular importance since they are nondestruc-
tive and allow one to obtain information about ultras-
mall near-surface layers due to the small effective
escape depth (10–100 nm) of emitted electrons.

In spite of the extensive practical use of diagnostic
techniques based on electron emission, they are
semiempirical in many respects. In this connection, the
development of quantitative methods for obtaining
information on material properties requires, first of all,
the development of adequate theoretical approaches to
calculating the basic phenomenon, i.e., electron emis-
sion.

A three-step model may be employed to describe
electron emission. According to this model, electron
emission induced by X-rays can be divided into three
stages: the absorption of an X-ray photon by a medium;
1063-7842/01/4607- $21.00 © 20796
the generation of primary electrons, i.e., photoelectrons
and electrons generated in the course of the relaxation
of the photoionized atom; and the motion of primary
electrons in the medium (accompanied by the genera-
tion of a secondary-electron cascade) and the emission
of the produced electrons from the specimen. The last
stage is characterized by the escape function q(E0,z0).
This function is the probability of escape from the spec-
imen for an electron with an energy E0 produced at a
distance z0 from the surface. In order to find this func-
tion, a kinetic equation describing the motion of elec-
trons generated at a depth z0 with an energy E0 may be
used. In the case of a semi-infinite specimen with a
plane surface, this equation has the form

(1)

Here, Φ(z, Θ, E) is the differential flux density for elec-
trons with energy E moving at a depth z at the angle Θ
to the z axis, RcolΦ is the collision integral describing
the interaction of electrons with a medium, and the sec-
ond term on the right-hand side corresponds to the pres-
ence of the electron source with energy E0 at a depth z0.
Equation (1) must be completed by the boundary con-
ditions Φ(0, Θ, E)|cosΘ > 0 = 0 and Φ(z, Θ, E)|z → ∞  0.
These conditions mean the absence of both the electron
flux from the outside and electrons at large depths. The

Θ∂Φ
∂z
-------cos RcolΦ

1
4π
------δ z z0–( )δ E E0–( ).+=
001 MAIK “Nauka/Interperiodica”
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escape function is equal to the total electron flux
through the surface z = 0:

(2)

Equation (1) represents a linear integrodifferential
equation. Solving this equation involves severe difficul-
ties. In this connection, two approaches may be used to
determine the differential flux density: (1) to take into
account some features of electron transport that make it
possible to simplify the kinetic equation and find an
approximate analytical solution; (2) to numerically
solve the kinetic equation.

In [1], assumptions resulting in the simplification of
kinetic equation (1) in various ranges of primary-elec-
tron energies were analyzed and approximate analytical
expressions for the escape functions were found. How-
ever, the applicability boundaries of the approxima-
tions were obtained just qualitatively. In order to find
the applicability ranges and the accuracy of the solu-
tions obtained, it is necessary to compare analytical
results with the numerical calculation of the escape
functions. A universal technique for numerical simula-
tion of transport phenomena allowing one to take into
account the features of the interaction between elec-
trons and a medium is the Monte Carlo method.

THE MODEL DESCRIPTION

In the Monte Carlo method, various models may
describe the interaction between an electron and a
medium. The most accurate is the model of single scat-
tering. In this model, the result of each interaction of an
electron with a medium is defined by the differential
cross sections for both elastic and inelastic scattering.
In inelastic interaction between an electron and
medium, the electron kinetic energy is lost in the course
of several competing processes (ionization of inner
atomic shells, creation of electron-hole pairs, genera-
tion of plasmons, etc.). A uniform description of inelas-
tic interaction allowing for various channels of energy
loss is possible by the formalism based on the dielectric
permittivity . According to this approach, the doubly
differential reciprocal mean free path, i.e., the probabil-
ity of losing energy "ω and momentum "q by an elec-
tron of energy E per unit length, can be represented in
the form [2]

(3)

Here, E is the electron energy, which is counted off
from the bottom of the conduction band, and a0 =
"2/me2 is the Bohr radius. The energy-loss function

q E0 z0,( ) = ΘΦ 0 Θ E, ,( ) Θsincos Θd ϕd E.d

0

π

∫
0

2π

∫
0

E0

∫

ε̃

d2lin
1–

d "ω( )d "q( )
-------------------------------

1
πa0qE
----------------Im 1

ε̃ q ω,( )
-----------------– 

  .=

Im 1
ε̃ q ω,( )
-----------------– 

 
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can be found by the extrapolation of the optical data
(0, ω) in the entire plane (q, ω). A method for such

extrapolation is proposed in [3–5].
The distribution in the energy loss in the inelastic

interaction is easily calculated from (3) by integrating
with respect to the momentum,

(4)

Here, q– and q+ are the minimal and maximal values of
the transferred momentum, which are determined from
the conservation law for the energy and momentum.

The reciprocal mean free path  for the inelastic inter-
action of an electron with a medium is calculated by
integrating (3) over the entire "ω and "q and may be
expressed in the form

where Qmax is the maximal possible energy loss.

The calculated reciprocal mean free path for Au and
Al is in good agreement with the results reported in [5]
in a wide energy range.

In the simulation of an electron trajectory, the
energy loss Q is defined by the relation F(Q) = R, where
R is a random number uniformly distributed in the
range [0, 1] and F(Q) is given by the expression

We developed an effective way of approximating
the function F–1(R). The parameters of this approxima-
tion and the differential (with respect to the energy)
reciprocal mean free path (4) were calculated for a
number of media on the basis of optical data [6]. These
data are listed in [7].

The Mott differential cross section was used to cal-
culate the elastic interaction of electrons with atoms of
a medium in the Monte Carlo method. This cross sec-
tion was determined by partial-wave expansion for the
elements of the periodic table with atomic numbers Z
from 1 to 103 in a wide range of energies. These data
are also in [7].

ANALYTICAL APPROXIMATIONS 
OF THE ESCAPE FUNCTION

In [8], it is shown that the kinetic equation may be
simplified in view of different scales of the angular and
energy relaxations. The characteristic lengths of the

ε̃

dlin
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d2lin
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"ω( )d "q( )d
------------------------------ "q.d
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"q+
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lin
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1– dlin
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"ω( )d
--------------- "ω,d
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F Q( )
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Q
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angular and energy relaxations, i.e., λ(E) and S(E), can
be determined in the following way:

Here, (dσel(E, Θ))/dΘ is the differential cross section
for the elastic scattering, N is the scatterer density, and
β(E) is the mean energy loss per unit length expressed

λ E( ) 2 2πN
σel E Θ,( )d

Θd
-------------------------Θ2 Θsin Θd

0

π

∫ 
 
 

1–

,=

S E( ) E/β E( ).=
by the formula

Other characteristic lengths of the electron propaga-
tion in a medium are the mean free path for elastic,

β E( ) "ω
lin

1–d
"ωd

---------- "ω.d

0

E

∫=

lel E( ) Nσel( ) 1– N2π
σel E Θ,( )d

Θd
------------------------- Θsin Θd

0

π

∫ 
 
 

1–

= =
Table 1.  The elastic and inelastic mean free paths lel and lin, respectively, the isotropization length λ, the energy relaxation
length S, and the ratio λ/S for Al

E, keV lel × 10–9 m lin × 10–9 m λ × 10–9 m S × 10–9 m λ/S

0.01 1.15 41.7 1.12 69.6 0.016

0.015 0.890 26.3 0.857 42.8 0.020

0.02 0.693 4.44 0.640 5.25 0.122

0.025 0.576 0.589 0.496 0.726 0.684

0.03 0.508 0.448 0.413 0.635 0.650

0.04 0.447 0.429 0.340 0.771 0.441

0.05 0.429 0.411 0.322 0.895 0.360

0.06 0.422 0.430 0.319 1.10 0.290

0.07 0.423 0.451 0.326 1.32 0.246

0.08 0.453 0.473 0.379 1.56 0.242

0.09 0.462 0.497 0.402 1.83 0.220

0.1 0.474 0.523 0.428 2.11 0.203

0.2 0.631 0.769 0.879 5.40 0.163

0.3 0.780 0.977 1.48 8.53 0.174

0.4 0.919 1.18 2.21 12.0 0.185

0.5 0.106 1.37 3.14 15.9 0.198

0.6 0.117 1.56 3.96 19.9 0.199

0.7 0.129 1.74 4.92 25.0 0.197

0.8 0.141 1.92 6.08 30.1 0.202

0.9 0.152 2.10 7.17 36.0 0.199

1.0 0.163 2.27 8.54 42.1 0.203

2.0 0.266 3.94 25.4 130 0.196

3.0 0.363 5.49 49.2 262 0.188

4.0 0.458 6.98 79.4 425 0.187

5.0 0.553 8.41 116 620 0.186

6.0 0.647 9.82 158 850 0.186

7.0 0.739 11.2 206 1120 0.184

8.0 0.831 12.6 259 1420 0.183

9.0 0.922 13.9 317 1740 0.182

10.0 10.1 15.2 381 2080 0.184

15.0 14.6 21.6 774 4320 0.179

20.0 19.1 27.7 1280 7080 0.181
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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and inelastic,

collisions. If the energy or angular change is small in a
single scattering event, the mean free paths would
essentially differ from the relaxation lengths.

In the case in which the angular-relaxation length is
less than the length of energy relaxation, i.e., the inte-

lin E( ) lin
1–( ) 1– lin

1–d
"ωd

---------- "ωd

0

Qmax

∫ 
 
 

1–

= =
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gral electron path, the introduction of the variable

 as a unit length makes it possible to sep-

arate the small parameter ε =  and sim-
plify the kinetic equation by perturbation-theory tech-
niques. Note, first of all, that in the case under consid-
eration, the angular rearrangement in interaction of an
electron with a medium is determined basically by the
elastic scattering. Therefore, the collision integral RcolΦ
can be approximately expressed as a sum of the elastic

λ E0( )S E0( )

λ E0( )S E0( )
Table 2.  The same as in Table 1, for Ge

E, keV lel × 10–9 m lin × 10–9 m λ × 10–9 m S × 10–9 m λ/S

0.01 0.188 19.9 0.235 4.24E-06 0.00553

0.015 0.316 8.67 0.379 1.76E-06 0.0215

0.02 0.455 3.71 0.579 7.06 0.082

0.025 0.577 1.97 0.807 3.70 0.218

0.03 0.659 1.29 1.00 2.50 0.4

0.04 0.701 0.868 1.12 1.85 0.606

0.05 0.664 0.759 1.02 1.82 0.562

0.06 0.626 0.748 0.925 1.98 0.467

0.07 0.595 0.750 0.845 2.18 0.389

0.08 0.566 0.764 0.757 2.40 0.316

0.09 0.548 0.784 0.714 2.64 0.270

0.1 0.536 0.808 0.683 2.90 0.236

0.2 0.575 1.08 0.713 5.59 0.128

0.3 0.656 1.33 0.908 8.45 0.108

0.4 0.737 1.57 1.17 11.6 0.101

0.5 0.817 1.81 1.48 15.2 0.0977

0.6 0.889 2.04 1.82 19.3 0.0942

0.7 0.958 2.28 2.18 23.6 0.0924

0.8 1.03 2.50 2.60 28.4 0.0917

0.9 1.09 2.73 3.01 33.1 0.0908

1.0 1.15 2.95 3.50 38.0 0.0923

2.0 1.69 4.98 9.44 107 0.0885

3.0 2.14 6.88 17.3 203 0.0855

4.0 2.56 8.70 26.9 320 0.0840

5.0 2.96 10.5 38.0 461 0.0825

6.0 3.34 12.2 50.6 620 0.0815

7.0 3.71 13.8 64.5 803 0.0803

8.0 4.06 15.5 79.7 1010 0.0792

9.0 4.41 17.1 96.1 1230 0.0784

10.0 4.75 18.7 114 1470 0.0774

15.0 6.40 26.5 219 2950 0.0743

20.0 7.99 34.0 352 4830 0.0728
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(RelΦ) and inelastic (RinΦ) terms

RelΦ N
σel E Ω'Ω,( )d

Ωd
--------------------------------Φ z Ω' E, ,( ) Ω'd

4π
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– NΦ z Ω E, ,( )
σel E ΩΩ',( )d

Ωd
-------------------------------- Ω',d

4π
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RilΦ
lin

1– E "ω+ "ω,( )d
"ω( )d

------------------------------------------

0

E0

∫=

× Φ z Ω E, , "ω+( )d"ω Φ z Ω E, ,( )lin
1– E( ),–
where N is the scatterer density.
The kinetic equation for the differential flux density

is replaced by the equation for the isotropic part of the
distribution that depends only on the depth and energy.
In terms of dimensionless variables, this equation has
the form [8]

(5)

Here,  is taken as a unit length; the initial
electron energy E0, a unit energy; and ν1 is the first
eigenvalue of the elastic term in the collision integral.
As it is noted in [8], the eigenfunctions of the operator

1
3ν1 E( )
-----------------∂2U

∂z2
--------- S E0( )RinU– δ z z0–( )δ E 1–( )– 0.=

λ E0( )S E0( )
Table 3.  The same as in Tables 1 and 2, for Au

E, keV lel × 10–9 m lin × 10–9 m λ × 10–9 m S × 10–9 m λ/S

0.01 0.510 3.49 0.212 5.75 0.0369

0.015 0.735 2.30 0.226 4.20 0.0538

0.02 0.612 1.76 0.211 3.41 0.0621

0.025 0.430 1.44 0.188 2.88 0.0652

0.03 0.313 1.22 0.169 2.51 0.0672

0.04 0.211 0.999 0.161 2.20 0.0731

0.05 0.181 0.852 0.183 1.91 0.0959

0.06 0.168 0.736 0.218 1.68 0.130

0.07 0.161 0.650 0.262 1.50 0.175

0.08 0.174 0.592 0.322 1.39 0.232

0.09 0.173 0.554 0.394 1.33 0.296

0.1 0.174 0.530 0.483 1.31 0.368

0.2 0.222 0.542 0.869 1.90 0.457

0.3 0.290 0.644 0.873 3.03 0.288

0.4 0.351 0.760 0.891 4.49 0.199

0.5 0.405 0.871 0.982 6.07 0.153

0.6 0.442 0.980 0.982 7.80 0.126

0.7 0.475 1.09 1.04 9.63 0.108

0.8 0.507 1.19 1.11 11.6 0.0965

0.9 0.533 1.29 1.19 13.6 0.0878

1.0 0.560 1.39 1.28 15.6 0.0819

2.0 0.766 2.32 2.46 41.3 0.0596

3.0 0.932 3.18 4.06 76.4 0.0531

4.0 1.08 4.01 5.97 121 0.0491

5.0 1.21 4.80 8.13 174 0.0469

6.0 1.33 5.57 10.5 231 0.0456

7.0 1.45 6.32 13.1 299 0.0439

8.0 1.56 7.06 15.9 371 0.0430

9.0 1.67 7.70 18.9 451 0.0420

10.0 1.77 8.51 22.1 535 0.0413

15.0 2.23 12.0 40.3 1060 0.0381

20.0 2.66 15.4 62.0 1720 0.0361
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RelΦ are the spherical harmonics Yi, k(Ω), and ν1 can be
found from the equation RelY1.0 = ν1Y1.0.

Opportunities for further simplification of electron
kinetics are connected to the features of the inelastic
interaction of electrons with a medium. The form of the
escape function is defined by the relation between the
inelastic mean free path lin and the integral electron
path S. If the energy losses in the inelastic scattering are
comparable to the electron energy and an electron loses
all its energy in the course of several inelastic colli-
sions, the inelastic mean free path would be of the same
order of magnitude as the integral electron path. If an
electron loses all its energy in the first inelastic colli-
sion, the number of particles in a phase-volume ele-
ment does not increase due to collisions. Hence, the
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
inelastic collision integral can be represented in the
form

(6)

After replacing RinU by (6), Eq. (5) turns into an
ordinary differential equation and its solution results in
the escape function of the form

(7)

where the escape length L1 is given by

(8)

RinU
U

lin E( )
-------------.–=

q z0( ) C1
z0

L1
-----– 

  ,exp=

L1 E0( ) λ E0( )lin E0( )/3 ν1 E0( ) .=
Table 4.  The parameters of the analytical approximation of the escape function and the approximation error for Al

E, keV L1 × 10–9 m C1 Ι1 L2 × 10–9 m C2 Ι2

0.015 2.93 0.827 0.0010 5.79 0.694 0.0203

0.02 1.22 0.633 0.0102 2.40 0.534 0.0265

0.025 0.339 0.417 0.0119 0.652 0.348 0.0180

0.03 3.19 0.380 0.0776 6.19 0.321 0.0181

0.04 2.16 0.426 0.0212 4.64 0.314 0.0389

0.05 2.83 0.410 0.0173 5.71 0.331 0.0299

0.1 2.46 0.446 0.0188 4.93 0.363 0.0282

0.2 2.15 0.716 0.0076 4.50 0.559 0.0238

0.3 2.51 0.801 0.0046 5.03 0.654 0.0143

0.4 3.11 0.809 0.0089 6.13 0.669 0.1012

0.5 3.78 0.805 0.0104 7.56 0.663 0.0087

0.6 4.41 0.812 0.0139 8.93 0.667 0.0061

0.7 5.32 0.795 0.0137 10.7 0.659 0.0056

0.8 6.21 0.789 0.0144 12.3 0.659 0.0047

0.9 7.12 0.786 0.0140 14.3 0.649 0.0050

1.0 8.22 0.782 0.0147 16.4 0.652 0.0042

1.5 14.8 0.750 0.0156 29.3 0.629 0.0039

2.0 22.1 0.766 0.0160 43.6 0.642 0.0026

2.5 31.9 0.758 0.0172 62.2 0.641 0.0014

3.0 43.2 0.748 0.0166 83.7 0.637 0.0030

4.0 67.6 0.760 0.0179 131 0.645 0.0025

5.0 98.8 0.754 0.0194 190 0.647 0.0020

6.0 135 0.747 0.0194 259 0.646 0.0023

7.0 176 0.750 0.0203 333 0.649 0.0026

8.0 221 0.751 0.0200 420 0.652 0.0028

9.0 275 0.744 0.0210 517 0.648 0.0035

10.0 327 0.745 0.0211 617 0.650 0.0036

15.0 671 0.740 0.0205 1260 0.649 0.0038

20.0 1100 0.747 0.0223 2080 0.649 0.0049
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A different condition takes place for fast electrons.
In this case, the inelastic mean free path turns out to be
much less than the integral path. This allows one to
employ the continuous slowing-down approximation

RinU
∂

∂E
------ β E( )U( ).=
The kinetic equation is reduced to the diffusion
equation [8] in this case. Solving this equation yields

(9)

Here, the escape length L2 is related to the lengths of the

q z0( ) C2 1 erf
z0

L2
----- 

 – .=
Table 5.  The same as in Table 4, for Ge

E, keV L1 × 10–9 m C1 Ι1 L2 × 10–9 m C2 Ι2

0.012 1.61 0.800 0.0008 3.24 0.651 0.0183
0.014 1.59 0.778 0.0008 3.23 0.628 0.0182
0.015 1.59 0.758 0.0007 3.24 0.608 0.0181
0.016 1.58 0.737 0.0010 3.15 0.599 0.0173
0.017 1.57 0.709 0.0026 3.16 0.579 0.0185
0.018 1.55 0.688 0.0018 3.13 0.558 0.0174
0.02 1.57 0.657 0.0022 3.15 0.534 0.0171
0.025 1.62 0.646 0.0025 3.24 0.528 0.0169
0.03 1.62 0.676 0.0011 3.26 0.552 0.0161
0.04 1.65 0.692 0.0007 3.26 0.570 0.0157
0.05 1.66 0.699 0.0014 3.31 0.577 0.0147
0.1 1.77 0.770 0.0041 3.60 0.628 0.0144
0.2 1.97 0.859 0.0077 3.93 0.703 0.0124
0.3 2.34 0.872 0.0106 4.61 0.721 0.0096
0.4 2.69 0.891 0.0129 5.44 0.729 0.0085
0.5 3.13 0.884 0.0135 6.35 0.726 0.0079
0.6 3.63 0.887 0.0136 7.37 0.727 0.0081
0.7 4.18 0.873 0.0135 8.50 0.715 0.0076
0.8 4.77 0.870 0.0141 9.69 0.712 0.0070
0.9 5.32 0.874 0.0148 10.8 0.715 0.0069
1.0 6.07 0.853 0.0136 12.2 0.708 0.0072
1.1 6.70 0.861 0.0143 13.5 0.710 0.0065
1.2 7.56 0.844 0.0140 15.2 0.698 0.0063
1.3 8.45 0.834 0.0136 16.9 0.694 0.0066
1.5 10.3 0.840 0.0143 20.6 0.699 0.0061
2.0 14.5 0.862 0.0155 29.2 0.709 0.0058
2.5 20.3 0.832 0.0153 40.7 0.688 0.0050
3.0 25.7 0.855 0.0162 52.1 0.699 0.0047
4.0 39.3 0.845 0.0160 79.6 0.693 0.0046
5.0 56.1 0.840 0.0165 112 0.699 0.0040
6.0 74.0 0.847 0.0170 148 0.702 0.0038
7.0 94.3 0.839 0.0178 188 0.698 0.0029
8.0 117 0.843 0.0181 229 0.709 0.0023
9.0 144 0.830 0.0184 277 0.708 0.0021

10.0 168 0.833 0.0176 331 0.700 0.0031
11.0 194 0.841 0.0184 385 0.705 0.0026
12.0 225 0.844 0.0190 442 0.709 0.0015
15.0 324 0.842 0.0187 639 0.707 0.0026
20.0 612 0.774 0.0133 1030 0.711 0.0037
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angular and energy relaxations by the relation

(10)

where the dimensionless coefficient τ* has the form

(11)

The diffusion approximation is valid far from the
surface (at depths of the order of the isotropization
length and greater). Therefore, solutions (7) and (9) are
correct to an accuracy of energy-dependent factors C1
and C2, which are defined by the matching condition for

L2 E0( ) 2 λ E0( )S E0( )τ*,=

τ*
Ed

3S E0( )λ E0( )β E( )ν1 E( )
-----------------------------------------------------------.

E0

0

∫=
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the solutions of the kinetic equation in the diffusion
region with those in the near-surface layer. In practice,
the coefficients C1 and C2 may be found by using the
results of numerical calculation of the escape function.

RESULTS AND DISCUSSION

With the program developed, we calculated the
escape function for the mediums with rather different
atomic numbers Al (Z = 13), Ge (Z = 32), and Au (Z =
79) in a wide range of primary electron energies (from
tens of electronvolts to tens of kiloelectronvolts).

The characteristic lengths determining the electron
kinetics were calculated in order to determine the
Table 6.  The same as in Tables 4 and 5, for Au

E, keV L1 × 10–9 m C1 Ι1 L2 × 10–9 m C2 Ι2

0.012 0.626 0.624 0.0050 1.27 0.513 0.0197

0.015 0.631 0.625 0.0047 1.28 0.506 0.0188

0.02 0.626 0.666 0.0043 1.26 0.540 0.0191

0.025 0.616 0.696 0.0025 1.26 0.559 0.0183

0.03 0.616 0.715 0.0027 1.26 0.574 0.0189

0.04 0.640 0.754 0.0019 1.29 0.612 0.0189

0.05 0.654 0.771 0.0013 1.30 0.632 0.0166

0.06 0.668 0.780 0.0019 1.34 0.634 0.0161

0.08 0.691 0.799 0.0038 1.38 0.652 0.0147

0.1 0.721 0.802 0.0056 1.43 0.662 0.0132

0.2 0.888 0.815 0.0114 1.81 0.665 0.0084

0.3 1.08 0.821 0.0138 2.18 0.675 0.0061

0.4 1.26 0.832 0.0150 2.55 0.684 0.0053

0.5 1.45 0.846 0.0151 2.95 0.693 0.0054

0.6 1.65 0.854 0.0154 3.35 0.698 0.0053

0.7 1.84 0.868 0.0160 3.75 0.709 0.0052

0.8 2.08 0.864 0.0149 4.23 0.707 0.0060

0.9 2.30 0.869 0.0149 4.65 0.714 0.0062

1.0 2.56 0.870 0.0141 5.07 0.718 0.0063

1.5 3.84 0.873 0.0132 7.72 0.717 0.0077

2.0 5.25 0.877 0.0137 10.6 0.719 0.0072

2.5 6.98 0.871 0.0133 14.1 0.714 0.0074

3.0 8.69 0.881 0.0142 17.1 0.729 0.0066

4.0 12.6 0.888 0.0145 25.8 0.725 0.0070

5.0 17.5 0.880 0.0145 35.3 0.727 0.0068

6.0 22.3 0.892 0.0153 45.4 0.731 0.0064

7.0 27.9 0.902 0.0168 56.8 0.738 0.0050

8.0 33.9 0.904 0.0169 69.1 0.738 0.0050

9.0 40.8 0.898 0.0174 81.7 0.745 0.0042

10.0 48.4 0.895 0.0161 96.9 0.743 0.0057

15.0 89.1 0.905 0.0175 178 0.751 0.0045

20.0 137 0.921 0.0184 278 0.755 0.0039
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energy ranges in which the assumptions used in the der-
ivation of (7) and (9) are valid. In this study, we used
the Mott differential cross section for the elastic scatter-
ing, as well as the differential (with respect to the
energy) reciprocal mean free path (4). The characteris-
tic lengths for aluminum, germanium, and gold are
listed in Tables 1–3. These data show that starting with
some energy of the order of hundreds of electronvolts,
the ratio λ/S does not exceed 0.2 for all the elements.
Note that λ/S decreases with increasing atomic number.

0.00025

0

20

L(E), cm

E, keV
5 10 15

0.00020

0.00010

0.00005

0.00015

1
2

(a)

0.00010

0

0.00008

0.00004

0.00002

0.00006

(b)

0.000030

0

0.000020

0.000010

0.000005

0.000015

(c)

0.000025

Escape lengths for (a) aluminum, (b) germanium, and
(c) gold obtained from (1) the approximate solution of the
kinetic equation and (2) the results of the Monte Carlo sim-
ulation.
At lower energies, except for the region of very small
energies (E < 20 eV for Al and Ge, and E < 50 eV for
Au), this ratio is not small, and the processes of angular
and energy relaxations cannot be separated. Tables 1–3
show that the inelastic mean free path in an energy
range of E > 1keV is much less than the integral path.
This makes it possible to use the continuous slowing-
down approximation. In this connection, the use of
expression (9) for the escape function is justified in this
energy range. At energies of the order of tens of elec-
tronvolts, the mean free path is comparable to the inte-
gral path. Hence, expression (7) may be valid to
describe the form of the escape function.

In order to solve the problem of the accuracy of the
analytical approximations, we compared the depen-
dences of the escape function on the depth qMC(z)
obtained by numerical simulation with the analytical
expressions (7) and (9). In this study, the quantities L1,
L2, C1, and C2 were treated as free parameters that were
determined by numerical minimization of the func-
tional

(12)

The parameters obtained, as well as the values of the
functional for Al, Ge, and Au, are listed in Tables 4–6.
It turns out that in the small-energy range (of the order
of tens of electronvolts), expression (7) yields smaller
values of I than (9); i.e., expression (7) is a better
approximation of the escape function. The reverse situ-
ation takes place at energies E > 1 keV. In this energy
range, the escape function is better approximated by
(9). Finally, in the range of the intermediate energies,
both analytical approximations have similar accuracy.
The value of the functional turns out to be two times as
great as that for E > 1 keV and E < 50 eV. The data
obtained are in good agreement with the results of the
analysis of characteristic lengths for the electron trans-
port process.

The comparison of escape lengths obtained by min-
imization of the functional (12) with those calculated
by formulas (10) and (11) is of considerable interest.
The energy dependences of the escape lengths mini-
mizing the functional (12) and those calculated by the
formulas (10) and (11) are shown in the figure. In the
case of gold and germanium at electron energies E0 >
2 keV, i.e., in the energy range in which λ ! S and lin ! S,
both dependences coincide up to the error of the mini-
mization procedure. In this energy range, the escape
lengths calculated by both methods for germanium and
gold differ from each other by less than 3%. At the
same time, the accuracy in determining the escape
length by minimizing the functional (12) is about 10%.
For aluminum, the discrepancy in escape lengths turns
out to be about 15%. The reason is apparently a rela-
tively large value of λ(E0)/S(E0).

I
1
N
---- qMC zi( ) q zi( )–[ ] 2

i 1=

N

∑ .=
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At an electron energy so low that it is likely lost in
the first inelastic collision, one may expect that the
escape length L1 involved in (7) satisfies relation (8). In
order to verify this assumption, the escape lengths L1
obtained by minimization of the functional (12) are
compared to those calculated by formula (8). For elec-
trons with energies of 10–25 eV, the discrepancy is
about 10%.

CONCLUSION
A program for simulating electron transport by the

Monte Carlo method using the single-scattering model
was developed. The properties of inelastic interaction
were calculated using the dielectric approach. The
escape functions for aluminum, germanium, and gold
were calculated in an energy range of 0.012–20 keV.

The escape functions calculated were used to deter-
mine the applicability ranges for the analytical expres-
sions obtained in [1]. Using the differential cross sec-
tions for elastic and inelastic interactions, the charac-
teristic lengths determining the electron kinetics, i.e.,
the elastic and inelastic mean free paths, the isotropiza-
tion length, and the integral path, were calculated. The
analysis of relations between these quantities made it
possible to determine the ranges of applicability for the
assumptions used in [1] to derive the analytical expres-
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
sions for the escape function. The comparison between
the analytical and numerical results confirmed the con-
clusions of [1] about the form of analytical approxima-
tion of the escape function for electrons of various ener-
gies and showed the validity of the analytical expres-
sions obtained for electron escape lengths.
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Abstract—Near-critical behavior of the free surface of a perfectly conducting liquid in an external electric field
is considered. Based on an analysis of three-wave processes using the method of integral estimates, sufficient
criteria for hard instability of a planar surface are formulated. It is shown that the higher-order nonlinearities do
not saturate the instability, for which reason the growth of disturbances has an explosive character. © 2001
MAIK “Nauka/Interperiodica”.
INTRODUCTION

The electrohydrodynamic instability of the free sur-
face of a conducting liquid in a strong electric field
[1, 2] is responsible for many physical processes, such
as the initiation and keeping up the emission of charged
particles, vacuum breakdown, vacuum discharge, etc.
The interaction of an electric field and charges induced
by this field on the surface of a liquid (liquid metal)
leads to a growth of surface disturbances and the forma-
tion of regions with a significant curvature [3–5]. The
dispersion law for the waves on a planar surface of a
perfectly conducting liquid in an external electric field
of strength E has the following form [6]:

(1)

where ω is the frequency, k is the wave vector, g is the
acceleration of gravity, α is the surface tension coeffi-
cient, and ρ is the density of the medium.

It is seen from Eq. (1) that if the condition

is fulfilled, then ω2 > 0 at any |k| and, consequently, the
surface disturbances do not grow with time. If the mag-
nitude of the field E, which plays the role of an external
governing parameter, exceeds a certain critical value
Ec, then there arises a region of wave vectors |k| for
which ω2 < 0, which corresponds to an aperiodic insta-
bility. Thus, the condition E > Ec is a criterion for the
surface instability with respect to infinitely small dis-
turbances of the surface shape and of the field of veloc-
ities.

It was shown in [7–9], where liquids with various
physical properties have been considered, that a nonlin-
ear interaction of three standing waves that form a hex-
agonal structure can lead to a hard excitation of the
instability of a charged surface. In our case, this means

ω2 g k
α
ρ
--- k 3 E2

4πρ
---------- k 2,–+=

E2 Ec
2< 8π gαρ=
1063-7842/01/4607- $21.00 © 20806
that, even at subcritical fields (E < Ec), a disturbance of
a sufficient magnitude can break the equilibrium of a
planar surface. In this connection, there arises a need of
constructing criteria for the instability of a charged sur-
face of a conducting liquid with respect to perturbations
of a finite magnitude, i.e., criteria that will permit one,
proceeding from some initial data such as the shape of
the surface and the distribution of velocities, to answer
the question of whether or not the initial perturbation
will lead to the loss of the stability of a planar boundary
and, as a consequence, to an explosive growth of cusp-
like structures. This work is devoted to constructing
such criteria using the method of integral estimates that
was applied previously to obtain the conditions of col-
lapse for the nonlinear Schrödinger equation [10, 11],
nonlinear Klein–Gordon equation [12, 13], and various
modifications of the Boussinesq equation [14].

In Section 1, we give equations of the vertex-free
motion of a perfectly conducting liquid with a free sur-
face in an electric field and give their Hamiltonian for-
mulation. In Section 2, the theory of perturbations in a
small parameter, namely, in the characteristic angle of
the surface slope, is constructed up to fourth-order
terms in the Hamiltonian. The analysis of the surface
dynamics is significantly simplified in the case of small
“supercriticalities” (i.e., if the field only slightly
exceeds the critical value Ec)

when only perturbations with wave numbers close to

k0 =  increase (this value of the wave number
corresponds to the so-called dominant harmonic of sur-
face perturbations). This permits us in Section 3 to con-
struct a set of amplitude equations for describing the
nonlinear interaction of three standing waves that form
a hexagonal structure which is the main interaction at
near-critical values of the field E. In Section 4, we

ε E2 Ec
2–( )/Ec

2, ε  ! 1,=

gρ/α
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extend the method of integral estimates for several
interacting nonlinear waves. By using this method, one
can pass from a set of partial differential equations for
complex amplitudes A1, A2, and A3 to a second-order
differential inequality for the norm

by analyzing which we obtain a number of sufficient
criteria of the hard excitation of an electrohydrody-
namic instability of a charged surface. Note that most
of them refer to subcritical values of the external elec-
tric field, when the surface is stable in a linear approxi-
mation, while the development of the instability is
related to three-wave processes. In Section 5, we show,
using the example of one-dimensional and square lat-
tices of surface perturbations for which the three-wave
interactions degenerate, that the higher-order wave pro-
cesses do not saturate the instability but, on the con-
trary, lead to an explosive growth of amplitudes.

INITIAL EQUATIONS

Consider the potential motion of an ideal conduct-
ing liquid of infinite depth placed in an external uni-
form electric field of strength E. Assume that the field-
strength vector is directed along the z axis and, corre-
spondingly, in the unperturbed state the boundary of the
liquid is a planar horizontal surface z = 0. Let the func-
tion η(x, y, t) specify the deviation of the boundary
from the flatness, i.e., the region occupied by the liquid
is restricted by a free surface z = η.

The velocity potential for an incompressible liquid Φ
satisfies Laplace’s equation

(2)

with the following conditions at the metal–vacuum
boundary and at infinity:

(3)

where ϕ is the electric-field potential.

The first term on the right-hand side of the dynamic
boundary condition (nonstationary Bernoulli equation)
is responsible for the electrostatic pressure, the second
term determines the capillary pressure, and the third
term takes into account the effect of the gravitational
field. The time evolution of the free surface is deter-
mined by the kinematic relation (condition of nonflow-
ing of the liquid through its boundary)

Finally, the electric-field potential ϕ in the absence

X A1
2 A2

2 A3
2+ +( )d2r,∫=

∇ 2Φ 0=

∂Φ
∂t
------- ∇Φ( )2

2
----------------+  = ∇ϕ( )2 E2–

8πρ
---------------------------

α
ρ
--- ∇ ⊥

∇ ⊥ η

1 ∇ ⊥ η( )2+
------------------------------- gη ,–+

z η , Φ 0, z ∞,–=

∂η
∂t
------ ∂Φ

∂z
------- ∇ ⊥ η∇ ⊥ Φ, z– η .= =
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
of spatial charges satisfies Laplace’s equation

which should be solved simultaneously with the condi-
tion of the equipotentiality of the boundary of the con-
ducting liquid and the condition of the uniformity of the
field at an infinite distance from the surface:

Note that the above-written equations of motion
have a Hamiltonian structure and the functions η(x, y, t)
and ψ(x, y, t) = Φ|z = η are canonically conjugated quan-
tities [15]

(4)

where the Hamiltonian H coincides to an accuracy of a
constant with the total energy of the system

For a further consideration of the problem, it is con-
venient to represent the Hamiltonian in the form of a
surface integral. We introduce a perturbation of the
electric-field potential  = ϕ + Ez. It can easily be
shown that the perturbed potential  satisfies Laplace’s
equation

(5)

with conditions

(6)

(7)

from which it is seen that the perturbation introduced
by the surface z = η into the distribution of the electric
field decays as z  ∞. Taking into account that, in
view of the incompressibility of the liquid, a relation

d2r = 0 is valid, and neglecting terms whose

variation does not contribute to the equations of
motion, we obtain, using the first Green’s formula,

where ds is the surface differential and ∂/∂n denotes the
derivative in the direction of the normal to the surface
z = η.

∇ 2ϕ 0,=

ϕ 0, z η ,= =

ϕ Ez, z ∞.–

∂ψ
∂t
-------

δH
δη
-------,

∂η
∂t
------–

δH
δψ
-------,= =

H
∇Φ( )2

2
----------------d3r

z η≤
∫ ∇ϕ( )2

8πρ
---------------d3r

z η≥
∫–=

+ gη2

2
---------

α
ρ
--- 1 ∇ ⊥ η( )2+ 1–( )+ d2r.∫

ϕ̃
ϕ̃

∇ 2ϕ̃ 0,=

ϕ̃ Eη , z η ,= =

ϕ̃ 0, z ∞,

ϕ̃ z η=∫

H
ψ
2
----∂Φ

∂n
------- Eη

8πρ
----------∂ϕ̃

∂n
------+ sd

s

∫=

+ gη2

2
---------

α
ρ
--- 1 ∇ ⊥ η( )2+ 1–( )+ d2r,∫
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By eliminating the normal derivatives of the poten-
tials  and Φ, we can reduce the expression for the
Hamiltonian to the form

(8)

which is more suitable for further transformations.

SMALL-ANGLE APPROXIMATION

Our further problem is to eliminate the spatial vari-
able z from the equations of motion, i.e., to pass from
the initial three-dimensional equations to two-dimen-
sional ones. To do this, we should write the integrand in
Eq. (8) through the canonical variables η and ψ. Then,
there arises a need to solve Eq. (5) with conditions (6)
and (7) as well as Eq. (2) with the conditions

and condition (3). We use the known solutions to
Laplace’s equation for the half-spaces z < 0 and z > 0
for functions that decay at infinity

(9)

(10)

Now, we should express the magnitudes of the poten-
tials  and Φ that enter into these relationships at the
plane z = 0 through their magnitudes at the boundary
z = η, i.e., through the functions Eη and ψ. Let the char-
acteristic angles of the surface slope be small: |∇ ⊥ η| ! 1.
In this case, the potentials near the z-0 plane can be
expanded into a power series in surface perturbation η:

(11)

ϕ̃

H
ψ
2
---- Φz ∇η∇ ⊥ Φ–( ) z η=∫=

+
Eη
8πρ
---------- ϕ̃ z ∇η∇ ⊥ ϕ̃–( ) z η= d2r

+ gη2

2
---------

α
ρ
--- 1 ∇ ⊥ η( )2+ 1–( )+ d2r,∫

Φ ψ, z η ,= =

ϕ̃ x y z, ,( ) = 
1

2π
------ zϕ̃ x' y' 0, ,( )

x' x–( )2 y' y–( )2 z2+ +[ ] 3/2
--------------------------------------------------------------- x'd y',d

∞–

+∞

∫
∞–

+∞

∫
z 0,>

Φ x y z, ,( ) = 1
2π
------–

zΦ x' y' 0, ,( )

x' x–( )2 y' y–( )2 z2+ +[ ] 3/2
--------------------------------------------------------------- x'd y'.d

∞–

+∞

∫
∞–

+∞

∫
z 0.<

ϕ̃

ϕ̃ x y η x y,( ), ,( ) ηn

n!
-----∂nϕ̃

∂zn
---------

z 0=

,
n 0=

∞

∑=

Φ x y η x y,( ), ,( ) ηn

n!
-----∂nΦ

∂zn
----------

z 0=

.
n 0=

∞

∑=
By differentiating Eqs. (9) and (10) with respect to
z, we find that

where  is the two-dimensional integral operator given
by the expression

This relationship can be considered as a conse-
quence of the fact that the Laplacian operator can for-
mally be represented as

where the left-hand bracket corresponds to solutions
that are asymptotically decay as z  +∞ and the
right-hand bracket corresponds to solutions that decay
as z  –∞.

By eliminating the derivative with respect to z from
the expansions (11), we find

where we introduced nonlinear shear operators

Let  be the operators that are inverse with
respect to the shear operators. Their form can be deter-
mined using the method of successive approximations

Then, we have

These relationships, along with Eqs. (9) and (10),
specify the solutions to Laplace’s equations with neces-
sary boundary conditions in the form of infinite series.
Using these solutions, we can write the various possible
derivatives of the potentials  and Φ that enter into the
Hamiltonian through the functions η and ψ. As a result,
we find

ϕ̃ z z 0= k̂ϕ̃ z 0= , Φz z 0=– k̂Φ z 0= ,= =

k̂

k̂ f
1

2π
------ f x' y',( )

x' x–( )2 y' y–( )2+[ ] 3/2
------------------------------------------------------- x'd y'.d

∞–

+∞

∫
∞–

+∞

∫–=

∇ 2 ∂z k̂+( ) ∂z k̂–( ),=

ϕ̃ x y η x y,( ), ,( ) T̂+ϕ̃ x y 0, ,( ),=

Φ x y η x y,( ), ,( ) T̂–Φ x y 0, ,( ),=

T̂+
ηnk̂

n

n!
----------, T̂–

n 0=

∞

∑ η–( )nk̂
n

n!
-------------------

n 0=

∞

∑ .= =

T±
1–

T±
1– 1 η k̂ η2k̂

2
/2– η k̂η k̂ … .+ ++−=

ϕ̃ x y 0, ,( ) ET̂+
1– η x y,( ),=

Φ x y 0, ,( ) T̂–
1– ψ x y,( ).=

ϕ̃

H
ψ
2
---- T̂+k̂T̂–

1– ψ ∇ ⊥ η T̂+∇ ⊥ T̂+
1– ψ–( )d2r∫=

–
E2η
8πρ
---------- T̂–k̂T̂–

1– η ∇ ⊥ η T̂–∇ ⊥ T̂–
1– η+( )d2r∫
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To describe the initial stages of instability develop-
ment on the surface of a conducting liquid, it is suffi-
cient to restrict ourselves by allowance for a finite num-
ber of terms in the expansion of the integrands of the
functional H in canonical variables. By omitting terms
of higher than the fourth order of smallness for the sur-
face perturbation η and higher than the second order for
the potential ψ (this proves to be sufficient at small
supercriticalities) and successively integrating by parts,
we finally obtain

(12)

These expressions, in combination with Eq. (4), rep-
resent a two-dimensional reduction of the equations of
motion of a conducting liquid in an external electric
field that is applicable if the condition of the smallness
of the characteristic angles of the surface slope is ful-
filled.

AMPLITUDE EQUATIONS

Now, let us consider the nonlinear dynamics of the
perturbations of the free surface of a conducting liquid
for the case where the magnitude of the external elec-
tric field E is close to its threshold value Ec, i.e., |ε| ! 1.
It follows from the dispersion relation (1) that, at small
supercriticalities, only surface waves with wave num-
bers close to k0 can be excited. The main nonlinear
interaction in this case will be the three-wave interac-
tion between the waves whose wave vectors are turned
with respect to one another by an angle of 2π/3. This
can easily be understood from the conditions

Near the threshold, it is natural to pass to envelopes
using the following substitutions:

+ gη2

2
---------

α
ρ
--- 1 ∇ ⊥ η( )2+ 1–( )+ d2r.∫

H H 2( ) H 3( ) H 4( ),+ +=

H 2( ) ψk̂ψ
2

----------- E2η k̂η
8πρ

---------------- gη2

2
--------- α ∇η( )2

2ρ
-------------------+ +– d2r,∫=

H 3( ) E2

8πρ
---------- η ∇η( )2 k̂η( )2

–[ ] d2r,∫=

H 4( ) E2

8πρ
---------- η k̂η k̂η k̂η η k̂η2∇ 2η+[ ] d2r∫–=

–
α ∇η( )4

8ρ
-------------------d2r.∫

k1 k2 k3+ + 0, k1 k2 k3 k0.= = = =

η r t,( ) A j x j y j t, ,( )e
ik jr

j 1=

3

∑ c.c.,+=

ψ r t,( ) B j x j y j t, ,( )e
ik jr

j 1=

3

∑ c.c.,+=
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where k1 = {k0, 0}, k2 = {–k0/2, k0/2}, k3 = {–k0/2,

– k0/2}, and Aj and Bj (j = 1, 2, 3) are slow functions
of the variables xj and yj that form orthogonal coordi-
nate systems with abscissa axes directed along the
wave vectors kj. Such a representation for the functions
η and ψ corresponds to a hexagonal structure of the
perturbed surface.

Using these relationships for the perturbations η and

ψ, we can approximate the integral operator  that
enters into Hamiltonian (12) by a differential operator.
Let us use the following property:

which is related to the fact that the Fourier transform of

the operator  is equal to the modulus of the wave vec-
tor. Consider a plane wave of the form

whose wave vector is close to k0 (i.e., |qx| ! k0 and
|qy ! k0|). The quantity |k| can be expanded in a series
in qx and qy:

This means that if we deal with a narrow (in the k
space) wave packet with a carrying wave vector k =
{k0, 0}, which can be represented in the form

A(x, y) , then the operator  can be approximated
as follows:

(similar relations are obtained for the amplitudes Aj in
the coordinates of xj and yj).

Then, inserting the expressions for η and ψ into
Hamiltonian (12) and performing necessary averaging,
we find (to an accuracy of terms of a higher order of
smallness)1

1 Note that it is more suitable to perform these calculations in the k
representation.

3

3

k̂

k̂eikr k eikr,=

k̂

eikr e
i k0x qx x qyy+ +( )

,=

k k0 qx+( )2 qy
2+=

≈ k0 qx 2k0( ) 1– qy
2 2k0

2( ) 1–
qxqy

2– 2k0( ) 3– qy
4.–+ +

e
ik0x

k̂

k̂A x y t, ,( )e
ik0x

k0A iAx– 2k0( ) 1– Ayy–(≈

– i 2k0
2( ) 1–

Axyy 2k0( ) 3– Ayyyy )e
ik0x

–

H k0 B j
2 2gε A j

2–




∫
j 1=

3

∑=

+
g

k0
2

----
∂A j

∂x j

--------
i

2k0
--------

∂2A j

∂y j
2

-----------–
2





d2r

– 3gk0 A1A2A3 A1*A2*A3*+( )d2r.∫
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The dynamic equations that describe the time evolu-
tion of amplitudes Aj and Bj are found from the relations
[16]

where j = 1, 2, 3.
By varying the expression for the averaged Hamil-

tonian, we obtain the following equations for the ampli-
tudes:

By eliminating the amplitudes Bj from these equa-
tions and passing to dimensionless quantities using the
substitutions

(13)

we obtain the following set of equations:

(14)

(15)

(16)

where we introduced operators

The Hamiltonian corresponding to these amplitude
equations is written as follows:

(17)

Thus, we obtained equations that describe the initial
stages of the development of instability of the surface
of a conducting liquid in a near-critical field, when the
small-angle approximation is valid and the main non-
linear interaction is the interaction of three standing
waves that form a hexagonal lattice. Note that analo-
gous equations describe the instability of the charged
surface of liquid helium [8, 17].

A jt

δH
δB j*
----------, B jt

δH
δA j*
----------,–= =

A jt
k0B j,=

B jt
2gk0εA j

g
k0
---- ∂

∂x
------

i
2k0
-------- ∂2

∂y2
--------– 

 
2

A j+=

+ 3gk0
2 A1*A2*A3*

A j*
----------------------.

r r/ 2k0( ), A j A j/k0,

t t/ 2gk0, H 2Hg/k0
2,

A1tt
εA1 L̂1

2
A1 3A2*A3*/2,+ +=

A2tt
εA2 L̂2

2
A2 3A3*A1*/2,+ +=

A3tt
εA3 L̂3

2
A3 3A1*A2*/2,+ +=

L̂ j
∂

∂x j

-------
i

2
------- ∂2

∂y j
2

--------, j– 1 2 3., ,= =

H A j t
2 L̂ j A j

2 ε A j
2–+( )

j 1=

3

∑∫=

∑ –
3
2
--- A1A2A3 A1*A2*A3*+( ) d2r.
CRITERIA FOR EXPLOSIVE 
INSTABILITY

As is known, hexagonal structures on a charged sur-
face of various liquids are characterized by a hard
regime of excitation [7, 8]. For the set of equations
(14)–(16), this means the possibility of an unbounded
growth of the amplitudes Aj in a finite time. Indeed, in
the simplest case, when the amplitudes are independent
of the spatial variables, are real, and are equal to one
another, i.e., A1 = A2 = A3 = A(t), the time evolution of
the quantity A is described by an ordinary differential
equation with a quadratic nonlinearity

Because of its influence, the amplitude grows with
the asymptotics A  4(t – tc)–2 under corresponding
initial conditions, i.e., the magnitude of A becomes infi-
nite at the moment tc. However, what seems to be obvi-
ous for spatially uniform (coordinate-independent)
solutions requires to be proved in the case of arbitrary
amplitudes A1, A2, and A3. In particular, of a significant
interest is the situation where the initial perturbation of
the surface is localized in a certain region.

Let us show, using the method of differential ine-
qualities, that the nonlinear interaction of amplitudes Aj

in terms of model (14)–(16) results in an explosive
growth of perturbations of the surface of a conducting
liquid and find the sufficient conditions for hard excita-
tion of the instability. To this end, we introduce the
norms

and consider the time evolution of the following nonne-
gative quantity:

By analogy with [12], we doubly differentiate X
with respect to t

after substituting the corresponding right-hand sides of
the amplitude equations (14)–(16) for the multiple
derivatives  and . Then, eliminating the sign-
ambiguous cubic nonlinearity from the integrand using

Att εA 3A2/2.+=

X j t( ) A j
2d2r; j∫ 1 2 3, ,= =

X X j.
j 1=

3

∑=

Xtt 2 A j t
2 A jtt

A j* A jtt
* A j+ +( )d2r∫

j 1=

3

∑=

=  2 A j t
2 L̂ j A j

2 ε A j
2+ +( )

j 1=

3

∑∫

+
9
2
--- A1A2A3 A1*A2*A3*+( ) d2r,

A jtt
A jtt

*
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the expression for Hamiltonian (17), we obtain the fol-
lowing relation:

(18)

Now, our problem is to approximate the right-hand
side of Eq. (18) using the quantity X and thereby obtain
an ordinary differential inequality. From the known
Cauchy–Bunyakowsky integral inequality for the func-
tions |Aj| and |Aj|t

it follows that d2r ≥ /(4Xj). Taking also into

account the obvious relations d2r ≥ 0 for j = 1,

2, 3, we obtain from Eq. (18)

(19)

Then, note that, as a consequence of the algebraic
Cauchy inequality, the following relation is valid: 

and, correspondingly, we have

Substituting the latter inequality into (19), we obtain
an ordinary differential inequality

(20)

which will be the object of our consideration below.
Note that analogous inequalities arise when deriving
sufficient collapse criteria for various nonlinear partial
differential equations [10–14].

The introduction of a new function Y = X–1/4 permits
us to rewrite inequality (20) in the form of Newton’s
second law

(21)

where Y plays the role of the coordinate of a “particle”
and P is its potential energy.

Let the velocity of the particle Yt be negative (in this
case Xt > 0). Then, multiplying (21) by Yt, we obtain

Xtt 3H+ εX– 5 A j t
2 L̂ j A j

2
+[ ] d2r.

j 1=

3

∑+=

A j
2d2r∫[ ] A j t

2d2r∫[ ] A j A j td
2r∫[ ]

2
,≥

A j t
2∫ X jt

2

L̂ j A j
2

∫

Xtt 3H εX–
5
4
---

X jt

2

X j

------.
j 1=

3

∑+≥+

X j

j 1=

3

∑ X jt

2 /X j

j 1=

3

∑ X jt

j 1=

3

∑
2

,≥

X jt

2 /X j

j 1=

3

∑ Xt
2/X .≥

Xtt 3X εX–
5
4
---

Xt
2

X
------,+≥+

Ytt
∂P Y( )

∂Y
---------------, P Y( )–≤ 1

8
--- εY2 HY6+( ),–=

Ut t( ) 0, U t( )≥ Yt
2/2 P Y( ),+=
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i.e., the particle gains an energy U upon motion. It is
understandable that the sufficient criterion for Y to
become zero and, correspondingly, for X to become
infinity is the condition that the particle encounters no
potential barrier even if Ut = 0, which corresponds to
the equality sign in (20). The explosive growth of
amplitudes takes place under the following conditions:

(a) at ε < 0 and H > 0 if Y(t0) < /(3H  and

12U(t0) ≤ /(3H ;

(b) at ε < 0 and H > 0 if 12U(t0) > /(3H ;
(c) at ε < 0 and H ≤ 0; and
(d) at ε ≥ 0 if U(t0) > 0.
In (a)–(d), t = t0 corresponds to the starting time

moment. In this case, the moment tc at which the per-
turbation amplitudes become infinite is estimated as
follows:

Note that the condition Yt(t0) < 0 in cases (a) and (c)
is by no means necessary: after the reflection from a
potential wall, the particle reaches the point Y = 0. The
above conditions (a)–(d) can be considered as sufficient
criteria of the instability of the surface of a conducting
liquid with respect to perturbations of a finite ampli-
tude, which distinguishes it from the simplest criterion
of linear instability E > Ec, which was derived based on
the assumption that the perturbations are infinitely
small. Note also that conditions (a)–(c) refer to the case
of subcritical external fields (E < Ec), when the flat sur-
face of the conducting liquid is stable in the linear
approximation, i.e., we deal with a hard excitation of an
electrohydrodynamic instability.

Thus, if conditions (a)–(d) are fulfilled, Eqs. (14)–
(16) describe an infinite growth of amplitudes Aj. In this
case, the applicability of model (14)–(16) to the
description of the development of an electrohydrody-
namic instability is restricted by the condition of the
smallness of the amplitudes: in the order of magnitude,
the absolute values of the amplitudes |Aj| should not
exceed the magnitude of the parameter of supercritical-
ity ε. Otherwise, the model cannot be restricted to the
consideration of only three-wave processes. As to the
higher-order wave processes, there arises a question of
whether they will lead to a stabilization of the instabil-
ity or will favor an explosive growth of perturbations
(the experimental data of [18] and the results of numer-
ical calculations [3, 4] evidence in favor of the latter sit-
uation). The complexity of the estimation of their influ-
ence is related to the fact that the contribution of higher-
order nonlinearities becomes comparable with the con-
tribution of quadratic nonlinearities of the model (14)–

ε
1
4
---

)
1
4
---

ε
3
2
---

)
1
2
---

ε
3
2
---

)
1
2
---

tc t0
dY

2U t0( ) 2P Y( )–
------------------------------------------.

0

Y t0( )

∫+≤
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(16) only if the amplitude of surface perturbations is
close to the characteristic length of the wave. But in this
case conditions of the applicability of our approach to
the description of the near-critical dynamics of the
charged surface of liquid metal based on the construc-
tion of amplitude equations become violated.2 Never-
theless, it is possible to reveal the influence of the
higher-order nonlinearities by considering one-dimen-
sional and square lattices of surface distributions, for
which the three-wave interactions degenerate and the
dominating interactions are the four-wave ones.

FOUR-WAVE INTERACTIONS

Let us consider perturbations of the boundary of a
conducting liquid with such symmetries for which the
effect of three-wave processes is negligible. Thereby,
we in pure form separate the four-wave interactions that
determine the character of the electrohydrodynamic
instability at its advanced stages.

First of all, we consider the near-critical behavior of
the charged surface of a liquid metal in the assumption
of a quasi-one-dimensional character of the arising
wave. Let the wave vector be parallel to the abscissa
axis. We pass to envelopes by using substitutions

in which the k0  2k0 interaction is taken into
account. Here, A, B, A0, and B0 are slowly varying func-
tions of the spatial variables x and y. Substituting these
relations into Hamiltonian (12), we find (to an accuracy
of terms of the fourth order of smallness)

The amplitude equations for the perturbations of the

2 The allowance for four-wave interactions along with the three-
wave ones proves to be quite possible for an insulating liquid
(with a dielectric constant close to unity) placed in a strong elec-
tric field, as well as for an insulating liquid with an insignificant
free surface charge. This is related to the appearance of small
coefficients before the quadratic nonlinearities in corresponding
amplitude equations [7, 17].

η x y t, ,( ) A x y t, ,( )e
ik0x

A0 x y t, ,( )e
2ik0x

c.c.,+ +=

ψ x y t, ,( ) B x y t, ,( )e
ik0x

B0 x y t, ,( )e
2ik0x

c.c.,+ +=

     

H H 2( ) H 3( ) H 4( ),+ +=

H 2( ) k0 B 2 2gε A 2–∫=

+
g

k0
2

---- ∂A
∂x
------

i
2k0
--------∂2A

∂y2
---------–

2

g A0
2 2k0 B0

2+ + d2r,

H 3( ) 2gk0 A2A0* A*2A0+[ ] d2r,∫–=

H 4( ) 5
4
---gk0

2 A 4d2r.∫=
 

free surface are written in the Hamiltonian form as

By varying the functional 

 

H

 

 and then eliminating
the quantities 

 

B

 

 and 

 

B

 

0

 

, we obtain equations of the form

(22)

(23)

Since the characteristic times of changes in the
amplitudes at small supercriticalities are small (

 

ω

 

2

 

 ~ 

 

ε

 

),
we neglect the derivatives with respect to time in
Eq. (23). Then, the quantity 

 

A

 

0

 

 can be expressed
through the amplitude 

 

A

 

 that plays the role of an order
parameter

Using this relation, we eliminate 

 

A

 

0

 

 from Eq. (22)
and pass to dimensionless quantities using scalings (13)
to obtain for the complex amplitude 

 

A

 (24)

to which the following expression for the Hamiltonian
corresponds:

(25)

Note that, when neglecting the dependence of the
amplitude 

 

A

 

 on 

 

y

 

, Eq. (24) becomes a nonlinear Klein–
Gordon equation, i.e., corresponds to the so-called 

 

|φ|

 

4

 

model. In this form, it can be obtained from the equa-
tion for one-dimensional perturbations of the charged
surface of liquid helium [8] in the limit of the complete
screening of the field under the surface. Note also that
if we neglect transverse modulations, then Eq. (24)
coincides with that obtained in the Kelvin–Helmholtz
theory of instability for the case of a small ratio of the
densities of the top and bottom liquids [12]. This is due
to the identity of the mathematical description of the
planar potential flow of an incompressible liquid and a
two-dimensional distribution of an electric field in the
absence of spatial electric charges. The allowance for
higher-order terms in the expansions in surface pertur-
bations violates this analogy.

Since the term 
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 that is responsible for the kinetic
energy and the term 

 

|
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4

 

 that is responsible for the four-
wave processes enter into the integrand of Hamiltonian
(25) with the opposite signs, Eq. (24) admits infinite
solutions. This means that the cubic nonlinearity in
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Eq. (24) does not stabilize the linear instability but, on
the contrary, enhances it, leading, under certain condi-
tions, to an explosive growth of the amplitude A of per-
turbations of the conducting-liquid boundary.

Another possible case when the three-wave pro-
cesses are degenerate is the interaction of two standing
waves whose wave vectors k1 and k2 are turned with
respect to one another by an angle π/2 (the vector’s
coordinates are k1 = {k0, 0} and k2 = {0, k0}). Let us
represent the perturbation of the surface η in the form

and the perturbation of the velocity potential at the liq-
uid boundary ψ in the form

where we took into account the nonlinear interactions
of the fundamental spatial harmonic k0 with combina-

tion harmonics 2k0 and . This representation for
the functions η and ψ corresponds to the symmetry of
a square lattice.

Proceeding by analogy to the above-considered
quasi-one-dimensional case, we obtain, after passing to
dimensionless quantities, the following dynamic equa-
tions:

where σ = 32  + 65/2, and the following designa-
tions are introduced:

The integral of motion for these equations, corre-
sponding to the conservation of the total energy of a
system, is given by the expression

The first term on the right-hand side of this func-
tional coincides in its structure with Hamiltonian (25)
for the quasi-one-dimensional wave. The last term is
responsible for the nonlinear interaction of a pair of the
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waves studied. Note that the coefficient σ before this
term exceeds the coefficient s by more than an order of
magnitude. This means that the contribution of the
interaction k1  k2 is determining and, consequently,
the square structure of the surface perturbations is
much more favorable than the one-dimensional one.

In any case, for both the square and one-dimen-
sional lattice (the latter can be considered as a partial
case of the square lattice, corresponding to the condi-
tion A2 = 0), the four-wave interactions will favor the
development of an instability rather than suppress it.
Conditions for an explosive growth of the amplitudes
A1 and A2 can be obtained by considering the evolution
of the norm

Acting by analogy with Section 4, we obtain the
majorizing inequality

which coincides with that considered in [12]. The intro-
duction of the variable Y = X–1/2 reduces the problem to
the analysis of the motion of a particle with a coordi-
nate Y in a potential well P(Y)

Analyzing this inequality for the case where the
velocity of the particle at the initial time moment t = t0
is directed toward the origin (i.e., Yt(t0) < 0), it can eas-
ily be revealed that the quantity Y vanishes, first, at ε > 0 if
U(t0) > 0, second, at ε < 0 and H < 0, and third, at ε < 0
and H > 0 if U(t0) > ε2/(8H) or Y2(t0) < |ε|/(2H). Here,
U(Y), just as in Section 4, denotes the total mechanical
energy of the particle. Under the above conditions, the
norm X becomes infinite in a finite time, which just cor-
responds to an explosive growth of the amplitudes in
the result of four-wave interactions.

All this suggests that the higher-order nonlinearities
will not suppress the explosive growth of amplitudes in
model (14)–(16). But in this case the above integral cri-
teria (a)–(d) may be considered as sufficient criteria of
the explosive growth of perturbations of the surface of
a liquid metal in an external electric field.

CONCLUSION

The main result of this work is the construction of
sufficient integral criteria of instability for the free sur-
face of a perfectly conducting liquid in a near-critical
external electric field. These criteria represent a gener-
alization of the known condition of linear instability
(E > Ec) to the case where the amplitudes of perturba-
tions of the field of velocities and of the shape of the
surface are finite. The criteria found are dynamic in the
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sense that they take into account the effect of the veloc-
ity distribution in the medium at the initial time
moment; the role of the stored kinetic energy can be
decisive in the case of the hard mechanism of instabil-
ity.

An analysis of three-wave and four-wave nonlinear
interactions (this corresponds to the allowance for qua-
dratic and cubic nonlinearities in the amplitude equa-
tions) showed that the development of the electrohy-
drodynamic instability has an explosive character, i.e.,
leads to the appearance of singularities in the solutions
in a finite time. This conclusion qualitatively agrees
with the results of numerical simulation of the develop-
ment of the instability of the boundary of liquid metal:
it was shown in [4] that the curvature of the surface
increases according to a power law characteristic of the
explosive instability and causes the formation of singu-
larities of a cusplike type. Note in conclusion that the
criteria of hard instability analogous to the criteria (a)–
(d) can also be obtained for insulating liquids with
induced surface charges [9, 19], for insulating liquids
with free surface charges (liquid helium and liquid
hydrogen in an electric field refer to this category) [9],
and for ferromagnetic liquids in a vertical magnetic
field.
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Region of a Glow Discharge. Part I
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Abstract—A model of the cathode sheath of a glow discharge is developed. The model includes the equations
for calculating the non-steady-state nonequilibrium physicochemical gas dynamics, cathode temperature, and
electric field. The model applies to describing the flow of a viscous, heat-conducting, moderately rarefied gas
at Knudsen numbers of about Kn ~ 0.03. The electric field and gas density distributions are determined consis-
tently by renormalizing the values obtained by the Engel–Steenbeck theory. A formula for calculating the time
during which a homogeneous volume discharge phase exists is proposed. The formula is based on the relation
between the rates of electron production via associative ionization (A + B  AB+ + e) and impact ionization

(A2 + e   + e + e). Calculations are carried out for nitrogen and air. It is shown that, at high current
densities, due to the dissociation and strong heating of the gas, the rate of thermal ionization becomes as high
as that of electrical ionization. The calculated ionization time is in reasonable agreement with the measured
duration of a uniform anomalous cathode sheath. © 2001 MAIK “Nauka/Interperiodica”.

A2
+

INTRODUCTION AND THE FORMULATION 
OF THE PROBLEM

Gas discharges are widely used in lasers, ozonizers,
and plasmochemical reactors. At sufficiently high gas
pressures and current densities, a glow discharge trans-
forms into an arc. The discharge contraction terminates
the generation of coherent radiation in lasers and dete-
riorates the efficiency of technological processes in
other devices.

The discharge state and the gas parameters are
closely related to each other. In a pulsed laser, the dis-
charge gives rise to compression waves [1] that, at high
energy deposition, transform into shock waves.
Reflecting from the walls, these waves can return into
the discharge chamber by the beginning of the next cur-
rent pulse, thus breaking the gas homogeneity and
inducing the transformation of the glow discharge into
an arc. The variations in the other gas parameters due to
the slow relaxation of large-scale heat perturbations in
the so-called “heat mirror” can also affect the discharge
stability. Both of these phenomena have been studied
rather thoroughly. To decrease their influence, the gas is
usually pumped through the discharge chamber and
special facilities for suppressing acoustic perturbations
are introduced into the gas-flow contour.

The influence of the gas-flow microstructure in the
cathode sheath on the parameters and stability of the
sheath is a universal but still poorly studied effect. Its
importance stems from the key role that the cathode
sheath plays in the discharge dynamics. During each
current pulse, a fraction of the gas is expelled from the
1063-7842/01/4607- $21.00 © 20815
cathode sheath; hence, the sheath parameters change
during the pulse, whereas the gas density in the positive
column varies only slightly. Thus, for nitrogen at a
pressure of p = 500 torr and a copper cathode, the cath-
ode sheath thickness is dN ≈ 1 × 10–5 m and the time
during which a sound wave passes through the sheath is
~20 ns. This time is much shorter than the time during
which a sound wave passes through a 0.03-m-high dis-
charge chamber (about 140 µs).

The evolution of the strongly anomalous cathode
sheath of a glow discharge in air and commercial nitro-
gen was studied, e.g., in [2, 3]. The sequence of pro-
cesses is as follows. The breakdown of the interelec-
trode gap is followed by an anomalous discharge with
a homogeneous cathode dark space (CDS) and a uni-
form diffuse glow above it. Then, the discharge breaks
into separate channels and a prearc cathode spot arises.
In front of this spot, the cathode sheath thickness
decreases. This manifests itself as the shift of the dif-
fuse glow toward the cathode and a local increase in the
emission intensity. Then, the breakdown of the cathode
sheath occurs against the cathode spot. The transition
from a homogeneous anomalous sheath to a prearc
cathode spot with a decreased cathode potential drop
was also observed in experiments in [4]. The reverse
transitions and self-oscillations can occur at relatively
low discharge currents. At higher currents, the transi-
tion to an arc becomes irreversible. In [2, 3], the insta-
bility of the cathode sheath was attributed to the explo-
sive autoemission from the cathode micropoints at high
electric field strengths; however, such an approach fails
001 MAIK “Nauka/Interperiodica”
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to predict the time during which the CDS remains uni-
form. In [4], the experimental results were qualitatively
explained based on evaluating the volume processes
involving metastable particles; the increase in their
density increases the impact ionization rate. However,
an adequate study of these phenomena requires an
accurate quantitative analysis of the relation between
the gas parameters and the electric characteristics of the
cathode sheath. This is not a simple matter because, in
the literature, there are no experimental data on the gas
flow structure in the cathode sheath, although the cath-
ode shock waves are well known to propagate beyond
the sheath [5, 6]. The complexity of such measurements
stems from the fact that the spatial resolution should be
fairly high, which is dictated by the small thickness of
the cathode sheath at high gas pressures.

Gas dynamics in the cathode region was studied in
the following papers. In [7], the energy deposited in the
cathode sheath in a XeCl laser at p = 0.5–8 bar and cur-
rent densities of j = 50 and 300 A/cm2 was estimated
using a one-dimensional system of Euler equations and
the measured jump in the gas density behind the cath-
ode shock wave. In [8], the discharge formation was
numerically simulated using the Navier–Stokes equa-
tions and equations for the electric parameters of the
cathode sheath in the diffusion–drift approximation. At
a current density of 100A/cm2, the gas was heated up to
3000 K during 30 ns. An attempt at analyzing the ther-
mal-ionization instability of the cathode sheath was
made in [9], in which the electric field was calculated
for a nonuniform gas density assuming the motion of
the heat-conducting gas to be one-dimensional. The
limiting value of the current was found to agree with
the high temperature (e.g., 4300 K) of the gas in the
cathode sheath; at such temperatures, the equilibrium
electron density is capable of sustaining the discharge
current. In [10], cathode sheaths expanding across the
electric field were examined using a set of equations for
a viscous, heat-conducting, moderately rarefied gas.

The study of gas dynamics in the cathode sheath is
necessary for the following reasons.

(i) Although the cathode sheath is characterized by
strong gas heating and the high probability of the dis-
charge losing its stability [11], in most of studies, the
influence of the temperature on the sheath electric
parameters was not analyzed quantitatively. At pres-
sures higher than 5–10 torr, such an analysis becomes
even more necessary. Thus, taking into account the
nonuniform distribution of the gas temperature in the
cathode sheath made it possible to reveal the influence
of some gas-dynamic parameters on the limiting cur-
rent of a transverse glow discharge [12].

(ii) The influence of the emissive properties of the
cathode surface on the stability of the cathode sheath
cannot be described adequately without allowance for
the correspondent changes in the gas properties.
Indeed, the change in the secondary emission coeffi-
cient changes the electric field, the normal current den-
sity, and, consequently, the energy deposition and the
gas dynamic structure; the latter affects all the elemen-
tary processes in the sheath.

(iii) The gas dynamics of the cathode sheath is more
complicated than that in the models presented in [7–
10]; hence, a further upgrade of the models is required.

The purpose of this paper is to develop a model of
the cathode sheath in order to investigate the mecha-
nism for the onset of the thermal-ionization instability.
The model incorporates the system of equations for cal-
culating the non-steady-state nonequilibrium gas
dynamics, the electric parameters, and the cathode heat
balance.

A criterion for determining the time during which
the cathode sheath remains uniform (from the instant of
the sheath formation until the onset of a prearc spot) is
proposed.

Calculations based on the experimental data from
[2, 3] were carried out to verify the model. Since the
dimensions of the current area at a copper cathode sub-
stantially exceed the CDS thickness, we used the one-
dimensional approximation. The current densities and
initial pressures were taken as follows: j = 100 and
1000 A/cm2 (N2 at p0 = 50 and 100 torr, respectively)
[2] and j ≈ 120 A/cm2 (air at p0 = 50 torr) [3].

CATHODE SHEATH MODEL
Scheme of the Processes and Criterion 

for the Onset of Instability

Fast non-steady-state processes in the strong elec-
tric field of the CDS are responsible for the nonequilib-
rium nature of many of the incorporated processes. In
the CDS, the ion current substantially exceeds the cur-
rent produced by electrons, whose energy is too high
for the molecular vibrational states to be efficiently
excited. Recall that the gas in the CDS does not glow
because the electron energy is higher than the optimum
energy for the excitation of molecular electronic (and,
all the more so, vibrational) states. The energy depos-
ited in the cathode sheath via the ion current is first
transformed into molecular translational energy, and
then certain fraction of it relaxes into vibrational
energy. The vibrational temperature is lower than the
translational; as a result, the rate of molecular dissocia-
tion decreases [13]. Under our conditions, this effect is
so strong that, for the time during which an anomalous
cathode sheath exists, no dissociation would be
observed in [2, 3] unless it was accelerated due to other
nonequilibrium processes involving fast molecules pro-
duced via charge transfer from ions to molecules.

In the strong electric field of the CDS, the average
ion velocity is much higher than the thermal velocity of
molecules and the efficiency of charge exchange is
fairly high [14]. In each charge exchange event, an ion
becomes a fast molecule, whereas a molecule becomes
a slow ion, which is then accelerated by the electric
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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field. Collisions of fast molecules ( ) with the bulk
slow molecules result in nonequilibrium dissociation
(  + M  2N + M + M, where M = N2, N), which
proceeds against the background of non-steady-state
gas dynamics and the exponential growth of the rate of

associative ionization (N + N   + e) due to an
increase in the gas temperature. If the gas temperature
is high enough, this rate may be as high as the rate of

impact ionization (N2 + e   + 2e), which usually
enables an increase in the electron current in the cath-
ode sheath and the existence of a discharge.

This point is crucial for the discharge dynamics.
Indeed, if the increase in the thermal ionization rate is
not balanced by the decrease in the electric field, then
the current will increase. This is positive feedback
between the gas temperature and the current density,
which results in the onset of the cathode sheath insta-
bility. Consistent calculations show that, at a constant
current density, the above positive feedback is never-
theless balanced by a decrease in both the electric field
and cathode potential [15]. Therefore, when the rate of
associative ionization is sufficiently high, the current–
voltage characteristic of the cathode sheath becomes
descending, which is known to result in the instability
of the cathode sheath, the growth of the current density,
and the decrease in the diameter of the current spot at
the cathode [16]. This indicates the correlation between
the increase in the rate of associative ionization up to a
certain critical value and the onset of a prearc cathode
spot.

The inevitable decrease in the electric field in the
presence of an extra electron source also follows from
condition (2) for the existence of a self-sustained dis-
charge. This condition is derived from the equation for
the electron current density

(1)

and allows us to estimate the time during which the
cathode sheath remains uniform.

Assuming that je = –γj+ at the cathode and j = je at
the outer boundary of the cathode sheath, from Eq. (1)
we obtain

(2)

where y is the longitudinal coordinate, α is the
Townsend ionization coefficient, β is the recombination
coefficient, γ is the secondary emission coefficient,
R(T, Na) is the rate of associative ionization, T is the gas
temperature, Na is the atom density, E is the electric
field, N is the molecular density, je and ji are the electron
and ion components of the current density, j is the cur-
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rent density, v e is the electron drift velocity, ne and ni

are the electron and ion densities, e is the electron
charge, and d is the cathode sheath thickness.

As a rule, recombination in the cathode sheath can
be neglected because of the low electron density; in
addition, γ ! 1. Hence, at a constant current density, an
increase in R(T, Na) leads to a decrease in E. Further-
more, taking into account formula (2), the condition for
the associative ionization rate to achieve the critical
value required for the formation of the descending cur-
rent–voltage characteristic and, consequently, the cath-
ode sheath transformation can be written as

(3)

where the coefficient A is on the order of unity.

Calculations show that, to estimate the time during
which a homogeneous cathode sheath exists, an accu-
rate determination of A in (3) is not required because
R(T, Na) depends strongly on the temperature. The rea-
son is that as soon as the rate of associative ionization
becomes comparable to the rate of electron-impact ion-
ization, the parameters related to the onset of a cathode
spot change extremely rapidly. Hence, the condition

(4)

can be regarded as a criterion for the beginning of these
changes.

The onset of a prearc cathode spot in an anomalous
cathode sheath can be explained as follows. As the tem-
perature increases, condition (4) is first satisfied locally
(e.g., in the center of the sheath, where the gas temper-
ature is maximum), whereas the temperature at the
sheath periphery is lower due to heat transfer to the cur-
rent-free region. In the region where condition (4) is
satisfied, the cathode potential drop decreases and the
boundary of the diffuse glow approaches the cathode
surface. The cathode potential drop equalizes over the
radius due to the rearrangement of the current density,
which decreases at the periphery and increases in the
center. Due to the decrease in the current density, the
degree of the cathode sheath anomaly and, conse-
quently, the electric field reduce. If the total current is
sufficiently high, then its contraction into a prearc spot
enhances the rate of thermal ionization up to the critical
level, which results in the creation of a self-sustained
arc [2–4]. If the current is low, then, after a certain
period of time, the prearc spot disappears and the cath-
ode sheath returns into the uniform anomalous regime.
This sequence of events may repeat itself again, which
corresponds to a self-oscillating mode [4]. The return to
an anomalous mode is possibly related to a decrease in
the energy deposition and, consequently, a decrease in
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the gas temperature due to a substantial reduction of the
electric field. Some of these effects are considered in
detail in [15].

Nonequilibrium ionization is one of the key pro-
cesses of our model; it depends on the effective temper-
ature of fast molecules, which is determined based on
the following assumptions. The ion velocity distribu-
tion function, which is formed in the strong electric
field due to the intense charge exchange processes, is
close to Maxwellian; the mean ion drift energy is equal

to πm /4 [17], where mv+ is the ion momentum. Due
to the high efficiency of charge exchange, the fast mol-
ecules have the same distribution; hence, taking into
account the gas temperature, the mean energy of the
fast molecules after charge exchange is

(5)

For ions, the analogous formula is given in [14].
Under the conditions adopted in our study, the mole-
cules have equal or nearly equal masses and the effi-
ciency of energy transfer is very high. Hence, the larg-
est amount of energy is transferred in the first (after the
charge exchange event) collision between fast and slow
molecules. Averaging formula (5) over the colliding
molecules (their number is twice the number of the fast
molecules), we obtain

(6)

which corresponds to the effective temperature

(7)

Here, the correction for the fact that the temperature is
nonequilibrium due to the presence of a source of fast
molecules is not taken into account because this is a
separate problem. Such a simplification is justified by
the fact that, in the CDS, the number of fast molecules
is much less than that of molecules with thermal veloc-
ities.

System of Gas-Dynamic 
Equations

The Knudsen number computed based on the mole-
cule mean free path and the thickness of an anomalous
CDS amounts to 0.05 for air and 0.02 for nitrogen.
Hence, the gas flow in the CDS is intermediate between
the continuous and thinned modes. This is probably the
reason why the preliminary calculations involving the
Navier–Stokes equations did not provide satisfactory
results. Hereafter, we use the kinetically consistent dif-
ference schemes [18], which provide satisfactory
results when calculating the flow of a moderately rar-
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efied gas with Kn ≤ 0.1. The equations

(8)

(9)

(10)

are the differential approximation of these schemes. As
compared to the Navier–Stokes equations, they contain
additional terms

(11)

where t is time; v, ρ, and p are the gas velocity, density,
and pressure, respectively; U = ρcpT + 0.5ρv 2 +
N(  + ) is the total energy per unit vol-

ume;  and  are the fractions of the vibrationally
excited molecules per molecule in the mixture
(e0 stands for their equilibrium values);  = 2240 K

and  = 3360 K are the vibrational energies of O2

and N2; cp is the heat capacity; µ is the viscosity; λ is
the thermal conductivity; τ is the mean free path of the

molecules;  is the coefficient of thermodiffusion of

the ith component;  and  are the times of
molecular vibrational relaxation; R is the molar gas
constant; ci and mi are the mass fraction and molecular
weight of the ith component, respectively; and nK is the
number of the mixture components.

Substituting Q(e, j, E) into the energy balance equa-
tion (10), we take into account molecular vibrational
relaxation, Joule heating of the gas, and diffusion heat
transfer. The diffusion coefficient, thermal conductiv-
ity, and mixture heat capacity were calculated by the
formulas from [19], and the relaxation times were cal-
culated by the formulas from [13].

Note that, from the physical standpoint, differential
approximations (8)–(10) are the consequence of finite
difference schemes, which are derived based on an
analysis of a stepwise–constant one-particle distribu-
tion function [18]. Additional terms with τ in equations
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appear due to the significant change in the flow param-
eters over the molecular mean free path. Perhaps these
terms are similar to the artificial viscosity, widely used
in the calculations of gas flows with high gradients of
parameters. In our case, the appearance of these terms
is physically even more justified. The larger the Knud-
sen number, the more important these terms. Under
conditions when these terms can be neglected,
Eqs. (8)–(10) coincide with the Navier–Stokes equa-
tions. For a gas mixture, the equation of state is

(12)

To determine the temperature at the cathode surface,
we took into account the continuity of the heat flux and
solved the equation

(13)

where index C refers to the cathode.
The initial temperature of both the gas and cathode

is 300 K. The other boundary conditions at the surface
are set in the same manner as in [18].

Equations of the Nonequilibrium Vibrational 
Chemical Kinetics

The equations

(14)

(15)

were used to calculate the degree of excitation of the
molecular vibrational degrees of freedom.

To calculate the mass fractions ci  of the mixture
components, we used equations from [18]:

(16)
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where  is the thermodiffusion coefficient; Wi is the

production rate of the ith component; , , , and

 are the rate constants and stoichiometric coeffi-
cients of the forward and backward reactions; and ρk

are the partial densities of the components.
The initial mole concentrations of the components

were as follows:  :  = 0.21 : 0.79 for air and

 = 1 for nitrogen. The dissociation energy for nitro-
gen is substantially higher than for oxygen; hence, the
dissociation of nitrogen molecules in air starts when the
dissociation of oxygen molecules is almost finished
[19]. In addition, the ionization potential of N2 is higher
than that of O2, which permits us to neglect the nitrogen
component of the ion current. For this reason, when
considering the initial stage of molecular dissociation
and gas heating in an air discharge, we simplify the
problem by taking into account only the following reac-
tions

(18)

where  stands for fast oxygen molecules and M =
O2, N2,, or O.

For nitrogen, we take into account the reactions

(19)

where M = N2, N.

The rates of chemical reactions (18) and (19) were
calculated by formulas from [21]. In both cases, the
densities of fast molecules were assumed to be equal to
the ion density n+ = j+/(ev+), where v+ ~ (E/N)0.5 [20].
To calculate the rate of nonequilibrium dissociation
with the participation of fast molecules in reactions
(18) and (19), we used the Macherett–Freedman model
[21], in which the reaction rate constants are calculated
by formulas

(20)

where k+ and  are the nonequilibrium and equilib-

rium rate constants of the forward reactions, Z( , Tv)
is the coefficient characterizing the degree to which the
process is nonequilibrium [21],  and Tv are the
molecular translational and vibrational temperatures.

Since the bulk of the gas molecules have thermal
velocities, we set  = T, whereas for fast molecules,
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we set  = Teff [see (7)]. The dissociation of mole-
cules, which also occurs in collisions with electrons, is
difficult to calculate when the electron energy distribu-
tion in the CDS is nonlocal. In this study, the distribu-
tion function was not calculated. In order to estimate
the relevant error, we used two approximations: (i) an
approximation in which reactions (18) and (19) were
only taken into account and (ii) an approximation in
which, in addition to the above reactions, electron-
impact ionization

(21)

was taken into account.

Cross sections for reactions (21) were set as σ1 = 2 ×
10–16 cm2 and σ2 = 0.5 × 10–16 cm2. The electron current
in the CDS was assumed to be 10% of the total current.
The above value of σ1 is not lower than the maximum
integral cross sections for the dissociation of N2 and O2
calculated with allowance for the excitation of different
electronic states by the electrons with energies of 7–
70 eV [16]. The maximum possible error can be esti-
mated by this value because most of the electrons in the
CDS have energies lower than 10 eV [16]. It is likely
that the value of σ2 is more realistic.

Formulas for Calculating the Electric Field 
for a Nonuniform Gas Density

In order to calculate the electric field distribution in
the CDS, the sheath thickness, and the current density
at the cathode, the formulas

(22)

(23)

(24)

which are based on the local renormalization of the
sheath parameters with respect to the gas density, were
proposed in [9]. Here, N0 is the molecule density corre-
sponding to the uniform gas temperature T0; N(y) is the
molecule density distribution in the gas flowing
through the CDS; UN and dN are the normal values of
the cathode potential drop and cathode sheath thickness
for N(y) = N0; U and d are the cathode potential drop
and cathode sheath thickness for the nonuniform distri-
bution N(y);  and  are the normalized coefficients,
which depend on the ratio of the current density to the

T tr
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U E y( ) y,d

0

d
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E δ
local value of the normal current density, which, in
turn, is in proportion to N2(y).

The experimental data for an air–copper cathode
system (UN = 370 V, pdN = 0.23 torr cm, and jN/p2 =
2.4 A/(m2 torr2)) were taken from [16]. For a nitrogen–
copper cathode system, we set UN = 208 V, jN/p2 =
4 A/(m2 torr2), and pdN = 0.5 torr cm. The latter value
was determined in test calculations [9] and does not
contradict the experimental results.

Formulas (22)–(24), inferred from the main scaling
laws of the Engel–Steenbeck theory [16], were success-
fully used to solve a number of applied problems [2, 10,
12]. They describe cathode sheath at a fixed distribution
of the gas density. Use of them in our model is justified
because the electric parameters change more rapidly
than the gas-dynamic ones. Furthermore, these formu-
las substantially simplify calculations because they do
not require solving a set of stiff differential equations.
The use of the empirical constants UN, jN/p2, and pdN is
also advantageous. A disadvantage is the insufficient
accuracy of calculating the electric field at the high rate
of thermal ionization, when, in addition to the
Townsend ionization coefficient, the other volume elec-
tron sources should also be taken into account. How-
ever, as was mentioned above, this circumstance is of
minor importance for determining the time at which the
current–voltage characteristic becomes descending and
the cathode sheath begin to transform.

SIMULATION RESULTS

Figure 1 shows the simulated dependences of the
ratio of the integral rate of associative ionization in the
CDS to the charged particle flux density (4),

The dependences are obtained for nitrogen at p0 =
50 torr and j = 100 A/cm2. It is seen that condition (4),
which determines the critical value of the rate of ther-
mal ionization at which the transformation of the cath-
ode sheath takes place, is satisfied at 35 ns. This value
is obtained without allowance for electron-impact dis-
sociation (21). With allowance for electron-impact dis-
sociation, condition (4) is satisfied at 27.1 ns for the
cross section σ1 and at 31.5 ns for the cross section σ2.
These times agree with experiments [2], in which the
homogeneity of the cathode sheath was broken within
30–40 ns. In Fig. 1, Rint increases very rapidly (from 0.1
to 0.5 in approximately three nanoseconds). The distri-
butions of the gas parameters along the electric field at
t = 5, 20, and 35 ns are shown in Figs. 2–5. The thick-
ness of the cathode sheath increases from 0.046 mm at
the initial instant to 0.055 mm at t = 35 ns. This thick-
ness is shorter than the normal value dN = 0.1 mm
because the degree of the cathode sheath anomaly is

Rint e/ j R T Na,( ) y.d

0

d

∫=
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fairly high. In Fig. 2, there is a local maximum in the
gas temperature Tmax, which occurs due to Joule heating
and heat transfer to the cathode. As time elapses, the
maximum shifts away from the cathode due to the
sheath expansion. At t = 35 ns, we have Tmax = 7658 K,
which is 5.38 times higher than the maximum value of
the nitrogen vibrational temperature Tv (1422 K) and
12.6 times less than the maximum value of the effective
temperature of fast molecules Teff = 9.63 × 103 K. The
presence of the maximum of Teff stems from the occur-
rence of the maximum of E/N across the cathode sheath
at a nonuniform gas density distribution [12].

The parameters of the gas and cathode sheath vary
with time. In the initial stage (t = 5 ns), the gas in the
CDS is slightly rarefied and the pressure distribution is
similar to the temperature distribution, with the maxi-
mum inside the cathode sheath (Fig. 3). Hence, imme-
diately after the formation of the cathode sheath, the
gas begins to be expelled from the region with an ele-
vated pressure toward both the cathode and positive
column (Fig. 4). Behind the front of the shock wave
propagating from the cathode, there is a jump in the gas
density (Fig. 5). As in experiments [7], the jump is
peak-shaped. The flow directed toward the cathode
compresses the gas near the cathode surface. As a
result, a pressure drop is produced there, which pushes
the gas toward the positive column.

Both the speed at which gas leaves the cathode
sheath and the degree of gas rarefaction increase with
time. At t = 35 ns, the maximum velocity is Vmax =
790 m/s. The gas density behind the shock wave is
2.9 times as high as that in the unperturbed flow. The
pressure at the cathode is 14.2 times the initial one.
The concentration of nitrogen is maximum (CN =
2.76 × 10–4) at a certain distance from the cathode
(Fig. 6). During 35 ns, the cathode potential drop
increases from 632 to 806 V (such a high magnitude is
related to the strong anomaly of the cathode sheath) and
the cathode surface temperature increases to TC =
702 K, which is lower than the copper melting point.

In nitrogen at j = 1000 A/cm2 and p0 = 100 torr, the
cathode spot was experimentally observed to appear
within a few nanoseconds [2]. In our calculations car-
ried out under the same conditions without taking into
account the electron-impact dissociation of nitrogen,
condition (4) is satisfied at t = 2.1 ns. By this time, the
maximum values of the parameters are as follows:
Tmax = 9016 K, Tv = 1031 K, Tion = 115 × 103 K, Vmax =
161 m/s, C0 = 9.7 × 10–4, and TC = 704 K. Because of
the short duration of the process and, consequently,
insignificant rarefaction of the gas, the cathode poten-
tial drop changes only slightly, being approximately
equal to 937 V. With allowance for the electron-impact
dissociation of nitrogen (with the cross section σ1),
condition (4) is satisfied at t = 2.07 ns. In spite of a sat-
isfactory agreement between the simulated and mea-
sured times, it should be noted that, in this case, there is
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
a considerable uncertainty in calculating the gas-
dynamic characteristics in the early stage of the pro-
cess. This is related to the fact that, in nitrogen, under
the equilibrium conditions corresponding to T = 300 K
and p0 = 100 torr, the mean free time between molecu-
lar collisions is relatively long (τ = 0.9 ns). However,
this circumstance seems to be of minor importance for

0.1

0 10

Rint

20 30 t, ns

0.2

0.3

0.4

0.5

0.6

1 2 3

Fig. 1. Time evolution of the relative integral rate of asso-
ciative ionization with allowance for the electron-impact
dissociation of molecules with cross sections (1) σ1 and
(2) σ2 and (3) with allowance for dissociation in atomic col-
lisions only.
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Fig. 2. Profiles of the vibrational, gas, and effective temper-
atures (Tv, T, and Teff) of fast molecules across the cathode
sheath.
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applying (4) because fast molecules heat the gas in a
time much shorter than τ and the accompanying effects
of gas motion and rarefaction are of no significance
here.

In air at p0 = 76 torr, the diffuse glow is experimen-
tally observed to locally contact the center of the cath-
ode just before the instant t = 20 ns [3]. At t = 10 ns, the
current density is j ~ 120 A/cm2. In simulations, we
used the more accurate dependence j(t) derived using
an oscillogram from [3]. Condition (4) is satisfied at t =
14.4 ns. Within 1.3 ns, the quantity Rint increases

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
y, mm

1

5

6

8

p/104, Pa

20 ns

35 ns

5 ns

2

3

4

7

Fig. 3. Profiles of the gas pressure across the cathode sheath.
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y, mm

0.15

0.25
ρ, kg/m3

20 ns

35 ns

5 ns

0.05

0.10

0.20

Fig. 5. Profiles of the gas density across the cathode sheath.
10-fold. At t = 14.4 ns, the maximum local values of the
parameters are as follows: Tmax = 4781 K, Tv = 543 K,
Teff = 268 × 103 K, Vmax = 485 m/s, TC = 585 K, and C0 =
8.9 × 10–2; the gas density drops by a factor of at most
1.64. The cathode potential drop increases from 729 to
1150 V, and the CDS thickness increases from 0.015 to
0.017 mm. Under the given conditions, the electron-
impact dissociation of molecules only slightly affects
the process even for the dissociation cross section σ1.

Under the same conditions, the instability in air
develops earlier than in nitrogen, which is related to the

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
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Fig. 4. Profiles of the gas velocity across the cathode sheath.

0.5

0 0.01

CN × 104

y, mm
0.02 0.03 0.04 0.05 0.06 0.07

1.0

1.5

2.5

2.0

5 ns

20 ns

35 ns

Fig. 6. Profiles of the molar concentration of nitrogen across
the cathode sheath.
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higher value of UN and lower value of jN/p2 in air (the
lesser jN, the higher the degree of the cathode sheath
anomaly). Moreover, oxygen molecules decay faster
than nitrogen ones, and the rate of their associative ion-
ization increases more rapidly with temperature [13].
For this reason, the electron-impact dissociation of
oxygen is of less importance. It follows from the above-
said that the main parameters of the cathode sheath,
namely UN, dNp, and jN/p2, from which the correspond-
ing anomalous values can be calculated with correc-
tions for the gas density distribution, should be accu-
rately determined.

In the above three experiments, when condition (4)
was satisfied, the electric field at the cathode surface
was E0 = 2.7 × 105 (N2, j = 100 A/cm2), 8.31 × 105 (N2,
j = 1000 A/cm2), and 1.48 × 106 V/cm (air). According
to the theory of explosive autoemission [3], the above
values of E0 allow us to conclude that the cathode spot
in air appears at the same time as in nitrogen at j =
1000 A/cm2, which does not contradict the experimen-
tal results.

Note that E0 increases with time due to gas compres-
sion; in nitrogen at j = 100 A/cm2, it increases by 9.6%
with respect to the initial value. This relatively small
change in E0 with a more than twofold increase in the
gas density at the cathode (see Fig. 5) is related to the
opposing action of the two factors. On the one hand, the
increase in the gas density must lead to an increase in
the electric field. On the other hand, the density growth
locally decreases the degree of anomaly of the current
density and, consequently, the electric field. As a result,
these effects balance each other. In nitrogen at j =
1000 A/cm2, E0 increases by 2.5%. In air, the increase
in E0 is 59% of the initial value of 9.3 × 105 V/cm. This
is related to the change in both the gas density and dis-
charge current.

In conclusion, we note that estimating the electric
field at the cathode by the average gas temperature is
insufficiently accurate because, during the given com-
putation time, the gas density at the cathode increases,
whereas its average density in the CDS decreases. It is
seen from Fig. 5 that the thickness of the region with an
elevated gas density near the cathode is shorter than
10 µm, which is less than the spatial resolution of the
interferometer [7]. At a pressure of 5 bar, this thickness
will be 75 times less although the Knudsen number will
change slightly because the molecular mean free path
and dN depend on the pressure in the same manner.
Such a slight change in the Knudsen number widens the
range of applicability of the model.

CONCLUSION

The dynamics of the CDS in a glow discharge has
been described with the help of equations of motion of
a moderately rarefied gas and the methods of nonequi-
librium gas dynamics supplemented with equations for
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
the electric field. An analysis of the conditions for the
existence of a self-sustained discharge with allowance
for the thermal ionization of the gas yields a criterion
for calculating the time during which an anomalous
cathode sheath is uniform. The time calculated by this
criterion is in reasonable agreement with experimental
data. In the cathode sheath, the rate of thermal ioniza-
tion increases with increasing both the gas temperature
and the rate of molecular dissociation. The vibrational
temperature increases more slowly than the transla-
tional, which substantially decreases the dissociation
rate. This effect is partially compensated for by the
nonequilibrium distribution over the translational
degrees of freedom, which is related to both the ion
acceleration in the strong electric field and resonant
charge exchange. Under the given conditions, the elec-
tron-impact molecular dissociation is not a decisive
factor. This problem can be studied in more detail by
calculating the nonlocal electron energy distribution
function. If the duration of the process is long enough,
the discharge stability is affected by the increase in the
cathode potential drop, which is caused by gas rarefac-
tion.
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Abstract—The influence of the gas flow structure in the cathode sheath of a glow discharge on the discharge
stability is studied numerically. The electric parameters are calculated in a diffusion–drift model that consis-
tently takes into account associative dissociation as an additional electron source. The model also includes
equations describing both the thermal mode of the cathode and the nonequilibrium physicochemical gas
dynamics of a moderately rarefied gas. It is shown that, in a pulsed discharge, the increasing branch of the cur-
rent–voltage characteristic, which is associated with the gas rarefaction behind the cathode shock wave, can
change to a descending branch associated with the intensification of associative ionization. This gives rise to
cathode sheath instability. The results of calculations agree well with experiments. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In the first part of this paper [1], we developed a
model describing the cathode sheath of a glow dis-
charge. The model includes formulas for calculating
the electric field and the set of equations for the dynam-
ics of unsteady flows of a moderately rarefied gas,
vibrational molecular kinetics, nonequilibrium dissoci-
ation, and cathode temperature. A criterion was also
proposed for determining the discharge duration in a
homogeneous mode. The transition to a prearc cathode
spot was attributed to the fact that the associative ion-
ization rate increased up to a value comparable to the
electroionization rate. The testing of the model with the
use of experimental data [2, 3] showed that the calcu-
lated duration of the homogeneous phase of a strongly
anomalous glow discharge agreed satisfactorily with
the experimental data.

An advantage of simple formulas used in [1] to cal-
culate the electric field distribution in the cathode dark
space (model I) is that they are based on the empirical
data on the cathode potential drop, the cathode sheath
thickness, and the normal current density. However,
these formulas fail to describe the influence of the gas
thermal ionization rate on the electric parameters of the
cathode sheath. This disadvantage is overcome in this
part of the paper because the proposed model of a cath-
ode sheath includes the set of ion and electron balance
equations in which the production of charged particles
is described by both the Townsend ionization coeffi-
cient and thermal ionization rate. The field distribution
is determined from Poisson’s equation.
1063-7842/01/4607- $21.00 © 20825
DIFFUSION–DRIFT MODEL 
OF A GLOW DISCHARGE

Here, we present a set of one-dimensional equations
for calculating the electric field and the ion and electron
densities in the diffusion–drift approximation. These
equations are widely used to study discharges (see, e.g.,
[4, 5]); however, in this paper, they also include the
terms related to gas-dynamic and chemical processes:

(1)

(2)

(3)

(4)

where t is time, y is the longitudinal coordinate, ne and
ni are the electron and ion densities, v e and v i are the
electron and ion velocities, De and Di are the electron
and ion diffusion coefficients, ϕ is the potential, E is the
electric field strength, N is the molecular density,
α(E/N) is the Townsend ionization coefficient, β is the
recombination coefficient, R(Na, T) is the associative-
ionization rate in the processes A + A  A2 + e [1],
Na is the atomic density, and T is the translational gas
temperature.

∂ne

∂t
-------- v e

∂ne

∂y
--------+

∂
∂y
-----De

∂ne

∂y
--------=

+ α E/N( )v ene βneni– R Na T,( ),+

∂ni

∂t
------- v i

∂ni

∂y
-------+

∂
∂y
-----Di

∂ni

∂y
-------=

+ α E/N( )v ene βneni– R Na T,( ),+

∂2ϕ
∂y2
--------- 4π ni ne–( ),=

E
∂ϕ
∂y
------,=
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The ion and electron velocities are calculated by the
formulas

(5)

where µe and µi are the electron and ion mobilities and
v  is the gas velocity.

The boundary conditions at the cathode (y = 0) are

(6)

and those at the anode (y = H) are

(7)

where γ is the secondary emission coefficient; e is the
electron charge; j is the current density; ϕa is the anode
potential; and the values of µe, µi, De, Di, α(E/N), and β
are taken from [4].

To solve Eqs. (1)–(7) with boundary conditions (6)
and (7) numerically, we used a finite-difference scheme
of second-order accuracy [4].

The set of equations (1)–(5) with boundary condi-
tions (6) and (7) and equations for calculating the cath-
ode temperature and nonequilibrium physicochemical
gas dynamics [1] constitute the model of a cathode
sheath (model II). Using this model, we calculated dis-
charges in nitrogen under experimental conditions [2]
for current densities of 100 and 1000 A/cm2 and pres-
sures of p0 = 50 and 100 torr, respectively. An advan-
tage of model II in comparison to model I is that it
includes Eqs. (1)–(5) with boundary conditions (6) and
(7), which allows us to study in detail the processes
associated with the production and transport of charged
particles. However, we should note that, when using the
diffusion–drift model of the cathode sheath, it is always
necessary to fit the results obtained to experimental
data. In the first place, this is achieved by properly
choosing the secondary emission coefficient γ in order
for the calculated values of the cathode potential drop
and the sheath thickness to agree more or less satisfac-
torily with experimental data. It is more difficult to
simultaneously obtain good agreement of the three
main parameters UN, dNp, and jN/p2 with experimental
data. From this point of view, model I has advantages,
as was mentioned above. Here, the parameter γ was
chosen as 0.25.

RESULTS OF CALCULATIONS

First, we performed test calculations of the electric
parameters of the cathode sheath by using Eqs. (1)–(5)
with boundary conditions (6) and (7) without including
gas dynamics, i.e., for a constant gas density and with-
out allowance for thermal ionization. The nitrogen

v e µeE, v i– µiE v ,+= =

eµiniE
j

1 γ+
------------, ne γni

µi

µe

-----, ϕ 0,= = =

∂ne

∂y
-------- 0, ni 0, ϕ ϕ a,= = =
                  

pressure at a temperature of 300 K was equal to p0 =
50 torr, the discharge gap length was 0.25 mm, and the
electrode voltage was ϕa = 450 V.

Figure 1 shows the longitudinal profiles of the
potential, electric field, and electron and ion densities.
For the given value of ϕa, the steady-state current den-
sity was equal to 28.9 A/cm2. The sheath thickness and
the cathode potential drop were equal to d = 0.042 mm
and UC = 404 V, respectively. These values agree well
with the values d = 0.052 mm and UC = 406 V calcu-
lated by the Engel–Steenbeck theory for the same cur-
rent density and the normal values UN = 208 V,
iN/p24 A/(m2 torr2), and pdN = 0.5 torr cm [6]. It is seen
in Fig. 1 that the electric field profile in the cathode
sheath is linear. This agrees with the theory and later
experiments [7] in which the electric field profile in the
cathode sheath was measured in hydrogen at low gas
pressures, when gas heating can be ignored.

In most of the cathode sheath, the ion density is
higher than the electron density, which increases
sharply only near the outer boundary of the sheath. This
explains why the diffusion–drift model, which ade-
quately describes the ion current without allowance for
local effects, also correctly describes the electric field
profile. In the positive column, we obtained E/p =
40 V/(cm torr). For a higher current density of
113 A/cm2, we obtained E/p = 47 V/(cm torr). This
agrees well with [8], in which both calculations and
experiments with a pulsed discharge gave E/p = 33–
44 V/(cm torr). In experiments with discharges in nitro-
gen [9], at significantly smaller current densities, the
reduced field was E/p ≈ 30 V/(cm torr). It is seen in
Fig. 1 that, near the anode, there is a sheath with a neg-
ative space charge and a relatively small potential drop.

Our results do not contradict the well-known data on
the cathode sheath and positive column at a constant
gas density. However, as was shown in [1, 10], at
p > 5 torr, gas heating affects the cathode sheath
parameters. This effect becomes even more pro-
nounced at higher pressures and as the current density
increases above its normal value. For this reason, in
order to adequately calculate the cathode sheath, a set
of gas-dynamic equations should be incorporated in the
model.

Figure 2 shows the longitudinal profiles of the
charge density and gas density calculated using the full
model II (i.e., using Eqs. (1)–(5) with boundary condi-
tions (6) and (7) and the set of physicochemical gas-
dynamic equations [1]). The calculation parameters are
the following. The gas pressure in a nitrogen–copper
cathode system is p0 = 50 torr, the current density is j =
100 A/cm2, and the interelectrode distance is 0.2 mm.
The profiles are given for times t = 20 and 45 ns. The
time 20 ns corresponds to a discharge mode with a rel-
atively low level of thermal ionization. The time 45 ns
corresponds to the mode characterized by intense ther-
mal ionization, i.e., to a prearc spot [1]. It is seen that,
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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with gas dynamics taken into account, the profile of the
charge density changes substantially. The first local
maximum of the ion density appears on the cathode
surface, in the region of local gas compression. The
second maximum of both the ion and electron densities
occurs at the front of the cathode shock wave. Since, at
the times under consideration, the shock wave has
already left the sheath, the plasma at the shock front is
quasineutral.

At 45 ns, an anomalously high maximum in the ion
and electron densities is seen immediately behind the
outer boundary of the cathode sheath; the plasma in this
region is also quasineutral. By this time, the sheath
thickness decreases nearly two times (Fig. 3) and the
cathode potential drop decreases from 706 (at 24 ns) to
400 V. This is due to the effect of thermal ionization,
which serves as an additional electron source in the
region where the strong field has already decayed.

Starting from 36 ns, the maximum gas temperature
attains 7685 K in spite of a substantial decrease in the
cathode potential drop. From 40 ns, the gas temperature
decreases only slightly (Fig. 4). In this case, gas cooling
in the outer part of the cathode sheath is balanced by
gas heating in the inner part. It is interesting that, under
conditions corresponding to the increasing branch of
the current–voltage (I–V) characteristic (i.e., when
associative ionization is still unimportant), models I
and II give approximately the same values of the cath-
ode drop and gas temperature in the cathode sheath
(Figs. 3, 4).
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Fig. 1. Longitudinal profiles of the potential, reduced elec-
tric field, and ion and electron densities in the discharge gap.
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Figure 4 shows the time dependence of the ratio

Rint = (e/j) (Na, T)dy of the integral rate of associa-

tive ionization in the cathode sheath to the current den-
sity (i.e., the double value of the integral of the impact-
ionization rate). In [1], it was demonstrated that, in cal-
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Fig. 2. Longitudinal profiles of the ion and electron densi-
ties and the gas density (ρ) in the discharge gap.
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ode sheath and time dependences of the cathode potential
drop calculated by (1) model I and (2) model II.
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culations, the time at which the condition Rint = 0.5 is
satisfied agrees well with the experimental time at
which a prearc cathode spot appears. It is seen in Fig. 4
that, 30 ns later, the growth rate of Rint calculated by
model II decreases due to a decrease in the cathode
potential drop, so that Rint reaches a value of 0.5 at
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t, ns

0.1
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0.3

0.4

0.5
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0.7

T/104, K; Rint

T

Rint

Fig. 4. Time dependences of the maximum gas temperature
T in the cathode sheath and the relative integral associative
ionization rate calculated by model I (dashed line) and
model II (solid line) at a constant current density.
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Fig. 5. Same as in Fig. 4, but at a constant cathode potential
drop.
45 ns. In model I, this condition is satisfied at 35 ns. In
experiments [2], a prearc cathode spot appeared at 30–
40 ns. Hence, in spite of the substantial modification of
the model, the Rint = 0.5 criterion introduced in [1]
remains valid.

Previous calculations were performed at a fixed
value of the current density. However, a decrease in the
cathode potential drop under conditions corresponding
to the descending branch of the I–V characteristic
should lead to an increase in the current density.
Approximate models explaining the behavior of the
cathode sheath on the descending branch of the I–V
characteristic were proposed, e.g., in [11, 12]. They do
not allow us to determine the characteristic growth time
of the instability (i.e., the transition time from the sub-
normal to the normal mode), but show that the diameter
of the current region under conditions corresponding to
the descending branch of the I–V characteristic
decreases and the current density increases.

A similar mechanism is realized in the processes
under consideration, as was discussed in [1]. This
mechanism may first manifest itself not throughout the
entire diameter of the cathode sheath, but in the region
where the associative ionization rate has a local maxi-
mum due to fluctuations in the parameters. The cathode
potential drop at the outer boundary of the cathode
sheath is smoothed out due to the current flowing into
this region. Our one-dimensional model allows us to
model this process, assuming that the diameter of the
current region is large enough and the current density is
redistributed rapidly (i.e., that the diameter of the
region where the associative ionization rate attains its
critical level is much smaller than the diameter of the
current region at the cathode).

To study this effect, we performed calculations
under the following conditions. The current density j =
100 A/cm2 was specified only at the initial time. Fur-
ther, only the interelectrode voltage was kept constant,
whereas the current density varied according to the
conditions in the interelectrode gap. Since, in our cal-
culations, the potential drop across the cathode sheath
is much higher than that through the positive column,
these conditions correspond to the modeling of a dis-
charge mode with a slightly varying cathode potential
drop. This allowed us not only to determine Rint, but
also to analyze the behavior of the physical quantities
that more definitely indicate the onset of the cathode
sheath instability (e.g., the gas temperature and current
density).

Figure 5 shows the time dependences of Rint and the
maximum temperature in the cathode sheath. For com-
parison, the data obtained by model I at a fixed current
density of j = 100 A/cm2 are also shown. It is seen that,
until nearly 40 ns, the temperature growth rate calcu-
lated by model II is smaller than that calculated by
model I. The reason is that the cathode drop in model II
increases only slightly and this slight increase is bal-
anced out by a decrease in the current density. The cath-
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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ode potential drop in model I increases (Fig. 3). For this
reason, associative ionization comes into play at later
times. However, after the quantity Rint has reached a
value of 0.1, it begins to grow explosively because of
the increased current density; the temperature grows in
the same manner. A similar time behavior of Rint, UC,
and Tmax was obtained using model II for nitrogen at
p0 = 100 torr and j = 1000 A/cm2. The calculated
growth time of the cathode sheath instability in this
model agrees satisfactorily with experimental data [2].

Therefore, a model of the cathode sheath has been
developed without introducing additional fit parame-
ters. We used an adequate set of equations of gas
dynamics with allowance for gas rarefaction. The appa-
ratus of nonequilibrium physicochemical gas dynamics
included in the model was developed to describe strong
shock waves (references are given in [1]). The diffu-
sion–drift model of the cathode sheath is well known. It
adequately describes the quantities necessary for calcu-
lating the gas dynamics of the cathode sheath—the
electric field and the cathode sheath thickness. For
completeness of the picture, we added calculations of
the thermal regime of the cathode; this was made not
only to determine the boundary condition, but also to
check the phase state of the surface. The fact that, in [2],
dissociation was observed before the cathode spot was
formed and metal vapor appeared points to the ade-
quacy of the model, which, in our case, does not require
invoking the poorly predictable mechanism of explo-
sive emission. In [13], the dissociation of hydrogen was
also observed experimentally before the formation of a
cathode spot.

The data obtained allow us to propose the following
scheme of the processes resulting in the thermal-ioniza-
tion instability of the cathode spot. For a sufficiently
high current, when there are resources for increasing
the current density and the energy deposition increases
monotonically, an irreversible contraction process take
place:

If the total current is insufficiently high for the
plasma density to increase significantly as UC

decreases, the temperature can decrease because of
heat transfer into the outer region. In this case, we
obtain the self-oscillation mode studied experimentally
in [14]. The scheme of the processes has the form

Na T,( )↑ Rint↑ UK↓
j↑ jUK( )↑ Na T,( )↑… .

Na T,( )↑ Rint↑ UK↓
jUK( )↓ T↓ Rint↓

UK↑ jUK( )↑ Na T,( )↑… .
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
CONCLUSION

In a pulsed discharge at a constant current density,
the increasing branch of the I–V characteristic of the
cathode sheath is first formed. This branch is associated
with an increasing excess of the current density over the
normal density because of gas rarefaction. Local max-
ima of the electron and ion densities are formed at the
front of the cathode shock wave. Another maximum of
the ion density can occur in a narrow gas-compression
region at the cathode.

The intensity of associative ionization increases
with time. After it reaches the critical level, the I–V
characteristics begin descending. Concurrently with
the intensification of associative ionization, both the
electric field and the cathode sheath thickness decrease.
In a narrow region left by the outer boundary of the
cathode sheath (i.e., behind the strong field region),
charge particles continue to be produced due to thermal
ionization. This gives rise to another local maximum
characteristic of the unstable state of the cathode
sheath.

Under conditions corresponding to the descending
branch of the I–V characteristic, the discharge becomes
unstable. The dynamics of this process depends on the
external conditions. At a fixed value of the cathode
potential drop, the current density increases as the asso-
ciative ionization rate increases. After reaching the crit-
ical level, the associative ionization rate, the current
density, and the gas temperature grow in an explosive
manner. The calculated growth time of the instability
agree satisfactorily with experimental data. Both mod-
els give close values of the cathode potential drop and
the maximum gas temperature under conditions corre-
sponding to the increasing branch of the I–V character-
istic. In both models, the stability criterion defined by
the integral associative ionization rate allows one to
predict the time during which the prearc cathode spot is
formed.
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Abstract—Within a continuous vortex model, exact expressions are obtained for the Josephson and magnetic
energies of plane (laminar) vortices, as well as for the energy and force of pinning by cells in a three-dimen-
sional Josephson medium. If the porosity of the medium is taken into account, the Josephson and magnetic
energies of the vortex differ from those for the continuum case. The contributions to the pinning energy from
the Josephson and magnetic energies have opposite signs. An algorithm for numerically solving a system of
difference equations is proposed in order to find the shape and the energy of the vortex in its stable and unstable
states. The continuous vortex model is shown to fail in predicting correct values of the Josephson and magnetic
energy of the vortex, as well as of the pinning energy components. Expressions for the least possible distances
between two isolated vortices are obtained for a small pinning parameter. Analytical results are in close agree-
ment with computer simulation. An algorithm for numerically solving a system of difference equations is pro-
posed in order to find the least possible distances between two isolated vortices when the pinning parameter I
is not small. The minimal value of I at which the center-to-center distance N of the vortices equals three cells
is 1.428; for N = 2, Imin = 1.947. At I > 2.907, the vortices can be centered in adjacent cells. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Recent investigations into high-temperature super-
conductors (HTSCs) have shown that vortical struc-
tures are to a great extent responsible for processes aris-
ing in the sample. In particular, vortex pinning and
interaction specify the processes occurring in HTSCs in
an external magnetic field. The movement of vortices
results in the non-Joule release of energy, which
adversely affects the superconductivity properties. The
critical currents and fields can be increased (the funda-
mental problem in physics and technology) if the vor-
tex behavior, structure, and interaction, as well as pin-
ning mechanisms and forces, are adequately under-
stood.

The structure of vortices, their pinning, and the
dependence of pinning on a magnetic field have been
the subject of extensive research [1–8]. In [3, 4], the
behavior of one-dimensional vortices in an extended
Josephson contact is analyzed. Here, it is assumed that
the vortices have a continuous phase distribution and
that they are pinned by discretely located pinning cen-
ters. Actually, however, a Josephson medium has a cel-
lular structure; therefore, pinning depends on the
energy necessary to move the vortex center from one
cell into another.

In [5], the vortex behavior in a linear chain of
SQUIDs was analyzed for the two-dimensional situa-
tion, i.e., when the magnetic field of a given loop is
taken into account only in the magnetic flux crossing
1063-7842/01/4607- $21.00 © 0831
this loop. In the three-dimensional case, however, a
vortex consists of coaxial “solenoids” and the magnetic
flux through a loop is induced not only by this loop but
also by other currents including remote ones. With a
decrease in the critical contact current, the vortex size,
i.e., the number of loops producing the magnetic flux
through the central vortex cell, increases. This compen-
sates for the reduced contribution into the magnetic flux
from each of the loops.

In [6, 7], a system of equations for fluxoid quantiza-
tion in the cells of a three-dimensional ordered Joseph-
son medium was derived to perform a detailed analysis
of the structure of possible vortical states. Different
configurations of laminar vortices in a three-dimen-
sional ordered Josephson medium, as well as their pos-
sible motion, were considered in [8].

In this paper, we calculate the pinning forces for
plane (laminar) vortices and their repelling forces in the
cells of a three-dimensional Josephson medium. Also,
the least possible distances between two isolated vorti-
ces are evaluated.

As in [6–8], we will consider a simplified model
comprising a cubic lattice with the lattice constant h.
The lattice is made up of superconducting wires with
each connection containing a Josephson contact and all
the contacts having a small size and the same critical
current Jc. The vortex axis coincides with the lattice
axis. The current distribution is assumed to be planar;
that is, the currents are identically distributed in all par-
2001 MAIK “Nauka/Interperiodica”
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allel planes that are perpendicular to the vortex axis and
spaced at h. Such a model, while being rather simple,
enables certain conclusions to be made about the struc-
ture of vortices and their dynamics. Results obtained
within this model qualitatively agree with those derived
from more complicated models.

Based on the condition for fluxoid quantization in a
cell, we derived equations [6–8] that describe the distri-
bution of the phase discontinuity values at the contacts
for laminar configurations:

(1)

where I ≡ 2πµ0hJc/Φ0 is the dimensionless parameter
and Φ0 is a quantum of the magnetic flux.

An equation similar to (1) was first obtained by
Frenkel and Kontorova when considering the dynamics
of dislocations in a crystal.

It was shown [6–8] that, with an increase in the
parameter I, the vortex size decreases and the pinning
force increases. Therefore, with increasing I, the least
possible distance between the vortices diminishes.
Eventually, at high I, the vortex centers may find them-
selves in the adjacent cells and the concept of discrete
vortices loses its meaning. Let us consider the cases of
small and nonsmall values of the parameter I sepa-
rately.

SMALL VALUES OF THE PARAMETER I

When the parameter I is small, the size of vortices is
large and so is the distance between their centers. At
I ! 1, the distribution becomes quasi-continuous [7]
and system (1) rearranges to the sin-Gordon differential
equation

(2)

where the length x is measured in terms of h.
The solution of Eq. (2) for an individual vortex has

the form

(3)

The plot of function (3) is presented in Fig. 1.

ϕm 1+ 2ϕm– ϕm 1–+ I ϕm,sin=

d2ϕ
dx2
--------- I ϕ ,sin=

ϕ x( ) 4 x I–( )exp( ).arctan=

x

ϕ

0

2π

π

–π

Fig. 1. Solution (3) of Eq. (2) for an isolated vortex.
Since the physically meaningful phase value is
defined accurate to the multiple of 2π, 2π can be sub-
tracted from the phase values at x < 0 to make the vortex
shape symmetric about the coordinate (dashed curve in
Fig. 1). This implies the restriction –π < ϕ ≤ π; in other
words, the values of ϕm obtained from Eq. (1) or (2)
should be diminished by a multiple of 2π so that ϕm

falls into the range specified.

Equation (3) written in the form d2ϕ/dξ2 = sinϕ,

where ξ = x  is a distance in terms of h/ , has been
shown [9] to have the following solutions correspond-
ing to an infinite number of equidistant vortices:

(4)

where ϕ and γ are constants of integration.

The existence of such solutions follows from the
fact that Eq. (2) does not include vortex pinning; there-
fore, the repulsion force acting on a vortex from the
right can be balanced only by an equal force acting
from the left. That is, its neighbors must be equidistant
from it. In the absence of pinning, there is no steady-
state solution for two isolated vortices, since mutual
repulsion would throw them away to infinity. With pin-
ning, the least possible center-to-center distance is
specified by the equality of the repulsion force and the
maximal pinning force.

At I ! 1, the repulsion force can be derived from
solutions (4) of Eq. (3). To find the pinning force in the
cells, the discrete character of the medium should be
taken into account.

1. Calculation of the Repulsion Force

For our current configuration of height Z and length Y,
the energy is given by [8]

(5)

where ε0 = /4π2µ0h3 is a normalizing constant.

Hereafter, the energies will be expressed in units of ε0.
In the continuous case, expression (5) transforms into
the integral

(6)

Let us consider a set of equidistant vortices. Substi-
tuting (4) into (6) yields the expression for energy per

I I

x
1
2
--- ϕd

ϕ
2
--- γ2+sin

2

-----------------------------,

ϕ0

ϕ

∫=

E ε0YZ
1
2
--- ϕk 1+ ϕk–( )2 I 1 ϕkcos–( )+ ,

k ∞–=

∞

∑=

Φ0
2

E ϕ ξ( )( ) IYZ
1
2
--- ∂ϕ /∂ξ( )2 1 ϕcos–( )+ ξ .d

∞–

∞

∫=
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vortex (per 1 m of height and 1 m of length; Y = Z = 1),

(7)

where K(x) and E(x) are the complete elliptic integrals
of the first and second kind, respectively, and

(8)

is the spatial period (the length per vortex).

The case where the distance between vortices is
much greater than the length of a vortex, which is equal

to 1 (in dimension units h/ ), corresponds to the con-
dition γ ! 1. Expanding Eq. (7) in γ and leaving only
the first terms, we obtain

(9)

Using the asymptotic of the function K(1/ )
at small γ, we come to a = 2ln(4/γ); hence, it follows
that the energy per unit length and height of an isolated

vortex is equal to E = 8  and the energy per vortex
due to vortex interaction is

(10)

Since vortices are far apart from each other, each
can be assumed to interact only with its left and right
nearest neighbors. Thus, expression (10) gives the
energy of interaction between two adjacent vortices.
Then, the repulsion force of two isolated vortices is
given by

(11)

where N is the number of cells between the centers of
the vortices.

Note that expressions (10) and (11) can be derived
using a different approach [4].

2. Calculation of Vortex Pinning in Cells

(a) Analytical calculation. Let us obtain the energy
of pinning associated with the discrete character of the
medium where vortices can be considered as quasi-
continuous (i.e., I ! 1). We will use the approach pro-

E

I
------ a 4 1 γ2+( ) E 1/ 1 γ2+( )

K 1/ 1 γ2+( )
--------------------------------- 2γ2–=

=  8 1 γ2+ E
1

1 γ2+
------------------ 

  4γ2

1 γ2+
------------------K

1

1 γ2+
------------------ 

  ,–

a
2

1 γ2+
------------------K

1

1 γ2+
------------------ 

 =

I

E/ I 8 2γ2.+=

1 γ2+

I

Eint 2γ2 32e a– I .= =

F
∂E
∂r
------–

I
h

------∂E
∂a
------– 32

I
h
---e a– 32

I
h
---e N I– ,= = = =
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posed in [10]. In view of the relationship for δ functions

(12)

expression (5) at Y = Z = 1 takes the form

(13)

where α is the coordinate of the vortex center relative
to the cell edge. For instance, if a vortex is centered at
the boundary of two cells, α = 0; if the centers of a vor-
tex and cell coincide, α = 0.5.

If the function f(x) is even, expression (13) takes the
form

(14)

Substituting (3) for a continuous isolated vortex into
(14) and leaving the terms with n = 0 and ±1, we obtain

(15)

(i) Consider the Josephson energy E = I 1 –

cosϕk). In this case,

(16)

Taking into account the evenness of f1 with respect
to ξ, we have [11]

(17)

δ x k–( )
k ∞–=

∞

∑ i2ωnx( )exp
n ∞–=

∞
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=  Re i2πnx( ),exp
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∞
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∑ xd
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=  Re f ϕ x( )( ) i2πn x α–( )( )exp
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∞

∑ x,d
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∞
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E 2 2πnα( )cos
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∞
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× Re f ϕ x( )( ) i2πnx( )exp x.d

0

∞

∫

E
2

I
------ f 4 ξ–( )exp( )arctan( ) ξ 4

I
------ 2πα( )cos+d

0

∞

∫=

× Re f 4 ξ–( )exp( )arctan( ) i2πξ
I

----------- 
 exp ξ .d

0
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(
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∞
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(18)

The maximal value of  is achieved at α = 0, i.e.,
when a vortex is centered at the boundary of two cells.

(ii) Consider the magnetic energy EH = 0.5 ϕk –

ϕk + 1)2. In this case,

(19)

At α1 = –0.5, the function f2(x) is even:

(20)

Expanding arctan into a series, squaring it, and inte-
grating termwise yields

(21)

where η = /2).
Going from the series in η to that in I, we obtain

(22)

To calculate , we will use methods of the theory
of complex variable:

(23)
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∞
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Fig. 2. Contour of integration in the complex plane z.
Writing the function of complex variable arctanz in
the form

we come to

(24)

The integrand has four singular points:

(25)

To obtain , we take the integral over the contour
with a cutout (Fig. 2) and then approach R to infinity
and ρ to zero. Formula (24) satisfies the moderate Jor-
dan lemma: the expression in brackets squared steadily
approaches zero at |z|  ∞ in the sectors –ϕ0 ≤ argz ≤ ϕ1
and π – ϕ2 ≤ argz ≤ π + ϕ0. Therefore, the integral over
the larger semicircle approaches zero at R  ∞. It can
easily be shown that the integrals over the smaller cir-
cles approach zero at ρ  0. The integrals over the
upper and lower sides of the cutout have opposite signs
and differ in absolute value, since the function in brack-
ets changes by 2πi in going around the point z =

( /2) + (π/2)i:

(26)
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Expanding the integrand into a series and leaving
the first two terms, we arrive at the following expres-
sion for the integral [11]:

(27)

where C is the Euler constant, Ci(x) is the integral
cosine, and

 is maximum at α = 0; however, from the initial
shift [α1 = –0.5, see expression (20)], it follows that this
maximum corresponds to the coincidence of the vortex
and cell centers. Taking into account the initial shift for
reducing the expression to the single origin for α, we
finally obtain

(28)

where α = 0.5 corresponds to the position of the vortex
center at the center of the cell.

The total vortex energy is

(29)

As in [8], we define the pinning energy Ep as the dif-
ference between the maximal and the minimal vortex
energies at the different α, i.e., when the vortex center
is located at the boundary between two cells (α = 0) and
at the cell center (α = 0.5):

(30)
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According to the above analysis, ∆EJ and ∆EH are
given by

(31)

(32)

To check the validity of the formulas obtained, we
performed a rigorous computer evaluation of the values

(33)

Here, ϕk was calculated with expression (3) for a vortex
in a continuous medium:

(34)

for α = 0 and α = 0.5. The differences between the asso-
ciated values give ∆EJ and ∆EH in (30), whereas their
half-sums are equal to EJ0 and EH0, according to (29).

The energies , , ∆EJ, and ∆EH calculated
using formulas (17), (22), (31), and (32), respectively,
for several values of I are summarized in Tables 1 and 2.

(b) Computer calculation of pinning energy. The
foregoing consideration was based on function (34),
which corresponds to the solution (3) of differential
equation (2), approximating system of difference equa-
tions (1) at small I. To find the applicability limit for
such an approach, the results obtained should be com-
pared with the exact solution of system (1).

To obtain a numerical solution of system (1), we
write it in the form of the recurrent relation

(35)

Then, knowing the values of the phase discontinui-
ties at two adjacent contacts, one can find the whole
configuration. Let us consider an isolated vortex. In the
stable equilibrium state [8], the phase discontinuities at
the contacts of the central cell are related as ϕ–1 = 2π – ϕ1.

∆EJ 32π2 π2

I
------– 

  ,exp=

∆EH 32 π2

I
------– 

  2.43766 I/12–( ).exp–=

EJ α( ) I 1 ϕkcos–( ),
k ∞–=

∞

∑=

EH α( ) 1
2
--- ϕk 1+ ϕk–( )2.

k ∞–=

∞

∑=

ϕk α( ) 4 k– α–( )exp I( )arctan=

EJ0
EH0

ϕm 1+ 2ϕm ϕm 1– I ϕm.sin+–=
Table 1.  Magnetic and Josephson energies obtained by different approaches

I
Theory (17) Theory (22) Numerical model (33), (34) Exact solution

EH EJ

0.15 1.5492 1.5428 1.5428 1.5492 1.5525 1.5393

0.40 2.5298 2.5022 2.5022 2.5298 2.5452 2.486

0.70 3.347 3.2836 3.2837 3.347 3.3853 3.2393

1.00 4.000 3.894 3.894 4.000 4.073 3.806

EJ0
EH0

EH0
EJ0
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Table 2.  Pinning energy components obtained by different approaches

I
Theory (31) Theory (32) Numerical model (33), (34) Exact solution Theory (31), 

(32)

∆EJ ∆EH ∆EH ∆EJ ∆EH ∆EJ Ep Ep

0.15 2.705E-9 –6.6477E-10 –6.6479E-10 2.705E-9 –6.095E-8 6.617E-8 5.22E-9 2.04E-9

0.40 5.27E-5 –1.2849E-5 –1.2852E-5 5.27E-5 –6.21E-4 7.14E-4 9.29E-5 3.99E-5

0.70 2.38E-3 –5.734E-4 –5.738E-4 2.38E-3 –1.86E-2 2.24E-2 3.90E-3 1.81E-3

1.00 1.63E-2 –3.897E-3 –3.902E-3 1.63E-2 –0.095 0.121 0.026 0.0124
Choosing a certain value of ϕ1 and substituting 2π – ϕ1
and ϕ1 into (35) as two successive values of ϕk, we start
calculating the subsequent values of the discontinuities.
From the vortex shape (Fig. 1) it follows that, if any of
the next values is less than zero or larger than the
preceding one, the starting value of ϕ1 is increased or
decreased, respectively, and the calculation starts at
the beginning. In this way, the whole set of ϕk values
for an isolated vortex can be obtained, after which the
Josephson and magnetic energies are calculated from
formula (5).

A similar calculation can also be carried out for the
unstable vortex configuration. In this case, ϕ–1 = π [8];
therefore, the values of π and ϕ1 are taken as two suc-
cessive values and then the scheme of computation is
the same as before.

The computer realization of the algorithms enables
the calculation of the Josephson, magnetic, and pinning
energies. The results of calculation are presented in
Tables 1 and 2.

(c) Analysis of the results. The pinning energies
and forces for one-dimensional vortices in a long
Josephson contact, which are also described by system
(1), were calculated in [4] using data in [10]. The
results obtained in this chapter are distinct from those
reported in [4, 10].

A comparison of the results based on the analytical
expressions with those of the computer simulation
leads to the following conclusions.

(1) The exact numerical calculation of the parame-
ters  = 0.5[EJ(0) + EJ(0.5)],  = 0.5[EH(0) +
EH(0.5)], ∆EJ = EJ(0) – EJ(0.5), and ∆EH = EH(0) –
EH(0.5) from (33) and (34) (columns 4, 5 in Tables 1, 2)
supports (with a high accuracy) the validity of formulas
(17), (22), (31), and (32) (columns 2, 3 in Tables 1, 2).

(2) Formulas (17) and (31) for Josephson energies
coincide with those in [4, 10] for one-dimensional vor-
tices in a long Josephson contact. This situation is also
described by system (1).

(3) Formulas (22) and (32) for magnetic energies
differ from the relationships [4, 10]

EJ0
EH0

EH 4 I and ∆EH 32π2 π2

I
------– 

  .exp= =
While in the formula for EH, we added small correc-
tions, in the case of ∆EH, the energies have opposite
signs and their absolute values differ approximately by
a factor of 4. These differences stem from the fact that,
when calculating the magnetic energy EH, the author of
[10] baselessly used the function f2 = 0.5(ϕ'2) = I(1 –
cosϕ) = f1 in (15) instead of function (19). That is why
his values for the Josephson energy EJ and the magnetic
energy EH turned out the same.

A comparison of the energy values obtained from
the exact numerical solution of the system of the differ-
ence equations (columns 6, 7 in Tables 1, 2) with those
derived by the approximate approach [solution (3) of
differential equation (2)] leads to the following conclu-
sions.

(1) The associated values for the magnetic and the
Josephson energies (columns 4, 6 and 5, 7 in Table 1)
differ by small yet physically significant amounts.

(2) The exact values of the Josephson, ∆EJ, and
magnetic, ∆EH, components of the pinning energy (col-
umns 5, 7 in Table 2) are several tens and several hun-
dreds of times larger than the values obtained by the
approximate approach (columns 4, 6 in Table 2).

(3) Yet, due to the different signs of the Josephson
and magnetic components of the pinning energy, the
exact values of the pinning energy Ep = ∆EJ + ∆EH (col-
umn 8, Table 2) differ insignificantly from the approxi-
mate results (column 9, Table 2). The satisfactory
agreement between the approximate and exact values
of the pinning energy when its Josephson and magnetic
components drastically diverge is most probably not
accidental and is of fundamental nature. The substanti-
ation of the approximate approach for finding the pin-
ning energy is a separate mathematical problem that is
as yet unclear how to solve.

From Table 2, the exact expression for the pinning
energy can be written in the form

(36)

where the coefficient k is in the range from 0.8 to 1
depending on the value of the parameter I.

Ep k64π2 π2

I
------– 

  ,exp=
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Note that, in [4], the pinning energy is given by
expression (18), i.e., is approximately twice as low as
the value from (36).

3. Least Possible Distances between 
Two Isolated Vortices

To obtain the pinning force of a vortex, we differen-
tiate vortex energy (29) with respect to coordinate:

(37)

The least possible center-to-center distance Nmin of
two isolated vortices is specified by the equality of
repulsion force (11) and the maximal pinning force:

(38)

hence,

(39)

In a similar formula for Nmin [4], the coefficient 2k is
lacking. At small I, this may result in a noticeable quan-
titative discrepancy, as follows from Table 3. The first
column of Table 3 lists Nmin obtained in [4]; the second
column, the values calculated by formula (39); and the
third one, the minimal distances dmin between the
extreme vortex and its neighbor that were obtained by
exactly solving (1) when an external magnetic field
[12] is monotonically increased.

When comparing data in Table 3, one should bear in
mind that the exact value of Nmin can either be equal to
dmin or greater than dmin by 1. The reason is the follow-
ing. At the least possible distance Nmin between two iso-
lated vortices, each of them is in the extreme position in
a cell. Now suppose that there are other vortices, for
instance, on the right of the right vortex, that allow it to
move more to the right in the cell. If the left-hand vor-
tex remains in the same cell in this case, dmin = Nmin; if
it passes to the adjacent cell, dmin = Nmin – 1.

It is evident from Table 3 that, with regard to the
aforesaid, the calculations using (39) yield values
almost completely coincident with the numerical solu-
tion of system (1), unlike the calculations using the for-
mulas in [4]. This agreement confirms the validity of
both the theoretical analysis [expression (39)] and the
algorithm for the numerical solution of system (1) to
obtain dmin.

NONSMALL VALUES 
OF THE PARAMETER I

Consider now nonsmall values of I at which a vortex
covers several cells. In this case, the transition from the
difference equations to the differential equations is

Fp
∂E
∂r
------

2π
h

------ EJ1
EH1

–( ) 2πα( ).sin= =

32
I
h
---e

Nmin I– 2π
h

------k32π2 π2

I
------– 

  ,exp=

Nmin
1

I
------ 2kπ3

I
----------- π2

I
------– 

 exp 
  .ln–=
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impossible. Therefore, the above results are inapplica-
ble in such a case and discrete system (1) should be
studied. Let us find possible distances between two iso-
lated plane (laminar) vortices.

We will analyze system (1) for two vortices remote
from the boundary with their centers placed N cells
apart in row 1 and row (N + 1) (Fig. 3). To the left of
cell 1 and to the right of cell (N + 1), the currents
decrease, approaching zero at infinity. At I > 1, the val-
ues of ϕm outside the central cells of the vortices are
small, system (1) is linearized, and its solution takes the
form [12]

(40)

(41)

(42)

where γ = 1 + I/2 –  is the solution of the
equation γ2 – (1 + I)γ + 1 = 0.

The distribution of the currents and the phases will
be assumed to be symmetric about the middle of the

ϕm ϕ 1– γ m– 1– m 1–≤( ),=

ϕm C1γ
m– 1– C2γ

N m– 1 m N≤ ≤( ),+=

ϕm ϕN 1+ γ m– N– 1– m N 1+≥( ),=

I I2/4+

Table 3.  Least possible distances between vortices obtained
by different approaches

I Nmin [4] Nmin from [39] Nmin [12]

0.07 117.9 115.3 115

0.08 102.3 99.8 100

0.10 80.5 78.4 78

0.15 52.0 50.2 50

0.20 38.1 36.5 37

0.30 24.4 23.2 23

0.40 17.8 16.7 17

0.50 13.9 12.9 13

0.60 11.4 10.5 11

0.70 9.6 8.7 9

1.00 6.4 5.7 6

J1J–1 J2 J3 JN–1 JN JN+1 JN+2

1 2 3 N N+1

Fig. 3. Current distribution in a plane perpendicular to the
axes of two isolated interacting vortices.
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distance between the vortices. Then, 

C1 = –C2 = ϕ1/(1 – γ–N – 1),

(43)

Substituting (43) into the boundary conditions for

ϕ2 ϕ1k,=

k γ 1 γN 3––( )/ 1 γN 1––( ).=

–2π –π 0 ϕ–1

ϕ1
2π

N = 1

N = 2

N = ∞

(c)

–2π –π 0 ϕ–1

ϕ1
2π

N = 1

N = 2

N = ∞
(b)

–2π –π 0 ϕ–1

ϕ1
2π

N = 1

N = 2

N = ∞

(a)

Fig. 4. Graphical solution of system (46)–(47) for different I.
Curves emerging from the point ϕ1 = 2π correspond to
Eq. (47); those emerging from the point ϕ–1 = –2π corre-
spond to Eq. (46). I = (a) 2, (b) 4, and (c) 2.9.
the central cell of the vortex

(44)

(45)

we obtain the following system of equations for ϕ–1
and ϕ1:

(46)

(47)

In (46) and (47), only the coefficient k depends on
the distance between vortices: k(∞) = γ, k(2) = –1,
k(3) = 0, etc. In Fig. 4, dependences (46) and (47) are
presented for I = 2, 2.9, and 4. It is evident that, at each
value of I, system (46)–(47) has solutions in a certain
range of N; in other words, the intervortical distance
may vary from some minimal value to infinity. This is
a result of pinning, since the vortices would move apart
to infinity in its absence; that is, there would be no solu-
tions at finite N. Having found N, we can determine the
shortest distance at which the pinning forces balance
the repulsion of the vortices. It is evident from Fig. 4
that, at I = 2, Nmin = 2; when I = 4, the vortices can be
centered even in the adjacent cells.

Let us find the minimal I at which the vortices are
centered in the adjacent cells. In this case, N = 1 and
k = ∞; then, as follows from (46), ϕ1 should be equal to
zero (because of the symmetry of the problem). The
curve in Fig. 4c with its minimum lying on the ϕ–1 axis
corresponds to the lowest I satisfying (46) and (47) at
ϕ1 = 0. The exact numerical calculation yields Imin =
2.907 at N = 1. The minimal value of I when the center-
to-center distance N can be equal to 2 is 1.947; for
N = 3, we obtain Imin = 1.428.

CONCLUSION

Within a continuous vortex model, the interaction
energies and pinning forces of plane (laminar) vortices
in a three-dimensional Josephson medium were calcu-
lated.

It is shown that expressions for the vortex magnetic
energy and magnetic component of the pinning energy
that were derived by other authors in the framework of
this model at low values of the pinning parameter are
incorrect. The refined expressions for these values were
deduced. The values of the Josephson and magnetic
energies of the vortices that are found in view of the
porosity of the medium diverge unlike the continual
case. The contributions to the pinning energy from the
Josephson and magnetic energies have opposite signs.
The numerical calculation of all the energies within this
model showed the validity of the expressions obtained.

An algorithm for numerically solving the system of
difference equations was proposed to obtain the shape
and the energy of the vortex in its stable and unstable
states without using the continuous vortex model.

I ϕ1sin ϕ 1– 2ϕ1– ϕ2 2π,+ +=

I ϕ 1–sin ϕ1 2ϕ 1– ϕ 2– 2π,–+–=

ϕ 1– I ϕ1 2 k–( )ϕ1 2π,–+sin=

ϕ1 I ϕ1 2 γ–( )ϕ1 2π.+ +sin=
TECHNICAL PHYSICS      Vol. 46      No. 7      2001



INTERACTION AND PINNING OF PLANE VORTICES 839
Computations using this algorithm demonstrated that
the continuous vortex model yields improper values of
the Josephson and magnetic energy of the vortex, as
well as of the pinning energy components. The exact
values of these components are tens and hundreds of
times larger than those obtained with the continuous
vortex model. In spite of this, the exact value of the pin-
ning energy differs from the model results only slightly
because of different signs of the Josephson and mag-
netic components of the pinning energy. This fact most
likely is not accidental and is, perhaps, of fundamental
nature. The substantiation of using the continuous vor-
tex model for evaluating the pinning energy is a sepa-
rate mathematical problem. An approach to solve it
remains to be elaborated.

From the energies of interaction and pinning calcu-
lated, the least possible distances between two isolated
vortices at small values of the pinning parameter were
evaluated. These results agree well with those of the
computer simulation.

An algorithm for numerically solving the system of
difference equations in order to find the least possible
distances between two isolated vortices at a nonsmall
pinning parameter I is proposed. The least value of I for
which the center-to-center distance N of the vortices
equals three cells is 1.428; for N = 2, Imin = 1.947. At
I > 2.907, the vortices may be centered in the adjacent
cells.
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Abstract—A mechanism of mechanoelectrical transformations produced by impact excitation in cement-
binder-based composites is suggested and experimentally verified. The transformations proceed in two stages:
material electrification at the point of impact and mechanoelectrical processes at the matrix–binder interface.
© 2001 MAIK “Nauka/Interperiodica”.
Mechanoelectrical transformations in insulating
materials subjected to impact excitation are fundamen-
tal for nondestructively testing the mechanical strength
of structural materials [1]. Studies of sources and
mechanisms of these transformations in insulators are
aimed at improving the precision and extending the
functionality of the nondestructive technique. Experi-
mental and theoretical data for the sources in concretes
have been summarized in [2–4]. In this work, we
develop a mechanism of the transformations as applied
to impact-excited composites consisting of the cement
binder and a filler.

We performed vast experimentation using physical
simulation. Model materials were cement-based com-
posites with different inclusions.

Experiments were carried out as follows. The sam-
ple surface was dynamically struck, and an acoustic
and an electromagnetic signal were simultaneously
recorded with an Emission-1 two-channel device
(Fig. 1). The signal detector, the electromechanical per-
cussion device, and the sample were always arranged in
the same way. The exciting mechanical pulse was about
3 × 10–5 s long, and the velocity of the striker was
roughly 2 m/s.

Figures 2a and 2b show typical electromagnetic
pulses (curves 1) and acoustic signals (curves 2) that
were recorded in samples of various compositions. Fig-
ure 2a refers to the sample composed of cement, sand,
and water. Figure 2b refers to the sample of the same
composition but having a single metallic inclusion. It is
seen that the electromagnetic signals diverge, while the
acoustic signals are virtually coincident. For the
cement–sand sample, which is a single-component het-
erogeneous composite, an individual electromagnetic
pulse is recorded. For the two-component system (hav-
ing the metallic inclusion), the electromagnetic
response is much more complicated.

The single electromagnetic pulse excited by the
impact excitation of the cement stone can be associated
with the triboelectric effect, arising when the striker
1063-7842/01/4607- $21.00 © 20840
comes into contact with the sample surface (when com-
ing into contact, rubbing, and subsequently separating,
materials are known to be electrified by virtue of the tri-
boelectric effect [6]). The impact-induced electrifica-
tion of materials has been studied in [7]. That this sig-
nal is related to the electrification of the sample at the
instant the striker touches its surface is corroborated by
Fig. 2a. The time delay t between the electromagnetic
and acoustic signals results from the different velocities
of the electromagnetic and acoustic waves. The process
of mechanoelectrical transformations can be thought of
as follows. When the striker touches the sample sur-
face, the rubbing materials are electrified and an elec-
trical signal arises. This signal is instantaneously
recorded by the electronic detector. After a time, a sur-
face or bulk (depending on the position of the acoustic
detector and the sample geometry) elastic wave comes
to the acoustic detector and an acoustic signal is
recorded. Let us compare the experimental and calcu-
lated time delays for the case in Fig. 2a. If the velocity
of the surface wave in a cement stone is set equal to
≈2000 m/s and the distance between the point of impact
and the acoustic detector is ≈5 cm, the time of arrival of
the acoustic wave is ≈25 µs. This value agrees well with
the calculated value t = 29 µs. Thus, the electromag-

1
4

23

Fig. 1. Experimental scheme: (1) sample; (2) striker;
(3) acoustic detector; and (4) electronic detector.
001 MAIK “Nauka/Interperiodica”
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netic signal, which is recorded before the acoustic sig-
nal, does appear at the instant of impact. The virtual
absence of oscillation in the electromagnetic response
implies that our impact excitation system suppresses
interactions with obstacles whose linear sizes are less
than the excitation wavelength [8].

Earlier [1], the impact excitation of concrete, which
is a two-component heterogeneous material, was
shown to generate an alternating-sign signal. It was
speculated that this oscillating electromagnetic
response is associated with a change in the dipole
moment of the double electrical layer at the boundary
of the matrix. The layer is formed by an acoustic wave
passing through the matrix. To validate this supposi-
tion, we observed the variation of the electromagnetic
response shape during the solidification of model con-
cretes. They represented cement–sand mixtures into
which a gravel pellet was incorporated. Before the pel-
lets were embedded in the mixture, they had been spe-
cially processed and tested. To exclude the effect of the
surface condition and scaling factor on the electromag-
netic response, the pellets were equally shaped (80 ×
80 × 7 mm) and their surfaces were polished. Of these
pellets, we chose those providing impact-induced elec-
tromagnetic responses of different types (Fig. 3). The
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Fig. 2. (1) Typical electromagnetic pulses and (2) acoustic
signals recorded upon the impact excitation of the model
samples.
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signals of the first type (Fig. 3a) are excited in the fine-
grain pellets; the coarse-grain pellets show signals like
those in Fig. 3b. Note that the efficiency of the mecha-
noelectrical transformations grows if gravel is made of
a quartziferous rock.

Then, we embedded the pellets in the cement–sand
composition, formed samples 100 × 50 × 50 mm in size
and tested them during solidification. Typical electro-
magnetic surfaces recorded 5, 13, 19, and 30 days after
sample preparation are depicted in Fig. 4. At the initial
time instant (Fig. 4a), an isolated peak is recorded. Sub-
sequently, however, an alternating-sign response
appears (Figs. 4b, 4c). Experience suggests that con-
crete solidifies in about 28 days. The single peak at the
initial stage of solidification is possibly associated with
the fact that the electrical signal due to mechanical
transformations at the matrix–inclusion interface is
screened by the conductive wet cement slurry. During
solidification, free water combines with the cement to
form the cement stone structure and also vaporizes.
Therefore, the conductivity decreases. The alternating-
sign component of the electromagnetic response even
appears on the 13th day of solidification (Fig. 4b). Its
amplitude grows up to the 30th day and then remains
constant. When refined, these results may be used for
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Fig. 3. Typical electromagnetic responses from (a) fine-
grain gravel pellets and (b) coarse-grain quartziferous
gravel pellets.
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Fig. 4. Typical electromagnetic responses from the model concrete samples at the (a) 5th, (b) 13th, (c) 19th, and (d) 30th day of
solidification.
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Fig. 5. Electromagnetic responses from the concrete samples with the (a) smooth and (b) rough inclusions.
determining the degree of solidification of concretes.
During solidification, the shape of the electromagnetic
responses does not depend on whether the inclusion
gives a response like that in Fig. 3a or in Fig. 3b. In both
cases, the alternating-sign response arises. Therefore,
the occurrence of the alternating-sign signal at a certain
stage of solidification is related to the acoustic excita-
tion of the double electrical layer at the matrix–inclu-
sion interface when the cement stone solidifies.
From the theory of adhesion bonds in composites
consisting of a binder and a filler, the adhesive contact
quality depends on the surface condition of the binder
[9]. Specifically, if the filler surface is developed, the
contact quality improves. If we assume that the adhe-
sive contact quality affects the efficiency of the mecha-
noelectrical transformations, then the electromagnetic
response amplitude must vary according to the surface
condition of the inclusion. To check this assumption,
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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we made model samples composed of the cement
matrix and isolated metallic inclusions of equal size.
The surfaces of the inclusions were smoothed or rough-
ened. Figure 5 shows typical electromagnetic responses
from samples of both types. For the inclusions with the
rough surface, the amplitude of the response drops as
compared with the smooth inclusions. It seems that, in
the former case, the effective surface area of the double
electrical layer, which is concurrently excited by the
acoustic wave, decreases. This is additional evidence
that the alternating-sign electromagnetic response is
directly defined by the adhesive contact between the
cement matrix and the inclusion.

From the results presented, we suggest the follow-
ing mechanism of the impact-induced mechanoelectri-
cal transformations in the composites. At the instant of
impact, the surface at the point of impact is electrified
and an isolated electromagnetic pulse appears. Then, an
elastic wave originates in the material. This wave
changes the dipole moment of the double electrical
layer at the matrix–filler interface, causing an alternat-
ing-sign decaying response to arise.
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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Abstract—From the equations of motion within the field theory of defects, creep curves are derived and a rela-
tionship between the applied stress and the time to rupture under different deformation conditions is obtained.
The creep duration as a function of the applied stress and the initial strain rate, as well as the ultimate strain,
specifying the material rupture, are found. © 2001 MAIK “Nauka/Interperiodica”.
The operation of equipment under severe conditions
(high stress and temperature) has resulted in the discov-
ery of the creep effect and the development of creep
theory. Engineers have centered on creep analysis [1],
i.e., on the evaluation of the time period within which
the strain reaches the ultimate value. This problem
remains of practical importance nowadays. At its incip-
ient stage, creep theory was developed as an engineer-
ing science. Later, it evolved into a branch of contin-
uum mechanics. Simultaneously, physical mechanisms
responsible for the creeping effect were studied.
Because of their complexity, comprehensive physical
description of creep is lacking. Some progress in creep
physics has been achieved by invoking the concepts of
the dislocation theory [2–4]. A number of dislocation
models describing different creep stages and conditions
have been constructed. It is argued [3, 4] that, at mod-
erate temperatures, elementary creep events in solids
are attributed primarily to the motion of dislocations.
Therefore, creep mechanisms will be considered in
terms of the field theory, which involves the dynamics
of translational defects [5, 6]. Note that the field theory
of defects deals with defect ensembles and, according
to [7], describes a system on the mesoscopic scale. In
contrast, the classical dislocation theory [2] has to do
with individual defects and their interactions and thus,
implies microscopic methods of description [7].

The dynamic equations in the field theory of defects
have the form

(1)

B ∇ I⋅( ) B α×.I( ) ρV,––=

∇ α⋅ 0, ∇ I× ∂α
∂t
-------,= =

S(∇ α )× B
∂I
∂t
-----– S α α⋅ δ

2
---α2– 

 –=
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From these equations, the equation relating the ten-
sor of the dislocation flux density I to the applied stress
σapp was obtained [8]:

(2)

Here, α is the dislocation density tensor, V is the elastic
displacement rate, ρ is the material density, η is the vis-
cosity, B and S are the theoretical constants, and δ is the
Kronecker delta. The symbols (×) and (·) stand for the
vector and scalar products, respectively, and (×.) desig-
nates the vector product with respect for the first sub-
scripts of the dyad and the scalar product with respect
for the second ones. Equation (2), which is helpful in
studying the creep process, is written for the uniform
distribution of defects, i.e., for space-independent field
strengths α and I. It is believed [9] that this assumption
is valid near the yield point, where defects are distrib-
uted randomly and do not form spatial structures.
A great body of experimental data on the creep effect
has been obtained from tensile tests of rods. Therefore,
in our previous study [8], we considered uniaxial defor-
mation, for which Eq. (2), written in the dimensionless
variables v  = –(B/η)I11, τ = (η/B)t, and S = (B/η2)σ11,
becomes

(3)

where v  is the plastic strain rate.
In [8], special attention has been given to the analy-

sis of the functions v(τ), which specify the creep curves

ε(t) =  under constant stress. In the follow-

ing, we will carefully investigate the relationship

– B I I⋅ δ
2
--- I2– 

  η I– σapp.–

B
∂I
∂t
----- B I I⋅ δ

2
--- I2– 

  η I σapp+ + + 0.=

vd
τd

------- v 2/2 v S+ ,–=

v τ( ) τd
0

t∫
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between the applied stress and the time to rupture of a
system.

It has been found [8] that there are two creep modes
depending on the applied stress S: stable at S < 1/2 and
unstable at S > 1/2. The corresponding expressions for
creep rates are

(4)

(5)

Then, the creep curves are given by

(6)

(7)

where 2α = p – q, n = 1 – v 0, v 0 is the initial creep rate,

and p, q = 1 ±  are the steady-state rates given
by (3) at dv /dτ = 0.

The critical applied stress S∗  = 1/2 corresponds to
the bifurcation point where the creep behavior changes.
With this parameter introduced, one can define the sta-
ble creep limit σ* = η2/2B, which depends on the mate-
rial parameters.

Expressions (4)–(7) yield the condition

(8)

from which the creep life of a real system at S > S∗  is
obtained.

Under condition (8), creep rate (5) becomes infinite
and the time to rupture is given by

(9)

Curves plotted in Fig. 1 relate the time to rupture of
the system to the applied stress at S > S∗  and v 0 = (1)
0.5 and (2) 0.9.

According to [8], when S < S∗ , solutions of Eq. (3)
are strongly dependent on the initial value of v 0. The
range of v 0 can be divided into the intervals 0 < v 0 < q,
q < v 0 < p, and v 0 > p. At v 0 > p, the creep rate becomes
infinite when the denominator of (4) vanishes; hence,
the time to rupture is

(10)

Expression (10) is illustrated in Fig. 1 by curves 3
and 4 for v 0 = 1.6 and 1.9, respectively. If the initial
creep rate lies in the range q < v 0 < p, v (τ)  q at
τ  ∞; i.e., the stationary creep mode is observed. In
this situation, creep duration analysis turns to the con-

v τ( )
p q v 0 p–( )/ v 0 q–( )[ ] p q–( )τ /2[ ]exp–
1 v 0 p–( )/ v 0 q–( )[ ] p q–( )τ /2[ ]exp–

----------------------------------------------------------------------------------------------------=

at S 1/2< ,

v τ( ) n α2+
n

--------------- n2 α2+( ) ατ /2( )cos
n ατ /2( )cos n/α( ) ατ /2( )sin–( )
------------------------------------------------------------------------------+=

at S 1/2> .

ε τ( ) ε0 pτ+=

+ 2 p q–( )/ p v 0–( ) q v 0–( ) p q–( )τ /2[ ]exp–[ ] ,ln

ε τ( ) = ε0 τ 2 ατ /2( )cos n/α( ) ατ /2( )sin– ,ln–+

1 2S–

ατ /2( )cos n/α( ) ατ /2( )sin– 0,=

t1* 2/α( ) π α/n[ ]arctan–( ).=

t2* 2/ p q–( )( ) v 0 q–( )/ v 0 p–( )[ ]ln .=
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ventional problem (see the first paragraph). If the criti-
cal strain ε∗  at which the material fails is known,
Eq. (6) with τ  ∞ yields the relation of interest
between the stress and the time to rupture:

(11)

This dependence is demonstrated in Fig. 2 for ε∗  =
(1) 0.65 and (2) 0.35. In both cases, the initial strain ε0

is taken to be equal to 0.01%. This value is in qualita-
tive agreement with Figs. 1 and 3. The latter depicts
experimental data [10] for a number of materials tested
at various temperatures. The test duration was up to
100 days. Curves 1 and 4 were obtained for carbon
steel (0.5% C and 0.24% C) at temperatures of 300 and
432°C, respectively; curve 2, for nickel steel at 400°C;
curves 3 and 5, for high-alloy nickel–chromium steel at
600 and 700°C, respectively; 7 and 11, for high-speed
steel at 593 and 732°C, respectively; 6, for cast heat-
resistant steel at 800°C; 8, for lead at room tempera-
ture; 9, for nickel–copper alloy at 600°C; and (10), for
magnesium alloy at 150°C. Following the conclusions
made in [8], we leave without consideration the initial
range 0 < v 0 < q, where attempts to describe the early
portion of the creep curve with decreasing rate have
failed.

t3* ε* ε0–( )/q.=
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In conclusion, it should be noted that a serious effort
has been made to find an empirical correlation between
the applied stress and the time to rupture during the
creep process. Logarithmic, exponential, and hyper-
bolic expressions have been suggested [10]. However,
no universal law that adequately relates these two val-
ues under various conditions has been found [10]. We
also failed to establish a unified relationship, since
creep modes depend on external factors. It is valid to
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say however, that an increase in the applied stress S at a
constant initial creep rate v 0 or a constant critical strain
ε∗  cuts the time to rupture whatever the creep condi-
tion. At a constant stress, the creep life decreases with
growing v 0 (Fig. 1) and decreasing ε∗  (Fig. 2).
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Abstract—Water after-etching of porous silicon in an external electric field is studied. The application of the
electric field, irrespective of its strength and orientation, is shown to decrease the etch rate. When the field vec-
tor is directed from the porous layer inward to the sample, the electrode potential in the silicon–electrolyte sys-
tem sharply changes; for E > 6 kV/cm, the changes become periodic. Experimental data suggest the presence
of a circulating current in the single-crystal silicon–electrolyte–quantum wire system. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Today, porous silicon (por-Si) is attracting consider-
able attention in a number of microelectronics areas.
Initially, it was studied as a promising insulator that is
compatible with IC technology [1]. Since 1990, when
por-Si photoluminescence in the visible range was first
discovered by Canham [2], the luminescent properties
of the material have been the subject of interest. In
addition, efforts to elucidate the role of quantum-size
effects in the luminescence mechanism have been
undertaken.

In the last decade, interest in self-organization phe-
nomena in semiconductors has been aroused because of
the development of molecular electronics and nano-
electronics technologies. Self-organization is also
observed in por-Si. For example, under certain condi-
tions for por-Si etching, shunting currents cause ring-
shaped and radial structures to form [3]. The water
after-etching (WAE) of por-Si, that is, the ordered
growth of pores when the sample is dipped into an
aqueous medium, can also be considered as a self-orga-
nization effect [4]. Possibly because the growth of the
porous layer during WAE is difficult to control, the
WAE mechanism has not been adequately studied to
date and the available theoretical models have not been
checked experimentally [5, 6].

For a porous layer to form during the anodic etching
of silicon, several requirements must be met. The cur-
rent through the sample should be as high as several to
several tens of mA/cm2, the etchant should contain HF
molecules, and external illumination must be used to
generate holes in the etching area when n-Si is etched.
However, during WAE, where the above conditions are
not fulfilled, the porous layer does form, the pore
growth rate during anodic etching with the current den-
sity 5–10 mA/cm2 and during WAE being the same on
the order of magnitude.
1063-7842/01/4607- $21.00 © 20847
The authors of [4] offered theoretical explanations
of the WAE processes. They proceed from the assump-
tion that residual HF ions are present only at the mouths
of pores and voids on the single-crystal silicon side,
thus producing an electric field necessary for etching.
Another and, in our opinion, much more intriguing
assumption is that there exist circulating currents inside
por-Si. These assumptions are critically overviewed in
this article. It is believed that the external electric field
changes the charge currents in the por-Si layer and,
thereby, the WAE rate.

Thus, this paper is an attempt to give experimental
and theoretical justifications of WAE when porous n-Si
is subjected to external electric fields of various
strengths and directions.

EXPERIMENT

In experiments, we used single-crystalline (c-Si)
phosphorus-doped (100)Si wafers of resistivity
2.4 Ω cm. por-Si layers were formed by conventional
40-min electrochemical etching in a Hf : C2H5OH = 1 : 1
(volume fractions) electrolyte at a current density of
15 mA/cm2 under halogen lamp illumination.

The WAE rate in an electric field was measured with
a plane capacitor connected to a high-voltage power
supply. Immediately after the etching, por-Si layers
were cut into four fragments. Fragment IV (Fig. 1) (test
fragment) was kept in air, fragment II was immersed in
distilled water in the absence of the electric field, and
fragments I and III were placed between the plates of
the capacitor placed into a thin water-filled cuvette. The
upper plate was made opaque in order to exclude the
optical generation of minority carriers in fragments III
and I, and the fragments were arranged so that the elec-
tric field in them was oppositely directed (in and out of
001 MAIK “Nauka/Interperiodica”
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70 µm 122 µm

46 µm 33 µm

Eout E = 0 Ein 

I II III IV

Fig. 1. Water after-etching of porous silicon: sample size and micrographs of the porous layer. I, Eout; II, E = 0; III, Ein; and IV, test
structure kept in air. The field strength E = 5 kV/cm, the WAE time is 5 h. Arrows in the micrographs indicate the porous layer bound-
aries.

Test 
structure
the layer, respectively; the respective fields are desig-
nated Ein and Eout).

The field strength was 10 kV/cm. WAE lasted from
4 to 8 h. The samples were then dried, and the thick-
nesses of the porous layers on each of the fragments
were measured with an MII-4 interferometer.

The electrode potential Uel was determined as fol-
lows. An electrode paraffin-insulated from the water
was attached to the porous part of the sample with a
GaIn paste. The lead reference electrode was immersed
immediately in the water. Both were connected to a
voltmeter whose readings were applied to an automated
reading unit and then to a computer.

Photoluminescence (PL) spectra were taken with a
DFS-52 spectrometer at room temperature. The spectra
were excited by a DKSSh-150 lamp at a wavelength of
360 nm. The radiation power density was no more than
P = 70 W/cm2 to prevent thermal effects on the sample
surface.

The chemical composition of the surfaces was
determined with a 09IOS-10-005 Auger spectrometer
equipped with an electronic analyzer of resolution
∆E/E = 0.4% at the residual pressure in the analytic
chamber p = 10–7 Pa, primary electron energy 3 keV,
electron beam current j = 0.5 µA, and modulation volt-
age Um = 2 V.

Ion–plasma etching was performed in a VUP-5 vac-
uum setup. The pressure of both argon and residual
oxygen was maintained at 2.6 × 10–2 Pa, and the plasma
discharge voltage and current were 2.5 kV and 25 mA,
respectively. During the etching process, the samples
were heated by no more than 5°C.

RESULTS AND DISCUSSION

Figure 1 compares the thicknesses of the porous lay-
ers obtained after the WAE in the electric field (the
thicknesses characterize the WAE rate) with that of the
initial por-Si. It is seen that the electric field, whatever
its direction, decreases the WAE rate, but the thickness
(hence, the WAE rate) depends on its direction.

Since WAE is, in essence, the electrochemical reac-
tion of silicon dissolution that continues in water, its
rate is proportional to the current of positive charge car-
riers at the pore mouths that passes through the silicon–
electrolyte interface [1]. Therefore, the decrease in the
thickness of the after-etched layer for both field direc-
tions may be due to a change in the circulating currents,
which were introduced in [4]. On the other hand, when
the external electric field reaches some critical value, it
can modify the type of the chemical reactions in the sil-
icon–electrolyte system [7]. To gain a better insight into
mechanisms responsible for the formation of the por-Si
during WAE, we studied field dependences of the
por-Si electrode potential.

It turned out that the electrode potential Uel remains
nearly unchanged during WAE in the absence of the
field and when it is directed out of the porous layer
(Eout = 1–10 kV/cm). If, however, the field is reversed
(Ein) and gradually varies, the potential first jumps
(Fig. 2) and then falls (within the time period τ ≈ 20 s)
down to its initial value. A further increase in the field
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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causes another drastic change in Uel. When Ein exceeds
6 kV/cm, Uel starts oscillating. For Ein = 10 kV/cm, the
oscillation period is T = 16–17 s (Figs. 3a, 3b).

Note specific features of the periodic behavior of the
electrode potential at large field strengths. Both the rise
and the fall times of Uel do not exceed 1 s (portions K–L
and L–M in Fig. 3b). After the peaks, Uel first falls
below its initial level and then (τ ≈ 4 s) attains it (M–N
in Fig. 3b). The amplitudes of the jumps are roughly the
same (Fig. 3b). The slight discrepancy between the
peaks is possibly due to discrete readings of the fast-
varying potential Uel.

In measuring the WAE rate, the field strength (E =
5 kV/cm) was taken in such a way as to provide the
constancy of Uel. From [4], two built-in fields may
coexist in the porous layer immediately after electro-
chemical etching. The former (near the pore mouths) is
produced by holes on the c-Si side and F– ions of the
residual electrolyte. Our previous data suggest that
WAE is not observed on samples that were stored in air
for a long time or thermally annealed in a vacuum. This
finding supports the presence of an electric field at the
pore mouths that disappears with charge neutralization.

The latter built-in field arises in quantum wires dur-
ing por-Si formation and is due to sample overetching
in the electrolyte. The overetching is accompanied by a
gradual decrease in the silicon grain size. This process
continues until carrier-depleted regions fully overlap
[1]. The closer the grains to the surface, the greater their
overetching time and, hence, the smaller their size.
Near the por-Si surface, the grain size is less than
120 nm. In this system, the bandgap Eg nonuniformly
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Fig. 2. Variation of the electrode potential of por-Si during
WAE in the external electric field Ein < 2.5 kV/cm.
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
widens due to the quantum-size effect. The value of Eg
smoothly varies with distance from the surface and
approaches the value typical of single-crystal silicon
(1.1 eV) near the c-Si region [4]. In such a variband sys-
tem, an electric field built in the quantum wires
appears. This field accelerates positive charge carriers
and makes them move from the wires to the bulk of the
semiconductor (Fig. 4, region C). Of importance here is
the fact that the por-Si layers are of the n-type; hence,
the space charge region (SCR) is formed by mobile
minority carriers, i.e., holes.

Figure 5 demonstrates Auger spectra for the initial
porous silicon (curve 1), for the sample after-etched
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Fig. 3. (a) The same as in Fig. 2 for Ein = 10 kV/cm and
(b) a fragment of panel “a” on an expanded scale.



850 KOSTISHKO, NAGORNOV
(curve 2), and for the sample subjected to ion–plasma
etching in the argon–oxygen atmosphere for 10 min.
The WAE oxidizes the quantum wires, as follows from
the shift of the LVV peak from E = 91 eV to E = 75 eV
(the latter value is typical of oxidized silicon). More-
over, the peak of the PL spectrum shifts toward shorter
wavelengths approximately by 0.3 eV (Fig. 6) after the
WAE. This can be explained by a decrease in the quan-
tum wire size because of the formation of the oxide
sheath [8]. In this situation, the mean grain size
decreases by 1.0 nm [9].

In the Auger spectra, the fluorine peak for the sur-
face of the initial porous layer is absent (Fig. 5, curve 1);

c-Si (n-type)
+

+++ +
+

+++
+

+
+ ++ ++

+ + +
++

H2O H2
+

p+

1

A

B

C D

Fig. 4. WAE model. A, pore mouth; B, quantum wire base;
C, hole diffusion in quantum wire; D, pore interior; and 1,
SCR.
consequently, the surface concentration of fluorine
atoms does not exceed 0.05 at. %. The presence of F
inside the pores was determined by ion–plasma etch-
ing. Investigations show that quantum wires are oxi-
dized and simultaneously fluorinated during ion–
plasma etching in argon–oxygen mixtures (Fig. 5,
curve 3). The sensitivity factors for oxidized silicon
Si(ox), oxygen, and carbon that were obtained by
calibration [10], as well as reference data for the sensi-
tivity factor for fluorine [11], allows the determination
of the fluorine–oxidized silicon concentration ratio:
nF/nSi(ox) = 0.6. We believe that the fluorination of the
por-Si surface during ion–plasma processing is the
result of the following reactions: the oxidation of HF
molecules by oxygen radicals present in the plasma, the
formation of dangling bonds on the pore surface due to
Ar+ ion irradiation, and the attachment of fluorine radi-
cals to these bonds. The overall reaction proceeds until
the fluorine source in the por-Si is exhausted. In our
case, the reaction lasted 10–13 min; then, the fluorine
concentration on the surface gradually decreased, as
evidenced by the Auger data. Thus, the results obtained
indicate that the amount of fluorine near the pore
mouths is sufficient to maintain the reaction of silicon
dissolution during WAE.

The chemical reaction II of silicon dissolution,
which is involved in the equation
(1) Si + 2HF + 2h+ SiF2 + 2H+

SiF2 + 2H2O SiO2 + 2HF + H2

SiO2 + 6HF H2SiF6 + H2O

2H+ H2↑  + h++

(II)

(III)

(IV)

(I)
has been known for a long time [1]. However, during
WAE, it can proceed only at the pore mouths in region
A (Fig. 4) and only in the presence of the electric field
produced by F– ions and holes in the c-Si.

According to (1), WAE produced silicon hypofluo-
ride, as a result of which the amount of residual fluorine

decreases. In addition, the positive charge of  ions is
removed (Fig. 4, region D), the hole concentration in
the SCR of the c-Si decreases, and the dissolution reac-
tion eventually ceases. Therefore, a necessary condi-
tion for the WAE reaction is a permanent replenishment
of the SCR by HF and holes. For this, reaction III and
circulating current I in Eq. (1) must exist.

In this context, the effect of the external electric
field on the circulating current in the por-Si–electrolyte
system seems to be the most significant. This current

H2
+

results from several processes. First,  molecules
produced by reaction II of Eq. (1) rise to the water sur-
face (region D in Fig. 4). Simultaneously, the positive

charge progressively leaves the  molecules for the
quantum wires due to tunneling and then is entrained
by the built-in field inward to the c-Si (region C in
Fig. 4). Note also that the inside of the quantum wires
in por-Si of medium porosity is depleted by majority
carriers [12]; hence, recombination processes in these
regions can be neglected. Thus, the positive charge cur-
rents from the pore mouths to the sample surface and in
the opposite direction practically balance, and the
quasi-equilibrium WAE process is sustained.

In this model, holes thermally generated in the SCR
and those due to the reverse saturation current in the
porous silicon–electrolyte system are not taken into

H2
+

H2
+
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account. Indeed, the flux of thermally generated holes
can be estimated by the formula

(2)

where ni is the intrinsic carrier concentration in Si, xd is
the SCR width, and τgen is the characteristic time of car-
rier generation in the SCR.

For xd ≈ 1.6µm [13] and τgen ≈ 10–5 s [14, 15], we
have jgen ≈ 1.6 × 1011 cm–2 s–1. Let us compare this value
with the density of the hole current passing through the
pore mouths during WAE without the electric field. If
we suppose that there are two holes for a dissolved sil-
icon atom [7], the experimentally observed WAE rate
5 nm/s (for the porosity η = 52%) is provided by the
following hole current from the SCR:

(3)

where h is the depth of the layer after-etched, t is the

WAE time, ρSi is the density of c-Si, and  is the
atomic mass of Si.

Relationship (3) estimates the hole flux at jp ≈ 9 ×
1015 cm–2 s–1. Obviously, the current due to thermal
generation is negligible in por-Si.

It is known [1] that the WAE rate is specified by the
current through the Si–electrolyte interface:

(4)

where nHF is the concentration of HF molecules in the
electrolyte, p0 is the hole concentration in the c-Si, β is
the symmetry factor, VH is the Helmholtz potential,
VT = kT/q is the thermal potential, and VS is the poten-
tial at the SCR–electrolyte interface.

The Helmholtz potential is not a governing factor
for the current variation. Therefore, the WAE rate
depends largely on VS or the hole concentration in the
SCR [1]. With the Eout field applied (the external elec-
trode of the high-voltage power supply is under a neg-
ative potential), the structure shown in Fig. 4 can be
considered as reversed-biased in terms of the Schottky
diode model. In this case, the field built in the quantum
wires (region C in Fig. 4) and, hence, the hole flux in
the SCR will diminish. As follows from the above esti-
mates, the thermal generation of holes cannot replenish
the SCR by mobile positive-charge carriers, which par-
ticipate in reaction II of Eq. (1). As a result, the appli-
cation of the Eout field decreases the positive charge
concentration in the SCR; according to (4), the WAE
rate drops in this case, which is observed experimen-
tally.

For the oppositely directed field (Ein), the Schottky
diode becomes forward-biased. This also slows down
the WAE process because the SCR narrows and the
total concentration of holes in region A declines
(Fig. 4). At the same time, the hole flux inward to the
sample must grow in the field thus directed. Eventually,

jgen nixd( )/τgen,=

j p 2ηρSih( )/ tmSi
a( ),=

mSi
a

I constnHF
2 p0

2 βVH/VT( ) VS/VT( ),expexp=
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
a potential well for holes in region B will form (Fig. 4)
and the positive charge will be redistributed between
the SCR in the c-Si and the base of a quantum wire. The
accumulation of the positive charge directly in the wire
generates a potential across the pore wall and the elec-
trolyte. If this potential (field) exceeds some critical
value, the electrode potential Uel exhibits a peak
(Fig. 3a) because the two-electron reaction (1) of sili-
con dissolution changes to either of the following four-
electron reactions [1, 7]:

(5)

(6)

A four-electron reaction proceeds only on the pore
walls, which means that electrolytic polishing condi-
tions set in the Si–electrolyte system and that the inter-
face potential drops to a larger extent. The rate of
charge removal doubles; hence, its concentration in the
quantum wires and the field strength diminish (region
B in Fig. 4). Eventually, the four-electron reaction is
terminated, and the electrode potential decreases
(Fig. 3b, portion LM). However, since the hole current
into the c-Si continues, region B will accumulate the
critical value of the positive charge again and another
peak in the electrode potential curve will appear. In
other words, the process will become periodic. Clearly,
the period between the Uel peaks depends on the field
Ein. As the field rises, the SCR shrinks, while the
sweeping field in the quantum wires grows. Conse-
quently, the charge in region B (Fig. 4) will be accumu-
lated faster and the rate of Uel peak appearance will
increase.

Si 4HF 4h+ SiF4 4H+,+ + +

Si 4H2O 4h+ Si OH( )4 4H+.+ + +
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F

Fig. 5. Auger spectra.
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If the field Ein is low (<2.5 kV/cm), the electrode
potential exhibits sparse, rather than periodic, peaks
(Fig. 2). In this case, the charge accumulated in region
B (Fig. 4) is likely to exceed the critical value locally
and four-electron reaction (5) or (6) proceeds only at
these local sites.

The application of the field Eout results in neither
individual nor periodic peaks of the electrode potential.
This is an additional corroboration of our model. In
fact, with this external field, the SCR widens and the
built-in field of the quantum wires and the hole current
into the c-Si decrease. Under such conditions, the pos-
itive charge cannot be accumulated in the wires and
four-electron silicon dissolution is impossible under
any circumstances. Thus, with the external field Eout,
the electrode potential Uel in the por-Si–electrolyte sys-
tem will remain unchanged.

CONCLUSIONS

We studied processes taking place during WAE in
an external electric field. As follows from the Auger
spectroscopy data, the WAE process oxidizes the quan-
tum wires and shifts the PL peaks toward the blue range
by approximately 0.3 eV. The application of an electric
field markedly affects the WAE rate irrespective of its
direction and strength. Moreover, the external field
directed from the quantum wires to the c-Si can change
the type of the silicon dissolution reaction at the pore
mouths, as indicated by the electrode potential curves
for the por-Si. For E < 2.5 kV/cm, the curves show indi-
vidual peaks due to a gradual increase in the field. For
E > 6 kV/cm, the potential begins to vary periodically,
the period being inversely proportional to the field. For
the maximum value of the field attained in the experi-
ment, E = 10 kV/cm, the period of electrode potential
oscillation is 16–17 s. For the oppositely directed field
(from the c-Si to the quantum wires), the electrode
potential remains almost unchanged.

Of most interest, in our opinion, is that the WAE rate
decreases regardless of the field direction. This experi-
mental finding directly confirms the existence of the
hole current circulating in the porous silicon during
after-etching. Without the field, this current equals
8 mA/cm2 and is comparable to the current passing
through the sample during the anodic formation of por-
Si (15 mA/cm2 in our case).

Within our model, the current circulating during the
WAE process is the result of two built-in fields. The
former is produced by fluorine ions at the pore mouths
and causes a potential drop there that is necessary to
sustain the silicon dissolution reaction and further pore
formation. The presence of the fluorine atoms is evi-
denced by the Auger spectroscopy data for the por-Si
samples subjected to ion–plasma processing in the Ar +
O2 mixture. The latter built-in field is associated with
the quantum-size effect and the nonuniform width of
the quantum wires. It is this field that forces holes out
of the wires to the c-Si bulk.

The experimentally discovered decrease in the WAE
rate under an external electric field is explained by
changes in the SCR of the Schottky-type c-Si–electro-
lyte system and those in the circular current through the
c-Si–electrolyte–quantum wire system.

When the field is directed from the quantum wires
to the c-Si, the Schottky structure becomes forward-
biased and the SCR narrows. In this case, the mean hole
concentration decreases by a factor of 1.6, according to
our estimates. With the oppositely directed field, the
mean hole concentration decreases by a factor of 2.5
because of the lesser hole current from the wires. Thus,
our model explains why the WAE of porous silicon
slows down under an external field.
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Abstract—The dynamics of the optical synthesis of a waveguide channel in a weakly absorbing photopolymer-
izable composition, representing a nonlinear focusing medium with memory, was studied by experimental and
numerical modeling methods. A qualitative model is proposed that describes the formation of a nondivergent
light guide. It is shown that an extended (≥1 cm) light guide can form only in a medium possessing a sufficiently
high contrast factor (γ ≥ 2). © 2001 MAIK “Nauka/Interperiodica”.
Modern photopolymer compositions are widely
used for obtaining three-dimensional structures in ste-
reolithography [1] and phase gratings in holography
[2]. In these applications, it is sufficient to set the light
intensity distribution in a medium that would corre-
spond to the geometry of a structure to be obtained. The
polymer density and, hence, the corresponding nonlin-
ear contribution to the refractive index, depend on the
polymerization conditions [3]. This circumstance can
be employed, in principle, for obtaining structures with
refractive index gradients by creating light fields with
inhomogeneous intensity distributions. However, the
formation of a desired spatial distribution of the light
intensity inphotopolymers is complicated by the refrac-
tion (both linear and nonlinear) of light beams. There-
fore, in order to ensure the formation of an extended
nondivergent light guide in a photopolymer, it is neces-
sary to provide for the light beam “self-channeling” in
this nonlinear focusing medium with memory.

The self-channeling of a He–Cd laser beam (λ =
0.325 µm) in photopolymer compositions sensitive in
the UV spectral range was numerically and experimen-
tally studied by Kewitsh and Yariv [4]. However, strong
UV absorption of such compositions allowed the laser
radiation self-channeling effect to be obtained only for
a distance below one millimeter. Photopolymer compo-
sitions [5] exhibiting polymerization under the action
of electromagnetic radiation in the visible spectral
range exhibit small optical absorption both in the initial
stage of polymerization and upon its termination,
which makes such media promising structural materi-
als for optical waveguide technology.

In this study, we have numerically and experimen-
tally investigated the possibility of the optical (λ =
0.63 µm) waveguide synthesis in a weakly absorbing
photopolymerizable composition using the effect of the
light beam self-channeling.
1063-7842/01/4607- $21.00 © 20853
NUMERICAL MODELING OF THE LIGHT 
BEAM–PHOTOPOLYMER INTERACTION

The polymerization time constant of a photopoly-
mer is greater by several orders of magnitude than the
characteristic time of a light wave variation. Therefore,
the dynamics of the self-action of a light beam in a non-
linear photopolymerizable medium with memory can
be studied within the framework of a quasi-stationary
approximation. According to this, the complex ampli-
tude of a cylindrically symmetric light beam E(r, z)
possessing a narrow spatial spectrum is described at
each time instant by a stationary parabolic equation.
With neglect of the optical absorption, this equation can
be written as [6]

(1)

with the stationary boundary conditions

(2)

Here, a is the beam halfwidth, k is the wavevector, and
∆n(r, z, t) is a positive increment of the refractive index
of the photopolymerizing composition. The latter quan-
tity is determined by the process prehistory and has the
maximum value ∆nmax = np – nm, where np and nm are
the refractive indices of the polymer and monomer,
respectively. As is known, variation of the refractive
index of a photopolymerizing composition can be
described by an exponent [7]

(3)

where H(r, z, t) = |E(r, z, t' )|2dt' is the exposure, H0 is

the normalization coefficient, and γ > 0 is a factor deter-
mining the contrast of the given photosensitive medium
(typically, 1 ≤ γ ≤ 10).
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The numerical experiment was conducted for a light
beam with a width of a = 20 µm and λ = 0.63 µm prop-
agating in a medium with ∆nmax = 0.02nm and various
values of the contrast factor γ over a distance on the
order of the diffraction length Ld = ka2/2.

It was found that the character of the refractive
index variation in a channel formed in the photopoly-
mer along the light beam path depends significantly on
the contrast factor γ. For γ ≈ 1, the channel in the pho-
topolymer reproduces the profile of a diverging Gauss-
ian beam (Fig. 1a). For γ ≥ 2, a channel formed in the z
direction has a virtually homogeneous profile with the
cross section repeating (Fig. 1b) that of the input Gaus-
sian beam, which indicates that the self-channeling
effect takes place.

The development of the self-channeling process is
clearly illustrated by profiles of the refractive index
(Fig. 2a) and the light field amplitude modulus (Fig. 2b)
variation along the channel symmetry axis z with time t.
As is seen from Fig. 2, the channel length in the z direc-
tion is provided by the sequential focusing effect,
whereby local intensity maxima determine nonexpand-
ing channel cross section. The channel homogeneity is
due to averaging (with allowance for the saturation of
the exposure characteristic (3)) of the contribution of
these local maxima moving along the channel toward
the light source.
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Fig. 1. Refractive index profiles along the polymer track for
γ = 1 (a) and 2 (b).
THE LENS MODEL OF THE SELF-CHANNELING 
EFFECT

The process of formation of a nondivergent optical
waveguide channel can be explained qualitatively
within the framework of the following model. For a
Gaussian beam (2) propagating in a homogeneous
medium, the spatial distribution of the complex field
amplitude is described by the formula

(4)

In the beginning of polymerization, when (tE2) ! H0
and the increment of the refractive index is insufficient
to produce a significant effect upon the beam, a change
in the refractive index follows the field intensity varia-
tion E(r, z) according to formula (4) in the incident
beam. With an allowance for the exposure characteris-
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Fig. 2. Axial profiles of the (a) refractive index and
(b) dimensionless light field amplitude for various exposures.
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tic (3), the refractive index increment is described by
the expression

(5)

Let us define the longitudinal size l of the inhomo-
geneity as a distance over which the refractive index
increment drops e times. The l value can be estimated
using formula (5) for r = 0 and (tE2) ! H0, which yields

(5a)

and, accordingly,

(6)

Relationship (6) shows that the case of γ ≈ 1 corre-
sponds to the formation of an extended polymer track,
the transverse size of which increases on moving along
z as described by formula (4) for a divergent beam. For
large γ, the track length is relatively short and we may
consider the inhomogeneity as a thin lens formed near
the initial plane z = 0 and possessing the transmission
coefficient

(7)

where p is the optical power of the lens. Taking into
account that the refractive index increment at small t in
the paraxial region is

(5b)

and using relationships (6) and (7), we obtain an
expression for the lens power:

(8)

The lens focuses of the initial Gaussian beam E(r, 0)
described by formula (4). The corresponding intensity
distribution behind the lens in the Fresnel paraxial
approximation [8] is

(9)

Using this expression, we may determine the dis-
tance z0 at which the Gaussian beam exhibits a maxi-
mum intensity (and minimum width ∆r). The plots of z0
and ∆r as functions of the lens power p are presented in
Fig. 3. As is seen, the beam width in the cross section
z = z0 for p > 1/Ld is smaller than the initial transverse
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size at z = 0. Therefore, the light intensity in this cross
section exceeds the initial level and, hence, the poly-
merization reaction proceeds at a higher rate. This, in
turn, leads to the formation of the next local maximum
in the refractive index profile in the vicinity of z = z0 in
accordance with the results of numerical calculations
(see Fig. 2a). As the power (8) of the induced lens
increases, the intensity maximum shifts further toward
the input plane. This results in the sequential formation
of a thin channel with a length of ~Ld /2 in the polymer-
ized composition. Since the light beam at the exit of
this channel is similar in many respects to that at the
entrance cross section, the process of the polymer chan-
nel formation continues further and the next waveguide
portion appears as described above. A series of sequen-
tial focusing stages results in the formation of an
extended channel with a transverse size close to that in
the initial cross section.

EXPERIMENTAL STUDY OF THE OPTICAL 
WAVEGUIDE FORMATION

The process of the optical synthesis of a thin
waveguide channel in the course of polymerization was
experimentally studied using a composition based on
an OKM-2 photopolymer with a photoinitiator sensi-
tive in the spectral range of λ < 0.65 µm. The contrast
factor of this medium depends on the radiation intensity
(beam power density) I and reaches the values γ1 ≈ 1
and γ2 ≈ 2 for I1 = 100 mW/mm2 and I2 = 10 mW/mm2,
respectively. A light beam with a crossover halfwidth of
a = 15 µm was obtained by focusing the radiation of a
point source. The source was created from a He–Ne
laser radiation (λ = 0.6328 µm) with the aid of a short-
focus lens and a filter of low spatial frequencies (a non-
transparent foil with a 20-µm hole) placed in the focal
plane [9]. The necessary laser beam power was set prior
to experiments, by monitoring the radiation intensity
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Fig. 3. Plots of the maximum intensity coordinate z0 and
width ∆r of a Gaussian beam versus lens power p.
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Fig. 4. Photographs showing polymer tracks formed for two different radiation power densities corresponding to (a) γ1 ≈ 1 and
(b) γ2 ≈ 2.
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with a calibrated photodiode and controlling the level
with a polarization attenuator.

The polymer track was formed at the edge of a glass
cell filled with a photopolymer composition and placed
at a beam crossover point. The track was visualized by
lateral illumination with an IR (λ = 0.89 µm) emitting
diode. The polymerization process dynamics was mon-
itored with the aid of a video camera (Fig. 4).

For a radiation power density of I1 = 10 mW/mm2,
we obtained a thin channel with a width of 30 µm and
a length of 1.5 cm. A photograph of this track is pre-
sented in Fig. 4a. The track formed at a greater power
density of 100 mW/mm2 is divergent (Fig. 4b) and
becomes inhomogeneous as a result of instability
development in the focusing nonlinear medium [7].

Thus, it is possible to synthesize extended nondiver-
gent light guides with a gradient refractive index profile
in the cross section using weakly absorbing photopoly-
merizable compositions with a sufficiently high con-
trast factor (γ ≥ 2). It should be emphasized that the pro-
posed optical waveguide technology does not require
using high-power initiating laser beams and ensures
virtually complete use of the photopolymer composi-
tion (wasteless technology).
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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Abstract—A dye laser with a polyurethane matrix cured by polycondensation is studied. An increase in the
conversion efficiency, service life, optical stability, and tuning range in comparison with lasing media produced
by radical polymerization is demonstrated. © 2001 MAIK “Nauka/Interperiodica”.
Tunable lasers are widely used in basic research and
applications. Dye lasers appear to be the most promis-
ing and readily available sources of high-power radia-
tion tunable in the visible range. They often exploit liq-
uid solutions of dyes as lasing media. However, the
instability of radiation propagation in liquids due to
nonlinear processes [1], thermooptical distortions, and
degradation of the dye necessitate the use of complex
bulky pump-over systems [2]. In addition, the solvents
and dyes may pollute the environment. Note also haz-
ards related to the flammability and toxicity of the sol-
vents.

Solid lasing media are an attractive alternative to the
dye solutions. However, the list of solid matrices is lim-
ited by strict requirements to their service characteris-
tics. There are two main groups of solid matrices: poly-
mer and inorganic microcomposite matrices based on
sodium borosilicate porous glass [3, 4] and sol–gel
matrices [5]. The dyes can easily be embedded in the
polymer matrices. The starting materials for such
matrices are readily available, and the matrices are easy
to fabricate; therefore, lasers on their basis are cheaper
than crystal-based devices.

Poly(methyl methacrylate) (PMMA) and its modifi-
cations [6–8], polyurethane acrylate [9, 10], and vari-
ous epoxy resins [11, 12] are the polymers most widely
used as the lasing media of dye lasers. PMMA and
polyurethane acrylate matrices are cured by radical
polymerization. In the former case, substances (nor-
mally, peroxide compounds) initiating the formation of
free radicals upon heating are added to the reaction
mass. In the latter case, the use of photosensitizers
allows one to initiate the radical reaction of polymer-
ization by UV irradiation. The free radicals combine
with the dye molecules, which may cause their dissoci-
ation. Thus, the PMMA- and polyurethane acrylate-
based lasers suffer from dye instability. The excitation
in the fundamental absorption band (S0  S1 transi-
tion) by both weak and intense light leads to the further
degradation of the laser dye [10].

Epoxy polymers are cured via the reaction of poly-
condensation, which is more suitable than the radical
1063-7842/01/4607- $21.00 © 0858
reactions used for the systems with organic dyes. How-
ever, hardeners employed in the polycondensation
reaction exhibit either alkaline or acidic properties and
may cause irreversible chemical reactions with many
organic dyes. In our previous work [13], we proposed
using cross-linked polyurethane as a polymer matrix
for passive dye-laser switches. This polymer is also
cured by polycondensation. However, in contrast to the
polycondensation of epoxy compositions, the reaction
takes place at room temperature in a neutral medium.
Therefore, dyes of any class can be introduced at the
stage of polymerization virtually without degradation.
For example, polymethine dyes intensely absorbing in
the IR spectral range (>1000 nm) have been found to be
stable in polyurethane [14], while decomposing com-
pletely and by 80% at the stage of the polymerization
of PMMA and polyurethane acrylate, respectively [10].

The purpose of this work was to study polyurethane
as a matrix for lasing media with organic dyes and to
develop a tunable laser with such an active medium.
Note that the polymer matrices of the active media are
subjected to higher radiation and thermal loads when
interacting with laser emission and pumping radiation
than those of passive laser switches. A typical dye con-
centration in the active medium is larger than that in the
passive one by at least one order of magnitude. Hence,
the aggregation probability of dye molecules in the
former is higher. Dye aggregation is the main reason for
a decrease in the optical stability and service time, as
well as for worsening the spectral and luminescent
properties of dye-containing media [15, 16]. An
increase in the dye concentration also stimulates the
generation of contact ion pairs, in which anion-to-cat-
ion electron phototransfer with the production of neu-
tral radicals is a possibility [17]. The radicals enhance
the degradation of the dye. In addition, the pumping of
the active lasing media needs power densities larger
than those needed for bleaching passive laser switches.
The reason is that efficient lasing requires the popula-
tion inversion as high as possible, whereas Q switching
is possible even at equal populations of the ground and
excitation levels. Still further increase in the load on the
2001 MAIK “Nauka/Interperiodica”
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active laser media results from the presence of two,
pumping (λp) and lasing, wavelengths. Normally, λp is
much shorter than the lasing wavelength of passively
Q-switched lasers. The radiation resistance of the poly-
mer decreases with decreasing pumping wavelength
[18].

Most laser polymers exhibit two-photon absorption
of the pumping radiation. For example, the electron
transition at λmax = 266 nm corresponds to the two-pho-
ton absorption of the pumping radiation with λp =
532 nm. Thus, the degradation of the active laser
medium can also be related to the two-photon absorp-
tion of the high-power pumping radiation. This is not
observed in passive laser switches. Based on the afore-
said and on experience in using polymers in dye lasers,
we tried to select a polymer matrix offering a high radi-
ation resistance, a long service time, and a high optical
stability.

The radiation resistance of a polymer matrix
depends on the viscoelastic properties of the material
[6, 7, 19]. A necessary stability can be attained both by
the multiple distillation of the initial substances with
the subsequent ultrafiltration of the monomers and by
the modification of the polymer. Investigations into the
laser destruction of polymer matrices [6, 19] show that
one must use materials allowing significant elastic
strains within a wide range of working temperatures. In
particular, low- and high-molecular admixtures in
PMMA increase its radiation resistance to the practical
level [6, 7]. Lasing media with a cross-linked polyure-
thane acrylate matrix exhibited the high elasticity
within a wide temperature interval [9, 10]. These media
withstand high impulsive loads even without adding
plasticizers.

In this work, we report the basic parameters of dye
lasers based on polyurethane and polyurethane acry-
late, which have similar physical properties. Polyure-
thane is highly transparent in the wide spectral range
0.32–2.20 µm, which almost completely spans the
range where dye lasers are used. Curve 1 in Fig. 1
shows the short-wavelength transmission edge of the
polyurethane. It is seen that one can use conventional
pumping sources, such as nitrogen lasers with λp =
337 nm or longer-wave devices. In contrast, the intense
short-wavelength absorption of polyurethane acrylate
(curve 2 in Fig. 1) makes lasing in the near-UV spectral
range impossible.

We determined the radiation resistance of the poly-
urethane matrix at the wavelength of the second har-
monic (λ = 532 nm) of a single-mode single-shot
Nd:YAG laser. At the shot duration 15 ns and the spot
diameter 200 µm, the threshold of single-shot destruc-
tion was no less than 15 J/cm2. This value is 1.5 times
larger than the threshold for polyurethane acrylate
under the same conditions [9].

Both lasing media represented triplex structures in
which the polymer was sandwiched in two substrates.
The polyurethane acrylate structure was produced by
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
the method described in [9, 10], and the polyurethane
structure, with the technique in [13, 14]. In experi-
ments, we used xanthene, polymethine, and pyr-
romethene dyes (rhodamine 6G, astraphloxine, and
pyrromethene 597, respectively).

The basic parameters of polymer-based dye lasers
are service life (the number of shots N to failure inci-
dent on the same region of the sample), conversion effi-
ciency η, and optical stability. The optical stability was
studied on tripleces with quartz substrates. In these
experiments, the thickness of the dye-doped polymer
film was 300 µm. The optical density D in the peak of
the basic transition was about unity. The samples were
irradiated by a 50-W/cm2 xenon lamp with the contin-
uous spectrum in the UV and the visible spectral
ranges. The optical density of the polymer samples vs.
incident energy E was measured in the absorption max-
imum for a given dye using a Shimadzu UV-3100 spec-
trophotometer. Figure 2 shows optical bleaching curves
of the dyes in the polymer matrices. It is seen that the
optical stability of the polyurethane samples is substan-
tially higher than that of the polyurethane acrylate ones.

Unexpectedly, the pyrromethene 597 dye with the
network structure appeared to be the least stable in both
polymers. Conversely, astraphloxine with the unclosed
polymethine chain, which is highly sensitive to photo-
chemical reactions, showed the highest optical stability
in the polyurethane matrix. As follows from Fig. 3, pyr-
romethene 597 and rhodamine 6G markedly absorb in
the spectral region 320–420 nm, while astraphloxine
does not. Therefore, it can be concluded that the
UV-induced electron transitions to higher excited
states promote the photochemical decomposition of the
first two dyes. This should be taken into account when
developing optically stable dyes. The higher excited
states of dye molecules may nonradiatively be deacti-
vated by vibrational relaxation or by internal conver-
sion via highly excited vibrational states of the polymer
to form free radicals of the macromolecules. Since the
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Fig. 1. Short-wavelength transmission edge of (1) polyure-
thane and (2) polyurethane acrylate matrices.
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overlap of the UV absorption bands of the dyes and the
polymer is stronger for polyurethane acrylate, the for-
mation of the free radicals is more probable in this case,
which the curves of photodestruction in Fig. 2 indicate.

The service life of the lasing media and the lasing
efficiency were studied on triplex samples. The thick-
ness of the dye-doped polymer layer between two glass
substrates was 2 mm. The optical density at the pump-
ing wavelength was D(λp) = 5. Two mirrors with the
reflection coefficients R1 = 99.5% and R2 = 30% formed
a 16-cm-long nondispersive cavity of the dye laser. We
used quasi-longitudinal excitation. The angle between
the pumping and laser beams was 15°. The tripleces
were placed near the exit mirror at the Brewster angle
to the optical axis of the cavity. The second harmonic
of a multimode Nd : YAG laser was used for pumping
(λp = 532 nm). The pumping pulse energy was 35 mJ,
and the pulse duration was 18 ns. A lens with a focal
distance of 1 m focused the pumping radiation into a
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Fig. 2. Photobleaching versus radiation energy curves for
(1, 4) pyrromethene 597, (2, 6) astraphloxine, and (3, 5)
rhodamine 6G in (1–3) polyurethane acrylate and
(4−6) polyurethane matrices.
spot of diameter 1.75 mm. The energy density incident
on the polymer sample was 1.45 J/cm2. At a pulse rep-
etition rate of 3 Hz, the mean pumping power density
was 4.35 W/cm2. The service life of lasing media is
known to depend on the energy density and power of
pumping radiation [8]. We used a high-power pumping
radiation for quickly determining the service life of the
two polymer-based lasing media. To make the pumping
conditions still more severe, thin dye-doped polymer
layers were sandwiched in the glass substrates. Note
that thick polymer layers made of, for example,
poly(methyl methacrylate), have longer service lifes
[20] because the side concentration effects (see below)
weaken and the thermal load on the polymer layer low-
ers. The high radiation resistance of both polyurethane
and polyurethane acrylate allowed the high-power
pumping radiation to be incident on a local area of the
thin polymer layer without rotating the disk (rotation is
used to increase the service life of the medium).

Figure 4 plots the conversion efficiency η versus the
number of pulses N (service life). The efficiency is
determined as the ratio of the output energy of the dye
laser to the pumping energy. In all samples, the effi-
ciency decreases with increasing N because of the pho-
tobleaching of the dye without damaging the polymer
matrix. The polyurethane media have longer service
lifes than the polyurethane acrylate structures. The
table shows that the initial efficiencies η0 for the poly-
urethane laser media are larger than those for the poly-
urethane acrylate media. This effect is especially pro-
nounced for pyrromethene 597 and rhodamine 6G. The
reason for the smaller η0 in the samples made of poly-
urethane acrylate is the degradation of the dyes during
laser fabrication [10]. This was confirmed in [21],
where PMMA-based lasing media were made by radi-
cal polymerization using benzoyl peroxide as a thermal
initiator. The destruction of the dyes is accompanied by
the formation of reaction products absorbing in the
spectral region of lasing. Such absorption was found to
be typical of rhodamine 6G and pyrromethene 597 but
is negligible for astraphloxine in polyurethane acrylate;
at the same time, it is totally absent in polyurethane,
where the dyes do not degrade at the stage of laser fab-
rication. Hence, η0 in the polyurethane media is higher.
Operating characteristics of the dye lasers

Lasing medium
Irradiation energy density 
at which the optical den-
sity D = 1/2D0, kJ/cm2

Number of pulses at 
which the efficiency
η = 1/2η0, N × 103

Initial conversion 
efficiency η0 in non-
dispersive cavity, %

Full width of 
tuning curve at 
zero level, nm

Rhodamine 6G in polyurethane 23.0 8.0 34 555–597

Rhodamine 6G in polyurethane acrylate 8.0 0.9 29 558–597

Astraphloxine in polyurethane 160.0 6.5 32 590–620

Astraphloxine in polyurethane acrylate 2.0 0.7 30 590–620

Pyrromethene 597 in polyurethane 18.5 12.2 75 550–610

Pyrromethene 597 in polyurethane acrylate 0.3 2.2 58 553–607
TECHNICAL PHYSICS      Vol. 46      No. 7      2001



        

A DYE LASER WITH A POLYURETHANE MATRIX 861

                                           
The insignificant destruction of astraphloxine in poly-
urethane acrylate accounts for the small difference in
η0 for the lasing structures based on astraphloxine-
doped polyurethane and polyurethane acrylate (see
table).

To determine the tuning range of the lasers, we used
a dispersive Littrow cavity (Fig. 5). Reflection ruled
grating 1 (the ruling density 1200 mm–1) serves as a dis-
persive element. Auxiliary totally reflecting prism 2
minimizes the angle (6°) between the pumping beam
and the cavity axis. Lasing medium 3 is placed at the
Brewster angle to the optical axis. The reflection coef-
ficient of exit mirror 4 is 30%. The laser was tuned by
rotating grating 1. The spectrum was determined with
an SPM-2 specular monochromator. A signal from its
exit slit was applied to an FD-24 photodiode and then
to an S1-79 oscilloscope. As we did not use expansion
of the laser beam, the pumping energy was lowered
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Fig. 3. Absorption spectra of (1) rhodamine 6G,
(2) astraphloxine, and (3) pyrromethene 597 in polyurethane.
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Fig. 6. Tuning curves for (1, 4) pyrromethene 597, (2, 3) rho-
damine 6G, (5, 6) astraphloxine in (1, 3, 5) polyurethane
acrylate and (2, 4, 6) polyurethane.
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down to 10 mJ at a spot size of 2 mm to avoid the radi-
ation-induced damage of the grating. Figure 6 shows
tuning curves for the three dyes in the two polymer
matrices. The lasers with rhodamine 6G and pyr-
romethene 597 in polyurethane acrylate (curves 2 and
4, respectively) have not only smaller efficiencies but
also narrower tuning ranges in comparison with the
polyurethane lasers (curves 1 and 3). The latter fact is
explained by the red shift of the short-wavelength
edges of the corresponding tuning curves. The decrease
in the conversion efficiency and the narrowing of the
tuning range in the dispersive-cavity polyurethane
acrylate-based dye lasers are associated with the
decomposition products formed during the radical
polymerization of the matrix. The tuning curves for
astraphloxine (curves 5 and 6) are very close to each
other. Recall that the decomposition of astraphloxine
during the radical polymerization of polyurethane acry-
late is the least (5% vs. 14% and 20% for rhodamine 6G
and pyrromethene 597, respectively). The optical sta-
bility of astraphloxine in polyurethane acrylate is
smaller than that of rhodamine 6G (see curves 2 and 3
in Fig. 2). However, the curing time of the oligomer
composition with astraphloxine is 6–7 times shorter
than that for the sample with rhodamine 6G, because
the former dye does not absorb in the spectral region
320–420 nm. This is the reason for the insignificant
decomposition of astraphloxine in polyurethane acry-
late at the stage of fabrication and for the small differ-
ence in η0 for the matrices studied. The dyes in the
polyurethane matrix do not decompose during fabrica-
tion; therefore, the polyurethane media have a larger
conversion efficiency and a wider tuning range in com-
parison with the polyurethane acrylate ones.

The dye lasers with pyrromethene exhibit the larger
efficiency and the wider tuning range than those with
conventional rhodamine 6G. Over the last few years,
pyrromethene dyes have been widely used in lasers
emitting in the visible range owing to their high conver-
sion efficiency [21, 22]. The photochemical stability of
pyrromethene dyes in polyurethane matrices is sub-
stantially larger than that in radical-containing matrices
made of polyurethane acrylate [9, 10] and PMMA [21].
Thus, the use of the polyurethane matrices makes it
possible to improve the stability of the dye lasers.

Summarizing the results obtained, we conclude that
the optical stability, service life, conversion efficiency,
and tuning range of the lasing media with polyurethane
are superior to those of the polyurethane acrylate struc-
tures. The reason is the stronger degradation of the dyes
in polyurethane acrylate. First, the dyes in this polymer
partially decompose even at the stage of radical poly-
merization. Such a mechanism favors the further acti-
vation of the radical reactions when the lasing media
interact with light. Second, polyurethane is a highly
polarizable [24] polymer. Its dielectric constant
exceeds those of polyurethane acrylate, epoxides, and
PMMA [24]. That is why the degree of dissociation of
salt-like dyes in polyurethane is larger than that in the
other polymers. A large number of nucleophilic groups
in the polymer chains of polyurethane also contributes
to the separation of counterions, since they produce a
solvation sheath around the cations of dyes [16]. Thus,
the probability of contact ion pairs forming in polyure-
thane is far smaller than in polyurethane acrylate,
epoxides, and PMMA. Therefore, electron phototrans-
fer and the association of the contact ion pairs by elec-
trostatic attraction in the polyurethane matrices are
unlikely in contrast to the other polymers [16]. Indeed,
if chloride anions in astraphloxine are replaced by tet-
rafluoroborate, having higher electron affinity and
nucleophilicity, the lasing characteristics and the ser-
vice life of this dye in polyurethane matrix practically
do not change. In a polyurethane acrylate matrix, the
substitution leads to a slight broadening and a hypsoch-
romic shift of the absorption band and an increase in the
optical stability. According to [16], the dependence of
these parameters on the counterion properties indicates
the formation of contact ion pairs. Interestingly, pyr-
romethene 597 has the lowest optical stability and the
longest service life (see table and curves 3 and 6 in
Fig. 4). This is additional evidence of the fact that the
higher states of pyrromethene 597 take part in its pho-
tochemical decomposition. In studying the service life,
we excited only the fundamental absorbing transition
S0  S1, while the optical stability was studied in the
S0  S2 transition range as well. Chemically, intra-
ion pyrromethene 597 is a contact ion pair that cannot
dissociate at any polarity of the polymer. However, the
distance between the charges in this pair is rather large.
In addition, the negative charge is markedly localized at
the borofluoride bridge because of the high electroneg-
ativity of fluorine atoms. Therefore, the intramolecular
phototransfer of electrons from boron to nitrogen in
pyrromethene 597 is more difficult than in chemically
unbounded contact pairs of the cationic dyes
(astraphloxine and rhodamine 6G), where the distance
between the counter-ions depends on the polarity and
the solvating power of the medium. As a result, pyr-
romethene 597 has the service life longer than
astraphloxine and rhodamine 6G in both polymers. As
in the case of salt-like cation dyes, the electrostatic
attraction of the charges in intraionic pyrromethene
597 facilitates molecular aggregation. For the above
reasons, the probability of aggregation in polyurethane
is much smaller than that in polyurethane acrylate. The
low probability of aggregation, combined with soft
polymerization, provide the long service lifes of the
dyes in the polyurethane matrix.

Thus, the polyurethane matrix is a promising lasing
material for dye lasers. Unlike the other polymers, this
medium ensures the stability of dyes of any class.
Lasers with the polyurethane matrix may offer long-
term stable operation because of their high photochem-
ical stability, conversion efficiency, and lasing charac-
teristics.
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Abstract—The generation of rf oscillation when an electromagnetic shock runs in synchronism with a back-
ward wave in coupled transmission lines with normal and anomalous dispersions and ferrite-related nonlinear-
ity is considered. The oscillation damping can be significantly reduced if a large portion of the rf energy flux is
directed to the anomalous-dispersion line, where rf losses are relatively low. © 2001 MAIK “Nauka/Interperi-
odica”.
Earlier [1], we have shown that rf oscillation may
arise behind the electromagnetic shock (EMS) front in
a nonlinear transmission line (TL) with spatial disper-
sion. The reason is that the EMS front is unstable
against an rf wave running in synchronism with it (that
is, direct video-to-radio pulse conversion is possible
during the interaction of the waves). It has also been
found that the duration of the radio pulse and its filling
frequency depend on rf losses in the TL. Moreover, it
has been noted [2] that rf losses have a minor effect on
the damping rate of the shock-generated rf oscillation
when the rf energy is rapidly removed from the EMS
front at the synchronous excitation of backward waves
(backward spatial harmonics). Consequently, wider
radio pulses may be generated under such conditions.

If the rf energy in a TL is lost mostly in a saturated
nonlinear medium, such as ferrite, the effect of rf losses
on the oscillation damping can apparently be sup-
pressed if the portion of the rf energy in the lossy region
is decreased. In this work, we show that this possibility
can be realized, e.g., in an electrodynamic system like
coupled TLs with anomalous and normal dispersions
(hereafter, anomalous and normal lines, respectively)
where the EMS front synchronously initiates backward
waves.

Such a system, namely, a quasi-coaxial TL electro-
dynamically coupled with a ladder-type slow-wave sys-
tem through the electric field in the gap is shown in
Fig. 1a. The dispersion characteristics of this system
that were obtained with a lumped-parameter equivalent
circuit (Fig. 1b) [3] are depicted in Fig. 2a. The fre-
1063-7842/01/4607- $21.00 © 20864
quency vs. wavenumber dependence has two branches
separated by the stopband.

For the equivalent circuit of the transmission lines in
Fig. 1b, the Kirchhoff differential–difference equations
for currents and voltages were numerically integrated
by the Runge–Kutta method. As follows from the
results of simulation, the leading edge of a video pulse
applied to the input of the normal line is transformed
into the EMS front as the pulse travels along the line
[1]. Behind the EMS front, oscillations with a fre-
quency equal to the frequency of the synchronous wave
[νs = νp(ω)] are generated. The number of oscillations
grows in proportion to the travel. The oscillations run
from the shock front to the TL input and are released on

the matched load  (Fig. 1b). The nonlinearity
behind the shock front saturates, and the oscillations
propagate as in a linear medium. Typical voltage wave-
forms in the 100th section of the normal and anomalous

TLs /Vs and /Vs, respectively, normalized to
the EMS amplitude Vs) are depicted in Fig. 3. Both
waveforms contain oscillations at the frequency of syn-
chronous wave and also at a higher frequency because
of the synchronism with the forward wave of the higher
frequency branch of the dispersion curve.

The field structure of an rf wave traveling in coupled
TLs (and, eventually, in the region where the EMS field
and the field of the shock-induced rf wave overlap) is

conveniently characterized by the ratio /

(where  and  are the rf oscillation amplitudes
at the nodes of the normal and anomalous lines). In
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Fig. 1. (a) Coupled quasi-coaxial TL and ladder-type slow-wave system (T-shaped waveguide with grating) and (b) its equivalent
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Fig. 2b, the ratio /  is plotted against wavenum-
ber ϕ for several values of the coupling factor Ccp/C0.
The basic feature of the voltage waveforms is that the
radiation source (shock front) runs in the normal (fer-
rite-filled coaxial) line, while the major portion of the
energy of the synchronous shock-generated wave
moves in the anomalous one. In coupled TLs one of
which is filled by ferrite, wave damping in the 500–
1000 MHz range is largely due to rf losses in the mag-
netized ferrite, whereas losses due to the skin effect are
negligible. Therefore, the damping of the wave gener-
ated turns out to be one order of magnitude lower than
when the shock wave is in synchronism with a back-
ward spatial harmonic in nonlinear TLs with capacitive
cross links (provided that the losses in the ferrite are the
same) [2]. Figure 2c plots the calculated parameter Ne

against the real part of the wavenumber for the EMS
structure formed in the coupled normal and anomalous
TLs. Here, Ne is the number of rf oscillations (in the
radio pulse generated behind the shock wave) whose
amplitude differs from that of the first oscillation (i.e.,

Vω
2( ) Vω

1( )
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immediately behind the shock front) by a factor of less
than e. (Note that the rf oscillation amplitude exponen-
tially decays with distance from the shock front.) The
growth of Ne with decreasing coupling coefficient

Ccp/C0 fully correlates with the decrease in / .

Note that the possibility of spatially separating the
powers of an exciting EMS and an EMS-induced back-
ward wave greatly simplifies the output problem. In this
situation, one can isolate the “source” of an input video
pulse (at the input of the normal line) and the “receiver”
of the oscillations (resistive load at the input of the
anomalous one).

Of great importance is the efficiency of rf generation
in coupled TLs. This parameter is defined as the ratio of
the energy spent to generate oscillations to the total
energy delivered to the EMS front. Estimates show that
the generation efficiency depends not only on the mag-
netization reversal rate of the ferrite (as in the case of
TLs with capacitive cross links [1, 2]) but also on the
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field structures of the shock and the shock-generated
waves (the structures define the interaction efficiency
of the waves: the farther the synchronous wave field
penetrates into the normal line, the greater the interac-

tion efficiency). If /  = 1–10 near the backward
wave, the energy efficiency of generation is given by

Here, τf is the EMS front duration in a dispersionless
medium [4]. As follows from the numerical simulation,
the energy efficiency of backward wave generation in
the case of synchronism corresponding to the minimal
the group velocity is about 10%, that is, much smaller
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Fig. 2. (a) Relative frequency ω/ωc, (b) ratio /  of

the rf amplitudes in the normal and anomalous lines, and
(c) Ne vs. wavenumber ϕ for the coupling factor Ccp/C0 =
(1) 0.08, (2) 0.16, and (3) 0.4. For the definition of Ne, see
the text. The parameters of the equivalent circuit are ωc =

2/(L0C0)1/2 = 2.44 × 1010 Hz, L01/L0 = 22.5, and C01/C0 =
0.1 (L0 is the inductance of an individual cell for saturated
nonlinearity).
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than in the case of synchronism with the backward spa-
tial harmonic in TLs with capacitive cross links [2].

To summarize, for the EMS front locked in synchro-
nism with the backward wave in coupled TLs (a ladder-
type system and a quasi-coax), where a major part of
the energy propagates outside the ferrite, the damping
of rf oscillations can be much less than when the EMS
is synchronous with the forward wave [1] or a spatial
backward harmonic [2]. In view of this circumstance,
our work may lay a foundation for designing a device
that generates high-power (50–100 MW) rf pulses as
long as 103 periods with the filling frequency 500–
1000 MHz. As in the case when the EMS front excites
forward synchronous waves in ferrite-filled TLs [1], the
filling frequency can electronically be tuned within a
wide range.
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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Abstract—A transport equation in the small-angle approximation is obtained for a curvilinear beam of fast
charged particles passing through a substance in a nonuniform magnetic field. Green functions for this equation
are found for an annular beam in a weak-focusing field and for a helical beam in the nonuniform magnetic field.
© 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Theoretical models considering fast charged parti-
cles passing through a substance in a magnetic field are
of interest in high-energy physics, astrophysics, and
physics of the Earth. The use of analytical methods here
is validated by the smallness of the single-scattering
angle. This greatly simplifies the elastic part of the col-
lision integral in a transport equation. With the collision
integral represented in the differential form, one can
obtain a number of solutions of a transport equation in
the small-angle approximation [1–3].

However, results available have been obtained for
the case when charged particles move along the mag-
netic field, i.e., for a straight beam. For a curvilinear
beam, a transport equation in the small-angle approxi-
mation has not been derived. For example, the injection
of a charged particle beam at an angle to the direction
of a uniform magnetic field was studied with a kinetic
equation [4–6]. In this work, a transport equation in the
small-angle approximation was derived for a charged
particle beam passing through a substance in a nonuni-
form magnetic field. Also, Green functions for this
equation were found for annular and helical beams.

CURVILINEAR COORDINATE SYSTEM

The propagation of a particle beam is conveniently
considered in a system of curvilinear coordinates
(s, η, ζ):

where Y(s) is the particle trajectory along the beam
axis; s is the trajectory length reckoned from the point
of injection; and t, n, and b are the vectors of the Frenet
trihedral related to the curve Y(s).

Although the Frenet trihedral vectors are mutually
perpendicular, the coordinate system introduced is not
orthogonal, because the scalar products of the basis

x Y s( ) ηn ζb,+ +=
1063-7842/01/4607- $21.00 © 20868
vectors

are not all equal to zero. Here, σ = 1 – kη and k and κ
are the curvature and the torsion of the curve Y(s). The
equation of motion for an axial particle in an external
magnetic field B0 = B(Y(s)) in view of energy losses
can be expressed as

(1)

Here, u = γvt, γ = 1/ , ε0 = ε(W), and W =

mc  – mc2 is the kinetic energy of the axial par-
ticle. The function ε(W) is the stopping power of the
substance. For fast charged particles, it is found from
the Bethe–Bloch formula [7]. Differentiation with
respect to s is designated by prime, and […] in (1)
means the vector product.

If the decomposition of the magnetic field vector at
the beam axis is used,

Eq. (1) can be written in the form

(2)

Hence, for the trajectory curvature, we have k =
−ρB03. Hereafter, we use the designation ρ = e/mcu.
Next, nB0 = 0; i.e., when the charged particle moves,
the magnetic field vector lies in the so-called rectifying
plane related to the particle trajectory.

e1
∂x
∂s
------ σt κ ξ b ηn–( ),+= =

e2
∂x
∂η
------ n, e3

∂x
∂ζ
------ b= = = =

mv u'
e
c
-- vB0[ ] ε 0t.–=

1 u2/c2–

u2 c2+

B0 B01t B02n B03b,+ +=

u't kun+
e

mc
------- B02b B03n–( )

ε0

mv
--------t.–=
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Using the inherent time of motion of the axial parti-
cle,

as a longitudinal variable instead of s; we pass to the
parametric representation of the particle trajectory.
Then, Eq. (1) can be written as

(3)

where differentiation with respect to τ is designated by
dot.

From the definition of the curvature and the torsion

of a spatial curve, k2 = /u6 and κ = /k2u6

[8], we can relate these trajectory parameters with the
external field and the particle velocity using Eq. (3):

In particular, κ = –ρuB0/u if the magnetic equation
is homogeneous.

TRANSPORT EQUATION

In the presence of an external magnetic field B, the
transport equation in the continuous slowing-down
approximation is given by

(4)

Here, N(x, W, T) is the flux density; e, m, and T are the
particle charge, mass, and kinetic energy, respectively;

p = W /c; ε = ε(T); na is the number of
atoms per unit volume; and Iel is the elastic collision
integral, where dΣ(T |W', W)/dW' is the cross section of
elastic scattering from the state W' to the state W .

To write the transport equation in the coordinate
system considered, one should take advantage of the
general expression for a gradient of function in nonor-
thogonal curvilinear coordinates [8]:

where ei are the vectors of the reciprocal basis that are
calculated from the vectors ei and, in our case, have the

τ xd
u x( )
-----------,

0

s

∫=

mu̇
e
c
-- uB0[ ] γ ε0t,–=

uu̇[ ] 2 u̇̇ uu̇[ ]

k
ρ
u
--- u2B0

2 uB0( )2– ,=

κ ρ
u
---– uB0

ρ
uk2
--------B0 uḂ0[ ]+ 

  .=

W∂N
∂x
------- e

c
-- WB[ ] ∂N

∂p
-------+ ∂εN

∂T
---------- Iel,+=

Iel = na W'd
Σd
W'd

--------- T W' W,( ) N x W' T, ,( ) N x W T, ,( )–[ ] .∫

T T 2mc2+( )

∂N
∂x
-------

∂N
∂s
-------e1 ∂N

∂η
-------e2 ∂N

∂ζ
-------e3,+ +=
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
form

Using the decomposition of the vectors p and B in
the Frenet trihedral vectors,

and Eq. (4) for flux density, we obtain the equation in
the curvilinear coordinates:

(5)

SMALL-ANGLE APPROXIMATION

In the small-angle approximation, W = p/p ≈ t +
αn + βb. Therefore, the elastic collision integral can be
simplified to the form (if the effect of the external field
on collisions is neglected)

Here, χ2(T) is the mean square of the scattering angle
per unit length.

If the ratios of the beam cross size to the radius of
curvature and to the radius of torsion are small, i.e., a
beam is narrow, the values of kη, κη , κζ  are also small.
Moreover, the energy inhomogeneity of the beam will
also be small τ = T/W – 1. Therefore, we can put
χ2(T) ≈ χ2(W) due to the smallness of the scattering
angle. Then, the components of the momentum vector
correct to the second order of smallness are given by

where Γ = (W + mc2)/(W + 2mc2).
For further rearrangements, we should substitute the

variables α and β for p2 and p3, as well as use the
decomposition of the external field in the vicinity of the
beam axis:

where Hi are first-order quantities.

e1 1
σ
---t, e2 n ζ κ

σ
---t, e3+ b η κ

σ
---t.–= = =

p p1t p2n p3b, B+ + B1t B2n B3b,+ += =

1
σ
---∂N

∂s
------- p2

k
σ
--- e

cp
------ p2B3 p3B2–( )+

∂N
∂ p1
--------+

+
1
σ
--- κ p3 k p1–( ) e

cp
------ p3B1 p1B3–( )+

∂N
∂ p2
--------

+
e

cp
------ p1B2 p2B1–( ) p2

κ
σ
---–

∂N
∂ p3
--------

+
p2

p
----- ζ κ

σ
---+ 

  ∂N
∂η
-------

p3

p
----- η κ

σ
---– 

  ∂N
∂ζ
-------+ ∂εN

∂T
---------- Iel.+=

Iel L T( )N , L T( ) 1
4
---χ2 T( ) L1 L2+( ),= =

L1
∂2

∂α2
---------, L2

∂2

∂β2
--------.= =

p1 mu 1 Γτ+( ), p2 muα , p3 muβ,= = =

B1 B01 H1, B2+ H2, B3 B03 H3,+= = =
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As a result, Eq. (5) up to first-order terms can be
expressed in the form

(6)

where λ = κ + ρH1 and Λ = L(W).

At the final stage of transformation of transport
equation (6), τ should be substituted for T. Here, we
must take into account that u' = uΓW'/W because u =

/mc. On the other hand, from Eq. (2) it
follows that u' = –ε0/mv. Using the expression for the
particle velocity v  = W/muΓ, we arrive at the natural
result: the kinetic energy of axial particles passing
through a substance depends on its stopping power
W' = –ε0.

Eventually, for the function F = εN, we obtain the
following equation correct to the second-order terms:

(7)

Equation (7) has been derived for a narrow beam of
fast charged particles passing through a substance in a
nonuniform magnetic field with regard for energy
losses and multiple elastic scattering. Obtaining analyt-
ical solutions of this equation is a rather complicated
task. A simpler case is the transport equation in the
small-angle approximation with allowance for multiple
elastic scattering only:

(8)

ANNULAR BEAM

Equation (8) is simplified at κ = 0, i.e., when the
beam axis is a plane curve. As a specific example, let us
consider the propagation of an annular beam in a
slightly focusing field with the field index q:

∂N
∂s
------- α κζ+( )∂N

∂η
------- λβ k2η– ρH3---–+ +

– kτΓ α u'
u
----+ 

  ∂N
∂α
------- β κη–( )∂N

∂ζ
-------+

+ ρH2 λα– βu'
u
----– 

  ∂N
∂β
------- σ∂εN

∂T
---------- ΛN ,+=

W W 2mc2+( )

∂F
∂s
------

ε0

W
----- τ kη+( ) τ

∂ε0

∂W
--------–

∂F
∂τ
------ α κζ+( )∂F

∂η
------+ +

+ λβ k2η– ρH3– Γ kτ α
ε0

W
-----– 

 –
∂F
∂α
-------

+ β κη–( )∂F
∂ζ
------ ρH2 λα– βΓ

ε0

W
-----+ 

  ∂F
∂β
------+ ΛF.=

∂N
∂s
------- α κζ+( )∂N

∂η
------- λβ k2η– ρH3– kτΓ–( )+ +

∂N
∂α
-------

+ β κη–( )∂N
∂ζ
------- ρH2 λα–( )∂N

∂β
-------+ ΛN .=

B B0 qkζn 1 qkη+( )b+[ ] .=
In this case, Eq. (8) can be written as

(9)

where k1 = k , k2 = k ,

A solution of Eq. (9) can be obtained by the Green
function method:

Here, ϑ(x) is the Heaviside step function X = {x1, x2},
x2 = {ζ, β}, and x1 = {η, α}. It is easy to see that the
Green function has the form

where the functions Fi satisfy the equation

(10)

with the initial condition Fi(xi, xi0, 0) = δ(xi – xi0).

To determine the functions Fi, we should first
replace xi by new variables ξi and γi:

where the functions fi and gi are expressed as (ψi = kis)

These functions are the integrals of the system of
ordinary differential equations

The above change of variables eliminates the terms
with first-order derivatives from Eq. (10) (subscript i is

MN 0, M
∂
∂s
----- M1 M2,+ += =

1 q– q

M1 α ∂
∂η
------ k1

2η kτΓ+( ) ∂
∂α
-------– Λ1,–=

M2 β ∂
∂ζ
------ k2

2ζ ∂
∂β
------– Λ2.–=

ϑ s( )N s X T, ,( ) G X X0 s, ,( )N 0 X0 T, ,( ) X0,d∫=

MG X X0 s, ,( ) δ s( )δ X X0–( ).=

G X X0 s, ,( ) ϑ s( )F1 x1 x10 s, ,( )F2 x2 x20 s, ,( ),=

∂
∂s
----- Mi+ 

  Fi 0=

ξ1 f 1 k1η0, ξ2– f 2 k2ζ0,–= =

γ1 g1 α0, γ2– g2 β0,–= =

f 1 k1η
k
k1
----τΓ+ 

  ψ1cos α ψ1sin–
k
k1
----τΓ ,–

f 2 k2ζ ψ2cos β ψ2,sin–=

g1 α ψ1cos k1η
k
k1
----τΓ+ 

  ψ1,sin+=

g2 β ψ2cos k2ζ ψ1.sin+=

η' α , α' k1
2η– kτΓ ,–= =

ζ' β, β' k2
2ζ .–= =
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here omitted):

(11)

To solve Eq. (10), one can apply double Fourier
transformation with respect to the variables ξ and γ. In
doing so, we come to an ordinary differential equation
for the Fourier transform. This equation is easily inte-
grable; eventually,

In the case of a delta-like source, the expression for
the particle concentration is

Thus, the coefficients C1 and C2 characterize a beam
widening due to multiple elastic scattering.

HELICAL BEAM

In a similar way, one can find the Green function for
a beam in a uniform magnetic field when the beam axis
is a spiral line. In this case, the curvature and the torsion
of the beam axis do not depend on s: k = |ν|sinθ and κ =
νcosθ, where ν = –ρB0 and θ is the angle between the
magnetic field and the direction of beam injection. For
a helical beam, Eq. (8) can be expressed in the form

(12)

In this case, to eliminate the terms with first-order
derivatives, one should make the change of variables

∂F
∂s
------

χ2

4
----- ψ∂2F

∂ξ2
---------sin

2


–

– 2ψ ∂2F
∂ξ∂γ
------------sin ψ∂2F

∂γ2
---------cos

2


+ 0.=

Fi

ki

πDi

--------- 1

Di
2

------ Aiξ i
2 2Biξ iγi– Ciγi

2+( )– ,exp=

Ai
χ2

2ki

------- ψi
1
2
--- 2ψisin+ 

  , Bi
χ2

2ki

------- ψi,sin
2

–= =

Ci
χ2

2ki

------- ψi
1
2
--- 2ψisin– 

  , Di
2 CiAi Bi

2.–= =

n
k1k2n0

π C1C2

--------------------
k1

2η2

C1
----------–

k2
2ζ2

C2
----------– 

  .exp=

∂N
∂s
------- α κζ+( )∂N

∂η
------- β κη–( )∂N

∂ζ
-------+ +

– k kη τΓ+( )∂N
∂α
------- ΛN .=

ξ1 νη Q–( ) ψ α κζ+( ) ψ Q νη 0.–+sin–cos=

ξ2
ζ
ν
--- k2 κ2 ψcos+( ) κ η Q

ν
----– 

  ψsin+=

+ ακ
ν
--- ψcos 1–( ) νsR– νζ 0,–
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where

As a result, Eq. (12) becomes similar to Eq. (11):

Here, for short, we introduced the symmetric matrix of
the coefficients aij(s):

The use of Fourier transformation allows us to
obtain the Green function

where

ξ3 µα k2

ν2
----- νη Q–( ) ψsin κζ ψcos 1–( )+[ ]+=

+ κsR α0,–

ψ νs, µ κ2 k2 ψcos+( )/ν2,= =

Q κβ kτΓ–( )/ν , R k kβ κτΓ+( )/ν2.= =

∂N
∂s
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1
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3
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2 κ2
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The practical value of the results obtained is that one
can estimate the parameters of a beam of fast charged
particles passing through a substance in an external
magnetic field. These estimates apply until the beam
appreciably widens due to the spread of the particle
velocity and multiple elastic scattering.
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Abstract—High-power electrons beams generated in a single injection magnetron gun with secondary-emis-
sion cathodes and in a set of such guns are studied. Hollow electron beams of current 50–100 A, electron energy
30–100 kV, and peak power 1–5 MW are obtained. The beams can be used as electron sources in accelerators
and ordinary and multibeam high-power microwave devices. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, injection magnetron guns with ordi-
nary [1–6] and inverse [6, 7] secondary-emission cath-
odes (SECs) have attracted particular interest. These
sources offer a number of advantages (long service life,
high current density, simple design, hollow beams,
etc.), which allow their use as reliable high-power
microwave sources in the technology of accelerators
[3] and high-speed high-voltage devices [8]. In these
guns, the cathode is subjected to backward bombard-
ment by primary electrons (the secondary emission
coefficient of the cathode material is above unity),
which gain energy when moving in a decaying electric
field. The primary electrons can be produced by cold
emission, emission from insulating inclusions on the
cathode surface, or emission from an additional thermi-
onic cathode [6]. Under these conditions, the electrons
are multiplied by secondary emission, their density
builds up in an avalanche-like manner, an electron layer
is produced near the cathode, and an electron beam is
formed and extracted from the gun. At the early stage
of electron layer formation, secondary-emission multi-
plication takes place because the electrons, when fol-
lowing a cycloidal path, gain energy in the decaying
electric field. Once the electrons have been accumu-
lated (steady-state stage), the process is governed by
electric fields due to the oscillation of the space charge
density. Of interest is the stable generation of electron
beams with a high peak power in SEC magnetron injec-
tion guns. In this work, we study the generation of high-
power electron beams in a single gun and in a set of the
guns. Also, we trace a correlation between the beam
current density and the electric and magnetic fields and
evaluate the cross size of the beams.
1063-7842/01/4607- $21.00 © 20873
EXPERIMENT

Experiments were performed with the setup shown
in Fig. 1. The magnetron gun is fed by modulator 1,
which forms a voltage pulse of amplitude 4–200 kV,
duration 4 µm, and repetition rate 10–50 Hz. A nega-
tive-polarity flat-top pulse with an overshoot is applied
to copper cathode 5. Anode 6 (stainless steel or copper)
is grounded through the resistor R3. The secondary
emission process is triggered in the decaying electric
field produced by the falling edge (duration 0.6 µs,
steepness 50–100 kV/µs) of an overshoot that is spe-
cially produced on the top of the cathode voltage pulse
[4]. The magnetic field is generated by solenoid 4. The
beam current is measured with Faraday cup 7 and resis-
tor R4; the cathode voltage, with the divider R1R2; the
anode current, with the resistor R3 and monitor 2; and
the beam size, with prints on an X-ray film and on a
molybdenum foil that are placed on the Faraday cup.
The magnetron gun is positioned in stainless-steel vac-
uum chamber 3, where a pressure of ~10–6 torr is main-
tained.

R1 R2

R3

R4

1 2

3 4 5 6

7

Fig. 1. Experimental setup.
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In the experiments, two approaches to produce mag-
netic fields necessary for generating and transporting
the beam were employed: a pulsed discharge through a
solenoid [9] and dc feeding of a solenoid [10]. Figure 2
shows the distribution of the magnetic field along the
solenoid axis for both cases, as well as the arrangement
of the magnetron gun and the Faraday cup.

In the former case (Fig. 2, curve 1), the axial field of
the solenoid can be very uniform (±5%) and high
(5000–6000 Oe). One, however, should take into
account the decay of the pulsed magnetic field when it
diffuses through the walls of the cavity and the vacuum
chamber. As a result, its longitudinal distribution may
change (see, e.g., [9, 11]). The repetition rate of the
magnetic field pulses depends on the value of the reser-
voir capacitor and the switch selected. If the pulse rate
is low, the cathode surface is contaminated within the
time between the pulses. Due to electron bombardment,
the contaminants may fall into the anode–cathode gap,
causing its vacuum breakdown [12].

In the latter case, a high density of the feed power
and water cooling are necessary to produce a high per-
manent magnetic field. Here, the field strength is lim-
ited by the heat being released in the solenoid and the
field distribution is less uniform (Fig. 2, curve 2). Also,
due to current ripple in the solenoid, the repetition rate
of pulses driving the modulator must be related to the
mains frequency.

RESULTS AND DISCUSSION

1. Generation of High-Power Beams
in a Single Magnetron Gun

In this case, high-power beams can be produced if
the cathode diameter is large. The beam current (hence,
power) can be increased by raising the cathode–anode
voltage. However, the voltage cannot exceed some crit-
ical value, since the interelectrode gap may break
down. The larger the cathode diameter, the smaller the

10 20 30 40 50
Z, cm

0

400

800

1200

1600

2000
H, Oe

FC
A C

1

2

Fig. 2. Longitudinal distribution of the magnetic field. A,
anode; C, cathode; and FC, Faraday cup.
field at the cathode and, hence, the lower the break-
down probability. Therefore, higher voltages can be
applied. In our experiments, the cathode diameters
were varied from 40 to 80 mm and the anode diameters,
from 50 to 140 mm. The voltage amplitudes were
between 20 and 120 kV.

The stable current generation mode was achieved in
the ~100-mm-long magnetron gun with a cathode
diameter of 40 mm and an anode diameter of 78 mm.
The voltage pulse amplitude (hereafter, the flat-part
amplitude is meant) was 100 kV. The beam current was
found to be about 50 A, which corresponds to the
microperveance ~1.6 and the peak power ~5 MW. The
magnetic field was ~1800 Oe in this case. Figure 3 plots
the beam current at the Faraday cup against the cathode
voltage pulse amplitude. It is seen that the beam current
obeys the Child’s law. During measurements, to each
voltage value, there corresponded the optimum value of
the magnetic field at which the beam current amplitude
was the highest. It turned out that the gun readily with-
stands the voltage 120 kV; hence, the peak power as
high as 8 MW can be attained. In the experiments, we
also varied the electron current to the anode. The anode
current was within 1–10% of the beam current and
depended on experimental conditions.

Next, we studied the beam parameters as functions
of the electric and magnetic fields. When the cathode
voltage is higher or lower than the optimum value (with
the magnetic field fixed), the conditions for secondary-
emission multiplication are violated and the process
ceases. If the top of a voltage pulse is harmonically
modulated, electron bunches arise at the exit of the gun.
In time, they appear when the sinusoid falls (forced
modulation [4]). The beam current vs. magnetic field
dependence shows that, as the magnetic field grows
(with the cathode amplitude fixed), the beam current at
the Faraday cup first sharply grows, exhibits a plateau,
and then sharply falls. Such behavior reflects changes
in the electron trajectories and in the conditions under
which the electrons gain energy in the anode–cathode
gap with increasing magnetic field. When the magnetic
field amplitude varies, so does the shape of a beam cur-
rent pulse. At a cathode voltage of 55 kV and a mag-
netic field of 700 Oe, the beam current pulse breaks
down into spikes of amplitude ~30 A and duration 10–
30 ns. When the magnetic field grows to ~1200 Oe, the
spikes consolidate and the beam current pulse becomes
flat.

In the ~100-mm-long gun having a copper cathode
of diameter 40 mm and a stainless steel anode of diam-
eter 50 mm, we obtained a beam current of 50 A at a
voltage of 30 kV and a magnetic field of 2200 Oe. This
corresponds to the microperveance ~10 and the peak
power ~1.5 MW.

In [6], single magnetron guns of both ordinary
(cathode diameter 50 mm, anode diameter 60 mm) and
inverse (cathode diameter 54 mm, anode diameter
43 mm) type generated the beam current ~100 A in a
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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magnetic field of ~1800 Oe at a voltage of 40 kV (the
cathodes were made of the BeCu alloy or stainless
steel). This corresponds to the microperveance ~12 and
the peak power ~4 MW, which is consistent with our
results.

2. Production of Multiple Electron Beams 
in a Set of Magnetron Guns

Another way of increasing the beam power is the
use of a system of parallel-connected magnetron injec-
tion guns. The current, power, microperveance, and
size of each of the beams are small in this case, but the
aggregate beam current and power in the system are
significant.

In producing stable electron beams with a system of
parallel-connected SEC magnetron beams, difficulties
like those with parallel-connected switches may arise.
When a partial beam is generated or when one of the
guns is broken down, the voltage amplitude at the cath-
odes of the other guns decreases. This may quench gen-
eration or cause beam instability. In actual systems, the
voltage decrease at the cathodes of the other guns that
is related to the presence of parasitic inductances and
capacitances takes place over a period of several nano-
seconds. It was shown [3] that the formation time of the
electron beam in SEC guns (hence, the rise time of the
beam current pulse) may be decreased to 2 ns (if sec-
ondary-emission multiplication is triggered by the
nanosecond falling edge of the voltage pulse with a
steepness of more than 300 kV/µs). Thus, in the system
of the guns, the electron layer is produced and the beam
is generated even if one of the guns is broken down. If
the feeding modulator has a low output resistance, the
amplitude of the generation-driving pulse decreases
insignificantly. In our experiments, the modulator resis-
tance was 2000 and the decrease was less than 20%. It
was demonstrated [14] that beam generation continues
when the cathode voltage changes by 30% (with the
magnetic field fixed), which exceeds the above value.
Thus, the difficulties associated with beam generation
in the system of the guns are quite surmountable.

The electrical strength of a system of magnetron
guns may be somewhat reduced because of an increase
in the total surface area of the electrodes (the break-
down voltage is inversely proportional to S0.1 , where S
if the surface area of the electrodes). If the number of
the guns is eight or more, the decrease in the breakdown
voltage is 15–20%. In a set of eight guns with the cath-
ode and anode diameters 5 and 22 mm, respectively, the
breakdown voltage was shown to diminish roughly by
30% (from 70 to 50 kV) as compared with a single gun
with the same electrode geometry. Note that this
decrease is not only due to the above effect but also
results from the asymmetric arrangement of the guns,
poor vacuum conditions, and other adverse factors.

In our experiments, high-power beams were pro-
duced in a system of six or eight guns. The cathodes
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
and anodes were made of copper, and the gun length
was ~100 mm.

In the first case, the system generates six beams. All
the guns were arranged in a circle of diameter 60 mm.
The anode and cathode diameters were 5 and 26 mm,
respectively. For a cathode voltage of 40 kV and a mag-
netic field strength of ~2000 Oe, each gun generates a
beam current of 18 A with a microperveance of ~2.5.
The total beam current was 100 A with a peak power of
4 MW.

In the second case, the eight guns were arranged in
a circle of diameter ~70 mm. The cathode and anode
diameters were 5 and 22 mm, respectively. For a cath-
ode voltage of ~30 kV and a magnetic field strength of
~2000 Oe, the total beam current was ~60 A with a
peak power of ~2 MW. The microperveance of each of
the beams was ~2.

3. Beam Size

In the SEC guns, the beam traveled a distance of 50–
100 mm from the anode surface. It was found that they
have a ring-shaped cross section with the uniform azi-
muth distribution of the intensity. The inner diameter of
the ring is roughly equal to the cathode diameter. The
“wall” thickness was found to be 1–2 mm.

The outer and inner diameters of the beam produced
in the single magnetron gun (with cathode and anode
diameters of 40 and 70 mm, respectively) were 45 and
41 mm, respectively. For the magnetron diode (cathode
and anode diameters 80 and 140 mm, respectively), it
was found that, when the electric field is nonuniform
within 5% in the transverse direction, the distinct beam
trace is surrounded by the wide diffuse region. For a
more nonuniform field, the beam disrupts in the azi-
muth direction (over a length of about 20 mm). This
indicates that the electrode coaxiality must meet strin-
gent requirements.
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Fig. 3. Beam current vs. cathode voltage pulse amplitude.
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In the multibeam magnetron system, the beams
were uniformly arranged in a circle of the given diam-
eter (60 or 70 mm). The sizes of each of the beams
equaled those of the beam in the individual gun (the
outer and inner diameters ~9 and ~5 mm, respectively).
The intensity of the beams was uniformly distributed in
the azimuth direction.

CONCLUSION

Our experiments show that magnetron guns with
secondary-emission cathodes can provide high-power
electron beams. We established a correlation between
the beam current and the electric and magnetic fields.
Beam generation in a multiple gun system and its elec-
trical strength were considered.
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of Various Configuration
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Abstract—The properties of an axisymmetric electrostatic lens used for focusing atomic or molecular beams
were studied. The lens was formed by a dip in an electric field in the axial direction. Two types of interaction
between the particles and the electric field were studied: quadratic and linear in field. An analytical approxima-
tion of the dependence of the focal distance of the lens on the beam energy and the parameters of the electric
field was obtained. Chromatic and spherical aberrations of the lens were determined. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION
Such systems as a Fresnel zone plate [1] or a macro-

scopic electromagnetic lens are often used in atomic
optics for focusing atomic beams. In the latter case,
either focused laser radiation [2] or a magnetic lens [3]
(as in electron microscopy) is used. The magnetic lens
focusing ensures maximum resolution. The limiting
resolution is determined by the aberrations of the
focusing lens (mainly, by a chromatic aberration). It
was suggested that, if an atomic beam were cooled, a
resolution of about 50 nm could be attained, provided
that, under otherwise identical conditions, the diffrac-
tion limit of the system was 6.5 nm [3]. It was also sug-
gested in the preceding works [4, 5] that an object of
atomic size could be used as a lens for focusing particle
beams.

Electric fields of axisymmetric configuration focus-
ing atomic or molecular beams are also of interest. In
this work, the properties of such lenses are studied the-
oretically.

INTERACTION QUADRATIC IN FIELD
The interaction of an atom or molecule with an elec-

tric field E significantly weaker than the atomic field is
described by the formula [6]

(1)

where α is the polarizability of the atom or molecule.
This interaction is responsible for the quadratic

Stark effect in the atom.
It is well known that the field potential U near the

axis of a cylindrical lens has the form

(2)

V
1
2
---αE2,–=

U r z,( ) U0 z( ) r2

4
----U0'' z( ),–=
1063-7842/01/4607- $21.00 © 20877
where U0 is the field potential on the axis and (r, z) are
cylindrical coordinates.

The field strength is

where E0 = – .

The potential determined by Eq. (2) should satisfy
the following equation:

Therefore, this potential determines the approxi-
mate solution of the Laplace equation subject to the
condition

(3)

Let the field distribution along the axis be expressed
in terms of a dimensionless profile f(z) of the distribu-
tion: E0(z) = Ee f(z). Thus, Eq. (1) for the interaction
potential can be written as

(4)

The values of  and g specify the scale of inter-
action and spatial distribution of the interaction poten-
tial, respectively. On the axis, g(0, z) = f(z)2. The move-
ment of the atom is determined by the force applied to
it, i.e., by the derivative of the potential. Therefore, the
zero potential level can be selected arbitrarily. Let the
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potential be equal to zero for atoms incident on the lens
along its axis. In this case, g  g – f(– ∞)2.

Let us consider a family of field distributions along
the axis with a dip near the origin of coordinates. These
distributions can be described using the approximation

(5)

where κ is the parameter specifying the relative value
of the field dip near the origin of coordinates and R is
the length of the region of field variation.

For 0 < κ < 1, the field distribution has a minimum
(dip) near the center of the lens; for other values of κ,
there is a maximum (hump) near the center of the lens.
The family of distributions of the relative strength of
the electric field on the lens axis for various values of
the parameter κ (–0.3 < κ < 0.3) is shown in Fig. 1.
Electric fields of such a configuration can be generated
using appropriate electrodes. It should be noted that the
form of approximation selected above is less important
than its qualitative behavior. Within the framework of
approximation (5), the condition (3) is reduced to

i.e., virtually to r ! R. Therefore, the axial length R of
the field dip specifies the upper limit of the lens radius.

The interaction potential (1) at the center of a lens
formed by an electric field of configuration (5) is
described by the equation

(6)

f 1 κS
3
2
---–

– 
  , S 1

z
R
--- 

 
2

,+= =

r
R
---  ! 

2S

5 4S 7–
-------------------------,

V0
1
2
---αEe

2κ 2 κ–( ).=

1.2

1.0

0.8

E0/Ee

z

κ

Fig. 1. Family of distributions of the relative strength
E0(z)/Ee of the electric field along the lens axis for various
values of the parameter κ (–0.3 < κ < 0.3).
The spatial distribution of the relative value V/V0 of
the shifted interaction potential (1) for κ = 0.2 is shown
in Fig. 2. For 0 < κ < 2, the distribution of the interac-
tion potential along the axis of the lens has the shape of
a barrier. On the axis, the barrier height is V0. For z = 0,
the radial distribution of the barrier height is

so that the ratio between the barrier heights at the

V r 0,( ) 1
2
---αEe

2κ ' 2 κ '–( ), κ ' κ 1
3
4
--- r

R
--- 

 
2

+ 
  ,= =

1.5

1.0

0.5

V/V0

z

x

Fig. 2. Spatial distribution of the relative value V(x, y, z)/V0
of the quadratic-interaction potential (1) in the plane y = 0
for κ = 0.2 (r = |x |).

2

1

0

D

z

κ

–1

Fig. 3. Family of distributions of the coefficient D(z) along
the lens axis for various values of the parameter κ (–0.3 <
κ < 0.3).
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boundary and at the center is

Thus, if 0 < κ < 2, the electrostatic lens filters the
atomic beam by energy (atoms with energies lower
than the barrier height are stopped). The force exerted
on each atom is

or, in the componentwise form,

It can be seen that the atoms are attracted to the axis
of the lens if the coefficient D(z) = f '2 – 2f · f '' is nega-
tive.

In the approximation selected, the coefficient D(0)
at the center of the lens is equal to 2κ(κ – 1). Therefore,
atoms are attracted to the axis of the lens near its center
if 0 < κ < 1, i.e., if the axial distribution of the field
strength has its minimum at the center of the lens. The
family of the distribution curves of the coefficient D
along the lens axis for various values of the parameter
κ (–0.3 < κ < 0.3) is shown in Fig. 3. The coefficient D
specifies the radial component of the force applied to
each atom. It is seen from Fig. 3 that regions of attrac-
tion alternate with regions of repulsion. This makes the
radial motion of atoms through the lens nonmonotonic,
which can be seen from the atomic trajectories shown
in Fig. 4.

If 0 < κ < 0.1, the atomic beam is focused (in the
paraxial approximation) at all energies E higher than
V0. If κ > 0.1, the atomic beam is focused only at ener-
gies lower than a certain critical value; at energies
higher than this value, the atomic beam is defocused.

The relative focal distances and values of the spher-
ical and chromatic aberrations of the electrostatic lens
providing focusing of atomic beams were calculated
from the atomic trajectories (Tables 1–3).

For 0 < κ < 0.3, the dependence of the focal distance
F on the atomic energy E in the focal region can be
approximated by the expression

(7)

where a = 3.11, b = 1 + 4.02κ, and V0 is determined by
Eq. (6).

Equation (7) was derived analytically from the the-
oretical expression for the focal distance. The approxi-
mation parameters were determined by interpolation of

V R 0,( )
V0

------------------
7
4
--- 2 7κ /4–( )

2 κ–( )
-------------------------.=

F ∂V
∂r
-------–

1
2
---αEe

2∂g
∂r
------,= =

Fr

Fz

1
2
---αEe

2

r
2
--- f '2 2 f f ''⋅–( ) r3

4
---- f ''2+

2 f f '⋅ r2

2
---- f f '''⋅–

r4

8
---- f '' f '''⋅+

.=

F
R
--- a

E
V0
------ 

  E
V0
------ 1– 

  b

b1 b+ ,≅
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
the data obtained. Equation (7) describes the chromatic
aberration of the lens.

INTERACTION LINEAR IN FIELD

The polarizability of polar molecules is due mainly
to electron and orientational polarization [7]. In weak

Table 1.  Dependence of the focal distance F on the radial posi-
tion r of the atom trajectory near the lens (impact parameter)

r/R
F/R

κ = 0.03 κ = 0.1 κ = 0.3

0.05 9.95 12.93 25.03

0.10 9.87 12.87 24.78

0.15 9.71 12.60 24.38

0.20 9.47 12.32 23.79

0.25 9.18 11.95 23.05

0.30 8.85 11.48 22.21

0.35 8.46 11.01 21.27

0.40 8.03 10.46 20.18

0.45 7.58 9.87 19.09

0.50 7.10 9.25 17.90

0.55 6.59 8.58 16.70

0.60 6.08 7.95 15.46

0.65 5.55 7.27 14.21

0.70 5.00 6.59 12.90

0.75 4.43 5.89 11.68

0.80 3.85 5.18 10.41

0.85 3.24 4.44 9.17

0.90 2.60 3.67 7.91

0.95 1.84 2.88 6.68

Note: Relative energy of atoms E/V0 is 2. The results obtained for
κ = 0.1 correspond to atomic trajectories shown in Fig. 3.

z

r

Fig. 4. Trajectories of atoms with a relative energy E/V0 = 2
in the quadratic potential field described by Eq. (1) for
κ = 0.2. Vertical and horizontal scale bars at the center are
equal to 2R each.
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fields, both polarization mechanisms cause the interac-
tion described by Eq. (1). In stronger fields (though
weaker than atomic fields), the orientational polariza-
tion reaches the saturation value. In many cases, the
electron polarizability of molecules with a large dipole
moment is small and can be neglected.

The interaction of a molecular dipole m with an
electrostatic field E is described by the following equa-
tion:

(8)

Movement of a molecule through the lens can be
described in various approximations. Movement of a
molecular dipole can be regarded as a combination of
rotational and translational motion with further averag-
ing of the rotational component according to the initial
conditions. For simplicity’s sake, the movement of the

V m E.⋅–=

1.5

1.0

0.5

V/V0

z

x

Fig. 5. Spatial distribution of the relative value V(x, y, z)/V0
of the linear-interaction potential in the plane y = 0 for
κ = 0.2 (r = |x |).

Table 2.  Dependence of the focal distance F on the relative
energy of atoms for various values of the parameter κ

E/V0

F/R

κ = 0.03 κ = 0.1 κ = 0.2 κ = 0.3

1.4 6.1

1.5 3.8 4.4 5.9 9.8

1.6 16.0

1.7 10.8 27.3

1.8 14.4 53.9

2.0 10.0 12.9 25.0

2.5 19.2 28.6

3.0 31.9 55.8
molecule is considered in this work as a translational
motion in the rotation-averaged potential field
described by Eq. (8).

The interaction potential (8) is averaged over the
angular coordinate using the Boltzmann distribution
[7]:

(9)

Thus, the average value of the dipole moment pro-
jection on the field direction is

For small values of η (η ! 1), we obtain that  =
µ2E/2kT; i.e., an averaged interaction potential of the
form (1) quadratic in field with orientational polariz-
ability α = µ2/kT is obtained. It should be noted that the
exponential function under the integral in Eq. (9) is
often replaced by its expansion for small η (η @ 1) [7].
In this case, a somewhat different averaged value of the
dipole moment is obtained:  = µ2E/3kT. This estima-
tion seems to be less consistent.

For large values of η (η @ 1), we obtain that

i.e., the averaged moment tends to the maximum value
of µ. The averaged interaction is linear in field:

(10)
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Fig. 6. Family of distributions of the coefficient D(z)/f along
the lens axis. The coefficient D(z)/f specifies the radial force
component in the case of a linear interaction.
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Table 3.  Dependence of the coefficients of the third-order and fifth-order spherical aberrations (S3 and S5, respectively) on
the relative energy of atoms for various values of the parameter κ

E/V0

S3R2 S5R4

κ = 0.03 κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.03 κ = 0.1 κ = 0.2 κ = 0.3

1.4 1.09 19.5

1.5 0.94 1.17 1.33 1.40 13.6 11.6 9.56 8.09

1.6 1.16 5.74

1.7 0.70 0.93 7.05 5.17

1.8 0.91 1.07 4.25 2.97

2.0 0.89 0.93 1.02 2.74 2.40 1.97

2.5 0.85 0.87 1.10 1.05

3.0 0.80 0.78 0.76 0.76
If the electron polarizability αe of the molecule is
taken into account, the averaged interaction takes the
form

The last term kT has no effect on the molecule
movement and can be neglected.

If the field configuration is the same as for the qua-

V
1
2
---α eE2– µE– kT .+=

Table 4.  Dependence of the focal distance F on the radial
position r of the molecule trajectory

r/R
F/R

κ = 0.1 κ = 0.2 κ = 0.3

0.05 10.03 11.34 13.43

0.10 9.93 11.22 13.25

0.15 9.74 10.98 12.93

0.20 9.49 10.66 12.48

0.25 9.18 10.27 11.95

0.30 8.80 9.81 11.33

0.35 8.38 9.29 10.67

0.40 7.93 8.75 9.95

0.45 7.45 8.16 9.23

0.50 6.94 7.56 8.48

0.55 6.42 6.94 7.72

0.60 5.88 6.33 6.98

0.65 5.33 5.69 6.24

0.70 4.76 5.06 5.51

0.75 4.20 4.44 4.80

0.80 3.60 3.80 4.06

0.85 2.99 3.12 3.32

0.90 2.33 2.41 2.52

0.95 1.55 1.57 1.63

Note: Relative energy of molecules E/V0 is 2.
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dratic interaction (4), the linear interaction (10) takes
the form

(the interaction energy at infinity is taken to be zero,

i.e.,    – f(–∞)). The height of the barrier at
the center of the lens is

(11)

V µEe g–=

g g

V0 µEeκ .=

Table 5.  Dependence of the focal distance F on the relative
energy of molecules for various values of the parameter κ

E/V0

F/R

κ = 0.1 κ = 0.2 κ = 0.3

1.5 3.76 4.01 4.36

2.0 10.03 11.34 13.43

2.5 23.50

3.0 32.59 42.10 64.03

3.5 49.67

Table 6.  Dependence of the coefficients of the third-order
and fifth-order spherical aberrations (S3 and S5, respectively)
on the relative energy of molecules for various values of the
parameter κ

E/V0

S4R2 S5R4

κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.1 κ = 0.2 κ = 0.3

1.5 1.14 1.17 1.08 14.40 15.50 17.48

2.0 0.83 0.92 1.10 3.98 4.52 5.19

2.5 1.23 1.42

3.0 0.97 1.25 1.91 0.84 1.06 1.46

3.5 0.94 0.72
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The spatial distribution of the relative value V/V0 of
the shifted linear-interaction potential (10) for κ = 0.2
is shown in Fig. 5.

Thus, the force applied to the molecule is

(the value of g in the denominator is not shifted).
Therefore, focusing of particle beams in the case of

interaction linear in field should be performed under
almost the same conditions as in the case of interaction
quadratic in field. In the paraxial approximation, focus-
ing is specified by the coefficient D/f. The family of dis-
tributions of the coefficient D/f along the lens axis for
various values of the parameter κ (–0.3 < κ < 0.3) is
shown in Fig. 6.

Focusing at energies E > V0 takes place within a
wider range of values of the parameter κ (0 < κ < 0.25)
than in the case of quadratic interaction (1).

Comparison of Figs. 3 and 6 shows that the focusing
power of the electrostatic lens is higher in the case of
interaction linear in field.

Relative focal distances and values of aberrations of
the electrostatic lens focusing a molecular beam are
given in Tables 4–6.

The dependence of the focal distance F on the
atomic energy in the focal region for various values of
the parameter κ (0 < κ < 0.3) can be approximated by
Eq. (7) with a = 3.80, b = 1 + 1.24κ, and V0 determined
by Eq. (11).

CONCLUSION
The properties of an axisymmetric electrostatic lens

used for focusing atomic or molecular beams were ana-
lyzed in this work. The lens was formed by an axial dip
of an electric field. Two types of interaction between
the particles and the electric field were considered: qua-

F
µ

2E
-------∂E2

∂r
---------–

µEe

2 g
----------∂g

∂r
------= =
dratic and linear in field. An analytical approximation
(7) of the dependence of the focal distance on the beam
energy and the parameters of the electric field was
obtained. As follows from this dependence, the chro-
matic aberration of the lens is smaller in the case of
interaction linear in field (parameter b is smaller). The
third-order relative spherical aberration S3R2 ~ 1
depends only slightly on the type of interaction and
parameters of the electric field and the particle beam.
The fifth-order relative spherical aberration S5R4

depends only slightly on the type of interaction and
parameters of the electric field, but increases with a
decrease in the beam energy.
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the Third-Order Aberration Coefficients for a Sector Magnetic 
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Abstract—The matrizant method is used to study the nonlinear dynamics of charged particles in magnetic sector
analyzers. The calculations of matrizants (transfer matrices) allow for both fringing-field effects due to the stray
field and higher harmonics of the sector magnetic field (up to the third order). For the rectangular distribution of
the field components along the optical axis, analytical expressions for the aberration coefficients (including dis-
persion ones) are derived up to the third order. In the simulation of real fields with a nonzero stray-field width, the
smooth distribution of the field components is employed. The aberration coefficients for this distribution were cal-
culated by means of a conservative numerical method. © 2001 MAIK “Nauka/Interperiodica”.
Among the approaches to solving the problems of
nonlinear beam dynamics, rigorously conservative
(providing the conservation of the phase-space volume
of the beam at each step of calculation) matrix methods,
including the matrizant method [1–6], for the calcula-
tion of ion–optical systems are worth noting. Conserva-
tism is of particular importance for studying the nonlin-
ear dynamics of the phase set in extended systems
involving several ion–optical elements. The mathemat-
ical rigor of the matrizant method allows us to avoid
controversial assumptions when calculating ion–opti-
cal systems. Another advantage of the method is the
simplicity of algorithmization. This makes it possible
to employ modern software for analytically finding
solutions. Recently, numerical codes based on the
matrizant method have been developed for the optimi-
zation of probe-forming systems. These methods allow
one to solve the problem of nonlinear beam dynamics
for dispersion-free rectangular-axis media in the Carte-
sian coordinate system for the upper triangular matrix
of the coefficients P(3) [2, 3]. In this paper, the vector of
the dispersion phase moments is introduced to study
the dispersion properties of sector magnetic systems. In
the case of a real sector magnetic field, the matrix of the
P(3) coefficients that is obtained by the method of
embedding in the phase-moment space has an upper tri-
angular form in the conventional curvilinear orthogonal
coordinate system [7] for both the coordinate phase
moments and the dispersion phase moments. In order to
take into account the influence of the fringing-field
effects on the dynamics of charged particle beams, two
models of the longitudinal distribution of the magnetic
field (rectangular and smooth) are considered. The rect-
angular model implies that the stray-field region is
1063-7842/01/4607- $21.00 © 20883
absent. In contrast to the model of a short cutoff fring-
ing field (SCFF) [8], the magnetic field strength in the
rectangular model is described by a step function (its
first-order derivative is equal to the delta function). This
model allows one to take into account the influence of
the fringing-field effects on the beam dynamics (in par-
ticular, in mass analyzers with magnetic shields), as
well as to study the possibility of solutions for the
smooth model converging to those for the rectangular
one when the stray-field width tends to zero. The
smooth field model is introduced to approximate the
field distribution with a sufficient accuracy in order to
take into account the effect of the fringing stray fields
on the beam dynamics in an ion–optical system. Unlike
the well-known third-order transfer matrices of mag-
netic sector analyzers [9, 10], the matrizants obtained
in this paper make it possible to include the fringing
effects for both the rectangular and the smooth field
models. This provides the conservatism at each step of
calculations.

We introduce a natural coordinate system (x, y, s)
that is related to a plane curve uniquely defined by a
constant radius of curvature ρ. This coordinate system
totally coincides with that employed by Brown [7].
A Cartesian coordinate system ( , , ) with the ori-
gin at the point where an axial particle starts moving
and our coordinate system with the origin at the center
of the radius of curvature for a reference particle are
related as

x̃ ỹ z̃

x̃ x ρ+( ) s/ρ( )cos ρ,–=

ỹ y, z̃ x ρ+( ) s/ρ( ).sin= =
001 MAIK “Nauka/Interperiodica”
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Consider the nonrelativistic motion of a particle in
the coordinate system chosen. In view of the fact that
the Lamé coefficients in this system are h1 = 1, h2 = 1,
and h3 = 1 + x/ρ, the trajectory equations can be repre-
sented in the form [11]

(1)

where prime denotes differentiation with respect to s; T
is the magnitude of a trajectory length element for a
simultaneous increment in all three coordinates; and ϑ ,
m, and q are the constant velocity, mass, and charge of
the particle, respectively.

In view of the symmetry condition V(x, y, s) = –V(x,
–y, s), the expansions of the scalar magnetic potential
V(x, y, s) and the magnetic field induction B(x, y, s) cor-
rect to the third order in the vicinity of the axial trajec-
tory are given by

(2)

It is clear that 

.

Let

x''
JT '
ϑ

--------x'
h3

ρ
-----–+

qT '
mϑ
-------- y'Bs h3By–( ),=

y''
JT '
ϑ

--------y'
qT '
mϑ
-------- h3Bx x'Bs–( ),= =

J
d
ds
----- ϑ

T '
----- 

  q
mh3
--------- x'By y'Bx–( ) 2ϑ x'

T 'h3ρ
--------------,–= =

T ' h3
2 x'2 y'2+ + ,=

V x y s, ,( )– V01 s( )y V11 s( )xy
1
2
---V21 s( )x2y+ +=

+
1
6
---V03 s( )y3 1

6
---V31 s( )x3y

1
6
---V13 s( )xy3,+ +

Bx s( ) V11 s( )y V21 s( )xy
1
2
---V31 s( )x2y

1
6
---V13 s( )y3,+ + +=

By s( ) V01 s( ) V11 s( )x
1
2
---V21 s( )x2+ +=

+
1
2
---V03 s( )y2 1

6
---V31 s( )x3 1

2
---V13 s( )xy2,+ +

Bs s( ) = 
1
h3
----- V01' s( )y V11' xy

1
2
---V21' s( )x2y

1
6
---V03' s( )y3+ + + 

  .

V j1 s( )
∂ jBy s( )

∂x j
------------------

 
 
 

x 0=
y 0=

=

V01 s( ) By s( )( ) x 0=
y 0=

B0 s( ),= =

V11 s( )
∂By s( )

∂x
---------------- 

 
x 0=
y 0=

G s( ),= =
In practice, the index of magnetic field attenuation
(field index)

is often used instead of G(s).
In view of the fact that the scalar magnetic potential V

must satisfy the Laplace equation ∆V = 0 (where ∆ is
the Laplacian operator), we obtain the expansions of
the potential components correct to the third order at
the axial trajectory in the form

(3)

where h = 1/ρ.
The magnetic induction, as well as the coefficients

G(s), W(s), and O(s), can be represented as

(4)

In the rectangular field model,

(5)

where u+(t) is the step function [12] that satisfies the
conditions

(6)

In the smooth field model,

(7)

V21 s( )
∂2By s( )

∂x2
------------------

 
 
 

x 0=
y 0=

W s( ),= =

V31 s( )
∂3By s( )

∂x3
------------------

 
 
 

x 0=
y 0=

O s( ).= =

n ρ 1
By

-----
∂By

∂x
--------- 

 
x 0=
y 0=

=

V03 s( ) B0'' s( ) W s( ) hG s( )+ +( ),–=

V13 s( ) 2hB0'' s( ) h2G s( ) G '' s( )– O s( )– hW s( ),–+=

B0 τ( ) B0Θ τ( ), G τ( ) GΘ τ( ),= =

W τ( ) WΘ τ( ), O τ( ) OΘ τ( ).= =

ˇ ˇ

ˇ ˇ

Θ τ( ) u+ τ s0–( ) u+ s τ–( ),–=

d
dt
-----u+ t( ) δ+ t( ),=

ϕ ε( )δ+ ε t–( ) εd

a 0+

b

∫
0 t a, t b,≥<
ϕ t 0+( ) a t b,<≤




=

ϕ ε( )δ+
r( ) ε t–( ) εd

a 0+

b

∫  = 
0 t a, t b,≥<

1–( )rϕ r( ) t 0+( ), a t b.<≤



Θ τ( )

= 

1 s1 τ s2,≤ ≤
0 τ s0, τ s><

1

1 eC0 C1η τ( ) C2η
2 τ( ) C3η

3 τ( )+ + + +
------------------------------------------------------------------------------------------- s0 τ s1≤ ≤ ,

1

1 eC4 C5ν τ( ) C6ν
2 τ( ) C7ν

3 τ( )+ + + +
---------------------------------------------------------------------------------------------- s2 τ s,≤<
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where s0 and s are the entrance and exit points, respec-
tively, for the charged particle in the sector magnetic
field s1 and s2 define the boundaries of the stray fields,
and ν = (∆p)/p is the momentum spread of the charged
particles.

In order to study the dispersion properties of sector
magnetic systems, we introduce the vector of the dis-
persion phase moments {µ, µ'}T. Since µ' = 0 in sector
magnetic analyzers, we will describe the nonlinear
dynamics of charged particles in sector magnetic fields

with the vector  = {x, x', y, y', µ, x2, xx', x'2, y2,
yy', y'2, xy, x'y, xy', x'y', xµ, x'µ, yµ, y'µ, µ2, x3, x2x', xx'2,
x'3, xy2, xyy', xy'2, x'y2, x'y2, x'yy', x'y'2, y3, y2y', yy'2, y'3,
yx2, yxx', yx'2, y'x2, y'xx', y'x'2, x2µ, xx'µ, x'2µ, y2µ, yy'µ,
y'2µ, xyµ, x'yµ, xy'µ, x'y'µ, xµ2, x'µ2, yµ2, y'µ2, µ3}T

involving fifty-five phase moments of the first, second,
and third orders.

When embedded in the space of the phase moments

, nonlinear equations of motion (1) for a
charged particle beam in a sector magnetic field are
replaced by an extended set of linear differential equa-
tions. In the matrix form, this set has the form

(8)

Q̂x x' y y' µ, , , ,
3( )

Q̂x x' y y' µ, , , ,
3( )

d
ds
----- Q̂x x' y y' µ, , , ,

3( )
( ) P 3( )Q̂x x' y y' µ, , , ,

3( )
,=
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where

is the upper triangular matrix of coefficients.
The solution of the thus-obtained linear set of equa-

tions is an approximation of the solution of the initial
nonlinear system with a given order of approximation
with respect to the phase variables.

Let us employ the method of embedding in phase-
moment space [1] to determine the block elements of the
coefficient matrix P(3). After rearranging, we arrive at

P 3( ) s( )
P1 1, P1 2, P1 3,

0 P2 2, P2 3,

0 0 P3 3,

 
 
 
 
 
 
 

=

P1 1,
H1 1, 0 H1 3,

0 H2 2, 0

0 0 H3 3,

 
 
 
 
 
 
 

,=

P1 2,
H1 4, H1 5, 0 H1 7, 0 H1 9,

0 0 H2 6, 0 H2 8, 0

0 0 0 0 0 0 
 
 
 
 

,=
P1 3,
H1 10, H1 11, 0 H1 13, 0 H1 15, H1 16, H1 17, 0 H1 19,

0 0 H2 12, 0 H2 14, 0 0 0 H2 18, 0

0 0 0 0 0 0 0 0 0 0 
 
 
 
 

,=

P2 2,

H4 4, 0 0 H1 7, 0 0

0 H5 5, 0 0 0 0

0 0 H6 6, 0 H6 8, 0

0 0 0 H7 7, 0 H7 9,

0 0 0 0 H8 8, 0

0 0 0 0 0 H9 9, 
 
 
 
 
 
 
 
 
 
 

,=

P1 3,

H4 10, H4, 11 0 0 H4 14, 0 0 H4 16, 0 0

0 H5 11, 0 0 0 H5 15, 0 0 0 0

0 0 H6 12, H6 13, 0 0 H6 16, 0 H6 18, 0

0 0 0 0 H7 14, H7 15, 0 H7 17, 0 H7 19,

0 0 0 0 0 0 H8 16, 0 H8 18, 0

0 0 0 0 0 0 0 0 0 0 
 
 
 
 
 
 
 
 
 
 

,=



886 MORDIK, PONOMAREV
P3 3,

H10 10, 0 0 0 H10 14, 0 0 0 0 0

0 H11 11, 0 0 0 H11 15, 0 0 0 0

0 0 H12 12, 0 0 0 0 0 0 0

0 0 0 H13 13, 0 0 H13 16, 0 0 0

0 0 0 0 H14 14, 0 0 H14 17, 0 0

0 0 0 0 0 H15 15, 0 0 0 0

0 0 0 0 0 0 H16 16, 0 H16 18, 0

0 0 0 0 0 0 0 H17 17, 0 H17 19,

0 0 0 0 0 0 0 0 H18 18, 0

0 0 0 0 0 0 0 0 0 H19 19, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,=
H1 1, H7 7, H17 17, 0 1

k– 0 
 
 

,= = =

H1 3, H7 9, H17 19, 0

h 
 
 

,= = =

H1 4, H7 14,
0 0 0

h3– 2hg
1
2
---w–+ 0

1
2
---h

 
 
 
 
 

,= =

H1 5, H7 15,
0 0 0

1
2
---b2

1
2
---hg–

1
2
---w+ b2

1
2
---h–

 
 
 
 
 

= = ,

H1 7, H7 17, 0 0

2h2 g– 0 
 
 

,= =

H1 10,
0 0 0 0

1
2
---h4 h2g hw–

1
6
---o+ + 0 2h2–

3
2
---g+ 0

 
 
 
 
 

,=

H1 9, H7 19, 0

h– 
 
 

,= =

H1 11, =
0 0 0 0 0 0

1
2
---h2g–

1
2
---g2–

3
2
---hw

1
2
---o–+ g1–

1
2
---g 0 g– 0

 
 
 
 
 

,

H1 17, 0 0

2h2– g+ 0 
 
 

,=
(9)

H1 14,
0 0 0

h3 2hg–
1
2
---w+ 0

3
2
---h

 
 
 
 
 

,=

H3 3, H9 9, H19 19, 0

0 
 
 

,= = =

H1 15,
0 0 0

1
2
---b2–

1
2
---hg

1
2
---w–+ 0

1
2
---h

 
 
 
 
 

, H1 19, 0

h 
 
 

,= =

H2 2, H8 8, H18 18, 0 1

g– 0 
 
 

,= = =

H2 6, H8 16, 0 0 0 0

2hg– 0 b1– 0 
 
 

,= =

H2 8, H8 18, 0 0

g 0 
 
 

,= =

H2 12,
0 0 0 0

0 0
3
2
---g–

1
2
---h–

 
 
 
 
 

= ,

H2 13,
0 0 0 0 0 0

h2g– g1
1
2
---g– 0 2h2– g+ 0

 
 
 
 
 

,=

H2 16, 0 0 0 0

2hg w– 0 b1 n 
 
 

, H2 18, 0 0

g– 0 
 
 

,= =
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H4 4, H14 14,
0 2 0

k– 0 1

0 2k– 0 
 
 
 
 

,= = H4 7, H17 15,
0 0

h 0

0 2h 
 
 
 
 

,= =
ICAL PHYSICS 
H4 11,

0 0 0 0 0 0

1
2
---b2

1
2
---hg–

1
2
---w+ b1

1
2
---h– 0 0 0

0 0 0 b2 hg– w+ 2b1 h– 
 
 
 
 
 
 

,=
H4 10,

0 0 0 0

h3– 2hg
1
2
---w–+ 0

1
2
---h 0

0 2h3– 4hg w–+ 0 h 
 
 
 
 
 
 

,=
H4 14,

0 0 0

2h2 g– 0 0

0 4h2 2g– 0 
 
 
 
 

,=
H4 17,
0 0

h– 0

0 2h– 
 
 
 
 

, H5 5, H15 15,
0 2 0

g– 0 1

0 2g– 0 
 
 
 
 

,= = =
H5 11,
0 0 0 0 0 0

2hg– 0 0 b1– h 0

0 4hg– 0 0 2b1– 2h 
 
 
 
 

,=

H6 6, H16 16,

0 1 1 0

g– 0 0 1

k– 0 0 1

0 k– g– 0 
 
 
 
 
 
 

,= =

H5 15,
0 0 0

g 0 0

0 2g 0 
 
 
 
 

,=

H6 8,

0 0

0 0

h 0

0 h 
 
 
 
 
 
 

, H6 16,

0 0 0 0

g 0 0 0

2h2 g– 0 0 0

0 2h2 g– g 0 
 
 
 
 
 
 

,= =
H6 12,

0 0 0 0

0 0 0 0

1
2
---b2

1
2
---hg–

1
2
---w+ b1

1
2
---h– 0

0
1
2
---b2

1
2
---hg–

1
2
---w+ b1

1
2
---h–

 
 
 
 
 
 
 
 
 

,=

H6 13,

0 0 0 0 0 0

2hg– w+ b1– 0 0 h 0

h3– 2hg
1
2
---w–+ 0

1
2
---h 0 0 0

0 2hg– w+ b1– h3– 2hg
1
2
---w–+ 0

3
2
---h 

 
 
 
 
 
 
 
 

,=
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H6 18,

0 0

0 0

h– 0

0 h– 
 
 
 
 
 
 

,=

H10 10, =

0 3 0 0

k– 0 2 0

0 2k– 0 1

0 0 3k– 0 
 
 
 
 
 
 

, H10 14, =

0 0 0

h 0 0

0 2h 0

0 0 3h 
 
 
 
 
 
 

,

H12 12,

0 3 0 0

g– 0 2 0

0 2g– 0 1

0 0 3g– 0 
 
 
 
 
 
 

,=

H11 11,

0 2 0 1 0 0

g– 0 1 0 1 0

0 2g– 0 0 0 1

k– 0 0 0 2 0

0 k– 0 g– 0 1

0 0 k– 0 2g– 0
 
 
 
 
 
 
 
 
 
 
 

,=

H11 15,

0 0 0

0 0 0

0 0 0

h 0 0

0 h 0

0 0 h
 
 
 
 
 
 
 
 
 
 
 

,=

H13 13,

0 2 0 1 0 0

k– 0 1 0 1 0

0 2k– 0 0 0 1

g– 0 0 0 2 0

0 g– 0 k– 0 1

0 0 g– 0 2k– 0
 
 
 
 
 
 
 
 
 
 
 

,=

H13 16,

0 0 0 0

h 0 0 0

0 0 2h 0

0 0 0 0

0 h 0 0

0 0 0 2h
 
 
 
 
 
 
 
 
 
 
 

,=
where

The relation between the coefficient g and the field
index n can be represented in the form

(10)

The solution of Eq. (8) is expressed in terms of the
matrizant as follows:

(11)

where  is the initial particle coordinates,
X(P(3), s/s0) is the matrizant (transfer matrix) of the third

order with respect to the phase variables .

The matrizant X(P(3), s/s0) has the same upper trian-
gular block structure,

as the coefficient matrix P(3), and satisfies the differen-
tial equation

(12)

where I is the unit matrix.
In the rectangular field model, the integrals in (12)

can be taken by quadrature. Hence, the elements of the
matrizant X(P(3), s/s0) will have an analytical form. The
solutions of the linearized equations

can be represented in the form

(13)

χB
mϑ
q

--------, h
1
ρ
---

B0

χB

-----, b1

B0' s( )
χB

-------------,= = = =
ˇ

b2

B0'' s( )
χB

-------------, k h2 g, g–
G s( )
χB

-----------,–= = =

g1
G ' s( )

χB

-------------, w–
W s( )

χB

------------, o
O s( )
χB

-----------.–= = =

g nh2.=

Q̂x x' y y' µ, , , ,
3( )

X P 3( ) s/s0,( )Q̂x0 x0' y0 y0' µ, , , ,
3( )

,=

Q̂x0 x0' y0 y0' µ, , , ,
3( )

Q̂x x' y y' µ, , , ,
3( )

X P 3( ) s/s0,( )
X1 1, X1 2, X1 3,

0 X2 2, X2 3,

0 0 X3 3,

 
 
 
 
 
 
 

=

X ' P 3( ) s/s0,( ) P 3( )X P 3( ) s/s0,( ),=

X P 3( ) s/s0,( ) I ,=

dX1 1, s/s0( )
ds

--------------------------- P1 1, s( )X1 1, s/s0( ),=

X1 1, s/s0( ) I=

X1 1,

r11 r12 0 0 d11

r21 r22 0 0 d21

0 0 q11 q12 0

0 0 q21 q22 0

0 0 0 0 1 
 
 
 
 
 
 
 
 

,=
TECHNICAL PHYSICS      Vol. 46      No. 7      2001



APPLICATION OF THE MATRIZANT METHOD 889
where

For a uniform field (n = 0),

Let bij be the elements of the block matrix X1, 1,
where i = 1, …, 5 and j = 1, …, 5. Then, in the frame-
work of the rectangular field model, analytical solutions
of Eq. (15) for the diagonal matrix blocks Xk, k (k = 2, 3)
can be found by a little algebra. For example, for the
y'xx' line of the matrix block X3, 3, from y'xx' = (b41x0 +
b42  + b43y0 + b44  + b45µ)(b11x0 + b12  + b13y0 +

b14  + b15µ)(b21x0 + b22  + b23y0 + b24  + b25µ), we
get

taking into account that b11 = r11, b12 = r12, b21 = r21,
b22 = r22, b15 = d1, b25 = d21, b43 = q21, b44 = q22, and
b13 = b14 = b23 = b24 = b41 = b42 = b45 = 0; the other
matrix elements of this line are equal to zero.

r11 k s s0–( )( ), r12cos
1

k
------ k s s0–( )( ),sin= =

r21 k k s s0–( )( ), r22sin– k s s0–( )( ),cos= =

q11 g s s0–( )( ), q12cos
1

g
------- g s s0–( )( ),sin= =

q21 g g s s0–( )( ), q22sin– g s s0–( )( ),cos= =

d11 = h
k
--- 1 k s s0–( )( )cos–( ), d21 = 

h

k
------ k s s0–( )( ).sin

r11 h s s0–( )( ), r12cos
1
h
--- h s s0–( )( ),sin= =

r21 h h s s0–( )( )sin , r22– h s s0–( )( ),cos= =

q11 1, q12 s s0– , q21 0, q22 1,= = = =

d11
1
h
--- 1 h s s0–( )( )cos–( ),=

d21 h s s0–( )( )sin .=

x0' y0' x0'

y0' x0' y0'

X16 15,
3 3, r11r12q21, X16 16,

3 3, r11r22 r21r12+( )q21,= =

X16 17,
3 3, r12r22q2, X16 18,

3 3, r11r21q22,= =

X16 19,
3 3, r11r22 r21r12+( )q22, X16 20,

3 3, r12r22q22,= =

X16 27,
3 3, r11d21 r21d11+( )q21,=

X16 28,
3 3, r12d21 r22d11+( )q2,=

X16 29,
3 3, r11d21 r21d11+( )q22,=

X16 30,
3 3, r12d21 r22d11+( )q22,=

X16 33,
3 3, d11d21q2, X16 34,

3 3, d11d21q22,= =
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By applying the same procedure to all the compo-
nents of the phase moments of the second and third
orders, we find analytical solutions for all the elements
of the diagonal blocks X2, 2 and X3, 3. For the off-diago-
nal blocks Xi, k (k > i), the general formula applies [1]:

(14)

Thus, we determine the second-order aberration
coefficients in the curvilinear coordinate system chosen
by the formula

(15)

For instance, the dispersion aberration coefficient
〈x |µ2〉  is given by

where

(16)

Xi k, s/s0( ) Xi i, s/τ( )Pi j, τ( )Xi k, τ /s0( ) τ .d

s0

s

∫
j 1 i+=

k

∑=

X1 2, s/s0( ) X1 1, s/τ( )P1 2, τ( )X2 2, τ /s0( ) τ .d

s0

s

∫=

X1 15,
1 2, s/s0( ) x µ2〈 | 〉=

=  X1 2,
1 1, s/τ( ) H2 1,

1 4, τ( ) X1 5,
1 1, τ /s0( )( )2[

s0

s

∫

+ H2 3,
1 4, τ( ) X2 5,

1 1, τ /s0( )( )2
H2 1,

1 7, τ( )X1 5,
1 1, τ /s0( )+

+ H2 1,
1 9, τ( ) ]dτ 1

k3
---- Cx 1–( ) 4

3
---h5 7

3
---h3k–



=

+ hk2 khg
8
3
---h3g–

2
3
---h2w+ + 



– Sx
2 1

3
---h5 1

6
---h3k

2
3
---h3g–

1
6
---h2w+ + 

 

+ Sx k s s0–( ) h5 h3k– 2h3g–
1
2
---hkg

1
2
---h2w+ + 

 

 ,

H2 1,
1 4, τ( ) h3– 2hg

1
2
---w, H2 3,

1 4, τ( )–+
1
2
---h,= =

H2 1,
1 7, τ( ) 2h2 g, H2 1,

1 9, τ( )– h,–= =

X1 2,
1 1, s/τ( ) 1

k
------ k s τ–( )( ),sin=

X1 5,
1 1, τ /s0( ) h

k
--- 1 k τ s0–( )( )cos–( ),=

X2 5,
1 1, τ /s0( ) h

k
------ k τ s0–( )( ),sin=

Cx k s s0–( )( ), Sxcos k s s0–( )( ).sin= =
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In the case of the uniform field (g = 0, w = 0, k = h2),
we arrive at the well-known expression [7] for this
aberration coefficient:

The third-order aberration coefficients in our coor-
dinate system are calculated by the formula

(17)

Here, the elements of the off-diagonal block X 2, 3 are

The third-order transfer matrix of the phase

moments  in the Cartesian coordinate system
has the from

(18)

where  and  are the
matrices of phase-moment transformations from the
Cartesian to the natural coordinate system at the
entrance and from the natural to the Cartesian system at
the exit of a sector magnetic analyzer, respectively.
These matrices are easily found if we take into consid-
eration that, in going from the curvilinear to the Carte-
sian coordinate system, the coordinates do not change
and the angles obey the formulas

(19)

The third-order aberration coefficients have the
form

(20)

where k is the serial number of the phase variable.
The total number of the third-order aberration coef-

ficients is 4 × 55 = 220. We will list only those for
which the contribution of the fringing-field effects with
the zero width of the stray field is significant.

In a sector electrostatic field, the contribution of the
fringing-field effects with the zero width of the stray
field shows up as corrections to the second-order aber-
ration coefficients with respect to x and a (〈 | a〉 ,
〈a| 〉, 〈a| a〉 , 〈a|a2〉 , 〈 |y2〉 , 〈 |yb〉 , 〈 |b2〉 , 〈a|y2〉 ,

x µ2〈 | 〉 1
2h
------ h s s0–( )( ).sin

2
–=

X1 3, s/s0( ) X1 1, s/τ( )P1 2, τ( )X2 3, τ /s0( )(
s0

s

∫=

+ X1 1, s/τ( )P1 3, τ( )X3 3, τ /s0( ) )dτ .

X2 3, s/s0( ) X2 2, s/τ( )P2 3, τ( )X3 3, τ /s0( ) τ .d

s0

s

∫=

Q̂x̃ a ỹ b µ, , , ,

R 3( ) s/s0( )

=  A x y s, ,( ) x̃ ỹ z̃, ,( )→
3( ) X P 3( ) s/s0,( )A x̃ ỹ z̃, ,( ) x y s0, ,( )→

3( ) ,

A x̃ ỹ z̃, ,( ) x y s0, ,( )→
3( ) A x y s, ,( ) x̃ ỹ z̃, ,( )→

3( )

a
d x̃
dz̃
------

x'
1 hx+
---------------, b

dỹ
dz̃
------

y'
1 hx+
---------------.= = = =

x̃ Q̂x̃ a ỹ b µ, , , ,
3( )〈 | 〉 R1 k,

3( ) , a Q̂x̃ a ỹ b µ, , , ,
3( )〈 | 〉 R2 k,

3( ) ,= =

ỹ Q̂x̃ a ỹ b µ, , , ,
3( )〈 | 〉 R3 k,

3( ) , b Q̂x̃ a ỹ b µ, , , ,
3( )〈 | 〉 R4 k,

3( ) ,= =

x̃ x̃

x̃2 x̃ x̃ x̃ x̃
〈a|yb〉 , and 〈a|b2〉) [13]. In a sector magnetic field, the
contribution is essential for the aberration coefficients
〈 |y2〉 , 〈 |yb〉 , 〈a|y2〉 , 〈a|yb〉 , and 〈a|b2〉:

where Cx = cos( (s – s0)), Sx = sin( (s – s0)), Cy =

cos( (s – s0)), and Sy = sin( (s – s0)). The parame-
ter ζ = 1 if the function is described by Eq. (6). If we
put ζ = 0 [B'(s) = 0 and B''(s) = 0], we would obtain the
equations [7] that are widely used in designing ion–
optical systems where the stray fields are taken into
account by replacing the real field by the idealized field
equivalent by rotation.

Thus, for a rectangular longitudinal distribution of a
sector magnetic field, the analytical expressions for all
matrizant elements, and hence, for all aberration coef-
ficients are obtained. In the case of a smooth longitudi-
nal field distribution, the matrizant was calculated with
the conservative numerical method of shuttle sums [6].

x̃ x̃

x̃ y2〈 | 〉  = R1 9,
3( )

=  
1

4k k 4g–( )
------------------------- 1 Cx–( ) 8g2h 2kgh– 4gw–( )(

– kw Cy
2 Sy

2– 2Cc–( ) ) ζ h2

2 k
----------Sx– 

  ,+

x̃ yb〈 | 〉 R1 10,
3( )=

=  
1

k g k 4g–( )
---------------------------------- kwCy gwSx–( ) ζ h

k
------Sx 

  ,+

x̃ b2〈 | 〉 R1 11,
3( ) 1

2kg k 4g–( )
-----------------------------= =

× 1 Cx–( ) 4g2h kgh– 2gw–( ) kwSy
2–( ),

a y2〈 | 〉  = R2 9,
3( )  = 

1

2 k k 4g–( )
-----------------------------

× Sx 4g2h kgh– kw 2gw–+( )(

– 2 k gwCySy ) ζ h2Cx–
h2

2
-----Cy

2 h gSy+ + 
  ,+

a yb〈 | 〉 R2 10,
3( ) w

k 4g–( )
------------------- Sx– Sy

2– Cy
2+( )= =

+ ζ hCx
h2

g
-------SyCy– h Cy

2 Sy
2–( )– 

  ,

a b2〈 | 〉 R2 11,
3( ) 1

2 k g k 4g–( )
--------------------------------------= =

× Sx 4hg g hk g– 2 gw–( ) kwSyCy+( )

+ ζ h2

2g
------Sy

2 h

g
-------SyCy– 

  ,

k k

g g
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The convergence of the solution of the beam dynamics
problem within the smooth model to that for the rectan-
gular model was studied by the software developed. It
is found that the “rectangular” and “smooth” aberration
coefficients approach each other when the stray field
width tends to zero. Hence, both the analytical and the
numerical solutions are reliable.
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Abstract—Self-organizing structures on the InP surface that are formed by ion-beam sputtering in the energy
range 0.1–15 keV are investigated. It is shown that the processing of the InP surface by monochromatic argon
beams can give rise to the formation of two, “grass” and “cone-in-pit,” morphologies. The formation of the
relief is treated in terms of a qualitative model including the processes of sputtering, cascade mixing, and sur-
face transport. The model adequately predicts the fluence dependence of the density and size of morphological
features. In addition, it enables one to clarify conditions under which the morphologies form, as well as to
explain the effect of target temperature on the demarcation line between the morphologies. It is demonstrated
that the morphology may become anisotropic in the case of mask etching. In particular, the application of reg-
ularly spaced strips as masks makes it possible to produce a texture-like surface structure. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Structures with a developed surface morphology
have received much attention due to their potential
application in micro- and optoelectronics [1, 2]. A basic
challenge in this field is obtaining a regular morphol-
ogy [1]. At the same time, it is common knowledge that
the sputtering of some semiconductors (such as InP)
may cause a developed quasi-regular surface morphol-
ogy of the so-called grass type to form [3–5]. Such a
morphology can be used as an element of device struc-
tures. However, data for the formation of the relief by
ion sputtering are insufficient for applications [3–5].
These investigations are also of fundamental interest,
since they provide a better insight into the mechanism
behind relief formation during ion bombardment.

In this study, we investigate the structure of the InP
surface exposed to argon-ion beams with an energy of
0.1–15 keV.

EXPERIMENT

We experimented with standard FIÉT-4 InP(001)
wafers with a dopant concentration of ~1017 cm–3. The
wafers were cut into 250- to 450-µm-thick samples
about 1 cm2 in area. The damaged surface layer was
removed by dynamical chemical polishing [6].

The samples were irradiated with two special setups
based on VUP-5 vacuum stations (NPO Elektron,
Sumy, Ukraine). The ion gun of one of the setups gen-
erates a monochromatic neutralized ion beam of energy
1063-7842/01/4607- $21.00 © 20892
from 0.1 to 1.2 keV, diameter about 50 mm, and particle
flux density j ~ 1015 particle/cm2 s.

The fluence and the particle flux density were deter-
mined by sputtering satellite GaAs samples, since this
process has been well studied [3, 7–11]. In our experi-
ments, the satellites were partially masked and then,
together with the sample under study, exposed to the
ion beam. Next, the height of a step between the
masked and uncovered regions of the satellite was
determined. The fluence Φ and the particle flux density
j are related to the etch depth h as

(1)

where NA = 6 × 1023 is the Avogadro number, ρ =
5.35 g/cm2 is the GaAs density [12], M = 143.79 g is
the GaAs molar weight [12], and τ is the exposure time.

The gun of the second setup produces a monochro-
matic beam of Ar ions with an energy from 0.1 to
15 keV. The diameter of the beam was 3–15 mm
(depending on focusing conditions), and the particle
flux density j reached ~1015 particle/cm2 s
(≈250 µA/cm2). In this case, the current density was
determined using a calibrated-aperture Faraday cup.
The sources of accelerated particles are described more
closely in [13]. The temperature of the samples did not
exceed 80°C in our experiments.

The surface relief was investigated by scanning
electron microscopy (SEM). The surface morphology

Φ
2NAρ

M
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2NAρ
M

--------------h
τ
---,= =
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Fig. 1. SEM image of the InP surface exposed to the (a) neutralized Ar ion beam with E = 0.6 keV and j = 1015 particle/cm2 s and
(b) Ar ion beam with E = 5 keV and j ~ 1015 particle/cm2 s.
was analyzed with a special program allowing envelope
subtraction, noise filtering, Fourier transformation of
images, etc. [14].

RESULTS AND DISCUSSION

Sputtering by Ar ions, for example, with an energy
E ≈ 1 keV (particle flux density j ≈ 1015 particle/cm2 s,
or ≈100 µA/cm2) gives rise to a developed (“grassy”)
surface (Fig. 1a) consisting of closely spaced vertical
conical features. The apex angle of the cones was found
to be Θ = 12 ± 5°. Note that such a surface poorly
reflects visible light.

As the energy and/or ion flux density increases, iso-
lated cones and/or clusters of cones appear on the
smooth surface (Fig. 1b). The apex angle of these cones
depends on the ion energy and is roughly twice as large
as the angle at which the sputtering yield is maximum,
ranging from 60° to 80°. The reflection of such a sur-
face remains high in the visible range.

The demarcation line between the two morpholo-
gies is graphically represented in Fig. 2. The line is ade-
quately described by the relationship Ej = const ≈
0.10 ± 0.05 W/cm2. At power densities below or equal
to this value, the grassy surface develops; otherwise,
the cone(s)-in-pit morphology forms. Note that the
constant may depend on the sample temperature [4].

To characterize the surface morphology, we pro-
cessed the SEM image using a Wien noise filter, as well
as envelope-subtraction and Fourier-transform tech-
niques. The resulting Fourier transforms of the top-
view image of the grassy surface (Fig. 3a) are shown in
Figs. 3b and 3c. They were obtained with and without
envelope subtraction, respectively.

At Ej > 0.10 W/cm2, the concentration of the cones
depends on the radiant exposure only slightly and their
heights h are randomly distributed in the interval
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
0 < h < h0, where h0 is the value close to the etch depth
(Fig. 4).

At the same time, the size distribution of the features
that form at Ej > 0.10 W/cm2 has a well-pronounced
peak whose position depends on the ion fluence and
energy (Fig. 4). Note that the variance of the cone sizes
is estimated at δD/D ≤ 10%. However, if the surface is
pretreated inappropriately, the variance may be as high
as δD/D ≈ 35%. For this morphology, the concentration
of the features depends on the ion flux density and/or
energy. The fluence dependences of the density and the
characteristic (mean) height are given in Fig. 5. It is
seen that the feature size and density vary as h ~ Φ1/4

and σ ~ Φ–1/2, respectively.
The Fourier transforms of the images from the

grassy surface are typical of isotropic objects; i.e., the
cones of close sizes are arranged isotropically.

j, particles/cm2 s

100 101

E, keV

1014

1015

Fig. 2. Conditions for the formation of the grass-type and
cone-in-pit morphologies. The target temperature is not
greater than 80°C.
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Fig. 3. (a) SEM image of the unmasked InP surface exposed to the neutralized Ar ion beam with E = 0.6 keV, j ~ 1015 particle/cm2 s,
and Φ ~ 1018 particle/cm2; (b, c) Fourier transforms of the image shown in Fig. 3a with and without envelope subtraction, respec-
tively.
To trace the effect of boundaries on the morphology
type, a series of samples were masked by strips made
by the interference photolithography method. The strip
widths were 0.4 and 0.1 µm, and the spacings between
them were 1.6 and 0.45 µm, respectively. The surface
morphology on the masked samples and its Fourier
transforms are shown in Fig. 5. Here, the Fourier trans-
forms are typical of textured objects. The sizes of the
cones formed on the unmasked and masked parts of the
surface diverge, and so do the variances of the sizes:
δD/Dnonmask ≈10% and δD/Dmask ≈ 15%.

The type of surface morphology can be explained in
the framework of the model of spontaneous coalescent
relief formation [3, 5]. In this model, features of the
grassy surface result from sputtering, cascade colli-
sions, and surface transport. When these processes
combine, the nuclei of conical whiskerlike features
appear on the amorphized surface. The nuclei grow due
to the redistribution of the target material. With such a

50

10–1 101

δn/n, %

10

30

100 h, µ
0

Fig. 4. Size distribution of the surface features for the (h)
cone(s)-in-pit and (+) grass-type morphologies. (h) E =
5 keV, j ~ 1015 particle/cm2 s, and Φ ≈ 5 × 1018 particle/cm2

and (+) E = 0.6 keV, j ~ 1015 particle/cm2 s, and Φ ≈
1018 particle/cm2.
relief formation mechanism, the concentration of the
cones as a function of the fluence varies because of coa-
lescence; i.e., some cones take up others. The basic
equation of the model (the equation for surface evolu-

σ, nm2

Φ, particles/cm2

10–4

10–3

h, µ

10–1

100

1017 1018 1019

(b)

(a)

Fig. 5. (a) Concentration and (b) height h of grassy surface
features as a function of fluence for E = (+) 0.6 and
(h) 5 keV.
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(b)(a)0.5 µ (c)

Fig. 6. (a) SEM image of the InP surface mask-etched by the neutralized Ar ion beam for E = 0.6 keV, j ~ 1014 particle/cm2 s, and
Φ ~ 1018 particle/cm2; (b, c) Fourier transforms of the image shown in Fig. 6a with and without envelope subtraction, respectively.
tion) is as follows [15, 16]:

(2)

where t is the exposure time; Jsput, Jtrans, and Jmix are the
atomic fluxes due to sputtering, diffusion, and cascade
mixing, respectively, on the target surface; S is the sur-
face area; and v  is the local sputtering rate, which
depends on the type of ions, target material, as well as
on the energy, angle of incidence, and flux density of
ions.

Note that, at Jtrans > Jsput + Jmix, it is possible to derive
a locally synergistic solution corresponding to the
grassy surface. Such equations are solved in the coales-
cence theory [17]. Detailed analysis of Eq. (2) will be
presented in following articles.

The coalescent mechanism of surface morphology
allows one to explain the fluence dependences of the
cone concentration and size (σ ~ Φ–1/2 and h ~ Φ–1/4,
respectively). In our model, an increase in the flux den-
sity and/or ion energy may destroy the nuclei and/or
disturb transport fluxes responsible for the growth of
the surface features. In other words, the model predicts
the presence of a threshold for the surface morphology
evolution, which was observed in the experiments. At
the same time, simulation experiments where the rate
of transport processes was varied showed that the
threshold for grass formation may shift toward greater
energies and flux densities. Since transport processes
may depend on the target temperature, an increase in
the temperature may change the type of surface mor-
phology. Such an effect was observed when InP sam-
ples were bombarded by Ar+ ions at elevated target tem-
peratures [4].

CONCLUSION

Thus, we have investigated self-organizing struc-
tures on the InP surface exposed to monochromatic
argon ion beams with an energy between 0.1 and
15 keV. It is shown that the ion-beam treatment of the

∂
∂t
----- v

∂
∂r
-----– 

  S n 1– Jsput J trans Jmix+ +( ),=
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
InP surface may lead to the development of grass-type
and cone-in-pit morphologies. The effect is explained
with the qualitative model including the processes of
sputtering, cascade mixing, and surface transport. The
model adequately predicts fluence dependences of the
concentration and size of morphological features, con-
ditions under which the morphologies form, and the
effect of target temperature.

It is shown that the presence of etch-region bound-
aries may induce the partial anisotropy of the morphol-
ogy. In particular, the application of regularly spaced
masking strips results in the textured structure.
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Abstract—A pulsed plasma spray generator based on a new principle is developed for depositing ceramic-
metal, ceramic, and metal coatings on solid substrates. Calculations of the plasma-generator parameters are pre-
sented. A hard alloy (W–Co) was deposited on a copper substrate to demonstrate the use of the plasma gener-
ator. A Rutherford backscattering (RBS) technique, x-ray diffraction microanalysis of phase composition, dif-
fraction transmission electron microscopy (TEM), and hardness and adhesion measurements were used to
examine the hard-alloy coating. It is shown that the coating consists of W–Co crystals with hexagonal and cubic
lattices and contains ~25-nm cobalt α- and β-phase crystallites, with W3Co3C particles revealed at the crystal-
lite edges. © 2001 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Current progress in high-quality coating deposition
technology relies on the development of techniques in
which high velocities of deposited materials are
attained by means of detonation devices [1, 2], various
rocket combustion chambers [3, 4], or electromagnetic
rail guns [5–7]. Investigations have shown that a dense
coating that reliably adheres to a substrate surface can be
created (even without heating) by using metal alloy par-
ticles with velocities ranging from 600 to 1000 m/s [8].

In the devices where high-velocity jets of combus-
tion products issue from rocket combustion chambers,
at least 10 m3 of gas are required to deposit 1 kg of a
tungsten-carbide coating [4]. The highest attainable
velocity of particles 45 ± 10 µm in diameter is 600–
650 m/s. To obtain a high-velocity flow of combustion
products, 30–150 m3/h of a combustible premixed gas
are burned in combustion chambers. However, the dep-
osition rate and coating quality do not increase propor-
tionately with the rate of heat release in the general case
[3]. Normally, large amounts of premixed-gas compo-
nents are necessary only to attain a high velocity of the
jet of combustion products, whereas uniform distribu-
tion of the powder over the jet cross section has not
been obtained to this day. As a consequence, the ther-
mal efficiency of the utilization of combustion products
has yet to be improved.

Electromagnetic techniques for powder acceleration
and heating are also being developed [5–7]. In an elec-
tromagnetic rail gun, both working gas and powder are
accelerated and heated by the ponderomotive forces
1063-7842/01/4607- $21.00 © 0897
due to the current traversing the rail electrodes and the
plasma layer. The energy transferred to the plasma is
proportional to the current, and a current of 150 kA is
required to attain a velocity of 2–4 km/s. The corre-
sponding acceleration time is 120 ms, and a plasma
temperature as high as 20 000°C can be attained [6].

A more efficient type of rail gun used in coating
deposition was discussed in [7]. In the axial rail gun
proposed in that study, a plasma “piston” speed of
10 km/s can be attained by using a current of 20 kA.
The velocity of the plasma jet issuing from the rail gun
can be as high as 4 km/s. As a result, the powder is
accelerated to a speed sufficient to create high-quality
tungsten-carbide and aluminum-oxides hard-alloy
coatings.

The applicability of electromagnetic systems is lim-
ited because of arc localization in the plasma piston and
erosion of rail electrodes. Moreover, these systems
have complicated devices for switching currents of
amplitude 20–150 kA and frequency 2–10 Hz, which
restrict their effectiveness and reliability.

In the gaseous-detonation systems employed in
coating deposition facilities [1–3], coating powders are
accelerated to 1000 m/s and heated to their melting
points. These systems are characterized by deposition
rates comparable to those attained with the use of
rocket combustion chambers, whereas the correspond-
ing rates of heat release are several times lower. In a
detonation system, a high-velocity gas jet is obtained as
a result of combustion in a detonation regime. This pro-
cess is independent of the burned amount of a combus-
2001 MAIK “Nauka/Interperiodica”
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tible mixture. Despite these advantages, detonation
deposition techniques have not been applied because
they involve very complicated powder feed rate control
units. Moreover, since a single pulsed jet of combustion
products produced by a detonation system has a limited
intensity, this coating deposition technique is character-
ized by a relatively low reliability.

In most detonation techniques for coating deposi-
tion [1–2, 9–12], the coating powder and gases are fed
into a combustion chamber. The combustion chamber
of a detonation facility (see Fig. 1) is filled with gases
(Vg) and powder (Vp) from three directions. The gases
are introduced at the closed end of the combustion

Vg Vg

Vp

Vp

V0 V0

S

h1

h2

(a) (b)

Fig. 1. Schematic of gas and powder supply to the combus-
tion chamber of a detonation gun: (a) axial injection;
(b) radial injection.
chamber through a feed rate control unit. Air (V0) flows
into the combustion chamber through its open end,
reaches the location of the gas–powder mixture, and
impedes the mixture’s movement. When the powder is
introduced along the combustion-chamber axis
(Fig. 1a), it mixes with the combustible gas and fills a
large volume V = f(h2 – S). Uniform conditions for
powder heating and acceleration cannot be achieved in
this setting. When powder is introduced radially
through a side wall (Fig. 1b), a more compact and dense
powder cloud of volume V = f(h1 – S) is obtained. As a
result, uniform conditions for energy transfer from
combustion products to the entire powder mass are cre-
ated.

Coating deposition devices with radial powder
injection and mass flow-rate control systems have been
developed [12]. The gases and powder are introduced
periodically when the combustion-chamber pressure
decreases after a high-velocity jet of combustion prod-
ucts is ejected.

HIGH-ENERGY PLASMA JET TECHNIQUE

Rail and coaxial guns should be singled out as
pulsed plasma spray accelerators that provide the high-
est efficiency of surface modification and coating dep-
osition. Experimental and theoretical investigations of
the processes taking place in rail and coaxial guns were
summarized in [7].

Currently, a new class of modification and coating-
deposition techniques is being developed. These tech-
niques are based on electromagnetic acceleration of the
products of premixed gas combustion [12–20]. It was
proposed in [12, 13] to use a special chamber (1 in
Fig. 2) for gaseous mixture preparation and detonation.
The chamber is separated from the plasma gun. The
1
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Fig. 2. Schematic of the a pulsed-jet plasma spray facility based on an electromagnetic principle of additional energy input:
(a) design of the pulsed plasma spray gun; (b) profile of electric field strength.
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plasma gun consists of an inner conical electrode (2)
and an outer cathode (3). In the annular gap of length L
(4) between the coaxial electrodes, an electric field of
intensity E is generated by means of a high-voltage
source (5). The central electrode holds an expendable
metal rod (6). A typical rod is made of a refractory
metal or alloy. The plasma gun has a barrel (7), in
which the powder is heated and accelerated. The barrel
length H depends on the elemental composition and
size distribution of the powder. When a hard alloy is
deposited, H = 300 mm. The powder is injected into the
barrel through a tube (8).

The gaseous mixture components are fed into the
detonation chamber. Their mixing is followed by the
initiation of a detonation. Then, the burned gas flows
out of the detonation chamber into the electrode gap
and closes the circuit containing the voltage generator.
The conductive layer of combustion products is accel-
erated by gasdynamic and electrodynamic forces. The
powder injected into the barrel is heated and acceler-
ated by the plasma jet. The heated expendable metal
rod evaporates and supplies an alloying element to the
plasma jet. When ejected from the plasma gun, a
plasma jet closes the electric circuit between the elec-
trode and coated surface as anode and cathode, respec-
tively. The current carried by the jet generates a mag-
netic field pulse, while the plasma and powder are fur-
ther heated through the Joule heat release.

The energy parameters of a pulsed plasma jet can be
determined by solving the well-known problem of det-
onation propagation in electric field between two coax-
ial bodies of revolution (electrodes). The problem was
simplified: the average temperature, velocity, pressure,
and density of combustion products were determined
on the working-chamber axis without taking into
account the variation of its cross section [14, 15].

The geometric and energy parameters of the two-
dimensional time-dependent problem of detonation
propagation averaged over the working-chamber elec-
trode gap are calculated as

(1)

where X may be B, E, J, w, …, and h is the average
annular-gap width (B is the magnetic induction, E is the
electric field strength, J is the electric current, and w is
the plasma velocity; see Fig. 3).

The integral in (1) was calculated in the normal
direction to the electrode surface. The parameters were
calculated as depending only on time and the distance l
along the working-chamber element up to the location
where the detonation was initiated. The working-cham-
ber length was set equal to L. In the approximation
adopted here, the location of a detonation front is l =
lD(t), and the detonation velocity is D = dlD/dt. The det-
onation front is represented as an array of line segments
perpendicular to the working-chamber electrode sur-

X〈 〉 l
h
--- X h,d

0

h

∫=
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faces. The detonation intensity is characterized by the
Mach number

(2)

where a0 is the additional velocity induced by electro-
magnetic acceleration.

It was assumed that the vector of electric current 〈j 〉
is perpendicular to the intensity 〈E 〉  and the plasma-jet
velocity 〈w〉  is parallel to the electrode surface element.
These assumptions are based on the fact that the elec-
trode gap is relatively narrow (h = 6–8 mm).

The gas flow behind the detonation wave is gov-
erned by a system of partial differential equations
parameterized by the working-chamber length L, the
cross-sectional area A of the annular gap, and the angle
β between the surface elements of the electrodes. The
detonation-wave characteristics were calculated by
Whitham’s method as functions of the distance l trav-
eled by a detonation wave [21]. The Mach number
MD = MD(l ) was determined by solving the differential
equation, with the acoustic characteristic c+ as an inte-
gration constant. The flow parameters were expressed
in terms of the Mach number of a steady detonation
wave. Combining the equations of fluid dynamics, we
obtain

(3)

(4)

where γ is the ratio of specific heats of the burned gas,
p is pressure, P is density, w is the average gas velocity
behind the detonation wave, a is the additional velocity
induced by electromagnetic acceleration, jh is electric
current, σ is the plasma conductivity, c is a dimension-
less constant related to the total concentration of posi-
tive ions, t is time, and l is a current location in the
working chamber.

MD
D
a0
-----

dlD/dt
a0

---------------,= =

dp
dl
------ ρa
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-------+
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-------------=
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Fig. 3. Schematic of the working chamber used to calculate
the electromagnetic enhancement of detonation.
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The following values were substituted into the equa-
tions: B = 0, jh = σE0. Here, E0 is the averaged vector of
electric field strength ahead of the detonation wave. It
is calculated as the potential difference across the elec-
trode gap divided by its width. We change from MD and
l to the following dimensionless quantities:

(5)

Using a known function Z = Z(x), we derive formu-
las for flow characteristics behind the detonation wave:

(6)

(7)

(8)

(9)

(10)

where MD is the detonation Mach number; p is pres-
sure; ρ is the plasma density; U is the total velocity; and
T and T0 denote the plasma temperature after and
before its electromagnetic acceleration, respectively.

The form of Z(x) is determined by solving the fol-
lowing ordinary differential equation in terms of ele-
mentary functions:

Z l M j
2/MD

2– , x l/L.= =

D
a0M j

l Z2–( )
----------------------,=

P
P0M j

2γ
γ l+( ) l Z–( )

--------------------------------,=

ρ
ρ0 γ l+( )

γ Z–( )
---------------------,=

U
M ja0

γ l+
------------ l Z+( ) l Z–( ),=

T
T0γM j

2 γ Z–( )
γ l+( )2 l Z–( )

----------------------------------,=
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Fig. 4. Increase in detonation intensity and temperature of
combustion products in the working chamber at various
electric field strengths. Number at curves are the values of
E (V/m).
(11)

To calculate the geometric parameters of a plasma
gun, we set γ = 1.2, Mj = 5.0 (Mach number of a steady
detonation wave), ρ0 = 1 kg/m3 (initial density of com-
bustion products), and E0 = 35 V/m (electric field
strength) and use the total cross-sectional area A = A(l)
of the annular gap perpendicular to the working-cham-
ber axis. The ordinary differential equation was solved
numerically under the initial condition Z(x) = 0. The
solution was obtained in implicit form.

The solution to Eq. (11) was represented as a for-
mula for calculating a relative detonation intensity.
When dA/dx = 0, K is the scaling parameter expressed
as

(12)

where

(13)

k is the Boltzmann constant, T is temperature, me is the
electron mass, e is the electron charge, and ln∆ is the
Coulomb logarithm (a function of the working-cham-
ber plasma temperature and degree of ionization).

In the numerical integration, we treated ln∆ as a
constant parameter, setting ln∆ = 10. We also assumed
that the cross-sectional area of the annular gap is con-
stant, dA/dx = 0, and E0 = 35 V/m. As a result, we found
the scaling parameter as

(14)

Figure 4 shows the graphs of T and Mj/Md for the
gas behind the detonation front as increasing functions
of the current location x/L in the electrode gap for sev-
eral values of E. The plasma-jet energy exhibits nonlin-
ear growth, and its peak values are reached in the outlet
cross section of the plasma gun.

An analysis of Eqs. (6)–(14) shows that the plasma-
jet temperature, pressure, velocity, and density can be
varied over wide intervals. These characteristics
depend on the working-chamber length, cone angle,
electrode-gap width, and electric field intensity
(Fig. 5).

The results of a numerical analysis of the ordinary
differential equation show that the Joule heating begins
to contribute to the acceleration of a detonation wave as
E0 is increased. We suppose that the conductivity
behind the detonation wave is mainly due to electrons.

l = γ
γ Z–( ) l Z+( )

---------------------------------- 
  1 Z γ γ Z–( ) l Z+( )+ +( )

× dZ
dx
------ K l Z–( )2 l Z2– γ l Z2–( ) l

A
---dA

dx
-------.–=

K
δE0

2 γ l–( ) γ l+( )2L

γa0ρ0M j
3

----------------------------------------------,=

δ c
kT( )3/2

e2 ∆ 8πmeln
--------------------------------,=

K K0
γ Z–( )3/2

l Z–( )3/2
----------------------.=
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This assumption is valid when the ion concentration is
comparable to the electron concentration in the gas. As
the wave accelerates, the plasma-jet temperature
increases, and its velocity and density increase accord-
ingly. The electric field strength in the working cham-
ber decreases as the plasma piston moves further,
because the electric field intensity in the gap decreases
with increasing gap width, whereas the plasma conduc-
tivity increases. These trends stabilize the energy con-
version and result in a gradual energy supply to the det-
onation wave. When the electric field strength is higher
than 100 V/m, the plasma conductivity rapidly
increases, and a 100-mm working-chamber is suffi-
ciently long for an electric breakdown to occur.

The working-chamber length is the most important
determinant of the energy characteristics of a pulsed
plasma-jet flow. By varying the working-chamber
length, the following technical characteristics of a
pulsed plasma jet can be obtained: a jet energy flux of
104–107 W/cm2, a temperature of 5 × 103–3 × 104 K,
and a velocity of 2–8 km/s. The highest energy of
plasma jets produced by the plasma gun are obtained
when the working-chamber length exceeds 0.5 m (see
Fig. 5).

Our studies showed that the plasma-jet velocity var-
ies insignificantly as the working-chamber length is
varied from 0.3 to 0.5 m. This observation was taken
into account in optimizing the dimensions of a plasma
generator to be used in coating deposition. The plasma
gun described in [12, 13, 22] was designed for use in
surface modification and high-temperature deposition
of high-quality metal, hard-alloy, and metal-oxide coat-
ings. The premixed-gas components and powder are
continuously fed into the plasma generator, which
improves the cost efficiency of coating deposition tech-
nologies and reduces the costs of technological facili-
ties.

ANALYSIS OF COATINGS

The pulsed plasma spray technology was used to
deposit an aluminum-oxide coating in [14] and a hard-
alloy coating in the present study. The alloy consisted
of tungsten carbide (88%) and cobalt (12%). The coat-
ing was deposited on a 4 mm thick copper substrate.
The deposition rate was about 1 m2 per hour for a coat-
ing of thickness 0.6–0.8 mm.

The 88%WC+12%Co coating was examined by
using an ion Rutherford backscattering (RBS) tech-
nique, an elastic-resonance technique, diffraction trans-
mission electron microscopy (TEM), and measure-
ments of coating hardness and adhesion to the copper
substrate.

The adhesion of the coating to the substrate was
determined for specimens made of M-00 grade copper.
Ten measurements were performed by indenting the
tested surface with a diamond pyramid. The adhesion
strength was calculated as Hv = 4P/b2, where P is load
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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Fig. 5. Characterization of the plasma flow issuing from the
working chamber as depending on its length: n—T × 1000 K,
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Fig. 6. Energy spectrum of the Rutherford backscattering of
He+ ions; arrows indicate the kinematical limits of ele-
ments.
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Fig. 7. Fragments of x-ray diffraction patterns obtained for
specimens with WC–Co coatings.
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(b)

(a)WC–Co

α = Co

WC(hcp)
[110]WC[331]Co3W3C

–

500 nm

WC

Co3W3C

WC(cub)

[111]WC

(c)

100 nm

[000]
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Fig. 8. Diffraction TEM photographic images of a WC–Co coating: (a) cobalt polycrystals with average crystallite size 25 nm in a
diffraction pattern of local areas containing Co polycrystals; (b) tungsten-carbide areas with face-centered close-packed lattice, crys-
tallites of average size 0.15 µm, and W3Co3C nanoparticles of average size ≈15 nm at grain boundaries (in diffraction patterns of
local WC–W3Co3C areas); (c) tungsten-carbide areas with cubic lattice and dislocation substructure inside crystallites (dark and
light areas) in diffraction patterns of coating areas containing cubic tungsten carbide.
and b is the indentation width. Our measurements
showed that the average adhesion strength is 250 MPa,
while the lowest and highest strengths are 210 and
280 MPa, respectively. The hardness of coatings varied
from 8000 to 1.28 × 104 N/mm.

The ion RBS technique and proton elastic resonance
provide information about the chemical composition of
the outer coating layer. Figure 6 shows the RBS energy
spectrum. The spectrum exhibits distinct tungsten and
oxygen peaks. The Co kinematical limit is indicated by
an arrow. The coating analysis by means of RBS and
proton elastic resonance techniques showed that the
deposited layer contains Co, W, C, and O in the form of
WC89, Co8, C2, and O2. It is worth noting that the tung-
sten concentration in the layer is low (about 1 at. %),
whereas the carbon concentration is high (about 30 at. %).

The results of a chemical analysis of a coating
reported in [23] showed that HVOF (High Velocity
Oxygen–Fuel) spray deposition increased the tungsten
percentage to 84.38%, and deposition by means of a
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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Fig. 9. Transverse thin section of WC–Co coating with microhardness indentations.
high-velocity plasma (HEP process) raised it to
87.38%. Partial coating decrystallization was detected
in [24]. The cobalt percentage changed to 12.98 and
9.22%, respectively. The tungsten and cobalt percent-
ages in the powder were 82.9% and 11.61%, respec-
tively. The carbon percentage changed from 4.09% in
the powder to 2.54% after an HVOF deposition and to
2.52% after an HEP deposition.

The elemental analysis performed with the use of
RBS and proton resonance techniques, as well as x-ray
diffraction analysis, demonstrated good agreement of
our results with those obtained in [23, 24], where coat-
ings were deposited by means of HVOF and HEP pro-
cesses. The inner layers of the coating deposited by
means of a pulsed plasma spray consist of phases that
are virtually identical with those present in the starting
powder material.

The analysis of coating phase composition was
based on Cuk emission. The X-ray patterns obtained
show that the predominant coating phase is the face-
centered close-packed WC lattice. The presence of
other phases was inferred from reflections at angles
ranging from 37° to 47° (see Fig. 7). Several lines over-
lap in this angular interval, which complicates the anal-
ysis. The interplanar spacings calculated from the
reflections that we managed to single out suggest that
the following coating phases are present: W2C, Co7W6,
Co3W, W, and hexagonal Co. The composite phases
detected in the intercrystallite space are in amorphous
states, as observed in [23, 24]. This is explained by the
effect of high temperature on the formation of a coating
[24].
 PHYSICS      Vol. 46      No. 7      2001
An analysis of diffraction TEM images of the
WC−Co cermet coating showed that the coating has a
polycrystalline structure involving WC crystallites with
hexagonal lattices, cobalt α- and β-phases, and WC
crystallites with cubic lattices (see Fig. 8). The average
size of WC crystallites with face-centered close-packed
lattices is 0.15 µm, and the average cobalt crystallite
size is about 25 nm. W3Co3C phase particles of size
15 nm were observed at crystallite edges. A dislocation
substructure was observed inside the WC crystallites
with cubic lattices.

Figure 9 shows a transverse thin section of a
WC−Co coating with indentations made by the dia-
mond pyramid of a hardness tester (the scale is 1 cm ≈
200 µm). It demonstrates that the coating hardness var-
ies within 800–12 800 N/mm2.

CONCLUSIONS

The magnetogasdynamic acceleration of detonation
products is described. Based on mathematical model-
ing and calculations, a method is proposed for creating
high-energy pulsed plasma jets. Design parameters are
calculated for a plasma gun to be used in coating depo-
sition. The plasma-jet energy flux can be varied from
104 to 107 W/cm2; temperature, from 5 × 103 to 3 ×
104 K; velocity, from 2000 to 8000 m/s.

The plasma gun was used to deposit a 88%WC +
12%Co powder coating on a copper substrate. An anal-
ysis of phase composition showed that the coating con-
sists of WC crystallites with hexagonal and cubic lat-
tices of average size 0.15 µm, cobalt α- and β-phases of
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size about 25 nm, and the composite carbide W3Co3C
at crystallite edges. An x-ray diffraction analysis
revealed the presence of W2C, Co7W6, Co3W, W, and
hexagonal Co in the coating. The coating hardness was
found to reach 1.28 × 104 N/mm2; the coating–substrate
adhesion, 250 MPa.
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Abstract—Thin (0.05 cm) layers of mechanical mixtures of conductive and insulating powders are heated by
microwave pulses with an intensity of about 10 kW/cm2. For mW-power microwaves, the absorption thickness
in the mixtures is found to be on the order of 1 cm. For intensities of 10 kW/cm2 and above, pulse durations of
5–8 ms, and the number of pulses in a train of 5 or less, the powder layer melts and the characteristic spatial
scale of absorption decreases to ≈0.05 cm. The reflection factor drops during a microwave pulse. Ways of
improving the absorption efficiency by initiating surface breakdowns and plasma formation in pores between
coarse grains in the bulk of the powders are considered. © 2001 MAIK “Nauka/Interperiodica”.
(1) In recent years, the microwave heating of vari-
ous materials has provoked much interest (see, e.g.,
[1]). For ceramic (oxide) powders, its efficiency is not
high because of low dielectric losses. It, however, can
be improved by passing to the mm-wave range [2].
A particular challenge is the efficient heating of thin
powder layers.

Therefore, materials that have a large absorption
factor in a wide wavelength range are of great interest.
Examples are those obtained by sintering powders of
metals and their oxides at high temperatures [3]. Unfor-
tunately, the characteristic absorption thickness and the
type of conduction for such materials remain a mys-
tery; it is known, however, that they offer direct-current
conduction as well.

It has been found [4] that surface discharges may
appear at high (≈104 W/cm2 or higher) radiation inten-
sities if conductive surface inclusions are embedded in
an insulating matrix. In this case, the energy is released
near the surface, the release being associated with
breakdowns at the metal–insulator interface and the
formation of a thin plasma in the gas near the surface.

Two questions arise in this respect. What is the
absorption factor in a heterogeneous mechanical mix-
ture of powders of metals and their oxides? If the
absorption factor is high, is nonlinear absorption simi-
lar to that taking place at surface breakdowns on heter-
ogeneous surfaces possible?

(2) In experiments, we used powders of silicon, tita-
nium, aluminum, tin oxide, lead oxide, copper oxide,
alumina, as well as powders of their mixtures. The
grain sizes were 10–40 µm on average. The powders
were placed between 2-mm-thick glass plates, and the
plates were ground together until a 0.2- to 0.5-mm-
thick powder layer forms. The samples were fixed in a
special support and placed into the caustic surface of a
gyrotron beam normally to the axis of a microwave
beam (Fig. 1). The wavelength and the power of the
1063-7842/01/4607- $21.00 © 0905
gyrotron radiation were 4 mm and 120–180 kW (power
density at the beam axis 10–15 kW/cm2), respectively.
A Gaussian beam was used. The gyrotron power and
the signal reflected from the sample were controlled
with a quasi-optical coupler. The microwave pulse
duration was varied between 1 and 8 ms. The time spac-
ing between pulses in a train was 2 min.

With a powder layer placed between radiotranspar-
ent plates, surface exposure to the beam is eliminated;
in this way, the occurrence of a discharge due to micro-
wave breakdowns and its propagation toward the beam
inside the powder are avoided.

The properties of the powder layers were estimated
at a low (milliwatt) power level on a specially designed
quasi-optical bench. Measurements made on reference
quartz plates of different thickness showed that the sum

1

4

3

5

5

5

21

Fig. 1. Heating of thin conductive + insulating powder mix-
tures: (1) metal mirrors; (2) mica plate of quasi-optical cou-
pler; (3) sample; (4) absorbing loads; and (5) microwave
detectors.
2001 MAIK “Nauka/Interperiodica”
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of the reflection and transmission factors is no more
than ≈0.05 in error.

For the glass plate used in the experiments, the
reflection factor was found to be R = 0.25–0.32 and the
transmission factor, T = 0.46–0.53; hence, the absorp-
tion factor A lies between 0.22 and 0.23. For the two
glass plates, R = 0.40–0.43, T ≈ 0.34, and A = 0.23–
0.26. Such high values of the reflection and transmis-
sion factors may introduce high errors in the properties

(‡)

(b)

4

8

Fig. 2. Samples irradiated: (a) 25% of Si powder + 75% of
PbO powder, intensity ~10 kW/cm2, five 7-ms pulses;
(b) 50% Ti + 50% PbO, intensity ~10 kW/cm2, one 8-ms pulse.

Table

Composition R T R + T A

PbO 0.143 0.907 1.043 –0.043

CuO 0.112 0.928 1.04 –0.04

Al 0.912 0.138 1.05 –0.05

Si 0.313 0.295 0.608 +0.392

SnO 0.38 0.16 0.54 +0.46

0.5Ti + 0.5CuO 0.646 0.422 1.068 –0.068

0.5Si + 0.5Al2O3 0.525 0.422 0.947 +0.05

0.5SnO + 0.5Al2O3 0.617 0.389 1.006 –0.006

0.5Al + 0.5PbO 0.759 0.257 1.016 –0.016
of the layers estimated. Therefore, for the powder char-
acterization at the low power level of the beam, we
employed a half-wave (1 mm) plate made of fused
quartz. The table lists results for the different powders.

As follows from the table, the thin insulating pow-
ders of lead and copper oxides do not absorb, and the
sum R + T for them deviates from unity within the mea-
surement error. These powders also feature a low
reflection factor.

The aluminum powder has the high reflection factor.
Presumably, this is due to contacts between the grains.
This powder behaves as a continuous medium. How-
ever, the radiation power transmitted through the dis-
persed material is also significant.

In the silicon and tin oxide powders, which conduct
like semiconductors, the absorption is high. This
parameter is close to the absorption factor of a thin
(0.45 mm) n-type silicon wafer (phosphorus-doped to a
resistivity of 4.5 Ω cm). As for the aluminum powder,
such behavior is apparently associated with intergranu-
lar contacts.

The mixtures of the conductive and insulating pow-
ders absorb to a minor extent, but their reflections are
rather high (≈0.5) (see the table).

(3) When the mixture of the silicon and lead oxide
powders (1 : 1) is subjected to a single microwave pulse
of intensity higher than 10 kW/cm2 and duration of
5−7 ms, one or two small molten spots appear on the
surface. After 2–4 pulses, the small local spots expand,
and after five pulses, they merge into a large continuous
spot. A similar situation is observed for the mixture of
tin oxide and lead oxide powders (1 : 1) (Fig. 2). Note
that the melting process is nonuniform across the
depth: on the side of beam incidence, the material
solidified is strongly adhered to the glass substrate,
while near the second (lower) glass, the mixture
remains intact in some areas.

When the duration pulse decreases to 2 ms, melting
spots are not observed after four or five pulses. Simi-
larly, no such spots appear when the pulses last 7 or
8 ms but their intensity drops to 4–5 kW/cm2.

A somewhat different situation arises in the case of
the titanium + PbO (1 : 1) mixture. A continuous melt-
ing spot appears even after the application of two 4-ms
10-kW/cm2 pulses.

The titanium and copper oxide in the mixture (1 : 1)
vigorously react to form metallic copper. This reaction
is initiated when the power density is reduced to 5.0–
5.5 kW/cm2 and the pulse narrows to 1 ms. As the
power density is reduced further, longer pulses initiate
the reaction.

Finally, a radically distinct situation is observed for
the titanium + alumina (1 : 1) powder. At the power
density 8–9 kW/cm2 and pulse duration 7 ms, only indi-
vidual melting spots appear. Each pulse radially
splashes the powder between the plates, which is appar-
ently associated with the heating of the gas in the pores.
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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Radial powder splashing from the beam center is also
observed in the case of the silicon powder. Here, again,
gas heating in the pores between the grains is a possible
reason for the splashing.

The variation of the signal reflected from the targets
during a pulse is demonstrated in Fig. 3. The signal var-
ies with the number of pulses in a train. As follows from
the oscillograms (Fig. 3a), it smoothly decreases even
during the first pulse. In the next pulse, the signal drops
twofold for 2–3 ms. In subsequent pulses, the signal
drops within 1 ms and its final level continuously
decreases.

To study the variation of the electrical parameters of
the powder mixtures under the action of microwave
pulses, we performed special measurements with the
above-mentioned microwave bench. The radiation
parameters were the following: wavelength 2.5 cm,
power density about 10 kW/cm2, and pulse duration
5 µs. Coaxial electrodes terminated by a 50 Ω-resistor
were placed into the sample between the plates, and a
radiation-induced voltage pulse was measured. A uni-
polar (negative) voltage pulse arose on the central elec-
trode only if the silicon powder or the silicon + copper
oxide mixture was placed between the plates (Fig. 4).
The average levels of the signal for both the silicon
powder and its mixture with copper oxide (1 : 3 in vol-
ume fractions) were the same, about 0.2 V. For the mix-
tures in proportions 1 : 1 and 3 : 1, the mean level of the
signal rose to 1.0–1.5 V. For the 1 : 1 and 1 : 3 mixtures,
bright flashes on the surface were observed. For the sil-
icon powder and its mixture with copper oxide in pro-
portion 3 : 1, the flashes were absent.

(4) According to [5], the characteristic absorption
thickness in a planar layer of a mixture of conductive
and nonconductive balls is given by

Here, a0 ! λ is the radius of the balls, n0 = 3α/4π  is
the concentration of the conductive balls, ε is the
dielectric constant of the conductive balls, εi is its imag-
inary part, σ is the conductivity of the conductive balls,
ω is the circular frequency of the radiation, α is the vol-
ume fraction occupied by the conductive balls, and δ is
the skin depth. For the silicon + alumina mixture, δ > a0
and h0 ≈ 0.44 cm if α = 0.5. In the case of the titanium +
copper oxide powder, δ < a0 and h0 ≈ 0.4 cm for the
fraction of diameter 4 × 10–3 cm and α = 0.5. Hence, at
the characteristic thickness of the powder layer
h = 0.05 cm, the absorption factor A = (1 – R)[1 –
exp(−h/h0)] = 0.05–0.06, which agrees with experimen-
tal data obtained at the low power level.

That the powder melts when irradiated by a train of
intense pulses (about 10 kW/cm2) suggests that the
absorption factor grows and becomes much greater
than that observed at the weak fields. The melting non-

h0 λ ε 2/18παεi at δ≈ c/ 4πσω( )12 a0,>=

h0 4a0/9α( ) λσ /c( )1/2 at a0 δ and ε  @ 1.>≈

a0
3

TECHNICAL PHYSICS      Vol. 46      No. 7      2001
10

mV

1 ms

20

30 (c)

1 ms

(b)
50 mV

1 ms

(a)
50 mV

Fig. 3. Variation of the reflection pulse with the number of
microwave pulses applied for 25% Si + 75% PbO: (a) first
pulse, (b) second and third pulses, and (c) fourth pulse.
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Fig. 4. Voltage pulse across the coaxial electrodes for
50% Si + 50% CuO. The termination is 50 Ω .
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uniformity across the sample means that the character-
istic absorption thickness is less than the layer thick-
ness (0.05 cm); that is, it dropped by one order of mag-
nitude compared with the characteristic absorption
scale at the low intensities.

When estimating the reflection coefficient, one
should take into account that the waves reflected by
individual grains are coherent, since the intergranular
spacing is much smaller than the radiation wavelength.
The value of the reflection coefficient must be propor-
tional to the reflection cross section of an individual
grain. For a conducting ball, this section is given by

Sr = 8π(2π)4 /3λ4 [5]. For an absorbing nonconduct-
ing ball, this section should be smaller by a factor of
(ε – 1)2/(ε + 2)2. For quartz (as in our case), the coeffi-
cient equals 0.25. At the low intensities, this seems to
be a possible reason for the discrepancy between the
reflection coefficient of the lead oxide + copper oxide
powder mixture and that for the powder mixtures half-
composed of conducting grains. However, such a dis-
crepancy is also observed when the nonconducting and
conducting grains reflect the intense microwave radia-
tion. This allows us to draw a conclusion concerning
processes taking place in the powders irradiated by
high-amplitude waves. We see (Fig. 3) that the signal
reflected drastically drops during an intense pulse. The
question now arises as to why the scattering cross sec-
tion of a conducting ball decreases. It seems likely that
we are dealing with the phenomenon of surface micro-
wave breakdown akin to that observed in [4]. In fact,
the electric field of the wave (≈3 kV/cm) is much less
than the breakdown field for air (≈30 kV/cm). In pores
between the grains, the latter is still higher because, for
the grain size 10–40 µm, the rate of electron loss by dif-

fusion, v d ≈ De /  ≈ 109 s–1, far exceeds the rate of
three-body electron attachment in air, v a ≈ 108 s–1,
under normal pressure. The three-fold enhancement of
the field at the conductive balls is insufficient for the
breakdown threshold to be overcome. Therefore, a
plasma can possibly be produced only at the surface
breakdown of the insulator [4]. Pores filled by the
plasma represent a so-called “cellular plasma,” since
this medium is, in essence, plasma-filled cells in the
powder. As the concentration of the charged particles in
the pores grows, so does the absorption factor until the
skin depth becomes less than the pore diameter. Subse-
quently, the absorption decreases and the concentration
ceases to rise. It can be assumed that the absorption is
the highest at δ ≈ a0, since the pore size is on the order
of a0. Then, from this condition, one can easily derive
the minimum effective absorption thickness: hmin ≈
21/2λ/9πα = 0.02 cm, which roughly coincides with the
experiment. In this case, we have a three-component
system similar to that considered in [6].

Evidence in support of the above assumptions is
unipolar voltage pulses generated in the powders with
the coaxial electrodes (Fig. 4). It is just these signals

a0
6

a0
2

that were recorded in a pulsed microwave discharge in
gases under high pressures [7].

It follows from the aforesaid that the high absorp-
tion factors are associated with plasma-assisted surface
breakdowns. Then, it remains to be seen whether the
energy absorbed is sufficient to melt the powder com-
ponents. If the absorption factor of the plasma-contain-
ing medium is set equal to unity (Apl ≈ 1), it is easy to
evaluate the energy density released in the powder vol-
ume per pulse:

The energy necessary for melting is estimated from
the relationship

Here, ∆H1 is the energy necessary for melting the mate-
rial with the lowest melting point; and Cp, ρ, and M are
the specific heat at constant pressure, density, and
molecular weight of the powder components, respec-
tively. For the silicon + lead oxide mixture, q ≈
1.7 kJ/cm3. Thus, the pulse durations and intensity used
in this work are appropriate in terms of the energy con-
sumption. The formation of the molten spots after ini-
tial pulses suggests that the absorption cross section in
some regions exceeds their geometric areas. The
increase in the molten area after the application of the
second and following pulses may indicate the forma-
tion of a semiconducting phase.

That the mixtures offer high local absorption factors
is most impressively supported by experiments on the
initiation of the solid-phase redox reaction in the
0.5Ti + 0.5CuO mixture. In this mixture, a high tem-
perature (~103 K) is required to initiate the reaction.
However, even for A ≈ 1, the mean temperature of the
mixture cannot exceed 200 K.

Another evidence in favor of the high locality of
energy evolution is the formation of molten spots in the
0.5Al + 0.5Al2O3 mixture. Here, to melt aluminum, the
energy density of about 3 kJ/cm3 is necessary, while the
mean energy density in the related experiment could
not be higher than 1.6 kJ/cm3.

(5) Let us summarize the basic results of this article.
We measured the reflection and absorption factors of
thin (0.05 cm) layers of insulating powders, as well of
their mixtures with semiconductor and metallic pow-
ders. The measurements were performed with the
quasi-optical method at the low level of the microwave
power. The absorption factors were found to be low (no
more than 0.05), which agrees with the calculations for
the mechanical mixtures considered. The reflection fac-
tors of the mixtures with conductive grains turned our
to exceed those of the insulating powders several-fold.

It was established that individual melting spots
appear on the surface of the conductive + insulating
powder mixtures once a pulse of intensity about
10 kW/cm2 has been applied. With a train of 4 to

q0 sτ /h 104 7 10 3– /0.05 1.4 kJ/cm 3– .≈××≈=

q α ∆ H1 C p1∆Ti+( )ρ1/M1 1 α–( )C p2∆Tρ2/M2.+≈
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7 pulses of duration 5–8 ms, the spots merge into a con-
tinuous molten area. The intense local heating of the
material was observed. Melting is nonuniform across
the powders, which means that the characteristic
absorption scale is less than 0.05 cm.

The reflection factor of the powder mixtures drops
during the microwave pulse. A voltage pulse is gener-
ated across the electrodes placed into the powder. The
results obtained at high intensities suggest the initiation
of surface breakdowns where insulating and conductive
grains come into contact, and also the formation of a
plasma between pores. In our opinion, it is plasma for-
mation that is responsible for the effective absorption of
microwaves.
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Abstract—The problem of the condensation of supersaturated vapor in an open system at a constant rate of
production of a monomer and a continuous flow of a carrier gas that removes the products of condensation from
the system is considered. It is shown both analytically and by numerical experiment that with a decreasing rate
of the carrier gas to below a critical magnitude, the condensation regime becomes oscillatory; namely, time
oscillations of the cluster-size distribution in the vapor to be condensed are set in. The cause of the phenomenon
is in the suppression of the rate of nucleation and the presence of large clusters. © 2001 MAIK “Nauka/Inter-
periodica”.
        
INTRODUCTION

The nucleation and growth of clusters in a supersatu-
rated vapor are one of the most common phenomena in
nature and engineering. In the simplest case, the kinetics
of condensation is described by the attachment and evap-
oration of monomer species, i.e., Am + A  Am + 1.

The energy of attachment of a monomer εm = Em –
Em – 1, where Em is the total binding energy of a cluster,
increases with increasing cluster size to a limiting value
ε0 for a macroscopic sample of the substance. There
exists a critical nucleus size m∗  such that for clusters of
size m < m∗  the evaporation of monomer species is pre-
dominant, while the clusters with m > m∗  grow steadily.
According to Zel’dovich’s classical theory of conden-
sation applicable to the case m∗  @ 1, the rate of conden-
sation is determined by the probability of the appear-
ance of clusters of critical size.

For a fixed amount of a substance to be condensed,
the appearance of a sufficient number of clusters
exceeding the critical size is a decisive factor in the pro-
cess of condensation. Because of the decrease in the
concentration of the monomer, the critical size
increases and the appearance of new condensation cen-
ters ceases. A redistribution of the substance from clus-
ters m < m∗  to clusters m > m∗  occurs [1]. Such is the
picture of condensation in a closed system with initial
conditions in the form of a supersaturated monomer
existing in the system.

We consider an open system, where the monomers
appear continuously over the whole volume due to
some external source and the condensation products are
removed from the system by a flow of a carrier gas, also
uniformly over the whole volume. It can be shown ana-
lytically that the equilibrium cluster-size distribution in
such a system becomes unstable as the flow rate
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decreases. The results of numerical experiments show
that this instability leads to the appearance of oscilla-
tions in the cluster-size distribution function.

THEORY OF OSCILLATORY REGIMES 
OF CONDENSATION

The kinetics of the “monomeric” growth in an open
reactor with a spatially uniform concentration of clus-
ters nm (m = 2,…, ∞) can be described by the following
equations:

(1)

where jm – 1, m = vm – 1n1nm – 1 – ηm
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reactions of the monomer condensation and evapora-
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 is the gas temperature;
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 is the density of the saturated vapor.
For simplicity, the clusters are considered to be spher-

ical structureless particles, so that  = (
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 is a constant geometrical factor
that describes the cross sections of the reactions of con-
densation. Since the rate of removal is the same for all
the clusters, the concentration of the monomer n
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 is
given by the condition of the conservation of the total
amount of the substance
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surface (the constant C characterizes the surface ten-
sion of the substance to be condensed). Then, εm ≈
dEm/dm = ε0 – 2C/3m1/3, and the critical size of the
nucleus m∗  = (2βC/3ln(n1/ns))3 can be found from the
condition of equilibrium between condensation and
evaporation  = 0. We consider the case m∗  @ 1;
however, the critical size is assumed to be sufficiently
small, so that the characteristic time of nucleation is
small in comparison with both the time of removal of
the condensation products τ and the period of oscilla-
tions.

In this case, the steady-state cluster-size distribution
for m < m∗  is found from the condition of quasi-equi-
librium (ηmnm @ jm, m – 1 ≈ 0) as

(3)

For clusters of sizes m > m∗ , the usual approxima-
tion of the theory of condensation is applicable, i.e., the
neglect of the process of evaporation and the descrip-
tion of the cluster size by a continuous variable rather
than by a discrete one

(4)

with a boundary condition  = ψ(n1) ≡
n1exp(−4β3C3/27ln(n1/ns)2), which follows from
Eq. (3) and the above expression for m∗ . Consider the
stability of the quasi-equilibrium solution

with respect to small perturbations δn1, δnn ∝  exp(λt).
The solution of the linearized equation (4) has the fol-
lowing form:

By substituting the last expression into the normal-
ization condition (2) and neglecting the contribution
from clusters of size 1 < m ≤ m∗ , we obtain the follow-

ing dispersion relation: 1 – 2 ψ(v 0n1τ)4Ω/9n1 = 0,

which is valid at 3  ! v 0n1τ, when the size distribu-
tion for small clusters m ≤ m∗  is steady-state. Here, Ω =
–(1/λτ  + m∗ /(1 + λτ)4) and in the derivative ∂ψ/∂n1 ≈
m∗ ψ/n1 we allow for only exponentially fast changes in
ψ. At the boundary of the stability region, the real part
of the eigenvalue λ is zero and λ = iω, which corre-
sponds to undamped oscillations of the solution in time.
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Then, the frequency of oscillations ω is found from the
condition Im(Ω(iω)) = 0 in the form

The last equation has two positive roots ωτ > k =

 ≈ 1.510 and ωτ < k; we chose the smaller
one. Thus, the dimensionless oscillation frequencies lie
in a narrow range 1 < ωτ ≤ k, and the oscillation period
is determined by τ, i.e., the time during which the gas
passes through the reactor. The minimum critical size
m∗  ≈ 39.66 that allows the development of instability
corresponds to ωτ = k. The equilibrium cluster distribu-
tion becomes unstable for τ greater than the critical
value

where Re(Ω) = m∗ (6ω2τ2 – 1 – ω4τ4)/(1 + ω2τ2)4.

Numerical solutions of Eqs. (1) and (2) show that
the development of instability causes self-sustaining
oscillations of the cluster-size distribution function at
τ > τ∗ . To experimentally observe these oscillations,
one should ensure a monomer density n1 = 2 to 10ns at
moderate gas temperatures βC = 3 to 8 (Fig. 1).

NUMERICAL EXPERIMENT

The above consideration of condensation was per-
formed in the approximation of monomeric growth.
Therefore, to check the validity of the results obtained,
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Fig. 1. Dimensionless critical value τ* of the characteristic
time during which the carrier-gas passes through the reactor
(solid lines) and the corresponding frequency of oscillations
of the solution (dashed lines) for various values of the param-
eter βC = 3 to 8.
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we additionally performed a more accurate numerical
simulation of the process of condensation in an open
system with a constant generation of monomers and
allowance for all of the reactions of coalescence of
growing clusters (Am + Ak  Am + k), including the
attachment of dimers, trimers, and all greater clusters.
Under conditions of high supersaturations and cluster
concentrations that are much greater than those in the
equilibrium vapor, the back reactions of cluster decom-
position (Am + k  Am + Ak) are relatively slow and can
be neglected. Although this approximation has not been
substantiated strictly, it is admissible for estimating the
role of coalescence reactions in the development of an
oscillatory regime, since it only enhances their effect on
the process of condensation. Thus, to numerically
describe condensation in an open system, we solved the
following equations:

(5)

Here, v i, k = v 0(i1/3 + k1/3)2/3(1/i + 1/k)–1/2 is the rate con-
stant of the reaction of coalescence of two clusters of
sizes i and k, and N0 is the rate of monomer generation.
The values of the concentrations nm are normalized to ns.
The numerical experiment was performed in wide
ranges of the parameters N0 and τ. In the experiment,
we studied the time evolution of the cluster-size distri-
bution or, to be exact, the dependence of the concentra-
tion of clusters on the size nm. The computing technique
applied permitted us to trace the values of m up to 1011,
which was sufficient for estimating the total amount of
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Fig. 2. One period of oscillations of the cluster concentra-
tion depending on the cluster size plotted as a function of the
logarithm of the size and normalized to the density of the
saturated vapor ns. The first and the last curves are identical.
the substance in the reactor; for m > 100, the size was
considered as a real variable with a step of about 0.05m.
The initial value of nm does not affect the result, since
after a certain time there is always established a final
regime of condensation, stationary or oscillatory,
depending on the magnitude of τ. Each observation was
repeated under conditions in which the regime of coa-
lescence was switched-off (by setting the coalescence
constants in Eq. (5) to be zero), which corresponded to
only monomeric growth; Eqs. (5) became equivalent to
Eq. (1). For those values of τ for which oscillations of
nm were observed, the results of the simulation of
monomeric and coolescence growth were very close.
The period of oscillations of the distribution function
remained virtually unaltered and corresponded to τ; the
observed values of nm varied within a few percent.

Figure 2 displays the results of the simulation of the
behavior of the cluster-size distribution function for the
oscillatory regime of condensation. For clarity, in this
example we chose a sufficiently large value of the
parameter βC = 20 (that characterizes the temperature
of the system and the surface tension of the substance)
and the rate of generation of monomers N0 that yields a
supersaturation n/ns varying between 40 and 60 during
an oscillation period. The distribution function exhibits
wavelike perturbations that propagate from small sizes
to greater sizes and damp at large sizes. The nature of
the oscillations can qualitatively be explained by the
fact that the accumulation of large clusters suppresses
the process of nucleation; the monomer is consumed at
the surface of these clusters, and the formation of new
particles ceases. However, as the condensation prod-
ucts are progressively removed from the reactor (with a
characteristic time τ), the larger clusters also are
removed from the system, and the nucleation process is
reactivated. At a large rate of removal, the condensation
is equilibrium; as τ exceeds a certain critical value, the
accumulation of large clusters in the system becomes
periodic. In Fig. 2, the concentration of clusters in the
range of sizes from 102 to 1010 changes by about four
orders of magnitude during an oscillation period. These
results show that if we were able to obtain such super-
saturations in a real experiment, the oscillations of the
cluster density could easily be observed in a condens-
ing vapor, e.g., with the help of laser beam scattering.

At present, we do not know experimental works that
permit a comparison with the numerical results
obtained. In our opinion, the experimental observation
of oscillatory regimes of condensation, which requires
that a strongly supersaturated vapor be obtained (n/ns .
50), is possible, for example, upon the laser evaporation
of a liquid in a reactor with a flowing cold gas. High
supersaturations can also be reached by generating
monomers via a chemical reaction. In any case, good
stirring of the monomer in the volume of the reactor
with a flowing gas should be provided in order to obtain
spatial uniformity and a constant rate of the removal of
the condensation products.
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
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Low-frequency oscillations of cluster density were
observed in experiments with plasmas containing
microparticles [2, 3]. High vapor supersaturations were
obtained upon plasma decomposition of silane. How-
ever, the kinetics of growth and transfer of clusters in a
plasma reactor is much more complex than in the case
of vapor condensation. Nevertheless, we can suppose
that the observed oscillations have a similar physical
origin, namely, a periodic suppression of the process of
nucleation, when the accumulation of large clusters in
an open system initially occurs more rapidly than the
process of their removal.

CONCLUSION
We considered the process of vapor condensation in

an open system with an external source of a monomer
and a constant rate of removal of condensation prod-
ucts. A theoretical analysis and numerical experiments
show the existence of oscillatory regimes of condensa-
tion or, in other words, the appearance of self-sustain-
ing oscillations of the size distribution of growing clus-
ters as the rate of the removal of condensation products
becomes smaller than a certain critical value. The cause
of the oscillations is the appearance and the further
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
growth of clusters with a size exceeding a critical value
suppressing the process of nucleation until the growing
clusters are removed from the system, after which a
new period of oscillations begins. Ways for the experi-
mental observation of the phenomenon predicted in this
work are suggested.
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Abstract—Results are presented of experimental investigations into the static hysteresis of the aerodynamic
characteristics of a rectangular wing with an aspect ratio of λ = 5, obtained in static tests of a wing model in a
wind tunnel. Variation with time of the aerodynamic forces and moments are analyzed in the range of angles of
attack where a transition occurs from one branch of the hysteresis loop to the other. © 2001 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Experimental investigations in wind tunnels of
models of rectangular wings with large aspect ratios, as
well as airplanes with straight wings of large aspect
ratios, have demonstrated that alongside the areas of
unique dependence of the aerodynamic forces and
moments on the experimental conditions (angle of
attack α, angle of slide β, and the Reynolds number
Re), there exist areas where uniqueness is lacking, that
is, regions of aerodynamic hysteresis [1–4]. There are a
number of studies devoted to the hysteresis observed in
the aerodynamic characteristics of wings with large
aspect ratios [1–6]. The authors of [1] considered static
hysteresis of the lift coefficient cy = cy(α) observed for
a wing of the NASA-23012 profile with a large aspect
ratio (λ = 5) in a range of Reynolds numbers 1 × 106 <
Re < 4 × 106 at subsonic velocities. Data on the hyster-
esis of aerodynamic forces and moments in a range of
0.2 × 106 < Re < 0.8 × 106 for wings of large aspect ratio
and various thickness ratios (  ≥ 0.12) were obtained in
[2–6].

The present paper describes the results of experi-
mental investigations of aerodynamic characteristics of
a model of a rectangular wing with the aspect ratio λ = 5
under conditions of hysteresis. Static aerodynamic
dependences of the lift cy(α) and moments mz(α) and
mx(α) are presented alongside schematic patterns of the
airflow over the wing, visualized with the use of silk
threads. Tests employing an aerodynamic balance and
visualization were performed simultaneously. With a
view to increasing the accuracy of the positions of the
hysteresis region boundaries, we studied variations of
cy(t), mz(t), and mx(t), as well as their spectra, (f),

(f), and (f), obtained for constant (α = const) or
slowly varying angles of attack.

c

Acy

Amz
Amx
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EXPERIMENTAL TECHNIQUE

Experimental investigations of the wing were car-
ried out in a low-speed subsonic wind tunnel with an
open-ended test section, at Re = 0.33 × 106. Figure 1
schematically shows the wing model secured to the tail
sting of a dynamic device. The device was rigidly
attached to the turntable of the wind tunnel. The wing
of NASA-0018 profile had the following geometrical
parameters: profile thickness ratio  = 18%, wing areac

1

4

3

2
Z

Y

X V∞

α°

Fig. 1. Scheme of arrangement of the dynamic device with
the wing model inside the test section of the wind tunnel.
(1) OVP-102B unit, (2) diffuser of the wind tunnel, (3) wing
model, and (4) turntable of the wind tunnel test section.
001 MAIK “Nauka/Interperiodica”
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S1 = 0.288 m2, mean airfoil chord b2 = 0.24 m, and
wingspan l1 = 1.2 m. The aerodynamic forces and
moments were measured with a built-in strain-gauge
balance in a set of coordinates 0XYZ associated with the
wing. The model’s center of mass was at  = 0.5 (in
units of b2). The angle of attack α was set by the turn-
table and varied in a range of –3 to 27°. The angle of
attack was changed continuously by turning the turnta-
ble with an angular speed of  = 0.5 degrees/s. Photo-
graphs of the wing with the silk threads indicating the
air flow were used to roughly estimate the location of
the boundary between areas of stalling and nonstalling
flows.

INVESTIGATION RESULTS

Figure 2 displays the static aerodynamic character-
istics cy(α), mz(α), and mx(α) of the rectangular wing
model for an increasing (  > 0) and decreasing (  < 0)
angle of attack in a range of –3° to 27° ((open dia-
monds). It is seen that in the range of 12.5° ≤ α ≤ 19°,
a static hysteresis takes place in the curves of cy(α),
mz(α). The mx(α) curve is unique, and in the range of
the angles of attack investigated, the values of coeffi-
cient mx are small. Figure 2 also schematically shows
the patterns of airflow over the wing. The blank areas
correspond to the nonstalling flow (NSF) and the
shaded area to the stalling flow (SF). The visualization
results confirm the data of the balance measurements of
the coefficients of aerodynamic forces and moments by
demonstrating the difference between patterns of air-
flow over the wing corresponding to the upper and
lower branches of the hysteresis loop. The upper branch
of the hysteresis loops in the dependences cy(α) and
mz(α) at small angles of attack corresponds to the
occurrence of flow separation near the trailing edge of
the wing. The separation area expands with increasing
angle of attack. With transition to modes of the lower
branch of the hysteresis loop, the separation line shifts
toward the leading edge of the wing. If the angle of
attack is reduced in conditions corresponding to the
lower branch of the hysteresis loop, the flow separation
area shrinks; however, the separation line is always
found near the leading edge of the wing.

Figure 2 also shows static dependences cy(α) and
mz(α) obtained in two series of repetitive tests of the
model. In the first series of tests (solid circles), the
angle of attack increased from an initial value of αi =
13° to the final value of αf = 19°. In this case, transition
from the upper to the lower branch of the hysteresis
loop occurred in dependences cy(α) and mz(α). In the
second series of tests (solid diamonds), the angle of
attack decreased, with the initial and final angles of
attack chosen at αi = 15° and αf = 12°, respectively. In
these experiments, it was found that the dependences
cy(α) and mz(α) followed upper or lower branches of

xT

α̇

α̇ α̇
TECHNICAL PHYSICS      Vol. 46      No. 7      2001
the hysteresis loop depending on whether the initial
angle of attack αi of the model was set before or after
putting the wind tunnel into operation.

When the initial angle of attack αi was set before
starting the wind tunnel, the observed magnitudes of
the force and moment always corresponded to the
lower branch of the hysteresis loop. If the wind tunnel
was first started and then the angle of attack decreased
in increments down to αf = 12°, the forces and the
moments changed to magnitudes corresponding to the
upper branch of the hysteresis loop. It should be noted
that the data obtained in both series of repetitive tests of
the model were in good agreement with the initial
dependences cy(α) and mz(α) (open diamonds in
Fig. 2).
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Fig. 2. Variations of the coefficients of the static aerody-
namic forces cy and moments mz and mx with the angle of
attack. (I) NSF, (II) SF.
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Fig. 3. Temporal representations and frequency spectra of the coefficients of the aerodynamic forces and moments corresponding to
the upper branch of the static hysteresis loop. Angle of attack α = 13°, set starting from lower values.
The above-described static aerodynamic depen-
dences cy(α), mz(α), and mx(α) are averaged temporal
representations of cy(α, tk), mz(α, tk), and mx(α, tk), mea-
sured for each angle of attack α at the time instants tk =
k∆t, where k = 1, 2,…,n are the measurement points and
∆t is the time increment.

As an example, Figs. 3, 4 show the characteristic
temporal representations of cy(t), mz(t), and mx(t), as
well as their frequency spectra, (f), (f), and

(f), measured in modes corresponding to the upper
and lower branches of the static hysteresis loop at α =
13°. The temporal representations corresponding to the
upper branch of the static hysteresis loop are regular,
and the respective frequency spectra are plane (Fig. 3).
Such time processes have a corresponding point-type
attractor. The temporal representations of cy(t), mz(t),
and mx(t) corresponding to the lower branch of the hys-
teresis loop are irregular (Fig. 4), and in their frequency
spectra, a number of harmonics become evident.
Besides, in the dependences (f), (f), and (f),
a continuous low-frequency component is present.
A mathematical representation of such processes is the
concept of a strange attractor [7]. Thus, comparing the
dependences cy(t), mz(t), and mx(t), as well as the fre-
quency spectra (f), (f), and (f), correspond-
ing to the upper and lower branches of the hysteresis
loop at the same angles of attack, it can be noted that

Acy
Amz

Amx

Acy
Amz

Amx

Acy
Amz

Amx
the differences detected in such measurements are both
quantitative and qualitative.

Let us consider the results of the investigations of
variations with time of the forces and moments in the
course of the transition from the upper to the lower
branch of the hysteresis loop. To this end, the experi-
ments included tests with continuous slow variation of
the angle of attack at a constant rate of  = 0.5 deg/s.
Analysis of the dependences cy(t) and mz(t) obtained by
continuously changing the angle of attack in a range of
α from 17° to 21° has revealed a drastic change in the
coefficients cy and mz. Figure 5 shows the representa-
tions cy(t) and mz(t) in the time interval where cy and mz

pass from the upper to the lower branches of the hyster-
esis loop. As seen from the graphs, this time interval
lies in the range t ≈ 1.55–1.7 s and is equal to ∆t ≈ 0.15 s.
Analysis of the dependences cy(t) and mz(t) has shown
that in this time interval, there is not a single steady-
state mode between the initial and final points of the
transition. If the considered variation of the depen-
dences cy(t) and mz(t) accompanying the transition
from the upper to the lower branch of the hysteresis
loop is approximated by a linear function, then, using
known transition time ∆t and the rate of change of the
angle of attack , it is possible to evaluate the range of
the angles of attack ∆α in which the transition occurs.
From the experiment results, it follows that ∆α = ∆t  ≈
0.075 degrees.

α̇

α̇

α̇
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Fig. 4. Temporal representations and frequency spectra of the coefficients of the aerodynamic forces and moments corresponding to
the lower branch of the static hysteresis loop. Angle of attack α = 13°, set starting from higher values.
The results of the study of the upper and lower
branches of the static hysteresis, as well as the transi-
tions from one branch to the other, can be useful in
refining mathematical models roughly describing the
hysteresis phenomenon in the dependences of the aero-
dynamic forces and moments, such as the mathematical

0.1

1.45 1.55

mz

t, s
1.55 1.75

0

0.2

0.3

0.5

cy

0

1.0

1.5

Fig. 5. Variations of cy(t) and mz(t) measured under continu-
ous change of the angle of attack in the range 17° < α < 21°.
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model of hysteresis accepted in catastrophe theory.
From the point of view of this theory, a hysteresis is a
pair of elementary catastrophes called folds. In the fold
catastrophe, the control space is one-dimensional. The
bifurcation set represents a point [8–10]. The static
dependence cy(α) is divided into three segments; two

0 α1

cy

α°α1ˆ̂ ˆ

1

21

3

4

Fig. 6. Schematization of the hysteresis curves. (1) stable
branch, (2) fold I, (3) fold II, (4) unstable branch.
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segments corresponding to the stable steady states and
one, located within the hysteresis loop, corresponding
to the unstable branch of the solutions (Fig. 6). At the
points corresponding to the bifurcation angles of
attack, a sudden transition occurs from one hysteresis
branch to the other.

CONCLUSIONS

From the analysis of the experimental variations
with time of aerodynamic forces and moments mea-
sured at constant angles of attack, as well as under con-
tinuous slow variation of the angle of attack in the air-
flow of a wind tunnel, the following principal conclu-
sions can be made.

Time dependences cy(t), mz(t), and mx(t) of the aero-
dynamic forces and moments corresponding to the
upper branch of the hysteresis loop are characterized by
a point-type attractor and those at the lower branch by
a strange attractor.

Transitions of the dependences cy(α) and mz(α)
from one hysteresis branch to the other occur as a result
of small changes of the preset angles of attack.

In the course of transition from the upper to the
lower branch of the hysteresis loop, no intermediate
steady-state modes are realized, which confirms the
instability of the collapsing pattern of airflow over the
wing when the bifurcation angles of attack are reached.
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Abstract—The dynamics of the bunching of particles with nonzero longitudinal emittance is studied in plane
geometry. A self-consistent solution to the model time-dependent kinetic equation is obtained for a collisionless
system of particles. The solution is shown to be nonunique. Two acceleration modes resulting in the creation of
a virtual cathode and, therefore, in the bunching of particles are basically possible. © 2001 MAIK
“Nauka/Interperiodica”.
(1) The initial stage of particle acceleration in a pla-
nar diode is usually described under the assumption
that the longitudinal phase volume is zero. The phase
volume also remains zero in the presence of a velocity
spread at the cathode [1] if the particles are emitted by
a planar surface. However, under real conditions, the
region from which the accelerated particles are
extracted is extended in the longitudinal direction. If, in
addition, the longitudinal velocity spread is nonzero,
the particles have a finite phase volume; i.e., they are
characterized by nonzero emittance.

In this paper, we consider the dynamics of a bunch
with finite longitudinal emittance. We assume that the
particles possess nonzero transverse velocities and that
large transverse dimensions of the bunch are fairly
large.

Let us consider a system consisting of an emitter
and a control grid placed at z = 0 and L, respectively.
The emitter is at a zero potential, and the control poten-
tial ΦL(t) is applied to the grid (Fig. 1). The potential
Φ(z) satisfies the equation

(1)

Here, e is the particle charge and n is the density. If the
longitudinal size R of the region occupied by the parti-
cles meets the inequality R > L, the following relation-
ship is valid there:

(2)

The equation of particle motion has the form

(3)

where ω2(t) = 4πe2n(t)/m, m is the mass of an acceler-
ated particle, and z0 = –(ΦL/4πenL) > 0.

In order to provide a kinetic description of the parti-
cles characterized by equation of motion (3), one
should devise an invariant of this equation, which must
be valid at any function ω(t). This invariant must
replace the Hamiltonian used in the steady-state prob-

∆Φ 4πen.–=

Φ 2πenz2– z
ΦL

L
------- 2πenL+ 

  .+=

ż̇ ω2 z( ) z z0 t( )+( ),=
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lem of particle motion in a diode [1, 2]. For a homoge-
neous time-dependent equation of motion, we can use
the Kapchinsky–Vladimirsky invariant [3]. After being
transformed, this invariant also applies to an ensemble
described by inhomogeneous equation (3). Let z1 = z – ξ,

where ξ(t) is defined by the equation  = ω2(t)(ξ + z0).
Then, z1(t) satisfies the homogeneous equation

(4)

The invariant for the longitudinal motion has the
form

(5)

The condition dI/dt ≡ 0 implies that the function
R1(t) satisfies the equation

(6)

Assuming that the distribution function has the form

we obtain the formulas for the density, 

(7)

ξ̇̇

ż̇1 ω2 t( )z1.=

I
R1ż1 Ṙ1z1–( )2

ε0
2

----------------------------------
z1

2

R1
2

-----.+=

Ṙ̇1 ω2 t( )R1–
ε0

2

R1
2

-----.=

f κσ 1 I–( )
1 I–

--------------------, σ x( ) 0, x 0< , σ 1, x 0≥ ,= = =

n
πκε0

R1
------------σ r1 z1–( ),=

0

0

Φ = 0

ΦL

L z

Fig. 1. Electrode geometry. The control potential ΦL(t) is
applied to the grid placed at z = L.
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current density jz, 

(8)

and rms longitudinal velocity spread:

(9)

Formula (9) yields that, at the cathode (at z = 0),

(10)

where vT is the thermal velocity spread at the cathode.

Expressions (7)–(10) suggest an appropriate choice
of the model distribution function that gives a qualita-
tively correct description of the initial conditions for
the particles. Since the thermal velocity at the cathode
remains constant, expression (10) provides an addi-
tional relationship between functions ξ(t) and R1(t):

(11)

where  = /2 .

The particles that leave the emitter and enter the
accelerating gap occupy the phase space region
bounded by an ellipse (Fig. 2). Near the cathode, the
particles can move in both the positive and negative
directions along the z axis.

Note that the above expressions for the distribution
function f and potential Φ(z, t) are the exact solution to
a model Vlasov self-consistent system—the kinetic
equation for the particles and the equation for the elec-
trostatic potential.

(2) In accordance with relationship (11), two accel-
eration modes are possible. If we assume that ξ =

+ , then this relationship, together with

jz enz
Ṙ1

R1
----- enR1

ξ
R1
----- 

  ,+=

∆ż( )2 ε0
2

2R1
2

--------- 1
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R1
2

-----–
 
 
 
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2
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-----–
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2– ,±=
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2 v T
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1 R1
2/R*

2–

z

z
0

0

L

–νT

νT

.

Fig. 2. Domain on the phase plane occupied by the acceler-
ated particles: a portion of the ellipse at z > 0.
Eqs. (6) and (4), yields an expression for z0(t):

(12)

By virtue of expression (7), we obtain

(13)

where  = 4πn0e2/m, n0 is the density at the initial

instant and R10 = R1 .

If  = 0, Eq. (6) yields

(14)

Therefore, when the emittance ε0 is nonzero, the
condition R10 > 0 must be satisfied. This means that, at
t = 0, the longitudinal size of the cloud of charged par-

ticles near the emitter is R0 = R10 + R10 .

Below, we use the following notation: R1/R∗  = η,
R10/R∗  = η0, and

Then, expression (12) can be rewritten as

(15)

According to Eqs. (2), (3), and (5) and the definition

of z0, the function U = –  can be written as

(16)

If z0(t)|t = 0 > 0 and z0 decreases at t > 0 and then
becomes negative, the first term in formula (16) van-
ishes at z = –z0 and the second term describes a poten-
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tial barrier that blocks the particles if the following con-
dition is valid:

(17)

In this situation, the particles become separated
from the cathode and a bunch is formed (see also [4]).

It should, however, be noted that the above equa-
tions can be used only when there is no potential barrier
in the accelerating gap; i.e., this description is valid at
z0 ≥ 0. Presumably, to create a barrier that blocks the
particles, the function UL(t) must contain a region in

which it sharply drops by ~ /2 after reaching the
point z0 = 0. In accordance with this, we further assume
that such a drop occurs and that a bunch is formed at
time t when z0(t) = 0. To make the process of the bunch
formation possible, the control potential applied to the
grid must satisfy the relationship

(18)

at z0 > 0.

For η = η0 and z0 > 0, it follows from Eq. (15) that,
at the initial instant,

(19)

if η0 <  at µ > 1 or η0 < µ1/5 at µ ! 1. If the condition

for η0 to be small is satisfied, z0 becomes zero when η <

/2. In fact, at η2 = 3/4, we obtain

(3) Under the above conditions, the bunch size is

The function R(η) is shown in Fig. 3 (curve I). At

η = /2, the bunch size reaches its maximum Rmax =

R∗ (3 /4). Note that the value R = R∗  can be reached
not only at η = 1, but also at η < 1, because, in addition

to η = 1, the equation η(1 + ) = 1 has a solution
η . 0.54. At η = 0.54, the equation z0 = 0, which is the
condition for the bunch to leave the cathode, has the
following form:

ω0
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From this equation, we obtain

Therefore, µ > 0 when

(20)

Thus, a bunch of size ~R∗  leaves the cathode if the
initial size of the region occupied by the particles is
R0 . 0.8R∗ . The size ~R∗  of the bunch at the instant it
leaves the cathode seems to be optimal, because, in this
case, as is seen in Fig. 2, the phase volume of the bunch
separates from the cathode. The parameter µ determines
the density at the given emittance and velocity vT.

Let us consider the second acceleration mode, for

which ξ = – . In this case, the right-hand
side of Eq. (15) changes its sign [as does the right-hand
side of Eq. (19)]. The particles are extracted (z0 > 0) at

µ > 1 when  > 1/2 and at µ ! 1 when η0 > µ1/5. At
η2 = 3/4, we have z0 > 0, whereas, as η  1, we obtain

This means that the particles leave the cathode when

 < η < 1. The function R(η) = R∗ η(1 – ) is

monotonic (see Fig. 3, curve II). In this acceleration
mode, the width of the charged particle cloud near the
emitter at small η is much smaller than in the first
mode.

(4) If, at the end of the pulse, η differs slightly from
η0, the pulse duration can easily be calculated. Formula
(14) yields

(21)

µ
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Fig. 3. The size of the charged particle bunch vs. parameter
η in two different acceleration modes.
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Therefore,

At the initial stage, the main contribution to the inte-
gral is due to the points at which η ~ η0. Then, we have

To determine the pulse shape, we should calculate
z0(t) from Eq. (18).

Note that the additional term in the current at z = 0
has different signs in the two acceleration modes con-
sidered above. In the first mode, the second term in
relationship (8) is

This term is proportional to ; at t = 0, it is zero

because  = 0. In the second mode, it has a differ-

t
1
ω0
------ η / 2η0 1

µ
2
---

η η 0+

η2η0
2

---------------+ 
  η η 0–

 
 
 

.d

η0

η

∫=

t  . 
1
ω0
------

2 η η 0–( )
η0 µ/η0

3+
----------------------- 

  1/2

.

~
R1Ṙ12v T

2

ε0
2 1 R1

2/R*
2–

---------------------------------.–

v T
2

Ṙ1 t 0=
ent sign, so that this term increases the current. The
additional current becomes very high as R1  R∗
(η  1). However, this point is inaccessible in both
modes.

Thus, in this paper, we have constructed a nonsteady
model for accelerating a bunch with a nonzero longitu-
dinal emittance. It shows that two acceleration modes
are possible. The duration of the accelerating pulse and
the effect of the longitudinal velocity spread are quali-
tatively determined.
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Abstract—The effect of helium flow on the fullerene formation process is studied. It has been shown that an
annular flow of helium directed into the fullerene formation zone along the discharge axis reduces the content
of fullerenes in soot. If the velocity of the additional flow of helium pumped through a hole in the cathode
becomes close to that of the gas-plasma jet, practically no fullerenes are formed. © 2001 MAIK “Nauka/Inter-
periodica”.
Further experimental studies are needed for achiev-
ing insight into the process of fullerene formation in an
arc discharge. Useful data can be obtained from studies
on the effect that injecting various gases has on the effi-
ciency of fullerene formation.

(1) An arc was burning between two vertical graph-
ite electrodes 6 mm in diameter in a cylindrical vacuum
chamber 180 mm in diameter and 300 mm in length.
After evacuation, the chamber was filled with helium at
a certain pressure and a flow of helium was produced
using a closed helium contour incorporating a standard
GR-A5-5 air blower.

The experimental installation is schematized in
Fig. 1. Helium from blower 5 was fed into the hollow
toroidal chamber of gas-distribution manifold 4. The
end cover of the chamber facing the arc had a annular
slot of a width of 1 mm. Values of the annular slot diam-
eter, 2R, used in the experiments were 4, 9.2, and
14 cm, and the distances h from the manifold cover to
middle of the interelectrode gap were 1.5, 2, and
2.5 cm. Secured to the lower flange of the vacuum
chamber was filter 6, with the filtering element of one
of two layers of common sheeting fabric. Having
passed the filter, helium returned into the blower. In all
the experiments, the flow rate of helium was constant at
5 × 104 cm3/s.

In a different series of experiments, helium was
introduced directly into the discharge area along its
axis. For this purpose, an opening was provided in cath-
ode 2, 2.6 mm in diameter, through which helium
flowed into the arc. In these experiments, the flow of
helium was controlled with choke valve 7 and the flow
rate was measured with flow meter 8.

(2) The idea of an experiment with annular flow is
as follows. It is known that the transformation of car-
bon vapor into fullerenes occurs in a fanlike jet exiting
the interelectrode gap [1, 2]. It is of interest to know the
reason why the fullerene formation process is affected
by the fact that, at a certain distance from the discharge
axis, the carbon transformation products are entrained
by a jet of cold helium.
1063-7842/01/4607- $21.00 © 20923
The results are shown in Fig. 2, which is the depen-
dence of the fullerene content α in the soot deposited
on the chamber walls (curve 1) and on the filter
(curve 2) on the radius R of the annular slot (α0 being
the fullerene content in the soot when no helium is
pumped through). The value of α was determined by the
standard method of absorption of toluene solution [3].

It is seen that at R = 2 and 4.6 cm, the ratio α/α0 is
well below unity. At first sight, these results appear to
disagree quantitatively with the experimental data of
[4] and calculations in [2], where it has been shown that
the area of fullerene formation is in the region 1 < R <
3.5 cm. However, if a jet divergence angle of 90° is
assumed, then at R = 2, 4.6, and 7 cm, the jet “bound-
ary” will be located away from the discharge axis at
distances of 0.5, 2.7, and 4.5 cm, respectively. These
values correlated with the results of [2, 4] quite well.

Thus, if carbon clusters, being “midway” towards
transforming into fullerenes, enter a jet of cold gas, the
efficiency of fullerene formation will be drastically

1

2

3

4

5

6

8 7

hR

Fig. 1. Experimental setup: (1) vacuum chamber; (2) cath-
ode; (3) anode; (4) gas-distribution manifold; (5) blower;
(6) filter; (7) choke valve; (8) flow meter.
001 MAIK “Nauka/Interperiodica”
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reduced. Note that if intermediate transformation prod-
ucts stay in the cold jet long enough, then the efficiency
of fullerene formation rises (in Fig. 2, curve 2 is higher
than curve 1).

The experiments have shown that an annular gas jet
effectively entrains the carbon soot. The quantity of
soot deposited on the chamber walls is much less than
on the filter.

(3) Experiments with pumping helium through a
cathode are based on the following concept. The veloc-
ity of an arc gas-plasma jet is determined by thermal
and magnetic processes and depends on the arc current
I, helium pressure P, radius of the annular slot r0, and
the gas temperature T [5]:

1.0

0 4

α /α0

R, cm

0.5

2 6

1

2

1.0

0

α /α0

0.5

1

1

2 3

23

g, 103 cm3/s

Fig. 2. Dependence on the radius of annular gas flow of the
fullerene content in the soot depositing on the chamber
walls (1) and the filter (2). PHe = 100 torr, I = 70 A, d =
3 mm.

Fig. 3. Dependence on the flow rate of helium pumped
through the cathode of the fullerene content in the soot
depositing on the chamber walls. PHe = 100 (1, 2), 600 torr (3);
I = 100 (1, 3), 200 A (2); d = 4 mm.
(1)

With the given operating parameters of the arc, this
velocity can be increased by pumping a gas along the
arc.

Figure 3 shows the dependence of the ratio α/α0 on
the rate of helium flow through the cathode g. It is seen
that in different arc modes, the ratio α/α0 varies but
weakly, as long as the flow rate is low, until at a certain
value of the flow rate the ratio α/α0 drops rather drasti-
cally, and at high flow rates there are practically no
fullerenes in the soot. The helium pressure in the cham-
ber and the arc current were maintained constant at dif-
ferent flow rates, whereas the arc voltage increased
with the rising flow rate.

In the table, some characteristics of the arc modes
used are given: helium pressure PHe, arc current I, arc
voltage with zero helium flow rate U0, the flow rate
value for α/α0 = 0.5, and the corresponding increase of
the arc voltage ∆U. If it is assumed that the entire addi-
tional power supplied to the arc is spent in heating the
cold helium introduced through the cathode,

(2)

then the increase in the gas temperature ∆T and its
velocity v  can be calculated. In the last column of the
table, v 0 values calculated by formula (1) are given.

It is seen from the table that v  and v 0 have well cor-
related functional dependences on I and PHe; however,
their numerical values differ considerably. Probably,
this difference is caused by the fact that formula (1) has
been derived for an axial plasma jet. It is not known by
how much the transformation of the axial cathode and
anode jets into a radial fanlike jet will reduce the jet
velocity. Therefore, we consider the quantity v  to be
more trustworthy than v 0.

The physical explanation of the dependence of the
quantity α/α0 on g presented in Fig. 3 is as follows. As
soon as the velocity of the gas pumped through the
cathode becomes close to that of the gas-plasma jet
itself, the time spent by carbon clusters (precursors of
fullerenes) in the zone optimal for the formation of
fullerenes becomes shorter and fullerene formation is
disrupted. If the width of the formation zone is ~ 2.5 cm
and the jet velocity ~ 1 × 104 cm/s, then the time spent
in the optimal zone is ~ 2.5 × 10-4 s, which is close to
the characteristic time of transformation into fullerenes

v 0 1.5 103 I A[ ]
r0 cm[ ]
----------------- T eV[ ]

P torr[ ]
----------------- 

 
1/2

cm/s[ ] .×=

I∆U ρv CP∆T ,=
Table

PHe, Torr I, A U0, V α0, % g, 103 cm3/s ∆U, V ∆T, K v, 104 cm/s v0, 104 cm/s

100 100 27 7.5 1.4 3 1780 1.1 2.7

100 200 38 6.8 1.9 2 1750 1.5 5.4

600 100 34 11.1 0.9 9 1380 0.55 1.1
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of two-ring clusters calculated in [6] for the number of
atoms in an initial cluster N > 44.
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of PbS–CdS Heterogeneous Semiconductor

A. G. Rokakh and N. B. Trofimova
Chernyshevsky State University, ul. Astrakhanskaya 83, Saratov, 410026 Russia

e-mail: semiconductor@sgu.ssu.runnet.ru
Received December 18, 2000

Abstract—A great enhancement of photoluminescence from CdS-doped PbS [1] can be attributed to the
recombination flux from the wide- into narrow-gap phase due to the field of the variband transition region.
A semiconductor heterostructure model accounting for the enhancement of luminescence in the PbS–CdS sys-
tem is presented. The concentration profile of nonequilibrium charge carriers and the integral intensity of lumi-
nescence at the interface between the narrow- and wide-gap phase are numerically studied. © 2001 MAIK
“Nauka/Interperiodica”.
As is known, PbS–CdS semiconductor compounds
feature a limited homogeneity range and form ternary
solid solutions Pb1 – xCdxS at small x [1–4]. The mate-
rial is inhomogeneous in composition: CdS precipitates
and PbS lines are observed in X-ray diffraction patterns
[1, 5]. Earlier, it was demonstrated [1, 6, 7] that
Pb1 − xCdxS films contain a heterogeneous CdS–PbS
material consisting of the wide-gap (CdS) matrix and
embedded islands of the narrow-gap solid solution
Pb1 − xCdxS with x varying from 0.02–0.2 to 0.24–0.3.

The lasing effect in Pb1 – xCdxS crystals at T = 10 –
30 K [5], as well as spontaneous and stimulated emis-
sion from the Pb1 – xCdxS films at T = 300 K [1], indi-
cates a high luminescence intensity in the spectral range
corresponding to the narrow-gap phase (2.3–3 µm).

Our study of luminescence from the Pb1 – xCdxS
films shows that the position of the luminescence peak
is nearly unaffected by the charge composition for 0 <
x < 0.7 and corresponds to the solid solution with x =
0.06. In contrast, the intensity of luminescence Il is sen-
sitive to the initial charge composition; specifically, as
the CdS fraction grows, Il sharply grows and peaks at
0.4 < x < 0.6 (see table).

Auger spectroscopy, plasma resonance, and X-ray
diffraction data support the presence of the wide-gap
CdS phase and a number of solid solutions with x =
0.02–0.3, 0.06–0.8, and 0.24–0.3 in this material.
Therefore, it would be reasonable to elaborate a model
of luminescence enhancement in heterostructures with
narrow-gap solid solution inclusions.

In this paper, we numerically study the spatial evo-
lution of the one-dimensional nonequilibrium charge
carrier distribution near the narrow-gap phase.

For the linearly varying bandgap and the z-depen-
dent field of the variband transition region (Figs. 1a,
1b), we seek a solution of the diffusion–drift equation
1063-7842/01/4607- $21.00 © 20926
in the form of the exponentially varying change in the
nonequilibrium carrier concentration [8]:

(1)

where

Here, l is the effective diffusion–drift length, E is the
electric field strength, and Eg0 and Eg(z) are the band-

∆n z( ) C z/l–( )exp B az( ),exp+=

a
eE

2kT
---------, E

Eg0 Eg z( )–
ez

---------------------------.= =

(a)

(b)

e–

e

E

Ec

EF
Ev

hνex

hνl

0 z
Pb0.7Cd0.3S Pb0.97Cd0.03S

hνex hνl hνex hνl0

z

S Pb0.7Cd0.3S

CdS CdxPb1–xS
x = 0.03

SSd

Variband
semiconductor

Fig. 1. (a) Energy diagram and (b) geometry of the variband
structure.
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gaps of the wide- and the narrow-gap solutions, respec-
tively.

At z  ∞ ∆n(z)  0 and the second term can be
omitted. For a variband transition region of finite thick-
ness d, when d & l, it is appropriate to introduce, along
with the recombination rate S at the outer surface of the
variband transition region, the recombination rate at its
inner surface, Sd. Then, with the boundary conditions

(2)

d
dz
-----∆n 2a∆n– 

 
z 0=

S
Dn

------∆n 0( ),=

d
dz
-----∆n 2a∆n– 

 
z d=

Sd

Dn

------∆n d( ),=
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and αd @ 1 and αl+ @ 1, which is true for strongly
absorbable excitation of energy hν @ Eg0 and intensity I0,
the solution takes the form

(3)

where

(4)

(5)

(6)

∆n z( ) c1 z/l+–( )exp c2 z/l–( )exp+ ,=

l± a2 Ln
2–+( )1/2

a±[ ]
1–
,=

c1 K l+
1– Sd/Dn+( ) d/l–( ),exp=

c2 K l+
1– 2a Sd/Dn–+( ) d/l+–( ),exp=
(7)K
I0α Dn

1–

α2 2aα Ln
2––+( ) l+

1– 2a
S

Dn

------+ + 
  l+

1– Sd

Dn

------+ 
  d/l– l+

1– S
Dn

------– 
  l+

1– 2a
Sd

Dn

------–+ 
  d/l+exp–exp

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=
Ln is the diffusion length, D is the diffusion coefficient,
and α is the absorption factor.

From (3)–(6) follows |c1| > |c2| and c1 > 0. If (  +
2a) > Sd/Dn, then c2 > 0. In this case, the nonequilibrium
carriers are accumulated at the inner surface of the
variband transition region near the narrow-gap phase. It
is seen from Fig. 2 that the built-in electric field
strength is limited from below, E ≥ 100 V/cm, when
Sd/Dn lies in the interval 103 cm–1–5 × 105 cm–1.

The top-most curve ∆n (z) corresponds to Sd/Dn ~
103 cm–1 at the built-in field strength E = 800 V/cm.

The luminescence intensity in the case of linear
interband recombination can be expressed as

(8)

Substituting (3) into (8), one obtains, in view of
(4)−(7),

where τn is the carrier lifetime. Figure 3 depicts d
dependences of the quantity Ilxτn for I0 = 1.3 ×
1023 photon/(cm2 s), Dn = 0.3 cm2/s, Sd/Dn = 2.4 × 104

cm−1, and α = 105 cm–1. It is seen that, as the variband
region becomes thicker, Il increases and tends to satura-
tion. Therefore, for the maximum luminescence inten-
sity, the films of choice are those with a variband region
thickness d of about 4–5 µm. An Il vs. E curve for the
built-in field E ranging from 102 to 103 V/cm was cal-
culated in a similar way (Fig. 4). This curve peaks at
E = (2–3) × 102 V/cm. To this value, there correspond

l+
1–

Il
∆n z( )

τn

--------------

0

d

∫ dz.=

Il
1
τn

---- c2l– d/l–( )exp 1–[ ] c1l+ d/l+( )exp+{ } ,=
10
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Fig. 2. Nonequilibrium carrier concentration across the
variband transition region for Sd/Dn = (1) 5 × 103, (2) 104,

(3) 2 × 104, (4) 5 × 104, (5) 8 × 104, (6) 105, and (7) 5 × 105

cm–1. E = (a) 100, (b) 500, (c) 800, and (d) 1000 V/cm.
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the wide-gap and narrow-gap compositions x = 0.08
and 0.03, respectively, which correlates with the X-ray
diffraction data. Thus, intense luminescence from
Pb1 − xCdxS films is provided if the variband transition
region is sufficiently thick (~4 µm); S, Sd, and α are
small; Ln is large; and the built-in field of the transition
region is optimal, i.e., (2–3) × 102 V/cm.

Another conclusion is the following. Calculating the
intensity Il as a function of Sd/Dn for E from 100 to
1000 V/cm, one can see that Sd markedly affects Il only
at d ~ Ln. At d < Ln or d > Ln Il ≠ Il(Sd).

Since the nonequilibrium carrier lifetime in the
wide-gap (II–VI) phase is several orders of magnitude
greater than that in the narrow-gap phase, the lumines-

3

4

Il × τ × 10–9, cm–2

d, µm
1 2 3 5 6 7 8 9 10 11

1

5

7

9

11

1

2
3
4

Fig. 3. Integral photoluminescence intensity vs. surface
recombination rate near the narrow-gap phase in
Pb1 − xCdxS layers at d = 0.4 µm, Ln = 0.73 µm, and α =

105 cm–1. E = (1) 100, (2) 500, (3) 800, and (4) 1000 V/cm.

Table

Charge composition, x Intensity Il, arb. units

0 6

0.1 45

0.2 47

0.3 96

0.4 132

0.5 117

0.6 156

0.7 35
cence enhancement may also reach several orders of
magnitude.

Note that the enhancement of long-wave lumines-
cence from Pb-doped ZnS was observed in [9]; this
fact, however, was not treated numerically in that work.
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Fig. 4. Integral photoluminescence intensity vs. built-in
field strength for S/Dn = 2.4 × 104 cm–1, α = 105 cm–1, d =
0.4 µm, and Ln = 0.73 µm.
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